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Preface

This text is intended to introduce to the student the
characteristics of System/360 and its instruction set.
Many sample programs are used to illustrate specific
instructions and programming techniques. It is ex-
pected that the student has some knowledge of com-
puting systems.

The following IBM System/360 Student Texts have
been incorporated in this publication; however, the
individual books are not obsoleted by this version:
Fixed-Point Operations (C20-1613)

Programming with Base Registers and the USING

Instruction (C20-1614)

Introduction to Assembly Language Programming

(C20-1615)

Decimal Operations (C20-1616)

Number Systems (C20-1618)*

Logical Operations on Characters and Bits (C20-1623)
Edit, Translate and Execute Instructions (C20-1624)
Subroutines and Subprograms ( C20-1625)

The new material in this text includes the chapters
on “Architecture,” “Floating Point and Advanced
Loops in Scientific Applications,” and “Automatic
Interrupts.”

No attempt at completeness has been made and,
therefore, it is expected that the student will refer to
the appropriate Systems Reference Library (SRL)
publications for additional detail.

*Number Systems (C20-1618) will continue to be available as
a separate publication.
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Introduction

Chapters 1 and 2 provide the student with an intro-
duction to the architecture of System/360 and to the
numbering systems that are of some significance to
System/360. This knowledge provides a background
for later chapters in which many of the instructions
in the System/360 instruction set are introduced as
well as illustrated by sample assembler language pro-
grams. (These samples were prepared by the 7090/
7094 Support Package for IBM System/360.) In addi-
tion, some chapters discuss programming techniques
that will be valuable to those studying the assembler
language. One chapter discusses in detail the charac-
teristics and use of the System/360 interrupt feature,
which is introduced in the first chapter.

Questions and exercises are provided at the end of
each chapter to help the student review the material;
answers may be found at the back of this text.

This text is not directed to any one of the levels
of programming systems support available for System/
360 (Basic Programming Support, Basic Operating
System/360, Operating System/360, and the 7090/
7094 Support Package for IBM System/360). There-
fore, IOCS programming is not covered.

It is assumed that the student, while studying this
text, has access to IBM System/360 Principles of
Operation (A22-6821), and to one of the SRL pub-
lications on the assembler language. Also, the student
may wish to refer to the appropriate SRL publica-
tions for specific details on one or more of the pro-
gramming systems available for System/360.



Chapter 1: Architecture

This chapter introduces the student who has some
knowledge of computing systems to the overall struc-
ture of System/360 and the implications of its struc-
ture for new application areas. An introduction to
such System/360 features as channels, automatic in-
terrupts and the general purpose registers, and to

instruction formats, data formats, and the various
types of arithmetic operations, provides the student
with a background that is prerequisite to an under-
standing of the later chapters of this text. This chapter
also provides some insight into the need for a super-
visory program.

System Features for New Application Approaches

The demands made upon a data processing system
normally increase in the volume of processing to be
done and in the scope of applications for which the
system is utilized. To allow for growth in volume,
System/360 was designed for implementation over a
wide cost and performance range and to maintain pro-
gram compatibility among the various models. For
growth in application scope, the logical structure is
that of a general purpose system for commercial, sci-
entific, communication, and control applications.

To the user, a concern more immediate than growth
considerations is cost versus performance. Before se-
lecting higher-performance equipment, it is important
to achieve maximum throughput from a lower-per-
formance (and lower-priced) system. Achieving maxi-
mum throughput means decreasing the time required
to process a total number of jobs so that the backlog
of jobs is reduced. There is often, however, an oppos-
ing objective of decreasing the turnaround, or re-
sponse, time for a given job. A report that takes three
minutes of processor time is needed within an hour,
but another four-hour run in progress requires two
more hours for completion. Can we disrupt the pro-
gram in progress? The answer has depended on the
system and the programmed facilities available for
restarting an interrupted program.

Because System/360 was designed to encompass
solutions to such problems in all areas of data proc-
essing, it is helpful to further examine some of these
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conventional problems and to consider recent appli-
cation approaches.

The most basic concept of computing, with which
we are all familiar, is a program of sequential in-
structions. The processing unit fetches an instruction,
decodes and executes it, increments an instruction
counter, and then repeats this sequence of operations.
A branch causes the contents of the instruction counter
to be replaced with another address, and processing is
continued from this address. This machine instruction
fetch-execute-increment cycle is still basic to digital
computers. In programming, however, we have come
a long way from routines that read a card, process the
data from the card, and write the results with no con-
current or overlapped operation.

The degree of concurrent operation that can be
achieved depends not only on machine facilities but
also on the programming employed.

The processing unit may be used for some portion
of time and encounters recurring delays while await-
ing input/output operations. Then the I/O equipment
may be idled while processing takes place. Further,
a system must often be configured for the largest job
at the installation. That largest job may be run infre-
quently and the many smaller jobs that use the proc-
essing unit’s time may utilize only a small portion of
the total system’s capacity. Lost time on the process-
ing unit, lost time on I/O equipment, and less-than-
maximum storage utilization are all wasteful.



The designers of System/360 sought solutions to
these problems with a design that allows and encour-
ages maximum utilization of available system re-
sources. First, this design philosophy recognizes that
data processing systems and programming systems
should be integrated and not developed independ-
ently. New and sophisticated control techniques in-
corporated into the equipment for maximum utiliza-
tion of resources take over many functions that pre-
viously were the concern of the problem programmer
or of programming systems programmers. This last
statement is not intended to imply that programming
systems are not essential to utilize the system, but
rather that there is a larger degree of interplay be-
tween equipment and program. In fact, the equipment
was designed to run with a monitor program in con-
trol. System/360 and its control program are indis-
tinguishable to the problem programmer.

Another consideration in the system’s design was
to facilitate the newer application approaches to com-
puting, such as communications and multiprogram-
ming.

Communications applications include time sharing,
message switching, and the whole area of tele-
processing. Time sharing or conversational mode is the
use of a number of remote terminals where each ter-
minal has access to the computer. Here each terminal
may be regarded as a personal computer, and all the
independent users have access to a single computer
virtually simultaneously because of ultra-high process-
ing and switching speeds.

Message switching involves a telecommunications
network where messages from remote points are sent
to a central location for routing to their destination.

A common teleprocessing application is the proc-
essing of inquiries from remote terminals. Each ter-
minal user introduces data to the system, and pro-
grams residing in the system perform whatever proc-
essing is required. The message may be simply a
query for information stored within the system or it
may be data to be entered and processed (with or
without an answerback ).

The program that handles the messages is called the
foreground program. Other processing may take place
between the servicing of messages. This “background”
program is interrupted and the “foreground” program
assumes control upon the receipt of a message. When
the message is processed and no other messages are
held pending, the foreground program relinquishes
control to the background program.

Maximum utilization of system resources becomes
particularly vital to a communication (or teleproc-
essing) system where input is unscheduled, where jobs
are stacked (that is, where a series of jobs is run

under the control of a supervisory program with a
minimum of operator intervention), and in multipro-
gramming.

In applications involving multiprogramming opti-
mum use is made of all facilities by having the system
operate upon multiple programs or routines (tasks).
While one task awaits data from an I/O device, an-
other task utilizes the processing unit, and still other
tasks utilize other I/O devices. As soon as a task
utilizing the processing unit must wait for an 1/0
operation, it relinquishes control of the processing
unit, and a waiting task assumes control. (The size,
speed, and configuration of the system determine
whether multiprogramming is practicable.)

Channel Concept

One of the system features that facilitate the simul-
taneous operations necessary for maximum utilization
of the system’s resources is channel circuitry. The
electronic circuitry of a channel may be regarded as
a small, independent computer that responds to its
own set of commands. Channels provide the ability
to read, write, and compute concurrently.

Each channel has its own program in main storage,
and this program must be initiated by the supervisory
program. A Start I/O instruction, for example, has
the effect of selecting a specified I/O device and
channel, and, if the device is available, starting the
operation or operations specified by the channel pro-
gram. In addition to the Start I/O instruction, there
are three other instructions for communication be-
tween the processing unit and the channel: Test
1/0, Halt 1/0, and Test Channel.

These instructions are issued by the supervisory
program, which contains an Input/Output Control
System (IOCS). The address part of the instruction
specifies the channel and the I/O device. When the
channel and the device verify that the operation can
be executed, the processing unit is released. The chan-
nel fetches its program from main storage and exe-
cutes it. The transfer of data to or from main storage
and the initiation of new operations by the channel
program do not prevent processing of instructions by
the processing unit.

Communications from the processing unit to the
channels and I/O devices are discussed under “Chan-
nel Organization”.

Selector and Multiplexor Channels

There are two types of channels: selector and multi-
plexor. Selector channels are used for the attachment
of high-speed devices such as magnetic tapes, files,
and drums. Multiplexor channels are intended primar-
ily for low-speed devices. More than one device is
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usually attached to either a multiplexor or selector
channel through one or more control units. The con-
trol unit’s functions are indistinguishable to the user
from the functions of the I/O device, and in fact,
some control units are physically housed within the
I/0 device. A control unit functions only with the type
of device for which it is designed. One control unit
can have more than one of the same devices attached.
Multiple tape units, for example, may be attached to
a single tape control unit (see Figure 1).

When multiple slow-speed devices such as card
readers are attached to a multiplexor channel, they
can operate simultaneously through a time-sharing
(interleaved) principle and processing can take place
concurrently. When high-speed devices are attached
to a multiplexor channel, only one device can operate
at a time and the channel is said to be operating in
burst mode. Operation of the Model 30 or 40 multi-
plexor channels in burst mode inhibits all other activ-
ity on the system. Selector channels always operate
in burst mode and processing and I/O overlapping
occur on all models (except a high-speed channel on
Model 50, which inhibits processing).

As many as six selector channels can be operating
concurrently with processing on Models 65 and 75.

Only one multiplexor channel can be connected to
a system. The number of selector channels that can
be attached varies from two on a Model 30 to six on
Models 65 and 75. The important thing to remember
is that channels all appear to function identically to
the user; it is only the degree of simultaneity of chan-
nel operations and overlapped processing that differs
among the various models.

Interrupts

We have seen that the processing unit may initiate an
input/output operation and resume processing while
the channel proceeds independently. The processing
unit must, however, maintain control over I/O opera-
tions. When an I/O operation is completed and a
channel is free, another operation in the channel
should be begun, if possible, to gain maximum chan-
nel utilization. Instead of having the problem program
repeatedly interrogating channels to see whether they
are free, the channels themselves signal the process-
ing unit when they become free — that is, upon com-
pletion of a channel program. The channel signals
cause the supervisory program to take appropriate
action such as starting another I/O operation. These
signals belong to one class of interrupts that the
processing unit must be prepared to handle.

Here we begin to see how the circuitry takes over
functions that were formerly the programmer’s con-
cern. The automatic interrupt system may be con-
trasted with a programmed branch in which the con-
tents of the instruction counter are replaced rather
than incremented. These branches are the program-
mer’s concern. With the automatic interrupt system,
however, an application program is written to include
conventional testing and branching, but ignores those
branches that will be handled as automatic interrupts.
When an interrupt occurs, the contents of the equiva-
lent of an instruction counter are automatically re-
placed. This suspends the operation of the program
in progress temporarily. In addition the control and
status information needed to restart the program are
automatically stored by the interrupt system itself.

Figure 1. IBM System/360 basic logical structure
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There are five classes of interrupts: input/output,
program, supervisor call, external, and machine check.
® Input/output interrupts. The signal to the process-

ing unit that a channel is free is typical of the class

of interrupts called I/O interrupts. Special condi-

tions in the channel or in an I/O unit cause the

processing unit to take appropriate action.
® Program interrupts. Unusual conditions encountered

in a problem program create program interrupts.

Eight of the 15 possible conditions involve over-

flow, improper divides, lost significance, and ex-

ponent underflow. (Lost significance and exponent
underflow may occur in floating-point arithmetic

operations.) The remaining seven deal with im-

proper addresses, attempted execution of invalid

instructions, and similar conditions.

® Supervisor call interrupts. The significance of super-
visor call interrupts will become apparent when we
examine in more detail the effects of interrupts.

Suffice it to say that Supervisor Call is an in-

struction that the program uses to cause an in-

terrupt.

® External interrupts. Through an external call inter-
rupt, the processing unit can respond to signals
from the interrupt key on the system control panel,

a built-in timer system, other processing units, or

special devices.
® Machine check interrupts. A machine check condi-

tion initiates an automatic recording of the status of
the system into a special scan-out area of main stor-

age and then causes a machine check interrupt. A

machine check can be caused only by a hardware

malfunction and not by invalid data or instructions.

Some classes of interrupts can be ignored or held
pending under program control. This prevents the in-
terrupt from occurring and the interrupt is said to be
“masked”. An anticipated overflow is an example of
an interrupt that the programmer would mask.

When the system is executing instructions of a prob-
lem program, it operates in what is called the problem
program state. Interrupts that occur while the system
is operating in the problem program state cause the
processing unit to switch to the supervisory state. To
ensure that the system has control over 1/O functions,
the control program takes control when an 1/0 in-
struction is required by a problem program. The con-
trol program operates in the supervisory state and
includes a resident IOCS. Instructions that are exe-
cutable only in the supervisory state are called “privi-
leged”.

A Supervisor Call instruction in a program is one
method of causing a switch from the problem state
to the supervisory state; that is, the problem pro-
gram passes control to the supervisory program. An

interruption code within the instruction may be used
to convey messages from the calling program to the
supervisory program. Two messages that the super-
visory program would require are: (1) notification
from the problem program that it is finished so that
the supervisor can read in a new program, and (2)
notification of requests to start I/O operations for the
problem program. As soon as the I/O operation has
begun, the supervisor program returns control to the
problem program, which can continue processing
while the I/O operation is taking place. Upon com-
pletion of the I/O operation, an I/O interrupt oc-
curs. The supervisor program now determines whether
any abnormal conditions were detected during the op-
eration and takes appropriate action. The overall status
of the processing unit is determined by alternatives
other than the supervisor or problem state. These al-
ternatives provide control of system resources by pre-
venting a problem program from stopping the opera-
tion of the processing unit. There is no Halt instruc-
tion. In the problem state, processing instructions are
valid but all I/O instructions and a group of control
instructions are invalid. In the supervisory state, all
instructions are valid.

The other alternative states are: running versus
waiting state, masked versus interruptible state, and
stopped versus operating state (see Figure 2).

In the running state, instruction fetching and exe-
cution proceeds in the normal manner. The wait state
is typically entered by the program to await an inter-
rupt — for example, an I/O interrupt or operator in-
tervention from the console. In the wait state, no
instructions are processed, the timer is updated, and
I/O and exernal interrupts are accepted unless
masked.

The processing unit may be interruptible or masked
for the system (I/O or external), program, and ma-
chine interruptions. When the processing unit is in-
terruptible for a class of interruptions, these interrup-
tions are accepted. When the processing unit is
masked, the system interruptions remain pending, but
the program and machine-check interruptions are ig-
nored. Instructions that alter the overall status of the
processing unit are privileged.

Masked OR Interruptable

Problem OR Supervisor

Wait OR Running

> >

Figure 2. Alternative states of the processing unit in operation
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Program Status Words and their
Control of Interrupts

Passing control between problem programs and the
supervisory program and returning to the right place
in a program following an interrupt is accomplished
with program status words (PSW’s). Traditionally
when information was required at some later point in
a program, it was the programmer’s responsibility to
store it. With System/360, since the problem pro-
grammer cannot anticipate many interrupts, they be-
come the responsibility of the system. Two storage
locations are associated with each of the five classes
of interrupts. One of the locations contains the ad-
dress of the routine in the supervisory program that
handles this class of interrupt. When an interrupt
occurs, the system automatically replaces the current
or active PSW, which contains an instruction counter
plus other machine status information, with the PSW
appropriate to this interrupt. This “new” PSW indi-
cates among other things that the system is operating
in the supervisory state and specifies the address of
the routine that handles this class of interrupt. The
PSW of the interrupted program is automatically
stored as the “old” PSW (see Figure 3). The routine
in the supervisory program that handles this interrupt
will be run. Its last processing step will be to restore
the old PSW as the active or current PSW, and the
interrupted program will resume processing at the
point where it was interrupted. Unlike the automatic
switching of PSW’s when an interrupt occurs, the re-
placement of the current PSW with the old PSW is
accomplished by an instruction in the supervisory
program. This programmed, rather than automatic,
function was a deliberate design choice. Why, we may
ask, does the Load PSW instruction need to address
storage, since the system could readily determine
the cause of the last interrupt? The answer is that in
multiprogramming we frequently do not wish to re-
turn to the “task” last interrupted, but prefer that the
control program stack up and control a sequence of
PSW’s,

In Control
Cirevitry

InMain
Storage

ol F—— 1 Current Program Status Word
PSWH—— ‘_\{—ﬂ———_—l

New| ——1
PSWI-——

Figure 3. Interrupt program switching

Because the principle of the interrupt system is best
understood in terms of the various PSW’s, let us take
a moment to examine their place and function. The old
and new PSW’s have permanent address assignments
in main storage. The current PSW is contained in the
control circuitry of the processing unit and, like an
instruction counter, is updated as the program pro-
gresses. The new PSW locations contain the address
of a routine to handle their particular class of inter-
rupts. The addresses of these routines are not normally
changed, and for a particular interrupt the same ad-
dress will be read out each time this interrupt occurs.
For each new PSW there is an old PSW that acts sim-
ply as temporary storage for the current PSW when
an interrupt occurs. The interrupt causes the current
PSW to be stored as the old PSW, and the new PSW
becomes the current PSW. At the conclusion of the
interrupted routine, the old PSW replaces the current
PSW, restoring the system to its prior state and allow-
ing the continuation of the interrupted program.

Old and new PSW’s contained in storage are identi-
cal in format to the current PSW, since they are called
upon and become “current”. The location of old and
new PSW’s is shown in Figure 4. In the next topic,
“Data Representation”, we shall see that PSW’s are
doublewords with individual bits labeled 0-63. We
can see now from the table that a machine check will
cause the current PSW to be placed in storage loca-
tions beginning at 0048 and a new PSW will be
brought out from locations beginning at 0112.

Address Length Purpose
0 0000 0000 double word Initial program Loading PSW
8 0000 1000 double word Initial program Loading CCW1
16 0001 0000 double word Initial program Loading CCW2

External old PSW
Supervisor call old PSW
Program old PSW
Machine check ald PSW
Input/output old PSW

24 0001 1000
32 0010 0000
40 0010 1000
48 0011 0000
56 0011 1000

double word
double word
double word
double word
double word

64 0100 0000 double word Channel status word

72 0100 1000 word Channel address word

76 0100 1100 word Unused

80 0101 0000 word Timer

84 0101 0100 word Unused

83 0101 1000 double word External new PSW

96 0110 0000 double word Supervisor call new PSW
104 0110 1000 double word Program new PSW

112 0111 0000 double word Machine check new PSW
120 0111 1000 double word Input/output new PSW
128 1000 0000 Diagnostic scan-out area*

Figure 4. Permanent storage assignments
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Figure 5. Problem program PSW active in processing unit contrasted with input/output operations in supervisory state

In a typical System/360 environment, more than

one task is contending for time on the processing unit,

" and while one interrupt is being serviced, perhaps an-
other interrupt occurs, while still another interrupt is
held pending.

In Figure 3, the current PSW would reflect the status
of a task B, which is being executed in the problem
state.

In Figure 6, an interrupt has caused the processing
unit to switch to the supervisory state. A new 1/0
PSW is replacing the active PSW and the active PSW
is being stored as the old 1I/O PSW. Upon leaving the
I/0 routine (which is executed using the resident I/O
supervisory program ), the old I/O PSW will again be-
come the current PSW, unless other interrupts occur.

We have seen that an interrupt causes a type of
branch. What, we may ask, is the difference between
a program branch and one caused by an interrupt?
The portion of the PSW that has been compared with
an instruction counter is called the instruction ad-
dress. When a branch occurs, only the contents of the
instruction address within the PSW are changed. On
an interrupt the entire PSW is replaced. The PSW

Old PSW - Machine

Old PSW - Program

SUPERVISORY STATE

Supervisor Current PSW

Old PSW - Supervisor Call

Old PSW - Extemal

contains other status and control information in addi-
tion to the instruction address, which the processing
unit requires. This includes such information as pro-
gram status (supervisor versus problem state, masked
versus interruptible state, stopped versus operating
state, and running versus waiting state).

When interrupts occur is not the concern of the
problem programmer. With reference to machine
cycle time, it is interesting to note ‘that the machine
designers chose an optimum economic “interruptible”
point, since status information must be saved and.re-
stored. This turns out to be after an instruction has
completed “E” time. In the case of I/O, external, or
supervisor call interrupts, then, the current instruction
will be completed before the interrupt is taken. How-
ever, in the case of program and machine errors, the
end may be forced by suppressing the instruction’s
execution.

Other aspects of the automatic interrupt system are
discussed under the chapter entitled “Automatic In-
terrupts”, which includes a discussion of simultaneous
interrupts. The details of interrupts are found in the
appropriate SRL publications.

.___—_>|

New PSW - Machine

New PSW - Program

New PSW ~ Supervisor Call

New PSW - External

Old PSW. - Input/Output

Figure 6. Switching of PSW’s during an input/output interrupt

New PSW - Input/Qutput
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Data Representation

The most familiar method of data representation in
commercial applications of computers has been binary
coded decimal in which six bits are used to represent
64 alphameric and special characters. Records consist
of many fields of widely different lengths. Scientific
computers, on the other hand, generally operate upon
fixed-word-length fields of binary data.

Several data formats can be used for processing with
the System/360 to accommodate commercial and sci-
entific applications. An eight-bit unit of information,
called a byte, is fundamental to the formats. An initial
byte may be addressed as an operand of an instruc-
tion, with the number of bytes used specified by the
instruction. Because eight rather than six bits are used
to represent a character, up to 256 possible characters
could be represented in the Extended Binary Coded
Decimal Interchange Code (EBCDIC) shown in Fig-
ure 7. Except for certain teleprocessing equipment,
the code that makes use of characters is either
EBCDIC or an eight-bit extension of a seven-bit code
proposed by the International Standards Organization.

The chart shows bit positions, which determine bit
patterns, at the top and to the left of each table.

The hole pattern of punched cards is shown at the
bottom and to the right of each table in dark gray
shading.

The table at the upper left shows control characters.
The explanation of their meaning is given in a sepa-
rate listing. The characters PF, for example, indicate
“punch off”.

Exceptions to the tabular representation of hole pat-
terns to specify a binary bit pattern, a control char-
acter, or a graphic character are identified by numbers

circled in the table, and the proper hole patterns are
shown in a separate listing below the tables. The
examples given opposite the tables are self-explanatory
and serve to ensure correct reading of the tables. To
illustrate this, the last example in the list is an excep-
tion indicated by the number 4 circled in the table
at the upper left.

For further practice, translate the name John Doe
into EBCDIC and use initial capitals and lowercase
letters. The results should be:

11010001 10010110 10001000 10010101

J o h n
11000100 10010110 10000101
D o e
Note that in the tables the digits 0-9 have these bit
configurations:
0 11110000 5 11110101
1 11110001 6 11110110
2 11110010 7 11110111
3 11110011 8 11111000

4 11110100 9 11111001

We may well ask what purpose the four leading 1s
serve. The answer is that they provide a collating se-
quence in which numbers are higher than alphabetics
in alphameric fields, but they are not used in arithmet-
ic operations. Instead, an instruction is provided that
“packs” two decimal digits into a byte by eliminating
the leading 1s (see Figure 8). The decimal digits 0-9
are represented in the four-bit binary coded decimal
form by 0000 through 1001. The elimination of the
leading 1s (or zone portion) is accomplished with the
Pack instruction.



Bit Positions 4,5,6,7

Zone Punch

Bit Positions 0, 1

it Positions 2,3

Bit Positions 0,1

Digit Punches

Bit Positions 4,5,6,7

Bit Positions 2,3

Zone Punches

Bit Positions 0,1

~

Digit Punches

~ -
"y °
3 3
~ €
I 53
= a8 &
S 8
z
®  12-0-9-8- ® No Punches ® 12-0 B o1
@  12-11-9-81 ® 12 () -0 ()] 11-0-9-1
® 11-0-9-8-1 @ n (@) 0-8-2 ® 12-11
@  12-11-0-9-8-1 12-11-0 ® 0
EBCDIC chart explanation continued on next page.
Control Charocters Special Graphic Characters
NUL Null BS Backspace EOB  End of Block 1 Right Bracket v Asterisk
pr funch OFf L lde PRE  Prefix Period, Decimal Point ) Right Parenthesis
HT Horizontel Tab cc Cursor Control PN Punch On < Less-than Sign  Semicolon
- i
Lc Lower Cose Ds Digit Sgle‘c*. RS Reader Stop (  Left Parenthesis A Circumflex, Logical NOT
Dt Delete SOS  Stort of Significonce UC Upper Case +  Plus Sign = Minus Sign, Hyphen
™ Tape Mark 2 Field Separator EOT  End of Transmission N N N . ’
! Exclamation Point, Logical OR /  Slash
RES Restore BYP  Bypass SM  Set Mode & Ampersand Comma
NL New Line LF Line Feed sp Space [ Left Bracket ;" Percent
$  Dollar Sign —  Underscore
Exomple Type Bit Pattern Hole Pattern
Bit Positions -
0123 4567 Zone Punches IDigif Punches
T
PF Control Character { 00 00 0100 12914
% Special Graphic | 0110 1100 018-4
R Upper Case 1101 1001 ”-19
a Lower Case 10 00 0001 12 -0 1 1
Control Character, | 00 110000 12-11-0 -9-IB-I
function not yet \
assigned :
H

Figure 7. Extended Binary Coded Decimal Interchange Code
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-~

Digit Punches

Greater-than Sign
Question Mark
Colon

Number Sign

Quotation Mark
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Byte ! l Byte Byte |
| |

Digit | Digit | Digit Digit | Digit | Digit | Digit | Sign
Byte | | Byte ' Byte |

| ) | l
Zone | Digit | Zone Digit |Zone | Digit | Sign | Digit

Figure 8. Packed and zoned decimal number formats

Arithmetic Operations

There are four classes of processing operations: fixed-
point arithmetic, floating-point arithmetic, logical
operations, and decimal arithmetic. Fixed-point arith-
metic and logical operations are part of the standard
instruction set. The decimal option is intended pri-
marily for commercial applications and the floating-
point arithmetic option is intended for engineering and
scientific applications.

Fields of two, four, and eight bytes are called half-
words, words, and doublewords respectively (see
Figure 9).

In fixed-point arithmetic the basic arithmetic
operand is a signed value recorded as a binary integer,
that is, a whole number (positive or negative) as con-
trasted with a fraction. It is called fixed-point because
the machine interprets the number as a binary integer;
that is, the point is to the right of the least significant

Binary 100000001 [0010 |0011 [0100] 0101|0110 0111 { 1000|1001 | 1010
Address

Byte | Byte | Byte | Byte | Byte |Byte | Byte | Byte | Byte | Byte | Byte

Halfword | Halfword | Halfword | Halfword | Halfword

3y
1

Word Word Word

N
1

Double-Word Double-Word

3y
T

Figure 9. Halfwords, words, and doublewords as they appear in
main storage

10

position. The programmer has the responsibility for
keeping track of an assumed point within a field.

Fixed-point numbers occupy a fixed-length format
consisting of a one-bit sign followed by the 31-bit
integer field; alternatively, some operations may be
performed on halfwords, and some multiply, divide,
and shift instructions use a doubleword.

Until numeric data is ready for output on a device
that uses characters, such as a printer or punch
( character-set oriented ), storage is most economically
used by holding the data in binary or packed decimal
digits.

In the following example of fixed-point arithmetic
we shall, for the sake of simplicity, ignore the sign and
fixed-length requirement.

Assume that a card reader has read the number
4096. The number itself will be transferred to main
storage as four bytes of EBCDIC:

11110100 11110000 11111001 11110110

If this number is to be processed using fixed-point
arithmetic, the PACK instruction is first issued and
the number takes the binary coded decimal form:

0100 0000 1001 0110

A Convert to Binary instruction is then issued and,
after its execution, the number takes the pure binary
form:

1000000000000
which is 212,



Note that the decimal values of bit pdsitions are:
[128 64|32 |16]8]4] 2] 1]
7 6 5 4 3 2 1 0

The number itself is now ready for processing in fixed-
point format. (Note that we have not illustrated the
sign and length requirement.) After processing, a
Convert to Decimal instruction and either an Unpack
or an Edit instruction are used to prepare the output
for a device using characters such as a printer or
punch. If the results of processing are to be stored
for further processing in binary form, the Convert
to Decimal instruction and the Unpack or Edit in-
struction are omitted. If the results are to be stored
as packed decimal digits, the Unpack instruction is
omitted. Figure 10 shows this processing sequence.
No conversion from packed decimal to binary is
necessary if the decimal instruction set is used. In-
stead, addition, subtraction, multiplication, division,
and comparison are performed on packed binary
coded decimal digits (see Figure 11). While fixed-
point operations are performed on fixed-length fields,
all decimal operations are performed on variable-
length fields, the length of which is specified in the
instruction. The address tells where the data is located,
and the length specification tells how much data the
instruction is to operate upon. From 0 to 15 bytes may
be specified, so that, in effect, a 16-byte field may be

EBCDIC
input Pack
Convert
to
Binary
Process
with ——=> Binary output
Binary
Convert Packed Decimal
to = output
Packed
EBCDIC . EBCDIC
output Edit Unpack F__> output

Figure 10. Fixed-point arithmetic processihg sequence on
EBCDIC input

addressed in arithmetic operations. A length specifi-
cation of zero will address only the byte designated
in the instruction address.

Where numerical information such as a part number

_is not operated upon arithmetically, it may be proc-

essed in the zoned format — that is, without packing
the digits.

Now consider the facts that lead the programmer to
decide whether to use decimal or binary arithmetic
operations. Decimal arithmetic can make the program-
mer and the system more productive when processing
requires relatively few computational steps between
input and output. When extensive processing is re-
quired, as in many scientific applications, storage and
circuitry are more efficiently utilized with binary
numbers.

Note that the number 4096 requires 32 bit positions
in EBCDIC, 16 bit positions in packed binary coded
decimal, and 13 bit positions in pure binary. Does not
the economy of the binary configuration suggest the
efficiency of binary operations? Figure 12, however,
demonstrates that the decimal instruction set is a more
direct route from input to output. The criterion for
selection is the amount of processing to be done in the
blocks labeled “process with binary” and “process with
decimal”.

As shown in Figure 12, the system will accept as in-
put any code that is eight bits or less. For these other
codes, such as a teletype code, tables are set up in
storage, and translate instructions permit conversion of
entire records of up to 256 characters with a single in-
struction. The figure lists output as binary, packed
decimal digits, or EBCDIC. Actually, as with input,
the output could be in any code up to eight bits
through the use of translation tables.

EBCDIC
input Pack
P ith
d:?glw' Packed Decimal
instruction > output
set
EBCDIC ; EBCDIC
output = Edit Unpack cutpot

Figure 11. Processing sequence using the decimal instruction
set on EBCDIC input
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INPUT OUTPUT
Any Code Up_ __
to Eight Bits > Translate
EBCDIC— — — —— — — — > Pack
Packed Decimal Convert to
L —_———— -]
Digits Binary
. Process With 4 .
Binary == ———— —= Brinary R e Binary
Packed Decimal _ _ _|___~,| Process With - —'— —=» Pccl(ed Decimal
Digits Decimol Digits
Convertto L} _| __ o Packed Decimal
I; Packed Digits
Unpack [~ — —[——>> EBCDIC
Edit o — = = EBCDIC

Figure 12. Various input processing sequences involving
arithmetic

Sign Codes

When digits are read from cards, all unsigned digits
are assigned the zone 1111 for EBCDIC. The sign
patterns generated for EBCDIC are 1100 for plus and
1101 for minus. The usual case is that the sign occupies
the zone positions of the least significant digit of a
field. A three-digit field, then, would have this format:

12

zone digit zone digit  sign
In EBCDIC a minus 123 would appear as:

1111 0001 1111 0010 1101 0011
1 2 - 3

After a Pack instruction is issued, the four-bit sign
pattern occupies the four least significant bit positions
of the field, and other zone bits are eliminated. A
packed three-digit signed field, then, has this format:

digit digit digit sign

The digits and the sign code occupy four bit posi-
tions each. A minus 123, for example, has this bit

digit

configuration:
0001 0010 0011 1101
1 2 3 —

After a Convert to Binary instruction, a fixed-point
operand occupies 31 bits of a word or 15 bits of
a halfword. Another bit in the most significant position
carries the sign, which is 0 for plus and 1 for minus
(see Figure 13). Recall now that fixed-point operands
are fixed in length. When the integer represented oc-
cupies less than a word or halfword, the sign bit is
used to fill the unused high-order bit positions. The
decimal number 4096, which we have seen is
1000000000000 in binary, can be represented in a half-
word as 0001000000000000 if the sign is plus, or as
1111000000000000 in two’s complement notation if the
sign is minus. For a further explanation of complement
notation see “Number Systems”.

Half Word
S Integer
o 1 15
Word
S Integer
0o 1 31

Figure 13. Fixed-point number format



We have seen that System/360 can be used as a fixed-
point binary computer with fixed-length operands and
that it can perform decimal arithmetic on records
characterized by many fields of varying length. A con-
secutive group of n bytes constitutes a field of length
n. We need these variable- and fixed-length capabili-
ties for the most efficient handling of both commercial
and scientific applications. It should be emphasized
that storage is addressable to the byte. Some instruc-
tions that address a byte always operate upon that
byte and the next three consecutive bytes, so that a
four-byte word is the operand. Other instructions re-
quire that the programmer specify as part of the in-
struction the number of bytes that constitute the
operand.

Mention has been made of bytes, halfwords, and
doublewords. Actually, as many as 256 bytes can be
specified as operands in some instructions, such as data
transfers.

Storage addresses within the system are represented
by binary integers starting at zero. The location of a
stored field is specified by the address of the leftmost
byte of the field.

Boundary alignment is a programming restriction on
fixed-length operands that requires some explanation.
A variable-length field of data may start at any byte
location. A fixed-length field of two, four, or eight
bytes must have an address whose decimal equivalent
is a multiple of two, four, or eight bytes respectively.
A word address, for example, must be divisible by
four. These are called integral boundaries. In binary,
it turns out that the address must have:
® One low-order zero bit for a halfword
® Two low-order zero bits for a word
® Three low-order zero bits for a doubleword

Because the operation code is examined to deter-
mine whether fixed-length data is a halfword, word, or
doubleword, the system can check to see that data is
aligned on proper boundaries. A violation will cause a
program interrupt that can be identified by the inter-
ruption code of the program status word as being
“specification”. Figure 14 shows various alignment
possibilities.

Boundary Alignment

The assembler language processor provides facilities
that automatically position or allow us to force the re-
quired boundary alignments.

Boundary alignment restrictions were designed to
force us to place words at consecutive integral
boundaries to guarantee efficient machine operation
when a program written for one model of System/360
is run on another model.

To illustrate, suppose that we correctly stored a half-
word in location 512 and 513 and then incorrectly
stored a series of fullwords beginning at location 514
(which is not divisible by 4). When we reference this
data on a Model 50, which accesses a fullword on a
single storage fetch, here is what would have to
happen without boundary restrictions. An instruction
that references the halfword at location 512 would also
access half of the fullword beginning at location 514.
Another storage access would be necessary to refer-
ence the other half of the fullword, and each succes-
sive fullword access would then fetch only half of the
word we are seeking.

Thus, to guarantee efficiency and to maintain pro-
gram compatibility among the various models, bound-
aries are identical for each model.

0 2 4 6 8

Binary 100000001 |00i0 {0011 {0100/ 010110110 [0111 1000|1001 {1010
Address

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte

Halfword | Halfword | Halfword | Halfword | Helfword

Y
1

Word Word Word

1

Double-Word Double-Word

y
S

Figure 14, Integral boundaries for halfwords, words, and
doublewords
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General Registers and Storage Addressing

A set of 16 general purpose registers is standard.
General registers can be used as index registers, re-
location registers, accumulators for fixed-point arith-
metic, and for logical operations.

Only four bits in an instruction are required to
designate a register. Each register has a capacity of
one 32-bit word.

Before considering the details of how these registers
are utilized, it is helpful to see why registers were
designed as part of the system.

Access time to storage increasingly limits perform-
ance as processor speeds improve. Using a single
faster-access accumulator decreases overall processing
time compared with the time required for storage-to-
storage arithmetic. To efficiently utilize the single
faster accumulator, however, it is necessary that data
be refetched whenever it is reused and that results be
stored temporarily for later use. Many of these fetch
and store operations can be eliminated when multiple
accumulators are available as registers.

Just as multiple registers improve the efficiency of
arithmetic and logical operations, they can also provide
a means of efficient address specification and modifica-
tion.

Because the ability to address vast amounts of main
storage is a desirable feature, an internal address of 24
binary bits is used. This permits up to 16,777,216
unique bytes to be addressed (22¢ = 16,777,216).

An instruction, then, that involves a storage address
would appear to require 24 bits to address the
operand. Instead, instructions that designate a main
storage location specify a register. A four-bit field in

the instruction allows the specification of one of the
registers numbered 0-15 as shown in Figure 15. The
low-order 24 bits of this register contain an address
referred to as the base address (B). The instruction
must also contain a twelve-bit number called the dis-
placement (D), which provides for relative addressing
of up to 4095 bytes beyond the base address. The base
and displacement are added together to produce an
effective address.

Recall now that four bits of the instruction specify
a register and twelve bits specify a displacement. With
16 bits we are able to specify a 24-bit address.

In addition to the base register, many System/360
instructions designate another general register called
an index register. In these cases, the effective address
is calculated by adding together the contents of the
base register, the contents of the index register, and
the displacement field (see Figure 16).

The contents of all general registers and storage lo-
cations participating in the addressing or execution
part of an operation remain unchanged, except for the
storing of the final result. This permits multiple in-
structions to reference a register containing the same
base or index value.

Economy in instruction length through the use of
the base-displacement addressing approach is one ad-
vantage of register utilization in addressing. Another
significant advantage is the relocation facility pro-
vided. Since the instructions of a program reference
registers, the contents of these registers can be speci-
fied at load time, so that programs and data can be
located in main storage almost at will. When the pro-

Figure 15. General purpose registers

.14

Index Base Displacement
— | Xy I Bi 2040
R Field Reg. No. General Registers Floating-Point Regi
" . Plus
0000 0 E=R ks E—— 64 Bitt —=)
0001 1 C———
0010 2 i —] | 5000
0011 3 C———
0100 4 — — [ 1| Plus
0101 5 CC——— 1
o110 6 [ —1 ]
0111 7 —————1 1960
1000 8 I
1001 9 C———1
1010 10 N —
1011 1 |
1100 12 C—— 1
101 13 A 9000
1110 14 I
" 15 R EFFECTIVE
ADDRESS

Figure 16. Address generation



gram is to be used at another time, other values can
be specified in the base and index registers, so that the
program can be executed from another segment of
storage.

If, during the processing of a program, it is desirable
to use these registers for other purposes, their contents
can be stored in core storage. The registers would then
be loaded with some other value, and processing con-
tinued. Note that the registers must be reloaded with
their appropriate base values before executing a seg-
ment of the program that assumes the registers con-
tain these values.

This approach of saving the contents of the registers
and then restoring them as they are needed removes
any limitation problem that might result from the fact
that the system has only 15 registers usable for ad-
dressing. Register 0 cannot be used for address modifi-
cation. A specification of 0 in either the base or index
of an instruction means no base or index reference.
This approach was taken to avoid the waste of having
a register permanently filled with Os when no index-
ing or when a base of 0 was desired. Certain instruc-
tions allow this register to be used as an accumulator,
but when 0 is used in the base or index field, the sys-
tem interprets it as meaning no base or index register.

‘There are multiple load and multiple store regis-
ter instructions that make saving and restoration rela-
tively simple operations.

The time spent in storing and restoring registers is
quite small when compared with the time saved by
having each instruction that references core storage
contain only a 16-bit address field rather than a 24-bit
address field. Similarly, the space used to preserve the
contents of the registers is small compared with the
space saved by reducing the instruction length.

Note that when we refer to a “base” or “index” we
are referring to the use to which one of the 16 general

I
2000
Storage
Locations

Program A

3000
Storage
Locations

Program B

2000
Storage
Locations

unused

Figure 17a. Consecutive ascending locations in storage when
program B is run with program A

purpose registers is being put, and not to a specialized
register.

General registers are an important aspect of Sys-
tem/360. However, it is not only possible, but normal
practice, to delegate to the assembly program almost
all the clerical work of assigning base registers and
computing displacements. Registers are used for ad-
dressing in a variety of ways. Some of the methods
used in connection with the assembler language are
examined under “Programming with Base Registers
and the USING Instruction”.

Relocation has been mentioned as one of the ad-
vantages of base-displacement addressing. Let us con-
sider a simple situation in which we benefit from the
ability to relocate programs. Assume that programs A
and B are to be run together. Program A is located in
2000 consecutive storage locations as shown in Figure
17a. The next 3000 storage locations are occupied by
program B. The following 2000 locations are unused,
but, except for these locations, we shall consider that
no other storage is available.

The next day program C, which requires 4000 bytes
of storage, is to be run with program B. After looking
at yesterday’s storage map, we see that we have only
2000 consecutive locations available (either in the lo-
cations previously occupied by program A or in the
unused area).

The register used on the previous day to load pro-
gram B can have its contents modified by a load
register instruction, so that today the base value is
2000 bytes higher than yesterday. Upon reloading pro-
gram B, its starting address and all subsequent ad-
dresses will be 2000 positions higher. Thus we have
relocated program B, and the last 2000 positions of
program B will now occupy the storage segment previ-
ously unused. Four thousand consecutive locations are
now available for program C, as shown in Figure 17b.

4000
Storage
Locations

Program C

3000
Storage
Locations

Program B

Figure 17b. Consecutive ascending locations in storage after
relocation of program B to run with program C
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Instruction Formats

We have seen that variable-length fields as well as
‘words can be addressed. Instruction length is also vari-
able. Some instructions cause no reference to main
storage; others cause one or more references to main
storage. To conserve storage space and save time in
instruction execution, instruction length is variable and
can be one, two, or three halfwords. Instructions
specify the operation to be done and the location of
data. Data may be located in main storage, registers,
or a combination of the two. Instruction length is re-
lated to the number of storage addresses necessary for
the operation. As a result, instructions will be of dif-
ferent lengths depending on the location of data. In-
structions of different lengths can be arbitrarily com-
bined in the same program.

When both operands are in registers, only eight
binary bits are needed for register addresses. Since
eight binary bits are used for the operation and eight
bits for operands, the shortest instruction consists of
one halfword and there is no reference to main
storage.

When both operands are in main storage, a total of
32 bits are needed for the addresses (one four-bit
base and one twelve-bit displacement for each of the
two addresses) and, because the operation code and
length specification(s) will require additional bits,
the longest instruction (three halfwords in length) is
used.

Figure 18 shows the five basic instruction formats.
The format codes are RR, RX, RS, SI, and SS, which
indicate the general locations of the operand or
operands. RR denotes a register-to-register operation;
RX, a register-to-indexed storage operation; RS, a
register-to-storage operation; SI, a storage and im-
mediate operand operation; and SS, a storage-to-stor-
age operation. An “immediate operand” is a byte of
data used as an operand that is carried in the instruc-
tion itself.

In the formats shown in Figure 18, R; specifies the
address of the register containing the first operand.
The second operand location, if any, is defined dif-
ferently for each format. ’

In the RR format, the R; field specifies the address
of the general register containing the second operand.

In the RX format, the contents of the general regis-
ters specified by the Xz and B: fields are added to the
contents of the D; field to form an address designating
the storage location of the second operand.

16

ONE HALFWORD

8

4 4
[ ]=]
8 4 4 4 12
Rxl oP 'RIIXZTB’Z’ D2 I

8 4 4 4
RS FOP lkllks—sz‘ D2 ]
8 4

Sl r oP l j l B1 l D1 J

THREE HALFWORDS

RR I oP

TWO HALFWORDS

8 8 4 12 4 12
ss | op l L F l DI I 82 l D2 J
8 4 4 4 12 4 12
ss | oP | Lll LZT 81 | DI I B2 l D2 J

Figure 18. Instruction formats

The symbology employed in the RS format is ex-
plained with the example shown below. In shift opera-
tions employing the RS format, the designations of
fields differ from the example shown, but this does not
concern us here.

In most cases the results replace the first operand.
except for the Store instruction, and the Convert to
Decimal instruction, where the result replaces the sec-
ond operand.

The contents of all registers and storage locations
participating in the addressing or execution part of an
operation remain unchanged, except for the storing of
the final result.

In the following examples of the instruction formats,
the operands are expressed as decimal numbers, and
the operation codes are expressed in the symbolic
assembly language explained in this publication. Print-
outs of assembled programs (shown later in the text)
are expressed hexadecimally. (The hexadecimal num-
ber system is explained under “Number Systems”.)



RR Format
OP Code R, R:
AR [ 7 | 9 |
0 78 1112 15

Execution of this Add instruction adds the contents
of general register 9 to the contents of general register
7, and the sum is placed in general register 7.

RX Format

OP Code R X B: D»

| sT | 3] 10| 14 30 |
0 78 1112 1516 19 20 31

Execution of this Store instruction stores the con-
" tents of general register 3 at a main storage location
addressed by the sum of 300 and the low-order 24
bits of general registers 14 and 10.

RS Format

OP Code Ri Rs B, D:

| 1M [3 ] o | m ]| 300 |
0 78 1112 1516 19 20 31

This Load Multiple instruction causes the set of gen-
eral registers starting with the register specified by
R; and ending with the register specified by R; to be
loaded from the locations designated by the second
operand address.

The storage area from which the contents of the
general registers are obtained starts at the location
designated by the second operand address and con-
tinues through as many words as needed. The general
registers are loaded in the ascending order of their ad-
dresses, starting with the register specified by R: and
continuing up to and including the register specified
bY Rs.

It was pointed out earlier that the storing and restor-
ation of registers is a relatively simple matter. There
is also a multiple store instruction that provides for
the storing of the registers, while this multiple load
instruction provides for their restoration.

S| Format
OP Code I B D,
[Mvi | s | 12 | 100 |
0 78 1516 19 20 31

With this Move Immediate instruction in the example
shown, a dollar sign ($) is to be placed in location
2100, leaving locations 2101-2105 unchanged. Let Z
represent a four-bit zone. Assume that:

Register 12 contains 00 00 20 00
Location 2100-2105 (before) Z0. Z1 72 Z3 Z0
Location 2100-2105 (after) $ Z1 722 7Z3 720

SS Format
OP Code Ls Lo B, D1 B2

D,
]AP|4|4|6|64|6|68J
0 78 1112 1516 1920 3132 3536 47

With this Add Decimal instruction, the second oper-
and is added to the first operand, and the sum is
placed in the first operand location. If necessary, high-
order zeros are supplied for either operand. Note
that in the register-to-register (RR) instruction ex-
ample, the addition is on fixed-length binary fields.

The decimal arithmetic instruction in the SS format
operates on data in the packed format with two deci-
mal digits placed in one eight-bit byte. The length of
the fields is specified explicitly in the instruction
rather than implied in the operation code.

In each format (RR, RX, RS, SI, or SS) the first
byte contains the operation code in the binary code,
which is the actual machine language. In binary, the
length and format of an instruction are specified by
the first two bits of the operation code.

BIT INSTRUCTION INSTRUCTION
POSITION LENGTH FORMAT

00 One halfword RR

01 Two halfwords RX

10 Two halfwords RS or SI

11 Three halfwords SS

During instruction decoding, the processing unit
examines these first two bits of the operation code
and determines how many bytes to fetch for this in-
struction. These bit configurations are part of the ma-
chine instruction, so that when, for example, we speci-
fy an Add register-to-register instruction, we are not
concerned with specifying the instruction length.

We have seen that for fixed-length instructions the
length of the operand is implicit in the instruction, and
for variable-length operands the length is specified in
the instruction. We have also seen that the length of
the instruction itself is part of the operation code.
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Storage Protection

System/360 was designed for operation with a super-
visory program that schedules and governs the execu-
tion of multiple programs, handles exceptional condi-
tions, and coordinates and issues input/output in-
structions.

In addition, the computing system and the super-
visory programs are designed to prevent one program,
such as a problem program, from modifying another
program, such as the supervisor program. A means is
provided by which the supervisor program can change
any area of main storage, while the problem program
can change only its own assigned areas. It is desirable,
for example, that the supervisor program be able to
change the main storage locations containing the new
program status words. However, we would not want
the problem program to be able to modify this same
area. It is undesirable to have any part of the super-
visor program changeable by the problem program.
The feature that prevents the read-in of data into
a protected area of core and thus prevents one pro-
gram from destroying another is called storage pro-
tection.

Storage protection is an optional feature on Models
30 and 40 and is standard on the larger systems. It
has been pointed out that medium to large-scale sys-
tems are utilized most efficiently in a multipro-
grammed environment and that the system is adept
at handling communications applications involving
more than one program. For such applications the
supervisor program utilizing the storage protection
feature assigns programs to particular areas of storage.

For protection purposes, main storage is divided
into blocks of 2048 bytes each. Each 2048-byte block
of storage has a four-bit register associated with it.
The supervisory program may store any four-bit com-
bination into any one of these registers. (Note that the
supervisory program and not the problem program
has access to these registers.) The four-bit combina-
tions may be thought of as locks. Each block of stor-
age, then, has its own lock.

The same lock may be assigned to more than one
block and these blocks of 2048 bytes need not be con-
tiguous.

The current PSW, as we have seen, acts as an in-
struction counter. Another of its functions is to keep
track of the protection key of the program with which
each instruction is associated. When a store operation
is attempted by an instruction, the protection key of
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the current PSW is compared with the storage key
of the affected block. When storing is specified not
by a program instruction but by channel operation, a
protection key supplied to the channel from the chan-
nel address word (CAW) is compared with the stor-
age lock of the area in which the data is to be stored.
Figure 19 illustrates a protection key for the channel
address word in addition to the PSW protection key.
The CAW is explained later under “Channel Organi-
zation”, It has already been pointed out, however,
that channels have their own programs, and to under-
stand storage protection we should be aware that the
protection key in the CAW provides protection on in-
put operations from channels similar to that pro-
vided by the PSW on internal operations.

Storage takes place only if the key and lock com-
binations match or when the protection key is zero.
Here storage key refers to the key stored in the regis-
ter associated with a 2048-byte block of storage. Pro-

STORAGE  PROTECTION
KEY KEY
A 2]
2048 byte PSW
k
bloc Store A OK
B [ 9] Store B Program interrupt*
2048 byte Store C  Program interrupt*
block Store D OK
C 4] Store E Program interrupt*
2048 byte PROTECTION
D il .
2048 byte CAW
“block
15 Read A oK
204851) te = Write A 1/O intertupt*
block . Read B OK
Write B /O Inferrupt*
Read C  OK
Write C  OK
Read D OK
Write D 1/O interrupt*
Read E  OK
Write £ 1/O interrupt*
*protection error
PROTECTION indicated
KEY
PSW

Store A,8,C,D,E OK

Figure 19. Storage protection



tection key refers to the key contained in the PSW or
channel. If the PSW, then, contains a nonzero protec-
tion key, a store operation will not occur in an area
of storage with the zero key. If, on the other hand,
the protection key is zero, a store operation can be
executed using any area of storage without regard for
its storage key. The supervisory program will some-
times require this zero master key in its PSW. The

protection key of the current PSW in the problem pro-
gram cannot be changed by the problem programmer,
so interference with the supervisory program or with
other programs is prevented.

When an instruction causes a protection mismatch,
execution of the instruction is suppressed or termin-
ated, and program execution is altered by an interrupt
as shown in Figure 19.
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Floating-Point Arithmetic

In fixed-point computation the position of digits must
be aligned for each operand to express their integral
or fractional value. The separation of the integral and
fractional portion of a number denoted by a point in
written notation is the programmer’s responsibility.

Scientific and engineering computations often in-
volve multiplications and divisions where the magni-
tude of the quantities involved varies from very small
fractions to large integers.

To relieve the programmer of the responsibility of
shifting to position intermediate and final results,
floating-point notation and circuitry to operate upon
it have been characteristics of scientific computers.
Floating-point arithmetic is an optional feature on
Models 30 and 40 and is standard on the higher-per-
formance models.

Four 64-bit floating-point registers identified by the

numbers 0, 2, 4, and 6 are provided, as shown in
Figure 20. The operation code determines whether a
general purpose or floating-point register is to be used
in an operation. An attempt to execute a floating-point
instruction on a system not equipped with the feature
will result in a program interrupt.

The notation used permits representation of num-
bers whose decimal equivalents have magnitudes in
the range of 10—78 to 10+75,

In this introduction to the system’s structure, we
shall not go into the details of floating-point arith-
metic. It is interesting to note that either a short (32-
bit) or long (64-bit) format operand may be speci-
fied. The short-length, equivalent to seven decimal
places of precision, permits a maximum number of
operands to be placed in storage and gives the short-
est execution time. The long-length, used when higher
precision is desired, gives up to 17 decimal places of
precision. The formats differ only in the length of the
fraction, as shown in Figure 21.

Figure 20. General and floating-point registers
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R Field Reg. No General Registers vFlocring-Poinf Registers
0000 o E=3R8it—== E=——648its—=
0001 1 1
0010 2 [ | S N — ]
0011 3  I——— . .
0100 M = = — — Short Floating~Point Number
o101 5  E———
0110 6 — [ — S Characteristic Fraction
o 7 C———— 1 -
1000 8 C——— 0 78 31
1001 9 C——7J
1010 10 | ———
1on n  E———
1100 12 | E— ing-Poi
n - — Long Floating-Point Number
:::? :g — S Characteristic Fraction
0o 1 7 8 63

Figure 21. Short and long floating-point number formats



In the section entitled “Channel Concept” mention was
made of communications between the processing unit
and the channel. We shall now examine in more de-
tail the ways in which the processing unit, the chan-
nels, the control units, and the I/O devices communi-
cate with each other.

System/360 is designed for use in conjunction with
a supervisor program that allocates equipment to mul-
tiple programs and also monitors the execution of
each problem program. The supervisor program must
also monitor I/O operations. To permit unrelated
problem programs to execute I/O operations concur-
rently, the channel hardware together with the super-
visor program provides a means of assigning to each
program the required I/0 facilities. This assignment
consists of establishing a path not only for transferring
data between the I/0 device and the designated area
of main storage, but also for exchanging control and
status information between the program and the 1/O
facility.

Input/output control units are attached to the chan-
nel by a standard connection, called the I/O interface.
This interface is common to all channels and control
units. It provides an information and signal sequence
that is common to all types of 1/O control units. The
interface has nine one-way lines for input and nine
lines for output to accommodate one byte including
parity. Other lines carry status and control informa-
tion. The important thing to remember is that identi-
cal lines are used for all control units including those
for tape, disk, card, etc. The channel operates the con-
trol unit, and the control unit is designed to meet the
interface requirements.

The control unit operates the actual device. Exam-
ples of control units are tape control, communications
control, card control, and printer control. The chan-
nel, in turn, operates the control unit. The processing
unit controls channel activity by means of four in-
structions:

Start I/0O

Test I/0

Halt I/0

Test Channel

Commands constitute the channel program. The
channel programs are held in main storage until an
I/O operation is initiated by a Start I/O instruction.
A channel address word (CAW) is permanently as-

Channel Organization

signed to contain the address of the initial channel
command word (CCW) (see Figures 22, 23, and 24).
CCW’s are decoded by the channel, which issues
orders to the I/0 device.

Command Address l

31

[Key loooﬂ
0 34 78

Figure 22. Channel address word format

Cog;n;end ] Data Address I
° 78 3N

Flags ]00 OW A Count J
32 3637 3940 4748 63

Bits 0-7 specify the command code.
Bits 8-31 specify the location of a byte in main storage.
Bits 32-36 are flag bits.
Bit 32 causes the address portion of the next CCW to be used,
Bit 33 causes the command code and data address in the next
CCW to be used.
Bit 34 causes a possible incorrect length indication to be
suppressed.,
Bit 35 suppresses the transfer of information to main storage.
Bit 36 causes an interruption as Program Control Interrupt
Bits 37~39 must contain zeros.
Bits 40-47 are ignored
Bits 48-63 specify the number of bytes in the operation.

Figure 23. Channel command word format

CPU Channels Control Units
and
(Executes /O Devices
1/O (Executes
Instructions) Commands) (Executes
Orders)

Figure 24. Relationship of I/0 instructions, commands, and
orders

Architecture 21



- The CCW contains the command to be executed,
and for commands that initiate I/O operations it desig-
nates the storage area associated with the operation
and the action to be taken whenever transfer to or
from the area is completed. The CCW’s can be lo-
cated anywhere in main storage on doubleword boun-
daries, and more than one can be associated with a
Start I/O instruction. The channel refers to a CCW
in main storage only once, whereupon the pertinent
information is stored in the channel.

The first CCW is fetched during the execution of
Start I/0. Each additional CCW in the chain is
obtained when the operation has progressed to the
point where the additional CCW is needed.

The CCW has the format shown in Figure 23.

Bits 0-7 specify the operation to be performed.
There are six valid commands:

Sense

Transfer in Channel

Read Backward

Write

Read

Control

The data address specifies the location of an eight-
bit byte in main storage. It is the first location re-
ferred to in the area designated in the CCW.

The count specifies the number of eight-bit byte
locations beyond the initial byte designated by the
address.

It has been mentioned that channels function much
like small independent computers. As such they con-
tain registers. Bits 32 through 36 of the CCW are
labeled “flags™ (see Figure 23). The channel registers
include a flag register that indicates command modes.
These flags serve to chain data or commands for this
series of CCW’s, interrupt the processing unit, skip
a portion of a record, suppress length indication, or
terminate the operation.

These flags may be set on or off in each of the chan-
nel control words and the flag register is updated with
each new CCW. Other registers within the channel
circuitry are (1) a command counter, which tells the
channel where to get the next command in a manner
similar to that of an instruction counter in a process-
ing unit, (2) a command register, which tells the
channel which command is to be performed, (3) an
address register, which tells the channel where to get
or put data into core storage, (4) a count register,
which indicates how many characters are to be read
or written, and (5) a key register, which contains
the storage protection key for the current operation.

The generalized CCW commands listed earlier ap-
ply to all devices. Read, Write, and Read Backward

22

are self-explanatory. The Sense command is a request
to the I/O control unit for device-dependent status
information, such as the position of magnetic tape,
the condition of the card stacker and hopper, or the
detailed conditions detected in the last operation. This
status information is transferred to the channel as
data and is placed in the main storage area designated
by the CCW.

Normally the detailed information provided by the
sense command is not required, and an eight-bit status
byte is provided to the channel (upon completion of
an I/0 operation) indicating the general conditions
detected during the operation. This status byte is
common to all I/O devices and cannot convey the
detail conditions of termination provided by the sense
command.

A control command causes the control unit to ini-
tiate at the I/0 device an operation not involving the
transfer of data — such as backspacing or rewinding
magnetic tape, or positioning a disk access mechan-
ism.

The Transfer in Channel command causes the next
CCW to be fetched from the location designated by
the data address field of this command instead of
fetching the next sequential CCW. In effect, then, the
Transfer in Channel command causes a branch from
one sequence of CCW’s to another.

When command chaining is specified by a flag bit
in the CCW, the channel uses the new CCW to ini-
tiate a new operation at the device and permits the
processor program to start with a single 1/0 instruc-
tion such sequences as printing multiple lines or read-
ing multiple tape blocks. With command chaining it
is possible for the channel to execute I/0 programs of
any number of I/O operations.

When data chaining is specified by a flag bit in the
CCW, the channel uses the new CCW to designate
another data area for the original I/O operation and
the device continues to execute this operation. Only
the allocation of storage areas is affected. Data chain-
ing permits the reorganization of information as it is
transferred between main storage and the I/0O device.

The proper use of the available channel command
words permits the following types of I/O functions:

Scatter-read — reading one physical record into
multiple, noncontiguous areas of storage.

Extraction — reading only selected portions of a
record into storage.

Control nondata I/O operations — for example,
backspace, rewind, etc.

Command chaining — for sequentially performing
operations on the same device, for example, reading
over an interrecord gap.



Upon completion of the channel program, an I/0
interrupt occurs; that is, the channel interrupts the
processing unit. The channel makes available in main
storage a channel status word (CSW). This double-
word contains an address that is eight bytes higher
than the address of the last CCW used, and indicates
in the count field the difference between the count
in the last CCW and the amount of data transferred.
The format of the channel status word is shown in
Figure 25. The storage protection key is the key used
in the operation. It is first supplied to the channel
from the CAW as a result of a Start I/0 instruction.

Bits 32-47 of the channel status word contain an
eight-bit I/O device-status byte and a channel status
byte. These two bytes provide such information as
data-check, chaining check, and control unit end. The
channel status word has a permanent storage assign-
ment of locations 64 through 71 in main storage as
shown in Figure 4.

[Key 000 ﬂ Command Address I ’
0 34 78 3
Status Count

32 47 48 63

Bits 0-3 contains the storage-protection key used in the
operation.

Bit 4-7 contain zeros.

Bits 8-31 specify the location of the last CCW used.

Bits 32-47 contain an |/O device-status byte and a channel-
status byte. The status bytes provide such information as data-
check, chaining check, control-unit end, etc.

Bits 48-63 contain the residual count of the last CCW used.

Figure 25. Channel status word format

With the command address, status, and count fields
of the CSW, the program can determine the status of
an 1/0 device or the conditions under which an 1/O
operation has been terminated.

The processing unit’s program depends on I/0 in-
terrupts for information concerning the progress of
I/O operations. So that the processor program can
tell in advance when conditions in the channel or in
the device should alert the program, a mask bit is
associated with each channel. A masked channel can-
not cause an I/O interrupt, and consequently the
supervisor program can suppress 1/O interrupts by
masking the channels. The conditions in the channels
and devices are preserved until accepted by the
processor program. The program can determine
whether an interrupt condition is pending in the
channel by issuing the instruction Test Channel.

Channel masking allows the processor program to
accept I/O interrupts selectively by channel. How-
ever, on a given channel more than one I/O control
unit can contain pending conditions that cause pro-
gram interruption. The instruction Test I/O allows
a program to accept interrupts selectively by I/O
device. This instruction gives the program the status
of the designated device and clears any interrupt con-
dition pending in the device. Test I/O provides the
same information as an I/O interrupt, since the chan-
nel status word is stored. Keeping the channels masked
and interrogating devices by the Test I/O instruc-
tion prevents the program from being interfered with
by conditions unrelated to the program being run.

In a real-time or communications environment, on
the other hand, the processor program would keep all
channels unmasked and depend on I/O interrupts
for information concerning the progress of 1/O events
as they occur.
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Summary

System/360 includes provisions for large storage capa-
city, simple program relocation, flexible protection,
and general supervisory facilities. Provisions are also
included for a variety of data formats, an extensive
set of processing operations, and machine language
compatibility among the various models.

To compensate for higher computational speeds
relative to human reaction time, and to adapt the
system to online and real-time multiprogramming
tasks, the system is more highly automated by having
the system resources controlled by a supervisory pro-

gram. Provision for this control is embodied in these
concepts:

® Supervisory mode with associated privileged
instructions

® Storage protection

® Hardware monitoring

® The ability to perform interrupts

® A wait state available to the supervisor program,
rather than a stop or halt instruction available to
the problem programmer.



1. Can a tape unit be attached to a multiplexor
channel?

2. 1If the problem program issues a Load PSW in-
struction to cause the new I/O PSW to be loaded, can
the problem program cause an I/O operation to be
executed?

3. The instruction address contained in the new Su-
pervisor Call PSW addresses a routine to handle this
class of interrupts. What action must this routine first
take?

4. A program interrupt will occur if the Convert
to Binary instruction attempts to operate upon data
that contains invalid codes for packed decimal. What
are the valid four-bit codes for packed decimal?

Questions and Exercises

5. Is data punched in an IBM card as Hollerith code
acceptable as input to a System/360 equipped with a
card reader?

6. If floating-point arithmetic is intended for scien-
tific and engineering applications, while the decimal
instruction set is primarily for commercial applica-
tions, by whom are fixed-point arithmetic instructions
used?

7. In what position is the sign of a rniumber located?
8. What storage location is addressed by an instruc-
tion with zeros in the index and displacement fields
and the number 5 in the base register field?

9. Why does the programmer select a particular in-
struction length?
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Chapter 2: Number Systems

Numeric symbols, or numbers, were invented to facili-
tate counting, Various number systems differ in the
arrangement and type of number symbols used. Early
number systems frequently employed cumbersome
symbols and inconvenient rules, which hindered the
advance of systematic mathematical thought. The
slowly increasing rationality of systems of numerical
notation and the arithmetical rules built upon them
bears a close relation to the progress of mathematics
and science, in general.

Positional Notation

The Arabs invented the numerical symbols and system
of positional notation on which our present decimal
system and other number systems are based. Each of
the symbols has a fixed value one higher than that of
the symbol before it in the progression from smallest
to largest: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. When several
symbols (or digits) are combined, the value of the
number depends upon the relative positions of the
individual digits, as well as on the digit values. In
any system of positional notation, the digit position
on the extreme right is the one of least value, or low-
est order, and is called the “least significant digit”
(LSD); the digit on the extreme left is the one of
highest value and is called the “most significant digit”
(MSD). The increase in value of each digit position
depends on the base, or radix, of the number system.
Thus, in the decimal system, with base 10, the value
of the digit positions to the left of the least significant
(or unit) digit, increases by a power of 10 for each
position. The decimal system has the base (radix) 10
because it has ten discrete number symbols (0-9)
available for counting.

As an example of positional notation, consider the
decimal number 6,594. Although its value is imme-
diately apparent, the notation 6,594 actually signifies

6 thousands + 5 hundreds -+ 9 tens + 4 units
or 6000 + 500 + 90 + 4 = 6,594

The positional value of each digit is made even
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The following sections present a brief review of
the basis of modern positional number systems and
the arithmetical manipulation and conversion of the
binary and hexadecimal systems of notation, both of
which have been found useful in electronic data
processing.

clearer when the number is expressed in powers of
ten:
6,594 =6 X 10° 4+ 5 X 10> +9 x 10' + 4 x 10°
=6xX10004+5X1004+9x 10 +4Xx1

Positional notation is not possible without the zero.
Its presence within a number simply means that the
power of the base represented by the 0 digit position
is not used. Thus, the decimal number 8,003 signifies

8x 10® 40 x 102 4+ 0 x 10* 4+ 3 x 10°

=8x1000+0Xx 100+ 0x 10 +3 x 1

= 8,000 +3 = 8,003

Fractions and mixed numbers are treated in posi-
tional notation in just as simple a fashion. Each digit
position to the right of the point is assigned a negative
power of the base, starting with —1, in ascending se-
quence. Thus, in the decimal system, the first digit to
the right of the decimal point is multiplied by 101,
the second digit by 10—2, the third by 10—3, and so on.
For example, the mixed decimal number 436.578 may
be expressed as

4x1024+3 X 100 4+6Xx10°4+5 X 107 4

7% 107248 x 107°

+ 5/10 +
7/100 4+ 8/1000

— 400 4+ 30 4+ 6
= 436.578

These rules of positional notation are generally ap-
plicable to all number systems, regardless of the base,
or radix, used.



The binary (base 2) number system uses only two
distinct symbols, 0 and 1, which signify “no units” and
“one unmit”, respectively. In contrast to the decimal
system, however, the place value of binary digits to
the left of the least significant digit (LSD) increases
by a power of 2 each time, rather than by powers of
10. For example, the binary number 101101 signifies:

101101 = 1 X 25 4+0X2¢+ 1X23 4 1X22 +0X21+ 1X20
=(1X32)+ 0 +(1X8)+(1X4)+ 0 +(1X1)
= 32 + 0 + 8 + 4 + 0 + 1

= 45 (in the decimal system).

Expressing a binary number in powers of 2, thus, is
one way (though not usually the best) of finding its
decimal equivalent. To avoid confusion when several
systems of notation are employed, it is customary to
enclose each number in parentheses and to write the
base as a subscript, in decimal notation. Using the
previous example:

(101101); = (45)10

Fractions are handled in the same way by assigning
negative powers of 2 to the right of the binary point
in ascending sequence. For instance, the binary num-
ber 0.1011 means:

Binary Numbers

(01011): =1 X 274+ 0X2*+1x 241X 2
= 12 4+ 0 4+ /8 +4 1/16 =
11/16
+ 0125 4 0.0625 =
(0.6875 )10

Again, a literal expansion of the binary number in
powers of 2 yields the decimal equivalent. Simpler
methods of conversion will be described later on.

For reference, the first 16 binary numbers and their
decimal equivalents are:

= 05 + 0

Decimal Binary

0 0000
0001

2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
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Hexadecimal Numbers

Large binary numbers consist of long strings of zeros
and ones, which are frequently awkward to interpret
and handle. The hexadecimal (base 16) numbering
system is used as a convenient way of representing
such large binary numbers. Each hexadecimal digit
stands for four binary digits.

Hexadecimal notation requires the use of 16 sym-
bols to represent 16 number values. Since the decimal
system provides only ten number symbols (0 — 9), six
additional marks are needed to represent the remain-
ing values. The letters A, B, C, D, E, F have been
adopted for this purpose, though any other six marks
could have served equally well. The entire list of
hexadecimal symbols, thus, consists of 0, 1, 2, 3, 4, 5,
6,7,8,9,A, B, C, DE, and F, in ascending sequence
of value. Table 1 shows equivalent decimal, hexadeci-
mal, and binary numbers (through decimal 31). Note
that upon reaching decimal 16, the hexadecimal sym-
bols are exhausted, and a “1 carry” is placed in front
of each hexadecimal symbol during the second cycle,
from decimal 16 through 31.

To convert binary numbers to hexadecimal notation,
simply divide the number into groups of four binary
digits, starting from the right, and replace each group
by the corresponding hexadecimal symbol. If the left-
hand group is incomplete, fill in zeros as required. For
example, the binary number

111110011011010011 = 0011/1110,/0110/1101/0011
= 3 E 6 D 3
= (3E6D3)
If the binary number is a fraction or a mixed number,
care must be taken to mark off groups of four bits
from each side of the binary point position. Thus, the

binary number
1011001010.1011011 = 0010/1100/1010.1011/0110
= 2 C A B 6
= (2CA.B6)6

Similarly, to convert hexadecimal numbers into
binary, substitute the corresponding group of four
binary digits for each hexadecimal symbol and drop
off any unnecessary zeros. For instance, the hexa-
decimal number

(6C4F2E.7TB8)16
=6 C 4 F 2 E 7 B 8
= 0110 /1100/ 0100/1111/0010/1110.0111/1011/1000
= (11011000100111100101110.011110111 ).
The meaning of hexadecimal numbers is made clear

by expansion in powers of 16. For example, the hexa-
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Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010
19 13 10011
20 14 10100
21 15 10101
22 16 10110
23 17 10111
24 18 11000
25 19 11001
26 1A 11010
27 1B 11011
28 1C 11100
29 1D 11101
30 1E 11110
31 1F 11111
Table 1. Decimal, hexadecimal, and binary notation

decimal number 2CA.B6, above, means (when deci-
mals are substituted for hexadecimal symbols)

2% 16 +12x 16+ 10 x 16°+ 11 X167+ 6 X 16~
=2X256+12x16 +10x 1 + 11/16 4+ 6/256
= 512 4+ 192 4+ 10 + 0.6875 + 0.0234375
= T14 4 0.7109375 = (714.7109375 )10
In working out an example of this type, it is best to
arrange the products in a vertical column for con-
venient addition.



Arithmetic in bases other than 10 can always be car-
ried out by converting all operands to the decimal
system, doing the required arithmetic, and then re-
converting the results to the original number base.
This procedure is not recommended for binary arith-
metic, which is extremely simple, but may be advisable
for complicated hexadecimal arithmetic, particularly
when a good hexadecimal-decimal conversion table is
available. (See, for example, the conversion table in
Appendix E of the manual IBM System/360 Principles
of Operation, A22-6821.) Nevertheless, the program-
mer should be familiar, at least, with simple addition
and subtraction in the binary and hexadecimal nota-
tions and, therefore, examples of these operations are
included.

The rules of arithmetic are the same in all positional
number systems. Thus, it is necessary only to recall
the corresponding rules of decimal arithmetic to be
able to do arithmetic in any other number base.

Binary Addition
Addition is essentially a shortcut to counting. We add
two digits either by counting through the values of
the two digits in sequence or, more simply, by memor-
izing the sum of the digits from an addition table.
Whenever the sum of two digits exceeds the available
number symbols of the notation (that is, the limit of
any digit position), a 1 is carried to the next-higher-
order digit position. Thus, in the decimal system,
3+ 5=28,but 9 + 1 = 0 with a carry of 1 (that is,
10).

In the binary system, there are only two symbols,
0 and 1. Hence, adding 1 plus 1 in binary notation
exceeds the limit of counting (no symbol being avail-
able) and, therefore, the result is 0 with a 1 carried
to the next-higher-order digit position. The complete
rules of binary addition are given below.

Binary addition
04+0=0
04+1=1
14+0=1

1 4+ 1 = 0 with a carry of 1.

(This may be written as 10, but is pronounced “one,
zero”.) The binary addition table below is a con-
venient way of summarizing these results.

Binary and Hexadecimal Arithmetic

Binary addition table

+10 1
00 1
111 10

Three examples of binary addition are given below.
The example on the left is self-explanatory. The center
example develops a carry, which is indicated above
the proper digit position. The example on the right
consists of the addition of two eight-bit numbers and
involves several carries, which are indicated. As a
check, the binary operands also have been converted
to decimals, and the addition has been carried out in
both systems. The results check, as you can verify by
conversion.

1 <«Carries»> 1 11

1010 101010 00111001 = 57
4+ 101 4001001 4+ 00100011 = + 35
1111 110011 01011100 = 92

It is frequently necessary to add two 1's and a 1
carry from a lower-order position. This results in a 1,
with a carry of 1 to the next-higher-order position. In
brief,

1 4+ 1+ 1 =1 with a carry of 1 (which may
be written 11). The following two examples illustrate
the process

Carries 111 111
1111 10111000 = 184
+ 111 + 00111011 = + 539
10110 11110011 = 243

When adding together several binary numbers, more
than one carry may be developed to a single column.

. 11
Carries { 11111

1011
1101
1001
0001
1001

101011

Additional exercises in binary addition can be
found later.

Hexadecimal Addition

Addition in the hexadecimal system follows the same
rules as decimal and binary addition. Working with
alphameric symbols — numbers and letters — appears

Number Systems 29



strange at first, particularly since results long familiar
from decimal addition have a different meaning in
hexadecimal notation. This requires a degree of re-
orientation and practice. For instance, while 4 4+ 5
= 9 in both the decimal and hexadecimal systems,
7 + 8 = F (not 15) in hexadecimal notation. When-
ever the sum of two digits exceeds F — the highest-
valued hexadecimal symbol — a carry of 1 is developed
to the next-higher-order digit position. Thus, 7 + 9
= 10 (that is, 0 with a carry of 1), 9 + 9 = 12 (that

1 2 3 45 6 7 8 9ABCUDEF

02 03 04 05 06 07 08 09 OA 0B 0C OD OE OF 10
03 04 05 06 07 08 09 OA OB 0C OD OE OF 10 11
04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12
05 06 07 08 09 GA 0B OC OD OE OF 10 11 12 13
06 07 08 09 OA 0B OC OD OE OF 10 11 12 13 14
07 08 09 0A OB 0C 0D OE OF 10 11 12 13 14 15
08 09 0A 0B OC OD OE OF 10 11 12 13 14 15 16
09 0A 0B 0C OD OE OF 10 11 12 13 14 15 16 17
9 0A 0B 0C OD OE OF 10 11 12 13 14 15 16 17 18
A OB OC 0D OE OF 10 11 12 13 14 15 16 17 18 19
B 0C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A
CODOE OF 10 11 12 13 14 15 16 17 18 19 1A 1B
DOEOF 10 11 12 13 14 15 16 17 18 19 1A 1B 1IC D

CO~A (D] U] | D]

W P OO |[UT|iW| D]~

@]

EOF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D E
F10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E F

1 2 3 456 7 8 9ABCUDEF

Table 2. Hexadecimal addition

is, 2 with a carry of 1), C 4 9 = 15, and so on. (Refer
to Table 1.)

The hexadecimal addition table (Table 2) has
16 X 16 = 256 entries, which one could hardly be
expected to memorize. Hence, reference to the table
is required during hexadecimal addition. The use of
the table is simple.

Locate the two hexadecimal digits in the respective
row and column of the table. (It makes no difference
which digit is selected for a column and which for a
row.) The sum of the two digits is given by the inter-
section of the row and column. Note that the highest
entry, at the bottom right of the table, is 1E, which
represents the sum of F plus F (decimal 15 4~ 15).
If a carry of 1 needed to be added to this, the result
would be 1F (equivalent to decimal 31); that is,
F + F + 1 = 1F. In general, if a carry develops dur-
ing hexadecimal addition, it is convenient to mentally
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add the 1 carry to the lower-valued of the two oper-
ands and then add in the other operand by use of the
addition table. As an alternative, the two digits may
first be added by use of the table; the carry is then
added in by going to the next square to the right or
below the intersection that represents the sum of the
digits. For example, to add the digits 7 4+ C 4 1
(carry), one may add 7 plus 1 (carry) equals 8, and
then look up the result of adding 8 (column) plus C
(row) at the intersection of the 8-column and the
C-row, which shows 14. Alternatively, one can add 7
(column) plus C (row) by use of the table, finding
13 at the intersection; the 1 carry is then added in by
going one square below (or to the right of) the inter-
section, which again yields 14 as the result. Three
examples of hexadecimal addition follow. Additional
exercises are given at the end of the chapter.

Hexadecimal addition

11 11
9654 = 38,484 6AE 8F97
+ 4528 = + 17,704 + 1IFA + D44C
DB7C = (56,188)10 8A8 163E3

The example at left is straightforward and does not
involve any carries. To verify the results, each of the
operands has also been converted into decimals (by
expansion in powers of 16) and the addition carried
out in the decimal system. The center example, which
does involve carries, may be verbalized as follows,
using Table 2: A plus E equals 8 with a carry of 1
into the next-higher-order digit position. Adding the
next-higher-order digits, F plus A equals 9 with a
carry of 1, plus the lower-order carry equals A, with a
carry of 1 into the next-higher-order digit position.
Adding the next-higher-order digits, 1 plus 6 equals 7,
plus the carry of 1 equals 8. This completes the addi-
tion. Similarly, adding the lowest-order digits of the
example at right, we obtain C plus 7 equals 3, with a
carry of 1 into the next-higher-order digit position.
Adding the next-higher-order digits, 4 plus 9 equals D,
plus the carry of 1 equals E with no carry. (Alterna-
tively, 4 plus the 1 carry equals 5, plus 9 equals E
with no carry.) Addition of the next-higher-order
digits yields 4 plus F equals 3 with a carry of 1 to the
next-higher-order position. Adding these digits, D plus



8 plus a 1 carry equals 6 with a carry of 1; since there
is no higher-order position, this carry is placed next to
the 6. This completes the addition.

Binary Subtraction
In checking out programs, it may be useful to be
familiar with the conventional, direct method of sub-
traction, “borrowing” whenever necessary. The rules
of direct binary subtraction are given below.

Binary subtraction

0—-0=0
1-1=0
1—-0=1

0 — 1 = 1 with a borrow of 1
(from the next-higher-order digit position). By incor-
porating the borrow, the last rule above may be
interpreted to mean

10-1=1
(which is equivalent to decimal 2 — 1 = 1).

Borrowing is necessary whenever the subtrahend

(the number on the bottom) is larger than the minu-
end (the number on top). It consists of subtracting
a 1 from the next-higher-order digit to the left in the
minuend and placing it next to the lower-order digit
in the minuend. Since additional higher-order bor-
rows are frequently required, the process is often
confusing. An alternative, and frequently better, way
is to “pay back”, or carry, the 1 borrowed from the
minuend digit at left to the subtrahend immediately
beneath it. An example illustrates the method.

Conventional method Payback method
10
Borrows 0 @10 11
1011411 <«<Minuend-> 1011011
—1001111 <«Subtrahend—> —-1001111
0001100 Carry 11
0001100

Note, in the conventional method (at left), the
many changes necessary in the minuend to accommo-
date successive borrowing. This may become con-
fusing at times and it is best to write down the minu-
end once again after all borrowing is completed.

In the payback method of subtraction, a borrow of
1 is simply placed next to any minuend digit that re-
quires it. This 1 is then paid back as a carry of 1 to
the next-higher-order subtrahend digit at the left. Al-
though the method is easily carried out in one’s head,
the example above could be verbalized as follows.
Starting with the lowest-order digit position, 1 from 1
leaves 0 (put down 0); 1 from 1 leaves 0 (put down
0); 1 from 10 (after borrowing) leaves 1 (put down
1 and carry 1 to the next-higher-order subtrahend
digit); the carry of 1 plus 1 equals 10, and 10 from 11

(after borrowing) leaves 1 (put down 1 and carry 1
to the next-higher-order subtrahend digit); the carry
of 1 plus 0 equals 1, and 1 from 1 leaves 0 (put down
0); next, 0 from 0 leaves 0 (put down 0), and finally,
1 from 1 leaves 0 (put down 0). This completes the
subtraction.

Three more examples of binary subtraction are
given below. The method has not been indicated, since
either one can be used, according to individual pref-
erence. The additional exercises at the end of this
chapter should also be completed at this time.

Binary subtraction

1000 10110001 110011 = 51
-1 —01010101 —011101 = —29
111 01011100 010110 = 22

Hexadecimal Subtraction

Subtraction in the System/360 is actually carried out
by complementing the subtrahend and adding it to
the minuend (see “Complements” later in this man-
ual). It is useful for the programmer to know, how-
ever, how to perform direct subtraction of hexadecimal
numbers.

Hexadecimal subtraction follows the same rules as
decimal and binary subtraction with the proviso that
a carry or borrow of 1 in hexadecimal notation repre-
sents decimal 16. To obtain the difference of two
hexadecimal digits, refer to Table 2. Locate the
column heading that represents the digit to be sub-
tracted (subtrahend). Go down this column to the
digit(s) that represents the minuend. The heading of
the row horizontally across from the minuend repre-
sents the difference between the two digits. When the
subtrahend digit is greater than the minuend digit, it
will be necessary, of course, to add in a borrow of 1
to the minuend digit before looking up the difference
in the table. Either the conventional or the payback
method of subtraction can be used, as is illustrated in
the following two examples:

Hexadecimal subtraction
1. Conventional method
Borrows: 19
7 918
g A B
-1 F A
6 A E

2. Payback method
11 1
1 6 3 E 3 Minuend
4 4 C Subtrahend

Minuend
Subtrahend

Carries:

D
11 1
0 8F 97
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Example 1, above, illustrates the borrowing method.
Starting with the lowest-order digits at right, A cannot
be subtracted from 8, since it exceeds 8. Hence, a 1 is
borrowed from the next-higher-order digit at left, A,
reducing that digit to 9 (since A — 1 = 9) and in-
creasing the minuend digit to 18. To carry out the
subtraction 18 — A, Table 2 is consulted. Under the
A-column (the subtrahend), the minuend digits, 18,
appear in the E-row. Hence, 18 minus A equals E.
Put down E. Proceeding to the next-higher-order digit
position, F cannot be subtracted from 9; hence a 1 is
borrowed from the 8 at left, reducing that digit to 7,
and increasing the minuend to 19. In the table, going
down in the F-column (subtrahend), the minuend
digits, 19, appear in the A-row. Therefore, 19 minus F
equals A. Put down A. Finally, the difference between
- the high-order digits at left, 7 minus 1, equals 6. Put
down 6. This completes the subtraction.

Example 2, above, illustrates the payback method of
hexadecimal subtraction. Starting with the low-order
(right) digits, C cannot be subtracted from 3; hence,
add in a 1 (actually a 10, of course), making it 13.
From Table 2, 13 minus C equals 7. Put down 7. In
the next-higher-order digit position, a carry of 1 is
first added to the subtrahend; 4 plus 1 equals 5. Then,
from the table, E minus 5 equals 9. Put down 9. In
the next digit position at left, 4 cannot be subtracted
from 3, but after borrowing, 13 minus 4 equals F
(from the table). Put down F. The 1 previously bor-
rowed is added to the subtrahend of the next digit
position; D plus 1 equals E. After borrowing, 16 minus
E equals 8 (from the table). Finally, 1 minus the carry
of 1 equals 0. Put down 0. Alternatively, the two high-
order minuend digits, 1 and 6, could have been taken
together as 16. Then, by subtracting E from 16, the
difference of 8 is obtained at once.

Three additional examples of hexadecimal subtrac-
tion are given below. Work out these examples, as
well as the exercises in back, and verify the results by

adding back.

Hexadecimal subtraction

FOD5 D935F FDE74B.2C6A5
—EB63 —8E7C2 — 7B 3AF4.95C09
E72 4AB9D 8§2AC56.96A9C

Binary Multiplication
The three rules of binary multiplication are:

0X1=0 (orl X 0=0)
1 x1=1
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In practice, it is not necessary to remember these
rules. Simply copy the multiplicand (the number on
top) whenever the multiplier digit (on the bottom)
is 1 and shift an extra place to the left (or copy 0’s)
for each multiplier digit that is a 0. The following
examples illustrate the method:

Binary multiplication

1. . 2.
011 Multiplicand 1100110
X 011 Multiplier X 1000
011 st partial product 1100110000 (copy O’s in
011  2nd partial product multiplier)
1001 Product
3. 4. ‘
1.01 110110 Multiplicand
%X 10.1 X 110011 Multiplier
101 110110 Copy multiplicand
1010 110110  Shift once and copy
11.001 110110 Shift 3 times and copy
110110 Shift and copy
101011000010 Add partial products

Hexadecimal Multiplication
The rules of multiplication in the hexadecimal system
are the same as those in the decimal and binary sys-
tems. However, since the process is fairly complicated,
it will be necessary to refer to Table 3 to determine
the product of multiplying two hexadecimal digits. In
the decimal and binary systems it is customary to dis-
play the partial products of the multiplier digits with
the multiplicand on a single line, each. Because of the
carries, this is not usually convenient in hexadecimal
multiplication; each product of two digits is separately
written down and added, allowing for necessary shifts.
The following two examples illustrate the process of
hexadecimal multiplication, using Table 3:

Hexadecimal multiplication

Example 1:
9D7
X 5A
. g 6(:2 § ]7)} {Ii’artial ;l)r'ocll.uct(s1 of
5A < AX9 rst multiplier digit

Partial products of

41 «<—5 xD second multiplier digit

9D «—5 %X 9
Carries 11

37596

23 «—5 X7}

15 hexadecimal, carry 1
17 hexadecimal, carry 1

Note that each of the partial products of a multi-
plier digit is shifted one place to the left with respect



to the previous product. Care must be taken, however,
to shift the first partial product of the second multi-
plier digit (23, above) only one place with respect to
the first partial product of the first multiplier digit (46,
above), as in decimal multiplication. In adding up the
partial products, use is made again of Table 2. Any
resulting carries are applied to the next-higher-order
digit position, as is indicated in the example.

2 3 4 5 6 7 8 9 A B CD E F
04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E
06 09 0C OF 12 15 18 1B 1E 21 24 27 2A 2D
08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C
0OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B
0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
10 18 20 28 30 38 40 48 50 58 60 68 70 78
12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
16 21 2C 37 42 4D 58 63 6E 79 8F 9A A5
18 24 30 3C 48 54 60 6C 78 84 9C A8 B4
1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 El

8IR

T Q R3O0 TR 010

Table 3. Hexadecimal multiplication

Example 2:

ABCD
X ABCD

A9
9C
8F
82
9C
90
84
78

8F
84
79
6E
82
78
6E
64

Carries: 133232

Fiiive

734B8229

13, carry lﬂ T_E22, carry 2
34, canry 3 32, carry 3
3B, carry 3 28, carry 2

The carries resulting from the addition of the partial
products are indicated above. The computation can
be verified by converting the operands to decimal no-
tation, as is later shown, carrying the arithmetic

through in decimals, and converting the result back to
hexadecimal notation.

Partial
products

> HEmE OO000 DOUU
XXXX XXXX XXXX XXXX

PEOD »EO0 »EOT bwAY

Answer: (73,4B8,229 )
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Number Base Conversion

It may be necessary to ascertain the equivalent of a
number in a base different from the one in which it is
expressed. It may, for example, be occasionally desired
to enter decimals into storage without using the con-
version instruction of the machine.

A great number of conversion methods exist, of
which only a few are useful in practice. As has been
shown earlier, the literal method of expanding the
number in powers of its base readily yields the deci-
mal equivalent of the number, provided all arithmetic
is carried out in the decimal system. The method also
has the advantage that it works equally well for whole
numbers, fractions, and mixed numbers; other methods
generally require separate treatment for whole num-
bers (integers) and fractions. For conversions into
bases other than ten, however, the method of literal
expansion into a power series (sometimes called #rans-
literation) frequently becomes difficult to carry out.

Another direct conversion technique is the method
of subtraction, or casting out. To convert from base A
to base B, first find the largest multiple of the highest
power of B contained in the base A number (the
number to be converted ). This multiple represents the
most significant digit (MSD) of the new base B num-
ber. Subtract this highest-power multiple from the
original number and determine the largest multiple of
the next-highest power of B contained in the remain-
der. This forms the next-most significant digit of the
new number. Subtract again and continue the process
until every power of base B has been exhausted. The
multiple of the lowest power of B contained in the
number is the least significant digit (LSD) of the
new number.

The process is relatively simple for conversions to
the binary system, since the multiples of the powers
of 2 are either 1 or 0. For example, to convert decimal
25 into the binary system, proceed as follows:

Decimal Binary Digits
25
Highest powerof 2in 25: 16 = I X 2¢ 1 (MSD)
Remainder: 9
Next-highest powerof 2: —8 = 1 x 2° 1
Remainder: 1 B
Next-highest power of 2: 0 =0x2 0
Remainder: 1
Next-highest power of 2: 0 =0x2 0
Remainder: 1 -
Lowest powerof 2: —1 = 1 X 2° 1 (LSD)
Remainder: 0o

Hence, (25)10 = (11001)2

The method of subtraction becomes tedious for
larger numbers and requires memorization (or a
table) of the powers of the base into which the num-
ber is to be converted. A more rapid and convenient
technique is the division/multiplication method. Here
division is used for conversion of integers from one
base to another, while multiplication is used for con-
version of fractions, as will be described in the follow-
ing paragraphs. For the conversion of integers, the
method of division may be summarized as follows:

To convert from base A to base B, divide repeatedly

by the base A equivalent of B, until the quotient

comes out zero. (Use base A arithmetic.) The re-
mainder of the first division is the rightmost or

least significant digit. The remainder of the last divi-

sion is the leftmost or most significant digit. If B is

greater than A, convert the remainder digits into

base B.

Most of the conversion examples that follow will il-
lustrate this method, which is the most useful in
practice.

Decimal to Binary Integer Conversion

Conversion of decimal integers into binary notation by
the division method can be done mentally, since it in-
volves division by 2. Proceed as follows:
Divide the decimal number repeatedly by 2, until
a quotient of 0 is obtained. The equivalent binary
number is composed of the remainders, the first
remainder being the rightmost or least significant
digit, while the last remainder is the leftmost, or
most significant digit.
Since the divisions can be performed mentally, the
quotients may be placed directly beneath the dividend
and the remainders opposite the quotients, as illus-
trated in the examples below:

Decimal to binary integer conversion

Quotients Remainders Quotients Remainders
(27)10 (568)10

13 1 (LSD) 284 0 (LSD)
6 1 142 0
3 0 71 0
1 1 35 1
0 1 (MSD) 17 1
(27) = (11011). 8 1
4 0
2 0
1 0

0 1 (MSD)

(568): = (1000111000).



Note, in each case, that the divisions are carried out
through a zero quotient. The remainders are then writ-
ten horizontally, left to right, beginning with the bot-
tom of the column,

Decimal to Hexadecimal Integer Conversion

The division method is used, as follows:
Divide the decimal number repeatedly by 16, until
a zero quotient is obtained. Convert decimal re-
mainders 10—15 into hexadecimal symbols A—F.
The first remainder is the least significant hexadeci-
mal digit; the last remainder is the most significant
digit.

Here the divisions usually have to be done longhand

in all but the simplést cases. Record the quotient and

remainder of each division, as shown in the examples

below:

Example 1: Convert decimal 195 into hexadecimals.
Divide by Base 16 = Quotient 4+ Remainder (= Hex Digits)
195 +~ 16 12 + 3 3
12 =~ 16 0 + 12 = C

(195):0 = (C3)1e
Example 2: Convert decimal 1710 into hexadecimals.
Divide by Base 16 Quotient 4 Remainder (Hex Digits)

L

1710 = 16 = 106 -+ 4 = E
106 ~ 16 = 6 4+ 10 = A
6 - 16 = 0 + 6 6

(1710)10 = (6AE)w
The hexadecimal equivalents of decimal numbers in
the range of 0—4095 (hexadecimal 0—FFF) may also
be looked up directly in the hexadecimal-decimal con-
version table in Appendix E of the manual IBM Sys-

tem /360 Principl i -

Binary to Decimal Integer Conversion

The decimal equivalent of a binary number is easily
obtained by the method of direct expansion in powers
of 2, as was described earlier. This works well for all
binary numbers — integers, fractions, and mixed num-
bers — and can frequently be done mentally by inspec-
tion. Simply write down the powers of 2 of the binary
number in column format (starting with the high-order
digit) and add up the column to obtain the equivalent
decimal.

A shortcut method of binary-to-decimal conversion
is known as the double-dabble method ( dabble means
double and add). The method consists of the following
procedure:

Double the highest-order (leftmost) binary digit

and add it to the digit at its right. Double the sum

and add 1 or 0, depending upon whether the next
digit to the right is a2 1 or a 0. Repeat until the sum
contains the lowest-order digit at right.

For example, to convert 1011 into a decimal, start with
the 1 bit at left, double (making it 2) since the next
bit is 0, then dabble since the next bit is a 1 (that is,
2 X 2 = 4; adding 1 makes 5), and finally, dabble
again since the last bit at right is a 1, making it a total
of decimal 11 (that is, 2 X 5 = 10; adding 1 makes
11).

The double-dabble technique can be done very
quickly with a little practice, by simply remembering
to double each time if the next digit is 0, and to double
and add 1 if the next digit is 1. Additional exercises
are presented below and in the back.

Example 1: Convert (110101), into decimals.
Binary digits: 1 1 0 1 0 1
Decimal sums: 2 4+ 1= 3 6 26 53

13
dabble double dabble double dabble
Therefore, (110101): = (53 )1

Example 2: Convert (1110011). into decimals.

o YW anin. Y. YW S
Dabble Dabble Double Double Dabble Dabble

Binary: 1 1 1 0 0 1 1
Decimal 3 7 14 28 57 115
sums:

Hence, (1110011): = (115):0

In most cases the procedure can be done mentally
without bothering to write down the partial sums
each time.

Hexadecimal to Decimal Integer Conversion

Although the division method can be used for the
conversion of hexadecimal integers into decimals, the
two-methodspresented below will be found to give
results more rapidly. The direct method consists of
expansion of the hexadecimal numbers in powers of
16, using decimal arithmetic for the calculations. This
method can be formulated by the following rule:

Multiply the decimal equivalent of each hexadecimal

digit by the place value of the digit, expressed in

decimals (that is, by the appropriate power of 16).

Add all such products to obtain the equivalent

decimal.

Using the previous examples, but in reverse:
Example 1: Convert (C3)s into decimals.

C3\:;’12 X 16' 4+ 3 X 16°=192 + 3 = (195)x

Example 2: Convert (6AE ) into decimals.

6AE_—=6 x 16* + 10 X 16' 4 14 X 16°
=IO XU TWOXIOH

6x2564+10x16 +14x 1
1536 + 160 + 14
(1710)4
The method requires memorization, or a table, of
powers of 16 and becomes unwieldy for larger-size
hexadecimal numbers. Another technique, which con-

= 1710
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sists of a combination of multiplication and addition,
is frequently easier than direct expansion. It may be
stated as follows:
Multiply the decimal equivalent of the high-order
(leftmost) hexadecimal digit by 16. Add in the
decimal equivalent of the next lower-order hexa-
decimal digit (at right) and multiply the sum again
by 16. Continue this process until the last (right-
most) hexadecimal digit is added to the product.
The last sum is the decimal sought for. Do not
multiply it by 16!
Using again the previous example, to convert
(6AE) 6 into decimals:

6 A E hexadecimal

Multiply %X 16

96

Addin A + 10

106

Multiply X 16

636

106

1696

AddinE + 14
Sum 1710 decimal. Hence, (6AE ) = (1710):

The conversion of large hexadecimal numbers by
either direct expansion or the multiplication-addition
method described above becomes quite tedious and
difficult. The use of conversion tables makes possible
rapid conversion of hexadecimal integers into equiva-
lent decimals, so that necessary arithmetic can be per-
formed in the decimal system. The hexadecimal-
decimal conversion table in Appendix E of IBM Sys-
tem/360 Principles of Operation permits direct con-
version of three-position hexadecimal integers into
decimals, and vice versa. This includes the range of
hexadecimal numbers 000 to FFF, which is equivalent
to decimal 0000 to 4095. Hexadecimal integers of four
to eight positions can be converted by using the ex-
tended hexadecimal-decimal integer conversion table
(Table 4) in conjunction with the three-position table
in the Principles of Operation Manual. (Alternatively,
the three low-order digits of a hexadecimal number
may be converted by using one of the methods de-
scribed earlier.) Table 4 consists essentially of powers
of 16 (16® through 167), multiplied by the range of
hexadecimal digits from 1 through F. Thus, all the
arithmetic necessary for expansion of a hexadecimal
integer in powers of 16 is already performed in the
table.

The following two examples illustrate the use of
Table 4, as well as a comparison with the multiplica-
tion-addition method of conversion described earlier.
Example 1: Convert (FA9C4D),; into decimals,

using tables.
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X000 X0000  X00000  X000000  X0000000
1 4096 65536 1048576 16,777216 268,435,456
2 8192 131,072 2,097,152 33554432 536,870,912
3 12,288 196,608 3,145728 50,331,648 805,306,368
4 16384 262,144 4,194,304 67,108,864 1,073,741,824
5 20,480 327,680 5,242,880 83,886,080 1,342,177,280
6 24,576 393216 6,291,456 100,663,296 1,610,612,736
7 28672 458,752 7,340,032 117,440,512 1,879,048,192
8 32,768 524,288 8,388,608 134,217,728 2,147,483,648
9 36,864 589,824 9,437,184 150,994,944 2415,919,104
A 40,960 655,360 10,485,760 167,772,160 2,684,354,560
B 45056 720,896 11,534,336 184,549,376 2.952,790,016
C 49,152 786432 12,582,912 201,326,592 3221225472
D 53,248 851,968 13,631,488 218,103,808 3,489,660,928
E 57,344 917504 14,680,064 234,881,024 3,758,096,384
F 61,440 983,040 15,728,640 251658240 4,026,531,840

Table 4. Hexadecimal-decimal integer conversion

From Table 4: F00000 = 15,728,640

A0000 = 655,360

9000 = 36,864

From 3-position table (or below): C4D = 3,149

Sum: (FA9CA4D ). = 16,424,013
decimal

(C4D)s=12X 162+ 4 X 16 + 13 %X 1=
3072 + 64 + 13 = 3,149
Example 2: Check the hexadecimal multiplication
ABCD X ABCD = 734B8229 by converting to
decimal arithmetic. Use both tables and longhand
methods.
Solution:

(ABCD);s =10 X 16° + 11 X 16* 4 12 X 16' + 13 X 6"
=10 X 4096 4+ 11 X 256 + 12 X 16 + 13 X
= 40,960 + 2816 + 192 +13

= (43,981)1
Carrying out the multiplication in decimals:

43981 decimal
X 43981 decimal

43981
351848
395829
131943
175924

1934328361 (1,934,328,361 ),
To check the hexadecimal multiplication, convert
(73,4B8,229) 6 into decimals:
1. By use of conversion tables (Table 4 or the table in
the Principles of Operation Manual):

Answer:

From Table4: 70000000 = 1,879,048,192
3000000 = 50,331,648

400000 = 4,194,304

B0000 = 720,896

8000 = 32,768

From 3-position table: 229 = 553

Sum: (734B8229):s = (1,934,328,361 ).



This checks the answer obtained above by decimal
multiplication.
2. By use of multiplication-addition method:

Hexadecimal 73 4 B 8 2 2 9
Multiply X 16
112
Addin3 +3
115
Multiply X 16
690
115
1840
Addin4 + de—
1844
Multiply X 16
11064
1844
29504
Addin B + 11—
29515
Multiply X 16
177090
29515
472240
Addin 8 + 8¢e———
472248
Multiply X 16
2833488
472248
7555968
Add in 2 + 2¢—— ——
7555970
Multiply X 16
45335820
7555970
120895520
Add in 2 + 2¢
120895522
Multiply X 16
725373132
120895522
1934328352
Addin9 + 9¢
Final Sum: 1934328361 Answer: (1,934,328,361 )4

The conversion again checks the previous results.
Note, however, the excessive length of this method
compared with direct use of the tables for conversion.

Conversion of Fractions

In general, the fractional part of a number must be
converted separately from its integer part, since the
process of conversion is different for each. Frequently,
the conversion of a fraction is the inverse of integer
conversion. Where the integer part is converted by a

process of repeated division, the fractional part is con-
verted by repeated multiplication; where the integer is
converted by multiplication, the fraction is converted
by division.

Conversion of Decimal Fractions to Binary

Decimal fractions are converted into the binary system
by successively multiplying the fraction by 2. The in-
teger parts formed during multiplication are the suc-
cessive binary digits, the first integer being the most
significant digit of the binary fraction. Ignore the inte-
ger parts during each multiplication and continue
multiplying by 2 until the fraction either has been re-
duced to zero or a sufficient number of binary digits
have been generated, in the event of a nonterminating
fraction. The scheme of the example below may be
used.

Example: Convert the decimal fraction 0.828125 into
binary.

Decimal Integer

Fraction X 2 = Product Part (Binary Digit)
0.828125 X 2 = 1.65625 1 (MSD)

065625 X 2 = 13125 1

0.3125 X 2 = 0.625 0

0.625 X 2 = 125 1

025 X 2 = 050 O ,

05 X 2 = 100 1 (LSD)

Collecting digits from top to bottom and placing
them to the right of the binary point, the answer is
(0.110101),.

Conversion of Decimal Fractions to Hexadecimal

The same procedure is used as for conversion to
binary, except that the fraction is repeatedly multi-
plied by 16. The integer part of the first product is
the high-order or most significant digit of the hexa-
decimal fraction. Convert decimal integers between
10 and 15 into corresponding hexadecimal digits (A
through F). Continue multiplication by 16 until either
the fraction is removed or a sufficient number of hexa-
decimal digits have been generated.

Example: Convert (0.828125);, into a hexadecimal

fraction.

Decimal Fraction X 16 = Product Integer Part — Hex Digit
0.828125 X 16 = 13.25 13 = D (MSD)
0.25 X 16 = 4.00 4 =4 (LSD)

Collecting digits and placing to right of hexadecimal

point: 0.D4

Therefore (0.828125)10 = (0.D4)6

Conversion of Binary Fractions to Decimals

The method of repeated multiplication can be used for
converting binary fractions into equivalent decimals.
The technique is somewhat clumsy, however, since all
arithmetic must be done in binary notation; that is, the
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fraction must be multiplied by the binary equivalent of
decimal 10 = (1010); and the binary digits developed
must then be converted back into decimals. In most
cases, a literal expansion of the binary fraction in
ascending negative powers of 2 will give the decimal
equivalent more quickly and less laboriously. A table
of the decimal equivalents of negative powers of 2 will
prove handy for conversion. (See Appendix D in the
above-mentioned manual IBM System/360 Principles
of Operation.)
Example: Convert (0.110101 ). into a decimal fraction.
0110101 =1x2*+1X224+0+1X2*4+0+
1x2°°¢
1/4 4+0+4+ 1/16 +04 %
1/64 = 53/64

+ 025 404 00625 4+ 0+
0.015625

= 1/2 +
= 05

= (0.828125):0 Answer

Conversion of Hexadecimal Fractions to Decimals

The conversion of a hexadecimal fraction to decimals
is the inverse of hexadecimal-to-decimal integer con-
version and, accordingly, requires repeated division
by 16. The rule is:
Divide the decimal equivalent of the low-order
(rightmost) hexadecimal digit by 16. Add the quo-
tient to the next-higher-order hexadecimal digit (at
left) and again divide by 16. Repeat the process
until the high-order (leftmost) digit of the hexa-
decimal fraction has been used. The last quotient is
the answer.
Example: Convert (0.D4);¢ to a decimal fraction.
First divide the low-order digit, 4, by 16:
4.00 = 16 = 0.25

Add in the decimal equivalent of the high-order digit,
D (=13):.
025 + 13 = 13.25
Divide 13.25 again by 16, as shown below:
0.828125

16 / 13.250000
128

45
32

130
128

20

16
40
32

80
Answer: (0.828125) 10 80

00

Since the conversion of hexadecimal fractions proves
frequently lengthy and tedious, as the example illus-
trates, Table 5 has been included for the direct con-
version of up to three-place hexadecimal fractions into
equivalent decimal fractions. The example below il-
lustrates the use of Table 5: conversion table.
Example: Convert the hexadecimal fraction 0.ABC

into an equivalent decimal fraction, using the table.

From Table 5: 0.A = 0.625000000000

00B = 0.042968750000
0.00C = 0.002929687500

Sum: 0.ABC = 0.670898437500
Hence, (0.ABC)1s = (0.6708984375 )10

0.X 0.0X 0.00X

1 0.0625 0.00390625 0.000244140625
2 0.1250 0.00781250 0.000488281250
3 0.1875 0.01171875 0.000732421875
4 0.2500 0.01562500 0.000976562500
5 0.3125 0.01953125 0.001220703125
6 0.3750 0.02343750 0.001464843750
7 0.4375 0.02734375 0.001708984375
8 0.5000 0.03125000 0.001953125000
9 0.5625 0.03515625 0.002197265625
A 0.6250 0.03906250 0.002441406250
B 0.6875 0.04296875 _  0.002785546875
C 0.7500 0.04687500 0.002929687500
D 0.8125 0.05078125  0.003273828125
E 0.8750 0.05468750 0.003517968750
F 0.9375 0.05859375 0.003662109375

Table 5. Hexadec_i‘mal—decimal fraction conversion
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It has been mentioned earlier that subtraction is car-
ried out by the addition of complements. The present
section is concerned with the use of complements to
represent negative numbers and for the addition and
subtraction of signed (positive or negative) numbers.
The meaning and use of complements must be thor-
oughly understood to avoid mishandling of arithmetic
instructions. The definitions and examples which fol-
low should therefore be studied carefully.

Subtraction with Ten’s Complement

The meaning of the phrase “subtraction by addition
of the complement” is made clear by an illustration
from decimal arithmetic. Suppose the six-digit decimal
number 235481 is to be subtracted from 584,673. This
may be done conventionally:

584,673 — 235,481 = 349,192
Alternatively, the subtraction may be done by the
addition of the ten’s complement as follows:

584,673 + (1,000,000 — 235,481) — 1,000,000
ten’s complement
The term in parentheses (1,000,000 — 235,481) is
called the ten’s complement of 235481. It turns out
to be
1,000,000
— 235481

764,519 (ten’s complement of 235,481)

Note that the ten’s complement can be written down
by inspection, by subtracting each digit of the number
from 9, and then adding 1 to the low-order (least
significant) digit at right. (Alternatively, the ten’s
complement of a number may be formed by subtract-
ing each digit from 9, except the rightmost, which is
subtracted from 10.)

Now adding the ten’s complement to the minuend,

Complements

584,673
4+ 764,519

1,349,192

Finally, to subtract 1,000,000 (indicated above), it
is necessary only to drop the high-order 1 at left. Thus
the final result is 349,192, which checks with the result
of conventional subtraction. Note that in a computer
with fixed-length arithmetic registers — say, six digits
each — the high-order 1 (appearing in the sum of the
minuend and the complement) would have been
dropped automatically, since it could not have been
contained in the register. Thus, with fixed-length
arithmetic (as is the case in a computer), subtraction
can always be done by adding the complement of the
subtrahend to the minuend, and simply ignoring the
high-order carry (off-register).

Definition of Radix Complement
It has been shown that the ten’s complement of a
number is obtained by subtracting it from 1000000
... (as many zeros as there are digits in the number).
More precisely, the ten’s complement of a number
(N) is obtained by subtracting it from the base, or
radix, of 10 raised to a power equal to the number
(n) of digit positions:

Ten’s complement of N = 10 — N,

where n — number of digit positions in N

Note that 10" is one more than the largest fixed-
length decimal number that can be formed with n
digit positions; that is, the largest possible decimal of
n digits is

10" — 1

More generally, the radix or base (b) complement
of a fixed-length number (N) is obtained by subtract-
ing the number from the base raised to a power equal
to the number (n) of digit positions. Expressed in
mathematical form:

Radix (base) complement of N = b*» — N

where b is the base, or radix, of the number system

and n is the number of digit positions in N.
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Again, the largest fixed-length number of radix b that
can be formed with n digit positions is equal to b® — 1.
Thus, when the original number is added back to the
complement, the resulting number

[(b* = N) 4 NJis = b» = 10000. ...

This is 1 more than the largest possible number of
length n. For this reason the high-order carry of 1 can
be ignored in fixed-length arithmetic. Since the extra
1 may be ignored, an alternative definition for the
radix complement of a fixed-length number is as
follows:

The radix complement of any number in a fixed-

length arithmetic system is that number which when

added to the original number produces all zeros.

Signed Numbers

Fixed-point numbers carry a sign bit (the first bit posi-
tion), which indicates whether the number is positive
or negative. Positive numbers are represented in true
(binary) form with a zero sign bit, while negative
numbers are represented in complement form with a
one bit in the sign position. The handling of signed
numbers will be described later under “Two’s Com-
plement Notation”. Since the rules for handling signed
numbers are the same, however, in any numerical
system, they will be briefly reviewed at this time. Two
rules should be recalled:

1. To add numbers of like sign (both positive or
both negative), find the sum of the numbers and
give it the common sign. In other words, the sum
of two positive numbers is positive, and the sum
of two negative numbers is negative.

2. To add numbers of unlike sign, find the difference
between the numbers and give it the sign of the
larger number.

It is of interest to note that in a computer using com-
plement notation and sign bits, the signs pretty much
take care of themselves. The only case that causes con-
cern is the addition of a large negative number to a
smaller positive number, or equivalently, the subtrac-
tion of a larger number from a smaller number. How
does the computer know that the result is negative in
this case? An example with decimal arithmetic shows
how complement notation takes care of this. Assume
that 584,673 is to be subtracted from 235,481. Using
the conventional method and rule 2, above, it is found
that

+ 235,481

— 584,673

— 349,192
Using the method of adding the complement, first find
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the ten’s complement of 584,673, which is 415,327 (by
inspection). Now adding the complement,
235,481
+ 415327 (ten’s complement of 584,673)

650,808 (complement of correct result)

This is, of course, the wrong result. Note, however,
that no high-order carry (off-register) has been gen-
erated this time, as was the case in the earlier example
of 584,673 — 235481. This provides the clue to the
computer: whenever there is no carry off-register after
adding the complement, the result is negative and
should be recomplemented. (Alternatively, whenever
there is a carry of 1 off-register, the result is positive
and recomplementing is unnecessary.) Thus, recom-
plementing the earlier result,

1,000,000 — 650,808 — 349,192
which is the correct answer after a negative sign has
been affixed (that is, — 349,192).

Finally, the steps required in subtraction of decimals
with the ten’s complement may be summarized as
follows:

Compute the ten’s complement of the subtrahend

and add it to the minuend. If there is a carry of 1

(off-register), the result is positive and recomple-

menting is not necessary. If there is no carry, the

result is negative and must be recomplemented.

With two’s complement notation, the sign bits gen-
erally indicate the sign of the result. Since negative
numbers are always represented in complement form,
recomplementation is not necessary, as will be shown
later.

Two’s Complement

The two’s complement and one’s complement in
binary notation are analogous to the ten’s complement
and nine’s complement of the decimal system. Accord-
ing to the definition of the radix complement, the two’s
complement of a binary number (N) with n digit
positions is:
Two’s Complement of N = 2» — N
Thus, for an eight-bit binary number (N) the two’s
complement is
28 — N = 100000000 — N
The two’s complement of the binary number 00111001,
for example, is 28 — 00111001, or
100000000
— 00111001

11000111
Note that actual subtraction is not required, since the

two’s complement can be obtained by inspection of
the number. Each bit of the number is simply inverted



(that is, a 1 is changed to a 0, and a 0 is changed to
a 1) and a 1 is then added to the low-order (least
significant) bit at right. Thus, the

binary number 00111001

is inverted 11000110

1 is added + 1 ,

to obtain 11000111 = two’s complement

} of 00111001,
which checks with the result obtained above.

Summing up, the two’s complement of a binary
number is obtained by inverting each bit of the num-
ber and adding a 1 in the low-order (least significant)
bit position.

Examples of addition and subtraction of negative
‘numbers in two’s complement form are given in the
next section.

Two’s Complement Notation

The first bit position (0) of a fixed-point binary in-
teger holds the sign of the binary number; the re-
maining bit positions designate the magnitude of the
number. Positive numbers are represented in true
binary notation with a zero sign bit. Negative num-
bers are represented in two’s complement notation
with a one bit in the sign position. The representation
of negative numbers in complement notation makes
recomplementation unnecessary.

In addition to making recomplementation unnecess-
ary, two’s complement notation facilitates extension of
the operands for high-precision multiplications and
divisions. In the type of number representation de-
scribed above, the halfword or fullword operands may
be considered the low-order portion of an infinitely
long representation of the number. The bits between
the sign position and the leftmost significant bit of the
integer are always the same as the sign bit. When the
number is positive, all bits to the left of the most sig-
nificant bit, imcluding the sign bit, are zeros. When
the number is negative, all bits to the left of the MSD,
including the sign bit, are ones. Therefore, to extend
an operand with high-order bits (to a fullword or two
words in length), a field of the proper length is pre-
fixed, in which each bit equals the high-order (sign)
bit of the operand. For example, the 16-bit positive
number

S
0 1101011 00011010
may be extended to 32 bits by prefixing a field of 16
zeros to the high-order zero bit:
S
0 0000000 00000000 01101011 00011010

Similarly, the 16-bit negative number
S
1 1011001 10011010
is extended to 32 bits by prefixing 16 ones to the one
sign bit:
S
1 1111111 11111111 11011001 10011010

Zero and Maximum Numbers

It is important to note that two’s complement notation
does not include the representation of a negative zero.
A zero is always positive and includes a zero (posi-
tive) sign bit. Thus,
S
0 = 0 0000000 00000000

Because of the one sign bit in negative numbers,
the range of negative numbers in two’s complement
notation is one larger than the total set of positive
numbers. Since the sign bit is occupied by a zero, the
largest positive 16-bit number consists of 15 one bits
and a zero sign bit, which is equal to 2% — 1, or
decimal 32,767 (since 2!5 — 32,768):

S
215 -1 = 32,767 = 0 1111111 11111111 (max. +
number)

The largest 32-bit positive number consists of a zero
sign bit, followed by 31 one bits. This comes out
to 231 — 1, or decimal 2,147 483,647 (since 231 —
2,147,483,648).

In contrast, the largest negative number consists of
an all-zero integer field with a sign bit of 1. Thus, the
largest 16-bit negative number is

S
— 215 — _ 32,768 = 1 0000000 00000000
and the largest 32-bit negative number is
— 23 — — 2147483648 =

1 0000000 00000000 00000000 00000000

The CPU of the System/360 cannot represent the
complement of the largest negative number. When an
operation, such as subtraction from zero, produces the
complement of the largest negative number, the num-
ber remains unchanged, and a fixed-point overflow ex-
ception is recognized. (This causes a program inter-
ruption when the fixed-point overflow mask bit is 1.)
When the final result of the complemented number is
within the representable range, however, an overflow
does not occur. An example would be a subtraction
from — 1. The product of the two largest negative
numbers also does not cause an overflow, since it is
representable as a double-length positive number.
Additional examples of overflow conditions are de-
scribed in the next section.
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Overflow

When the result of an add, subtract, or shift operation
exceeds the capacity of the register or field containing
the result, an overflow condition results. Since an over-
flow carries into the leftmost, or sign-bit, position, it
changes the sign. (However, in shift operations the
sign of the shifted number remains unchanged, even if
significant high-order bits are shifted out.) Thus, in a
positive overflow, the final sum or difference comes out
negative, while a negative overflow results in a positive
sum.

The CPU recognizes an overflow condition by com-
paring the carries out of the sign-bit (leftmost) posi-
tion with the high-order bit position (MSD) of the
binary number. (No carry out is equivalent to a carry
of zero.) If the carries out and the high-order bit are
the same, the result is satisfactory and no overflow
occurs; if they are different, an overflow is recognized
and the sign bit changes. (This is not corrected after
the overflow.) Moreover, an overflow causes a pro-
gram interruption when the fixed-point overflow mask
bitis 1.

The presence or absence of an overflow condition
may be recognized by the condition of the carries. (As
an alternative, the indicated operation may be per-
formed in decimals to check whether the result exceeds
the capacity of the register.) The result of an opera-
tion does not overflow if there is either no carry into
the high-order bit position and no cerry out, or a
carry of 1 into the high-order position and also a carry
out. In contrast, an operation overflows if there is
either a carry into the high-order position and no carry
out, or a carry out but no carry into the high-order bit
position. The following examples, which have only
eight bit positions for convenience, illustrate the four
possible cases. Decimal equivalents are given for com-
parison purposes. Note that the results of the two op-
erations which result in overflow exceed decimal 127
(that is, 27 —1), which is the maximum number that
can be contained in an eightbit register in two’s
complement notation.

Examples of Two's Complement Notation

1.4+ 62= 00111110
+ 27 = 4+ 00011011 No overflow
+ 89 = 01011001

In this straightforward addition, there is neither a
carry into the high-order bit position nor a carry out.
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Since the carries agree (both are zero), there is no
overflow.

2.+ 62 = 00111110
— 27 = 4+ 11100101 (two’s complement of 00011011 = 27)
1 « Carry in
+ 35 = <—® 00100011 No overflow
Carry out

In this example, there is both a carry into the high-
order position and a carry out, which is ignored. There
is no overflow.

3.4 27= 00011011 No overflow
— 62 = 4+ 11000010 (two’s complement of 00111110 = 62)
—35= 11011101 (two’s complement of 00100011 — 35)

In this subtraction of a larger number from a
smaller number, there is neither a carry in nor a carry
out, but the sign changes to 1, indicating that the re-
sult (=35) is in complement form. There is no over-
flow.

4, —62 = 11000010 (two’s complement of 00111110 = 62)
— 27 = + 11100101 (two’s complement of 00011011 = 27)
1

— 89 = «{D) 10100111 (two’scomplementof 89 = 01011001)

Here there is both a carry into the high-order posi-
tion and a carry out (which is ignored). There is no
overflow, but the sign bit of 1 indicates that the result
is in two’s complement form and, hence, negative.

5.4 62= 00111110

+ 89 = + 01011001 Overflow!
1

+ 151 = 10010111

In this addition example, there is a carry into the
high-order bit position, but no carry out, indicating an
overflow condition. (This is also evident from the
decimal result, 151, which exceeds 127, the maximum
number that can be contained in an eight-bit register.)
Note also that the sign bit has changed to 1, indicating
a negative result for positive overflow.

6. —62 = 11000010 (two’s complement of 00111110 = 62)
—89 = + 10100111 (two’s complement of 01011001 = 89)

Overflow!
—151 = <—® 01101001 (two’s complement of 10010111=151)

Here no carry into the high-order bit position is
developed, but there is a carry out, indicating an over-
flow. This is also evident from the decimal result, since
—151 exceeds the capacity (—127) of an eight-bit
register. Note further that the sign bit has changed to
zero, indicating a positive result for a negative over-
flow condition.



1. Express the following numbers in successive pow-
ers of the radix and evaluate their decimal equiv-
alents (where applicable): (547)10; (3,289.6375)10;
(121,001)s; (3213)s; (110,110,001)s; (100011),; and
(0.111111),.

2. What is the meaning of the hexadecimal number
9B4D.3A7 in positional notation? What is its decimal
equivalent?

3. Convert the following binary numbers into hexa-
decimal notation:

10001010; 1001110100, 1110101.001110101.

4. Convert the following hexadecimal numbers into
binary notation:

A72B; 39BF4D; ABCDEF; 52.ATEF98; 123.ABC.

5. Add the binary numbers 1100011 and 0111001;
111101111 and 111101111; 1000 1111 1010 0001 and
0001 0011 1110 0101.

6. Add the following hexadecimal numbers, using
Table 2 when necessary: 12345 and 56789; 8FB5 and
CD69; 345.789 and 832.BDE; ABCD.09EF and
1234.5698.

7. Give the rules of binary subtraction and subtract
the following binary numbers, using either the conven-
tional or payback method, as desired: 100000 — 1;
111010 — 100100; 111111111 — 100000000; 10001.11001
—1101.00110.

8. Perform the following hexadecimal subtractions,
using Table 2:

Questions and Exercises

F865 — 9AB7; E73F.A983 — A9CD.87FE.
9. Perform the following binary multiplications:
1100 x 11; 1010 x 1001; 10.001 x 1.01.

10. Perform the following hexadecimal multiplica-

tions, using Table 3:
3E7 X5B9; D.38 X 6.EF.

11. Explain the subtraction (casting out) method of
number conversion and convert to binary the following
decimal numbers: 39; 583; 7948. Also, describe the
division method and perform the conversions above by
this method. Which method is more rapid?

12. Using the division method, convert to hexa-
decimal notation the following decimal numbers: 89;
438; 999; 5793; 875,472,925.

13. Describe the double-dabble method for convert-
ing binary integers into decimals and convert the fol-
owing binaries: 110101; 1110110001; 111111111,

14. Explain the direct and the multiplication-addi-
tion method for converting hexadecimal integers into
decimals and perform the following conversions
(check the results by use of Table 4 of this manual
and the table referred to earlier in IBM System/360
Principles of Operation): TES; F8D; 89F7.

15. Convert the following decimal fractions and
mixed numbers first into binaries and then into hexa-
decimals (check the results by converting each of the
fractions back into decimals): 0.79; 0.6666666 . . .;
0.123; 34.675.
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Chapter 3: Introduction to Assembler Language Programming

This chapter is an expository introduction to System/
360 assembler language programming. Later chapters
in this text make considerable use of assembler lan-
guage program samples, and thus require ‘the back-
ground that this chapter provides.

Review and Terminology

Programming in an assembler language offers a
number of important advantages over programming in
the actual language of the computer:

1. Mnemonic operation codes are provided. For
instance, the actual operation code for the instruction
Store in hexadecimal is 50; in the assembler language
we can write the mnemonic operation code ST. Most
programmers never learn the actual codes.

2. Addresses of data and instructions can be writ-
ten in symbolic form, and in practice almost all ad-
dresses are so written. The programmer is thereby
relieved of severe problems in the effective allocation
of storage, and the resulting program is far easier to
modify. Furthermore, the use of symbolic addresses
reduces the clerical aspects of programming and elim-
inates many programming errors. If the symbols are
chosen to be meaningful, the program is also much
easier to read and understand than if written with
numerical addresses.

3. Data may be introduced into the program struc-
ture, and space reserved for results, by the use of
suitable assembler instructions. These are written in
somewhat the same form as machine instructions but
are treated quite differently by the assembler.

4. Many other assembler instructions direct the
assembler in various other matters of concern. Among
the most important of these are the techniques for
letting the assembler assign base registers and com-
pute displacements.

The sum effect of these advantages is so great that
it is virtually out of the question to program in actual
machine language, that is, to write actual operation
codes and numerical addresses, and, in the case of
the System/360, to write actual base register numbers
and displacements.

An assembler language program is not directly exe-
cutable by the computer. The mnemonic operation
codes and symbolic addresses must be translated into

4“4

the form the machine expects of instructions. This is
the function of the processor program, also called the
assembler.

The assembly process begins with a source program
written by the programmer. Ordinarily, a special cod-
ing form is used such as that shown in Figure 27. (We
shall study this program in detail later.) Cards are
punched from this form, making up the source pro-
gram deck. This source program deck becomes the
primary input to the assembly process, as shown in
Figure 26.

Programmer Assembly

Statements Listing
Source Object
Program System / 360 Program

Figure 26. Schematic representation of the assembly process

The assembly is done, in our case, by the System/
360 under control of a processor program. The proc-
essor program is supplied by IBM; it consists of many
thousands of machine instructions.

There are two outputs from the processor run. The
first is an object program consisting of actual machine
instructions corresponding to the source program
statements written by the programmer. In many cases
the object program is punched into cards; in other
cases it is left on magnetic tape or magnetic disks.
The second output is a program listing or assembly
listing. This important document shows the original



source program statements side by side with the ob-
ject program instructions created from them. Many
programmers work from the assembly listing as soon
as it is available, hardly ever referring to their coding
sheets again. An example appears as Figure 28, which
we shall also consider in detail later.

In this chapter we shall consider the broad out-
lines of the assembler language for the System/360.
The presentation will be largely in terms of examples

that bring out most of the matters needed for writing
simple programs.

There will be no attempt to cover every feature of
the assembler language. Some topjcs will be treated in
other chapters in this text; others are of such a spe-
cialized nature as to be best left to the assembler
language reference manual.

It is assumed that the reader has access to one of the
SRL publications on the assembler language.

Figure 27. A program to illustrate assembler language concepts. The “processing” performed by the program is not ix}tendeq to be
realistic, and it is not necessary to understand the functons of the various instructions for the purposes of this publication.
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A First Example

Our first example of a program written in the assem-
bler language for the System/360 (shown in Figure
27), and written on a coding form, does some elemen-
tary processing, the details of which do not concern us.

The coding form permits a maximum of four fields
on each line. These are called name, operation, oper-
and, and comments. The name provides a reference
identification for the line, if other parts of the program
need to refer to it. Names are not required for every
line. They are most commonly given to data elements
and to instructions to which branches are made. It is
also permissible to use a name simply for identifica-
tion on an instruction to which a branch is not made.

An operation is required on every line, with the
exception of a comment line, which begins with an
asterisk. The operation is most commonly a mnemonic
operation code for a System/360 instruction, but it
may also be any one of a number of assembler instruc-
tions. Examples of assembler instructions in this pro-
gram are TITLE, START, USING, DC, DS, and END.
We shall study each of these shortly.

For the purposes of this chapter, it is not neces-
sary that the reader understand the functioning of the
various instructions used in the sample programs. All
instructions are explained in other chapters of this text.

The operand is most often a part of a System/360
instruction, including an address part.

The comments field may be used freely, at the pro-
grammer’s discretion, to document the purpose and
the methods of the program. A comment for a given
line may begin anywhere following the operand, as
long as there is at least one blank space between op-
erand and comment. Many programmers prefer to be-
gin all comments in some fixed column, such as column
30 or column 40, but this is discretionary.

The column assignments printed on this form are
acceptable for our purposes and will be used through-
out this text. We may note in passing, however, that
considerable flexibility is permitted in the format of
the source program. (The reader is referred to the
SRL publication. )

Let us now turn to the program itself.

The first line contains an assembler instruction,
TITLE. Whatever is written in the operand field,
ILLUSTRATIVE PROGRAM in this case, will be
printed at the top of every page of the assembly
listing.
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The START instruction is used to dictate the start-
ing address of the assembled object program. The
value used in this example is 1001s.

The next two lines are important ones, which

- should be written in every program. BALR is the
mnemonic operation code for Branch and Link Reg-
ister, which has the general format BALR RLR2,
where R1 and R2 are registers. The action of the in-
struction is to place in R1 the address of the instruc-
tion following the BALR, and to branch to the ad-
dress contained in R2 unless R2 is zero, in which case
there is no branch. Our instruction, BALR 15,0, will
there M&q ‘the address of the next machine in-
struction in register 15 15 and there will be no_branch.

R’g’fs—te} 15 is to be the base register fo ﬁ_ﬁsﬂpgggram

Wifll the assembler instruction USING we now in-
form rm_the assembler “that reglster 15 is. the “base reg-

lster Th1s 1nstru on also tells the ‘assembler what will

be in reg' St T
the next mstruggq;l
“""Let us review the effect of the BALR-USING com-
bination. The BALR places in register 15 the address
of the next machine instruction, which is the L 2,
DATA, since USING is not a machine instruction and
takes no space in the object program. The USING
then informs the assembler that register 15 is avail-
able as a base register and what its contents will be.

As in so many other aspects of programming, it is
important to understand when these actions occur.
The BALR is an object program instruction and is not
executed until the assembled object program is loaded.
The assembler, of course, does not execute it. The
USING is strictly an assembler instruction, in this case
giving information to the assembler about what will
be done later by the object program. Once the as-
sembly is finished, the USING has no further function.

Now we come to the body of the program, starting
with the L 2 DATA instruction. L is the mnemonic
operation code for Load, which in this case places in
register 2 the contents of the fullword having the sym-
bolic address DATA. Looking down the page, we see
that DATA is in the name field of a DC assembler in-
struction, which, as we shall study in a moment,
stands for Define Constant. The A 2,TEN is a similar
type of instruction, adding to register 2 the contents
of a fullword having the symbolic address TEN.

The next instruction, SLA 21, is a little different.
SLA stands for Shift Left Single. The contents of reg-



ister 2 are to be shifted left one binary place. There
is no symbolic address in this case.

The Subtract instruction that comes next, S 2 DATA .

—+4, exhibits relative addressing: the address is given
“relative to” another address. The address is specified
as four bytes beyond DATA. Looking at the constant
area of the program, we see that four bytes (one full-
word ) beyond DATA there is indeed another fullword
constant, the number 15. The Store instruction, ST
2,RESULT, introduces no new assembler ideas.

The following three instructions present no new
assembler concepts either. The Load and Add are fa-
miliar, forming a4 sum in register 6. The Convert to
Decimal (CVD) converts the contents of register 6,
which are binary, to a decimal number in the location
DEC. DEC is required by the machine design to be a
doubleword, aligned on a doubleword boundary. We
shall see how the alignment is handled in considering
the data definition assembler instructions, the DC’s
and DS’s.

The final System/360 instruction is the Supervisor
Call, which returns control to the “supervisor” pro-
gram that runs the System/360 between jobs. (There
is no Stop instruction in the system.)

The DC assembler instruction, which stands for
Define Constant, allows us to introduce data into the
program structure. Specification of the type of data,
and the amount of space needed for it, is the function
of the type designation, in this case the F. F stands
for Fullword, in binary format. The number written in
quotes following the F will be assembled and entered
into storage along with the assembled instructions.

Down at RESULT we have another assembler in-
struction, DS, which stands for Define Storage. This
is used to allocate space without entering anything
into storage. We use a type specification F to indicate
the amount of storage and what boundary alignment
should be performed, if any. That is, the assembled
address of an F-type DC or DS must be a multiple of
4; the assembler will skip over a few bytes, if re-
quired, to reach such an address.

The DS at DEC will allocate an eight-byte space,
aligned on a doubleword boundary; that is, the as-
signed address will be a multiple of 8.

The END assembler instruction specifies that noth-
ing further follows; the assembly process may be com-
pleted. If an operand is written, as we have done, it
directs the assembler to set up the object program so
that when it is executed, the first instruction will be
the one named. In our case, we have said that when
the object program is carried out the BALR at BEGIN
should be the first instruction.

Now we may turn to Figure 28, the assembly listing
for this program, to see how things were handled.

We see that the source program we wrote has been
reproduced without change on the right-hand side of
the listing. The object program instructions created
from the source program statements are shown at the
left, with the storage location of each line appearing
in the leftmost column in hexadecimal. Source pro-
gram lines from which no object program entries were
created are blank in the object program position; in
this program, TITLE, START, USING, and END are
in this category.

The TITLE line has indeed caused the words IL-
LUSTRATIVE PROGRAM to be printed at the top
of the page. The START 256 instruction has caused
the first word of the program to be placed in 10016 =
25610. We can read the assembled BALR instruction;
05 is the actual operation code, F is R1, and 0 is R2.
The assembled object program instructions and con-
stants are given exclusively in hexadecimal. For in-
stance, base register 15 is shown as F, in hexadecimal.

BALR is a representative of the RR format instruc-
tions: a one-byte operation code, and a second byte
containing two register numbers.

The USING has generated no object program entry;
its work was finished when it informed the assembler
that register 15 was available for use as a base reg-
ister and that base register 15 would contain the ad-
dress of the next machine instruction. We see that the
address of the next machine instruction has been
printed: 000102.

That next instruction is the first actual processing
operation, the Load. Load is an example of an RX for-
mat instruction. Reading the assembled bytes from
left to right, we have: 58 is the operation code, 2 is
the register to be loaded, 0 means there is no index
register, F is the base register, and 022 is the displace-
ment. We remember that in an RX format instruction
the effective address is formed from the sum of the
base register contents, the index register contents, if
any, and the displacement. In this case the base reg-
ister contains 102, there is no index, and the displace-
ment is 022; the sum of these is 124. Looking down
to the assembled location of the symbol DATA, we
see that it is 124, as it should be.

In the Add instruction that follows, the pattern is
the same. The base register contents of 102, plus the
displacement of 02A, gives a sum of 12C, which is the
location of TEN.

The SLA instruction is an example of an RS format
instruction; the major difference in format between an
RX and an RS instruction is that the RS does not per-
mit an index register. In the instruction at hand, there
is as a matter of fact no reference to storage, but a
base register may still be specified if we wish, in order
to provide for a variable number of positions of shift-
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ing. In this case, however, such is not desired. The
index register and base register positions are simply
zero; the effective address (the shift amount) is just
the displacement of 1.

The next five instructions are further examples of
RX formats, offering no new concepts. The reader may
wish to check that displacements have been computed
correctly, taking into account the relative addressing
on the Subtract.

We see even in this simple example that the as-
sembler has assumed a great deal of the clerical bur-
den that would be required to program the System/
360 in actual machine language. To the familiar ad-
vantage of an assembler language (mnemonic opera-
tion codes and symbolic addressing), which are im-
portant enough, we have the added feature of auto-
matic base register assignment and displacement
computation.

The assembled entries for the DC’s are simply the
requested constants, in hexadecimal. We note that the

DS enters nothing, but simply reserves space. A study
of the address for the doubleword constant, DEC,
shows that boundary alignment has been performed.
The fullword constant BIN2 was placed at 138; a
fullword is four bytes, so 13C was available for DEC.
But 13C is not on a doubleword boundary, so four
bytes were skipped over and DEC was assigned to
140.

The action of the assembler instruction END, in
causing the first executed instruction to be the one
named BEGIN, is not exhibited on the assembly list-
ing. This is done as a part of the makeup of the object
program deck.

As it happens, the designation of BEGIN as the
first instruction is not actually required. If the instruc-
tion is written simply as END, which is permitted, the
assembler arranges to start executing instructions with
the first word of the object deck. This would be the
BALR instruction anyway. We have written the op-
erand BEGIN as a matter of good programming habit.

ILLUSTRATIVE PROGRAM

TITLE ILLUSTRATIVE PROGRAM

START 256
000100 05 FO BEGIN BALR 15,0

000102 USING #,15
000102 58 20 F 022 L 24+DATA LOAD REGISTER 2
000106 5A 20 F 02A A 24+ TEN ADD 10
# THE FOLLOWING SHIFT HAS THE EFFECT OF MULTIPLYING BY 2

00010A 88 20 0 001 SLA 241
00010E 58 20 F 026 S 24DATA+4 NOTE RELATIVE ADORESSING
000112 50 20 F 02€ ST 24RESULT
000116 58 60 F 032 L 6,BINL
00011A 5A 60 F 036 A 648IN2
00011E 4E 60 F 03€ cvD 6,DEC CONVERY TO DECIMAL
000122 OA 00 SveC 0 SUPERVISGR CALL
000124 00000019 DATA b] o F125¢
000128 0000000F oC F'15¢
00012C 0000000A TEN ocC F'10*
000130 RESULT DS F
000134 0000000C BINL ncC Fri2a¢
000138 0000004¢€ BIN2 oC Fr78¢
000140 DEC DS D

END BEGIN

Figure 28. Assembly listing of the program of Figure 27
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A simplification of the writing of a program in the
first place is only one of the major advantages of as-
sembler language programming. Once written, the pro-
gram is a great deal easier to modify than if it had
been written with actual machine addresses. To illus-
trate this fact, we now make a few minor changes in
the program of the preceding section.

Let us suppose that for some unspecified reason it is
necessary to store the sum of BIN1 and BIN2, in bi-
nary before converting it to decimal. We must insert
an instruction:

ST 6,BINANS

just before the CVD.

This is a rather simple sort of change and one that
is representative of the kind of modification that is
made with routine frequency on most programs. Yet
it can have the effect of changing almost every effec-
tive address in the program! The insertion of the four-
byte instruction “pushes down” the storage spaces for

Modifying an Assembler Language Program

the DC’s and DS’s, requiring a change in the displace-
ments of all the instructions that refer to the constants.

Figure 29 is the assembly listing of the modified pro-
gram. Scanning down the assembled instructions, we
see that the displacements have been computed to re-
flect the change in locations. Continuing the compari-
son, however, we see that the displacements in the
Convert to Decimal instruction are the same as in the
earlier version. Has there been a mistake?

The answer is the boundary alignment of the dou-
bleword constants. In the earlier version, it was nec-
essary to skip four bytes to provide an address for
DEC that was on a doubleword boundary. The in-
serted instruction, in effect, filled that skipped space.
The reassembly therefore left the assembled address
for DEC unchanged.

The intended lesson in this example is that the as-
sembler handled clerical details of address computa-
tions in a more or less automatic manner that relieves
the programmer of work and concern.

START 256

000100 05 FO BEGIN BALR 15,0

000102 USING #,15
000102 58 20 F 026 L 2+DATA LOAD REGISTER 2
000106 5A 20 F 02€ A 29TEN ADD 16

¢ THE FOLLOWING SHIFT HAS THE EFFECT OF MULTIPLYING BY 2
00010A 88 20 0 001 SLA 2,1
00010E 58 20 F 02A S 2+DATA+4 NOTE RELATIVE ADDRESSING
000112 50 20 F 032 ST 2RESULT
000116 58 60 F 036 L 64B8IN1
00011A 5A 60 F 03A A 69BIN2
00011E 50 60 F 046 ST 6¢BINANS
000122 4E 60 F 03 CcvD 69DEC
000126 0A 00 svC 0 SUPERVIS#R CALL TO EXIT
000128 00000019 DATA oC Fe25°*
0o012C 0000000F 0C Fri5¢
000130 0000000A TEN 1] F*10*
000134 RESULT DS F
000138 0000000C BIN1 oC Ferl2°
00013C 0000004E BIN2 s F*78°
000140 DEC 0s D
000148 BINANS 0S F
END BEGIN

Figure 29. Assembly listing of a slightly modified version of the program of Figure 27
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Error Analysis by the Assembler

Certain kinds of programming errors can be detected
rather simply by the assembler. Some errors make it
impossible to generate an instruction, and thereby dis-
able the entire program. Others cannot be identified
as definite errors, but only as possible or probable
€r7or1S.

The assembler for the System/360 carries out the
complete assembly, if possible, regardless of the num-
ber of errors, and regardless of the fact that the first
error detected may have made it impossible to execute

the object program. The idea is that if there are many
errors the programmer would like to know about all
of them, not just the first one the assembler en-
countered.

Figure 30 is the assembly listing of a program writ-
ten specially with a number of errors in it, to demon-
strate what the assembler can do and how it an-
nounces its findings. It will be noted in Figure 30 that
many instructions have letters at the left end of the
line. Figure 31 is the key to the meaning of these let-

000100 05 FO
000102

M 000102 58 00 0 000
000106 SA 20 F 026

0

U 00010A S8 00 0 000

U 00010E 50 00 0 000

SQ 000112 58 00C 0 000
000116 5A 60 F 02E
00011A 4E 60 F 02A
00011E 0A 00
000120 00000019

T 000124 00000000
000128 0000000A

D o00012C
00012C 0000000C
000130 0000004E
000138

M 000140 00000019

START 256
BEGIN BALR 15,0
USING #,15
L 2.DATA
A 2+ TEN
SLS 291
S 2+DATAS
ST 29y RESULT
L 6BINL
A 69BIN2
cvD 69B8IN1
SvC 0
DATA DC Fe25°
oC F'9876543210°
TEN DC F*10°?
RESULT DS
BIN1 oC Fel2°
BIN2 DC Fr78°*
DEC DS 0
DATA DC F*25°
END BEGIN

Figure 30. Assembly listing of a program with a number of deliberate errors

i Pt ot ot N b et pas
TUV-=-TCOOLO

OPERAND OR FIELD MISSING - THIS MAY BE AN ERRDR
OPERATION CODE NOT RECOGNIZED

ERROR IN DATA SPECIFICATION

SYMBOL IN VARIABLE FIELD IS UNDEFINED

SYMBOL IN VARIABLE FIELD IS MULTIPLY DEFINED
ELEMENT IN VARIABLE FIELD HAS BEEN TRUNCATED
ILLEGAL ELEMENT IN VARIABLE FIELD

LABEL IS MULTIPLY DEFINED

Figure 31. Key to the error codes in Figure 30. This listing was produced by the assembler
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ters; it was printed by the assembler as part of the out-
put. Let us see what the assembler has told us.

The M is identified as meaning “label is multiply
defined”. If we try to take this too literally, it is a bit
confusing: this instruction has no label. How about
the address, DATA? Scanning down the page, we see
the M again on the last DC, and we then notice that
DATA has been used twice as a label. In such a case
the assembler cannot know which was the intended
one and which was the error, so it marks the error and
does not assemble the instruction.

The next error is O, for “operation code not recog-
nized”. SLS was presumably written for SLA, with the
programmer remembering the operation name Shift
Left Single and writing SLS. The assembler makes no
guesses on incorrect operation codes, and assembles
no instruction.

The U on the next error means “symbol in variable
field is undefined”. The undefined symbol is DATAA4.
Remembering the earlier version of the program, we
know that DATA--4 was meant—but the assembler
cannot know that. The symbol DATAA4 is simply un-
defined, since it never appears anywhere as a label.

The next instruction also has an undefined symbol.
Why? We certainly have an entry for RESULT. But
looking at the entry for RESULT, we see that it has
an error: D for “error in data specification”. The error
is the complete absence of any kind of type specifica-
tion. Without a type specification, the assembler can-
not know how many bytes to allocate to the DS.

The next instruction is tagged as having two errors.
S is for “illegal element in variable field”, and Q means
“operand or field missing—this may be an error”. This
is instructive: the whole trouble is the absence of a

comma; the assembler did not tell us that, but came
back with two rather different comments. This is no
failure of the writers of the assembler; in many cases
it is a very difficult matter to guess the writer’s inten-
tions when something does not meet specifications.
The errors detected were that the first element in the
operand field was something other than a number be-
tween zero and 15, and that there was only one field
where there should be two. It will usually happen
that even where the error comment is not directly in-
dicative of the error, once the existence of an error has
been pointed out we can see it fairly readily.

The T on the DC means “element in variable field
has been truncated”. What this refers to is the fact
that the decimal number 9876543210 cannot be con-
tained in a 32-bit word. We see that zero was estab-
lished as the value to be loaded.

The other two errors have already been discussed.

There are several other errors that the assembler can
detect. It does not seem worthwhile to devise error
programs to either illustrate or list all of them. Pro-
grammers making the errors will discover soon enough
the capabilities of the assembler. It must be noted,
however, that there are many kinds of errors that are
beyond the power of the assembler to analyze. If we
incorrectly write DATA4 where we mean DATA-4,
the assembler can detect it—unless DATAA4 is itself a
legitimate symbol!

In short, the error analysis capabilities of the Sys-
tem/360 assembler can be much help to us in produc-
ing a correct program, but the absence of error indica-
tions should never be taken to mean that the program
is correct.
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Decimal Instructions in Assembler Language

We have seen that the System/360 assembler language
can automatically assign base registers and compute
displacements. These functions are extensions of the
ordinary assembler to handle special features of the
computer. In assembling programs using the System/
360 decimal arithmetic instructions, the assembler
also goes somewhat beyond normal practice in allow-
ing for lengths of operands to be implied rather than
stated explicitly.

In the case of implied base registers, it is possible
but seldom necessary to state a base register explic-
itly. In the case of the lengths of decimal operands, it
is possible and frequently essential to state explicit
lengths. For this reason, among others, the discussion
that follows will be somewhat more involved than
what has preceded. The reader who wishes to pro-
ceed to the study of fixed-point operations immedi-
ately will not be handicapped by skipping over this
section and returning to it later, in connection with a
study of decimal arithmetic. In fact, the reader without
previous contact with System/360 decimal instructions
is advised to postpone study of the rest of this chapter
until he has become at least slightly familiar with
decimal arithmetic.

Figure 32 is the assembly listing of a simple repre-
sentative program to do some elementary processing
of information with the decimal arithmetic feature of
the System/360.

The START, BALR, and USING are much as be-
fore. Base register assignment is completely automatic
in this program, as it was before.

The first processing instruction is:

MVC SUM-4(1),ZERO

MVC stands for Move Characters. The instruction
calls for the field at ZERO to be moved to a location
the first byte of which is at SUM4, and the field
moved is one character long. Move Characters is an
SS (Storage to Storage) format instruction, so there
are two core storage addresses. The instruction is six
bytes long. Reading across it, we have: the actual op-
eration code is D2; one less than the length of the
field moved is zero — that is, the field is one character
in length; the base register for the first operand ad-
dress is F; the displacement for the first operand ad-
dress is 02E; the base register for the second operand
address is also F; the displacement for the second
operand address is 035.

This instruction tells us a number of things about
how the assembler handles decimal instructions.

The length code in a decimal instruction is always
one less than the length of the field to be moved.
When we specify an explicit length, however, we are
able to write the actual length; the assembler sub-
tracts one to get the length code.

The symbol SUM, we see from the constants area of
the program, is equivalent to 12C. The address in the

000100 05 FO BEGIN
000102

000102 D2 00 F O02E F 035

000108 94 FO F 02D

0oo010C FD 41 F 02A F O2F

000112 FA 21 F 02A F 033

000118 D1 00 F 028 F o02C

00011E D2 01 F 031 F 02A

000124 D2 03 F 03A F 036

00012A OA 00

00012C 0193648F SUM

000130 PAD

000131 487F NUMBER

000133 AVERAG

000135 050F ROUND

000137 OF ZEROD

000138 FOFOF1Cé6 ZONED

00013C TEMP

START 256

BALR 15,0

USING #,15

MVC SUM+4(1),ZERO
NI SUM+3,240

op SUM(5) s NUMBER
AP SUM(3),ROUND
MVN SUM+1(1),SuM+2
MVC AVERAG, SUM
MVC TEMP, ZONED
SvC 0

DC PL4%193.648"*
DS CL1

0C PL2'48.T7"

DS PL2

ocC PL2*50°

bC PL1'O"

oC IL4t1.6"

DS L4

END BEGIN

Figure 32. Assembly listing of a program involving decimal instructions
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instruction was SUM--4, which is equivalent to 130.
The base register contains 102 and the displacement is
02E, which add to 130 as required. (It is essential
never to forget that variable-length fields in the Sys-
tem/360 are always addressed by the leftmost byte.)
The base register contents of 102 plus the displace-
ment of 035 also correctly lead to the address of 137
for ZERO.

The next instruction is an example of the final type
of instruction format, the SI (Storage-Immediate). In
this class of instruction, a part of the instruction con-
tains data. (This is the meaning of “immediate”, as
distinguished from a reference to a storage location
addressed by the instruction.) In the example at hand,
a certain logical operation is to be performed using
the one character at SUM--3 and the part of the in-
struction represented by the decimal number 240.

Looking at the assembled instruction, we have: the
actual operation code is 94; the “immediate” part, in
hexadecimal, is F0; the base register for the one stor-
age reference is F; the displacement is 02D.

The next instruction is a Divide Decimal, which is
an SS format instruction, but with a slight difference
in that there are two length codes in the actual in-
struction, one for each field. In the symbolic instruc-
tion, we have written one of the lengths explicitly and
left the other implied. The length of 5 with SUM was
done to extend the field by one character, to include
an extra byte for division. In the assembled instruc-
tion, after the operation code of FD, we see 41. The 4
is the length code for SUM(5), the code being one
less than the actual length. The length code for the
second operand is 1, and we see that NUMBER is in
fact a two-byte field. The assembled address for
SUM(5) is 102 4 02A = 12C, the address of the left-
most byte of the field.

The Add Decimal instruction that follows intro-
duces no new assembler concepts. It is also an SS for-
mat instruction with two length codes. Note in this
case that we needed an explicit length of 3 to be asso-
ciated with SUM, so the length code in the instruc-
tion came out 2; this did not affect the assembled
address.

The Move Numeric (MVN) again presents no new
assembler ideas.

The Move Characters that follows contains two ad-
dresses, both written without explicit lengths. The two
implied lengths are different, in an instruction in
which there is only one length code. We see that the
assembler has picked the implied length of the first
operand, AVERAG.

The final Move Characters and the Supervisor Call
should present no difficulties.

In the DC assembler instruction for SUM we have a
new type specification, P, for Packed. “Packed” refers
to the two-digits-in-one-byte form in which numbers
must appear for use with the decimal arithmetic in-
structions. Since decimal arithmetic deals with vari-
able-length data, we use a length modifier to indicate
how many bytes are to be assigned. (Actually, the
length modifier may be omitted if we are satisfied to
accept the length that would be implied by the num-
ber of digits to be stored. In this case, the length as-
signed would be 4 even without the L4 in the op-
erand.)

The assembled constant shows that the sign (F) has
been put into the rightmost four bits of the rightmost
byte, as required, that the one unused digit position
has been filled with zero and placed at the left, and
that the decimal point in the constant as we wrote it
has been ignored. (We may write decimal points in a
P-type DC or not, as desired, for our convenience. If
written, they have no effect on the assembler.)

The symbol PAD goes with a DS instruction to re-
serve one character position, that is, one byte, in
which we place nothing. The type designation this
time is C, for Character. This is the type designation
that may be used whenever variable-length space is
reserved with a DS instruction, and it may be used on
a DC to enter data in character form, such as alpha-
betic information.

The next four eniiies provide further examples of
the same types of DC and DS instructions we have
already seen.

The DC for ZONED introduces one more type des-
ignation, Z, for Zoned. This refers to the zoned format
for numerical data, in which each digit takes up a com-
plete byte, and the sign is contained in the zone por-
tion (leftmost four bits) of the rightmost byte. In the
assembled constant, the F’s are the zones attached to
the nonsign digits, and the C is the plus sign. The deci-
mal point in the constant as we wrote it has again
been ignored.

The length modifier here is essential, if we really
want the assembled constant to have four bytes; with-
out a length indication, the assembler would assign the
two bytes in which the constant can be stored.

Summary

The techniques presented in this chapter will help
the programmer write useful System/360 programs in
assembler language. Further aspects of the language
appear in other chapters in this text, and the interested
reader can study the appropriate SRL document on
the assembler language.
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Questions and Exercises

1.. The name of an instruction refers to the (leftmost,
rightmost) byte of the instruction. The name of a con-
stant refers to the (leftmost, rightmost) byte of the
constant.

2. Onian assembly listing, the storage location of
each instruction, constant or area, as well as the ob-
ject instruction and constant are printed in (decimal/
hexadecimal ).

3. Consider Figure 28:

a. State the location of the instruction ST 2,RE-
SULT.

b. State the location of the field RESULT.

c. Recall that an object instruction (including the
one for ST 2 RESULT) refers to a storage location
through the specification of a base register, a dis-
placement, and sometimes an index register. At execu-
tion time System/360 develops the address (the effec-
tive address) of the storage location by developing the
sum of the contents of the specified base register, the
contents of the specified index register (if any), and
the displacement. Now consider how, for the object
instruction for ST 2,RESULT, the effective address of
RESULT is formed (no indexing is specified ).

(1) What base register is specified?

(2) What are the indicated contents of the
base register?

(3) What is the displacement?

(4) What is the effective address?

4. State the difference between the DC and DS As-
sembler instructions.
5. Consider the constants set up in Figure 28 and
assume that the instruction beginning at location 112
is ST 2,DATA+12 instead of as shown in Figure 28.
State the effective address of DATA}-12.
6. Consider Figure 28:

a. State the locations that are allocated by the
statement RESULT DS F.

b. State the locations that are occupied by the
constant BIN2,

c. State the locations that are allocated by the
statement DEC DS D.
7. Assume the DS statements given below and also
assume that the assembler assigned a location of 138
to AREAI and 140 to AREA2. What locations will the
assembler assign to the next four areas?

Location

138 AREALl DS F
140 AREA2 DS D
— AREA3 DS F
_— AREA4 DS D
— AREA5 DS F
—_ AREA6 DS D

8. In answering question 7, you will have observed
that some locations were skipped to align fields on
their proper boundaries. Resequence the DS state-
ments in question 7 so that storage is used more effi-
ciently. Assume that the first DS will start at 138.



Chapter 4: Fixed-Point Operations

This chapter introduces and discusses some of the
fixed-point operations in the System/360. These in-
clude the arithmetic and shifting instructions as the
central topic, with important consideration also of
certain logical operations (comparison, branching)
and loop methods.

In the course of presenting the instructions and
considering programming methods used with the
System/360, we shall review the basic ideas of the
machine organization and operation.

The presentation will be almost entirely through the
medium of eight examples and a final extended case
study.
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Addition and Subtraction

For a first example we shall consider a simple inven-
tory calculation. We begin the calculation with an
on-hand quantity, a receipt quantity, and an issue
quantity. We are required to compute the new on-
hand, according to the formula:

new on-hand = old on-hand + receipts — issues
Using fairly obvious symbols for the four quantities,
this becomes:

NEWOH = OLDOH -} RECPT — ISSUE

A program to carry out this calculation is shown in
Figure 33. We shall be concentrating on the four
actual processing instructions, but at the outset we
shall display all programs in logically complete form.

Figure 33. A program, written in assembler language, to perform
a simple arithmetic computation in binary

The first three lines of coding are rather standard
preliminaries; instructions of this character will appear
at the beginning of all but highly specialized pro-
grams. To review briefly, the START establishes a
reference point for the assembly: the assembly listing
(shown later) will assume that the first byte is to be
loaded into 256 as shown. The BALR (Branch and
Link Register) and the USING, as written here, to-
gether direct that register 15 shall be used as a base
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register wherever one is needed, and inform the as-
sembler that the base register at execution time will
contain the location of the first byte after the USING.

Now we reach the first processing instruction, where
we wish to concentrate our attention.

The Load instruction is classified as an RX format
instruction, which implies a number of facts about it:

1. The instruction itself takes up four bytes of
storage.

2. The fields within the instruction are, from left to
right: the operation code (eight bits), the number of
the register to be loaded from storage (four bits), the
number of the register used as an index register (four
bits), the number of the register used as a base
register (four bits), and the displacement (twelve
bits).

3. The instruction involves a transfer of information
between storage and a general register.

4. The effective address of a byte in storage is
formed by adding the contents of the base register,
the contents of the index register, and the displace-
ment. If register zero is specified for an index register
or a base register, zero is used in the address com-
putation, rather than whatever register zero may
contain.

The operation of the Load instruction is straight-
forward: obtain a fullword (four bytes) from storage
at the effective address specified, and place the word
in the general register indicated. The effective address
must refer to a fullword boundary, which means that
the address must be a multiple of 4.

Let us consider the complete line of coding for the
Load instruction to see what each part does.

The letter L is the mnemonic operation code for
Load; this is converted by the assembler into the
actual machine operation code for Load, 58. The 3 is
the number of the general register we wish loaded
with a word from storage. OLDOH is the symbolic
address of the word in storage to be copied into
general register 3. By writing the address in this
fashion, we have indicated that the assembler should
supply the base register and the displacement, and
that we do not wish indexing.

The assembly listing for this program is shown in
Figure 34. Looking at the machine instruction assem-
bled from this symbolic instruction, and remembering
that all numbers are shown in hexadecimal, we see
that the operation code is 58, the general register is 3,



START 256

000100 05 FO BEGIN BALR 15,0
000102 USING #,15

000102 58 30 F 012 L 3,0LD0H
000106 5A 30 F 016 A 3,RECPT
00010A 58 30 F O1A S 3,ISSUE
00010€ 50 30 F OlE ST 3+NEWOH
000112 0A 00 SvC 0
000114 00000009 OLDOH DC Fr9
000118 00000004 RECPT DC F'4*
00011C 00000006 ISSUE DC Fro!
000120 NEWOH DS F

END BEGIN

Figure 34. The assembly listing for the program of Figure 33

the index register is zero, the base register is F
(= 1510),and the displacement is 012;6. Since the base
register contains 102, the effective address is 114,
which we see is the address associated with OLDOH.

The Add instruction is also of the RX format. The
operation is to add the fullword at the storage address
specified, to the general register named. In our case,
we have, of course, named the same general register
as in the Load instruction, since the intent is to add
OLDOH and RECPT together. Looking at the assem-
bled instruction, we see that things have been handled
much as they were with the Load. Base register 15
has been assigned, there is no index register, and the
displacement has been computed to give the effective
address of the storage location associated with RECPT
(118).

After the execution of this instruction, register 3
will contain the sum of the storage quantities identi-
fied in our program by OLDOH and RECPT.

The Subtract instruction (S) in the next line sub-
tracts the quantity identified by the symbol ISSUE
from the quantity now standing in register 3. The
format and general operation of the instruction are
very similar to Add.

Now we have the desired result in register 3. The
problem statement required the result to be placed in
another location in storage, that identified by the
symbol NEWOH. Placing the contents of a general
register in storage is the function of the Store instruc-
tion (operation code ST). The general register con-
tents are unchanged by the operation. The format is
again RX, so address formation is as before.

This completes the actions required by the problem
statement, but we must now somehow indicate what
we want done next. The System/360 provides no
Stop instruction, to force a program organization that
keeps the machine in operation as much of the time

as possible. What we have shown here is a Supervisor
Call instruction. The use of this instruction assumes
that there is in storage, at the time of execution of this
program, a supervisor program that runs the machine
between jobs. We here indicate to the supervisor pro-
gram that this program has no further need for the
machine; the operand of zero specifies that no further
actions on the part of the supervisor program are
needed by this program.

We have not written the result onto any output
device. In actual practice, previous parts of the pro-
gram would have read the values used in the calcula-
tion, and subsequent parts would use the result. We
are not prepared at this time to write the input and
output instructions and, indeed, will not do so through-
out this publication. We have simply entered illustra-
tive values for the input quantities with DC instruc-
tions, and reserved space for the output with a DS.
The F’s in the DC’s and the DS specify fullwords of
four bytes. The Load, Add, Subtract, and Store in-
structions all operate on fullwords. (There are corre-
sponding halfword instructions, as we shall see in
later examples.)

The END instruction informs the assembler that
the termination of the program has been reached and
(in this case) specifies that the first instruction to be
executed when the program is loaded should be the
one having the name BEGIN, namely the BALR.

With a suitable program it is possible, and rather -
simple once the methods are clear, to get a “dump” of
the contents of selected areas of storage. With such a
dump routine we can get our data and results out of
the machine without writing any output instructions.

This was done, leading to the numbers reproduced
in Figure 35. The four items, in sequence, are
OLDOH, RECPT, ISSUE, and NEWOH.

It might be interesting to run this program again,
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but with the illustrative value for ISSUE being, say,
16. This will result in a negative quantity for NEWOH.
We know that negative fixed-point numbers are repre-
sented in 2's complement form. The dump routine
used above will make a comnversion to true-number-
and-sign, as shown in the first line of Figure 36. In the
second line, the same numbers are printed also in
hexadecimal; this was done by a slightly different
dump call to the supervisor program.

We see that the first three numbers, which are
positive, have zeros before the significant digits. The
last number, however, being negative, is shown in
hexadecimal form to have 1’s to the left of the signifi-
cant digits, since Fig = 1111,. If we were to write out
this hexadecimal number, FFFFFFFD, in its binary

form, we would have thirty 1’s followed by 01. Re-
ferring to the rules for formation of a 2's complement,
we see that the complement of this number is 11,
which is 3. Checking with the given data and the
formula, we see that this is the correct answer and,
of course, —3 was printed as the decimal value for a
further check, if one was needed.

Naturally, if such a result were actually produced
in an inventory control program, it would indicate
some kind of trouble, probably bad data; it is not
possible to issue more than there are on hand plus
what you received, which is what the negative result
would imply. A complete program would include a
test for the possibility of a negative result, with some
kind of corrective action.

0000009+ 0000004+ 0000006+ 0000007+

Figure 35. Output of the program of Figures 33 and 34. The
four numbers are OLDOH, RECPT, ISSUE, and

NEWOH, in that order.

00000009 00000004

0000009+ 0000004+ 0000016+ 0000003~

00000010

FFFFFFFD

Figure 36. Output of the program of Figures 33 and 34, with a
value for ISSUE that causes NEWOH to be nega-
tive. The values of OLDOH, RECPT, ISSUE, and
NEWOH are printed in the top line in decimal. In
the second line they are printed in hexadecimal; the
value for NEWOH is in complement form.
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For a simple example of multiplication in the Sys-
tem/360, consider the following problem. We are to
multiply an ISSUE quantity by a PRICE to get
TOTAL. We shall assume that PRICE is an integer,
expressed in pennies. The product will therefore also
be in pennies. For instance, an ISSUE of 5 and a
PRICE of 25 would give a TOTAL of 125.

The program to do this multiplication is shown in
Figure 37. The first three lines are standard. The Load
places the multiplicand in general register 5. The
Multiply (M) forms the product of what is in 5 and
what is in the full word identified by PRICE, and
places the result, which could of course be much long-
er than either of the factors, in registers 4 and 5 com-
bined. It is required that the general register named in
the Multiply be even numbered; if it is not, a specifi-
cation exception and an interrupt occur. The multi-
plicand must always be in the odd-numbered register
of an even-odd pair, such as 4 and 5 here. The multi-
plicand in the odd register, and whatever may have
been in the even register, are both destroyed by the
operation of the Multiply.

After the product has been formed, we store it in
TOTAL on the assumption that the result does not
exceed the length of one register. The validity of such
an assumption, of course, is the responsibility of the
programmer; if in fact the product extended over
into register 4, there would be no automatic signal of
the fact that the result in TOTAL is not the complete
product. If a product extending into the even register
could be a legitimate outcome, we would naturally
have to arrange to store both parts of the product.

Multiplication and Division

Let us try this program with several sets of sample
factors in order to see precisely how the operation
works. The printout of Figure 38 gives ISSUE, PRICE
TOTAL, and the contents of register 4 and 5 after the
completion of the program. The identifications were
produced with suitable instructions to the dump rou-
tine. We see that the product of 7 and 23 is indeed
161, as we might expect. This number is shown as the
contents of register 5, while register 4 is zero; the
product was not long enough to extend into 4.

ISSUE 0000007+
PRICE 0000023+
TOTAL 0000161+
REG 4 0000000+
REG 5 0000161+

Figure 38. Output of the program of Figure 37

000100 05 FO
000102
000102 58 50 F OOE
000106 5C 40 F 012
00010A 50 50 F Ol6
00010E OA 00
ooo1l10 00000007
000114 00000017
000118

START 256
BEGIN BALR 15,0
USING #=,15
L 5. ISSUE
M 4,PRICE
ST 59 TOTAL
sSvC 0
ISSUE DC Fere
PRICE DC F'23*
TOTAL DS F
END BEGIN

Figure 37. Assembly listing of a program to perform a binary multiplication

Fixed-Point Operations
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In Figure 39 the numbers are the same except that
the 7 is negative. (This makes no sense in terms of the
problem, of course.) We see that TOTAL and register
5 are negative, as expected, but what has happened
to register 4?7 The answer is that the product is a
full 64 bits long; a negative number has 1’s to the
left of the leftmost significant digits. Register 4 proper-
ly contained all 1's which, considered as part of the
64-bit product, are merely sign bits. But printed as a
separate number (which is pointless, in reality), a
word of all 1’s represents —1, as shown. A printout not
reproduced here substantiates what we have said:
register 4 printed in hexadecimal form appears as
eight F’s.

ISSUE 0000007~
PRICE 0000023+
TOTAL 0000161-
REG 4 0000001~
REG 5 0000161~

Figure 39. Output of the program of Figure 37, with a negative
value for ISSUE

In Figure 40 we see an example of what can happen
when the numbers entering the machine do not con-
form to the assumptions made in setting up the pro-
gram (that is, the product would never extend into
register 4). With both factors being 87654, the prod-
uct, in decimal, should be 5858830849. This is too
long to fit into register 5, so we would expect TOTAL
to contain only the equivalent of the part of the prod-

ISSUE 0087654+
PRICE 0087654+
TOTAL 6710876~-
REG 4 0000001+
REG 5 67T10876-

Figure 40. Output of the program of Figure 37, with values for
ISSUE and PRICE that lead to a TOTAL too large
to fit in a fullword

uct that appeared there. But we would hardly have
expected it to be negative! What happened?

The answer becomes apparent if we convert the
product to hexadecimal and look at the part of it that
would appear in register 5. The complete product is
1C9F4B0A4, that is, nine hexadecimal digits — a reg-
ister can hold eight. So the 1, preceded by seven
hexadecimal zeros, would be the contents of register 4,
as shown. The part in register 5 begins with the
hexadecimal digit C, which is 1100 in binary. This
means that the leftmost bit is 1, which signals a nega-
tive number when register 5 is taken as a word by
itself!

This recitation of troubles is not meant to suggest
any difficulty in using the System/360. Any program-
mer appreciates the necessity of knowing a good deal
about his data and for testing it for validity if he is
not sure of it. The purpose in showing these slightly
surprising results is simply to clarify how the machine
operates, especially since many programmers will not
have had previous contact with complement repre-
sentation of negative numbers.



Multiplication and Division with Decimal Points

The next example involves a little further practice
with multiplication, an application of the Divide in-
struction, and a rather basic question of decimal point
handling in binary.

The task is to increase a principal amount named
PRINC by an interest rate of 3%. The principal is
stored to pennies as in the previous example; Yor
instance, 24.89 would be stored simply as the integer
2489. Later program segments would have to insert
any “graphic” decimal point that might be desired for
printing; at this point we make a mental note of the
true situation, while pretending for programming
purposes at the moment that the unit of currency is
the penny.

One possible program is shown in Figure 41. ( There
_ are other ways, as we shall see.) After the usual pre-
liminaries we load the principal into an odd-num-
bered register preparatory to multiplying. The inter-
est rate is shown as 103, which should be read as
1.03. This is a shortcut: instead of multiplying the
principal by 0.03 and adding the product to the prin-
cipal, we multiply the principal by 1.03. The result is
the same either way; our way saves an addition.

The absence of the decimal point is another matter.
We are saying here that instead of multiplying by
1.03, we will multiply by 103; the product will be
100 times too large as a result. It will be necessary
in a subsequent step to divide by 100 to correct for

this. The reason for this is that there is a question
of how to represent a decimal fraction in binary form.
The question can be answered, as we shall see, lead-
ing to a different program. For now, let us take what
seems at first to be the easy way out and stay with
integers.

Using the sample principal mentioned above, 24.89,
the product after multiplication is 256367. We shall
assume that the product in all cases is short enough
to be held in register 5 alone.

We now wish to round off. We think of the product
as $25.6367; the desired rounded value is $25.64. Re-
membering that the computer knows nothing of our
behind-the-scenes understanding about decimal points,
all we have to do to round off is to add 50 to the in-
teger product. We will think of the 50 as $0.0050, but
to the computer it is 50.

Having done this, we need finally to divide by 100
to correct for using 103 in place of 1.03. This requires
the Divide instruction, which as we might expect is
a close relative to the Multiply instruction. The divi-
dend must be in an even-odd pair, as a 64-bit number.
This requirement is already met by the way the Mul-
tiply leaves the product in an even-odd pair (the
machine was designed to make it simple to follow a
Multiply with a Divide). The remainder is placed in
the even register and the quotient in the odd. Our
quotient will be 2564 (we read: $25.64) and the re-

000100 05 FO

000102

000102 58 S0 F 016
000106 5C 40 F OlA
00010A 5A 50 F O1E
00010E SD 40 F 022
000112 50 50 F 0Ols
000116 0A 00
0oo118 00000989
0oo011cC 00000067
000120 00000032
000124 00000064

START 256
BEGIN BALR 15,0
USING #,15
L 5sPRINC
M 49 INT
A 5+C50
1] 4,C100
ST S+ PRINC
SvC 0
PRINC ©DC F*2489"
INT DC F*103°
€50 oC Fe'50°
c100 oC F*'100°*
END BEGIN

Figure 41. Assembly listing of a program involving binary multiplication and division, with binary rounding by a decimal amount
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mainder will be 17 (we don’t care about this). The
quotient can now be stored back in the location for
PRINC, as required in the problem statement.

The question will occur to many: Why was it neces-
sary to divide? Why not simply shift two places right
to drop the right two digits? The answer is, of course,
that we could do precisely that in decimal, but this
is binary. Shifting one place to the right in decimal
divides the number by 10; shifting one place to the
right in binary divides the number by 2. There is
no number of binary shifts that divides a number by
a factor of decimal 100. Six places divides it by 64,
and seven places by 128. With this way of approach-
ing the problem, we have no choice but to divide.

It should be kept clearly in mind that in all exam-
ples so far we have explicitly stated that all quantities
were to be viewed for programming purposes as in-
tegers, whatever we on the outside might understand
by the digits. This was by agreement, not necessity.
We can work with binary numbers that are taken to
have “binary points” elsewhere than at the extreme
right. Let us, for instance, attempt to express the fac-
tor 1.03 as a binary number.

It may be recalled from a study of the conversion
rules that there will be in general no exact binary
equivalent for a decimal fraction. If we try 1.03 we
get an infinitely repeating binary fraction. The first
twelve bits are

1.00000111101

The binary point is, of course, understood (by us).
If we enter such a number as the constant (which
we shall see how to do in a moment), we can mul-
tiply by it. The machine cares nothing for our under-
stood binary points, and carries out the multiplication.
We must then take into account the understood
binary point in the product, according to a literal

translation of familiar rules: the binary point in the
product will have as many places to the right as
the sum of the number of places to the right of the
binary points in the multiplier and in the multipli-
cand. If the constant has eleven places to the right,
as written above, and the principal is still understood
to be an integer (zero places), then the product will
have eleven places to the right.

Let us turn to Figure 42 to see how this much of
the revised program looks.

The Load is the same as before, as is the Multiply.
The constant used for the multiplication is different,
however. Down at INT we see that the DC is

FS11'1.03

The F stands for fullword, as before. The S stands
for Scale factor and is the number of binary places
that are to be reserved for the fractional part of the
constant. We have indicated eleven places as the
number of bits to the right of the binary point in
the factor as we wrote it before.

The Add to round off is the same as before, but
once again the constant is different. What we have
after the multiplication this time is not an integer
but a binary fraction. To the left of the assumed bi-
nary point we have a whole number of pennies; to
the right a fractional part of a penny. This time, to
round off we need a constant that is 0.5 cent expressed
in the same form as the fractional part of our prod-
uct. The Scale factor method shown gives this. (In
fact, the constant consists of a 1 followed by ten
Zeros. )

After rounding off we are left with eleven super-
fluous bits at the right end of the product. These can
be shifted off the end of the register with a suitable
shift instruction. “Suitable” in this case means that
the shift should be to the right, it should involve a

START 256

000100 05 FO BEGIN BALR 1540
000102 USING #,15

000102 58 50 F 016 L 5+ PRINC
000106 SC 40 F OlA M 49 INT
00010A SA 50 F OlE A Se+HALF
00010E 8A 50 0 008 SRA 511
000112 50 S50 F 016 ST 59 PRINC
000116 0A 00 SvC 0
000118 00000989 PRINC DC F*2489°
00011C 00000830 INT DC FS11°1.03°
000120 00000400 HALF DC FS11°0.5"

END BEGIN

Figure 42. A different version of the program of Figure 41, using a scale factor to get a binary fraction in a DC constant
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single register, and it should be an algebraic shift
so that if the number were negative, proper sign bits
would be shifted into the register. The instruction is
called Shift Right Single (SRA), in which we specify
the register first and then the number of positions
of shift desired. Bits shifted off the right end of the
register are lost. After the shift we are ready to store
the result.

The point of doing all this is that we have replaced
a Divide with a Shift, and the latter is considerably
faster than the former. In some applications the dif-
ference in time could be significant.

If we print the result, we get a surprise: the answer
is 2463 ($24.63); rounding seems not to have taken
place. The trouble is that the binary “equivalent” of
the decimal number 1.03 was not exactly equivalent.
To prove the point, let us ask for 15 binary places
in the fractional part of the constant created for 1.03.
We change the rounding constant likewise, and make
the shift 15 places. This time, the printout shows 2464
($24.64) as before. '

The moral of this story is that decimal fractions do
not usually have exact binary equivalents. Computa-
tions that are required to be exact to the penny should
be done in integer form, as in the first version of the
program. (Even though a larger number of bits led

to a correct answer this time, it would not always
do so, particularly for larger principal amounts.)

This means, in most situations, that it would be
most unwise to go the further possible step of rep-
resenting penny amounts as binary fractions. Unless
approximate results are acceptable, which they some-
times are, of course, the use of anything but integer
arithmetic leads to problems more severe than they
are worth, '

Some readers may be wondering whether binary
arithmetic is worth the trouble. The answer is yes, of
course. Many applications of binary arithmetic raise
none of the questions suggested here and do not in-
volve the possible complications with complement
form either. For the straightforward cases, it is barely
necessary to know anything about the binary and
complement matters. We present examples like these
to warn the unwary and to lay a foundation of un-
derstanding for those with problems where the ad-
vantages of binary arithmetic are worth the care that
must be exercised in using it. It is true that many ap-
plications will suggest staying with decimal arithme-
tic, for users having the decimal instruction set, but
even then there will be more than a few occasions
where binary operations are the only ones that make
sense from a standpoint of time.
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Shifting and Data Manipulation

Having introduced the shifting operation briefly in
the previous example, let us now turn to an applica-
tion that will involve considerably more shifting.

We begin with a fullword, supplied by some other
program we assume, in which three data items are
packed in binary form:

Bits Item name
0-11 A
12 —-23 B
24 — 31 C

We are required to separate the three data items
and store each in a separate halfword storage loca-
tion, with names for the latter as shown. All three
numbers are positive.

The program shown in Figure 43 is a more or less
straightforward matter of shifting and storing, but a
few notes are necessary to make clear what is hap-
pening at certain points.

The numbers in the Comments field are sample
contents of registers 6 and 7 as they would appear
during execution of the program if the original
packed word were hexadecimal 7TSABCDEF. These
sample values, of course, were entered when the
source program was punched; it is quite impossible
for the object program to print anything on the assem-
bly listing.

We begin by loading the packed word into an even-
numbered general register. This permits us to con-
tinue with a double-length shift that moves bits from

the named even-numbered register into the adjacent
odd-numbered register, which we think of as being
to the right. This is what “double” means in Shift
Right Double Logical (SRDL). The “logical” refers
to the handling of sign bits and means that zeros
are entered at the left of register 6. This is in con-
trast to the “algebraic” shifts, in which the bits en-
tered at the left are made to be the same as the origi-
nal “sign bit”, that is, the original leftmost bit. Here,
we were guaranteed in the problem statement that
all three numbers are positive, so we can ignore any
question of what the leftmost bit in each item might
be. Whether it is zero or one, the number represented
is positive.

The SRDL moves the rightmost eight bits into reg-
ister 7; from there we move them to the right-hand
end of the same register, using a single-length logical
shift that does not affect register 6. What were origi-
nally the rightmost eight bits of the packed fullword
are now properly positioned in register 7 to be stored
in a halfword location with the Store Halfword (SH)
instruction. The action here is to store the rightmost
16 bits of the register named, in the two bytes identi-
fied by the effective address. The register is not dis-
turbed by the operation of the instruction. This is an
RX format instruction; it could be indexed if we had
occasion to do so.

Now we again shift the two registers together to get
the twelve-bit B item into register 7. From there we

START 256

000100 05 FO BEGIN BALR 15,0
000102 USING #,15

000102 58 60 F 022 L 69 FWORD T8ABCDEF 00000000
000106 8C 60 0 008 SRDL 6,8 0078ABCD EF000000
C0010A 88 70 0 018 SRL Ty24 0078ABCD 00000OEF
00010E 40 70 F 02A STH 75C 0078ABCD 000000EF
oooll2 8C 60 0 00C SRDL 6512 0000078A BCDOOOOO
000116 88 70 0 014 SRL 7420 0000078A 000008CD
00011A 40 70 F 028 STH T7+8 00000784 00000BCD
00011E 40 60 F 026 STH 69A 0000078A 00000BLD
000122 0A 00 Sve 0
000124 FWORD DS F
000128 A DS H
00012A 8 0S H
00012C c DS H

END BEGIN

Figure 43. Assembly listing of a program to separate three quantities packed in one fullword
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move it on over to the right-hand end of 7 and store
it. A further shift of what was originally the leftmost
twelve bits is not needed, since they are now in the
right-hand end of 6, from whence they may be stored.

Actually, the restriction to positive numbers is not
too difficult to remove. It would have to be agreed
that the leftmost bit of each item was its sign bit, that
is, that in generating the packed word each item was
in complement form and of such length as to fit in
the item size allotted. With this assumption, the pro-
gram of Figure 44 properly expands the sign bits of
the items and stores the three items in halfwords in
complement form. The “expansion” of the sign bit
is one of the functions of an algebraic shift, as noted
above. The program must also be changed to include
a final two shifts to expand the sign of item A.

START 256
000100 05 FO BEGIN BALR 15,0
000102 USING #,15
000102 58 60 F 02A L 6 FWORD T8ABCDEF 00000000
000106 8C 60 O 008 SROL 6,8 0078ABCD EF000000
000104 8A 70 0 018 SRA 7,24 QU78ABCD  FFFFFFEF
00010E 40 70 F 032 STH  7,C 0078ABCD  FFFFFFEF
000112 8C 60 0 OOC SROL 6,12 0000078A BCDFFFFF
000116 8A 70 O 014 SRA T+20 0000078A FFFFFBCD
00011A 40 70 F 030 STH 7+8 0000078A FFFFFBCD
00011E 8C 60 0 00OC SRDL 6,12 00000000 T8AFFFFF
000122 8A 70 O O1l4 SRA T¢20 00000000 0000078A
000126 40 70 F 02F STH TsA 000000CO 0000078A
00012A 0A 00 svC 0
0oo1li2C FWORD DS F
000130 A DS H
000132 8 DS H
000134 c s H
END BEGIN
Figure 44. Modified version of the program of Figure 43,
making it operate correctly if the three quantities
are allowed to be negative
Figure 45 shows the output of the two programs for
the sample input word of 7SABCDEF. The three parts
of the combined word, in hexadecimal, were therefore
78A, BCD, and EF. In the first line of Figure 45 we 078A 0BCD OOEF
see that these have been put into halfwords by the
program of Figure 43 as 078A, 0BCD and 00EF, that
is, as three positive numbers. In the second line we see
P ) : 0784 FBCD FFEF
that the program of Figure 44, on the other hand, in-
terpreted the second and third numbers as negative
since their leftmost bits were 1’s. The three output

halfwords are 078A, FBCD, and FFEF, showing that
the sign bits of the second and third numbers were
properly expanded.

Figure 45. Output of the programs of Figure 43 (first line) and
Figure 44 (second line) with the original word
being hexadecimal 7SABCDEF
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Branches and Decision Codes

Decisions and branching are important parts of
data processing, and the programming methods by
which these operations are carried out are important
aspects of the programming task. The facilities offered
by the System/360 are particularly powerful and
flexible. The basic action is the setting of the condi-
tion code by any of a large number of instructions
and the subsequent testing of the condition code by
a Branch on Condition instruction.

Many arithmetic, shift, and logical instructions have
as a part of their action the setting of the condition
code to indicate something about the result of the
instruction’s execution. For instance, after an Add in-
struction, the condition code indicates whether the
sum was zero, positive, negative, or too large for the
register. After a Compare instruction the condition
code indicates whether the first operand was greater
than, equal to, or less than the second operand. The
meaning of each of the different values of the condi-
tion code is specified in the description of each in-
struction that affects the code. (Many instructions do
not.) The four possible values are 0, 1, 2, and 3.

At any time after the condition code has been set
by the action of an instruction, it may be tested by
using a Branch on Condition (BC) instruction. In
this instruction, which is in the RX format, the four
bits that in other instructions designate a general
register are here used for a mask that designates
which values of the condition code are of interest
to us. The leftmost bit of the mask checks for a con-
dition code of zero, the next bit for code 1, the next
for code 2, and the rightmost for code 3. If the condi-
tion code is equal to any of the values selected by
the mask bit(s), the Branch is taken. The correspond-
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ences between condition codes and mask are sum-
marized as follows:

Mask bits  Decimal value Codes tested
0000 0 None
0001 1 3
0010 2 2
0011 3 2o0r 3
0100 4 1
0101 5 lor3
0110 6 lor2
0111 7 1,2 or 3
1000 8 0
1001 9 0or3
1010 10 0or2
1011 11 0,2 or3
1100 12 Oorl
1101 13 0,1, 0or3
1110 14 0,1 or 2
1111 15 0,12 or3

A decimal mask value of zero makes the instruc-
tion test for no condition codes; it thus becomes a
no-operation instruction. A mask of 15 tests for any
condition code; it is thus an unconditional branch.

To see how some of these ideas are applied, con-
sider a simple example. We are given three fullword
data items named A, B, and C. They may be positive
or negative. We are required to change any negative
values to positive, and then to rearrange the three
values in storage to make the number in A the largest,
the number in B the next largest, and the number in
C the smallest of the three. Figure 46 expresses the
logic of the method that will be used here to perform
the sort; other ways are possible.



Make
A,BC
positive
A=B g )
A<B
Interchange

A and B
Az=C
A<C
Interchange
A and C
B2C
B: C

Interchange
\:
Figure 46. Program flowchart of a method of sorting three

numbers into descending sequence. Any negative
numbers are changed to positive before sorting.

We first make all three numbers positive. A com-
parison is then made between A and B; if A is the
smaller we interchange the two values. Now we know
that what is in A is the larger of the two, whether
because it originally was or because we interchanged
it with the original B. A similar process compares A
and C and interchanges if A is smaller. Having done
this, we know that what is in A is the largest of the
three. A final comparison of the numbers now in B
and C, and an interchange if necessary, gets the “mid-
dle” number in B and the smallest in C.

The program of Figure 47 involves some instruc-
tions that we have not used before. The Load Multiple
(LM) instruction begins loading fullwords from the
specified storage location. The first word goes into
the first-named register. Successive fullwords go into
higher-numbered registers until the second-named
register has been loaded. In the program, the result
of the LM instruction will be to-place A in 1, B in 2,
and C in 3.

Now three Load Positive Register (LPR) instruc-
tions change any negative numbers to positive, leav-
ing any positive numbers unchanged. This is an RR
format instruction, meaning that both of its operands
are registers. Here both operands are the same reg-
ister, as will frequently be the case. The action is to
take the value from a register, complement it if it
was negative, and place the result back in the same
register. If it were necessary, the two registers could
of course be different.

Next comes a Compare Register (CR) instruction,
which is also in the RR format. This instruction does
not change the contents of either register, but simply
sets the condition code to zero if the two operands
are the same, to 1 if the first operand is low, and to
2 if the first operand is high. ( The comparison is alge-
braic, meaning that signs are taken into account ac-
cording to the rules of algebra, by which any positive
number is greater than any negative number. We
know that our numbers are by now all positive, so this
feature does not concern us.)

Next comes the Branch on Condition instruction,
with a mask of 10 (decimal) and a branch address of
COMP2. The mask of 10, checking with the table
above, tests for condition code zero or 2. Following
a Compare-type instruction, these mean, respectively,
that the first operand is equal to or greater than the
second operand. If the condition code is either of
these, we branch; otherwise the next instruction in
sequence is taken. The effect is: if the number in reg-
ister 1 is already equal to or greater than the number
in register 2, we skip down to the second comparison,
because A and B are already in correct sequence.
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START 256

000100 05 FO BEGIN BALR 15,0

000102 USING #,15
000102 98 13 F 036 LM 193,A LOAD REGS WITH 3 NUMBERS
000106 10 11 LPR 191 MAKE POSITIVE
000108 10 22 LPR 2,2
00010A 10 33 LPR 3,3
00010C 19 12 CR 1,2 COMPARE A AND B
00010E 47 A0 F 016 8C 10,COMP2
000112 18 61 LR 6,1 INTERCHANGE IF NECESSARY
00011k 18 12 LR 1,2
000116 18 26 LR 2,6
000118 19 13 CoOMP2 CR 193 COMPARE A AND C
00011A L7 A0 F 022 8C 10,COMP3
00011E 18 61 LR 6y 1 INTERCHANGE IF NECESSARY
000120 18 13 LR 1,3
000122 18 36 LR 3,6
000124 19 23 COMP3 (R 2+3 COMPARE B AND C
000126 47 A0 F 032 BC 10,0UT
00012A 18 62 LR 6,2 INTERCHANGE IF NECESSARY
00012C 18 23 LR 2,3
00012E 18 36 LR 3,6
000130 90 13 F 036 ouT STM 1+3,A STORE SORTED VALUES
000134 OA 00 SVC 0
000138 00000001 A DC F' 1!
00013C 00000002 B DC F'2!
00010 00000003 c DC F'3

END BEGIN

Figure 47. Assembly listing of a program to carry out the sorting procedure charted in Figure 46

The interchange, if it is necessary, is performed by
moving the contents of register 1 to register 6, moving
2 to 1, and finally moving 6 to 2. These transfers are
made with the Load Register (LR) instruction.

The remaining instructions repeat these operations
twice for the other comparisons. Finally, there is a
Store Multiple (STM) instruction to place the re-
arranged items back in the original three locations, as
required by the problem statement.

Figure 48 shows before-and-after values of A, B,
and C for the six possible original orderings of the
three values. Each pair of lines is one set. These are
hexadecimal numbers; the original value of A in the
last set is —3.
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00000001 00000002 00000003
00000003 00000002 00000001
00000001 00000003 00000002
00000003 00000002 00000001
00000002 00000001 00000003
00000003 00000002 00000001
00000003 00000002 00000001
00000003 00000002 00000001
00000003 00000001 00000002
00000003 00000002 00000001
FFFFFFFD 00000002 00000001
00000003 00000002 00000001

Figure 48. Sets of sample input and output for the program of
Figure 47. Each pair of lines represents three input
values (first line) and the sorted output (second
line).



Further Decisions: The Social Security Problem

In this application, which is presumably familiar to
many readers, we combine two decisions with some
arithmetic processing.

We are given a man’s earning for a week (EARN),
his previous (“old”) year-to-date earnings
(OLDYTD), and his previous year-to-date Social
Security tax (OLDSS). We are to compute his Social
Security tax for this week (TAX), his new year-to-
date earnings (NEWYTD) and new Social Security
tax (NEWSS). Assume the Social Security tax is
computed as 3%% of earnings (with certain exclusions
such as sick pay, which we shall ignore) up to an
annual limit on taxable income of $4800. The program
must decide whether the employee has yet earned
$4800 this year; if so, he is exempt from further So-
cial Security tax. Actually, the situation is slightly
more complex than that: if the man has not yet earned
$4800 before this week’s pay but, counting this week’s
pay, goes over $4800, only the portion of this week’s
pay that takes him up to the $4800 limit is taxable.

The flowchart of Figure 49 expresses the logic we
have just described. Figure 50 translates this logic into
a program illustrating in the process that there are
many ways to implement a flowchart.

We begin by loading the previous year-to-date into
a register, and from there immediately load it into
another register, in order to have it both places. This
method saves a little time over loading twice from
storage. We add this week’s earnings, giving the new
year-to-date, which is stored. Now we compare the
old year-to-date with $4800. The Branch on Condi-
tion that follows asks whether the condition code is
1, that is, whether the first operand is low. This can
be read: branch if the old year-to-date was less than
$4800. If the branch is not taken, the old year-to-date
was already over $4800, so there is no tax to pay. We
clear register 7, where the tax is developed if there
is any, by subtracting it from itself — the fastest and
simplest way to clear a register to zero. The Branch
on Condition with a mask of 15 is an unconditional
branch down to the final instructions where the tax
is stored and the Social Security updated.

If the branch is taken, there is a tax to be paid, but
we still need to know whether this week took the man
over the top. Accordingly, at the instruction labeled
YES, we compare the new year-to-date with $4800.
The Branch on Condition with a mask of 2 asks
whether the first operand — the new year-to-date —

NEWYTD
= OLDYTD
+ EARN

before this
week

TAX = 3 5/8% of

TAX = $0.00 (4800-OLDYTD)

3 5/8% of

NEWSS =
OLDSS +
TAX

Figure 49. Program flowchart of a procedure for computing a
Social Security tax

was greater than $4800. If so, it is necessary to com-
pute the tax on just that part of this week’s pay that
takes the total up to $4800. At OVER48, accordingly,
we load register 7 with $4800 and subtract the pre-
vious year-to-date; the difference is just the amount
that is taxable. If the branch was not taken, the full
week’s earnings are taxable, and they are therefore
loaded into register 7 and we branch unconditionally
to MULT.

At that location is an instruction to multiply what-
ever is in register 7 — either the full week’s pay or
some part of it — by 3%%. This constant is entered as
the integer 3625, which is the decimal fraction form
of the percentage. We must think of this number as
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000100 05 FO BEGIN
000102

000102 58 60 F 052

000106 18 56

000108 5A 60 F O4E

00010C 50 60 F 056

000110 59 50 F 066

000114 47 40 F 01C

000118 18 77

00011A 4T FO F 040

00011€ 59 60 F 066 YES

000122 4T 20 F 02C

000126 58 70 F O4E

00012A 47 FO F 034

00012¢ 58 70 F 066 OVER48

000132 58 70 F 052

000136 5C 60 F 06A MULT

00013A SA 70 F O6E

00013E 5D 60 F 072

000142 50 70 F 062 STORE

000146 SA 70 F 05A

00014A 50 70 F OSE

00014E 0A 00

000150 00002824 EARN

000154 00072BF0 oLDYTD

000158 NEWYTD

00015C 00004268 OLDSS

000160 NEWSS

000164 TAX

000168 00075300 C4800

00016C 00000E29 C358

000170 0000C350 HALF

000174 000186A0 CHUN

START 256

BALR 15,0
USING #,15

L 6,0LDYTD
LR 546

A 6, EARN
ST 6yNEWYTD
C 5,04800
8C 4,YES

SR Te7

8C 15,STORE
C 6,C4800
8C 2,0VERAS
L T,EARN
8C 15, MULT
L 7,C4800
S 7,0LDYTD
M 6,C358

A ToHALF

D 649 CHUN
ST ToTAX

A 7,0LDSS
ST ToNEWSS
SvC 0

oC F*10276"
DC F*470000°*
DS F

DC F*17000°*
DS F

DS F

0C F*480000°*
oC F*3625°
V] F*'50000°*
DC F*100000°*
END BEGIN

Figure 50. Assembly listing of one version of a program to calculate Social Security tax

0.03625, however, remembering that it is a fraction.
The constant for rounding, HALF, is therefore 50,000,
and we remove all the excess decimals by dividing by
100,000. At this point the tax is in register 7 ready to
be stored by the instruction at STORE. This same
Store instruction is the one to which we branched
if there was no tax to pay, having cleared register 7.
A final Add and Store update the year-to-date Social
Security.

This program fulfills the requirements of the prob-
lem statement and does the processing described by
the flowchart — but it is quite unacceptable. The
problem is something not mentioned in the problem
statement. Let us see what the trouble is by looking
at an example.

Suppose we have a man who earns $102.76 per
week. Multiplying by 0.03625 and rounding to the
nearest cent, we get a Social Security tax of $3.73.
In 46 weeks of working at this rate, the man will
accumulate a year-to-date earnings of $4726.96 and
a year-to-date Social Security tax of $171.58. Now in
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the next week his full earnings are not taxable, but
only the part that takes him up to $4800, or $73.04;
the tax on this amount is $2.65. Adding $2.65 to his
previous year-to-date Social Security, we get $174.23,
which is more than 3%% of the $4800 maximum

The difficulty is in the computation of the tax on
one week’s earnings. Before rounding, the product
of $102.76 and 0.03625 is $3.725050. When we round
this to $3.73 we add nearly half a cent. For each of
the 46 weeks we are adding nearly half a cent —
which adds up to 23 cents.

This would be sloppy; the employee would have a
right to claim a refund, if he wanted to bother; the
government would be annoyed. Social Security tax is
very seldom computed the way we have shown.

Fortunately, correcting the trouble is not only fairly
easy, but leads to a shorter program. The general
approach is to compute 3%% of the new year-to-date
earnings, then compute the tax by subtracting from
this the previous year-to-date Social Security. The
effects of the rounding error are thus balanced from



week to week, and we are never more than half a cent
off in the accumulated total.

Consider the example given above. The first week
of the year, we get $3.73 as the tax. The second week,
we begin by computing 0.03625 times $205.52, the
new year-to-date gross; this gives us $7.45 as the new
year-to-date Social Security, which we store. This
week’s tax is $7.45 minus the previous year-to-date
Social Security of $3.73, or $3.72. In other words,
where last week we were a half a cent high, now we
are half a cent low; the two cancel each other. The
offset will not always be so simple; however, we can
never be more than half a cent off.

The test for reaching the maximum taxable amount
is now made in terms of the tax instead of the earn-
ings. We compute the Social Security on the new
year-to-date earnings, then ask whether the result is

greater than $174. If so, the result is replaced by $174
and the tax is computed as before, by subtracting the
previous year-to-date Social Security. If that was
alréady $174, that is, if the maximum had already been
reached, then the tax computed by this method is
zero, as it should be. If this week’s pay is taking him
over the limit, the tax is the difference between the
maximum tax and the amount already paid, which is
correct.

The program shown in Figure 51 should not be too
difficult to follow after the description of the process
that has just been given. The program is eight instruc-
tions shorter and considerably less complex. Both
versions have been tested with a variety of data;
both give “correct” results in that they do what we
expect, although, of course, the results are not iden-
tical.

START 256

000100 05 FO BEGIN BALR 1540
000102 USING #,15

000102 58 50 F 036 L 5,0LDYTD
000106 5A 50 F 032 A 5y EARN
00010A 50 50 F 03A ST 5y NEWYTD
00010E 5C 4O F OLA M 4,C358
000112 5A 50 F OLE A 5,HALF
000116 5D 40 F 052 D 4y CHUN
00011A 59 50 F 056 c 5,C174
00011E 47 40 F 02h BC 4, UNDER
000122 58 50 F 056 L 5,C174
000126 50 50 F 0Ou2 UNDER ST 5, NEWSS
00012A 58 50 F 03E S 5,0LDSS
C0012E 50 50 F Oué6 STORE ST 5, TAX
000132 0A 00 SsvC 0
000134 00002824 EARN DC F'10276°
000138 00072BFO oLDYTD DC F'470000'
00013C NEWYTD DS F
000140 00004268 oLDss DC F'17000°*
0001y NEWSS DS F
000148 TAX Ds F
00014C 00000E29 c358 DC F'3625'
000150 0000C350 HALF DC F'50000'
000154 000186A0 CHUN DC F*'100000'
000158 0000L3F8 ci7u DC F' 17400

END BEGIN

Figure 51. Assembly listing of a much better version of a program to calculate Social Security tax
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Simple Loops: Finding a Sum

A frequent programming requirement is to perform
some operation on a set of values arranged in some
systematic way in storage. We shall examine some
of the coding methods available for such operations
in the System/360, in terms of a very simple example.

For our illustrative problem, suppose that there
are 20 fullwords in consecutive fullword locations
starting with the one identified by the symbol
TABLE. We are required to form the sum of the 20
numbers and place it in SUM.

We shall consider the three different ways of doing
this. All three involve the use of an index register to
modify the effective address in an instruction. The
contents of the index register are changed between
repetitions of the loop.

The first version of the program is shown in Figure
52. We shall use register 8 to accumulate the sum
and register 11 as the index register. We want reg-
ister 8 cleared to zero so that the sum will be correct;
as it happens, we want the index register cleared to
zero also. Both operations are done with Subtract
Register instructions.

Now comes the instruction that does the actual
computing. We add to register 8 the contents of some
fullword in storage. The first time through the loop
we want to add the word at TABLE. The instruction
specifies that the contents of index register 11 should
be used in computing the effective address — but we
just made those contents zero, so the effective address
is that of the word at TABLE. The first time through
the loop, this instruction therefore adds the word at
TABLE to register 8, which was cleared to zero.

The next time through the loop, we want the full-
word at TABLE 4 added to register 8. This can be
accomplished by adding 4 to the index register. In
this version of the program, we do so with an Add
instruction.

Now we are at the point in the program where a
test for completion must be made. The last of the 20
words is located at TABLE}76. We are modifying
before testing, however. At the point where the loop
has just been executed with TABLE--76 for an effec-
tive address, we will now have 80 in the index reg-
ister. That is, therefore, the correct constant to use
in testing for completion. We do so with a Compare,
then Branch on Condition with a mask that asks for
a branch if the index was less than 80.

The branch will be executed 19 times, giving 20
executions of the Add at LOOP. After that, the branch

72

is not executed, we store the total at SUM, and the
program is completed.

The reader will no doubt have recalled the custom-
ary names for the parts of a loop. The part at the
beginning that gets the loop started is the initializa-
tion section; here, it consists of the first two instruc-
tions. The part that does the actual work of the loop
is called the compute part, and here consists of the
Add at LOOP. The modification section changes
something between repetitions; here, it is the modifi-
cation of the index contents by the Add. The testing
section determines whether the action of the loop has
been completed, and consists here of the Compare
and the Branch on Condition. The sequence of the
last three sections is not always as in this example.
And as we shall see in the third version, the modifica-
tion and testing can often be combined into one
instruction.

The second version shortens the repeated section
of the loop by one instruction. Normally, we do not
worry too much about trying to get the last micro-
second out of programs, but in heavily repeated parts
it is worth some effort.

The method will require us to go “backward”
through the table, which in this particular example
is permissible; sometimes, of course, it would not be.
As shown in Figure 53 we again clear register 8,
This time, however, instead of loading the index reg-
ister (11) with zero, we use a new instruction, Load
Address, to put 76 in it. The Load Address (LA)
simply puts the address part of the instruction itself
in the designated register; there is no reference to
storage whatsoever.

Now when we execute the indexed Add instruction
at LOOP, the effective address is TABLE-}-76. Fol-
lowing this, we subtract 4 from the index register. As
it happens, the execution of a Subtract sets the con-
dition code. A condition code of zero indicates that
the result was zero, 1 indicates a negative result, and
2 a positive result. (A code of 3 indicates an overflow
— a result too large to hold in the register. If the
program is correct an overflow cannot occur here, so
the possibility does not concern us.) We want to
branch back to LOOP as long as the result of the
subtraction is either positive or zero, so the mask on
the Branch on Condition is 10: 8 picks condition code
zero and 2 picks up code 2.

The Store is as before.

Where in the first version there were four instruc-



000100

000102
000104
000106
00010A
00010€E
000112
000116
00011A
00011C
000120
000124
000128
00012C
000130
000134
000138
00013C
000140
000144
000148
00014C
000150
000154
000158
00015C
000160
000164
000168
00016C
000170
000174

05 FO

18 88

1B B8

5A 88 F 0O1A
5A BO F O06E
59 BO F 072
47 40 F 004
50 80 F 06A
0A 00
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000004
00000008
0000000C
00000000
0000000E
0000000F
00000010
00000011
00000012
00000013
00000014

00000004
00000050

000102

START 256

BEGIN BALR 15,0
USING #,15
SR 8,48
SR 11,11

Laooep A 8,TABLE(11)
A 114C4
Cc 11,80
B8C 44L00P
ST 85SUM
svC [

TABLE 0OC Fele
DC Fo2r
DC Fe3¢
D¢ Foge
oC Fe5e
bc Feoe
ocC Fo7e
ocC Fege
DC Fege
bc Fel0°*
DC Fell*
DC Frl2*
DC Fr13e
DC F*l4"
oC Felse
DC Fele*
DC Fepze
bl Fel18*
bC Felge
0C Fe20°*

SUM DS F

Cae ocC F'4r

cso ocC F*80°*
END BEGIN

Figure 52. First version of a program to form the sum of 20 numbers

000100

000102
000104
000108
00010C
000110
000114
000118
00011A
00011C
000120
000124
000128
000l12C
000130
000134
000138
00013C
000140
000144
000148
00014C
000150
000154
000158
00015C
000160
000164
000168
00016C
000170
000174

05 FO

1B 88
41 BO
S5A 8B
58 B0
47 AO
50 80
0A 01
OA 00
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000004
00000008
0000000C
00000000
0000000E
0000000F
00000010
00000011
00000012
00000013
00000014

04C
OlA
06E
006
06A

MNMTTTMMO

00000004
00000050

000102

BEGIN

LoogpP

TABLE

SUM

c8so

START
BALR
USING
SR
LA

A

S

8c
ST
svc
svC
oC
oC
oC
oc
oc
DC
DC
P18
o]
DC
oC

ocC
END

256
15,0
*,15
848
11,76
8,TABLE(11)
11,C4
10,L00P
B¢ SUM
1

o]
Fel°
Fo2e
Fe3e
Frer
Fe5¢
Fre*
Fe7e
Fegr
Fe9r
F*l0°*
Felle
Friz*
Fel3:
F'l4°
F*'15°*
F*l6!
Fel7?
Fei8"
F*19°*
F*20*
3
Foge
F*80*
BEGIN

Figure 53. Second version of a program to form the sum of 20 numbers
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tions in the repeated portion of the loop, here there
are three. The final version reduces this number to
the minimum, two. The technique is to use the Branch
on Index Low or Equal instruction (BXLE), which is
a combination of an Add, a comparison, and a con-
ditional branch.

Let us assume we have three registers set up as
follows: Register 11 will be the index; it initially
contains zero. Register 12 will contain the amount
by which the index is to be incremented each time
around the loop, 4. Register 13 will contain the limit
value, the value of the index which is not to be ex-
ceeded, 76. If we have the instruction:

BXLE 11,12,1.OOP

the action will be as follows: The contents of register
12 (4) are ddded to register 11, which is the index
and initially contains zero. If the sum is less than or
equal to the contents of register 13, the limit, the
branch to LOOP is taken; otherwise the next instruc-
tion in sequence is taken.

The instruction is written in assembly language in
the general form:

BXLE R1,R3,D2(B2)

Three factors, each of which must be located in a
register, are required by the BXLE instruction. An
index must be in the register specified by R1. An incre-
ment must be in the register specified by R3. A limit
value must also be in a register but the register is not
explicitly specified in the instruction. The BXLE in-

START 256

000100 05 FO BEGIN BALR 15,0

’ 000102 USING #,15
000102 18 88 SR 848
000104 18 88 SR 11,11
000106 41 CO 0 004 LA 12,4
00010A 41 DO 0 04C LA 13,76
00010€ S5A 88 F O1lA LoopP A 8,TABLE(1])
000112 87 BC F 00C 8XLE 1l1,12,L00P
000116 50 80 F 06A ST 8,SUM
000114 0A 00 svC 0
00011C 00000001 TABLE DC Fele
000120 00000002 ne Fr2¢
000124 00000003 oC Fe3e
000128 00000004 DC Frer
00012C 00000005 bec Fi5¢
000130 00000006 o] Free
000134 00000007 oC Fr7e
000138 00000008 o] Feg*
00013C 00000009 3]0 F'9*
000140 0000000A oC F*10°
000144 00000008 oC Felle
000148 0000000C oC Fer12e
00014C 00000000 oc Felp3e
000150 0000000E DC Frl4’
000154 0000000F oc Fe15°
000158 00000010 319 F*'16°
00015C 00000011 oC Fe17°
000160 00000012 219 Fe18°
000164 00000013 0C Fel9°
000168 00000014 oC F*20°*
00016C SUM s F
000170 00000004 C4 DC Fr4°
000174 00000050 cso 2] F'80*

END BEGIMN

Figure 54. Third version of a program to form the sum of 20
numbers. This shortest version uses the Branch In-
dex Low or Equal (BXLE) instruction.
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struction will first add the increment to the index. Tt
will then compare the resultant index against the limit.
If the index is less than or equal to the limit, a branch
is taken to the location specified by D2(B2); otherwise
the next instruction in sequence is taken. The register
containing the limit value is always odd-numbered and
is chosen in the following way:

1. If the register specified by R3 is an even num-
bered register, the limit value is assumed to be in
the next higher numbered register. If we have
the instruction:

BXLE 11,12,LOOP

the limit value is in register 13, the next higher-
numbered register.

2. If the register specified by R3 is an odd-numbered
register, a third register is not used. In this case
the BXLE instruction assumes that R3 specifies
the register to be used for both the increment and
the limit. If we have the instruction:

BXLE 6,7,LOOP

register 7 will be used by BXLE as the source of
the increment and the limit.
We shall see in later chapters how it can be useful to
have the second and third registers the same — for now
we shall use R3 operands that are even-numbered.

This instruction at first glance seems more compli-
cated than it is. Let us turn to an example to see
how it works. Figure 54 is the final version of our
summing loop.

We begin the program by loading the 3 registers
that will be used by the BXLE instruction (registers
11, 12, and 13), with the desired initial contents. We
then proceed to the Add instruction at LOOP, which
is the same as in the previous two versions. Next comes
the BXLE, which operates as described.

The operation of the BXLE instruction is most easily
remembered if we think in terms of three registers
representing the index, the increment, and the limit,
in that order.

For situations where it is desired to work back-
wards, in which case the increment would be nega-
tive, the Branch on Index High (BXH) instruction is
available.

The BXLE and BXH instructions are very power-
ful and very flexible. They will find heavy use in
many practical applications, and are well worth the
investment of effort necessary to understand them
fully.



Case Study 1: Averaging a List of Temperatures

In an attempt to draw together some of the things
that have been discussed in this chapter, we shall
now consider a final problem that involves several
different concepts.

Suppose we have in storage a group of halfwords
giving the temperature, to the nearest degree, on
each of the days of a month. There may be 28, 29, 30,
or 31 of them; the number is given by a halfword
named DAYS. The table of temperatures begins at
TEMP and continues for a total of 31 halfwords; if
there are fewer than 31 days in the month at hand,
the last entries of the table are to be ignored. It is
possible that the temperature may be missing for
some days; a missed reading is indicated in storage
by a halfword of all I's. We are to form the average
of the temperatures for the month, using only as many
good readings as are found. If the entire table should

computed. In any case, we are to store in NGOOD
the number of good readings found. The average
should be rounded off to the nearest degree.

The program shown in Figure 55 uses the halfword
variations of a number of instructions that should be
quite familiar in their fullword forms.

Before analyzing the operation of the program, it
may be helpful to summarize the functions of the
registers used, which will often be a valuable thing
for the programmer to do.
Register

5 Word of I’s
6 Left half of dividend
7 Sum of temperatures—right half of dividend
8 Count of nonzero temperatures
10 Increment for BXLE
11 Limit for BXLE

Usage

happen to contain bad readings, a halfword of all I’s 14 Index register
should be stored to indicate that the average was not 15 Base register
START 256
000100 05 FO BEGIN BALR 15,0
000102 USING #,15
000102 48 50 F 096 LH  5,0NES
000106 1B 66 SR 6.6
000108 18 76 LR 7,6
000104 18 86 LR 8,6
00010C 41 AD 0 002 LA 10,2
000110 48 BO F 098 LH  11,DAYS
000114 4B BO F 09 SH  11,0NE
000118 88 80 0 00l SLA 11,1
00011C 18 E6 LR 14,6
00011€ 49 SE F 054 LOOP CH  5,TEMP(14)
000122 47 80 F 02C BC  8,2ERD
000126  4A TE F 054 AN T,TEMP(14)
00012A  4A 80 F 094 AH  8,ONE
00012E 87 EA F 0IC ZERO  BXLE 14,10,L00P
000132 40 BO F 09C STH  8,NGOOD
000136 12 88 LTR 8,8
000138 47 70 F 040 BC  7,NOT
00013C 40 S50 F O9A STH  5,AVER STORE ONES IF ND 500D DATA
000140  0A 00 SVC 0 sToP
000142 88 70 0 001 NOT  SLA 7,1 TO GET EXTRA BINARY PLACE IN QUOTIENT
000146 1D 68 DR 6,8 DIVILE REGISTER
000148  4A 70 F 094 AH  7,0NE RDUND OFF
00014C  8A 70 O 001 SRA 7,1 DROP EXTRA BIT
000150 40 70 F 09A STH  7,AVER FINAL RESULT
000154  0A 00 sve 0 out
000156 0001 TEMP  DC  HeLY
000158 0002 DC  He2e '
00 bc
TC ‘M\//”/T
000190~ UUIE oC  uv30°
000192  0OLF DC  He3lL
000194 0020 DC  He320
000196 0001 ONE  DC  H'L®
000198  FFFF ONES DC  X*FFFF*
000194 DAYS DS  H
00019C AVER DS  H
00019€ NGOOD DS  H
END  BEGIN

Figure 55. A program to compute the average of a set of temperatures, taking into account the possibility of missing readings
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The initialization consists of setting up the contents
of the seven registers used by the program. The first
one to be set to zero (6) is cleared by a Subtract
Register, the others by Load Registers from 6. The
Load Halfword to get the number of days into reg-
ister 11 automatically expands the halfword into a
fullword, which would mean that the sign bit of a
negative number would be filled out. With correct
data, the word here cannot be negative, of course.
The number of days is to be used to terminate the
summing loop that adds up the temperatures. The
loop should be executed as many times as the number
of days; it should be repeated (after the first time)
one less time than the number of days. We accord-
ingly subtract 1 from register 11 after loading it.

Since the table of data consists of halfwords, the
index register will have to be incremented by 2 be-
tween loop repetitions, and the proper limit value is
two less than double the number of days. We can
double a number quite simply by shifting left one
place in a binary machine. (If the table had consisted
of fullwords, requiring an increment of 4, a left shift
of two places would multiply the number of days by
4.) _

In the working part of the loop we first check to
see whether the particular temperature is valid, by
comparing with the word of all I’s that had been set
up in register 5. The Compare Halfword expands the
halfword from storage to a fullword by propagating
the sign bit. This is necessary to us, since the load
halfword that put the word of all 1’s in register 5 did
the same thing. We next branch on equal to the in-
struction at ZERO, which would happen if the read-
ing was bad. If it was good, the branch is not taken;
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we add in the temperature, add one to the count of
good readings, and then reach the BXLE.

The BXLE increments the index register (14) by 2
(which is in 10) and checks whether the index is now
the same as what we put in 11. If the index is low or
equal, meaning that the list has not been exhausted,
we branch back to LOOP to go around again.

When the loop is finished, we reach the Store Half-
word after the BXLE. Here we store the count of good
readings at NGOOD; this conceivably could be zero.
Next we check whether it was zero, using the Load
and Test Register instruction (LTR). With the two
register designations being the same, as they are here,
the effect of this instruction is to set the condition
code according to the sign and magnitude of the count
in register 8. The Branch on Condition instruction
then asks whether the count was either positive or
negative and branches if so. If it was neither of these
it must have been zero, in which case we store the
word of all I’s for the average in AVER, and stop.

If there was at least one good reading, we are ready
now to compute the average. In order to be able to
round off to the nearest degree, it is necessary to ar-
range the division so that the quotient has one binary
place in it; this can be done by shifting the dividend
to the left one place before dividing. The division is
done this time with the Divide Register instruction,
since the desired divisor (the count) is already in a
register. Following the Divide Register we add 1 to
the rightmost bit position of the quotient register to
round off. Having done so, we shift the quotient back
to the right to get rid of the extra bit and store the
result.



1. The L, A, S, and ST instructions all operate on a
(fullword, halfword).

2. The first operand of an instruction usually speci-
fies the operand that (sends, receives) information.
3. In a ST instruction the first operand specifies the
operand that (sends, receives). Does the ST instruc-
tion, in this respect, follow the general rule, or is it
an exception to the general rule?

4. Is the instruction M 7,QTY a legitimate instruc-
tion? If not, why not?

5. The D instruction specifies

as- the first operand, and the

as the second operand. After completion of the divide
operation, where is the quotient located? Where is
the remainder located?

6. Assume that a fullword area of storage (reserved
by a DS), to be addressed as XANDY, contains two
positive items as below:

XANDY —=0 19 20 31

Questions and Exercises

Write the program to store X in a fullword area in
core called X, and Y in a halfword area in core called
Y.
7. The instruction BC 5ROUT3 would branch to
ROUTS if the:

a. Condition code is 5.

b. Condition code is 1, 2, or 3.

c¢. Condition code is 1 or 3.
8. Write an instruction to branch unconditionally to
an instruction called NEWONE.
9. There are four fullwords named X1, X2, X3, and
X4 sequentially located in storage. Write one instruc-
tion that loads these four fullwords into registers 2, 3,
4, and 5 respectively.
10. Write an instruction that clears register 5 to zero.
11. Consider the instruction named LOOP in Figure
52. How will the effective address of TABLE(11) be
formed?
12. Write a single instruction that adds the contents
of register B to register 5, tests to see if the sum now
in register 5 is equal to or less than the contents of
register 7, and then branches to an instruction called
NEWONE if the answer is yes.
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Chapter 5: Programming with Base Registers and the USING Instruction

A major programming feature of the System/360 is
the use of base registers, which provide three impor-
tant advantages. First, compatibility is maintained
between the small system with its short addresses
and the large system with its longer addresses. The
same instruction size and format accommodates both.
Second, through appropriate use of base registers it
is possible to relocate assembled programs almost at
will. Great flexibility in program organization is thus
achieved, since storage locations can be reassigned as
dictated by the needs of the particular “mixture” of
programs or program segments. Third, if proper care
is exercised, base registers may still be used for index-
ing through storage addresses without destroying their
effectiveness for the first two purposes.

Base registers are thus deeply involved in program-

The USING Instruction

Automatic assignment of base registers and the auto-
matic computation of displacement require the pro-
grammer to supply two items of information to the
assembler and one to the object machine, With the
USING instruction, the programmer tells the assem-
bler:
1. Which general registers may be used as base
registers
2. What each one will contain at the time the
object program is executed
With this information the assembler can do its
work: assign base registers and compute displace-
ments. It still remains to place in the base registers
the values we have promised the assembler will be
there. This can in principle be done in many ways,
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ming and in program execution. However, as we shall
see, it is possible to delegate to the assembler almost
all of the clerical work of assigning base registers and
computing displacements. With a full understanding
of these techniques, the programmer is able to leave
the housekeeping to the assembler where appropriate,
and to employ more sophisticated methods where
needed.

In the remainder of this publication we shall see
how the automatic techniques are called into opera-
tion and how the assembler implements them, and
we will explore a few slightly more advanced tech-
niques. As in so many other aspects of programming,
particular emphasis must be placed on the question
of the timing of various actions: during assembly, pro-
gram loading, or program execution.

but the most common is to use the Branch and Link
Register instruction (BALR). The general format of
this instruction is:

BALR R1,R2
R1 receives the address of the next byte after the
BALR; R2 supplies a branch address unless it is zero,
in which case the next instruction in sequence is taken
as usual. For our purposes here, the second operand
(R2) is always zero. For instance, in the illustrative
program we shall be considering shortly, we have an
instruction:

BALR 150
This places in register 15 the address of the next byte
after the BALR, and there is no branch. The choice of
register 15 was arbitrary.



These ideas may be made more concrete by consider-
ing an example. Figure 56 is an assembly listing of a
program the processing details of which do not con-
cern us.

The START instruction specifies that the assembled
first byte of the program is location 25610 —= 100:6. We
see that the BALR instruction has in fact been placed
in 100. (All numbers in the object program area of
the assembly listing — on the left-hand side — are
hexadecimal.) The BALR instruction specifies that
general purpose register 15 is to be loaded with the
address of the next machine instruction. This, of
course, is done at execution time by the object ma-
chine. The USING instruction, which is an assembler
instruction and takes no space in the object program,
informs the assembler that general purpose register
15 will contain the address of the next machine in-
struction. Register 15 becomes the base register for
this program. The BALR is a two-byte instruction,
so the next instruction, the Load, is placed at 102.
This number, printed to the left of the USING, indi-
cates what the assembler assumed would be the con-
tents of base register 15.

Let us now look at the Load instruction to see how
the assembler handled it. Reading from left to right
the operation code is 58, the register loaded with a

An Example

word from storage is number 2, no index register is
specified, the base register is Fig = 150, and the dis-
placement is 022;6. With base register 15 containing
102 and with a displacement of 22, we get an actual
address of 124,¢. Looking down the listing we see that
124 is in fact the absolute address corresponding to
the symbol DATA, as it should be.

The Add instruction is similar. With base register
15 again automatically designated, we have a base
address of 102 and a displacement of 2A for an effec-
tive address of 12C, which is the absolute equivalent
of the symbol TEN.

The Shift Left Algebraic instruction is a little dif-
ferent. All shift instructions have the RS format, with
the index portion unused, but they still must specify
a base register. Even though the effective “address”
is never used for a storage reference, it is possible to
make effective use of a variable number of positions
of shift by varying the contents of the base register.
In this program, however, such is not the case and
we need a base register designation of zero. We see
that this was done. The effective address is therefore
just the displacement of 1. The remainder of the pro-
gram presents no new base register concepts.

As always, it is most important to distinguish be-
tween what is done at assembly time and what is

START 256

000100 05 FO BEGIN BALR 15,0

000102 USING #,15
000102 58 20 F 022 L 2+DATA LOAD REGISTER 2
000106 SA 20 F 02A A 2, TEN ADD 10

» THE FOLLOWING SHIFT HAS THE EFFECT OF MULTIPLYING BY 2
00010A 88 20 0 001 SLA 251
00010E 58 20 F 026 ) 2+DATA+S NOTE RELATIVE ADDRESSING
000112 50 20 F 02€ ST 2,RESULT
000116 58 60 F 032 L 6+BIN1
00011A SA 60 F 036 A 6,BIN2
00011E 4E 60 F 03E CVvD  6,DEC CONVERT TO DECIMAL
000122 OA 00 svC 0
000124 00000019 DATA DC Ft25¢
000128 0000000F DC Fr15¢
00012C 0000000A TEN oC F'10°
000130 RESULT DS F
000134 0000000C BIN1 0oC Fel2*
000138 0000004E BIN2 nC F*78°*
000140 DEC DS D
END BEGIN

Figure 56. Assembly listing of a program to illustrate base register assignment and displacement computation. The “processing”

performed is not intended to be realistic.
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done at execution time. The assembler, in the exam-
ple at hand, has filled in base register numbers where
needed and has computed displacements. These base
register numbers and displacements become part of
the actual instructions, as listed down the left side of
the assembly listing. In carrying out the assembly
operations, the assembler had to know what base reg-
ister we wished to use and what we planned to put in
it; this information we provided with the USING.

The assembler cannot load the base register for
the execution of our program, since that can be done
only when the program is executed. We therefore pro-
vided the BALR instruction, which, at execution time,
places the address of the next instruction into the
specified register. The remainder of the program can
now be carried out, with effective addresses being
developed as intended.

Actually, there is a third “time” that should be con-
sidered: loading time of the object program. We said
with our START instruction that the first byte of the
program should be placed in 256;0 = 100:6. Every-
thing said so far has assumed that the program is ac-
tually loaded starting in 100:;5. But what if it were
not? Suppose we were to decide after assembling
the program that in order to avoid conflict with other
programs the program should be loaded into 12004e.
With a suitable control card we inform the relocatable
loader that the first byte of the assembled object pro-
gram is to go into 1200. What would have to be
changed in order to make the object program operate
correctly from the new location?

The answer is that nothing need be changed. When
the program has been loaded we begin by executing
the BALR instruction. Now, what is the address of the
next instruction after the BALR? Answer: 1202. This
value goes into register 15 and becomes the base ad-

dress. The displacements in the assembled instructions
have not changed, of course. The effective address in
the Load instruction is now 1202 4 22 — 1224. With
the new starting location, 1224 is exactly where DATA
appears. All other addresses are correctly computed
as well, including the “address” in the Shift, which
is completely unchanged since no base register is used.

A complete relocation of the program after assem-
bly is thus a simple matter of changing a control card
in loading. In more complex program structures the
loader has more work to do than this example might
suggest, but it is nevertheless feasible to execute pro-
grams from whatever storage locations may be con-
venient.

As we have noted, this simplicity of program reloca-
tion was one of the reasons for providing base registers
in the System/360.

It is possible, of course, to circumvent the system
partially, by designating base register zero, in which
case no base register is used at all. The program is
then restricted to the use of addresses that can be
contained in the displacement portion of the instruc-
tions, namely zero through 40955. Although there
may conceivably be circumstances that justify this
attack, it must be strongly discouraged as a general
practice. The lower parts of storage of course have
special functions (in connection with the PSW’s) that
cannot be disturbed. Even if these locations were
avoided, however, it is inadvisable to discard the relo-

- cation feature.

The techniques of program relocation are heavily
involved in a discussion of subroutines and subpro-
grams. For the remainder of this presentation we shall
assume that each program is loaded where indicated
by the START.



The displacement in an instruction is limited to a posi-
tive number in the range 0-4095:0 = 0-FFFy. This
means that an effective address cannot be less than
the base register contents, nor more than 4095 greater
(assuming no indexing, of course). If a program must
reference a range of addresses greater than 4095,
either the base register contents must be changed
or more than one base register must be used. For
routine programming, the latter solution is much more
common.

It should be noted, however, that it takes a rather
large program segment to exhaust the range of dis-
placements using one base register. With average
length instructions, it takes a full pad of coding paper
to use up 4096 bytes. It will usually be desirable to
break a program this large into smaller segments
anyway, so it will probably be extremely rare in prac-
tice to need more than one base register because of
program length. Long sections of storage for data or
results are another matter. It may fairly frequently be
advantageous to assign one base register to the pro-
gram and another to data. This is done in the exam-
ple in the last section of this presentation.

For now, to establish some basic ideas, let us make
up a program that does use more than 4096 bytes
for combined data and program. We shall naturally
not actually write an illustrative program that large,

More Than One Base Register

but we can simulate the effect of such a size by using
the ORG assembler instruction to advance the loca-
tion counter. -

The program shown in Figure 57 was designed with
the sole purpose of illustrating base register ideas;
the “processing” is not intended to be meaningful.
After the usual START, we have a BALR to load base
register 15 with the address of the next instruction.
The USING instruction is slightly different this time.
Instead of using an asterisk to denote the address of
the first byte of the following instruction, we give
that instruction a symbolic name (HERE) and use
the symbol. This gives exactly the same effect with
respect to register 15, and permits us to refer to the
contents of 15 in terms of a symbol, which we shall
need for loading register 13. (The choice of register
13 was arbitrary.)

In loading the second base register, we cannot use
a BALR: we want register 13 to contain not the ad-
dress of the next instruction, but 4096 more than what-
ever went into 15. To accomplish this we use an ad-
dress constant, named BASE in this case, which is
written with the address HERE4096. We see that
the constant BASE has been assembled as we in-
structed: 1102 is 1000 hexadecimal greater than the
value of the symbol HERE, and 10006 — 4096;,.

Base register 13 will thus be loaded with 1102;6 at

START 256
000100 05 FO BEGIN BALR 15,0
000102 USING HERE, 15
000102 58 DO F 00A HERE L 13,BASE
001102 USING HERE+4096,13
000106 47 FO F OOE 8C 15,FIRST
ooo1o0C 00001102 BASE oC A(HERE+4096)
000110 58 20 F FFE FIRST L 2+DATA
000114 5A 20 D 0OOE A 2, TEN
000118 47 FO D 002 8C 15,SECOND
001100 ORG *#+4068
001100 00000078 DATA DC Fe123:
001104 58 30 F FFE SECOND L 3,DATA
001108 5A 30 D OOE A 3, TEN
00110C 47 FO F OOE BC 15,FIRST
001110 0000000A TEN DC F'10?
END BEGIN

Figure 57. Assembly listing of an illustrative program that has an Origin assembler instruction to make the program appear to have
more than 4096 bytes, thus requiring two base registers
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execution time. This information is given to the as-
sembler with a USING that has the address HERE -}
4096.

It is worthwhile noting which base register was
used in the Load instruction that loaded base register
13: we see that the base register is 15 (which con-
tains 102) and there is a displacement of A (410 deci-
mal). The effective address is thus 10C, which we see
is indeed the address of the constant BASE. It is im-
portant to realize that at the time register 13 is being
loaded, the only base register available is 15; the
effective address of the instruction that loads 13 there-
fore cannot be more than 4096 greater than the con-
tents of 15; Thus the address constant BASE cannot
be at the end of the entire program, which would
be more than 4096 bytes away. We have chosen to
place it at almost the beginning and branch around
it. Other placements are possible, so long as they do
not cause the assembler to try to use a displacement
in the Load instruction at HERE that is negative or
greater than 4095.

(As an example of an attempt to use a negative dis-
placement, suppose we were to put the address con-
stant BASE at the very beginning of the program,
between the START and the BALR: then the dis-
placement in the Load would need to be —6, which
is impossible. )

Following the constant BASE we have two instruc-
tions that are meant to suggest the processing steps of
the program, and then a branch to an instruction near
the end. For the sake of illustration, we want the pro-
gram to look as though it is more than 4096 bytes
long. This we can simulate by an ORG that, in this
case, advances the location counter by 4068. This arbi-

trary-appearing number was chosen to put DATA at
the end of a 4096-byte segment controlled by base
register 15, which means that the following instruc-
tions and data are referenced by base register 13.

Let us now investigate how the assembler assigned
base registers and computed displacements.

The Branch on Condition to FIRST involves a lo-
cation under the control of base register 15; if base
register 13 were specified, the displacement would
have to be negative. The Load at FIRST refers to
DATA. The base is 15, with a large displacement of
FFE;¢ = 4094;0. The Add refers to a location that is
more than 4096 bytes away from the beginning of
the program, so base register 15 cannot be used. We
see that 13 has been indicated, with a displacement
of Eis = 1450. The following Branch on Condition
references a storage location 2 greater than what was
placed in register 13, so register 13 is the base and
the displacement is 002.

Down at SECOND, the base registers and displace-
ments for getting DATA and TEN are exactly as they
were before; these matters are unaffected by the lo-
cation of the instructions. The assembled Branch on
Condition to FIRST is precisely the same as the as-
sembled Branch on Condition that appeared earlier,
just before BASE.

The essential concept is that the assembler assigns
whatever base register is necessary to get a displace-
ment less than 4096. If the program has been written
so that two or more base registers have contents that
satisfy this rule, the assembler chooses the one that
leads to the smallest displacement. We shall see later
an instance in which this rule for choosing base regis-
ters is important.



Separate Base Registers for Instructions and Data

We have suggested that it will be rare for a program
segment to be so long as to require more than one
base register. On the other hand, 1t may be Afairly

tlons “and data, even though the_ mstructlons take_ far _

“fewer than 4096 bytes How this can happen is illus-
Trated T the following problem.

Suppose we have six records in storage, each record
consisting of 80 characters. The six records are in con-
secutive storage locations; the first of the 480 bytes
has the symbolic address DATA. Within each record
there are eight fields of ten characters each, named
FIELDI1, FIELD2, etc. Each field is in packed deci-
mal format. We are required to add FIELD1 and
FIELD2 and place the result in FIELD3. The other
five fields are not used in this program. This process-
ing is to be done for each of the six records, using a
loop.

Now the question is, How do we attack the loop?
The arithmetic will use decimal instructions, which
have the SS format and are not indexable. We could
write instructions to modify the displacement of every

. instruction that refers to the records, but this is very

poor form if there is a better way available.

The solution proposed here is to modify the base
register contents so as to pick up the records in suc-
cession, which means that between loop repetitions
we will add 80 to the base register. But now we have
a new problem: if only one base register is used,
how do we modify its contents and still get a cor-
rect base for Branch instructions and for references
to program constants? The simplest answer is prob-
ably obvious: use two base registers, the second of
which refers only to the data processed by the loop.

A program is shown in Figure 58. The loading of
base registers is much as it was in Figure 57, except

START 256

000100 05 FO BEGIN BALR 15,0

000102 USING #,15
000102 58 80 F OlE LooP1 L 8,BASE

00012C USING DATA,8
000106 D2 09 8 Ol4 8 000 LOOP2 MVC FIELD3,FIELDL
00010C FA 99 8 014 8 00A AP FIELU3,FIELD2
000112 5A 80 F 022 A 8,EIGHTY
000116 59 80 F 026 c 8,TEST
00011A 47 70 F 004 B8C 7,L00P2
00011E OA 00 SvC 0
000120 0000012C BASE DC A(DATA)
000124 00000050 EIGHTY DC F*80°*
000128 0000030C TEST DC A(DATA+480)
00012C DATA DS OF
00012C FIELD1 DS CL10
000136 FIELD2 DS CL10
000140 FIELD3 DS cL10
00014A FIELD4 LS CL10
000154 FIELDS DS cL10
00015¢€ FIELD6 DS CL10
000168 FIELD7 DS cL10
000172 FIELD8 DS cL10
00017C DS cL80
0o0o01cCC DS cL80O
00021C DS cLso
00026C DS cLso
00028C DS cL8o

END BEGIN

Figure 58. Assembly listing of a program that has separate base registers for program and data, with the base register for data being

used for looping
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that this time register 8 is loaded with the address
corresponding to DATA, rather than with 4096 more
than what 15 contained. As a matter of fact, it turns
out that 15 contains 1026, and 8 contains 12Cie. This
will mean that the first byte of the area named DATA
could be obtained by adding a displacement of 2A
to register 15, or by adding a displacement of zero to
register 8. As we noted, the assembler picks the way
that gives the smaller displacement. It is essential for
us to be able to depend on this fact.

We see also that in this program the address con-
stant for loading register 8 has been placed at the
end of the instructions rather than in the instruction
stream. This is permissible as long as we are sure
that it is not more than 4096 bytes away from the be-
ginning of the program, which it obviously is not.

It is assumed, for the purposes of this illustration
of base register ideas, that the data is provided by
another program segment and used later by some
other. We therefore have provided space for the data
with DS instructions that allot space for the required
number of characters but do not assemble constants
to be entered. The DS for DATA, in fact, does even
less than that: it provides a reference point for the
symbol, but does not even reserve space since a zero
is written for the duplication factor. Thus DATA and
FIELD1 both refer to the same byte. The point of
this approach is to have DATA for a name for the
entire 480-character storage area, and still use names
for the fields within the first record. An alternative
approach would have been to use DATA as the name
of the first field, DATA-4-10 for the second, DATA4-20
for the third, etc. The loss of meaningful names is a
disadvantage. Another alternative would have been
to omit the entry for DATA and use FIELDI1 wher-
ever DATA appears earlier. This would also be a lit-
tle less meaningful, perhaps.

The Move Characters instruction at LOOP2 moves
the first field to the third field location. Reading across
the assembled instruction, we have: the actual opera-
tion code D2; the length code is 09; the base register
for the first operand is 8; the displacement for the first
operand is 014; the base register for the second oper-
and is also 8; the displacement for the second oper-
and is zero. The length code of 9 is correct for a field
of length 10; the assembler picked up the implied
length from the DS entry for FIELDI, and subtracted
1 from the length to get the length code. Checking
the address calculations, we see that a base address of
12C plus a displacement of 014 give an effective ad-
dress of 140, which is correct for FIELD3. A base
address of 12C and a displacement of zero give the
address of FIELDI.

The Add Decimal instruction that follows does the
required addition. This instruction has two length
codes, both 9 in this case, for two fields of length 10.
The displacement of 00A, together with the base ad-
dress of 12C, correctly lead to 136, the address of
FIELD2. The addressing of FIELD3 is as before.

Now we are ready to add 80 to the base register
associated with DATA and go back to process more
records if more remain. We add 80 to base register
8 and then compare with an address constant to test
for completion of the loop. What should the test con-
stant be? Since we modify before testing, and since
there are 480 characters in the six records, we should
stop repeating if at this point the base register con-
tains a number 480 greater than what it was to start.
It was originally the equivalent of the symbol DATA,
so the test value ought to be DATA4-480, as shown.
The Branch on Condition here is in effect a “Branch
if Unequal”. If the Branch is not executed, we are
finished and the next instruction is a Supervisor Call.

If the program had been written to use only one
base register, we would be in trouble with the address
of the Branch on Condition. The assembler would
have assumed a certain value for the base register
and computed a displacement accordingly. After mod-
ifying the base register contents, we would no longer
have the desired branch address.

It is of course true that we are modifying the con-
tents of base register 8 also, but we have carefully
arranged that it is not used as a base for anything
besides DATA. No confusion is caused, therefore, be-
cause we have “cheated” by changing the contents
of a base register from what we promised the assem-
bler would be there. What we told the assembler
correctly led to the first record processed; by the time
we changed the contents (during execution) the as-
sembler is no longer on the scene to know that any-
thing happened.

In practice it would normally be necessary to proc-
ess many blocks of six records, not just one. In that
case we would have to get register 8 back to its start-
ing value. This is readily done simply by re-executing
the Load instruction at LOOPI1.

If this program were ever relocated, it is perhaps
obvious that something would have to be done during
loading to take care of the address constants at BASE
and TEST. It would clearly not be enough to change
the initial program loading location, without notifying
the address constants of the change. This matter is
properly handled by an automatic flagging of all ad-
dress constants in the deck or tape produced by the
assembler, and by suitable modifications performed
by the relocatable loader.



In order to illustrate one last facet, suppose that
there were some compelling reason to place additional
instructions after DATA. (It is assumed that there
would be a Branch to them.) Suppose that within
these additional instructions there were Branches to
locations within the new group. What would the base
register situation be? With the size of program and
data shown, either base register 15 or 8 could supply
a displacement of acceptable size; the assembler could
pick the one leading to the smaller displacement: 8.

Base registers, when used effectively, provide some of
the most powerful and flexible processing features of
the System/360. From addressing compatibility be-
tween systems, to program relocation, to indexing in
SS format instructions — these are only some of the
ways in which base registers add to the power of the
system. In other chapters in this text we shall see how

But the contents of 8 change as the loop is executed;
how can we tell the assembler that 15 is wanted, not
8?

The answer is the DROP instruction, in which we
would say DROP 8 at the beginning of the new group
of instructions. This says to the assembler that gen-
eral purpose register 8 may no longer be used as a
base register. The only one left is then 15, so it is the
one used, as desired.

Summary

they come into play in program segmentation and in
double indexing through tables, to mention only two

others.
With a thorough understanding of what is done at

each of the three “times” — assembly, loading, and
execution — the inventive programmer will find many
other ways to make good use of base registers.
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Questions and Exercises

Consider the following program. Note that some of  program listings. The locations are such that you
the program statements have been omitted from the should have no difficulty with hexadecimal arithmetic
listing. The locations assigned to each instruction, when answering questions 1-4, which refer to this
constant, and area are listed in hexadecimal, as in all  program.

Valve Assomed Value Loaded at Execution Time
aluve me:
Program loaded Program loaded
by Assembler at 20014 at 120014
Reg 15
Location Location Execution Time
(relocated) Object Instruction Effective Address
Program |Program
Base Displace- [Lloaded [Loaded
Register ment at 20014 ot 120014
START 512
1200 200 BEGIN BALR 15,0
USING  *,15
202 L 2 DATA
206 A 2 [lEND
234 S 2 \DATA+H
238 ST 2 RESULT)
252 L 6 ABIN1
304 DATA DC F'25
308 | - DC F5°
324 TEN DC F10'
328 RESULT DS F
344 BIN1 DC F12'
END BEGIN
Symbol Table
Location  Length
BEGIN 200 2
BIN1 344 4
DATA 304 4
RESULT 328 4
TEN 324 4
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la. What instruction informs the assembler that reg-
ister 15 is to be used as a base register, and tells the
assembler what value it must assume to be in that
base register at execution time?

b. What instruction causes register 15 to be loaded
with the base address at execution time? r

2. The assembly process can be explained in terms of
two phases. In the first phase, the assembler, among
other functions, determines the length and location
for each instruction, area, and constant. While doing
this it constructs a symbol table (note the symbol
table at the bottom of the assembly listing). The
symbol table consists of one entry for each symbol
appearing in the name field of the source program.
Each entry contains the symbol, the storage address
assigned to it, and the length (in bytes) of the stor-
age area associated with it.

In the second phase, the assembler again processes
the source program, developing for each symbolic
operand the base register and displacement that will
appear in the object instruction. To develop the base
register specification and displacement, the assembler
builds and uses a base register table, containing one
entry for each USING instruction. Each entry notes
the base register and the value the assembler assumes
will be loaded into that base register at execution
time (both of which are specified by the USING
instruction).

a. In the space provided in the assembly listing,
write the value the assembler assumes to be in base
register 15 at execution time.

b. Using the symbol table and answer 2a, write
(in the space provided) the base register and dis-
placement appearing in the object instruction for each
encircled operand.

3. Assuming the program is not relocated:

a. In the space provided, write the value placed
in register 15 at execution time.

b. Using the specified base register and displace-
ment, write (in the space provided) the effective ad-
dress developed at execution time for each encircled
operand.

4. Assume that the program, when loaded, is relo-
located starting at 12006 instead of 2001 In the
spaces provided, list:

a. The locations into which each instruction, area,
and constant is loaded.

b. The value placed in register 15 at execution
time.

c. The effective address computed at execution
time for each encircled operand. _
5. Consider the following program. As in the previ-
ous program, some of the program statements have
been omitted, the locations are listed in hexadecimal,
and the locations are such that you should have no
difficulty with hexadecimal arithmetic. In the spaces
provided, list:

a. The symbol table prepared by the assembler
(symbol and location only).

b. The contents of base registers 13, 14, and 15
assumed by the assembler.

c. The base register and displacement for each
encircled operand.

d. The value actually placed in registers 13, 14,
and 15 at execution time (assuming the program is
not relocated ).

e. The effective address computed at execution
time for each encircled operand.
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Value Assumed Value Loaded at Execution Time
by Assemb'er Progmm Iooded
at 100034
Reg 15
Reg 14
Reg 13
Location . . Execution Time
Object Instruction Effective Address
oy
Base Displace- [Loade
Register ment at 100016
START 4096
1000 BEGIN BALR 15,0
| USING  FIRST,15
1002 FIRST BC 15, SKIP
1006 DATA DC ] F'3472°
1024 BASE1 DC A(FIRST+4096)
1028 BASE2 DC A(FIRST+8192)
104 I 1 sk L iﬁpm ~
USING FIRST+4096, 14
1108 _ L 13 {BASE2)
USING  FIRST+8192, 13
2504 BC 15,CK8)
2898 LOOP A 4{DATA
3204 LOOPB S 5,.DATA
3508 BC 8{LOCP)
3904 CK8 BC 8 \LOOPB
END BEGIN
Symbol Table
Symbol Location




The decimal instruction set is an optional feature
of the System/360, but one that most users elect. Be-
sides making it possible to do arithmetic in the more
familiar decimal system, the decimal instruction set
includes instructions for editing data (preparing data
for printing by the insertion of characters such as
, . $). The decimal instruction set permits operations
on variable length data and includes the following
instructions:

Add Decimal

Compare Decimal

Divide Decimal

Edit

Edit and Mark

Multiply Decimal

Subtract Decimal

Zero and Add Decimal

Data operated upon by instructions in the decimal
set must be in one of two forms, packed or zoned,
depending on the instruction. As a rough generaliza-
tion, we can say that the packed format is required
for arithmetic and the zoned for input/output.

In the packed format, two decimal digits are placed
in each byte except the rightmost, which contains a
digit and the sign of the entire number.

TTEM:!T?T{*:‘S

Digit Digit | 1Digit ! Digit’

T A s it N N i A T
1R R I
Digit | i iDigit! | | Digit! | Sigai

I W — n i N S

Digits and sign occupy four bits each.

The decimal digits 0-9 have the binary codes 0000-
1001. In the sign position, the code combinations 1010,
1100, 1110, and 1111 are taken to mean plus, and 1011
and 1101 are recognized as minus. When a sign is
generated as a part of an arithmetic result, a plus is
1100 and a minus is 1101.*

Chapter 6: Decimal Operations

In the zoned format the rightmost four bits of a byte
are called the numeric portion of the byte and con-
tain a digit. The leftmost four bits are called the zone
and contain either a zone code or, in the case of the
rightmost byte, the sign of the number.

The codes for signs are treated as described for the
packed format. The code for the zone bits is 1111.

Decimal instructions have precise requirements that
operands be in packed or zoned format. The Pack and
Unpack instructions, standard instructions on the sys-
tem, are available for converting from one form to
another. The Move with Offset instruction, another of
the standard instructions, is often used for shifting
factors used or developed in decimal arithmetic oper-
ations. Instructions for converting between binary and
packed are also part of the standard instruction set.
We shall see examples of all of these operations later.

Decimal instructions use the SS (Storage-to-Stor-
age) format:

Op Code P L, B D, B: D.
There are two addresses, both of course referring to
core storage. Each address is formed from a base
register contents and a displacement. The address
always refers to the leftmost byte of an operand.

For each operand there is a separate length in most
cases. In the instruction the length code may vary
between 0000 and 1111, or zero and 15. These cor-
respond to lengths of one to 16. In other words, the
actual length is one greater than what appears in the
length code of the instruction. In assembler language
programming, lengths will quite often be implicit in
the data definitions, but when we do write an explicit
length, it is the actual length. The generation of the
proper code in the instruction (one less than whatever
we write) is the function of the assembler.

With these preliminaries in mind, let us turn to an
example.

HEHRE RN RN R
Zone + ; Digit} iZone i ; ,Digit; Zone|
I O W W S HEE
EBRRIESREENEEENRE RN
 Digit| ! Zone: , . Digit: | Sign! | Digit.
L 4 ! O V- T A HEH I HEH

*These are the EBCDIC codes, which we shall use through-
out. See the SRL manuals for a discussion of ASCII codes.
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Addition and Subtraction in Decimal

Let us take the first example used in the chapter on
“Fixed-Point Operations” and write it with decimal
arithmetic. The application is an inventory updating.
We were given an old on-hand (OLDOH), a number
received (RECPT), and a number issued (ISSUE);
we were to compute the new on-hand (NEWOH).
For this program we shall assume that all data entries
are already in packed format and are four bytes long.
Four bytes can contain, in packed format, seven deci-
mal digits and the sign.

In Figure 59 let us look first at the data definitions.

Nome Operation Operond
1 é 8 14 20 25
| SITH_‘I 2|56 /
BEIC|TW! | |B ,|0
TIMe| Bel,[115 f
M Vic NE H\y DL
AP VEWGIH; RIEC
VIE LSSl
vic ,
g c ALY )
REIC\PIT! | 1DC PLIY 4
SISUE | 1DC 46’
() AL il
END £5
) )

Figure 59. An assembler language program to perform a simple
arithmetic calculation in decimal, using the
System/360 decimal instruction set

The DC instructions for OLDOH, RECPT, and
ISSUE and the DS for NEWOH all have operands
that start with PL4. The P stands for packed format,
and the L4 for a length of 4. (Lengths are always
in bytes, never digits.) This is our first contact with
a length modifier in a DC instruction. Here, we are
specifying that the constants must be four bytes long.
If we had omitted the length, the constant generated
by the assembler would have been as long as needed
to hold the data value we wrote, in this case one byte.
(Length modifiers are actually permitted for other
types of data, too, although we have had no previ-
ous occasion to use them.)

Looking at the assembly listing in Figure 60, we see
that the DC entries have resulted in four-byte con-
stants. In each case, with the data shown, there are six
zeros, followed by a digit, followed by a hexadecimal
F (binary 1111), which is what the assembler used
for a plus in this case.

Turning back to the instructions of the program,
we see that the START, BALR, and USING are
standard. The first processing instruction is a new
one, Move Characters (MVC). This is an SS format
instruction of a slightly different sort: it moves from
storage to storage, but there is only one length, be-
cause the “sending” and “receiving” fields must be of
the same length. That length may be from one to
256 bytes. Looking at the assembled instruction, we
see that a length code of 3 has been supplied by the
assembler; this is the correct code for a length of
four bytes. The length of the operands was implied



000100 05 FO BEGIN
000102

000102 02 03 F 020 F 014

oool08 FA 33 F 020 F 018

00010E FB 33 F 020 F 01C

000114 0A 00

000116 0000009F OLDOH

00011A 0000004F RECPT

O0O11E 0000006F ISSUE

000122 NEWOH

START 256

BALR 15,0

USING #,15

MVC NEWOH, OLOOH
AP NEWOH,RECPT
sp NEWOH, ISSUE
svC 0

DC PL4*9?

0cC PL4 4"

DC PL4'6"*

DS PLG

END BEGIN

Figure 60. Assembly listing of the program of Figure 59

from the data definitions. It is also possible, and fre-
quently necessary, to write explicit lengths to over-
ride what the assembler would imply.

The generation of an address from the base register
contents and the displacement is as before: for in-
stance, for OLDOH the base register contains 102,
the displacement is 014; the sum of these is 116, which
we see is the address for OLDOH.

The purpose of the Move Characters instruction
was to get the old on-hand quantity into a location
where we can perform arithmetic without disturbing
the original quantity. The decimal instructions make
no references to the general registers (except, of
course, to get the base), so we must provide storage
locations for all operations. We do not wish to destroy
the old on-hand, so we must arrange for the arith-
metic results to go somewhere else. In this case, the
obvious place is NEWOH, where we want the even-

tual result anyway. In other problems, as we shall see,
it is often necessary to provide temporary working
storage.

The Add Decimal (AP, for Add Packed) instruc-
tion adds the quantity received to the old on-hand,
which by now is in NEWOH. Note that the result
of an arithmetic operation is always stored in the
first operand location. The two fields in an Add Deci-
mal instruction need not be the same length, since
there are two length codes in the instruction. Here,
they are the same, as it happens. The Subtract Deci-
mal (SP) instruction deducts the quantity issued.

There is no need for something equivalent to a
Store instruction; every instruction already involves
two storage addresses, one of which receives the re-
sult.

The storage dump of Figure 61 shows that the re-
sult has been correctly computed.

0000009+ 0000004+ 0000006+ 0000007+

Figure 61. Output of the program of Figures 59 and 60. The four quantities are OLDOH, RECPT, ISSUE,

and NEWOH, in that order.
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Decimal Multiplication

For a simple example of decimal multiplication, let
us write a program for the computation of a new
principal amount.

We are given a principal (PRINC), here taken to
be four bytes, and an interest factor (INT), two
bytes; we are to compute the new principal amount
after adding in the year’s interest. The interest rate
of 3% is expressed as the factor 1.03, so that a single
multiplication does the whole job. A program is shown
in Figure 62.

The decimal multiply instruction takes the second
operand to be the multiplier; the first operand ini-
tially contains the multiplicand, and at the end of
‘the operation contains the product. However, we
cannot begin with a multiply instruction specifying
PRINC as the multiplicand, as we might be inclined,
because extra space is required. The first operand
is required to have at least as many high-order zeros
as the size of the multiplier field. We need, therefore,
to move the principal to a working storage area hav-
ing extra positions at the left. These extra positions
must be cleared to zero before the multiplication
starts.

The Zero and Add (ZAP) does just what we need.
The effect of the instruction is to clear the first oper-
and (PROD, in this case) to zero, then add the sec-
ond operand (PRINC) to it. PROD is two bytes
longer than PRINC; these extra four digit positions
will be cleared to zeros before PRINC is added in.
This provides the zeros needed to satisfy the multi-
plication rule.

Now we multiply. With the sample data shown,
the result in PROD will be 00000256367-}-, as shown
in the comments field. We were regarding 2489 as
meaning $24.89, and 103 as meaning 1.03, so there
are four places to the right of the understood decimal
point in the product, which we therefore regard as
0000025.6367-. We would now like to round this off
to $25.64. This can be done in a number of ways.
Here we simply add a constant (ROUND) properly
set up to add a 5 into the second place from the
right. The second operand in an Add Decimal instruc-
tion is permitted to be shorter than the first (which
holds the result). When this is done, any carries that
occur are properly propagated.

Always bear in mind that the rightmost byte of an
operand in decimal arithmetic must have a sign. We
might be tempted, for instance, to set up a constant
consisting of a 5 without a zero, and add directly into
the position where we want to get the rounding. This
would be illegal. '

We are now ready to discard the two digits at the
right end of the product. But this is not quite as sim-
ple as just not moving them to PRINC, because if we
did that, PRINC would not be a legal operand in any
subsequent arithmetic operation, since it would not
have a sign. Before moving the result back to PRINC,
therefore, we must move the sign from where it is,
to the byte just to the left. This we can do with a
Move Numeric (MVN) instruction, which transmits
only the numeric portions of the bytes. The instruc-
tion says: Take the numeric portion of the byte at

, START 256
000100 05 FO BEGIN BALR 15,0
: 000102 USING »,15
-
. THE NUMBERS IN THE COMMENTS FIELD ARE THE CONTENTS
. OF PROD AFTER THE EXECUTION OF EACM INSTRUCTION
» THE C IS A PLUS SIGN IN THE PACKED FORMAT
»
000102 F8 53 F 026 F 020 ZAP  PROD,PRINC 00 00 00 02 48 9C
000108 FC 51 F 026 F 024 NP PROD, INT 00 00 02 56 36 7C
00010E FA 51 F 026 F 02¢ AP PROD, ROUND 00 00 02 56 41 7C
000114 D1 00 F 02A F 028 MVN  PROD+4(1),PROD+5 00 00 02 56 4C TC
. THIS IS NOW THE CONTENTS OF PRINC
000114 D2 03 F 020 F 027 MVC  PRINC,PROD+1 00 02 56 4C
000120 0A 00 svC 0
000122 0002489F PRINC DC PL&? 2489°
000126 103F INT oc PL2°103*
000128 PROD DS PLG
00012E 0S0F ROUND OC PL2°50*
END  BEGIN

Figure 62. Assembly listing of a program involving a decimal multiplication
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PROD--5 (which is the rightmost byte of the PROD,
and contains the sign) and move it to the byte at
PROD-}-4 (which is the byte to the left and will be
the rightmost byte of PRINC after the next instruc-
tion); the field to be moved is one byte long. The
length for this instruction cannot be left to the assem-
bler; the implied length here would be 6 (the length
of PROD), which would destroy the result. The Move
Numeric instruction has only one length code, so
we need give only one explicit length.

Finally, we are ready to move the result to the
field where it is required to be at the end of the pro-

gram, PRINC. Remember that PROD is six bytes long.
The leftmost byte contains two zeros, we assume: the
maximum size of the result is taken to be seven digits.
(The validity of such an assumption, as always, is the
responsibility of the programmer and systems ana-
lyst.) The rightmost byte of PROD contains a digit
and sign that we now wish to drop, since they are
to the right of the product after rounding. To drop
the leftmost byte, we write the address as PROD--1.
To drop the rightmost, we need a length of 4, which
happens to be the implied length of PRINC, so no
explicit length is necessary.
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Decimal Division

Some of the operations in working with the decimal
instruction set are different enough from similar op-
erations in other machines that it may be well to pause
and consider them in somewhat more detail than we
have devoted to other topics. Division is one such
operation; the equivalent of shifting, considered later
in “Shifting of Decimal Fields”, is another.

The Divide Decimal (DP) instruction is in the
SS format. The first operand is the dividend (the num-
ber divided into), the second the divisor (the number
divided by). After the operation is completed, the first
operand field holds the quotient (at the left) and the
remainder (at the right). The remainder is the same
length as the divisor. Let us see how this description
works out in an example.

Suppose we begin with the symbolic locations
DIVID and DIVIS as follows:

DIVIDyetore 000004246 +
DIVIS 0314

We have indicated DIVID as a “before” value, be-
cause after the division the same field will contain
both the quotient and the remainder. All operands are
in packed format, as with other decimal arithmetic
operations. After executing the instruction:

DP DIVID,DIVIS

the contents of DIVIS would be unchanged; the con-
tents of DIVID would be:

DIVIDafter 001 3 6+0 3 0 +

This means that 4246 divided by 31 in this way gives
a quotient of 136 and a remainder of 30. The divisor
was two bytes, so the remainder is two bytes. The
quotient takes up the remaining space in the first
operand field.

The question of the lengths of the various fields can
be answered with a useful rule:

Number of bytes in dividend — number of
bytes in divisor + number of bytes in quotient

It is perhaps most common to know the number of
bytes in the divisor and the number desired in the
quotient, the question being how much space to allow
in the dividend in order to get the specified size of
the quotient. If two of the three lengths are known,
the formula can be used to get the length of the third.

Note that the formula is stated in terms of the

number of bytes, not the number of digits. The reason
is that the first operand field contains only one sign at
the beginning, when it is the dividend, but two after-
ward, when it contains both quotient and remainder.
This change would invalidate a rule stated in terms of
digits.

A very similar rule gives the relationship among
decimal points. If we agree that by “decimal places”
we mean the number of digits to the right of an as-
sumed decimal point, the rule is:

Number of places in dividend = number of places
in divisor + number of places in quotient

In the example given above, we assume that all quan-
tities were integers, that is, have no decimal places.
The rule still holds, although in its most elementary
form:

0=0+40
Let us see what the result would be if we were to

arrange the dividend of the example so that it had one
decimal place:

DIVIDbefore O 0 0 0 4 2 4 6 0 +

In other words, we now view the dividend as 4246.0.
The result is:

DIVIDser 013694021 4

The rule says that the quotient should have one deci-
mal place: the dividend had one and the divisor had
zero. The quotient must therefore be interpreted as
meaning 136.9. (And if anything has to be done with
the remainder, it should be taken as meaning 2.1.)

Suppose the dividend had been shifted one more
place to the left:

DIVIDaster 136964024 +

This result should be read as 136.96.

What would happen if we tried to set up the divi-
dend with yet one more shift to the left? There is
room in the dividend — but there is no more space
in the quotient field. This constitutes a divide excep-
tion, which occurs whenever the quotient is too large
to fit in the field available to it. An interrupt occurs.

It is possible to check for the possibility of a divide
exception, given sample numbers. To do this, the left-
most digit position of the divisor is aligned with the
second digit position from the left of the dividend.



When the divisor, so aligned, is less than or equal
to the dividend, a divide exception will occur. Take
the situation suggested:

DIVIDoetore 004246000 +

DIVIS 0314

This is the alignment described by the rule. As
aligned, the divisor is smaller. We saw before that
there would not be enough room for the quotient.

This question does depend on the particular num-
bers involved, of course. Suppose the quantities were
aligned the same way but that the dividend were 2246
instead of 4246:

DIVIDbefore 0 0 2 2 4 6 0 0 0 —I—
DIVIS 031+

This is entirely acceptable.

To be completely confident that a divide exception
cannot occur, we have to know the maximum possi-
ble size of the dividend and the minimum possible
size of the divisor, or we must know the maximum size
of the quotient.

Further examples of decimal division will be given
after we have studied shifting, which is often needed
to arrange the dividend as desired to give the neces-
sary number of decimal places.
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Shifting of Decimal Fields

Shifting as such is not provided in the System/360
decimal operations. As in other variable-field-length
computers with which the reader may be familiar,
the equivalent of shifting is performed by appropri-
ate combinations of data movement instructions.

The matter is made somewhat more complex by the
factor of packed formats, with two digits per byte
and with the special status of the sign position. This
is simply the price we pay for the increased storage
economy of the two-digits-per-byte arrangement.

It is also necessary to exercise caution when over-
lapping fields are to be manipulated in order to be
sure that no data is destroyed. This is another occa-
sion where it is absolutely essential to remember that
all operands are addressed by the leftmost byte.

Let us begin with the simplest type of shift: a
decimal right shift of an even number of places.
Suppose that we have a five-byte, nine-digit number
in SOURCE; we are to move it to a five-byte field
named DEST with the last two digits dropped and
two zeros at the left. We can do this two ways:
with or without disturbing the original contents of
SOURCE. Let us do it first without disturbing them.

Suppose that the two fields originally contain:

SOURCE DEST
12 34 56 78 9S 55 55 55 55 55

The S stands for a plus or minus sign, whichever it
might be. The instructions for accomplishing the shift
could be as follows, where we have also shown the
contents of the two fields after the execution of each
instruction:

SOURCE DEST
MVC
DEST+1(4),SOURCE 12 3456 78 9S 55 12 34 56 78
MVN

DEST+4(1),SOURCE+4 12345678 9S 55 12 3456 7S
MVC
DEST(1),ZERO 123456 78 9S 00 12 34 56 7S

In the first Move Characters instruction, an explicit
length of 4 is stated; this length applies to both fields.
With the first operand address being DEST+-1, the
four bytes of the destination are the rightmost four.
The second operand is given simply as SOURCE, so
the four bytes there are the leftmost. The last two
digits (one byte) have been dropped.

But the sign has been dropped, too, in the process.
We accordingly use a Move Numeric instruction to
attach it to the shifted number. This must be done
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with an explicit length of one, to avoid disturbing
any of the digits of DEST. Both addresses must be
written with the “+44” to pick out the proper one
character. Finally, we move one byte of the constant
named ZERO (not shown), which contains zeros, to
the first byte of DEST. This clears to zero whatever
may have been there before.

If the contents of SOURCE are no longer needed
in their original form, the following sequence is a
bit shorter.

SOURCE DEST

MVN
SOURCE+3(1),SOURCE+4 1234567S9S 55 55 55 55 55

ZA
DII;ST,SOURCE(4) 1234567S9S 001234567S

The Move Numeric moves the sign to the byte
which will contain the sign in the eventual result. The
Zero and Add picks up four bytes of SOURCE and
adds them to DEST after clearing DEST to zeros.
The Zero and Add has two length codes. For DEST
we use the implied length of 5; for SOURCE it is
necessary to give an explicit length in order to drop
the last two digits.

Finally, suppose that for some reason it is neces-
sary to leave the shifted result in SOURCE, without
resorting to the expedient of simply moving the sign
and appending zeros at the left.

SOURCE
MVN SOURCE+3(1),SOURCE+-4 12 34 56 7S 9S
ZAP SOURCE,SOURCE(4) 00 12 34 56 7S

The sign movement is as before. In the Zero and
Add, the second operand is given as SOURCE(4),
which means a four-byte field the leftmost byte of
which has the address SOURCE; this is just
12 34 56 7S. The first operand is simply SOURCE,
with its implied length of 5, which means the whole
field.

It is important to know that this type of overlap
is permitted. The relevant statement from the Prin-
ciples of Operation Manual (A22-6821) is: “The first
and second operand fields may overlap when the
rightmost byte of the first operand is coincident with
or to the right of the rightmost byte of the second
operand.” A little study shows that a violation of this
rule would result in destroying bytes of the second
operand before they have been moved.

Let us now turn to a slightly more complex shift,
one that involves an odd number of places. This



requires the use of a special instruction designed for
the purpose, the Move with Offset. The action of this
instruction can be described as follows. The sign of
the first operand is not disturbed. The second operand
is shifted to the left by four bit positions in moving it
to the first operand. Any unused high-order digit posi-
tions in the first operand are filled with zeros.

Looking at an example, take the fields described
in the previous illustration, but suppose that the shift
must be three positions instead of two.

SOURCE DEST
MVO
DEST,SOURCE(3) 12 34 56 78 9S 00 01 23 45 65
MVN

DEST+4(1),SOURCE+4 12 34 56 78 9S 00 01 23 45 6S

In the Move with Offset, the second operand is
given as SOURCE(3), which picks up a three-byte
field starting at the left, namely, the bytes containing
12 34 56. The first operand is DEST, with its implied
length of 5. The digits 12 34 56 are moved to DEST
with an offset of four bits, or one digit, leaving
00 01 23 45 65 in DEST; the rightmost 5 is the one
that was there to begin with. A final Move Numeric

attaches the source sign to the destination field.

- If the shift is required to leave the result in
SOURCE, only one instruction is needed, since the
Move with Offset instruction has no effect on the sign
of the first operand, and the left end of the receiving
field is filled with zeros.
SOURCE
MVO SOURCE,SOURCE(3) 00 01 23 45 6S

The overlapping fields here cause no trouble, since
again the movement is to the right of the original
contents. (Actually, overlap of any type is permitted;
it is the programmer’s responsibility to make sure
that the result is meaningful.)

A shift to the left presents slightly different prob-
lems. Suppose that we have a source field of three
bytes this time and a destination of five.

SOURCE DEST

12 34 58 99 99 99 99 99

Let us take our problem, to move the number at
SOURCE to DEST, with four zeros to the right at
DEST, and with DEST left ready to do arithmetic.
An acceptable sequence of instructions is shown be-
low.

Before

SOURCE DEST
MVC DEST(3),SOURCE 12 34 55 12 34 5S 99 99
MVC DEST+3(2),ZEROS 12 34 58 12 34 55 00 00
MVN DEST+4(1),DEST+2 12 34 55 12 34 55 00 0S
MVN DEST+2(1),ZEROS 12°34 58S 12 34 50 00 OS

The first Move Characters needs an explicit length
on DEST; otherwise, the length would improperly
(for us) be implied from DEST as 5. The last two
bytes of DEST are unaffected by the first Move; a sec-
ond clears them. A Move Numeric transfers the sign,
and a second Move Numeric clears the now extrane-
ous sign that went with the source data on the first
Move Characters.

Another way to clear the extraneous sign is avail-
able, using the And Immediate instruction. “Anding”
two quantities gives a result that has a one bit wher-
ever both operands had 1s, and a zero elsewhere.
For instance, if we “and” 1100 and 1010, the result is
1000; only in the first bit position did both operands
have ones. In the And Immediate instruction (NI),
both operands are exactly eight bits long. One of
them is given by the byte specified by the address;
the other is contained in the instruction itself (which
is the reason for the term “immediate”). The result
replaces the byte specified in storage.

In the example at hand, we wish to leave the first
four bits of the byte at DEST+-2 just as they were;
this can be done by placing ones in the correspond-
ing positions in the part of the instruction that will
be “and-ed”. (This is usually called the mask.) We
wish to make the right four bits of DEST+2 zero,
whatever they were before; this can be done by
placing zeros in that part of the mask. The mask,
in short, should be 11110000, expressed in binary. To
write the instruction, we can either convert this to
its decimal equivalent 240, or write it in hexadecimal,
X'FO'. In other words, we can replace the last in-
struction with either of the following:

NI  DEST+2,240
NI DEST+2,X’F0’

Finally, consider a shift to the left of an odd num-
ber of places. For an example, take the data of the pre-
ceding illustration, but suppose there are to be three
zeros at the right instead of four.

SOURCE DEST
Before 12 34 58 99 99 99 99 99
MVC DEST(3),SOURCE 12 34 55 12 34 5S 99 99
MVC DEST+3(2),ZEROS 12 34 55 12 34 55 00 00
MVN DEST+4(1),DEST42 12 34 55 12 34 5S 00 0S

12 34 50 00 OS
01 23 45 00 0S

NI DEST+2,240 12 34 58
MVO DEST(4),DEST(3) 12 34 58

The first four instructions are just the same as in the
previous example, with the And Immediate substituted
for the Move Numeric. The final instruction now is a
Move with Offset that shifts one digit position to the
right.
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Decimal Division with Shifting

We are now prepared to approach a realistic problem
in decimal division.

Suppose that in a four-byte field named SUM we
have the total of the number of hours worked by all
the employees in a factory, given to tenths of an hour.
In NUMBER we have the number of employees in-
cluded in the sum; this is a two-byte number. We are
to calculate the average workweek, to tenths of an
hour, rounded, and place it in a' two-byte location
named AVERAG.

We begin the analysis of the problem knowing that
the dividend (SUM) has one decimal place to start,
and the divisor (NUMBER) has none. If we set up
the division this way, we would get a quotient having
one place; this would not permit rounding. Evidently
we shall have to allow extra places to the right. One
more would be sufficient, but this would involve a
shift of an odd number of places; it would be simpler
for us and faster in the machine to make a shift of
two places and simply ignore the extra digit. The
dividend therefore should be set up like this:

XX XX XX X0 0+

The X’s stand for any digits.
Now we turn to the rule stating that the number of
bytes in the dividend is equal to the number of bytes

in the divisor plus the number of bytes in the quo-
tient. We know that we have two bytes in the divisor
as it stands. The quotient need be only three: there
can be no more than two digits before the decimal
point, there will be three after the decimal point,
and there will be a sign. (There will be three decimal
places in the quotient because there are three in the
dividend and none in the divisor.) The dividend
evidently should be five bytes. As it happens — which
will by no means always be the case — that is just
how long it will be as the result of the shifting we
decided upon.

With this much background, let us now look at the
program shown in Figure 63. We assume that it is per-
missible to destroy the original contents of SUM; if
this were not so, it would be a matter of one extra
instruction to move the contents of SUM to a work-
ing storage location.

Notice in the list of constants at the end of the
program that a one-byte constant named PAD has
been established just after, and therefore to the right
of, SUM. Now, instead of actually moving the con-
tents of SUM in order to accomplish a shift, we sim-
ply extend the field by one byte. This is the function
of the first two instructions. We have assumed, rea-
sonably enough, that the sum is always positive, so

START 256
000100 05 FO BEGIN B8ALR 15,0
000102 USING #,15
-
- THE COMMENTS FIELD ON THE FOLLOWING INSTRUCTIONS SHOWS
. THE CONTENTS OF SUM OR AVERAGE, AFTER THE EXECUTION
. OF THE INSTRUCTION
L]
000102 D2 00 F 028 F 02F MvC SUM+4 (1), 2ERO Ol 93 64 8+ 0+
000108 94 FO F 027 NI SUM+3,240 01 93 64 80 0+
00010C FD 41 F 024 F 029 op SUM(5),NUMBER 39 76 3+ 21 9+
000112 FA 21 F 024 F 020 AP SUM(3),ROUND 39 81 3+ 21 9+
000118 D1 00 F 025 F 026 MVN SUM+1(1),SUM+2 39 B+ 3+ 21 9+
00011€ D2 01 F 02B F 024 MvC AVERAG, SUM 39 8+
000124 0A 00 sve 0
000126 SUM DC PL4°0193648°*
00012A PAD DS PL1
[ L] ] NUMBER DC PL2'48T*
000120 AVERAG DS PL2
00012F 050F ROUND DC PL2'50°"
000131 OF ZERO 0C PLL'O!
END BEGIN

Figure 63. Assembly listing of a program involving decimal division and the equivalent of decimal shifting
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a plus sign is moved with the first Move Characters,
and the original sign is simply erased with the And
Immediate.

The Divide Decimal might seem to carry the pos-
sibility of a divide exception. We must fall back on
a knowledge of the data, which is the eventual foun-
dation of any intelligent programming. We simply

observe that the average hours worked would not be
as great as 100 hours — and anything less can be con-
tained in the space provided.

Rounding is accomplished by adding 5 in the proper
position. We move the sign to where it is needed,
and finally transfer the result to the specified location
in storage.
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Format and Base Conversions

It is often necessary to convert from zoned to packed
format and vice versa, and to convert between binary
and decimal form. In this section we shall examine
an illustrative problem that involves both types of
conversion, and the special instructions available to
. make them relatively simple.

We are given a fullword named REG, in binary
format. The three-byte field named PREM was read
directly from a card on which the sign was in the
high-order position, instead of the low-order. That is,
a positive number was punched with a 12 zone over
the leftmost digit, and a minus number was punched
with an 11 zone over the leftmost digit. We are re-
quired to place the sum of REG and PREM in ANS,
as a decimal number in the normal zoned format,
that is, with the sign in the zone of the low-order byte.
The zone bits that result in a byte in storage from a
12 zone on the card, are the zone bits required for
a plus sign in the EBCDIC zoned format in storage.
An 11 zone likewise is translated into the correct zone
bits for a minus sign. Our problem, then, is simply

to move the zone bits of the high-order byte to the
zone bits of the low-order byte.

In the program of Figure 64 we have shown at the
right of the first half-dozen instructions the contents
of the last eight bit positions of registers 5 and 6, to
aid in understanding how the instructions operate on
sample data consisting of the three bytes:

1101 0011 1111 0111 1111 1001

With the card column assignments we have described,
this is the EBCDIC representation of —379.

The program begins with a new instruction: Insert
Character (IC). This is an RX format instruction
that gets one character (byte) from the specified
storage location and places it in the rightmost byte
position of the register named. The other bit positions
of the register are not disturbed. We do not know
what might be in them, but it will not matter, as it
happens, since the following instruction clears them.
This is an And to erase the numeric bits of the high-
order character.

START 256
000100 05 FO BEGIN BALR 15,0
000102 USING #,15

-

. THE COMMENTS FIELD ON THE FOLLOWING INSTRUZTIINS

. SHOWS THE LAST BYTE (= 8 BITS) OUF REGISTERS 5 AND 6

. AFTER THE EXECUTION OF EACH INSTRUCTION

-*
000102 43 50 F 03A Ic 54 PREM 1101 0011
000106 54 50 F 032 N 5 oMASKI 1101 0000
000104 43 60 F 03C ic 6+ PREM+2 1101 0000 1111 1001
00010E 54 60 F 036 N 6, MASK2 1101 0000 0000 1001
000112 16 S6 OR 5.6 1101 1001 0000 1001
000114 42 50 F 03C STC  5,PREM+2 1101 1001 0000 1001
000118 F2 12 F 03D F 03A PACK WORK, PREM
00011E 58 60 F 042 L 6 +REG
000122 4E 60 F 046 CVD 6,DOUBLE
000126 FA 71 F 046 F 03D AP DOUBL E, WORK
00012C F3 ST F 04E F 046 UNPK  ANS,DOUBLE
000132 0A 00 SVC 0
000134 0S  OF
000134 000000F0 MASKL DC X*000000F0Q*
000138 00000C00F MASK2 DC X*0000000F*
00013C PREM DS L3
00013F WORK DS pL2
000144 REG oS F
000148 DOUBLE 0S )}
000150 ANS DS e

END  BEGIN

Figure 64. Assembly listing of a program that moves zone bits from one byte to another, converts a number to
packed format, converts another number from binary to decimal, and does arithmetic in decimal
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Next we perform the similar operations on the low-
order byte, using register 6, except that this time we
erase the zone bits.

Now we have in register 6 the numeric bits of the
low-order byte, and in register 5 the zone bits that
are to be attached to that byte. They can be com-
bined with an Or Register (OR) instruction. “Or-ing”
two operands is a bit-by-bit operation that results in
a 1 wherever either operand had a 1, and zero where
both had zero. The result of this instruction is to com-
bine the two groups of bits, leaving the result in
register 5. This now is the byte that we want in the
low-order position, so we use a Store Character in-
struction (STC) to place it there.

Insert Character and Store Character do not require
the character to be on any sort of integral boundary.
They are the only indexable instructions for which
this is true. The various decimal instructions do not
require boundary alignment either, of course, but
they are not indexable. The two And (N) instruc-
tions, however, do require their operands to be on
fullword boundaries. This is the purpose of the DS
OF before the DC’s for the masks.

At this point we have merely got the sign where
it is expected to be in the zoned format of a decimal
number. Now we must convert from zoned to packed
format, which is the function of the PACK instruc-

tion. The second operand names a field in zoned for-
mat; the first names the field where the packed for-
mat should be stored. Both fields carry length codes.
Here, we are able to leave the lengths implied: three
bytes for PREM and two for WORK (two bytes al-
low space enough for three digits and sign in packed
format). The PACK instruction ignores all zones ex-
cept the rightmost, which is taken to carry the sign.
Therefore we can leave the zone of the high-order
byte as it was without disturbing the operation.

With the PREM amount finally in packed format,
we are almost ready to do the addition — but not
quite, because the REG amount is still in binary. The
next instruction, accordingly, is a Load followed by
a Convert to Decimal (CVD). Convert to Decimal
takes the binary number in the specified register and
converts it to packed format decimal in the location
given, which must be an aligned on a doubleword.

At last it is possible to do the addition, which is
done in decimal. A final instruction, Unpack (UNPK),
converts back from packed to zoned, as required in
the problem statement. This will leave the final answer
with the sign in the zone bits of the low-order byte,
which was stated to be the desired position for what-
ever processing might follow. If it were necessary to
get the result into the same format as PREM origi-
nally was, we could of course do so.
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Decimal Comparison: Overtime Pay

Logical tests and decisions are as necessary in deci-
mal operations as elsewhere. The System/360 pro-
vides a Compare Decimal instruction, and the condi-
tion code is set as a result of this and three arithmetic
instructions. In this section we shall explore an exam-
ple that uses the Compare Decimal instruction.

For an example we take the familiar calculation
of gross pay, with time-and-a-half for hours over 40.
We have a RATE, given in dollars and cents, and an
HOURS, to tenths of an hour. We are to place in
GROSS the total wages earned.

There are several ways to approach the overtime
computation. We choose here to begin by figuring the
pay at the straight-time rate, on the full amount in
HOURS. We then inspect the hours worked, and if it
was not over 40 the job is finished. If there was over-
time, we multiply the hours over 40 by the pay rate,
and multiply this product by one-half to get the pre-
mium, which is then added to the previous figure.
Several other ways to arrange the sequence of deci-

sions and multiplications are obviously possible. This
one probably minimizes the computation time if most
employees do not work overtime; if most did work
overtime, a different sequence might be a little better.

The program in Figure 65 begins with a three-in-
struction sequence to set up the multiplicand in a
work area, multiply, and round. The Move with Offset
instruction drops one digit in the move; this is the
extra digit that was rounded off. The Move with Off-
set instruction does not transmit the sign; we have
shown GROSS as a DC to get a plus sign there from
the outset. Since the pay can never properly be nega-
tive, the plus sign will simply remain there through-
out the operation of the program.

The Compare Decimal (CP) instruction is not
greatly different in concept from Compare instructions
we have seen previously. The two operands are com-
pared, algebraically; the condition code is set depend-
ing on the relative sizes of the two; neither operand
is changed. The mask of 12 on the Branch on Con-

START 256
000100 05 FO BEGIN BALR 15,0
000102 USING e,15

.

. THE COMMENTS FIELD SHOWS THE CONTENTS OF wORK DR GRJISS,

- WHICHEVER IS OPERAND 1 ON A PARTICULAR INSTRUCTION,

- AFTER THE EXECUTION OF THE INSTRUCTION

[
000102 F8 31 F 056 F 050 AP WORK yHOURS 00 00 44 6C
000108 FC 31 F 056 F 04E Mp WORK, RATE 00 78 05 0C
00010E FA 30 F 056 F 05A AP WORK,FIVE 00 78 05 5C
000114 Fl 32 F 052 F 056 MVO GROSS s WORK(3) 00 07 80 5C
000114 F9 11 F 050 F 050 ce HOURS ,FORTY
000120 47 CO F 04C BC 12,007
000124 F8 31 F 056 F 050 ZAP WORK s HOURS 00 00 44 6C
00012A FB 31 F 056 F 050 SP WORK, FORTY 00 00 04 oC
000130 FC 31 F 056 F 04E MP WORK, RATE 00 08 05 0C
000136 FC 30 F 056 F 0SA MP WORK,FIVE 00 40 25 OC
00013C FA 31 F 056 F 058 AP WORK,FIFTY 00 40 30 OC
000142 D1 00 F 058 F 059 MVN WORK+2{1),WORK+3 00 40 3COC
000148 FA 32 F 052 F 056 AP GROSS ,WORK(3) 00 08 20 8C
00014E 0A 00 aur sve 0
000150 175F RATE ] PL2'1.75"
000152 446F HOURS DC PL2'44,.6"
000154 0000000F GROSS DC PLA'O"
000158 WORK DS PLS
00015C SF FIVE o] PL1*S5"
000150 050F FIFTY 0C PL2'50"
00015F 400F FORTY 0C PL2'40.0°*

END BEGIN

Figure 65. Assembly listing of a program that computes a man’s gross pay, including any overtime pay
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dition will cause a branch if the contents of HOURS
are less than or equal to FORTY, in which case there
is no overtime to compute, and we simply branch
out to whatever follows. (In this example we do not
show the continuation of the computation.)

If the man did work more than 40 hours, we com-
pute his pay on the amount over 40, then multiply
by 5, which we view as having a decimal point, that
is, as being one-half. This is done because we have al-
ready computed the straight-time pay on the amount
over 40; now we need only to compute the extra pre-
mium. After the multiplication by 5 we round off,
using a different rounding constant this time because
the multiplication by 0.5 has added another decimal

place. (It is necessary to check that there is sufficient
space in WORK to satisfy the rule about at least as
many zeros as the size of the multiplier. Assuming
that no employee could make $1000 in one week,
the rule is satisfied.)

After a Move Numerical to move the sign, we can
add the rounded amount to GROSS to get the total
pay. In the Add Decimal, note the length of 3 to
drop the last byte, which after rounding is extraneous.
We now reach the termination of the program, the
same point to which we transferred if there was no
overtime. Inother words, both paths would lead, in a
real program, to the same continuation point.
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The Social Security Problem in Decimal

For a little further practice in applying decimal op-
erations, we may rewrite the Social Security calcu-
lation of Figure 51 in the chapter on “Fixed-Point
Operations”. The logic of the decimal program shown
in Figure 66 is the same as that of the earlier one.
No new instructions are introduced, so a few notes
should be all that is required to explain the program.

We begin by moving the old year-to-date to the
new year-to-date location. The purpose is simply to
get one of the two operands in the following addi-
tion where we want the result to be. Following is a
Zero and Add to get the new year-to-date into working
location where we can continue the processing with-
out disturbing the NEWYTD location. From here on,
the right side of Figure 66 shows the contents of the

WORK field for sample data as shown in the DC
instructions.

In the Multiply Decimal instruction that computes
the Social Security tax on the new year-to-date figure,
we use a constant for the 3%% that has been set up
with an extra zero at the right. This was done to put
the product in a position where a Move with Offset
would not be necessary. As it has been done, after
rounding and moving the sign, we can carry out all
following operations on the Social Security amount
on the second, third and fourth bytes of WORK. Since
the implied length from the DC is 7, an explicit length
must be given.

The remaining operations closely parallel the ones
in the earlier version.

START 256
000100 05 FO BEGIN BALR 15,0
000102 USING #,15
000102 D2 03 F OuF F OuB MVC  NEWYTD,OLDYTD
000108 FA 32 F O4F F Ou8 AP NEWYTD, EARN
*
» THE COMMENTS FIELD ON THE FOLLOWING INSTRUCTION SHOWS THE
» CONTENTS OF WORK, IN EVERY CASE, AFTER THE
» EXECUTION OF THE INSTRUCTION
*
00010E F8 63 F 066 F OUF 1AP WORKy NEWYTD 00 00 00 Ou 85 69 8+
000114 FC 62 F 066 F O5F MP WORK,C358 00 17 60 65 52 50 O+
00011A FA 63 F 066 F 062 AP WORK, HALF 00 17 60 70 52 50 O+
000120 D1 00 F 069 F 06C MVN WORK+3 (1), WORK+6 00 17 60 7+ 52 50 0+
000126 F9 32 F 066 F 05C cp WORK(L4),C174 ’ 00 17 60 7+ 52 50 0+
00012C 47 40 F O34 BC 4, UNDER 00 17 60 7+ 52 50 O+
000130 D2 02 F 067 F 05C MVC WORK+1(3),C174 00 17 40 0+ 52 50 0+
000136 D2 02 F 056 F 067 UNDER MVC NEWSS(3) s WORK+1 00 17 40 0+ 52 50 O+
00013C FB 22 F 067 F 053 SP WORK+1(3),0LDSS 00 00 18 1+ 52 50 0O+
000142 D2 02 F 059 F 067 MvC TAX{3) y WORK+1 00 00 18 1+ 52 50 0+
000148 0A 00 sve 0 )
00014A 10607F EARN  DC PL3' 106,07
00014D OLT75091F OLDYTD DC PLL'LT750,91"
000151 NEWYTD DS PLY
000155 17219F oLDSS DC PL3'172.19"
000158 NEWSS DS PL3
000158 TAX DS PL3
00015E 17T400F cits  0C PL3' 174,00
000161 36250F €358 0C PL3'36250"
000164 0500000F HALF DC PLL' 500000
000168 WORK DS PL7
END BEGIN

Figure 66. Assembly listing of a program to compute Social Security tax in decimal
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A certain programming exercise has been done by
so many generations of IBM students that it is a
classic. We present it here, worked out with the cal-
culation in decimal and the counting in binary.

The Indians sold Manhattan Island in 1627 for
$24. If the Indians had banked their $24 in 1627,
what would their bank balance be in 1965 at a 3%
interest rate compounded annually?

To make the problem a little more interesting, let
us assume that the principal, $24, the interest rate

The “Indian” Problem

factor, 1.03, and the number of years, 338, are all
initially in zoned format. The program of Figure 67
accordingly begins with three PACK instructions to
get from zoned to packed format.

The general scheme of the program will be to
multiply the principal by 1.03 as many times as there
are years. In other words, we shall go around a loop
repeatedly, each time performing a multiplication
and subtracting 1 from a count. When the count has
been reduced to zero, the computation of the bal-
ance is completed. This counting down from 338 to
zero could, of course, be done in decimal, and using

START 256

000100 05 FO BEGIN BALR 15,0
000102 USING #,15

000102 58 EQO F 052 L 14,ADCON
000106 50 EO 0 06C ST 14,108
00010A F2 63 F 068 F OSE PACK PRINCP,PRINCZ
000110 F2 12 F 06F F 062 PACK INTF;INTZ
000116 F2 72 F 076 F 065 PACK YEARSP,YEARSZ
00011cC 4F 40 F 076 cvs 4 ,YEARSP
000120 FC 61 F 068 F 06F Loor MP PRINCP, INTP
000126 FA 61 F 068 F OTE AP PRINCP,ROUND
00012C D1 00 F 06D F O6E MVN PRINCP+5(1)+PRINCP+6
000132 D2 05 F 080 F 068 MVC TEMP,PRINCP
000138 F8 65 F 068 F 080 AP PRINCP, TEMP
00013€E 46 40 F O1E BCT 4,L00P
000142 F3 86 F 086 F 068 UNPK BALNCE,PRINCP
000148 0A 01 ERROR SVC 1
00014A €01001 oC X*colio01l*
000140 000158 DC AL3(CLL)
000150 0A 00 svC 0
000154 00000148 ADCON DOC A(ERROR)
000158 03 cL1 oC X*03¢
000159 oool8s8 ] AL3 (BALNCE)
00015¢C 09 oC AL1(9)
000150 000001 DC AL3(1)
000160 F2F4F0CO PRINCZ DC IL4%24.00"
000164 F1FOC3 INTZ DC ZL3%1.03°
000167 F3F3(C8 YEARSZ DC ZL3*338"
00016A PRINCP DS PL7
000171 INTP DS PL2
000178 YEARSP DS D
000180 050F ROUND DC PL2° 50
000182 TEMP DS PL6
000188 BALNCE DS PLY

END  BEGIN

Figure 67. Assembly listing of a program to compute compound interest (the “Indian” problem)
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a Compare Decimal instruction. It is better program-

ming practice, however, to remove time-consuming

operations from the repeated part of the loop wher-
ever possible. Doing the combination of an Add Deci-
mal, a Compare Decimal, and a Branch on Condition
is much more time-consuming than another approach
that is available to us. This other way is to convert
the years to binary, once, before entering the loop,
then use a Branch on Count (BCT) to subtract 1,
test, and conditionally branch.

The fourth instruction of the program is therefore
a Convert to Binary (CVB) instruction, which in our
program takes the doubleword at YEARSP and con-
verts to a binary number in register 4. The Convert
to- Binary instruction requires an aligned doubleword
operand, which is why the DS for YEARSP was set
up as it was instead of with a CLS.

The repeated part of the loop starts with a Multi-
ply Decimal that should by now be moderately fa-
miliar. PRINCP was set up to be long enough to hold
the size of number that previous runnings of the pro-
gram have shown will be necessary. The programmer
facing this problem completely fresh would have to
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make either some preliminary calculations as to the
possible size, or a guess.

Now comes a familiar sequence of decimal instruc-
tions to round, move the sign, and shift right two
digits (one byte). One might be tempted to replace
the Move Characters and Zero and Add instructions
with a single one of the sort:

MVC PRINCP+-1(6),PRINCP

thinking that a right-to-left operation would permit
this sort of overlap. A check of the Principles of Op-
eration Manual (A22-6821), however, discloses that
Move Characters works from left to right! The in-
struction suggested would therefore propagate the
leftmost character through the entire field! This can
be quite useful on occasion, and is permitted, but it
is hardly what we want here. Overlapping fields must
be treated with caution.

The Branch on Count subtracts 1 from register 4;
if the result is not zero, a branch occurs. If the re-
sult is zero, the next instruction in sequence is taken.
The loop will be carried out 338 times, as required.

A final Unpack instruction puts the result into a
location named BALANCE in zoned format. The an-
swer is $523,998.22.



la. Write the assembler instruction to define a packed
decimal constant of 3 to be named CON3 and to oc-
cupy 5 bytes of storage.

b. Show how this constant appears on the assem-
bly listing.
2. A length code in an instruction is called implied

if it is supplied by the on the basis
of

An explicit length code is supplied by the

3. An explicit length code is (equal to, one more
than, one less than) the actual number of bytes to
be dealt with.

4. The length code in the object instruction is (equal
to, one more than, one less than) the actual number
of bytes to be dealt with.

5a. The MP instruction specifies the location of
in the first oper-

and the location of the
in the second operand.

b. Where is the product at the end of the mul-
tiplication?

and,

6. If there were two successive DC statements of:
PRINC DC PL42489
INT DC PL2'10%
and PRINC were assigned a location of 158:
a. What would be in the storage locations as-
signed to these constants?
b. To what storage location would the operand
INT —2 refer?

7. A DP instruction specifies in its first operand the
location of the , and in its second
operand the location of the Where
will the quotient and remainder be after the comple-
tion of a DP instruction?

8. Assume three factors:
QUAN — 4 whole numbers
TCOST — 6 whole numbers and 2 decimal places
AVCOST — 6 whole numbers and 2 decimal places
The problem is to divide QUAN into TCOST to de-
velop a quotient AVCOST, which is not to be round-
ed.
a. How many decimal places must the dividend
contain to develop a proper quotient?

Questions and Exercises

b. What must be the minimum size (in bytes)
of the area in which the dividend is located at the
time the DP instruction is executed?

9. Assume two fields:

SOURCE containing 66 55 44 33 22 11

DEST  containing 11 22 33 44 55 6S (S — sign)
Show the contents of SOURCE and DEST after the
execution of the instructions below. In each case,
assume that before execution the contents of SOURCE

and DEST are as shown above.
a. MVC DEST}2(3),SOURCE
b. MVN DEST+-3(1),DESTH45

c. MVO DEST,SOURCE-}2(2)
10. Assume the same fields (SOURCE and DEST)

as given in question 9.

Would the instruction ZAP DEST,SOURCE be a
legitimate one? It not, why not?

11. Assume a 5-byte field called FACTOR, which
contains 12 34 56 78 9S (S — sign).

a. Write the instruction or instructions to store
the leftmost 8 digits (12345678) and the sign in a 6-
byte field called RESULT.

b. Write the instruction or instructions to store
the leftmost 7 digits and the sign in RESULT.
12a. The NI (And Immediate) instruction is a
format instruction.

b. Write the NI instruction(s) that will change the
contents of a field named HOLD from 11 22 33 44 6S
to 00 22 33 44 6S.

c. 112233 446S to 11 22 33 04 6S.

13. What is the difference between the And Immedi-
ate and Or Immediate instructions?

14. Decimal arithmetic can be performed only on
(zoned decimal, packed decimal) fields.

15. What instruction converts information from zoned
decimal to packed decimal form?

16. What instruction converts information from
packed decimal to zoned decimal form?

17. Write DC’s to store the number 578 as:

a. A fixed-point number.

b. A 3-byte zoned decimal number.

c. A 2-byte packed decimal number.
18. Write a DC to store the hexadecimal equivalent
of 751.
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19. Write an instruction that will place a byte named
OLD in the rightmost byte position of register 6 with-
out disturbing the remaining positions of register 6.

20. Write an instruction that will store the contents
of the rightmost byte position of register 6 in a storage
byte named OLD.

21. Consider the following excerpts from an assembly
listing. MASK is located at 136
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N  6MASK

MASK DC X’0000000F’
a. Will the N 6,MASK instruction be successfully
executed? If not, why not?
b. If not, what statement or statements could be
inserted to correct the condition?
c. How could the DC itself be rewritten to cor-
rect the situation?



Chapter 7: Logical Operations on Characters and Bits

This chapter discusses the subject of logical operations
through the medium of several illustrative programs.
These illustrative programs were designed to bring
out various aspects of the use of logical operations,
with the logic being the primary focus of the example.
The reader will realize, of course, that, in practical
applications, logic is one of many tools and techniques
used in a complete program.

The first example demonstrates the logic involved
in sorting three items into ascending sequence. Two
sections show numerous examples of tests on com-

A frequent requirement in commercial data processing
is the comparison of two alphameric quantities, such
as names or account numbers, for relative magnitude.
Sometimes this is done to establish correspondence
between records in two files, both of which are in
ascending sequence on the name or account number,
which is called the key. Another common application
is in arranging a group of records into ascending or
descending sequence on keys contained in the records.
Let us consider this problem, which is usually called
sorting, although sequencing might in some ways be
a preferable term.

The problem will be to arrange three “records”
of 13 characters each into ascending sequence on a
five-character key contained in the middle five posi-
tions of the record. The rearranged records are to be
moved to three new record areas named SMALL,
MEDIUM, and LARGE.

The basic operation in the program will be an alpha-
meric comparison of two five-character keys to de-
termine relative magnitude. This will be done with a
Compare Logical Character instruction (CLC). The
word “logical” in the name means that in comparing
two characters, all possible bit combinations are

binations of bits in a byte and the setting of bit
combinations. Another major example uses the com-
putation of a check digit in a self-checking number
to illustrate logical operations on a sequence of
characters. A final example involves a series of bit
and byte operations on input data fields.

Instructions emphasized in this chapter include the
various types of comparisons, Insert Character, Store
Character, Test Under Mask, the various forms of
And and Or, and Branch on Condition.

Alphameric Comparison: An Address Sort

valid, and the comparison is made on a binary basis.
In a table of EBCDIC character codes, we can see
that, according to such a scheme, all letters will be
“smaller” than all digits; if punctuation characters
occur, they rank smaller than either letters or digits.
(In ASCII coding, the positions of letters and digits
are just the opposite. )

For our purposes here, we are not too concerned
about the intricacies of where the various characters
are ranked by the the comparison instruction®; all we
really need to know is that names will be correctly
alphabetized and that digits are consistently ranked
somewhere.

The word “character” in Compare Logical Character
is meant to imply that the instruction is in the SS
format and operates on variable-length fields. There
is one length code, which applies to both operands.
The comparison is from left to right, and continues
either until two characters are found that are not the
same, or until the end of the fields is reached. (As
soon as two characters are found to be different,
there is no need to continue the comparison. If we

*Called the machine’s collating sequence
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are comparing SMITH and SMYTH, we know that
SMITH is “smallér” as soon as the I and Y are com-
pared, regardless of .what characters follow.)

With this much preliminary, let us consider the
program in Figure 68. Perhaps we should begin by
looking at the storage allocation. We see DS entries
for A, B, and C, the three original records; these are
13 characters each. Next come three entries that de-
fine the addresses of A, B, and C, as ADDRA,
ADDRB, and ADDRC, respectively. When we write
ADDRA as the operand in a Load, what we get in the
register is not A, but its address. Finally there are
DS’s for SMALL, MEDIUM, and LARGE, where the
results go.

The processing begins by loading the addresses of
A, B, and C into registers 2, 3, and 4, respectively,
with a Load Multiple. Now we begin a sequence of
comparisons and (if necessary) interchanges that will
put the three quantities into ascending sequence. We
first compare A and B. If A is already equal to or
smaller than B, we do nothing; but, if A is larger, we
interchange the addresses of A and B. Let us see how
this works.

The Compare Logical Character (CLC) instruction
following the Load Multiple is written with explicit
base registers and explicit lengths. The general format
of the instruction is

CLC DI1(L1,B1),D2(B2)

As we have written the instruction here, the displace-
ment for operand 1 is 4, the length of both operands
is 5, the base register for the first operand is 2, the
displacement for the second operand is 4, and the
base register for the second operand is 3. Exactly
what character positions do these addresses refer to?
Remember that base register 2 contains the address
of A. This base, plus a displacement of 4, gives the
address of the fourth character from the leftmost
character of the “record”. Since we said that the key
was to be the middle five characters of each record,
what we have here is the address of the leftmost
character of the key of record A. The length of the
key is given explicitly as 5. Operand 2, likewise, gives
the address of the key of record B.

The Branch on Condition asks whether the first
operand (the key of A) was less than or equal to the
second operand (the key of B). If so, there is a
branch down to the next comparison, at X, since A
and B are already in correct sequence.

If the Branch is not taken, we reach the “inter-
change” of A and B. Now, an actual interchange of two
13-character records is a somewhat time-consuming
operation; and, of course, this example is only sym-
bolic of real applications, where the records to be
sorted might be hundreds of characters long. It is
much faster to interchange the addresses of A and B
than to interchange the records themselves; the

START 256

00010C 05 FO BEGIN BALR 15,0
0Co102 USING #,15

000102 38 24 F 072 LM 294 4ADDRA LOAD REGISTERS WITH ADDRESSES
000106 D5 04 2 004 3 004 cLC 4(542)94(3) COMPARE A AND 8
00010C 47 CO F 014 BC 124X BRANCH IF A ALREADY LESS OR EQUAL
00011¢ 18 62 LR 692 INTERCHANGE ADDRESSES CF A AND B
000112 18 23 LR 243 X
000114 18 36 LR 3,6 X
000116 D5 04 2 004 4 004 X cLc 4(552)9414), COMPARE A AND C
Qo0o11C 47 CO F 024 BC 124Y BRANCH IF A ALREADY LESS OR EQUAL
009123 18 62 LR 692 INTERCHANGE ADDRESSES OF A AND C
000122 18 24 LR 244 X
000124 18 46 LR 496 X
000126 DS 04 3 CC4 4 004 Y cLe 4(543)441(4) COMPARE B AND C
00012C 47 CO F 034 BC 12 ,MOVE BRANCH IF B ALREADY LESS OR EQUAL
00013C 18 63 LR 6493 INTERCHANGE ADDRESSES OF B AND C
0001132 18 34 LR 394 X
000134 18 46 LR 4,6 X
00013¢ D2 0OC C7E 2 oOCoO MOVE MVC SMALL,CG(2) ADDRESS OF SMALLEST NF THREE IS NOWw IN 2
00013C ne ocC 088 3 000 MvC MEDIUM,0(3) LIKEwWISE FOR MEDIUM, IN REGISTER 3
000142 D2 0OC 098 4 0CO Mv(C LARGE 40 1(4) LIKEWISE FOR LARGEST, IN REGISTER 4
000142 0A 00 sve o PRCGRAM TERMINATION
000144 A DS cL13
000157 B bS cL13
000164 c DS CL13
000174 CC00014A ADORA  DC A(A)
C00178 5C00C157 ADDRB DC A(B)
00017C 00COC164 ADDRC OC A(C)
0o018¢C SMALL DS CL13
Q0018cC MEDIUM DS CL13
aoo19a LARGE DS cL13

END BEGIN

Figure 68. A program to sort three 13-character items into ascending sequence on keys in the
middle five characters of each item. The three items are in A, B, and C; the sorted

items are placed in SMALL, MEDIUM, and LARGE.
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addresses are only four characters instead of 13, and,
as written here, they are in registers rather than in
storage. Three Load Register instructions, which are
executed very rapidly, carry out the interchange.

Now, when we continue to the comparison at X,
what is the address situation? We know that we want
to compare whichever of A and B was the smaller
with C. Accordingly, we write addresses using base
registers 2 and 4. We cannot say whether 2 contains
the address of A or B; but, whichever it is, it is the
address of the smaller of the two. That is all we need
to know. After this comparison and (possible) inter-
change, we are guaranteed that base register 2 con-
tains the address of the smallest of the three numbers.

A final comparison using whatever addresses are
by now in registers 3 and 4 gives us the address of
the “middle” number in 3 and the address of the
largest of the three in 4.

Now, at MOVE, we are able to write three in-
structions that perform the rearrangement. In the
first Move Characters, we pick up the smallest, using
whatever is in base register 2. The displacement this
time is zero, we want the entire 13 characters. The
length can be left implicit this time; it will be im-
plied from SMALL, which is 13 characters long.

Figure 69 shows the contents of registers 2, 3, and 4
at four points in the program: at the beginning, at
X, at Y, and at MOVE. The three original data items,
in order, were 1111CCCCC1111, 2222BBBBB2222,

and 3333AAAAA3333. In other words, the items were
in reverse order according to their keys.

Register 2 Register 3 Register 4
Before 0000014A 00000157 00000164
X 00000157 0000014A 00000164
Y 00000164 0000014A 00000157
MOVE 00000164 00000157 0000014A

Figure 69. The contents of registers 2, 3, and 4 at four points
during the execution of the program of Figure 68.
The original items were in reverse order according
to their keys.

In practical applications there are usually far too
many records to be sorted internally for the keys of
all of them to be held in base registers. On the other
hand, the records are ordinarily so long that it is a
saving in time to work with addresses held in storage
rather than with the records themselves. The basic
concept suggested here can readily be generalized.
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~ Logical Tests: The Wallpaper Problem

Problems sometimes arise in which it is necessary to
work with combinations of logical tests, where each
test is of the yes-or-no variety. Such situations are
often most conveniently attacked as logical operations
on sets of binary variables. If the data can be suitably
arranged, the tests can sometimes be made very sim-
ply with the Test Under Mask (TM) instruction.

Consider the following problem, which is intended
to be illustrative only. Suppose that a wallpaper manu-
facturer classifies his products according to the colors
each style contains. There are only four colors: red,
blue, green, and orange. For each style there is a
group of four bits at the right-hand side of a character
named PATTRN. These bits represent, from left to
right, the four colors, in the order named. For each
bit position, a 1 means that the style contains the
color, and a zero means that it does not. For instance,
0001 would mean a style with orange only; 1010 would
describe a pattern with red and green, but no blue or
orange.

We wish to see how to set up instructions to answer
questions of the following sort:

Does this pattern have either red or green, or both?

Does this pattern have red, or green, or orange, or
any two of these, but not all three?

Does this pattern have both red and orange,
whether or not it has blue and/or green?

Does this pattern have neither green nor orange?

Does this pattern have red but not orange?

Let us consider these questions in order.

Red, or green, or both. Looking at the four color-
bits, we are interested in the first and third. If we
let X stand for a bit that we want to be a 1, and D
for a bit about which we don’t care, the required pat-
tern is XDXD.

The Test Under Mask instruction can handle this
situation with just two instructions:

TM PATTRN,10
BC 5YES

In the Test Under Mask instruction, the 10 is the
mask, written here in decimal. Writing it out as a
binary number, we have 00001010. The two 1’s here
pick out the two bits in the character at PATTRN
that are to be tested. The resulting condition codes
have meanings as follows: a code of zero means that
all the selected bits were zero; a code of 1 means
that the selected bits were mixed zeros and 1’s; a
condition code of 3 means that the selected bits were
all I's. (A condition code of 2 is not possible with
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this instruction.) The question to be answered was:
Does this pattern contain either red, or green, or
both? We have selected the two bits that describe the
presence or absence of red and green. If the two bits
selected were a mixture of zeros and 1’s, we have
just one of the two colors in the pattern. If the two
bits selected were both I’s, the pattern contains both
colors. Either situation answers the question affirma-
tively. We accordingly write a Branch on Condition
instruction that tests for the presence of condition
codes 1 or 3. (Remember that 8, 4, 2, and 1 in the R1
field of a BC correspond to condition codes of 0,
1, 2, and 3, respectively. Branch on Condition with an
R1 field of 5, therefore, tests for a condition code of
either 1 or 3.) At YES, we assume, there would be
instructions to do whatever action depended on an
affirmative answer to the question. v

Red, green, or orange, but not all three. Here we
need a mask that tests bits according to this scheme:
XDXX. The necessary mask is 00001011, which is 11
in decimal. The condition code that describes the wall-
paper design specified is 1: mixed zeros and 1’s. We
want at least one 1, and two would do, but we must
have at least one zero among the bits tested because
the pattern must not have all three colors. The re-
quired instructions are:

TM PATTRN,11
BC 4YES

Both red and orange. This one is fairly simple. We
pick out bits according to XDDX, and then ask
whether they are all (both) 1’s. The instructions are:

TM PATTRN,9
BC LYES

Neither green nor orange. This is not very difficult,
either. The bits are shown by DDXX, and we want to
know whether they are all (both) zero. The instruc-
tions are:

TM PATTRN,3
BC 8,YES

Red but not orange. This is a different problem
that cannot be done with a single Test Under Mask.
We turn to the logical instructions And, and Exclu-
sive Or. The bits in question are shown as X’s in
XDDX. We want the leftmost X to be a 1, and the
rightmost to be a zero.

We begin by moving PATTRN to WORK, where
we may destroy its original value. An And Immediate
instruction with an immediate portion of 9 (in binary:



00001001) erases all bits except the ones we want. In
the two positions of interest, if there was a 1 before,
there still is, and if there was a zero, there still is.
All other bit positions are guaranteed to be zero. If
the pattern is to pass the test, there must now be
exactly one 1 in WORK, and it must be in this posi-
tion: 0000X000. Whether this is so could be deter-
mined with a comparison or two Test Under Mask in-
structions. But let us continue with the logical
operations.

Exclusive Or is a logical operation; like And and
Or, it is a bit-by-bit operation. In each bit position, the
result is 1 if the two operands had exactly one 1 in
that position; the result bit is zero if both operand bits
were zero or if both were 1. Suppose we write an Ex-
clusive Or Immediate in which the immediate portion
is 00001000; the 1 here is in the position for red. The
result after the Exclusive Or Immediate will be zero in
this position if there had been a 1, and vice versa.

In other words, if the result really was 00001000
after the And Immediate, there will be all zeros after
the Exclusive Or Immediate. If, on the other hand,
there was a zero in the position for red, there will
now be a 1. And if there was a 1 in the position for
orange, there will still be a 1 there. In short, a zero
result corresponds to an answer of “yes, there is red
but no orange”. As it happens, the various logical
operations all set the condition code; and, in the case
of the Exclusive Or, a condition code of zero means
that the result was zero. The program can thus be:

MVC WORK,PATTRN

NI WORK.,9
XI WORK.8
BC 8,YES

Test Under Mask is a most useful instruction where
it applies, and its usefulness is by no means limited to
color-blind wallpaper manufacturers. It is useful part-
ly because it is selective, testing only the bits specified
by the mask, and partly because it gives a three-way
description of the selected bits: all zero, mixed, or all
Is. It does have the drawback, however, that only
one character can be tested at a time.

If it were necessary to extend the application to
cover, say, 20 different yes-no descriptions instead of
the four we had in the wallpaper situation, the Test
Under Mask instruction could not be used, except in
combinations that would get rather involved. In such
a situation, we would turn instead to the RX forms
of the logical instructions. After moving the pattern
to a register, which can hold a 32-bit pattern, we
would use an And to “select” the bits of interest. The
operand of the And instruction would be a fullword
in storage that has 1’s where there are bits of interest
in the pattern.

What we do next depends on our answers to certain
questions.

Question: Were any of the selected bits 1’s?

Action: We need only test the condition code, which
tells whether the result was all zeros or had at least
one 1.

Question: Were certain of the selected bits 1, with
the others being zero?

Action: We execute an Exclusive Or to change to
zero the bits that should be 1’s, then ask whether
the result is all zero.

Working with larger groups of bits is thus seen not
to be a great deal more difficult than working with
a single character.

Logical Operations on Characters and Bits 113



Setting Bits On and Off

A problem related to the one we have been consider-
ing is to set a specified bit of a character or a word to
be zero or 1, or perhaps to reverse them from what-
ever they are. This might be necessary, for instance,
if we were writing a program to develop the wall-
paper codes that we tested in the preceding section.

Bearing in mind that fullword operands represent
only a minor amount of additional programming
effort, let us see how to carry out these operand opera-
tions on one-character operands.

To set a specified bit to 1, an Or Immediate is
sufficient. Suppose that we are still working with a
character named PATTRN, which now uses all eight
bits, and that we want 1, 3, 6, and 7 to be “on” (1).
(The bits of a character are numbered from zero to 7
from the left.) In other words, we want the pattern to
be DID1DD11, where the D’s stand for “don’t care”
or “leave them whatever they were”. This action is
precisely what will result from an Or Immediate in

‘which the immediate part is 01010011 (83 decimal).

The Or results in a 1 in any bit position in which
“either operand, or both, had a 1. (The case of both
having 1 is not excluded, as in the Exclusive Or. The
ordinary Or is sometimes called the “inclusive” Or
to distinguish between the two.)

The instruction could be
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OI PATTRN,83

If the required action is to set the same four bit-
positions to zero, regardless of their previous values,
and leave the others as they were, we would use an
And Immediate with zeros where we want zeros and
I’s where we want the previous contents undisturbed.
The necessary immediate portion is 10101100 (172
decimal). The instruction is therefore

NI PATTRN,172

The And places a 1 in bit positions in which both
operand bits were 1, and zero elsewhere. Wherever
we put zeros in the immediate portion, therefore, there
will be zeros in the result, as required. Wherever we
placed I’s there will be a 1 if there was before, or a
zero if there was a zero before. This is exactly what we
need.

Sometimes it is necessary to change a bit to 1 if it
was zero, and to zero if it was 1. This is called com-
plementing a bit. If we place I's in the immediate
portion wherever we want this complementing action,
the Exclusive Or Immediate does precisely what is
needed. Other bit positions will be unchanged. Assum-
ing we are still working with bits 1, 3, 6, and 7, the
instruction is

XI PATTRN,83



It is fairly common practice in business to devise ac-
count numbers for things like credit cards so that the
number is “self-checking”. This means that one of the
digits is assigned to provide a certain amount of pro-
tection against fraud and clerical errors. This digit is
assigned by some fixed sequence of operations on the
other digits.

We shall work in this section with a ten-digit ac-
count number, the last (rightmost) of which is a
check digit. This digit is computed when the number
is assigned. It consists of the last digit of the sum
found by adding together the second, fourth, sixth, and
eighth digits, together with three times the sum of
the first, third, fifth, seventh, and ninth digits. For
instance, if a nine-digit account number is 123456789,
the check digit is the last digit of the sum

(2+4+6+8)+3(14+3+54+7+4+9)=9
The last digit is five, so the complete account number
would be 1234567895.

There is a certain protection against fraud here;
unless the person attempting the fraud knows the sys-
tem, there is only one chance in ten that an invented
account number will be a valid one.

More important, perhaps, there is considerable pro-

A Self-Checking Number Routine

tection against clerical error. If any one digit is mis-
copied, the erroneous account number will not pass the
check. Furthermore, most transpositions of two ad-
jacent digits will cause the check to fail. For instance,
the check digit for 132456789 would be

(34+44+64+8)+3(14+24+54+7+9)=93
The computed check digit of 3 is obviously not the
same as the one in the number, so the account number
is rejected as invalid.

We wish now to study a program that will deter-
mine whether an account number that has been en-
tered into the computer is valid. We begin the pro-
gram with a nine-digit account number in ACCT, in
zoned format. Immediately following ACCT is a one-
digit check digit named CHECK, also in zoned format.

In the program in Figure 70 we begin by loading
register 3 with 1. This will be used to determine
whether a digit should be multiplied by 3 or not, as
we shall see below. Register 4 is loaded with 9; this
is an index register, used to get the digits in order
from right to left. A Move Character puts a signed
zero in SUM where the sum of the digits will be
developed. A Subtract Register clears register 5 to
Zero.

START 256

€001CC 05 00 BEGIN BALR 13,0

0C0102 USING ,13
000102 41 30 0 001 LA 3,1 REGISTER 3 HAS ITS SIGN REVERSED IN LOOP
¢00106 41 40 0 009 LA 4,9 COUNTER ~ 9 DIGITS IN NUMBER
000104 D2 01 D 064 D 066 MVC  SUM,ZERO SUM OF DIGITS KEPT IN SUM
000110 18 55 SR 5,5 CLEAR REGISTER 5
000112 43 56 D 059 Loop  IC S,ACCT-114) PICK UP ONE DIGIT OF NUMBER -- INDEXED
000116 89 50 0 004 SLL 5,4 SHIFT LEFT & BITS
000114 56 50 D 06A 0 5,PLUS ATTACH A PACKED PLUS SIGN
00011E 42 50 D 068 STC  5,DIGIT STORE IN TEMPORARY LOCATION
000122 FA 10 D 064 D 068 AP SUM,DIGIT ADD TO SUM OF DIGITS
00u128 13 33 LCR 3,3 REVERSE SIGN OF REGISTER 3
00C12A 47 20 L 038 8C 2,EVEN SKIP NEXT 2 INSTRUCTIONS 0ODD TIMES THRU
00012E FA 10 0 064 D 068 AP SUM,DIGIT ADD CIGIT TO SUM IF NOT SKIPPED
000134 FA 10 D 064 D 068 AP SUM,DIGIT SAME -- HAS EFFECT OF MULTIPLYING 8Y 3
000134 46 40 L 010 EVEN BCT  4,LO00P BRANCH BACK IF NOT ALL CIGITS PROCESSED
00013E 43 50 D 063 Ic SyACCT+9 PUT CHECK DIGIT IN REGISTER 5
000142 89 50 0 004 SLL 5.4 SHIFT LEFT 4 BITS
000146 56 50 D 064 0 5,PLUS ATTACH SIGN -— PUTS IN SAME FORMAT AS SUM
000144 42 50 D 064 STC  5,SUM PUT CNE BYTE IN LEFT BYTE OF SUM
00014E 05 00 v 064 D 065 CLC  SUMI1),SUM+1 IS SUM SAME AS CHECK DIGIT
000154 47 60 L 058 BC 6,ERROR BRANCH TO ERROR ROUTINE IF DIFFERENT
000158 0A 00 ouT svC 0 PRCGRAM WOULD NORMALLY CONTINUE HERE
000154 0A 00 ERROR SVC C
00015C ACCT DS cL9
000165 CHECK DS cLl
000166 SUM DS cL2
000168 200C IERU  DC PL2'G*
000164 DIGIT DS  CL1
00016C DS oF
60016C 0000000C PLUS  DC X*C0C00C0C !

END  BEGIN

Figure 70. A program to compute the check digit for a self-checking number, and compare the computed value with the check

digit contained in the last position of the number

Logical Operations on Characters and Bits 115



At LOOP we begin the processing of digits. With
index register 4 containing 9, the effective address the
first time through the loop will be ACCT+8, which
is the address of the rightmost digit. The index is re-
duced by one each time around the loop, so we pick
up the digits one at a time, from right to left, as
stated.

The digit inserted in register 5 is shifted left four
bits. This puts the numeric part of the digit, which was
in zoned format, into the leftmost four bits of an
eight-bit byte at the right end of the register, and
brings in four zeros at the right. Or-ing with PLUS
puts a plus sign into the rightmost four bits, and we
have a one-digit byte in correct packed format for
use with an Add Decimal. We therefore put the as-
sembled digit into a working storage location at
DIGIT and add it to SUM.

Now comes the question of whether or not this is a
digit that is to be multiplied by 3. The rule requiring
digits to be so multipled can be stated thus: the first
digit is multiplied by 3; after that, every other digit
is so multiplied. In other words, we need some tech-
nique for getting a branch every other time through
the loop. The method shown here is to reverse the
sign of the contents of register 3 every time, then to
ask whether the result is positive. The first time
through we change a 41 to —1; the answer is “no, the
result is not positive”. The second time through we
change a —1 to 41, and the answer is “yes, the re-
sult is positive”. The third time through the 4-1 gets
changed back to —1, and the answer is no. In short,
every other time we ask whether the result of reversing
the sign of register 3 is positive, the answer will be
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yes. We accordingly Branch on Condition to EVEN
if register 3 is positive. This means that for even-
numbered digits the two additional Add Decimal in-
structions will be skipped. These, if they are executed,
have the effect of adding in a digit three times instead
of once, which is equivalent to multiplying and some-
what faster.

At EVEN we Branch on Count back to LOOP if,
after reducing the contents of 4 by one, the result is
not zero. The loop will therefore be executed the last
time around with 1 in register 4, so the last digit
picked up is at ACCT, as it should be.

Once all nine digits have been added to sum, we
are ready to see whether the last digit of SUM is the
same as CHECK. But it isn’t quite that simple; the
digit at CHECK is still in zoned format. We accord-
ingly go through the steps necessary to convert it to
packed format, storing it for comparison in the left
byte of SUM, which we no longer need. A Compare
Logical Character with an explicit length of one now
determines whether the check digit that came with
the account number, which is now in SUM, is the
same as the computed check digit, which is now in
SUM-|-1. We have ended the error path with a Super-
visor Call, as well as the normal path. We will not
attempt to indicate what steps might be taken to
reject the record of which the invalid account number
would have been a part.

There are, of course, many other techniques for
computing check digits which give greater protection
or make the check digit operations simpler. For a
more complete discussion of this topic, see Disk
Storage Concepts (F20-8161).



We turn now to a hypothetical example of the type
of thing that is sometimes necessary in working with
involved input formats.

We are given two numbers. NUMBER is a seven-
digit quantity in zoned format. We are to test each of
the seven numeric portions separately in order to be
certain that each represents a digit, that is, that the
value of the numeric portion is less than ten. If all
seven characters contain valid digits, we simply go on
to the next test; if any one contains numeric bits not
valid for a digit, we shall go to a Supervisor Call.

After completing this test, we are to check the zone
bits of the rightmost byte of NUMBER to be sure that
it contains a sign. The other zone positions are of no
interest. As before, if there is an error condition, we
go to a Supervisor Call.

Next, we start with an eight-byte field named
COMB. We shall assume for the purposes here that

A Final Example

the numeric portions all represent valid digits; if this
were questionable, they could be checked. The zones
of the eight bytes contain either plus or minus signs.
A plus sign is to be taken as meaning 1 and a minus
sign as meaning zero; we are to assemble a one-byte
quantity that contains a binary number formed from
the signs. For instance, Figure 71 shows a card field
that could have produced the data in COMB. If this
field were viewed as an alphabetic quantity in normal
IBM card code, it would be ABLMEOGQ. We want
to view it, instead, as being a positive number
12345678 together with a binary number ( contained in
the zones) of 11001010. The I's and zeros here cor-
respond to the zomes: ++4——+—+— We are to
separate the two items contained in COMB, placing
the number in NUMERC as a packed decimal num-
ber and the zones in CODES as a one-byte binary
number.

ST

00000000000000000000ﬂ0000000000000000ﬂﬂﬁﬂﬂﬂﬂ0000000000000!0000000000000000000000
1234567 890NRNUBKNBNNANNINESRANRNUVUBRI BNV AQOUEETHHNNSIXNVABRTHANAQNUSEOIGORIZTNER D BNN
IllllII\IlllllIlllll!llllllllllllllllllllll1Illllllllllllllllllllllllllll!Illlll
222222222222'2222222222222222222222222222222222222222222222222222222222222222222
3333333333313'333333333333333333333333333333333333333333333333333313333333333333
ARAAA AR aaaaataaiitaaaadaiatdntaaaiaandaaanstqasqdiianiaqqnnqnnsiinaiiiasas
555555555555555[5555555555555555555555555555555555555555555555555555555555555555
666666666666666666666666666666666666666656666666666666666666666666666666666666¢6
IR R R AR AR R R AR R LR R R R R R R R R R A R R R R R R R R R R R R R R R R R R R R R R A R R R RN R R R R R R R R R R R R RN RN
3888883868888 aesasassanesassnasasasnseasssnrssoasssaesasaaapaoosesssesaeg

k\fs3!999‘9999999999599!9!!!9!!9!!!99!!!!39999!9!998!!9!9!!!99953909!9!9!9!9999389
1234567890
= 508!

MPGUEE TSR ARNNBRTIANMINDUBBNANGIL2OUSKETRONI NVHSETANNERQUGSEORABNIRZTIUBIRT NN®R

~

Figure 71. An illustrative card field for COMB, an area used in th e program in Figure 73
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A flowchart showing the logic of this problem is
shown in Figure 72.

Check Numeric
Portions at
Number

Check for Sign
in Rightmost

Convert Zones
of COMB
to Binary

Y

Set Up + Sign
in Rightmost

Y

PACK

Figure 72. A flowchart of the processing carried out by the pro-
gram in Figure 73
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The program in Figure 73 does the processing re-
quired. We start by placing a 7 in register 10, for
use as an index. Register 9 is cleared. The instructions
from LOOP to OK pick up the digits in turn, strip off
the zone bits with a suitable And, and compare the
numeric portions with 10. '

The instruction after OK picks up the rightmost byte
of NUMBER,; this should have either a plus sign or a
minus sign. Another And, but with a different mask,
strips off the numeric portion and the rightmost bit
of the sign; we do not care whether the sign is plus
or minus, a distinction which is made in the rightmost
bit of the sign. A comparison then establishes whether
the left three bits of the sign are 110, which they
should be for an EBCDIC sign.

At OK2 we are ready to go to work on the com-
bined digits and zones at COMB. In preparation for
what follows, we clear registers 8, 9, and 10. At
LOOP2 there is a shift — before anything has been
placed in the register shifted. The idea is that we
want to shift the contents of this register seven times
for eight bits. One way to accomplish this is to place
the shift instruction so that it has no net effect the
first time around. i

The Insert Character is indexed with register 10,
which initially contains zero. We will therefore pick
up the digits from left to right this time. For each
digit we use an And to drop the numeric bits, then test
against constants 50 as to determine whether the sign
is plus or minus. If it is neither, we get out; there
should be one or the other. If the sign is plus, we
branch to YES, where a 1 is added into register 9 —
the one that we shifted at the beginning of the loop.
Whether the sign is plus or minus, we now reach NO,
wherer we add 1 to the index register and branch
back to LOOP2 if the contents are eight or less.

Now, when we branch back, we again shift the
contents of register 9 one position to the left. This
means that each time we again reach the beginning of
this loop, whatever has been assembled in register 9
so far is shifted left one place, thereby making room
for another bit at the rightmost position of the register.
Thus, when we finally get out of the loop and arrive at
the Store Character, the last byte of register 9 will
contain a 1 in positions corresponding to plus signs in
COMB, and zeros in positions corresponding to minus
signs. The byte stored at CODES is just what the
problem statement required.

An And Immediate now erases the zone positions
of the rightmost byte of COMB, and an Or Immediate
places a plus sign there. The Pack instruction does
not check zones, except in the rightmost byte, so we
can proceed to it immediately, with no concern for
the other zone positions.
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0001¢G2
000106
000108
00010C
00011C
000114
ooulls
000114
00011E
000122
000126
000124
00012E
000130
000132
000134
GC001136
000134
00013€E
000142
000146
000144
00014E
000152
000154
Goo0158
00015C
00016C
000164
coclee
00016C
00017C
00Cl76
000178
00C17F
000187
co0188
G00190
00019C
000194
000198
00919C
0001AC
0001A4
0001A8
0001AC
00018C

05 FO

41 AQ
18 99
43 9A
54 90
59 90
47 40
OA 00
46 AO
43 80
54 80
59 80
47 80
0A 00
18 88
18 98
18 A8
88 90
43 8A
54 80
59 80
47 80
59 80
47 80
0A 00
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SA AO
59 AO
47 70
42 90
34 OF
96 CO
F2 47
0A 00
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0000COOF
000000EQ
000000F0
000000C 0
000600000
000000C0
0000000 A
00000001
00000008

060102
007

075
o8t
0A6
o018

006
07C
092
GA2
02k

001
070
096
09A
052
09E
056

OAA
OAA
OAE
034
085
C84
084
086 F 07D

BEGIN

Loop

0K

0K2

LoorP2

YES
NO

NUMBER
comMs
CODES
NUMERC

MASK1
MASK2
MASK3
PLUS
MINUS
SIGN
TEN
ONE
TEST

START
BALR
USING
LA

SR

ic

N

c
8C
svc
8CT
{9
N

c
aC
SvC
SR
LR
LR
SLA
1C
N

C
BC
C
B8C
sve
A

A

o
BC
STC
NI
0l
PACK
sve
ns
DS
DS
Ds
DS
2108
DC
nc
)]s
oC
DC
[2]8
1]
DC
END

256

15,0

.915

10,7

9,9

9y NUMBER-1(10)
9, MASK]

9, FEN

440K

c

10,L00P

8+ NUMBER+6
8y MASK2

B4 SIGN
8,0K2

[¢

B,y8

9,8

1048

9,1
8,COMB(1C)
84yMASK3
8,PLUS

8, YES

8y MINUS
8,4NO

7]

9, 0NE
10,0NE

10, TEST
7,L00P2
9,CODES
COMB+ 7,415
COMB+7,192
NUMERC ,CCM8
[

cL7

cLs

cLl

CLS

OF
X*0000000F*
X*00G0O00EO"*
X*GO000CFO?!
X*Q00c00CO"
X*000000D0*
X*000000CO"*
F'10*

F'1*

Feg?

BEGIN

REGISTER 10 IS USED AS AN INDEX

CLEAR REGISTER 9

INSERT ONE DIGIT IN REGISTER 9 —- INDEXED
STRIP OFF SIGN

IS NUMBER LESS THAN 10

BRANCH AROUND SUPERVISOR CALL IF 0K
NOT A OIGIT

REDUCE CCNTENTS OF REG 10 8Y 1 + BRANCH
IF HERE, ALL DIGITS CHECKED CK

STRIP OFF DIGIT PART OF LAST BYTE
COMPARE WITH CODING FOR PLUS SIGN
BRANCH IF 0K

NO SIGN

CLEAR REGISTER 8

CLEAR REGISTER 9 BY LOACING FROM 8
CLEAR REGISTER 10 BY LOADING FROM 8
SHIFT REGISTER 9 LEFT 1 BIT

INSCRT ONE BYTE IN REGISTER 8 -~ INDEXED
STRIP OFF CIGIT PART

COMPARE WITH CODING FUR PLUS

BRANCH IF PLUS

COMPARE WITH CODING FOR MINUS

BRANCH IF MINUS

NEITHER PLUS NOR MINUS

ADD 1 TO CONTENTS OF REGISER 9 IF PLUS
ADD 1 TO REGISTER 10 FOR LOOP TEST
COMPARE

BRANCH BACK IF NOT FINISHED

STCRE LAST BYTE GF REG 3

STRIP OFF OLD IONE

ATTACH IONED PLUS SIGN

CONVERT TO PACKED FORMAT

PROGRAM TERMINATION

Figure 73. A program to check a decimal field named NUMBER for validity, and to convert a combined field named COMB

Summary

to a binary number and a packed decimal number

This chapter has illustrated some of the various tech-
niques for logical operations in the System/360. The
emphasis in this study has ranged from logic in the
flowcharting sense, to bit-by-bit operations in making
decisions, to two extended examples that involved bit
operations on sequences of characters. In the course
of this study we have seen how the great variety of
actions described under the heading of “logical opera-
tions” can be effectively approached with the pro-
gramming features of the System/360.
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Questions and Exercises

1. The byte at location KEY in main storage con-
tains four program switches in bit positions 4-7. Each
of these bit positions may be 1(on) or 0 (off). Write
an instruction that will reverse the setting of the pro-
gram switches and leave bits 0-3 unchanged.

2. In the following byte, located at ADDR in main
storage, a 1 in a particular position shows the pres-
ence of a characteristic and a zero its absence. Write
instructions that will branch to ANIMAL for owners
of dogs or cats or both, and proceed sequentially for
all others.

xx000000

(not used) — T I L pigeon fancier
cat owner canary owner
tropical fish raiser

dog owner parrot owner

3. Using the preceding, write instructions to branch
to LIST2 for owners of fish but not canaries, or canar-
ies but not fish.

4. Suppose location SUM contains 05432 in packed
decimal format, and suppose that general register 2
initially contains zero. Show what register 2 will con-
tain (in hexadecimal or binary) after:

a. IC 2,SUM

b. IC 2,SUM--2

c. IC 2,SUM-+1
5. At most, the TM (Test Under Mask) instruction
can test ... bit(s) or ... .

byte(s) with one instruction.

6. At most, the CLC (Compare Logical Character)
instruction can compare ... bit(s) or
.............................. byte(s) with one instruction.
7. The CLC instruction will successfully compare
two operands in only one of the following forms.
Which is it?

a. Packed decimal numbers

b. Alphameric characters

¢. Zoned decimal numbers

8. In the CLC instruction, comparison proceeds from
left to right, byte by byte, but ceases immediately
before the end of the operand is reached, when one
of the following is encountered (select one):

a. The EBCDIC sign code

b. A special character

¢. An inequality

d. An improper zone code

9. Neglecting leading zeros, give in decimal the con-
tents of general register 5 after execution of each of
the following:

120

a LA 55

b LA 52

c LA 53(01)

d LA 5FIELD
FIELD i)S F

10. Write instructions to determine whether or not
the byte at main storage location FIELD contains a
5 (0000 0101 in binary).

11. In the following hypothetical program, the rows
of dots represent straightforward instruction se-
quences of any reasonable length, whose nature need
not concern us.

LA 2,10
LOOP .
INST BC 0,ADDR

0) 1 INST4+1.X'FO
ADDR

BCT 2,LOOP
Which part of the BC instruction is addressed by the
relative address INST-417
12. Bearing in mind that in question 11 the hexa-
decimal immediate data X’F(’ is simply a convenient
way of specifying binary 11110000 (or decimal 240),
can you say that the OI (Or Immediate) instruction:

a. Will be executed once and only once?

b. Causes certain instructions within the BCT
loop to be skipped on all but the first execution of
the loop? ‘

c. Alters the bit structure of a mask field?

d. Does all of the above?

13. Assume that the overall loop of the following
sequence will be executed a number of times. What
will be the effect of the XI (Exclusive Or) instruc-
tion?

LOOP ..

XI INST-+1,X'F0’
INST BC  0ADDR
ADDR ..

BCT 5,LOOP

14. Suppose that general register 5 contains a number
of which only the high-order (leftmost) byte is of
interest. Write a logical instruction to zero the three
low-order bytes, together with any instructions neces-
sary to define masks, load other registers, etc., as
required.



Chapter 8: Edit, Translate, and Execute Instructions

The design of the System/360 includes a large number
of features that make data processing faster and more
efficient and which simplify the work of programming
once the concepts have been mastered. The three in-
structions that are the main subject of this chapter are
in this category. They can be characterized as ex-
tremely powerful, with a broad range of applicability.
The Edit instruction provides a way of preparing out-
put for printing in an easily readable form. The opera-
tion of the instruction is highly flexible, so that many
kinds of editing actions can be performed, all in one
pass through the data field. The Translate and Execute
instructions have a broad range of application, limited

only by the imagination of the programmer.

This chapter provides many examples of the use of
these instructions. Illustrations of the Edit instruction
are followed by four complete programs. The first
shows how the Translate instruction can be used for
code conversion, in this case to change a collating
sequence. The second employs Translate and Test to
search for sentinels in a list of names and addresses.
The Execute instruction, together with Translate and
Test, is employed in a third program to break apart
the subfields of an operand field in an assembler in-
struction. A final example involves variable-length
blocked records.
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" The Edit Instruction

The Edit instruction is one of the most powerful in the
repertoire of the System/360. With proper planning it
is possible, as we shall see, to suppress nonsignificant
zeros, insert commas and decimal points, insert minus
sign or credit symbol, and specify where suppression
of leading zeros should stop for small numbers. All of
these actions are done by the machine in one left-to-
right pass. The condition code can be used to blank

all-zero fields with two simple and fast instructions. A -

variation of the instruction, Edit and Mark, makes
possible the rapid insertion of floating currency
symbols.

We shall study the operation and application of
this powerful instruction by applying it to successively
more complex situations.

We begin with a simple requirement to suppress
leading zeros; no punctuation is to be inserted. We
have a field to be edited, called DATA. It is four
bytes long, and the decimal data is in packed format;
the packed format for data to be edited is a require-
ment of the Edit (ED) instruction.

The data to be edited is named as the second
operand of the Edit. The first operand must name a
“pattern” of characters that controls the editing; after
execution of the instruction the location specified by
the first operand contains the edited result. (The
original pattern has been destroyed by the editing
process.) The pattern is in zoned format, as is the
result; the Edit instruction involves a conversion
from packed to zoned format.

We said that in our example the data field to be
edited was four bytes long, that is, seven decimal
digits and sign, which we shall assume to be plus. The
pattern must accordingly be at least eight bytes long:
seven for the digits and one at the left to designate
the “fill character”. The fill character is of our choos-
ing, but is usually a blank. This is the character that
is substituted for nonsignificant zeros.

The leftmost character of the pattern in our case
will be the character blank. The other seven characters
will contain a special coding, 20,6, called a “digit
select” character, used to indicate to the Edit instruc-
tion that a digit from the source data may go into the
corresponding position.

Let us see how all this works out in our example.
Suppose we set up an eight-byte working storage
field named WORK into which we move the pattern
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(located in an area called PATTRN). Then we will
perform our edit using WORK and DATA as the two
operands. The two instructions necessary to do the
job are:

MVC WORK,PATTRN

ED  WORK,DATA
After execution of the two instructions, WORK con-
tains our edited result. PATTRN still contains the
original pattern and can transmit that original pattern
to WORK for the editing of any new value in DATA.
At PATTRN there should be the following characters,
written here in hexadecimal:

40 20 20 20 20 20 20 20

The 40 is the hexadecimal code for a blank. The 20s
are the hexadecimal codes for the digit-select charac-
ter. Suppose now that at DATA there is

0001 00 0+
The edited result would be

bbb1000
where the b’s stand for blanks. All zeros to the left
of the first nonzero digit have been replaced by
blanks; but zeros to the right of the first nonzero digit
have been left as they were. This is the desired action.
Figure 74 shows a series of values for DATA and the
resultant edited results in WORK, using the pattern
stated. Note that the high-order position of WORK
contains the fill character — a blank. The values of
DATA are packed decimal; the edited results are in
zoned decimal format.

BODDDDDD :
40 20 20 20 20 20 20 20
1234567 1234567
0120406 120406
0012345 12345
00010CO 1000
0000123 123
0000012 12
0000001 1
0000000

Figure 74. Examples of the application of the Edit instruction.
The first line gives the editing pattern used, first in
a symbolic form and then in hexadecimal. In the
symbolic form, B stands for blank and D for digit
select.



The fill character that we supply as the leftmost
character of the pattern may be any character that
we wish. It is fairly common practice to print dollar
amounts with asterisks to the left of the first significant
digit in order to protect against fraudulent alteration.
This is usually called asterisk protection.

To do this, we need only change the leftmost charac-
ter of the pattern of the previous example. The hexa-
decimal value for an asterisk is 5C; hence the new pat-
tern is

5C 20 20 20 20 20 20 20
Figure 75 shows the edited results for the same DATA
values.

*DDDDDDD

5C 20 20 20 20 20 20 20
1234567 #1234567
0120L06 #%120406
0012345 ###123L5
0001000 #x*#%x1000
0000123 ###x%x123
0000012 sxxxxx12
0000001  sswwxxx]
0000000 3 36 3 3 36 3 336

Figure 75. Examples of the application of the Edit instruction
with the fill character as an asterisk

Any characters in the pattern other than the digit
select (and two other control characters that we shall
study later) are not replaced by digits from the data.
Instead, they are either replaced by the fill character
(if a significant digit has not been encountered yet),
or left as they are (if a significant digit has been
found). Suppose, for instance, that we set up a
PATTRN as follows:

40 20 6B 20 20 20 6B 20 20 20
The 6B is hexadecimal coding for a comma. The
edited result will contain commas in the two positions
shown, unless they are to the left of the first nonzero
digit, in which case they are suppressed. Figure 76
shows the results for the same data values.

The characters inserted are, naturally, not limited
to commas. A frequent application is to insert a
decimal point as well as commas. Let us assume that
the data values we have been using are now to be
interpreted as dollars-and-cents amounts. We need to
arrange for a comma to set off the thousands of
dollars, and a decimal point to designate cents. The
characters in PATTRN, where 6B is a comma and 4B
is a decimal point, should be as follows:

40 20 20 6B 20 20 20 4B 20 20

The edited results this time are in Figure 77.

80,DDD,DDD

4C 2C 6B 20 20 20 6B 20 20 20
1234567 192344567

0120406 120,406

0012345 124345

0001C00 1,000

0C00123 123

0000012 12

0000001 1

0000000

Figure 76. Examples of the application of the Edit instruction
with blank fill and the insertion of commas

8DD,DDD.DD

4C 20 20 6B 20 20 20 4B 20 20
1234567 12+345.67

0120406 1y204.06

0012345 123.45

00010C0 10.00

0000123 1.23

0000012 12

0000001 1

000000C0

Figure 77. Examples of the application of the Edit instruction
with blank fill and the insertion of comma and deci-
mal point

We see here something that would normally not be
desired: amounts under one dollar have been edited
with the decimal point suppressed. We would ordi-
narily prefer to have the decimal point. This can be
done by placing a significance-start character in the
pattern. This character, which has the hexadecimal
code 21, is either replaced by a digit from the data
or replaced with the fill character, just as a digit-
select character is. The difference is that the operation
proceeds as though a significant digit had been found
in the position occupied by the significance-start
character. In other words, succeeding characters to
the right will not be suppressed. (An exception to this
generalization will be explored later.) ‘

The pattern for this action, assuming we still want
the comma and decimal point as before, should be

40 20 20 6B 20 20 21 4B 20 20
The effect is this: If nothing but zeros have been
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found by the time we reach the 21 significance-start
character in a left-to-right scan, a “trigger” is turned
on anyway. This trigger, called the S trigger, will make
succeeding characters be treated as though a nonzero
digit had been found. The result is that the decimal
point will always be left in the result, as will zeros to
the right of the decimal point. The edited results this
time are shown in Figure 78.

80D,0ODS.DD

40 20 20 6B 20 20 21 4B 20 20
1234567 124345.67

0120406 1,204.06

0012345 123.45

0001000 10.00

0000123 1.23

6000012 .12

000C0C1 .0l

00000C0O «00

Figure 78. Examples of the application of the Edit instruction
with blank fill, comma and decimal point insertion,
and significance start. In the symbolic pattern, S
stands for significance start.

We can begin to get a little idea of how the machine
does its work on this instruction by noting that the
S trigger is initially set to zero before the scan begins.
It stays at zero until a nonzero data digit is found, or
until the significance-start character is encountered, at
which time it is set to 1. It is the status of the S trigger
that determines whether a digit select character in the
pattern will be replaced by a digit or by the fli
character. An S trigger setting of zero means that no
significant (nonzero) digits have been found yet, so
the fill character is used; an S trigger value of 1 means
either that a significant digit has been found at some
previous character position or that the significance-
start character has been found; in either case the digit
from the data is inserted even if it is a zero.

We have so far ignored the sign portion of the
source data. The four rightmost bits of the source
field are examined and used to set the S trigger ac-
cording to an entirely different rule: zero if plus, 1
if minus. This is done every time the Edit instruction
is executed, but if it happens after the completion of
the scan of the pattern, as in the examples so far, it
has no effect. As a matter of fact, if any of the source
fields in the examples above had been negative, the
results shown would have been exactly the same.

Suppose, however, that pattern characters remain
after the sign position has been examined. The action
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of the S trigger in controlling the instruction con-
tinues just as before, although the setting of the S
trigger was accomplished in a rather different way.
There are, of course, no more digits to move. Hence
we will not want to place digit-select characters in the
pattern in this position, but, rather, sign indicators,
such as a minus sign or CR for credit. The action
taken with the characters in the pattern is the same
now as it was before: leave them unchanged if the
S trigger has the value 1, but replace them with the
£l character if the S trigger has the value zero.

What we do, then, is to place in the pattern the
characters we want to print if the quantity is negative.
If the data is indeed negative, our sign will be left, but
if the data is positive, the sign will be replaced by the
fill character.

Let us set up a suitable pattern for the example
data. Let us print the letters CR for negative numbers,
with one blank between the rightmost digit and the C.
In hexadecimal, CR is C3 D9, so the pattern becomes

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

Figure 79 shows the results for sample data values
as before, together with two negative values.

80D,DDS.DDBCR

40 20 20 6B 20 20 21 48 20 20 40 C3 D9
1234567 124345.67
. 0120406 1,204.06
0012345 123.45
0001000 10.60
0000123 1.23
0000012 .12
0000001 .01
0000000 .00
-0098765 987.65 CR
-00000G0 .00 CR

Figure 79. Examples of the application of the Edit instruction
with blank fill, comma and decimal point insertion,
significance start, and CR symbol for negative num-
bers. In the symbolic pattern, C and R are themselves,

If we use an asterisk now as the fill character, posi-
tive quantities will have three asterisks following the
cents, as shown in Figure 80. This might or might not
be desired. There are other ways to handle the signs,
as we shall see next.

We have seen above that an amount of zero prints
in the general form .00 when significance start is used.
It may in some cases be desirable to make such an
amount print as all blanks or all asterisks. This is very



#DD,DDS.DDBCR

5C 20 20 6B 20 20 21 4B 20 2C 40 C3 D9
1234567 #12,345.6Tn=x
0120406 #%1,204.06%2%
0012345 #x%2]123.45%%%
0001000 ##%%%]10,00%s=
0000123 ww#xnnx]l, 23%xs
0000012 #snmunsn,]l2%xn
QG00001 #swanxx,0lxen
Q000000 w#usnwux O0%=:
-0098765 #%#%#2987.65 CR
-0000000 #x»=»ex,00 CR

BDD,DDS.DDBCR

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9
1234567 12,345.67
0120406 1,204.06
0012345 123.45
0001000 10.00
0000123 1.23
0000012 .12
00000G1 .01
0000000
-0098765 987.65 CR
-00000C0

Figure 80. Examples of the application of the Edit instruction
(same as in Figure 79 except asterisk fill instead of
blank fill)

easily done by making use of the way the condition

code is set by the Edit instruction:

Code Instruction

0 Result field is zero
1 Result field is less than zero
2 Result field is greater than zero

This means that after completion of the Edit we can
make a simple Branch on Condition test of the con-
dition code and move blanks or asterisks to the result
field if it is zero. The movement is particularly simple
because the fill character is still there in the field and
an overlapped Move Characters instruction can be
used as follows:

BC  6SKIP
MVC WORK--1(12), WORK
SKIP

The explicit length of 12 is based on the most recent
pattern, which has a total of 13 characters. The MVC,
as written, picks up the leftmost character and moves
it to the leftmost-plus-one position. It then picks up
the leftmost-plus-one character and moves it to the
leftmost-plus-two position, etc., in effect propagating
the leftmost character through the field. This is pre-
cisely what we want if the fill character is the one to
be substituted. (If some other character is desired, a
suitable Move Characters instruction can, of course,
be written.)

Figure 81 shows our familiar data values with zero
fields blanked, and Figure 82 shows them with zero
fields filled with asterisks. Only the fill character dif-
fers in the two programs that would produce the re-
sults shown in Figures 81 and 82; the Edit, the Branch
on Condition, and the Move Characters are the same
in both cases.

The condition code can be used also to distinguish
between positive and negative numbers when it is
necessary to present the sign in some manner that is

Figure 81. Examples of the application of the Edit instruction,
showing the blanking of zero fields by the use of
two additional instructions

=DD,0DS.DDBCR
5C 20 20 6B 20 20 21 4B 2C 20 40 C3 D9
1234567 #124345.67%%2
0120406 ##1,204,06%%%
0012345 ###£%123.45%%%
0001000 s###exl0,00%%x
0000123 #asuxe]l 23%xx
0000012 #=mnxmx,]2%xx
0000001 *»uxsux 0luns
0000000 *#swssssumsxn
-0098765 =#=*=2987.,65 CR
—0000000 #Esrxsisnnszssn

Figure 82. Examples of the application of the Edit instruction
with asterisk fill and zero fields filled with asterisks
instead of being blanked

not possible by using the automatic features of the
Edit. We might, for instance, wish to test the condi-
tion code and use the results of the test to place a
plus sign or minus sign to the left of the edited result.

The Edit instruction can be used to edit several
fields with one instruction. Doing so uses a final
special character, the field separator, 22;¢. This charac-
ter is replaced in the pattern by the fill character, and
causes the S trigger to be set to zero. The characters
following, both in the pattern and in the source data,
are handled as described for a single field. In other
words, it is possible to set up a pattern to edit a whole
series of quantities, even an entire line, with one in-
struction. The packed source fields must, of course, be
contiguous in storage, but this is often no incon-
venience. One limitation is that the condition code,
upon completion of such an instruction, gives informa-
tion only about the last field encountered after a field
separator.
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Let us consider an example. Suppose that at DATA
we have a sequence of three fields. The leftmost of
the fields has four bytes, the next has three, and the
rightmost has five bytes. The first is to be printed with
commas separating groups of three digits. The values
are always positive and, therefore, no sign control is
desired. Zero values will be blank since we shall not
use a significance-start character.

The second field is to be printed with three digits
to the right of the decimal point, with significance-
start to force numbers less than 1 to be printed with a
zero before the decimal point. Positive quantities are
to be printed without a sign, and negative quantities
are to be printed with a minus sign immediately to
the right of the number.

The third number is a dollar amount that could be
as great as $9,999,999.99. Commas and decimal point
-are needed as just shown. Amounts less than $1 are to
be printed with the decimal point as the leftmost
character. Zero amounts are to be blanked. Signs are
not to be printed.

There is to be at least one blank between the first
and second edited result, and at least three between
the second and third.

Let us write out the necessary pattern in shorthand
form, with b standing for a blank, d for digit select, f
for field separator, s for significance start and other
characters for themselves:

bd,ddd,dddfsd.ddd-fbbd,ddd,dds.dd

The required blank between the first and second edited
result will be placed there by the replacement of the
field separator with the fill character. The significance-
start character in the part of the pattern corresponding
to the second field will give the required handling of
quantities less than 1. The extra two blanks between
the second and third resultsare provided by the blanks
in the part of the pattern corresponding to the third
data item. ( These are not treated as new fill characters;
only the leftmost character in the entire pattern is so
regarded.)
Instructions to do the required actions are as follows:

MVC WORK,PATTRN

ED  WORKDATA

BC  7SKIP

MVC WORK+-30(3),WORK4-18
SKIP

The choice of addresses in the final MVC that blanks
a zero field is somewhat arbitrary. We reason that if
the entire field is zero, the first thr