
Program Product

GC26-4066-0
File No. S370-30

MVS/370
VSAM Users Guide

Data Facility Product 5665-295

Release 1.1

--...- ------- - - ------- ~ ---- - - -------------'., -

TNL GN26-8093 (28 Oct 83) to GC26-4066-0

First Edition (April 1983)

This edition, as amended by technical newsletter GN26-8093,
applies to Release 1.1 of MVS/370 Data Facility Product, Program
Product 5665-295, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to yo~.

e Copyright International Business Machines Corporation 1983

Program Product

GC26-4066-0
File No. 5370-30

MVS/370
VSAM Users Guide

Data Facility Product 5665-295

Release 1.0

--...- ------ - - ------- -. ---- - - -------------_ ... -

First Edition (April 1983)

This edition applies to Release 1.0 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
n~wsletters.

Changes are periodically made to the information herein; before
using this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983

PREFACE

This publication describes the use of virtual storage access
method (VSAM). It is intended for programmers who use VSAM
macro instructions, access method services commands, or JCl to
process VSAM data sets. The publication has the following major
divisions:

• "VSAM Data Sets and Records" describes the types of VSAM
data sets and the data set's structure.

• "Data Set Procedures" describes the procedures used to
define, alter, delete, copy, print, and recover VSAM and
non-VSAM data sets.

• "VSAM Performance Considerations" describes many of the
concepts and parameters that influence VSAM performance.

• "Security" discusses the types of security arrangements that
are available with VSAM.

• "Sharing a VSAM Data Set" discusses how VSAM data sets may
be shared by different operating systems, by different jobs
in a single operating system, and by different subtasks in
an address space.

• "Options for Advanced Applications" discusses applications
that might be effective in the development of high
performance programs and system control programs and how to
prestage data for use in certain Mass Storage System
applications.

• "Job Control language" describes JCl for VSAM, including DD
statements for catalogs and the DD AMP parameter.

• "User-Written Exit Routines" describes how to write exit
routines to be used with VSAM.

• "Invoking Access Method Services from a Problem Program"
gives an example of how to use the access method services
commands in a user program.

• "Using ISAM Programming with VSAM" describes how data sets
can be converted to VSAM's format and processed using an
ISAM processing program.

• "Glossary" defines VSAM terms.

• "Index" is a subject index to this publication.

CONVENTIONS USED IN THE PUBLICATION

The conventions used in this publication for writing the macro
and JCl statements indicate whether an operand is optional, how
to specify the value for an operand, and how to punctuate a
macro or statement. The conventions are:

• Expressions enclosed in brackets, [], are optional.

• Items separated by an OR sign, I, and enclosed in braces,
(l, are alternatives, one of which must be specified.

• An underlined bold item, ITEM, is the default when you do
not specify an operand. ----

• Ellipses,
item.

... , indicate that you may repeat the preceding

Preface iii

• Capitalized BOLD expressions, parentheses, commas, and equal
signs must be entered as shown. Unless otherwise noted,
parentheses are not required if you specify only one item.

• Underlined lowercase expressions are variables; you may
specify a variable.

VSAM AND ACCESS METHOD SERVICES PUBLICATIONS

RELATED PUBLICATIONS

The VSAM and access method services publications are:

• MVS/370 VSAM Reference, GC26-4074, provides information
about the VSAM macro instructions.

• MVS/370 Access M~thod Services Reference for the Integrated
Catalog Facility, GC26-4051, contains a description of the
commands that are used to copv, print, and load data s~ts_
,Itt::: rt:::J.ct\.IUIl:::JlllfJ::J ctmong componen"'Cs, "tne s"trUC1:ure OT
components, the use of the catalog, and access method
services commands to define and delete data sets, list
catalog entries, and move data sets from one operating
system to another are described.

• MVS/370 Access Method Services Reference for VSAM Catalogs,
GC26-4059, contains a description of the commands that are
used to copy, print, and load data sets. The relationships
among components, the structure of components, the use of
the catalog, and access method services commands to define
and delete data sets, list catalog entries, and move data
sets from one operating system to another are described.

• MVS/370 Data Facilities Planning Guide, GC26-4052, describes
planning considerations for VSAM.

• MVS/370 Catalog Users Guide, GC26-4053, describes the use of
ICF catalogs, with an appendix that covers VSAM catalogs and
OS CVOls.

• MVS/370 Catalog Diagnosis Reference, SY26-3915, describes
the process by which a program component and type of failure
can be determined.

• MVS/370 Access Method Services logic, lY26-3912, describes
the internal logic of access method services.

• MVS/370 VSAM logic, lY26-3928, describes the internal logic
of VSAM.

The reader also needs to be familiar with some of the
information presented in the following publications:

• MVS/370 Data Management Services, GC26-4058, presents basic
concepts such as access methods, direct access storage, and
the distinction between data set organization and data set
processing.

• OS/VS2 MVS JCl, GC28-0692, describes the JCl parameters
referred to in this publication and describes dynamic
allocation.

• OS/VS2 System Programming library: Job Management,
GC28-0627, describes dynamic allocation.

• OS/VS2 TSO Command language Reference, GC28-0646, and OS/VS2
TSO Terminal User's Guide, GC28-0645, describe the time
sharing option.

• OS/VS System Modification Program (SMP) System Programmers
Guide, GC28-0673

iv MVS/370 VSAM Users Guide

• MVS/370 System Generation Reference, GC26-4063

• MVS/370 Checkpoint/Restart, GC26-40S4

• OS/VS Message Librarv: VS2 System Messages, GC38-1002

• MVS/370 Utilities, GC26-4065

• OS/VS2 Data Areas, SYB8-0606

• OS/VS2 System Programming library: Debuggina Handbook,
GC28-1047, GC28-1048, and GC28-1049

• OS/VS2 MYS Resource Access Control Facility (RACF): General
Information Manual, GC28-0722

Preface y

TNt GN26-8093 (28 Oct 83) to GC26-4066-0

SUMMARY OF AHMENDMENTS

RELEASE 1.1, OCTOBER 1983

NEW PROGRAMMING SUPPORT

Description of Resource Access Control Facillty (RACF)
Release 1.5 Data Management Support.

vi MVS/370 VSAM Users Guide

CONTENTS

Introduct i on •••••••
VSAM Data Sets and Records

Key-Sequenced Data Sets
Entry-Sequenced Data Set
Relative Record Data Set
Control Intervals .•...
Control Areas
Spanned Records
Clusters
Alternate Indexes

Using VSAM As an Access Method
VSAM Options•.

Chapter 1. VSAH Data Sets and Records
Key-Sequenced Data Sets . . • • . . • . .
Entry-Sequenced Data Sets •........•
Relat i ve Record Data Sets •...•.
Control Intervals

Records Stored in a Control Interval
Other VSAM Data Set Entities

Alternate Indexes .•....
Clusters and Alternate Indexes
Alternate Index Paths
Alternate Index Records

System Header Information
Alternate Keys•
Alternate Index Pointers

Alternate Index Maintenance
Processing VSAM Data Sets
Types of Access

Retrieve by Key
Delete by Key
Store by Key ..
Retrieve by Address
Delete by Address
Store by Address

Chapter 2. Data Set Procedures
Using Access Method Services ..•
Creating a Cluster (DEFINE CLUSTER)

Duplicate Data Set Names
Defining a Keyrange Data Set
Specifying Cluster Information

Descriptive Information •
Performance Options Information .
Protection and Integrity Information

Preformatting Control Areas•.
User Restrictions During Create (Load) Mode
Exit Routines for Special Processing
Deferred and Forced Writing of Buffers
Record Insertions
Multi-String Processing ••

Multi-String Index Buffers
Multi-String Data Buffers
Request Positioning

Creating an Alternate Index (DEFINE ALTERNATEINDEX)
Specifying Alternate Index Information

Descriptive Information•....
Building an Alternate Index (BLDINDEX)

How an Alternate Index is Built
DD Statements That Describe the Sort Workfiles

Defining a Path (DEFINE PATH)
Defining a Non-VSAM Data Set (DEFINE NONVSAM)
Defining an Alternate Name (DEFINE ALIAS)
Defining a Generation Data Group (DEFINE

GENERATIONDATAGROUP) ..••.. ..
Defining a Page Space (DEFINE PAGESPACE)
Restoring End-of-File Values (VERIFY)

Contents

1
1
1
1
2
2
2
2
3
3
3
4

5
5
7
8
8

10
11
11
11
12
13
13
13
13
14
15
15
16
18
18
19
19
19

21
21
23
23
24
25
25
25
26
26
26
27
28
28
29
30
30
31
31
32
32
32
33
34
35
35
36

36
36
37

vii

Copying a Data Set (REPRO)
Printing a Data Set (PRINT)
Listing Tape Volumes Mounted at Checkpoint (CHKLIST)
Establishing Backup and Recovery Procedures

Backing Up Data
Exporting and Importing a Data Set
Making a Copy of a Data Set

Corrective Measures

Ch~pter 3. VSAM Performance considerations
Control Interval Size

Data Control Interval Size
Random Processing
Sequential Processing

Index Control Interval Size
Summary of Control Interval Size Strategy

Some Additional Control Interval Considerations
Control Area Size

Impact of Small Control Areas
I/O Buffer Space Management •

Buffer Space
Buffer Allocation for a Path
Things You Should Know about Buffer Allocation

Units of Allocation
Multiple Cylinder Data Sets
Small Data Sets
Choosing Allocation Parameters

Distributed Free Space
Free Space Computation

Index Options
Index-Set Records in Virtual Storage
Size of the Index Control Interval
Index and Data on Separate Volumes
Replication of Index Records
Sequence-Set Records Adjacent to Control Areas

Chapter 4. Secur i ty ••••••
Authorized Program Facility (APF)
Access Method Services Options

VSAM Password Protection
Passwords for Non-VSAM Data Sets .

Resource Access Control Facility (RACF)
User-Security-Verification Routine (USVR)
Access Method Services Cryptographic Option

Key Management
Data Encryption Keys
Secondary Fi Ie Keys

Requirements

Chapter 5. Sharing a VSAH Data set
Subtask Sharing

Data Set Name Sharing
Defining a Sphere•

Cross-Region Sharing•.•
Read Integrity during Cross-Region Sharing ...•
Write Integrity during Cross-Region Sharing ...•..
Cross-System Sharing •..

Control Block Update Facility (CBUF) .••.
Invocation
User Interactions .•......
Erro rs

Chapter 6. Options for Advanced APplications
Processing Control Intervals ..•.....

The Format of a Control Interval
CIDF--Control Interval Definition Field
RDF--Record Definition Field .•...

How to Gain Access to a Control Interval
Managing Your Own I/O Buffers

Improved Control Interval Access
CBIC (Control Blocks in Common) Option

SRB or Cross-Memory Invocation
Invocation
User Interaction

viii MVS/370 VSAM Users Guide

38
40
41
42
42
43
43
43

44
44
46
47
47
47
48
48
49
49
49
50
50
51
52
52
53
53
54
55
55
56
56
56
56
57

58
58
59
59
62
63
63
63
65
65
67
68

69
71
73
73
74
74
75
77
77
79
79
80

81
81
81
82
82
86
87
87
89
89
90
90

Errors•......•••..••
Messages and Codes • . • • . . • •

Sharing Resources Among Data Sets ..•.•....
Providing a Resource Pool

Deciding How Big a Resource Pool to Provide
BLDVRP: Building a Resource Pool
DLVRP: Deleting a Resource Pool•.
OPEN: Connecting a Data Set to a Resource Pool
Deferring Write Requests
Relating Deferred Requests by Transaction ID .
WRTBFR: Writing Buffers Whose Writing Is Deferred
Handling Exits to Physical Error Analysis Routines
Using the JRNAD Exit with Shared Resources
Preventi ng Deadlock in Exclusi ve Control
Using Control Interval Access with Shared Resources
SCHBFR: Locating an RBA in a Buffer Pool
MRKBFR: Marking a Buffer of Output

Summary of Restrictions for Shared Resources
Processing The Index of a Key-Sequenced Data Set

The Format of an Index Record
The Header Portion
The Free Control Interval Entry Portion
The Index-Entry Portion •...

How to Gain Access to a Key-Sequenced Data Set's Index
Opening the Cluster
Opening the Index Component of the Cluster .

Building Parameter Lists for GENCB, MODCB, SHOWCB, and
TESTCB

The Format of the Parameter lists ..•.
Building Header and Element Entries
Passing Control Directly to VSAM. .

Modifying and Displaying the REClEN Field of an RPl
Di rectly•

Staging VSAM Data Sets on a Key or Keyrange Basis for Mass
Storage System (MSS)•..... .•.

CNVTAD: Convert an Argument to an Address
MNTACQ: Mount a Volume and Acquire Cylinders
ACQRANGE: Acquire a Continuous Range of Records
Non-MSS Support•
Restrictions and Limitations
Alternate Indexes

Chapte~ 7. Job Control Language
How to Code JCL•.

JCL Parameters Used with VSAM
JCL Parameters Not Used with VSAM
Coding a DD Statement for a Catalog
Coding the AMP Parameter

Chapter 8. User-Written Exit Routines •••
LERAD Exit Routine to Analyze Logical Errors
SYNAD Exit Routine to Analyze Physical Errors
Exception Exit Routine
EODAD Exit Routine to Process End-of-Data
JRNAD Exit Routine to Journalize Transactions
UPAD Exit Routine for User Processing ...•
User-Security-Verification Routine
Datestamp Routine
Returning to Your Main Program .
Example: User-Written Exit Routine

Appendix A. Invoking Access Method services from a Problem
Program •••••••••••• • • • • • • • •

Authorized Program Facility (APF) ..•.•
Invoking Macro Instructions ..••

LINK or ATTACH Macro Instruction .•••
LOAD and CALL Macro Instructions .••.•
Invocation from a PL/! Program •.•

Processor Invocation ••..•••
Processor Condition Codes

User I/O Routines ..•.

Appendix B. Using ISAM Programming with VSAM
How an ISAM Program Can Process a VSAM Data Set

Contents

90
91
91
92
92
93
94
94
94
95
95
96
97

100
101
102
102
102
103
104
105
106
107
111
111
111

112
112
112
116

117

118
119
119
119
119
119
120

121
121
123
124
125
126

129
129
130
131
132
133
135
137
138
140
141

142
142
142
142
143
144
144
146
146

149
149

ix

Converting an Indexed-Sequential Data Set
JCL for Converting from ISAM to VSAM .

JCL for Processing with the ISAM Interface
AMP Parameter Specification ...•••

Restrictions on the Use of the ISAM Interface
Example: Converting a Data Set
Example: Issuing a SYNADAF Macro

Glossary

Index

x MVS/370 VSAM Users Guide

156
157
157
160
162
164
164

166

172

FIGURES

1.

2.
3.

4.

5.

6.
7 •
8.
9.

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.

Relationship among the Levels of a Prime Index and a
Data Set •. . . •
Distribution of Free Space in a Key-Sequenced Data Set
The First Control Interval within a Relative Record Data
Set
Control Intervals Are Independent of Physical Record
Size
Placement of Data Records and Control Information in a
Control Interval
Control Intervals That Contain Spanned Records
Two Data Sets Over a Single Key-Sequenced Data Set
Nonunique Alternate Keys . . . •.. ..
Comparison of Key-Sequenced, Entry-Sequenced, and
Relative Record Data Sets
Adding Records to Various Types of Output Data Sets
Physical Block Size for Control Intervals ...
Data Control Interval Sizes ...
REPRO Encipher/Decipher Operations
Exclusive Control Conflict Resolution .
Relationship between the Base Cluster and the Alternate
Index
Specifying SHAREOPTIOHs
General Format of a Control Interval .
Format of a Control Interval with Unspanned Records
Format of Control Intervals with Spanned Records
General Format of an Index Record . .
Format of the Header of an Index Record
Format of the Index-Entry Portion of an Index Record
Format of an Index Entry
Example of Key Compression•
Format of Header and Element Entries for GENCB, MODCB,
SHOWCB, and TESTCB Parameter Lists ...
JCL to VSAM Macro Relationship .
JCL DD Parameters
Contents of Registers at Entry to lERAD Exit Routine
Contents of Registers at Entry to SYNAD Exit Routine
Contents of Registers at Entry to EODAD Exit Routine
Contents of Registers at Entry to JRNAD Exit Routine
Communication with User-Security-Verification Routine
Communication with Datestamp Routine
Processor Invocation Argument List from a Problem
Program
Arguments Passed To and From a User I/O Routine
Use of ISAM Processing Programs ..
QISAM Error Conditions
BISAM Error Conditions
Register Contents for DCB-Specified ISAM SYNAD Routine
Register Contents for AMP-Specified ISAM SYNAD Routine
Abend Codes Issued by the ISAM Interface
DEB Fields Supported by ISAM Interface
DCB Fields Supported by ISAM Interface

6
7

8

9

10
11
12
14

20
40
45
47
66
72

73
79
81
84
85

104
105
107
108
109

113
122
123
130
131
132
133
138
139

145
148
150
151
153
154
154
155
156
157

INTRODUCTION

VSAM supports both direct and sequential processing to give you
direct access to records in any order and sequential access to
records that follow one another. You can identify a record for
retrieval by its key (a unique value in a predefined field in
the record), by its displacement from the beginning of the data
set, or by its relative record number. These alternative types
of access and access options enable you to design a program to
suit your requirements for processing data.

VSAM DATA SETS AND RECORDS

Three data set organizations are used for VSAM and include
key-sequenced data set, entry-sequenced data sets, and relative
record data sets.

KEY-SEQUENCED DATA SETS

A key-sequenced data set (KSDS) always includes an index, which
is a mechanism for keeping track of records. A record is
identified for retrieval by its key (a unique value in a
predefined field in the record).

Key-sequenced data format consists of an index, logical records,
and data sets. A key-sequenced data set contains one or more
logical records that may have a fixed length or may vary in
length. A logical record is a unit of information grouped
together based on its contents or function (for example, a
personnel file), not its physical attributes (for example, the
size of the data set).

Each logical record contains a unique, embedded key. The index
contains key information and a pointer to logical records in a
data set. VSAM keeps track of records by the key field so you
only need to refer to a record by its key field and not in some
location-dependent manner. The records in a key-sequenced data
set may be accessed using keyed access, addressed access, and
control interval access. The relative byte address of records
can change in a key-sequenced data set when records are added,
deleted, shortened, or lengthened.

ENTRY-SEQUENCED DATA SET

In an entry-sequenced data set (ESDS), a record is identified
for retrieval by its displacement from the beginning of the data
set.

Entry-sequenced data format consists of logical records and data
sets. An entry-sequenced data set contains one or more logical
records that are fixed or variable in length. Entry-sequenced
data sets do not have an index as key-sequenced data sets do.
The logical records are sequenced in the data set by the time of
their arrival. Records may be added at the end and may be
updated, but not extended or erased. The relative byte address
(RBA) is used to locate the record. Once a record is added to
an entry-sequenced data set, it stays there and keeps its
original relative byte address.

An entry-sequenced data set is appropriate for applications that
require no special ordering of data by the contents of a record.
To retrieve records randomly from an entry-sequenced data set,
you must keep track of the record's relative byte address and
associate relative byte addresses with the contents of records.

Introduction 1

RELATIVE RECORD DATA SET

CONTROL INTERVALS

CONTROL AREAS

SPANNED RECORDS

In a relative record data set (RRDS), a record is identified for
retrieval by its relative record number.

Relative record data format consists of one logical record in a
fixed-length slot. Each slot has a unique relative record
number, with the slots sequenced by the ascending relative
record numbers from 1 to n.

A logical record is placed in the specified slot by a
user-supplied relative record number. If a number is not
specified, VSAM supplies a number of 1 for the initial record
load or a number that is 1 greater than the last available
number for subsequent inserts. A record may be inserted into any
empty slot. Records can be retrieved by a relative record
number or in the order of their physical sequence.

You can use a relative record data set in much the same way as a
direct access method data set in which the data records are not
ordered by their contents or their entry sequence.

Logical records for VSAM data sets are structured and stored
differently than logical records for non-VSAM data sets.

In VSAM, disk space is divided on a direct access storage device
(for example, an IBM 3380 etc.) into segments of information
called control intervals. A control interval is a fixed-length
area of auxiliary storage that contains logical records. A
control interval is a contiguous area that may vary in size from
one data set to another. The size may be specified by a user
or, as a default, VSAM will establish the size. In order to use
a data set (for example, to update or delete a record), the
control interval that contains the logical record is moved from
disk storage to virtual storage.

A control interval may contain two types of information fields.
One type of field is the control interval definition field
(CIDF) that exists for each control interval and contains the
information for that control interval. The other type may be one
or more record definition fields (RDF) that indicate, for
example, the length of records, or how many adjacent records
have the same length.

All control intervals must contain a control interval definition
field, but may also contain logical records and unused space, or
logical records only, or unused space only.

Control intervals are grouped into fixed-length contiguous areas
called control areas. VSAM uses the control areas to receive or
hold the control intervals of a particular data set in an
auxiliary storage space.

VSAM determines the number of control areas based on the number
of control intervals. When a control area is full and a data set
needs to be extended, VSAM extends the data set and may create a
new control area.

Sometimes a record is larger than the control interval. These
records do not need to be broken apart or reformatted, because
VSAM allows you to specify a spanned parameter when defining a
data set. This parameter allows a record to extend across or
span the control interval. These spanned records apply only to
key-sequenced or ~ntry-sequenced data sets.

2 MVS/370 VSAM Users Guide

CLUSTERS

ALTERNATE :~DEXES

The spanned record starts at the beginning of one control
interval and fills that control interval, then spans to the next
control interval. A record may span several control intervals;
however, a record cannot span a control area.

If the spanned parameter was specified when the data set was
defined, VSAM determines when to span the control interval.

When a data set is created, it is defined as a cluster. A
cluster can be a key-sequenced data set, which consists of a
data component and an index component, or it can be an
entry-sequenced or relative record data set, which consists of
only a data component.

An alternate index provides a way to gain access to a related
data set so you do not need to keep multiple copies of the same
information organized in different ways for different
applications. For example, a data set containing payroll
information indexed by employee number can also be indexed by
other fields such as employee name or department number.

An alternate index accesses the data set in the same way the
prime index of a key-sequenced data set does. The data set over
which the alternate index is built is the base cluster. The base
cluster can be a key-sequenced or an entry-sequenced data set,
but not a relative record or reusable data set.

USING VSAM AS AN ACCESS METHOD

VSAM uses access method services or VSAM macro instructions to
process data sets and catalogs.

Access method services is a program to use with VSAM to create
and maintain data sets and catalogs that includes a set of
commands along with various parameters. Access method services
commands are defined in Access Method Services Reference.

Access method services commands allow you to:

• Define, alter, and delete data sets

• List catalog entries

• Copy and print data sets

• Construct alternate indexes for VSAM data sets

• Diagnose data structures to prevent the use of invalid data

• Move data sets from one operating system to another or from
one device type to another

• Aid in recovery from damage to data sets or catalogs

The macro instructions provided by VSAM to define and process
VSAM data sets are divided into control block macros and request
macros. The control block macros are used to define, modify,
display, and test the contents of VSAM control blocks and
parameter lists. The request macros are used to specify the
processing action; for example, read or write, to be taken on
data and index records. The macro instructions are defined in
VSAM Reference.

Introduction 3

VSAH OPTIONS

The macro instructions are used to:

• Build control blocks

• Modify, display, and test the contents of control blocks

• store, retrieve, and erase records, to position VSAM in a
data set, to suspend processing, and to terminate requests

• Develop high performance programs and system control
programs

• Prestage data for use in certain MSS applications to reduce
the number of cylinder faults incurred during processing

• Connect or disconnect data sets

Information is provided about advanced applications of VSAM. The
topics include:

• Gaining access to control intervals

• I/O buffering

• Constructing parameter lists for the macros that generate,
modify, and examine control blocks at execution

• Processing the index as data

• Sharing resources

4 MVS/370 VSAM Users Guide

CHAPTER 1. VSAH DATA SETS AND RECORDS

VSAM has key-sequenced, entry-sequenced, and relative record
data sets. The primary difference among the three is the way
the data sets are structured.

Records are loaded into a key-sequenced data set in the order
defined by the collating sequence of the contents of the key
field in each of the records. Each record has a unique value in
the key field, such as employee number or invoice number. VSAM
uses an index to insert a new record into the data set in key
sequence.

Records are loaded into an entry-sequenced data set regardless
of the contents of the records. Their sequence is determined by
the order in which they are physically received in the data set
or their entry sequence. New records are stored at the end of
the data set.

Records are loaded into a relative record data set in relative
record number sequence. The data set is a string of
fixed-length slots, each identified by a relative record number.
When a record is inserted, you can assign the relative record
number or allow VSAM to assign the next available number in
sequence. No index is used.

When you create a data set, you define it, together with its
index, if any, in a cluster. A cluster may be a key-sequenced
data set, which consists of a data component and an index
component, or an entry-sequenced or relative record data set,
which consists of only a data component. Further information on
data set entities may be found in "Other VSAM Data Set Entities"
on page 11.

KEY-SEQUENCED DATA SETS

A key-sequenced data set is always defined with an index that
relates key values to the relative locations of the data records
in a data set. (This index is the prime index, in contrast to
alternate indexes, which are discussed later.)

A key in the index is taken from a record's key field, whose
size and position are the same for every record in the data set,
and whose value cannot be altered. VSAM uses an index to locate
a record for retrieval and to locate the collating position for
insertion.

An index has one or more levels, each of which is a set of
records that contains entries giving the location of the records
in the next lower level. The index records in the lowest level
are the sequence set; they give the location of control
intervals containing the data records. The records in all the
higher levels are the index set; they give the location of index
records. The highest level always has only a single record.
The index of a data set with a few control intervals for a
single sequence-set record has only one level: the sequence set
itself.

Figure 1 on page 6 illustrates the levels of a prime index and
shows the relationship between a sequence-set index record and a
control area. The figure shows that the highest-level index
record (A) controls the entire next level (records B through Z);
each sequence-set index record controls a control area.

Chapter 1. VSAM Data Sets and Records 5

} Index Set

Index

Sequence Set

Data Set { 0···0 00···0···
Control Intervals of First Control Area Control Intervals of Second Control Area

Figure 1. Relationship among the Levels of a Prime Index and a Data Set

An entry in an index-set record consists of the highest key that
an index record in the next lower level contains, and a pointer
to the beginning of that index record. An entry in a
sequence-set record consists of the highest key in a control
interval of the data component, paired with a pointer to the
beginning of that control interval. Not all data records have
sequence-set entries; there is only one entry for each control
interval in the data set.

For direct access by key, VSAM follows vertical pointers from
the highest level down to the sequence set to find a vertical
pointer to data; for sequential access by key, VSAM refers only
to the sequence set. It uses a horizontal pointer in a
sequence-set record to get from that sequence-set record to the
next record in collating sequence to find vertical pointers to
data. Figure 1 shows both vertical pointers and horizontal
pointers.

VSAM uses a method of key compression to eliminate from the
front and the back of a key those characters that aren't
necessary to distinguish it from the adjacent keys. Compression
helps achieve a smaller index by reducing the size of keys in
index entries. Key compression increases the capacity of an
index entry and allows access to many more records for a given
index record. The number of entries in a sequence set record is
limited by the number of control intervals in a control area and
the compression characteristics of the entry keys.

When you define a key-sequenced data set, you can specify how
free space is to be distributed in one of two ways:

• Leave some space at the end of all the used control
intervals or

• Leave some control intervals completely empty

The amount of free space in a used control interval and the
number of free control intervals in a control area are
independent of each other. You may specify the amount of free

6 MVS/370 VSAM Users Guide

Data Free
Records Space

space. The selection of free space values depends on whether
your program does direct processing, sequential processing, or
both. Figure 2 shows how free space might be set aside in each
control area of a data set. In addition to entries for used
control intervals, the sequence-set record for a control area
keeps a record of free control intervals.

Data Free
Records Space

Sequence-Set Index Record

Highest-Key
Entry in Each
Control
Interval

Free
Space
Entries

Data Free
• • • Records Space

Free Space Free Space

Control Information
Control Intervals of a Control Area

Figure 2. Distribution of Free Space in a Key-Sequenced Data Set

Besides the space that you distribute when you create a
key-sequenced data set, space that becomes available within a
control interval when a record is shortened or deleted from the
data set is automatically reclaimed by VSAM and can be used when
a record is lengthened in place or directly inserted into the
control interval.

Reclaiming space and using distributed free space may cause RBAs
of some records to change. As Figure 2 illustrates, free space
within a used control interval is between the data in the front
and the control information in the back. If a record ;s deleted
or shortened, any succeeding records in the control interval are
moved to the left and their RBAs are changed so the space
vacated can be combined with the free space already in the
control interval. Any insertion or lengthening causes any
succeeding records in the control interval to be moved to the
right into free space and their RBAs to be changed.

If the record to be inserted will not fit in the control
interval, VSAM will move data and update the index to allow the
record to be inserted. This process is called control interval
split and control area split.

For additional information about processing key-sequenced data
sets, see "Chapter 2. Data Set Procedures" on page 21.

ENTRY-SEQUENCED DATA SETS

A prime index is not associated with an entry-sequenced data
set. When a record is loaded or added, VSAM indicates its
relative byte address (RBA). You must keep track of the RBAs of
the records if you want to gain access to them by direct
processing. One way to keep track is to build an index.

Chapter 1. VSAM Data Sets and Records 7

Sequential access with an entry-sequenced data set is similar to
that of QSAM (queued sequential access method).

For additional information about processing entry-sequenced data
sets, see "Chapter 2. Data Set Procedures" on page 21.

RELATIVE RECORD DATA SETS

Relative
Record 1

Slot 1 Slot 2

A relative record data set has no index. It has a string of
fixed-length slots that have a relative record number from 1 to
n, the maximum number of records that can be stored in the data
set. Each record occupies a slot and is stored and retrieved by
the relative record number of the slot. Relative record number
9 in Figure 3, for example, occupies the ninth slot, even though
all the slots between 1 and 8 are not filled.

Control Interval

Relative Relative Relative Relative Control

Record 3 Record 5 Record 6 Record 9 Informa-
tion

Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

Figure 3. The First Control Interval within a Relative Record Data Set

CONTROL INTERVALS

Records in a relative record data set are grouped together in
control intervals. Each control interval contains the same
number of slots; the size is the record length specified when
defining the data set. The number of slots in a control
interval is determined by the control interval size and the
record length.

Because the slot can contain data or be empty, a data record can
be inserted, deleted, or moved without affecting the position of
other data records in the relative record data set. Records can
be retrieved sequentially or directly, based on its relative
byte address (RBA).

Additional information about processing relative record data
sets appears under "Processing VSAM Data Sets" on page 15.

VSAM stores the records of each type of data set in a a control
interval. A control interval is a continuous area of auxiliary
storage that VSAM uses to store data records and the control
information that describes the records. The control interval is
the unit of information VSAM transfers between virtual and
auxiliary storage. The size may vary from one data set to
another, but, for a given data set, the size of each control
interval is fixed, either by VSAM or by you, within limits
acceptable to VSAM. VSAM chooses the size based on the type of
direct access storage device used to store the data set, the
size of your data records, and the smallest amount of virtual
storage space your processing program provides for VSAM's I/O
buffers.

The information recorded on a track is divided into physical
records that are limited by the capacity of a track. The
physical-record sizes that VSAM uses begin at 512 bytes and
increases by powers of 2 up to 4096 bytes: 512, 1024, 2048,

8 MVS/370 VSAM Users Guide

4096. Control interval size is limited by the requirements that
it be a whole number of physical records (1, 2, 3, ..• , up to
64, or a maximum size of 32 768 bytes). If it is greater than
8192 bytes, it must be a multiple of 2048. A data set whose
control intervals correspond with the tracks of one device might
have more or less than one control interval per track if it were
stored on a different device. Figure 4 illustrates the
independence of control intervals from physical records.

When you define a data set and specify track allocation or
specify record allocation requiring less than one cylinder, VSAM
uses track allocation.

Control Interval Control Interval Control Interval

Physical Records

Track 1 Track 2 Track 3

Control I nterva I Control Interval Control In terval

I I I I I I
Track 1 Track 2 Track 3 Track 4

Figure 4. Control Intervals Are Independent of Physical Record
Size

A volume may contain areas for VSAM's use and areas for use by
other access methods or the operating system. A storage area
defined in the volume table of contents for VSAM's exclusive use
is called a data space. Each data space on a volume has one or
more DSCBs and a unique name.

A data set is stored in a data space or data spaces on one or
more volumes on direct access devices of the same type. When
you define a data set, you can allocate enough space so some is
left at the end of the data set for additions. For new data
sets, the amount requested must be available, or DEFINE will
terminate. Otherwise, when additional space is needed, VSAM
automaticallY extends the data set by the amount of space
indicated in the definition of the data set in the catalog. It
can be extended beyond its original size up to 123 extents, or
to a maximum size of 2 32 (approximately 4 290 000 000) bytes.

A data set is made up of control intervals. A group of control
intervals makes up a control area. A control area is the unit
of a data set that VSAM preformats for data integrity as records
are added to the data set. In a key-sequenced data set, control
areas are also used for distributing free space throughout the
data set as a percentage of control intervals in a control area
and for placing portions of the index next to the data set.

The number of control intervals in a control area is fixed by
VSAM, with a minimum of two. If 50 were the number chosen, for
example, the first 50 control intervals would be the first
control area; the next 50 would be the second control area, and
so on. Whenever the space for a data set is extended, it is
extended by a whole number of control areas. For a
key-sequenced data set, the size of a control area is determined

Chapter 1. VSAM Data Sets and Records 9

by the space allocation request, user-specified or default index
and data control interval size, and available buffer space.

RECORDS STORED IN A CONTROL INTERVAL

The records of a key-sequenced or entry-sequenced data set may
be fixed or variable in length; the records of a relative record
data set are always fixed in length. VSAM treats them all in
the same way. It puts control information at the end of a
control interval to describe the data records stored in the
control interval. The combination of a data record and its
control information, though they are not physically adjacent, is
called a stored record. When adjacent records are the same
length, they share control information. Figure 5 shows how data
records and control information are stored in a control
interval. The data records are stored at the beginning of a
control interval, and control information at the end. For
further information on control interval, see "Chapter 6. Options
for Advanced Applications" on page 81.

Control Interval

Data Data Data Data Data Data Control
Record Record Record Record Record Record Information

Figure 5. Placement of Data Records and Control Information in a
Control Interval

When you define a data set, you should specify enough buffer
space so the control intervals in the data set are large enough
for the largest stored record.

Key-sequenced and entry-sequenced data set records whose lengths
exceed control interval size may cross, or span, one or more
control interval boundaries. Such records are called spanned
records. A spanned record always begins on a control interval
boundary and fills one or more control intervals within a single
control area. As shown in Figure 6 on page 11, the control
interval that contains the last segment of a spanned record can
contain unused space. This free space can be used only to
extend the spanned record; it cannot contain all or part of any
other record. You must specify your intent to use spanned
records when you define the data set.

10 MVS/370 VSAM Users Guide

.... ~ __ ------------ Control Area --------------/

Control
Interval (CI)

Unused
Space

Unused
Space

Figure 6. Control Intervals That Contain Spanned Records

A data record is addressed not by its location in terms of the
physical attributes of the storage device (such as the number of
tracks per cylinder), but by its displacement, in bytes, from
the beginning of the data set, called its relative byte address
(RBA). The RBA does not depend on how many extents belong to
the data set or whether they are in different data spaces or on
different volumes. For relative byte addressing, VSAM considers
the control intervals in the data set to be contiguous, as
though the data set were stored in virtual storage beginning at
address o. For example, the first record in a data set has RBA
o. The second record has an RBA equal to the length of the
first record, and so on. The bytes required for intervening
control information and free space are included in the RBA
value.

OTHER VSAH DATA SET ENTITIES

ALTERNATE INDEXES

An alternate index provides a way to access a related (base)
data set, so you do not need multiple copies of the same
information for different applications.

You use access method services to define and build one or more
alternate indexes over a key-sequenced or an entry-sequenced
data set. See "Creating an Alternate Index (DEFINE
ALTERNATEINDEX)" on page 31.

CLUSTERS AND ALTERNATE INDEXES

In terms of access, an alternate index performs the same
function as the prime index of a key-sequenced data set. The
data set over which the alternate index is built is the base
cluster. It can be a key-sequenced or an entry-sequenced data
set, but not a relative record or a reusable data set.

In structure, the alternate index is similar to a key-sequenced
cluster. It consists of an index component and a data component.
The index component is identical in structure, format, and
function to the prime index of a key-sequenced data set. Each
entry in the sequence set of an alternate index index component
points to a control interval in the alternate index data
component. The format of the alternate index data component is

Chapter 1. VSAM Data Sets and Records 11

identical to the format of the data portion of a key-sequenced
data set. The records in the data component contain an
alternate key and one or more pointers to data in the base
cluster.

When building an alternate index, the alternate key can be any
field in the base data set's records having a fixed length and a
fixed position in each record. The alternate key must be in the
first segment of a spanned record. For each alternate key, the
data component of the alternate index contains a unique record.
This record consists of the alternate key itself, followed by a
pointer that is the prime key or RBA of the base data record
that contains the alternate key. If more than one base data
record contains the same alternate key, the alternate index
record contains a pointer to each base data record. These
duplicate or nonunique keys are discussed in "Alternate Keys" on
page 13.

ALTERNATE INDEX PATHS

A path logically relates a cluster and each of its alternate
indexes. It provides a way to gain access to the base data
through a specific alternate index. You define a path through
access method services. You must name it and may give it a
password. The path name refers to the base cluster/alternate
index pair. When you refer to a path (by way of the OPEN macro,
for example), both the cluster and the alternate index are
affected (opened). Figure 7 shows how two paths can relate two
alternate indexes to a single base cluster.

Alternate Key 1

Record in { Owner's Policy
Alternate
Index 1

Name Number

Path 1

Data Record { Policy Owner's
Adqress

Billing Risk
In

Number Name Date Code
Base Cluster

Path 2

{ Record in
Policy

Alternate Address
Index 2

Number

'Alternate Key 2

Figure 7. Two Data Sets Over a Single Key-Sequenced Data Set

12 MVS/370 VSAM Users Guide

ALTERNATE INDEX RECORDS

Each record in the data component of an alternate index is of
variable length and contains system header information, the
alternate key, and at least one pointer to a base data record.

system Header Information

Alternate Keys

System header information is fixed length and indicates:

• Whether the alternate index record contains prime keys or
RBA pointers and unique or nonunique keys

• The length of each pointer

• The l~ngth of tha
_1J.. ____ J.._

1._ ••
Q ... "~I/lCI"'== "'==Y

• The number of pointers

Unless the base data records span control intervals, any field
in the base data records that has a fixed length and a fixed
position within the record can be an alternate key. The
alternate key must be in the first control interval of a spanned
record. When an alternate index is created, the alternate keys
are extracted from the base data records and placed in collating
sequence. If you build several alternate indexes over a base
cluster, the alternate key fields of the different alternate
indexes may overlap each other in the base data records. They
can also overlap the prime key.

Keys in the index component of an alternate index or of a
key-sequenced base cluster are compressed. Keys in the data
component of an alternate index are not compressed, the entire
key is represented in the alternate index data record.

An alternate key may refer to more than one record in the base
cluster. For example, if an alternate index is established by
department number over a payroll data set organized by employee
number, there will be several employees with the same department
number, as shown in Figure 8. Several prime-key pointers
(employee numbers) are in the alternate index record: one for
each occurrence of the alternate key (department number) in the
base data set. When multiple pointers are associated with a
given alternate key value, the alternate key is said to be
nonuniquei if only one pointer is associated with the alternate
key, it is unique.

Alternate Index Pointers

An alternate index uses prime keys if the base cluster is a
key-sequenced data set and RBAs if the base cluster is an
entry-sequenced data set.

For a nonunique key, such as department number in Figure 8,
multiple pointers are associated with it. The pointers are
ordered by their arrival times. If a base data record is updated
with a key change (for example, an employee number in Figure 8
is changed), or if a new record is inserted with the same
alternate key value (department number in Figure 8), the new
prime key pointer is added to the end of the alternate index
record. In the case of a key change, the old pointer is deleted.

A prime-key pointer has the same length as the prime key field
of the base data record it points to. The maximum number of
pointers that can be associated with a given alternate key is
32 767, provided the maximum possible record length is not
exceeded.

Chapter 1. VSAM Data Sets and Records 13

Base Data
Records Where
Prime Key==
Employee Number

Alternate-Index {
Records Where
Alternate Key==
Department
Number

Employee
Number

463871
488797
514329
561777
568597
674182

Name

Martin, AB
Downs, CD
Mkhaels, fT
Price, CH
Sonders, lJ
West, KL

Department
Number

4618
1201
4618
4618
2436
4618

Prime-Key Pointers
to Base Data Records

Figure 8. Nonunique Alternate Keys

ALTERNATE INDEX MAINTENANCE

Other
Information

VSAM assumes alternate indexes are synchronized with the base
cluster at all times and makes no synchronization checks during
open processing; therefore, all structural changes made to a
base cluster must be reflected in its alternate index or
indexes. This maintenance is called index upgrade. You can
maintain your own alternate indexes or you can have VSAM
maintain them. When the alternate index is defined with the
UPGRADE attribute of the DEFINE command, VSAM updates the
alternate index immediately, when there is a change to the
associated base data cluster. VSAM opens all the UPGRADE
alternate indexes for a base cluster whenever the base cluster
is opened for output (but not control interval processing).

All the alternate indexes of a given base cluster that have the
UPGRADE attribute belong to the upgrade set. The upgrade set is
updated whenever a base data record is inserted, erased, or
updated. The upgrading is part of a request and VSAM completes
it before returning control to your pro~ram. If the upgrade
fails because of a logical error, VSAM attempts to nullify any
modifications made to the base data or to other alternate
indexes, and the request that caused the upgrade is rejected.

If you specify NOUPGRADE of the DEFINE command when the
alternate index ;s defined, you must provide a way to reflect
insertions, deletions, and changes made to the base cluster in
the associated alternate index.

When a path is opened for update, JCL allocates the base cluster
and all the alternate indexes in the upgrade set. If allocating
the alternate indexes is unnecessary, you can specify NOUPDATE
of the DEFINE command and cause JCL to allocate only the base
cluster. VSAM, in that case, does not automatically upgrade.

14 MVS/370 VSAM Users Guide

The NOUPDATE specification may be nullified if the path is
opened for both UPDATE and NOUPDATE concurrently.

PROCESSING VSAM DATA SETS

TYPES OF ACCESS

Processing options include:

• Types of access (keyed or addressed, and sequential, skip
sequential, or direct)

• Exit routines for special processing

You can gain access to a data set with a mixture of options.
For instance, if you were processing two portions of a data set
concurrently, you might process one portion directly,
asynchronously, using a work area; you might process the other
sequentially, synchronously, in the I/O buffer. You could also
alternate among the options to process a data set, switching,
for example, from direct to sequential access when you got to a
point where you wanted to process records in ascending sequence.

Processing options are specified in macros that generate control
blocks when your program 1S assembled (ACB, EXLST, and RPL
macros) or executed (GENeB macro). Each request for some action
is associated with a request parameter list, which, in
association with other control blocks, supplies the processing
options for the request. For a description of the macro
instructions and the specifications of the processing options,
see VSAM Reference.

When you issue a request for a record, you can either wait until
the request is completed to continue processing (synchronous) or
go on with processing that is not dependent upon the first
request while it is being carried out (asynchronous).
Overlapping processing in this way can improve the performance
of your job.

VSAM can concurrently keep track of positions in a data set for
many requests to a data set. You can thus process many portions
of a data set during the same period of time. Such concurrent
access may be used to' increase throughput, where each request
can be processed independently of the others.

The standard request for access retrieves, stores, or deletes a
single record. The standard request is described by a parameter
list that indicates a single record. By chaining parameter
lists together, you can retrieve or store many records with one
request. You may not use chained parameter lists to update or
delete records; you may use chained parameter lists only to
retrieve records or to store new records.

VSAM allows both sequential and direct access for each of its
three types of data sets. Sequential access of a record depends
on the position, with respect to the key, the relative byte
address of the previously processed record, or the relative
record number; direct access does not. During sequential
access, records retrieved by key are in key sequence, records
retrieved by RBA are in entry sequence, and records retrieved by
relative record number are in relative record number sequence.
To retrieve records after initial positioning, you don't need to
specify a key, an RBA, or a relative record number. VSAM
automaticallY retrieves or stores the next record in order,
either next in key sequence, next in entry sequence, or next in
relative record number sequence, depending on whether you're
processing by key, by RBA, or by relative record number.

With direct access, the retrieval or storage of a record is not
dependent on the key, the RBA, or the relative record number of
any previously retrieved record. You must fully identify the

Chapter 1. VSAM Data Sets and Records 15

RETRIEVE BY KEY

record to be retrieved or stored by key, by RBA, or by relative
record number.

GET-previous processing is a variation of normal keyed or
addressed sequential processing. Instead of retrieving or
updating the next record in ascending sequence (relative to
current positioning in the data set), GET-previous processing
returns or updates the next record in descending sequence. You
can select GET-previous processing for POINT, GET, PUT (update
only), and ERASE operations. GET-previous processing is not
permitted with control interval or skip-sequential processing.

When GET-previous processing is specified with either a POINT or
a GET-direct request, the exact key of the request record must
be specified.

VSAM allows a processing program or its subtasks to process a
data set with multiple concurrent sequential and/or direct
requests, each requiring that VSAM keep track of a position in
the data set, with a single opening of the data set. Access can
be to the same part or to different parts of a data set.

You can use a reusable VSAM data set as a work file, if the data
set does not have an alternate index and is not associated with
key ranges. That is, you can treat a filled data set as if it
were empty and use it again and again regardless of its old
contents. To reuse a data set, you need only to define it as
reusable and specify that it be reset when you open it.

For a key-sequenced data set the primary form of access is
keyed access, using an index or sequential access. For an
entry-sequenced data set without an alternate index, the only
forms of access are addressed (using the RBA determined for a
record when it was stored in the data set), sequential access,
and control-interval access. For a relative record data set,
the only forms of access are keyed (using the relative record
number as the key) and control interval access. Control
interval access is described in "Chapter 6. Options for Advanced
Applications" on page 81.

If you use addressed access to process key-sequenced data~ you
should consider the possibility that RBAs may have changed
during previous keyed access.

For examples of keyed and addressed retrieval, storage,
deletion, and update, see "Request Macros" in VSAM Reference.

Keyed sequential access for a key-sequenced data set depends on
where the previous macro request positioned VSAM with respect to
the key sequence defined by the index. When your program opens
the data set for keyed access, VSAM is positioned at the first
record in the data set in key sequence to begin keyed sequential
processing. The POINT macro instruction positions VSAM at the
record whose key you specify. If the key is a leading portion
of the key field, a generic key, the record positioned to is the
first of the records having the same generic key. A subsequent
sequential GET macro retrieves the record VSAM is positioned at.
The GET then positions VSAM at the next record in key sequence.
VSAM checks positioning when processing modes are changed
between requests. The POINT macro can position for either
forward or backward processing, depending on whether FWD or BWD
was specified for the RPL OPTCD operand.

When you are processing by way of a path, records from the base
cluster are returned according to ascending or, if you are
retrieving the previous record, descending alternate key values.
If there are several records with a nonunique alternate key,
those records are returned in the order in which they were
entered into the alternate index. VSAM sets a return code in
the RPl when there is at least one more record with the same
alternate key. For example, if there are three data records

16 MVS/370 VSAM Users Guide

with the alternate key 1234, the return code would be set during
the retrieval of records one and two and would be reset during
retrieval of the third record.

Keyed sequential retrieval for a relative record data set causes
the records to be returned in ascending or, if you are
retrieving the previous record, descending numerical order,
based on the current positioning for the data set. Positioning
is established in the same way as for a key-sequenced data set,
and the relative record number is treated as a full key. If a
deleted record is encountered during sequential retrieval, it is
skipped over and the next record is retrieved. The relative
record number of the retrieved record is returned in the ARG
field of the RPL.

Keyed Skip Sequential: When YQU indicate the key of the next
record to be retrieved during skip-sequential retrieval, VSAM
skips to the next record's index entry by using horizontal
pointers in the sequence set to get to the appropriate
sequence-set index record to scan its entries. The key of the
next record to be retrieved must always be higher in sequence
than the key of the preceding record retrieved.

Keyed direct retrieval for a key-sequenced data set does not
depend on prior positioning; VSAM searches the index from the
highest level down to the sequence set to retrieve a record.
You can specify the record to be retrieved by supplying one of
the following:

• The exact key of the record

• An approximate key, less than or equal to the key field of
the record

• A generic key

You can use an approximate specification when you do not know
the exact key. If a record actually has the key specified, VSAM
retrieves it; otherwise, it retrieves the record with the next
higher key. Generic key specification for direct processing
causes VSAM to retrieve the first record having that generic
key. If you want to retrieve all the records with the generic
key, specify NSP in your direct request. That causes VSAM to
position itself at the next record in key sequence. You can
then retrieve the remaining records sequentially.

When GET-previous processing is specified with either a POINT or
a GET-direct request, the exact key of the requested record must
be specified.

When you use direct or skip-sequential access to process a path,
a record from the base data set is returned according to the
alternate key you have specified in the ARG operand of the RPL
macro. If the alternate key is not unique, the record which was
first entered with that alternate key is returned and a return
code (duplicate key) is set in the RPL. To retrieve the
remaining records with the same alternate key, specify the NSP
option when retrieving the first record with a direct request
and then switch to sequential processing.

To use direct or skip-sequential access to process a relative
record data set, you must supply the relative record number of
the record you want in the ARG operand of the RPL macro. If you
request a deleted record, the request will cause a
no-record-found logical error.

A relative record data set has no index; VSAM takes the number
of the record to be retrieved and calculates the control
interval that contains it and its position within the control
interval.

Chapter 1. VSAM Data Sets and Records 17

DELETE BY KEY

STORE BY KEY

An ERASE macro instruction that follows a GET for update deletes
the record that the GET retrieved. A record is physically
erased in the data set when you delete it. The space the record
occupied is then available as free space.

You can erase a record from the base cluster of a path only if
the base cluster is a key-sequenced data set. If the alternate
index is in the upgrade set (that is, UPGRADE was specified when
the alternate index was defined), it is modified automatically
when you erase a record. If the alternate key of the erased
record is unique, the alternate index data record with that
alternate key is also deleted.

You can erase a record from a relative record data set after you
have retrieved the record for update. The record is set to
binary zeros and the control information for the record is
updated to indicate an empty slot. You can reuse the slot by
inserting another record of the same length into it.

To store records in ascending key sequence throughout a data
set, you can use sequential, skip-sequential, or direct access.
For sequential or skip-sequential processing, VSAM scans the
sequence set of the index; for direct processing, VSAM searches
the index from top to bottom.

After a data set is created and initially loaded, it must be
closed and reopened before update or insert requests can be
issued.

A PUT macro instruction stores a record. A PUT for update
following a GET for update stores the record that the GET
retrieved. To update a record, you must previously have
retrieved it for update. A PUT for nonupdate inserts or adds a
new record into the data set.

When VSAM detects that two or more records are to be inserted in
sequence into a collating position (between two records) in a
data set, VSAM uses a technique called mass sequential insertion
to buffer the records being inserted, thereby reducing I/O
operations. Using sequential instead of direct access in this
case enables you to take advantage of this technique. You can
also extend your data set (resume loading) by using sequential
insertion to add records beyond the highest key or relative
record number. There are possible restrictions to extending a
data set into a new control area depending on the sharing
options you specify. See "Chapter 5. Sharing a VSAM Data Set"
on page 69.

Mass sequential insertion observes control interval and control
area freespace specifications when the new records are a logical
extension of the control interval or control area (that is, when
the new records are added beyond the highest key or relative
record number used in the control interval or control area).

Sequential insertion in a relative record data set causes a
record to be assigned the next available number in sequence,
which is the next available relative record number greater than
the position established by a previous record. The assigned
number is returned in the ARG field of the RPL.

Direct or skip-sequential insertion of a record into a relative
record data set causes the record to be placed as specified by
the relative record number in the ARG field of the RPL. You
must insert the record into a slot that does not contain a
record. If the slot specified does contain a record, VSAM sets
an error return code in the RPL and rejects the request.

You can insert and update data records in the base cluster by
way of a path provided:

18 MVS/370 VSAM Users Guide

RETRIEVE BY ADDRESS

DELETE BY ADDRESS

STORE BY ADDRESS

• The PUT request does not result in nonunique alternate keys
in an alternate index which you have defined with the
UNIQUEKEY attribute.

• You do not change the key of reference between the time the
record was retrieved for update and the PUT is issued. The
prime key is never changed.

If the alternate index is in the upgrade set (that is, you
specified UPGRADE when you defined the alternate index), the
alternate index is modified automatically when you insert or
update a data record in the base cluster. If the updating of
the alternate index results in an alternate-index record with no
pointers to the base cluster, the alternate-index record is
erased. If the updating creates a nonunique key in the
alternate index, VSAM sets a nonerror return code in the RPL.
If the alta.nata ~ndex h~~ th2 UNIQUEKEY attribute; VSAM sets an
error return code in the RPl and rejects the update request.

Positioning for addressed sequential retrieval is done by RBA
rather than by key. When a processing program opens a data set
for addressed access, VSAM is positioned at the record with RBA
of zero to begin addressed sequential processing. A POINT
positions VSAM for sequential access beginning at the record
whose RBA you have indicated. A sequential GET causes VSAM to
retrieve the data record at which it is positioned and positions
VSAM at the next record in forward or backward direction.

With direct processing, you can optionally specify NSP in your
RPL to indicate that the position be maintained following the
GET. Your program can then process the subsequent records
sequentially in either a forward or backward direction.

Addressed sequential access retrieves records in forward or
backward direction. If addressed sequential retrieval is used
for a key-sequenced data set, records will not be in their key
sequence if there have been control interval or control area
splits. Addressed direct retrieval requires that the RBA of
each individual record be specified, because previous
positioning is not applicable. The address specified for a GET
or a POINT must correspond to the beginning of a data record;
otherwise, the request is invalid.

The ERASE macro can be used only with a key-sequenced data set
to delete a record that you have previously retrieved for
update.

With an entry-sequenced data set, you are responsible for
marking a record you consider to be deleted. As far as VSAM is
concerned, the record is not deleted. You can reuse the space
occupied by a record marked as deleted by retrieving the record
for update and storing in its place a new record of the same
length.

VSAM does not insert new records into an entry-sequenced data
set, but adds them at the end. With addressed access of a
key-sequenced data set, VSAM does not insert or add new records.

After a data se s created and initially jed, it must be
closed and reopened before update or addressed direct requests
can be issued.

A PUT macro instruction stores a record. A PUT for update
following a GET for update stores the record that the GET
retrieved. To update a record, you must previously have

Chapter 1. VSAM Data-Sets and Records 19

retrieved it for update. You can update the contents of a
record with addressed access, but you cannot alter the record's
length. Neither can you alter the prime key field of a record
in a key-sequenced data set.

To change the length of a record in an entry-sequenced data set,
you must store it either at the end of the data set (as a new
record) or in the place of an inactive record of the same
length. You are responsible for marking the old version of the
record as inactive. Figure 9 compares the three types of VSAM
data sets.

Key-Sequenced Data set Entry-Sequenced Data set Relative Record Data set

Records are in collating Records are in order in Records are in relative
sequence by key field which they are entered record number order

Access i s by key through an Access is by RBA Access is by relative
index or by RBA record number, which is

treated like a key

May have one or more May have one or more May not have alternate
alternate indexes alternate indexes indexes

A record's RBA can change A record's RBA cannot A record's relative record
change number cannot change

Distributed free space is Space at the end of the Empty slots in the data
used for inserting records data set i s used for adding set are used for adding
and changing their length records records
in place

Space given up by a deleted A record cannot be deleted, Space given up by a
or shortened record i s but you can reuse its space deleted record can be
automatically reclaimed for a record of the same reused
within a control interval length

Can have spanned records Can have spanned records Cannot have spanned
records

Can be reused as a work Can be reused as a work Can be reused as a work
file unless it has an file unless it has an file
alternate index, i s alternate index, is
associated with key ranges. associated with key ranges.

Figure 9. Comparison of Key-Sequenced, Entry-Sequenced, and Relative Record Data
Sets

20 MVS/370 VSAM Users Guide

CHAPTER 2. DATA SET PROCEDURES

USING ACCESS METHOD SERVICES

Access method services is a service program that is used with
VSAM. Several commands and parameters are available to
establish and maintain catalogs and data sets. Access method
services consists of the following functions (commands):

ALTER Allows you to change attributes in previously defined
catalog entries, for example, to change data set
passwords.

BLDINDEX Creates (loads) an alternate index for a base cluster.
The alternate index for the base cluster must have at
least one record. BLDINDEX reads all base cluster
records and extracts the primary keys (for
key-sequenced data set's base cluster) or the RBAs
(for entry-sequenced data set's base cluster), and the
related alternate keys. This information is then
sorted and loaded into the alternate index.

CHKLIST Is not a VSAM command and is not used for normal VSAM
processing. However, a program can issue the CHKPT
macro to record various information for use in
restarting the program in the event of an error. This
is called taking a checkpoint.

The CHKLIST command lists the tape data sets that were
open at the time the checkpoint was taken, identifying
the tape data sets that need to be mounted for
restart.

CNVTCAT Converts VSAM catalog entries or OS CVOL entries into
ICF catalog entries.

DEFINE Creates catalogs and catalog entries for alternate
indexes, clusters, paths, and non-VSAM data sets.
Entries for aliases, generation data groups, and page
spaces can also be created. DEFINE creates the catalog
entry for a VSAM object and allocates space for this
object.

DELETE Deletes catalogs and catalog entries.

DIAGNOSE Scans the catalog or a VSAM volume data set to
validate the data structures to detect structure
errors.

EXPORT Unloads VSAM data sets and ICF catalogs for backup
and/or transportation. The EXPORT command has, among
others, two important options: TEMPORARY and
PERMANENT. EXPORT PERMANENT unloads the data set and
deletes the entries from the catalog. EXPORT TEMPORARY
produces an unloaded copy of the data set, and marks
the catalog entry to show that a temporary copy
exists. In the unloaded format, the data set is not
accessible. EXPORT uses the catalog to copy all
related information such as cluster entry, data entry,
and index entry (for a key-sequenced data set only)
from the catalog to the target data set.

This command can also be used to disconnect a user
catalog from a master catalog and other user catalogs
(if a user catalog is disconnected from the master
catalog by deleting its connector entry, it cannot be
accessed from that system).

Chapter 2. Data Set Procedures 21

IMPORT

LISTCAT

PRINT

REPRO

VERIFY

22 MVS/370 VSAM Users Guide

Reloads VSAM data sets and ICF catalogs for backup
and/or transportation. IMPORT redefines and reloads
the data set. This command can also be used to
reconnect a user catalog to a master catalog (if a
user catalog is disconnected from the master catalog
by deleting its connector entry, it cannot be accessed
from that system).

Lists the catalog entries or parts of entries about
VSAM and non-VSAM data sets. Executing a lISTCAT
command after any DEFINE command is recommended.

Prints data setst or parts of these data sets. The
printout can be obtained in hexadecimalt character, or
dump format.

Transfers data between two data sets or catalogs. If
data is to be transferred into an empty data set, it
always reorganizes the target data set.

When copying a relative record data set to a
nonrelative record data sett empty slots are not
copied. The slot numbers of the nonempty slots are
lost.

When copying a relative record data set to a relative
record data set, each empty slot in the source is
copi ed to the same slot in ,the target.

The different functions are:

• Add records to the end of an entry-sequenced data
set.

• COpy a catalog (move a catalog to another disk).

• load/copy a VSAM data set.

ISAM--->VSAM (convert an ISAM data set to VSAM
format)
SAM---->VSAM (load a VSAM data set)
VSAM--->VSAM (copy/merge data)

• Merge records into a key-sequenced data set or
relative record data set.

• Punch or print VSAM data sets.

• Unload/reload a catalog (back up).

• Merge or split ICF catalog entries into another
ICF catalog.

Ensures that a catalog reflects the correct 'high used
RBA' of a data set (the 'high used RBA' points to the
last byte used in the VSAM data set). It should be
used after on OPEN-error caused by a previous system
failure or an abend condition while updating the data
set.

VERIFY cannot be used for an empty data set (when the
high-used RBA=O in the catalog cluster entry). This
condition will also occur when an abend or system
failure occurs during the loading of the data set with
the SPEED or RECOVERY option specified, or while
reloading a reusable data set specifying the REUSE
option.

For implicit verify processing, when OPEN detects a
condition requiring a VERIFY, it issues the VERIFY
itself unless told not to do so by the user. The
warning message is still issued. If the VERIFY is
done by OPEN, an informational message is issued that

tells whether the VERIFY is successful or
unsuccessful.

This procedure does not happen when improved control
interval processing of the ACB macro or reset
processing is specified. Under improved control
processing, the "VERIFY required" indicator is left
on, so that the verify is done when the data set is
opened for processing with other than improved control
interval or reset processing. Under reset processing,
all previously existing data is removed, so it is not
necessary to do a VERIFY.

Note: Implicit verify updates only the in-storage control
blocks.

CREATING A CLUSTER (DEFINE CLUSTER)

The DEFINE command creates entries in the catalog for the
cluster, its data component, and, if the cluster is indexed, its
index component.

Attributes of the components in a cluster can be specified
separately from attributes of the cluster.

• If attributes are specified for the cluster as a whole and
not the components, the attributes of the cluster (except
for its passwords and other protection attributes) apply to
the components.

• If an attribute that is applicable to the data or index
component is specified for both the cluster and the
component, the explicit component specification overrides
the cluster's specification.

You specify a name for the cluster when defining it. Generally
this name is given as the dsname in JCL. You can, optionally,
name the components of a cluster. Naming the data component of
an entry-sequenced cluster or the data and index components of a
key-sequenced cluster makes it easier to process them
individually. For instance, you may open the index of a
key-sequenced data set and process it as data. (This processing
is described in "Chapter 6. Options for Advanced Applications"
on page 81.) To use the ALTER command to modify attributes of
any component, identify that component by name. If you do not
specify a name for the components of a cluster, VSAM generates a
name in the form:

clustername.Tbbbbbbb.DFDyyddd.Taaaaaaa.Tbbbbbbb

where:

clustername is the first qualifier of the cluster name

yyddd is the date (year and Julian day)

aaaaaaabbbbbbb is the timestamp value

DUPLICATE DATA SET NAMES

It is possible to have the same data set name in more than one
catalog. With multiple catalogs you should be sure a data set
name in one catalog is not duplicated in another catalog.

Access method services prevents you from cataloging two objects
with the same name in the same catalog, and from altering the
name of an object so that its new name duplicates the name of
another object in the same catalog. However, this does not
prevent duplication of names from one catalog to another. "Order
of Catalog Use: DEFINE," in Access Method Services Reference,
describes the order in which one of the catalogs available to
the system is selected to contain the to-be-defined catalog

Chapter 2. Data Set Procedures 23

entry. When you define an object~ you should ensure that the
catalog the system selects is the catalog you want the object's
entry in.

Duplication is not prevented when a user catalog is imported
into a system; no check is made to determine whether the
imported catalog contains an entry name that another catalog
already in the system contains.

Note: If the first qualifier is the same for a qualified data
set name (PAYROLL) as for an unqualified data set name
(PAYROLL.DATA)~ the two cannot be placed in the same catalog.
For example~ PAYROLL and PAYROLL.DATA cannot exist on the same
catalog.

DEFINING A KEVRANGE DATA SET

When defining a nonkeyrange key-sequenced data set~ relative
record data set~ or entry-sequenced data set, the primary data
volume(s) and index volume(s) must be mounted so space can be
obtained from the VTOC via DADSM. If you are defining a
keyrange key-sequenced data set, the following rules apply:

• There should be as many volume serial numbers in the volser
list as there are keyranges. When a volser number is
duplicated in the volser list, more than one keyrange is
allocated space on the volume. If you name a data
component, a generated name is used for each additional
keyrange on a volume. If you do not name the dat~
component, then all names on all volumes are generated. The
names of user-named data components appear once on each
volume in the Format-l DSCB. Generated names are used on
all volumes for the Format-l DSCBs, but each name has a
unique keyrange qualifier so the user can correlate the
Format-l DSCB and the keyrange. All volumes must be mounted
to define the keyrange.

• When there are more volume serial numbers in the volume
serial list than there are keyranges, the excess volumes are
marked as candidates and are not required to be mounted.
The candidate volumes are used for overflow records from any
keyrange. The overflow name is the prefix name without the
keyrange qualifier.

• If you specify the ORDERED parameter on the DEFINE command~
a one-to-one correspondence exists between the volumes in
the volser list and the keyranges. The first volume in the
volser list contains the first keyrange~ the second volume
contains the second keyrange~ and so on. If a volume cannot
be allocated in the order specified by the volser list~ the
cluster definition is terminated with an error. All volumes
that will contain keyranges must be mounted.

For a multivolume keyrange cluster, the name specified on the
data component is used for the first keyrange on each volume.
If more than one keyrange resides on a volume, a special
keyrange qualifier is appended to a generated name.

If a duplicate generated name is found on a volume, the keyrange
qualifier starts with the letter "B" or "C" and so on, until a
unique name is found.

With a multivolume key-sequenced data set, you may assign data
to the various volumes according to ranges of key values. For
example: if you have three volumes you might assign records with
keys A through E to the first volume, F through M to the second,
and N through Z to the third. Keyrange allocation facilitates
processing the data set with only one of the volumes mounted:
You know which volume contains what records. All the volumes
specified for the cluster's data component or for the index
component must be of the same device type. However, the data
component and the index component can be on different device
types.

24 MVS/370 VSAM Users, Guide

SPECIFYING CLUSTER INFORMATION

All the necessary descriptive information and the performance,
security, and integrity options are specified when you create a
cluster. The information can apply to the data, the index, or
both. Information for the cluster as a whole is specified in
the CLUSTER parameter. Information for data only or index only
is specified in parameters of DATA or INDEX.

Descriptive Information

Descriptive information includes:

• Type of data organization

• Whether the cluster is reusable for temporary storage of
data

• Average and maximum lengths of data records

• Length and position of the key field in the records of a
key-sequenced data set

• Identity of the catalog in which to define the cluster

• Identity of the volume(s) on which space is allocated for
the cluster

• Amount of space to allocate for the cluster and whether the
cluster is to reside in a separate data space

• Least amount of I/O-buffer space a processing program
provides to process the data set

If the space to be provided for buffers is not specified, VSAM
determines the control interval size, then sets a buffer space
amount equal to the size of two data control intervals plus, for
a key-sequenced data set, one index control interval. If the
space is specified, the data and index control intervals are
limited to sizes that allow the buffer space to hold two data
control intervals and one index control interval.

If the values you specify for record length and key length
require control intervals too large for the buffer space, the
DEFINE command will fail.

Performance options Information

Information for performance options (usually for an indexed
cluster) includes:

• Whether records can span control intervals.

• Whether to replicate index records.

• Whether to place the sequence set of an index adjacent to
data.

• Whether to place the cluster's index on a separate volume
from data.

• The amount of free space to remain in the data component's
control intervals and control areas when the data records
are loaded. (This applies only to a key-sequenced cluster's
data component)

• The control interval size for VSAM to use (instead of
calculating the size.)

In a system with the IBM Mass Storage System, you can also
indicate how a cluster or component that is stored on a mass
storage volume is to be staged.

Chapter 2. Data Set Procedures 25

P~otection and Inte9~ity Info~mation

Information for protection and integrity options includes:

• Passwords and related information

• Identity of your own authorization routine to verify that a
requester has the right to gain access to data

• Identity of an I/O error-handling routine (the exception
exit routine) that is branched to before the program's SYNAD
exit

• Whether to preformat control areas during data record
insertion

• Whether to verify that write operations are without error

• Whether and to what extent data is shared among systems,
jobs, and subtasks

• Whether to erase the information a data set contains when
you delete the data set

In a system with the Mass Storage System, you can indicate
whether a cluster or component that is stored on a mass storage
volume is to be destaged synchronously or asynchronously with
respect to the program that closes it.

PREFORMATTING CONTROL AREAS

When you define a cluster, you can indicate that VSAM is to
preformat each control area as records are loaded into the
cluster (RECOVERY) or not preformat them, in the interest of
performance (SPEED) during initial data set load. Preformatting
clears all previous information from the direct access storage
area and writes an end-of-file indicator:

• For an entry-sequenced or relative record data set, in every
control interval in the control area.

• For a key-sequenced data set, in the first control interval
in the control area following the preformatted control area.
(The preformatted control area contains free control
intervals.)

As records are loaded into a preformatted control area, a
following end-of-file indicator indicates how far loading in a
noncreate load mode has progressed. If an error occurs that
prevents loading from continuing, you can identify the last
successfully loaded record and resume loading at that point.

Without preformatting, an end-of-file indicator is written only
after the last record is loaded. If an error occurs that
prevents loading from continuing, you may not be able to
identify the last successfully loaded record. You may have to
reload the records from the beginning.

USER RESTRICTIONS DURING CREATE (LOAD) MODE

The terms "create mode," "load mode," and "initial data set
load" are synonymously applied to the process of placing records
into an empty VSAM data set. This type of processing is
initiated when VSAM OPEN is called to open a data set whose
high-used RBA is zero. It continues while records are added
following the (successful) open and concludes when the data set
is closed.

26 MVS/370 VSAM Users Guide

Certain restrictions apply during load mode processing. You
should be aware of the following:

• Direct processing is not permitted (except relative record
keyed direct).

Note: If your application calls for direct processing
during create mode, you can avoid this restriction by doing
the following:

1. Open the empty data set for create mode processing

2. Sequentially write one or more records.
"dummy" records.)

(These may be

3. Close the data set to terminate create mode processing.

4. Reopen the data set to do your normal processing.

• Only use PUT and CHECK during create mode.

• Do not use improved control interval processing.

• Terminate create mode via CLOSE before the data set is used
for other processing.

• Only specify one string in the ACB (STRNO>! is not
permitted).

• Do not specify local shared resources (LSR) or global shared
resources (GSR).

• Data set opened for input is not allowed.

EXIT ROUTINES FOR SPECIAL PROCESSING

An exit is a branch that VSAM takes to an optional user-supplied
routine when certain unusual conditions occur or when certain
recurrent but unpredictable events happen. Exits are defined
for:

• Time stamp processing (IDATMSTP) is used to update the most
recently referenced date field in the data set control block
(DSCB) for IeF catalogs.

• Logical error (LERAD) is used when the processing program
makes an invalid request for access to data.

• Physical error (SYNAD) is used to handle physical error
conditions.

• Exception handling (EXCEPTIONEXIT) monitors physical error
conditions on a data set basis. This exit is specified via
the access method services DEFINE command; it is taken
before a SYNAD exit if both are specified.

• End of data set (EODAD) is used when the processing program
has attempted to point to or retrieve sequentiallY a record
beyond the last record in the data set.

• Journaling a transaction or keeping track of RBA change
(JRNAD) is used to keep track of any change to the RBAs of
records.

• Returning to a user's exit routine for special processing
(UPAD) before a synchronous VSAM request completes.

• User-security-verification (USVR) is used to make security
checks in addition to verification of passwords.

The routine to which VSAM exits may be a subroutine in the
processing program or a separate load module. An exit routine
is identified as available for use in an exit list associated

Chapter 2. Data Set Procedures 27

with one or more access method control blocks. For information
on how the exit list is created, modified, tested, and
displayed, see VSAM Reference. See "Chapter 8. User-Written
Exit Routines" on page 129 for detailed information about the
exit routines.

DEFERRED AND FORCED WRITING OF BUFFERS

RECORD INSERTIONS

For integrity reasons, it is sometimes desirable to force the
data buffer to be written after a PUT operation. At other
times, it is desirable to defer the writing of a buffer as long
as possible to improve performance. The following table shows
when forced writing will occur and when writing will be
deferred, based on the OPTCD at the time the PUT is issued. An
ERASE request also follows the same buffer writing rules as the
PUT request.

SEQ SKP

Force writes

Defer writes X X

DIR
NSP

X

DIR
(NO NSP)

X

If lSR and GSR deferred writes are not specified, an ENDREQ
macro always forces the data buffer to be written.

Record insertions in VSAM data sets occur in several ways:

Type I
Type II
Type III
Type IV

PUT DIR,NSP
PUT DIR,NUP
PUT SEQ,NUP or NSP
PUT SKP,NUP or NSP

Insertions into a key-sequenced data set use the free space
provided during the definition of the data set or the free space
that develops as a result of control interval and control area
splits. Type III insert requests are used to create a data set
or to do mass insertions. This type of insertion maintains free
space during create mode and during mass insertions. This
request type uses the sequential insert strategy. All the other
types use the direct insert strategy. If MACRF=SIS is specified
in the ACB, all inserts use sequential insert strategy.

Using sequential insert strategy, a record is inserted as
follows:

• If the new record goes after the last record of the control
interval and the free space limit has not been reached, the
new record will go into the existing control interval. If
the free space does not exist in the control interval, then
a control interval split will occur at the point of
insertion.

• If the new record does not belong at the end of the control
interval and there is free space in the control interval, it
will be placed in sequence into the existing control
interval.

Using direct insert strategy, a record is inserted as follows:

• A new record is inserted into an existing control interval
if free space exists in the control interval. If no free
space exists, the control interval is split in half.

Sequential insert strategy results in better performance than
direct insert strategy; fewer I/O operations are required by
VSAM. Therefore, when a group of records is to be inserted into

28 MVS/370 VSAM Users Guide

a data set between two existing records, the sequential insert
strategy should be used. When several groups of records in
sequence are to be mass inserted, each group may be preceded by
a POINT KEQ to establish positioning.

For an entry-sequenced data set, records can be added only at
the end of the data set.

Insertions into a relative record data set go into empty slots.

MULTI-STRING PROCESSING

In multiple string processing, there may be multiple independent
RPLs within a region or partition for the same data set. The
data set may be shared by a common control block structure by
mult1ple tasKs. There are several ACB and RPL arrangements to
indicate that multiple string processing will occur:

• In the first ACB opened, STRNO or BSTRNO is greater than 1.

• Multiple ACBs are opened for the same data set within the
same partition or region and are connected to the same
control block structure.

• Multiple concurrent RPLs are active against the same ACB
using asynchronous requests.

• Multiple RPLs are active against the same ACB using
synchronous processing with each requiring positioning to be­
held.

If you are doing multiple string update processing, you need to
be aware of VSAM look-aside processing and the rules surrounding
exclusive use. Look-aside means VSAM checks its buffers to see
if the control interval is already present when referring to an
index or data control interval. Look-aside proceeds as follows:

1. For a nonupdate GET request, there is no look-aside across
strings. As a result, a down-level copy of the data may be
obtained either from buffers attached to this string or from
secondary storage.

2. For GET update requests, there is a complete look-aside
across all strings associated with the ACB. This may lead
to an exclusive control conflict, because of update activity
to the same control interval under other strings.

The exclusive use rules are as follows:

1. If a given string obtains a record with a GET UPD request,
the control interval is not available for update or insert
processing by another string.

2. If a given string is in the process of a control area split
caused by an update with length change or an insert, that
string obtains exclusive control of the entire control area
being split. Other strings cannot process insert or update
requests against this control area until the split is
complete.

Because VSAM does not queue requests that have exclusive control
conflicts, user action is required. If a conflict is
encountered, VSAM returns a logical error return code, and you
must stop activity and clear the conflict. If the RPL that
caused the conflict had exclusive control of a control interval
from a previous request, you should issue an ENDREQ against it
before you attempt to clear the problem. You can clear the
conflict in one of two ways:

1. Queuing until the RPL holding exclusive control of the
control interval releases that control and then reissue the
request or

Chapter 2. Data Set Procedures 29

2. Issue an ENDREQ against the RPL holding exclusive control to
force it to release control immediately.

Note: If your RPL has provided a correctly specified MSGAREA
and MSGlGN, the address of the RPL holding exclusive control is
provided in the first word of the MSGAREA. Your RPL field,
RPLDDDD, will contain the RBA of the requested control interval.

HULTI-STRING INDEX BUFFERS

Each string requires one index buffer. If there are four
strings active, there is a minimum of four index buffers.
Buffers in excess of the minimum are used for index set control
intervals and are shared among the strings. The number of index
buffers should be set to the number of strings (STRNO) plus X,
where:

X=O, if all strings are sequential;

X=1, if the data set is a 2-level index and any string is not
sequential;

X=n, where n is the number of index control intervals in the
index set, if any string is doing random accessing, the number
of index levels is greater than 2, and if the entire
high-level index fits in storage;

X=1 plus the number of nonsequential strings, if the entire
high-level index won't convenientlY fit in storage.

For example, assume you have the following situation:

• 1024-byte index control interval

• 3-level index

• 50 index control intervals at the second level

• 4 strings doing random processing

Then, set BUFNI=STRNO+1+b=9, where b is the number of
nonsequential strings. It is usually best to round this number
up to the next 4K-byte multiple. That is, BUFNI=12 (12K bytes
of index buffers). If you wanted to keep the entire high-level
index in storage, then BUFNI would be set to 55 (50+1+4). This
would be rounded to BUFNI=56 and would require 56K bytes for
index buffers.

HULTI-STRING DATA BUFFERS

One data buffer per string and one additional buffer are
required as a minimum per data set. Extra data buffers are used
by sequential strings or for read-ahead on a first come, first
served basis. When the extra buffers are released by a string
(by issuing ENDREQ or a DIR request that releases positioning),
they may be used by another string. Consider this example:

• Three strings (two direct and one sequential)

• 3-level index (five control intervals in the index set)

• 1024-byte index control interval

• 2048-byte data control interval

Set BUFNI=8 (8K for index buffers) and BUFND=6 (12K for data
buffers). Each direct string uses one data and one index
buffer. The sequential string uses one index and three data
buffers. There is one data buffer reserved for insert requests
that cause a control interval split, and the index set uses the
extra five index buffers.

30 MVS/370 VSAM Users Guide

REQUEST POSITIONING

Some operations retain positioning while others release it. In
a similar way, some operations hold onto a buffer and others
release it with its contents. The following table shows which
RPL options result in the retention of data buffers and
positioning, and which options result in the release of data
buffers and positioning:

DIR DIR
SEQ SKP NSP (No NSP)

Buffers and Positioning Retained X X X

Buffers and Positioning Released X

Notes;

1. GET SEQ for new control intervals releases the previous
buffer.

2. The ENDREQ and ERASE DIR macros release data buffers and
positioning.

DIR
LOC

X

3. Certain options that retain positioning and buffers upon
normal completion may not do so if the request fails with an
error code. To determine whether or not positioning is
maintained in the case of a logical error, see the table
"FDBK Codes (Logical Errors)" in VSAM Reference.

The operation that uses but immediately releases a buffer and
does not establish positioning is:

GET DIR,NUP,MVE

CREATING AN ALTERNATE INDEX (DEFINE ALTERNATEINDEX)

An alternate index can be defined over a key-sequenced cluster
or an entry-sequenced cluster. An alternate index cannot be
defined to support a reusable cluster, a relative record
cluster, a catalog, another alternate index, or a non-VSAM data
set.

To build an alternate index, define and load its base cluster
(use the DEFINE CLUSTER command), and then define the alternate
index and relate it to the base cluster. The base cluster and
alternate index are described by entries in the same catalog.
Issue the DEFINE ALTERNATEINDEX command to define an alternate
index entry and allocate space for an alternate index. VSAM
uses three catalog entries to describe the alternate index:

• An alternate index entry describes the alternate index as a
key-sequenced cluster.

• A data entry describes the alternate index's data component.

• An index entry describes the alternate index's index
component.

Attributes of the alternate index's components can be specified
separately from the attributes of the alternate index. If
attributes are specified for the alternate index as a whole and
not for the components, these attributes (except for passwords
and other protection attributes) apply to the components. If
the attributes are specified for the components, they override
attributes specified for the alternate index.

When you define the alternate index, specify an entry name. The
entry name is the JCL DD statement's dsname and is processed
with an access method services command. You can also name the
alternate index's components so a user's program can open and
process the alternate index's data or index component as a data

Chapter 2. Data Set Procedures 31

set. For more details on this kind of processing, see "Chapter
6. Options for Advanced Applications" on page 81.

SPECIFYING ALTERNATE INDEX INFORMATION

When you define an alternate index, you specify descriptive
information and performance, security, and data integrity
options. The information can apply to the alternate index's
data component, its index component, or the alternate index as a
whole. Information for the alternate index as a whole is
specified with the ALTERNATEINDEX parameter and its
subparameters. Information for the data component or the index
component is specified with parameters of DATA or INDEX.

Desc~iptive Info~mation

Descriptive information includes:

• The base cluster related to the alternate index.

• Whether the alternate index entries are re-created, or
defined for the first time.

• Whether the alternate index is reusable (rebuildable).

• Average and maximum lengths of alternate index records.

• Length and position of the key field in data records of the
alternate index's base cluster.

• Identity of the catalog that contains the alternate index's
entries and which must be the same catalog that contains the
base cluster's entries.

• Identity of the volume(s) on which space is allocated for
the alternate index.

• Amount of space to allocate for the alternate index.

• The least amount of I/O buffer space that a user's program
is to provide when the program processes the alternatg
index's data.

You can use an alternate key value to define an alternate index
with its records assigned to various volumes. Each volume can
contain the alternate index records whose alternate key values
are within a certain key range. For example, an alternate index
might reside on three volumes. The records with alternate key~
A through E are on the first volume, F through M on the second
volume, and N through Z on the third volume.

The performance options and the protection and integrity
information for the alternate index are the same as for the
cluster information. See "Chapter 3. VSAM Performance
Considerations" on page 44.

BUILDING AN ALTERNATE INDEX (BLDINDEX)

The BLDINDEX command is used to build an alternate index.
Before you can build the alternate index, you must define and
load its base cluster (see the DEFINE CLUSTER command), then
define the alternate index and relate it to the base cluster
(see the DEFINE ALTERNATEINDEX command). The base cluster and
alternate index are described by entries in the same catalog.

The alternate index's volume and the base cluster's volume must
be mounted during the build process. Any volumes identified
with the WORKFILES parameter must also be mounted.

An alternate index can be built for a key-sequenced cluster or
for an entry-sequenced cluster. The base cluster must be

32 MVS/370 VSAM Users Guide

nonempty (that is, its high-used RBA value cannot be zero).
Each record's alternate key value must be unique, unless the
alternate index was defined with the NONUNIQUEKEY attribute.

HOW AN ALTERNATE INDEX IS BUILT

When an alternate index is built by BlDINDEX processing, access
method services opens the base cluster to sequentially read the
data records, sorts the information obtained from the data
records, and builds the alternate index records:

1. The base cluster is opened for read-only processing. To
prevent other users from updating the base cluster's records
during BlDINDEX processing, include the DISP=OlD parameter
in the base cluster's DD statement. If INDATASET is
5pecified; access method 5e~vice5 dynamically allocates the
base cluster with DISP=OlD.

2. The base cluster's data records are read and information is
extracted to form the key-pointer pair~

• When the base cluster is entry-sequenced, the alternate
key value and the data record's RBA form the key-pointer
pair.

• When the base cluster is key-sequenced, the alternate
key value and the data record's prime key value form the
key-pointer pair.

If the base cluster's data records can span control
intervals the alternate key must be in the record's first
control interval.

3. The key-pointer pairs are sorted in ascending alternate key
order. If your program provides enough virtual storage,
access method services performs an internal sort. (The
sorting of key-pointer pairs takes place entirely within
virtual storage.)

Use the following process to determine the amount of virtual
storage required to sort the records internally:

a. Sort record length = alternate key length + (prime key
length (for a key-sequenced data set) or 4 (for an
entry-sequenced data set».

b. Record sort area size = sort record length x number of
records in the base cluster, rounded up to the next
integer multiple of 2048, or a maximum of 32 768,
whichever is greater.

c. Sort table size = (record sort area size/sort record
length) x 4.

d. The sum of b + c = required amount of virtual storage
for an internal sort. (This amount is in addition to
the normal storage requirements for processing an access
method services command.)

If you do not provide enough virtual storage for an internal
sort, or if you specify the EXTERNALSORT parameter, access
method services defines and uses two sort workfiles and
sorts the key-pointer pairs externally. Access method
services uses the sort workfiles to contain most of the
key-pointer pairs while it sorts s~me of them in virtual
storage. An external sort workfile is a VSAM
entry-sequenced cluster, marked reusable. The minimum
amount of virtual storage you need for an external sort is:

32 768 + «32 768/sort record length) x 4)

Chapter 2. Data Set Procedures 33

The amount of space that access method services requests
when defining each sort workfile is calculated as follows:

a. Sort records per block = 2041/sort record length

b. Primary space allocation in records = (number of records
in base cluster/sort records per block) + 10

c. Secondary space allocation in records = (primary space
allocation x 0.10) + 10

Both primary and secondary space allocation are requested in
records with a fixed-length record size of 2041 bytes and a
control interval size of 2048 bytes.

4. When the key-pointer pairs are sorted into ascending
alternate key order, access method services builds an
alternate index record for each key-pointer pair. If the
NONUNIQUEKEY attribute is used and more than one key-pointer
pair has the same alternate key values, the alternate index
record contains the alternate key value, followed by the
pointer values in ascending order. If the UNIQUEKEY
attribute is used, each alternate key value must be unique.

When the record is built, it is written into the alternate
index as though it is a data record loaded into a
key-sequenced cluster. Attributes and values to the load
data records that can be specified when the alternate index
is defined include:

RECORDSIZE
CONTROLINTERVALSIZE
BUFFERSPACE
FREESPACE
WRITECHECK
SPEED
RECOVERY
REPLICATE
IMBED

5. When all alternate index records are built and loaded into
the alternate index, the alternate index and its base
cluster are closed. Steps 1 through 4 are repeated for each
alternate index that is specified with the OUTFILE and
OUTDATASET parameter. When all alternate indexes are built,
any defined external sort workfiles are deleted. Access
method services finishes processing and issues messages that
indicate the results of the processing.

DD statements That Describe the Sort Workfiles

VSAM data space available for the sort routine can be identified
by specifying two dnames with the WORKFILES parameter and
supplying two DD statements that describe the workfiles to be
defined. Each workfile DD statement should be coded:

//ddname DD DSNAME=dsname,VOL=SER=volser,
// UNIT=devtype,DISP=OLD,AMP='AMORG'

ddname
As specified in the WORKFILES parameter. If you do not
specify the WORKFILES parameter and you intend to provide
VSAM data space for external sort workfiles, identify the
workfile DD statements with the names IDCUT1 and IDCUT2.

dsname
A data set name. The scheduler generates a data set name
for the workfile if none is provided.

VOL=SER=volser
Required. Identifies the volume owned by the STEPCAT,
JOBCAT, or master catalog where the workfile is cataloged.

34 MVS/370 VSAM Users Guide

The workfile's space is allocated from the volume's space.
You can specify a maximum of five volumes for each
workfile. See "How an Alternate Index is Built" for a
description of how to calculate the amount of space to be
allocated for each sort workfile. If your BlDINDEX job
requires external sort workfiles, this space must be
available on the volume(s) identified by volser or your job
will fail.

UNIT=devtype
Type of direct access device on which the volume is
mounted. You can specify a generic device type (for
example, 3330) or a unit address (for example 121, 248).
You cannot specify SYSDA.

DISP=OLD
Required.

AMP='AMORG'
Required.

If BlDINDEX is used interactively in a TSO environment, these
sort workfile DD statements must be in the logon procedure.

DEFINING A PATH (DEFINE PATH)

The DEFINE PATH command is used to establish the relationship
between an alternate index and its base cluster. The base
cluster and its alternate index must be defined before defining
the path that relates them.

When your program opens a path for processing, both the
alternate index and its base cluster are opened. When data in a
key-sequenced data set's base cluster is read or written using
the path's alternate index, keyed processing is used. RBA
processing is not allowed for key-sequenced data sets, only for
an entry-sequenced data set's base cluster.

You can also use the DEFINE PATH command to establish a
password-protected alias for a VSAM cluster. The cluster must
be defined before defining a path as its alias. The path entry,
as an alias, allows the cluster another set of protection
attributes. Specify NOUPDATE access for the cluster, to open
the cluster without also opening its upgrade set (all the
cluster's alternate indexes that are to be updated whenever the
cluster's data is changed). The NOUPDATE specification is
overridden by opening the path, allowing sharing of a control
block structure that permits update.

DEFINING A NON-VSAM DATA SET (DEFINE NONVSAM)

The DEFINE command can be used to catalog a non-VSAM data set in
an ICF catalog. An already existing non-VSAM data set can be
introduced into a master or user catalog through the DEFINE
command. When a DEFINE command is used to define a non-VSAM
entry, an entry is created in a master or user catalog. No
space is allocated or reserved.

When you define, alter, or delete a non-VSAM data set in a
password-protected catalog, the catalog's update- or
higher-level password is required.

Specify the VOLUMES and DEVICETYPES parameters by using indirect
volume serial identification and device type when the data sets
are to reside on the system residence volume.

To change the device type, code DEVICETYPES(OOOO), and the field
is resolved to the device type at SUPERLOCATE, LOCATE, and
DELETE time. This allows you to use the non-VSAM data sets
without recataloging them to point to the new volume.

Chapter 2. Data Set Procedures 35

Note: If you code DEVICETYPES(OOOO), you must also code
VOLUMES('******'), or an error will result.

To change the system residence volume serial number, code
VOLUMES('******') and the field is resolved in the system
residence volume at SUPERLOCATE, LOCATE, and DELETE time. This
allows you to use the non-VSAM data sets without recataloging
them to point to the new volume.

For APF-authorized data sets, you must specify the volume serial
number and device type explicitly.

DEFINING AN ALTERNATE NAME (DEFINE ALIAS)

The DEFINE command can be used to define an alternate name or an
alias for a non-VSAM data set even if it is a generation data
set. DEFINE ALIAS can also be used to define an alias for a
user catalog connector in the master catalog. An alias cannot
be defined for a generation data group.

DEFINING A GENERATION DATA GROUP (DEFINE GENERATIONDATAGROUP)

Use the DEFINE command to create a catalog entry for a
generation data group. For further information on generation
data groups, see Data Manaoement Services.

Once a catalog entry for a generation data group has been
created, existing data sets can be attached to it as generation
data sets. This is accomplished through JCL, in the form
DSNAME=name(n) (where n is the generation increment), or by
defining each data set as a non-VSAM data set with a generation
data set name, as follows:

name.GnnnnVnn

If the name matches the name of a previously defined generation
data group, the non-VSAM data set is associated with the
generation data group as a generation data set. See "Defining a
Non-VSAM Data Set (DEFINE NONVSAM)" on page 35 for a description
of how to define a non-VSAM entry.

A generation data group can be cataloged in an ICF catalog. The
model DSCB must exist on the generation data group's catalog
volume.

DEFINING A PAGE SPACE (DEFINE PAGESPACE)

Use the DEFINE command to define an entry for a page space. A
page space is a system data set that contains pages of virtual
storage. The pages are stored into and retrieved from the page
space by the auxiliary storage manager. A page space is a
nonindexed data set (an entry-sequenced cluster) that is
entirely preformatted before it is used. In a system with the
Mass Storage System, a page space cannot be defined on a mass
storage volume, but must reside on a single volume. A page
space cannot be opened as a user data set.

A page space has a maximum usable size equal to 65 535 paging
slots (records). See the description for space size
declarations (CYLINDERS, RECORDS, and TRACKS for "DEFINE
PAGESPACE") in Access Method Services Reference for further
details.

You can define a page space in a user catalog, then move the
catalog to a new system and establish it as the system's master
catalog. When you define a page space in a user catalog, code a
STEPCAT or JOBCAT statement to identify and allocate the
catalog. A page space cannot be used if its entry is in a user
catalog.

36 MVS/370 VSAM Users Guide

When you issue a DEFINE PAGESPACE command, the system creates an
entry in the catalog for the page space, then preformats the
page space. If an error occurs during the preformatting process
(for example, an I/O error or an allocation error), the page
space entry remains in the catalog even though no space for it
exists. Issue a DELETE command to remove the page space entry
before you redefine the page space.

Each page space is represented by two entries in the catalog: a
cluster entry and a data entry. (A page space is conceptually an
entry-sequenced cluster.) Both of these entries should be
password protected if the page space is to be password
protected.

Note: The passwords you specify with the DEFINE PAGESPACE
command are put in both the page space's cluster entry and its
data entry. When you define page spaces during system
generation (sysgen), use the ALTER command to add passwords to
each entry, because passwords cannot be specified during system
generation.

Unless you ensure that the catalog containing the page space
entry is password protected, a user can list the catalog's
contents and find out each entry's passwords.

A page space is made known to the system as a system data set at
sysgen or through members of a partitioned data set:
SYSl.PARMLIB. To be used as a page space, it must be defined in
a master catalog.

RESTORING END-OF-FIlE VALUES (VERIFY)

When a data set is closed, its end-of-file (EOD) and
end-of-key-range (EOKR) information is used to upgrade the data
set's cataloged information. If a system failure occurs before
the data set is closed (before the user's program issues CLOSE),
the data set's cataloged information is not upgraded. The data
set's real EOD and EOKR indicators are written in the data set,
but are not shown in the data set's cataloged information.

When the data set is subsequently opened and the user's program
attempts to process records EOD or EOKR, a read operation
results in a "no record found" error, and a write operation
might write records over previously written records.

The VERIFY command is used to compare the end-of-data-set and
end-of-key range information in a catalog with the true
end-of-file and end-of-keyrange. If the information in the
catalog does not agree with the true end-of-file or end-of-key
range, the catalog information is corrected. The VERIFY command
can be used following a system failure that caused a component
opened for update processing to be improperly closed. Clusters,
alternate indexes, and catalogs can be verified. Paths over an
alternate index cannot be verified. Paths defined directly over
a base cluster can be verified. Although the data and index
components of a key-sequenced cluster or alternate index can be
verified, the timestamps of the two components are different
following the separate verifies, possibly causing further OPEN
errors. Therefore, use the cluster or alternate index name as
the target of your VERIFY command.

To use the VERIFY command to verify a catalog, access method
services must be authorized. For information about program
authorization, see "Authorized Program Facility (APF)" in System
Programming Library: Supervisor.

A user catalog is opened as a data set when restoring its
end-of-file and end-of-keyrange information and a JOBCAT or
STEPCAT DD statement must be supplied.

VERIFY cannot be used to correct catalog records for a
key-sequenced data set or a relative record data set create
(load) mode failure. An entry-sequenced data set defined with

Chapter 2. Data Set Procedures 37

the RECOVERY attribute may be verified following a create (load)
mode failure.

Note: Data sets must be .verified unconditionally if they are
shared between systems and can be extended.

COPYING A DATA SET (REPRO)

Use the REPRO command to do any of the following:

• Copy or merge a VSAM data set into another VSAM data set.

• Copy or merge a sequential data set into another sequential
data set.

• Copy an alternate index as a key-sequenced VSAM data set.

• Copy a VSAM data set whose records are fixed length into an
empty VSAM relative record data set.

• Convert a sequential or indexed-sequential data set into a
VSAM data set.

• Convert a VSAM or indexed-sequential data set into a
sequential data set.

• Copy a data set (other than a catalog) to reorganize it.
Data set reorganization is an automatic feature.

• Merge two VSAM data sets.

For the remainder of the REPRO discussion, all these functions
are referred to as copying.

VSAM data sets used as either input or output must be cataloged.
Sequential and indexed-sequential data sets need not be
cataloged.

If a sequential or indexed-sequential data set is not cataloged,
include the appropriate volume and unit parameters on your DD
statement. Also, supply a minimum set of DCB parameters when
the input data set is sequential or indexed sequential, and/or
the output data set is sequential. The following table shows
the four key parameters.

Must be Supplied Default if
Parameters by User Not Supplied

DSORG IS PS

RECFM F, FB, V, VB U

BlKSIZE block size none

lRECl lrecl BlKSIZE for F or FB
BlKSIZE-4 for V or VB

The one parameter not supplied by default is BlKSIZE; you must
supply this value. The DCB parameter DSORG must be supplied via
the DO statement. The DCB parameters RECFM, BlKSIZE, and lRECl
can be supplied via the DSCB or header label of a standard
labeled tape, or by the DD statement.

For a variable record length VSAM data set, the 3-byte VSAM
record definition field (RDF) is not included in the VSAM record
length. When REPRO attempts to copy a VSAM record whose length
is within 4 bytes of lRECl, a recoverable error occurs and the
record is not copied.

Access method services does not support records greater than
32 760 bytes for non-VSAM data sets (lRECl=X is not supported).
If the logical record length of a non-VSAM input data set is

38 MVS/370 VSAM Users Guide

greater than 32 760 bytes, or if a VSAM data set defined with a
record length greater than 32 760 is to be copied to a
sequential data set, the REPRO command terminates with an error
message.

Records in an indexed-sequential data set that have a
fixed-length, unblocked format with a relative-key-position
(RKP) of zero are preceded by the key string when used as input.
The records in the output data set must have a record length
defined that includes the extended length caused by the key
string. To copy "dummy" indexed-sequential records (records
with hexadecimal 'FF' in the first byte) specify the DUMMY
option in the ENVIRONMENT parameter.

Because data is copied as single logical records in either key
order or physical order, automatic reorganization takes place.
The reorganization can cause any of the following:

• Physical relocation of logical records

• Alteration of a record's physical position within the data
set

• Redistribution of free space throughout the data set

• Reconstruction of the VSAM indexes

Figure 10 on page 40 describes how the records from the input
data set are added to the output data set when the output data
set is an empty or nonempty entry-sequenced, key-sequenced,
sequential, or relative record data set.

Note: The REPRO operation is terminated if:

• One physical I/O error is encountered while writing to the
output data set

• A total of four errors is encountered in any combination of
the following:

logical error while writing to the output data set

Logical error while reading the input data set

Physical error while reading the input data set

When copying to a key-sequenced data set, the records to be
copied must be in ascending order, with no duplicates in the
input data set. With an entry-sequenced data set, the records
to be copied can be in any order.

REPRO causes access method services to retrieve records from a
sequential, indexed-sequential, or VSAM data set and store them
in VSAM format in key sequence, record number sequence, entry
sequence, or a sequential data set. When records are stored in
key sequence, index entries are created and loaded into an index
component as control intervals and control areas fill up. Free
space is left as indicated in the data set definition in the
catalog, and, if indicated in the definition, records are stored
on particular volumes according to key ranges.

You can load all the records in one job or in several jobs. In
subsequent jobs, VSAM stores records as before, extending the
data set as required.

To use your own program to load a key-sequenced data set, first
sort the records (or build them) in key sequence, then store
them with sequential access (the PUT macro). For information on
using macros to write your own program to load records into a
data set, see "Chapter 8. User-Written Exit Routines" on page
129.

Chapter 2. Data Set Procedures 39

Type of Data set

Entry-Sequenced/
Sequential

Key-Sequenced

Relative Record

Empty

Creates new data set in
sequential order.

Creates new data set in
key sequence and builds
an index.

Creates a new data set
in relative record
sequence, beginning
with 1.

Nonempty

Adds records in sequential order to the
end of the data set. (DISP=MOD must be
specified for SAM sequential.)

Merges records by key and updates the
index. Unless the REPLACE option is
specified, records whose key duplicates
a key in the output data set are lost.

Records from another relative record
data set are merged, keeping their old
record numbers. Unless the REPLACE
option is specified, a new record whose
number duplicates an existing record
number is lost. Records from any other
type of organization cannot be copied
into a nonempty relative record data
set.

Figure 10. Adding Records to Various Types of Output Data Sets

PRINTING A DATA SET (PRINT)

Use the PRINT command to list part or all of a key-sequenced,
relative record, or entry-sequenced VSAM data set, alternate
index, ICF catalog, or non-VSAM data set. The components of a
key-sequenced data set or an alternate index can be listed
individually, To list a component of a key-sequenced data set
or alternate index, specify the component name as the data set
name. An alternate index is printed as though it were a
key-sequenced cluster.

If a sequential or indexed-sequential data set is not cataloged,
include the appropriate volume and unit parameters on your DO
statements.

You must supply a minimum set of DCB parameters when the data
set to be printed is sequential or indexed-sequential. The
following table shows the four key parameters:

Must be Supplied Default if
Paramaters by User Not Supplied

DSORG IS PS

RECFM F, FB, V, VB U

BlKSIZE block size none

LRECL lrecl BLKSIZE for F or FB
BlKSIZE-4 for V or VB

The one parameter not supplied by default is BlKSIZEi you must
supply this value. The DCB parameters can be supplied via the
DSCB or header label of a standard labeled tape; otherwise, they
must be supplied via the DD statement.

Access method services does not support records greater than
32 760 bytes for non-VSAM data sets (LRECL=X is not supported).
If the logical record length of a non-VSAM input data set is
greater than 32 760 bytes, the PRINT command terminates with an
error message.

40 MVS/370 VSAM Users Guide

Sequential and entry-sequenced data sets are listed in physical
sequential order. Indexed-sequential and key-sequenced data
sets can be listed in key order or in physical sequential order.
A base cluster can be listed in alternate key sequence by
specifying a path name as the data set name for the cluster.

Only the data content of logical records is listed. System­
defined control fields are not listed. Each record listed is
identified by one of the following:

• The relative byte address (RBA) for entry-sequenced data
sets

• The key for indexed-sequential and key-sequenced data sets,
and for alternate indexes

• The sequential ~~co~d numb~f
relative record data sets

.&-­
• UI

Note: If four logical and/or physical errors are encountered
while trying to read the input, printing is terminated.

To use the PRINT command to print a catalog, access method
services must be authorized. For infor~ation about program
authorization, see "Authorized Program Facility (APF)" in System
Programming library: Supervisor.

LISTING TAPE VOLUMES MOUNTED AT CHECKPOINT (CHKLISTl

During processing7 a program can issue the CHKPT macro to record
information for use in restarting the processing if an error
interrupts the program. Recording information by way of CHKPT
is called taking a checkpoint. The records that contain the
information make up a checkpoint entry in the checkpoint data
set, which contains an entry for each checkpoint that is taken.

The checkpoint data set can be a sequential data set or a
partitioned data set. In a partitioned data set, each
checkpoint entry is a member of it. Further information on the
CHKPT macro may be found in Checkpoint/Restart.

Checkpoint information includes the volume serial numbers of
tape data sets opened at the checkpoint. The CHKlIST command
enables you to list these volume serial numbers to identify the
tape data sets that need to be mounted for restart.

For a checkpoint data set with DSORG=PS (sequential data set),
you can select one or more specific checkpoint entries to list
tape information by a single CHKlIST command. All checkpoint
entr;es will be processed if no entry is selected.

You can use CHKlIST to process a checkpoint data set with
DSORG=PO (partitioned data set) in the following manner:

• Specify DSNAME=dsname(member) on the JCl statement that
defines the checkpoint data set.

• If you do not select a specific checkpoint entry, the single
entry specified by member after dsname is processed.

The CHKLIST command lists the following information:

• The checkpoint identifier for the entry processed.

• The following items are listed for each tape data set open
at the time of the checkpoint:

dsname

ddname

Type of unit on which the volume was mounted

Chapter 2. Data Set Procedures 41

The sequence number of the mounted volume

Volume serial numbers with an * by the volume serial
number of the mounted volume

To process multiple members of a partitioned checkpoint data
set, use the CHKLIST command once for each member.

Note: The CHKLIST command cannot be invoked as a TSO command.

ESTABLISHING BACKUP AND RECOVERY PROCEDURES

BACKING UP DATA

You should establish backup and recovery procedures for your
data sets. All VSAM data sets must be cataloged. Because the
physical and logical description of a data set is contained in
its catalog entries, VSAM requires up-to-date catalog entries to
access data sets.

Any recovery procedure must match both data set and catalog
entry status. Recovery by way of reloading the data set
automatically takes care of this problem: A new catalog entry is
built when the data set is reloaded.

Access method services has two utility functions for creating
backup copies:

• The EXPORT command is used to create an unloaded, portable
copy of the data set. There are options for protection, and
most catalog information is exported along with the data,
easing the problem of redefinition. You can prevent the
exported data set from being updated until the IMPORT
command reestablishes its accessibility.

• The REPRO command is used to create a duplicate VSAM data
set for backup. An advantage over EXPORT is the
accessibility of the backup copy. A DEFINE command is
required before reloading, but the original DEFINE
statements can be used.

You can also write your own backup scheme, which should be
integrated into the regular processing procedures whenever
possible.

Any backup procedure that does not involve an image copy of the
data set (such as EXPORT or REPRO) results in data
reorganization and the recreation of the index for a
key-sequenced data set. Any absolute references by way of RBA
may become invalid.

Consider the following when using EXPORT or REPRO as a backup:

• A backup copy created by EXPORT can only be a sequential
data set. A backup copy created by REPRO can be a VSAM data
set or a sequential data set. The backup copy obtained by
using REPRO can be a different type of VSAM data set than
the original. For example, you could back up a VSAM
key-sequenced data set by copying it to a VSAM
entry-sequenced data set using REPRO. When using REPRO, the
REUSE attribute allows repeated backups to the same VSAM
reusable target data set.

• A backup copy created by EXPORT contains all the information
necessary to redefine the VSAM cluster or alternate index
when you IMPORT the copy. A backup copy created by REPRO
does not contain this catalog information. To use the
backup copy, REPRO requires you to delete the original data
set, if it still exists, using the DELETE command. Next,
you must redefine the data set using the DEFINE command,
then restore it with the backup copy using the REPRO
command. (The delete and define operations are not

42 MVS/370 VSAM Users Guide

necessary if the original data set still exists and was
defined with the REUSE attribute.)

A key-sequenced data set is reorganized when it is transported
or backed up using EXPORT and IMPORT or when it is copied using
REPRO. The data records are rearranged physically in ascending
key sequence (control interval and control area splits may place
them physically out of order) and free-space quantities are
balanced.

After replacing a damaged data set with its backup copy, rerun
the jobs that updated the original between the time it was
backed up and the time it became inaccessible. This updates the
backup copy.

Backing up the data sets in a user catalog allows you to recover
from damage to thp catalog. You can import the backup copy of a
data set whose entry is lost or redefine the entry and reload
the backup copy. If the catalog is completelY lost, you can
redefine it, then import or redefine and reload all the data
sets that were defined in the catalog.

Exporting and Importing a Data set

Use the EXPORT command (with the TEMPORARY parameter) to copy a
VSAM cluster and its catalog entries onto a movable volume (a
demountable direct access volume or a magnetic tape volume).
Then, use the IMPORT command to move the portable copy to
another system that includes VSAM or to replace the original
cluster and its catalog entries. The portable copy itself is
inaccessible for processing.

Making a copy of a Data set

CORRECTIVE MEASURES

Use the REPRO command to copy a VSAM or a sequential data set
into another newly defined (for protection) VSAM or sequential
data set, in another catalog. The REPRO command does not copy
the data set's catalog information. Use the REPRO command with
the REPLACE parameter to merge the backup copy into the original
data set, or delete and redefine the original data set and use
REPRO to reload the backup copy into it. Because the backup
copy is itself accessible for processing, you can replace the
original with it. The catalog in which you defined the backup
must be available for processing, and the name of the backup
must be used.

If you periodically process a data set sequentially, you can
easily create a backup copy as a by-product of normal
processing. This backup copy can be used like one made by
REPRO.

When part or all the online data is destroyed, you can replace
the destroyed data set with its backup copy.

• Use the REPRO command with the REPLACE option to merge the
backup copy with the destroyed data. When only part of the
data set is damaged, specify REPRO parameters that allow the
records in the damaged part of the data set to be replaced.

• Use the IMPORT command to totally replace a VSAM cluster
whose backup copy was built using the EXPORT command. The
IMPORT command uses the backup copy to replace the cluster's
contents and catalog information.

Chapter 2. Data Set Procedures 43

CHAPTER 3. VSAM PERFORMANCE CONSIDERATIONS

This chapter describes many of the options and factors that
either influence or, in some cases, determine VSAM's performance
as well as the performance of the operating system. The main
topics include control interval and control area size, buffer
management, allocation units, distributed free space, and index
options.

Most of the options are specified in the access method services
DEFINE command when a data set is created. (The DEFINE command
is described in Access Method Services Reference.) In some
cases, options can be specified in the ACB and GENCB macro
instructions and in the DO AMP parameter, all of which are
described in this publication.

CONTROL INTERVAL SIZE

Control interval size, which can be specified for VSAM data
sets, affects record processing speed and storage requirements
in these ways:

• For data sets containing large data records, you might want
larger control intervals, even though VSAM allows records to
cross control interval boundaries.

• For data sets containing large control interval sizes, more
buffer space is required in virtual storage for each control
interval.

• For data sets containing large control interval sizes, fewer
I/O operations (control interval accesses) are required to
bring a given number of records into virtual storage; fewer
index records must be read. This is usually significant
only for sequential and skip-sequential access.

• Free space will probably be used more efficiently (fewer
control interval splits and less wasted space) as control
interval size increases relative to data record size,
especially with variable-length records. (Free space in a
control interval isn't used if there isn't enough for a
complete data record.)

You can let the system select the size of a control interval for
a data or index component or you can request a particular
control interval size in the DEFINE command. The size you
specify must, however, fall within acceptable limits determined
by the system, or the DEFINE will fail. The limits depend on:

• The maximum size of the data records, which you specify by
the required RECORDSIZE parameter of the DEFINE command

• The smallest amount of virtual storage space your processing
programs will provide for I/O buffers, which you specify by
the optional parameter BUFFERSPACE.

The size of a control interval may vary as follows:

• The size of a control interval must be a multiple of 512
bytes, because a control interval is a whole number of
physical records and physical record size is 512, 1024,
2048, or 4096 bytes. (The physical record size of 2048 does
not apply to the IBM 3340 Disk Storage.)

• The size of a control interval in the data component of a
cluster can be any multiple of 512, up to 32 768, except
that, if it is over 8192 bytes, it must be a multiple of
2048: 512, 1024, 1536, 2048, 2560, ... , 8192, 10 240,
12 288, or 32 768.

44 MVS/370 VSAM Users Guide

• A control interval in an index is the same size as a
physical record, and its size is therefore restricted to
512, 1024, 2048, or 4096 bytes.

The information recorded on a track is divided into physical
records that are limited by the capacity of a track. The
physical record sizes that VSAM uses are 512, 1024, 2048, and
4096 bytes. (The physical record size of 2048 does not apply to
the IBM 3340 Disk Storage.) Control interval size is limited by
the requirements that it be a whole number of physical records
(up to 64, or a maximum of 32 768 bytes) and that, if it is
greater than 8192 bytes, it be a multiple of 2048. A data set
whose control intervals correspond with the tracks of one device
might have more or less than one control interval per track if
it were stored on a different device. Figure 11 illustrates the
independence of control intervals from physical records.

Control Interval Control Interval Can trol I nterva I

Physical Records

Track 1 Track 2 Track 3

Figure 11 shows the physical block size selected by VSAM for all
of the possible control interval sizes for the IBM 3330, 3340,
and 3350 direct access devices, together with the resulting
track utilization (all numbers are in K bytes):

Physical Block: Size Track: space Used

CI SIZE 3340 3330 3350 3340 3330 3350

.5 .5 .5 .5 6 10 13.5
1 1 1 1 7 11 15
1.5 .5 .5 .5 6 10 13.5
2 1 2 2 7 12 16
2.5 .5 .5 .5 6 10 13.5
3 1 1 1 7 11 15
3.5 .5 .5 .5 6 10 13.5
4 4 4 4 8 12 16
4.5 .5 .5 .5 6 10 13.5
5 1 1 1 7 11 15
5.5 .5 .5 .5 6 10 13.5
6 1 2 2 7 12 16
6.5 .5 .5 .5 6 10 13.5
7 1 1 1 7 11 15
7.5 .5 .5 .5 6 10 13.5
8 4 4 4 8 12 16
10 1 2 2 7 12 16
12 4 4 4 8 12 16
14 1 a 2 7 12 16
16 4 4 4 8 12 16
18 1 2 2 7 12 16
20 4 4 4 8 12 16
22 1 2 2 7 12 16
24 4 4 4 8 12 16
26 1 2 2 7 12 16
28 4 4 4 8 12 16
30 1 2 2 7 12 16
32 4 4 4 8 12 16

Figure 11. Physical Block Size for Control Intervals

Chapter 3. VSAM Performance Considerations 45

If you specify a control interval size that is not a proper
multiple, VSAM increases it to the next multiple. For example,
2050 is increased to 2560.

The size of a control interval in a data component must be large
enough to hold a data record of the maximum size specified in
the RECORDSIZE parameter unless the data set was defined with
the SPANNED attribute. The minimum amount of control
information in a control interval is 7 bytes. Therefore, a
control interval is normally at least 7 bytes larger than the
largest record in the component.

The use of the SPANNED attribute removes this constraint by
allowing data records to be continued across control intervals.
The maximum record size is then equal to the number of control
intervals per control area multiplied by (control interval size
minus 10). The use of the SPANNED attribute places certain
restrictions on the processing options that can be used with a
data set. For example, records of a data set with the SPANNED
attribute cannot be read or written in locate mode.

Because VSAM transmits the contents of a control interval
between direct access storage and virtual storage, the amount of
space allowed for I/O buffers limits the size of a control
interval. The BUFFERSPACE parameter of the DEFINE command
indicates the smallest amount of virtual storage space a
processing program provides for buffers.

BUFFERSPACE, if you specify it, limits control interval size to
values such that the buffer space can hold at least two data
control intervals and one index control interval. If you do not
specify BUFFERSPACE, control interval sizes are set
independently, and the buffer space value is then set equal to
the size of two data control intervals and one index control
interval.

If you don't specify a size for a data control interval, the
system calculates a default value for the given average record
size but at least large enough to accommodate the maximum record
size. For a key-sequenced data set, after control interval size
has been set, the system determines the number of bytes to be
reserved for free space, if specified. For example, if control
interval size is 4096, and the percentage of free space in a
control interval has been defined as 20%, approximately 820
bytes are reserved.

With a key-sequenced data set, if you don't specify a size for
index control intervals, the system uses 512, if possible.
After the system determines the number of control intervals in a
control area (see the next section), it estimates whether an
index record is large enough to handle all the control intervals
in a control area. If not, the size of an index control
interval is increased, if possible. If it's not possible, the
size of the control area is decreased by decreasing the number
of control intervals.

To find out what values are actually set in a defined data set,
you can issue the access method services LISTCAT command.

DATA CONTROL INTERVAL SIZE

Normally, a 4096-byte data control interval is reasonably good
regardless of the DASD device used, processing patterns, or the
processor. However, there are some special considerations that
might affect this choice.

A given logical record size may fit some control interval sizes
better than others. Generally, large control interval sizes
provide the best fits. Also, some control interval sizes fit a
track of a given device better than others. For example, on a
3340 track, a 2048-byte control interval yields a potential 7168
bytes of usable space per track, whereas a 4096-byte control
interval yields 8192 bytes (2 control intervals) of data on a

46 MVS/370 VSAM Users Guide

Random Processing

3340 track. Assuming a 300-byte record, in one case there would
be 21 records per track and in the other case there would be 24
records per track.

A small data control interval is preferable when random
processing is predominant. In general, select the smallest data
control interval that yields a reasonable space utilization.
Normally, 1024- or 2048-byte control intervals are good.

sequential processing

If the processing is predominantly sequential, even larger data
control intervals may be good choices. Given a 16K-byte data
buffer space, it is better to read two 8K-byte control intervals
with one I/O operation than four 4K-byte control intervals with
two I/O operations. After insertions have occurred, very large
data control intervals often result in fewer out-of-sequence
control intervals than small control intervals.

Figure 12 summarizes the generally acceptable data control
interval sizes.

Accessing
Pattern

Random

Sequential

Ordered Direct

Random Batch or
Sorted Batch

Condition
or Device

3340
3330

3340
3330

If there are fewer
than 2 records
referenced per track.

Otherwise

If number of records
per group is less
than the number of
records in a
2048-byte CI.

Otherwise

Figure 12. Data Control Interval Sizes

INDEX CONTROL INTERVAL SIZE

Data CI Size

1024
1024 or 2048

4096 or 8192
4096 or 6144

Then choose the CI size
as done for Random.

4096

Then choose the CI size
as done for Random.

4096

A 512-byte index control interval is usually the best choice.
If the number of data control intervals per control area is
small, the full key size is not too large, and if the key
compresses well, then a 512-byte index control interval is
possible. The best way to find out if 512 bytes is large enough
is to run an experiment using the data control interval size
chosen and 512 bytes for index control interval size. Allow
(0,0) free space and load enough records to equal one control
area. At the end of the run, list the catalog index entry. If
there is one level of index, then the 512-byte index control
interval was large enough.

Chapter 3. VSAM Performance Considerations 47

summary of Control Interval Size Strategy

For random processing, choose the smallest data control interval
that provides for reasonable space utilization. Choose an index
control area size that is compatible with the data control area
size. When a choice between large data and index control
interval sizes exists, choose the combination that yields the
smallest buffer space value (data control interval size + index
control interval size). This combination requires the least
amount of active real storage and results in the least amount of
data transfer time.

For other than random processing, choose the data control
interval size that yields the smallest index control interval
size. When a conflict exists, it is better to increase the data
control interval size rather than the index control interval
size.

SOME ADDITIONAL CONTROL INTERVAL CONSIDERATIONS

Pick the smallest index control interval size you can for a
given data control interval size. If a 512-byte index control
interval is too small, increase the data control interval size.
If the 512-byte index control interval is still too small with a
4096-byte data control interval, try a 1024-byte index control
interval.

Do not choose data control interval sizes that result in
multiple, small physical blocks.

Specify control interval size at the data and index levels, not
at the cluster level.

For variable-length records, a small data control interval
results in poor DASD space utilization with more control
information than fixed-length records and free space that cannot
be used. If you select too small a data control interval size,
the number of data control intervals in a control area may be
large enough to cause the index control interval size to exceed
the maximum, thus causing the DEFINE to fail.

You need real storage to support large control intervals. In an
overcommitted system, excessive paging may result. The control
interval sizes you specify when the data set is defined are not
necessarily the ones you will have in the catalog. VSAM makes
adjustments so that control interval size conforms to proper
size limits, minimum buffer space, adequate index-to-data size,
and record size. This is done when your data set is defined.

For example:

1. You specify data and index control interval size. After
VSAM determines the number of control intervals in a control
area, it estimates whether one index record is large enough
to handle all control intervals in the control area. If
not, the size of the index control interval is increased, if
possible. If the size cannot be increased VSAM decreases
the number of control intervals in the control area.

2. Assume no spanned records. You specify maximum record size
as 2560 and data control interval size as 2560. VSAM
adjusts the data control interval size to 3072 to allow
space for control information in the data control interval.

3. You specify buffer space as 4K, index control interval size
as 512, and data control interval size as 2K. VSAM
decreases the data control interval to 1536. Buffer space
must include space for two data control intervals and one
index control interval at DEFINE time.

48 MVS/370 VSAM Users Guide

CONTROL AREA SIZE

A control area ;s never larger than one cylinder. If the
original space allocation is in cylinders, then the control area
size is one cylinder; if space allocations are in tracks or
records, then the control area size is equal to the lesser value
of the primary or the secondary allocation. The size of the
control area depends on the device type. For a key-sequenced
data set, the size of a control area is also determined on the
basis of the space allocation request, user-specified or default
data and index control interval size, and available buffer
space.

Control area size has significant performance implications.
When a whole number of control areas occupies a cylinder,
performance is better than when a fractional number of control
area occupies a cylinder (for example, when a control area is
two-thirds of a cylinder>. If you allocate space in a DEFINE
command using the CYLINDERS parameter, VSAM sets the control
area size to one cylinder. If the control area is smaller than
a cylinder, its size will be an integral multiple of tracks, and
it can span cylinders. However, a control area can never span
an extent of a data set; that is, an extent of a data set is
made up'of a whole number of control areas.

Other than specifying space in terms of cylinders, you don't
have a direct way of specifying that a whole number of control
areas will occupy a cylinder. But you can provide values in the
DEFINE command that will influence the control area size as
computed by VSAM.

VSAM checks the smaller of the primary and secondary space
values against the specified device's cylinder size. If the
smaller space quantity is less than or equal to the device's
cylinder size, the size of the control area is set equal to the
smaller space quantity. If the smaller quantity is greater than
the device's cylinder size, the control area size is set equal
to cylinder size.

You specify space in number of tracks, cylinders, or records;
the system preformats space in control areas. By calculating
the size of a control area as it does, VSAM is able to meet the
primary and secondary space requirements without overcommitting
space for this data set.

An index record must be large enough to address all the control
intervals in a control area. The more control intervals an
index record addresses, the fewer reads for index records are
required for sequential access. Generally, the greater the size
of the control area, the better the performance and space
utilization for sequential processing.

IMPACT OF SMAll CONTROL AREAS

Control areas may be from one track to one cylinder ;n size.
The smaller the control area, of course, the more areas there
will be. Because an index record can contain only so many
entries, more index records and index levels are required if the
control area is small.

The IMBED option requires one track per control area for
sequence set information. If the control area is three tracks
of 3340, and the IMBED option is taken, 1/3rd of the direct
access storage space is required for sequence sets. If the
control area on a 3340 is a cylinder, 1/12th the DASD space is
required.

I/O BUFFER SPACE MANAGEMENT

I/O buffer space is important because VSAM transmits the
contents of a control interval to a buffer in virtual storage.
For keyed access with the ACB operand STRNO=1, VSAM requires a

Chapter 3. VSAM Performance Considerations 49

BUFFER SPACE

minimum of three buffers, two for data control intervals and one
for an index control interval. You may specify a minimum buffer
space in the DEFINE command; if you do not specify a minimum
buffer space, the default is enough buffer space for the minimum
of three buffers.

VSAM keeps in virtual storage as many index set records as the
buffer space will allow. Ideally, the index would be small
enough to allow the entire index set to remain in virtual
storage. Because the characteristics of the data set may not
allow a small index, you should be aware of how index I/O
buffers are used to enable you to determine the number you want
to provide.

The one buffer minimum assumes that requests requiring
concurrent data set positioning are not being issued. If such
requests are issued, each requires exclusive control of an index
I/O buffer. Therefore, the value specified for the STRNO
operand (ACB or GENCB macro or AMP parameter) is the minimum
number of index I/O buffers required when requests that require
concurrent positioning are used.

If the number of I/O buffers provided for index records is
greater than the number of requests that require concurrent
positioning, one buffer is used for the highest-level index
record. Any additional buffers are used, as required, for other
index set index records.

To improve performance when you have adequate real storage
available, you can increase the I/O buffer space for index
records in virtual storage by specifying I/O buffers for index
records through the BUFNI and BUFSP operands of the ACB macro.
With direct access, you should provide at least enough index
buffers to be equal to the value of the STRNO operand of the ACB
plus one to allow VSAM to keep the highest-level index record
always resident. With sequential access, having only one index
I/O buffer doesn't hinder performance, because VSAM uses the
horizontal pointer in a sequence-set record, not vertical
sequence sets in the index set, to get to the next control
interval.

BUFFERSPACE, specified in the access method services DEFINE
command, is the minimum amount of virtual storage that will ever
be provided for I/O buffers when the data set is being
processed. BUFSP, specified in the ACB or GENCB macro or in the
DD AMP parameter, is the maximum amount of virtual storage to be
used for the data set's I/O buffers. It is important that VSAM
must always have sufficient space available to process the data
set as the specified processing options direct it to.

Buffer Allocation for a Path

A path typically consists of a base cluster, an alternate index
for the base cluster, and the alternate indexes that are
included in the upgrade set. The base cluster can be key
sequenced or entry sequenced. The upgrade set identifies each
alternate index that VSAM is to update when the base cluster is
updated (there may be no alternate indexes in the upgrade set).
The alternate index provides the user with an alternate key
sequence to access records in the base cluster.

The BUFSP, BUFND, BUFNI, and STRNO parameters apply only to the
path's alternate index when the base cluster is opened for
processing with its alternate index. The minimum number of
buffers are allocated to the base cluster unless the cluster's
BUFFERSPACE value (in the cluster's catalog record) or ACBBSTNO
allows for more buffers (VSAM assumes direct processing and
extra buffers are allocated between data and index components
accordingly).

50 MVS/370 VSAM Users Guide

Two data buffers and one index buffer are always allocated to
each alternate index in the upgrade set. If the path's
alternate index is a member of the upgrade set, the minimum
buffer increase for each allocation is by 1 for both the data
and index buffers. Buffers are allocated to the alternate index
as though it were a key-sequenced data set.

Things You Should Know about Buffer Allocation

When processing a VSAM data set sequentially (SEQ or SKP):

• For mixed processing situations (SEQ and DIR), start with
two data buffers per string and increase BUFND to three per
string if paging is not a problem. For straight sequential
processing environments, start with four data buffers per
string.

• Extra index buffers have little effect during sequential
processing, because VSAM usually searches the sequence set
and does not refer to the higher levels of the index.

• Large data control intervals or small dat~ control intervals
with many buffers can produce similar results. With proper
buffering, the same amount of data can be accessed with one
I/O operation.

• Allocate more data buffers, because the data buffers are
used to support the read-ahead function. When SHAREOPTIONS
4 is specified for the data set, the read-ahead function can
be ineffective because the buffers are refreshed when each
control interval is read. Therefore, for SHAREOPTIONS 4,
keeping data buffers at a minimum can actually improve
performance.

• If your operation is I/O bound, you should specify more data
buffers to improve your job's run time. However, an
excessive number of buffers can cause performance problems;
see note below.

When processing a VSAM data set directly (DIR):

• The read-ahead function is inactive for direct processing.
The minimum number of data buffers are needed.

• For optimum operation, specify the number of index buffers
equal to the number of high-level index set control
intervals plus one per string to contain the entire
high-level index set and one sequence set control interval
per string in virtual storage. Note that additional index
buffers will not be used for more than one sequence set
buffer per string unless shared resource pools are used.
For large data sets, specify the number of index buffers
equal to the number of index levels. Unused index buffers
do not degrade performance.

• If you specify more data buffers than the minimum
requirement, this has little beneficial effect with direct
processing.

Note: More buffers (either data or index) than necessary might
cause excessive paging or excessive internal processing. There
is an optimum point at which more buffers will not help. What
you should attempt is to have data available just before it is
to be used. If data is read into buffers too far ahead of its
use in the program, it may be paged out.

Data and index buffers are acquired and allocated only when the
data set is opened. Buffer space is released when the data set
is closed.

VSAM dynamically allocates buffers based on parameters in effect
when the program opens the data set. Parameters that influence
the buffer allocation are in the program's ACB: MACRF=(INIOUT,

Chapter 3. VSAM Performance Considerations 51

UNITS OF ALLOCATION

SEQISKP, DIR), STRNO=n, BUFSP=n, BUFND=n, and BUFNI=n. Other
parameters that influence buffer allocation are in the DD
statement's AMP specification for BUFSP, BUFND, and BUFNI, and
the BUFFERSPACE value in the data 5Gt'S c~talog record.

If you open a data set whose ACB includes MACRF=(SEQ,DIR),
buffers are allocated according to the rules for sequential
processing. If the RPL is modified later in the program, the
buffers allocated when the data set was opened do not change.

Data and index buffer allocation (BUFND and BUFNI) can only be
specified by the user with access to modify the ACB parameters
or via the AMP parameter of the DD statement.

Any program can be assigned additional buffer space by modifying
the data set's BUFFERSPACE value, or by specifying a larger
BUFSP value with the AMP parameter in the data set's DD
statement.

When processing the data set sequentially, VSAM reads ahead and
provides overlap as buffers become available. For output
processing (PUT-add or PUT-update), VSAM does not immediately
write the updated control interval from the buffer unless a
control interval split is required. The POINT macro does not
cause read-ahead processing, unless SEQ is specified, because
its purpose is to position the data set for subsequent
sequential retrieval.

When processing a data set directly, VSAM reads only one data
control interval at a time. For output processing (PUT-add or
PUT-update), VSAM immediately writes the updated control
interval.

When a buffer's contents are written, the buffer's space is not
released. The control interval remains in storage until
overwritten with a new control interval, so that if your program
refers to that control interval VSAM does not have to reread it.
Because VSAM checks to see if the desired control interval is in
storage, when your program processes records in a limited key
range throughput might be increased if extra data buffers are
provided.

VSAM does not read-ahead index buffers, but you can have your
entire index set in storage. Index buffers are loaded when the
index is referred to. When many index buffers are provided,
index buffers are not reused until a requested index control
interval is not in storage. If you provide, in addition to one
index buffer per string, as many index buffers as there are
index set control intervals, the data set's entire index set
will be read into storage as needed.

The parameters you specify that determine how VSAM allocates
space are in the DEFINE command. Allocation may be specified at
many levels: cluster and/or alternate index, data, or data and
index levels.

MULTIPLE CYLINDER DATA SETS

It is usually best to calculate the number of cylinders needed
for data in a newly created data set and specify this amount in
cylinders for the primary allocation of the data component.
Make the secondary allocation equal to or greater than one
cylinder but less than the primary allocation. If the IMBED
option is used, when doing the calculation, deduct the one track
per cylinder used for the replicated embedded sequence set
records. For example, using a 3340, calculate based on 11 tracks
per cylinder rather than 12. An allocation of 3 primary and 1
secondary track for the index set is a good choice when the
REPLICATE option is used. When the REPLICATE option is not
used, specify 1 primary and 1 secondary track for the index set.

52 MVS/370 VSAM Users Guide

SMALL DATA SETS

VSAM uses track allocation when you define a data set if you
specify either track allocation or record allocation requiring
less than one cylinder. For data sets less than 1 cylinder in
size, it is more advantageous to specify the maximum number of
tracks required in the primary allocation of the data component,
1 track for the non embedded sequence-set index, and no
secondary for either data or index. The buffer allocations for
this data set should be set so that only 1 index buffer is
allocated.

CHOOSING ALLOCATION PARAMETERS

The following list suggests some items you should consider when
allocation parameters are specified:

• A control area is never larger than one cylinder. Improved
performance is obtained when an integral number of control
areas occupy a cylinder.

• A control area can never span an extent boundary. A cluster
extent consists of a whole number of control areas.

• VSAM checks the smaller of primary and secondary space
values against the specified device's cylinder size. If the
smaller quantity is greater than the device's cylinder size,
the control area is set equal to the cylinder size. If the
smaller quantity is less than or equal to the device's
cylinder size, the size of the control area is set equal to
the smaller space quantity.

For example:

CYLINDERS(S,lO) Results in a I-cylinder control area

TRACKS(lOO,3) Results in a 3-track control area

RECORDS(2000,S) Assuming 10 records would fit on a track,
results in a I-track control area (minimum
control area is 1 track)

TRACK(3,lOO) Results in a 3-track control area

To cause VSAM to select cylinder control areas:

Define the data set using the CYLINDERS parameter or

Define the data set using the RECORDS or TRACKS
parameter, with the smaller of primary or secondary
allocation resulting in at least one allocated cylinder.
Note that migration to a different device type may
result in a case of less than a cylinder, unless the
allocation parameter is adjusted accordingly.

Note: This causes VSAM to start at a cylinder control area
size. If, because of other parameters (for example, control
interval size) a cylinder control area size is not optimum,
VSAM determines the optimum area size in tracks and changes
all space allocation parameters to be tracks (multiples of
the control area size).

• If allocation is specified at the cluster or alternate index
level only, the amount needed for the index is subtracted
from the specified amount. The remainder of the specified
amount is assigned to data.

• If allocation is specified at the data level only, the
specified amount is assigned to data. The amount needed for
the index is in addition to the specified amount.

Chapter 3. VSAM Performance Considerations 53

• If allocation is specified at both the data and index
levels, the specified data amount is assigned to data and
the specified index amount is assigned to the index.

• If secondary allocation is specified at the data level,
secondary allocation must be specified at the index level
(when it is not specified at the cluster level).

• If IMBED is specified (to place the sequence set with the
data), the data allocation includes the sequence set. More
space must be given for data allocation when IMBED is
specified.

• If secondary allocation is specified, space for a data set
can be expanded to a maximum of 123 extents (provided there
is sufficient data space). For a key-sequenced data set,
the index component as well as the data component can have
up to 123 extents. When the sequence set is embedded with
the data, each data extent is also considered an index
extent: The number of extents for the index component equals
the number of data extents plus the number of high-level
index set extents.

• A spanned record cannot be longer than a control area less
the control information (10 bytes per control interval), so
do not specify large spanned records and small primary or
secondary allocation that is not large enough to contain the
largest spanned record.

• VSAM acquires space in increments of control areas. For
example, if the allocation amount is 20 tracks and the
device is a 3330, the control area size is 1 cylinder, and 2
cylinders of space (2 control areas) are allocated.

• VSAM data sets cataloged in an ICF catalog are allocated
with the CONTIG attribute if the allocation unit is TRACKS.
Therefore, the primary and secondary allocation will be in
contiguous tracks.

DISTRIBUTED FREE SPACE

You can specify in the DEFINE command the percentage of free
space in a control interval and the percentage of free control
intervals in a control area. This free space improves
performance by reducing the likelihood of control interval and
control area splits, which, in turn, reduce the likelihood of
VSAM moving a set of records to a different cylinder away from
other records in key sequence.

The amount of free space to be provided depends on the number
and location of records to be inserted, lengthened, or deleted.
Too much free space may increase the number of index levels,
which affects run times for direct processing. It also uses
more direct access storage to contain the data set, and it
requires more I/O operations to sequentially process the same
number of records. Too little free space may result in an
excessive number of control interval and control area splits,
which are time consuming at the time of the split. After the
splits occur, additional time is required for sequential
processing because the data set is not physically in sequence.
Control area splits increase the seek time during processing.
Consider using LISTCAT or the ACB JRNAD exit to monitor control
area splits and reorganize the data set when they become
prevalent.

VSAM uses available free space when there is a direct insert and
when a mass sequential insert does not result in a split.

Control interval free space should be consistent with the
expected insertion activity. Determine the free space based on
the percentage of additions between reorganizations. If there
are to be no additions and if record sizes are not changed,
there is no need for free space.

54 MVS/370 VSAM Users-Guide

Your free space specification can be altered after the data set
is loaded. To take full advantage of mass insertion, use the
ALTER command to change free space to (0,0) after the data set
is loaded.

If additions will occur only in a specific part of the data set,
load those parts where additions will not occur with a free
space of (0,0). Then, alter the specification to (n,n) and load
those parts of the data set that will receive additions.
Remember that, if SPEED is specified, it will be in effect for
loading the initial portion only. When subsequent portions are
loaded, RECOVERY will be in effect, regardless of the DEFINE
specification.

If additions will be unevenly distributed throughout the data
set, specify a small amount of free space. Additional splits,
after tIle first, in that part of th~ data set with the most
growth will produce control intervals with only a small amount
of unneeded free space.

If there will be few additions to the data set, consider a free
space specification of (0,0). When records are added, new
control areas will be created to provide room for additional
insertions and unused free space will not be provided.

Records are loaded or mass inserted at the end of a control
interval until the free space threshold would be passed. The
threshold is the point at which free space would be less than
the amount specified in the catalog.

VSAM ensures that at least one record or a portion of one
spanned record is placed in a control interval. A control area
free space percentage specification resulting in less than one
free control interval in the control area, is ignored.

Because a control interval contains logical records, free space,
and control information, a 4K-byte control interval cannot
contain four lK-byte logical records. A 4K-byte control
interval with (25,0) free space specified contains at least
lK-byte free space. Only two lK-byte fixed-length records could
be loaded in the control interval, and only one more lK-byte
record could be added before a control interval split would be
required.

If a control interval can contain four logical records and
(25,0) free space is specified, the control interval would
contain three logical records and 25% free space. If (20,0) is
specified, the result is three logical records and 25% free
space. If (33,0) is specified, the result is two logical
records and 50% free space. If (80,0) is specified, the result
is one logical record and 75% free space.

FREE SPACE COMPUTATION

INDEX OPTIONS

Determine the growth of the data set between creation and
reorganization. Apportion this amount of growth between free
control intervals in a control area and free space within a
control interval. Make sure that the computations yield full
records and full control intervals with a minimum amount of
unusable space.

Five options influence performance through the use of the index
of a key-sequenced data set. Each option improves performance,
but some of them require that you provide additional virtual
storage or auxiliary storage space. The options are:

• Index-set records in virtual storage

• Size of index control interval

Chapter 3. VSAM Performance Considerations 55

• Index and data set on separate volumes

• Replication of index records (REPL option)

• Sequence-set records adjacent to control areas (IMBED
option)

INDEX-SET RECORDS IN VIRTUAL STORAGE

To retrieve a record from a key-sequenced data set or store a
record in it using keyed access, VSAM needs to examine the index
of that data set. Before your processing program begins to
process the data set, it must specify the amount of virtual
storage it is providing for VSAM to buffer index records.
Enough space for one I/O buffer for index records is the
minimum, but a serious performance problem would occur if an
index record were continually deleted from virtual storage to
make room for another and then retrieved again later when it is
required. Ample space to buffer index records can improve
performance by preventing this situation.

You ensure that index-set records will be in virtual storage by
specifying enough virtual storage for index I/O buffers when you
begin to process a key-sequenced data set. VSAM keeps as many
index-set records in virtual storage as the space will hold.
Whenever an index record must be retrieved to locate a data
record, VSAM makes room for it by deleting from the space the
index record that VSAM judges tc be least useful under the
circumstances then prevailing. It is generally the index record
that belongs to the lowest index level or that has been used the
least. VSAM does not keep more than one sequence set index
record per string at a time unless shared resource pools are
used.

SIZE OF THE INDEX CONTROL INTERVAL

The second option you might consider is ensuring that the
index-set control interval is large enough to cover a full
control area. Thus, the index-set control intervals might be
larger than actually required to contain the pointers to the
sequence-set level. However, this option also keeps to a
minimum the number of index levels required, thereby reducing
search time and improving performance. This option increases
rotational delay and transfer time.

INDEX AND DATA ON SEPARATE VOLUMES

When a key-sequenced data set is defined, the entire index or
the high-level index set alone can be placed on a volume
separate from the data, either on the same or on a different
type of device.

Using different volumes enables VSAM to gain access to an index
and to data at the same time. Additionally, the smaller amount
of space required for an index makes it economical to use a
faster storage device for it than for the data.

REPLICATION OF INDEX RECORDS

You can specify that each index record be replicated (written on
a track of a direct access volume as many times as it will fit).
Replication reduces the time lost waiting for the index record
to come around to be read (rotational delay). Average
rotational delay is half the time it takes for the volume to
complete one revolution. Replication of a record reduces this
time, for example, if 10 copies of an index record fit on a
track, average rotational delay is only !/20th of the time it
takes for the volume to complete one revolution.

56 MVS/370 VSAM Users Guide

On a 3340, the time usually is reduced by 50%. On a 3330, the
time is reduced to l/n, where n is the number of times the index
is replicated on the track.

Because there are usually few control intervals in the index
set, the cost in terms of direct access storage space is small.
If the entire index set is not being held in storage and there
is significant random processing, then replication is a good
choice. If not, replication does very little. Because its cost
is small and it is an attribute that cannot be altered, it may
be desirable to choose this option.

SEQUENCE-SET RECORDS ADJACENT TO CONTROL AREAS

When the data set is defined, you can specify that the
sequence-set ~ndex record for e~ch control area is to be
embedded on the first track of the control area. This reduces
disk-arm movement, because it is not necessary to do separate
seeks to locate both the sequence-set index record and the data
record. One arm movement enables VSAM to retrieve or store both
the index record and the contents of the control interval in
which the data record is stored.

When the IMBED option is chosen, sequence-set records are
replicated, regardless of whether you also chose the REPl
option. This means that one track of each control area is used
for sequence set records. In some situations, this may be too
much space for index in relation to the data. For example, the
space required for the sequence-set is 1/12th of the data space
on a 3340, but only 1/19th of the data space on a 3330. IMBED
must be specified explicitly to get the performance benefits of
a replicated, embedded sequence-set.

Chapter 3. VSAM Performance Considerations 57

CHAPTER 4. SECURITY

The protection of data includes:

• Data security, or the safety of data from theft or
intentional destruction

• Data integrity, or the safety of data from accidental loss
or destruction

The following sections describe the data protection available:

• Authorized program facility (APF)

• Access method services options

• Resource Access Control Facility (RACF)

• User-security-verification routine (USVR)

• Access method services cryptographic option

AUTHORIZED PROGRAM FACILITY (APF)

The authorized program facility (APF) limits the use of
sensitive system services and resources to authorized system and
user programs. See "Authorized Program Facility (APF)" in
System Programming Library: Supervisor Services and Macros for
information about program authorization.

All access method services load modules are contained in
SYSl.LINKLIB, and the root segment load module (IDCAMS) is
link-edited with the SETCODE AC(l) attribute. These two
characteristics ensure that access method services executes with
APF authorization.

APF authorization is established at the job step level. If,
during the execution of an APF-authorized job step, a load
request is satisfied from an unauthorized library, the task is
abnormally terminated. It is the installation's responsibility
to ensure that a load request cannot be satisfied from an
unauthorized library during access method services processing.

The following situations could cause the invalidation of APF
authorization for access method services:

• An access method services module is loaded from an
unauthorized library.

• A user-security-verification routine (USVR) is loaded from
an unauthorized library during access method services
processing.

• An exception exit routine is loaded from an unauthorized
library during access method services processing.

• A user-supplied special graphics table is loaded from an
unauthorized library during access method services
processing.

Because APF authorization is established at the job step task
level, access method services is not authorized if invoked by an
unauthorized problem program or an unauthorized terminal monitor
program (TMP).

Under TSO, if the system does not have the TSO Command Package
Program Product, you can authorize your TMP by relink-editing it
with the SETCODE AC(!) attribute. You must enter the names of
those access method services commands requiring APF

58 MVS/370 VSAM Users Guide

authorization to execute under TSO in the authorized command
list.

The restricted functions performed by access method services
that cannot be requested in an unauthorized state are:

CNVTCAT when converting to an ICF catalog

DEFINE when the RECATALOG parameter is specified

DELETE when the RECOVERY parameter is specified

EXPORT when the object to be exported is an ICF catalog

IMPORT when the object to be imported is an ICF catalog

OOT!.IT •• 1..-- the -I..~~-+ to b2 ""_'",-I-,..,,...i , e: a catalog I r...L 11 I v-III~II UUJ'Cv\,. ,.... ""

REPRO when copying an ICF catalog, or the ICF catalog
unload/reload is to be used

VERIFY when a catalog is to be verified

If the above functions are required and access method services
is invoked from a problem program or a TSO terminal monitor
program, the invoking program must be authorized.

ACCESS METHOD SERVICES OPTIONS

Access method services provides options to protect data sets
against unauthorized use and loss of data. To effectively use
the protection features, you must understand the difference
between the operations:

• Referring to a catalog entry when new entries are defined
(DEFINE), or existing entries are altered (ALTER), deleted
(DELETE), or listed (LISTCAT)

• Using the data set represented by a catalog entry when it is
connected to a user's program (OPEN), or disconnected
(CLOSE), or when it reaches its upper RBA boundary
(End-of-Volume)

Different passwords may be needed for each type of operation.
The data set and catalog security options are described in the
sections that follow.

VSAH PASSWORD PROTECTION

PASSWORDS TO AUTHORIZE ACCESS: You may, optionally, define
passwords for clusters, cluster components (data and index),
page spaces, alternate indexes, alternate index components (data
and index), paths, master and user catalogs, for access to them.
Different passwords have various degrees of security, with
higher levels providing greater protection than lower levels.
The levels are:

• Full access. This is the master password, which allows you
to perform all operations (retrieving, updating, inserting,
and deleting) on an entire VSAM data set and any index and
catalog record associated with it. The master password
allows all operations and bypasses any additional
verification checking by the user-security-verification
routine.

• Control access. This password authorizes you to use control
interval access. For further information, see "Chapter 6.
Options for Advanced Applications" on page 81.

• Update access. This password authorizes you to retrieve,
update, insert, or delete records in a data set. The update

Chapter 4. Security 59

password does not allow you to alter passwords or other
security information.

• Read access. The read-only password allows you to examine
data records and catalog records, but not to add, alter, or
delete them, nor to see password information in a catalog
record.

Operations on a catalog may be authorized by the catalog's
password or, in some cases, by the password of the data set
whose definition in the catalog is being operated on. For
example:

• Defining a data set in a password-protected catalog requires
the catalog's update (or higher) password.

• Listing or deleting a definition requires the appropriate
password of either the catalog or the data set.

• However, if the catalog, but not the data set, is protected,
no password to list the data set's catalog definition is
needed.

To delete a user catalog, you must give the master password,
whether the master catalog is password protected or not.

Each higher-level password allows all operations permitted by
lower levels. Any level may be null (not specified), but if a
low-level password is specified, the master level password must
also exist. The DEFINE and ALTER commands give the higher
passwords the value of the highest password specified. A
read-level password becomes the update-, control-, and
master-level password as well. If you specify a read password
and a control password, the control password value will become
the master-level password as well. However, the update-level
password is null.

Some access method services operations may involve more than one
password authorization. For example, importing a data set
involves defining the data set and loading records into it. If
the catalog into which the data set is being imported is
password protected, its update-level (or higher-level) password
is required for the definition; if the data set is password
protected, its update-level (or higher-level) password is
required for the load. The IMPORT command allows you to specify
the password of the catalog; the password, if any, of the data
set being imported is obtained by the commands from the exported
data.

Every VSAM data set is represented in an ICF catalog by two or
more components: a cluster component and a data component, or,
if the data set is a key-sequenced data set, a cluster
component, a data component, and an index component. Of the two
or three components, the cluster component is the controlling
component. Each of the two or three components can have its own
set of four passwords; the passwords you assign have no
relationship to each other. For example, password-protecting a
cluster but not the cluster's data component, allows someone to
issue LISTCAT to determine the name of your cluster's data
component, open the data component, and access records in it,
even though the cluster itself is password protected.

One reason for password-protecting the components of a cluster
is to prevent access to the index of a key-sequenced data set,
because the only way to gain access to an index is to open it
independently of the cluster. (See "Chapter 6. Options for
Advanced Applications" on page 81 for a description of access to
an index.)

Catalogs are themselves VSAM data sets, and may have passwords.
For some operations (for example, listing all the catalog's
entries with their passwords or deleting catalog entries), the
catalog's passwords may be used instead of the entry's
passwords. If the master catalog is protected, the update- or

60 MVS/370 VSAM Users Guide

higher-level password is required when defining a user catalog,
because all user catalogs have an entry in the master catalog.
When deleting a protected user catalog, the user catalog's
master password must be specified.

If the ATTEMPTS parameter is coded with 0, no password prompting
is done.

PROTECTION CONSIDERATIONS AND PRECAUTIONS

FOR THE CATALOG: Observe the following precautions when using
protection commands for the catalog:

• Passwords are 1 to 8 alphameric or special characters (see
"How to Code Subparameters" in Access Method Services
Reference for more information).

• To create a catalog entry (with the DEFINE command), the
update- or higher-level password of the catalog is required.

• To modify a catalog entry (with the ALTER command), the
master password of the entry or the master password of the
catalog which contains the entry is required. However, if
the entry to be modified is a non-VSAM or GDG entry, the
update-level password of the catalog is sufficient.

• To gain access to passwords in a catalog (for example, to
list or change passwords), specify the master-level password
of either the entry or the catalog. A master-level password
must be specified with the DEFINE command to model an
entry's passwords.

• To delete a protected data set entry from a catalog requires
the master-level password of the entry or the master-level
password of the catalog containing the entry. However, if
the entry in a VSAM catalog describes a VSAM data space, the
update-level password of the catalog is sufficient.

• To delete a non-VSAM, GDG, or alias entry, the update level
password of the catalog is sufficient.

• To list catalog entries with the read-level passwords,
specify the read password of the entry or the catalog's read
level password. However, entries without passwords may be
listed without specifying the catalog's read-level password.
To list the passwords associated with a catalog entry,
specify the master password of the entry or the catalog's
master password.

To avoid unnecessary prompts, specify the catalog's
password, which allows access to all entries that the
operation affects. A catalog's master-level password all~ws
you to refer to all catalog entries. However, a protected
cluster cannot be processed with the catalog's master
password.

• Specification of a password where none is required is always
ignored.

FOR A DATA SET: Observe the following precautions when using
protection commands that cause access to a data set:

• Passwords are 1 to 8 alphameric or special characters (see
"How to Code Subparameters" in Access Method Services
Reference).

• To access a VSAM data set using its cluster name, instead of
data or index names, you must specify the proper level
password for the cluster even if the data or index passwords
are null.

• To access a VSAM data set using its data or index name,
instead of its cluster name, you must specify the proper
data or index password. However, if cluster passwords are

Chapter 4. Security 61

defined, the master password of the cluster may be specified
instead of the data or index password.

~ If a clu5t~r has only null (not specified) passwords, you
may access the data set using the cluster name without
specifying passwords. This is true even if the data and
index entries of the cluster have passwords defined. This
allows unrestricted access to the VSAM data set as a whole
but protects against unauthorized modification of the data
or index as separate components.

RELATION OF DATA SET AND CATALOG PROTECTION: If you define
passwords for any data sets in a catalog, you must also protect
the catalog by defining passwords for the catalog or by defining
the catalog to RACF. If you do not protect the catalog, no
password checking takes place during operations on the data
set's catalog entries or during open processing of data sets
cataloged in that catalog.

The VVDS requires the master password of the master catalog
whenever a delete recover or a GENDSP function is requested for
a VVDS.

PASSWORD PROMPTING: Computer operators and TSO terminal users
may supply a correct password if a processing program does not
give the correct one when it tries to open a password-protected
data set. When the data set is defined, you may specify a code
instead of the data set name to prompt the operator or terminal
user for a password. The prompting code keeps your data secure
by not allowing the operator or terminal user to know both the
name of the data set and its password.

A data set's code is used for prompting for any operation
against a password-protected data set. The catalog code is used
for prompting when the catalog is opened as a data set, when an
attempt is made to locate catalog entries that describe the
catalog, and when an entry is to be defined in the catalog.

If you do not specify a prompting code, VSAM identifies the job
for which a password is needed with the JOBNAME and DSNAME for
background jobs or with the DSNAME alone for foreground (TSO)
jobs.

When you define a data set, you may specify the number of times
the computer operator or terminal user is allowed to give the
password when a processing program is trying to open a data set.
If the allowed number of attempts is exceeded and you are using
System Management Facilities, a record is written to the SMF
data set to indicate a security violation.

Note: When logged onto TSO, VSAM tries the logon password
before prompting at the user terminal. Using the TSO logon
password counts as one attempt.

PASSWORDS FOR NON-VSAM DATA SETS

When you define a non-VSAM data set in an ICF catalog, the data
set is not protected with passwords in its catalog entry. To
password-protect a non-VSAM data set when it is created, specify
LABEL=(PASSWORDINOPWREAD) in the DD statement that describes the
data set (for more details, see JCl). Use the PROTECT macro
instruction to assign a password~ the non-VSAM data set (for
more details, see Data Management Services Guide and System
Programming library: Data Management).

If the catalog is update protected, you must supply the
catalog's update- or higher-level password to define, delete, or
alter a non-V5AM data set. The password can be supplied as a
subparameter of the command's CATALOG parameter, or as a
response to the password-prompting message.

62 MVS/370 VSAM Users Guide

TNL GN26-8093 (28 Oct 83) to GC26-4066-0

RESOURCE ACCESS CONTROL FACILITY (RACF)

The IBM Resource Access Control Facility (RACF) provides an
optional softl~are access control measure you may use in addition
to or instead of passwords. Password protection and RACF
protection can coexist for the same data set. When RACF
protection is applied to a data set that is already password
protected, password protection is bypassed and access is
controlled solely through the RACF authorization mechanism. If
a user-security-verification routine (USVR) exists, it is not
invoked for RACF-defined data sets. For more information, see
"Chapter 8. User-Written Exit Routines" on page 129.

To have password protection take effect for a data set, the
catalog containing it must be either RACF protected or password
protected and the data sot itself not defined to RACF.

Although passwords are ignored for a RACF-indicated data set,
they can still provide protection if the data set is moved to
another system that does not have RACF protection.

In addition to protection of VSAM data sets by way of discrete
profiles, RACF provides a generic profile checking facility.
VSAM data sets which are generically protected are not RACF
indicated in the catalog.

Therefore, RACF is invoked for any access to data sets cataloged
in ICF catalogs whether or not the data set is RACF indicated or
password protected. If the data set is not protected by either a
discrete profile or a generic profile, password protection is in
effect.

RACF authorization checking is generally compatible with the
password authorization checking scheme. The compatibility
includes the time the authorization check is made and the
sources of authorization. The RACF authorization levels of
alter) control, update, and read correspond to the password
levels of master, control, update, and read in VSAM.

Deleting any type of RACF-protected entry from a RACF-prctected
catalog requires alter-level authorization to the catalog or the
entry being deleted.

Altering the passwords in a RACF-protected catalog entry
requiras RACF alter authority to the entry being altered, or the
operations attribute. Alter authority to the catalog itself is
not sufficient for this operation.

For more information, see Resource Access Control Facil;t~
(RACF): General Information Manual.

USER-SECURITY-VERIFICATION ROUTINE (USVR)

In addition to password protection, VSAM allows you to protect
data by specifying a program to verify a user's authorization.
Specific requirements of the user-security-verification routine
are described under "Chapter 8. User-Written Exit Routines" on
page 129. To use this routine, specify the name of the
authorization routine you have written in the AUTHORIZATION
parameter of the DEFINE or ALTER command.

If a password exists for the type of operation being performed,
the password must be givenl either in the command or in response
to prompting. The user-security-verification routine is called
only after the password specified is verified; it is bypassed
whenever a correct master password is specified, whether or not
the master password is required for the requested operation.

Chapter 4. Security 63

ACCESS METHOD SERVICES CRYPTOGRAPHIC OPTION

You can provide security for your online data by using such
f~cil~tias as VSAM password protection and the IBM Resource
Access Control Facility (RACF) program product. These
facilities, however, do not protect data when it is stored
offline. Sensitive data stored offline is susceptible to
misuse.

It is generally recognized that data cryptography is an
effective means of protecting data, if the enciphering
techniques are adequate. The function of protecting data stored
offline in an enciphered form is available by using the ENCIPHER
option of the access method services REPRO command. The REPRO
command uses the services of the IBM Programmed Cryptographic
Facility (S740-XYS) or the Cryptographic Unit Support
(S740-XY6). The Programmed Cryptographic Facility conforms to
the Data Encryption Standard (DES) of the United States National
Bureau of Standards for enciphering data. The data remains
protected until the REPRO DECIPHER option is used to decipher it
with the correct key.

Note: The format and examples of the REPRO command are in
Access Method Services Reference.

There are three types of offline environments in which the
enciphering of sensitive data adds to its security:

• Data sets that are transported to another installation,
where data security is required during transportation and
while the data is stored at the other location

• Data sets that will be stored for long periods of time at a
permanent storage location

• Data sets that are stored offline at the site at which they
are normally used

You can use REPRO to copy a plaintext "Cnot enciphered) data set
to another data set in enciphered form. Enciphering converts
data to an unintelligible form called a ciphertext. The
enciphered data set can then be stored offline or sent to a
remote location. When desired, the enciphered data set can be
brought back online and you can use REPRO to recover the
plaintext from the ciphertext by copying the enciphered data set
to another data set in plaintext (deciphered) form.

Enciphering and deciphering are based on an 8-byte binary value
called the key. Using the REPRO DECIPHER option, the data can
be either deciphered on the system it was enciphered on, or
deciphered on another system that has th~s functional capability
and the required key to decipher the data. Given the same key,
encipher and decipher are inverse operations. This option uses
the services of the Programmed Cryptographic Facility or the
Cryptographic Unit Support to encipher/decipher the data, and
uses block chaining with ciphertext feedback during the
encipher/decipher operation.

With the exception of catalogs, all data sets supported for
copying by REPRO are supported as input (SAM, ISAM, VSAM) for
enciphering and as output (SAM, VSAM) for deciphering.
The input data set for the decipher operation must be an
enciphered copy of a data set produced by REPRO. The output
data set for the encipher operation can only be a VSAM
entry-sequenced or sequential (SAM) data set. The target
(output) data set of both an encipher and a decipher operation
must be empty. If the target data set is a VSAM data set that
has been defined with the reusable attribute, you can use the
REUSE parameter of REPRO to reset it to an empty status.

64 MVS/370 VSAM Users Guide

TNL GN26-8093 (28 Oct '83) to GC26-4066-0

You use the REPRO ENCIPHER parameter to indicate that REPRO is
to produce an enciphered copy of the data set, and to supply
information needed for the encipherment. The INFIlE or
IHDATASET parameter ident~fies and allocates the plaintext (not
enciphered) source data set. The OUTFILE or OUTDATASET
parameter identifies and allocates a target data set to contain
the enciphered data.

You use the REPRO DECIPHER parameter to indicate that REPRO is
to produce a deciphered copy of the data set, and to supply
information needed for deciphering. The INFILE or INDATASET
parameter identifies and allocates the enciphered source data
set. The OUTFILE or OUTDATASET parameter identifies and
allocates a target data set to contain the plaintext data.

Chapter 4. Security 64.1

KEY MANAGEMENT

Data Encryption Keys

See Figure 13 on page 66 for a graphic representation of the
input and output data sets involved in REPRO ENCIPHER/DECIPHER
operations.

You should not build an alternate index over a VSAM
entry-sequenced data set that is the output of a REPRO ENCIPHER
operation.

When a VSAM relative record data set is enciphered, the record
size of the output data set must be at least 4 bytes greater
than the record size of the relative record data set. (The
extra 4 bytes are needed to prefix a relative record number to
the output record.) You can specify the record size of an
output VSAM entry-sequenced data set through the RECORDSIZE
parameter of the DEFINE CLUSTER command. You can specify the
record size of an output sequential (SAM) data set through the
DCB LRECL parameter ~n the Qutput data set's DD st~tement- Wh~n
an enciphered VSAM relative record data set is subsequently
deciphered with a relative record data set as the target, any
empty slots in the original data set will be reestablished.

If you specify the REPLACE parameter of the REPRO command
together with either the ENCIPHER or the DECIPHER parameter,
access method services will ignore REPLACE, because the target
VSAM data set must be empty and thus has no records to replace.

When you encipher a data set, you can specify any of the
delimiter parameters available with the REPRO command (SKIP,
COUNT, FROMADDRESS, FROMKEY, FROMNUMBER, TOADDRESS, TOKEY,
TONUMBER) that are appropriate to the data set being enciphered.
However, no delimiter parameter can be specified when a data set
is deciphered. If DECIPHER is specified together with any REPRO
delimiter parameter, your REPRO command terminates with a
message.

When the REPRO command copies and enciphers a data set, it
places one or more records of clear header data preceding the
enciphered data records. This header data consists of
information necessary for the deciphering of the enciphered
data. Information a header may contain consists of:

• Number of header records
• Number of records to be ciphered as a unit
• Key verification data
• Enciphered data encrypting keys

This section is intended to give you an overview of key
management used when enciphering or deciphering data via the
REPRO command.

A "key" is defined as an a-byte value. When you use the
encipher/decipher function of the REPRO command, you may specify
keys that the Programmed Cryptographic Facility or the
Cryptographic Unit Support generates and manages for you
(system-key management), or keys that you manually generate and
privately manage (private-key management). In either case,
REPRO invokes the appropriate Programmed Cryptographic Facility
program product service.

For both private- and system-key management, REPRO allows you to
supply an a-byte value to be used as the plaintext
data-encrypting key. If you do not supply the data encrypting
key, REPRO provides an a-byte value to be used as the plaintext
data-encrypting key. The plaintext data encrypting key is used
to encipher/decipher the data using the Data Encryption
Standard.

Chapter 4. Security 65

INPUT ENCIPHER OUTPUT

Source Data Set
(Plaintext)

Any' data set

REPRO
can copy into
(except ICF or
VSAM catalogs):
-VSAM

ESDS
KSDS

Target Data Set

RRDS
(Ciphertext)

-ISAM
-SAM

REPRO VSAM ESDS

ENCIPHER or SAM
Target Data Set
(Empty) I

I
VSAM ESDS I or SAM

I
I

INPUT DECIPHER OUTPUT

Source Data Set
(Ciphertext)

VSAM ESDS
or SAM

Target Data Set
(Plaintext)

VSAM Target Data Set
(Empty) REPRO ESDS

KSDS DECIPHER
Any data set RRDS
REPRO SAM
can copy into
(except ICF or

VSAM catalogs):
-VSAM

ESDS
KSDS
RRDS

SAM

Figure 13. REPRO Encipher/Decipher Operations

66 MVS/370 VSAM ,Users Guide

Secondary File Keys

If you want to supply your own plaintext data-encrypting key on
ENCIPHER or DECIPHER through the REPRO command, there is a risk
of exposing that key when the command is listed on SYSPRINT. To
avoid this exposure, you may direct REPRO to a data-encrypting
key data set to obtain the plaintext data encrypting key. You
identify the DD statement for this data set through the
DATAKEYFILE parameter of the REPRO command. REPRO obtains the
data-encrypting key from this data set by locating the first
non blank column in the first record of the data set and
processing 16 consecutive columns of data. These 16 columns
contain the hexadecimal character representation for the 8-byte
key. Each column of data must contain the EBCDIC character
representation of a hexadecimal digit (that is, 0 through F).
If a blank column is found before 16 nonblank columns have been
processed, the data key is padded to the right with EBCDIC
blanks. If the end of the first record is encountered before 16
columns have been processed, thQ data kQy is considQred invalid.
If a valid data-encrypting key cannot be obtained from the first
record of the data-encrypting key data set, then REPRO either
generates the data-encrypting key (ENCIPHER) or terminates with
a message (DECIPHER).

If you allow (or force, by an invalid data-encrypting key data
set record) REPRO to provide the data-encrypting key on
ENCIPHER, there is a risk of exposing the data-encrypting key
only if you have chosen to manage your keys privately, because
REPRO lists the generated data-encrypting key only for privately
managed keys.

When you want to decipher the data, you must supply the
data-encrypting key that was used to encipher the data.
However, as a security precaution, you may want to supply the
data-encrypting key in a disguised form. When enciphering the
data set, the name of a system-managed key, called a secondary
file key, may be supplied. REPRO uses the secondary file key
indicated by the supplied name to disguise (encipher) the
data-encrypting key. When deciphering the data set, the name of
the file key and the disguised dclta-encrypting key may be
supplied rather than the plaintext data-encrypting key. In this
way, the actual plaintext data-encrypting key is not revealed.
(Note that the secondary file key is used only in key
communication, not when enciphering data.)

The Programmed Cryptographic Facility or the Cryptographic Unit
Support offers the installation this secondary file
key-management facility. To use this facility, your
installation must first execute the Programmed Cryptographic
Facility key generator utility. This utility is used to
generate the secondary-file keys to be used by the installation.

The Programmed Cryptographic Facility key generator utility
generates the secondary-file keys you request and stores the
keys, in enciphered form, in the cryptographic key data set
(CKDS). It lists the external name (key name) of each secondary
key and the plaintext form of the secondary key. To access a
particular secondary file key, you supply the keyname of the
secondary file key. If the secondary key is to be used on a
system other than the system on which the keys were generated,
the utility must also be executed at the other system to define
the same plaintext secondary file keys. The plaintext secondary
file keys may be defined in the CKDS of the other system with
different keynames.

If you choose to manage your own private keys, no secondary file
keys are used to encipher the data-encrypting key; it is your
responsibility to ensure the secure nature of your private
data-encrypting key.

If you choose to have the Programmed Cryptographic Facility or
the Cryptographic Unit Support manage your keys, REPRO uses
secondary file keys to encipher the data-encrypting key. You

Chapter 4. Security 67

REQUIREMENTS

specify a secondary file key to REPRO through the key name by
which it is known in the CKDS. Two types of secondary file keys
are recognized by REPRO:

• An internal file key is one that is defined in the CKDS by
using a remote or cross key 2 statement as input to the
Programmed Cryptographic Facility key generator utility.
Use of a cross key 2 statement for DECIPHER requires APF
(Authorized Program Facility) authorization and thus can
provide an additional level of security.

• For ENCIPHER~ an external file key is one that is defined in
the CKDS by using a local or cross key 1 statement as input
to the Programmed Cryptographic Facility key generator
utility. An internal file key may be used for ENCIPHER but
not for DECIPHER operations.

Although both internal and external secondary file keys may be
used when doing a REPRO ENCIPHER, only internal secondary file
keys may be used when doing a REPRO DECIPHER. Thus~ external
secondary file keys may not be used to do a REPRO ENCIPHER and
REPRO DECIPHER on the same system. External secondary file keys
are used when the enciphered data is to be deciphered on another
system. The REPRO DECIPHER is done on the other system using
the same secondary file key; however~ in this other system's
CKDS, the secondary file key must be defined as an internal
secondary file key.

An internal secondary file key may be used to do a REPRO
ENCIPHER and REPRO DECIPHER on the same system, and~ if the same
secondary file key is also defined as an internal secondary file
key in another system's CKDS~ then a REPRO ENCIPHER and REPRO
DECIPHER may also be done on that system.

In planning to use the ENCIPHER or DECIPHER functions of the
REPRO command~ you should be aware of the following
requirements:

• Either the Programmed Cryptographic Facility Program
Product~ Program Number 5740-XY5, or the Cryptographic Unit
Support Facility Program Product~ Program Number 5740-XY6~
must be installed on your system.

• Prior to issuing the REPRO command (via a batch job or from
a TSO terminal)~ the Programmed Cryptogaphic Facility
program product must have already been started through a
START command at the operator's console.

In planning to use REPRO DECIPHER with the SYSTEMKEYS parameter
specifying a cross key 2 secondary file key, you should be aware
of the following requirement:

• Access method services must be authorized. For information
about program authorization~ see "Authorized Program
Facility (APF)" in System Programming library: Supervisor
Services and Macros.

68 MVS/370 VSAM Users Guide

CHAPTER S. SHARING A VSAM DATA SET

A VSAM data set can be shared by different jobs in a single
operating system and by different subtasks in an address space.
The guidelines in this chapter discuss methods of accessing
shared data sets as well as provisions for controlling data
sharing to prevent the loss of data.

When you define a data set, you can select the level of sharing
you intend to allow for the data set. Before you define the
data set's level of sharing, evaluate the consequences of
reading incorrect data (a loss of read integrity) ahd writing
incorrect data (a loss of write integrity)--situations that may
result when one or mO~e of the data set~s users d~ not adhere to
guidelines recommended for accessing shared data sets.

When your program issues a GET request, VSAM reads an entire
control interval into virtual storage (or obtains a copy of the
data from a control interval already in virtual storage.) If
your program modifies the control interval's data, VSAM ensures
within a single control block structure~ that you have exclusive
control over the control interval until it is written back to
the data set. If the data set is accessed by more than one
program at a time, and more than one control block structure
contains buffers for the data set's control intervals, VSAM can
not ensure that your program has exclusive control over the
data. You must obtain exclusive control yourself, using ENQ and
DEQ.

The extent to which your data set can be shared is determined
by:

1. The use of the DISP=SHR and DISP=OlD parameters in the DD
statement that identifies the data set to be opened.

Note: Scheduler "disposition" processing remains the same
for VSAM and non-VSAM. This is the first level of shared
protection.

2. The type of processing (specified with the ACB's MACRF
field) for which the data set is opened.

3. The value for the SHAREOPTIONS parameter, specified when the
VSAM data set is defined (using access method services
DEFINE command)~ indicates the level at which the data set
can be shared by users in the same MVS operating system
(cross-region sharing) and by users in different MVS
operating systems (cross-system sharing).

4. Your program's use of ENQ and DEQ to obtain exclusive
control of the data set within your program's operating
system.

5. The ability of the data set's direct access device to be
accessed by more than one processor (and consequently, by
more than one MVS operating system). If the data set's
direct access device can be shared between two or more MVS
operating systems, your program should use ENQ/DEQ in the
UCB option to obtain exclusive control of the device.

If the VSAM data set cannot be shared, a scheduler failure will
occur or a return code is set in the ACB ERROR field when the
user's program issues the OPEN request.

If the data set's DD statement specifies DISP=OlD, only the
dsname associated with the DO statement is exclusively
controlled. Only the cluster name is reserved for the Open
routine's exclusive use. You can include DD statements with
OISP=OlD for each of the cluster's components to reserve them as
well. Doing this ensures that all resources needed to open the

Chapter 5. Sharing a VSAM Data Set 69

data set will be exclusively reserved before your task is
initiated.

Note: Protecting the cluster name with DISP processing and the
components by VSAM OPEN SHAREOPTIONS is the minimum procedure.

When a shared data set is opened with DISP=OLD, or is opened for
create or reset processing, your program has exclusive control
of the data set within your operating system. If the data set
can be shared between MVS operating systems, a user's program in
another system may concurrently access the data set. Before you
open the data set specifying DISP=OLD, it is your responsibility
to protect across systems with ENQ/DEQ in the UCB option or
equivalent functions.

When a data set defined with cross-region SHAREOPTIONS 3 or 4,
and with cross-system SHAREOPTIONS 3, is opened with DISP=SHR,
VSAM puts critical control block data in a common storage area
and maintains the data there. The control block data in the
common storage area is available to each program (each region)
sharing the data set. The common storage area is available only
to regions within your MVS operating system. Communicating this
information to another MVS operating system is your
responsibility.

Before your program opens a data set to be shared (with
cross-region SHAREOPTIONS 3 or 4, and with cross-system
SHAREOPTIONS 3), you should note that:

• In a shared environment, VSAM does not allow you to process
the data set in an initial load or reset mode (create). VSAM
forces your data set to be processed as though it were
defined with SHAREOPTIONS(l 3).

• A user program cannot share a system data set (for example,
the master catalog, page space data sets, SYSI. data sets,
duplex data sets, and swap data sets).

• The user's program must serialize all VSAM requests against
the data set, using ENQ/DEQ (or a similar function).

• The user's program must insure that all VSAM resources are
acquired and released within ENQ/DEQ protocol to:

Force VSAM to write sequential update and insert
requests.

Release VSAM's positioning within the data set.

• VSAM invalidates buffers used with SHAREOPTIONS 4 data sets,
but does not invalidate buffers used with SHAREOPTIONS 3
data sets. When a buffer is marked invalid (it is
invalidated), it is identified as a buffer that VSAM must
refresh (read in a fresh copy of the control interval from
DASD) before your program can use the buffer's contents.

• Programs that use GSR and lSR can invalidate and force
writing of buffers using the MRKBFR and WRTBFR macros.

When the data set is shared under cross-system SHAREOPTIONS 4,
regardless of cross-region requests, VSAM does not allow changes
to high-used and high-key RBAs. Control area splits and the
addition of a new high-key record for a new control interval
that results from a control interval split are not allowed.
VSAM returns a logical error control to the user's program that
is used to detect this condition. Also, the data and
sequence-set control interval buffers are marked invalid
following I/O operation to a direct access storage device.

When your program examines the data set's statistics (in the
AMDSB), it obtains information only about its own use of the
data set. When all ACBs that refer to the data set are closed,
VSAM updates the catalog with the combined activity of all
users.

70 MVS/370 VSAM Users Guide

SUBTASK SHARING

If your program shares a data set defined with SHAREOPTIONS(3 3)
or SHAREOPTIONS (4 3), the following restrictions apply:

• Because programs in many regions can share the same data
set, an error that occurs in one region may affect programs
in other regions that share the data set.

• When a shared data set needs additional space, VSAM
end-of-volume processing obtains the space and updates the
data set's control block information in the common storage
area. All programs (regions) sharing the data set can access
the new space. If an error prevents the end-of-volume
processing from completing, all regions are prevented from
performing additional end-of-volume processing. To obtain
additional space for the data set, you must first close that
data set in all regions.

Note: To correct the data set's catalog record, the
ACBSWARN flag should be off in the ACB (the default) that is
reopening the data set in order to allow implicit VERIFY
processing to take place. If implicit verify is suppressed
(ACBSWARN flag is on), access method services VERIFY should
be issued to update the catalog record.

• Implicit VERIFY is invoked by the open-for-output indicator
in the catalog. Normal CLOSE processing resets the indicator
and suppresses the implicit VERIFY for the next open
function.

Subtask sharing should not be confused with, and is totally
independent of the type of buffer management technique selected
with NSR or LSR/GSR.

To successfully share within a task or between subtasks, you
should assure that VSAM builds a single control block structure
for the data set. This also includes blocks for control
information in addition to input/output buffers. In this
environment, VSAM record management will serialize updates to
any single control internal and provide read and write
integrity. When a control interval is not available for the type
of user processing requested, VSAM record management returns a
logical error feedback. When this occurs, you must decide
whether to retry later or to free the resource that is causing
the conflict. See Figure !4 on page 72 for a diagram on
exclusive control conflict feedback and the results for
different user requests. Also, see "Read Integrity during
Cross-Region Sharing" on page 74 and"Write Integrity during
Cross-Region Sharing" on page 75 about requests that can cause
exclusive control conflicts.

The three methods of achieving a single control block structure
for a VSAM data set while processing multiple concurrent
requests include:

• Single access method control block (ACB) and a STRNO>!

• Mulitple ACBs pointing to a single DD statement (all with
the same dsname)

• Multiple ACBs pointing to mUlitple DD statements with
different dsnames that are related with an ACB open
specification (MACRF=DSH)

Chapter 5. Sharing a VSAM Data Set 71

U
s
e
r

A

w
a
n
t
s

U
s
e
r

A

w
a
n
t
s

1

E
x C
c 0
I n
u t
s r
i 0
v I
e

S
h
a
r
e
d

E
x C
c 0
I n
u t
s r
i 0
v I
e

S
h
a
r
e
d

Exclusive
Control

User A gets
logical error

OK

User A gets
second copy
of buffer

Exclusive
Control

User A gets
logical error

User A gets
logi cal error

User B has

Shared

OK

User A gets
second copy
of buffer

Nonshared Resources (NSR)

OK

User A gets
second copy
of buffer

User B has

Shared

VSAM queues
User A until
buffer
is released
by User B 1

Shared Resources (LSR IGSR)

OK

User A shares
same buffer
with User B

Only a single request for each buffer call will be deferred at a time. Once a
request is deferred, a logical error is returned for the second and succeeding
requests until the first request is dequeued.

Figure 14. Exclusive Control Conflict Resolution

72 MVS/370 VSAM Users Guide

DATA SET NAME SHARING

Defining a Sphe~e

Data set name sharing is established by the ACB option
(MACRF=DSN). To understand DSN sharing, you must understand
what a sphere and the base of the sphere are and how they
function.

A sphere is a VSAM cluster and its associated data sets. The
cluster is originally defined with the access method services
command DEFINE CLUSTER. The most common use of the sphere is to
open a single cluster. The base of the sphere is the cluster
itself. When opening a path (which is the relationship between
an alternate index and base cluster) the base of the sphere is
again the base cluster. Opening the alternate index as a data
set results in the alternate index becoming the base of the
sphere. In Figure 15, DSN is specified for each ACB and output
processing is specified.

CLUSTER. REAL
CLUSTER. ALIAS

CLUSTER. REAL. PATH

CLUSTER. REAL. AIX (UPGRADE)

Figure 15. Relationship between the Base Cluster and the
Alternate Index

1. OPEN ACB=(CLUSTER.REAL)

• Builds control block structure for CLUSTER.REAL

• Builds control block structure for CLUSTER.REAL.AIX

2. OPEN ACB=(CLUSTER.REAL.PATH)

• Adds to existing structure for CLUSTER.REAL

• Adds to existing structure for CLUSTER.REAL.AIX

3. OPEN ACB=(CLUSTER.ALIAS)

• Adds to existing structure for CLUSTER.REAL.

4. OPEN ACB=(ClUSTER.REAL.AIX)

• Does not add to existing structure as the base of the
sphere is not the same.

• SHAREOPTIONS are enforced for CLUSTER.REAL.AIX since
multiple control block structures exist.

When processing with a single structure across multiple
subtasks, concurrent GET and PUT requests are allowed. However,
a control interval is protected for write operations using an
exclusive control facility provided in VSAM record management.
Other PUT requests to the same control interval are not allowed
and a logical error is returned to the user following the
request macro. Depending on the selected buffer option,
nonshared (NSR) or shared (LSR/GSR) resources, GET requests to

Chapter 5. Sharing a VSAM Data Set 73

CROSS-REGION SHARING

the same control interval as that begin updated mayor may not
be allowed. Figure 14 on page 72 illustrates the exclusive
control facility.

When a subtask issues OPEN to an ACB that will share a control
block structure that may have been previously used, obtain the
position for the data set issuing the POINT macro. It should not
be assumed that positioning, in this case, is at the beginning
of the data set.

Independent job steps or subtasks in an MVS operating system or
multiple systems using global resource serialization (GRS) can
access a VSAM data set simultaneously. To share a data set, each
user must specify DISP=SHR in the data set's DD statement. The
level of cross-region sharing allowed by VSAM is established
(when the data set is defined) with the SHAREOPTIONS value:

• Cross-region SHAREOPTIONS 1: The data set can be shared by
any number of users for read processing, Q£ the data set can
be accessed by only one user for read and write processing.
With this option, VSAM ensures complete data integrity for
the data set.

• Cross-region SHAREOPTIONS 2: The data set can be accessed by
any number of users for read processing and it can also be
accessed by one user for write processing:-With this option,
VSAM ensures write integrity. If you want read integrity, it
is your responsibility to provide the necessary procedures
(see "Read Integrity during Cross-Region Sharing") to
invalidate data, index buffers, and relate control block
information. Only one control block structure can be built
to do WRITE operations.

• Cross-region.SHAREOPTIONS 3: The data set can be fully
shared by any number of users. With this option you are
responsible for maintaining both read and write integrity
for the data the program accesses. User programs that ignore
the write integrity guidelines can cause VSAM program
checks, lost or inaccessible records, uncorrectable data set
failures, and other unpredictable results. This option
places heavy responsiblity on each user sharing the data
set.

• Cross-region SHAREOPTIONS 4: The data set can be fully
shared by any number of users, and buffers are refreshed for
each request. This option requires your program to use
ENQ/DEQ to maintain data integrity while sharing the data
set. Improper use of ENQ can cause problems similar to those
described under SHAREOPTIONS 3.

READ INTEGRITY DURING CROSS-REGION SHARING

You are responsible for ensuring read integrity when the data
set is opened for sharing with cross-region SHAREOPTIONS 2, 3,
and 4. When your program issues a GET request, VSAM obtains a
copy of the control interval containing the requested data
record. Another program sharing the ~ata set may also obtain a
copy of the same control interval, and may update the data and
write the control interval back into the data set. When this
occurs, your program has lost read integrity: The control
interval copy in your program's buffer is no longer the current
copy.

The following should be considered when you are providing read
integrity:

• Establish ENQ/DEQ procedures for all requests, read as well
as write.

74 MVS/370 VSAM Users Guide

• Decide how to determine and invalidate buffers (index and/or
data) that are possibly down level.

• Do not allow secondary allocation. If you do allow secondary
allocation you should provide a communication mechanism to
the read-only tasks that the extents are increased, force a
CLOSE, and then issue another OPEN.

• With an entry-sequenced data set, you must also have the
READ use the VERIFY command to update possible down-level
control blocks.

• Generally, the loss of read integrity results in down-level
data records as an erroneous no-record-found condition.

When your program requires that no updating occur before it
compl~tps proc~ssing o~ the requested data record~ your program
can issue an ENQ to obtain exclusive control over the VSAM data
set. (This discussion assumes your program only reads the data
record and does not update it. When your program updates the
data record, its primary concern is ensuring write integrity and
additionally read integrity.) If your program completes
processing, it can relinquish control of the data set with a
DEQ. When your program is only reading data and not updating it,
is probably a good practice to serialize the updates and have
the readers wait while the update is occurring. After the update
has completed the ENQ/DEQ bracket, the reader must determine the
required operations for control block refresh and buffer
invalidation based on a communication mechanism or assume that
everything is down-level and refresh each request.

WRITE INTEGRITY DURING CROSS-REGION SHARING

You are responsible for ensuring write-integrity if a data set
is opened with cross-region SHAREOPTIONS 3 or 4. When an
application program issues a "direct" or "skip-sequential"
PUT-for-update or no-update (RPL OPTCD=DIRISKP), the updated
control interval is written to direct access storage when you
obtain control following a synchronous request (RPl OPTCD=SYN)
or following the CHECK macro from an asynchronous request (RPl
OPTCD=ASY). To force direct access I/O for a sequential PUT (RPl
OPTCD=~), the application program must issue an ENQREQ.
Another program sharing the data set may also want to write its
updated copy of the same control interval into the data set.

To maintain write integrity for the data set, your program must
ensure that there is no conflicting activity against the data
set until your program completes updating the control interval.
Conflicting activity may be divided into two categories:

1. A data set that is totally preformatted and the only write
activity is update-in-place.

In this case, the sharing problem is simplified by the fact
that data cannot change its position in the data set. The
lock that must be held for any write operation (PUT RPl
OPTCD=UPD) is the unit of transfer that is the control
interval. It is your responsibility to associate a lock with
this unit of transfer; the record key is not sufficient.

The following is an example of the required procedures:

a. Issue a GET for the RPl that has the parameters
OPTCD=(SYN,KEY,NUP,DIR),ARG=MYKEY

b. Determine the RBA of the control interval (RElCI) where
the record resides. This is based on the RBA field
supplied in the RPl(RPlDDDD).

RElCI=CISIZE * integer-part-of(RPLDDDD / CISIZE)

c. Enqueue MYDATA.DSNAME.RElCI (the calculated value)

Chapter 5. Sharing a VSAM Data Set 75

d. Issue a GET for the RPl that has the parameters
OPTCD=(SYN,KEY,UPD,DIR},ARG=MYKEY

e. Issue a PUT for the RPl that has the parameters
OPTCD=(SYN,KEY,UPD,DIR}

f. Dequeue MYDATA.DSNAME.RElCI

2. A data set in which record additions and updates with length
changes are permitted.

In this case, the minimum locking unit is a control area to
accommodate control interval splits. A higher level lock
must be held during operations involving a control area
split. The split activity must be serialized at a data set
level. To implement a multi-level locking procedure, you
must be prepared to provide additional programming using the
information provided during VSAM JRNAD processing. This exit
is responsible for determining the level of data movement
and obtaining the appropriate lock(s}.

The following is a procedure to provide the necessary
protection while incurring the penalty of locking all
updates at the data set level:

Enqueue MYDATA.DSNAME

Issue VSAM request macros

Dequeue MYDATA.DSNAME

In any sharing situation, it is a general rule that all
resources be obtained and released between the locking
protocol. All positioning must be released by using all
direct requests or by issuing the ENQREQ macro prior to
ending the procedure with the DEQ.

With cross-region SHAREOPTIONS 3, you have the added
responsibility of invalidating buffers, data, and/or index. This
may be done by the use of an informational control record as the
low-key or first record in the data set. The following
information is required to accomplish the necessary index record
invalidation:

1. Number of data control interval splits and index updates for
sequence set invalidation

2. Number of data control area splits for index set
invalidation

All data buffers should always be invalidated. In order to
perform selective buffer invalidation, an internal knowledge of
the VSAM control blocks is required.

Your program must serialize the following types of requests
(precede the request with an ENQ and~ when the request
completes, issue a DEQ):

• All PUT requests.

• POINT, GET-direct-NSP, GET-skip, and GET-for-update requests
that are followed by a PUT-insert or PUT-update request.

• VERIFY requests. When VERIFY is executed by VSAM, your
program must have exclusive control of the data set.

• Sequential GET and PUT requests.

76 MVS/370 VSAM Users Guide

CROSS-SYSTEM SHARING

The following sharing options, that you may specify when you
define a data set, apply in a multiple system environment:

• Cross-system SHAREOPTION 3: The data set may be fully
shared. With this option, the access method does nothing to
assure integrity. You must assume full responsibility for
read and write integrity. Incorrect write-integrity
processing can cause access method program checks, lost or
inaccessible records, uncorrectable data set failures, and
other unpredictable results. This option places very heavy
responsibility upon you and it should not be treated
lightly.

• Cross-system SHAREOPTION 4: The data set may be fully
shared, and buffers used for d1rect proCess1ng are refreshed
for each request. The DEQ and ENQ macros are required with
this option to maintain data set integrity. Output
processing is limited to update and/or add processing that
does not change the high-used RBA if DISP=SHR is specified.
Data set integrity cannot be maintained unless all jobs
having access to the data set in a cross-system environment
specify DISP=SHR. Improper use of RESERVE will cause
failures similar to those described under SHAREOPTION 3.

Job steps of two or more systems may gain access to the same
data set regardless of the disposition specified in each step's
JCL. To get exclusive control of a volume, a task in one system
must issue a RESERVE macro.

Note: In a shared-DASD environment, integrity cannot be
guaranteed by the system when users share a data set for output
processing. VSAM does, however, provide assistance in
protecting the integrity of the catalog.

In a shared-DASD environment, VERIFY should run before opening
the shared data set.

CONTROL BLOCK UPDATE FACILITY (CBUF)

Whenever a data set is opened with cross-region SHAREOPTION 3 or
4, and cross-system SHAREOPTION 3 and DISP=SHR, record
management maintains critical control block data in common
storage. Associated with this data is a level number that can
be checked to ensure the current status of a given data set. It
is possible for the cross-system user to use the control block
update facility (CBUF) to perform cross-system and cross-region
sharing under SHAREOPTION 3.

The cross-system sharing is performed when you send VSAM shared
information (VSI) blocks that have changed to the other host at
the conclusion of each output request. Generally, the VSls will
not have changed and only a check occurs. The receiving host
should scan its ACBs looking for the same open data set with a
matching VSI. When found, the old VSI is replaced with the new
VSI shipped from the other host. The first VSAM request for the
data set results in the invocation of a VSI upgrade routine and
the VSAM control blocks are updated to current status.

It should be noted that the SHAREOPTION 3 user must continue to
provide read/write integrity. Although VSAM ensures that
SHAREOPTION 3 and 4 users will have correct control block
information, providing serialization is done correctly, the
SHAREOPTION 3 user will not get the buffer invalidation that
will occur with SHAREOPTION 4. For LSR and GSR, buffer
invalidation and refreshment are available through the use of
MRKBFR MARK=DINVALID/XINVALID and WRTBFR TYPE=DRBA.

The restriction to prohibit control area splits under
cross-region SHAREOPTION 4 has been eliminated. Therefore, you
do not need to restrict code to prevent control area splits, or
allow for the control area split error condition. The

Chapter 5. Sharing a VSAM Data Set 77

restriction to prohibit control area splits for cross-systems
SHAREOPTION 4 still exists.

CBUF update does not include statistics. (These statistics are
number of index levels, number of extents in the data set,
number of records, number of deletes, number of bytes of free
space, number of control interval splits, number of control area
splits, and number of EXCPs.) For those user programs that
interrogate statistics, only the activity resulting from the
usage of the particular control block structure will be
reflected. After all ACBs using a data set have been closed,
the catalog will reflect the combined activity of all control
block structures.

When improved control interval processing is specified with
SHAREOPTION 3 or 4, the data set can be opened; howeve~, if
another control block structure extends the data set, the
control block structure using improved control interval
processing will not be updated unless it is closed and reopened.

To maintain data integrity, the user must use ENQ/DEQ or some
other similar function to serialize VSAM requests if ACB DSN
sharing was not specified and multiple subtasks are doing output
processing or if multiple regions are doing output processing.
In either case, VSAM open builds multiple control block
structures (even though they might reside within the same
storage). The type of serialization required depends on whether
read/write integrity or only write integrity is required.

To maintain write integrity, the user for whom multiple control
block structures have been built by OPEN must serialize around
the following requests:

• PUT

• POINT, GET-DIR-NSP, GET-SKP, or GET-UPD, followed by PUT
insert or update request

• VERIFY

• OPEN/CLOSE

Note: If sequential accessing is used, ENDREQ must be used to
force write sequential updates and inserts and to release
positioning within the data set before releasing control of the
data set. For LSR and GSR, buffer ownership must be released by
MRKBFR TYPE=RLS and a WRTBFR TYPE=TRN must be issued.

If asynchronous processing is being used, the CHECK must be
issued before control of the data set can be released.

For those users for whom multiple control block structures have
been built by OPEN and who are using SHAREOPTION 4 data sets,
read integrity is provided if retrieval requests are serialized
with respect to those requests that modify the data set. Refer
to the above discussion of write integrity to see what requests
modify the data set and therefore must be serialized to ensure
write integrity.

Figure 16 on page 79 illustrates how the SHAREOPTIONS specified
in the catalog and the disposition specified on the DD statement
interact to affect the type of processing done.

78 MVS/370 VSAM Users Guide

INVOCATION

USER INTERACTIONS

(CR,CS)

(3,3)1

(3,4)1

(4,4)1

Legend:

CA = Control Area
CR = Cross-Region
CS = Cross-System

DISP=SHRI

CBUF

Buffer
invalidated.
No CA Split.

Buffer
invalidated.
CBUF

Buffer
invalidated.
tJ~ ,.." C_l;J,.
11\.1 v" .Jt-' I\,..

CBUF = Control Block Update Facility
Buffer invalidated = Invalidation of buffers is automatic

When DISP=OLD is specified or the data set is in create or
reset mode (regardless of the disposition specified), the
share options specified in the catalog are ignored. The
data set is processed under the rules for SHAREOPTIONS(1,3).
OPEN ensures that the user has exclusive control of the data
set within a single system. If the data set can be shared
between systems, VSAM does nothing to ensure that another
system is not accessing the data set concurrently. With
cross-system sharing, the user must ensure that another
system is not accessing the data set before specifying
DISP=OLD.

Figure 16. Specifying SHAREOPTIONs

If the data set has cross-system SHAREOPTION 4, but does not
reside on shared DASD when it is opened, the data set is still
processed as a cross-system SHAREOPTION 4 data set on shared
DASD; that is, CBUF processing is not provided. When a
key-sequenced data set has cross-system SHAREOPTION 4, control
area splits are prevented; also, split of the control interval
containing the high key of a key range (or data set) is
prevented. With control interval access, adding a new control
interval is prevented.

Invocation occurs automatically when the proper share options
and DISP=SHR are specified. Programs accessing the VSI must be
authorized.

If you issue a checkpoint or if a restart occurs, then none of
the VSAM data sets open in your region at that time may be using
SHAREOPTION 4 processing. If you issue checkpoints, you should
open the VSAM data sets that are eligible for SHAREOPTION 4
processing, with a disposition of OLD, or CLOSE them prior to
the checkpoint. Note that, if an alternate index was using
SHAREOPTION 4 processing, the associated base cluster and any
other paths OPEN over that base cluster must also be closed,
even if they are not using SHAREOPTION 4 processing.

Chapter 5. Sharing.a VSAM Data Set 79

ERRORS

Code the following instructions to get the length and address of
the data to be sent to another processor:

• Get ACB address into register RY:

• To locate the VSI for a data component:

L RX,04(,RY)
L 1,52(,RX)
L 1,68(,1)
LH 0,24(,1)
LA 1,24(,1)

Put AMBL address into register RX
Get data AMB address
Get VSI address
load data length
Point to data to be communicated

• To locate the VSI information for an index component of a
key-sequenced data set:

L RX,04(,RY)
L 1,56(,RX)
L 1,68(,1)
LH 0,24(,1)
LA 1,24(,1)

Put AMBl address into register RX
Get index AMB address
Get VSI address
load data length
Point to data to be communicated

Because multiple regions can be sharing the same data set, it is
possible for errors occurring in one region to affect any other
regions sharing the same data set. If a logical error (Register
15=8) or physical error (Register 15=12) is detected, any
control block changes made before the error was detected will be
propagated to the shared information in common storage.

When a VSAM data set requires additional space, EOV calls the
VSAM catalog to acquire new extents for the VSAM data set,
updates the VSAM control block structure for the data set with
the new extent information, and updates the critical control
block data in common storage so that this new space is
accessible by all regions using this VSAM data set. If an abend
or unexpected error occurs, which prevents this space allocation
from being completed, all regions will be prevented from further
extending the data set. To obtain additional space, you must
close the VSAM data set in all regions, then reopen it.

You should issue a VERIFY command when sharing, because the VSAM
catalog entry for the data set may be inaccurate if the first
ACB used to reopen the data set has implicit verify suppressed
(ACBSWARH=ON).

80 MVS/370 VSAM Users Guide

CHAPTER 6. OPTIONS FOR ADVANCED APPLICATIONS

PROCESSING CONTROL INTERVALS

Control interval access gives you access to the contents of a
control interval; keyed and addressed access give you access to
individual data records.

Control interval access is provided for programmers of utilities
and system control programs who may need more flexibility than
access to data records allows themo With control interv~l
access, you have the option of letting VSAM manage I/O buffers
or managing them yourself. With keyed and addressed access,
VSAM always manages I/O buffers. If you manage I/O buffers
yourself, you have the further option of using improved control
interval access for faster processing than with normal control
interval access.

This chapter gives the format of a control interval and explains
how to use control interval access and manage your own I/O
buffers.

THE FORMAT OF A CONTROL INTERVAL

Figure 17 shows the relative positions of data, unused space,
and control information in a control interval.

Data Unused Space Control Information

Records,
Record Slots, RDFs elDF
or Record Segmen t

Figure 17. General Format of a Control Interval

Control information consists of a CIDF (control interval
definition field) and, for a control interval containing at
least one record, record slot, or record segment, one or more
RDFs (record definition fields). The CIDF and RDFs are ordered
from right to left.

Chapter 6. Options forAdvan~ed Applications 81

CIDF--Control Interval Definition Field

The CIDF is a 4-byte field that contains two 2-byte binary
numbers:

Offset Length Description

0(0) 2 The displacement from the beginning of
the control interval to the beginning of
the unused space, or, if there is no
unused space, to the beginning of the
control information. This number is
equal to the length of the data (records,
record slots, or record segment). In a
control interval without data, the number
is o.

2(2) 2 The length of the unused space. This
number is equal to the length of the
control interval, minus the length of the
control information, minus the 2-byte
value at CIDF+O. In a control interval
without data (records, record slots, or
record segment), the number is the length
of the control interval, minus 4 (the
length of the CIDFi there are no RDFs).
In a control interval without unused
space, the number is O.

2(2) 1....... Busy flag; set when the control interval
is being split; reset when the split is
complete.

In an entry-sequenced data set, when there are unused control
intervals beyond the last one that contains data, the first of
the unused control intervals contains a CrDF filled with D's.
In a key-sequenced or relative record data set or a key-range
portion of a key-sequenced data set, the first control interval
in the first unused control area (if any) contains a CIDF filled
with D's. A control interval with such a CIDF contains no data
or unused space, and is used to represent the software
end-of-file (SEOF).

RDF--Record Definition Field

The RBAs of records or relative record numbers of slots in a
control interval ascend from left to right. RDFs from right to
left describe these records or slots or a segment of a spanned
record. RDFs describe records one way for key-sequenced and
entry-sequenced data sets and another way for relative record
data sets.

In a key-sequenced or entry-sequenced data set, records may vary
in length and may span control intervals. An un spanned record
with no other records of the same length next to it is described
by a single RDF that gives the length of the record. Two or
more unspanned records of the same length together are described
by a pair of RDFs: The RDF on the right gives the length of each
record, and the RDF on the left gives the number of consecutive
records of the same length. Each segment of a spanned record
(one segment per control interval) is described by a pair of
RDFs: The RDF on the right gives the length of the segment, and
the RDF on the left gives its update number. (The update number
in each segment is incremented by one each time a spanned record
is updated. A difference among update numbers within a spanned
record indicates a possible error in the record.)

In a relative record data set, records do not vary in length or
span control intervals. Each record slot is described by a
single RDF that gives its length and indicates whether it
contains a record.

82 MVS/370 VSAM Users Guide

An RDF is a 3-byte field that contains a I-byte control field
and a 2-byte binary number:

Offset

0(0)

1(1)

Length and
Bit Pattein

1

x. xx

· x .•

· . xx

· . .. x ...

· . .. • x ..

2

Description

Control Field:

Reserved

Indicates whether there is (1) or
is not (0) a paired RDF to the left
of this RDF.

Indicates whether the record spans
control intervals:

00 No.

01 Yes; this is the first
segment.

10 Yes; this is the last segment.

11 Yes; this is an intermediate
segment.

Indicates what the 2-byte binary
number gives:

o The length of the record,
segment, or slot described by
this RDF.

1 The number of consecutive
unspanned records of the same
length, or the update number
of the segment of a spanned
record.

For a relative record data set,
indicates whether the slot
described by this RDF does (0) or
does not (1) contain a record.

Binary number:

When bit 4 of byte 0 is 0, gives
the length of the record, segment,
or slot described by this RDF.

When bit 4 of byte 0 is 1 and bits
2 and 3 of byte 0 are 0, gives the
number of consecutive records of
the same length.

When bit 4 of byte 0 is 1 and bits
2 and 3 of byte 0 are not 0, gives
the update number of the segment
described by this RDF.

Chapter 6. Options for Advanced Applications 83

Record

I I

2

I

3

I I

Number: 4

Length:

~'
x I x I x

_RDF6

X'OO' x

KEY-SEQUENCED AND ENTRY-SEQUENCED DATA SETS: In a key-sequenced
or entry-sequenced data set with unspanned records, the possible
hexadecimal values in the control field of an RDF are:

left
RDF

X'08'

Right
RDF

X'OO'

X'40'

Description

This RDF gives the length of a single
unspanned record.

The right RDF gives the length of each of
two or more consecutive unspanned records of
the same length. The left RDF gives the
number of consecutive unspanned records of
the same length.

Figure 18 shows the contents of the CIDF and RDFs of a 512-byte
control interval containing variable-length unspanned records.

Records Unused Space Control Information

5 6

I

7

I

8 I I RDFs elOF

I

3x 2x 2x x I 490-llx IE 22

:1
-

512 bytes

- RDF5 RDF4 RDF3 RDF2 RDFI CIOF

X'08' 2 X'40' 2x X'OO' 3x X'08' 4 X'40' x 12x 490
-llx

Figure 18. Format of a Control Interval with Unspanned Records

The CIDF and the six RDFs make up 22 bytes of control
information. The first 2-byte field in the CIDF gives the total
length of the eight records--12x, which is the displacement from
the beginning of the control interval to the unused space. The
second 2-byte field gives the length of the unused space, which
is the length of the control interval minus the total length of
the records and the control information--512 minus 12x minus 22,
or 490 minus 12x. RDFI and RDF2 describe the first four
records; RDF3 describes the fifth record; RDF4 and RDF5 describe
the sixth and seventh records; RDF6 describes the eighth record.

84 MVS/370 VSAM Users Guide

I First Segment

Intermediate Segment

Last Segment

A control interval that contains the record segment of a spanned
record contains no other data; it always has two RDFs. The
possible hexadecimal values in their control fields are:

Left
RDF

X'18'

X'28'

X'38'

Right
RDF

X'50'

X'60'

X'70'

Descr-iption

The right RDF gives the length of the f;rst
segment of a spanned record. The left RDF
gives the update number of the segment.

The right RDF gives the length of the last
segment of a spanned record. The left RDF
gives the update number of the segment.

The right RDF gives the length of an
intermediate segmant of a spanned r~ccrd.
The left RDF gives the update number of the
segment.

Figure 19 shows the contents of the CIDF and RDFs of three
512-byte control intervals that contain the segments of a
spanned record. The number n in RDF2 is the update number.

RDF2 RDFI elDF

502 0

X'38' n X'70' 502 502 0

Unused X'28' X'60' 502 502
Space

n x
-x -x

~ r '~>r --10-~1
r~~--512bYtes --~~

Figure 19. Format of Control Intervals with Spanned Records

Only the control interval that contains the last segment of a
spanned record can have unused space. Each of the other
segments uses all but the last 10 bytes of a control interval.

In a key-sequenced data set, the control intervals might not be
contiguous or in the same order as the segments (that is, for
example, the RBA of the second segment can be lower than the RBA
of the first segment).

All the segments of a spanned record must be in the same control
area. When enough control intervals in a control area are not
available for a spanned record, it is stored in a new control
area.

Chapter 6. Options for Advanced Applications 85

RELATIVE RECORD DATA SETS: In a relative record data set, the
possible hexadecimal values in the control field of an RDF are:

X'04' This RDF gives the length of an empty slot.

X'OO' This RDF gives the length of a slot that contains a
record.

Every control interval in a relative record data set contains
the same number of slots and the same number of RDFs, one for
each slot. The first slot is described by the rightmost RDF;
the second slot is described by the next RDF to the left, and so
on.

HOW TO GAIN ACCESS TO A CONTROL INTERVAL

Control interval access is specified entirely by the ACB MACRF
operand and the RPl (or GENCB) OPTCD operand. To prepare for
opening a data set for control interval access with VSAM
managing I/O buffers, specify:

ACB MACRF=(CNV, •••), •••

NUB (no user buffering) and NCI (normal control interval access)
may be specified or taken as defaults. (This section does not
consider the MACRF operands UBF (user buffering) and ICI
(improved control interval access); their use is described under
"Managing Your Own I/O Buffers" on page 87.)

With NUB and NCI, you may specify in the MACRF operand that the
data set is to be opened for keyed and addressed access as well
as for control interval access. For example, MACRF=(CNV, KEY,
SKP, DIR, SEQ, NUB, NCI, OUT) is valid.

You define a particular request for control interval access by
coding:

RPL OPTCD=(CNV, •••), •••

In general, control interval access with no user buffering has
the same freedoms and limitations as keyed and addressed access
have. Control interval access may be synchronous or
asynchronous, may have the contents of a control interval moved
to your work area (OPTCD=MVE) or left in VSAM's I/O buffer
(OPTCD=lOC), and may be defined by a chain of request parameter
lists (except with OPTCD=lOC specified).

Both direct and sequential access may be used with control
interval access, but skip sequential access may not. That is,
you may specify OPTCD=(CNV,DIR) or (CNV,SEQ), but not
OPTCD=(CNV,SKP).

With sequential access, VSAM takes an EODAD exit when you try to
retrieve the control interval whose CIDF is filled with O's or,
if there is no such control interval, when you try to retrieve a
control interval beyond the last one. However, VSAM does not
prevent you from using a direct GET or a POINT and a sequential
GET to retrieve the control interval whose CIDF is filled with
O's or any of the following control intervals.

The RPL (or GENCB) operands AREA and AREALEN have the same use
for control interval access in relation to OPTCD=MVE or lOC as
they do for keyed and addressed access: With OPTCD=MVE, AREA
gives the address of the area into which VSAM moves the contents
of a control interval; with OPTCD=LOC, AREA gives the address of
the area into which VSAM puts the address of the I/O buffer
containing the contents of the control interval.

86 MVS/370 VSAM Users Guide

The search argument for a direct request with control interval
access is the RBA of the control interval whose contents are
desired.

You can define a password especially for control interval
access. Its authority is second only to that of the master
password; it authorizes control interval access as well as
update and read-only access. Because control interval access
gives you access to control information, you should consider
protecting your data sets with control interval passwords.

All the request macros except ERASE can be used for control
interval access: GET, PUT, POINT, CHECK, and ENDREQ. To update
the contents of a control interval, you must (with no user
buffering) previously have retrieved them for update. You
cannot alter the contents of a control interval with OPTCD=lOC
5pacifiad.

With keyed access and addressed.access, VSAM maintains the
control information in a control interval. With control
interval access, you are responsible for that information.

You may load an entry-sequenced data set with control interval
macro access. If you open an empty entry-sequenced data set,
VSAM allows you to use only sequential storage. That is, you
may issue only PUTs, with OPTCD=(CNV,SEQ,NUP). PUT with
OPTCD=NUP stores information in the next available control
interval (at the end of the data set).

You may not load or extend a key-sequenced data set with control
interval access, because VSAM could not build index records for
the data set. VSAM also prohibits you from extending a relative
record data set by way of control interval access.

To update the contents of a control interval, you can either:

• Retrieve them with OPTCD=UPD and store them back, or,

• Without retrieving them, store new contents in the control
interval with OPTCD=UPD (user buffering only).

PUT with OPTCD=UPD stores information in the control interval
specified. If a GET for update precedes the PUT, specification
is automatic. If no GET (or a GET with OPTCD=NUP) precedes the
PUT, you have to specify the RBA of the control interval in the
ARG operand.

MANAGING YOUR OWN I/O BUFFERS

With ACB MACRF=(CNV,UBF) specified (control interval access with
user buffering), the work area specified by the RPl (or GENCB)
AREA operand is, in effect, the I/O buffer: VSAM transmits the
contents of a control interval directly between the work area
and direct access storage.

If you specify user buffering, you cannot specify KEY or ADR in
the MACRF operand; you can specify only CNV. That is, you
cannot intermix keyed and addressed requests with requests for
control interval access.

OPTCD=lOC is inconsistent with user buffering and is not
allowed.

Improved Control Interval Access

With user buffering you may, if you follow the restrictions
below, specify improved control interval access:

ACB MACRF=(CNV,UBF,ICI, •••), •••

Processing is faster than that of normal control interval
access. A processing program can achieve the best performance

Chapter 6. Options for Advanced Applications 87

with improved control interval access by combining it with SRB
dispatching. (SRB dispatching is described in System
Programming library: Supervisor.)

To open an object for improved control interval access, the
named object must:

• Not be empty.

• Be an entry-sequenced or relative record cluster; the data
component of a key-sequenced, entry-sequenced, or relative
record cluster; or the index component of a key-sequenced
cluster (index records must not be replicated).

• Have control intervals the same size as physical records.
When you use the access method services DEFINE command to
define the object, you can specify control interval size
equal to a physical record size used for the device on which
the object is stored. VSAM uses physical record sizes of
512, 1024, 2048, and 4096 bytes.

The following table identifies the direct access devices for
which the physical record size equal to the control interval
size is selected for a data component. The physical record size
is always equal to the control interval size for an index
component.

Device Control Interval Size (Bytes)

512 1024 2048 4096

2305-1 X X X X
2305-2 X X X X
2314 X X X
2319 X X X
3330 X X X X
3330-1 X X X X
3340 X X X
3344 X X X
3350 X X X X
3375 X X X X
3380 X X X X

If these restrictions are not met, the object cannot be opened.

To process a data set with improved control interval access, a
request must be:

• Defined by a single RPl (VSAM ignores the NXTRPl operand).

• A direct GET, GET for update, or PUT for update (no POINT,
no processing empty data sets; a relative record data set
with slots formatted is considered not to be empty, even if
no slot contains a record).

• Synchronous (no CHECK, no ENDREQ).

With improved control interval access, VSAM assumes (without
checking) that an RPl whose ACB has MACFR=ICI has OPTCD=(CNV,
DIR, SYN) that a PUT is for update (OPTCD=UPD), and that your
buffer length (specified in RPl AREAlEN=number) is correct.
Because VSAM does not check these operands, you should debug
your program with ACB MACRF=NCI, then change to ICI.

With improved control interval access, VSAM does not take JRNAD
exits and does not keep statistics (which are normally available
by way of SHOWCB).

With improved control interval access, you may specify that
control blocks are to be fixed in real storage (ACB
MACRF=(CFX, ... ». If you so specify, your I/O buffers must also
be fixed in real storage. Having your control blocks fixed in
real storage, but not your I/O buffers, may cause physical
errors or unpredictable results. If you specify MACRF=CFX

88 MVS/370 VSAM Users Guide

without ICI, VSAM ignores CFX. NFX is the default; it indicates
that buffers are not fixed in real storage, except for an I/O
operation. A program must be authorized to fix pages in real
storage, either in supervisor state with protection key 0 to 7,
or link-edited with authorization. (The authorized program
facility is described in System Programming Library:
Supervisor.) An unauthorized request is ignored.

CBIC (Control Blocks in Common) option

The CBIC option places the VSAM control blocks associated with a
VSAM data set into the common service area (CSA). The control
block structure and VSAM I/O operations are essentiallY the same
whether or not the CBIC option is invoked, except for the
location of the control block structure. The user-related
control blocks ar~ generated in the protect key (0 through 7);
the system-related control blocks are generated in protect key
O. The VSAM control block structure generated when the CBIC
option is invoked retains normal interfaces to the region that
opened the VSAM data set (for example, the DEB is chained to the
region's TCB).

The CBIC option is invoked when a VSAM data set is opened. To
invoke the CBIC option, you set the CBIC flag (located at offset
X'33' (ACBINFL2) in the ACB, bit 2 (ACBCBIC» to one. When your
program opens the ACB with the CBIC option set, your program
must be in supervisor state with a protect key from 0 to 7;
otherwise, VSAM will not open the data set.

The CBIC option must be used only when the ICI option is also
specified. The following restrictions apply when using the CBIC
option:

• You cannot also specify LSR or GSR.

• The following types of data sets cannot be used with the
CalC option: catalogs, user or system CRAs, VVICs (virtual
volume inventory control), swap data sets, or system data
sets.

• If CBIC data sets are being used in a region, your program
cannot take a VSAM checkpoint.

If another region accesses the data set's control block
structure in the CSA via VSAM record management, the following
conditions should be observed:

• An OPEN macro should not be issued against the data set.

• The ACB of the user who opened the data set with the CBIC
option must be used.

• CLOSE and temporary CLOSE cannot be issued for the data set
(only the user who opened the data set with the CBIC option
can close the data set).

• A region must have the same storage protect key as the user
who opened the data set with the CBIC option.

• User exit routines should be accessible from all regions
accessing the data set with the CBIC option.

SRB OR CROSS-MEMORY INVOCATION

In order to function in cross-memory or SRB mode, record
management does not issue any SVCs or take any user exits as
they were entered. In lieu of issuing SVCs, RPL return codes
are set to indicate that an SVC (such as an end of volume) is
required, in order to complete the request. You must switch to
TCB mode and reissue the request in noncross-memory mode in the
storage from which the data set was opened.

Chapter 6. Options for Advanced Applications 89

INVOCATION

USER INTERACTION

ERRORS

Cross-memory or SRB mode invocation must only occur for
synchronous, supervisor state requests. An attempt to invoke
VSAM asynchronously in either mode results in a logical error.
Also, VSAM makes no attempt to synchronize cross-memory mode
requests. This means that the RPL must specify WAITX, and a
UPAO exit must be provided to handle cross-memory request
synchronization. Failure to provide a UPAD routine that ensures
the ECB is posted before returning to VSAM will cause a logical
error.

Invocation of this function occurs whenever VSAM action macros
are issued by a program in SRB or cross-memory mode (home
address space 10, HASIO, unequal to primary address space 10 or
HASIO unequal to secondary HASIO and secondary addressing bit on
the current PSW). No locks may be held at VSAM entry, and VSAM
assumes this is the case.

The caller must be in supervisor state; a UPAO routine must be
provided for cross-memory mode invocation; the ACB must specify
MACRF=LSR, MACRF=GSR, or MACRF=ICI; and the RPL must specify
WAITX and SYN. At the time a VSAM request is issued, proper
addressability must exist to the RPL, ECB, and user data areas.
Therefore, these must be either in CSA or in the same address
space that opened the data set.

If any requests to a VSAM data set or to a shared resource pool
are in supervisor state, all should be, otherwise it would
sometimes be necessary for a nonsupervisor state request to
resume a deferred supervisor state request. Alternatively, you
may wish to design your UPAO POST routine to handle this
situation, thereby avoiding the restriction.

Whenever VSAM cannot avoid the SVC, it sets an RPL return code
to indicate that you must switch to TCB, noncross-memory mode
and reissue the VSAM request. For performance reasons, these
instances are kept to a minimum. Areas identified as requiring
TCB, noncross-memory mode are EXCEPTIONEXIT, loaded exits, EOV,
dynamic string addition, AIX processing, and MSS-related macros.

VSAM's I/O is done under the functional recovery routine (FRR)
to ensure related actions (such as page fixes or obtaining the
local lock) are cleaned up in the event of failure.

The remainder of VSAM processing does not run under a VSAM FRR
or ESTAE routine. Therefore, if processing is to continue after
a VSAM error, the user must provide an ESTAE routine that issues
a TERMRPL macro instruction. In an attempt to allow processing
to continue, TERMRPL frees VSAM resources associated with the
RPL.

To help debug errors that may arise during cross-memory
processing, VSAM saves the primary, secondary, and current ASIDs
in an internal control block, 10MB.

If VSAM processing is to be done under a user-established FRR, a
UPAD exit routine must be provided to allow for deleting the FRR
when the UPAD is taken for a POST. VSAM makes no attempt to
preserve any FRR status that may have been established by its
caller.

If a logical error or an end-of-data condition occurs during
cross-memory or SRB processing, VSAM attempts to enter the LERAD
or EODAD routine. If the routine must be loaded, it cannot be
taken; VSAM sets the RPL feedback to indicate "invalid TCB." If
an I/O error occurs during cross-memory or SRB processing and an

90 MVS/370 VSAM Users Guide

MESSAGES AND CODES

EXCEPTIONEXIT or loaded SYNAD routine is specified, these
routines cannot be taken; the RPL feedback indicates an I/O
error condition.

If VSAM cannot process the request because an SVC is required,
it issues a logical error with the RPL feedback set to 120(78),
indicating an invalid TCB mode request.

If the caller is in SRB or cross-memory mode but the RPL
specifies ASY or the ACB specifies NSR, or if the cross-memory
mode caller is not in supervisor state, a logical error with a
feedback code of 228(E4) is set in the RPL. If the cross-memory
mode caller does not have WAITX specified in the RPL or lacks an
active UPAD, a logical error code of 232(E8) 15 indicated in the
RPL.

If processing fails at a point at which TERMRPL cannot release
the resources needed to continue, the RPL contains a logical
error with a feedback code of 240(FO) to indicate that the data
set or the shared resource pool is in an indeterminate state.
The ESTAE routine should cause termination in that case.

SHARING RESOURCES AMONG DATA SETS

VSAM has a set of macros that enables you to share I/O buffers,
I/O-related control blocks, and channel programs among many VSAM
data sets and to manage I/O buffers.

Sharing these resources is not the same as sharing a data set
itself (that is, sharing among different tasks that
independently open it). Data set sharing can be done with or
without sharing I/O buffers, I/O-related control blocks, and
channel programs. For a discussion of data set sharing, see
"Chapter 5. Sharing a VSAM Data Set" on page 69.

In VSAM, an I/O buffer is a virtual storage area from which the
contents of a control interval are read and written. The
I/O-related control blocks that are shared are: PLH, 10MB, IOSB,
IQE, IRB, and SRB.

Sharing these resources optimizes their use to reduce the
requirement for virtual storage and therefore to reduce paging
of virtual storage. Managing I/O buffers includes:

• Deferring writes for direct PUT requests, which reduces the
number of I/O operations.

• Writing buffers that have been modified by related requests.

• Locating buffers that contain the contents of specified
control intervals.

• Marking a buffer to be written without issuing a PUT.

• When your program accesses an invalid buffer, VSAM refreshes
the buffer (that is, reads in a fresh copy of the control
interval) before making its contents available to your
program.

Managing I/O buffers should enable you to speed up direct
processing of VSAM data sets whose activity is unpredictable.
You probably will not be able to speed up sequential processing
or processing of a data set whose activity is consistently
heavy.

When you share resources for sequential access, positioning at
the beginning of a data set has to be explicit: with the POINT
macro or the direct GET macro with RPL OPTCD=NSP. With shared
resources, VSAM does not automatically position itself at the
beginning of a data set opened for sequential access, because

Chapter 6. Options for Advanced Applications 91

placeholders belong to the resource pool, not to individual data
sets. You may not use a resource pool to load records into an
empty data set. (Sharing would not improve sequential
processing, and it would take up buffers and could hinder other
processing.)

The macros you use to share resources and manage I/O buffers
are:

• BLDVRP (build VSAM resource pool)

• DLVRP (delete VSAM resource pool)

• WRTBFR (write buffer)

• SCHBFR (search buffer)

• MRKBFR (mark buffer)

Certain operands in the ACB and RPL macros are used with these
macros. The use of these macros and operands and of SHOWCB, and
TESTCB macros is described in this chapter. VSAM Reference
explains operand notations for coding macros.

PROVIDING A RESOURCE POOL

To share resources, you use the BLDVRP macro to build a resource
pool. You code a MACRF operand in the ACB and use OPEN to
connect your data sets to the resource pool. After you have
closed all the data sets, you use the DLVRP macro to delete the
resource pool.

You may share resources locally or globally:

• LSR (local shared resources). Each partition or address
space may have one resource pool independently of other
partitions or address spaces.

• GSR (global shared resources). All address spaces for a
given protection key in the system share one resource pool.
A resource pool can be built for each of the protection keys
o through 7. With GSR, an access method control block and
all related request parameter lists, exit lists, data areas,
and extent control blocks must be in the common area of
virtual storage with protection key the same as that of the
resource pool. To get storage in the common area with that
protection key, issue the GETMAIN macro while in that key,
for storage in subpool 241. Generate ACBs, RPLs, and EXLSTs
with the GENCB macro--code the WAREA and LENGTH operands.
The program that issues macros related to that global
resource pool must be in supervisor state with the spme key.
(The macros are: BLDVRP, CHECK, CLOSE, DLVRP, ENDREQ, ERASE,
GENeB, GET, GETIX, MODCB, MRKBFR, OPEN, POINT, PUT, PUTIX,
SCHBFR, SHOWCB, TESTCB, and WRTBFR. The SHOWCAT macro is
not related to a resource pool, because it is issued
independently of an open data set.)

You may have both a global resource pool and local resource
pools. Tasks in an address space that has a local resource pool
may use either the global resource pool, under the restrictions
described above, or the local resource pool.

Deciding How Big a Resource Pool to Provide

You have to provide a resource pool before any clusters or
alternate indexes are opened to use it. Specifying the BUFFERS,
KEYLEN, and STRNO operands of the BlDVRP macro requires
knowledge of the size of the control intervals, data records (if
spanned), and key fields in the components that will use the
resource pool and knowledge about the way the components are
processed. (See "BLDVRP: Building a Resource Pool" on page 93.)

92 MVS/370 VSAM Users Guide

DISPLAYING INFORMATION ABOUT AN UNOPENED DATA SET: The SHOWCAT
macro enables you to get information about a component before
its cluster or alternate index is opened. The program that is
to issue BLDVRP can issue SHOWCAT on all the components to find
out the sizes of control intervals, records, and keys. This
information enables the program to calculate values for the
BUFFERS and KEYLEN operands of BLDVRP.

A program need not be in supervisor state with protection key 0
to 7 to issue SHOWCAT, even though it must be in supervisor
state and in protection key 0 to 7 to issue BLDVRP TYPE=GSR.'

The SHOWCAT macro is described in Catalog Users Guide.

DISPLAYING STATISTICS ABOUT A BUFFER POOL: You can get
statistics about the usage of buffer pools to determine how you
could improve a previous definition of a resource pool and the
mix of data sets that use it. The SHOWCB macro enables you to
get these statistics. The statistics are available via an ACB
that describes an open data set that is using the buffer pool.
They reflect the usage of the buffer pool from the time it was
built to the time SHOWCB is issued. All the statistics except
one are for a s1ngle buffer pool. To get statistics for the
whole resource pool, issue SHOWCB for each buffer pool in it.

The statistics cannot be used to redefine the resource pool
while it is in use. You have to make adjustments the next time
you build it.

The use of SHOWCB to display an ACB is described in VSAM
Reference. If the ACB has MACRF=GSR, the program that issues
SHOWCB must be in supervisor state with protection key 0 to 7.
For buffer pool statistics, the following keywords are specified
in the FIELDS operand:

SHOWCB FIELDS=([BFRFND][,BUFRDS][,NUIW][,STRMAX]
[,UIW], •••), •••

These fields may be displayed only after the data set described
by the ACB is opened. Each field requires one fullword in the
display work area:

BFRFND The number of requests for retrieval that could be
satisfied without an I/O operation (the data was found
in a buffer)

BUFRDS The number of reads to bring data into a buffer

NUIW The number of nonuser-initiated writes (writes that VSAM
was forced to do because no buffers were available for
reading the contents of a control interval)

STRMAD The maximum number of placeholders currently active for
the resource pool (for all of the buffer pools in it)

UIW The number of user-initiated writes (PUTs not deferred
or WRTBFRs--see "Deferring Write Requests" on page 94.)

Return Codes from SHOWCB: The return codes from VSAM for SHOWCB
with these keywords are the same as for other keywords and are
given in VSAM Reference. With MACRF=GSR specified in the ACB, a
program check can occur if SHOWCB is issued by a program that is
not in supervisor state with the same protection key as that of
the resource pool.

BLDVRP: Building a Resource Pool

To share resources locally, a task in the partition or address
space issues the BLDVRP (build VSAM resource pool) macro,
TYPE=LSR. To share resources globally, a system task issues
BLDVRP, TYPE=GSR. Issuing BLDVRP causes VSAM to share the I/O

Chapter 6. Options for Advanced Applications 93

buffers, I/O-related control blocks, and channel programs of
data sets whose ACBs indicate the corresponding option for
shared resources. (See "OPEN: Connecting a Data Set to a
Resource Pool" on page 94.) Control blocks and channel programs
are shared automatically. But you may control the sharing of
buffers.

When you issue BLDVRP, you specify the number of buffer pools in
the resource pool and the size and number of buffers in each
buffer pool. A data set uses the buffer pool whose buffers are
the appropriate size--either the exact size needed, if there are
any, or the next larger size available. The data set uses only
the one buffer pool.

TYPE=({LSRIGSRJ, •••), •••

This specifies whether a local (LSR) or a global (GSR) resource
pool is to be built. Only one BLDVRP TYPE=LSR may be issued per
partition or address space; only one BLDVRP TYPE=GSR may be
issued for the system for each of the protection keys 0 through
7. The program that issues BLDVRP TYPE=GSR must be in
supervisor state with key 0 to 7.

DLVRP: Deleting a Resource Pool

After all data sets using a resource pool are closed, you delete
the resource pool by issuing the DLVRP (delete VSAM resource
pool) macro. Failure to delete a local resource pool causes
virtual storage to be lost until the end of the job step. This
loss is protected with a global resource pool: If the address
space that issued BLDVRP terminates without having issued DLVRP,
the system deletes the global resource pool when its use count
is O.

OPEN: Connecting a Data set to a Resource Pool

You cause a data set to use a resource pool that was built by
BLDVRP by specifying LSR or GSR in the MACRF operand of the data
set's ACB before you open the data set.

ACB MACRF=({NSRILSRIGSRJ, •••), •••

NSR, the default, indicates the data set does not use shared
resources. LSR indicates it uses the local resource pool. GSR
indicates it uses the global resource pool.

When an ACB indicates LSR or GSR, VSAM ignores its BSTRNO,
BUFNI, BUFND, BUFSP, and STRNO operands because VSAM will use
the existing resource pool for the resources associated with
these parameters.

For a data set described by an ACB with MACRF=GSR, the ACB and
all related RPLs, EXLSTs, ECBs, and data areas must be in the
common area of virtual storage with the same protection key as
that of the resource pool.

Deferring Write Requests

VSAM automatically defers writes for sequential PUT requests.
It normally writes out the contents of a buffer immediately for
direct PUT requests. With shared resources, you can cause
writes for direct PUT requests to be deferred. Buffers are
finally written out:

• When you issue the WRTBFR macro

• When VSAM needs a buffer to satisfy a GET request

• Or when a data set using a buffer pool is closed (temporary
CLOSE is ineffective against a data set that is sharing

94 MVS/370 VSAM Users Guide

buffers; nor does ENDREQ cause buffers in a resource pool to
be written)

Deferring writes saves I/O operations when subsequent requests
can be satisfied by the data in the buffer pool. Data
processing performance with VSAM will be improved if control
intervals are updated more than once.

You indicate that writes are to be deferred by coding the MACRF
DFR option in the ACB, along with MACRF=LSR or GSR.

ACB MACRF=({LSRIGSR}~{DFRINDF}~ •••), •••

NDF, the default, indicates that writes are not to be deferred
for direct PUTs.

The DFR option is incompatibla with SHAREOPTIONS ~.
(SHAREOPTIONS is a parameter of the DEFINE command of access
method services. It is described in Access Method Services
Reference.) A request to open a data set with SHAREOPTIONS 4
for deferred writes is rejected. (See "OPEN: Connecting a Data
Set to a Resource Pool" on page 94.)

Relating Deferred Requests by Transaction ID

You can relate action requests (GET, PUT, and so forth)
according to transaction by specifying the same 10 in the RPls
that define the requests.

The purpose of relating the requests that belong to a
transaction is to enable WRTBFR to cause all the modified
buffers used for a transaction to be written. When the WRTBFR
request is complete, the transaction is physically complete.

RPL TRANSID=number, •••

TRANSID specifies a number from 0 to 31. The number 0, which is
the default, indicates that requests defined by the RPl are not
associated with other requests. A number from 1 to 31 relates
the request(s) defined by this RPL to the request(s) defined by
other RPLs with the same transaction 10.

You can find out what transaction ID an RPL has by issuing
SHOWCB or TESTCB. Their use with an RPL is described in VSAM
Reference.

SHm~CB FIELDS=([TRANSID], •••), •••

TRANSID requires one fullword in the display work area.

TESTCB TRANSID=number, •••

If the ACB to which the RPL is related has MACRF=GSR, the
program that issues SHOWCB or TESTCB must be in supervisor state
with the same protection key as that of the resource pool.

Return Codes from SHOWCB and TESTCB: The return codes from VSAM
for SHOWCB and TESTCB with the TRANSID keyword are the same as
with other keywords and are given in VSAM Reference. With
MACRF=GSR specified in the ACB to which the RPL is related, a
program check can occur if SHOWCB or TESTCB is issued by a
program that is not in supervisor state with protection key 0 to
7 •

WRTBFR: Writing Buffers Whose Writing Is Deferred

If DFR is specified in the ACB of any data set that is using a
resource pool, you can use the WRTBFR (write buffer) macro to
write:

• All modified buffers for a given data set

Chapter 6. Options for Advanced Applications 95

• All modified buffers in the resource pool

• The least recently used modified buffers in each buffer pool
in the resources pool

• All buffers that were modified by requests with the same
transaction ID (see "Relating Deferred Requests by
Transaction ID" on page 95)

• A buffer, identified by an RBA value, that has been modified
and has a use count of zero

You can specify the DFR option in an ACB without using the
WRTBFR to write buffers--a buffer is written when VSAM needs one
to satisfy a GET request, or all modified buffers are written
when the last of the data sets that uses them is closed.

Besides using WRTBFR to write buffers whose writing is deferred,
you can use it to write buffers that are marked for output with
the MRKBFR macro, which is described in "MRKBFR: Marking a
Buffer of Output" on page 102.

Using WRTBFR can improve performance, if you schedule WRTBFR to
overlap other processing.

VSAM notifies the processing program when there are no more
unmodified buffers into which to read the contents of a control
interval. (VSAM would be forced to write buffers when another
GET request required an I/O operation.) VSAM sets register 15 to
o and puts 12 (X'OC') in the feedback field of the RPl that
defines the PUT request that detects the condition.

VSAM also notifies the processing program when there are no
buffers available to which to assign a placeholder for a
request. This is a logical error (register 15 contains 8 unless
an exit is taken to a lERAD routine); the feedback field in the
RPl contains 152 (X'98'). You may retry the request; it gets a
buffer if one is freed.

When sharing the data set with a user in another region, your
program might want to write the contents of a specified buffer
without writing all other modified buffers. Your program issues
the WRTBFR macro to search your buffer pool for a buffer
containing the specified RBA. If found, the buffer is examined
to verify that it is modified and has a use count of zero. If
50, VSAM writes the contents of the buffer into the data set.

Note: Before using WRTBFR TYPE=CHKITRNIDRBA, be sure to release
all buffers ("Multi-String Processing" on page 29 for details
about releasing buffers). If one of the buffers is not
released, VSAM defers processing until the buffer is released.

Handling Exits to Physical Error Analysis Routines

With deferred writes of buffers, a processing program continues
after its PUT request has been completed, even though the buffer
has not been written. The processing program is not
synchronized with a physical error that occurs when the buffer
is finally written. A processing program that uses MRKBFR
MARK=OUT (see "MRKBFR: Marking a Buffer of Output" on page 102)
is also not synchronized with a physical error. An EXCEPTION or
a SYNAD exit routine must be supplied to analyze the error.

The ddname field of the physical error message identifies the
data set that was using the buffer, but, because the buffer
might have been released, its contents might be unavailable.
You can provide a JRNAD exit routine to record the contents of
buffers for I/O errors (see "Using the JRNAD Exit with Shared
Resources" on page 97). It can be coordinated with a physical
error analysis routine to handle I/O errors for buffers whose
writing has been deferred.

96 MVS/370 VSAM Users Guide

If a JRNAD exit routine is used to cancel I/O errors during a
transaction, the physical error analysis routine will get only
the last error return code.

Using the JRNAD Exit with Shared Resources

In addition to the reasons for having a JRNAD exit routine that
are described in "Chapter 8. User-Written Exit Routines" on page
129, VSAM takes the JRNAD exit for the following reasons when
the exit is associated with a data set whose ACB has MACRF=LSR
or GSR:

• A data or index control interval buffer has been modified
and is about to be written.

• A physical error occurred: VSAM takQ5 thQ JRNAD exit
first--your routine can direct VSAM to bypass the error and
continue processing or to terminate the request that
occasioned the error and proceed with error processing.

• A control area is about to be split.

Note: For the rCF catalog, the following reasons also apply:

• A data or index control interval is being read for shared or
exclusive use.

• Exclusive control has been released on a control interval.

• A READ or WRITE operation has completed.

• The contents of a buffer have been made invalid.

"JRNAD Exit Routine to Journalize Transactions" on page 133
gives the contents of the registers when VSAM exits to the JRNAD
routine. Some of the fields in the parameter list that register
1 points to have special meanings for buffer modification, I/O
errors, and control area splits:

Note: For the ICF catalog, fields at locations 8, 12, 16, and
20 have meaning for the values listed below:

Offset Values

8(8) X'30'-X'4C'

12(C) X'30',X'34',X'38',X'3C',X'48'-X'4C'

16(10) X'30'-X'44'

20(14) X'3C',X'40',X'44',X'4C'

Offset Length Description

0(0) 4 No special meaning. (Address of the RPL that
defines the request that occasioned VSAM's
exit to the routine.)

4(4) 4 No special meaning. (Address of a 5-byte field
that identifies the data set being processed.)

Chapter 6. Options for Advanced Applications 97

Offset Length Description

8(8) 4 Variable, depends on the reason indicator at
offset 20:

12(C) 4

98 MVS/370 VSAM Users Guide

X'20'

X'24'

X'28'

X'2C'

X'30'

X'34'

X'38'

X'3C'

X'40'

X'44'

X'48'

X'4C'

The RBA of the beginning of the
control area about to be split.

The address of the I/O buffer into
which data was going to be read.

The address of the I/O buffer from
which data was going to be written.

The address of the I/O buffer that
contains the control interval
contents that are about to be
written.

A data or index control interval is
about to be read in exclusive
control.

A data or index control interval is
about to be read in shared status.

Acquire exclusive control of a
control interval already in the
buffer pool.

Build a new control interval for the
data set and hold it in exclusive
control.

Exclusive control of the indicated
control interval has been released.

The contents of the indicated
control interval have been made
invalid.

READ completed.

WRITE completed.

Variable, depends on the reason indicator at
offset 20:

X'20'

X'24'

X'28'

X'2C'

Unpredictable.

Unpredictable.

Bits 0 through 31 correspond with
transaction IDs 0 through 31. Bits
set to 1 indicate that the buffer
that was being written when the
error occurred was modified by the
corresponding transactions. You can
set additional bits to 1 to tell
VSAM to keep the contents of the
buffer until the corre-sponding
transactions have modified the
buffer.

The size of the control interval
whose contents are about to be
written.

Offset length Description

16(10) 4

X'30'

X'34'

X'38'

X'3C'

X'48'

X'4C'

The size of the control interval is
about to be read in exclusive
control.

A data or index control interval is
about to be read in shared status.

Acquire exclusive control of a
control interval already in the
buffer pool.

Build a new control interval for the
data set and hold it in exclusive
control.

READ completed.

WRITE completed.

Variable, depends on the reason indicator at
offset 20:

X'20'

X'24'

X'28'

X'2C'

X'30'

X'34'

X'38'

X'3C'

X'40'

X'44'

X'48'

X'4C'

The RBA of the last byte in the
control area about to be split.

The fourth byte contains the
physical error code from the RPl
FDBK field. You use this fullword to
communicate with VSAM. Setting it to
o indicates that VSAM is to ignore
the error, bypass error processing,
and let the processing program
continue. Leaving it nonzero
indicates that VSAM is to continue
as usual: terminate the request that
occasioned the error and proceed
with error processing, including
exiting to a physical error analysis
routine.

Same as for X'24'.

The RBA of the control interval
whose contents are about to be
written.

Not applicable.

Not applicable.

Not applicable.

Not applicable.

Not applicable.

Not applicable.

READ completed.

WRITE completed.

Chapter 6. Options for Advanced Applications 99

Offset Length Description

20(14) 1 Indication of the reason VSAM exited to the
JRNAD routine:

X'20' A control area is about to be split.
During the split, VSAM exits to the
JRNAD routine as each control
interval that is modified i s about
to be written (see '2C' below) .

X'24' A physical input error occurred.

X'28' A physical output error occurred.

X'2C' A modified data or index control
interval is about to be written.

X'30' A data or index control interval is
about to be read in exclusive
control.

X'34' A data or index control interval is
about to be read in shared status.

X'38' Acquire exclusive control of a
control interval already in the
buffer pool.

X'3C' Build a new control interval for the
data set and hold it in exclusive
control.

X'40' Exclusive control of the indicated
control interval has been released.

X'44' The contents of the indicated
control interval have been made
invalid.

X'48' READ completed.

X'4C' WRITE completed.

21(15) 1 Reserved.

Preventing Deadlock in Exclusive Control

Contention for VSAM data (the contents of a control interval)
can lead to deadlocks, in which a processing program is
prevented from continuing because its request for data cannot be
satisfied. A and B can engage as contenders in four distinct
ways:

1. A wants exclusive control, but B has exclusive control.
VSAM refuses A's request: A must either do without the data
or retry its request.

2. A wants exclusive control, but B is only willing to share.
VSAM queues A's request (without notifying A that it must
wait) and gives A use of the data when Bi releases it.

3. A wants to share, but B has exclusive control. VSAM refuses
A's request: A must either do without the data or retry its
request.

4. A wants to share, and B is willing to share. VSAM gives A
use of the data, along with B.

100 MVS/370 VSAM Users Guide

VSAM's action in a contention for data rests on the assumptions
that, if a processing program has exclusive control of the data,
it will (or at least might) update or delete it and that, if a
processing program is updating or deleting the data, it has
exclusive control of it. (The use of MRKBFR, MARK=OUT provides
an exception to the second assumption: A processing program can
update the contents of a control interval without exclusive
control of them; see "MRKBFR: Marking a Buffer of Output" on
page 102.)

In 1 and 3, above, B is responsible for giving up exclusive
control of a control interval by way of an ENDREQ, a MRKBFR, a
MARK=RLS, or a request for access to a different control
interval. (The RPL that defines the ENDREQ, MRKBFR, or request
is the one that was used to acquire exclusive control in the
first place.)

Using Control Interval Access with Shared Resources

When you share resources, you can use two macros (SCHBFR and
MRKBFR) to locate a buffer in a buffer pool and to mark it for
output. You can update its contents (which are the contents of
a control interval) independently of much_of VSAM record
management. Doing this might improve your data processing
performance; it allows you to bypass some of the restrictions
VSAM imposes on the way you treat VSAM data sets.

However, bypassing normal restrictions might prevent you from
processing the data sets normally. For instance, key-sequenced
data sets depend on the accuracy of their indexes and the RDFs
and the CIDF in each control interval. You should not update
key-sequenced data sets with centrol interval access.

Control interval access with SCHBFR and MRKBFR is intended
primarily for processing entry-sequenced data sets. The
definition of an entry-sequenced data set includes the
unchangeability of RBAs and the permanence of records. With
control interval access, you can change RBAs in a control
interval and delete records by modifying the RDFs and the CIDF.
However, if the data set has alternate indexes, you are
responsible for upgrading them. If you have specified that you
are doing keyed or addressed access (ACB MACRF={KEYIADR}, ...)
and control interval access, then those requests for keyed or
addressed access (RPL OPTCD={ KEYIADR}, ...) will cause VSAM to
upgrade the alternate indexes. Those requests specifying
control interval access will not cause upgrading of the
alternate indexes. You are responsible for upgrading them.
Upgrading an alternate index is described in "Alternate Index
Maintenance" on page 14.

SCHBFR (search buffer) enables you to locate buffers that
contain the contents of adjacent control intervals.

MRKBFR (mark buffer) enables you to mark a buffer for output.
You can modify the contents of the buffer with or without having
exclusive control of it, and, with WRTBFR, you can cause the
modified buffer to be written without issuing a PUT for update.

MRKBFR also enables you to release a buffer from exclusive
control or shared status if it was under exclusive control or in
shared status. If the buffer was marked to be written, it is
still marked to be written. The placeholder associated with the
RPL that defines MRKBFR is kept for further use by the RPL, but
it no longer holds a place (positioning is invalidated).

For the ICF catalog, MRKBFR allows you to invalidate a buffer.
When a buffer is marked "invalid," it is identified as a buffer
that VSAM must refresh before your program can use the buffer's
contents.

Improved control interval access ACB MACRF=(ICI, ..•) and user
buffering ACB MACRF=(UBF, ...) are not allowed with shared
resources (that is, where ACB MACRF= ({LSRIGSR}, ...).

Chapter 6. Options for Advanced Applications 101

SCHBFR: Locating an RBA in a Buffer Pool

When a resource pool is built, the buffers in each buffer pool
are numbered from 1 through the number of buffers in each buffer
pool. At a given time, several buffers in a buffer pool may
hold the contents of control intervals for a particular data
set. These buffers mayor may not contain RBAs of interest to
your processing program. The SHCBFR macro enables you to find
out. You specify in the ARG operand of the RPL that defines
SCHBFR the address of an 8-byte field that contains the first
and last control interval RBAs of the range you are interested
in.

The buffer pool to be searched is the one used by the data
component defined by the ACB to which your RPL is related. If
the ACB names a path, VSAM searches the buffer pool used by the
data component of the alternate index. (If the path is defined
over a base cluster alone, VSAM searches the buffer pool used by
the data component of the base cluster.) VSAM begins its search
at the buffer you specify and continues until it finds a buffer
that contains an RBA in the range or until the highest numbered
buffer i~ searched.

You should begin a search at the first buffer in the buffer
pool. If a buffer satisfies the search, VSAM returns its
address (OPTCD=LOC) or its contents (OPTCD=MVE) in the work area
whose address is specified in the AREA operand of the RPL and
returns its number in register O. To find the next buffer that
contains an RBA in the range, issue SCHBFR again and specify the
number of the next buffer after the first one that satisfied the
search. You continue until VSAM indicates that it found no
buffer that contains an RBA in the range or until you reach the
end of the pool.

Finding a buffer that contains a desired RBA does not get you
exclusive control of the buffer. You may get exclusive control
only by issuing GET for update. SCHBFR does not return the
location or the contents of a buffer that is already under the
exclusive control of another request.

MRKBFR: Marking a Buffer of output

You locate a buffer that contains the RBA you are interested in
by issuing a SCHBFR macro, a read-only GET, or a GET for update.
When you issue GET for update, you get exclusive control of the
buffer. Whether you have exclusive control or not, you can mark
the buffer for output by issuing the MRKBFR (mark buffer) macro
with MARK=OUT and then change the buffer's contents. Without
exclusive control, you should not change the control information
in the CIDF or RDFs (do not change the record lengths).

MRKBFR, MARK=OUT, indicates that the buffer's contents are
modified. You must modify the contents of the buffer
itself--not a copy. Consequently, when you issue SCHBFR or GET
to locate the buffer, you must specify RPL OPTCD=LOC. (If you
use OPTCD=MVE, you get a copy of the buffer but do not learn its
location.) The buffer is written when a WRTBFR is issued or when
VSAM is forced to write a buffer to satisfy a GET request.

If you are sharing a buffer or have exclusive control of it, you
can release it from shared status or exclusive control with
MRKBFR, MARK=RLS. If the buffer was marked for output, MRKBFR
with MARK=RLS does not nullify it; the buffer is eventuallY
written. Sequential positioning is lost. MRKBFR with MARK=RLS is
similar to the ENDREQ macro.

SUMMARY OF RESTRICTIONS FOR SHARED RESOURCES

Restrictions for using the LSR and GSR options are:

• Empty data sets cannot be processed (that is, loaded).

102 MVS/370 VSAM Users Guide

• Improved control interval access cannot be used (ACB
MACRF=ICI).

• Control blocks 1n common (CBIC) cannot be used.

• User buffering is not allowed (ACB MACRF=UBF).

• Writes for data sets with SHAREOPTIONS 4 cannot be deferred
(ACB MACRF=DFR).

• Request parameter lists for MRKBFR, SCHBFR, and WRTBFR
cannot be chained (the NXTRPl operand of the RPl macro is
ignored).

• For sequential access, positioning at the beginning of a
data set must be explicit: with a POINT macro or a direct
GET macro with RPL OPTCD=NSP.

• Temporary CLOSE and ENDREQ do not cause buffers to be
written if MACRF=DFR was specified in the associated ACB.

• With GSR, an ACB and all related RPLs, EXLSTs, data areas,
and ECBs must be stored in the common area of virtual
storage with protection key 0 to 7; all-VSAM requests
related to the global resource pool may be issued only by a
program in supervisor state with protection key 0 to 7 (the
same as that of the resource pool).

• Checkpoints cannot be taken for data sets whose resources
are shared in a global resource pool. When a program in an
address space that opened a data set whose ACB has MACRF=GSR
issues the CHKPT macro, 8 is returned in register 15. If a
program in another address space issues the CHKPT macro, the
checkpoint is taken, but only for data sets that are not
using the global resource pool.

Checkpoint/restart can be used with data sets whose
resources are shared in a local resource pool, but the
restart program does not reposition for processing at the
point where the checkpoint occurred--processing is restarted
at a data set's highest used RBA. For information about
restarting the processing of VSAM data sets, see
Checkpoint/Restart.

• Buffer Retention because of Physical Error

If a physical I/O error is encountered while writing a
control interval to the direct access device, the buffer
remains in the resource pool. The write-required flag
(BUFCMW) and associated mod bits (BUFCMOBT) are turned off,
and the BUFC is flagged in error (BUFCER2=ON). The buffer
is not replaced in the pool, and buffer writing is not
attempted.· To release this buffer for reuse, a WRTBFR macro
with TYPE=DS can be issued or the data set can be closed
(CLOSE issues the WRTBUFR macro).

PROCESSING THE INDEX OF A KEY-SEqUENCED DATA SET

You can gain access to the index of a key-sequenced data set in
one of two ways:

• By opening the cluster and using the GETIX and PUTIX macros

• By opening the index component alone and using the macros
for normal data processing (GET, PUT, and so forth)

Processing the index component alone is identical to processing
an entry-sequenced data set; an index itself has no index and
thus cannot be processed by keyed access. "Processing VSAM Data
Sets" on page 15 tells tells how to gain access to data records.

Chapter 6. Options for Advanced Applications 103

Processing an alternate index is identical to processing a
key-sequenced data set; it too is described in "Processing VSAM
Data Sets" on page 15.

This section gives the format of VSAM index records, explains
the meaning and use of the information in them, and tells how to
gain access to them by way of GETIX and PUTIX. You should not
attempt to duplicate or substitute for the index processing that
VSAM does during normal access to data records.

THE FORMAT OF AN INDEX RECORD

Index records are stored in control intervals in the same way as
data records, except that only one index record is stored in a
control interval, and there is no free space between the record
and the control information. Consequently, there is only one
RDF, that contains the flag X'OO' and the length of the record
(a number equal to the length of the control interval minus 7).
The CIDF also contains the length of the record (the
displacement from the beginning of the control interval to the
control information); its second number is 0 (no free space).
The contents of the RDF and CIDF are the same for every used
control interval in an index. The control interval after the
last-used control interval has a CIDF filled with O's, and is
used to represent the software end-of-file (SEOF).

Index control intervals are not grouped into control areas as
are data control intervals. When a new index record is
required, it is stored in a new control interval at the end of
the index data set. As a result, the records of one index level
are not segregated from the records of another level, except
when the sequence set is separate from the index set. Each
index record is identified with respect to the level to which it
belongs by a field in the index header (see "The Header Portion"
on page 105).

When an index record is replicated on a track, each copy of the
record is identical to the other copies. Replication has no
effect on the contents of records.

Figure 20 sketches the parts of an index record.

Header

Free­
Control-
Interval
Entries,
If Any

Unused
Space Index-Entry Portion

..------r----"I ~ ill (~I ---JU~------'
Length: I 24 I Variable I Variable I Variable

Figure 20. General Format of an Index Record

The first part is a header that contains control information
about the record.

Next, a sequence-set index record (a record in the lowest level
of the index) may contain a set of free control interval entries
used to locate free control intervals in the control area
governed by the index record. An index-set index record (a

104 MVS/370 VSAM Users Guide

The Header Portion

record in a higher level of the index) has no entries of this
type.

Next, an index record may have unused space.

The last part is a set of index entries used to locate, for an
index-set record, control intervals in the next lower level of
the index, or, for a sequence-set record, used control intervals
in the control area governed by the index record.

The first 24 bytes of an index record is the header, which gives
control information about the index record. Figure 21 shows its
format. All lengths and displacements are in bytes. The
discussions in the following two sections ~mplify tha meaning
and use of some of the fields in the header.

Field Offset Length Description

IXHLL 0(0) 2 Record length. The length of the indexed record is equal
to the length of the control interval minus 7.

IXHFLPLN 2(2) 1 Index-entry control-information length. This is the length
of the last three of the four fields in an index entry.
(The length of the first field is variable.) The length of
the control information is 3, 4, or 5 bytes.

IXHPTLS 3(3) 1 Vertical-pointer-length indicator. The fourth field in an
index entry is a vertical pointer to a control interval.

IXHBRBA 4(4) 4

In an index-set record, the pointer is a binary number
that designates a control interval in the index. The
number is calculated by dividing the RBA of the control
interval by the length of the control interval. To allow
for a possibly large index, the pointer is always 3 bytes.
In a sequence-set record, the pointer is a binary number,
beginning at 0, that designates a control interval in the
control area governed by the sequence-set record. A
free-control-interval entry is nothing more than a
vertical pointer. There are as many index entries and
free control interval entries in a sequence-set record as
there are control intervals in a control area. Depending
on the number of control intervals in a control area, the
pointer is 1, 2, or 3 bytes.

An IXHPTLS value of X'OI' indicates a 1-byte pointer;
X'03' indicates a 2-byte pointer; X'07' indicates a 3-byte
pointer.

Base RBA. In an index-set record, this is the beginning
RBA of the index. Its value is O. The RBA of a control
interval in the index is calculated by multiplying index
control interval length times the vertical pointer and
adding the result to the base RBA.

In a sequence-set record, this is the RBA of the control
area governed by the record. The RBA of a control interval
in the control area is calculated by multiplying data
control interval length times the vertical pointer and
adding the result to the base RBA. Thus, the first control
interval in a control area has the same RBA as the control
area (length times 0, plus base RBA, equals base RBA).

Figure 21 (Part 1 of 2). Format of the Header of an Index Record

Chapter 6. Options for Adyanced Applications 105

Field

IXHHP

IXHlV

IXHFSO

IXHlEO

IXHSEO

Offset Length Description

8(8) 4 Horizontal-pointer RBA. This is the RBA of the next index
record in the same level as this record. The next index
record contains keys next in ascending sequence after the
keys in this record.

12(C) 4

16(10) 1

17(11) 1

18(12} 2

20(14) 2

22(16) 2

(Reserved.)

level number. The sequence-set is the first level of an
index, and each of its records has an IXHlV of 1. Records
in the next higher level have a 2, and so on.

(Reserved.)

Displacement to the unused space in the record. In an
index-set record, this is the length of the header
(24)--there are no free control interval entries.

In a sequence-set record, the displacement is equal to 24,
plus the length of free control interval entries, if any.

Displacement to the control information in the last index
entry. The last (leftmost) index entry contains the highest
key in the index record. In a search, if the
search-argument key is greater than the highest key in the
preceding index record but less than or equal to the
highest key in this index record, then this index record
governs either the index records in the next lower level
that have the range of the search-argument key or the
control area in which a data record having the
search-argument key is stored.

Displacement to the control information in the last
(leftmost) index entry in the first (rightmost) section.
Index entries are divided into sections to facilitate a
quick search. Individual entries are not examined until
the right section is located.

Figure 21 (Part 2 of 2). Format of the Header of an Index Record

The Free Control Interval Entry Portion

If the control area governed by a sequence-set record has free
control intervals, the sequence-set record has entries pointing
to those free control intervals. Each entry is 1, 2, or 3 bytes
long (indicated by IXHPTlS in the header: the same length as the
pointers in the index entries).

The entries come immediately after the header. They are used
from right to left. The rightmost entry is immediately before
the unused space (whose displacement is given in IXHFSO in the
header). When a free control interval gets used, its free entry
is converted to zero, the space becomes part of the unused
space, and a new index entry is created in the position
determined by ascending key sequence.

Thus, the free control interval entry portion contracts to the
left, and the index-entry portion expands to the left. When all
the free control intervals in a control area have been used, the
sequence-set record governing the control area no longer has
free control interval entries, and the number of index entries
equals the number of control intervals in the control area.
Note that if the index control interval size was specified with
too small a value, it is possible for the unused space to be
used up for index entries before all the free control intervals
have been used, resulting in control intervals within a data
control area that cannot be utilized.

106 MVS/370 VSAM Users Guide

The Index-Ent~y Po~tion

The index-entry portion of an index record takes up all of the
record that is left over after the header, the free control
interval entries, if any, and the unused space.

Figure 22 shows the format of the index-entry portion of an
index record. To improve search speed, index entries are
grouped into sections, of which there are approximately as many
as the square root of the number of entries. For example, if
there are 100 index entries in an index record, they are grouped
into 10 sections of 10 entries each. (The number of sections
does not change, even though the number of index entries
increases as free control intervals get used.)

0

Last
Section

Index
Entries

Third
Section

Index
Entries

Second
Section

Index
Entries

Displacement from
this section to the next

First
Section

Index
Entries

Figure 22. Format of the Index-Entry Portion of an Index Record

The sections, and the entries within a section, are arranged
from right to left. IXHlEO in the header gives the displacement
from the beginning of the index record to the control
information in the leftmost index entry. IXHSEO gives the
displacement to the control information in the leftmost index
entry in the rightmost section. You calculate the displacement
of the control information of the rightmost index entry in the
index record (the entry with the lowest key) by subtracting
IXHFlPlN from IXHlL in the header (the length of the control
information in an index entry from the length of the record).

Each section is preceded by a 2-byte field that gives the
displacement from the control information in the leftmost index
entry in the section to the control information in the leftmost
index entry in the next section (to the left). The last
(leftmost) section's 2-byte field contains O's.

Figure 23 on page 108 gives the format of an index entry. Index
entries are variable in length within an index record, because
VSAM compresses keys. That is, it eliminates redundant or
unnecessary characters from the front and back of a key to save
space. The number of characters that can be eliminated from a
key depends on the relationship between that key and the
preceding and following keys.

Chapter 6. Options for Advanced Applications 107

Compressed
Key

Control
Information

c=J ______ f ______ ~I f 0
Length: I Variable I 1-3 I

Vertical
pointer

Number of characters
kept in the compressed key

Number of characters
eliminated from the front
of the key

Figure 23. Format of an Index Entry

For front compression, VSAM compares a key in the index with the
preceding key in the index and eliminates from the key those
leading characters that are the same as the leading characters
in the preceding key. For example, if key 12 356 follows key
12 345, the characters 123 are eliminated from 12 356 because
they are equal to the first three characters in the preceding
key. The lowest key in an index record has no front
compression; there is no preceding key in the index record.

There is an exception for the highest key in a section. For
front compression, it is compared with the highest key in the
preceding section, rather than with the preceding key. The
highest key in the rightmost section of an index record has no
front compression; there is no preceding section in the index
record.

For rear compression, VSAM compares a key in the index with the
following key in the data and eliminates from the key those
characters to the right of the first character that is unequal
to the corresponding character in the following key. For
example, if the key 12 345 (in the index) precedes key 12 356
(in the data), the character 5 is eliminated from 12 345 because
the fourth character in the two keys is the first unequal pair.

The first of the control information fields gives the number of
cha~acters eliminated from the front of the key, and the second
field gives the number of characters that remain. When the sum
of these two numbers is subtracted from the full key length
(available from the catalog when the index is opened), the
result is the number of characters eliminated from the rear.
The third field indicates the control interval that contains a
record with the key.

The example in Figure 24 on page 109 gives a list of full keys
and shows the contents of the index entries corresponding to the
keys that get into the index (the highest key in each data
control interval). A sequence-set record is assumed, with
vertical pointers 1 byte long. The index entries shown in the
figure from top to bottom are arranged from right to left in the
assumed index record.

108 MVS/370 VSAM Users Guide

Full Key Index Entry Eliminated Eliminated
from from
Front Rear

K F L P

12345 ~ 2 3 4 I I 4 0 none 5

12350

12353

12354 K F L P

12356 ~ 5 6 3 2 123 none

12357

12358 F L P

12359 ~ 4 0 2 1235 9

12370

12373

12380

12385

12390 K F L P

12401 ~ 4 0 2 3 3 12 none

12405

12410

12417 F L P

12421 ~ I 3 I 0 I 4 I 124 21

12600

13200 K F L P

13456 ~ 3 4 2 5 56

13567

Legend:

-7= the key goes into the index

K characters left in key after compression

F number of characters eliminated from the front

L number of characters left in key after compression

p vertical pointer

Figure 24. Example of Key Compression

Chapter 6. Options for Advanced Applications 109

Key 12 345 has no front compression because it is the first key
in the index record. Key 12 356 has no rear compression
because, in the comparison between 12 356 and 12 357, there are
no characters following 6, which is the first character that is
unequal to the cor. 8sponding character in the following key.

You can always figure out what characters have been eliminated
from the front of a key; you cannot figure out the ones
eliminated from the rear. Rear compression, in effect,
establishes the key in the entry as a boundary value instead of
an exact high key. That is, an entry does not give the exact
value of the highest key in a control interval, but gives only
enough of the key to distinguish it from the lowest key in the
next control interval. In Figure 24 on page 109, for example,
the last three index keys, after rear compression, are 12 401,
124, and 134. Data records with key fields between 12 402 and
124FF are associated with index key 124; data records with key
fields between 12 500 and 134FF are associated with index key
134.

If the data record with the highest key in a control interval is
deleted, the index entry's key value does not change--does not
change, in fact, even if all the data records are deleted.

The last index entry in an index level indicates the highest
possible key value. The convention for expressing this value is
to give none of its characters and indicate that no characters
have been eliminated from the front. The last index entry in
the last record in the sequence set looks like this:

F L P

o 0 x I

where x is a binary number from 0 to 255, assuming a I-byte
pointer.

In a search, the two O's signify the highest possible key value
in this way: The fact that 0 characters have been eliminated
from the front implies that the first character in the key is
greater than the first character in the preceding key. A length
of 0 indicates that no characters need be compared to determine
whether the search is successful; that is, when a search
encounters the last index entry, a hit has been made.

INDEX ENTRIES FOR A SPANNED RECORD: In a key-sequenced data set,
there is an index entry for each control interval that contains
a segment of a spanned record. All the index entries for a
spanned record are grouped together in the same section. They
are ordered from right to left according to the sequence of
segments (first, second, third, and so on).

Only the last (leftmost) index entry for a spanned record
contains the key of the record. The key is compressed according
to the rules described above. All the other index entries for
the record look like this:

F L P

y 0 I x I

110 MVS/370 VSAM Users Guide

where y is a binary number equal to the length of the key (y
indicates that the entire key has been "eliminated from the
front"; l indicates that 0 characters remain) and x identifies
the control interval that contains the segment.

When a spanned record is deleted, all the index entries except
the last (the one that contains the key) are deleted and free
control interval entries are created to identify the freed
control intervals.

HOW TO GAIN ACCESS TO A KEY-SEQUENCED DATA SET'S INDEX

Opening the Cluster

You can gain access to the index of a key-sequenced data set in
one of two ways:

• By opening the cluster and using the GETIX and PUTIX ffiac~~s

• By opening the index component alone and using the macros
for normal data processing (GET, PUT, and so forth)

To process the index of a key-sequenced data set with GETIX and
PUTIX, you must open the cluster with ACB MACRF=(CNV, ...)
specified. CNV provides for control interval access, which you
use to gain access to the index component.

GETIX and PUTIX are coded the same way as the other request
macros: Their only operand is RPl=address.

Access by way of GETIX and PUTIX is direct by control interval:
VSAM requires RPl OPTCD=(CNV,DIR). The search argument for
GETIX is the RBA of a control interval. The increment from the
RBA of one control interval to that of the next is control
interval size for the index.

GETIX can be issued either for update or not for update. VSAM
recognizes OPTCD=NUP or UPD but interprets OPTCD=NSP as NUP.

The contents of a control interval cannot be inserted by way of
PUTIX: VSAM requires OPTCD=UPD. The contents must previously
have been retrieved for update by way of GETIX.

RPl OPTCD=MVE or lOC may be specified for GETIX, but only
OPTCD=MVE is valid for PUTIX. If you retrieve with OPTCD=lOC,
you must change OPTCD to MVE to store. With OPTCD=MVE, AREAlEN
must be at least index control interval size.

Beyond these restrictions, access to an index by way of GETIX
and PUTIX follows the rules under "Processing Control Intervals"
on page 81.

ERROR RETURN CODES: The error return codes for GETIX and PUTIX
are the same as for GET and PUT; which are given in VSAM
Reference.

opening the Index Component of the Cluster

You can gain addressed or control interval access to the index
component of a key-sequenced cluster by opening the index
component alone and using the request macros for normal data
processing. To open the index component alone, specify:

DSNAME=indexcomponentname

in the DD statement identified in the ACB (or GENCB) macro.

You can gain access to index records with addressed access and
to index control intervals with control interval access. The
use of these two types of access for processing an index is

Chapter 6. Options for Advanced Applications 111

identical in every respect with their use for processing a data
component.

BUILDING PARAMETER LISTS FOR GENCB, MODCB, SHOWCB, AND TESTCB

The standard forms of GENCB, MODCB, SHOWCB, and TESTCB build a
parameter list, put its address in register 1, and pass control
to a VSAM routine to generate, modify, display, or test an
access method control block, exit list, or request parameter
list. Other forms of the macros only build the parameter list
(list forms) or only pass control to VSAM (execute forms). All
these forms are described in VSAM Reference.

You can avoid using a macro to build the parameter list by
building it yourself and issuing the execute form of the macro
to pass control to VSAM. This chapter explains how to build the
parameter lists for GENCB, MODCB, SHOWCB, and TESTCB. The rules
for combinations of codes in a parameter list are the same as
the rules for combinations of operands in a macro, which are
given in VSAM Reference.

You can avoid issuing the execute form of the macro by coding
the linkage instructions that pass control directly to the VSAM
control block manipulation routine. Before passing control, you
must build the parameter list yourself.

THE FORMAT OF THE PARAMETER LISTS

A parameter list for GENCB, MODCB, SHOWCB, or TESTCB is a list
of fullword addresses. The first address points to a header
entry that identifies the type of request and type of control
block and gives other general information about the request.
Each of the rest of the addresses in the parameter list points
to an element entry that identifies the information you want to
generate, modify, display, or test.

The fullwords in the parameter list must be contiguous, and the
last one must have a 1 in its first bit. The header entry and
each element entry may be separate from each other.

Figure 25 on page 113 gives the formats of the header and
element entries for the four request types.

BUILDING HEADER AND ELEMENT ENTRIES

Five assembler macros are provided for building entries.
IDAGENC, IDAMODC, IDASHOW, and IDATEST help you build a header
entry for generation, modification, display, or test. IDAELEM
helps you build an element entry.

[label] IDAGENC [DSECT={YESINOJl

[label] IDAMODC [DSECT={YESINOJl

[label] IDASHOW [DSECT={YESINQJl

[label] IDATEST [DSECT={YESINOJl

[label] IDAElEI1 [DSECT={YESINO}l

DSECT={YESINO}
Indicates whether a DSECT statement is to be generated. If
you intend to build entries in a continuous area, you could
have only the first of the macros generate a DSECT
statement and use a single register to address the whole
area.

112 M~S/370 VSAM Users Guide

Generation

GENCB

Modification

MODCB

Display

SHOWCB

Test
TESTCB

o

4

8

o

4

o

4

8

12

o

4

8

12

Header Entry

GENBTC GENFTC GENCOP

Control- Function Number of copies
block type type of block

GENUSA (optional)

Address of area provided
for generation

GENUSL (optional) (reserved)

Length of area

MODBTC MODFTC (reserved)

Control- Function
block type type

MODBLAD

Address of control block
to be modified

SHOWBTC SHOWFTC SHOWOBJ
(optional)

Function Object type Control-
block type type (data or index)

SHOWBLAD (optional)

Address of control
block to be displayed

SHOWUSA

Address of area provided
for display

SHOWUSL (reserved)

Length of area

TESTBTC TESTFTC TESTOBJ
(optional)

Function Object type Control-
block type type (data or index)

TESTBLAD (optional)

Address of control
block to be tested

TESTERET (optional)

Address of error-analysis
routine ([RET)

(reserved)

o

4

o

4

Element Entry

ELEMKWTC

Keyword
type

Keyword value

(required for
some keywords)*

L ___ _

ELEMKWTC

Keyword
type

Keyword value

(reserved)

(reserved)

8,
(required for

, some keywords)*
L _____________ ...J

o ELEMKWTC (reserved)

o

4

Keyword
type

ELEMKWTC

Keyword
type

Keyword value

(required for
some keywords)*

(reserved)

L _____________ ...J

*Second fullword required for
keyword value of DDNAME,
STMST, EODAD, JRNAD,
LERAD, and SYNAD.

Figure 25. Format of Header and Element Entries for GENCB, MODCB, SHOWCB, and TESTCB
Parameter lists

Chapter 6. Options for Advanced Applications 113

These macros generate labeled DS statements that give the layout
of an entry and EQU statements that pair a label with a numeric
code. You can symbolically encode an entry with a series of
move instructions. The macros are self-documenting; inspect a
listing of their expansions and you can see what labels to code
in your move instructions. (You can list the macros as they
appear in the macro library.)

To generate an exit list with LERAD and SYNAD exits, you could
code a GENCB of the standard form:

GENeB BLK=EXLST,LERAD=(LOGERR,Ll,SYNAD=PHYSERR

The following example shows how to achieve the same effect by
building the parameter list and entries yourself and issuing a
GENCB of the execute form.

LA S,NTRYAREA

USING S,GENC

Set up base register for the
entries.

GENC is the first label in the
work area.

Build the list of addresses that point to the entries.

Build the

114 MVS/370 VSAM Users Guide

ST

LA

S,PLIST

6,GENLEtH,S)

ST 6,PLIST+4

Address of the header entry.

Address of the first element
entry. GENLEN is equated to the
length of a header element for
generation.

LA 6,ELEMLLEN(,6) Address of the second element

ST 6,PLIST+8

01 PL1ST+8,X'80'

header entry.

MV1 GENBTC,GENXLST

MVI GENFTC,GENFTYP

MVI GENCOP+l,X'Ol'

MVI ELEMKWTC+1,
ELEMlEAD

LA 6,LOGERR

ST 6,ELEMPTR

MVI ELEMXFLG,
EL Ef'lXL + EL EMXADR

entry. ELEMLLEN is equated to
the length of an element entry
for an exit list.

End-of-list indicator.

Indicate the block type--exit
list.

Indicate the function
type--generation.

Indicate the number of copies
of the exit list to be
generated.

Indicate the keyword
type--LERAD.

Address of the name of the
logi c-al error analysis module.

Indicate the presence of an
address ELEMPTR and that the
exit routine is to be loaded.

Build the second element entry.

lA 5,ElEMllEN(,5)

MVI ELEMKWTC+1,
El E~1SYAD

LA 6,PHYSERR

ST 6,ElEMPTR

.... " ... r-I r-"-A'-'r"'1 " nv.1 I:: L I::I"IA r L u,
ElEMXADR

Pass control to VSAM.

CHECKO

GENCB

LTR

BNZ

ABEND

MF=(E,PlIST)

15,115

CHECKO

1,DUMP

Align the DSECT with the
second element entry. ELEMllEN
is equated to the length of an
element entry for an exit list.

Indicate the keyword
type-SYNAD.

Address of the entry point of
the physical error analysis
routine.

Indicate the presence of an
address in ElEMPTR.

Generation successful

No.

Register 0 indicates the error.

Physical error analysis exit routine.

PHYS ERR . . .

Work areas and constants.

LOGERR DC CL8'lEMOD'

PlIST DC 3F'O'

NTRYAREA DC 9F'O'

Name of the
logical error analysis
module to be loaded.

list of entry addresses.
3 addresses are required:
1 for the header and 2 for
the elements (1 for lERAD and
1 for SYNAD).

Work area for header and
element entries. The header
for GENCB is 3 fullwords,
and so are the lERAD
and SYNAD elements.

DSECT with labels for the header and element entries.

IDAGENC

IDAElEM DSECT=NO

Header entry. A DSECT
statement is generated, and
register 5 is used to
address NTRYAREA with these
labels.

Element entry. Element labels
are part of the same DSECT as
the header labels.

Chapter 6. Options for Advanced Applications 115

PASSING CONTROL DIRECTLY TO VSAM

You can avoid using the execute form of GENCB, MODCB, SHOWCB,
and TESTeB by building your own linkage instructions. You first
build a parameter list, as described in the previous section,
and put its address in register 1. Then you pass control to
VSAM using the following instructions:

L

L

L

BALR

BAL

15,16

15,256(,15)

15,12(,15)

14,15
or

14,xx(,15)

Put the address of the CVT into register
15.

Put the address of the AMCBS control block
into register 15.

Put the address of the control block
manipulation routine into register 15.

Branch to the routine

The BALR 14,15 instruction is used when the specific function
(GENCB, MODCB, SHOWCB, or TESTCB) is not known, or when the
control block type (ACB, EXLST, or RPL) is not known. The
user-built parameter list contains the function code and control
block type code.

The BAL 14,xx(,15) instruction is used to increase your
program's performance. The "xx" is a decimal value that
identifies a function (GENCB, MODCB, SHOWCB, or TESTCB) and a
control block type (ACB, EXLST, or RPL).

Decimal Value
of xx Function Control Block

8 GENCB ACB

12 GENCB RPL

16 GENeB EXLST

20 Reserved

24 MODCB ACB

28 MODCB RPL

32 MODCB EXLST

36 Reserved

40 SHOWCB ACB

44 SHOWCB RPL

48 SHOWCB EXLST

52 Reserved

56 TESTCB ACB

60 TESTeB RPL

64 TESTCB EXLST

68 Reserved

72 SHOWCB or TESTeB Block length
keywords only

116 MVS/370 VSAM Users Guide

Decimal Value
of xx Function Control Block

76 1 SHOWCB REClEN field of an
RPl

80 1 MODCB REClEN field of an
RPl

Register 1 points to an RPL when xx is 76 or 80. See the
following section for details.

When VSAM returns to your program, register 15 contains a
completion code. Register 15 contains a zero value if the task
completed successfully. Otherwise, register 15 and register 0
contain codes that identify the reason VSAM could not complete
the task. For error code information, see VSAM Reference.

Modifying and Displaying the RECLEN Field of an RPL Directly

You can modify or display the RECLEN field (that is, the record
length) of an RPl without issuing a SHOWCB or MODCB macro, and
without building a parameter list.

To modify a RPL's RECLEN field, you first put the address of the
RPL in register 1, and the value to be set in the RECLEN field
in register O. Next, you code the instructions that put the
address of the VSAM control block manipulation routine into
register 15, then branch to the routine:

L 15,16

L 15,256(,15)

L 15,12(,15)

BAL 14,80(,15)

Put the address of the CVT into register
15.

Put the address of the AMCBS control block
into register 15.

Put the address of the control block
manipulation routine into register 15.

Branch to the routine.

When VSAM returns to your program, register 15 contains a
completion code. Register 15 contains a zero value if the field
was modified correctly. Otherwise, register 15 and register 0
contain codes that identify the reason VSAM could not complete
the task. For error code information, see VSAM Reference.

To display the contents of a RPL's RECLEN field, you first put
the address of the RPL in register 1. Next, you code the
instructions that put the address of the VSAM control block
manipulation routine into register 15, and then branch to the
routine:

L

L

l

BAL

15,16

15,256(,15)

14,76(,15)

Put the address of the CVT into register
15.

Put the address of the AMCBS control block
into register 15.

Put the address of the control block
manipUlation routine into register 15.

Branch to the routine.

Chapter 6. Options for Advanced Applications 117

When VSAM returns to your program, register 15 contains a
completion code. Register 15 contains a zero value if the field
is displayed correctly, and register 0 contains the value of the
RPL's RECLEN field. When register 15 is not zero, register 15
and register 0 contain codes that identify the reason VSAM could
not complete the task. For error code information, see VSAM
Reference. ----

STAGING VSAM DATA SETS ON A KEY OR KEYRANGE BASIS FOR MASS STORAGE SYSTEM (MSS)

Certain MSS applications are characterized by very large data
bases for which staging or binding of all the data at OPEN time
is not practical. Also, for the purpose of retrieving the data,
these applications characteristically require a large number of
queries. Thus, cylinder fault mode is equally impractical.
Applications of this nature require a capability for selective
staging. In other words, what you want is a mechanism to stage
necessary data from multiple adjacent or nonadjacent cylinders
with a single MSS cartridge load operation. You would thus
avoid an inordinate amount of time spent in loading and
unloading MSS cartridges for each cylinder required by the
processing program.

VSAM provides support for the above MSS environment by means of
the stage-by-keyrange function. This function involves two
interfaces with three macros. One interface supports prestaging
of discretely identified records through the use of two macros:
CNVTAD (convert address) and MNTACQ (mount acquire). The other
interface supports prestaging of a specified range of records
through the use of the ACQRANGE (acquire range) macro.

The use of the above VSAM macros enables you to prestage your
data and thus to optimize your use of MSS in the environments
discussed above. With prestaging, data extents can be acquired
in advance of their use, thus reducing the number of cylinder
faults incurred during processing.

The CNVTAD/MNTACQ combination would typically be used when your
MSS application needs to refer to a small, noncontiguous subset
of data contained within a large data set. The following is a
description of a general application using the CNVTAD/MNTACQ
interface:

STEP 1
Your application program queues a number of transactions
for data stored on the MSS. On the basis of either time or
the number of elements on the queue, STEP 2 is initiated.

STEP 2
The transaction for a given data set are processed to
extract the keys to be used to access the data set. You
supply these keys as input to the CNVTAD macro, which
determines the volume and RBA on which each record resides
in MSS. The entries for a given volume may then be used by
your application as input to the MNTACQ macro. This
results in acquiring the data from the corresponding MSS
cartridges with a minimum number of cartridge loads.

STEP 3
Your application program will now process transactions for
a given data set and volume, and, in general, would not
encounter cylinder faults for the data acquired in STEP 2.

The second interface, ACQRANGE, gives you the capability of
prestaging a continuous subset of a data set rather than
individual cylinders or the entire data set. The continuous
portion can be defined by relative record numbers, keys, or
RBAs, depending upon the type of VSAM data set you have. The
data to be staged may cross volume boundaries, but the volumes
must be mounted. To minimize the subset of volumes that must be
mounted, the keyrange function of KSDSs may be useful.

118 MVS/370 VSAM Users Guide

The three VSAM macros, CHVTAD, MHTACQ, and ACQRAHGE, which
support the stage by keyrange function, are described below.

CNVTAD: CONVERT AN ARGUMENT TO AN ADDRESS

The CHVTAD macro is intended to be used in conjunction with the
MHTACQ macro in order to achieve prestaging of needed records
before they are actually required by your application program.
You supply an argument for CHVTAD. The argument depends on the
type of your VSAM data set:

KSDS
ESDS
RRDS

Full key of the record
RBA of the record
Relative record number (RRH) of the record

MNTACQ: MOUNT A VOLUME AND ACQUIRE CYLINDERS

The MHTACQ macro is intended to be used in conjunction with the
CHVTAD macro to prestage needed records from a single volume in
advance of their actual use. When you invoke MHTACQ, you give
it a list of RBAs and a volume serial number. MHTACQ causes the
volume to be mounted (if it is not already mounted) and stages
the cylinders corresponding to the RBAs provided.

ACQRANGE: ACQUIRE A CONTINUOUS RANGE OF RECORDS

NON-MSS SUPPORT

ACQRANGE i5 intended for use in applications slightly different
from those of CHVTAD and MNTACQ. It provides a mechanism to
stage a continuous portion of your data set rather than
individual cylinders or the entire data set. You would
typically use ACQRAHGE when you are doing processing within a
range of keys and when you know the volume serial number of the
virtual volume on which your range of keys resides. Input to
ACQRANGE is a starting and ending pair of arguments (keys, RBAs,
or RRHs) which delineates the subset of data you wish to be
staged.

All required volumes must be mounted (via JCL or dynamic
allocation) prior to execution of ACQRAHGE. If not, your
request will be rejected. Mounting must be in parallel, which
means you must have at least as many units as virtual volumes.

As an aid to MSS migration, installation, and testing, VSAM
allows you to issue CHVTAD, MHTACQ, and ACQRANGE macros against
non-MSS data sets. Such use against nonvirtual DASD will result
in register 15 being set to zero; however, the RPlERRCD field in
the RPL will be nonzero for ACQRAHGE and MHTACQ. For error code
information, see VSAM Reference.

RESTRICTIONS AND LIMITATIONS

The MSS staging VSAM data sets on a key or keyrange basis
function has the following restrictions and limitations you need
to be aware of:

• For key processing, key equal and key equal or greater than
are supported, but the generic key facility is not
supported. If you wish to use generic keys, you must pad
your generic key to the full key length.

• The RPl option, OPTCD=WAITX, is not supported.

• Chained RPls are not supported.

• The data set must be opened in non-ICI (improved control
interval) mode.

Chapter 6. Options for Advanced Applications 119

ALTERNATE INDEXES

• User buffers are not supported for LSR and GSR.

• You cannot use these macros against a data set in create
mode.

• When used in path processing, alternate indexes are not
supported. However, alternate indexes are supported when
opened as end-use VSAM objects.

• You cannot use these macros against a key-sequenced data set
with an embedded single-level index.

• Data staged by MNTACQ and ACQRANGE is not "bound." That is,
it may be destaged prior to use of the data because of the
requirements for MSS facilities either by your own program
or by another MSS user program.

• VSAM, through its SHAREOPTIONS facilities, allows'for
concurrent updating of a data set by two or more tasks or
regions with varying degrees of support. With these
facilities, operations against a key-sequenced data set by
one task cause copies of the index in use by other tasks to
remain valid and useful. Keeping the index current allows
data records to be retrieved and manipulated with data
integrity.

With prestaging, however, updating using SHAREOPTIONS may
cause problems. Because the index is used well in advance
of the actual reference to the data, concurrent insertions
by other users can render the target addresses derived by
ACQRANGE or CNVTAD obsolete and erroneous before or after
the data records have been prestaged.

This exposure increases when DISP=SHR is specified, because
this may allow alterations concurrent with prestaging.

You should remember that DISP and SHAREOPTIONS interact to
determine the nature of data set sharing for VSAM. However,
independent of data set sharing, prestaging may occur.
Prestaging as described in this chapter has no facility for
detecting or enforcing various sharing situations. If your
installation allows prestaging concurrent with data set
alteration, you can expect unpredictable errors as well as
fallacious staging and perhaps a degree of "MSS thrashing,"
an effect in direct opposition to the reason for prestaging.

• The MNTACQ and ACQRANGE macros obtain virtual storage
dynamically via the GETMAIN macro. If the request for
storage fails, a logical error code is set in the RPL.

Although these macros do not specifically support alternate
indexes and paths, support for alternate indexes can be
accomplished in the following manner: The alternate index is a
key-sequenced data set and can be processed as such. CNVTAD,
MNTACQ, and ACQRANGE macros can be used to stage the data
portion of the alternate index. After you have staged the
alternate index, the RBA and key pointers can be extracted from
the data component of the alternate index. These pointers can
be used as input to CNVTAD, MNTACQ, and ACQRANGE for the base
data.

120 MVS/370 VSAM Users Guide

CHAPTER 7. JOB CONTROL LANGUAGE

HOW TO CODE JCL

This chapter describes the job control language, an optional
method for connecting a data set and the program that is to use
it, how to code the VSAM JCl parameter (AMP), and how to
identify user catalogs for jobs or job steps (JOBCAT or
STEPCAT).

A necessary link between a processing program and the data set
to be processed is the data set name. When JCl is used, the
access method control block gives the name of the DO statement
so that the OPEN macro can make the connection between the
program and the data set nam~d in tha DD statamant, connacting
the program and data. Figure 26 on page 122 shows the
relationship between JCl and the VSAM macro. JCl is used to
catalog, uncatalog, and delete non-VSAM data sets in a catalog.
You can invoke dynamic allocation of auxiliary storage.
Although this publication does not describe the dynamic
allocation function, you can dynamically allocate VSAM data sets
and user catalogs. When you define a VSAM data set or catalog,
no DD statement is required if access method services can
dynamically allocate the volume. (For an explanation of dynamic
allocation, see the JCL manual.)

The catalog contains most of the information required by VSAM to
process a data set, so VSAM requires minimal information from
JCL. Data set name and disposition describe the data set. A
key-sequenced data set is described with a single DO statement.

To allow only one job step to access the data set, specify
DISP=OLD. If the data set's share options allow the type of
sharing your program anticipates, you can specify DISP=SHR in
the DD statements of separate jobs to enable two or more job
steps to share a data set. For more details on sharing data
sets, see the chapter, "Chapter 5. Sharing a VSAM Data Set" on
page 69.

VSAM data sets are created using access method services and are
cataloged in a catalog. To identify a VSAM data set through
JCl, specify a DO statement of the form:

//ddname DD DSNAME=dsname,DISP={OLDISHR}

Optionally, the AMP parameter may be specified to modify how the
program operates.

The DSNAME parameter specifies the name of the data set you are
processing. Each VSAM data set is defined as a cluster of one
or two components: A key-sequenced data set is made up of a data
component and an index component; and an entry-sequenced and a
relative record data set are made up of only a data component.
If you need to process a component separately, you may specify
the component's name in the DSNAME parameter.

If a data set has been defined in a user catalog, it is also
necessary to identify the user catalog by means of either a
JOBCAT or a STEPCAT DO statement.

When separate DD statements are used and one or more subtasks
will perform output processing, the DO statements must specify
DISP=SHR. With separate DO statements, several subtasks can
share a data set under the same rules as for cross-region
sharing.

Chapter 7. Job Control Language 121

//ddname DD DSNAME=dsname,DISP={OLDjSHR}

J

[label] OPEN (address [, (options)] , ...)

J

I
[label]

I
GETjPUT

I
RPL=address

I
I

- .[label] RPL [ACB=address]
[,OPTCD=([DIRjSEQjSKP]

[. . . . --:-:-:-. . . .])]
·

,It
[label] ACB ·

[,DDNAME=ddname]
[, BUFND=number]
[,BUFNI=number]
[,BUFSP=number]
[, MAC RF = ([D I R] [, SEQ] [, S KP]

[, IN] [,OUT]
[, NRS] [, RS T]
[. --:-:-:-. .])]

[,STRNO=number]
[,PASSWD=address]
[,EXLST=address]
·

~ .[label] EXLST [JRNAD= (addre s s [, A IN] [, L])]
[SYNAD= (address [,~I N] [,L])]
·

Figure 26. JeL to VSAM Macro Relationship

122 MVS/370 VSAM Users Guide

Because the operating system allows DD parameters and
subparameters that do not apply to a VSAM data set, you should
use the DD parameters and subparameters that have a clear
meaning when used with VSAM. Figure 27 shows the DD parameters
and subparameters that can be used with VSAM and indicates their
meaning for a VSAM data set. DD parameters and subparameters
not shown in Figure 27 should be avoided.

With a data set defined in a VSAM catalog, you may mount some,
but not all, of the volumes on which a data set is stored
(called subset mount), you specify the DD parameters VOLUME and
UNIT.

Note: This may cause excessive processing time because of mount
and demount activities directed to those volumes.Specifying
those parameters to open a DCB (to be processed through the ISAM
interface program) prevents a reference to the VSAM catalog and
requires that you use the AMP subparameter AMP=iAMORG' to
identify the data set as a VSAM data set. If you specify VOLUME
and UNIT to open a VSAM ACB, AMORG is not required.

JCL PARAMETERS USED WITH VSAM

Parameter

AMP

DDNAME

DISP

DSNAME

DUMMY

UNIT

Subpara~eter Comment

ddname

SHR

OLD

PASS

dsname

address

type

group
p

See "Coding the AMP Parameter" on page 126.

Specifies name of DD statement

Indicates that you are willing to share the data set with
other jobs. This subparameter alone, however, does not
guarantee that sharing will take place. See "Chapter 5.
Sharing a VSAM Data Set" on page 69for a description of
data-set sharing.

Defaults to SHR, if specified for an ICF or VSAM catalog

For VSAM, KEEP is assumed for PASS.

Specifies VSAM data set or non-VSAM object.

An attempt to read results in an end-of-data condition,
and an attempt to write results in a return code that
indicates the write was successful. If specified,
AMP='AMORG' must also be specified (see "Coding the AMP
Parameter" on page 126 later in this chapter). No I/O
activity is performed for a dummy data set.

Must be the address of a valid device for VSAM. If not,
OPEN will fail.

Must be a type supported by VSAM. If not, OPEN will fail.

Must be a group supported by VSAM. If not, OPEN will fail.
There must be enough units to mount all of the volumes
specified. If sufficient units are available, UNIT=p can
improve performance by avoiding the mounting and
demounting of volumes.

Figure 27 (Part 1 of 2). JCL DD Parameters

Chapter 7. Job Control Language 123

Parameter

VOLUME

Subparameter Comment

unitcount

DEFER

PRIVATE

RETAIN

SER

If the number of devices requested is greater than the
number of volumes on which the data set resides, the extra
devices are allocated anyway. If data and index components
reside on unlike devices, the extra devices are allocated
evenly between the unlike device types. If the number of
devices requested is less than the number of volumes on
which the data set resides but greater than the minimum
number required to gain access to the data set, the
devices over the minimum are allocated evenly between
unlike device types. If devices beyond the count specified
are in use by another task but are sharable and have
mounted on them volumes containing parts of the data set
to be processed, they will also be allocated to this data
set.

Note: Volume serial number and unit information should not
be specified for data sets cataloged in an ICF catalog.

The volume to be used does not have to be mounted until
the data set is opened. This causes all the units
associated with demountable volumes to be flagged as
nonshared.

Specifies volume is demounted unless RETAIN is coded.

Specifies that the volume is to retained at the system if
it was demounted during the job.

The volume serial number(s) used in the access method
services DEFINE command for the data set must match the
volume serial numbers in the VOlUME=SER specification in
the job in which the data set is defined. After a VSAM
data set is defined, the volume serial (number(s) need not
be specified on a DO statement to retrieve or process the
data set.

For data sets defined in VSAM catalogs if VOlUME=SER and
UNIT=type are specified, only those volumes named are
initially mounted. Other volumes may be mounted when they
are needed, if at least one of the units allocated to the
data set is not sharable and the number of OPENs issued
against the volume is less than or equal to 1, or the unit
count is greater than the total number of volumes
initially mounted. One unit is flagged as nonsharable when
unit count is less than the number of volume serial
numbers specified. If VOlUME=SER is specified and the
data set is cataloged in a user catalog, include a JOBCAT
or STEPCAT DO statement to identify the catalog to the
current job step unless the high-level qualifier of the
data set name is also the name of the user catalog.

Figure 27 (Part 2 of 2). JCl DO Parameters

JCL PARAMETERS NOT USED WITH VSAM

VSAM ignores parameters for defining tape data sets; data-set
sequence numbers, NSl, Nl, BlP, and Al. You cannot use the
parameters for a sequential data set (DATA, SYSOUT, and *) for
specifying a VSAM data set. DD names that are invalid for VSAM
data sets are: JOBlIB, STEPlIB, SYSABENO, SYSUOUMP, and SYSCHK.

OD parameters that are invalid are: UCS, QNAME, OYNAM, TERM,
and the forms of DSNAME for ISAM, PAM (partioned access method),
and generation data groups. VSAM does not allow for temporary
data sets or concatenated data sets.

124 MVS/370 VSAM Users Guide

CODING A DO STATEMENT FOR A CATALOG

The master catalog is always available, without specifying it
via JCL. You make other catalogs available by describing them
in DD statements with special names for a job (JOBCAT) or a job
step (STEPCAT), or by using special naming conventions where the
high-level qualifier of the data set name is also the name of
the user catalog. You describe a catalog sufficiently by giving
its data set name and specifying DISP=SHR. A catalog can be
either a JOBCAT or a STEPCAT catalog. If both JOBCAT and
STEPCAT catalogs are specified, the STEPCAT catalog is available
for the step for which it is specified, and the JOBCAT catalog
is available for all steps within the job. VSAM uses a data
set's name as a search argument to search a catalog. You can
minimize the use of JOBCAT and STEPCAT DD statements for your
jobs when you name your data set with a qualified entryname
whose first qualifier is the name or alias of the catalog in
which the data set is defined. When the catalog is not
identified with a DD statement, the scheduler searches the
master catalog for the data set's entryname. If the entryname
is not found, the system uses the entryname's first qualifier as
a search argument and attempts to locate either a catalog entry
or a catalog's alias entry in the master catalog. If the system
finds a catalog or alias entry whose name is the same as the
data set name's first qualifier, the operating system searches
that catalog for the data set's catalog record, using the data
set's full entryname.

If no catalog is indicated or if the definition is not found in
the catalog(s) that are indicated, the master catalog is assumed
to contain the definition of the data set described in a DD
statement. A catalog is specified either for all the steps of a
job or for a particular step. To specify a job catalog, place a
DD statement with the ddname JOBCAT before the first EXEC
statement after the JOB statement and after a JOBLIB statement,
if any:

//EXAMPLE
//JOBLIB
//JOBCAT
//

JOB
DD
DD
EXEC

DSNAME=USER.LIB,DISP=SHR
DSNAME=usercatalogname,DISP=SHR

To specify a job step catalog, place a DD statement with the
ddname STEPCAT after the EXEC statement of the step:

//STEPI EXEC ...
//STEPCAT DD DSNAME=usercatalogname,DISP=SHR

The order in which catalogs are searched when an existing entry
is to be located is:

• If a catalog is specified in a CATALOG parameter of the
access method services DEFINE command, only that catalog is
searched.

• Any catalog(s) specified in the current job step (STEPCAT)
or, if none is specified for the job step, any user
catalog(s) specified for the current job (JOBCAT). If more
than one catalog is specified for the job step or job, the
job-step or job catalogs are searched in order of
concatenation. For information of the search order, see
Access Method Services Reference.

• If the entry is not found and the entry's name is a
qualified name and the first qualifier (the first one to
eight characters before any period) is the same as the name
or alias of a catalog or the alias of an OS CVOL, that
catalog or OS CVOL is searched; otherwise, the master
catalog is searched.

Chapter 7. Job Control Language 125

RESTRICTION: OS CVOls are not searched (1) when an existing data
set is to be deleted except when the data set to be deleted, is
a non-VSAM data set, or (2) when an existing data set is to be
altered.

CODING THE AMP PARAMETER

VSAM has one additional JCl parameter of its own: AMP. The AMP
parameter takes effect when the data set defined by the DD
statement is opened. It has subparameters for:

• Overriding operands specified by way of the ACB, EXlST, and
GENCB macros

• Supplying operands missing from the ACB or GENCS macro

• Indicating checkpoint/restart options

• Indicating options when using ISAM macros to process a
key-sequenced data set

• Indicating that the data set is a VSAM data set when you
specify unit and volume information or DUMMY in the DD
statement

• Indicating that you want VSAM to supply storage dumps of the
access method control block(s) that identify this DD
statement

The AMP parameter takes effect when the data set defined by the
DD statement is opened.

The format of the AMP parameter is:

// ... DO ••• AMP=(['AMORG']
[,'BUFND=number']
[,'BUFNI=number']
[,'BUFSP=number']
[,'CROPS={RCKINCKINREINRC)']
[,'OPTCD={YTIIIl)'l
[,'RECFM={FIFSIVIVB)']
[,'STRNO=number']
[,'SYNAD=modulename'l
[,'TRACE']])

where:

AMORG
specifies that the DD statement defines a VSAM data set.
When you specify unit and volume information for a DCS
(through the ISAM interface program) or DUMMY in the DD
statement, you must specify AMORG. Under these conditions,
the system doesn't have to search a catalog to find out
what volume(s) are required, and therefore doesn't know
that the DD statement defines a VSAM data set. You never
have to specify unit and volume information, unless you
want to mount a subset of the volumes on which the data set
is stored, or want to defer mounting.

BUFND=number
specifies the number of data buffers.

BUFNI=number
specifies the number of index buffers.

BUFSP=number
specifies that one or more of these values is to override
whatever was specified in the ACB or GENCS macro, or that
one or more of these values is to be provided if not
previously specified. For further information on BUFND,
BUFNI, and BUFSP, see VSAM Re~ence.

126 MVS/370 VSAM Users Guide

CROPs=rRCKINCKINREINRC]
specifies one of four checkpoint/restart options, described
in detail in Checkpoint/Restart. If you specify an option
that is not applicable for a data set, such as the
data-erase test for an input data set, the option is
ignored.

NCK

NRE

NRC

specifies that a data-erase test and data
set-post-checkpoint modification tests are to be
performed.

specifies that data set-post-checkpoint modification
tests are not to be performed.

specifies that a data-erase test is not to be
performed.

specifies that neither a data-erase test nor data
set-post-checkpoint modification tests are to be
performed.

OPTCD={IILIIL}
specifies the type of processing of records flagged for
deletion (binary l's in the first byte) with an ISAM
processing program using the ISAM interface. I and l are
described in Appendix B, "Using ISAM Programming with VSAM"
on page 149.

RECFM={FIFBIVIVB}
specifies record format in the same way as the DCB (data
control block) parameter that is used for processing an
indexed-sequential data set. You use it when processing a
VSAM data set with an ISAM processing program to indicate
what record format the processing program assumes. The
options are described in Appendix B, "Using ISAM
Programming with VSAM" on page 149.

STRNO=number
specifies a value that is to override the STRNO value
specified in the ACB or GENCB macro, or to provide a value
if one was not specified.

SYNAD=modulename

TRACE

specifies a value that is to override the address of a
SYNAD exit routine specified in the EXlST or GENCB macro
that generates the exit list. The exit list intended is
the one whose address is specified in the access method
control block that links this DD statement to the
processing program. If no SYNAD exit was specified, the
SYNAD parameter of AMP is ineffective. You can also use
this parameter, when you are processing a VSAM data set
with an ISAM processing program, to provide an ISAM SYNAD
routine or to replace one with another.

specifies that generalized trace facility (GTF) is to be
active, along with your processing job, to gather
information associated with opening, closing, and
end-of-volume processing for the data set defined on this
DD statement. You can print the trace output with the
IMDPRDMP service program.

Trace also causes the VSAM record management trace facility
to be activated. Prompts to the operator from the trace
facility will occur when the cluster with this parameter is
processed by VSAM. See "Record Management Trace Facility"
in the Diagnostic Aids section of VSAM Logic.

Chapter 7. Job Control Language 127

Note: See Appendix B, "Using ISAM Programming with VSAM" on
page 149 for additional information on the use of the AMP
parameter with an ISAM processing program.

If you have more than one subparameter, they must be enclosed in
apostrophes. Apostrophes can enclose each individual
subparameter or group of subparameters. If you have more than
one pair of apostrophes, you must enclose all the subparameters
in a pair of parentheses. For example, AMP='AMORG,TRACE' or
AMP=('AMORG','TRACE'). If the subparameters continue from one
line to another, a pair of apostrophes cannot extend from one
line to the next, and you must use a pair of parentheses to
enclose all the subparameters.

The AMP parameter cannot be defined as a symbolic parameter (a
symbol preceded by an ampersand (&) that stands for a parameter
or the value assigned to a parameter or subparameter in a
cataloged or in-stream procedure).

128 MVS/370 VSAM Users Guide

CHAPTER 8. USER-WRITTEN EXIT ROUTINES

User-written routines may be supplied to:

• Analyze logical errors

• Analyze physical errors

• Perform end-of-data processing

• Record transactions made against a data set

• Perform user-security verification

• Update date fields

If the exit routine is used by a program that is doing
asynchronous processing with multiple request parameter lists
or, if the exit routine is used by more than one data set, it
must be coded so that it can handle an entry made before the
previous entry's processing is completed. A particularly
sensitive area is the saving and restoring of registers by the
exit routine or by other routines called by the exit routine.
The best way to do this is to code the exit routine reentrant;
another way is to develop a technique for associating a unique
save area with each request parameter list.

If the lERAD, EODAD, or SYNAD exit routine reuses the request
parameter list passed to it, the exit routine should be aware
that:

• Recursion occurs (that is, the exit routine is called again)
if the request that issues the reused RPL results in the
same exception condition that caused the exit routine to be
entered originally.

• The original feedback code is replaced with the feedback
code that indicates the status of the latest request issued
against the RPL. If the exit routine returns to VSAM, VSAM
(when it returns to the user's program) sets register 15 to
also indicate the status of the latest request.

LERAD EXIT ROUTINE TO ANALYZE LOGICAL ERRORS

A lERAD exit routine should examine the feedback field in the
request parameter list to determine what logical error occurred.
What the routine does after determining the error depends on
your knowledge of the kinds of things in the processing program
that may have caused the error. When your lERAD exit routine
completes processing, return to your main program as described
in "Returning to Your Main Program" on page 140. If the error
cannot be corrected, close the data set and either terminate
processing or return to VSAM.

Figure 28 gives the contents of the registers when VSAM exits to
the lERAD exit routine.

Note: A LERAD exit is not taken for RPLFDBC 64(40) because of
the inability of the program to use register 14 SAVEAREA in PLH.

Chapter 8. User-Written Exit Routines 129

Reg.

o
1

2-13

14

15

contents

Unpredictable.

Address of the request parameter list that contains the
feedback field the routine should examine. The register
must contain this address if you return to VSAM.

Same as when the request macro was issued. Register 13,
by convention, contains the address of your processing
program's 72-byte save area, which may not be used as a
save area by the LERAD routine if the routine returns
control to VSAM.

Return address to VSAM.

Entry address to the LERAD routine. The register doesn't
contain the logical-error indicator.

Figure 28. Contents of Registers at Entry to LERAD Exit Routine

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTeB
and returns to VSAM, it must restore registers 1, 13, and 14,
which are used by these macros. It must also provide two save
areas; one, whose address should be loaded into register 13
before the GENCB, MODCB, SHOWCB, or TESTCB is issued, and the
second, to separately store registers I, 13, and 14.

If a logical error occurs and no LERAD exit routine is provided
(or the LERAD exit is inactive), VSAM returns codes in register
15 and in the feedback field of the request parameter list to
identify the error.

SYNAD EXIT ROUTINE TO ANALYZE PHYSICAL ERRORS

VSAM exits to a SYNAD routine if a physical error occurs when
you request access to data. It also exits to a SYNAD routine
when you close a data set if a physical error occurs while VSAM
is writing the contents of a buffer out to direct-access
storage.

A SYNAD routine should examine the feedback field in the request
parameter list to identify the type of physical error that
occurred. It should then get the address of the message area,
if any, from the request parameter list, so that it can examine
the message for detailed information about the error.

The main problem with a physical error is the possible loss of
data. You should try to recover your data before continuing to
process. Input operations (ACB MACRF=IN) are generally less
serious than output or update operations (MACRF=OUT), because
your request was not attempting to alter the contents of the
data set.

If the routine cannot correct an error, it might print the
physical-error message, close the data set, and terminate the
program. If the error occurred while VSAM was closing the data
set, and if another error occurs after the exit routine issues a
CLOSE macro, VSAM doesn't exit to the routine a second time.

When your SYNAD exit routine completes processing, return to
your main program as described in "Returning to Your Main
Program" on page 140.

If the SYNAD routine returns to VSAM, whether the error was
corrected or not, VSAM drops the request and returns to your
processing program at the instruction following the last

130 MVS/370 VSAM Users Guide

executed instruction. Register 15 is reset to indicate that
there was an error, and the feedback field in the request
parameter list identifies it.

Physical errors affect positioning: If a GET was issued that
would have positioned VSAM for a subsequent sequential GET and
an error occurs, VSAM is positioned at the control interval next
in key (RPL OPTCD=KEY) or in entry (OPTCD=ADR) sequence after
the control interval involved in the error. The processing
program can therefore ignore the error and proceed with
sequential processing. With direct processing, the likelihood
of reencountering the control interval involved in the error
depends on your application.

Figure 29 gives the contents of the registers when VSAM exits to
the SYNAD routine.

Reg.

o
1

2-13

14

15

contents

Unpredictable.

Address of the request parameter list that contains a
feedback return code and the address of a message area,
if any. If you issued a request macro, the request
parameter list is the one pointed to by the macro; if
you issued an OPEN, CLOSE, or EOV macro,
the request parameter list
was built by VSAM to process the OPEN, CLOSE or
EOV request. Register 1 must contain this address
of the SYNAD routine returns to VSAM.

Same as when the request macro or CLOSE macro was issued.
Register 13, by convention, contains the address of your
processing program's 72-byte save area,
which may not be used by the SYNAD routine if it returns
control to VSAM.

Return address to VSAM.

Entry address to the SYNAD routine.

Figure 29. Contents of Registers at Entry to SYNAD Exit Routine

If the exit routine issues GENeB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore
registers 13 and 14, which are used by these macros.

See "SYNAD Exit Routine to Analyze Physical Errors" on page 130
for the format of a physical-error message that can be written
by the SYNAD routine.

If a physical error occurs and no SYNAD routine is provided (or
the SYNAD exit is inactive), VSAM returns codes in register 15
and in the feedback field of the request parameter list to
identify the error. See "SYNAD Exit Routine to Analyze Physical
Errors" on page 130 for a description of these return codes.

EXCEPTION EXIT ROUTINE

You can provide an exception exit routine to monitor I/O errors
associated with a data set. You specify the name of your routine
via the access method services DEFINE command.

If an I/O error occurs while a program with a sp~cified SYNAD
routine is processing a data S2t with a specified exception
exit, the exception exit is taken first.

Chapter 8. User-Written. Exit Routines 131

When your exception exit routine completes processing, return to
your main program as described in "Returning to Your Main
Program" on page 140.

For information about how exception exits are established,
changed, or nullified, see Access Method Services.

EODAD EXIT ROUTINE TO PROCESS END-OF-DATA

VSAM exits to an EODAD routine when an attempt is made to
sequentially retrieve or point to a record beyond the last
record in the data set (one with the highest key for keyed
access and the one with the highest RBA for addressed access).
(VSAM doesn't take the exit for direct requests that specify a
record beyond the end.) If the EODAD exit isn't used, the
condition is considered a logical error (FDBK code X'04') and
can be handled by the LERAD routine, if one is supplied.

The typical actions of an EODAD routine are to issue completion
messages, close the data set, and terminate processing without
returning to VSAM. If the routine returns to VSAM and another
GET request is issued for access to the data set, VSAM exits to
the LERAD routine. When your EODAD routine completes
processing, return to your main program as described in
"Returning to Your Main Program" on page 140.

If a processing program retrieves records sequentially with a
request defined by a chain of request parameter lists, the EODAD
routine must determine whether the end of the data set was
reached for the first request parameter list in the chain. If
not, then one or more records have been retrieved but not yet
processed by the processing program.

Figure 30 gives the contents of the registers when VSAM exits to
the EODAD routine.

Reg.

o

1

2-13

14

15

Contents

Unpredictable.

Address of the request parameter list that defines the
request that occasioned VSAM's reaching the end of the
data set. The register must contain this address if
you return to VSAM.

Same as when the request macro was issued. Register 13,
by convention, contains the address of your processlng
program's 72-byte save area, which may not be used as a
save area by the EODAD routine if it returns control to
VSAM.

Return address to VSAM.

Entry address to the EODAD routine.

Figure 30. Contents of Registers at Entry to EODAD Exit Routine

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore
registers 13 and 14, which are used by these macros.

The type of data set whose end was reached can be determined by
examining the request parameter list for the address of the
access method control block that connects the program to the
data set and testing its attribute characteristics.

132 MVS/370 VSAM Users Guide

JRNAD EXIT ROUTINE TO JOURNALIZE TRANSACTIONS

Reg. Contents

A JRNAD exit routine can be provided to record transactions
against a data set and to keep track of changes in the RBAs of
records. VSAM takes the JRNAD exit each time the processing
program issues a GET, PUT, or ERASE; each time data is shifted
right or left in a control interval or is moved to another
control interval to accommodate a record's being deleted,
inserted, shortened, or lengthened; and each time an I/O error
occurs.

Note: Additionally, the JRNAD exit is taken each time an I/O
completion occurs; each time a shared or nonshared request is
received; and each time the buffer contents are to be changed.

Because the JRNAD is taken for I/O errors, a journal exit may
zero out, or otherwise alter, the phvsical-error return cQde~ 50
that a series of operations may continue to completion, even
though one or more of the operations failed.

You may also want to use the JRNAD exit to maintain shared or
exclusive control over certain data or index control intervals;
and in some cases, you may reject the request taking the JRNAD.
For example, if you used this exit to maintain information about
a data set in a shared environment, you might reject the request
because a control interval split or a control- interval obtained
in exclusive control would adversely affect other users of the
data set.

Figure 31 gives the contents of the registers when VSAM exits to
the JRNAD routine.

o Unpredictable.

1 Address of a parameter list with the following format:

4 bytes

4 bytes

4 bytes

4 bytes

Address of the request parameter list that defines the
request that caused VSAM to exit to the routine

Address of a 5-byte field that identifies the data set being
processed. This field has the format:

4 bytes

1 byte

Address of the access method control block that is
specified by the request parameter list that
defines the request that occasioned the JRNAD
exit's being taken

Indication of whether the data set is
the data (X'Ol') or the index (X'02')
component

For RBA changes only, the RBA of the first byte of data that
is being shifted or moved

For RBA changes only, the number of bytes of data that is
being shifted or moved (this number doesn't include free
space, if any, or control information--except for a
control area split, when the whole contents of a control
interval are moved to a new control interval)

Figure 31 (Part 1 of 2). Contents of Registers at Entry to JRNAD Exit Routine

Chapter 8. User-Written Exit Routines 133

Reg.

2-13

14

15

contents

4 bytes

1 byte

1 byte

For RBA changes only, the RBA of the first byte to which
data 1S being shifted or moved

Indication of the reason VSAM exited to the JRNAD routine:

X'OO'
X'04'
X' OB'
X'OC'
X'10'
X'14'
X'IB'
X'IC'

GET request
PUT request
ERASE request
RBA change
Read spanned record segment
Write spanned record segment
Reserved
Reserved

For shared resources: l

X'20'

X'24'

X'28'

X'2C'

X'30'

X'34'

X'38'

X'3C'

X'40'

X'44'

X'4B'

X'4C'

X'50' to X'FF'

X'FC'

Reserved.

Control area split

Input error

Output error

Buffer write

A data or index control interval is about to be
read in exclusive control

A data or index control interval is about to be
read in shared status

Acquire exclusive control of a control interval
already in the buffer pool

Build a new control interval for the data set
and hold it in exclusive control

Exclusive control of the indicated control
interval already has been released

Contents of the indicated CI have been made
invalid

Read completed

Write completed

Reserved

Reserved

Unpredictable.

Return address to VSAM.

Entry address to the JRHAD routine.

Described in "Chapter 6. Options for Advanced Applications" on page 81.

Figure 31 (Part 2 of 2). Contents of Registers at Entry to JRNAD Exit Routine

134 MVS/370 VSAM Users Guide

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it
must restore register 14, which is used by these macros, before
it returns to VSAM.

If the exit routine uses register 1, it must restore it with the
parameter list address before returning to VSAM. (The routine
must return for completion of the request that caused VSAM to
exit.)

For journaling transactions (when VSAM exits because of a GET,
PUT, or ERASE), you can use the SHOWCB macro to display
information in the request parameter list about the record that
was retrieved, stored, or deleted,
(FIElDS=(AREA,KEYlEN,RBA,REClEN), for example). You can also
use the TESTCS macro to find out whether a GET or a PUT was for
update (OPTCD=UPD).

For recording RBA changes, you must calculate how many records
there are in the data being shifted or moved, so you can keep
track of the new RBA for each. With fixed-length records, you
calculate the number by dividing the record length into the
number of bytes of data being shifted. With variable-length
records, you could calculate the number by using a table that
not only identifies the records (by associating a record's key
with its RBA), but also glves their length.

Some control interval splits involve data being moved to two new
control intervals, and control area splits normally involve many
control intervals' contents being moved. In these cases, VSAM
exits to the JRNAD routine for each separate movement of data to
a new control interval.

You should provide a routine to keep track of RBA changes caused
by control interval and control area splits. RSA changes that
occur by way of keyed access to a key-sequenced data set must
also be recorded if you intend to process the data set later by
direct-addressed access.

If your JRNAD routine only journals transactions, it should
ignore reason X'OC' and return to VSAMj conversely, it should
ignore reasons X'OO', X'04', and X'OS' if it only records RBA
changes.

The JRNAD exit must be indicated as active before the data set
for which the exit is to be used is opened, and the exit must
not be made inactive during processing. If you define more than
one access method control block for a data set and want to have
a JRNAD routine, the first ACB you open for the data set must
specify the exit list that identifies the routine.

UPAD EXIT ROUTINE FOR USER PROCESSING

You can perform special processing during a VSAM request with
the UPAD exit routine. For example, VSAM takes the UPAD exit
immediately prior to issuing a WAIT for I/O completion or for a
serially reusable resource. VSAM exits to the UPAD routine when
the request's RPl specifies OPTCD=(SYN, WAITX) and the ACB
specifies MACRF=lSR or MACRF=GSR, or under DFEF, MACRF=ICI.

Note: The UPAD exit is also taken for request resumption (POST)
during synchronous requests. This exit will be taken only for
users that are in cross-memory mode.

The UPAD exit routine must be active before the data set is
opened. The exit must not be made inactive during processing.
If the UPAD exit is desired and many ACBs are used for
processing the data set, the first ACB that is opened must
specify the exit list that identifies the UPAD exit· routine.

Chapter S. User~Writt~n Exit Routines 135

When the UP AD exit routine is entered, register contents passed
by VSAM are:

Reg.

o

1

2-12

13

14

15

contents

Unpredictable

Address of a parameter list built by VSAM

Unpredictable

Reserved

Return address to VSAM

Entry address of the UPAD routine

The contents of the parameter list built by VSAM, pointed to by
register 1, can be examined by the UPAD exit routine:

Offset

OCO)

4(4)

8(8)

12(OC)

16(lC)

20(14)

Bytes Description

4 Address of the RPl

4 Address of a 5-byte data set identifier. The
first four bytes of the identifier are the ACB
address; the last byte identifies the component;
data (X'Ol'), or index (X'02').

4 Address of the request's ECB

4 Return code for POST UPAD

4 Reserved

Reserved

1 Reason code:

X'OO'

X'04'

X'084'-'FC'

VSAM is about to wait

VSAM ready to resume request
processing

Reserved

If the UPAD exit routine modifies register 14 (for example, by
issuing a TESTCB, the routine must restore register 14 before
returning to VSAM. If register 1 is used, the UPAD exit routine
must restore it with the parameter list address before returning
to VSAi"l.

The UP AD routine must return to VSAM under the same TCB from
which it was called for completion of the request that caused
VSAM to exit. Note that the UPAD exit routine cannot use
register 13 as a save area pointer without first obtaining its
own save area.

If you are executing in cross-memory mode, you must have a UPAD
routine. When posting of an event is required, the UPAD routine
is given control (reason code 4) to do post processing; you must
return control to VSAM after the post. This call to the UPAD may
not be cancelled.

When VSAM regains control from a UPAD exit that was taken for
reason code 4, VSAM tests the return code at offset 12 in the
pa rameter list. If it i s non-zero and the request is in
cross-memory mode, VSAM indicates a logical error rather than
attempting to issue a POST. (POST would cause an abend if
issued in cross-memory mode.) Therefore, if you are in

136 MVS/370 VSAM Users Guide

cross-memory mode, you must ensure that the UPAD exit is
specified, that it resumes the indicated request, and that it
sets the appropriate return code in the parameter list before
returning to VSAM. If you are not in cross-memory mode and the
UPAD returns with a nonzero code, VSAM will issue a POST for TCB
mode and a SCHEDULE for SRB mode POST.

The UPAD exit routine, when taken prior to a WAIT during LSR or
GSR processing, might issue other VSAM requests to obtain better
processing overlap (similar to asynchronous processing).
However, the UPAD routine must not issue any synchronous VSAM
requests that do not specify WAITX, because a started request
might issue a WAIT for a resource owned by a starting request.
If the UPAD routine starts requests that specify WAITX, the UPAD
routine must be reentrant. Once multiple requests have been
started, they should be synchronized by waiting for one ECB out
of a group of ECBs to be posted complete rather than waiting for
a specific ECB or for many ECBs to be posted complete. (Posting
of some ECBs in the list might be dependent upon the resumption
of some of the other requests that entered the UPAD routine.)

USER-SECURITY-VERIFICATION ROUTINE

If you use VSAM password protection, you may also have your own
routine to check a requestor's authority. VSAM transfers
control to your routine, which must reside in SYSl.LINKlIB, when
a requester gives a correct password other than the master
password.

Through the access method services DEFINE command, you may
identify your user-security-verification routine (USVR) and
associate as many as 256 bytes of your own security information
with each data set to be protected. This information---the user
security-authorization record (USAR)---is made available to the
user-security-verification routine when the routine gets
control. You may restrict access to the data set as you choose;
for example, you may require that the owner of a data set give
ID when defining the data set and then allow only the owner to
gain access to the data set.

Figure 32 gives the contents of the registers when VSAM gives
control to the user-security-verification routine.

If the user-security-verification routine is being used by more
than one task at a time, you must code the user-security­
verification routine reentrant or develop another method for
handling simultaneous entries.

Chapter 8. User-Written Exit Routines 137

DATESTAMP ROUTINE

Reg. contents

o Unpredictable.

1 Address of a parameter list with the following format:

44 bytes

8 bytes

8 bytes

8 bytes

2 bytes

Name of the data set for which authority to
process is to be verified (the name you
specified when you defined it with access
method services).

Prompting code (or O's).

Owner identification (or O's).

The password that the requester gave (it has
been verified by VSAM).

Length of the user-security-authorization
routine (in binary).

The user-security-authorization.

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the user-security-verification routine.
When the routine returns to VSAM, it indicates by the
following codes in register 15 whether the requester
has been authorized to gain access to the data set:

o

not 0

Authority granted.

Authority withheld.

Figure 32. Communication with User-Security-Verification Routine

The datestamp control module (IDATMSTP) is provided as a dummy
module that causes datestamp processing to be skipped. It sets
a return code of 0 that causes IDA0192B to skip the processing
of the last-referenced date (DSIREFD) in the Format-l DSCB for
VSAM data sets cataloged under Integrated Catalog Facility
(ICF). IDATMSTP may be replaced with another module you select
that sets a return code of 4 and causes datestamp processing on
all specified data sets.

The Format-l DSCB is read using CVAFDIR, and, if it is modified,
it is written back. The DSCB may be modified for either of the
following reasons:

• DSIIND02 is changed. DSIIND02 will be changed if you have
indicated that the data set is being opened for other than
input, and DSIIND02 does not already show that the data set
has been opened for other than input.

138 MVS/370 VSAM Users Guide

• DSIREFD is not equal to zero and is earlier than today's
date.

Note: It is your responsibility to set DSIREFD to a nonzero
value when you want OPEN to do datestamp processing.

Your module can include code to cause checking of some or all
VSAM data sets cataloged in an ICF catalog for periodic
migration to other storage media and maintenance of the updated
indicator. A return code of 4 from the module indicates that
you want the check, and causes the updated indicator to be
maintained.

IDATMSTP is passed the addresses of OPWCDDSN, JFCBVOLS, and of a
character 'D' to indicate that the data set named in OPWCDDSN,
on the volume identified in JFCBVOLS is a data component of a
data set cataloged in an IeF catalog. This information is
available to your module and can be used to further qualify
which data sets should have datestamp processing.

Figure 33 shows the contents of the registers when VSAM gives
c~ntrol to IDATMSTP.

Reg. contents

o Unpredictable.

1 Address of a parameter list containing the following
addresses of offset:

2 - 12

13

14

15

o Data set name in the current cluster information
area.

4 List of volume serial numbers that contain the
data set in the JFCB.

8 Address of a I-byte indicator set to D to
indicate the data set is a base data component.

Unpredictable.

Save area address.

Return address in VSAM OPEN.

Entry address to IDATMSTP.

When IDATMSTP returns to VSAM OPEN, the desired datestamp option
is indicated in register 15:

o
4

No datestamp processing.

Datestamp processing desired; updated indicator
(DSIIND02) maintained.

Figure 33. Communication with Datestamp Routine

Chapter 8. User-Written Exit Routines 139

RETURNING TO YOUR MAIN PROGRAM

Five exit routines can be entered when your main program issues
a VSAM request macro (GET, PUT, POINT, and ERASE) and the macro
fails to complete successfully: LERAD, SYNAD, EODAD, UPAD, or
the exception exit routine. When your exit routine completes
its processing, it can return to your main program in one of two
ways:

1. The exit routine can return to VSAM (via the return address
in register 14); VSAM then returns to your program at the
instruction following the VSAM request macro that failed to
complete successfully.

2. The exit routine can determine the appropriate return point
in your program, then branch directly to that point. Note
that, when VSAM enters your exit routine, none of the
registers contains the address of the instruction following
the failing macro.

Method 1 provides the easier way to return to your program.
However, there is a special situation that requires you to
return via method 2: Your exit routine, during the error
recovery and correction process, has issued a GET, PUT, POINT,
or ERASE macro that refers to the request parameter list
referred to by the failing VSAM macro (that is, the request
parameter list has been reissued by the exit routine). In this
case, VSAM has lost track of its reentry point to your main
program. If the exit routine returns to VSAM, VSAM issues an
ABEND.

If your error recovery and correction process needs to reissue
the failing VSAM macro against the request parameter list in
order to retry the failing request or to correct it:

• Your exit routine can correct the request parameter list
(using MODCB), then set a switch to indicate to your main
program that the request parameter list is now ready to

. retry. When your exit routine completes processing, it can
return to VSAM (via register 14), which returns to your main
program. Your main program can then test the switch and
reissue the VSAM macro and request parameter list.

• Your exit routine can issue a GENCB macro to build a request
parameter list, and then copy the request parameter list
(for the failing VSAM macro) into the newly built RPL. At
this point, your exit routine can issue VSAM macros against
the newly built RPL. When your exit routine completes
processing, it can return to VSAM (via register 14), which
returns to your main program.

140 MVS/370 VSAM Users Guide

EXAMPLE: USER-WRITTEN EXIT ROUTINE

This example demonstrates a user-written exit routine. It is a
SYNAD exit routine that examines the FDBK field of the RPL
checking for the type of physical error that caused the exit.
After the checking~ special processing may be performed as
necessary. The routine returns to VSAM after printing an
appropriate error message on SYSPRINT.

ACB1

EXITS

RPL1

PHYERR

ACB EXLST=EXITS

EXLST SYNAD=PHYERR

RPL ACB=ACB1,
MSGAREA=PERRMSG,
MSGLEN=128

USING *,15

LA 13,SAVE

SHOWCB RPL=RPL1,
FIELDS=FDBK,
AREA=ERRCODE,
LENGTH=4

PUT PRTDCB,ERRMSG

BR 14

ERRCODE DC

PERRMSG DS

DS

F'O'

OXL128

XL12

XL116 ERRMSG

PRTDCB

SAVE

SAVREG

DS

DCB

DS

DS

18F

3F

This routine is nonreentrant.

Register 15 is entry address.

Save caller's register
(1, 13, 14).

Point to routine's save area.

If register l=address of RPL1,
then error did not occur for a
CLOSE.

Show type of physical error.

Examine error, perform special
processing.

Print physical error message.

Restore caller's registers
(1, 13, 14).

Return to VSAM.

RPL error code from SHOWCB.

Physical error message.

Pad for unprintable part.

Printable format part of
message.

QSAM DCB

SYNAD routine's save area

Save registers 1, 13, 14

Chapter 8. User-Written Exit Routines 141

APPENDIX A. INVOKING ACCESS METHOD SERVICES FROM A PROBLEM PROGRAM

Access method services can be invoked by a problem program
through the ATTACH, LIN~, or LOAD and CALL macro instructions.

The dynamic invocation ~f access method services enables
respecification of sel~cted processor defaults as well as the
ability to manage input/output operations for selected data
sets.

AUTHORIZED PROGRAM FACILITY (APF)

For information on APF authorization, see "Security Protection."

INVOKING MACRO INSTRUCTIONS

The following descriptions of the invoking macro instructions
are related to Figure 34 on page 145, which describes the
argument lists referenced by the invoking macros.

LINK OR ATTACH MACRO INSTRUCTION

Access method services may be invoked through either the LINK or
the ATTACH macro instruction.

The format of the LINK or ATTACH macro instruction is:

[name] LINKIATTACH EP=IDCAHS,
PARAM=(optionaddr

[,dnameaddr]
[,pgnoaddrl
[,iolistaddr]),

VL=l

EP=IDCAMS
specifies that the program to be invoked is IDCAMS.

PARAM=
specifies the addresses of the parameters to be passed to
IDCAMS. These values can be coded:

optionaddr
specifies the address of an option list, which can be
specified in the PARM parameter of the EXEC statement
and is a valid set of parameters for the access method
services PARM command. If you do not wish to specify
any options, this address must point to a halfword of
binary zeros. Figure 34 on page 145 shows the format
of the options list.

dnameaddr
specifies the address of a list of alternate dd names
for standard data sets used during IDCAMS processing.
If standard dd names are used and this is not the last
parameter in the list, it should point to a halfword
of binary zeros. If it is the last parameter, it may
be omitted. Figure 34 shows the format of the
alternate dd name list.

pgnoaddr

142 MVS/370 VSAM Users Guide

specifies the address of a 3-byte to 6-byte area that
contains an EBCDIC starting page number for the system
output file. If the page number is not specified, but
this is not the last parameter in the list, the
parameter must point to a halfword of binary zeros.

If it is the last parameter, it may be omitted. If
omitted, the default page number is 1. Figure 34 on
page 145 shows the format of the page number area.

iolistaddr

VL=1

specifies the address of a list of externally
controlled data sets and the addresses of
corresponding I/O routines. If no external I/O
routines are supplied, this parameter may be omitted.
Figure 34 shows the format of the I/O list.

causes the high-order bit of the last address
parameter of the PARAM list to be set to 1.

LOAD AND CALL MACRO INSTRUCTIONS

Access method services may also be invoked via a LOAD of the
module IDCAMS, followed by a CALL to that module. The format of
the LOAD macro instruction is:

[name] {EP=IDCAMS/EPLOC=address of name}

where:

EP=IDCAMS
is the entry point name of the IDCAMS program to be loaded
into virtual storage.

EPLOC=address of name
is the address of an a-byte character string 'IDCAMS bb'.

After loading IDCAMS, register 15 must be loaded with the
address returned from the LOAD macro. Then CALL may be lJsed to
pass control to IDCAMS. The format of the CALL macro
instruction is:

LR 15,0
[name] CALL (15),

(optionaddr
[,dnameaddrJ
[,pgnoaddr]
[,iollstaddr]),
VL

where:

15
is the register containing the address of the entry point
to be given control.

optionaddr
specifies the address of an options list that can be
specified in the PARM parameter of the EXEC statement and
is a valid set of parameters for the access method services
PARM command. If you do not want to specify any options,
this address must point to a halfword of binary zeros.
Figure 34 on page 145 shows the format of the options list.

dnameaddr
specifies the address of a list of alternate dd names for
standard data sets used during IDCAMS processing. If
standard dd names are used and this is not the last
parameter in the list, it should point to a halfword of
binary zeros. If it is the last parameter, it may be
omitted. Figure 34 shows the format of the alternate dd
name list.

Appendix A. Invoking Access Method Services from a Problem Program 143

pgnoaddr
specifies the address of a 6-byte area that contains an
EBCDIC starting page number for the system output file. If
the page number is not specified, but this is not the last
parameter in the list, the parameter must point to a
halfword of binary zeros. If it is the last parameter, it
may be omitted. If omitted, the default page number is 1.
Figure 34 on page 145 shows the format of the page number
area.

iolistaddr

VL

specifies the address of a list of externally controlled
data sets and the addresses of corresponding I/O routines.
If no external I/O routines are supplied, this parameter
may be omitted. Figure 34 shows the format of the I/O
list.

causes the high-order bit of the last address parameter in
the macro expansion to be set to 1.

INVOCATION FROM A PL/I PROGRAM

Access method services may also be invoked from a PL/I program
using the facilities of the IBM PL/I Optimizing Compiler Program
Product. IDCAMS must be declared to the compiler as an external
entry point with the ASSEMBLER and INTER options. The access
method services processor is loaded by issuing a FETCH IDCAMS
statement, is branched to via a CALL statement, and deleted via
a RELEASE IOCAMS statement. The format of the CALL statement
is:

CALL (options[,dnames][,pageno][,iolist]);

where:

PROCESSOR INVOCATION

options
specifies a valid set of parameters for the access method
services PARM command. If no parameters ~re to be
specified, options should be a halfword of binary zeros.
Figure 34 on page 145 shows the format of the options area.

dnames
specifies a list of alternate dd names for standard data
sets used during IDCAMS processing. If standard dd names
are used and this is not the last parameter in the list,
dnames should be a halfword of binary zeros. If it is the
last parameter, it may be omitted. Figure 34 shows the
format of the alternate dd names list.

pageno
specifies a 6-byte field that contains an EBCDIC starting
page number for the system output file. If the page number
is not specified, but this is not the last parameter in the
list, the parameter must be a halfword of binary zeros. If
it is the last parameter, it may be omitted. If not
specified, the default page number is 1. Figure 34 shows
the format of the page number area.

iolist
specifies a list of externally controlled data sets and the
addresses of corresponding I/O routines. If no external
I/O routines are supplied, this parameter may be omitted.
Figure 34 shows the format of the I/O list.

Figure 34 on page 145 shows the processor invocation argument
list as it exists in the user's area.

144 MVS/370 VSAM Users Guide

t
t
t

'r'"

t
t
t

ARGUMENT LIST

t OPTIONS

t DDNAMES

t PAGE NUMBER

t IOUST

LENGTH

PAGE NUMBER

PAGE NUMBER LIST: Optional. Provides
a way to specify the starting page number
for system output.

LENGTH: A halfword tha t specifies the number
of bytes in the PAGE NUMBER field.

PAGE NUMBER: 1- to 4-byte character string that
may specify the starting page number of system output
listing. This value is reset to the current page number
upon completion of the present invocation of the
access method services processor.

INPUT/OUTPUT LIST

n

DDNAME}

IOROUTINE(

USER DATA(

•
• 'r'"

•
DDNAMEn

IOROUTINE n

USER DATA n

INPUT/OUTPUT LIST: Optional. Provides the means of
identifying those da ta sets for which the invoker wishes to
manage all I/O operations.

n: A fullword that specifies the number of groups of three
fields that follows. Each group consists of a DNAME address,
an IOROUTINE address, and a USER DATA address.

DDNAME: Address of a character string that identifies a
data set that will result in the invocation of the associated
10ROUTINE for all I/O operations (including OPEN and
CLOSE) against the data set. The character string identifies
the data set as either a 1 O-byte or 46-byte character string
as follows:

A lO-byte character string: The first two characters are 'DD',
the next 8 characters are the DDNAME field value
left-justified (padded with blanks if necessary), which may
appear in the FILE, INFILE, or OUTFILE parameters of any
access method services command. The SYSIN and
SYSPRINT ddnames may also appear if the invoker wishes
to manage these data sets.

A 46-byte character string: The first two characters are
'DS', the next 44 characters are the data set name, left­
justified (padded with blanks if necessary), which may appear
in the INDATASET, OUTDATASET, or DATASET para­
meters of any access method services command.

IOROUTINE: Address of the program that is to be invoked
to process I/O operations upon the data set associated with
DNAME. This routine, instead of the processor, will be
invoked for all operations against the data set. See "User
I/O Routines" in this appendix for linkage and interface
conventions between the 10ROUTINE and access method
services.

OPTIONS LIST

Required. Provides a
way to specify processing options. If
you do not wish to specify any options,
you must set the LENGTH field to
binary zeros.

LENGTH: Halfword that specifies the
number of bytes in the OPTIONS field.

OPTIONS: Character string that con­
tains the processing options of the access
method services P ARM command. The
options may be spedfi.:d in LIlt: PARM
field of the EXEC statement or they may
be set up by the problem program. The
options must comply with the parameter
syntax of the access method services
PARM command.

DNAML LIST

LENGTH
(8 bytes)

binary
zeros

binary
zeros

binary
zeros

DDNAMES LIST: Op­
tional. Provides a way to
specify alternative names
for the SYSIN and
SYSPRINT data sets.

LENGTH: Halfword that
specifies the number of
bytes in the remainder
of the list.

DDNAMES: Unseparated
8-character ddnames, left­
justified, and padded with
blanks. To change the
name of SYSIN or
SYSPRINT, supply an
alternate name in the
same position. If an
alternate name is not
supplied, the standard
name is assumed. If the
name is not supplied
with the list, the 8-byte
entry must contain
binary zeros. Names in
any position other than
those for SYSIN and
SYSPRINT are ignored.

USER DATA: Address of a data area user may use for any purpose.

Figure 34. Processor Invocation Argument List from a Problem Program

Appendix A. Invoking Access Method Services from a Problem Program 145

Entry and exit to the access method services processor occurs
through IDCSA01, a module of the system adapter. Standard
linkage is used; that is, register 1 points to the argument
list, register 13 points to a save area, register 14 contains
the return address, and register 15 contains the entry point
address for IDCSA01. On exit from the access method services
processor, register 15 contains the value of MAXCC (see
"Processor Condition Codes" later in this chapter).

The argument list, as shown in Figure 34, can be a maximum of
four fullword addresses pointing to strings of data. The last
address in the list contains a "1" in the sign field. The first
three possible strings of data begin with a 2-byte length field.
A null element in the list can be indicated by either an address
of zeros or a length of zero.

PROCESSOR CONDITION CODES

USER I/O ROUTINES

The processor's condition code is LASTCC, which can be
interrogated in the command stream following each functional
command. The possible values, their meanings, and examples of
causes are:

Code

0(0)

4(4)

8(8)

12(C)

16(10)

Meaning

The function was executed successfully. Informational
messages may have been issued.

Some minor problems in executing the complete function
were encountered, but it was possible to continue. The
results may not be exactly what the user wants, but no
permanent harm appears to have been done by continuing.
A warning message was issued.

A function could not perform all that was asked of it.
The function was completed, but specific details were
bypassed.

The entire function could not be performed.

Severe error or problem encountered. Remainder of
command stream is flushed and processor returns
condition code 16 to the operating system.

LASTCC is set by the processor at the completion of each
functional command. MAXCC, which can also be interrogated in
the command stream, is the highest value of lASTCC thus far
encountered.

User I/O routines enable a user to perform all I/O operations
for a data set that would normally be handled by the access
methods services processor. This makes it possible, for
instance, to control the command input stream by providing an
I/O routine for SYSIN.

A user I/O routine is invoked by access method services for all
operations against the selected data sets. The identification
of the data sets and their associated I/O routines is via the
input/output list of the processor invocation parameter list
(see Figure 34 on page 145).

When writing a user I/O routine, the user must be aware of three
things: First, the processor handles the user data set as if it
were a non-V5AM data set that contains variable-length unblocked
records (maximum record length is 32 760 bytes) with a physical
sequential organization. The processor does not test for the
existence of the data set. Second, the user must know the data
format so that the user's routine can be coded to handle the
correct type of input and format the correct type of output.
Third, each user routine must handle errors encountered for data

146 MVS/370 VSAM Users Guide

sets it is managing and provide a return code to the processor
in register 15. The processor uses the return code to determine
what it is to do next.

The permissible return codes are:

Code

0(0)

4(4)

8(8)

Meaning

Operation successful.

End of data for a GET operations.

Error encountered during a GET/PUT operation, but
continue processing.

12(C) Do not allow any further calls (except CLOSE) to this
routine.

Figure 35 on page 148 shows the argument list used in
communication between the user I/O routine and the access method
services processor. The user I/O routine is invoked by the
processor for OPEN, CLOSE, GET, and PUT routines.

The type of operation to be performed is indicated via IOFLAGS.
The IOINFO field indicates, for OPEN and CLOSE operations, the
data set name or ddname of the data set; for GET and PUT
operations, the IOINFO field is used to communicate the record
length and address.

A user I/O routine for SYSPRINT receives control each time the
processor issues a PUT against the SYSPRINT data set. If the
PUT has been issued to print an IDC message, the unique message
number is passed to the routine via IOFLAGS (see Figure 35 on
page 148). Each IDC message is in the form IDCsnnnI or
IDCsnnnnI, where:

s is a code indicating the severity of the problem

nnn or nnnn is the message number that is unique across all
IDC messages

The 2-byte message number passed via IOFLAGS is the nnn or nnnn
portion of the message converted to binary.

Appendix A. Invoking Access Method Services from a Problem Program 147

t USER DATA

t IOFLAGS

User data pointer obtained from the
input/output list of the processor
invocation parameter list.

t Rec()rd

Record Length

For a GET, this information
is returned to the processor
by the user's I/O routine in
the 8-byte area passed to the
routine.

t IOINFO

DDNAMEor
DAT ASETNAME

DDNAME: 8-byte field, left-justi­
fied (padded with blanks if neces­
sary) containing the ddname.

DATASlTNA\Il.: 44-b\ Il' liL'ld
(radded with blJllks if Ill'l'eS\~tr\)
cOlltJillill!! thl' datJ \l't IlJIlle.

CLOSE

t Data Set Name

DATASETNAME

DATASLTNAME: 44-byte
field (padded with bbnks
if necessary) containin!!
the data sct nJllle.

For a PUT, the processor gives
this information to the user's
I/O routine.

Reeord (GET): Address of
retrieved record.

Reeord Length (GET): Full­
word length of retriever!
record.

Reeord (PUT): Address of
reeord to be written.

Record Length (PUT): Full­
word length of record to be
written.

FLAGS

FuIIword of Flags:
Value or
Bit Pattern

Hyte I X'OO'
(OperJtlllll) X'04'

\3ytL' 2

Bytes 3,4
(Record type
for PUT only)

X'08'
X'OC

I
I

.. I ..

. . . I

o

n

Figure 35. Arguments Passed To and From a User I/O Routine

148 MVS/370 VSAM Users Guide

Meaning

OPEN
CLOSE
GET
PUT

OPEN for input
OPEN for output
Indicates IOINFO
contains the address
of a ddname on OPEN.

lndieatcs 10lNFO eontains
the address of a data set
name on OPEN.

Normal data record is to
be written.

Message serial number
converted to binary if
IDC message is to be
written. (See "User I/O
Routine" for a description
of this value.)

APPENDIX B. USING ISAM PROGRAMMING WITH VSAH

VSAM, through its ISAM interface program, enables a debugged
program that processes an indexed-sequential data set to process
a key-sequenced data set. The key-sequenced data set may have
been converted from an indexed-sequential or a sequential data
set (or another VSAM data set) or may have been loaded by one of
your own programs. The loading program may be coded with VSAM
macros or with ISAM macros or PL/I or COBOL statements. That
is, you can load records into a newly defined key-sequenced data
set with a program that was coded to load records into an
indexed-sequential data set.

There are some minor restrictions on the types of processing an
ISAM program may do if it is to be able to process a
key-sequenced data set. These restrictions are described in
"Restrictions on the Use of the ISAM Interface" on page 162.

Significant performance improvement can be gained by modifying
an ISAM program that issues multiple OPEN and CLOSE macros to
switch between a QISAM and BISAM DCB. The ISAM program can be
modified to open the QISAM and BISAM DCBs a~ the beginning of
the program and to close them when all processing is complete.
The performance improvement is proportional to the frequency of
OPEN and CLOSE macros in the ISAM program.

Figure 36 on page 150 shows the relationship between ISAM
programs processing VSAM data with the ISAM interface and VSAM
programs processing the data.

HOW AN ISAM PROGRAM CAN PROCESS A VSAM DATA SET

When a processing program that uses ISAM (assembler-language
macros, PL/I, or COBOL) issues an OPEN to open a key-sequenced
data set, the ISAM interface is given control to:

• Construct control blocks that are required by VSAM

• Load the appropriate ISAM interface routines into virtual
storage

• Initialize the ISAM DCB (data control block) to enable the
interface to intercept ISAM requests

• Take the DCB exit requested by the processing program

The ISAM interface intercepts each subsequent ISAM request,
analyzes it to determine the equivalent keyed VSAM request,
defines the keyed VSAM request in a request parameter list, and
initiates the request.

The ISAM interface receives return codes and exception codes for
logical and physical errors from VSAM, translates them to ISAM
codes, and routes them to the processing program or
error-analysis (SYNAD) routine by way of the ISAM DCB or DECB.
Figure 37 on page 151 shows QISAM error conditions and the
meaning they have when the ISAM interface is being used.

Appendix B. Using ISAM Programming with VSAM 149

Access

New Data Sets

Figure 36. Use of ISAM Processing Programs

150 MVS/370 VSAM Users Guide

I$AM
Interfa\..'c

1
Interpret Each Request

1
VSAM

Access

Access

Existing ISAM Programs

Unmodified

Modified to
Meet Restrictions

ISAM Programs
Converted to
VSAM Programs

(To take advantage of addi­
tional funl'tions of VSAM)

Byte
and
Offset

DCBEXCDI

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

QISAM Meaning

Record not found

Invalid device
address

Space not found

Invalid request

Uncorrectable
input error

Uncorrectable
output error

Errol'
Detected
By

Interface

VSAM

VSAM

VSAM

VSAM

Interface

Interface

Interface

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

Request
Par~meter
List
Errol' Code Interface/VSAM Meaning

16

24

28

40

4

20

36

64

96

4

8

12

16

20

24

Record not found (SEll K for a
deleted record)

Record not found

Record on nonmountable volume

Always 0

Data set cannot be extended

Virtual storage not available

Two consecutive SETl requests

Invalid SEll (I or ID)

Invalid generic key (KEY=O)

Request after end-of-data

Exclusive use conflict

No key range defined for
insertion

Placeholder not available for
concurrent data-set positioning

Key change attempted

Physical read error (register
15 contains a value of 12) in
the data component

Physical read error (register
15 contains a value of 12) in
the index component

Physical read error (register
15 contains a value of 12) in
the sequence set of the index

Physical write error (register
15 contains a value of 12) in
the data component

Physical write error (register
15 contains a value of 12) in
the index component

Physical write error (register
15 contains a value of 12) in
the sequence set of the index

Figure 37 (Part 1 of 2). QISAM Error Conditions

Appendix B. Using ISAM Programming with VSAM 151

Byte
and
Offset

Bit 6

Bit 7

DEBEXCD2

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

QISAM Meaning

Unreachable block
input

Unreachable block
(output)

Sequence check

Duplicate record

Error
Detected
By

VSAM

VSAM

VSAM

Interface

VSAM

DCB closed when VSAM
error routine
entered

Overflow record Interface

Length of logical Interface
record is greater
than DCBLRECL (VlR
only)

VSAM

ReqUest
Paral'fieter
List
Error Code Interface/VSAM Meaning

12

8

108

logical error not covered by
other exception codes

logical error not covered by
other exception codes

Sequence check

Sequence check (occurs only
during resume load)

Duplicate record

Error in close error routine
entered

Always 1

Length of logical record is
greater than DCBlRECL (VLR
only)

Invalid record length

Bits 5-7 Reserved Always 0

Figure 37 (Part 2 of 2). QISAM Error Conditions

Figure 38 shows BISAM error conditions and the meaning they have
when the ISAM interface is being used.

If invalid requests occur in BISAM that didn't occur previously
and the request parameter list indicates that VSAM isn't able to
handle concurrent data-set positioning, the value specified for
the STRNO AMP parameter should be increased. If the request
parameter list indicates an exclusive-use conflict, reevaluate
the share options associated with the data.

152 MVS/370 VSAM Users Guide

Byte
and
Offset

DCBEXCI

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

DECBEXC2

QISAM Meaning

Record not found

Record length
check

Space not found

Invalid request

Uncorrectable I/O

Unreachable block

Overflow record

Duplicate record

Bits 0-5 Reserved

Bit 6 Channel program
initiated by an
asynchronous
routine

Errol'
Detected
By

VSAM

VSAM

VSAM

VSAM

Interface

VSAM

VSAM

VSAM

VSAM

VSAM

VSAM

Interface

VSAM

Bit 7 Previous macro was Interface
READ KU

Figure 38. BISAM Error Conditions

Request
Parameter
List
Error Code Interface/VSAM Meaning

16

24

108

28

20

36

64

96

8

Record not found

Record on non-mountable volume

Record length check

Data set cannot be extend~d

No request parameter list
available

Exclusive-use conflict

No key range defined for
i nserti on ~

Placeholder not available for
concurrent data-set positioning

Key change attempted

Physical error (register error
15 will contain a value of 12)

logical error not covered by
any other exception code

Always one for a successful
READ request

Duplicate record

Always 0

Always 0

Previous macro was READ KU

Appendix B. Using ISAM Programming with VSAM 153

Figure 39 gives the contents of registers 0 and 1 when a SYNAD
routine specified in a DCB gets control.

Reg.

o

1

BlSAH

Address of
the DECB

Address of
the DECB

QlSAM

0, or, for a sequence check, the address of
a field containing the higher key involved
in the check

o

Figure 39. Register Contents for DCB-Specified ISAM SYNAD
Routine

You may also specify a SYNAD routine by way of the DD AMP
parameter (see "JCL for Processing with the ISAM Interface"
later in this chapter). Figure 40 gives the contents of
registers 0 and 1 when a SYNAD routine specified by way of AMP
gets control.

Reg.

o

1

BlSAH

Address of
the DECB

Address of
the DCB

QlSAM

0, or, for a sequence check, the address of
a field containing the higher key involved
in the check

Address of the DCB

Figure 40. Register Contents for AMP-Specified ISAM SYNAD
Routine

If your SYNAD routine issues the SYNADAF macro, registers 0 and
1 are used to communicate. When you issue SYNADAF, register 0
must have the same contents it had when the SYNAD routine got
control and register 1 must contain the address of the DCB.

When you get control back from SYNADAF, the registers have the
same contents they would have if your program were processing an
indexed-sequential data set: Register 0 contains a completion
code, and register 1 contains the address of the SYNADAF
message.

The completion codes and the format of a SYNADAF message are
given in Data Management Macro Instructions.

Figure 41 shows abend codes issued by the ISAM interface when
there is no other method of communicating the error to the user.

If a SYNAD routine specified by way of AMP issues the SYHADAF
macro, the operand ACSMETH may specify either QISAM or BISAM,
regardless of which of the two is used by your processing
program.

A dummy DEB is built by the ISAM interface to support:

• References by the ISAM processing program
• Checkpoint/restart
• Abend

Figure 42 shows the DEB fields that are supported by the ISAM
interface; field meanings are the same as in ISAM, except as
noted.

154 MVS/370 VSAM Users Guide

ABEND
Code

038

031

039

001

Error
Detected By

OPEN

VSAM

VSAM

LOAD

LOAD

VSAM

VSAM

BISAM

BISAM

DCB/DECB set By
Module/Routine

OPEN/OPEN ACB and
VALID CHECK

SYNAD

SCAN/GET and SETL

LOAD/RESUME

LOAD

SCAN/EODAD

SYNAD

SYNAD

BISAM

Abend
Issued By

OPEN

SYNAD

SYNAD

LOAD

LOAD

SCAN

BISAM

BISAM

Figure 41. Abend Codes Issued by the ISAM Interface

Error Condition

Validity check; either
(1) access method services
and DCB values for LRECL,
KEYlE, and RKP do not
correspond, (2) DISP=OLD,
the DCB was opened for output,
and the number of logical
records is greater than zero
(RELOAD is implied), or
(3) OPEN ACB error code 116
was returned for a request
to open a VSAM structure.

SYNAD (ISAM) was not specified
and a VSAM physical and logical
error occurred.

SYNAD (ISAM was not specified
and an invalfd request was
found.

SYNAD (ISAM) was not specified
and a sequence check occurred.

SYNAD (ISAM) was not specified
and the ROW (record descriptor
word) was greater than LRECL.

End-of-data was found, but
there was no EODAD exit.

I/O error detected.

I/O error detected during
check.

Invalid request.

Appendix B. Using ISAM Programming with VSAM 155

DEB section Bytes Fields Supported

PREFIX 16 lNGTH

BASIC 32 TCBAD, OPATB, DEBAD, OFLGS (DISP ONLY),
FlGSl (ISAM-interface bit), AMLNG (104),
NMEXT(2), PRIOR, PROTG, DEBID, DCBAD,
EXSCl (O-DUMMY DEB), APPAD

ISAM Device 16 EXPTR, FPEAD

Direct Access 16 UCBAD (VSAM UCB)

Access Method 24 WKPT5 (ISAM-interface control block
pointer), FREED (pointer to IDAIIFBF)

Figure 42. DEB Fields Supported by ISAM Interface

CONVERTING AN INDEXED-SEQUENTIAL DATA SET

Access method services is used to convert an indexed-sequential
data set to a key-sequenced data set. Assuming that a master
and/or user catalog has been defined, define a key-sequenced
data set with the attributes and performance options you want.
Then use the access method services REPRO command to convert the
indexed-sequential records and load them into the key-sequenced
data set. (See Catalog Users Guide for information about
defining a key-sequenced data set and about converting an
indexed-sequential data set.) VSAM builds the index for the
key-sequenced data set as it loads the data set.

Each volume of a multivolume component must be on the same type
of device; the data component and the index component, however,
may be on volumes of devices of different types.

When you define the key-sequenced data set into which the
indexed-sequential data set is to be copied, you must specify
the attributes of the VSAM data set for variable- and
fixed-length records.

For variable-length records:

• VSAM record length equals ISAM DCBlRECL-4.

• VSAM key length equals ISAM DCBKEYlE.

• VSAM key position equals ISAM DCBRKP-4.

For fixed-length records:

• VSAM record length (average and maximum must be the same)
equals ISAM DCBlRECL (+ DCBKEYlE, if ISAM DCBRKP equals 0
and records are unblocked).

• VSAM key length equals ISAM DCBKEYlE.

• VSAM key position equals ISAM DCBRKP.

Care should also be taken with the level of sharing allowed when
the key-sequenced data set is defined. If the ISAM program
opens multiple DeBs pointing to different DD statements, a
share-options value of 1, which is the default, allows only the
first DD statement to be opened. See "Sharing" for a
description of the share-options values.

156 MVS/370 VSAM Users Guide

JCL FOR CONVERTING FROM ISAM TO VSAM

JCL is used to identify data sets and volumes for allocation.
Data sets can also be allocated dynamically. For a description
of dynamic allocation, see JCl and System Programming Library:
System Modifications.

If JCl is used to describe an indexed-sequential data set to be
converted to VSAM using the access method services REPRO
command, include DCB=DSORG=IS. The key-sequenced data set that
is to receive the converted data set need not be described in
JCL if it is to reside in a previously defined data space. If
it is to reside alone in a data space, the data set is either
allocated dynamically by name (in which case the volume on which
it is to reside must be mounted). Use a STEPCAT or JOBCAT DD
statement as described in the chapter "Chapter 7. Job Control
Language" en page 121 to make user catalogs available; you may
also use dynamic allocation.

With ISAM, deleted records are flagged as deleted, but are not
actually removed from the data set. To avoid reading VSAM
records that are flagged as deleted (X'FF'), code DCB=OPTCD=L.
If your program depends upon a record's only being flagged and
not actually removed, you may want to keep these flagged records
when you convert and continue to have your programs process
these records. The access method services REPRO command has a
parameter (ENVIRONMENT) that causes VSAM to keep the flagged
records when you convert.

JCL FOR PROCESSING WITH THE ISAM INTERFACE

To execute your ISAM processing program to process a
key-sequenced data set, replace the ISAM DD card with a VSAM DD
card using the DDNAME that was used for ISAM. The VSAM DD card
names the key-sequenced data set and gives any necessary VSAM
parameters (by way of AMP). Specify DISP=MOD for resume loading
and DISP=OlD or SHR for all other processing. You don't have to
specify anything about the ISAM interface itself. The interface
is automatically brought into action when your processing
program opens a DCB whose associated DD statement describes a
key-sequenced data set (instead of an indexed-sequential data
set). If you have defined your VSAM data set in a user catalog,
specify the user catalog in a JOBCAT or STEPCAT DD statement.

The DCB parameter in the DD statement that identifies a VSAM
data set is invalid and must be removed. If the DCB parameter
is not removed, unpredictable results can occur. Certain
DCB-type information may be specified in the AMP parameter,
which is described later in this chapter.

Figure 43 shows the DCB fields supported by the ISAM interface.

Appendix B. Using ISAM Programming with VSAM 157

Field
Name

BFALN

BLKSI

BUFCB

BUFL

BUFNO

DDNAM

DEBAD

DEVT

DSORG

EODAD

ESETL

EXCDI

EXCD2

EXLST

FREED

GET/PUT

KEYLE

LRAN

LRECL

LWKN

MACRF

NCP

NCRHI

OFLGS

Meaning

Same as in ISAM; defaults to a doubleword

Set equal to LRECL if not specified

Same as in ISAM

The greater value of AMDLRECL or DCBLRECL if not
specified

For QISAM, one; for BISAM, the value of STRNO if not
specified

Same as in ISAM

During the DCB exit, contains the address of the OPEN
work area; after the DCB exit, contains the address of
the dummy DEB built by the ISAM interface

Set from the VSAM UCB TYPE

Same as in ISAM

Same as in ISAM

Address of the ISAM interface ESETL routine

See the QISAM exception codes

See the QISAM exception codes

Same as in ISAM (except that VSAM does not support the
JFCBE exit)

Address of the ISAM-interface dynamic buffering
routine (IDAIIFBF)

For QISAM LOAD, the address of the ISAM-interface PUT
routine; for QISAM SCAN, 0, the address of the
ISAM-interface GET routine; 4, the address of the
ISAM-interface PUTX routine; and 8, the address of the
ISAM-interface RELSE r6utine

Same as in ISAM

Address of the ISAM-interface READ K/WRITE K routine

Set to the maximum record size specified in the access
method services DEFINE command if not specified
(adjusted for variable-length, fixed, unblocked, and
RKP=O records)

Address of the ISAM-interface WRITE KN routine

Same as in ISAM

For BISAM, defaults to one

Set to a value of 8 before DCB exit

Same as in ISAM

Figure 43 (Part 1 of 2). DCB Fields Supported by ISAM Interface

158 MVS/370 VSAM Users Guide

Field
Nama

OPTeD

RECFM

RKP

RORGI

RORG2

RORG3

Meaning

Bit 0 (W), same as in ISAM; bit 3 (I), dummy records
are not to be written in the VSAM data set; bit 6 (l),
VSAM-deleted records (X'FF') are not read; dummy
records are to be treated as in ISAM; all other
options ignored

Same as in ISAMj default to unblocked, variable-length
records

Same as in ISAM

Set to a value of 0 after DCB exit

Set to a value of X'7FFFF' after DCB exit

Set to a value of 0 after DCB exit

SETl For BISAM, address of the ISAM-interface CHECK
routine; for QISAM, address of the ISAM-interface SETl
routine

ST

SYNAD

TIOT

WKPTI

WKPT5

WKPT6

Bit 1 (key-sequence check), same as in ISAMj bit 2
(loading has completed), same as in ISAM

Same as in ISAM

Same as in ISAM

For QISAM SCAN, WKPTI +112=address of the W1CBF field
pointing to the current buffer

Address of the ISAM-interface control block (IICB)

For QISAM lOAD, address of the dummy DCB work area
vector pointers; the only field supported is
ISlVPTRS+4=pointer to KEYSAVE

Figure 43 (Part 2 of 2). DCB Fields Supported by ISAM Interface

Appendix B. Using ISAM Programming with VSAM 159

AMP PARAMETER SPECIFICATION

When an ISAM processing program is run with the ISAM interface,
the AMP parameter enables you to specify:

• That a VSAM data set is to be processed (AMORG)

• The need fdr extra index buffers for simulating the
residency of the highest level(s) of an index in virtual
storage (BUFNI)

• The need for additional data buffers to improve sequential
performance (BUFND)

• Whether to remove records flagged (OPTCD)

• What record format (RECFM) is used by the processing program

• The number of concurrent BISAM and QISAM (basic and queued
indexed-sequential access methods) requests that the
processing program may issue (STRNO)

• The name of an ISAM exit routine to analyze physical and
logical errors (SYNAD)

The AMP parameter has some subparameters that are peculiar to
the ISAM interface. The other subparameters of AMP (BUFSP,
CROPS, and TRACE), which can also be used with the interface,
are described in "Chapter 7. Job Control Language" on page 121.
The format of the AMP parameter (with the subparameters
discussed here) is:

// ... DD [AMP=AMORG
[,'BUFND=number']
t,'BUFNI=number']
[,'OPTCD={IlITIL}']
[,'RECFM={FIFSIVIVB}'J
[,'STRNO=number']
[,'SYNAD=modulename']]

where:

AMORG
specifies that a VSAM data set is to be processed. When
you specify unit and volume information for a DCB (through
the ISAM interface program) or when you specify DUMMY in
the DD statement, you must specify AMORG. Under these
conditions, the system doesn't have to search a catalog to
find out which volume(s) are required, and therefore
doesn't know that the DD statement defines a VSAM data set.
You never have to specify unit and volume information
unless you want to have mounted some, but not all, of the
data set's volumes, or you want to defer the volume
mounting.

BUFND=number
specifies the number of I/O buffers VSAM is to use for data
records. The minimum number you may specify is 1 plus the
number specified for STRNO (if you omit STRNO, BUFND must
be at least 2, because the default for STRNa is 1).

BUFNI=number
specifies the number of I/O buffers VSAM is to use for
index records. If you don't specify BUFNI, VSAM uses as
many index buffers as the number specified for STRNO (1 if
you don't specify STRNO). You may specify for BUFNI a
number 1 greater than STRNO (2 if you don't specify STRNa)
to simulate having the highest level of an ISAM index
resident. If you specify for BUFNI a number 2 or more
greater than STRNa, you simulate having intermediate levels
of the index resident.

160 MVS/370 VSAM Users Guide

OPTCD={IltIILJ
specifies how records flagged for deletion are to be
treated. The values that can be specified are:

L

I

IL

specifies that a record marked for deletion by your
processing program 1S to be kept in the data set.
Although this parameter has the same meaning and
restrictions for the ISAM interface as it has for
ISAM, it may have to be specified in the AMP parameter
when it wasn't previously needed in the ISAM job
control language. It 1S required when OPTCD=L is not
specified in the DCB in the processing program because
OPTCD is not merged into the DSCB when the ISAM
interface is used.

specifies, when coded along with OPTCD=L in the DCB,
that records marked for deletion by your processing
program are not written into the data set by the ISAM
interface. If OPTCD=I is specified in the AMP
parameter, but OPTCD=L isn't specified in the
processing program's DCB, records flagged for deletion
are treated as any other records: that is,
AMP='OPTCD=I', without l anywhere specified, has no
effect.

specifies that, if your processing program writes a
record marked for deletion, the ISAM interface is not
to put the record into the data set. (It issues a
VSAM ERASE to delete the old record if your processing
program had previously read the record for update.)
The result of this parameter is the same as when
AMP='OPTCD=I' is coded with OPTCD=L in the DCB in the
processing program.

RECFM={FIFBIVIVBJ
specifies the ISAM record format that your processing
program is coded for. Although this parameter has the same
meaning and restrictions for the ISAM interface as it has
for ISAM, it may have to be specified in the AMP parameter
when it wasn't previously required in the ISAM job control
language. RECFM is required when it is not specified in
the DCB in the processing program because RECFM is not
merged into the DSCB when the ISAM interface is used. All
VSAM requests are for unblocked records. If your program
issues a request for blocked records, the ISAM interface
sets the overflow-record indicator for each record to
indicate that each is being passed to your program
unblocked. If RECFM isn't specified in the AMP parameter
or in the processing program's DCB, V is the default.

STRNO=number
specifies the number of request parameter lists the
processing program can use concurrently. Neither VSAM nor
the ISAM interface can anticipate the number, so you should
indicate it in the STRNO parameter. Specify a number at
least equal to the number of BISAM and QISAM requests that
your program can issue concurrently. (If you have
subtasks, add together the number of such requests for each
subtask, plus an additional one for each subtask that
sequentially processes the same data set.) In a create
step, STRNO cannot be greater than 1. The ISAM interface
uses a request parameter list to describe a request that
your program issues. The interface uses the same request
parameter list over and over:

Appendix B. Using ISAM Programming with VSAM 161

• With BISAM, a READ for update uses a request parameter
list until a WRITE or FREEDBUF is issued (at which time
the interface issues an ENDREQ for the request
parameter list).

• With QISAM, a request parameter list is used until an
ESETL is issued (at which time the interface issues
ENDREQ).

If the processing program issues an ISAM request when no
more request parameter lists are available, the ISAM
interface returns an ISAM code that indicates an invalid
request. If you're running subtasks, it's possible to
reissue the invalid request and have it complete
successfully when another subtask frees a request parameter
list.

SYNAD=modulename
specifies the name of a routine that the ISAM interface is
to load and exit to if a physical or logical error occurs
when you are gaining access to the key-sequenced data set.
If your processing program already indicates a SYNAD
routine, the routine specified in the AMP SYNAD parameter
replaces it.

The SYNAD routine must not issue VSAM macros or check for VSAM
return codes. The ISAM interface translates all VSAM codes to
appropriate ISAM codes.

You need not modify or replace a SYNAD routine that issues only
a CLOSE, ABEND, SYNADAF, or SYNADRLS macro or that merely
examines DCB or DECB exception codes.

RESTRICTIONS ON THE USE OF THE ISAM INTERFACE

Some restrictions were indicated earlier in this chapter that
may require you to modify an ISAM processing program to process
a key-sequenced data set. All operating system and VSAM
restrictions apply to the use of the ISAM interface; for
example:

• VSAM doesn't allow the OPENJ macro: If your program issues
it, remove it or replace it with the OPEN macro.

• If your processing program was coded on the assumption that
the indexed-sequential data set it was processing was a
temporary data set, you may need to modify the program: A
VSAM data set cannot be temporary.

Additional restrictions are:

• A program must run successfully under ISAM using standard
ISAM interfaces; the interface doesn't check for parameters
that are invalid for ISAM.

• If your DCB exit list contains an entry for a JFCBE exit
routine, remove it. The interface doesn't support the use
of a JFCBE exit routine. If the DCB exit list contains an
entry for a DCB open exit routine, that exit is taken.

162 MVS/370 VSAM Users Guide

• If your 1SAM program creates dummy records with a maximum
key to avoid overflow, remove that code for VSAM.

• If your program counts overflow records to determine
reorganization needs, its results will be meaningless with
VSAM data sets.

• The work area into which data records are read must not be
shorter than a record. If your processing program is
designed to read a portion of a record into a work area, you
must change the design. The interface takes the record
length indicated in the DeB to be the actual length of the
data record. The record length in a BISAM DECB is ignored,
except when you are replacing a variable-length record with
the WRITE macro.

• You may share data among subtasks that specify the same DD
statement in their DCB(s), and VSAM ensures data integrity.
But, if you share data among subtasks that specify different
DD statements for the data, you are responsible for data
integrity. The ISAM interface doesn't ensure DCB integrity
when two or more DCBs are opened for a data set. All of the
fields in a DCB cannot be depended on to contain valid
information.

• When a data set is shared by several jobs (D1SP=SHR), you
must use the ENQ and DEQ macros to ensure exclusive control
of the data set. Exclusive control is necessary to ensure
data integrity when your program adds or updates records in
the data set. You can share the data set with other users
(that is, relinquish exclusive control) when reading
records.

• If your processing program issues the SETL I or SETL 10
instruction, you must modify the instruction to some other
form of the SETL or remove it. The ISAM interface cannot
translate a request that depends on a specific block or
device address.

• Although asynchronous processing may be specified in an ISAM
processing program, all ISAM requests are handled
synchronously by the ISAM interface; WAIT and CHECK requests
are always satisfied immediatelY. The ISAM CHECK macro
doesn't result in a VSAM CHECK macro's being issued but
merely causes exception codes in the DECB (data event
control block) to be tested.

• For processing programs that use locate processing, the 1SAM
interface constructs buffers to simulate locate processing.

• For blocked-record processing, the ISAM interface simulates
unblocked-record processing by setting the overflow-record
indicator for each record. (In ISAM, an overflow record is
never blocked with other records.) Programs that examine
ISAM internal data areas (for example, block descriptor
words (BOW) or the MBBCCHHR address of the next overflow
record) must be modified to use only standard ISAM
interfaces. The ISAM RELSE instruction causes no action to
take place.

Appendix B. Using 1SAM Programming with VSAM 163

• If your ISAM SYNAD routine examines information that cannot
be supported by the ISAM interface (for example, the lOB),
specify a replacement ISAM SYNAD routine in the AMP
parameter of the VSAM DD statement.

• Your ISAM program (on TSO) cannot dynamically allocate a
VSAM data set (use LOGON PROC).

• CATALOG/DADSM macros in the ISAM processing program must be
replaced with access method services commands.

• The ISAM interface uses the same RPL over and over, thus,
for BISAM, a READ for update uses up an RPL until a WRITE or
FREEDBUF is issued (at which time the interface issues an
ENDREQ for the RPL). (When using ISAM you may merely issue
another READ if you don't want to update a record after
issuing a BISAM READ for update.)

• ISAM programs will run, with sequential processing, if the
key length is defined as smaller than it actually is. This
is not permitted with the ISAM interface.

• VSAM path processing is not s ported by the ISAM interface.

• The ISAM interface does not supp t RELOAD processing.
RELOAD processing is implied when n attempt is made to open
a VSAM data set for output, specifying DISP=OLD, and, in
addition, the number of logical records in the data set is
greater than zero.

Example: conve~tin9 a Data set

In this example, the indexed-sequential data set to be converted
(ISAMDATA) is cataloged either in the system catalog or in a
VSAM catalog. A key-sequenced data set, VSAMDATA, has
previously been defined in user catalog USERCTLG. Because both
the indexed-sequential and key-sequenced data set are cataloged,
unit and volume information need not be specified.

ISAMDATA contains records flagged for deletion; these records
are to be kept in the VSAM data set.

//CONVERT JOB
//JOBCAT DD
//STEP EXEC
//SYSPRINT DD
//ISAM DD
//VSAM DD
//SYSIN DD

REPRO -

DISP=SHR,DSNAME=USERCTLG
PGM=IDCAMS
SYSOUT=A
DISP=OLD,DSNAME=ISAMDATA,DCB=DSORG=IS
DISP=OLD,DSNAME=VSAMDATA

*
INFILE(ISAM ENVIRONMENT(DUMMY»­
OUTFILE(VSAM)

To drop records flagged for deletion in the indexed-sequential
data set, omit ENVIRONMENT(DUMMY).

Example: Issuing a SYNADAF Mac~o

The following example illustrates how a SYNAD routine specified
by way of AMP may issue a SYNADAF macro without
preliminaries--registers 0 and 1 already contain what SYNADAF
expects to find.

164 MVS/370 VSAM Users Guide

AMPSYN

BISAM

QISAM

CSECT

USING *,15 Register 15 contains the entry
address to AMPSYN.

SYNADAF ACSMETH=QISAM Either QISAM or BISAM may be
specified.

STM 14,12,12(13)

BAlR 7,0

USING *,7

l

L

TM

BO

TM

BO

TM

BO

TM

BO

15.,132(1)

14.,128(1)

42(15)'X'40'

QISAM

43(15),X'40'

QISAM

24(14),X'10'

INVBISAM

80(15).,X'10'

INVQISAM

load address of next instruction
into register 7 for base register.

The address of the DCB is stored
132 bytes into the SYNADAF message.

The address of the DECB is stored
128 bytes into the SYNADAF message.

Does the DCB indicate QISAM scan?

Yes.

Does the DCB indicate QISAM load?

Yes.

Does the DECB indicate an invalid
BISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

Does the DCB indicate an invalid
QISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

INVBISAM EQU *

INVQISAM EQU *

LM 14,12,12(13)

DROP 7

USING AMPSYN,15

SYNADRLS

BR 14

END AMPSYN

When the processing program closes the data set, the interface
issues VSAM PUT macros for ISAM PUT locate requests (in load
mode), deletes the interface routines from virtual storage,
frees virtual-storage space that was obtained for the interface,
and gives control to VSAM.

Appendix B. Using ISAM Programming with VSAM 165

GLOSSARY

The following terms are defined as they
are used in this book. If you do not
find the term you are looking for~ refer
to the index or to the IBM Vocabulary
for Data Processing, Telecommunications,
and Office Systems, GC20-1699.

access method services. A multifunction
service program that is used to define
VSAM data sets and allocate space for
them, convert indexed-sequential data
sets to key-sequenced data sets, modify
data set attributes in the catalog,
reorganize data sets~ facilitate data
portability between operating systems~
create backup copies of data sets, help
make inaccessible data sets accessible,
list the records of data sets and
catalogs~ define and build alternate
indexes, and convert OS CVOLs and VSAM
catalogs to ICF catalogs.

acq~ire. To allocate space on a staging
drive and to stage data from an MSS
cartridge to the staging drive.

addressed-direct access. The retrieval
or storage of a data record identified
by its RBA, independent of the record's
location relative to the previously
retrieved or stored record. (See also
keyed-direct access~ addressed­
sequential access, and keyed-sequential
access.)

addressed-sequential address. The
retrieval or storage of a data record in
its entry sequence relative to the
previously retrieved or stored record.
(See also keyed-sequential access,
addressed-direct access, and
keyed-direct access.)

alternate index. A collection of index
entries organized by the alternate keys
of its associated base data records. It
provides an alternate means of locating
records in the data component of a
cluster on which the alternate index is
based.

alternate key. One or more consecutive
characters taken from a data record and
used to build an alternate index or to
locate one or more base data records via
an alternate index. (See also generic
key, key, and key field.)

alternate index cluster. The data and
index components of an alternate index.

APF. (See authorized program facility.)

application. As used in this
publication, the use to which an access
method is put or the end result that it
serves; contrasted to the internal
operation of the access method.

166 MVS/370 VSAM Users Guide

authorized program facility. A facility
that permits the identification of
programs that are authorized to use
restricted functions.

base cluster. A key-sequenced or
entry-sequenced data set over which one
or more alternate indexes are built.

base RBA. The RBA stored in the header
of an index record that is used to
calculate the RBAs of data or index
control intervals governed by the index
record.

BIND. (1) An attribute of a data set
that keeps the data set on one or more
MSS staging drives until the data set is
released by the user regardless of the
length of time or the demands for space.
(2) An attribute of a mass storage
volume that reserves an entire staging
pack for the mass storage volume
whenever the volume is mounted.

CA. (See channel adapter.)

catalog. (See master catalog and user
catalog.)

catalog recovery area. (See CRA.)

CBIC. Control blocks in common, a
facility that allows a user to open a
VSAM data set so the VSAM control blocks
are placed in the common service area
(CSA) of the MVS operating system. This
provides the capability for multiple
memory accesses to a single VSAM control
structure for the same VSAM data set.

chained RPL. (See RPL string.)

channel adapter. A communication
controller hardware unit used to attach
the controller to a System/360 or a
System/370 data channel.

CI. (See control interval.)

CIDF. (See control interval definition
field.) -

CKDS. In the Programmed Cryptographic
Facility~ cryptographic key data set.

cluster. A named structure consisting
of a group of related components (for
example, a data component with its index
component). A cluster may consist of a
single component. (See also base cluster
and alternate index cluster.)

collating sequence. An ordering
assigned to a set of items~ such that
any two sets in that assigned order can

be collated. As used in this
publication, the order defined by the
System/370 8-bit code for alphabetic,
numeric, and special characters.

component. A named, cataloged
collection of stored records. A
component, the lowest member of the
hierarchy of data structures that can
cataloged, contains no named subsets.

be

control area. A group of control
intervals used as a unit for formatting
a data set before adding records to it.
Also, in a key-sequenced data set, the
set of control intervals pointed to by a
sequence-set index record; used by VSAM
for distributing free space and for
placing a sequence-set index record
adjacent to its data.

control area split. The movement of the
contents of some of the control
intervals in a control area to a newly
created control area, to facilitate the
insertion or lengthening of a data
record when there are no remaining free
control intervals in the original
control area.

control interval. A fixed-length area
of auxiliary storage space in which VSAM
stores records. It is the unit of
information transmitted to or from
auxiliary storage by VSAM.

control interval access. The retrieval
or storage of the contents of a control
interval.

control interval definition field. In
VSAM, the 4-byte control information
field at the end of a control interval
that gives the displacement from the
beginning of the control interval to
free space and the length of the free
space. If the length is 0, the
displacement is to the beginning of the
control information.

control interval split. The movement of
some of the stored records in a control
interval to a free control interval, to
facilitate the insertion or lengthening
of a record that won't fit in the
original control interval.

control volume. A volume that contains
one or more'indexes of the catalog.

eRA. Catalog recovery area. An
entry-sequenced data set that exists on
each volume owned by a recoverable
catalog, including the catalog itself.
The CRA contains self-describing records
that are duplicates of catalog records
that describe the volume.

CVOL. (See control volume.)

cylinder fault. A condition that occurs
when the operating system requires data
that has not been staged. The cylinder

fault causes a cylinder of data to be
staged.

DASD. (See direct access storage
device.)

duta integrity. Preservation of data
programs for their intended purpose.
used in this publication, the safety
data from inadvertent destruction or
alteration.

or
As

of

data record. A collection of items of
information from the standpoint of its
use in an application, as a user
supplies it to VSAM for storage.

d~ta security. Prevention of access to
or use of data or programs without
authorization. As used in this
publication, the safety of data from
unauthorized use, theft, or purposeful
destruction.

data set. The major unit of data
storage and retrieval in the operating
system, consisting of data in a
prescribed arrangement and described by
control information to which the system
has access. As used in this
pUblication, a collection of fixed- or
variable-length records in auxiliary
storage, arranged by VSAM in key
sequence or in entry sequence. (See
also key-sequenced data set and --­
entry-sequenced data set.)

data space. A storage area defined in
the volume table of contents of a direct
access volume for the exclusive use of
VSAM to store data sets, indexes, and
catalogs.

DD statement. data definition statement

DES. The United States National Bureau
of Standards data encryption standard.

destage. To move data from a staging
drive to a mass storage volume.

direct access. The retrieval or storage
of data by a reference to its location
in a data set rather than relative to
the previously retrieved or stored data.
(See also addressed-direct access and
keyed-direct access.)

direct access storage device. A device
in which the access time is effectively
independent of the location of the data.

distributed free spnce. Space reserved
within the control intervals of a
key-sequenced data set for inserting new
records into the data set in key
sequence; also, whole control intervals
reserved in a control area for the same
purpose.

EBDIe. Extended binary-coded decimal
interchange code. A coded character set
consisting of 8-bit coded characters.

Glossary 167

entry sequence. The order in which data
records are physically arranged
(according to ascending RBA) in
auxiliary storage, without respect to
their contents. (Contrast with key
sequence.)

entry-sequenced data set. A data set
whose records are loaded without respect
to their contents, and whose RBAs cannot
change. Records are retrieved and
stored by addressed access, and new
records are added at the end of the data
set.

EOD. end of data

EOKR. end-of-key range

EOV. end of volume

ESDS. (See entry-sequenced data set.)

field. In a record or a control block,
a specified area used for a particular
category of data or control information.

free control interval entry. In a
sequence-set index record, a vertical
pointer that gives the location of a
free control interval in the control
area governed by the record.

front compression. The elimination,
from the front of a key, of characters
that are the same as the characters in
the front of the preceding key.

GDG. (See generation data group.)

GENDSP. An option of LOCATE to obtain
the control interval number of the
catalog record of each object.

generation data group. A collection of
data sets that are kept in chronological
order; each data set is called a
generation data set.

generic key. A high-order portion of a
key, containing characters that identify
those records that are significant for a
certain application. For example, it
might be desirable to retrieve all
records whose keys begin with the
generic key AB, regardless of the full
key values.

global shared resources. An option for
sharing I/O buffers, I/O-related control
blocks, and channel programs among VSAM
data sets in a resource pool that serves
all address spaces in the system.

GSR. (See global shared resources.)

header, index record. In an index
record, the 24-byte field at the
beginning of the record that contains
control information about the record.

header entry. In a parameter list of
GENCB, MODCB, SHOWCB, or TESTCB, the
entry that identifies the type of

168 MVS/370 VSAM Users Guide

request and control block and gives
other general information about the
request.

horizont~l pointer. In the header of an
index record, the RBA of the index
record in the same level as this one
that contains keys next in ascending
sequence after the keys in this one.

ICF. (See integrated catalog facility.)

index. As used in this publication, an
ordered collection of pairs, each
consisting of a key and a pointer, used
by VSAM to sequence and locate the
records of a key-sequenced data set.

index level. A set of index records
that order and give the location of all
the control intervals in the next lower
level or in the data set that it
controls.

index record. A collection of index
entries that are retrieved and stored as
a group. (Contrast to data record.)

index record header. In an index
record, the 24-byte field at the
beginning of the record that contains
control information about the record.

index replication. The use of an entire
track of direct access storage to
contain as many copies of a single index
record as possible; reduces rotational
delay.

index set. The set of index levels
above the sequence set. The index set
and the sequence set together comprise
the index.

integrated catalog facility. The name
of the catalog associated with the Data
Facility Product program product.

ISAM. indexed sequential access method

ISAM interface. A set of routines that
allow a processing program coded to use
ISAM (indexed sequential access method)
to gain access to a key-sequenced data
set.

JCL. (See job control language.)

job catalog. A catalog made available
for a job by means of the JOBCAT DD
statement.

job control language. A
problem-oriented language designed to
express statements in a job that are
used to identify the job or describe its
requirements to an operating system.

job step catalog. A catalog made
available for a job by means of the
STEPCAT DD statement.

key. One or more characters within an
item of data that are used to identify

it or control its use. As used in this
publication, one or more consecutive
characters taken from a data record,
used to identify the record and
establish its order with respect to
other records. (See also key field and
generic key.)

key compression. The elimination of
characters from the front and the back
of a key that VSAM does not need to
distinguish the key from the preceding
or following key in the index record;
reduces storage space for an index.

key field. A field located in the same
position in each rQccrd of ~ dQta set,
whose contents are used for the key of a
record.

key 5~quence. The collating sequence of
data records, determined by the value of
the key field in each of the data
records. May be the same as, or
different from, the entry sequence of
the records.

key-sequenced data set. A data set
whose records are loaded in key sequence
and controlled by an index. Records are
retrieved and stored by keyed access or
by addressed access, and new records are
inserted in the data set in key sequence
by means of distributed free space.
RBAs of records can change.

keysd-direct access. The retrieval or
storage of a data record by use of
either an index that relates the
record's key to its relative location in
the data set or a relative record
number, independent of the record's
location relative to the previously
retrieved or stored record. (See also
addressed-direct access,
keyed-sequential access, and
addressed-sequential access.)

keyed-sequential access. The retrieval
or storage of a data record in its key
or relative record sequence relative to
the previously retrieved or stored
record, as defined by the sequence set
of an index. (SGe also
addressed-sequential access,
keyed-direct access, and
addressed-direct access.)

key-sequenced data set. A VSAM file
(data set) whose records are loaded in
key sequence and controlled by an index.
Records are retrieved and stored by
keyed access or by addressed access, and
new records are inserted in key sequence
by means of distributed free space.
Relative byte addresses of records can
change, because of control interval or
control area splits.

KSDS. (See key-sequenced data set.)

level nu~ber. For the index of a
key-sequenced data set, a binary number
in the header of an index record that

indicates the index level to which the
record belongs.

local sh~red resources. An option for
sharing I/O buffers, I/O-related control
blocks, and channel programs among VSAM
data sets in a resource pool that serves
one partition or address space.

LSR. (See local shared resources.)

Mass storage system. The name for the
entire storage system, consisting of the
Mass storage Facility and all devices
that are defined to the Mass Storage
Control. The abbreviation is MSS.

rnnster catalog. A catalog that contains
extensive data set and volume
information that VSAM requires to locate
data sets, to allocate and deallocate
storage space, to verify the
authorization of a program or operator
to gain access to a data set, and to
accumulate usage statistics for data
sets.

operating system. SoftWare that
controls the execution of programs; an
operating system may provide services
such as resource allocation, scheduling,
input/output control, and data
management.

as. (See operating system.)

password. A unique string of characters
stored in a catalog that a program, a
computer operator, or a terminal user
must supply to meet security
requirements before a program gains
access to a data set.

path. A named, logical entity composed
of one or more clusters (an alternate
index and its base cluster, for
example) .

physical record. A physical unit or
recording on a medium. For example, the
physical unit between address markers on
a disk.

pointer. An address or other indication
of location. For example, an RBA is a
pointer that gives the relative location
of a data record or a control interval
in the data set to which it belongs.

port~bility. The ability to use VSAM
data sets with different operating
systems. Volumes whose data sets are
cataloged in a user catalog can be
demounted from storage devices of one
system, moved to another system, and
mounted on storage devices of that
system. Individual data sets can be
transported between operating systems
using access method services.

prestage. To move data from an MSS
cartridge to a staging drive before the
data is needed by the processing
program.

Glossary 169

prime index. The index component of a
key-sequenced data set that has one or
more alternate indexes. (See also index
and alternate index.)

prime key. (See key.)

QSAM. (See queued sequential access
method.)---

queued sequential access method. An
extended version of the basic sequential
access method (BSAM). When this method
is used, a queue is formed of input data
blocks that are awaiting processing or
output data blocks that have been
processed and are awaiting transfer to
auxiliary storage or to an output
device.

RACF. Resource Access Control Facility.

random access. (See direct access.)

RBA. Relative byte address. The
displacement (expressed as a fullword
binary integer) of a data record or a
control interval from the beginning of
the data set to which it belongs;
independent of the manner in which the
data set is stored.

RDF. (See record definition field.)

rear compression. The elimination, from
a key, of characters to the right of the
first character that is unequal to the
corresponding character in the following
key.

record. (See index record, data record,
stored record.)

record definition field. A field stored
as part of a stored record segment; it
contains the control information
required to manage stored record
segments within a control interval.

recoverable catalog. A catalog defined
with the recoverable attribute.
Duplicate catalog entries are put into
CRAs that can be used to recover data in
the event of catalog failure. (See also
CRA.)

relative byte address. (See RBA.)

relative record data set. A data set
whose records are loaded into
fixed-length slots.

relative record number. A number that
identifies not only the slot, or data
space, in a relative record data set but
also the record occupying the slot.
Used as the key for keyed access to a
relative record data set.

replication. (See index replication.)

resource pool, VSAM.
pool.)

(See VSAM resource

170 MVS/370 VSAM Users Guide

reusable data set. A VSAM data set that
can be reused as a work file, regardless
of its old contents. Must not be a base
cluster.

RPL string. A set of chained RPLs (the
set may contain one or more RPLs) used
to gain access to a VSAM data set by
action macros (GET, PUT, etc). Two or
more RPL strings may be used for
concurrent direct or sequential requests
made from a processing program or its
subtasks.

RRDS. (See relative record data set.)

RRH. A number (expressed as a fullword
binary integer) which represents the
position of a record in a relative
record data set. The record is located
in the data set based on its relative
record number.

SAM. (See sequential access method.)

security. (See data security.)

sequence checking. The process of
verifying the order of a set of records
relative to some field's collating
sequence.

sequence set. The lowest level of the
index of a key-sequenced data set; it
gives the locations of the control
intervals in the data set and orders
them by the key sequence of the data
records they contain. The sequence set
and the index set together comprise the
index.

sequential access. The retrieval or
storage of a data record in either its
entry sequence, its key sequence, or its
relative record number sequence,
relative to the previously retrieved or
stored record. (See also
addressed-sequential access and
keyed-sequential access.)

sequential access m~thod. An access
method for storing or retrieving data
blocks in a continuous sequence, using
either a sequential access or a direct
access device.

shared resources. A set of functions
that permit the sharing of a pool of
I/O-related control blocks, channel
programs, and buffers among several VSAM
data sets open at the same time.

skip-sequential access.
Keyed-sequential retrieval or storage of
records here and there throughout a data
set, skipping automatically to the
desired record or collating position for
insertion! VSAM scans the sequence set
to find a record or a collating
position. Valid for processing in
ascending sequences only.

slot. For a relative record data set,
the data area addressed by a relative

record number which may contain a record
or be empty.

spanned record. A logical record whose
length exceeds control interval length,
and as a result, crosses, or spans, one
or more control interval boundaries
within a single control area.

stage. To move data from an MSS
cartridge to a staging drive.

step catalog. A catalog made available
for a step by means of the STEPCAT DD
statement.

stored record. A data record. together
with its control information, as stored
in auxiliary storage.

terminal monitor progr~m. In TSO, a
program that accepts and interprets
commands from the terminal, and causes
the appropriate command processors to be
scheduled and executed.

time sharing option. An optional
configuration of the operating system
that provides conversational time
sharing from remote stations.

TMP. (See terminal monitor program.)

transaction ID. A number associated
with each of several request parameter
lists that define requests belonging to
the same data transaction.

TSO. (See time sharing option.)

update number. For a spanned record, a
binary number in the second RDF of a
record segment that indicates how many
times the segments of a spanned record
should be equal. An inequality indicates
a possible error.

upgrad~ set. All the alternate indexes
that VSAM has been instructed to update
whenever there is a change to the data
component of the base cluster.

user buffering. The use of a work area
in the processing program's address
space for an I/O buffer; VSAM transmits
the contents of a control interval
between the work area and direct access
storage without intermediary buffering.

user catalog. An optional catalog used
in the same way as the master catalog
and pointed to by the master catalog.
It also lessens the contention for the
master catalog and facilitates volume
portability.

vertical pointer. A pointer in an index
record of a given level that gives the
location of an index r~ccrd in th~ next
lower level or the location of a control
interval in the data set controlled by
the index.

virtual volume. The data from a mass
storage volume while it is located on a
staging drive.

virtual storage access method. An
access method for direct or sequential
processing of fixed and variable-length
records on direct access devices. The
records in a VSAM data set or file can
be organized in logical sequence by a
key field (key sequence), in the
physical sequence in which they are
written on the data set or file (entry
sequence), or by relative record number.

VSAM. (See virtual storage access
method.)

VSAM resource pool. A virtual storage
area that is used to share I/O buffers,
I/O-related control blocks, and channel
programs among VSAM data sets. A
resource pool is local or global; it
serves tasks in one partition or address
space or tasks in all address spaces in
the system.

VSAM shared information. Blocks that
are used for cross-system sharing.

VSI. (See VSAM shared information.)

Glossary 171

ABEND codes
issued by ISAM interface 155

ACB macro
used to open an index 111

access method services 21
ALTER 21
BLDINDEX 21
CHKLIST 21
CNVTCAT 21
data protection 59
DEFINE 21
DELETE 21
DIAGNOSE 21
EXPORT 21
IMPORT 21
invoking 142
lISTCAT 22
PRINT 22
REPRO 22
VERIFY 22

access method services commands 23
access to

contents of control intervals 86,
87, 101

index of key-sequenced data set 103
index records 111

ACQRANGE macro
acquire a continuous range of

records 119
acquire range 118

acquire a continuous range of records
ACQRANGE macro 119

acquire range
ACQRANGE macro 118

address list
in parameter lists of GENCB, MODCB,

SHOWCB, and TESTCB macros 112
addressed access

to an index 111
alias

definition 36
allocation parameters, choosing 53
ALTER command 21
alternate index

building 32
clusters 11
defining 31
explanation 11
illustration 13
maintenance 14
path 12
records

alternate keys 13
pointers 13
system header info 13

stage by keyrange
not supported 120

upgrading when processing base
cluster with control interval
access 101

with VSAM ESDS 65
alternate indexes

processing as a data set 103
alternate key 12

172 MVS/370 VSAM Users Guide

alternate name
definingan 36

AMORG subparameter
in AMP parameter 126, 160

AMP parameter 126
with ISAM interface 160

APF (authorized program facility) 58
argument lists

referenced by invoking macros 142
argument, search

ACQRANGE macro 119
CNVTAD macro 119

ATTACH macro 142
authorized program facility (APF) 58

authorization 142
fixing pages in real storage 88
TSO 58

backing up
data sets 42

base RBA, in index-record header
of control area 106
of index 106

BLDINDEX command 21, 32
BLDVRP macro

format 93
block chaining, with ciphertext

feedback 64
block size 45

for DASD 45
boundary values, of keys, through rear

compression 110
brackets, in notation convention iii
buffer allocation

for a path 50
general information 51

buffer modification, journaling of 97
buffer pool

statistics 93
buffer space management 49
buffering, I/O 87

See also buffer pool
using work area as a buffer 87

buffers
data

multiple string 30
positioning
retaining

BUFND subparameter
in AMP parameter 126, 160

BUFNI subparameter
in AMP parameter 126, 160

BUFSP subparameter
in AMP parameter 126

building
alternate index 33
parameter list for GENCB macro

coding example 114
parameter lists for GENCB, MODCB,

SHOWCB, and TESTCB macros
format of parameter lists 113
macros used 112

building an alternate index 32

busy flag 82

CALL macro 143
cancelling I/O error processing in a

JRNAD exit routine 96
capitalizingl in notation
convention iii

catalog
data set password protection 62
password protected 60

CBIC (control blocks in common) 89
CBUF (control block update facility)

for reF catalogs 77
chaining request parameter lists

control interval access 86
not allol.-Jed with

improved control interval
access 87

WRTBFR macro 94
changing device type code 35

DEFINE NON-VSAM command
DEVICETYPES parameter 35

changing system residence volume serial
number 36

DEFINE NONVSAM command
VOLUMES parameter 36

channel programs
shared 91

CHECK macro
with control interval access 87

checkpoint
listing tape volumes mounted at 41

checkpoint routine
restriction with a global resource
pool 103

writing buffers 94
checkpoint/restart

options 126
CHKLIST command 211 41
CIDF (control information definition
field)

busy flag 82
end of data 81
format 81
illustration 811 85

ciphertext
feedback 64
with block chaining 64

CKDS
keyname 67
secondary file keys 67

external file key 68
internal file key 68

use of 67
CNVTAD macro

convert address 118
convert an argument to an
address 119

used with MNTACQ macro 118
CNVTCAT command 21
codes 811 97 1 104

See also err~r return codes
control information in control
interval 81 1 104

JRNAD exit parameter list 97
coding

a DD statement 125
JCL 121

coding example

of building parameter list for GENCB
macro 114

commandsl access method services
common area

virtual storage 92 1 102
compressionl key

boundary values 110
control information in index
entry 107

examples 108, 109 1 110
front 108
highest possible key value 110
illustration 109
rear 108

condition codes
processor 146

control area
base RBA ofl in a sequence-set index

record 106
definition 9
introduction 2
none in an index 104
preformatting 26
size 49

control area splits, ~ournaling of 97
control block update facility

for ICF catalogs 77
control blocks in common 89
control information 8

control interval
CIDF 81
RDF 81, 82

parameter lists of GENCB, MODCB,
SHOWCB, and TESTCB macros

address list 112
element entry 112
header entry 112

responsibility for maintaining, with
control interval access 86

storage 8
writing under ICF index record

free control interval entry 106
header 105
index entry 107
section displacement field 107

control interval 8
considerations 48
control information

CIDF 81
RDF 81, 82
responsibility for maintaining,
with control interval access 86

introduction 2
password 87
size

BUFFERSPACE 46
specifying 44
summary of strategy 48

split 7
storing records 10
table of sizes 47
writing under ICF

illustration 81, 85
in a key-sequenced data set, free,
governed by free control interval
entry in inde 106

in a key-sequenced data set, used,
governed by index entry in
index 106

in an index 104
control interval access

debugging with normal control
interval access 87

improved 87

Index 173

passwords 87
responsibility for maintaining
control information 86

to a data set 86, 101
to an index 111

control interval definition field (CIDF)
end of data 81
format 81
illustration 81, 85

convert address
CNVTAD macro 118

convert an argument to an address
CNVTAD macro 119

converting from ISAM to VSAM
JCL used 157

copying
a data set 43
by REPRO

See REPRO
ciphertext

See ciphertext
data sets supported

input 64
output 64

plaintext 64
copying a data set 38
create mode 26
creating a cluster 23

restriction 24
CROPS subparameter

in AMP parameter 127
cross key 1 statement 68
cross key 2 statement 68
cross-memory invocation

See SRB invocation
cross-region sharing

global resource serialization 74
cryptographic key data set

See CKDS
cryptographic option for access method

services
protection of data stored offline 63

cryptography, description 63

data
buffers

multiple string 30
positioning 31
retaining 31
space management 49, 50

control interval size 44
deciphering

See deciphering
enciphering

See enciphering
encrypting key

plaintext 67
encrypting key data set

DATAKEYFILE parameter 67
use of 67

integrity 58
protection 58, 59
record

address 11
security 58
space 46

data encrypting key,
plaintext

obtaining 67

174 MVS/370 VSAM Users Guide

use of DES 67
Data Encryption Standard (DES),

Programmed Cryptographic Facility 64
data records

position in a control interval 81
storage 8

data set
backing up 42
catalog password protection 62
copying 38, 43
DCB lRECl

See LRECL
deciphered

See deciphering
enciphered

See enciphering
graphic use of 65
non-V SAM 35
password protected 60
plaintext data encrypting key 67
printing 40
procedures 21
space allocation 9
supported by REPRO 64

input (SAM, ISAM, VSAM) 64
output (SAM,VSAM) 64

target (output) 64
empty status 64

types 5
data set sharing 91
datestamp routine 138
DD statement

coding 125
sort workfiles 34

DDNAME
JCL parameter 123

deadlock in exclusive control,
preventing 100

DECIPHER parameter 68
requirements 68

deciphering data 63-68
deferring write requests 94
deferring writes from a buffer pool 94
DEFINE ALIAS command 36
DEFINE ALTERNATEINDEX command 31

descriptive information 32
specifying information 32

DEFINE CLUSTER command 23
descriptive information 25
performance options 25
protection and integrity 26
RECATALOG parameter 23
RECORDSIZE parameter 65
specifying information 25
SUBALLOCATION parameter 23
UNIQUE parameter 23

DEFINE command 21
DEFINE GENERATIONDATAGROUP command 36
DEFINE NON-VSAM command 35
DEFINE PAGESPACE command 36
DEFINE PATH command 35
defined values

listing of data set 46
defining a cluster 23

restriction 24
defining a data set 23
defining a generation data group 36
defining a non-VSAM data set 35
def in i ng a page spacei 36
defining a path 35
defining an alias 36
defining an alternate index 31
defining an alternate name 36
DELETE command 21

delimiter parameters
See REPRO DECIPHER and ENCIPHER

DES
See Data Encryption Standard

DIAGNOSE command 21
direct access

key-sequenced data sets 6
to control intervals 86
with control interval access 86

direct control interval access 87
DISP

JCL parameter 123
displaying statistics about a buffer

pool 93
displaying transaction ID of request
parameter list 95

d1stributed fre~ spaca 106
DSNAME

JCL parameter 123
DSNAME statement

in JCL, for specifying an index 111
DUMMY

JCL parameter 123
dynamic allocation 121

element entry
in parameter lists of GENCS, MODCB,

SHOWCS, and TESTCS macros
coding example 112
using macros to build 112

in parameter lists of GENCY, MODCS,
SHOWCB, and TESTCS macros

description 112
illustration 113

ellipses, in notation convention 111
empty data set 82, 83, 86, 87, 88, 91
ENCIPHER parameter 68

requirements 68
enciphering data 63-68
end of data

during SRS processing 90
indicated by CrDF 82, 86

end of data set (EODAD) 27
end-of-file (EOD) 37
end-of-file, software (SEOF) 82
end-of-key-range (EOKR) 37
ENDREQ macro

giving up exclusive control 101
entry

element, in parameter lists of GENCB,
MODCB, SHOWCB, and TESTCS
macros 112

free control interval, in index
record 106

header, in parameter lists of GENCS,
MODCS, SHOWCB, and TESTCB
macros 112

index 107
entry-sequenced data set 5, 7

introduction 1
loading with control interval
access 87

processing with shared resources 101
RDFs 82

EODAD exit with control interval
access 86

EODAD routine
contents of registers 132

ERASE macro

not used with control interval
access 87

error conditions
BISAM 153
QISAM 152

error return codes
from GETIX macro 111
from PUTIX macro 111
from request macros (GET, PUT, etc.)

JRNAD exit 97
from SHOWCB macro 93, 95
from TESTCB macro 95

errors
analyzing

logical
physical 130

using multiple regions ou
EXCEPTION exit with deferred writes 96
exception handling (EXCEPTION EXIT) 27
excessive paging

extra buffers 51
exclusive control

preventing deadlocks 100
releasing 101

exit routine
EODAD 132
exception 131
for special processing
JRNAD 133
LERAD 129
returning from 140
SYNAD 130
UPAD 135
user written 129-141

example 141
EXPORT command 21

back up copy of data set 42
exporting a data set 43

file key
secondary 67

fixing pages in real storage
with improved control interval
access 88

format
SLDVRP macro 93
control interval

CIDF 81
in an index 104
RDF 82

GETIX macro 111
index record

free control interval entry 106
header 106
index entry 107, 108

parameter lists of GENCB, MODCB,
SHOWCB, and TESTCS macros

address list 113
element entry 113
header entry 113

PUTIX macro 111
free control interval entry, in an index

record 106
free space 44

computation 55
distributed 54
distributed, position in a control

interval 106

Index 175

specification for key-sequenced data
set 6

unused space in a control interval
with spanned record 85

unused space in an index record 106
front key compression 108

See also key compression
description 108
examples 108

functions
access method services 21

gaining access to
contents of control intervals 86,

101
index of key-sequenced data set 103
index records 111

GENCS macro
execute form used with parameter
lists built by user 112, 114

linking to VSAM dlrectly 116
specifying buffering 86
specifying control interval
access 86

specifying shared resources 92
used to open an index 111

generalized trace facility (GTF) 127
generation data group

defining 36
GET macro

end of data 86
shared resources 91

GETIX macro 111
global resource serialization (GRS)

cross-region sharing 74
global shared resources (GSR) 92
GSR (global shared resources) 92

header entry
in parameter lists of GENCB, MODCB,

SHOWCB, and TESTCB macros
coding example 112
description 112
illustration 113
using macros to build 112

header, index-record 105
horizontal pointer, in index-record

header 106

I/O buffer spaces
management 49

I/O buffers 87
shared 91
using work area as a buffer with
control interval access 87

I/O errors, journaling of 96
I/O routines

user controlled 146
I/O-related control blocks, shared 91

176 MVS/370 VSAM useis Guide

ICF catalog
RECATALOG option 23

IDAELEM macro 112
IDAGENC macro 112
IDAMODC macro 112
IDASHOW macro 112
IDATEST macro 112
IDCAMS program 144
implicit VERIFY 22
IMPORT command 21
importing a data set 43
improved control interval access 87

debugging with normal control
interval access 88

not allowed with shared
resources 101

index
format of

control intervals 104, 106
opening 111
records 104

processing 111
replication of records, no effect on
contents 104

use of index entries for search by
key 106, 110

index and data
on separate volumes 56

index buffers
effect of unused 51
multiple string 30

index control interval size 47, 56
index entry

description 106
for spanned records 110
illustration 107, 108
sectioned to improve search

speed 107
use for search 106, 110

index level
index set 104, 106
indicator in index-record header 106
sequence set 104, 106

index options 55
index record

free control interval entry 106
header 105

format 106
index entry 107
key-sequenced data set 5
replication, no effect on
contents 104

unused space 106
index set

description 104, 106
no free control interval entries 104

index set records 56
index upgrade 14
indirect volume ·serial
identification 35

initial data set load 26
inserting records 28

key-sequenced data set 7
invalid buffers, refreshing 101
invocation of SRB or cross-memory mode

See SRB invocation
invoking access method services

from problem program 142
PL/I program 144

invoking macro instructions 142
ISAM (indexed sequential access method)

converting a data set example 164
converting to VSAM 156
interface

JCL

DCB fields supported 157
restrictions 162

interface program 149
issuing a SYNADAF macro example 164

how to code 121
parameters

not used with VSAM 124
used with ISAM interface
processing 157

journaling
buffer modifications 97
control area splits 97
I/O errors 96

journalizing a transaction (JRNAD) 27
JRNAD exit

cancelling I/O errors 96
contents of registers 134
not taken with improved control

interval access 88
values for 97
with shared resources 97

key compression
control information in index
entry 107

examples 108, 109, 110
front 108
highest possible key value 110
illustration 109
key-sequenced data set 82
rear

boundary values 110
description 108

key-sequenced data set 5-7
accessing the index 103
free space specification 6
inserting records 7
introduction 1
RDFs 82

key, use of index entries for
search 106, 110

keyed access
intermixed with control interval
access 86

not used to gain access to an
index 111

keyrange
staging VSAM data sets for MSS 118

LASTCC condition code
using 146

LERAD exit routine
contents of registers at entry 130

level, index
index set 104, 106

indicator in index-record header 106
sequence set 104, 106

limitations
stage by keyrange 119

LINK macro 142
linking to VSAM directly 116
list, forms of

loading a data set not allowed with
shared resources 91

with control interval access 87
list, parameter

of GENCB, MODCB, SHOWCB, and TESTCB
macros 112

of JRNAD exit 97
LISTCAT command 22
listing catalog entries 22
listlng tape volumes mounted at
checkpoint 41

LOAD macro 143
load mode 26

restrictions 26
loading an entry-sequenced data set

with control interval access
PUT 87

local shared resources (LSR) 92
locate mode

with shared resources 86
logical error (LERAD) 27
lower case, in notation convention iii
LRECL operand 65
LSR (local shared resources) 92

macros
ATTACH 142
CALL 143
introduction 3
LINK 142
LOAD 143

managing your own I/O buffers
using the work area as a buffer 87

MNTACQ macro
mount a volume and acquire
cylinders 119

mount acquire 118
used with CNVTAD macro 118

MODCB macro
execute form used with parameter
lists built by user 112

linking to VSAM directly 116
modifying buffers, journaling of 97
mount a volume and acquire cylinders

MNTACQ macro 119
mount acquire

MNTACQ macro 118
move mode of control interval access

work area as a buffer 86
MRKBFR macro

giving up exclusive control 101
with shared resources 101

multiple cylinder data sets 52
multiple string data buffers 30
multiple string processing 29

Index 177

NCK subparameter
in AMP parameter 127

non-MSS data sets 119
non-MSS support 119
non-VSAM data set 35
non-VSAM data sets

defining 35
password protection 62

NRC subparameter
in AMP parameter 127

NRE subparameter
in AMP parameter 127

offline protection 63
OPEN macro

opening a data set for control
interval access 89

opening a key-sequenced cluster to
process an index 111

opening an index component 111
OPTCD subparameter

in AMP parameter 127, 161
optimizing performance

VSAM 44
options

with ISAM 126
or sign, in notation convention iii
overriding operands 126

page space
defining 36

pages, fixing in real storage
with improved control interval
access 88

parameter list
of GENCB, MODCB, SHOWCB, and TESTCB

macros 112
of JRNAD exit 97

password
control access 59
control password 59
degrees of security 59
for control interval access 87
full access 59
master password 59
prompting 62
protection

catalog 61, 62
data set 61, 62
non-VSAM data sets 62
RACF 63
USVR 63
VSAM data sets 59

read access 60
read password 60
update access 59
update password 59
VSAM 59

performance
deferring writes 94

178 MVS/370 VSAM Users Guide

improved control interval access 87
options that influence 55
sharing resources 91

performance options
DEFINE CLUSTER command 25

physical block size
selected by VSAM 45

physical error analysis
in a JRNAD exit routine 97
in a SYNAD exit routine 27

PL/I program
invoking access method services 144

placeholders with shared resources 91
POINT macro

control interval access 87
end-of-data 86
shared resources 91

positioning with shared resources 91
preformatting control areas 26
prestaging

macros used 118
prestaging using identified records 118
prestaging using range of records 118
preventing deadlock in exclusive
control 100

prime index 5
PRINT command 22, 40
printing a data set 40
problem program

invoking access method services 142
using macro instructions 142

procedures
data set 21

processing
multiple string 29
random 47
sequential 47

processing an index 111
processing within a range of keys 119
processor condition codes 146
processor invocation 144

argument list 144
protection and integrity

defining a cluster 26
RACF 63

providing a resource pool 92
PUT macro

deferring writes for 94
loading an entry-sequenced data set
with control interval access 87

updating with control interval
access 87

using MRKBFR macro instead, with
shared resources 101

PUT IX macro 111

RACF
password protection 63

random processing 47
RBA (relative byte address) 11

base, in index-record header
to calculate the RBA of an

index 106
search argument for

direct control interval access 87
index access 111

RBA field
in JRNAD parameter list 97

RCK subparameter

in AMP parameter 127
RDF (record definition field)

description 82
illustration 83

rear key compression 108, 110
See also key compression
boundary values 110
description 108
examples 108

recatalog option for ICF catalog 23
RECFM subparameter

in AMP parameter 161
with AMP parameter 127

RECLEN field (record length) of an RPL
modifying and displaying 117

record
data, position in control

interval 81
index

free control interval entry 106
header 105
index entry 107
unused space 106

spanned 82
unspanned 84

record definition field (RDF)
description 82
illustration 83

record length (RECLEN field) of an RPL
modifying and displaying 117

recovery procedures
recatalog option

ICF catalog 23
reducing index size 6
register contents

ISAM SYNAD routine 154
related publications iv
relating deferred requests by
transaction 95

relative byte address
See RBA

relative byte address (RBA) 111
See also base RBA and RBA field
search argument for

index access 111
relative record data set 5, 8

cannot load with control interval
access 87

introduction 2
RDFs 82, 86

releasing exclusive or shared control
ENDREQ macro 101
MRKBFR macro 101

REPLACE option 43
replication of index records 56

no effect on contents 104
REPRO command 22, 38

back up copy of data set 42
copying a data set 43

request parameter lists
chaining not allowed with

improved control interval
access 87

transaction IDs 95
required publications iv
Resource Access Control Facility

(RACF) 63
resource pool

deferring writes 94
providing 92

restart 125
restoring end-of-file values 37
restrictions

control interval access 87

for shared resources 103
index processing 111
stage by keyrange 119

restrictions during CREATE mode 26
restrictions in the use of the ISAM
interface 162

return codes
from GETIX macro 111
from PUTIX macro 111
from SHOWCB macro 95
from TESTCB macro 95

returning to a user's exit (UPAD) 27
RPL macro

control interval access 86
transaction IDs 95

RPL parameter
RECLEN f1~ld (r~ccrd length)

modifying and displaying 117

SCHBFR macro
with shared resources 101

search argument
index access 111
key, use of index entries 106, 110
RBA, for direct control interval
access 87

searching catalogs, order of 125
section, in an index record

displacement field 107
illustration 107
index entry 107

security of data 58-68, 137
authorization routine 137

security-authorization record, user 137
security-verification routine, user 137
segment of spanned record 82
selective staging 118
SEOF (software end-of-file) 82
sequence set, level of an index

description 104, 106
free control interval entries 106

sequential access
entry-sequenced data sets 8
key-sequenced data sets 6
with control interval access 86

sequential insert strategy
defined 28
effect on free space 28

sequential processing 47
service program

See access method services
share options

using CBUF under SHAREOPTION 3 77
SHAREOPTIONS parameter

stage by keyrange 120
type of processing specified 78

SHAREOPTIONS 4 (incompatible with
deferring write requests) 95

sharing
cross-system 77

SHOWCAT macro
determining size of resource pool 93

SHOWCB macro
displaying buffer-pool statistics 93
displaying transaction ID of request
parameter list 95

execute form used with parameter
lists built by user 112

linking to VSAM directly 116

Index 179

return codes 93, 95
skip sequential access

not used to gain access to an
index 111

not used with control interval
access 86

small control areas, impact of 49
small data sets 53
software end-of-file (SEOF) 82
sort workfiles

DD statements describing 34
space

allocation 52, 53
SPANNED attribute

across control intervals 46
restrictions 46

spanned records 10, 46
illustration 86
index entries for 110
introduction 2
RDFs 82
segments 82
update number 82, 83, 85

specifying cluster information 25
splitting control areas, journaling
of 97

SRB dispatching (improved control
interval access) 87

SRB invocation
errors during 90
restrictions concerning
state of caller during
switching to TCB during
synchronization omitted

stage by keyrange 118
limitations 119
restrictions 119

89
90

90
during

stage by keyrange function 119
staging

data sets for MSS 118
statistics

for a buffer pool 93
for a resource pool 93

STEPCAT DD statement 121
storage

control interval 8
stored records 10
STRNO subparameter

in AMP parameter 127, 161

89

subpool 241 (for shared resources) 92
substituting processing parameters by

way of JCL 125
supplying operands 126
SYNAD exit routine

analyzing physical errors 130
contents of registers 131
using ISAM interface

contents of registers at
entry 154

with deferred writes 96
SYNAD subparameter

in AMP parameter 127, 162
SYNADAF macro

in ISAM program 154
system catalog, in order of catalog
search 125

system residence volume 35

180 MVS/370 VSAM Users Guide

tape volumes
listing

mounted at checkpoint 41
terminal monitor program

APF authorization 58
TESTCB macro

execute form used with parameter
lists built by user 112

linking to VSAM directly 116
listing transaction 1D of request
parameter list 95

return codes 95
time stamp processing (IDATMSTP) 27
TRACE subparameter

in AMP parameter 127
tracing 127

VSAM record management 127
transaction ID

relating deferred requests 95
transactions, journalizing 133
translating ISAM requests 149
TSO (time sharing option)

APF authorization 58

underlining, in notation convention iii
UNIT

JCl parameter 123
unspanned records

illustration 85
index entries for 107
RDFs 82, 84
segments 82, 84

unused space
in a control interval 81
in an index record 106

unused space in a control interval
with spanned record 85

UPAD exit routine for user
processing 135

update number (in spanned record
segments) 82, 83, 85

updating a data set
with control interval access

using work area as a buffer 87
with shared resources 101
with VSAM buffering 87

UPGRADE attribute 14
upgrade set 14
upgrade, index 14
upgrading alternate index when
processing base cluster with control
interval access 101

upper case, in notation convention iii
USAR (user-security-authorization

record) 137
user buffering 87

See also buffer pool
using work area as a buffer with
control interval access 87

user catalog
JCl 121
order of search 125
specified for job 121
specified for job step 121

user 1/0 routines 146

user interactions 79
user-security-authorization record

contents of registers at entry 137
description 137

user-written exit routine, example 141
using control interval access 86
using LASTCC 146
USVR (user-security-verification

routine) 27, 137
password protection 63

utility program
See access method services

verification routine, user-security 137
VERIFY command 22, 37

implicit 22
vertical pointer, in index

free control interval entry 106
how used to calculate the RBA of a
control interval 106

index entry 108
length indicator, in index-record
header 106

virtual storage
common area 102
common area of 92

VOLUME
JCL parameter 124

VSAM (virtual access storage method)

storage 8
VSAM (virtual storage access method)

data sets
staging keyrange for MSS 118

I/O buffering 87
password protection 59
use in development of utility
programs and system control
programs 81

VSAM performance
See optimizing VSAM performance

writing a buffer 28
deferred 28
forced 28

writing a record
addressed 27
skipping 27

WRTBFR macro
use under lSR and-GSR 77

3330 Disk Drive 47
3340 Disk Storage 47

Index 181

GC26-4066-0

--------- - ------- - ---- - - ----------_.-
®

s
<
CJ) -W
""-.I
o
<
CJ)

» s
C
en
ctl
en

G>
c
0.:
ctl

"TI

CD
z
!='
CJ)
W
""-.I
o
W
S

~ g
E.E
a.Vl

'3 :2
0-
Q.l-ro
0lQ.l
c Vl

°t B
o Q.l
Vl a.

:= co co
E-o

-0 Q.l e E
co E
E ~
o
.... Q.l

16£
£ 0
.~ 0
Vl ~ E .;:::;
~ 'v;
.0 C o Q.l
.... '"
a.Q.l

~ :;
;:) '"
~ e
c a.

~ ~
'" ;:)

-5.~
co Q.l

ci)a::

Q)

o
z

MVS/370 VSAM Users Guide

GC26-4066-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ------------------------
Previous TNL --------------------

Previous TNL __________________ __

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4066-0

Reader's Comment Form

Fold and tape

Fold and tapa

-------..-- - ------- - ---- -- -----------,-
®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

IIII
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

s::
<
~
W
-...J
o
<
Cf)

» s::
C
en
CD ..,
en

" en
z
?
en
w
-...J
o
W
9

~ g
E~
Q.en

'3 :.c
0'
Q)Cii
CIa>
C en

.;:; 0
o Q)
en Q.

::: 10
10

E-c
-g E
~ E
~ 5,
:::J Q)

10£
.c 0

.~ 0
en Q)

E .£
Q) .-

:0 ~ o Q)
.... CI)

Q.~

~ ~
10 Q)

~ c.
~ ~
en :::J
Q) Q)

o.~
10 Q)

ci)n:

Q)

(5
Z

MVS/370 VSAM Users Guide

GC26-4066-0

Reader's
Comment
Form

This manual is part of a library tha t serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, ifany, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL -----------------------
Previous TNL _______________ _

Previous TNL ______________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4066-0

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

...

Fold and tape

--------- -------- - ---- ------------_.-
®

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

I II II NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

G)
c:
0.:
CD

