File No. S360-36
Order No. GC28-6764-1

Systems Reference Library

NP T e L AR

i
i

- - ag o P EP NS
b enE MEWISLETTE
‘ Sun HE R oL

¥

BENIND THIS MANUAL |
)

IBM System/360 Dpjna»ti»ng—‘-System.

Time Sharing Option
Guide to Writing a
Terminal Monitor Program

or a Command Processor

0S Release 21

This publication describes features of TSO that
can be replaced, modified, or added to by each
installation of TSO, to adapt the command system
to the installation's particular needs. The
manual is intended for programmers whose
.responsibility is to modify the portions of TSO
that communicate directly with the user at the
terminal.

The publication discusses the Terminal
Monitor Program and the Command Processors from
the viewpoint of their replaceability, and
describes the programming features provided
within TSO for user-written Terminal Monitor
Programs, Command Processors, and applications
programs. These features include:

Service Routines

Macro Instructions

SVCs .

The Dynamic Allocation Interface Routine
(DAIR)

The TEST Command Processor

Second Edition (March, 1972)

This is a major revision of, and obsoletes, GC28-6764-0 and
Technical Newsletter GN28-2484. Changes are listed in the
Summary of Amendments. Changes or additions to the text and
illustrations are indicated by a vertical line to the left of
the change.

This edition applies to release 21 of the IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein.
Before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM repesentative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie,

N.Y. 12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1971,1972

This publication describes features of TSO
that can be replaced, modified, or added to
by each installation of TSO, to adapt the
command system to the installation's
particular needs. The manual is intended
for programmers whose responsibility is to
modify the portions of TSO that communicate
directly with the user at the terminal.

The publication discusses the Terminal
Monitor Program and the Command Processors
from the viewpoint of their replaceability,
and describes the programming features
provided within TSO for user-written
terminal monitor programs, command
processors, and applications programs.
These features include:

Service Routines

Macro Instructions

SVCs

The Dynamic Allocation Interface Routine
(DAIR)

The TEST Command Processox

This publication contains information
required by a programmer writing a terminal
monitor program or a command processor for
the Time Sharing Option. It discusses the
functions that a Terminal Monitor Program
or a command processor should provide, and
it describes the macro instructions and
service routines that can be used to
provide these functions.

The book is divided into twelve
sections:

o Introduction

e Terminal Monitor Program
o Command Processors

o Message Handling

o Attention Interruption Handling -- The
STAX Service Routine

e Dynamic Allocation of Data Sets -- The
Dynamic Allocation Interface Routine
(DAIR)

e Using BSAM or QSAM for Terminal I/O

e Using the TSO I/0 Sexrvice Routines for
Terminal I/0

o Using the TGET/TPUT SVC for Terminal
1/0

Preface

® Using Terminal Control Macro
Instructions

o Determining -- Command Scan and Parse
the Validity of Commands

e Testing a Newly Written Program -- The
TEST Command

The first four sections describe the
functions supplied by a terminal monitor
program or a command processor, and explain
message processing conventions peculiar to
the Time Sharing Option.

The next seven sections describe the
macro instructions and service routines
that a programmer can use to provide the
required functions. These macro
instructions and service routines can be
used to schedule and process attention
interruptions, to allocate, free,
concatenate, and deconcatenate data sets
during program execution, to provide I/0
between a program and a terminal, to
control terminal functions and attributes,
and to determine the validity of commands,
subcommands, and operands entering the
system.

The last section describes the TEST
command and how it can be used to test a
newly written program at the terminal.

Prerequisite and Reference Publications

The reader of this publication should
have a knowledge of the structure of the
Time Sharing Option, as described in IBM
Ssystem/360 Operating System: Time Sharing
Option Guide, GC28-6698.

In addition, the reader should have the
following publications available for
reference:

IBM System/360 Principles of Operation,
GA22-6821.

IBM Systen/360 Operating System:

Data Management for System Programmers,
GC28-6550 (formerly System Programmer's
Guide).

Data Management Macro Instructions,
GC26-3794.

Data Management Services, GC26-3746.

Job Control Language Reference,
GC28-6704.

Supervisor Services and Macro
Instructions, GC28-66U6.

System Control Blocks, GC28-6628.

Storage Estimates, GC28-6551.

Time Sharing Option:

Command Language Reference,
GC28-6732.

Command Processor Program Logic
Manual, GY28-6771 through GY28-677

Control Program, Program Logic
Manual, GY27-7199.

Terminal Monitor Program and Servi
Routines, Program Logic Manual,
GY28-6770.

Terminal User's Guide, GC28-6763.

SUMMARY OF AMENDMENTS FOR GC28-6764-1
OS RELEASE 21 .« & & o o o o o o o o =«

SUMMARY OF AMENDMENTS FOR GC28-6764-0
AS UPDATED BY GN28-2484 OS RELEASE 20.1

INTRODUCTION o o o o « « o « o = = -
The Terminal Monitor Program (TMP)
and Command ProCESSOXS « « « « « = =
Basic Functions of Terminal Monitor
Programs and Command Processors . .

Communicating with the User at the
Terminal « « « « & « « o « o o @
Passing Control to Commands and
Subcommands « « ¢ o « o o o o o @
Responding to Abnormal Terminations
Responding to Attention
Interruptions . . . « . . - -
Other Functions Provided w1th TSO .
The Dynamic Allocation of Data Sets
Testing a Terminal Monitor Program
or a Command Processor . . . =+ = =
SUMMAYY =« « « o o « s a s s = = = =

THE TERMINAL MONITOR PROGRAM . + .« «
Specifying Data Sets at LOGON
Terminal Monitor Program Initialization
Requesting A Command « « « s = o « o «
Intercepting An ABEND . . . « = o <« =
Intercepting a Subtask ABEND . « « =«
Intercepting a TMP TASK ABEND . . .
Processing An Attention Interruption .
Parameters Received by Attention
Handling Routines . « « o« « « o « =«
The Attention Exit Parameter List
The Terminal Attention Interrupt
Element (TAIE) o o ¢ o o o o o « =
Processing a STOP Command . « « « « .

COMMAND PROCESSORS 2« o o o =2 o o = a =
ResponNse TiME .« o o « o = = o = o a =
Program Design « « v« o o o o o o« o .
Module Size and Storage Requirements
Command Processor Use of the TSO
Service Routines . « « « « . .
STACK Service Routine . .
GETLINE Service Routine .
PUTLINE Service Routine .
PUTGET Service Routine . .
DAIR Service Routine . . .
Command Scan Service Routine . .
PARSE Service Routine . . . « « o &
STAE/STAI Exit Routines - Intercepting
aQn ABEND . o« ¢ 2 « o o « o« o o o s o« &
Attention Exit Routines
Adding Commands to the Time Sharlng
Option e e o & s s s s s ° @
The HELP Data Set e« @ s s o s e = 8= =
Private HELP Data SetsS « « o « = « «
Formatting the HELP Data Set

MESSAGE HANDLING « « « o o o o o = = @

11

13

15
15
16
16

17
17

17
18
18

Contents

Message Levels . . o« o o ¢ o o o o o =«
Effects of the Input Source on Message
ProcesSSing o« o o o « « « o o o o o o =

ATTENTION INTERRUPTION HANDLING - THE
STAX SERVICE ROUTINE . 2 « « o « o o «
Specifying a Terminal Attention Exit -
The STAX Macro Instruction . « « « . .
The STAX Parameter List . « o o« « « =
Coding Example of the STAX Macro
Instruction . . . - e a e s o o
Return Codes From the STAX Service
ROULINE =« o 2 o o o o o o o o o o = =

DYNAMIC ALLOCATION OF DATA SETS —-- THE
DYNAMIC ALLOCATION INTERFACE ROUTINE
(DAIR) 2« 2 o o 2 o = = o o a @« o o« o
Using DAIR o« - = - . - - “ o
The DAIR Parameter Llst (DAPL) . o
The DAIR Parameter Block (DAPB) .
Code X'00" - search the DSE for a
Data Set Name . . . - .
Code X'04' - Search the DSE and
the System Catalog for Data Set
NAIME ¢ o o o o « o o » o « o o o =
Code X'08"'" - Allocate a Data Set
Dy DSNAME = o = « o = = o« s « = «
Code X'0C' - Concatenate the
Specified DDNAMES . o« o o o o « «
Code X'10' - Deconcatenate the
Indicated DDNAME . 2« « « o « o o «
Code X'14" - Return Qualifiers
the Spec1f1ed DSNAME - . « . . e
Code X"18' - Free the 8pe01f1ed
Data set « « =« . « - e = o o @
Code X'1cCc' - Allocate the
Specified DDNAME to the Terminal .
Code X'24' - Allocate a Data Set
by DDNAME 2 = o o o @« o = « « «
Code X'28' - Perform a List of
DAIR Operations .« « « o« « « « o =
Code X'2C' - Mark Data Sets as
IiN USE 2o o 2o « o o o o 2 o « o« = =
Code X'"30' - Allocate a SYSOUT
Data St o o o o o o o o o o = o @
Return Codes from DAIR . « « « « o <
Return Codes from Dynamic Allocation .

USING BSAM OR QSAM FOR TERMINAL I/O .
BSAM/QSAM Macro Instructions . . « « «
SAM Terminal Routines .« « « « o « «
GET &« o o o @ o o o o o o o s o =
PUT and PUTX 2« v« o o o o @ = = « =
READ v o o o o o o o o o @ @« o « =
WRITE ¢ o ¢ 2 o ¢ o o a a o o o @
CHECK . .« . « s e o s s e e e @
Record Formats, Bufferlng Techniques,
and Processing Modes .« « « o o o « o .
Specifying Terminal Line Size
End of File (EOF) for Input Processing
Modifying DD Statements for Batch or
TSO Processing « « o« o o o o « « = o «

Contents

43

uy

45
45

50
51

57
58
61
62
63
64
66
67

5

USING THE TSO I/O SERVICE ROUTINES FOR
TERMINAL I/0 « o« « = e » = e o ® =
Interface with the I/O Serv1ce Routines
The Command Processor Parameter List
The Input Output Parameter List . .
Passing Control to the I/0 Service
ROULINES o« o « = o« 2 s s « o « o o« o =
The I/0 Service Routine Macro
Instructions . « « « « o « . o e
STACK - Changing The Source of Input
The STACK Macro Instruction - List
Form « . « - o o e e s e e
The STACK Macro Instructlon -
Execute FOXM . « o o =« « « o o « «
Sources of Input
Building the STACK Parameter Block
Building the List Source
Descriptor (LSD) . « o « o o o & =«
Return Codes From STACK . « - « =
GETLINE - Getting a Line of Input .
The GETLINE Macro Instruction -
List Form . . - o o = “ o ®
The GETLINE Macro Instructlon -
Execute FOrM « « « « o « « « o @« o
Sources of Input « o« « « « o & o =«
End of Data Processing . . « « - o
Building the GETLINE Parameter

Block .« « .« . - . .- e s e
Input Line Format - The Input
Buffer c o s % s o = e

Examples of GETLINE « 4 s o e = e
Return Codes from GETLINE
PUTLINE - Putting a Line Out to the
Terminal - « o .« o
The PUTLINE Macro Instructlon -
List Form « e e o o = =
The PUTLINE Macro Instructlon -

Execute Form - .
Building the PUTLINE Parameter
Block .« o« « . . o o . -

Types and Formats of Output Llnes
PUTLINE Message Line Processing: .
Return Codes From PUTLINE
PUTGET - Putting a Message Out to
the Terminal and Obtaining a Line of
Input in RESPONSE o o o « o o o « «
The PUTGET Macro Instruction -
List FOXM & o e « o o o « o « « =
The PUTGET Macro Instruction -
Execute FOrm . . . » e o o o o =
Building the PUTGET Parameter
Block (PGPB) . . .« . o e % .
Types and Formats of the Output
Line . « . . . - o =
Passing the Message Lanes to PUTGET
PUTGET PrOCeSSIing e o o o o o o« «
Input Line Format - the Input
Buffer « e s s e % s o =
An Example of PUTGET « o s o = e
Return Codes From PUTGET « « « <« «

USING THE TGET/TPUT SVC FOR TERMINAL
I/O 2 o o o o o o o o o o s e = =
The TPUT Macro Instructlon - Writing
Line to the Terminal « « « o « o « o«

Return Codes From TPUT @« 2 o o « =

s s Qe

. 85

. 87

. 93
- 95
. 96

-.100
.105
.105

=106

.108
.111
.111
.111
.113
.114
.117
.117
.118
.121
.126
.128
.136
.14y
.14
.145
.149
.155
.157

157
.160
.161
.163
.167
.168

.169
172

The TGET Macro Instruction -- Getting

a Line From the Terminal . . « « « . «
Return Codes from TGET ¢ « o« =« « <« =«

Formatting the TGET/TPUT Parameter

Registers . . e e e e e e
Coding Examples Of TGET And TPUT Macro
Instructions . . . - - o o o e

Examples of Both TPUT and TGET Using
the Default Values . « ¢« ¢« «v o & o &
Example of TPUT Macro Instruction --
Buffer Address and Buffer Length in
Registers. “ e e e e e
Example of the TGET Macro

Instruction -- Register Format . . .

USING TERMINAL CONTROL MACRO

INSTRUCTIONS o o « » o o o = . . a
GTSIZE -- Get Terminal L1ne Slze -
RTAUTOPT -- Restart Automatic Line

Numbering or Character Prompting .
SPAUTOPT -- Stop Automatic Line
Numbering or Character Prompting .
STATTN -- Set Attention Simulation
STATUS -- Change Subtask Status .
STAUTOCP -- Start Automatic
Character Prompting . « « « « = =
STAUTOLN -- Start Automatic Line
Numbering . « = o o « o « « « o =
STBREAK -- Set Break « « « « « .
STCC -- Specify Terminal Control
Characters . . . « o
STCLEAR -- Set Dlsplay Clear
Character String « « o« « o « o o &
STCOM -- Set Inter-Terminal
communication « « « o o © o o o &
STSIZE -- Set Terminal Line Size .
STTIMEOU -- Set Timeout Feature .
TCLEARQ -- Clear Buffers

COMMAND SCAN AND PARSE - DETERMINING
THE VALIDITY OF COMMANDS « « o o o « =
Sequence of Operations « « . « «
Using The Command Scan Service Routine
(IKJSCAN) v o o = o o o a o = o o o =
Command Name Syntax « o « = « « « o
The Parameter List Structure
Required by Command Scan .« . « « .
The Command Scan Parameter List .
Flags Passed to Command Scan . . .
The Command Scan Output Area . . .
The Operation of The Command Scan
Service RoOutine .« o« o« o o o o o o &
Results of the Command Scan . . .« .
Return Codes from Command Scan . . .
Using the Parse Service Routine
(IKJPARS) <« o « « o o o o o = o o s »
Command Parameter Syntax « - . .« . .
Positional Parameters . . « « . .
Keyword Parameters
Using the Parse Macro Instructlons
to Define Command Syntax . « . .
IKJPARM - Beginning the PCL and
the PDL < ¢ o o o = o « - . .
IKJPOSIT - Describing a Dellmlter
Dependent Positional Parameter . .
IKJIDENT - Describing a
Non-Delimiter Dependent Positional
Parameter .« o « o o © ¢ o o o o =

6 Guide to Writing a TMP or a CP (Release 21)

173
.175

.176
177

.177

.178
.179
.180
.180
.181
.182
.183
.184
.185

.186
.187

.188
.190

«191
-.191
.193
-194

.196
-.196

.197
.197

.198
.199
.199
.199

. 200
.202
.202
.203
. 206
. 206
.212
.213
.214

.215

.219

IKJKEYWD - Describing a Keyword

Parameter -
IKIJNAME - Listing the Keyword
Parameter NamesS « « « « « « -

IKJSUBF - Describing a Keyword
Subfield ¢« « o « & @ ¢ @ o o o a
IKJENDP - Ending the Parameter
Control List « & & o & ¢ ¢ o o «
IKJRLSA - Releasing Storage
Allocated by Parse . « « « o« o« .

Passing Control to the Parse Service

ROULINE 2 o o o o o o o o o o = =
The Parse Parameter List

224
.225
227
.228
.228

.229
.230

Formats of the PDEs Returned by Parse 231

The PDL, Head€r . o o o 2 « o o «
PDEs Created for Positional
Parameters « « o o o © o = o = =

Affect of List and Range Options

on PDE Formats . . .« . « o e
The PDE Created for a Keyword
Parameter o« « o« « o o . o o = .

Additional Facilities Provided by

PAYSE =« o o o o o o « o 2 o o o =
Translation to Upper Case . . .
Insertion of Default Values . .
Passing Control to a Validity
Checking Routine . «
Insertion of Keywords
Issuing Second Level Messages -

.231

.231
.238

.238
.245

.245
.245
. 245

-246
. 247
. 247

Prompting e e = o @
An Example of Using the Parse
Service Routine . . . &« . & . &

Return Codes from the Parse Sexrvice

ROUtINE o2 o o o 2« 2 © @« o « = =

TESTING A NEWLY WRITTEN PROGRAM --

TEST COMMAND @ 2 o o o o @« « o = =
When You Would Use TEST . « - «
Addressing Restrictions
Executing a Program Under the
Control of TEST .« « o o @ w & o«
Establishing and Removing
Breakpoints Within a Program: .

THE

.248

.250
. 253

.254
. 256

« 257
- 257

259

Displaying Selected Areas of Storage .259
Changing Instructions, Data Areas,

or Register Contents . « « = « «
Forcing Execution of Program

Subroutines . .« o« o < @ o . .
Using TEST After a Program ABEND

Determining Data Set Information .

APPENDIX A: TSO CONTROL BLOCKS
Environment Control Table . . .
Protected Step Control Block . .
Time-Sharing Job Block
User Profile Table . . « - . . .

APPENDIX B: NOTATION FOR DEFINING
MACRO INSTRUCTIONS o+ o o« o =« « « «

GLOSSARY ¢ & & ¢ o o ¢ o o o o « »

INDEX & ¢ ¢ v ¢ o o o o o o o o &

.
.

261
.261
.261
262

.263

- 260

. 265
267
270
. 271
.273

.275

Contents 7

Figures

Figure 1. A LOGON Procedure
Containing Four DD DYNAM Entries .« .
Figure 2. Requesting a Command . . .
Figure 3. The TSEVENT Macro
Instruction Specifying PPMODE
Figure 4. ABEND, STAE, STAI
Relationship © s e e e e o s e = o @
Figure 5. The Test Parameter List
(Part 1 of 3)
Figure 6. Parameters Passed to the
Attention Exit Routine © . @ = e e
Figure 7. The Attention Exit
Parameter List “ o o o e
Figure 8. The Termlnal Attentlon
Interrupt Element . o o « o o « o « «
Figure 9. sStorage Map - MVT with
Time Sharing Option . <« « o « « o « =«
Figure 10. Cards Used to Format a
HELP Data Set . o e o o « o o o 2 o «
Figure 1l1. Coding Example --
Including the SAMPLE Command in the
HELP Data Set .« o« ¢ o« o o o o o = «
Figure 12. The STAX Macro Instructlon
-- List and Execute FOImsS . « « « « -«
Figure 13. Using Registers in the
STAX Macro Instruction « s o o « .
Figure 14. The STAX Parameter LlSt .
Figure 15. Coding Example -- STAX
Macro Instruction . . <« ¢« ¢ o o @« « «
Figure 16. Control Blocks Passed to
DAIR e o = o © e o e ® e ®» s s e =
Figure 17. Format of the DAIR
Parameter List (DAPL) .+ 2 o o o o «
Figure 18. DAIR Entry Codes and Their
FuUnctionsS =« « o« « o o o s o o o o = «
Figure 19. DAIR Parameter Block --
Entry Code X"00" o o o ¢ o o o o o o o«
Figure 20. DAIR Parameter Block --
Entry Code X'04' «c o 8 ® % o = @ = =
Figure 21. DAIR Parameter Block --
Entry Code X'08' (Part 1 of 3)
Figure 22. DAIR Parameter Block --
Entry Code X'0C"® e o o e ° @ ® o o @
Figure 23. DAIR Parameter Block --
Entry Code X'10" o o o o o o o o o « «
Figure 24. DAIR Parameter Block --
Entry Code X"14" . & ¢ o o o o o o « =

Figure 25. DAIR Parameter Block --
Entry Code X'18' (Part 1 of 2) « o
Figure 26. DAIR Parameter Block --

Entry Code X"1C" . o o o o o o o o o «

Figure 27. DAIR Parameter Block --
Entry Code X'24' (Part 1 of 3) o o o
Figure 28. DAIR Parameter Block --
Entry Code X"28" . @ ¢ ¢ @ @ o o @« o «
Figure 29. DAIR Parameter Block --
Entry Code X'002C" . o o v o o o o =
Figure 30. DAIR Parameter Block --
Entry Code X'30" (Part 1 of 2) .« o .
Figure 31. BSAM/QSAM Function under

TSO (Part 1 of 2) . . ¢ o o o o o « »

8 Guide to Writing a TMP or a CP (Release 21)

20
22

23
24
25
29
30
30
34

41

42
4e

48
49

50
53
54
55
56
57
58
61
62
63
64
66
67
70
71
72
81

Figure 32. Control Block Interface
Between TMP and CP w. o ® = @ @ @ = o
Figure 33. The Command Processor
Parameter List (CPPL)

Figure 34. The Input Output Parameter
List e = @ ® ® @ ® o v e = ® s o e @
Figure 35. Control Block Interface
Between TMP and I/O Sexvice Routine .
Figure 36. The List Form of the STACK
Macro Instruction . . « « « o o o o =«
Figure 37. The Execute form of the
STACK Macro Instruction . -
Figure 38. The STACK Parameter Block
Figure 39. STACK Control Blocks: No
In-Storage List .« « o o « o © = « o «
Figure 40. Coding Example —-- STACK
Specifying the Terminal as the Input
Source e o o o @ ® @ s o e . @« ° @
Figure 41. The List Source Descriptor
Figure 42. STACK Control Blocks:
In-Storage List Specified . .« « . .
Figure 43. Coding Example -- STACK
Specifying an In-Storage List as the
Input Source (Part 1 of 3) « o o o
Figure 44. The List Form of the
GETLINE Macro Instruction
Figure 45. The Execute Form of the
GETLINE Macro Instruction
Figure 46. The GETLINE Parameter
BIOCK &« o o o o ¢ @ o o o a = o o a =
Figure 47. Format of the GETLINE
Input Buffer c e o o o o e o o v o
Figure 48. GETLINE Control Blocks -
Input Line Returned . « « « o o o« = o«
Figure 49. Coding Example -- Two
Executions of GETLINE (Part 1 of 2) .
Figure 50. The List Form of the
PUTLINE Macro Instruction . . . - e
Figure 51. The Execute Form of the
PUTLINE Macro Instruction . .
Figure 52. The PUTLINE Parameter
Block (Part 1 of 2) . & o ¢ @ o = o »
Figure 53. PUTLINE Single Line Data
Format e o @ o o o & @ e 8 a a = @ @
Figure 54. Coding Example -- PUTLINE
Single Line Data e o @ o e @ o o o @
Figure 55. PUTLINE Multi-Line Data
Format e« e o o ® e & e e ® e » = o o
Figure 56. Coding Example -- PUTLINE
Multi-Line Data (Part 1 of 2)
Figure 57. The Output Line Descriptor
Figure 58. Control Block Structures
for PUTLINE Messages e o @ o o o o @

Figure 59. PUTLINE Functions and
Message Types . . c o s e o o =
Figure 60. Coding Example -- PUTLINE

Text Insertion (Part 1 of 2) - o s
Figure 61. Coding Example -- PUTLINE
Second Level Informational Chaining

(Part 1 of 2) . ¢ ¢ ¢ ¢ ¢ o o o o o &

. 86

. 87
. 88
. 89
- 91
. 93
. 97
. 98
. 99
100

.101

.102
.106
.108
112
.113
114
.115

.118

.122

-.127
.129
.130
.131

.132
134

.135
-136

.139

142

Figure 62. The List Form of the
PUTGET Macro Instruction « o -
Figure 63. The Execute Form of the

PUTGET Macro Instruction . e

Figure 6U4.
(Part 1 of
Figure 65.
(OLD) .
Figure 66.

The PUTGET Parameter Block
2) e i e e e e e s e moe =
The Output Line Descriptor

Control Block Structures

for PUTGET Output Messages c o o o o

Figure 67.
Buffer -
Figure 68.
Structure -
Figure 69.
Multi-Level
3) .« o .
Figure 70.
-- Standard
Figure 71.
-- Standard
Figure 72.
Registers
Figure 73.

Format of the PUTGET Input
PUTGET Control Block

Input Line Returned . . .
Coding Example -- PUTGET
PROMPT Message (Part 1 of
The TPUT Macro Instruction
and Register Forms - -
The TGET Macro Instructlon
and Register Forms « - .
TGET/TPUT Parameter

Coding Example -- of TPUT

and TGET Macro Instructions Using the
Default Values © o = @ - « o e e

Figure 74.
Instruction

Coding Example- TPUT Macro
Buffer Address and Buffer

Length in Registers . « ¢ « ¢ ¢ o o &

Figure 75.
Instruction
Figure 76.
Instruction
Figure 77.
Instruction
Figure 78.
Instruction
Figure 79.
Instruction
Figure 80.
Instruction
Figure 81.
Instruction
Figure 82.
Instruction
Figure 83.
Instruction
Figure 84.
Figure 85.
Instruction
Figure 86.
Instruction
Figure 87.
Instruction
Figure 88.
Instruction
Figure 89.
Instruction
Figure 90.

Cod?ng Example: TGET Macro
Register Format
The GTSIZE Macro

The RTAUTOPT Macro
The SPAUTOPT Macro
The STATIN Macro
The STATUS Macro
The STAUTOCP Macro
The STAUTOLN Macro
The STBREAK Macro
Tﬁe-sicé ﬁaere inet;uetioﬁ
The STCLEAR Macro

The STCOM Macro
The STSIZE Macro
The STTIMEOU Macro

The TCLEARQ Macro

The Parameter List

Structure Passed to Command Scan - .

Figure 91.
List - .
Figure 92.
Area o o

The Command Scan Parameter
The Command Scan Output

.145
.150
.155
-.158
.159
.162

.163

.1l64
.169
.173

.176

<1717

.178
<179
.181
.181
.182
.183
.184
.186
.187

.188
189

.190
.191
.192
-194
195
.198
199

.200

Figure 93.

Character Types Recognized

by Command Scan and Parse . . . « . .

Figure 94.

Return from Command Scan -

CSOA and Command Buffer Settings . e

Figure 95.

A Command Processor Using

the Parse Service Routine . «

Figure 96.

Instruction
Figure 97.

Entry Built
Figure 98.

Instruction
Figure 99.

Entry Built
Figure 100.
Instruction
Figure 101.
Entry Built
Figure 102.
Instruction
Figure 103.

Entry Built by IKJKEYWD (Part 1 of

Figure 104.
Instruction
Figure 105.
Entry Built
Figure 106.
Instruction
Figure 107.
Entry Built
Figure 108.
Instruction
Figure 1009.
Entry Built
Figure 110.
Instruction
Figure 111.

The IKJPARM Macro

The Parameter Control

by IKIJPARM « « o 2 « « « &

The IKJPOSIT Macro

The Parameter Control

by IKJPOSIT (Part 1 of
The IKJIDENT Macxro
The Parameter Control
by IKJIDENT (Part 1 of
The IKJKEYWD Macro

The Parameter Control

2)

The IKJIJNAME Macro

The Parameter Control

by IKINAME e e e e
The IKJSUBF Macro

The Parameter Control
by IKIJSUBF ¢ « o « o « =
The IKJENDP Macro

The Parametexr Control

by IKJENDP < 2 « « « « =
The IKJRLSA Macro

a @ ® e © e ® w e e e e e

Control Flow Between

Command Processor and Parse . « « «

Figure 112.
Figure 113.

Describing a List

Figure 114.

The Parse Parameter List
A PDL Showing PDEs

A PDL showing PDEs

Describing a Range © o = 2 a » s & »

Figure 115.

PDL Showing PDEs

Describing LIST and RANGE Options . .

Figure 116.
Acceptable,
Figure 117.
Acceptable,
Figure 118.
Acceptable,
Figure 119.
Acceptable,
Figure 120.

PDL - LIST and RANGE
Single Parameter Entered
PDL - LIST and RANGE
Single Range Entered .«
PDL - LIST and RANGE

LIST Entered e o o s o a
PDL - LIST and RANGE

A LIST of Ranges Entered
Format of the validity

Check Parameter List « e o @ a o o @

Figure 121.

Return Codes from a

Validity Checking Routine . . . « . .

Figure 122.

Coding Example -- Using

Parse Macros to Describe Command
Parameter Syntax e o e o 2 e ° = o @

Figure 123.
Figure 124.
the PDL. . .
Figure 125.
Figure 126.

An IKJPARMD DSECT - e
The IKIJPARMD DSECT and

e« @ e o o o e o © e e e a

The TEST Subcommands . .
Issuing the TEST Command

.201

-202

.204
. 214
.214
.215
. 217
.219
.221
. 2204
- 224
.225
- 226
227
- 227
. 228
.228
.228

. 229
. 230

- 239
. 240
.241
.242
.242
. 243
. 244
. 246
. 247
. 251
.252
.253

. 255
. 258

Figures 9

10 Guide to Writing a TMP or a CP (Release 21)

LOGON PROCEDURE (Page 20)
A error is corrected in Figure 1.

INITIALIZATION OF THE TERMINAL MONITOR
PROGRAM (Page 21)
The length subfield of the PARM field
of the LOGON EXEC statement is
described.

INVALID INFORMATION IN A JOB FILE CONTROL
BLOCK (Page 32)
A previously used job file control
block may contain invalid information
from an earlier used DCB. The problem
and the procedure to circumvent this
problem is clarified.

ADDING COMMANDS TO THE TIME SHARING OPTION
(Page 39)
The method of adding a new member to
SYS1.CMDLIB or concatenating a new
command library to SYS1.CMDLIB is
clarified.

FORMATTING THE HELP DATA SET (Pages 40-42)
Method of adding new information to the
HELP data set is clarified.

STAX MACRO INSTRUCTION (Pages 45,u47)
Clarification and guidance on the use
of this macro have been added.

DAIR PARAMETER BLOCKS (Pages 55-73)
Miscellaneous changes, corrections, and
clarifications have been added.

DYNAMIC ALLOCATION INTERFACE ROUTINE (Pages

52-54,74-79)
Errors have been corrected, and new
return codes have been added and others
deleted for DAIR and Dynamic
Allocation. Requirements for
availability of a direct access device
have been stressed. The description of
the DAIR parameter list has been
improved.

TERM=TS PARAMETER (Page 84)
Typographic error is corrected.

Summary of Amendments
for GC28-6764-1
OS Release 21

STACK PARAMETER BLOCK (Pages 97-98)
Corrections and clarifications are
added.

PUTLINE PARAMETER BLOCK (Page 128)
Additional information on the PTPBOPUT
field has been added.

PUTGET PARAMETER BLOCK (Page 155)
Corrections have been added.

PUTGET Return Codes (Page 167)
Clarifications and corrections have
been made.

TPUT MACRO INSTRUCTION (Pages 169-172)
Describes the capability of the TJID
operand when the macro is issued from a
background program.

Describes two new operands, HIGHP and
LOWP.

In addition, adds general
clarifications to the TPUT description.

TGET MACRO INSTRUCTION (Pages 174-175)
Adds clarifications and corrections.

TERMINAL CONTROL MACRO INSTRUCTIONS (Pages
180-195)
The following macro instructions have
been moved from the Supervisor and Data
Management Macro Instructions SRL to
this book:

GTSIZE, RTAUTOPT, SPAUTOPT, STATTIN,
STATUS, STAUTOCP, STAUTOLN, STBREAK,
STCC, STCLEAR, STCOM, STSIZE, STTIMEOU,
TCLEARQ.

Clarifications and corrections have
made throughout.

COMMAND. SCAN SERVICE ROUTINE (Page 197)
Adds new topic to describe command name
syntax for a user-written command.

PARSE MACRO INSTRUCTIONS (Pages 213-215)

Typographic errors are corrected.

Summary of Amendments 11

QUOTED STRING NOTATION (Pages 215-216)
The quoted string option SOSTRING is
added. to the IKJPOSIT macro
instruction.

TEST COMMAND (Pages 255-257,261)
COPY, a new subcommand, and Assignment
(=), an old subcommand previously
omitted, have been added to the list of
TEST subcommands. The use of symbolic
addresses has been clarified.

TSO CONTROL BLOCKS (Page 263)
A legend has been added that describes
the "bytes and alignment" column of
each control block.

ENVIRONMENT CONTROL TABLE (ECT) (Page 264)

Errors have been corrected, and the
tabulation has been clarified.

PROTECTED STEP CONTROL BLOCK (PSCB) (Pages
265-266)
Errors have been corrected, and the
tabulation has been clarified.
Information on the default unit name
(PSCBGPNM) has been added.

TIME SHARING JOB BLOCK (Pages 267-269)
New fields have been added and
clarifications have been made.

USER PROFILE TABLE (Page 270)
Descriptions have been improved.

12 Guide to Writing a TMP or a CP (Release 21)

FLUSHING OF TGET AND TPUT BUFFERS
When an attention interruption is
received, the TGET and TPUT buffers are
flushed. The contents of these buffers
(if any) are lost.

NEW RETURN CODES FROM DAIR
The meaning of DAIR return code 32 has
been changed. DAIR return code U4 has
been added. ’

NEW OPERAND ADDED TO THE STAX MACRO
INSTROCTION
A new operand, DEFER=YES or NO, has
been added to the STAX macro
instruction to allow the deferring of
attention processing.

EDIT AND ASIS OPERANDS HAVE BEEN REDEFINED
The descriptions of the EDIT and ASIS
operands have been rewritten. These
changes appear in the GETLINE, PUTLINE,
and PUTGET macro descriptions as well
as in the TGET and TPUT macro
descriptions.

Summary of Amendments
for GC28-6764-0

as Updated by GN28-2484
OS Release 20.1

TSEVENT MACRO INSTRUCTION, PPMODE, HAS BEEN
DESCRIBED
The TSEVENT macro instruction should be
issued by a newly written Terminal
Monitor Program, to update SMF records
and the TSO Trace Writer entries.

REVERSE MERGE INTO THE JOB FILE CONTROL
BLOCK HAS BEEN DESCRIBED
A previously used JFCB may contain
invalid information obtained from an
earlier used Data Control Block.

NEW OPERANDS ON THE PUTGET MACRO
INSTRUCTION
The TERM and ATTN operands have been
added to the PUTGET macro instruction.
These operands affect especially the
processing of I/0 from an Attention
Exit.

Summary of Amendments 13

14 Guide to Writing a TMP or a CP (Release 21)

Introduction

TSO, the Time Sharing Option of the IBM System/360 Operating System,
consists of many, relatively small, functionally distinct modules of
code. One major benefit of this modular construction is that the Time
Sharing Option may be added to or modified to better suit the needs of
the installation and each user. You can add to TSO, replace
TSO-supplied code with your own, and delete those functions of TSO which
you do not require.

TSO is composed of modules that perform timing, control, and
accounting functions, and other modules that communicate with the user
at the terminal and perform the work requested by him.

Modifications to the control program portions of TSO should be made
only by system programmers responsible for the proper functioning of the
Time Sharing Option within the System/360 MVT configuration of the
operating system. These modifications are discussed in the Time Sharing
Option Guide.

Each installation of the Time Sharing Option can replace those
portions of TSO that communicate directly with the user at the terminal.
The portions of TSO that communicate with the user are the Terminal
Monitor Program (TMP) and the command processors.

If you choose to write your own Terminal Monitor Program or command
processors, you can use service routines, interface routines, and macro
instructions, supplied with TSO or modified to support TSO, to provide
many of the functions required by a TMP or a command processor.

THE TERMINAL MONITOR PROGRAM (TMP) AND COMMAND PROCESSORS

The Terminal Monitor Program is a reenterable problem program that
accepts and interprets commands, and causes the appropriate command
processors to be scheduled and executed.

When a user logs on to TSO, he must specify, via the LOGON command,
the name of a LOGON procedure. The program named in the EXEC statement
in the LOGON procedure is attached during the log on as the Terminal
Monitor Program. The program named in the EXEC statement can be either
the TMP supplied with TSO, one provided by the installation, or one you
have written yourself.

Any Terminal Monitor Program must be able to communicate with the
user at the terminal, fetch and pass control to command processoxs,
respond to abnormal terminations at its own task level or at lower
levels, and respond to and process attention interruptions.

Once the log on has completed, the Terminal Monitor Program requests
the user at the terminal to enter a command name. The TSO-supplied TMP
writes a READY message to the terminal to request that a command be
entered. The TMP determines if the response entered is a command,
attaches the requested command processor, and the command processor
performs the computing functions requested by the user at the terminal.

You can write your own command processors and add them to the
TSO-supplied command library; you can concatenate your own command
library to the one supplied with TSO, or you can replace the entire TSO
command library with your own.

Introduction 15

Command processors must be able to communicate with the user at the
terminal, respond to abnormal terminations, process attention
interruptions, and if required, fetch, pass control to, and respond to
abnormal terminations of subcommand processors.

BASIC FUNCTIONS OF TERMINAL MONITOR PROGRAMS AND COMMAND PROCESSORS

You can see from the preceding discussion, that any Terminal Monitor
Program and any command processor must provide four basic functions:

1. Both the TMP and command processors must be able to communicate
with the user at the terminal.

2. The TMP must be able to fetch and pass control to a command
processor. A command processor must be able to fetch and pass
control to its subcommand processors if it has any.

3. Both the TMP and command processors must be able to intercept and
investigate abnormal terminations.

4. Both the TMP and command processors must be able to respond to and
process attention interruptions entered from the terminal.

You can provide each of these functions to a Terminal Monitor Program
or a command processor by using a service routine or a macro instruction
provided with or modified to support TSO.

Communicating with the User at the Terminal

With TSO there are three ways a program can communicate with a user at a
terminal:

1. The BSAM or QSAM access methods. The major benefit of using BSAM
or OSAM to process terminal I/O is that programs using these access
methods do not become TSO dependent or device dependent and can
execute either under TSO or in the batch environment.

2. The STACK, GETLINE, PUTLINE, and PUTGET I/O service routines.
Reached through the STACK, GETLINE, PUTLINE, and PUTGET macro
instructions, the I/O Service routines provide the following
functions:

STACK - The STACK service routine establishes and changes the
source of input by adding elements to or deleting elements from, an
internally maintained input stack. The top element on the input
stack determines the current source of input.

GETLINE - The GETLINE service routine obtains all input lines other
than commands or subcommands, and responses to prompting messages
(a prompting message asks the user at the terminal to supply
required information). The GETLINE service routine returns these
lines of input from the input source designated by the top element
of the input stack.

PUTLINE - The PUTLINE service routine formats output lines, writes
them to the terminal, and chains second level messages to be
written out in response to a question mark from the terminal.

PUTGET - The PUTGET service routine writes a message to the
terminal and obtains a response from the terminal. A message
written to the user at the terminal which requires a response is
called a conversational message.

16 Guide to Writing a TMP or a CP (Release 21)

3. The TGET and TPUT supervisor call. A supervisor call routine, SVC
93, is reached through the TGET and TPUT macro instructions. TGET
and TPUT provide a route for I/0 to a terminal. The functions are
not as extensive, however, as those provided by the I/0 service
routines.

Each of these methods performs different functions and is thus suited
for particular I/0 situations. The programmer designing his own TMP or
command processor must understand which of the I/0 methods best provides
the I/0 support required in different programming situations.

Passing Control to Commands and Subcommands

A Terminal Monitor Program must be able to recognize a command name
entered into the system, fetch the requested command processor, and pass
control to it. A command processor must be able to perform the same
functions when a subcommand name is entered.

You can use the Command Scan service routine to scan the input line
for a syntactically valid command name or subcommand name, issue the
BLDL macro instruction to search command libraries for the requested
command processor or subcommand processor, and issue the ATTACH macro
instruction to pass control to the requested routines.

When you write a command processor or subcommand processor, you can
use the Parse macro instructions to describe to the Parse service
routine the operands that may be entered with the command name. You can
then use the Parse service routine to determine which operands are
present in the input buffer. The Parse service routine compares the
information you supplied in the Parse macro instructions with the
contents of the input buffer. This comparison indicates which operands
are present in the input line. The Parse service routine returns a list
to the calling routine, indicating which operands were found in the
buffer. These operands indicate to the processing routines which
functions the user at the terminal is requesting.

Responding to Abnormal Terminations

One of the responsibilities of a programmer coding a routine to run
within TSO is to do all possible to keep that routine from causing the
abnormal termination of TSO. If you write your own Terminal Monitor
Program or command processors, you should use the STAE macro instruction
and the STAI operand on the ATTACH macro instruction to provide error
handling exits.

Use the STAE macro instruction to provide the address of an error
handling routine to be given control if any routine at the same task
level as the error handling routine begins to terminate abnormally.

Use the STAI operand on the ATTACH macro instruction to provide the
address of an error handling routine to be given control if a routine at
a lower task level begins to terminate abnormally.

Responding to Attention Interruptions

The Terminal Monitor Program and any command processor that accepts
subcommands must be able to respond to an attention interruption entered
from the terminal. An attention interruption is interpreted within TSO
as a signal that the user may want to request a new command or
subcommand. You must provide attention exits that can obtain a line of
input from the terminal and respond to that input.

Use the STAX service routine, reached through the STAX macro

instruction, to build the control blocks and queues necessary for the
system to recognize and schedule your attention handling routines.

Introduction 17

OTHER FUNCTIONS PROVIDED WITH TSO
Aside from the four basic functions provided by a Terminal Monitor

Program or a command processor, other functions, peculiar to time
sharing, can be obtained using routines provided with TSO.

Two of these functions are:

1. The dynamic allocation of data sets.

2. The immediate, on-line testing of a newly written Terminal Monitor
Program or command processor.

These two functions are provided through the Dynamic Allocation
Interface Routine (DAIR), and the TEST command processor.

The Dynamic Allocation of Data Sets

The LOGON procedure named in the LOGON command contains DD statements
that define the data sets to be used during a TSO session, and other DD
statements, called DD DYNAMS. These DD DYNAMS do not define data sets;
they are used by Dynamic Allocation routines to provide data sets
requested during program execution by a Terminal Monitor Program or a
command processor.

If you write your own Terminal Monitor Program or command processor,
you can use the Dynamic Allocation Interface Routine (DAIR) to invoke
Dynamic Allocation routines. Using DAIR, you can request Dynamic
Allocation to:

Obtain the current status of a data set.
Allocate a data set.

Free a data set.

Concatenate data sets.

Deconcatenate data sets.

Testing a Terminal Monitor Program or a Command Processor

After you have coded a new Terminal Monitor Program or command
processor, you will want to test it before you enter it into the Time
Sharing Option. You can use the TEST command to do this.

The TEST command permits a user at a terminal to test an assembly
language program. You test a program by issuing the TEST command and
the various TEST subcommands that perform the following basic functions:

e Execute the program under test from its starting address or from any
address within the program.

o Display selected areas of the program as it appears in main storage,
or display the contents of any of the registers.

o Interrupt the program under test at a specified location orxr
locations.

e Change the contents of specified program locations in main storage
or the contents of specific registers.

In addition to these basic debugging functions, you can use the TEST

command processor to display various control blocks, program status
words, or a main storage map of the program being tested.

18 Guide to Writing a TMP or a CP (Release 21)

SUMMARY

Most of the functions of a terminal monitor program or a command
processor can be provided with macro instructions, service routines, or
supervisor call routines supplied with the Time Sharing Option.

The following sections describe when and how to use these various
macro instructions and routines.

Introduction 19

The Terminal Monitor Program

The Terminal Monitor Program (TMP) is a reenterable problem program that
provides an interface between the terminal user, command processors, and
the Time Sharing Control Program. The TSO LOGON/LOGOFF Scheduler
attaches the TMP. The TMP is the program you name on the EXEC statement
of your LOGON cataloged procedure.

Specifying Data Sets at LOGON

The volumes that contain your data sets cannot be mounted during a
terminal session. The volumes must be mounted before the terminal user
logs onto the system. The LOGON procedure indicated on the LOGON
command contains DD statements that define the data sets to be used
during the TSO session, and other DD statements, called DD DYNAM
statements, that do not define data sets. These DD DYNAM statements
provide blank entries in the Task Input Output Table and the Data Set
Extension. These entries are available for the dynamic allocation of
previously unallocated data sets. Figure 1 shows an example of a user
LOGON procedure containing four DD DYNAM entries. For a complete
discussion of a LOGON procedure, see Time Sharing Option Guide.

I[T TT]

///WelPlelole] | |£[XIElC] | |Pl6IM=|zklv |£iF] 710
W1/ lsl7lelPle] L8] lolo p|sW=|dllz)/ 0lBldisls ol [s1A=|slHiel
A% op DsWi=|Plvl7ie b, o]/ 1slPl=lolk o

/V/ v OlsM={slyisizl. lcmiolL /18l [01715|Pl=Is /R
/\/\olol1 DD, oy WwiAlM

VAU D\o Dly (WA

A AN A ANRYAY DisIM=|¢|¢lsyislvi7 2], W) ITI=I2|3 1214,
/V SlPUllE=l(ITRIA 5 (|21, 150 D

1V WWEILIPO] | |1Plp DIs =13l |s|2]. |HELL 1P, 101 13 1Pl=15 WiR)
/\/ 10103 D DY IMAM|

/004 2 DY MAM

lFigure 1. A LOGON Procedure Containing Four DD DYNAM Entries

The Terminal Monitor Program you use can be the TMP supplied with
TSO, or one provided by the installation, or one you have supplied
yourself. If you choose to write your own Terminal Monitor Program, use
the TSO service routines and macro instructions described in this book
to help you code the TMP and fit it into the Time Sharing Option.

The TMP must be able to respond to the following four conditions:

1. Normal completion of a command processor or user program, and the
requesting of another command.

2. An error causing termination of the TMP, a command processor, Or a
user program.

3. An attention request from the terminal, causing an interruption of
the current program.

20 Guide to Writing a TMP or a CP (Release 21)

4. A STOP operator command, forcing a LOGOFF for the user.

This section explains how to respond to these conditions. It
describes in general terms how the TSO-supplied TMP functions, and how
it fits together with the rest of the Time Sharing Option. For a more
specific description of the TSO-supplied TMP, see the TSO Texrminal
Monitor Program and Serxvice Routines PILM.

Terminal Monitor Program Initialization

When the TMP is attached by the LOGON/LOGOFF scheduler:

e Register 1 contains the address of the value found in the PARM field
of the EXEC statement in the LOGON cataloged procedure. The
TSO-supplied TMP uses this PARM value as the first command
requested. The first two bytes of the PARM value are on a halfword
boundary and contain the length of the PARM value. (The length
value does not include the two length bytes.)

e Register 13 contains the address of the register save area.

e Register 14 contains the return address of the LOGON/LOGOFF
scheduler.

e Register 15 contains the entry point address of the TMP.

The TMP sets up the tables and control blocks it requires, loads the
TIME command processor, sets up the STAE and STAI exits to respond to
abnormal terminations, sets up the attention exits, builds the command
buffer, and initializes the input stack to point to the terminal. The
TMP then uses the EXTRACT macro instruction to obtain the addresses of
the STOP/MODIFY ECB and the Protected Step Control Block (PSCB) built by
the LOGON/LOGOFF scheduler.

The TSO-supplied Terminal Monitor Program attaches the command
processor named in the EXEC statement PARM field. If no command was
named as a PARM operand, the TMP issues a PUTGET macro instruction to
obtain the first command. The TMP shares subpool 78 with the attached
command processor but does not share subpool 0. The command processor,
in turn, must share subpool 78 with any lower level tasks.

Requesting a Command
Figure 2 summarizes the steps taken by a Terminal Monitor Program to

obtain a command, to pass control to that command, and to detach that
command when it has finished processing.

The Terminal Monitor Program 21

Terminal Monitor
Program

IKJPTGT PUTGET service routine
gets next command from

terminal .

Command Buffer
IKJSCAN) 5 AN Service Routine ‘
—A checks for valid command EDIT tiveeereeennnnnnnes

—~—————

name syntax
Command Library

BLDL BLDL searches the Command
A o Library for the Command Command
——— Processor Processor
——

Main Storage

ATTACH attaches the

Command Processor

o
s
>
0
==

DETACH detaches the

—_————— TSO User's Region

A~ Command Processor _/

' c°>g:c,nd
e Progégsor
e / N\
AN
AN A

IKJDAIR DAIR frees data sets
S dynamically allocated by
e the Command Processor
AN A e

Figure 2. Requesting a Command

To request a command from the terminal, use the PUTGET service
routine. The PUTGET service routine first writes a line to the terminal
to inform the user that another command is expected, then returns a line
entered in response to the request, and places that line into a command
buffer.

Use the Command Scan service routine to determine that the line of
input is a syntactically valid command name.

Use the BLDL macro instruction to search the command library orxr
libraries for the command processor load module indicated by the command
name, and use the ATTACH macro instruction (specifying a STAI exit
routine) to pass control to the requested command processor.

22 Guide to Writing a TMP or a CP (Release 21)

Your TMP must create any parameters expected by the command processor
and pass them to the newly attached command processor. The TSO-supplied
TMP passes the address of a Command Processor Parameter List in register
one. See the section headed "Interface with the I/O Service Routines”.

When the command processor completes, the TMP issues a DETACH macro
instruction for it, uses the DAIR service routine to mark dynamically
allocated data sets available to be freed, and uses the PUTGET service
routine to obtain another command.

Please note that the use of an installation-supplied program in place
of the Terminal Monitor Program can result in invalid values for the
core occupancy time field in SMF record 34, and may cause invalid TSO
Trace Writer entries. This situation occurs only when a single user is
assigned to a foreground region and the installation-supplied program
runs to completion without being swapped out of main storage.

To avoid this problem, your user-written Terminal Monitor Program
should issue the TSEVENT macro instruction, specifying the PPMODE
operand, before attaching each command processor and after each command
processor returns. This issuance of the TSEVENT macro instruction
causes SMF record 34 and the TSO Trace Writer entries to be updated.

Issue the TSEVENT macro instruction as follows:

1. Set register one to point to the first character of the command
name being attached or released.

2. Set the high order bit in register one to:
1 if the command processor is beginning execution.
0 if the command processor is ending.

3. Code the TSEVENT macro instruction as shown in Figure 3.

] T T
| [labell | TSEVENT | PPMODE

Figure 3. The TSEVENT Macro Instruction Specifying PPMODE

e

Intercepting an ABEND

The Terminal Monitor Program must be able to recognize and respond to
two basic types of ABEND situations:

1. An attached subtask, for example a command processor, is
terminating abnormally.

2. The TMP itself or a program linked to by the TMP, for example TEST
or Command Scan, is terminating abnormally.

INTERCEPTING A SUBTASK ABEND

When a subtask of the Terminal Monitor Program begins to terminate
abnormally, the TMP STAI exit, specified by the TMP when it attached the
subtask, receives control. The TMP STAI exit receives control under the
TCB of the abending subtask. The subtask will already have performed
its own STAE processing, if any was specified. Figure 4 shows the
ABEND, STAE, STAI relationship.

The Terminal Monitor Program 23

Terminal Monitor Program

STAE Exit - For ABEND at
TMP TCB Level.

STAI Exit = For ABEND at
daughter TCB level.

ATTACH

(with STAI operand)
Command

Processor ABEND

SvC 13

error

STAE Exit - For ABEND at
this TCB level

Figure U. ABEND, STAE, STAI Relationship

The TMP must inform the user at. the terminal of the ABEND situation,
and allow the user to enter-another command at this time. Use the
PUTGET service routine, specifying the TERM operand, to inform the user
of the ABEND and to return a line of input from the user.

The terminal user has four options:

1. He can allow the ABEND to continue by entering a null line
(carriage return).

2. He can stop processing of the ABEND by entering a command name
other than TEST or TIME.

3. He can request any secondary messages concerning the terminating
program by entering a question mark.

24 Guide to Writing a TMP or a CP (Release 21)

4. He can place the terminating program under the control of the TEST
command processor by entering the command name TEST.

Use the Command Scan service routine to determine what the user has
entered at the terminal.

If he enters a null line, the TMP returns control to the ABEND
routine, and the task is allowed to terminate abnormally. If he enters
a command name, other then TEST and TIME, the TMP processes the new
command name after detaching the incomplete subtask.

If the user enters a question mark, the PUTGET service routine causes
the secondary level informational message chain (if one exists) to be
written to the terminal, again puts out the message, and returns the
response from the terminal.

If the user enters the command name TEST, the TMP passes control to
the TEST command processor via a LINK macro instruction. If any
operands were entered on the TEST command, the TMP detaches all subtasks
before linking to the TEST command processor. If no operands were
entered, the TMP does not detach any currently active subtasks. The
user is requesting that the abnormally terminating task be run under the
control of TEST.

When the TMP links to the TSO-supplied TEST command processor,
register one must contain a pointer to a Test Parameter List (TPL).
Figure 5 shows the format of the Test Parameter List you must build and
pass to the TEST command processor.

Number of
Bytes

4

Field Contents or Meaning

-+ ——

TPLCBUF | The address of the Command buffer used by the
|last attached command processor.
1

+
TPLUPT |The address of the User Profile Table (UPT).
The UPT is built by the LOGON/LOGOFF
scheduler from information stored in the User
|Attribute Data Set (UADS) and from

| information contained in the LOGON command.

| The address of the UPT is found in the
PSCBUPT field of the Protected Step Control
Block (PSCB). See Appendix A for the format
| of the UPT.

TPLPSCB The address of the Protected Step Control
|Block (PSCB). The PSCB is built by the

| LOGON/LOGOFF scheduler from information

| stored in the UADS. The TMP can obtain the
address of the PSCB with the EXTRACT macro
instruction. See Appendix A for the format
|of the PSCB.

1

e e i e et . . e . . . S iy e . 2 e et o}

das co—

T

TPLECT |The address of the Environment Control Table
| (ECT). The ECT must be built by the TMP
|during its initialization process and is used|
|by the TSO service routines. See Appendix a |
| for the format of the ECT. |
L J

N I S ——
T S R S Sy——

Figure 5. The Test Parameter List (Part 1 of 3)

The Terminal Monitor Program 25

Number of
Bytes

Field Contents or Meaning

- ——

|located in subpool 1.

| information.
1|

TPLTBUF |The address of the TEST command buffer. The
| TEST command buffer contains the TEST command
|and all operands entered by the terminal
|user. The variable length command buffer is

It is preceded by a

| four-byte header consisting of a two byte

|length field and a two byte offset field.

| The length field contains the total length of|

| the buffer including the four bytes of header

4

T

TPLCTCB | The address of the Task Control Block (TCB)
|of any attached command processor. A value
|of zero is placed in this field when the
| command processor is detached.
|and the TEST command processor are
| responsible for maintaining this field.

Both the TMP

+
TPLSTAI |The address of the TMP STAI exit routine
| specified as an operand of the ATTACH macro
|instruction issued by the TMP to attach the
| current command processor.
|gains control when the attached command
| processor begins to terminate abnormally.
i

This exit routine

| command processor.
4

+

TPLSPLS | The address of the STAI exit parameter list
| specified on the ATTACH macro instruction
|issued by the TMP to ATTACH the current

+
TPLNECB |This four-byte field contains an Event
|Control Block (ECB) belonging to the TMP STAI
|exit routine which gets control when a
| command processor terminates abnormally.
|This ECB must be posted by either the TMP or
| the TEST program before the abnormally
| terminating command processor can resume
| processing. A post code of X'7F' indicates
| that a recovery is being attempted. Any
|other post code causes the ABEND to continue.
41 .

I
(]
}
[
|
I
|
I
l
]
1
|
|
|
I
]
1
|
!

+
TPLNTCB | The address of the Task Control Block (TCB)
|in control when a command processor started
| to terminate abnormally.
| this field to zero if the TEST program is
| invoked by the Attention exit routine.
i

The TMP should set

e S s e e e e e e T Ty
o~
o o s e i e e e e e s e e s e e e e e e e e e s e o

]

TPLMECB |This four-byte field contains an Event
|Control Block (ECB) used by TSO to STOP a
| terminal user's session.
| posted, the TEST program should return to the
|TMP as soon as possible.
| take the appropriate action to DETACH any
| subtasks before returning to the LOGON/LOGOFF
| Scheduler for a terminal disconnect.

L

When this ECB is

The TMP then must

T e S T S

Figure 5. The Test Parameter List (Part 2 of 3)

26 Guide to Writing a TMP or a CP (Release 21)

Number of

Bytes Field Contents or Meaning

4 — —

TPLCECB |The address of an Event Control Block (ECB)
|used by the MVT control program to indicate
| the termination of an attached task. This
|ECB address is the one you specify as the ECB
|operand on the ATTACH macro instruction
| issued to attach the command processor.

1
h)

TPLIECB |The address of an Event Control Block (ECB)
|used by the TMP STAI exit routine to indicate
| that the attached command processor is
| terminating abnormally.

+

[SR S ——

— gy —

)

TPLAECB | The address of an Event Control Block (ECB)
|used by the TMP Attention exit routine to
|indicate that an attention interruption has
| occurred.

1

T
RESV | Reserved.
1

4

S ———
=
T SR R NN S

T

Figure 5. The Test Parameter List (Part 3 of 3)

When the TEST Command processor returns control to the TMP, use the
PUTGET service routine to obtain a new command.

INTERCEPTING A TMP TASK ABEND

When the TMP (or any program linked to by the TMP except TEST) causes an
ABEND, the TMP STAE exit gains control. The TMP specifies its own STAE
exit routine by issuing the STAE macro instruction. (See Supervisor
Services and Macro Instructions for a discussion of the STAE macro
instruction.)

Your TMP STAE exit routine can use the contents of the STAE work area
created by the STAE macro instruction to determine the type of error,
the cause of the error, the PSW at the time of the ABEND, the last PSW
before the program ABEND, and the contents of the program registers.

If your TMP STAE exit routine cannot correct the problem, it should
use the PUTLINE macro instruction to inform the user at the terminal
that a task running under the TMP TCB is terminating abnormally, take a
dump of the user's region if a SYSABEND or a SYSUDUMP data set was
specified in the user's LOGON cataloged procedure, clear the user's
region, then load a fresh copy of the TMP, and begin processing as if
the TMP had been invoked by the LOGON/LOGOFF Scheduler.

If the error persists; that is, the TMP fails again, control should

pass to the PUTLINE service routine to notify the user. A log off
should be forced by returning to the LOGON/LOGOFF Scheduler.

The Terminal Monitor Program 27

Processing an Attention Interruption

After having been attached by the LOGON/LOGOFF Scheduler, the TMP must
set up its attention handling facilities during its initialization
process. You can use the STAX macro instruction to pass the address of
your attention handling routine to the system.

Several attention handling routines may be enqueued at any one time;
that is, both the TMP and the currently active command processor may
have issued STAX macro instructions. The attention exit routine
specified by the last attached task is the one given control if one
attention interruption occurs.

The attention handling routine you specify for the Terminal Monitor
Program is given control under any of the following conditions:

1. An attention interruption is entered from the terminal while the
Terminal Monitor Program is in control.

2. An attention interruption is received from the terminal while a
program other than the Terminal Monitor Program is in control, but
that program has not provided an attention handling routine.

3. A program other than the Terminal Monitor Program is in control.
The program has provided an attention exit, but the user at the
terminal has issued sufficient attention interruptions to reach the
Terminal Monitor Program's attention handling routine. As an
example, if a command processor that has provided an attention
handling routine is in control, and a user enters two successive
attention interruptions from the terminal, the Terminal Monitor
Program's attention exit receives control.

You can defer attention interruption processing with the DEFER
operand of the STAX macro instruction. If you do use the DEFER option,
attention interruptions are queued as they are received, and are not
processed until you request that the DEFER option be removed.

PARAMETERS RECEIVED BY ATTENTION HANDLING ROUTINES

When your attention exit routine is entered, the registers contain the
following information:

Register Contents

0,2-12 Irrelevant

1 The address of the Attention Exit Parameter List.

13 Save area address.

14 Return address.

15 Entry point address of the attention handling routine.

The Attention Exit Parameter List pointed to by register one,
contains the address of a Terminal Attention Interruption Element
(TAIE).

The parameter structure received by your attention exit routine is
shown in Figure 6.

28 Guide to Writing a TMP or a CP (Release 21)

Entry from the STAX service routine

Register 1

Attention Exit
Parameter List

Attention Exit Routine

Terminal Attention
Interrupt Element

'Figure

6.

Parameters Passed to the Attention Exit Routine

The Terminal Monitor Program 29

The Attention Exit Parameter List

Figure 7 shows the format of the Attention Exit Parameter List pointed
to by register one when an attention exit routine receives control.

Number of
Bytes

y

Field Contents or Meaning

| The address of the Terminal Attention
| Interrupt Element (TAIE).
]

| as the IBUF operand of the STAX macro

| instruction. Zero if you did not include the
| IBUF operand in the STAX macro instruction.

}

]The address of the user parameter information
| you specified as the USADDR operand of the

| STAX macro instruction. ZERO if you did not
| exclude the USADDR operand in the STAX macro
| instruction.

L

e e el el =
T T S—— S——

1
|
|
{
|
|
} {
| The address of the input buffer you specified|
|
|
|
1
|
|
|
|
|
J

Figure 7. The Attention Exit Parameter List

The Terminal Attention Interrupt Element (TAIE)

The first word of the Attention Exit Parameter List contains the address
of an eighteen-word Terminal Attention Interrupt Element (TAIE). Figure
8 shows the format of the TAIE.

Number of
Bytes

2

Field Contents or Meaning

“+——

TAIEMSGL The length in bytes of the message placed
into the input buffer you specified as the
IBUF operand on the STAX macro instruction.

| Zexo if you did not code the IBUF operand in
| the STAX macro instruction.

TAIETGET The return code from the TGET macro
instruction issued to get the input line from
| the terminal.

L

L}
| Reserved.
]

T

TAIEIAD | Interruption address. The right half of the
|interrupted PSW. The address at which the
|program (or a previous attention exit) was
| interrupted.
L

L]
64 TAIERSAV | The contents of general registers, in the

|order 0 - 15, of the interrupted program.
L

S = SRy N ViU Sy——
T TN S Sy Sy SUMp——
e e oy e e o e gy e ey e e e ey . . s . . i) e e

Figure 8. The Terminal Attention Interrupt Element

30 Guide to Writing a TMP or a CP (Release 21)

-

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the
PUTGET macro instruction, specifying the TERM operand, to send a mode
message to the terminal identifying the program that was interrupted,
and to obtain a line of input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without
an IBUF operand, or with an IBUF length of 0, you can then use the
PUTGET macro instruction, specifying the ATTN operand. This causes the
PUTGET service routine to inhibit the writing of the mode message, since
a message was already written to the terminal from the output buffer
specified in the STAX macrxo instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the secondary level
informational message chain (if one exists) to be written to the
terminal, again puts out the mode message, and returns a line from the
terminal.

If you used the IBUF operand on the STAX macro instruction, note that
no logical line processing or question mark processing is performed. If
the user returns a question mark, you will have to use the PUTLINE macro
instruction to write the secondary level informational message chain to
the terminal. Then issue a PUTGET macro instruction, specifying the
TERM operand, to write a mode message to the terminal and to return a
line of input from the terminal.

Use the Command Scan service routine to determine that the line of
input is syntactically correct in the input buffer returned by the
PUTGET service routine, or in the attention input buffer (pointed to by
the second word of the Attention Exit Parameter List).

Special functions such as the TIME function should be performed
immediately by the attention handling routine, and a new READY message
should then be put out to the terminal, so that the terminal user may
enter another command.

Any other command should be passed to the TMP mainline routine for
processing as if it were a newly entered command.

Note that the TGET and TPUT buffers are flushed when an attention
interruption is entered. If the user enters an attention interruption
from the terminal and then enters a null line to continue processing,
the contents, if any, of the TGET and TPUT buffers are lost.

Processing a STOP Command

A STOP/MODIFY ECB is created by the time sharing system and can be
obtained by your TMP by use of the EXTRACT macro instruction. During
TMP processing, if a STOP command is indicated by a post to the STOP
ECB, return to the LOGON/LOGOFF Scheduler so that the user may be logged
off the system.

The Terminal Monitor Program 31

Command Processors

A command processor is a problem program invoked by the TMP when a user
at a terminal enters a command name.

The intermal logic of the TSO-supplied command processors is
described in the TSO Command Processor PLM. The command language used
to request each of these command processors is described in the TSO
Command Language Reference.

If you choose to write your own command processors, you should be
familiar with the Service Routines described in this book.

This section discusses the relationships between the command
processors and the rest of the Time Sharing Option, and provides
guidelines for coding your own command processors.

The section is divided into the following topics:

e Response Time - Discusses the steps you should take to insure that
your command processor does not adversely affect system response
time.

e Command Processor Use of the TSO Service Routines - Briefly
discusses each of the TSO Service Routines and the situations in
which they should be used.

o The STAE and STAI Exit Routines - Discusses the functions your error
routines should provide.

o Attention Exit Routines - Discusses the need for attention handling
exits and the functions those exits should perform.

e Adding Commands to the Time Sharing Option - Discusses the methods
you can use to place a newly written command processor into the Time
Sharing Option.

e The HELP Data Set - Discusses the HELP data set, private HELP data
sets, and the means of entering information into a HELP data set.

Programming Note: In TSO, assembly language programs may fail or cause
a performance impact when they use the same job file control block
(JFCB) more than once for the same data set. When the data set is
opened, the Open routine fills any unspecified fields in the data
control block from information in the data set control block (DSCB) and
the job file control block. The Open routine then does a "reverse
merge" from the data control block back into the job file control block,
filling zeroed or unspecified fields in the job file control block. If
the same data set is reopened by a later program by use of a new OPEN
macro instruction, the Open routines will retrieve old information from
the job file control block for fields not specified in the data set
control block. The retrieved information could be unwanted for the new
use of the data set and therefore could cause program failure or
performance impact. Examples of such unwanted information include key
length for BSAM and QSAM, and buffer size or channel program parameters
for QSAM.

If any of your command processors specify DCB information which could
cause a failure on a subsequent use of a JFCB, you can follow the
procedure outlined below to inhibit the reverse merge from the DCB back
into the JFCB.

32 Guide to Writing a TMP or a CP (Release 21)

1. Issue a RDJFCB macro instruction to read the JFCB into your own
main storage.

2. Set the JFCBTSDM field (offset 52 decimal, 34 hex in the Job File
Control Block) to X'0OA" to inhibit the DCB to JFCB merge.

3. 1Issue an OPEN macro instruction specifying TYPE=J.

For a discussion of the RDJFCB macro instruction and the OPEN macro
instruction type J, see Data Management for System Programmers.

Response Time

A Time Sharing system depends upon fast response. If you write your own
command processors to run under the IBM Time Sharing Option, your
command processors will directly affect system response time. The
following recommendations are included to help you keep system response
time to a minimum.

PROGRAM DESIGN

Any command processors you write should not modify themselves in any way
during their execution. They should obtain all work areas with a
GETMAIN macro instruction so that the in-line code remains unchanged.
This allows the command processor to be executed from the Time Sharing
Link Pack Area, and used by several tasks concurrently.

TSO provides, along with the system Link Pack Area, a Time Sharing
Link Pack Area. Figure 9, a storage map of MVT with the Time Sharing
Option, shows the Time Sharing Link Pack Area within the Time Sharing
Control Region.

Frequently used Command Processors can be placed in the Time Sharing
Link Pack Area. Placing programs in the Time Sharing Link Pack Area
reduces the amount of time required to access them since they are
resident in the system and need not be brought in from an external data
set.

Besides reducing access time, placing command processors in the Time
Sharing Link Pack Area provides two additional benefits:

1. Swap time is reduced. Swap time is the time required to move one
user's programs and data from a foreground region to a swap data
set and to move the next user's programs and data from a swap data
set back into the foreground region.

One of the factors that affects swap time is the amount of data
that must be swapped. If the currently active command processor is
executing from the Time Sharing Link Pack Area, it is not swapped
when the foreground region is swapped. You therefore swap less
data if your command processors are resident in the Time Sharing
Link Pack Area than if they execute from the foreground region.

See Time Sharing Option Guide for a discussion of the swapping
algorithms used in TSO.

Command Processors 33

2. If you are running several foreground regions, your total storage
requirement is less if frequently used command processors are
resident in the Time Sharing Link Pack Area. Command pProcessors
resident in the Time Sharing Link Pack Area can be executed for any
foreground region and need not be loaded into those regions. Your
foreground regions may therefore be smaller if some of the larger
command processors can be executed in the Link Pack Area.

Link Pack Area

Master Scheduler

TCAM
Message Control Program and Buffers

Time Sharing Control Region

o Time Sharing Control Task
Region Control Task
TSO Driver
Time Sharing Link Pack Area
Buffers

Foreground (TSO) Region
e Terminal Monitor Program /

Local System Queue Area

Background (Batch) Regions

System Queuve Area

MVT Nucleus

Figure 9. Storage Map - MVT with Time Sharing Option

34 Guide to Writing a TMP or a CP (Release 21)

MODULE SIZE AND STORAGE REQUIREMENTS

Command processors that do not execute in the Time Sharing Link Pack
Area should be designed to minimize the average amount of data swapped.

The more a command processor interacts with a user, the more often it
must wait for input from the terminal. Since programs waiting for input
from the terminal are eligible to be swapped, the probability is great
that the program will be swapped. If a command processor is large and
is likely to be swapped several times before it can complete its
function, consider dividing it into several load modules to reduce the
amount of data swapped. Keep in mind however, that additional time is
required to perform a BIDL and a fetch for each of the additional load
modules.

Keep in mind also that the device type used to contain the swap data
sets affects the amount of time for each swap. See Storage Estimates
for block sizes swapped to various device types.

Command Processor Use of the TSO Service Routines

Use the TSO-provided service routines described in this manual when
coding your own command processors. Read the sections on the various
service routines and macro instructions for an understanding of what
services they perform and how to use them. The following topics provide
information on when to use each of the service routines.

STACK SERVICE ROUTINE

Use the STACK serxrvice routine to change the source of input by adding an
element to the input stack, and to reset the input stack to the terminal
element originally specified by the Terminal Monitor Program.

A command processor should issue the STACK macro instruction in the
following circumstances:

1. Your command processor has created a series of commands to be
executed after the command processor terminates. The command
processor builds an in-storage list containing the commands to be
executed and uses the STACK macro instruction to place a pointer to
the list on the input stack.

2. You may want to pass data from one of your command processors to
another command processor. This data may be passed in storage via
the input stack. Issue the STACK macro instruction to place a
pointer to the in-storage data on the input stack.

3. If you write a command processor to perform functions similar to
those performed by the TSO-supplied EXEC command, (that is, to
execute a command procedure), issue the STACK macro instruction to
place a pointer on the input stack to the command procedure to be
executed.

4. Whenever one of your command processors terminates with an error

condition, its error handling routine should issue the STACK macro
instruction to reset the input stack.

.Command Processors 35

GETLINE SERVICE ROUTINE

Your command processors should use the GETLINE service routine to obtain
data. The buffer returned by GETLINE is in subpool 1 and is owned by
your command processor. If your command processor issues multiple
GETLINE macro instructions, it should free the buffers either with the
DETACH or the FREEMAIN macro instructions.

PUTLINE SERVICE ROUTINE

Your command processors should use the PUTLINE service routine to write
informational messages or data to the terminal and to chain second level
informational messages. PUTLINE writes the output lines to the terminal
regardless of the source of input.

PUTGET SERVICE ROUTINE

Your command processors should use the PUTGET service routine for
prompting and for subcommand requests. Use the operands on the PUTGET
macro instruction to specify logical line processing with editing and
the WAIT option.

If the user at the terminal enters a question mark in response to a
message issued with a PUTGET macro instruction, the PUTGET service
routine prints the second level messages chained by previous PUTLINE
macro instructions. If the user responds with a subcommand name, the
second level messages are deleted and the storage they occupied is
freed. See the topic headed "PUTGET Processing" for exceptions to this
usual method of processing.

As with the GETLINE service routine, the buffers returned by the
PUTGET service routine belong to, and should be freed by, the command
processor.

DAIR SERVICE ROUTINE

Your command processors should use the DAIR service routine to allocate
and free data sets and to obtain information concerning data sets.
Command processors should allocate data sets by DSNAME and use the
DDNAMES returned by DAIR -- if necessary passing them on to any
subcommands or problem programs running under the command processor.

Whenever the user specifies a password for a data set, the password
should be passed by the command processor to DAIR when allocation is
requested.

Command processors that accept subcommands should use the DAIR
service routine to mark any data sets allocated by the subcommands as
allocatable before detaching the terminated subcommand.

COMMAND SCAN SERVICE ROUTINE

Your command processors should use the Command Scan service routine to

scan for valid subcommand names. The option of checking the remainder

of the input line for non-separator characters should be requested. If
no additional significant characters are found in the line, the command
processor subroutine need not invoke the PARSE service routine to scan

the command operands (none will be present).

36 Guide to Writing a TMP or a CP (Release 21)

PARSE SERVICE ROUTINE

Your command processors and subcommand processors should use the PARSE
service routine to scan the operands entered with the command or
subcommand name. The PARSE service routine returns a Parameter
Descriptor List to the calling routine. The Parameter Descriptor List
describes the operands found in the command buffer.

Command processors and subcommand processors can specify to PARSE
that validity checking exits be taken on certain types of operands.
Since the PARSE Service routine checks the operands only for syntax
errors, you should specify that validity checking routines be entered
whenever a logical, rather than a syntactical, error might occur.

STAE/STAI Exit Routines - Intercepting an ABEND

Use the STAE and STAI exits in your command processors to keep the
system operable if abnormal termination occurs. STAE/STAI exits should
be used in such a way that the command processor gets control if a
subcommand abnormally terminates. STAE provides the command processor
with the ability to intercept an ABEND so that cleanup, bypass, and if
possible, execution retry can be accomplished. (See Data Management for
System Programmers, for a discussion of the STAE macro instruction. See
Supervisor Services and Macro Instructions for a a discussion of the
STAI operand of the ATTACH macro instruction.)

The following types of command processors should use STAE exit
routines:

e All command processors that process subcommands.

e All command processors that request system resources that are not
freed by ABEND or DETACH.

e Command processors that process lists, to allow processing of other
elements in the list if a failure occurs while processing one
element in the list.

Command processors that attach subcommands should also provide a STAI
exit to intercept abnormally terminating subcommand processors.

STAE and STAI exit routines should observe the following guidelines:

1. The error handling exit routine should issue a diagnostic error
message of the form:

ist level command name ENDED DUE TO ERROR
subcommand name

2nd level COMPLETION CODE IS XXXX

where the name supplied in the first level message is obtained from
the Environment Control Table, and the code supplied in the second
level message is the completion code passed to the STAE or STAI
exit from ABEND.

The routine should issue these messages so that the original cause

of abnormal termination is recorded should the error handling exit
itself terminate abnormally before diagnosing the error.

Command Processors 37

When an ABEND is intercepted, the command processor STAE exit
routine should determine whether retry is to be attempted. If so,
the exit routine should issue the diagnostic message and return,
indicating via return code that a STAE retry routine is available.
If a retry is not to be attempted, the exit routine should return,
indicating via return code that no retry is to be attempted. The
TMP STAI exit routine will issue the diagnostic message. (For a
description of the return codes and their meanings, see Supexrvisor
Services and Macro Instructions.)

2. The STAE or STAI routine that receives control from ABEND should
perform all necessary steps to provide system cleanup. This
cleanup should be performed in the STAE exit routine rather than in
the STAE retry routine because DETACH with the STAE=YES operand
does not allow the subtask to retry from a STAE/STAI exit.

3. The error handling exit routine should attempt to retry program
execution when possible. If the command processor can circumvent
or correct the condition that caused the error, the error handling
routine should attempt to do so. In other cases, however, RETRY
has no function and the command processor STAE exit should not
specify the RETRY option.

Attention Exit Routines

An attention exit routine should be provided by any command processor
that accepts subcommands. Use the STAX macro instruction to specify the
address of your attention handling routine. See the section headed
"ATTENTION INTERRUPTION HANDLING - THE STAX SERVICE ROUTINE", for a
complete discussion of the STAX macro instruction.

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the
PUTGET macro instruction, specifying the TERM operand, to send a mode
message to the terminal identifying the program that was interrupted,
and to obtain a line of input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without
an IBUF operand, or with an IBUF length of 0, you can then use the
PUTGET macro instruction, specifying the ATTN operand. This causes the
PUTGET service routine to inhibit the writing of the mode message, since
a message was already written to the terminal from the output buffer
specified in the STAX macro instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the secondary level
informational message chain (if one exists) to be written to the
terminal, again puts out the mode message, and returns a line from the
terminal.

If you used the IBUF operand on the STAX macro instruction note that
no logical line processing or question mark processing is performed. If
the user returns a question mark, you will have to use the PUTLINE macro
instruction to write the secondary level informational message chain to
the terminal. Then issue a PUTGET macro instruction, specifying the
TERM operand, to write a mode message to the terminal and to return a
line of input from the terminal.

Whether you use the IBUF operand on the STAX macro instruction or the

PUTGET macro instruction to return a line from the terminal, you can use
the Command Scan service routine to determine what the user has entered.

38 Guide to Writing a TMP or a CP (Release 21)

If the user enters a null line, the attention handling routine should
return to the point of interruption. Note however, that the TGET and
TPUT buffers are flushed during attention interruption processing. If
any data was present in these buffers, it is lost.

If a new command or subcommand is entered, the attention handling
routine should:

e Reset the input stack.

e Post the command processor's Event Control Block to cause active
service routines to return to the command processor.

e Exit.

Adding Commands to the Time Sharing Option

There are two methods you can use to place a new command processor into
the Time Sharing Option. You can enter your newly written command
processor as a member of the partitioned data set SYS1.CMDLIB, via the
Linkage Editor, or you can create your own command library and
concatenate it to the SYS1.CMDLIB data set. In the latter case, use the
utility IEBUPDTE to create new statements in the link list (LNKLSTO00) in
SYS1.PARMLIB. If you choose to concatenate your library to S¥Sl.CMDLIB,
note that you cannot do it during a terminal session. You must
concatenate the two libraries with data definition statements within
your LOGON procedure. The DDNAME must be STEPLIB.

See Data Management Serxrvices for information on creating data sets,
entering members into data sets, and concatenating data sets.

The HELP Data Set

A terminal user can enter the HELP command to retrieve information about
commands and subcommands. This information is stored in a data set
labeled SYS1.HELP (the HELP data set). If you add command processors to
the Time Sharing Option, you should either add HELP information to the
existing SYS1.HELP data set, or create your own private HELP data set.

SYS1.HELP is a cataloged, partitioned data set consisting of one
member, named "COMMANDS", and individual members for each command in the
system. The °‘COMMANDS' member contains a list of the commands available
to the user, and a brief description of each. The individual members
for each command are named with the command name, and contain more
specific information about the command and its subcommands. The HELP
information contained within any member of the HELP data set consists of
card images. The logical record length is therefore 80 characters.

Each of the SYS1.HELP members, other than the "COMMANDS" member, is
divided into the following subgroups, each of which can be displayed at
the terminal:

e A subcommand list - This information appears only if the command has
subcommands.

e Functional description - This subgroup provides a brief description
of the function of the command or subcommand.

e Syntax - This information describes the syntax of the command or
subcommand.

Command Processorxs 39

e Operand description - This subgroup provides information on the
command positional operands, followed by individual sections
containing brief descriptions of each keyword and its parameters.

PRIVATE HELP DATA SETS

Private HELP data sets must be structured exactly like the SYSl.HELP
data set, since both data sets are processed alike.

You may concatenate your data set to the SYS1.HELP data set (or vice
versa) but the data sets must have the same attributes. Concatenated
data sets are searched in the order of concatenation. If SYS1.HELP and
a private HELP data set have been concatenated, the first °®COMMANDS'
member encountered by the HELP processor is used as the list of
available commands. Thus, if you concatenate your own HELP data set to
SYS1.HELP, you should make additions to the "COMMANDS" member of
SYS1l.HELP.

FORMATTING THE HELP DATA SET

Use the IEBUPDTE utility program to update SYS1.HELP. Use the
information described in Figure 10 to format the data set when you add
to SYS1l.HELP or set up your own HELP data set. The control characters,
beginning in card column 1, divide the data set into the subgroups
previously described, and thereby permit the HELP command processor to
select message text according to the operands supplied on the terminal
user's HELP command. (See TSO Command Lanquage Reference for a
discussion of the HELP command.)

40 Guide to Writing a TMP or a CP (Release 21)

Control

Character Purpose of Data Card

- ——

)s | This card indicates that a list of commands or
| subcommands follows.
4

4
)F |This card indicates that the functional discussion of
| the command or subcommand follows.
4

L}

)X |This card indicates that the syntax description of the
| command or subcommand follows.
1

1
)Jo |This card indicates that the command operands and

| their descriptions follow. Positional operands must
|follow immediately after the ")O" control card and
|before the ")) keyword" control cards.
1
1

)) keyword |This card indicates that information follows
|describing the named keyword. One of these control
|cards must be present for each KEYWORD operand within
|the command. Each card contains the name of the
| keyword it describes.
1

3

=subcommandname |This card indicates that information follows
|concerning the subcommand named after the equal sign.
|One of these cards is required for each subcommand
|accepted by the command being described. Note that
|this card merely names the subcommand; it does not
|describe it. Describe the subcommand in the same
|manner you would describe a command.
| If the subcommand has an alias name, you may
|include the alias name on the control card, i.e.
| =subcommandname=subcommandalias. Note that no
|blanks may appear between the subcommand name and the
|alias.
L

e e S e . —— — . g (. S s G B e S, . S, st B e, s s S B o s, S G s B s s BB e s)
e s o e . e, s S s e s e e, el e s . e e e et e S s, ooy S, s g S, s ity s e gy s e o}

Figure 10. Cards Used to Format a HELP Data Set

All data cards, except the =subcommandname card, can contain
additional information. If you include additional information on the
cards, the control characters)S,)F,)X, and)O must be followed by at
least one blank, and the control character))keyword by at least one
blank or a left parenthesis. Use the left parenthesis when the keyword
you are describing is followed by operands enclosed in parentheses. See
Figure 9 for an example of this.

The only restrictions on data cards are that columns 72-80 are
reserved for sequence numbers, and column one must contain either a
right parenthesis or an equal sign.

For example, information concerning the sample command shown below
could be formatted for entry into the HELP data set (or your own private
help data set) using the cards shown in Figure 11. The fictitious
SAMPLE command could have the following format:

r T .
| SAMPLE I positl [, (posit2)][KEYWD1 [(posit3,posity)]] I

Command Processors 41

[o —
g

(] o}
Kol o
= &
. g
g 9
I = g
R
o b &
Q 0] 15
=} (o] M
EI IR
98 | 3
5 & a g
e
mg 4 =}
o3 O =N (]
+ O Do o M
vn .DMD [o]]
g 0 m m o
g9 |BEEB| 3
me —_ o)

g | °2
m + +
3 Q B g
) <] m.. m
o T ~ %]
§ 8 2 g

m + o
(/)] o 0
g O 0]
ot SR SR
g3 &
s n Le]
©
Ex 2
Oy e e e e o
Cm <

0]

el .
B 3 3
3 m o
no =l

o] =]
g LR
B]

0

o

Y SRS

about the SAMPLE command for inclusion in the HELP data set.

L4T] qQl ~
() N._ <
.~ ~ . .o < M
1) Ql [%[9 Q RN
Q W‘ olQ [V > IR EEN
> Nkl [X T <[Ql [N
< 1Sl W] I > A NIO N
S IV =[S [Q X X =lql |v g
S ([AUST » XIS ~ NI DY Q RN
Ol [XIvlylolylsIS [N T, RIS Bl (] N
L < SINIQOINTU ~ Q VIS
Q 7RI 0 NY NENERIVILY [0) [
D SIN=IIKRINW Q N YRS = > >
Bl [OIo] I~ilalyl T Q NCISTQT IS <
NN > Glo ENNEE
O WIKISTX[O[BHIR] (D ~ NIRS Ol [Q - -1 -
2 NS ISl IS QY N UGGl {m
N QAN N[N N0 N . NI X1 U [& ~
RNEEI™ Qs R NN <[Q e Tl gyl Y Q
o IINIXIQIVISIW[S Wiy([% X Wyl 49 [MITMRIBYES
NMIERILNINDTY NI Tl TRy W RN V2
~ NINCINILN N YWY NENLTILN 1] [T No RS
ol TY[S[IIN[O [NEERVES g x X IRX[XINININ] [
[y X AW Y ~ NI N [N QRN B
NRELY Q INENISY NS Q NINRIEY 0
AT NINES (V] y NEES < [5) (%) NEENEYPN QAN
RN [§ 0 QU [X RN > U ES <T Lyl y, WK
INENINNRNNINEIELN g OIN[Ixx NYERLATRIRIE Qs
SIXIS[W] & Q[Q N 0| R
12) < [xIUXIXx[0[s [0) ~N S () Qls Q NENERS NIQ
< S S <[< &[] QlQ <>\ > 1¥[&[Q[RIN (MY
T IS STWyX6n AN [RIEXI[AY RN N0} K OO [[Y
ININININERY [| NI W y NNH[R/Q[Q R
[&) NI I ESIENESILY Q TN qQ Wy X [MEM WW W
< ~ %) RNEN S QI NI NES Q NN ~ X[
A |yl g Wl N R (Y ~N UIN Q YiylWw N <
iUl < Wy = QIQ q q IR Y &
[N TR EL (DR YL y
QYN[S[0S[n] S Wi 9wl (O] ISI~TWY4lYyl [9
ODINQIFA I s[STOIS S) ANIVLVTEELRIEYN Al > NEEYERIRY ~10
Ql [0 (YIS Y [NINESEILNIN W N W NINENLNENEELDY
MIRIEN [N LTS 7] NENININENE N QIO ~ NS R VN
SIKIT[UISTUIR [N (N[0 [SN]10[W SIS [0 [NENIOI) N[N0
CYERRIRY JONRTY A9 QINWKISIQ <X QIS0 9NN VWl
RILTISIAN NP3 Q S/Q/Q [/ Q NN <IQ </ QIATSINININIG
< N NES (< NES ~ AN Xl LELERTEN N
0l N Q Lo Ol Q& N QW Yyl OIOJOINT |~
L N W [\ [CYES] O €} Y 3 VK Nnlnh N
[< Uiy WUy [%) < W G Wy UMYl
[IS Q T Wyix[q Wy) NEY [TIRSLY YN Q
N § > 1NN SN LNEN QAl U OIN RNLNANY Q
N[N[™
~ Y] NEIENES
I NERR
> BNEN
[< Wl Wy
X > | A | X
[[y X Q 1Y > [s) SN[~
) ~N ~N N [Ll EaN ~ N\ NN

Coding Example -- Including the SAMPLE Command in the HELP

Data Set

Figure 11.

42 Guide to Writing a TMP or a CP (Release 21)

Message Handling

TSO messages are divided into three classes:

e Prompting messages
e Mode messages
o Informational messages

Prompting messages are of the form ENTER... or REENTER..., and
require a response from the user. Prompting messages should be
initiated by the PARSE service routine, using the text supplied by the
command processor as the PROMPT operand of the IKJPOSIT or IKJIDENT
parse macro instructions. See the section headed "Using the PARSE
Service routine (IKJPARS)" for a discussion of the PROMPT operand on the
IKJPOSIT and IKJIDENT macro instructions.

Mode messages are the READY message sent by the Terminal Monitor
Program, and any other similar messages sent by command processors, such
as the EDIT mode message sent by the EDIT command processor. They
inform the user which command component is in control and let him know
that the system is waiting for him to enter a new command or subcommand.

Informational messages include all others; that is, any message which
does not require an immediate response from the user.

Prompting and Mode messages should be displayed using the PUTGET
service routine. Informational messages should be displayed using the
PUTLINE service routine.

Message Levels

Messages usually should have associated with them other messages that

more fully explain the initial message. These messages, called second
level messages, third level messages, and so forth, are displayed only
if the user specifically requests them by entering a question mark "2".

Prompting messages may have any number of additional levels. The
second level is displayed if the user enters a question mark in response
to the initial message. The last level is displayed if the user enters
a question mark in response to the next to the last message. If the
user at the terminal enters a question mark after all levels have been
displayed, PUTGET displays the message "NO INFORMATION AVAILABLE". Pass
your second level prompting messages to the PARSE service routine by
coding them as the HELP operand in the IKJPOSIT and IKJIDENT parse macro
instructions.

An informational message can have only one second level message
associated with it. Since many informational messages might be
displayed at the terminal before a question mark is returned from the
terminal, PUTLINE moves all second level informational messages to
subpool 78 and chains them off the Environment Control Table. This
chain exists from one PUTGET for a mode message to the next. In other
words, whenever the user can enter a new command or subcommand, he can
enter a question mark instead, requesting all the second level messages
for informational messages issued during execution of the previous
command or subcommand. If he does not enter a question mark, PUTGET
deletes the second level messages and frees the main storage they
occupy.

Message Handling 43

Mode messages cannot have second level messages, since a question
mark entered in response to a mode message is defined as a request for
the second levels of previous informational messages. Your program
should request all commands or subcommands by issuing a mode message
with the PUTGET service routine so that second level informational
messages may be properly handled.

Effects of the Input Source on Message Processing

Message handling is considerably affected if the input source designated
by the input stack is an in-storage list rather than a terminal. See
the explanation of the STACK macro instruction for a discussion of
in-storage lists. In-storage lists may be either procedures or source
lists.

If a procedure is being executed, the PUTGET Service Routine does not
display prompting messages, but returns an error code (12) in register
15. If the PARSE Service Routine issued the PUTGET macro instruction,
PARSE issues an informational message to the terminal, and returns an
error code to its caller, (code 4). The command processor should reset
the input stack and terminate. If a command processor issued the PUTGET
macro instruction, the command processor should use the PUTLINE service
routine to write an appropriate informational message to the terminal
prior to terminating.

If a source in-storage list is being processed, prompt messages are
displayed to, and responses read from, the terminal by the PUTGET
Service Routine.

If the user at the terminal has specified the PAUSE operand on the
PROFILE command, PUTGET issues a special message, "PAUSE", if all of
these three conditions exist:

(1) A mode message is to be written out.
(2) Second level messages exist.
(3) An in-storage list is being processed.

The user may enter either a question mark or a null line. If he enters
a question mark, the chain of second level messages is written to the
terminal. If he enters a null line, control returns to the executing
command processor. In either case, the next line from the in-storage
list is returmned to the command processor.

A special situation arises if: an in-storage list is being
processed, second level messages are chained, and the user has specified
NOPAUSE as an operand of the PROFILE command. Normally, if a subcommand
encounters an error situation, it issues an information message and
returns. The command processor then uses the PUTGET service routine to
issue a mode message on the assumption that the user can take corrective
action with other subcommands. When processing from an in-storage list,
this is not true. If NOPAUSE was specified, PUTGET merely returns an
error code (12) to the calling routine. In most cases, the command
processor should reset the input stack and terminate. If the message
producing the second level message was purely informational and does not
require corrective action, the command processor may set the ECTMSGF
flag in the Environment Control Table to delete the second level
message, and reissue the PUTGET macro instruction to continue.

44 Guide to Writing a TMP or a CP (Release 21)

Attention Interruption Handling - the STAX Service Routine

The STAX service routine creates the control blocks and queues necessary
for the system to recognize and schedule user exits due to attention
interruptions. Your Terminal Monitor Program, your command processors,
or the problem program provide the address of an attention exit to the
STAX service routine by issuing the STAX macro instruction. You should
provide attention exit routines within the Terminal Monitor Program and
any command processors that accept subcommands.

Note that when an attention interruption is entered from the
terminal, the TGET and TPUT buffers are flushed. Any data contained in
these buffers is lost. If the user then attempts to continue processing
from the point of interruption, he may have lost an input or an output
record, or an output message from the system.

Specifying a Terminal Attention Exit - the STAX Macro Instruction

The STAX macro instruction is used to specify the address of an
attention exit routine that is to be given control asynchronously when
the attention key is struck or when a simulated attention is specified.
(See the STATTN macro instruction for a description of the simulated
attention function.)

When the attention exit routine is entered, all the subtasks of the
interrupted task are stopped. If the subtasks must be dispatchable
during attention exit processing, it is the user's responsibility to
start the subtasks again by issuing the STATUS macro instruction.

The STAX macro instruction can also be used to cancel the last
attention exit routine established by the task. To do this, specify the
STAX macro instruction without specifying any operands.

The STAX macro instruction is used only in a time sharing
environment. It is ignored in a system that includes the time sharing
option (TSO) if TSO is not active when the macro instruction is issued.
In addition, attention exits can be established only for time sharing
tasks operating in the foreground.

Issue the STAX macro instruction to provide the information required
by the STAX service routine. The STAX macro instruction has a list and
an execute form.

The List form of the STAX macro instruction generates a STAX
Parameter List, and the EXECUTE form of the STAX macro instruction
completes or modifies that list and passes its address to the STAX
service routine.

Figure 12 shows the format of the list and the execute forms of the
STAX macro instruction; each of the operands is explained following the
figure. Appendix B describes the notation used to define macro
instructions.

Attention Interruption Handling - the STAX Service Routine 45

[symboll STAX Cexit address[,OBUF=(output buffer address,s‘.ize)]-q

[,IBUF=(input buffer address,size)]
[,UsADDR=user address]

',REPLACE={YESH
NO

—,DEFER={YES}
NO

S MF=L

MF=(E, (address))

[S s G — — —— — — — t—— f—o— S— {——ap——)
S ——
e ————
1
L

Figure 12. The STAX Macro Instruction -- List and Execute Forms

exit address
Specify the entry point of the routine to be given control when an
attention interruption is received. You must specify the exit
address in both the list and the execute forms of the STAX macro
instruction when you are establishing an attention interruption
handling exit.

You need not specify an exit address if you arxe using the DEFER
operand as long as you code no other operands (except the MF
operand). If you exclude the exit address and code other operands
either with or without the DEFER operand, the STAX service routine
merely cancels the previous attention exit established by the task
issuing this STAX macro instruction.

OBUF=(output buffer address,output buffer size)
Output buffer address - Supply the address of a buffer you have
obtained and initiated with the message to be put out to the
terminal user who entered the attention interruption. This message
may identify the exit routine and request information from the
terminal user. It is sent to the terminal before the attention
exit routine is given control.

Output buffer size - Indicate the number of characters in the
output buffer. The maximum number is 4095.

IBUF=(input buffer address,input buffer size)
Input buffer address - Supply the address of a buffer you have
obtained to receive responses from the terminal user. The
attention exit routine is not given control until the STAX service
routine has placed the terminal user's reply into this buffer.

Input buffer size - Indicate the number of bytes you have provided
as an input buffer. The maximum number is 4095.

USADDR=(user address)
The user address is a pointer to any information you want passed to
your attention handling exit routine when it is given control.

REPLACE=YES or NO
YES indicates that this STAX macro instruction replaces the STAX
macro instruction previously issued by this task. YES is the
default value.

NO indicates that this attention exit is an additional exit to any
that have been previously established for this task.

46 Guide to Writing a TMP or a CP (Release 21)

DEFER=YES or NO

MF=L

The DEFER operand is optional. If the DEFER operand is coded in
the STAX macro instruction, the option you request (YES or NO)
applies to all tasks within the task chain in which the macro
instruction was issued. Any task may issue the STAX macro
instruction to specify DEFER=YES or NO; the issuing task need not
itself have provided an attention exit routine. If the DEFER
operand is not coded in the macro instruction, no action is taken
by the STAX service routine regarding the deferral of attention
exits.

YES indicates that any attention interruptions received are to be
queued and are not to be processed until another STAX macro
instruction is executed specifying DEFER=NO, or until the program
that issued the STAX with the DEFER=YES terminates.

NO indicates that the defer option is being cancelled. Any
attention interruptions received while the defer option was in
effect are to be processed in a first-in, first-out manner. If the
deferral status has not been established by a previous routine and
the DEFER operand is omitted, the control program assumes DEFER=NO
for the first STAX macro instruction. After deferral status has
been established, omitting the DEFER operand leaves the deferral
status unchanged.

Be aware that if a program issues a STAX macro instruction
specifying DEFER=YES, it can get into a situation where an
attention interruption cannot be received from the terminal. If
your program enters a loop or an unending wait before it has issued
a STAX macro instruction specifying DEFER=NO, you cannot regain
control at the terminal by entering an attention interruption.

You need not specify an exit address in a STAX macro instruction
issued only to change deferral status. Note, however, that a STAX
macro instruction entered without an exit address is considered to
be a STAX cancel if any operands are included other than DEFER and
MF.

When control is passed to another routine with an XCTL macro
instruction, the routine receiving control assumes the deferral
status of the routine that issued the XCTL macro instruction.

When control is passed to another routine with a LOAD or CALL macro
instruction, the routine receiving control also receives the
deferral status of the routine that passed control. If the routine
receiving control changes deferral status, it remains changed when
control is returned.

When control is passed to another routine with a LINK macro
instruction, the routine receiving control maintains its own
deferral status: It does not receive a deferral status when it
receives control nor does it return a deferral status when it
returns control.

This specifies the list form of the STAX macro instruction. It
generates a STAX Parameter List.

MF=(E, (address))

This specifies the execute form of the STAX macro instruction. It
completes or modifies the STAX Parameter List and passes the
address of the Parameter List to the STAX service routine. Place
the address of the STAX Parameter list (the address of the list
form of the STAX macro instruction) into a register and specify
that register number within parentheses.

Attention Interruption Handling - the STAX Service Routine 47

You can place each of the required address and size parameters into
registers and specify those registers, within parentheses, in the STaX
macro instruction. Figure 13 shows how an execute form of the STAX
macro instruction may look if you load all the required parameters into
registers.

i STAX (2),IBUF=((3),(4)),0BUF=((5),(6)) ,USADDR=(7) ,MF=(E, (1))

Figure 13. Using Registers in the STAX Macro Instruction

48 Guide to Writing a TMP or a CP (Release 21)

The STAX Parameter List

When the list form of the STAX macro instruction expands, it builds a
five word STAX Parameter List. The list form of the macro instruction
initializes this STAX Parameter List according to the operands you have
coded.

The execute form of the STAX macro instruction modifies the STAX
Parameter List and passes its address to the STAX service routine.
Figure 14 describes the contents of the STAX Parameter List.

Number of
Bytes

4

Field Contents or Meaning

ol

STXEXIT | The address of the attention exit routine to
| receive control in response to an attention
|interruption. This is the address you
| supplied as the exit address operand on the
| STAX macro instruction.

[
+

STXISIZ |Contains a binary number representing the
| size of the input buffer you provided as the
| IBUF operand on the STAX macro instruction.
| The maximum buffer size is 4095 bytes.

IR

P e el S —

$
STXOSIZ |Contains a binary number representing the
| size of the output buffer you provided as the
| OBUF operand on the STAX macro instruction.
| The maximum buffer size is 4095 bytes.
L+

}
STXOBUF |Contains the address of the output buffer you
|provided as the OBUF operand on the STAX
|macro instruction.
1

+
STXIBUF |Contains the address of the input buffer you
| provided as the IBUF operand on the STAX
|macro instruction.
I

1
STXOPTS | STAX option flags.

«0ce |REPLACE=YES

«l.. |REPLACE=NO

wele ... |Defer attention interruption processing.

esel |Cancel the deferral of attention interruption
| processing.

X... XXXX |Reserved bits.
1

]

STXUSER |Contains the address of the parameters you
| want passed to your attention handling exit
| routine when it is given control. This is
| the address you supplied as the USADDR
|operand on the STAX macro instruction.

H .

o e e e e e e e e e e e e . e e e e e e e s e e e e e s e e e e i e s e e e e e]
lan e e e e e ey i o e e et e St S . s s gy S S e oy S s e o) . S e et i S e, (et e e g e . o]

e e ST —

Figure 14. The STAX Parameter List

Attention Interruption Handling - the STAX Serxrvice Routine 49

Coding Example of the STAX Macro Instruction

The coding example shown in Figure 15 uses the list and the execute
forms of the STAX macro instruction to set up an attention handling
exit. The OBUF operand provides a message to be written to the terminal
when the attention interruption is received, and the IBUF operand
provides space for an input buffer. This example does not code the
REPLACE operand in the macro instruction; YES is the default value. The
attention handling exit established by this execution of the STAX macro
instruction replaces the previous attention handling exit established
for this task.

X| | |THIZIS] [ClOD)/ NG| IEXIAMIPILIE] [/ SISWVIEIS| |Al ISITIAX] WMAICIRIO| |/ INISTTIRUICITI/ ION] ITI0
X | [SIEIT] |UIPL AN IAITITIENVITI/ [ON] |EX]/IT] -
X ¥
X PRIOICIEISIS|/ NG
X e o e e D e B ot
X T
LIA 31, ISITIAIXIL|/ [S|T]
X\ | |/ ISISIVIEL [TIHIE| |EIXIEICIUITIE] [FIORM| [0IF| |TIHIE| |SITIAIX| MIAICRIOl [/WISITIRIUICIT!/ oW
X X
SITAX TITWIEX/ 71> DIBWF = OIUITIBIUIA 13111) L ZIBIUFI=I(LIVIBIUFs | 71410)) |,
F=(Ey(3))
X ¥
X\ | ICHEICK| [THE| RIEITURW| |CIODE| IFIRIOM |TIHIE| |SITIAIX| [SIEIRIV|/ICIE| [RIOWITI/ INE
X | Al ZIERIO] IREITIUIRW, |ClODIA [/ WD/ ICIAITIEIS] SIUICICIEISISIFIUIL] IClOMIPILIE|T] O
X
LITIR 115,115
BV Z ERRITV
X ¥
X| | IPRIOICIEISIS|/ MG
X s [e B 1 D
X AN AL AN AT
E|RR7TM T T ¥
Y| A
ul X
X G
AT ITINEX T | A~ P
A~ e~
N~ T
X X
X | |SITIOIRIAGIE| IDIEICILIARIAITI/ [OMIS
X X
SITAXILI/ SITL [SITIAX] | AITITINEEIX]/[TT, MIFI=IL) | | THLS] L ISIT] IFIORM 10IF| (THIE| ISITIAIX
] WMAICRIO[[/ WISITIRUICITI/ {OW] |EXIPAWIDS| JAIND
PRIOWV|/IDES| |SIPAICIE FIORI [TIHE| ISTIAX
PARAMETIER |LI/IS]T].
p X
D\WUTIBIUIF DIC ClUITIHZLS! /1S Al ISIAMPILIE! AITITIEEMTL/ 0N LEIXITIT]!
DS F
I INBIUIF DIC CiLi7 49| g [WIITIHALTZE) (11#0) \BIYITIEIS| [TI0] [ZIEIR|0
X AlS| |TIHIE| |/ INPIUT| |BIUIFIFIER
I ¥
ENID
Figure 15. Coding Example -- STAX Macro Instruction

50 Guide to Writing a TMP or a CP (Release 21)

Return Codes From the STAX Service Routine

When the STAX service routine returns control to the program that issued
the STAX macro instruction, register 15 contains one of the following
return codes:

CODE MEANING
0 The STAX service routine successfully completed the function
you requested. That is, it queued the attention exit you
passed it, or it cancelled an existing attention exit.

4 Deferral of attention exits has already been requested and
is presently in effect. Any other operands you specified in
the STAX macro instruction have been processed successfully.

8 Invalid parameter passed to the STAX service routine; your
STAX macro instruction was ignored.

Attention Interruption Handling - the STAX Service Routine 51

Dynamic Allocation of Data Sets -- the Dynamic Allocation
Interface Routine (DAIR)

Dynamic Allocation routines allocate, free, concatenate, and
deconcatenate data sets dynamically; that is, during problem program
execution. With the Time Sharing Option, dynamic allocation permits the
Terminal Monitor Program, Command Processors, and other problem programs
executing in the foreground region to allocate data sets after LOGON and
free them before LOGOFF.

For a complete discussion of Dynamic Allocation, see the TSO Terminal
Monitor Program and Service Routines PLM.

The Dynamic Allocation routines may be accessed from a TSO foreground
region only through the Dynamic Allocation Interface Routine (DAIR). In
general, DAIR obtains information about a data set and, if necessary,
invokes Dynamic Allocation routines to perform the requested function.

You can use DAIR to perform the following functions:

Obtain the current status of a data set.
Allocate a data set (See note).

Free a data set.

Concatenate data sets.

Deconcatenate data sets.

Note:
If you wish to allocate a data set to a direct access device, the
device must be available. To be available, the device must be:

e On line
e Ready
e Shareable.

Further conditions:
e An offline or unload condition must not be pending.

¢ There must be no outstanding MOUNT message.
e The volume attributes must have been defined.

52 Guide to Writing a TMP or a CP (Release 21)

Using DAIR

Enter the DAIR service routine with a LINK macro instruction to entry

l point IKJEFDOO in load module IKJEFD00. The control block structure
required by the DAIR service routine is shown in Figure 16. Note that
the DAIR Parameter Block (DAPB) is a variable-size block; the block size
depends upon the function requested by the calling routine. That

{ function is indicated to the DAIR service routine by the code in the
first two bytes of the DAIR Parameter Block.

DAIR

Y
0

Entry Code

T

P eatin

Figure 16. Control Blocks Passed to DAIR

The Dynamic Allocation Interface Routine (DAIR) 53

THE DAIR PARAMETER LIST (DAPL)

At entry to DAIR, register 1 must point to a DAIR Parameter List that
you have built. Figure 17 shows the format of the DAPL. The addresses
of the user profile table, environment control table, and protected step
contxol block may be obtained from the command processor parameter list
(CPPL) that the TMP passes to your command processor (See Figure 33).
Additional information on the address and creation of the user profile
table, environment control table, and protected step control block is
shown in Figure 5 (the Test Parameter List).

r T T 1
| Number of | |

| Bytes | Field |Contents or Meaning

1 1]

L] B L]

| 4 | DAPLUPT | The address of the User Profile Table.

{ 4

1 k]

| 4 DAPLECT |The address of the Environment Control Table.
I 4

[} 1

| 4 DAPLECB | The address of the calling program's Event

		Control Block. The ECB is one word of
		storage declared and initialized to zero by
		the calling routine.
i 4 1 J		
L] T LB 1		
4	DAPLPSCB	The address of the Protected Step Control
! } !Block. 1		
§ [} t T		
4	DAPLDAPB	The address of the DAIR Parameter Block,
		created by the calling routine.
L L 1 3

Figure 17. Format of the DAIR Parameter List (DAPL)

54 Guide to Writing a TMP or a CP (Release 21)

THE DAIR PARAMETER BLOCK (DAPB)

The fifth word of the DAIR Parameter List must contain a pointer to a
DAIR Parameter Block built by the calling routine.

It is a variable-size parameter block that contains, in the first two
bytes, an entry code that defines the operation requested by the calling
routine. The remaining bytes contain other information required by DAIR
to perform the requested function. Figqure 18 is a list of the DAIR
entry codes and the functions requested by those codes.

r T 1
Entry

Code Function Performed by DAIR
i 4
L] 1

|X* 00" |Search the DSE for information about a data set by DDNAME or
| DSNAME.

— vl

X'04"'|Seaxrch the DSE for information about a data set by DSNAME. If
|not found, search the system catalog.

X"08'|Allocate a data set by DSNAME.
Y
|X*0C® |Concatenate data sets by DDNAME. |

|
X'10' |Deconcatenate data sets by DDNAME.

|
X'14"' |Search the system catalog for all qualifiers for a DSNAME.
| | (The DSNAME alone represents an unqualified index entry.) i

| |
|X"18" |Free a data set.
| I
|X*1C* |Allocate a DDNAME to a terminal. |
| [
|X*24° |Allocate a data set by DDNAME or DSNAME.
I
X"28"'" |Perform a list of operations.
P

|X*"2C"' |Mark data sets as not in use.

| |
|X*30'|Allocate a SYSOUT data set.
L 1

Tg—

Figure 18. DAIR Entry Codes and Their Functions

The DAIR Parameter Blocks have the formats shown in the following
tables. The formats of the blocks depend upon the function requested by
the calling routine. The function is indicated by the entry code in the
first two bytes of the DAIR Parameter Block.

The Dynamic Allocation Interface Routine (DAIR) 55

Code X'00' - Searxrch the DSE for a Data Set Name

Build the DAIR Parameter Block shown in Figure 19 to request that DAIR
search the Data Set Extension for a fully qualified data set name.

Number of
Bytes Field

Contents or Meaning

2

Entry code X'0000°

— — e — —

2

P

Byte 2
0000 0000

|A flag field set by DAIR before returning to
| the calling routine. The flags have the

| following meaning:

|

|Resexrved. Set to zero.

| DSNAME or DDNAME is permanently allocated.

| DDNAME is a DYNAM.

| The DSNAME is currently allocated; it appears
|in the DSE.

| The DDNAME is currently allocated to the

| terminal.

|Reserved. Set to zero.
}

ol e . . . o—— — — —— — —— — ol w— colagy e oo wd]

DA OOPDSN

}
|Place in this field the address of the DSNAME|
| buffer. The DSNAME buffer is a 46 byte field
|with the following format:

|The first two bytes contain the length, in |
| bytes of the DSNAME;

| The next 44 bytes contain the DSNAME, left
| justified, and padded to the right with

| blanks.

+

DA OODDN

—t—

1]

| Contains the DDNAME for the requested data
|set. If a DSNAME is present, the DAIR

| sexvice routine ignores the contents of this
| field.

1

DAOOCTL
00.0 0000

eele oa.n

]

|A flag field:

| Reserved bits. Set to zero.
| Prefix userid to DSNAME.

4

1
| Reserved bytes; set these bytes to zero.
L

DAQODSO

laee aaee
el ...
eele aa..
<+« 0 00..
S

ceee asel

]
|
I
i
r
|
s
L]
I
|
I
|
I
|
|
[
[
|
|
|
|
I
1]
|
|
|
I
I
|
!
I
{
|)
|
|
|
|
}
|]
I
!
|
I
1)
|
1
L]
I
|
|
[
|
|
|
I
[
!
L

+
|A flag field: These flags describe the
|organization of the data. They are returned
|to the calling routine by the DAIR service

| routine.

| Indexed Sequential (IS).

| Physical Sequential (PS).

|Direct Organization (DO).

|Reserved bits. Set to zero.

| Partitioned Organization (PO).

| Unmoveable.

4L

Figure 19. DAIR Parameter Block -- Entry Code X'00°

After DAIR searches the Data Set Entry for the fully qualified data
set name, register 15 contains one of the following DAIR return codes;

0, 4

See the topic "Return Codes from DAIR" for return code meanings.

56 Guide to Writing a TMP or a CP (Release 21)

Code X'04°*

- Search the DSE and the System Catalog for Data Set Name

Build the DAIR Parameter Block shown in Figure 20 to request that DAIR
search the Data Set Extension for a fully qualified data set name.

the data set is not found in the DSE, DAIR also searches the system

If

catalog.

[T T 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
I | L (]
1) T T 1
| 2 | DAOu4CD |Entry code X'0004°. |
) [| 1]
1] T] T
] 2 | DAOLFLG |A flag field set by DAIR before returning to |
| | | the calling routine. The flags have the |
| i | following meaning: |
| | Byte 1l | |
| | 0000 0..0 |Reserved bits. Set to zero. |
| | <<es «1l.. |DAIR found the DSNAME in the catalog. |
| | <<« ..1. |The DSNAME is currently allocated in the Data|
| | | Set Extension. i
| | Byte 2 |
| | 0000 0000 |Reserved. Set to zero. |
1 1 L |]
[) 1 T 1
| 2 | |Reserved bytes. Set to zero. |
L 1 1 |]
1) T T T
| 2 | DAO4CTRC | These two bytes will contain an error code |
| | | from the catalog management routines if an |
| | |error was encountered by catalog management. |
) 4 L []
[] i] 1
| 4 | DAOUPDSN |Place in this field the address of the DSNAME|
| | | buffer. The DSNAME buffer is a U46-byte field|
| | |with the following format: |
| | |The first two bytes contain the length, in |
| | | bytes, of the DSNAME; |
| | | The next 44 bytes contain the DSNAME, left |
| | | justified, and padded to the right with |
| | |blanks. |
t + + 1
| 1 | DAO4CTL |A flag fielad: |
| | 00.0 0000 |Reserved bits. Set to zero. |
| | «<le «... |Prefix userid to DSNAME. |
) [l L §
[] T 1] 1
| 2 | |Reserved bytes; set these bytes to zero. |
i 4 L 3
[) 1 T T
| 1 | DAO4DSO |A flag field. These flags are set by the |
| | |DAIR Service routine; they describe the |
| | |organization of the data set to the calling |
| | | routine. These flags are returned only if |
| | | the data set is currently allocated in the |
| | | DSE. |
| | 1... «.... |Indexed Sequential (IS). |
| | .1.. |Physical Sequential (PS). |
| | <.<1. ... |Direct Organization (DO). |
| | -..0 00.. |Reserved bits. Set to zero. |
i | ~<e« «.1l. |Partitioned Organization (PO). |
i | <eee <..1 |Unmoveable. |
L L 1 |
Figure 20. DAIR Parameter Block -- Entry Code X'04°*

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0,

4, 8

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR)

57

Code X'08' - Allocate a Data Set by DSNAME

Build the DAIR Parameter Block shown in Figure 21 to request that DAIR
allocate a data set. The exact action taken by DAIR depends upon the
presence of the optional fields and the setting of bits in the control
byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) DAIR
catalogs the data set upon successful allocation. If the catalog
attempt is unsuccessful, DAIR frees the data set.

If the proper indices are not present, DAIR attempts to establish
these indices.

DAIR searches the Data Set Extension in a manner that depends upon
the information you supply in the DAIR Parameter Block. DAIR may search
on DSNAME alone, DSNAME and DDNAME if both are specified, DDNAME alone
if no DSNAME is specified, or DAIR may search for any available entry.
If DAIR searches for an available entry in the DSE, the order of
selection is:

1. A DYNAM entry.

2. A data set that is currently allocated but not in use and not
permanently allocated.

3. A concatenated data set not in use and not permanently allocated.

If neither of the above types of DSE entries can be found, allocation
cannot take place. If an entry can be found from number 2 (above) DAIR
frees the entry and uses it for the requested allocation. If DAIR can
find an entry from number 3 (above), it deconcatenates, then frees the
data set.

To allocate a utility data set use DAIR code X'08' and use a DSNAME
of the form &name. If the &name is found allocated in the Data Set
Extension, that data set is used. If the &name is not found, DAIR
attempts to allocate a data set.

The DAIR Parameter Block required for entry code X'08' has the
following format:

1 1 T 1
| Number of | | |
| Bytes | Field |Contents or Meaning

I} (] [l

s]]

| 2 | DAOSCD |Entry code X'0008".

I 1 1]
[| L) T 1
| 2 | DAOSFLG |A flag field set by DAIR before returning to |
| | | the calling routine. The flags have the

| | | following meaning:

| | Byte 1 | _ |
| leee |The data set is allocated but a secondary

| |error occurred. Register 15 contains an

| |error code.

| . 000 0000 |Reserved bits. Set to zero.

|

| Byte 2 |Reserved. Set to zero.

I +

1)]

| 2 | DAO8SDARC |This field contains the error code, if any, |
| | | returned from the Dynamic Allocation |
| | routines. (See "Return Codes from Dynamic]
| |Allocation.") |
1 i L J
1} L) T T
| 2 DA 08CTRC |]This field contains the error code, if any, |
| |returned from Catalog Management Routines.]
L 1 J

L

Figure 21. DAIR Parameter Block -- Entry Code X'08' (Part 1 of 3)

58 Guide to Writing a TMP or a CP (Release 21)

Bytes

-
Number of

Field

Contents or Meaning

P S ——
- S——

—_—

DA 08PDSN

|Place in this field the address of the DSNAME|
| buffer. The DSNAME buffer is a 46 byte field|]
|]with the following format: |
|The first two bytes contain the length, in |
| bytes, of the DSNAME; the next u44 bytes |
| contain the DSNAME, left justified and padded|
|to the right with blanks. |
1 J

J

DA 08DDN

1]

This field contains the DDNAME for the data

set. If a specific DDNAME is not required,

fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the

|data is allocated.

DAOSUNIT

Unit name desired. If name blank, defaults
to PSCBGPNM contents. If name is less than
| eight bytes long, pad it with blanks at

| right.

+

DA 08SER

+
|Sserial number desired. Only the first six

| bytes are significant. If the serial number
|]is less than six bytes, it must be padded to
| the right with blanks. If the serial number
|is omitted, the entire field must contain

| blanks.

4

DAOSBLK

1

|Block size requested. This figure represents
| the average record length desired.

1

[S S S Ry —

DAOSPQTY

J O e T P S

}
| Primary space quantity desired. The high
|order byte must be set to zero; the low order
| three bytes should contain the space quantity
| required. If the quantity is omitted, the |
|entire field must be set to zero. |
4

e ——

DA08SQTY

4
| Secondary space quantity desired. The high
|oxrder byte must be set to zero; the low order|
| three bytes should contain the secondary

| space quantity required. If the quantity is
|omitted, the entire field must be set to

| zero.

]

—— e a—

DA 08DQTY

1

|Directory quantity required. The high order
byte must be set to zero; the low order three
bytes contain the number of Directory blocks
desired. If the quantity is omitted, the
entire field must be set to zero.

I
§
1
|
|

EESTEEN o SpSSRyEER Y S p—" A —"——————— VSO S e —" e S AT . — S ———— | S

-

e —

DA 0 8MNM

Contains a member name of a partitioned data
set. If the name has less than eight
characters, pad it to the right with blanks.
If the name is omitted, the entire field must
|]contain blanks.

L

L

DA08PSWD

J
] 1
|Contains the password for the data set. If
| the password has less than eight characters,
|pad it to the right with blanks. If the |
| password is omitted, the entire field must
|contain blanks.

L

Figure 21.

DAIR Parameter Block -- Entry Code X'08" (Part 2 of 3)

The Dynamic Allocation Interface Routine (DAIR) 59

Number of

Bytes Field

Contents or Meaning

+——

1 DA08DSP1

0000

eens laa.
eaes alae
caee ool.

cene eeal

|Flag byte. Set the following bits to
|]indicate the status of the data set:
|Reserved. Set these bits to zero.

| SHR

| NEW

| MOD

| oLD

1

DA08DPS2

0000

ceee 1...
ceee ol..
ceee ..l

cese eaal

]

|Flag byte. Set the following bits to
|indicate the normal disposition of the data
| set:

|Reserved bits. Set them to zero.

| KEEP

| DELETE

| caTLG

| UNCATLG

I

DAO8DPS3

0000

caes lo..
eeee ola.
eaes oal.

R

L)
|Flag byte. Set the following bits to

|indicate the abnormal disposition of the data

| set:

|Reserved bits. Set them to zero.
| KEEP

| DELETE

| CATLG

| UNCATLG

L

e s e, o, e ol — — — — ——— gy S— —— ——— s, . . s, vy e, s g

DAOSCTL

XXeo ecnewe

. o e S, e s e S S S, S, . e e . e e e, o S S, S S, S S, S, e S S, e e]

0l..
100e ea..
11.. ...

T
S RO

eees leea

® o0 o -1'..

eees <200

L]
|Flag byte. These flags indicate to the DAIR

| sexrvice routine what operations are to be
| performed:

| Indicate the type of units desired for the
| space parameters, as follows:

|Units are in average block length.

|Units are in tracks (TRKS).

|Units are in cylinders (CYLS).

| Prefix userid to DSNAME.

|RLSE is desired.

| The data set is to be permanently allocated;
]it is not to be freed until specifically

| requested.

|A DUMMY data set is desired

|Reserved bits; set them to zero.

1

—h

S
|Reserved bytes; set them to zero.
1

DA08DSO

leee cenn
elee e
el ...
««.0 00..
cees aal.

eees oeal

- e — —— G——— — —t— i — W T S—— — — — — —— T— — — . st BB, e, e S s S, s S, W S, S, S St . S S S, . (. St s B S, S, s s, . o, s]

fm e e e o s e e e s s e . . e

]

|A flag field. These flags are set by the
|DAIR service routine; they describe the
|organization of the data set to the calling
| routine.

| Indexed Sequential (IS).

| Physical Sequential (PS).

|Direct Organization (DO).

|Reserved bits. Set to zero.

| Partitioned Organization (PO).

| Unmoveable.
L

o e ——— —— — —— — — iy w— iy w—

Figure 21. DAIR Parameter Block -- Entry Code X'08°' (Part 3 of 3)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 8, 12, 16, 20,

32, 44

See the topic "Return Codes from DAIR" for return code meanings.

60 Guide to Writing a TMP or a CP (Release 21)

Code X'0C' - Cconcatenate the Specified DDNAMES

Build the DAIR Parameter Block shown in Figure 22 to request that DAIR
concatenate data sets. Entry code X'0C' indicates that the DDNAMES
listed in the DAIR Parameter Block are to be concatenated in the order
in which they appear. All data sets listed by DDNAME in the DAIR
Parameter Block must be currently allocated.

DAIR marks the DSE entry for each member it concatenates. This is

done in case a subsequent request for allocation of a data set requests

a member of the group. If the group was concatenated by DAIR, DAIR
deconcatenates the group and proceeds with the requested allocation.
the group was concatenated at LOGON, DAIR makes a duplicate entry for

If

the data set; that is, there will be two entries in the DSE for the same

data set.
I b bl) |
| Number of | | |
| Bytes | Field | Contents or Meaning |
¢ 1 t {
| 2 | DAOCCD | Entry code X'000C"* |
1 A1 []
L]]] 1
| 2 | DAOCFLG |Reserved. Set this field to zero. |
1 1 4 [}
L] 1 L] 1
| 2 | DAOCDARC |This field contains the error code, if any, |
| | | returned from the Dynamic Allocation
| | | routines. (See "Return Codes from Dynamic
| | |Allocation.™) |
t 1 t
| 2 | |Reserved field . Set this field to zero.
1 1 il
[]] L)
| 2 | DAOCNUMB |Place in this field the number of data sets |
| | | to be concatenated. |
b 1 t !
| 2 | |Reserved. Set this field to zero. |
I3 1 L J
[] T t 1
8	DAOCDDN	Place in this field the DDNAME of the first
		data set to be concatenated. This field is
		repeated for each DDNAME to be concatenated.
L i L 3
Figure 22. DAIR Parameter Block -- Entry Code X'0C"'
After attempting the requested function, DAIR returns one of the
following codes in register 15.
0, 4, 12

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 61

Code X'10' - Deconcatenate the Indicated DDNAME

Build the DAIR Parameter Block shown in Figure 23 to request that DAIR
deconcatenate a data set. Entry code X'10' indicates ‘that the DDNAME
specified within the DAIR Parameter Block has been previously
concatenated and is now to be deconcatenated.

LB L4 L) 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
i 4 [l]
L)) 1 T
| 2 | DA10CD |Entry code X'0010'

1 }]

g T T

| 2 | DA1OFLG |Reserved. Set this field to zero.

L 4 4

L}] 1

| 2 | DA10DARC |This field contains the error code, if any,

| | |returned from the Dynamic Allocation

| | | routines. (See "Return Codes from Dynamic

| | |Allocation. ™) |
¢ : t i
| 2 | |Reserved field. Set this field to zero. |
L 4 4 J
L] } T T
| 8 | DA10DDN |Place in this field the DDNAME of the data |
| i | set to be deconcatenated. |
L L L 1

Figure 23. DAIR Parameter Block -- Entry Code X'10°

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12

See the topic "Return Codes from DAIR" for return code meanings.

62 Guide to Writing a TMP or a CP (Release 21)

Code X'14"

- Return Qualifiers for the Specified DSNAME

Build the DAIR Parameter Block shown in Figure 24 to request that DAIR
return all qualifiers for the DSNAME specified.

You must also provide the return area pointed to by the third word of

the DAIR Parameter Block.

If the area you provide is larger than needed

for all returned information, the remaining bytes in the area are set to

zero by DAIR.

If the area is smaller than required, it is filled to its
limit, and the return code specifies this condition.

Number of
Bytes

Field

iy . e)

1
l
| Contents or Meaning
L

2

— G — —)

T
|
I
1
T
I

DA14CD

1]
|Entry code X°0014°.

2

DAI14FLG

Reserved. Set this field to zero.

DA14PDSN

Place in this field the address of the DSNAME|
| buffer. The DSNAME buffer is a 46 byte field|
|with the following format: |
| The first two bytes contain the length, in |
| bytes, of the DSNAME;

| The next 44 bytes contain the DSNAME, left
| justified and padded to the right with

| blanks. DSNAME alone represents an

| unqualified index entry. |
i

DA14PRET

IPlace in this field the address of the return
|area in which DAIR is to place the qualifiers
| found for the DSNAME. Place the length of

| the return area in the first two bytes of the
|return area. Set the next two bytes in the

| return area to zero. DAIR returns each of

| the qualifiers it finds in two fullwords of

| storage beginning at the first word (offset
|0) within the return area.

DA14CTL

Byte 1
00.0 0000

eels aa..

o e e e

|Reserved bits; set them to zero.
| Prefix userid to DSNAME.
L

3

P e s . e st e s Ko s e G S e G . s s U . e S . s s . S

|
|
|
|
I
|
|
|
|
1
|
|
|
|
I
I
|
|
!
+
|
|
I
I
I
1
I
L

]
|
|
|
|
|
{
A flag field: |
|
|
|
|
i]
1)
|
J

+
|Reserved bytes. Set this field to zero.
1

Figure 24.

DAIR Parameter Block -- Entry Code X'14!*

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4,

36, 40

See the topic "Return Codes from DAIR' for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 63

Code X'18' - Free the sSpecified Data set

Build the DAIR Parameter Block shown in Figure 25 to request that DAIR
free a data set. Entry code X'18' indicates that the data set name
represented by DSNAME is to be freed. If no DSNAME is given, the data
set associated with the DDNAME is freed. If both DDNAME and DSNAME are
given, DAIR ignores the DDNAME.

If the specified DSNAME appears several times in the Data Set
Extension, all such entries are freed.

Number of

Bytes Field Contents or Meaning

DA18CD Entry code X'0018°".

=

DA18FLG |A flag field set by DAIR before returning to
| the calling routine. The flags have the
| following meanings:
I
Byte 1 |
le.. <.... |The data set is freed but a secondary error
|occurred. Register 15 contains an error
| code.
- 000 0000 |Reserved bits. Set to zero.
I

Byte 2 | Reserved. Set to zero.
i |

S S Sp——

DA18DARC iThis field contains the error code, if any,
| returned from the Dynamic Allocation
| routines. (See "Return Codes from Dynamic
|Allocation.")
L

| 3

DA18CTRC |This field contains the error code, if any,
| returned from Catalog Management routines.
1

+
DA18PDSN |Place in this field the address of the DSNAME
| buffer. The DSNAME buffer is a 46 byte field
|with the following format:
| The first two bytes contain the length, in
| bytes, of the DSNAME;
| The next 44 bytes contain the DSNAME, left
| justified and padded to the right with
| blanks.
4

by — — ———_——— t— o oy i et gy e e et

+
DA18DDN |Place in this field the DDNAME of the data
| set to be freed, or zeros.
4

1

DA 18MNM | Contains the member name of a partitioned
|data set. If the name has less than eight
|characters, pad it to the right with blanks.
|If the name is omitted, the entire field must
| contain blanks.
L

+
DA18SCLS | SYSOUT class. An alphabetic or numeric
|character. If SYSOUT is not specified, this
| £field must contain blanks.
1

r—-—-.—.—qn——————qy——-—q-——-————.—.—-p-——q_-——-——.qp—-——-——-——-—-—_—q-—q.—.—_-\
S SR N R Sy U NUM SIS INEYSEIP SN U EIPUU SISy SNSRI SONIION SyU—

hon = s

Figure 25. DAIR Parameter Block -- Entry Code X'18' (Part 1 of 2)

64 Guide to Writing a TMP or a CP (Release 21)

[} b | 1
| Number of | |
| Bytes Field | Contents or Meaning |
} L J
§ T |
| 1 DA18DPS2 |Flag byte. Set the following bits to |
| | |indicate the normal disposition of the data |
set:

= 0000 <... {Reserved bits. Set them to zero. I
	««<e 1l...	KEEP
	w«eee <l..	DELETE
	«ee. ..1l.	CATIG
	<eee <we=l	UNCATLG
/ 1 t !		
1 DA18CTL	Flag byte. These flags indicate to the DAIR	
	service routine what operations are to be	
	performed: [
	eele «¢..	Prefix userid to DSNAME.
- 00.. 0000	Reserved bits; set them to zero.]	
eeel	If this bit is on, permanently allocated data	
	sets are unallocated and marked "not in use."	
	If the bit is off, the data set will be	
		marked "not in use,"” if it is permanently
		allocated.
b z t !		
8 DA18JBNM	PLace the jobname for enqueuing SYSOUT data	
	sets in this field. If the jobname is	
	omitted, DAIR takes the jobname from the	
	TIOT.	
L L L 3
Figure 25. DAIR Parameter Block -- Entry Code X'18' (Part 2 of 2)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4,

8,

12, 24, 28

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 65

Code X'1C' - Allocate the Specified DDNAME to the Terminal

Build the DAIR Parameter Block shown in Figure 26 to request that DAIR

allocate a DDNAME to the

DDNAME specified within the DAIR Parameter Block is to be allocated to

terminal. Entry code X'1C' indicates that the

the terminal. If the DDNAME field is left blank, DAIR returns the

allocated DDNAME in that

field.

r T T 1
| Number of | |
| Bytes | Field Contents or Meaning |
I8 { J
]] T
| 2 | DAl1CCD Entry code X'001cC' |
4 J

] T

2 | DAICFLG Reserved field; set it to zero. |

] L J

L] LB 1

2 | DA1CDARC |This field contains the error code, if any, |

| returned from the Dynamic Allocation |

| routines. (See "Return Codes from Dynamic |

| | Allocation.™) |
I 4 } J
1] 1 T . . T
| 1 | |Reserved field; set it to zero. |
1 4 J
L}] T
1	DA1CCTL Control byte:	
	eeee 1l...	The data set is to be permanently allocated;
	it is not to be freed until specifically	
	requested.]	
	XXXX «XXX	
1 + S !		
8	DA1CDDN Place in this field the DDNAME for the data	
	set to be allocated to the terminal.	
1 L 1 J

Figure 26. DAIR Parameter Block -- Entry Code X'l1C'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12, 16, 20

See the topic "Return Codes from DAIR" for return code meanings.

66 Guide to Writing a TMP or a CP (Release 21)

Code X'24' - Allocate a Data Set by DDNAME

Build the DAIR Parameter Block shown in Figure 27 to request that DAIR
allocate a data set by DDNAME.

DAIR searches the Data Set Extension using as an argument the DDNAME
you specify in the DAIR Parameter Block.

If DATR locates the DDNAME you specify and a DSNAME is currently
associated with it, the associated DSNAME is allocated overriding the
DSNAME pointed to by third word of your DAIR Parameter Block. DAIR
replaces the DSNAME in your DSNAME buffer with the DSNAME found
associated with the DDNAME you specified, and updates the buffer length
field.

If there is no DSNAME associated with the DDNAME you specified, it is
DYNAM or does not exist. DAIR searches the DSE using the DSNAME you
specify as an argument. If DAIR cannot allocate by DDNAME, it will give
control to code X'08"' to allocate by DSNAME and will generate a new
DDNAME.

r T T 1
| Number of | |
! Bytes [Field |Contents or Meaning 1
[) T 1
| 2 | DA24CD Entry code X'0024°. |
L 4]
1] 1 1
| 2 | DA24FLG A flag field set by DAIR before returning to |
| | | the calling routine. The flags have the |
| i following meaning: |
	Byte 1 .	
	1.	The data set is allocated but a secondary
		exror occurred. Register 15 contains an
		exxror code.
	+..- 1l...	DDNAME requested is allocated as DUMMY.
	.000 .000	Reserved bits. Set to zero.
[
	Byte 2	Reserved. Set to zero.
[N 4] i		
1] 1] I T		
2	DA24DARC	This field contains the error code, if any,
i	returned from the Dynamic Allocation	
		routines. (See "Return Codes from Dynamic
		Allocation.")
] d 1 []		
)] L) 1		
2	DA2U4CTRC	This field contains the error code, if any,
		returned from Catalog Management Routines.
L 4 L]	
[) 1 T T		
4	DA24PDSN Place in this field the address of the DSNAME	
	buffer. The DSNAME buffer is a 46 byte field	
	with the following format:	
	The first two bytes contain the length, in	
	bytes, of the DSNAME;	
	The next 44 bytes contain the DSNAME, left	
	justified and padded to the right with	
	blanks. i	
L 1 + i]		
r 1 T ; 1		
8	DA2UDDN	Place here the DDNAME for the data set to be
		allocated. This DDNAME is required.
1 4 i]		
[} 1 T		
8 { DA2U4UNIT Unit name desired. If blank, defaults to		
	PSCBGPNM contents. If the unit name is less	
	than eight bytes, pad it to the right with	
	blanks.	
L] J

Figure 27. DAIR Parameter Block -- Entry Code X'24' (Part 1 of 3)

The Dynamic Allocation Interface Routine (DAIR) 67

Number of
Bytes

Field

Contents or Meaning

8

DA24SER

e ——

|Serial number desired. Only the first six
|bytes are significant. If the serial number
|is less than six bytes, it must be padded to
| the right with blanks. If the serial number
|is omitted, the entire field must contain

| blanks.

i

DA24BLK

+
[Block size requested. This figure represents
| the average record length desired.

1

DA24PQTY

|order byte must be set to zero; the low order
|three bytes should contain the space quantity
| required. If the gquantity is omitted, the
|entire field must be set to zero.

4

DA24SQTY

]

| Secondary space quantity desired. The high

| oxrder byte must be set to zero; the low order
| three bytes should contain the secondary

| space quantity required. If the quantity is
|omitted, the entire field must be set to

| zero.

1

DA 24DQTY

+
|Directory quantity required. The high order
| byte must be set to zero; the low order three
|bytes contain the number of Directory blocks
|desired. If the quantity is omitted, the
|entire field must be set to zero.

1

1
[
|
[]
]
|
|
|
|
|
|
]
1
|
|

t 1

| Primary space quantity desired. The high |
|
|
|
|
i |
T
[
|
|
|
|
|
J
T
|
|
|

DA 24MNM

]
] T
|Contains a member name of a partitioned data
|set. If the name has less than eight
|characters, pad it to the right with blanks. |
|If the name is omitted, the entire field must
| contain blanks.

1

DA 24PSWD

+
|Contains the password for the data set. If
| the password has less than eight characters,
|[pad it to the right with blanks. If the

| password is omitted, the entire field must

| contain blanks.

1

P Tt Sy S S Sy SN S R——

DA24DSP1

0000

e esee
ewew
e ce e

le.a
.1..
..1.
eaal

+
|Flag byte. Set the following bits to
|indicate the status of the data set:
|Reserved. Set these bits to zero.
SHR

NEW

| MOD

| oLD

P S —— -

]
I
|
t
I
|
!
I
|
|
t
|
|
t
|
|
|
!
I
i
|
|
|
|
|
|
t
|
I
|
|
|
t
|
I
I
|
|
t
I
|
|
I
[
t
I
|
|
|
|
|
|
t
|
|
|
I
|
|
|
|
L

o .

e e e e . e

DA24DPS2

0000

1.'.
.l..
.el.
enal

4
+
Flag byte. Set the following bits to
indicate the normal disposition of the data
| set:

|Reserved bits. Set them to zero.

| RKEEP

DELETE

CATIG

| UNCATLG

L

e e e e e

Figure 27.

DAIR Parameter Block -- Entry Code X'24' (Part 2 of 3)

68 Guide to Writing a TMP or a CP (Release 21)

r T

| Number of | T ?
! Bytes ! Field jContents or Meaning !
1)) 1 1
| 1 | DA24DPS3 |Flag byte. Set the following bits to |
| | |indicate the abnormal disposition of the datal|
| | | set: |
| | 0000 |Reserved bits. Set them to zero. |
| | <«eee 1le.. |KEEP |
| | «-«. .1.. |DELETE]
| | «-e. «..1. |CATIG |
| | <eee «..1 |UNCATLG l
¢ t t :
| 1 | DA24CTL |Flag byte. These flags indicate to the DAIR |
| | service routine what operation are to be |
| | performed: |
| | XXe. «... |[Indicate the type of units desired for the |
| | | space parameters, as follows: |
| | Ol.. |Units are in average block length. |
| | 20.. |Units are in tracks (TRKS). |
| | 11.. |Units are in cylinders (CYLS). |
| | +<1. ... |Prefix userid to DSNAME. |
| { «<e1l «... |RLSE is desired. |
| | <<e< l... |The data set is to be permanently allocated; |
| | |it is not to be freed until specifically |
| | | requested. |
| | «--. -1.. |A DUMMY data set is desired |
| | <<-. ..00 |Reserved bits; set them to zero. |
i] | J
L} T T 1
| 3 | |Reserved bytes; set them to zero. |
i ! 4]
L] T I T
| 1 | DA24DSO |A flag field. These flags are set by the |
| | |DAIR service routine; they describe the |
| | |organization of the data set to the calling |
| | | routine. |
| | 1leee <... |Indexed Sequential (IS). |
| | <1l.. ... |Physical Sequential (PS).]
| | <<l. «... |Direct Organization (DO). |
| | -..0 00.. |Reserved bits. Set to zero. |
| | +--« <«.1l. |Partitioned Organization (PO). |
| | +<.. «..1 |Unmoveable. |
L 1 L J

Figure 27. DAIR Parameter Block -- Entry Code X'24"' (Part 3 of 3)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

o, 4, 8, 12, 16, 20

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR)

69

Code X'28' - Perform a List of DAIR Operations

Build the DAIR Parameter Block shown in Figure 28 to request that DAIR
perform a list of operations. This DAIR Parameter Block points to other
DAPBs which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X'14' or
another code X'28' are ignored.

DAIR processes the requested operations in the order they are
requested.

DAIR processing stops with the first operation that fails.

Number of
Bytes

2

Field ontents or Meaning

HIl Q

DA28CD ntry code X'0028'.

o s e e e

2 DA 28NOP |Place in this field the number of operations

| to be performed.
|

1

DA 28PFOP |IDAIR fills this field with the address of the
| DAIR Parameter Block for the first operation
|that failed. If all operations are
| successful, this field will contain zero upon
| return from the DAIR service routine. If
|this field contains an address, register
| fifteen contains a return code.
}

b
DA 280PTR |Place in this field the address of the DAIR
| Parameter Block for the first operation you
|want performed. Repeat this field, filling
]it with the addresses of the DAPLs, for each
|of the operations to be performed.
L

r
|
|
}
[}
|
Il
r
|
|
!
]
|
|
I
|
|
|
|
]
)
|
[
|
|
|
L

£
T e e e
T g SIS SR Sy ——

IFigure 28. DAIR Parameter Block -- Entry Code X'28'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

Any code accepted by any of the other DAIR functions, except '"36' and
40",

For return code meanings see the topic "Return Codes from DAIR."

70 Guide to Writing a TMP or a CP (Release 21)

Code X'2C' - Mark Data Sets as Not in Use

Build the DAIR Parameter Block shown in Figure 29 to request that DAIR
mark DSE entries associated with a Task Control Block as not in use.
This allows TIOT entries to be reused.

This is the code which the TMP should pass to DAIR prior to detaching
a command processor. This code should also be issued by any command
processor which attaches another command processor and detaches that
command processor directly.

Number of
Bytes

2

Field Contents or Meaning

DA2CCD Entry code X'002C'.

e e e e e

2 DA2CFLG |A flag field. Set the bits to indicate to

| the DAIR service routine which data sets you

|want marked not in use.

|

|Hex setting Meaning

| 0000 Mark all data sets of the

indicated TCB "not in use".

| 0001 Mark the specified DDNAME "not
in use".
Mark all DSEs associated with
lower tasks “"not in use".

[«}
o
o
[N}

DA2CTCB Place in this field the address of the TCB
for the task whose data sets are to be marked

"not in use".

e o e s e e

DA 2CDDN |Place in this field the DDNAME to be marked
|"not in use". DA2CFLG must be set to hex
| 0001.
L

e e e e s s e, e e e e s — o S—— —— — —— T ——— o——]

- o e B e e s B e e e e e o Bt e e e e B e B e e
e s s g S o v e o et s G S i, S, s G S, S oy e g e e

Figure 29. DAIR Parameter Block -- Entry Code X'002C'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4

For return code meanings see the topic "Return Codes from DAIR."

The Dynamic Allocation Interface Routine (DAIR) 71

Code X'30'

- Allocate a SYSOUT Data Set

Build the DAIR Parameter Block shown in Figure 30 to request that DAIR

allocate a SYSOUT data set.

control byte.

Number of
Bytes

Field

Contents or Meaning

The exact action taken by DAIR is dependent
upon the presence of the optional fields and the setting of bits in the

2

DA30CD

Entry code X'0030.

2

1
I
I

1
|
t
|
|
I
I
I
|
|
|
!

DA30FLG

Byte 1

b

- 000 0000

Byte 2

—-——-1—— —

|A flag field set by DAIR before returning to
| the calling routine. The flags have the

| following meaning:

|

|The data set is allocated but a secondary
|error occurred. Register 15 contains an

| error code.

|Reserved bits. Set to zero.

|Reserved. Set to zero.
4

—— s . e e s aoen e sl s el — — o

e . e e, Wi S S S, S, e S, e, S e, S, e, W i, B . S,)

—_—

e —

DA30DARC

b
|This field contains the error code, if any,
| returned from the Dynamic Allocation

| routines. (See "Return Codes from Dynamic
|Allocation.™)

L

+
|Reserved. Set this field to zero.
4

DA30PDSN

1
|Place in this field the address of the DSNAME

| buffer. The DSNAME buffer is a 46 byte field|

|with the following format:

|The first two bytes contain the length, in
| bytes, of the DSNAME;

| The next 44 bytes contain the DSNAME, left
| justified and padded to the right with

| blanks.

4

—_—

e — —

DA 30DDN

+
|This field contains the DDNAME for the data

|set. If a specific DDNAME is not required,

|£i1l1l this field with eight blanks; DAIR will
|place in this field the DDNAME to which the

|data is allocated.

DA30UNIT

Unit name desired. If blank, defaults to
| PSCBGPNM contents. If name is less than
|eight bytes, pad it at right with blanks.

ey w—

DA30SER

Serial number desired. Only the first six
bytes are significant. If the serial number
is less than six bytes, it must be padded to
the right with blanks. If the serial number
is omitted, the entire field must contain

| blanks.

L

|
|
I}
1)
I
|
I
1
1)
I
!
|
|
|
|
i
L}
|
|
—

e e s

DA30BLK

b}
|Block size requested. This figure represents

| the average record length desired.
1

T]

Figure 30.

DAIR Parameter Block -- Entry Code X'30' (Part 1 of 2)

72 Guide to Writing a TMP or a CP (Release 21)

Number of
Bytes

u

Field Contents or Meaning

“+——
— el ——

DA30PQTY | Primary space quantity desired. The high
|order byte must be set to zero; the low order|
| three bytes should contain the space quantity
| required. If the quantity is omitted, the
|entire field field must be set to zero.

4
]

DA30SQTY | Secondary space quantity desired. The high
|oxder byte must be set to zero; the low order
| three bytes should contain the secondary
| space quantity required. If the quantity is
|omitted, the entire field must be set to
| zexo.

4

ey e

+

DA30PGNM |Place in this field the member name of a
| special user program to handle SYSOUT
|operations. Fill this field with blanks if
|you do not provide a program name.

]
}

DA30FORM |Form number. This form number indicates that
| the output should be printed or punched on a
| specific output form. It is a four character
|number. This field must be filled with
|blanks if this parameter is omitted.

[

+

DA300CLS | SYSOUT class. Place a single alphameric
|character in either byte of this field and a
|blank in the other byte. The data set will
|be allocated to the message class, regardless
|of the class that you specify here. To place
|a SYSOUT data set in a class other than the
|message class, use DAIR entry code X'30°,
| specifying any valid class. When the output
|has been written, specify the desired SYSOUT
|class either by using DAIR entry code X'18°
|]or by issuing the FREE command.

— e e e e e e e e e e e e e e e

— o — s — . — a2 . st el e o, e, cmen. i sl . et e, s iy s

-+
|
]
]
|
|
|
|
|
|
|
|

1.
]
|
|
|
]
|
]
|
I
|
|
|
|
|
|
1
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
[
|
I
|
|
|
1

—L

|Reserved. Set this field to zero.
DA30CTL |Flag byte. These flags indicate to the DAIR
| service routine what operations are to be
| performed.
XXe. ..as. |Indicate the type of units desired for the
| space parameters, as follows:
0l.. |Units are in average block length.
10.. |Units are in tracks (TRKS).
11.. |Units are in cylinders (CYLS).
eese |Prefix userid to DSNAME
eeel |RLSE is desired.
«ees l... |The data set is to be permanently allocated;
|it is not to be freed until specifically
| requested.
eeee «l.. |A DUMMY data set is desired.
eese 2.00 |Reserved bits; set them to zero.
L

igure 30. DAIR Parameter Block -- Entry Code X'30' (Part 2 of 2)

-r.—T—-_—_———_.—.___._—-,.._.___.__q,.—.—__.-,-_.——__—q,-—.————q,-._....q
i~

(=]

= e e . e e s . s e et . s s, e st
.
.
=
]
o s s et et o — B — — — i — —— — —

T S S S S

After attempting the requested function, DAIR returns one of the
following codes in register 15:
0, 4, 12, 16, 20
See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 73

Return Codes from DAIR

DAIR returns a code in general register 15 to the calling routine. 1In
addition, DAIR sets certain return codes in the DAxXxDARC field of a DAIR
Parameter Block. (See items preceded by an asterisk in "Return Codes
from Dynamic Allocation.")

The DAIR return codes have the following meaning:

CODE

MEANING

decimal
0
I

8

12

16
20
24
28

32

36

40

4y

DAIR completed successfully.

The parameter list passed to DAIR was invalid.

An error occurred in a catalog management routine; the
catalog management error code is stored in the CTRC field of
the DAIR Parameter Block.

An error occurred in dynamic allocation; the dynamic
allocation error code is stored in the DARC field of the
DAIR Parameter Block.

No TIOT entries were available for use.

The DDNAME requested is unavailable.

The DSNAME requested is a member of a concatenated group.
The DDNAME or DSNAME specified is not currently allocated.
The requested data set was previously permanently allocated,
or was allocated with a disposition of new, and was not
deleted. DISP=NEW cannot now be specified.

An error occurred in a catalog information routine.

The return area you provided for qualifiers was exhausted
and more index blocks exist. If you require more
qualifiers, provide a larger return area.

The previous allocation specified a disposition of DELETE

for this non-permanently allocated data set. Request
specified OLD, MOD, or SHR with no volume serial number.

74 Guide to Writing a TMP or a CP (Release 21)

Return Codes from Dynamic Allocation

Both DAIR and the Dynamic Allocation routines called by DAIR may return
a code in the DAxXDARC field of the DAIR Parameter Block.

Note: Codes that can be returned by DAIR are preceded by an asterisk.
The asterisk is not part of the return code.)

The return codes have the following meaning:

RETURN CODE

MEANING

hexadecimal

0000

ooou

0008

002w

003x

1€

Dynamic Allocation completed successfully.

Dynamic Allocation could not delete a table that was
loaded using a LOAD macro instruction. The data set is
still allocated.

The temporary data set was freed and deleted. The
disposition specified by the calling routine is invalid
for a temporary data set.

The data set was successfully freed, but the disposition
(catalog or uncatalog) was unsuccessful. The hexadecimal
digit *w' is a code indicating the reason for the
failure.

Explanation

A control volume was required and a utility program must
be used to catalog the data set.

The data set to be cataloged had previously been
cataloged or the data set to be uncataloged could not be
located, or no change was made to the volume serial list
of a data set with a disposition of CATLG.

A specified index did not exist.

The data set could not be cataloged because space was not
available on the specified volume.

Too many volumes were specified for the data set; because
of this, not enough main storage was available to perform
the specified cataloging.

The data set to be cataloged in a generation index is
improperly named.

The data set to be cataloged was not opened and no
density information was provided. (For dual density tape
requests only).

An uncorrectable input/output error occurred in reading
or writing the catalog

The data set was successfully freed, but the requested

disposition (delete) was unsuccessful. The hexadecimal
digit "x' is a code indicating the reason for failure.

The Dynamic Allocation Interface Routine (DAIR) 75

0104

0108

01o0c

0204
0208

020C

0210

0214

*0218

021cC

IX

Explanation

The expiration date had not occurred.
No device was available for mounting during deletion.
Too many volumes were specified for deletion.

Either no volumes were mounted or the mounted volumes
could not be demounted to permit the remaining volumes to
be mounted.

The SCRATCH routine could not delete the data set from
the volume.

A job was cancelled and was deleted from any one of the
following queues:

Input Queues

Background Reader Queue

Hold Queue

Automatic SYSIN Batching (ASB) Queue
Output Queues

Dynamic Allocation encountered an I/0 error while
attempting to read from SYS1.SYSJOBQE.

Dynamic Allocation encountered an I/0 error while
attempting to write to SY¥S1.SYSJOBQE.

Dynamic Allocation encountered an I/0 error while
enqueueing on SYS1.SYSJOBQE.

Reserved.
No space is available on SY¥S1.SYSJOBQE.

The calling routine made a request for the exclusive use
of a shared data set. The request can not be honored.

The data set requested is not available. This data set
is allocated to another job and its usage attributes
conflict with this request.

A direct access device is not available. To be available
it must satisfy the following requirements:

It must be online.

It must be ready.

It must not be pending offline.

It must not be pending an unload.

It must be shareable.

A MOUNT message must not be currently outstanding.
The volume attributes must have been defined.

The required volume was not mounted on an available
device. Either DAIR or Dynamic Allocation can set this
return code.

(See Dynamic Allocation return code 214 for the
requirements for an available device.)

Incorrect unitname supplied.

76 Guide to Writing a TMP or a CP (Release 21)

0220
through

0264

0268

0304

0308
030cC

0310

0314

0318
031cC
0320
0324
0328
032C
*0330
0334
0338
033C

0340

0344

0348
through
034cC

Reserved.

Concatentaion was requested, but the DCBTIOT offset
cannot be found in this job's DEB/DCB chain.

The ddname was not specified by the calling routine.

The ddname specified by the calling routine was not
found.

An invalid function code was specified by the calling
routine.

The "exchange" option was specified by the calling
program and the TIOT entry for the second (new) ddname
could not be found.

Restoring ddnames, as per this request, would have

resulted in duplicate ddnames -- duplicate ddnames are
not permitted.

Invalid characters are present in the ddname provided by
the caller.

Invalid characters are present in the membername provided
by the caller.

Invalid characters are present in the dsname provided by
the caller.

Invalid characters are present in the SYSOUT program name
provided by the caller.

Invalid characters are present in the SYSOUT form number
provided by the caller.

An invalid SYSOUT class was specified by the caller.

A membername was specified but the data set is not a
partitioned data set. DAIR, not Dynamic Allocation, sets
this return code.

The supplied data set name exceeded U44 characters in
length.

The data set disposition specified by the caller is
invalid.

More than one mutually exclusive keyword (DSNAME, DUMMY,
TERM, or SYSOUT) was specified.

The dsname was not specified and the disposition was not
"new". (If the disposition is "new" the dsname may be
omitted.)

Dynamic Allocation was specified in a non-TSO
environment.

Reserxrved.

The Dynamic Allocation Interface Routine (DAIR) 77

0350

0354
0358
035C-0360

0364
o404

o408

o40C
0410
ou1y

0418

| *041C

0420

ou2y4

| 0428

ou2c

0430

0504

Jobname field contains zeros. This field may be blank,
but may not contain zeros.

Reserved.
DELETE cannot be specified if the data set is shared.

Reserved.

JOBLIB DDNAME or STEPLIB DDNAME can not be specified.
These data sets have been opened and thus cannot be
allocated.

The device to be freed is not a direct access device.
(Only direct access devices are supported for dynamic
allocation.) ~

The new DDNAME is a duplicate of a DDNAME in the TIOT.
The calling routine requested allocation of a file name
(DDNAME) already used for the job.

The specified ddname is associated with a DYNAM entry.
DYNAM entries may not be concatenated.

The specified ddname is allocated to a data set. The
ddname must be associated with a DYNAM entry.

The specified ddname is already allocated to a terminal
entry (TERM=TS).

The referenced data set is a member of a concatenated
data group. If the data set was dynamically concatenated
it must be deconcatenated before this request can be
honored. If concatenated at LOGON, the data set may not
be freed until LOGOFF.

The referenced data set is a multi-volume data set.
Multi-volume data sets (data sets on more than one
volume) are not supported by Dynamic Allocation. Either
DAIR or Dynamic Allocation can set this return code.

The specified ddname is associated with an open data set.
(A data set must be closed to be used by Dynamic
Allocation.)

Reserved.

The specified ddname is part of a previously allocated
space. Dynamic Allocation cannot free it.

The ddname to be freed is associated with a generation
data group. Generation data groups are not supported in
Dynamic Allocation.

The specified ddname is associated with a passed data
set. Passed data sets cannot be freed or converted.

A serious error of undetermined cause has occurred
involving system data.

78 Guide to Writing a TMP or a CP (Release 21)

| *x7z7z

A Dynamic Allocation return code of this form is
constructed of an identifier (x) representing the system
macro instruction returning the code, and the code itself
(zz) returned by the macro instruction.

If "x" equals 1, the LOCATE macro instruction
returned the code. DAIR, not Dynamic Allocation,
returns this code.

If "x" equals 4, the DADSM macro instruction
returned the code.

If "x" equals 6, the OBTAIN macro instruction
returned the code. DAIR, not Dynamic Allocation,
returns this code.

"zz" is the low order byte from register 15 as returned
by the macro instruction.

The return codes for the LOCATE and the OBTAIN macro
instructions are described in Data Management for System

P rogrammers.

The return codes for the DADSM macro instruction are as
follows:

Code Meaning

00 The operation completed successfully.

o4 Duplicate name DSCB.

08 No available DSCB's in the VTOC.

oc A permanent I/O error occurred in reading or

writing a DSCB.
10 The absolute.track requested is not available.
14 The quantity of space requested is not available.

18 The record length specified is greater than the
track length.

30 The number of tracks requested for a split
cylinder data set is greater than the number of
tracks per cylinder.

34 The disk pack is a DOS volume and the request is
not absolute track.

38 The primary quantity of space requested is less
than the directory quantity requested.

The Dynamic Allocation Interface Routine (DAIR) 79

Using BSAM or QSAM for Terminal 1/0

The Basic Sequential and Queued Sequential access methods provide
terminal I/0 support for programs operating under the Time Sharing
Option. For a complete discussion of the use of BSAM and QSAM, see the
publication Data Management Services.

The major benefit of using BSAM or QSAM to process terminal I/O under
TSO is that programs using these access methods do not become TSO
dependent or device dependent and may execute either under TSO or in the
batch environment. Therefore, your existing programs that use BSAM or
OSAM for I/0 may be used under TSO without modification or
recompilation.

This section describes:

e The BSAM/QSAM macro instructions

e SAM Terminal routines

o Record formats, buffering techniques, and processing modes
e Specifying the terminal line size

e End of file (EOF) for input processing

e Modifying DD statements for batch or TSO processing

80 Guide to Writing a TMP or a CP (Release 21)

BSAM/QSAM Macro Instructions

Some of the BSAM and QSAM access method routines have been modified to
provide special services under TSO; others provide the same function
that is provided in a batch environment. Those BSAM/QSAM macro
instructions that are not relevent to terminal I/O act as no-ops. All
of the BSAM/QSAM macro instructions, when executed in the batch
environment, provide the non-terminal functions as explained in Data
Management Macro Instructions. Figure 31 shows the functions performed
by the BSAM and QSAM macro instructions when used for terminal I/0.
Following the table are more detailed explanations of the GET, PUT,
PUTX, READ, WRITE, and CHECK macro instructions.

T T L
SAM Macro | | | Terminal
Instruction |BSAM|QSAM|Interpretation
] 4]

1
BSP X X |NOP
|

+
BUILD X X |As in batch processing, the BUILD macxo

| instruction causes a buffer pool to be

| constructed in a user-provided main storage

| area.
]

— s ey — gy —]

T
BUILDRCD X |NoP |
L

+
CHECK | Takes an EODAD exit after a READ EOF. NOP

|after a WRITE. |
[}

+
X |The CLOSE macro instruction frees the control
| blocks built to handle I/0 and deletes the
] loaded SAM terminal routines.
1 :

CLOSE

}
CNTRL X |NoP

-+

—— N B (e s, S B . St B i, Wi S s . s, B, e, B e s Y

FEOV X |NOP

-‘—

FREEBUF

-——I—-——I}——-‘————-d———i——-‘—————d——-{

|As in batch processing, the FREEBUF macro

| instruction causes the control program to
|return a buffer to the buffer pool assigned to
the specified data control block.

RSSO SRS SRSt Sy U SRS RN SN S S Sp——

FREEPOOL X X As in batch processing, the FREEPOOL macro

| instruction causes an area of main storage,

| previously assigned as a buffer pool for a

| specified data control block, to be released.
}

e — ——

T

X |The GET macro instruction obtains data from
| the terminal via the TGET macro instruction.
]

GET

T

|As in batch processing, the GETBUF macro

| instruction causes the control program to
|]obtain a buffer from the buffer pool assigned
| to the specified data control block, and to

| return the address of the buffer in a
|designated register.

|

GETBUF | X

+
X |As in batch processing, the GETPOOL macro
| instruction causes a buffer pool to be
| constructed in a main storage area provided by
| the control program.
L

GETPOOL

e e e . e gy S e e e e e e s . oy e S e s, i) e s e S el e sl e gy

R S E R Sy

I
|
|
8
1
|
|
I
]
|
|
|
[
|
|
i
L]
|
[
[
|
L

TR S
>

Figure 31. BSAM/QSAM Function under TSO (Part 1 of 2)

Using BSAM or QSAM for Terminal I/0 81

- T L) |) |
| SAM Macro | | Terminal |
Instruction |BSAM|QSAM|Interpretation |
+ + 1
| NOTE | X | | NOP]
1 (]]
1] T T
OPEN X | X |The OPEN macro instruction loads the proper |
| | SAM terminal I/O routines and constructs the |
| | | | necessary control blocks. |
t 1 + + 1
| POINT | X | | NOP |
L 1 41 L [
[) T n T T
| PRTOV X | X |NoP |
1 1
] T
PUT X The PUT macro instruction routes data to the
terminal via the TPUT macro instruction.
PUTX X |The PUTX macro instruction routes data to the
| terminal via the TPUT macro instruction.
1
T
| READ | X | | The READ macro instruction obtains data from |
| | | | the terminal via the TGET macro instruction. |
t +—-+ + !
| RELSE | | X |wop |
[l [(]
] L] 1
SETPRT | X | X NOP
+ +
TRUNC | | X |NoP
1
1
WRITE X | | The WRITE macro instruction routes data to the
| | | terminal via the TPUT macro instruction. |
L L L]

Figure 31. BSAM/QSAM Function under TSO (Part 2 of 2)

SAM TERMINAL ROUTINES

The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions perform
differently in terminal I/O than the way they do in the batch
environment. Descriptions of these differences are presented here, but
for a detailed explanation of how to use the macro instructions, see
Data Management Macro Instructions.

GET

The GET macro instruction causes a record to be retrieved from the
terminal and placed in either the first buffer of the buffer pool
control block (locate mode) or in a user specified area (substitute or
move mode). In either case, the address of the record is returned in
register 1.

The record is moved via a TGET macro instruction which does not
return control until the transfer of data is completed.

The input to the GET macro instruction consists of the DCB address
and the user's area address (omitted for locate mode). The output is
edited (i.e., specially-indicated characters are deleted from the
message) .

When the terminal user types /*, end of file is indicated and control

is passed to the problem program’'s EODAD routine. If no EODAD routine
is specified, the job will ABEND with a system code of 337.

82 Guide to Writing a TMP or a CP (Release 21)

PUT and PUTX

Both the PUT and the PUTX macro instructions cause a record to be
written to a terminal. This transfer of data is accomplished with the
TPUT macro instruction which does not return control until the transfer
is completed.

In locate mode, the first use of PUT or PUTX causes an address
pointing to a buffer to be returned in register 1. The first record is
placed in this buffer by the problem program and is written out when the
next PUT or PUTX for the same data control block (DCB) is issued.
Succeeding records are written in the same manner. The last record is
written at CLOSE time.

In move or substitute mode, the PUT or PUTX macro instruction moves a
record from the user-specified work area to the terminal. You must
supply the work area address to the PUT macro instruction.

The input to the PUT and PUTX macro instruction consists of the DCB
address and the user's area address (omitted for locate mode).

READ

The READ macro instruction causes a block of data to be retrieved from
the terminal and placed in a user-designated area in main storage. This
transfer of data is done via a TGET macro instruction which does not
return control before the transfer is completed.

The input to the READ macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

WRITE

The WRITE macro instruction causes a block of data to be written from
the user-specified area to the terminal. This transfer of data is done
via a TPUT macro instruction which does not return control before the
transfer is completed.

The input to the WRITE macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

CHECK

The CHECK macro instruction used after a WRITE macro instruction results
in a NOP. When it is used after a READ macro instruction, it performs
as a NOP unless an end of file (EOF) condition is encountered. The end
of file signal from the terminal is /#*. When end of file is
encountered, CHECK takes the EODAD exit specified in the data control
block. If no EODAD exit is specified, CHECK will cause the job to ABEND
with a system code of 337.

The input to the CHECK macro instruction is the address of the
problem program's data event control block (DECB).

Using BSAM or QSAM for Terminal I/O 83

Record Formats, Buffering Techniques, and Processing Modes

All record formats -- Fixed (F), Variable (V), and Undefined (U) -- are
supported under TSO. Before passing the data to the problem program,
TSO automatically generates the first 4 bytes of control information for
V format records coming in from the terminal. When you send V format
recoxrds to the terminal, TSO automatically removes the control
information before writing the line.

Both simple and exchange buffering techniques are supported, as are
all four processing modes for the queued access method.

Specifying Terminal Line Size

If the LRECL and BLKSIZE fields are not specified in the DCB, the
terminal line size default (or the line size the terminal user has
specified via the TERMINAL command) is merged into the data control
block fields as if it came from the label of the data set.

For BSAM, BLKSIZE is used by TSO to determine the length of the text
line it is to process. For both BSAM and QSAM, if the text entered from
the terminal is shorter than the value specified for LRECL, and if F
format is used, blanks are supplied on the right. For either access
technique, if the text entered is longer than BLKSIZE or LRECL, the next
GET or READ retrieves the remainder of the message. If the record
generated by the problem program is longer than the specified line size,
multiple lines are printed at the terminal.

End of File (EOF) for Input Processing

The sequential access method GET and CHECK terminal routines recognize
/* from the terminal as an end of file (EOF). The EODAD exit in the
data control block is taken for the EOF condition. If no EODAD exit has
been specified, and an EOF has been signaled from the terminal, the job
ABENDs with a system code of 337. »

Modifying DD Statements for Batch or TSO Processing

A new parameter, TERM=TS, has been provided for the JCL Data Definition
(DD) statement.

TERM=TS, when added to a DD statement defining an input or an output
data set, is ignored in the batch processing environment, but under TSO
indicates to the system that the unit to which I/0 is being addressed is
a time sharing terminal. Thus a user who wants his job to run in either
the foreground or the background could provide a DD statement as
follows:

r
|7/7DD1 DD TERM=TS,SYSOUT=A
L

g = ol

In this example the output device is defined as a terminal under TSO
processing, and as the SYSOUT device during batch processing. For a
complete description of the TERM=TS parameter, see Job Control Language
Reference.

84 Guide to Writing a TMP or a CP (Release 21)

Using the TSO 1/0 Service Routines for Terminal 1/0

The TSO I/O Service Routines process terminal I/O requests initiated by
the Terminal Monitor Program (TMP), Command Processors (CPs), and other
service routines. If you write your own Command Processors, or replace
the TSO-supplied Terminal Monitor Program with one of you own design,
you should use the I/0 Service Routines to process terminal 1I/0.

The I/0 Service Routines -- STACK, GETLINE, PUTLINE, and PUTGET --
offer the following features:

1. They provide an interface between an I/O request and the TGET and
TPUT supervisor calls.

2. They provide a method of selecting sources of input other than the
terminal. 'Requests for input can be directed to an in-storage list
as well as to the terminal.

3. They provide a message formatting facility with which you can
insert text segments into a basic message format, and print or
inhibit the printing of message identifiers at the terminal.

4. They process requests for more information (question mark
processing), and they analyze processing conditions to determine if
I/0 requests should be disregarded or honored.

The I/0 Service Routines build, modify, or make use of various
control blocks. The following control block DSECTS are provided in
SYS1.MACLIB for your use:

IKJCPPL - The Command Processor Parameter List
IKJIOPL - The Input Output Parameter List
IKJSTPB - The STACK Parameter Bilock

IKJGTPB - The GETLINE Parameter Block

IKJPTPB - The PUTLINE Parameter Block

IKJPGPB - The PUTGET Parameter Block

IRJLSD The List Source Descriptor

IKJECT The Environment Control Table

You pass control to the I/O Service Routines and indicate the
functions you want performed by coding the operands you require in the
List and the Execute forms of the I/0 Service Routine macro
instructions. Each of the I/0 Service Routine macro instructions
(STACK, GETLINE, PUTLINE, and PUTGET) has a List and an Execute form.

The List form of each Service Routine macro instruction initializes
the parameter blocks according to the operands you code into the macro
instruction.

The Execute form is used to modify the parameter blocks and to
provide linkage to the Service Routines, and can be used to set up the
Input Output Parameter List. The Input Output Parameter List contains
addresses required by the I/0 services routines.

Using the TSO I/0 Service Routines for Terminal I/O 85

The following paragraphs describe:
e The Interface with the I/0 Service Routines
e Passing Control to the I/O Service Routines
e The I/0O Service Routines Macro Instructions

STACK
GETLINE
PUTLINE
PUTGET

Interface with the 1/0 Service Routines

When the Terminal Monitor Program attaches a Command Processor, register
1 contains a pointer to a Command Processor Parameter List (CPPL)
containing addresses required by the Command Processor. The CPPL is
located in subpool 1, which is read-only storage for the Command
Processors. The control block interface between the TMP and an attached
CP is shown in Figure 32.

Terminal Command
Monitor Processor
Program

ATTACH I

|
|
l
|
|
|
l

Register 1

L

CPPL

Figure 32. Control Block Interface Between TMP and CP

86 Guide to Writing a TMP or a CP'(Release 21)

THE COMMAND PROCESSOR PARAMETER LIST

You must pass certain addresses contained in the CPPL to the I/0 Service
Routines. Your user-written Command Processors can access the CPPL via
the symbolic field names contained in the IKJCPPL DSECT by using the
address received in register 1 as a starting address for the DSECT. The
use of the DSECT is recommended since it protects the Command Processor
from any changes to the CPPL.

The Command Processor Parameter List, as defined by the IKJCPPL
DSECT, is a four word parameter list. Figure 33 describes the contents
of the CPPL. (See Figure 5, the Test Parameter List, for a definition
of each table whose address is in the CPPL.)

[} T T 1
| Number of | |
| Bytes | Field Name |Contents or Meaning |
L 1 1 i |
F] T 1
| 4 | CPPLCBUF |The address of the command buffer. |
L 4] |]
1) T | N
| 4 | CPPLUPT | The address of the User's Profile Table |
{ 1 l(UPT). !
I T LB 1
4 CPPLPSCB The address of the Protected Step Control
P
| | |Block (PSCB). |
L 4 i []
L}] T 1
| 4 | CPPLECT |The address of the Environment Control Table |
| | | (ECT). |
L L L J

Figure 33. The Command Processor Parameter List (CPPL)

You must place the addresses of the User Profile Table and the
Environment Control Table in another control block, the Input Output
Parameter List, and pass them to the I/0 Service Routines.

THE INPUT OUTPUT PARAMETER LIST

The I/0 Service Routines use two of the pointers contained in the
Command Processor Parameter List -- the pointer to the User Profile
Table and the pointer to the Environment Control Table. These addresses
are passed to the Service Routines in another parameter list, the Input
Output Parameter List (IOPL). Before executing any of the TSO I/O macro
instructions (GETLINE, PUTLINE, PUTGET, or STACK) you must provide an
IOPL and pass its address to the I/0 Service Routine. There are two
ways you can construct an IOPL:

1. You can build and initialize the IOPL within your code and place a
pointer to it in the execute form of the I/O macro instruction.

2. You can provide space for an IOPL (4 fullwords), pass a pointer to
it together with the addresses required to fill it, to the execute
form of the I/O macro instruction, and let the I/0 macro
instruction build the IOPL for you.

The Input Output Parameter List, as defined by the IKJIOPL DSECT, is

a four word parameter list. Figure 34 describes the contents of the
IOPL.

Using the TSO I/0 Service Routines for Terminal I/0O 87

T
Number of

Bytes Field Name |Contents or Meaning
1

1

IOPLUPT |The address of the User Profile Table from
| the CPPLUPT field of the Command Processor
| Parameter List.
|

i

1

IOPLECT |The address of the Environment Control Table
| from the CPPLECT field of the CPPL.
]

1

|

|

L

)

|

I

|

L

I

|

|

F ¢

| IOPLECB |The address of the command processor's Event
| |Control Block (ECB). The ECB is one word of
| storage, declared and initialized to zero by
|
I
|
|
i
r
|
I
|
|
[
|
I
|
|
[

— e e e e e e e e

the command processor. Command processors

| |with attention exits can post this ECB after
| |an attention interruption to cause active
service routines to exit.

4 IOPLIOPB The address of the parameter block created by
the list form of the I/0 macro instruction.

| |There are four types of parameter blocks, one
| for each of the I/O Service Routines:

Stack Parameter Block (STPB)

Getline Parameter Block (GTPB)
Putline Parameter Block (PTPB)
Putget Parameter Block (PGPB)

s s e e e e e e s e el e s e e e e s ey o e g S e e ey S e]

Y e el
)—-——-———-

Figure 34. The Input Output Parameter List

The Parameter Block pointed to by the fourth word (IOPLIOPB) of the
I/0 Parameter List is built and modified by the I/0 Service routine
macros themselves. It is created and initialized by the list form of
the I/0 macro instruction, and modified by the execute form. Thus you
can use the same parameter block to perform different functions. All
you need to do is code different parameters in the execute forms of the
macro instructions; these parameters provide those options not specified
in the list form, and override those which were specified. Each of
these parameter blocks -- the STACK, GETLINE, PUTLINE, and PUTGET
Parameter blocks -- is described in the separate sections on each of the
I/0 macro instructions.

Figure 35, an extension of Figure 32, summarizes the control block
interfaces established between the Terminal Monitor Program and an I1/0
Service Routine.

88 Guide to Writing a TMP or a CP (Release 21)

Terminal Command /0
Monitor Processor Service
Program ATTACH Routine

| |

| I

l |

| |

Reg. 1 Reg. 1
CPPL 1OPL
—

Parameter

Block
7
l I
l I
| !
' !
' |
I |

Figure 35. Control Block Interface Between TMP and I/0O Service Routine

Using the TSO I/0 Service Routines for Terminal I/O 89

Passing Control to the 1/0 Service Routines

There are two ways you can pass control to the I/0 Service routines.

1. You can issue a LOAD macro instruction for the load module
containing the required service routine, and code the entry point
address of that routine in the TSO I/O macro instruction via the
ENTRY parameter. In this case, the I/0 macro instruction will
execute a branch and link register instruction (BALR) using the
entry point as the branch address. All of the TSO Terminal I/O
Service Routines are contained within the IKJPTGT load module.
Their entry points are:

Service Routine Entry Point

e STACK IKJSTCK
e GETLINE IKJGETL
e PUTLINE IKJPUTL
e PUTGET IKJPTGT

If your region space requirements are critical, you can use the
DELETE macro instruction to release the main storage area occupied
by the load module when you have finished with your terminal I/O.

2. You can issue the I/0 macro instruction and not include the ENTRY

parameter. In this case, the I/0 macro instruction generates a
LINK macro instruction to invoke the I/O Serxrvice Routine.

The 1/0 Service Routine Macro Instructions

The I/0 Service routines -- STACK, GETLINE, PUTLINE, and PUTGET -- each
perform a specific I/0 function:

e STACK determines the source of input.

e GETLINE obtains a line of input.

e PUTLINE puts a line of output to the terminal.

e PUTGET puts a line to the terminal and gets a line in response.

In order to perform these functions, the I/0 macro instructions use
the control blocks explained in the section 'INTERFACE WITH THE I/0
SERVICE ROUTINES", and other, more individualized control blocks, the
parameter blocks. Each of the I/0 macro instructions has a list and an
execute form. The list form sets up the Parameter Block required by
that I/0 service routine; the execute form can be used to set up the
Input Output Parameter List, and to modify the parameter block created
by the list form of the macro instruction.

The Parameter Block required by each of the I/O service routines is
different, and each one may be referenced through a DSECT. The
Parameter Blocks and the DSECTS used to reference them are:

e The STACK Parameter Block IKJSTPB
e The GETLINE Parameter Block IRJGTPB
¢ The PUTLINE Parameter Block IKJPTPB
e The PUTGET Parameter Block IRJPGPB

Each of these blocks is explained in the section describing the I/O

macro instruction that builds it.

90 Guide to Writing a TMP or a CP (Release 21)

STACK - CHANGING THE SOURCE OF INPUT

Use the STACK macro instruction to establish and to change the source of
input. The currently active input source is described by the top
element of the Input Stack, an internal pushdown list maintained by the
I/0 sexvice routines. The first element of the Input Stack is
initialized by the Terminal Monitor Program (TMP), and cannot thereafter
be changed or deleted. The TSO-supplied TMP initializes this first
element to indicate the terminal as the current input source. The STACK
Service Routine adds an element to the input stack or deletes one or
more elements from it, and thereby changes the source of input for the
other I/O serxrvice routines.

This topic describes:
e The List and Execute forms of the STACK macro instruction.
e The Sources of input.
e The STACK Parameter Block.
e The List Source Descriptor.
e Return codes from STACK.

Coding examples are included where needed.

The STACK Macro Instruction - List Form

The list form of the STACK macro instruction builds and initializes a
STACK Parameter Block (STPB), according to the operands you specify in
the macro. The STACK parameter Block indicates to the STACK service
routine which functions you want performed. Figure 36 shows the list
form of the STACK macro instruction; each of the operands is explained
following the figure. Appendix B describes the notation used to define
macro instructions.

r T T —)|
[[(TERM=% M	
		+ SOURCE
[symboll	STACK	
} % l < ,PROCL > :		
[
		PROC
	I ALL J]	
L i N L]

Figure 36. The List Form of the STACK Macro Instruction

TERM=%
Add a terminal element to the input stack.

STORAGE=element address
Add an in-storage element to the input stack. The element address
is the address of the List Source Descriptor (ISD). The LSD is a
control block, pointed to by the Stack Parameter Block, which
describes the in-storage list. The in-storage element must be
further defined as a SOURCE, PROCN, or PROCL list. SOURCE is the
default.

SOURCE

The element to be added to the Input Stack is an in-storage source
data set.

Using the TSO I/0 Service Routines for Terminal I/O 91

PROCN
The element to be added to the Input Stack is a command procedure
and NOLIST option has been specified.

PROCL
The element to be added to the Input Stack is a command procedure
and the LIST option has been specified. Each line read from the
command procedure is written to the terminal.

DELETE=
Delete an element or elements from the Input Stack. The element to
be deleted must be further defined as TOP, PROC, or ALL.

TOP
The topmost element (the element most recently added to the Input
Stack) is to be deleted.

PROC
The current procedure element is to be deleted from the Input
Stack. If the top element is not a PROC element, all elements down
to and including the first PROC element encountered are to be
deleted.

ALL
All elements are to be deleted from the Input Stack except the
bottom element (the first element).

MF=L

Indicates that this is the List form of the macro instruction.

NOTE: In the List form of the macro instruction, only

r 1
|STACK MF=L |
L |

is required. The other operands and their sublists are optional because
they may be supplied by the execute form of the macro instruction:

r 1
| TERM=% |
| I
i :
I +SOURCE 1
| STORAGE=(element address {,PROCN) |
[,PROCL |
| or |
[TOP |
| DELETE={ PROC ' |
I ALL |
L J

The operands you specify in the list form of the STACK macro
instruction set up control information used by the STACK Service
Routine. The TERM=%, STORAGE=, and DELETE= operands set bits in the
STACK Parameter Block. These bit settings indicate to the STACK Service
Routine which options you wish performed.

92 Guide to Writing a TMP or a CP (Release 21)

The STACK Macro Instruction - Execute Form

Use the execute form of the STACK macro instruction to perform the

following three functions:

1. You can use it to set up the Input Output Parameter List (IOPL).

2. You can use it to initilize those fields of the STACK Parameter
Block not initialized by the list form of the macro instruction, or

to modify those fields already initialized.

3. You use it to pass control to the STACK Sexvice Routine which

modifies the Input Stack.

Figure 37 shows the Execute form of the STACK macro instruction;
of the operands is explained following the figure.

the notation used to define macro instructions.

each

Appendix B describes

[symboll

AN

|
|
| !
! 1
| |
| |
| :
| I
| |
| |
| |
| |
| |
| |
1 |
1 |
| !
|

e o e e e s e . s o . s s e e . i . s

" TERM=%

+STORAGE= (element address

TOP
+DELETE= PROC
ALL

(15)

+SOURCE
, PROCN
.PROCL

[,ENTRY={entry address{l ,MF=(E,{

[,ECT=ect addressll,ECB=ecb address]

~7

)

-
STACK | [PARM=parameter address][,UPT=upt address]

list address

(&D)

})

—— e s e

T 1 g,

Figure 37. The Execute form of the STACK Macro Instruction

PARM=parameter address

Specifies the address of the 2-word STACK Parameter Block (STPB).

It may be the address of the list form STACK macro instruction.

The address is any address valid in an RX instruction, or the

number of one of the general registers 2-12 enclosed in

parentheses. This address will be placed in the Input Output

Parameter List (IOPL).

UPT=upt address

Specifies the address of the User Profile Table (UPT).

address may be obtained from the Command Processor Parameter List
pointed to by register one when the Command Processor is attached
by the Terminal Monitor Program.
valid in an RX instruction or the number of one of the general
registers 2-12 enclosed in parentheses.

placed in the Input Output Parameter List (IOPL).

ECT=ect address

Specifies the address of the Environment Control Table (ECT).

the Command Processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or the

This address will be

number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the IOPL.

The address may be any address

This
address may be obtained from the CPPL pointed to by register 1 when

Using the TSO I/O Service Routines for Terminal I/0 93

ECB=ecb address
Specifies the address of an Event Control Block (ECB). This
address will be placed into the IOPL. You must provide a one-word
Event Control Block and pass its address to the STACK service
routine by placing it into the IOPL. The address may be any
address valid in an RX instruction or the number of one of the
general registers 2-12 enclosed in parentheses.

TERM=%
Add a terminal element to the Input Stack.

STORAGE=element address
Add an in-storage element to the Input Stack. The element address
is the address of the List Source Descriptor (LSD). The LSD is a
control block, pointed to by the Stack Parameter Block, which
describes the in-storage list. The in-storage list must be further
defined as a SOURCE, PROCN, or PROCL list. SOURCE is the default.

SOURCE
The element to be added to the Input Stack is an in-storage source
data set.

PROCN

The element to be added to the Input Stack is a command procedure
and the NOLIST option has been specified.

PROCL
The element to be added to the Input Stack is a command procedure
and the LIST option has been specified. Each line read from the
command procedure is written to the terminal.

DELETE
Delete one or more elements from the input stack. Specify which
element, either TOP, PROC, or ALL.

TOP
The topmost element (the element most recently added to the input
stack) is to be deleted.

PROC
The current procedure element is to be deleted from the input
stack. If the top element is not a procedure element, all elements
down to and including the first procedure element encountered are
to be deleted.

ALL
All elements are to be deleted from the input stack except the
bottom element (the first element).

ENTRY=entry address or (15)
Specifies the entry point of the STACK service routine. The
address may be any address valid in an RX instruction or (15) if
the entry point address has been locaded into general register 15.
If ENTRY is omitted, a LINK macro instruction will be generated to
invoke the STACK Service Routine.

MF=E
Indicates that this is the Execute form of the macro instruction.

listaddr
(1)
The address of the 4-word Input Output Parameter List (IOPL). This
may be a completed IOPL that you have built, or it may be 4 words
of declared storage that will be filled from the PARM, UPT, ECT,
and ECB operands of this Execute form of the STACK macro

94 Guide to Writing a TMP or a CP (Release 21)

instruction. The address is any address valid in an RX instruction
or (1) ir the parameter list address has been loaded into general
register 1.

NOTE: In the Execute form of the STACK macro instruction only the
following operands are required:

STACK MF=(E,{list address})
(&D)

TP}

[——

The PARM=, UPT=, ECT=, and ECB= operands are not required if you have
built an IOPL in your own code.

The other operands and their sublists are optional because they may be
supplied by the list form of the macro instruction:

r 1
| TERM=%*]
| or |
| + SOURCE |
| STORAGE=(element address {,PROCN ;) |
| » PROCL |
| or |
| TOP |
| DELETE={ PROC |
| ALL |
L]

The ENTRY= operand need not be coded in the macro instruction. If it
is not, a LINK macro instruction will be generated to invoke the I/0
Service routine.

The operands you specify in the execute form of the STACK macro
instruction are used to set up control information used by the STACK
service routine. You can use the PARM=, UPT=, ECr=, and ECB= operands
of the STACK macro instruction to complete, build, or alter an IOPL.
The TERM=*, STORAGE=, and DELETE= operands set bits in the STACK
Parameter Block. These bit settings indicate to the STACK Service
Routine which options you want.

Sources of Input

The input sources provided are defined as follows:

1. Terminal.
If the terminal is specified in the STACK macro instruction as the
input source, all input and output requests through GETLINE,
PUTLINE, and PUTGET are read from the terminal and written to the
terminal. The user at the terminal controls the Time Sharing
Option by entering commands; the system processes these commands as
they are entered; and returns to the user for another command.

2. In-Storage List
An in-storage list can be either a list of commands or a source
data set. It may contain variable length recoxrds (with a length
header) or fixed length records (no header and all records the same
length).. 1In either case, no one record on an In-storage list may
exceed 256 characters.

The in-storage list can be specified as one of two types through
the PROC or SOURCE parameters of the STACK macro instruction.

Using the TSO I/0 Service Routines for Terminal I/0 95

e PROC - Indicates that the in-storage list is a command procedure
-- a list of commands to be executed in the order specified. If
you specify PROC, requests through GETLINE are read from the
in-storage list, but PROMPT requests from the executing command
processor are suppressed. MODE messages, those messages normally
sent to the terminal requesting entry of a command or a
sub-command, are not sent but a command is obtained from the
in-storage list. If the LIST option was specified in the STACK
macro instruction when the command procedure was added to the
input stack, the command is displayed at the terminal.

e SOURCE - Indicates that the in-storage list is a source data set.
Requests through GETLINE are read from the in-storage list, but
PROMPT requests from the executing command processor are honored
if prompting is allowed, and a line is requested from the
terminal. MODE messages are handled the same way as with PROC.
No LIST facility is provided with SOURCE records.

Building the STACK Parameter Block

When the list form of the STACK macro instruction expands, it builds a
two word STACK Parameter Block (STPB). The list form of the macro
instruction initializes this STPB according to the operands you have
coded. This initialized block, which you may later modify with the
execute form of the macro instruction, indicates to the I/0 service
routine the functions you want performed.

By using the list form of the macro instruction to initialize the
block, and the execute form to modify it, you can use the same STPB to
perform different STACK functions. Xeep in mind however, that if you
specify an operand in the execute form of the macro instruction, and
that operand has a sublist as a value, the default values of the sublist
will be coded into the STPB for any of the sublist values not coded. If
you do not want the default values you must code each of the values you
require, each time you change any one of them.

As an example: If you coded the list form of the STACK macro
instruction as follows:

1
| STACK STORAGE=(element address,PROCN) ,MF=L
L

b e

and then overrode it with the execute form of the macro instruction as
follows:

L B
| STACK STORAGE=(new element address),MF=(E,list address)
L

by e

The element code in the STACK Parameter Block would default to SOURCE,
the default value. If the new in-storage list was another PROCN list,
you would have to respecify PROCN in the execute form of the macro
instruction.

96 Guide to Writing a TMP or a CP (Release 21)

The STACK Parameter Block is defined by the IKJSTPB DSECT. Figure 38
describes the contents of the STPB.

T T 1

Number of |] |
Bytes | Field | Contents or Meaning |

[1 []

t 1 1

1	none	Operation code: A flag byte which describes
		the operation to be performed.
	1eee <...	One element is to be added to the top of the
	Input Stack.	

| «l<e «.-e |The top element is to be deleted from the |

		Input Stack.
	««le «...	The current procedure element is to be
		deleted from the Input Stack. If the top
		element is not a PROC element, all elements
		down to and including the first PROC element
		encountered are deleted, except the bottom
		element.
	«e=l «...	All elements except the bottom one (the first
		element) are to be deleted.
	«e.. xxXxX	Reserved bits.
¢ { + {		
1	none	Element code: A flag byte describing the
		element to be added to the Input Stack.
	1eee «=e--	A terminal element.
	«1.«	An in-storage element.
	ecee =-0.	The in-storage element is a source element.
	«<«« --1.	The in-storage element is a procedure
		element.
	ecee ==l	The 1list option (PROCL) has been specified.
	<.Xx XX..	Reserved bits.
L] L (]		
7 T T 1		
2		Resexrved
t t Ly 1		
4	STPBALSD	The address of the List Source Descriptor
		(LsD). An ISD describes an in-storage list.
		If the input source is the terminal, or if
		DELETE has been specified, this field will
		contain zeros.
L L L 3

Figure 38. The STACK Parameter Block

Using the TSO I/0 Service Routines for Terminal I/O 97

If the TERM or DELETE operands have been coded in the STACK macro
instruction, the second word of the Stack Parameter Block will contain
zeros and the control block structure will end with the STPB. Figure 39
describes this condition.

Terminal Command STACK
Monitor Processor Service
Program ATTACH LINK Routine

! |

I

| l

| |

| |

| I

Reg. 1 Reg. 1
J CPPL IOPL

STP BI |

00000000

Figure 39. STACK Control Blocks: No In-Storage List

To add an in-storage list element to the input stack, you must
describe the in-storage list and pass a pointer to it to the STACK I/O
service routine. You do this by building a List Source Descriptor
(LSD).

98 Guide to Writing a TMP or a CP (Release 21)

Figure 40 is an example of the code required to add the terminal to
the input stack as the current input source. 1In this example, the
execute form of the STACK macro instruction is used to build the Input
Output Parameter list for you. The list form of the STACK macro
instruction expands into a STACK Parameter Block, and its address is

passed to the execute form of the macro instruction as the PARM operand
address.

X\ | |EINITIRIY| [FIRIOM| _ITIMP| [=| IRIE|G|/[SITIEIR| |0INIE] ICIOINITIAL/INIS| Al [P|O])INITIEIR] |T]O

X | [TIHIE| ICIPIPIL

X HIDIVIS|EIKIE|EIP|I IN|G|.

X ADIDIRIE|SISIAIB/ |L{I{TIY|.

% SIAVIE| |AIRIEIA] |CIHAIIIN|/IN|G

% %
LR 2,1 SIAIVIE| |TIHIE| |AIDIDIRIEISIS] |0IF| [TIHIE] |clPIPIL].
L 31, 41(]2]) PILIAICIE] |TIHIE] |UIPIT| |AIDIDIRIEISIS! [/ IN[T]0] |A

% RIE|G]/|S|TIEIR
L $o(1121(12]) PILIAICIE| \TIHIE| |EICIT| |AIDIDIRIEISIS| |/ IN{TI0] |A

% RIE|G|! |S|TIEIR
LIA 5[, |E|C|B PILIAICIE| [TIHIE| EICIB| |AIDIDIRIEISIS| [/ (N[T]O] |A

X RIEIG|/ |SITIEIR

¥| | [/{S|S|VIE| |TIHIE| |EIXIEICIUITIE] [FIORIM| [OIF| |TIHIE| ISITIAICIK] IMIAICIRIOL |1INISITIRIUICIT| [OINI3

X| | [SIPIEICIIFIY| |TIHIE] |TIEIRIMIIINJAIL] |AIS] [TIHIE] [IINIPIUIT] [SIOIUIRICIE|s! [BlUlIILID) |TIHIE

¥ | IZloPIL] WIITIH| |TIHIE! |SITIAICIK| IMAICIRIO| |/INISITIRIUICIT|!|ON].

* Ed
SITIAICIK| |PIAIRIMI=[SITIAIKIBILIOIKI, WIPIT|=1(13D]5 [EICIT|=\(1#1) |5 |EICIBI=I(|51)1, [TIERIMI= %]

MFI=1(€], TIOPIL))

X X

X PIRIOICIEIS|S|/ MG

X *

3 SITIOIRIAIGIE| |DIEICILIARIAIT|/|OIN|S

% X

I10|PIL DIC HF 18" SIPIAICEE] |FIOR] |THHIE] [INIPIUIT] [OWUITIPIUIT]

X PlARIAMIEITIEIR] |L1/1S[T].

EICIB DIC Fl'lg" SIPAICIE| |FIOR| [TIHEE| |EIVIENT| ICIONITIRIOIL

% BILIOICKK].

SITIAKIBILIOIK] [SITIAICIK] IMIF|=IL TIHIE| |L)ISIT! |FIORM| |0IF| ITIHIE| SITIAICIK

% AICIRIO[|/ IN|SITIRIUICITIIOINL =] [IT] W/ LIL

% EX\PIANID| |INITIO] |A] ISITIAICIK] IPIAIRIAMIEITIEIR

¥ BILIOICIK]| -
ENID

Figure 40. Coding Example -- STACK Specifying the Terminal as the

Input Source

This sequence of code does not make use of the IKJCPPL DSECT to
access the Command Processor Parameter List, nor does it provide
reenterable code.

Using the TSO I/0 Service Routines for Terminal I/0 99

Building the List Source Descriptor (IsSD)

A List Source Descriptor (ILSD) is a four word control block which
describes the in-storage list pointed to by the new element you are
adding to the Input Stack. If you are designating the Terminal as the
input source, no LSD is necessary and the second word of the STPB will
be zero. If you specify STORAGE as the input source in the STACK macro
instruction, your code must build an ISD, and place a pointer to it as a
sublist of the STORAGE operand. The ILSD must begin on a double word
boundary, and must be created in the shared subpool designated by the
Terminal Monitor Program; the IBM-supplied TMP shares subpool 78 with
the Command Processors. The LSD is defined by the IKJLSD DSECT. Figure
41 describes the contents of the ISD.

I T 1 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
L [])
i L] K} 1
| 4 | LSDADATA |The address of the in-storage list. |
I 4 [l]
r 1 T 1
2	LSDRCLEN	The record length if the in-storage list
		contains fixed length records. Zero if the
		record lengths are variable.
[4 1 J		
I T T {		
2	LSDTOTLN	The total length of the in-storage list; the
		sum of the lengths of all records in the
		1list.
+ 1 t {
| 4 | LSDANEXT |Pointer to the next record to be processed. |
| | | Initialize this field to the address of the |
| | |first record in the list. The field is |
| | |updated by the GETLINE and PUTGET service |
| | | routines. |
X] IR J
[] 1 1 1
| 4 | LSDRSVRD |Reserved |
L L 1 J

Figure 41. The List Source Descriptor

If you have provided an LSD, and specified the STORAGE operand in the
STACK macro instruction, the second word of the Stack Parameter Block
will contain the address of the LSD, and the STACK control block
structure will look like Figure 42.

100 Guide to Writing a TMP or a CP (Release 21)

Terminal Command STACK
Monitor ATTACH Processor LINK Service

Program - P Routine
|
|
|
|
|
|

Reg. 1 Reg. 1

CPPL IOPL

STPB

L

LSD

In-Storage List

e

Figure 42. STACK Control Blocks: In-Storage List Specified

Using the TSO I/O Service Routines for Terminal I/0 101

Figure 43 is an example of the code required to use the STACK macro
instruction to place a pointer to an in-storage list on the input stack.

In the example, the GETMAIN macro instruction is used to obtain
storage in subpool 78 for the List Source Descriptor and the in-storage
list itself. The execute form of the STACK macro instruction
initializes the Input Output Parameter List required by the STACK
service routine. The list form of the STACK macro instruction expands
into a STACK Parameter Block, and its address is passed to the STACK
service routine via the PARM operand in the execute form of the STACK
macro instruction.

[| 7l 1s] [clolble] lalslsiupisls] lenirely! ielelobd [7pde| |- lelelel/is|7iEle] lowie| ic oAbl /s
x| | 7l laloloelelsls] ble| I7WIE] lobmiaio] lelelolclelsislole] lrlaleahdaslel 1l ls]7].
% *
% Wolvis eWlElElA /v
X Ylololels(slslalal/ L]/ 7]y
X silvle] leeal ellal v/ ig)
u L
LR 2], 17 sialvida el Wbloeslsls| lolr| Irvie
* clowmiano] |ARIOcIESISIoR PHRIRAWIET |ElQ
* LIS
vls|/ w6 lclrlol], |2 s\517] WA KoloREsIsABl 1L TN IFlole| (TIHlE
* clPlAL -
A 3|, [Cleiple (U plAICEl (Twie| NbpRIEISS| loF] TWIE]l [tkPI7]
/Wirlo] Wl elgel sl Ele].
L , lclPlplL lEC T PiclE| riviel WpbREISS| loF| ITWIE| ElciT]
% /Wirio W leElelsis|7iele.
X P
x| | |/Isislvle] Wl lelelralr v IFlole isiBlPlobol] |718]. | | [7MEl Kki/isi Isloiviecls
% eisiclel/lPiriore] UWD| rwle| W ivi-Isirolelles il 187 (/TS iEL A prYis i BIE| LiocRITED)
| | /W IslviBlPolold| |78l
> L3
sleT Al W LI, L Al=PEQVIESTT, A|=UMSWER ,|SiP|=|718
¥ ¥
- e
¥ | loBITRII IV ITHIE| KPIPRIEISIS| |/ W IsvBPlolok| |718| Flok| ITHEL LI/ B IsIoVRICIE
| | IDEISICIRY PITIoIR AWD| MoWVIEL [THIE] LisP| IV¥ITlo| red ir| AleEd
X ¥
L 514 AWVIS WER)
vIC d (1716],151) |, |AINIL|S|D]
* *
x| | lolBlrAlr W TWiE WBoRESIS| YW swiBlPolole| 1718 |Flolel Irwlel |7iv]-Isiroleklels] Kl s|7]
*| | |AMD| mMolVe| [TWIE| I”W|-Is|TiolrKIGIE] 1Ll 1Sl 2wirlel ITwA | AlREA
% %
L &, AMSIWEIR ¥ .
5|77 l6l, 14 (l51) SI7IORIEL TWE| AIPIPREISS| OF| THIE| I7V)-
SIr lel, BI(I5]) rolealele 1757 7ol [l [P ElLips

Figure 43. Coding Example -- STACK Specifying an In-Storage List as the
Input Source (Part 1 of 3)

102 Guide to Writing a TMP or a CP (Release 21)

x [M e el s Isllelcle] bldsleld/lpllold .
mv|C] 7 61,/ VLl isIr
% *
x| | IViSlsivis]l WV EXEIQUTIEE| Folem oF| W E| ISFh EK| mAalkkirol [ivisimielvicl7l ol 7o
e LU Al Ple MITIEKR 7ol 17HIE |[7vi-ISI710 IPAIGIE] KlZisir| iIe [7ME |7 WPl [siridlcik .
% *
SITUICK| IPARM= ISITIc kLIS I, [wiPln=I¢ 13D L IElcin=Ci#) |, |EICBl= |[ElciBAIDIS],
siroweldlslel=| IV [, lrlelole) |, el= (L, I-loALlaloisD
X e
be| | \7IElSITL THE| REITVRM [clowla Flolkl SivielclesisiFiue| [closrpelél7lr o oA e
x| | s\rdlcik lslelevisicle leloirir A .
X %
s 715,17
By ERGET
% >
¥ Arlo|CIE|Slsl vie
L3
X —~ - L
ElR eI 7IM
% -
% |
ud X%
x| | |S|7lolRAl6lE PEICILARAITY bWS
% ¥
AWILIS|D Dis 4 rHel rolrul] lLlEmelr| ol [rwlel 1]]slA
LC x| ol slolvecla pESIclelsPrior,| lawmelslo,] | /1S
DIC X' dldl6lH s\/Xlrlsiew] BIYinEls| [(plElc] palL)].
D|S| A
Ble EQzE
%) ¥
- Wle |7]s|7 Dc A
Dic cl' o/ Ir] |[dPK] lolPla] lolAd”
pic x|' g7 |Ada8dp|’
Dc c|'I7lels|A lolAaral lolPAs lolA7id |
DIC x| [olal 2| ’
plc ¢’ |ARolA/|clE | omisie|Z] WiolPriomP|T
Figure 43. Coding Example -- STACK Specifying an In-Storage List as the

Input Source (Part 2 of 3)

Using the TSO I/0 Service Routines for Terminal I/0 103

N Q
! %)] [0 [[V
N (AR <[QW < Wy -
> [TIEN NN SN [Y N N
Q [T . A S N) Ll (%)
QA Q TN NI <]l .
[7) [N [0 X (YN 1T} NQ[< 1N
~ <|W N N Ty - [\ niN[%)
U} ENEYRNYRIID S NI
~ q RN EIRT) TNLN LY
N [RIS N[K Y NI INIR
) N[NRQIWN[& [XN 0 NN Y] IR\
N N T [CYEN) K[Q) O OISIS|W
N . YO [SISTWUT [T (W IEN NIEERILN
<> Q= QINTWINTR R B Y [N X IQIW
N [T WININDIININNE Q SN IEIESIEN
[V SIX[1w TS Q RILN [NEEKS
~ NN NNl -ISIN T Y[OW N 4%
N NYES Y NIENEENN NYIRYEN [NINEIES
[0) T [NININE XN W (WIS CISINIQ
N & NMIMENNINEL BN N N[Q
N [VALT] [\\] (VAR Q& N K& < INI&[%&
] Q NITNER IS [GIENTIN) RN Q[Q[Q
T [HIINY < U [W[1] NI OIQIL [0
[©) [N YUYISMOISTYINTS AR N [0)
< > n [(NINERNES NI NS NIMEY NN Ny
~ Y NIES N BAIESININE ['THES) N[0 [RIJ[V]0
[N Q NN X WISINISINy QN NIENES yq [W[
() [N < SN TWISTS TN RNKINEN Y PN IS
S n <|q HETES I R LY NS VAKS) RIS [WINQA
N1] X N
) (TN Q%
Q N D NIK
[~ 0 [
~ (& W Gl nls
AR NI Ql~
QS Nisc NS \%
RYRS 3 YL ~ [S1Ke)
W TN Q ¥ RS
[¥] olO] TWIQ] - AN NILS)
>~ QL[S s [» NIKS ~ ~
NI YIRS AN <
QWU N[R[OS [S[0™ 'Y N f w/~
<~ [©) [DIENAN <SS > 'Y S L'
x1Oo >0 N O Wil [SIEN N S CININ
W[y NMINRY INIES Q
NN 0| & NS ¥ QU
N [TIENAN N [§) X
~NXy X[\ 0 Ol < > Q
VY AN N > VL]0 QY V] N V|V 3
QlQ NQ [HIEN NSNS ~ Q [%) QQlN Wy
QY ~ nly
NI ERNESI <[X
Q| N N N K [
Ul [N [CED N L 10 nlQ
BN WX 1] Wi W N [NYESS
NERINEIER [N RNEES <[\
(<] %)) (WY
Yy I [N O[Q
ENE> X[%[x & AESESEIES X% < HEIEIES N E3

Figure 43.

Coding Example -- STACK Specifying an In-Storage List as the

Input Source (Part 3 of 3)

104 Guide to Writing a TMP or a CP (Release 21)

Return Codes From STACK

When it returns to the program which invoked it, the STACK Service
Routine will provide one of the following return codes in general
register fifteen:

Code Meaning
0 STACK has completed sucessfully
4 One or more of the parameters passed

to STACK were invalid.

GETLINE - GETTING A LINE OF INPUT

You use the GETLINE macro instruction to obtain all input lines other
than commands or subcommands, and PROMPT message responses. Commands,
subcommands, and PROMPT message responses should be obtained with the
PUTGET macro instruction.

When a GETLINE macro instruction is executed, a line is obtained from
the current source of input - the terminal or an in-storage list - or
optionally, from the terminal, regardless of the current source of
input. The processing of the input line varies according to several
factors. 1Included in these factors are the source of input, and the
options you specify for logical or physical processing of the input
line. The GETLINE Service Routine determines the type of processing to
be performed from the operands coded in the GETLINE macro instruction,
and returns a line of input.

This topic describes:

e The list and execute forms of the GETLINE macro instruction.
e The sources of input.

e The GETLINE Parameter Block.

e The input line format.

e Examples of GETLINE.

e Return codes from GETLINE.

Using the TSO I/0 Service Routines for Terminal I/0 105

The GETLINE Macro Instruction - List Form

The list form of the GETLINE macro instruction builds and initializes a
GETLINE Parameter Block (GTPB), according to the operands you specify in
the GETLINE macro. The GETLINE Parameter Block indicates to the GETLINE
service routine which functions you want performed. Figure 44 shows the
list form of the GETLINE macro instruction; each of the operands is
explained following the figure. Appendix B describes the notation used
to define macro instructions.

[symbol]l

i .
GETLINE | |INPUT= (ISTACK}{,LOGICAL })
| TERM , PHYSICAL

ASIS) | ,NOWAIT

o e o G G G s
R ———
b e e e e e e

|
|
| ,TERMGET=({EDIT}{,WAIT }) MF=L
I
L

Figure 44. The List Form of the GETLINE Macro Instruction

INPUT=
Indicates that an inputlline is to be obtained. That input line is
further described by the INPUT sublist operands ISTACK, TERM,
LOGICAL, and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK
Obtain an input line from the currently active input source
indicated by the input stack.

TERM
Obtain an input line from the terminal. If TERM is coded in the
macro instruction, the input stack is ignored and regardless of the
currently active input source, a line is returned from the
terminal.

LOGICAL
The input line to be obtained is a logical line; the GETLINE
service routine is to perform logical line processing.

PHYSICAL
The input line to be obtained is a physical line. The GETLINE
service routine need not inspect the input line.

NOTE: If the input line you are requesting is a Logical line
coming from the input source indicated by the input stack, you need
not code the INPUT operand or its sub-list operands. The input
line description defaults to ISTACK, LOGICAL.

TERMGET
Specifies the TGET options requested. GETLINE issues a TGET SVC to
bring in a line of data from the terminal, this operand indicates
to the TGET SVC which of the TGET options to use. The TGET options
are EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT.

EDIT

Specifies that in addition to minimal editing (see ASIS), the
buffer is to be filled out with trailing blanks.

106 Guide to Writing a TMP or a CP (Release 21)

ASIS
Specifies that minimal editing is to be done as follows:

a. Transmission control characters are removed.
b. The line of input is translated from terminal code to EBCDIC.

c. Line deletion and character deletion editing is performed.

d. Line feed and carriage return characters, if present, are
removed.

WAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction only after an input message has been
read.

NOWAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction whether or not a line of input is
available. If a line of input is not available, a return code of
12 decimal is returned in register 15 to the command processor.

MF=L
Indicates that this is the list form of the macro instruction.

NOTE: In the list form of the macro instruction, only

f 1
|GETLINE MF=L |
L J

is required. The other operands and their sublists are optional because
they may be supplied by the execute form of the macro instruction, or
automatically supplied if you want the default values:

LOGICAL ()

s PHYSTICAL

INPUT=()ISTACK
TERM

, TERMGET= () EDIT

ASIS

,NOWAILT

T

)
|
|
|
| and
|
|
|
L

, WAIT z)

The operands you specify in the list form of the GETLINE macro
instruction set up control information used by the GETLINE service
routine. The INPUT= and TERMGET= operands set bits in the GETLINE
Parameter Block to indicate to the GETLINE service routine which options
you want performed.

Using the TSO I/0 Service Routines for Terminal I/0 107

The GETLINE Macro Instruction - Execute Form

Use the execute form of the GETLINE macro instruction to perform the
following three functions:

1. You may use it to set up the Input Output Parameter List (IOPL).

2. You may use it to initialize those fields of the GETLINE Parameter
Block (GTPB) not initialized by the List form of the macro
instruction, or to modify those fields already initialized.

3. You use it to pass control to the GETLINE service routine which
gets the line of input.

Figure 45 shows the execute form of the GETLINE macro instruction;
each of the operands is explained following the figure. Appendix B
describes the notation used to define macro instructions.

(15) 1

T T T 1
[symboll	GETLINE	[PARM=parameter address][,UPT=upt address]
	I	
		[,ECT=ect address][,ECB=ecb address]
I I I		
I		-
I	I ITERM I,PHYSICAL]	
I I		
	[
		L ASIS ,NOWAITI :I
I	I	
I | | I
L L L | |

—,ENTRY=2entry address

],MF=(E,;list address|)

Figure U45. The Execute Form of the GETLINE Macro Instruction

PARM=parameter address
Specifies the address of the 2-word GETLINE Parameter Block (GTPB).
It may be the address of a list form GETLINE macro instruction.
The address is any address valid in an RX instruction, or the
number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the Input Output
Parameter List (IOPL).

UPT=upt address
Specifies the address of the User Profile Table (UPT). You may
obtain this address from the Command Processor Parameter List
pointed to by register one when the command processor is attached
by the Terminal Monitor Program. The address may be any address
valid in an RX instruction or the number of one of the general
registers 2-12 enclosed in parentheses. This address will be
placed in the IOPL.

ECT=ect address
Specifies the address of the Environment Control Table (ECT). You
may obtain this address from the CPPL pointed to by register 1 when
the Command Processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed into the IOPL.

108 Guide to Writing a TMP or a CP (Release 21)

ECB=ecb address

Specifies the address of an Event Control Block (ECB). You must
provide a one-word Event Control Block and pass its address to the
GETLINE Service Routine by placing it into the IOPL. The address
may be any address valid in an RX instruction or the number of one
of the general registers 2-12 enclosed in parentheses. This
address will be placed into the IOPL.

INPUT=

Indicates that an input line is to be obtained. This input line is
further described by the INPUT sublist operands ISTACK, TERM,
LOGICAL, and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK

TERM

Obtain an input line from the currently active input source
indicated by the input stack.

Obtain an input line from the terminal. If TERM is coded in the

macro instruction, the input stack will be ignored and regardless
of the currently active input source, a line is returned from the
terminal.

LOGICAL

The input line to be obtained is a logical line; the GETLINE
service routine is to perform logical line processing. (See
Glossary for the definition of "logical line.")

PHYSICAL

The input line to be obtained is a physical line. The GETLINE
service routine need not inspect the input line.

NOTE: If the input line you are requesting is a Logical line
coming from the input source indicated by the input stack, you need
not code the INPUT operand or its sublist operands. The input line
description defaults to ISTACK, LOGICAL.

TERMGET

EDIT

ASIs

WAIT

Specifies the TGET options requested. GETLINE issues a TGET SVC to
bring in a line of data from the terminal, this operand indicates
to the TGET SVC which of the TGET options to use. The TGET options
are EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT. ’

Specifies that in addition to minimal editing (see ASIS), the input
buffer is to be filled out with trailing blanks.

Specifies that minimal editing is to be done by the TGET SVC. The
following editing functions will be performed by TGET:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing are performed.

d. Line feed and carriage return characters, if present, are

removed.

Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction, only after an input message has been
read.

Using the TSO 1I/0 Service Routines for Terminal I/0 109

NOWAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction whether or not a line of input is
available. If a line of input is not available, a return code of
12 decimal is returned in register 15 to the command processor.

ENTRY=entry address or (15)
Specifies the entry point of the GETLINE service routine. If ENTRY
is omitted, a LINK macro instruction will be generated to invoke
the GETLINE service routine. The address may be any address valid
in an RX instruction or (15) if the entry point address has been
loaded into general register 15.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
(1)

The address of the 4-word Output Parameter List (IOPL). This may
be a completed IOPL that you have built, or it may be 4 words of
declared storage that will be filled from the PARM, UPT, ECT, and
ECT operands of this execute form of the GETLINE macro instruction.
The address is any address valid in an RX instruction or (1) if the
parameter list address has been loaded into general register 1.

NOTE: In the execute form of the GETLINE macro instruction only the
following is required:

I
| GETLINE MF=(E, Jlist address()
| (1)

hag e s)

The PARM=, UPT=, ECT=, and ECB= operands are not required if you have
built your IOPL in your own code.

The other operands and their sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execution of GETLINE, or because you are using the default values:

INPUT=()ISTACK(},LOGICAL ()
TERM +PHYSICAL

L}
|
|
|
| and
{ TERMGET= (
|
L

T S S ——

EDIT(},WAIT)
ASIS{), NOWAIT

The ENTRY= operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction will be generated to invoke the I/0
service routine.

The operands you specify in the execute form of of the GETLINE macro
instruction are used to set up control information used by the GETLINE
Service Routine. You can use the PARM=, UPT=, ECT=, and ECB= operands
of the GETLINE macro instruction to build, complete, or modify an IOPL.
The INPUT= and TERMGET= operands set bits in the GETLINE Parameter
Block. These bit settings indicate to the GETLINE Service Routine which
options you want performed.

110 Guide to Writing a TMP or a CP (Release 21)

Sources of Input

There are two sources of input provided; they are the terminal and an
in-storage list.

TERMINAL: Input comes from the terminal under either of the following
conditions:

e You have specified the terminal as the input source by including the
TERM operand in the GETLINE macro instruction.

e You have specified the current element of the Input Stack by
including the ISTACK operand in the GETLINE macro instruction, and
the current element is a terminal element.

If you specify terminal as the input source, you have the option of
requesting the GETLINE Service Routine to process the input as a logical
or physical line by including the LOGICAL or the PHYSICAL operand in the
macro instruction. LOGICAL is the default value.

Physical Line Processing: A physical line is a line which is returned
to the requesting program exactly as it is received from the input
source. The contents of the line are not inspected by the GETLINE
service routine.

Logical Line Processing: A logical line is a line which has had
additional processing by the GETLINE service routine before it is
returned to the requesting program. If logical line processing is
requested, each line returned to the routine that issued the GETLINE is
inspected to see if the last character of the line is a continuation
mark (a dash "-'). A continuation mark signals GETLINE to get another
line from the terminal and to concatenate that line with the line
previously obtained. The continuation mark is overlaid with the first
character of the new line.

IN-STORAGE LIST: If the top element of the input stack is an in-storage
list, and you do not specify TERM in the GETLINE macro instruction, the
line will be obtained from the in-storage list. The in-storage list is
a resident data set which has been previously made available to the I/O
Service Routines with the STACK Service Routine. WNo logical line
processing is performed on the lines because it is assumed that each
line in the in-storage list is a logical line. It is also assumed that
no single record has a length greater than 256 bytes.

End of Data Processing

If you issue a GETLINE macro against an in-storage list from which all
the records have already been read, GETLINE senses an end of data (EOD)
condition. GETLINE deletes the top element from the Input Stack and
passes a return code of 16 in register 15. Return code 16 indicates
that no line of input has been returned by the GETLINE service routine.
You can use this EOD code (16) as an indication that all input from a
particular source has been exhausted and no more GETLINE macro
instructions should be issued against this input source. If you reissue
a GETLINE macro instruction against the input stack after a return code
of 16, a record will be returned from the next input source indicated by
the input STACK. You can identify the source of this record by the
return code (0 = terminal, 4 = in-storage).

Building the GETLINE Parameter Block

When the list form of the GETLINE macro instruction expands, it builds a
two word GETLINE Parameter Block (GTPB). The list form of the macro
instruction initializes this GTPB according to the operands you have
coded in the macro instruction. This initialized block, which you may

Using the TSO I/0 Service Routines for Terminal I/O0 111

later modify with the execute form of the macro instruction, indicates
to the GETLINE Service Routine the function you want performed.

GETLINE macro instruction.

You must supply the address of the GTPB to the Execute form of the

For non-reenterable programs you can do this

simply by placing a symbolic name in the symbol field of the list form
of the macro instruction, and passing this symbolic name to the execute

form of the macro instruction as the PARM value.
Block is defined by the IKJGTPB DSECT.
of the GTPB.

The GETLINE Parameter
Figure U6 describes the contents

r T 1 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
1 4 4)]
i 2 { }Control flags. These bits describe the]
		requested input line to the GETLINE service
		routine.
	Byte1	
	««0. «.<.	The input line is a logical line.
	<<l «ce..	The input line is a physical line.
	<<<0 «...	The input line is to be obtained from the
		current input source indicated by the input
		stack.
	<<el	The input line is to be obtained from the
		terminal.
	=xx.. xxxx	Reserved bits.
I		
	Byte 2	
	=xxxx XxXXxX	Reserved.
L 4 | J
L] 1 T

| 2 | | TGET options field. These bits indicate to i
		the TGET SVC which of the TGET options you
		want to use.
	Byte 1	
	leee «e..	Always set to 1 for TGET.
	<««e0 «...	WAIT processing has been requested. Control
		will be returned to the issuer of GETLINE
		only after an input message has been read.
	<<el	NOWAIT processing has been requested.
		Control will be returned to the issuer of the
		GETLINE macro instruction whether or not a
		1line of input- is available.
	<e«<. ..00	EDIT processing has been requested. 1In
		addition to the editing provided by ASIS
		processing, the input buffer is to be filled
]out with training blanks to the next
		double-word boundary.
	eee. ..01	ASIS processing has been requested. (See the
		ASIS operand of the GETLINE macro instruction
		description).
	<xx. xX..	Reserved bits.
I I		
I	Byte 2	I
	=xxxx xxx%Xx	Reserved.
4 1 (]		
r] L] T		
4	GTPBIBUF	The address of the input buffer. The GETLINE
		service routine fills this field with the
		address of the input buffer in which the
		input line has been placed.
L L L J
Figure 46. The GETLINE Parameter Block

112 Guide to Writing a TMP or a CP (Release 21)

Input Line Format - The Input Buffer

The second word of the GETLINE Parameter Block contains zeros until the
GETLINE service routine returns a line of input. The service routine
places the requested input line into an input buffer beginning on a
double word boundary located in subpool 1. It then places the address
of this input buffer into the second word of the GTPB. The input buffer
belongs to the command processor that issued the GETLINE macro
instruction. The buffers returned by GETLINE are automatically freed
when your C.P. relinquishes control. If space is a consideration, you
should free the input buffer with the FREEMAIN macro instruction after
you have processed or copied the input line.

Regardless of the source of input, an in-storage list or the
terminal, the input line returned to the command processor by the
GETLINE Service Routine is in a standard format. All input lines are in
a variable length record format with a full-word header followed by the
text returmned by GETLINE. Figure 47 shows the format of the input
buffer returned by the GETLINE service routine.

Length Offset Text

2 Bytes 2 Bytes

Figure 47. Format of the GETLINE Input Buffer

The two-byte length field contains the length of the input line
including the header length (4 bytes). You can use this length field to
determine the length of the input line to be processed, and later, to
free the input buffer with the R form of the FREEMAIN macro instruction.

The two-byte offset field is always set to zero on return from the
GETLINE Service Routine.

Figure 48 shows the GETLINE control block structure after the GETLINE
Service Routine has returned an input line.

Using the TSO I/0 Service Routines for Terminal I/0 113

Terminal Command GETLINE
Monitor Processor Service
Program ATTACH LINK Routine

-

Reg. 1 Reg. 1

CPPL IOPL

GTPB

Input Buffer

| | DATA &

Figure 48. GETLINE Control Blocks - Input Line Returned

Examples of GETLINE

Figure 49 is an example of the code required to execute the GETLINE
macro instruction. In this example two execute forms of the GETLINE
macro instruction are issued. The first one builds the IOPL, and uses
the parameters initialized by the list form of the macro instruction to
get a physical line from the terminal with the NOWAIT and ASIS options.

In the second execution of the GETLINE macro instruction, the same
IOPL is used, but the GETLINE options are changed from TERM to ISTACK,
and from NOWAIT to WAIT explicitly, and from PHYSICAL to LOGICAL and
from ASIS to EDIT by default.

Notice also that the IKJCPPL DSECT is used to map the Command

Processor Parameter List, and the IKJGTPB DSECT is used to map the
GETLINE Parameter Block.

114 Guide to Writing a TMP or a CP (Release 21)

. [TN]
—J [n= = .
[=X =lw|oe [« N [&) | — ~ [¥N]

wy o, Ql—|w S (w 22 [XT) = >«
X &) — [~ =>a = 2% — >ma[=
= —~[Ow W] [TE] [XT] — S — —J S
[N] [S [= = = —J L —a—
S x|a <<t [— [SY[S) — wy =W~
~ ~o Yo b B L) > s Wik~
[— << [T [- — . &) ~ — olxx[O[S
[L wn|nja [=) [=) | O[n|= -~ ozov | DY
w ooy =|— =+ == [¥H]] L OO~
~ S —[=[~ [72) [72) ~ & =[— = — S <T|O|—[
= (21N ~[> W W] |l —|<T|— [on = wn=
—~ [S Q. wifwier[— N[O < [72) W[=[—

[} L[> [J= o o =W = [7%2) [%) =SS
Q |~ OIS [N = =T —|a o [=) [72) L) ==o[o
o— <[anawn| - Sl oz Y] [— o
< [] == <~ [<T[—[[=) [[[=) =[O
<<|— [~ [(G ~—|= [=) [=) ~[ola <t
[75) [S4) [Y wiluwlfuljwi~~|wn» QO —[— uJ [<< W OI=

= W <T =zl T[T [<[<t = <T Ol [~
~ = (%) ~Wj= ~ [—<T == —~ wi uy
< -~ I~ —J—[= << <t [Olae I aQ = wwu=
~|—~ Ly ~ [XN] [¥N] Sla w=[0 ol s [— T [=[[—
=Z|n Wi L[y QIO [OD] ~D = << Q [sa] —|~[~|
ol— Sal [O=E=x e e R e B T I S S S I |0 [~] [~
()] =) ~|~ == [O] =~ = = W[y [T [Z2)[¥T]
21553 [¥N] Al—al—olw —[<T(ws [2% RIS ol<T[Ww[d

~|o¢ TSV I~ w =2) [7Z2)
Ly oW ol i [G) — [=D wWw
[o[[ol) o/ [~ =
XX [] (L) L o[~ W= wi[eai— [S~ [~

== = S ~l D] -~ T|—|w u_[WBO[—
wmi<t - W< ~ niwm =W w X [N wy L
—[oe = ==[— —~ (¥} =a <T T [&) > = wiw| 1 |O
WDi<T >|— ||~ [=Y [} o¢[<T [T Y] — S [a) — == _|
wilQ ~[<T Ot~ =Y Y] <C|cn SIS —] 1 Dowi=
o [O~ ~ L =]] [=Y[&) |~ [N on[\o|x () [E)[e)
[N =SS - ~J|— Q [~ w =< o [~la w wwnmiog|—
| O]~] i<t Q. a] x[Olw - W~ T N
N |Q|<T ~iQ [() [} (] (&) on Q== NI (O] [2 N[~ WO
Q. W|w<TiLy ~[Q. Di~|= ~ - Q u [\ N[O NS [(73] (&)
Slwwnd TN[O QOln|<t [N = |afwy = |Jwlo OB [72) oc]
[~ O[X[N[<T i[> = w|ee] Joe[o [wy| - [=]<
Ol [G) ><|Z{n — —~lalo] [« [w x|=|DwW
Ss(x(ni|w = wia [—J =) [N [=) = () TOEII
Sla D= —~ —) —~ (S <T|o¢ — S o=~
o QT [N 4] =[<T|~) W=~ wy =[] [a%4 2|~
| |<ct|n ST > —] [G) <[z Wi~ | o =4[} (4
= [=) wiw|— [S~
>[<T Wy ~[~|= wy|oel>[u

o | = D=~ [Z2) < Sl—|—
~= | [x[n —[Ww| [~[& [72) %) [[X¥]
=20 NO|O|—~ o o o g o W | <T N=|O0| T
WO ~~ | ~[~|~ [GY[=N —~|~[<C[~
2| XK KKK ESESESES X X [k EJES X EIESESIES

Coding Example -- Two Executions of GETLINE (Part 1 of 2)

Figure 49.

Using the TSO I/0 Service Routines for Terminal I/O 115

S (%2 =)
~ — =Y
= T Ql—
>~ —~ =2|D
[TW] [T — ~) =4
= [%) = > SN IS < [O Q. [»n
~ Ly -~ [a W NIQ [V —[— >[I
=4[5 ~ ~ W= ~ (Vo)] Ly
'Y ol=| ¢ [> Dl = — | [
S —|<T|~ Ly S Q] o] Aalale w9
- e o [T W] ol 1= = =9
= ~) [SY[=) [Ny [T <[> [—[=|<T
¢ ~ S W [X%) > ~ Q [~ S| [
S ~ o ~ = (=% =~N= =~ ~ ()
[N < ~[w ~ = u [SlOw] [Olwlw]] J—
= RIS = O~ I~ [Ol==| |51
~ ~ =0l = —~ ~NIQ) <T[—[- ol
%) 1] —[[<T [<) [AT] (%) SO wioe WS |
~ ~ (G [x|~ =~ NI [N[= || [=] |
] [7] [<)[=) [T —| A0l <] —[Aj~[a|~|aa|>
[G) ozt~ NN —]O [72)
[T = Q] wy ocjoe[<t[NI = [SE[<4
=9 ¢ |0 = WO =N SIS ~Slwifuwy
~ [¥N] =~ - W=~ ~[n[~[[winnuvnuw |~
~ [N -~ AN ~ . QW Wi~
> ~ wlww WSO S U~ w=w~=
L8] ~ e S Qo OI<T|ZT| ~ Q][O VIO |O|<T || O|<T| I
4 ~[J w | xja|<c|W|O </ Qluw|ola o~
[=) S] S]] = Q| ~[SIT[I=Aa [Vn[xX<([Q[wn[<T|—
W << =[] [A [SoNS[wgaalw_a(=| |
— —~ [[~ > I
<| - DA [Blw [Ly =
W= N [=)[%)) |)
SN W XN oz <
Of— THE=S =T ~X TR
~ [] ~[X[<T w [N W w —~
0[O Slal [T > = [© S
Ay Qo u_[<T ~ x — << ajln
~ld =] SIS ~ — [~% =~
O~ [~| ~ [72) Nw\ [N on [=) — |
%) w) ={~|<T [s) Q. w) ~ - O
W= ~| [x . —~ s [ZIESY = <
x|~ [0 [S)[s) N [G) ~ ~ Q¢
~ W Jul~[~ 0nlo - [=) w Ly ~
S WIS -~ wio [T w W = LN [N —1 [
213 = uy < [Sv4] [22) [~ = a [=Y
[T (&) — ~lx= s W] <T — [N ~
<t —J Sl Q [€) -J —J (&) [
w (S| [~ Q=[S <T|o¢ (=) Q —~ - ~ Q
o I Y] W [~ ¥ & [O] [w Ol & ¢
(<[] [G) > wi~| |4 al 1] [B) Ql N ~ (N3]
SI= [[|l
=~ O~ NS 2
—J n=<c << 1O
Ql~ = I~ Q [«) [%)
4 Y] o w <t << - Q
<D ~O= [GY[=W] [Ya) <
a ~ 0
S uy [¥)
X[k ERESENEIEIEIER K X[k~ [G) X W Sic Sic

Figure 49.

Coding Example -- Two Executions of GETLINE (Part 2 of 2)

116 Guide to Writing a TMP or a CP (Release 21)

Return Codes from GETLINE

When it returns to the program that invoked it, the GETLINE service
routine returns one of the following codes in general register fifteen:

CODE MEANING

0 GETLINE has completed successfully. The line was obtained
from the terminal.

) GETLINE has completed successfully. The line was returned
from an in-storage list.

8 The GETLINE function was not completed. An attention
interruption occurred during GETLINE processing, and the
user's attention routine turned on the completion bit in the
communications ECB.

12 The NOWAIT option was specified and no line was obtained.

16 EOD - An attempt was made to get a line from an in-storage
list but the list had been exhausted.

20 Invalid parameters passed to the GETLINE Service Routine.

24 A conditional GETMAIN was issued by GETLINE for input
buffers and there was not sufficient space to satisfy the
request.

PUTLINE - PUTTING A LINE OUT TO THE TERMINAL

Use the PUTLINE macro instruction to prepare a line and write it to the
terminal. Use PUTLINE to put out lines that do not require immediate
response from the terminal; use PUTGET to put out lines that require
immediate response. The types of lines which do not require response
from the terminal are defined as data lines and informational message
lines.

The PUTLINE service routine prepares a line for output according to
the operands you code into the list and execute forms of the PUTLINE
macro instruction. The operands of the macro instruction indicate to
the PUTLINE service routine the type of line being put out (data line or
informational message line), the type of processing to be performed on
the line (format only, second level informational message chaining, text
insertion), and the TPUT options requested.

This topic describes:

e The list and execute forms of the PUTLINE macro instruction.
e The PUTLINE Parameter Block.

The types and formats of output lines.

PUTLINE message processing.
e Return codes from PUTLINE.

Coding examples are included where needed.

Using the TSO I/O Service Routines for Terminal I/O 117

The PUTLINE Macro Instruction - List Form

The list form of the PUTLINE macro instruction builds and initializes a
PUTLINE Parameter Block (PTPB), according to the operands you specify in
the macro instruction. The PUTLINE Parameter Block indicates to the
PUTLINE service routine which functions you want performed. Figure 50
shows the list form of the PUTLINE macro instruction; each of the
operands is explained following the figure. Appendix B describes the
notation used to define macro instructions.

T
+SINGLE
OUTPUT= (output address |,TERM »MULTLVL;}), INFOR()
»FORMAT| (,MULTLIN])),DATA

!
[symboll | PUTLINE

EDIT
LTERMPUT=(AsSIs (WAIT » NOHOLD (|, NOBREAK()
CONTROL}),NOWAIT(), HOLD BREAKIN

r
|
I
|
|
|
|
|
|
|
|
[+MF=L
L

T
I
I
I
|
I
I
|
|
|
|
I
L

oo e e e s s S S s
fy e e . e e e . e e s e

Figure 50. The List Form of the PUTLINE Macro Instruction

OUTPUT=output address
Indicates that an output line is to be written to the terminal.
The type of line provided and the processing to be performed on
that line by the PUTLINE service routine are described by the
OUTPUT sublist operands TERM, FORMAT, SINGLE, MULTLVL, MULTLIN,
INFOR and DATA. The default values are TERM, SINGLE, and INFOR.

The output address differs depending upon whether the output line
is an informational message or a data line. For DATA requests, it
is the address of the beginning (the full-word header) of a data
record to be written to the terminal. For informational message
requests (INFOR), it is the address of the Output Line Descriptor.
The Output Line Descriptor (OLD) describes the message to be put
out, and contains the address of the beginning (the full-word
header) of the message or messages to be written to the terminal by
the PUTLINE Service Routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to
put the message out to the terminal. The PUTLINE Service Routine
returns the address of the formatted line by placing it in the
third word of the PUTLINE Parameter Block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be
specified.

INFOR
The output line is an informational message.

118 Guide to Writing a TMP or a CP (Release 21)

DATA

The output line is a data line.

TERMPUT

EDIT

ASIsS

Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the
TPUT options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL, WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN.
The default values are EDIT, WAIT, NOHOLD, and NOBREAK.

Specifies that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent, the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable
character. "Backspace™ is an exception; see (d.) under ASIS.

Specifies that minimal editing is to be performed by TPUT as
follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program caused I/0 errors. This does not mean that all
unprintable characters are eliminated. "Restore", "upper
case", "lower case", "bypass", and "bell ring", for example,
might be valid but nonprinting characters at some terminals.
(See CONTROL).

b. Transmission control characters are added.

c. EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see f. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

d. If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, TPUT attempts alternate
methods to accomplish the backspace.

Using the TSO I/0 Service Routines for Terminal I/0 119

e. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

f. 1Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control
characters and will not print or move the carrier on the terminal.
This option should be used for transmission of characters such as
"bypass", "restore", or "bell ring".

WAIT
Specifies that control will not be returned until the output line
has been placed into a terminal output buffer.

NOWAIT
Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return
code of 8 (decimal) will be returned in register 15, to the Command
Processor.

NOHOLD
Specifies that the control is to be returned to the routine that
issued the PUTLINE macro instruction, and that routine can continue
processing as soon as the output line has been placed on the output
queue.

HOLD
Specifies that the routine that issued the PUTLINE macro
instruction cannot continue its processing until this output line
has been put out to the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed
the 1line.

BREAKIN
Specifies that output has precedence over input. If the user at
the terminal is transmitting, he is interrupted, and this output
line is sent. Any data that was received before the interruption
is kept and displayed at the terminal following this output line.

MF=L
Indicates that this is the list form of the macro instruction.

Note: In the list form of the macro instruction, only

r
|PUTLINE MF=L
L

b o

is required. The output line address is required for each issuance of
the PUTLINE macro instruction but it may be supplied in the execute form
of the macro instruction:

r
|OUTPUT=(output address)
L

ke s

120 Guide to Writing a TMP or a CP (Release 21)

The other operands and sublists are optional because you can supply
them in the execute form of the macro instruction, or they may be
supplied by the macro expansion if you want the default values:

I 1
[OUTPUT=(.TERM | (,SINGLE |),INFOR() [
| ,FORMAT({,MULTLVL} |,DATA |
| ,MULTLIN |
| !
| and |
| |
| , TERMPUT=(| EDIT ,WAIT ,NOHOLD(|, NOBREAK () |
| ASIS ,NOWAIT(| ,HOLD « BREAKIN |
[CONTROL l
L 1]

The operands you specify in the list form of the PUTLINE macro
instruction set up control information used by the PUTLINE service
routine. This control information is passed to the PUTLINE service
routine in the PUTLINE Parameter Block, a three word parameter block
built and initialized by the list form of the PUTLINE macro instruction.

The PUTLINE Macro Instruction - Execute Form

Use the execute form of the PUTLINE Macro instruction to put a line or
lines out to the terminal, to chain second level messages, and to format
a line and return the address of the formatted line to the code that
issued the PUTLINE macro instruction. The execute form of the PUTLINE
macro instruction performs the following functions:

1. It can be used to set up the Input Output Parameter List (IOPL).

2. It can be used to initialize those fields of the PUTLINE Parameter
Block (PTPB) not initialized by the List foxrm of the macro
instruction, or to modify those fields already initialized.

3. It passes control to the PUTLINE service routine.

The PUTLINE Service Routine makes use of the IOPL and the PTPB to
determine which of the PUTLINE functions you want performed.

Using the TSO I/0 Service Routines for Terminal I/O 121

Figure 51 shows the execute form of the PUTLINE macro instruction;
each of the operands is explained following the figure. Appendix B
describes the notation used to define macro instructions.

T T T 1
[symboll	PUTLINE	[PARM=parameter addressl][,UPT=upt address]
		[,ECT=ect addressl[,ECB=ecb address]
	I	
		3., FORMAT({,MULTLVL
[/MULTLIN
		«INFOR()
		,DATA
I	-	
		EDIT
		CONTROL ;,NOWAITE), HOLD “,BREAKIN
		-
		(15) $] %1)
L 1 1= J

Figure 51. The Execute Form of the PUTLINE Macro Instruction

PARM=parameter address
Specifies the address of the 2-word PUTLINE Parameter Block (PTPB).
It may be the address of a List form PUTLINE macro instruction.
The address is any address in an RX instruction, or the number of
one of the general registers 2-12 enclosed in parentheses. This
address will be placed into the IOPL.

UPT=upt address
Specifies the address of the User Profile Table (UPT). You may
obtain this address from the Command Processor Parameter List
(CPPL) pointed to by register one when a Command Processor is
attached by the Terminal Monitor Program. The address may be any
address valid in an RX instruction or it may be placed in one of
the general registers 2-12 and the register number enclosed in
parentheses. This address will be placed into the IOPL.

ECT=ect address
Specifies the address of the Environment Control Table (ECT). You
may obtain this address from the CPPL pointed to by register 1 when
a command processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or it may
be placed in one of the general registers 2-12 and the register
number enclosed in parentheses. This address will be placed into
the IOPL.

ECB=ecb address
Specifies the address of the Event Control Block (ECB). You must
provide a one-word event Control Block and pass its address to the
PUTLINE service routine. This address will be placed into the
IOPL. The address may be any address valid in an RX instruction or
it may be placed in one of the general registers 2-12 and the
register number enclosed in parentheses.

122 Guide to Writing a TMP or a CP (Release 21)

OUTPUT=output address
Indicates that an output line is provided. The type of line
provided and the processing to be performed on that line by the
PUTLINE service routine are described by the OUTPUT sublist
operands TERM, FORMAT, SINGLE MULTLVL, MULTLIN, INFOR and DATA.
The default values are TERM, SINGLE, and INFOR.

The output address differs depending upon whether the output line
is an informational message or a data line. For DATA requests, it
is the address of the beginning (the full-word header) of a data
record to be put out to the terminal. For informational message
requests (INFOR), it is the address of the Output Line Descriptor.
The Output ILine Descriptor (OLD) describes the message to be put
out, and contains the address of the beginning (the full-word
header) of the message or messages to be written to the terminal by
the PUTLINE service routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to
put the message out to the terminal. The PUTLINE service routine
returns the address of the formatted line by placing it in the
third word of the PUTLINE Parameter Block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be
specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

TERMPUT
Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the
TPUT options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL, WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN.
The default values are EDIT, WAIT, NOHOLD, and NOBREAK.

EDIT
Specifies that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,

horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) under ASIS.

Using the TSO I/0 Service Routines for Terminal I/0 123

ASIS
Specifies that minimal editing is to be performed by TPUT as
follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program-caused I/O errors. This does not mean that all
unprintable characters are eliminated. "Restore", "upper
case", "lower case", "bypass", and "bell ring", for example,
may be valid but nonprinting characters at some terminals.

(See CONTROL).

b. Transmission control characters are added.

c. EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see f. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

d. If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, the PUTLINE service routine
attempts alternate methods to accomplish the backspace.

e. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

f. 1Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control
characters and will not print or move the carrier on the terminal.
This option should be used for transmission of characters such- as
"bypass", "restore", or "bell ring".

WAIT
Specifies that control will not be returned until the output line
has been placed into a terminal output buffer.

NOWAIT
Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return
code of 8 (decimal) is returned in register 15.

NOHOLD
Specifies that control is returned to the routine that issued the
PUTLINE macro instruction, and it can continue processing, as soon
as the output line has been placed on the output queue.

124 Guide to Writing a TMP or a CP (Release 21)

HOLD
Specifies that the module that issued the PUTLINE macro instruction
is not to resume processing until the output line has been put out
to the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed

the line.

BREAKIN
Specifies that output has precendence over input. If the user at
the terminal is transmitting, he is interrupted, and the output
line is sent. Any data that was received before the interruption
is kept and displayed at the terminal following the output line.

ENTRY=entry address or (15)
Specifies the entry point of the PUTLINE service routine. If ENTRY
is omitted, the PUTLINE macro expansion will generate a LINK macro
instruction to invoke the PUTLINE service routine. The address may
be any address valid in an RX instruction or (15) if the entry
point address has been loaded into general register 15.

MF=E
Indicates that this is the execute form of the PUTLINE macro
instruction,

list address
(1)

The address of the 4-word Input Output Parameter List (IOPL). This
may be a completed IOPL that you have built, or 4 words of declared
storage to be filled from the PARM, UPT, ECT, and ECB operands of
this execute form of the PUTLINE macro instruction. The address is
any address valid in an RX instruction or (1) if the parameter list
address has been loaded into general register 1.

Note: In the execute form of the PUTLINE macro instruction only the
following is required:

r 1
| PUTLINE MF=(E,{list address}) |
| (1) |
L J
The PARM=, UPT=, ECT=, and ECB= operands are not required if you have
built your IOPL in your own code.

The output line address is required for each issuance of the PUTLINE
macro instruction, but you may supply it in the list form of the macro
instruction:

r 1
|OUTPUT=(output address) |
L J

Using the TSO I/0 Service Routines for Terminal I/O 125

The other operands and sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execute form, or because you may want to use the default values which
are automatically supplied by the macro expansion itself. The other
operands and sublists are:

I 1
[,SINGLE |
| OUTPUT=(,TERM ,MULTIVL} |, INFOR() |
I ,FORMAT| (,MULTLIN|), DATA |
| |
[and [
| I
I EDIT |
1 ,TERMPUT=({ASIS ,WAIT ,NOHOLD| {,NOBREAK () |
| CONTROL| }, NOWAIT(},HOLD . BREAKIN |
L []

The ENTRY= operand need not be coded in the macro instruction. If it
is not, a LINK macro instruction will be generated by the macro
expansion to invoke the I/0 service routine.

The operands you specify in the execute form of the PUTLINE macro
instruction set up control information used by the PUTLINE service
routine. You can use the PARM=, UPT=, ECT=, and ECB=, operands of the
PUTLINE macro instruction to build, complete or modify an IOPL. The
OUTPUT= and TERMPUT= operands and their sublist operands initialize the
PUTLINE Parameter Block. The PUTLINE Parameter Block is referenced by
the PUTLINE Sexrvice Routine to determine which functions you want
PUTLINE to perform.

Building the PUTLINE Parameter Block

When the list form of the PUTLINE macro instruction expands, it builds a
three-word PUTLINE Parameter Block (PTPB). The list form of the macro
instruction initializes the PTPB according to the operands you have
coded in the macro instruction. The initialized block, which you may
later modify with the execute form of the PUTLINE macro instruction,
indicates to the PUTLINE service routine the function you want
performed.

You must supply the address of the PTPB to the execute form of the
PUTLINE macro instruction. Since the list form of the macro instruction
expands into a PTPB, all you need do is pass the address of the list
form of the macro instruction to the execute form as the PARM value.

The PUTLINE Parameter Block is defined by the IKJPTPB DSECT. Figure
52 describes the contents of the PTPB.

126 Guide to Writing a TMP or a CP (Release 21)

Number of
Bytes

Field

Byte 1
«.0.
..1.
sael

1...
.1..
eees oal.
XXes eeeX
Byte 2

..1.
XXe X XXXX

i
|Contents or Meaning
1
+

|Control flags.
|output line to the PUTLINE Service Routine.

The output
The output
The output
line.

The output
The output
The output

|Reserved bits. |

The format

Reserved bits.

These bits describe the

line is a message.
line is a data line.
line is a single level or a single

—— —— . e v S . gy s S)

is multi-line.
is multi-level.
line is an informational message.

only function was requested.

——— — ————— ——— — — —— — — t— t— U — — — — — — —— ——— — t— — T t— {—

L

— . . e o e e e . s . . . e S . e S, e e S S, .]

|
|
L

Byte 1
0...
«ee0

eeal

0...

l...

® oo a

.0..

1..

..00
..01
-»10

e XX

Byte 2

|Always set to 0 for TPUT.

|WAIT processing has been requested.
|will be returned to the issuer of PUTLINE
|only after the output line has been placed
|into a terminal output buffer.

| NOWAIT processing has been requested.
|Control will be returned to the issuer of
| PUTLINE whether or not a terminal output
|buffer is available.

| NOHOLD processing has been requested.
| Command Processor that issued the PUTLINE can
| resume processing as soon as the output line
|has been placed on the output queue.
HOLD processing has been requested.
Command Processor that issued the PUTLINE is
|not to resume processing until the output
line has been written to the terminal or

I
L

TPUT options field.
| the TPUT SVC which of the TPUT options you
|want to use.

deleted.

NOBREAK processing has been requested.
output line will be printed only when the
terminal user is not entering a line.
| BREAKIN processing has been requested.
|]output line is to be sent to the terminal
| immediately.
|]entering a line, he is to be interrupted. |
|EDIT processing has been requested.

|ASIS processing has been requested.

| CONTROL processing has been requested.

Reserved.

Reserved.

These bits indicate to

Control

The

The

The

The

If the terminal user is |

Figure 52.

The PUTLINE Parameter Block (Part 1 of 2)

Using the TSO I/O Service Routines for Terminal 1I/0

127

Number of

1]
I
Bytes Field |Contents or Meaning
1
]

PTPBOPUT |The address of the OUTPUT Line Descriptor
| (OLD) if the output line is a message. The
| address of the fullword header preceding the
|data if the output line is a single data
|1line. The address of a forward-chain pointer
|preceding the fullword data header, if the
|output is multiline data.
1

]
PTPBFLN |Address of the format only line. The PUTLINE
| service routine places the address of the
| formatted line into this field.
L

S R CRp—
T S WA

T W S S———

Figure 52. The PUTLINE Parameter Block (Part 2 of 2)

Types and Formats of Output Lines

There are two types of output lines processed by the PUTLINE Service
Routine:

e Data Lines (DATAR)
® Message lines (INFOR)

The OUTPUT sublist operands you specify in the PUTLINE macro instruction
indicate to the PUTLINE service routine which type of line you want
processed (DATA, INFOR), whether the output consists of one line,
several lines, or several levels of messages (SINGLE, MULTLIN, MULTLVL,)
and whether the line is to be written to the terminal (TERM), or
formatted only (FORMAT).

DATA LINES: A data line is the simplest type of output processed by the
PUTLINE Service Routine. It is simply a line of text to be written to
the terminal. PUTLINE does not format the line or process it in any
way; it merely writes the line, as it appears, out to the terminal.
There are two kinds of data lines, single line data and multiline data;
each is handled differently by the PUTLINE service routine.

Single Line Data: Single line data is one contiguous character string
which PUTLINE places out to the terminal as one logical line. If the
line of data you provide exceeds the terminal line length, the TPUT
Routine segments the line and puts it out as several terminal lines.
PUTLINE accepts single line data in the format shown in Figure 53.

128 Guide to Writing a TMP or a CP (Release 21)

PUTLINE OUTPUT = (output address, , SINGLE, DATA)

Length Offset DATA

Length

Figure 53. PUTLINE Single Line Data Format

You must precede your line of data with a 4-byte header field. The
first two bytes contain the length of the output line, including the
header; the second two bytes are reserved for offsets and are set to
zero for data lines. You pass the address of the output line to the
PUTLINE service routine by coding the beginning address of the four-byte
header as the OUTPUT operand address in either the list or the execute
form of the macro instruction. When the macro instruction expands, it
places this data line address into the second word of the PUTLINE
Parameter Block.

Using the TSO I/0 Service Routines for Terminal I/0 129

Figure 54 is an example of the code that could be used to write a
single line of data to the terminal using the PUTLINE macro instruction.
Note that the execute form of the PUTLINE macro instruction is used in
this example to construct the Input Output Parameter List, and that the
TERMPUT operands are not coded in either the list or the execute form of
the macro instruction -- the default values will be assumed by the
PUTLINE service routine.

X EINT[R|Y| |FIRIOM| |TIHIE| |TIEIRM|! |NAIL| IMOIN|I [T|O|R| [P|R|O|GIR|AIM| >
X RIE|G|/|S|TIEIR| |O|NIE| |C|OIN|TIA|! IN|S| |TIHIE| |A|DIDIRIE|S|S| |O|F| [TIHIE| |CloiMMAINID
¥ | \PIR|O|C|E[S|S|OIR] |PAIRIAMIE|TIEIR| |L|/|S|T| |(|C|PIPIL|)
d H\0\U|S|E|K|E|E|P|! IN|G
¥ A|D|D\R|E|SIS|AB|/ |L|/|T]Y
Ly SIA|VIE| |ARIEIA|l |CIHA|I N1 IN|G
¥ i
LIR 2,|7 SW|VIE| |THIE| |AIPIDIRIEIS|S| |0lF| |TIHIE| [clPlPiL|-
U|S|/ V|G| ICIPIPIL|,|2 ADIDIRIEIS|S|AIB|/[L|I|T]Y| |FIOIR [TIHIE| |CIPIPIL]|-
L 3/, |C|P|PILIUIP|T PILIAICIE| |TIHIE| JAIDIDRIEIS|S| [OIF| |TIHIE] UiP
X /INIT|0| |A|l IREE|G|/ |SITIER|.
L |, |C|P|PIL|EIC|T] PILIAICIE] |TIHIE| |AID|DIRIE|S|S| |O|F| |THIE| |E|C|T|
X [IN|T|O| |A| |REEIG|/|S|TIER
1% ¥
Xl | |/|SISWIE| [TIHE| [EIXIEICIUTIE| |FIORM| [OIF| |TIHIE| |PIUITIL|IINIE] IMAICIRIO] |/ N|S|TIR|UICIT|I |OIN|.
¢ | (VISIE| |1|T] [7]0] |WIR|/|TIE S|/N|GILIE| |L|/INIE| |OF| |DIAITIA] (T|O| |TIHIE| |TIEIRIM|I N|AIL
% | |/ INICL/ |DIEINITIAILIL[Y|s| (UISIE| [1]T] |T|0] |BUII|L(D| |T|HIE| [1|0PIL
PUITIL|/ INIE PIAIRM|=|PIUITBILIOICIK|, [UIPITI=1([311, IEICI TI=ICI14#) |
EIC|B|=|E[C|BIAD|S|, O|U[TIPIUIT|=|(|TIEIXITIAIDIS| s |TIEIRMs |S|1 IN|GILIE], IDIA|TIAD s
MF=|C|E],|I|O|P|L|AID|S|)
| | [TIHIIIS| |EIXIEICIUITIE] |FIOIRM| |OIF| |TIHIE| [PUITILII INIE[MAICIRIOL |/ INISITIRIUICIT|/ |OIN| ID|OIEIS
¥ | INO]T| |SIPIEICI FIY| |THHIE| [TIERMPIUIT] |OIPIEIRIAINIDIS|S! ||| WIIILIL] UISIE| [TIHIE| |DIEIFIA[UILIT]
X | IVIALVELS|-
X ¥
X PIRIOICIEISIS|/ NG |
X X
¥ S|T|0|R|A|GIE| IDIE|CILIAIRIAITI!|OINIS
X X
EICIBIAIDIS D|S EHE SIPIAICIE| IFIOR| [TIHIE| |EIVIEN|T] |CIOIMT R]OIL
X BILIOICIK
PUITIBILIOKK]| | |PIUITILTINIE MIF[=|L L|/|S{T| |FIORM [0|F| |TIHIE| |PU|TIL|I INIE| IMIAICIRIO
X [WNISITIRWICITI/OINI-| [TIHI!IS] |EIXIPIAINIDIS| |/ NIT|0
X Al IPWITILI/INIE] [PIAIRIAIMIEITIE|R| |BILIO[CIK]-
TIEXITIADIS| | ID|C H 28| LIEINIGITIH| |0[F| |TIHIE| |O|UITIPIUITY |LIIINIE].
DIC H '@’ R|E|S|E|R|VIE|D|-
DiC CILI|6|" BISI/ING|LIEIL|[INIE| [DIAITIAl'
ZI0PILIAIDIS| | IDIC HF\’ g’ SIPIAICIE{ |FIOIR| [TIHIE| |/ INIPWIT| [ouTIPlUIT
X PIARIAMIEITIER] |LI/|S[T|-
JIK|J|CIPIPIL DISIEIC|T| |FIORR| [TIHIE| |C|PIPIL
£IMO
Figure 54. Coding Example -- PUTLINE Single Line Data

130 Guide to Writing a TMP or a CP (Release 21)

Multiline Data: Multiline data is a chain of single lines. Each line
of data is processed by the PUTLINE service routine exactly as if it
were single line data. Each element of the chain however, begins a new
line to the terminal. By specifying multiline data (MULTLIN) in the
PUTLINE macro instruction, you can put out several, variable length,
non-contiguous lines at the terminal with one execution of the macro
instruction. PUTLINE accepts Multiline data in a format similar to that
of single line data except that each line is prefaced with a fullword
forward chain pointer. Figure 55 shows the format of PUTLINE multiline
data.

PUTLINE OUTPUT = (output address,

, MULTLIN, DATA) ~—— _

Pointer to next e/l’emen’r Length Offset DATA \ }
. ~ ——
Length
Pointer to ne>g element Length Offset ' DATA \ }
00000000 Length Offset DATA § i

Figure 55. PUTLINE Multi-Line Data Format

Each of the forward chain pointers points to the next data line to be
written to the terminal. The forward chain pointer in the last data
line contains zeros. In the case of multiline data, you pass the
address of the output line to the PUTLINE service routine by coding the
beginning address of the first forward chain pointer as the OUTPUT
operand address in either the list or the execute form of the macro
instruction. When the macro instruction expands, it will place this
multi-line data address into the second word of the PUTLINE Parameter
Block.

Using the TSO I/0 Service Routines for Terminal I/0 131

Fiqgure 56 is an example of the code required to write multiple lines
of data to the terminal using the PUTLINE macro instruction. Note that
the programmer has built his own IOPL rather than build it with the
execute form of the PUTLINE macro instruction. Note also the use of the
IKJIOPL and IKJCPPL DESECTS. These provide an easy method of accessing
the fields within the IOPL and the CPPL, and they protect your code from
changes made to the control blocks.

>k

¥| | [EWTR]Y] [FIRIoM]_ITIHIE] [T]E[RM IWAL] IMolwl [TIolR] [PIR|olGIR]AIM s L1
¥| | IRIEIG|/ SITIEIR| |OVIE| IClOVMTIAL/INIS| ITIHIE| |AIDIDIRIEISIS| [0]F| [TIHIE| |CIOIMMIAINID
¥| | IPIRIOICIEISIS|OR] |PIARIAIMIEITIEIR] |L|/{S|7] |CICIPIPIL]D
X H\0|UIS|EIKIEIEIP|/ IN|G
X AIDIDIRIE|SISIAIBI! [L|/|TLY
¥ SIAIVIE| JAIRIEIA| |CIHIAl/ NI/ V|G
X X
LR 20,11 SIAIVIE| |TIHIE| |AIDIDIRIEISIS| [OIF| |TIHIEl |CIPIPIL|.
US|/ INIG] |CIPIPIL 5|2 ADIDIREIS|SIAIBI|LI/ITIY] |FIOIR| |TIHIE] |CIPIPIL|.
L 31, [CIPIPILIUIP|T PILIAICIE| |TIHIE| |AIDIPIRIEISIS| |0IF| |TIHIE| WIPIT
X [INTI0| (Al IRIEIGY/ |SITIEIR].
L 4], |CIP\PILIE|C|T] PILIAICIE| |TIHIE| |E|C|T] |AIDIDIRIE|SIS| |/|N|T]O| |A
RE|G)/ |SITIEIR| -
LA 51, |EIC|BIAIDIS PILIAICIE| [TIHE| [AIDIDIRIE|S|S| |0JF| |TIHIE| (EIC|B
X {IN[TI0| |A| [RIEIG|/|SITIEIR]-
b ¥
X| | ISIEIT| |UIP| |AIDIDIRIEISISIAIBIILIIITIYL |FIOIR| ITIHIEL |/ INIPWUIT| [OJUITIPIUIT] |PIAIRIAIMIEITIEIR
x| | ILI/]SIT] IDISIEICIT]
L|A 705 | 1|0PILIADIS
UIS|/INIG] TIOPIL],|7
X ¥
X | FI/ILIL] [/IN] [TIHIE] IZI0IPIL| |EIXICIEIPIT] |FIOIR| |TIHIE| |PITIP\B| |AIDIDIRIEIS|S
ST 31, |I|0|P|L|UIP|T]
S|T 4, |I|O|P|L|E|C|T!
ST 5|, |I|0|P|LIEIC|B
X X
¥ | |/ISISWIE| [THIE| EIXIEICIUITIE] |FIORML |0iF| ITIHIE| |PWITIL]/INIE] IMIAICIRIOL | INISITIRIUICIT]IIOIN,
X
PWUITIL|/ INIE PIAIRIM|={P|U|T|BILIOIK| s
Figure 56. Coding Example -- PUTLINE Multi-Line Data (Part 1 of 2)

132 Guide to Writing a TMP or a CP (Release 21)

OUTIPUIT=|¢ TIEIXTIADS|, MUILITIL]TIN], IDIATIAD, IMIFI=ICIE], [T[O[PLIAIDISD
X X
X PIR|OICIEISIS|I INIG
X ¥
X SITIOR|AIGIE| |DIEICILIAIRIAITI/ |OIN]S
X X
EIC|BIAID|S DIS F
IIOPILIADDIS| | [DIC 4iF|" 9"
TIEX|TIAIDIS| | 1DIC AI(ITIEX|T|2|) FIO\R\WAIRID| [Plo|/INTIER] [TI0| INIEIXIT| IL|/INIE
D|C H '|218)' LIEINGITIH| 10IF| IF|1IRISITL L]/ INE
DiC H'\2" RIE|SIEIRIVIEID].
DIC CILIT|6/ MUIL|TI/ L]/ INIE] [DIATIAL 1]
L ¥
PIUITIBILIOK] | IPIUITIL)I INIE MIF =L 1ISIT|_IFIOIRIM [OF| [TIHIE| [P{UITIL[IINIE] |MIAICR|O
X HNIS[TIRIUICITI! |O|N
X X
TIEIX|T|2 D|C A1) EINID]_|O[F| ICHIA[!IN] [/INIDICIATIOR
DIC H 219 LIEINIGITIH| |0IF| [SIEICIOINID] [L|IINIE
DIC H '8 RIE|SIEIR|VIEID
DIC CILIZI6|"WMUILIT | |L{TINIE] IDIAITIA |2}’
X X
7 K|J|C|PIPIL DISIEICIT| |FIOR| |TIHIE| |C{OMIMIAINID
X PIRIO|CIE|S|S|OIR| [PJAIRIAIMIEITIEIR] |LII[S|TI5] |TIHILIS
X EIXIPIAINIDIS| Wl |TIH| [TIHIE] |SYIMBIOILII|C| INIAIME
X CIPIPIL|. _
I|K|J|I|0IP|L DISIEIC|T| |FIOR| [TIHIE| |/INJPIUIT| |0JUT|PIUIT
X PIARIAIMIEITIEIR] IL|I|S|T|.| IT|HII|S] |E|X|P|AINID|S
* WLITH| [TIHIE| [S)YMBIOIL{IIC] INJAMIE| [Z|O|PIL
EINID | | '
Figure 56. Coding Example -- PUTLINE Multi-Line Data (Part 2 of 2)

MESSAGE LINES: If you code INFOR in the PUTLINE macro instruction, the
PUTLINE service routine writes the information you supply as an
informational message and provides additional functions not applicable
to data lines. An informational message is a line of output from the
program in control to the user at the terminal. It is used solely to
pass output to the terminal; no input from the terminal is required
after an informational message.

There are two types of informational messages processed by the
PUTLINE service routine:

e single Level Messages (SINGLE)
e Multi-Level Message (MULTLVL)
Single lLevel Messages: A single level message is composed of one or

more message segments to be formatted and written to the terminal with
one execution of the PUTLINE macro instruction.

Multilevel Messages: Multilevel messages are composed of one or more
message segments to be formatted and written to the terminal, and one or
more message segments to be formatted and placed on an internal chain in
shared subpool 78. This internal chain can either be put out to the
terminal or purged by a second execution of the PUTLINE macro
instruction.

Using the TSO I/0O Service Routines for Terminal I/0 133

Passing the Message Lines to PUTLINE: You must build each of the
message segments to be processed by the PUTLINE Service Routine as if it
were a line of single line data. The segment must be preceded by a
four-byte header field -- the first two bytes containing the length of
the segment, including the header, and the second two bytes containing
zeros or an offset value if you use the text insertion facility. See
"Using the PUTLINE Text Insertion Function" for a discussion of offset
values. This message line format is required whether the message is a
single level message or a multi-level message.

Because of the additional operations performed on message lines
however, you must provide the PUTLINE service routine with a description
of the line or lines that are to be processed. This is done with an
Output Line Descriptor (OLD).

There are two types of Output Line Descriptors, depending on whether
the messages are single level or multilevel.

The OLD required for a single level message is a variable length
control block which begins with a full word value representing the
number of segments in the message, followed by full word pointers to
each of the segments.

The format of the OILD for multilevel messages varies from that
required for single level messages in only one respect. You must
preface the OLD with a full word forward chain pointer. This chain
pointer points to another output line descriptor or contains zero to
indicate that it is the last OLD on the chain. Figure 57 shows the
format of the Output Line Descriptor.

L} 1

1 L]
| Number of |
| Bytes | Field Name |Contents or Meaning .
I [l 1 J
r Ll L) T
| 4 | none |The address of the next OLD, or zexo if this
| | |is the last one on the chain. This field is
| | |present only if the message pointed to is a |
| | |multi-level message. |
| 4 4]
L} Ll] 1
|) | none | The number of message segments pointed to by
this OLD.

4 none The address of the first message segment.
| 4 | none |The address of the next message segment. |
i 4 L }
) Ll Ll T
| 4 | none |The address of the nth message segment. |
L L 1]

Figure 57. The Output Line Descriptor

You must build the Output Line Descriptor and pass its address to the
PUTLINE Service Routine as the OUTPUT operand address in either the 1list
or_the_execute form of the macro instructiocn—When—the—maexro

instruction expands, it places the address of the Output Line Descriptor
into the second word of the PUTLINE Parameter Block.

Figure 58 shows the two control block structures possible when
processing a message line with PUTLINE. Note that the second word of
the PUTLINE Parameter Block points to an Output Line Descriptor rather
than directly to the message line itself.

134 Guide to Writing a TMP or a CP (Release 21)

Terminal Command PUTLINE

Monitor ATTACH Processor LINK Service

Program | Routine
|

I
|
l
|
1

Reg. 1 Reg. 1
CPPL JOPL
-~
PTPB

OLD

Number

b Segment 1 [Length | Offset Text 4'

Single Level Messages Segment2 [|
|

} Segment n

!

From PTPB

} Next OLD
Number

+ Segment 1
+ Segment 2

I } Segment n

00000000
Number

b Segment 1

} Segment 2

Length | Offset Text I

Multi-Level Messages

oo

:

Figure 58. Control Block Structures for PUTLINE Messages

Using the TSO 1I/0 Service Routines for Terminal I/0O 135

PUTLINE Message Line Processing:

In addition to writing a message out to the terminal, the PUTLINE
service routine provides the following additional functions for message
line (INFOR) processing:

e Message Identification Stripping

e Text Insertion

e Formatting Only

e Second level Informational Chaining

Figure 59 shows the distribution of these PUTLINE Service Routine
functions over the two output message types.

r T 1
I | MESSAGE TYPES |
| k T 1
| FUNCTIONS | Single Level | Multi-Level]
L 4 4]
L) LR L] T
| Message I.D Stripping | X | X |
I [l 4]
) LB] 1
| Text Insertion | X | X |
L L 4 []
L] . T U T
| Formatting Only | X | |
1 [l [l J
L] T 1 1
| Second Level Informational Chaining | | X |
L . L L]

Figure 59. PUTLINE Functions and Message Types

STRIPPING MESSAGE IDENTIFIERS: The user at the terminal indicates
whether or not he wants message identifiers displayed at the terminal.
He does this with the PROFILE command. (See the publications Command
Lanquage Reference and Terminal User's Guide.) If the terminal user has
indicated that he does not want message identifiers displayed, the
PUTLINE service routine strips them off the message before writing the
message to the terminal.

A message identifier must be a variable length character string,
containing no leading or embedded blanks, must not exceed a maximum
length of 255 characters, and must be terminated by a blank.

Messages without message identifiers must begin with a blank. A
message beginning with a blank is handled by the PUTLINE service routine
as a message that does not require message identifier stripping,
regardless of what the user at the terminal has requested. If you do
not provide a message identifier, and do not begin your message with a
blank, the beginning of your message up to the first blank, will be
stripped off by the PUTLINE service routine if message identifier
stripping is requested from the terminal.

The following examples show the effects of the PUTLINE message
identifier stripping function.

If you provide message identifiers on your messages, and the terminal
user does not request message I.D. stripping, your message will appear
at the terminal exactly as it appears here:

r
|MESSAGE0010 THIS IS A MESSAGE.
L

by e

136 Guide to Writing a TMP or a CP (Release 21)

N

If the user at the terminal requests message I.D. stripping, the
message will appear as:

s e

r
| THIS IS A MESSAGE.
L

If you do not want to use message identifiers on your output
messages, begin your message with a blank:

T
| THIS IS A MESSAGE.

b =

A message beginning with a blank is unaffected by a terminal user's
request for message I.D. stripping, and will appear as you wrote it,
minus the blank; that is:

r
| THIS IS A MESSAGE.
L

b ol

USING THE PUTLINE TEXT INSERTION FUNCTION: The text insertion function

of the PUTLINE service routine allows you to build or modify messages at
the time you put them out to the terminal. With text insertion you can

respond to different output message requirements with one basic message

(the primary segment). You can insert text into this primary segment or
add text to it, and thereby build an output message to meet the current

processing situation.

To use text insertion you pass your messages to the PUTLINE service
routine as a variable number of text segments -- from 1 to 255 segments
are permissible. Each segment may contain from 0 to 255 characters,
however, the total number of characters in all the segments must not
exceed 256. You must precede each of these text segments with a four
byte header -- the first two bytes containing the length of the message,
including the header, and the second two bytes containing an offset
value. The offset value in the primary segment must be zero. The
offset in any secondary segments may be from zero to the length of the
primary segment's text field. An offset of zero in a secondary segment
implies that the segment is to be placed before the primary segment. An
offset that is equal to the length of the primary segment's text field
implies that the secondary segment is to be placed after the primary
segment. An offset of n, where n represents a value greater than zero
but less than the total length of the primary segment, implies that the
segment is to be inserted after the nth byte of the primary segment.
PUTLINE places the secondary segment after that character, completes the
message, and puts it out to the terminal.

If you specify an offset in a secondary segment, greater than the
length of the primary segment, PUTLINE cannot handle the request and
returns a code of 12 (invalid parameters) in register 15.

If you provide more than one secondary segment to be inserted into a
primary segment, the offset fields in each of the secondary segments
must indicate the position within the original primary segment at which
you want them to appear. PUTLINE determines the points of insertion by
counting the characters of the original primary segment only. As an
example, if you provided one primary and two secondary segments as
shown:

Using the TSO I/0 Service Routines for Terminal I/0 137

2 bytes 2 bytes 28 bytes

r T 1
| 32 0| PLEASE ENTER TO PROCESSING |
L] J
r

| 9 13| TEXT

L

F T L 1

I 13| 17|CONTINUE |

L 1 L J

PUTLINE would place the first insert, TEXT, at the 1l4th character, and
the second insert, CONTINUE, after the 17th character of the text field
of the Primary segment. After PUTLINE inserts the two text segments,

the message would read:

r !
|PLEASE ENTER TEXT TO CONTINUE PROCESSING |
L }

The leading and trailing blanks are automatically stripped off before
the message is written to the terminal.

138 Guide to Writing a TMP or a CP (Release 21)

Figure 60 is an example of the code required to make use of the text
insertion feature of the PUTLINE Service Routine; it uses the text
segments shown above.

Note that the operand INFOR, which indicates to the PUTLINE service
routine that the text segments are to be processed as informational
messages, requires an output line descriptor to point to the message
segments. Only one Output Line Descriptor (ONEOLD) is required to point
to the 3 messages segments because the 3 segments are to be combined
into one single level message.

¥ WITIRIY| IFRlow] [THHIE [TIERMI WIAILL WioW]/ [TIoR] |PlelolsiRlAM] - []

| RIEGYISITIER] ToWIE| [clo|Tialy WiS| ITHIE! |AlbblRlElss] lole] TrilEl [clommiainip

¥ | IPRIOICEEISISIOR] IPIARRAMEITIER] ILI/ISIT] [(|CIPIPIL])

X H|0W|SEIKIEEL| WG

¥ ADDIRE|SISIAB ILIIIT]Y

X SIAIVIE| 1AIREA! (CHA|IIN /NG

X X
LR 20,17 SAWVIE] |TIHE] 1AlDIDIRIEISIS| lolF| |TIHIE] IclplpIL]-
UISI/INIGL ICIPIPILL, 12 AIDIDIRIEISISIAIBI/ILIT|TIY| IFIOR| THIE| ICIPIPIL]-
L 3], clPIPILIUIP|T] PILIAICIE| |[THIE| |AIDIDRIEISIS| |OIF] |TIHIE! [UPIT

¥ [WITI0 Al IREIG)!(SITIER].
L 1, ICIPIPILIEICIT PILACIE| [THIE! IAIPIDRIEISIS| 10F| [THIE! |EICIT

X JINITIo] 1Al RIEIG/ISITIEIR]-

X ¥

K | /ISISIUE] [TIHIE] [EXIEICUTIE] [FloikM| 0IF| [THIE] 1PUITILIIINIE] MAICIRIO] |1 WISITIRIUICITIOINL 5

| ILLET AT M AL ZE TTHIE! (TlolPlL].

X ¥
PIUTIL/ INE PAIRM=PIUITIBILIK [UIPITI=[(131)1, [EICITI=¢ (4D |, |EICIBI=|ECIBIAIDIS|

OWITPIUIT I={CLONIEIOIL DL, |ITEIRML » 1S/ WIGILIE], |/ INFIOIR)] 5
Fl=|(|E|5|TI0PILIAIDIS]) '

X X

X PRIOICIEISISI/ ING

¥

X SITIORIAIGIE| [DIEICILIAIRIAITI/ IONS

EICIBIAID|S D|C! Fl'a)' SPIAICIE| IFIOR| ITIHIE| |EWVIEINIT! [CIONITIRIOIL

X BILIOICIK

TI0IPILIAIDIS| | |DIC YiF' o) SIPIAICIE| IFIOR| [THIE| [IINPUIT| |OUITPIUITY

Figure 60. Coding Example -- PUTLINE Text Insertion (Part 1 of 2)

Using the TSO I/O Service Routines for Terminal I/O 139

¥ | plARIAMIEITIER] |L|/[S]T].

PUTIBILIK PUTIL] WIE MIF[=IL THE! [Cl/[SIT] [FloleM] [olF] [THIE] IPluiTILl WIE
¥ WIAICRIO| [INISITIRUICITIZIOW! ;| I/]T] IEXPIAINIDIS
% [IN[Tlo] |SIPIAICIE] FlolR 1Al [PITIPIB].

OWIEILID D|C A3 /WD ICIATIE] [THIRIEE! [TIEX[T [SEEGMEINTTS!.

DIC Al(IF|/ RISITISIEIG]) AIDIDRIEISIS] [0F| [TIHE F|/IRS|T] [TIEIXIT]
¥ SIEGMEWIT]-

blc Al([SIEICISIEIG) ADDIRIEISIS] olF] [TIHIE [slelclowp] [TIEXIT
M SIEIGMEWIT] -

DIC Al(I71H]/[RIDISEEG]) ADIDRIEISIS| [0[F| [TIHIEL ITHI/IRID| [TIEXIT
% SIEIGMENIT] .

F|/ IRISITISIEIG| |DIC H '1312]' LIENIGITIHL 10IF] [TIHIE| [FI/RISIT| ISEIGMENT
X [INICILIUDl/ NG| [THIE] IHIEIADIEIR].

p|C] 0] OF FSIET [OF| PRI SEIGMENT] /15
X AlLWALYIS] ZERIOD-

DiC CIL1218| " 1BIPILEAISE] EWITIER] |70 IPRIOICIEISISITINIGIB|”
¥ PRI/ MAIRY!| [SIEIGMEWT].

SIEICIS[El6 DlC MHEE LIEWGITIH [0lF] |TIHIE] |SIEICloVD] [SIEIGMIEINIT
¥ [NCILIUDL WG] |TIHIE] [HIEIADIER] .

DIC TMRAE OIFIFISIEIT] [INITIoL IFlIRISIT] [SIEIGMIENT] IAIT
X WH !/ IclH| [SIElclovip] [SEleMEWIT] 171s] T7lo] 1BlE
X IW|SIERITIED . .

biC CILI5|“ITIEIX|TIB] TEX[T_loIF [SEICloWD] [SIElGMIEWIT].
TH|/RIDISIEG] |plc H ' [1]3]" I EWG|TIH olF 1TWE| [TIHI1RD| ISIEGMENT
¥ (WICLIUo) WG| [TIHIE] [HIEAIDIEIR].

DlC 17! OIFIFISIEIT [/IMTlol [THIEL [Fl7IRISIT] [SElGMIEW]T
¥ AFITIER| WH clH [THE| [THI RIp| [SIEIGIMENT]
¥ /S| Irlo] BIE| |/ WISIERTIED].

DiC L9l Iclow|Tl/INWIES '] ITIEXIT |oiF] |TIH]!|RID] |SIEIGMEW|T]-

TKVICIPIPIL clelplL| bisElctTls| T S| EXIPANDS| W/ 17
X TWE| [sirmBIOLl/ €| HIDIDRESIS| ElPPL

EMD
Figure 60. Coding Example -- PUTLINE Text Insertion (Part 2 of 2)

USING THE FORMAT ONLY FUNCTION: You can also use the PUTLINE service
routine to format a message but not write it at the terminal. To do
this, code the FORMAT operand in the PUTLINE macro instruction and pass
PUTLINE the same message segment structure required for the text
insertion function. The PUTLINE service routine performs text insertion
if requested and places the finished message in subpool 1, which is not
shared. It then places the address of the formatted line into the third
word of the PUTLINE Parameter Block. The storage occupied by the
formatted message belongs to your program and, if space is a
consideration, must be freed by it. The returned formatted line is in
the variable length record format; that is, it is preceded by a four
byte header. You can use the first two bytes of this header to
determine the length of the returned message, and later, to free the

storage occupied by the message with the R form of the FREEMAIN macro
instruction.

One difference between format only processing and text insertion
processing is that format only processing can be used only on single
level messages. You cannot use the format only feature to format
multilevel messages. You can however, use the second level
informational chaining function of PUTLINE to format second level
messages and place them on an internal chain.

140 Guide to Writing a TMP or a CP (Release 21)

BUILDING A SECOND LEVEL INFORMATIONAL CHAIN: PUTLINE can accept two
levels of informational messages at each execution of the service
routine. It formats the first level message and puts it out to the
terminal. The second level message is formatted and a copy of it is
placed on an internal chain in shared subpool 78. This internal chain,
the second level informational chain, is maintained by the I/0 Sexvice
routines for the duration of one command or subcommand processor. You
can use the PUTLINE service routine to purge this chain or to put it out
to the terminal in its entirety.

To purge the chain without putting it out to the terminal, you must
turn on the high order bit in the first byte (ECTMSGF) of the third word
of the Environment Control Table (ECT). The ECT is pointed to by the
second word of the Input Output Parameter List, and may be mapped by the
IKJECT DSECT. See Appendix A for a description of the ECT. The next
time any chaining or unchaining is requested with PUTLINE or PUTGET, the
second level informational chain will be eliminated.

To put the entire chain out to the terminal, use the PUTLINE macro
instruction and place a zero address where the output line address is
normally required. This will cause the PUTLINE service routine to write
the chain to the terminal and eliminate the internal chain. You will
normally use this procedure only if your attention exit routine is using
the PUTLINE macro instruction to process a question mark entered from
the terminal.

Figure 61 is an example of the code required to build a second level
informational chain. It executes the PUTLINE service routine by using
two different execute form macro instructions to modify the Putline
Parameter Block built by the list form of the PUTLINE macro instruction.

The code shown puts two messages out to the terminal and places two
second level messages on an internal chain. It then executes a third
execute form of the PUTLINE macro instruction with a zero OUTPUT=
address to put the second level chain out to the terminal.

Note that the offset value for the primary message segment must
always be zero, and when placing second level messages on an internal
chain, the offset value for the second level message must also be zero.
Note also that you do not place a message identifier on a second level
message.

Using the TSO I/0 Service Routines for Terminal I/0 141

b)

=
. . - [\
RIS N > [N Q NEITILT
Q[N Q Q Q Q NIQ Q <X
QNS Yy N T SN Q EIANILN
[SYLN N Q O > N
Oy W O X (€] ALY N N D)
NEEES NN Yy TR - IOl Q
ENIITIINENLN LY h NNMIETIES N Yy y <
NN NI Q QNS © N NISIX N
S N BN 0 Y IN[oln N AR q
< 0} Q Q Y RIIIENET N [T
X YL NQIW <4 A <[Y N NI \
X A7) INIEO) ENER AYIMLNAN S N[® -
Q QO] 0] | 19 |x ST QIS0 X Wy q
[X] n Wl AR N D Wi Q] [~ QNI N\
WA Wy [R1LVIIS) n Y 2NTNIQIS [\Y] NYIAY n
QY] YIRNIQINQN < [T NV ~UN Q [CI [y
RN [(NES NN X0 [S]IEN N Ol |9 ~ VX A
KN [NINIEIENEIEN D) Yl A RIQ [T S NTE L
Y <[~ O Wiyl a4\ NESEIHIN N IW[Q
Y [IATIAIATIRT W AR UKW S W X [n
O[Q IR IR NN YR =D [% N Oy N
[ANIZ1EN N NS NN Wil AN N RN N
Un INK7) SNIEEES NN [HEN RNLNUENE Q] Q
O - Gyl Ty N TN KIQ NIST N of I TN
G~ UladoQlolal [RJWlq [NRY N0 [S[9]% NY <YWl Q1S
Olk[\ NINEIINEIEN NS S| A LY ENLT Q IRV Q
NN [N EHEIRIEY RN 13 QIYN[NIKNIX ~ I LN ~
NN DITININIRTN &[0 XY ININIOIK X [MRIREN X
NANEE INRY I SOOI N XN N
NN) AN [V21%) Ul Q[S |x (%)
X[W yl o N QO Q INLTIINEI IR NLY) NI RPILTTANIN
PN [O) [NEILT NIENES NLTIEN RN] YisSioll 1 Q
NN B QU RNINIES BN KIS0 Qs AYENES Q ~
< N N EENIENY ENTEN WK - NES RN [MESIND n N
PN < N N N Q] N A L) ~ SR NIENEIEN S <<
NS PNES Q [§) Q [NI MNMIDIVAEIES) [\ Y O & Q¢
SN[KX S W Ly <[1[N Olylol %X [l QL [&n| < <
U< WTOINIY Ny N} RNAS) QK[4 W falolol Q] A > NI Q N
GWININRISINITS ~NQ Q YIN[T NIAT X1 RS T QXN Y O
TVM// NIENEELY N[1N N ERIVILT TRV ISY N[O OINIS & () [
IRV ANLVESIENLS) S0 [Q u PIIININIIIES i < [NI = [
[MICIEILTIES Q| o~ ST NILTE NIQININ QW 'Y N [HYIT X ~
Y LIyini% N[OT™ 3 WialQ wui [T uiQls us) W0 Ix] (%))
INLTIRIEYES XIs= > [INED <IN~ > %) Wi o > () (U]
> U WY U] NIES ~ YOS X] NI ~ Yl XTIy ~ MIEES
NN 0%y > Y N [SIIMINITIIIN N X NQUXS N €] Y
S IR N] B N NN IS Q SN RSO
[o[0/Q(x| X[RILTEN N W IK[ONIUS]S o WsT I TS & N
INETMIARIEE D NN N NN QU AT ON[Q o [Q 1 Rwly Q \N)
| NY%) Ql] D NETIET NEYEILN
NI Wl N[W N[&[N [(FINENN
SO NYIVIENIEN NINENISIEN S [NIQ
[NECIES) [ARNIYKS N{H[Y[®n 7] NN
Y[[DIRNEITIRN [DIRIVILTILWES Q[N
WlAfQ NINLNIY NN NEILNNN
LEIEIEIEIES X X FAEIEIES EIESEIRIEIEIFES * ¥ x[X% EA RS

Coding Example -- PUTLINE Second Level Informational

Figure 61.

Chaining (Part 1 of 2)

142 Guide to Writing a TMP or a CP (Release 21)

() - Q X
[THEAY . N K . N N ~ N
= N Q X[[} [G) Q [N} N [0 (% <
K NIKW) N by D > iy N g N D Q1 R
RYEENTAY PZEEAN NN S ~ N S N Al [IS YN N
Q (NS [N kN Q Q [N G) 0 [HYIN
N]Y NENEN NEYEEIR) KN D NIRIEVIINENE NIER N YV
NEELN 10 3¢ 20 (TN < ~ [U) X (N [V) > N [¥) 2O
Q NN § [T NQ] XY > W x Q Wl -1y S| - of g <
WiNiQ > X WS X QIEY BENLTIRS > [CIAY P [DINAR S T TW%] e TN N 7)
NEREYEINEN LI N [ERNITMTENERNINTIE Yyl Q [T WG Sy{Qa]d x| [x|n
M IN[:HQ 2] o m y AT Lil/X] Q] [0fN O [KIQIy S[OO[Q[% T[] [WW
Q >] NIRRT N ET LN B TR [N QAT NN <[yl Wik % [\
> TRNEYER N NIINEIRY MRS MY 0[N NIyl 0 KNi% Yy 2N VIYINYWIN [RIENY
NN T} R IINEY I y DI MIMINEIEIRE DY NI RN) BN KT NS
N KQ [TILTIEN ylols X Yyl S YOS [TIRTIEN AT < [CIATIE N Yyl T[T
wixololW] [NISTWKIS[W® NN CTTIEY [AES NEIMIIEIR I EN AR LTIATEN Ol xWylmly N
I TCNELX] [STOR[0[B[O[Y] (o] [0 y NN NN NN YR [IRITIEN i~ [€)
INEE I ENEN ~ 1Y <[y Y I N N NI INZLMTIY RN NN NI QNININIRINTW [[oS
[(WINLT NEDLUEIHLT Y HINNNININIIIINEIINITY Yy VIDNS[Q[NN
[al\"< nlol% Q [\ QY LY TIN[Y S TWII[NIQ Q QO M WG N[OII[S[WINNIOIQ
NETINEIENLD y [T Q [NYERIATIETIEN X N [T} Wy Yy QIO ~W[WISNIS[S[W[] " Wiy
INFINDYAY [P INEIE) 4 IQININ SR INIMINEIIANEIEI) N LN [N % (HIRY
[TIEN [AU QNN IWIRIKS TR IYIQISNTOIEQI O <|N[Q[N IIQRIX[S ENESTAN [SYRN Q>
TUX[(N]Q Gl TWlol [WINWWTWYWKRMNYIYEIJ (<[WO 4l IRISTOWWKRINISTW 2 (x| [0
Vs [¥[S]oly SNI& NN B] g0y IR N N ENELNEN AN NI ES) [RIENLNINIES)
I WOTN][O NQQINMIQ W] WL QL[<[0][[N[Q]Q NMIINEIRIIN (MR S K KN ENLY
Qi (/MU QW WY YO ST WL OGS Q QUG I UTY [O STOUISTOUSTWXR[WA X
SPrM/S£F04/044408HFLH0ﬁ57MF04/00A74/05HF4/05$7 Ol
N ~ Q©
\§ Q S
N Q
~ ~ N Wy
~ ~ N O & ~N [~ ~| [0) ()
N S qQ [m [M NEEES (] ())
[7] [0} [0 A n NS L) S 3
[(§ N < AN S Q [0) [kN Q
X K (%) (%) <) KIS A S Er
<~ R 3 [IS ~ N ~ X Q O ~ ~ ~ ~
LY < Wi~ TWl~I~ Tl ~ %) -~ ~ N Gl~ (W~ I~ [y) N [N ~ s~ IN
> LYY 2SN S[m S N M (S[™ [~0 Twm] I§[|~ YINI™
Cl ~ o s TSN S TS S ~ ~ ~ N EY] o~ TR ~ N ~ ~ ~ ~ S~ IN
Y W Q NAVEIEILERNR X TOC X IX[O AAYENEYENANAN I E Y EI R ASI IR Y R AN mw
N Q
~)
N Y Q
(X Y [$] OO V[O[OTO (@) Y] () vl ool [SIES) 9] QO (8] J OO X <
Q Q NN SISV AV Q [8) Q Q1 Q/Q/3] QlqQ Q Q Q Q QIQ N W
~ N
S 1] Q Q ~ Y]
X [7)) Yy [O) [0) N [Q) (0}
< ~ Q N AN < Q (%) \2)
NTELY < I~ [N [} [0 N N > <
Q| N Q Q X 0 %) Q x X X
N D Q N [T [~ 1] Wy Wy
MEINEIEINEIN > RYES % X[* X[k[x|O 2k % {0 %k X EILRIES LAEJES Xk

Figure 61.

Coding Example -- PUTLINE Second Level Informational
Chaining (Part 2 of 2)

Using the TSO I/0 Service Routines for Terminal I/O 143

Return Codes From PUTLINE

When the PUTLINE service routine returns control to the program that
invoked it, it provides one of the following return codes in general
register fifteen:

CODE MEANING
decimal
0 PUTLINE completed normally.
4 The PUTLINE serxrvice routine did not complete. An attention

interruption occurred during its execution, and the
attention handler turned on the completion bit in the
communications ECB.

8 The NOWAIT option was specified and the line was not written
to the terminal.

12 Invalid parameters were supplied to the PUTLINE service
routine.

16 A conditional GETMAIN was issued by PUTLINE for output
buffers and there was not sufficient space to satisfy the
request.

PUTGET - PUTTING A MESSAGE OUT TO THE TERMINAL AND OBTAINING A LINE OF
INPUT IN RESPONSE

Use the PUTGET macro instruction to put messages out to the terminal and
to obtain a response to those messages. A message to the user at the
terminal which requires a response is called a conversational message.
There are two types of conversational messages:

e Mode messages - Those which tell the user at the terminal which
processing mode he is in so that he can enter a response applicable
to that processing mode. Examples of mode messages are the READY
sent to the terminal by the Terminal Monitor Program to indicate
that it expects a Command to be entered, and the Command name (EDIT,
TEST, etc.) sent by a Command Processor to indicate that it is
ready to accept a subcommand name.

e Prompt messages - Those which prompt the user at the terminal to
enter parameters required by the program in control, or to reenter
those parameters which were previously entered incorrectly. Prompt
information can only be obtained from the user at the terminal.

The input line returned by the PUTGET service routine can come from
the terminal or from an in-storage list; PUTGET determines the source of
input from the top element of the input stack unless you have specified
the TERM or ATTN operands in the PUTGET macro instruction.

PUTGET, like PUTLINE and GETLINE has many parameters. The parameters
are passed to the PUTGET service routine according to the operands you
code in the List and the Execute forms of the PUTGET macro instruction.
This topic describes:

e The list and execute forms of the PUTGET macro instruction.
e Building the PUTGET Parameter Block.

o Types and formats of the output line.

144 Guide to Writing a TMP or a CP (Release 21)

® Passing the message lines to PUTGET.
o PUTGET processing.

e Input line format - the input buffer.
e An example of PUTGET.

from PUTGET.

e Return codes

The PUTGET Macro Instruction - List Form

The list form of
PUTGET Parameter
the PUTGET macro

the PUTGET macro instruction builds and initializes a
Block (PGPB), according to the operands you specify in
instruction.

The PUTGET Parameter Block indicates to

the PUTGET service routine which of the PUTGET functions you want

performed.

Figure 62 shows the list form of the PUTGET macro

instruction; each of the operands is explained following the figure.
Appendix B describes the notation used to define macro instructions.

r T T 1
I | | , PROMPT [
| [symboll | PUTGET | |OUTPUT=(output address),SINGLE +MODE) |
| | | ,MULTLVL({ , PTBYPS I
| | | +TERM |
l | | /ATTN |
		-
	I r	
[EDIT	
I		, TERMPUT= (
1	CONTROL),NOWAIT(), HOLD ,BREAKIN(
		-
		[.TERMGET= ({EDIT
	IL ASIS(), NOWAIT]	
L L L []
Figure 62. The List Form of the PUTGET Macro Instruction

OUTPUT=output address

Specify the address of the Output Line Descriptor or a zero.

The

Output Line Descriptor (OLD) describes the message to be put out,
and contains the address of the beginning (the one-word header) of
the message or messages to be written to the terminal.

You have the option under MODE processing to provide or not provide

an output message.
OUTPUT=0, and only

If you do not provide an output line, code
the GET functions will take place. If you do

provide an output message, the type of message and the processing

to be performed by

the PUTGET service routine are described by the

OUTPUT sublist operands SINGLE, MULTLVL, PROMPT, MODE, PTBYPS,

TERM, and ATTN.

SINGLE
The output message

MULTLVL
The output message
message is written
are printed at the
marks entered from
defaulted to.

PROMPT
The output line is

SINGLE and PROMPT are the default values .

is a single level message.

consists of multiple levels. The first level

to the terminal, the secondary level messages
terminal, one at a time, in response to question
the terminal. Prompt must also be specified or

a prompt message.

Using the TSO I/0 Service Routines for Terminal I/0 145

MODE
The output line is a mode message.

PTBYPS
The output line is a prompt message and the terminal user's
response will not print at those terminals that support the print
inhibit feature. A terminal user can override bypass processing by
hitting an attention followed by a carriage return before entering
his input.

TERM
Specifies that the output line (a mode message) is to be written to
the terminal, and a line is to be returned from the terminal,
regardless of the top element of the input stack.

ATTN
Specifies that the output line (a mode message) is to be initially
suppressed but an input line is to be returned from the terminal.

TERMPUT=
Specifies the TPUT options requested. Since PUTGET issues a TPUT
SVC to write the message to the terminal, this operand is used to.
indicate which of the TPUT options you want to use. The TPUT
options are EDIT, ASIS or CONTROL, WAIT, or NOWAIT, NOHOLD, or
HOLD, and NOBREAK or BREAKIN. The default values are EDIT, WAIT,
NOHOLD, and NOBREAK.

EDIT

Specifies that in addition to minimal editing (see ASIS), the

following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent, the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) under ASIS.

ASIS

Specifies that minimal editing is to be performed by TPUT as

follows:

a. The line of output is to be translated from EBCDIC to terminal
code. Invalid characters will be converted to a printable
character to prevent program caused I/O errors. This does not
mean that all unprintable characters will be eliminated.
"Restore®, "upper case", "lower case", "bypass", and "bell
ring", for example, might be valid but nonprinting characters
at some terminals. (See CONTROL).

b. Transmission control characters will be added.

c. EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

146 Guide to Writing a TMP or a CP (Release 21)

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see £. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

d. If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, TPUT attempts alternate
methods to accomplish the backspace.

e. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

f. 1Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control
characters and will not print or move the carrier on the terminal.
This option should be used for transmission of characters such as
"bypass", "restore®, or "bell ring".

WAIT
Specifies that control will not be returned to the program that
issued the PUTGET until the output line has been placed into a
terminal output buffer.

NOWAIT
Specifies that control should be returned to the program that
issued the PUTGET macro instruction, whether or not a terminal
output buffer is available. If no buffer is available a return
code of 18 (decimal) is returned.

NOHOLD
Specifies that control is to be returned to the issuer of the
PUTGET macro instruction, and that program can resume processing as
soon as the output line has been placed on the output queue.

HOLD .
Specifies that the program that issued the PUTGET macro instruction
cannot continue its processing until this output line has been put
out to the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed
the line.

BREAKIN
Specifies that output has precedence over input. If the user at
the terminal is transmitting, he is interrupted, and this output
line is sent. Any data that was received before the interruption
is kept and displayed at the terminal following this output line.

TERMGET=
Specifies the TGET options requested. Since PUTGET issues a TGET
SVC to bring in a line of data, this operand is used to indicate to
the TGET SVC which of the TGET options you wish to use. The TGET
options are EDIT or ASIS, and WAIT or NOWAIT. The default values
are EDIT and WAIT.

Using the TSO I/0 Service Routines for Terminal I/O 147

EDIT

ASIS

WAIT

Specifies that in addition to minimal editing (see ASIS), the
buffer is to be filled out with trailing blanks.

Specifies that minimal editing is to be done as follows:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing is performed.

d. Line feed and carriage return characters, if present, are

removed.

Specifies that control is to be returned to the program that issued
the PUTGET macro instruction, only after an input message has been
read.

NOWAIT

MF=L

Note:

Specifies that control should be returned to the program that
issued the PUTGET macro instruction whether or not a line of input
is available. If a line of input is not available, a return code
of 20 (decimal) is returned in register 15 to the command
processor.

Indicates that this is the list form of the macro instruction.

In the list form of the PUTGET macro instruction, only

r
|PUTGET MF=L
L

b = d

is required.

The output line address is not specifically required in the list form of
the PUTGET macro instruction, but must be coded in either the list or
the execute form:

r
|OUTPUT=(output address)
L

e e)

148

Guide to Writing a TMP or a CP (Release 21)

The other operands and their sublists, as shown below, are optional
because you can supply them in the execute form of the macro
instruction, or if you want the default values, they are supplied
automatically by the expansion of the macro instruction.

, PROMPT
OUTP UT=(,SINGLE ,MODE)
,MULTLVL({,PTBYPS
I , TERM I
| +ATTN
|
EDIT
, TERMPUT=({ ASIS ,WAIT ,NOHOLD| (,NOBREAK])
CONTROL|)}, NOWAIT(},HOLD , BREAKIN
‘ |
,TERMGET=(JEDIT| |,wAIT [)
ASIS(), NOWAIT

The operands you specify in the list form of the PUTGET macxro
instruction set up control information used by the PUTGET service
routine. This control information is passed to the PUTGET service
routine in the PUTGET Parameter Block, a four word parameter block built
and initialized by the list form of the PUTGET macro instruction.

The PUTGET Macro Instruction - Execute Form

Use the execute form of the PUTGET macro instruction to prepare a mode
or a prompt message for output to the terminal, to determine whether or
not that message should be sent to the terminal, and to return a line of
input, from the source indicated by the top element of the input stack
to the program that issued the PUTGET macro instruction.

You can use the execute form of the PUTGET macro instruction to build
and initiate the Input Output Parameter List required by the PUTGET
service routine, and to request PUTGET functions not already requested
by the list form of the macro instruction, or to change those functions
previously requested in either a list form or a previous execute form of
the PUTGET macro instruction.

Figure 63 shows the execute form of the PUTGET macro instruction;

each of the operands is explained following the figure. Appendix B
describes the notation used to define macro instructions.

Using the TSO I/0 Service Routines for Terminal I/O 149

o S e . e S S S S, St S — — T— ——— T——— — —]

[symbol]

A}
PUTGET | [PARM=parameter address][,UPT=upt addressl

ECT=ect address][,ECB=ecb address]
[+PROMPT
+OUTPUT= (output address |,SINGLE +MODE)
g MULTLVLf PTBYPS
¢« TERM
+ATTN

| L
|
|
|
I
I
!
|
| EDIT
I
I
I F
!
|
|
| -
!
I

, TERMPUT= (|ASIS ,WAIT ,NOHOLD|), NOBREAK()
CONTROL| |, NOWAIT(), HOLD , BREAKIN

LJWAIT ()

, NOWAIT

s TERMGET=()EDIT
ASIsS

-

,ENTRY~ entry address JMF=(E, /list address{)
(15) (1)

T ——
g e e e S e e s — ————— — —— — —————]

Figure 63. The Execute Form of the PUTGET Macro Instruction

PARM=parameter address

Specifies the address of the 4-word PUTGET Parameter Block (PGPB).
This address is placed into the Input Output Parameter List (IOPL).
It may be the address of a list form PUTGET macro instruction. The
address is any address wvalid in an RX instruction, or you can put
it in one of the general registers 2-12, and use that register
number, enclosed in parentheses, as the PARM= address.

UPT=upt address

Specifies the address of the User Profile Table (UPT). This
address is placed into the IOPL when the execute form of the PUTGET
macro instruction expands. You can obtain this address from the
Command Processor Parameter List (CPPL) pointed to by register one
when the Command Processor is attached by the Terminal Monitor
Program. The address can be used as received in the CPPL or you
can put it in one of the general registers 2-12, and use that
register number, enclosed in parentheses, as the UPT address.

ECT=ect address

Specifies the address of the Environment Control Table (ECT). This
address is placed into the IOPL when the Execute form of the PUTGET
macro instruction expands. You can obtain this address from the
Command Processor Parameter List (CPPL) pointed to by register one
when the Command Processor is attached by the Terminal Monitor
Program. The address can be used as received in the CPPL or you
can put it in one of the general registers 2-12, and use that
register number, enclosed in parentheses, as the ECT address.

ECB=ecb address

150

Specifies the address of the Command Processor Event Control Block
(ECB). This address is placed into the IOPL by the execute form of
the Putget macro instruction when it expands.

You must provide a one-word Event Control Block and pass its
address to the PUTGET service routine by placing the address into
the IOPL. If you code the address of the ECB in the execute form
of the PUTGET macro instruction, the macro instruction places the
address into the IOPL for you. The address can be any address
valid in an RX instruction, or you can put in one of the general
registers 2-12, and use that register number, enclosed in
parentheses, as the ECB address.

Guide to Writing a TMP or a CP (Release 21)

OUTPUT=output address

Is the address of the Output Line Descriptor or a zero. The Output
Line Descriptor (OLD) describes the message to be put out, and
contains the address of the beginning (the one-word header) of the
message or messages to be written to the terminal.

You have the option under MODE processing to provide or not provide
an output message. If you do not provide an output line, code
OUTPUT=0, and only the GET functions will take place. If you do
provide an output message, the type of message and the processing
to be performed by the PUTGET Service Routine are described by the
OUTPUT sublist operands SINGLE, MULTLVL, PROMPT, MODE, PTBYPS,
TERM, and ATTN. The default values are SINGLE and PROMPT.

SINGLE

The output message is a single level message.

MULTLVL

The output message consists of multiple levels. The first level
message is written to the terminal, the secondary level messages
are printed at the terminal, one at a time, in response to question
marks entered from the terminal. PROMPT must also be specified or
defaulted to.

PROMPT

MODE

The output line is a prompt message.

The output line is a mode message.

PTBYPS

TERM

ATTN

The output line is a prompt message and the terminal user's
response will not print at those terminals that support the print
inhibit feature. A terminal user can override bypass processing by
hitting an attention followed by a carriage return before entering
his input.

Specifies that the output line (a mode message) is to be written to
the terminal, and a line is to be returned from the terminal,
regardless of the top element of the input stack.

specifies that the output line (a mode message) is to be initially
suppressed but an input line is to be returned from the terminal.

TERMP UT=

EDIT

Specifies the TPUT options requested. PUTGET issues a TPUT SVC to
write the message to the terminal, this operand is used to indicate
which of the TPUT options you want to use. The TPUT options are

EDIT, ASIS or CONTROL, WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK
or BREAKIN. The default values are EDIT, WAIT, NOHOLD and NOBREAK.

Specifies that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent, the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) under ASIS.

Using the TSO I/0 Service Routines for Terminal I/0 151

ASIsS
Specifies that minimal editing is to be performed by TPUT as
follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program caused I/0 errors. This does not mean that all
unprintable characters will be eliminated. "Restore", "upper
case", "lower case", "bypass", and "bell ring", for example,
might be valid but nonprinting characters at some terminals.
(See CONTROL).

b. Transmission control characters are added.

c. EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see f. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

d. If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, TPUT attempts alternate
methods to accomplish the backspace.

e. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

f. 1Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

CONTROL
Specifies that this line is composed of terminal control characters
and will not print or move the carrier on the terminal. This
option should be used for transmission of characters such as
"bypass", "restore", or "bell ring".

WAIT
Specifies that control will not be returned to the program that
issued the PUTGET until the output line has been placed into
terminal output buffer.

NOWAIT
Specifies that control should be returned to the program that
issued the PUTGET macro instruction, whether or not a terminal
output buffer is available. If no buffer is available, a return
code of 18 (decimal) is returned. '

NOHOLD
Specifies that control is to be returned to the program that issued
the PUTGET macro instruction, and it can continue processing as
soon as the output line has been placed on the output queue.

152 Guide to Writing a TMP or a CP (Release 21)

HOLD

Specifies that the program that issued the PUTGET macro instruction
cannot continue its processing until the output line has been put
out to the terminal or deleted.

NOBREAK

Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed
the line.

BREAKIN

Specifies that output has precedence over input. If the user at
the terminal is transmitting, he is interrupted, and this output
line is sent. Any data that was received before the interruption
is kept and displayed at the terminal following this output line.

TERMGET=

EDIT

ASIsS

WAIT

Specifies the TGET options requested. PUTGET issues a TGET SVC to
bring in a line of data, this operand is used to indicate to the
TGET SVC which of the TGET options you want to use. The TGET
options are EDIT or ASIS, and WAIT or NOWAIT. The default values
are EDIT and WAIT.

Specifies that in addition to minimal editing (see ASIS), the
buffer is filled out with trailing blanks.

Specifies that minimal editing is done as follows:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing is performed.

d. Line feed and carriage return characters, if present, are

removed.

Specifies that control is to be returned to the program that issued
the PUTGET macro instruction, only when an input message has been
read.

NOWAIT

Specifies that control should be returned to the program that
issued the PUTGET macro instruction whether or not a line of input
is available. If a line of input is not available, a return code
of 20 (decimal) is returned in register 15.

ENTRY= entry point address

MF=E

(15)
Specifies the entry point of the PUTGET service routine. If ENTRY
is omitted, the PUTGET macro expansion generates a LINK macro
instruction to invoke the PUTGET service routine. The address may
be any address valid in an RX instruction or (15) if you load the
entry point address into general register 15.

Indicates that this is the execute form of the PUTGET macro
instruction.

Using the TSO I/0 Service Routines for Terminal I/O 153

listaddr
(1)

The address of the U4-word Input Output Parameter List (IOPL). This
can be a completed IOPL that you have built, or it may be 4 words
of declared storage that will be filled from the PARM, UPT, ECT,
and ECB operands of this execute form of the PUTGET macro
instruction. The address must be any address valid in an RX
instruction or (1) if you have loaded the parameter list address
into general register 1.

Note: In the execute form of the PUTGET macro instruction, only the
following is required:

r

|PUTGET MF=(E,)list address()
| (1)

L

T——

The PARM=, UPT=, ECT=, and ECB= operands are not required if you have
built your IOPL in your own code.

The output line address is not specifically required in the execute form
of the PUTGET macro instruction, but must be coded in either the list or
the execute form:

r
|OUTPUT=(output address)
L

by =

The other operands and sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execute form; or because you may want to use the default values which
are automatically supplied by the macro expansion itself. The other
operands and sublists are:

', PROMPT
OUTPUT=(g,SINGLE z ,MODE |)
,MULTLVL({,PTBYPS
L TERM
| +ATTN |
EDIT
, TERMPUT=(| ASIS ,WAIT ,NOHOLD] (, NOBREAK))
[CONTROL| }, NOWAIT(), HOLD , BREAKIN |
| ' |
[, TERMGET=((EDIT| {,WwAIT [|) |
| ASIS(), NOWAIT |
L []

The ENTRY= operand need not be coded in the macro instruction. If
it is not, a LINK macro instruction is generated by the PUTGET macro
expansion to invoke the PUTGET service routine.

The operands you specify in the execute form of the PUTGET macro
instruction set up control information used by the PUTGET service
routine. You can use the PARM=, UPT=, ECT=, and ECB= operands of the
PUTGET macro instruction to build, complete, or modify an IOPL. The
OUTPUT=, TERMPUT=, and TERMGET= operands and their sublist operands
initiate the PUTGET Parameter Block. The PUTGET Parameter Block is
referenced by the PUTGET service routine to determine which functions
you want PUTGET to perform.

154 Guide to Writing a TMP or a CP (Release 21)

Building the PUTGET Parameter Block (PGPB)

When the list form of the PUTGET macro instruction expands, it builds a
four-word PUTGET Parameter Block (PGPB). This PGPB combines the
functions of the PUTLINE and the GETLINE parameter blocks and contains
information used by the PUT and the GET functions of the PUTGET service
routine. The list form of the PUTGET macro instruction initializes this
PGPB according to the operands you have coded in the macro instruction.
This initialized block, which you may later modify with the execute form
of the PUTGET macro instruction, indicates to the PUTGET service routine
the functions you want performed. It also contains a pointer to the
Output Line Descriptor that describes the output message and it provides
a field into which the PUTGET service routine places the address of the
input line returned from the input source.

You must pass the address of the PGPB to the execute form of the
PUTGET macro instruction. Since the list form of the macro instruction
expands into a PGPB, all you need do is pass the address of the list
form of the macro instruction to the execute form as the PARM value.

The PUTGET Parameter Block is defined by the IKJPGPB DSECT. Figure
64 describes the contents of the PUTGET parameter block.

T 1

] 1
| Number of |
| Bytes | Field Contents or Meaning
1 1 (| 1]
T T
i 2 i | PUT Control flags. These bits describe the |
| | Joutput line to the PUTGET Service Routine. |
| | Byte 1
| | +.0. ... |Always zero for PUTGET.
| | «<el |The output line is a single level message. |
11 | eees O0u.. |Must be zero for PUTGET. l
| | eees <1l.. |The output line is a multilevel message. |
| | eeee 2.l |The output line is a PROMPT message.
i1 | XX.. ..x. |Reserved.
	Byte 2	
	lee. w...	The output line is a MODE message.
	+.-1	BYPASS. processing is requested.
	eeee 1l...	ATTN processing is requested. l
	-xx. .xxx	Reserved.
AL		
2 } TPUT options field. These bits indicate to		

|the TPUT SVC which of the TPUT options you
want to use.

Byte 1
| | Oeee wen. |Always set to 0 for TPUT. |
| |] eee0 «... |WAIT processing has been requested. Control |
will be returned to the issuer of TPUT only
after the output line has been placed into a
terminal output buffer.

eeel <... |NOWAIT processing has been requested.

| Control will be returned to the issuer of

| TPUT whether or not a terminal output buffer
is available.

eeee Oc.. |NOHOLD processing has been requested. The
issuer of the TPUT can resume processing as
| | | soon as the output line has been placed on |
the output queue.

eeee l... |HOLD processing has been requested. The
issuer of the TPUT is not to resume
processing until the output line has been
| [written to the terminal or deleted.

L L

| Figure 64. The PUTGET Parameter Block (Part 1 of 2)

Using the TSO I/0 Service Routines for Terminal I/O 155

Bytes

Number of

Field

Contents or Meaning

RS Spu——

«0..

e eocwe

.l1..

..00
.. 01
..10

« XX

Byte 2

| NOBREAK processing has been requested.
|]output line will be printed only when the
| texrminal user is not entering a line.
| BREAKIN processing has been requested.
|output line is to be sent to the terminal
| immediately. If the terminal user is
|entering a line, he is to be interrupted.
|EDIT processing has been requested.

|ASIS processing has been requested.

| CONTROL processing has been requested.

| Reserved

| Reserved.
1

The

The

+
|The address of the Output Line Descriptor.
i

Byte 1
. 00.
eeel ca.n

Xeeoo XXXX

Byte 2
XXXX XXXX

+
|GET control flags.

I ”

|Always zero for PUTGET.

| TERM processing is requested.
|Reserved bits.

!

I

| Reserved.
1

Byte 1
1...

seel oo

esal

..00

..01

e XXe XXow

Byte 2
XXXX XXXX

}
| TGET options field. These bits indicate to
| the TGET SVC which of the TGET options you

|wish to use.

I

|Always set to 1 for TGET.

|WAIT processing has been requested.

| SVC only after an input message has been
| read.
| NOWAIT processing has been requested.

|Control will be returned to the issuer of the
| TGET SVC whether or not a line of input is
If no line was available, PUTGET

|available.
|returns a code of 20 (decimal) in general
| register 15.

|EDIT processing has been requested. In
|addition to the editing provided by ASIS

| processing, the input buffer is to be filled

|out with trailing blanks to the next
| doubleword boundary.
|ASIS processing has been requested.

|description).
| Reserved bits.

Reserved.

Control
|will be returned to the issuer of the TGET

(See the
|ASIS operand of the PUTGET macro instruction

[e e s s, Wi e s P S S S o o S, e S S . W S S e, W S, S, S, e S, e S, e, B G, S, S, e, S, . et e, M s BAn S e S . . S B e, S, S, . . S, e e, .

o e ——— e

PGPBIBUF

e e ——

| The address of the input buffer.
| sexrvice Routine fills this field with the
| address of the input buffer in which the
|input line has been placed.

L

The PUTGET

T R R S S S ——

Figure 64.

The PUTGET Parameter Block (Part 2 of 2)

156 Guide to Writing a TMP or a CP (Release 21)

Types and Formats of the Output Line

The PUTGET Service Routine writes only conversational messages to the
terminal; it does not handle data lines. For information on how to
write a data line or a nonconversational message to the terminal, see
the section on the PUTLINE macro instruction.

PUTGET accepts two output line formats depending upon whether the
message you provide is a single level message or a multilevel message.

SINGLE LEVEL MESSAGES: A single level message is composed of one or
more message segments to be formatted and written to the texminal with
one execution of the PUTGET macro instruction.

MULTI-LEVEL MESSAGES: Multilevel messages are composed of one or more
message segments to be formatted and written to the terminal, and one
or more message segments to be formatted and printed to the terminal in
response to question marks entered from the terminal. WNote however,
that if you specify MODE in the PUTGET macro instruction, you can
process only single level messages. If you specify PROMPT in the
PUTGET macro instruction, then these second level messages will be
written to the terminal, one at a time, in response to successive
question marks entered from the terminal. If these PROMPT messages are
to be available to the user at the terminal however, the top element of
the input stack must not specify a procedure element as the current
source of input, and the terminal user must not have inhibited
prompting. (See the PROFILE command in the TSO Command Language
Reference.

Passing the Message Lines to PUTGET

You must build each of the message segments to be processed by the
PUTGET service routine as if it were a line of single line data. The
segment must be preceded by a four-byte header field -- the first two
bytes containing the length of the segment including the header, and
the second two bytes containing zeros or an offset value if you use the
text insertion facility provided by PUTGET. This message line format
is required whether the message is a single level message or a
multilevel message.

Because of the additional functions performed on message lines --
message ID stripping, text insertion, and multi-level processing -- you
must provide the PUTGET Service Routine with a description of the line
or lines that are to be processed. This is done with an OUTPUT Line
Descriptor (OLD).

There are two types of Output Line Descriptors depending on whether
the messages are single level or multilevel.

The OLD required for a single level message is a variable length
control block which begins with a fullword value representing the
number of segments in the message, followed by fullword pointers to
each of the segments.

The format of the OILD for multilevel messages varies from that
required for single level messages in only one respect. You must
preface the OLD with a fullword forward chain pointer. This chain
pointer points to another Output Line descriptor or contains zero to
indicate that it is the last OLD on the chain. Figure 65 shows the
format of the Output Line Descriptor.

Using the TSO IAO Service Routines for Terminal I/0 157

T T 1
| Number of | |
‘| Bytes Field |Contents or Meaning |
| (] - i]
] T T
4	The address of the next OLD, or zero if this
	is the last one on the chain. This field is
	present only if the message pointed to is a
	multi-level message.
L [] }	
1]]] L}	
4	
i : + {	
4	The address of the first message segment.
1]	
L) T	
4 The address of the next message segment.	
3

: L]

4 | The address of the nth message segment. |

L J

Figure 65. The Output Line Descriptor (OLD)

You must build the Output Line Descriptor and pass its address to the
PUTLINE service routine as the OUTPUT operand address in either the list
or the execute form of the macro instruction. When the macro
instruction expands, it places this OID address into the second word of
the PUTLINE Parameter Block.

Figure 66 shows the two control block structures possible when
passing an output message to the PUTGET service routine. Note that
MODE, TERM, or ATTN may not be coded in the PUTGET macro instruction if
you want to provide multilevel messages to the terminal. (Mode messages
can have only one level.)

158 Guide to Writing a TMP or a CP (Release 21)

PUTGET
LINK Service
Routine
Single Level Message
|
|
l
R |
eg. 1
10OPL OoLD
Number
+ Segment 1
} Segment 2 \Length‘Offsef | Message Segment J
o

' 1 !

‘ + Segment n
PGPB l I l

-
00000000
OoLD
/ A Next OLD
From PGPB Number
4 Segment 1 \

’ Segment 2 LengchOFfsefl Message Segment 4]
1
|
:\ 1 |
* Segment n \47
| |

MODE
TERM | may not be specified. OLD
ATIN

Multi- Level Messages

00000000
Number

} Segment 1
f Segment 2 \"-I I T l
|
[|

.

Figure 66. Control Block Structures for PUTGET Output Messages

Using the TSO I/0 Service Routines for Terminal I/0 159

PUTGET Processing

Text insertion and message identifier stripping are available to all
output messages processed by the PUTGET service routine. For a detailed
description of these functions see the section headed "PUTLINE Message
Line Processing."

The PUTGET service routine provides other processing capabilities
dependent upon whether the message is a MODE or a PROMPT message.

MODE MESSAGE PROCESSING: A MODE message is a message put out to the
terminal when a command or a subcommand is anticipated. The processing
of MODE messages by the PUTGET service routine is dependent upon the
following two conditions:

1. Are you providing an output line?
2. From what source is the input line coming?

Is an Output Line Present: You need not provide an output line to the
PUTGET service routine. If you do provide an output line address then
PUT processing will take place. Whether your output 1line is written to
the terminal is then dependent upon the input source indicated by the
input stack. If you do not provide an output line (OUTPUT=0) then only
the GET function of the PUTGET service routine takes place.

What is the Input Source: The source of the input line, as determined
by the top element of the input stack, determines the type of processing
performed by the PUTGET service routine. You may however override the
input stack by coding the TERM or ATTN operands in the PUTGET macro
instruction. The two sources of input supported are:

1. Terminal
2. In-storage

If the current source of input is the terminal, and you provide an
output line, the PUTGET serxrvice routine writes the line to the terminal,
returns a line from the terminal, and places the address of the returned
line into the fourth word of the PUTGET Parameter Block. If the line
returned from the terminal is a question mark however, the PUTGET
service routine causes the secondary level informational message chain
(if one exists) to be written to the terminal, again puts out the mode
message, and then returns a line from the terminal. If the user at the
terminal enters a question mark in response to a mode message, and no
second level message chain exists, PUTGET puts out the message
"IKJ66760I NO INFORMATION AVAILABLE", puts the mode message out again,
and returns a line from the terminal.

Note that if the user enters a question mark from the terminal, the
second level chain returned to the terminal is not related to the
current mode message but to the Command Processor just terminated; mode
messages can have only one level.

If the current source of input is an in-storage list, the output line
(if you provide one) is ignored and the PUTGET Service Routine normally
obtains an input line from the in-storage list and places a pointer to
that line in the fourth word of the PGPB. If however, a second level
information chain exists, PUTGET will only return a line if the user at
the terminal has access to the information in the chain through the
PAUSE mechanism. If the chain is not available to the user, no line is
obtained by PUTGET, and it returns a code of 12 in register 15. You can
test this return code, and if you want, recover from this error
condition by turning on the high order bit of the ECTMSGF field of the
Environment Control Table (see Appendix A) and reissuing the PUTGET.

The second level information chain is then purged and a line is obtained
from the in-storage list.

160 Guide to Writing a TMP or a CP (Release 21)

—

PAUSE PROCESSING: If the user at the terminal has requested the PAUSE
option on the PROFILE command, the PUTGET Sexrvice Routine makes the
chained second level informational messages available to him, even if
the current input source is not the terminal.

PAUSE processing works as follows. If a second level informational
chain does exist, PUTGET puts out the message 'IKJ56762A PAUSE' to the
terminal informing the terminal user that PAUSE processing is in effect.
At this point the terminal user can enter either a question mark to
indicate that he wishes to have the chained second level messages put
out to the terminal, or a carriage return to indicate that the
information is not needed. If the user enters a carriage return, the
second level informational message chain is eliminated. If he enters
any response other than a question mark or a carriage return, PUTGET
prompts him for a correct response.

PROMPT MESSAGE PROCESSING: A PROMPT message is a message put out to the
terminal when the program in control requires input from the terminal
user. PROMPT information must come from the terminal and can not be
obtained from any other source of input. There are two cases when a
request for PROMPT processing is denied by PUTGET:

1. When the current source of input, as determined by the top element
of the input stack, is an in-storage procedure.

2. When the terminal user has requested via the PROFILE command that
no prompting be done.

If PROMPT processing is allowed, the PUTGET service routine writes the
first level message to the terminal and obtains an input line from the
terminal. If the input line is a question mark, PUTGET either returns
the next level message provided, or a message informing the user that no
information is available. PUTGET continues to respond to question marks
entered from the terminal by writing one more secondary level message to
the terminal in response to each question mark entered until the chain
is exhausted; at that point PUTGET issues a message informing the user
at the terminal that no more information is available. The prompt
message is not repeated and the task goes into an input wait until the
terminal user enters a line. When a line is obtained from the terminal,
PUTGET places the address of the line into the fourth word of the PGPB.

Input Line Format - the Input Buffer

The fourth word of the PUTGET Parameter Block contains zeros until the
PUTGET service routine returns a line of input. The service routine
places the requested input line into an input buffer beginning on a
doubleword boundary located in subpool 1. It then places the address of
this input buffer into the fourth word of the PGPB. The input buffer
belongs to the program that issued the PUTGET macro instruction. The
buffer or buffers returned by PUTGET are automatically freed when your
code relinquishes control. If space is limited, you should free the
input buffer with the FREEMAIN macro instruction after you have
processed or copied the input line.

Using the TSO I/0 Service Routines for Terminal I/0O 161

Regardless of the source of input, an in-storage list or the
terminal, the input line returned by the PUTGET service routine is in a
standard format. All input lines are in the variable length record
format with a fullword header followed by the text returned by PUTGET.
Figure 67 shows the format of the input buffer returned by the PUTGET
Service Routine.

Length Offset TEXT

2 Bytes 2 Bytes

Figure 67. Format of the PUTGET Input Buffer

The two-byte length field contains the length of the returned input
line including the header (4 bytes). You can use this length field to
determine the length of the input line to be processed, and later, to
free the input buffer with the R form of the FREEMAIN macro instruction.
The two-byte offset field is always set to zero on return from the
PUTGET Service Routine.

162 Guide to Writing a TMP or a CP (Release 21)

Figure 68 shows the PUTGET control block structure for a multilevel
PROMPT message after the PUTGET service routine has returned an input
line.

PUTGET
LINK Service

|
I
!
|
Reg. 1

Output Message

IOPL OoLb

} Next OLD
Number

b Segment 1 \»LLength OFfsef‘ Message Segment I

-~ } Segment 2
. R — |
PGPB l | I

e oLD
00000000

.
—]

Input Line

[Length | Offset | DATA

Figure 68. PUTGET Control Block Structure - Input Line Returned

An Example of PUTGET

Figure 69 is an example of the code required to execute the PUTGET macro
instruction. The code uses a multilevel PROMPT message as the PUTGET
output line. It assumes that a line of input will be returned from the
terminal and tests only for a zero return code (PUTGET completed
normally).

Using the TSO I/0 Service Routines for Terminal I/0 163

The execute form of the PUTGET macro instruction builds the I/0
parameter list, using the addresses of the user profile table and the
environment control table supplied in the Command Processor Parameter
List. In addition, the I/0 parameter list contains the address of an
ECB built by the code, and the address of the list form of the PUTGET
macro instruction as the PUTGET Parameter Block address.

Note that the TERMPUT, TERMGET, and ENTRY operands are not coded; the
default values are used. Note also that this code is effective only if
the top element of the input stack indicates a non-procedure as the
current source of input.

x| | [Tl]s] el elcle] [olA Iclolole] lalslslumiels] [ewlrirly] IFlelo| [rlvle] [Pl
% | RIEIG|/|S|T|ER| |OWIEl IClIOW|TIAlY WIS| |TWIE| lAlpDIR\EISIS| 10/F| 1TWIE| (ClOWWrAWID
x| | |PIROICIEISISOR| | IPAIRIAMIEITER| LI Is7] | (lclplPlLl)
% *
* Hloluis|E|k|E|E|P I/ IV
* A 1DIRIEISISIAIBl (L1771
% SAVIE| |AIRIEIA| |CHIAIZ |/ MG
L3
L|P 2|, |7 sAWVIE] [TwlE] WIbbRESIs| bIF| I7WE| clelelL]-
vis|/ wie| IclPIPL | |12 alolelelsisialal ki (7| (Flole| (7| (clPlPlL).
x %
L 3], lclelPle lelp| 71 el Wiclel 1TWIE| WipIPRIEISIS| oIF| ITWIEl WPlT]
* /wiTlol WAl 1eElGl/ IslrER|.
L #, |clePlLIElC|T Pl ACiE| rlEl Wiblolkielsis| lolF| 7iweE| Kelr
m s/m7i0] | leiEe| 1s|7iele] -
b *]
x| | |7lsslvie] WM EIXIEICUTIE] [Floem IPUITIGIEITT WALl IV wisiTrwicl7iriom | [T /IS
% | lEKielclulTlz iom] R [TIEIS| W] PlrloMPpIT|s el WEISISAGE| ITio| ITWIE| TR/ WALl AW
X | lcWAl/ ivis| | IslelclovD| LIEWVEL| MElSisialele.| | 1wl B] EXIEICKIZY oW 0F| [TWIE
x| | PIUITIGIEIZl WA |l ¥ wisiTirlvIC|7|” o FlzliLls| (/W |7#IE]l (7lolPle
X b
P\ 7TIGIE|TT PA e = WIPIGPBI, WIPIZ=[(13))], lelci7l=|(1¥D |, lElci8l=|elcBAD|S |,
ov TPV =|(|Fl/ eiSl7ol |, muL Tie v, |PRIomMPIT) |,
mF=|(£], l7lolPle KiDIS)
% e
X | [7Elsl7| [7Wie| icoble ErrmEPR| Bl TEl PUIGIEIT IsiElRV) ICiEl WRol7V & iE]
el | U] REITIURN [clolE lolF| 1ZErio| |1 Wbl ICI7IES| IolemalL| (clomPlLiEr iom.
¢ %
|71/ 751,176 /is| \TWIEl RIEITVIRW| IclolPlEl BZIERID|?)
BWIZ £IX |/ MOl || BRAWICW 7ol W IEXV |71;
be YiEals|-| IFlle|e| rwirlolviek dmol |olBI7 |l W
3¢ THIE| IL|/WIE| RIETIVRWIED| (FIRlown (T
X 7iERM/ WAL
Pé]]
LA 51, APIG|A|8 sielr] WIRIEISIsSUIBI Ll 71 Flo
UislIr MG| 1PGPBI, IS 7WIE| PUITIGIE|T| PRI melTEWR BLPICK|-
L 71, 1Pl6PBILEIVF] GEIT| THIE| WbpREISIS| OF| TIE| LIr(vE
¥, RETLRWVED| Fitlow \7WIE| [TElemly AL,

Figure 69. Coding Example ~- PUTGET Multi-Level PROMPT Message (Part 1
of 3)

164 Guide to Writing a TMP or a CP (Release 21)

VAT
Q [QIEN
192 QN K

Wy K~ Q } N)
y NI <|Ql [l Q .
3 QY XIN ol IS RY KIS
[YL ~ N S

Nk Ny N Qlw
hal E . WIQIN[W ofyf * D NIRILN
[0 [ARY L) YloQx/N Q Qe
> x [} NI RN Yo
~ NIW[- '} NIEN IR ~ Q [N%)
[} X[Q [} QU(X|[&[O ~ > X]
%) [WLN N W<t (V2N < WX
Wy 9 Y]) \y QUi | oL (¥ PIEIIN
(¥} AN [} Wy %3] Qo
Q RNIES N NI TN LIRS
[NI~ S Y oTwQlw| [o EYANES)
Q [U) Q Wl | YIRS N [NEY]

213N > NEIININNES Q <lw
Q WwiNi®» ~ RIRNIEVIEIR Y N [NYENYED)
0] ~NOI S N ENEYEIVNNIES [\ N)
BN >0 y Y| N ~Q QO Wil
1) Ui~y x ol Ol < QA 0 ¥R [QlW
~ RIAYLY N Wi NIEITNEN Wy yixiQ
> N IIINIENIE N N Q NIIENEY
~ Wwo|l [~y NNV Q ° PN)
[T NI ~y DN NIINENIT ~ QL Uw

S~ ¥ NN Qlal > Q X[y
> QNN wlly NN <<[OINQ ~ SN
Wy < ~
X - %)
E ~ > N

Q NY

o~ N~ ~ Q
Wy " N N ~
> R < | N Q
~ ~ Q u Q ~ [U)
~ ~ < | Q)

~ ¥ 0 ~ X 'Y N :
[~ w (X ~ o - X N
DI N > [T N ANY] Wi~ i1
QW D ~ Q AN hd > & U~
>[4 N N) - 'Y ~[= N~
NI A\ S S [} [Y <|W <|W|<

D < S [U) [N XS
[% < Yy [FIIC)

X w [V} Y O W
NIK y 2 N Q N “

N X [~ ~ N S) [§) OO0
0ig ~ W %) X n Q Q Q! NW Q191
0 () y [G)

Wi y <<
\S) [§) n L5) ~
Q) %) Q N Q
[N [\ () Q < N N
QN Q [N Q <| |~ SRS [
~ [O) [N QU N3
x Q Q (e} ~
EIES ¥ ¥ X X Wy X AMNEIEIRUEILES XX Y X

Figure 69.

Coding Example —- PUTGET Multi-Level PROMPT Message (Part 2

of 3)

Using the TSO I/0 Service Routines for Terminal I/0 165

[\ < \92
Wy TN [}
I Q 'y N 'y N
N [T DI Q RNDN Q [
gl Ky X® <ui[S NIEILN YIS XY
ANEREINN <| 2\ HINNINIEN % Wit KNI~ Yl || .
N W [N [0} S Ny I S N W~ N
N] TN METANIT NI TR RN ENINLTES < ©
[O . © < NININE NI EIRIERY S| Q9]0 U ~
SIWIQIQT Il NGO NI Yl v RTIAN N QN
~NuISTul o[kl Nl Ty S 191Q1n Gl [Q TN <
< Qe [NABNEN N [A NMIENI [2IN%) NLTIRLTEIE <&
NEYLT TN Y[y Q&[N (OIS Slulx[x ~ QOQ[O] 19 S|y
xV[MwyIx] (S KSL KT s sy Ol NN [CIERITINLILNEER LN
N NMIGIEN Ofuy NSNS [THILN TN Qlw MHINNING y
m YENTEIRS NYEUENI [5) [l [N RIM I ENLVEINY Ol
AW WKN[N [<lyly >y PN Uls[[w <
NINEITENIMTEEN Wlwul~sel SIS [wWiSNTQ ~Tu ol SxlwfQlyl [t
X[[[Wix[Q X[Y NI EYIETN [} N [CIENEIRNENENAS
I NIEI N N > N W [N N N y Yy NIRRT NN
Q Llg Y NEY [TENES) olLulu KIX[-[w[X[N >
(%) HIISIAYN Q0 W) N [N [WLN S MENLTINENEILYES Q¢
Yyl <> - NI . Q NN V[[0\ NINEY) Qo
NN Oy Q Q NIVEIRIGEIRI (TS AR EIENIIENLUEEES 40
<[QI[N [OINTNI NINEVTRNEN [O YIQILISNTOTRINIS . (%)
[X) Oly[< Wl NN <[<[[N N[yl (o] [[NX[O Nlw
NINENINIETHEEN Ol niQqlul~ V[UISTRT I0[WO[n[WIOOIQ] [OIY
Qln [VLN SN0 W] v [N[S NIINIOIENETIES NLINLIINES TS
NEYEIIN Yyl [MIEIENLIENLIES WISINUTXQ [HIRNEIL2IENTAN GRS
NEIRNERS PN NMERENTIRITIN ~N ST RINISSTRININIQIQ® QI
~
[TIH) S T
NEYLY y Q
ENTNEY
~ Q {1}
. [y
Wi[W < N
[0) [CYIIEN [{T] [
<[~ >N ~N A
X <[- Q
N nly D ~ ~ ~ ~
~ I~ [yls[olN W[5)) . (]
~C NN o 1§ Y] " 0)
N N FRINEN ~ ~ ~ ~ D N
< U< (UYL 'Y X [¥) X X [¥) Q .L
=l Q Q
NN N [G) Q
N ~ X Q O
U« S Y Q
[X) [CIAN) TIENEN) [€) O W] O 8] X >
Y [SYESY NINEN Q Q Q Y Q [SY N NI Ty
- AR
NEJIEN
Q AR
~ Ylelal=] (0] [0)
Q T(olslw) %)
[N NEYENEY X S
X N (3
[S I
=0% X EIEAEIER Ql ¥k X| X EE3 [SEIFIEIES EIES EIET XX X

Coding Example -- PUTGET Multi-Level PROMPT Message (Part 3
of 3)

Figure 69.

166 Guide to Writing a TMP or a CP (Release 21)

Return Codes From PUTGET

When the PUTGET Service Routine returns control to the program that

invoked it,
register 15.

CODE

it provides one of the following return codes in general

MEANING

decimal

0

12

12

16

20

24

28

PUTGET completed normally.
The line obtained came from the terminal.

PUTGET completed normally.
The line obtained did not come from the terminal. (MODE
messages only)

The PUTGET serxrvice routine did not complete. An attention
interrupt occurred during the execution of PUTGET, and the
attention handler turned on the completion bit in the
communications ECB.

No prompting was allowed on a PROMPT request. Either the
user at the terminal requested no prompting with the PROFILE
command, or the current source of input is an in-storage
list.

A line could not be obtained after a MODE request. A chain
of second level informational messages exists, and the
current stack element is non-terminal, but the terminal user
did not request PAUSE processing with the PROFILE command.
The messages are therefore not available to him.

The NOWAIT option was specified for TPUT and no line was put
out or received.

The NOWAIT option was specified for TGET and no line was
received.

Invalid parameters were supplied to the PUTGET service
routine.

A conditional GETMAIN was issued by PUTGET for output

buffers and there was not sufficient space to satisfy the
request.

Using the TSO I/0 Service Routines for Terminal I/0 167

Using the TGET/TPUT SVC for Terminal 1/0

A supervisor call routine, SVC 93, reached through the TGET and TPUT
macro instructions, provides a route for program I/O to a terminal. The
Basic Sequential Access Method, the Queued Sequential Access Method, and
the TSO I/O Service Routines all use SVC93 to process terminal I/0. You
can use this method in any TSO routines you write, and in any
applications programs that run under TSO control. If you do use
TGET/TPUT in an applications program however, that program becomes TSO
dependent. The TGET and TPUT macro instructions become NOPs in a batch
environment.

The TGET and TPUT macro instructions do not require that you build
control blocks for their use. The operands you code into each of these
macro instructions specify the location and size of the TGET or TPUT
buffers, and the SVC functions you want performed. The functions
provided by the TGET/TPUT SVC are not as extensive, however, as those
provided by the Terminal I/O service routines.

Both the TGET and the TPUT macro instructions have a standard form
and a register form.

This section discusses:

The TPUT Macro Instruction

The TGET Macro Instruction

Formatting the TGET/TPU1l Parameter Registers
Examples of TGET and TPUT

168 Guide to Writing a TMP or a CP (Release 21)

The TPUT Macro Instruction - Writing a Line to the Terminal

Use the TPUT macro instruction (SVC 93) to transmit a line of output to
the terminal. You can use the TPUT macro instruction in any TSO
routines you write, and in any applications programs to be run under
TSO. Note however, that TPUT does not provide message ID stripping,
text insertion, or second level message chaining. If you require these
features, use the PUTLINE macro instruction.

Figure 70 shows the format of the TPUT macro instruction; the figure
combines the standard and the register form. Each of the operands is
explained following the figure. Appendix B describes the notation used
to define macro instructions.

) T T 1
[symboll	TPUT	buffer address,buffer size			
	Ir ~				
				-EDIT	
				,ASIS ,WAIT . NOHOLD	[, NOBREAK
		2CONTROLJ	,NOWAIT		,HOLD « BREAKIN
	I				
		.			
		,HIGHP (TJIID=id			
		» LOWP ,TJIDLOC=address			
}	N				
IL L 1 - ! = !
Figure 70. The TPUT Macro Instruction -- Standard and Register Forms

buffer address
Standard form: The address of the buffer that holds your line of
output. This can be any address acceptable in an RX instruction,
or the address can be placed in one of the general registers 1-12,
and that register specified within parenthesis.

Register form: The register which contains the parameters to be
passed in register 1 to the TPUT SVC. When the R format is
specified, this operand must be in one of the general registers
1-12, and that register specified within parentheses. See the
section headed 'Formatting the TGET/TPUT Parameter Registers' for a
discussion of the register contents.

buffer size
Standard form: The size of the output buffer in bytes. The
allowable range is from 0 through 32,767 bytes. You can specify
this buffer size directly as a number, or you can place the buffer
size into one of the general registers 0, or 2-12, and specify that
register within parentheses.

Register form: The register which contains the parameters to be
passed in register 0 to the TPUT SVC. When the R format is
specified this operand must be in one of the general registers 0,
or 2-12, and that register specified within parentheses. See the
section "Formatting the TGET/TPUT Parameter Registers" for a
discussion of the register contents.

Indicates that this is the register form of the TPUT macro
instruction. You must place the parameters you want passed to the
TPUT SVC into two registers and specify those registers as the
first two operands of the macro instruction. The parameters must
be arranged in the registers in the format shown in the section

Using the TGET/TPUT SVC for Terminal I/O 169

EDIT

AsIs

headed 'Formatting the TGET/TPUT Parameter Registers'. The R
operand and all other optional operands are mutually exclusive.

If both R and any other optional operands are coded, the macro will
not expand.

Indicates that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

Ae

All trailing blanks are removed before the line is written to
the terminal. If a blank line is sent, the terminal vertically
spaces one line.

Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) under ASIS.

EDIT is the default value among the EDIT, ASIS, and CONTROL
operands.

Indicates that minimal editing is to be performed by the TPUT SVC
as follows:

A

The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program caused I/0 errors. This does not mean that all
unprintable characters will be eliminated. "Restore", ‘'upper
case", "lower case", "bypass", and "bell ring", for example,
might be wvalid but nonprinting characters at some terminals.
(See CONTROL).

Transmission control characters are added.

EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see f. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, the "backspace" character is
removed from the output message.

Control characters are added as needed to cause the message to
print on several lines if the output line is longer than the
terminal line size.

170 Guide to Writing a TMP or a CP (Release 21)

f. A sufficient number of idle characters is added to the end of
each output line to prevent the transmission of output to the
terminal while the carrier is being returned to the left-hand
margin.

CONTROL
Indicates that this line is composed of terminal control characters
and will not print or move the carrier on the terminal. This
option should be used for transmission of characters such as
"bypass", "restore", or "bell ring".

WAIT
Specifies that control will not be returned to the program that
issued the TPUT macro instruction until the output line has been
placed into a terminal output buffer. If no buffers are available,
the issuing program will be placed into a wait state until buffers
become available, and the output line is placed into them.
WAIT is the default value for the WAIT and NOWAIT operands.

NOWAIT
Specifies that control should be returned to the program that
issued the TPUT macro instruction, whether or not a terminal output
buffer is available for the output line. If no buffer is
available, the TPUT SVC returns a code of 04 (hex) in register 15.

NOHOLD
Indicates that control is to be returned to the program that issued
the TPUT macro instruction as soon as the output line has been
placed in terminal output buffers.
NOHOLD is the default value for the NOHOLD and HOLD operands.

HOLD
Specifies that the program that issued the TPUT macro instruction
cannot continue its processing until this output line has been
written to the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed
the line.
NOBREAK is the default value for the NOBREAK and BREAKIN operands.

BREAKIN
Specifies that output has precedence over input. If the user at
the terminal has started to entexr input, he is interrupted, and
this output line is sent. Any data that was received before the
interruption is kept and displayed at the terminal following this
output line.

HIGHP
Specifies that this message must be sent to the terminal, even

though the destination terminal has disallowed messages from other
terminals. This operand counters the effect of the interterminal
communication bit when set in the terminal status block* (TSB).
(The HIGHP operand is used by the OPERATOR SEND subcommand and the
SEND operator command.) The operand is recognized only if the
issuing task is operating under zero protection key. The TJID
keyword must also be specified. HIGHP is the default if neither
HIGHP nor LOWP is specified, and the issuing program is operating
under zero protection key.

———————— —— ——— —————— -

1see the TSO Control Program, Program Logic Manual for a description of
the terminal status block (TSB).

Using the TGET/TPUT SVC for Terminal IO 171

LOWP

TJID

Note:

Specifies that the TPUT with TJID module should test the
interterminal communication bit in the terminal status block. If
the user of the destination terminal allows interterminal messages,
this message will be sent. If such messages are not allowed the
message will not be sent, and the return code of '0C' will indicate
no message was sent. The LOWP operand is recognized only when TJID
is specified. The issuer must be operating under zero protection
key.

If LOWP is specified, the issuing program should have an alternate
method of transmitting the message to the terminal user. For
example, a message data set could be used.

or TJIDLOC

Specifies the TJID (terminal job identifier) of the target
terminal, or the address of that TJID. This facility is used for
supervisor communication with the terminal, and for inter-user
conversation between terminals (the SEND command). If this option
is used, NOHOLD is the required option and is defaulted to. If you
specify TJID, you must supply a TJID number, or the number of a
register containing the TJID number. The register number must be
enclosed within parentheses. If TJIDLOC is used, you must supply
the address of a halfword containing the TJID.

TJID or TJIDLOC can be specified in registers 2-12, right adjusted.
The TJID is located in the 2 byte TJIBTJID field of the Terminal Job
Block associated by USERID (the TJBUSER field) with the user you
wish to send to. See Appendix A for a description of the Terminal
Job Block.

If a TPUT without TJID is coded in a background program, the

result is a NOP. If however, the TPUT specifies TJID, the message is

sent

to the target terminal.

RETURN CODES FROM TPUT

When it returns control to the program that invoked it, the TPUT SVC
supplies one of the following return codes in general register 15.
Code (hexadecimal) Meaning
00 TPUT completed successfully.
o4 NOWAIT was specified and no terminal output buffer
was available.
08 An attention interruption occurred while the TPUT
SVC routine was processing.
oc A TPUT macro instruction with a TJID operand was
issued but the user at the terminal indicated by
the TJID requested that inter-terminal messages
not be printed on his terminal. The message was
not sent.
10 Invalid parameters were passed to the TPUT SVC.
14 The terminal has been disconnected and could not
be reached.
172 Guide to Writing a TMP or a CP (Release 21)

The TGET Macro Instruction - Getting a Line From the Terminal

Use the TGET macro instruction to read a line of input from the
terminal. A line of input is defined as all the data between the
beginning of the input line and a line-end delimiter. A line-end
delimiter is any character or combination of characters which causes the
carrier to return to the left-hand margin on a new line, or which
terminates transmission from the terminal.

You can use the TGET macro instruction in any TSO routines, and in
any applications programs to be run under TSO. Note however, that TGET
does not provide access to in-storage lists, nor does it perform any
type of logical line processing on the returned line. If you require
these features, use the GETLINE macro instruction.

Each time TGET returns control to your program, register 1 contains
the number of bytes of data actually moved from the terminal to your
input buffer. If your buffer is smaller than the line of input entered
at the terminal, only as much of the input line as can be contained in
the input buffer is moved. Return code 0C indicates that only part of
the line was obtained by TGET. You must then issue as many TGET macro
instruction as are required to get the rest of the line of input.

Figure 71 shows the format of the TGET macro instruction; it combines
the standard and the register form. Each of the operands is explained
following the figure. Appendix B describes the notation used to define
macro instructions.

] 1 1 1
I	+EDIT (,WAIT				
[symboll	TGET	buffer address,buffer size		,ASIS		,NOWAIT
I	I «R					
L L L J
Figure 71. The TGET Macro Instruction -- Standard and Register Forms

buffer address
Sstandard form: The address of the buffer that is to receive the
input line. This can be any address acceptable in an RX
instruction, or the address can be placed in one of the general
registers 1-12, and that register specified within parentheses.

Registexr form: The register which contains the parameters to be
passed in register 1 to the TGET SVC. When the R format is
specified, this operand must be in one of the general xegisters
1-12, and that register specified within parentheses. See the
section headed 'Formatting the TGET/TPUT Parameter Registers' for a
discussion of the register contents.

buffer size
Standard form: The size of the input buffer in bytes. The
allowable range is from 0 through 32,767 bytes. You can specify
this buffer size directly as a number, or you can place the buffer
size into one of the general registers 0, or 2-12, and specify that
register within parentheses.

Register form: The register which contains the parameters to be
passed in register 0 to the TGET SVC. When the R format is
specified this operand must be in one of the general registers 0,
or 2-12, and that register specified within parentheses. See the
topic 'Formatting the TGET/TPUT Parameter Registers' for a
discussion of the register contents.

Using the TGET/TPUT SVC for Terminal IO 173

EDIT

ASIS

WAIT

Indicates that this is the register form of the TGET macro
instruction. You must place the parameters you want passed to the
TGET SVC into two registers and specify those registers as the
first two operands of the macro instruction. The parameters must
be arranged in the registers in the format shown in the section
headed 'Formatting the TGET/TPUT Parameter Registers'.

The R operand and all other optional operands are mutually
exclusive.

If both R and any other optional operands are coded, the macro will
not expand.

Specifies that in addition to minimal editing (see ASIS), the
following TGET functions are requested:

a. All terminal control characters (that is, nongraphic characters
such as bypass, line feed, restore, prefix and the character
immediately following it, etc.) are removed from the data.

b. The horizontal tab (HT) character and the backspace (BS)
character, when backspace is not used for character deletion,
remain in the data.

c. The buffer is filled out with blanks, if the returned input
line is shorter than the input buffer length. These blanks are
not included in the character count returned in register 1.

EDIT is the default value for the EDIT and ASIS operands.

Specifies that minimal editing is done as described below:
a. Transmission control characters are removed.

b. The returned input line is translated from terminal code to
EBCDIC. Invalid characters are compressed out of the data.

c. Line deletion and character deletion are performed according to
the specifications in the Terminal Status Block.

d. New line (NL), carriage return (CR), and line feed (LF)
characters, if present at the end of the line, are not included
in the data count returned in register one.

e. After the input message has been received, the carrier is
returned to the left-hand margin of the next line before any
output to the terminal is allowed.

Specifies that control will not be returned to the program that
issued the TGET macro instruction until the input line has been
placed into your input buffer. If an input line is not available
from the terminal, the issuing program is placed into a wait state
until a line becomes available and is read into your input buffer.
WAIT is the default value for the WAIT and NOWAIT operands.

NOWAIT

174

Specifies that control should be returned to the program that
issued the TGET macro instruction, whether or not an input line is
available from the terminal. If no line is returned, the TGET SVC
returns a code of 04 (hex) in register 15.

Guide to Writing a TMP or a CP (Release 21)

RETURN CODES FROM TGET

When it returns control to the program that invoked it, the TGET SVC
supplies the length of the message moved into your buffer in register 1,
and one of the following return codes in general register 15.

Code (hexadecimal)

Meaning

00

ou

08

oc

10

14

TGET completed successfully. Register 1 contains
the length of the input line read into your input
buffer.

NOWAIT was specified and no input was available to
be read into your input buffer.

An attention interruption occurred while the TGET
SVC routine was processing.

Your input buffer was not large enocugh to accept
the entire line of input entered at the terminal.
Subsequent TGET macro instructions will obtain the
rest of the input line.

Invalid parameters were passed to the TGET SVC.

The terminal has been disconnected and could not
be reached.

Using the TGET/TPUT SVC for Terminal IO 175

Formatting the TGET/TPUT Parameter Registers

If you use the Register format of the
you must code the parameters you want
two registers. You specify these two
as the first two operands of the TGET
followed by the R operand to indicate

TGET or TPUT macro instruction,
passed to the TGET/TPUT SVC into
registers enclosed in parentheses
or TPUT macro instruction,

that you are executing the

register form of the macro instruction.

If the registers you specify as the first and second operand of the
macro instruction are register 1 and register 0 respectively, the TGET
or TPUT macro instruction expands directly to the TGET/TPUT SVC. If you
specify other permissible registers, registers 2-12, the macro expands
to load registers one and zero from the registers you specify before

issuing the SVC.

The registers must be formatted as

shown in Figure 72.

Terminal Job I. D. (TJID)
RO

Buffer Size

R1 Flags Address of your Input or Output Buffer

Figure 72. TGET/TPUT Parameter Registers

* Flags
One Byte

Ocen cee Always set to 0 for TPUT.
leee eee. Always set to 1 for TGET.

+XX. «ses Reserved bits.

eee0 «... WAIT processing is requested.
eael «a.. NOWAIT processing is requested.
eeew 0... NOHOLD processing is requested.
eese le.. HOLD processing is requested.
esee «0.. NOBREAK processing is requested.
esse <l.. BREAK processing is requested.
eeea -.00 EDIT processing is requested.
cess «201 ASIS processing is requested.
eese 2210 CONTROL processing is requested.

176 Guide to Writing a TMP or a CP (Release 21)

Coding Examples of TGET and TPUT Macro Instructions

The following coding examples show different ways to use the TGET and
TPUT macro instructions.

EXAMPLES OF BOTH TPUT AND TGET USING THE DEFAULT VALUES

Figure 73 shows both a TPUT and a TGET macro instruction. They both
take the default values; that is, the TPUT macro instruction defaults to
EDIT, WAIT, NOHOLD, and NOBREAK; and the TGET macro instruction defaults
to EDIT and WAIT.

X %]
fad PIR|OIC|E|SIS|/ W|G
X 4
X | (Uslel 7l [7elvir maiciRlo| I1wisirrericirlrion rb] Al |7l K| wiElsisKleE| (7o [7WE
x| | |7lEem/ WALl USlE| ITHIE| DEFNVELTT WAILIVEIS .
> L3
7Pelr| | MESISAl6EA 7|, 121« TWE| BUFFER| WOPRIEISIS| I718| FWiE
% symBloll/ic| kiololelsls £5|SKhieiEl?|,| BWVID
% TVIE VFFIER| ILEWGITH| i1 18| |7viem 7Y
ﬁ Flovel Br7iEs|.
L|7] 715,1715] rElslzl WErVRM (cloplE |-| BErk
¥ /W clalTiEls) IswlcicielsisiFive
* comPLEln onvl.| | I7El ITwie]l ledAdRn
= ERR| TV CODE| VS| wiolr| iZEriol,| leld 1710 U
X, Elelelole| lelobirl viA.
L Ea3
x| | lUsiEl [THIE ITielel] wAlcR|a [rwisimRUcZi oWl 17l I0BTAY WL WV IYWPUiT Ll VA
X | \Frlom THE rsewjl/vu TAKIE [TWIE| PEFAVLIT VAILIVES
% ¢
ridar | BurrFER, |73 7wid BUFAERA Wbbelesis| [/1s] I7HE
* symsbll/c| lWbbleEsis], | BlFFER],| hvp
™ £l [/ MPllr] BYFIFER LIEME W /18] lowis
L WywpoRED [TV eyl BYrESs|.
3 Pé|
/ 71 7151, 1715 7elsl7| rHlA lelervien cloble| |- [3dmo
/WY ICKRITEIS| lsvicEelsisAUL
BW2 AT clomiP a7l iowl.| | 1A THIE| IRET VIRV
X clopE| VS| Vol 1&B&gmol,] IBRAWICH |7Ie| AW
¥ =RrorR| o7l W
X D€
| | |PIElo|CIE|S|Sl i
be ™
FlRlRITW ~N~— cleleide| leoul7l e \Aelbclelslsiz e
4 -
X X
x| | |S|710lRAleld DA CILARAIT | OWIS
* b3
0|5 lela
Melsislleld 7| bla celeld’|7m /8] 17ls] Wl 17AdA Melsilshled.] [
BlUFFER D|s LAY
ENV| |
Figure 73. Coding Example -~- of TPUT and TGET Macro Instructions Using

the Default Values

Using the TGET/TPUT SVC for Terminal I/0 177

The program issuing the TGET macro instruction will not be given
control until a line of data is returned. The default value is WAIT.
The input buffer will be padded with blanks if less than 130 characters
were entered; the default is EDIT. Remember that the actual length of
the data in the input buffer is returned in register 1.

EXAMPLE OF TPUT MACRO INSTRUCTION -- BUFFER ADDRESS AND BUFFER LENGTH IN
REGISTERS.

In the coding example shown in Figure 74, the output message buffer
address and length are loaded into registers, and those registers coded
as operands in the TPUT macro instruction.

You might want to do this when, for example, the TPUT macro
instruction is issued in a subroutine which receives, as parameters, a
pointer to the message and the message length.

A [X

x| | |Pklo|clels]s| g

* >

X | 1PLKclEl 7HE BIVFFER| UDPPRIREISE| UWP| [TWE| BYFIFIEWR LEWGT Y

¢ /W7ol Pl ISirielels-

% X
/A A, 14| MEISISAIGIE|7 LA 7HE BYFIFER| LEWB|ITH |7Wro

X LGl lsER| BiER0.| [7THel KA

¢ Kioprielsis| |/msirieliclriviow |/wvisigelels

% WU lrwiel Wi B oelesR BiyiZEl Ils

X ZzAeoEP (/v THEl IBEBY Isiriek.
L 71, MEISISUGIE oD WobREISS| bl TWIE| byir P

% BUEFEKR /W7TP| REGY BIER| OVE]

> 3

x| | |7ISISVIE| I7TWEl ITPA7] mAICKEO |7 YisrRvIE7Y oM

> ¥
7P| 7] 7)1, e)

*
%

7R 715,715 FElslZ e el colblE] |- 138k
% VRV CHITIES ISyEcESISrFL
M ClonrP 7 iom. | | IVFE| rwle 1eerviep
BWVZ £ R coloE Vis| woll el | Bo| ol A
X EeleorR| eoWITVIVE.
X ki
x| | |Pleo|cielslsiz v
X
£l W T 1 ERAOR| PoviriVVIE PIROCESIS WG| .
X e
el | ISi7loleYlelEl DEiCk rIRUIZ |7 [omMs
X *
S| G
WESSABE?| PG cl’i7wir 8| Ivls| K| |71Plvlr] wEISisklGE. |’
3
% ™

W

Figure 74. Coding Example: TPUT Macro Instruction Buffer Address and
Buffer Length in Registers

178 Guide to Writing a TMP or a CP (Release 21)

EXAMPLE OF THE TGET MACRO INSTRUCTION -- REGISTER FORMAT

Figure 75 shows the code necessary to issue a register format TGET macro
instruction. The buffer length, buffer address, and the option flags
are loaded into registers zero and one. Note that the flag byte in
register one has been set to binary 10000001, indicating that this is a
TGET macro instruction requesting ASIS processing. This means that only
minimal editing will be performed on the input line. '

GETFLGIS v 8 7.0 o7’
ol *
* PP C eSSl V6
*| ¢
| 1PLWlEl |7wE| BlvFIFlER s/ iZle| Wimp| BRiFIFIER| WblpriElsis| [/wiro| |AE6Y IsI7IErR|S
¥ | BERD B! loWiE] .
* %
LA 14’ 1BlYFFIER LloWlp| |BYFFIEN siViBIE| |1wviTlo] BiElel SI7EW
* ZERT .
2 7|, BUFFIER oW BrFFER WipkESsS| |rvire
i Lelel/simiElR pwiEl.
2|4 A, |GEITFL|6IS 7wl 8| WL | BlE 7w W e -lokpiER
x syirlel le| lees)/ Isi-iEle] 17].
sl¢|L |, 2% VAT TWE| FLrheis| re| 7ViE W/ie-
% pleler| BIr7E| .
0 71, b WERGE| Fehlel BriZE| hwire| REG! SIEA
X OWIE|.
b %
*| /|SIsWie| \TIHE| |7i6lel7] wAICIRo| |/wisimiew €7, o] ISPIEIE)K FIYT KIEIel ISI7IER
% oerMAT| |' R’
ot #*
716l LI);
% ~
ol pe
|7le 7151, 17151 7eslA laarivem lcbpiEl,| IV F|l Wolrl El=eo!,
S ElRR 7TW G| |7lo| UM ErRElol o |7y viE|,
% ¥
e | |PRoCiE|SIslI/vIG
% ~
ER RITW|
r-q —l
~ 11
% *
x| | [si7lolel4lele 1olElclelalen|r|s ow|s
ai o
Bl FF el e d¢l713ld] /WiAU7] BLFFEle
EWp |

Figure 75. Coding Example: TGET Macro Instruction Register Format

Using the TGET/TPUT SVC for Terminal I/O 179

| Using Terminal Control Macro Instructions

The following macro instructions allow a command processor to control
terminal functions and attributes. (These macro instructions were
formerly documented in IBM System/360 Operating System: Supervisor and
Data Management Macro Instructions, GC28-6647.) They are listed, then
described in detail.

Macro Instruction Function

GTSIZE Get Terminal Line Size

RTAUTOPT Restart Automatic Line Numbering or Character
Prompting

SPAUTOPT Stop Automatic Line Numbering or Character
Prompting

STATTN Set Attention Simulation

STATUS Change Subtask Status

STAUTOCP Start Automatic Character Prompting

STAUTOLN Set Automatic Line Numbering

STBREAK Set Break

STCC Specify Line-Deletion and Character-Deletion
Characters

STCLEAR Set Display Clear Character String

STCOM Set Inter-Terminal Communication

STSIZE Set Terminal Line Size

STTIMEOU Set Timeout Feature

TCLEARQ Clear Buffers

Some of the terminal control macro instructions may be safely coded
in a user-written command processor. They are:

GTSIZE
RTAUTOPT
SPAUTOPT
STATUS
STAUTOCP
STAUTOLN
STSIZE
TCLEARQ

The other macro instructions, intended for system use, are not
recommended for inclusion in user-written command processors. These
macros are used in the IBM-supplied PROFILE and TERMINAL commands.
Inappropriate use of the following macros can cause terminal errors:

STATTN
STBREAK
STCC
STCLEAR
STCOM
STTIMEOU

GTSIZE -- Get Terminal Line Size

Use the GTSIZE macro instruction to determine the current logical line
size of the user's terminal. If the terminal is a display station, use
the GTSIZE macro instruction to determine the size of the display
screen.

When the GTSIZE macro instruction is issued in a time sharing
environment, the logical line size of the user's terminal (that is, the

180 Guide to Writing a TMP or a CP (Release 21)

maximum number of characters per line) is returned in register 1. If
the terminal is a display station, the line size is returned in register
1 and the screen length (that is, the maximum number of lines per
display) is returned in register 0. If the terminal is not a display
station, register 0 will contain all zeros. The GTSIZE macro
instruction is ignored if TSO is not active when the macro instruction
is issued.

Figure 76 shows the format of the GTSIZE macro instruction.

r T
| [symboll | GTSIZE
L

by = o

L
Figure 76. The GTSIZE Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meanin

00 Successful. The contents of registers
0 and 1 are described above.

oL Parameter (s) specified. No parameter(s)
should be coded.

RTAUTOPT -- Restart Automatic Line Numbering or Character Prompting

Use the RTAUTOPT macro instruction to restart either the automatic line
numbering feature or the automatic character prompting feature. (The
feature was suspended when the terminal user caused an attention
interruption or entered a null line of input.) Since only one of these
features can be used at a time, the restarted feature is the one that
was suspended. (See the STAUTOLN macro instruction for a description of
the automatic line numbering feature and the STAUTOCP macro instruction
for a description of the automatic character prompting feature.)

When this macro instruction is used to restart automatic line
numbering, the first line number assigned after line numbering is
restarted is the same line number that would have been assigned to the
next line of terminal input if automatic line numbering had not been
suspended.

If the application program is creating a line numbered data set, use
of the STAUTOLN macro to specify the starting number is recommended when
restarting automatic line numbering. - This will insure that the
application's numbers are still in synchronization with the system's.

The RTAUTOPT macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 77 shows the format of the RTAUTOPT macro instruction.

r T
| [symboll | RTAUTOPT
L L

b e d

Figure 77. The RTAUTOPT Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Using the TGET/TPUT SVC for Terminal I/O 181

Hexadecimal Code Meanin

00 Successful. Either automatic line numbering or
automatic character prompting has been
restarted.

o4 Parameter (s) specified. No parameter(s) should
be coded.

08 Invalid request. Either automatic line

numbering or automatic character prompting was
never started or never suspended, or a SPAUTOPT
macro instruction has been issued to stop
automatic line numbering or automatic character
prompting.

SPAUTOPT -- Stop Automatic Line Numbering or Character Prompting

Use the SPAUTOPT macro instruction to stop either the automatic line
numbering feature or the automatic character prompting feature. Since
only one of these features can be used at a time, the active feature is
the feature that is stopped. (See the STAUTOLN macro instruction for a
description of the automatic line numbering feature, and the STAUTOCP
macro instruction for a description of the automatic character prompting
feature.)

The system can suspend automatic prompting when the terminal user
causes an attention interrupt or enters a null line of input. This
macro should then be issued by the application program in its attention
exit, or as the result of a zero length input line received via TGET.
When stopped by the SPAUTOPT macro, prompting cannot be restarted by use
of the RTAUTOPT macro. Prompting must be restarted by the STAUTOLN or
STAUTOCP macro.

The SPAUTOPT macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 78 shows the format of the SPAUTOPT macro instruction.

T T =T
| [symboll | SPAUTOPT |
L L L

Figure 78. The SPAUTOPT Macro Instruction

o

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meanin
00 Successful. Either automatic line numbering or
automatic character prompting has been stopped.
ou Parameter (s) specified. No parameter(s) should
be coded.
08 Invalid request. Either automatic line

numbering or automatic character prompting was
never started.

182 Guide to Writing a TMP or a CP (Release 21)

STATTN -- Set Attention Simulation

Use the STATTN macro instruction to specify how a terminal user can
interrupt the execution of his program without using an Attention key.
The TERMINAL command issues the STATTN macro when the terminal user
requests that simulated attention be set up.

When the STATTN macro instruction assigns a value to an operand, that
value remains in effect until another STATTN macro instruction assigns a
new value to the operand, or until the terminal user logs off. Issuing
the STATTN macro instruction without specifying any operands results in
a NOP instruction.

The STATTN macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 79 shows the format of the STATTN macro instruction. Each of
the operands is explained following the figure. If an operand is not
specified, its current status is not changed.

1 1 T [integer][{integer}] ;
| [symboll | STATTN | LINES= 0 TENS= 0 |
| I | I
| | | address} |
| | I [, INPUT= 0 |
L L L J

Figure 79. The STATTN Macro Instruction

LINES=
indicates the output line count (if any) that determines when a
terminal user can interrupt the execution of his program.

integer
specifies an integer from 1 through 255. This integer
indicates the number of consecutive lines of output that can
be directed to the terminal before the keyboard will unlock to
let the terminal user interrupt the execution of his program.

indicates that output line count will not be used to determine
when the terminal user can interrupt the execution of his
program.

If the LINES operand is coded for a display station, it is ignored.
However, the display user may cause a simulated attention
interruption at the bottom of the screen (i.e., after every 6, 12,
or 15 lines of consecutive output, depending on screen size).

TENS=
indicates whether or not locked keyboard time will be used to
determine when a terminal user can interrupt the execution of his
program.

integer
specifies an integer from 1 through 255. This integer
indicates the tens of seconds (that is, from 10 to 2550
seconds) of locked keyboard time that can elapse before the
keyboard will unlock to let the terminal user interrupt the
execution of his program.

indicates that locked keyboard time will not be used to

determine when the terminal user can interrupt the execution
of his program.

Using the TGET/TPUT SVC for Terminal I/O 183

INPUT=
indicates whether or not a character string will be used to
determine when a terminal user can interrupt the execution of his
program.

address
specifies the address of a character string from one to four
EBCDIC characters long, left-justified and padded to the right
with blanks if less than four characters long. When this
character string is encountered as the only data in a line,
input processing is interrupted to let the program take an
attention exit. (See the description of the STAX macro
instruction.) This string will not be recognized if it is
preceded by any other character(s), including line delete or
character delete control characters.

indicates that no character string will be used to determine
when the terminal user can interrupt the execution of his
program.

When control is returned to the user, register 15 will contain the
following return code:

Hexadecimal Code Meanin
00 Successful
o4 Invalid request

STATUS -- Change Subtask Status

Use the STATUS macro instruction to change the dispatchability status of
one or all of a program's subtasks. One use of the STATUS macro
instruction is to restart subtasks that were stopped when an attention
exit routine was entered. (See the description of the STAX macro
instruction in "Attention Interruption Handling - the STAX Service
Routine."™)

The STATUS macro instruction is used in both time sharing and
non-time sharing environments.

Figure 80 shows the format of the STATUS macro instruction. Each of
the operands is explained following the figure.

STATUS {START}[,TCB=subtaSk tcb addressl

r

| [symboll
| STOP
L

R —
TR ——
T——

Figure 80. The STATUS Macro Instruction

START
indicates that the STOP/START count in the task control block
specified in the TCB operand will be decremented by 1. If the TCB
operand is not coded, the STOP/START count is decremented by one in
all the subtask control blocks of the originating task.

STOP
indicates that the STOP/START count in the task control block
specified in the TCB operand will be incremented by 1. If the TCB
operand is not coded, the STOP/START count is incremented by 1 in
the task control blocks for all the subtasks of the originating
task.

184 Guide to Writing a TMP or a CP (Release 21)

TCB=
is the address of a fullword on a fullword boundary that contains
the address of the task control block that is to have its
STOP/START count adjusted. If this operand is specified using
register notation, the address of the task control block (not the
address of the fullword) must have been previously loaded into the
specified register. If this operand is not specified, the
STOP/START count is adjusted in the task control blocks for all the
subtasks of the originating task.

Control is returned to the instruction following the STATUS macro
instruction. When control is returned, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful
ou The specified task control block does not

belong to a subtask of the originating task.
The STATUS macro instruction was ignored.

STAUTOCP -- Start Automatic Character Prompting

Use the STAUTOCP macro instruction to start automatic character
prompting. Automatic character prompting signals the terminal user when
the system is ready to accept input from the terminal. This signal
consists of putting out at the terminal either an underscore and a
backspace or a period and a carriage return, depending on the type of
terminal being used. The STAUTOCP macro has no effect with a 2260 or
2265 display station, since the terminal user is always prompted for
input by the "start-of-message" symbol.

This macro instruction can be used to have the system automatically
prompt the user for input. It is used, for example, by the INPUT
subcommand of the EDIT command.

Once started, automatic prompting is handled as follows: When the
system has received a line of input, it immediately sends back to the
terminal the next character prompt. If the program should send output
while automatic prompting is in effect, the prompt will be repeated
after all output has been set to the terminal. For example:

line of input
OUTPUT MSG FROM PROGRAM

Automatic prompting is designed to be used by a program operating in
input mode (i.e., issuing successive TGET macros).

The system suspends automatic prompting when the terminal user causes
an attention interruption or when he enters a null (nonprinting) line of
input. The application program then takes appropriate action in an
attention exit routine, or after receiving a zero length input via the
TGET macro instruction. The application program can stop the prompting
or line numbering function via SPAUTOPT, or restart the function via
STAUTOCP.

The STAUTOCP macro instruction is used only in a time sharing

environment. It is ignored if TSO is not active when the macro
instruction is issued.

Using the TGET/TPUT SVC for Terminal I/O 185

Figure 81 shows the format of the STAUTOCP macro instruction.

[symboll STAUTOCP

p—

o = o

Figure 81. The STAUTOCP Macro Instruction

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful.
o4 Parameter (s) specified. No parameter(s) should be
coded.
STAUTOLN —-- Start Automatic Line Numbering

Use the STAUTOLN macro instruction to start automatic line numbering.
Automatic line numbering prints a line number at the beginning of each
line.

This macro instruction can be used to have the system automatically
prompt the user for input. It is used, for example, by the INPUT
subcommand of the EDIT command.

Once started, automatic line numbering is handled as follows: When
the system has received a line of input, it immediately sends back to
the terminal the next line number. If the program should send output
while automatic line numbering is in effect, the line number will be
repeated after all output has been set to the terminal. For example:

00030 line of input
00040 OUTPUT MSG FROM PROGRAM
00040

Automatic line numbering is designed to be used by a program operating
in input mode (i.e., issuing successive TGET macros).

The system prints a new line number for each line of input received.
The current line number maintained by the system is decremented
appropriately whenever the input queue is cleared by a TCLEARQ macro or
as the result of an attention interruption. The application program is
responsible for numbering the lines independently, if it is creating a
line numbered data set. The system line number is not available to the
application program.

The system suspends automatic line numbering when the terminal user
causes an attention interruption or when he enters a null (nonprinting)
line of input. The application program then takes appropriate action in
an attention exit routine, or after receiving a zero length input via
the TGET macro instruction. The application program can stop the line
numbering function via SPAUTOPT, or restart the function via STAUTOLN or
RTAUTOPT. You should use STAUTOLN rather than RTAUTOPT to restart
automatic line numbering, if the application program is numbering the
input lines it receives. This choice will insure that the program's
numbers are still in synchronization with the system's numbers.

The STAUTOLN macro instruction is used only in a time sharing

environment. It is ignored if TSO is not active when the macro
instruction is issued.

186 Guide to Writing a TMP or a CP (Release 21)

Figure 82 shows the format of the STAUTOLN macro instruction. Each
of the operands is explained following the figure.

f T
| [symboll i STAUTOLN | S=address I=address
L 1 L

b —

Figure 82. The STAUTOLN Macro Instruction

S=
indicates the address of a fullword that contains the number to be
assigned to the first line of terminal input. This number can be
any integer from 0 through 99,999,999.

I=

indicates the address of a fullword that contains the increment
value to be used when assigning line numbers to lines of terminal
input. This number can be any integer from 0 through 99,999,999.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning

00 Successful. A line number will be printed out at
the beginning of each line of input.

oy Invalid parameter (s) specified.

STBREAK -- Set Break

Use the STBREAK macro instruction to indicate whether the transmit
interrupt feature on an IBM 1050 terminal or on an IBM 2741 terminal
will be used or suppressed. The transmit interrupt feature lets
terminal output processing interrupt terminal input processing.

The TERMINAL command issues this macro when the terminal user
specifies the BREAK or NOBREAK operand of the command.

The macro should be issued only when the terminal currently connected
is a 1050 or a 2741 which has the transmit interrupt feature.
Specifying STBREAK YES for a 1050 or 2741 without the transmit interrupt
feature could result in loss of output or permanent error at the
terminal.

When the transmit interrupt feature is being used by the system, the
terminal user can "type ahead" of his program, entering the next line
while the previous one is being processed. BAll 33/35 teletypes are
handled this way. 1050's and 2741's that have been defined in the
TSO-TCAM Message Control Program as having the transmit interrupt
feature will be handled this way (unless STBREAK NO is specified).

Terminal handling when the feature is in use is as follows. If no
output is available for the terminal, and if there are sufficient TSO
terminal buffers available, the keyboard will be unlocked to allow the
user to enter input. If the user's program generates output (TPUT)
before he has started to enter data, the read operation is halted and
the break (transmit interrupt) feature can be used to lock the keyboard
and condition the communications line to transmit output. If the user
has already started to type when the TPUT is issued, the output will not
be sent until he has finished that line of input. If, however, the TPUT
had specified the BREAKIN option, the output message would interrupt any
input in progress. If the application does not issue a TCLEARQ macro to
flush the input buffer queue, the interrupted input will be printed out
again after the output is sent, to let the user continue to type from
the point where he had been interrupted.

Using the TGET/TPUT SVC for Terminal I/O 187

When the transmit interrupt feature is not being used by the system,
the terminal keyboard is unlocked only after the user's program has
issued a TGET request for input. In this mode of operation, the
terminal user cannot type ahead of his program. A TPUT with the BREAKIN
option cannot interrupt input. The output will not be sent until the
terminal user has completed entering his current input line. All 2260
and 2265 display stations are handled in this way. All 1050's and
2741's which have been defined in the TSO-TCAM Message Control Program
as not having the transmit interrupt feature will be handled this way.

The STBREAK macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 83 shows the format of the STBREAK macro instruction.

[symboll T STBREAK T YES
| | |NO
1 1

TIPS

{
|
|
L !
Figure 83. The STBREAK Macro Instruction

YES
indicates that the transmit interrupt feature will be used. If
neither YES nor NO is specified, YES is assumed.

NO
indicates that the transmit interrupt feature not be used.

When control is returned to the user, register 15 will contain one of
the following return codes:

Hexadecimal Code Meaning
00 Successful.
ou Invalid parameter.
08 Invalid terminal type. This macro instruction

should be issued only for the IBM 1050 terminal or
the IBM 2741 terminal.

STCC -- Specify Terminal Control Characters

Use the STCC macro instruction to specify what control characters will
be used to delete a character or a line of terminal input.

The PROFILE command issues this macro when a terminal user requests a
new line or character deletion character. The PROFILE command also
causes the newly defined characters to be included in the user's profile
in the User Attribute Data Set (UADS). Each time .the user logs on, the
Terminal Monitor Program will issue the STCC macro, specifying the
characters in the UADS at the start of the session. If the terminal
user does not use the PROFILE command to change the line or
character-deletion characters, the system-supplied defaults are always
used, as described below.

When the line-delete control character specified in the STCC macro
instruction is encountered within a line of terminal input, the line
control character and all the preceding characters in that line are
deleted. When the character-delete control character specified in the
STCC macro instruction is encountered within a line of terminal input,
the character delete control character and the character immediately
preceding it are deleted from the line.

188 Guide to Writing a TMP or a CP (Release 21)

When the user is logging on, he can delete a line or character by
using the system-supplied defaults. The defaults, according to type of
terminal, are as follows:

Type of Terminal Desired Action Key(s) to be Pressed

2741 and 1050 line deletion or Attention key and
character deletion backspace

33735 Teletype? line deletion or CTRL and X key (hex "'18"),
character deletion back arrow (+), or

underscore (), depending
on keyboard. (Either key
results in hex '6D'.)

No defaults are defined for the 2260 or 2265 display stations, because
the terminal user can use cursor control keys more effectively to delete
characters or lines before the input is transmitted to the system.

The STCC macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 84 shows the format of the STCC macro instruction; each of the
operands is explained following the figure.

T T [ATTN] {X'n‘ {X'n-'}
[symboll | sTCC | LNATNJ |,LD={C"c" CD=\C"c"
1 :]

Figure 84. The STCC Macro Instruction

e e o

ATTN
When this operand is in effect, hitting the Attention key after
having typed data will only delete the current line. System
response is !D. Automatic prompting is not turned off. The
Attention key can then be hit again, without typing any input, to
interrupt the program and turn off prompting. When this operand is
not in effect, the Attention key will both delete a line of
terminal input and interrupt the execution of the user's program.
System response is !. or !I.

NATN
indicates that the Attention key will not be used to delete a line
of terminal input.

LD=
indicates what character will be used for the line delete control
character. (Do not specify both LD= and ATTN.)

X'n', where n is the hexadecimal representation of any EBCDIC
character on the terminal keyboard, except the new line
(NL) and carriage return (CR) control characters. If
X'00"'" is specified, the previously used line-delete
control character is retained. If X'FF' is specified, no
character will be used for the line-delete control
character. If a character that does not appear on the
terminal keyboard is specified, that character is rejected
and no character is used to delete a line of terminal
input.
C'c' where c is the character representation of any EBCDIC
character on the terminal keyboard.

iTrademark of the Teletype Corporation.

Using the TGET/TPUT SVC for Terminal I/O 189

CD=
indicates what character will be used for the character delete
control character.

X'n' where n is the hexadecimal representation of any EBCDIC
character on the terminal keyboard except the new line (NL)
and carriage return (CR) control characters. If X'00' is
specified, the previously used character delete control
character is retained. If X'FF' is specified, no character
will be used for the character delete control character.

If a character that does not appear on the terminal
keyboard is specified, that character is rejected and no
character is used to delete a character from a line of
terminal input.

C'c' where c is the character representation of any EBCDIC
character on the terminal keyboard.

When control is returned to the user, the low-order byte of register
0 contains the former line delete control character. If X'FF' appears
in the low-order byte of register 0, there is no former line delete
control character. If X'80" appears in the high-order byte of register
0, ATTN has been specified for line deletion.

The low-order byte of register 1 contains the former character delete
control character. If X'FF' appears in the low-order byte of register
1, there is no former character delete control character.

Register 15 contains one of the following return codes:

Hexadecimal Code Meaning
00 Successful.
oy Invalid parameters specified.
08 Invalid request. Specified character does not

appear on the terminal keyboard or ATTN was
specified for a terminal that does not have an
attention key.

STCLEAR -- Set Display Clear Character String

Use the STCLEAR macro instruction to specify the character string that
will be used to request that a 2260 or 2265 display station screen be
erased. The TERMINAL command issues this macro when the user specifies
the character string he wants.

The STCLEAR macro instruction is used only in a time sharing

environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 85 shows the format of the STCLEAR macro instruction. Each of
the operands is explained following the figure.

T
| {address}
0

T
|
|
L

Y |

]
|
| [symboll
L

Figure 85. The STCLEAR Macro Instruction

STCLEAR | STRING=
L

190 Guide to Writing a TMP or a CP (Release 21)

STRING=
indicates the address of a one-to four character string that will
be used to request that the display station screen be erased. This
character string must be left-justified and padded on the right
with blanks, if necessary. If 0 is specified, no character string
will be used to erase the screen.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful.
o4 Invalid parameter.
08 Invalid terminal type. The terminal is not a

display station.

STCOM -- Set Inter-Terminal Communication

Use the STCOM macro instruction to specify whether or not a terminal
will accept messages from other terminals, or low priority messages from
the system operator. High priority operator messages are always sent to
the terminal. The PROFILE command issues this macro when the user
specifies the INTERCOM or NOINTERCOM operand of the command.

The STCOM macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 86 shows the format of the STCOM macro instruction.

 —p— |

L} T

| | | XES
[symboll | STCOM | | NO

L L

Figure 86. The STCOM Macro Instruction

YES
indicates that the terminal will accept messages from other
terminals. If neither YES nor NO is specified, YES is assumed.

NO
indicates that the terminal will not accept messages from other
terminals.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning

00 Successful.

o4 Invalid parameter specified.
STSIZE -- Set Terminal Line Size

Use the STSIZE macro instruction to set the logical line size of the
time sharing terminal. If the terminal is a display station, the STSIZE
macro instruction is used to set the screen size.

The TERMINAL command issues this macro instruction when the user
specifies the LINESIZE or SCREEN operands of the command.

Using the TGET/TPUT SVC for Terminal I/0 191

The STSIZE macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 87 shows the format of the STSIZE macro instruction each of
the operands is explained following the figure.

T
|)YSIZE=number LINE=number

STSIZE |)SIZELOC=address(|,LINELOC=address
L

-~
é
o
-
e

Figure 87. The STSIZE Macro Instruction

SIZE
specify the logical line size of the terminal in characters. If
the logical line size requested is greater than the mechanical line
size of the terminal, the last character in the line may be
repeatedly typed over. Specifying a size greater than 255 will
give unpredictable results.

SIZELOC
specify the address of a word containing the logical line size of
the terminal in characters.

LINE
specify the number of lines that can appear on the screen of a
display station terminal.

LINELOC
specify the address of a word containing the number of lines that
can appear on the screen of a display station terminal.

Note: If the terminal is a display station, either the LINE or
LINELOC operand must be specified. If the terminal is not a
display station, neither operand should be specified.

Defaults by terminal type are as follows:

Terminal Type Line Size, Number of Lines, or Scrxeen Size

2741 120

1050 120

33735 Teletypetr 72

2260,2265 12x80, 12x40, 6x40, 15x64 - as specified by the
installation in the TSO-TCAM Message Control
Program.

iTrademark of the Teletype Corporation.

192 Guide to Writing a TMP or a CP (Release 21)

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful.
o4 Invalid parameter specified.
08 Invalid LINE, LINELOC, SIZE, or SIZELOC operand, as
follows:

1. The LINE or LINELOC operand was specified for
any terminal except a display station. (An
operand value of zero is not an error, and has
the same effect as omitting the operand.)

2. The LINE or LINELOC operand was omitted, or
specified as zero, for a display station.

3. The SIZE or SIZELOC operand was omitted, or
specified as zero, for any terminal type.

oc The dimensions specified for a display station do

not correspond to known existing screen size.
Incorrect screen management can result.

STTIMEQOU -- Set Timeout Feature

Use the STTIMEOU macro instruction to specify whether the 1050 terminal
has the optional text timeout suppression feature. The macro
instruction allows 1050's, with or without the feature, to call in via
the same switched line, with any 1050 being handled initially as if it
did not have the feature.

A 1050 without the text timeout suppression feature operates as
follows: When the PROCEED light is on and the keyboard is unlocked, the
terminal will "timeout," that is, the keyboard will lock if the user
does not type input for approximately 20 seconds. The system
subsequently responds to the timeout by restoring the keyboard so that
the user may continue. The user can prevent the timeout by periodically
pressing the SHIFT key.

A 1050 with the text timeout suppression feature operates as follows:
The keyboard does not lock if the user does not type input within 20
seconds. The system can therefore use the Read Inhibit channel command,
which does not timeout within 28 seconds, in contrast to the Read
channel command that does timeout. (Note: If the system is directed to
use the Read Inhibit channel command for a 1050 that does timeocut, the
terminal may be locked out of the system.)

Until the STTIMEOU macro instruction is issued, 1050 terminals are
handled as per the definition provided in the TSO TCAM Message Control
Program. If the currently connected terminal has the text timeout
suppression feature, STTIMEOU NO can be issued to direct the system to
use Read Inhibit rather than Read channel commands. (STTIMEOU NO should
not be issued for a 1050 that does not have the text timeout suppression
feature. This specification could cause the terminal to be locked out
of the system.)

The TERMINAL command processor issues the STTIMEOU macro instruction
when the user specifies the TIMEOUT or NOTIMEOUT operand of the TERMINAL
command. The STTIMEOU macro instruction will remain in effect until the
user logs off. :

Using the TGET/TPUT SVC for Terminal I/O0 193

The STTIMEOU macro instruction should be issued only when an IBM 1050
terminal is being used. Terminals which are equivalent to the one
explicitly supported may also function satisfactorily. The customer is
responsible for establishing equivalency. IBM assumes no responsibility
for the impact that any changes to the IBM-supplied products or programs
may have on such terminals.

The STTIMEOU macro instruction is used only in a time sharing
environment. It is ignored if TSO is not active when the macro
instruction is issued.

Figure 88 shows the format of the STTIMEOU macro instruction.

r
|
|

Y |

T b

I | [¥ES
[symboll | STTIMEOU | [NO

1 L

Figure 88. The STTIMEOU Macro Instruction

YES
indicates that IBM 1050 terminal does timeout. It does not have
the text timeout suppression feature. If the operand is omitted,
the default is YES.

NO

indicates that the IBM 1050 terminal does not timeout. The 1050
does have the text timeout suppression feature.

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful.
o4 Invalid parameter specified.
08 Invalid terminal type. This macro instruction

applies to the IBM 1050 terminal only.

TCLEARQ -- Clear Buffers

TCLEARQ enables the user to throw away "typed ahead" input or unsent
output. This clearing of the buffers lets the command processor
resynchronize with the terminal user.

For example, when a command processor analyzes the specified operands
in a line of input and discovers missing or invalid parameters, it
issues a TCLEARQ INPUT before sending a prompting message to the user.
This insures that the command processor will receive a line of input
entered after the terminal user has seen the prompting message.

When the TCLEARQ macro instruction is issued to clear the input
buffers, all the input that has been entered at the terminal but has not
yet been processed by the foreground job is purged. To ensure
synchronization, the terminal keyboard is locked until the next TGET
macro is issued.

When the TCLEARQ macxo instruction is issued to clear the output
buffers, all the output that has been processed by the foreground job
but not yet printed out at the terminal is purged.

The TCLEARQ macro instruction is used only in a time sharing

environment. It is ignored if TSO is not active when the macro
instruction is issued.

194 Guide to Writing a TMP or a CP (Release 21)

The TCLEARQ macro instruction is written as follows:

Figure 89 shows the format of the TCLEARQ macro instruction; each of
the operands is described following the figure.

I —"

1 1 [znpuT
[symboll | TCLEARQ | |OUTPUT
L L

Figure 89. The TCLEARQ Macro Instruction

INPUT
indicates that all input currently in the terminal’s input buffer
queue will be lost, including the input line currently being
entered, if any. If neither INPUT nor OUTPUT is specified, INPUT
is assumed.

OUTPUT
indicates that all the output for this terminal that is currently
in the terminal's output buffer queue will be purged, except for
output messages that have begun to appear at the terminal, or
messages from other terminals or the system operator. (Such
messages are sent via the TPUT TJID macro instruction.)

When control is returned to the user, register 15 contains one of the
following return codes:

Hexadecimal Code Meaning
00 Successful
o4 Invalid parameter (s) specified

Using the TGET/TPUT SVC for Terminal I/O 195

Command SCAN and PARSE - Determining the Validity of Commands

If you write your own command processors to run under TSO, you will need
a method of determining whether any command name or subcommand name
entering the system is valid, and whether the operands following the
command are syntactically correct. Command Scan and Parse are two
service routines provided within TSO, which perform those functions.

Command Scan scans the command buffer for commands. Parse scans the
command buffer for operands. In general, Command Scan is invoked by a
Terminal Monitor Program and Parse is invoked by a command processor.
Command Scan may also be invoked by the TEST Program or by any command
processors that process subcommands.

Both of these service routines are linked to; their entry points are:

Service Routine Entry Point
Command Scan IKJSCAN
Parse IKJPARS

Sequence of Operations

If you use Command Scan and Parse within a TMP or Command Processor, the
sequence of operations is as follows:

1. Your Terminal Monitor Program or Command Processor gets a line of
input which may contain a command and its parameters.

2. Your Terminal Monitor Program or Command Processor, links to
Command Scan (IKJSCAN) and passes it a parameter list containing,
among other things, the address of the command buffer.

3. Command Scan scans the buffer for a command name, syntax checks the
command name if you request it, updates the command buffer offset
field to point to the command operands (if any), and returns
control to the calling program.

4. The calling program receives the address of the command name and
gives control to the appropriate command processor or subcommand
processor.

5. The command processor links to Parse (IKJPARS) and passes it
parameter lists containing, among other things, the syntactical
structure of the command operands, and the addtess of the buffer.

6. Parse scans the buffer for operands, builds a list describing the
operands found, and returns control to the calling program.

7. The command processor processes the command according to the
operands received.

8. When the command processor terminates, it returns control to the
Terminal Monitor Program and the sequence is repeated.

This section discusses:
e Using the Command Scan Service Routine.

e Using the Parse Service Routine.

196 Guide to Writing a TMP or a CP (Release 21)

Using the Command Scan Service Routine (IKJSCAN)

Command Scan scans the command buffer for commands. In general, Command
Scan is linked to by a Terminal Monitor Program, but it may also be
invoked by the TEST program or by any command processors that process
subcommands.

Command scan scans a command within the command buffer and performs
the following functions:

1. It translates all lower case characters within the command name to
upper case.

2. It resets the offset pointer in the command buffer according to the
results of the scan.

3. It returns a pointer to the command name, the length of the command
name, and a code explaining the results of its scan to the calling
routine.

4. It optionally, at your request, syntax checks the command name.

This topic discusses:

Command Name Syntax

The Parameter List Structure Required by Command Scan.
The Command Scan Parameter List.

Flags Passed to Command Scan.

The Command Scan Output Area.

The Operation of the Command Scan Service Routine.
The Results of the Command Scan.

Return Codes from Command Scan.

COMMAND NAME SYNTAX

If you write your own command processor, and you intend to use the
Command Scan Service Routine to check for a valid command name, your
name must meet the following syntax requirements:

The first character must be an alphabetic or a national character.
The remaining characters must be alphameric.

The length of the command name must not exceed eight characters.

The command delimiter must be a separator character.

The name should include one or more numerals. Since no IBM-Supplied
Command Names include numerals, your command name will be unique.

Command Scan and Parse - Determining the Validity of Commands 197

THE PARAMETER LIST STRUCTURE REQUIRED BY COMMAND SCAN

Before you LINK to the Command Scan service routine, you must create the
parameter structure shown in Figure 90. You then place the address of
the Command Scan Parameter List (CSPL) into general register 1, set the
flags in the Flag word, and link to IKJSCAN, the Command Scan service
routine.

General
Register 1
o
CSPL
+0

UPT Flag Word

ECT Flags Reserved

Command Scan Output Area

+12
Flag Word o1
T Command Name Pointer To be set by
Output Area o Command
Length Flags | Reserved | Scan
+20

o

!
T
+8 T CP ECB
T
T
?

Command Buffer

Command Buffer

Length Offset

))
T (
Text
)
{

e
)
{

Figure 90. The Parameter List Structure Passed to Command Scan

198 Guide to Writing a TMP or a CP (Release 21)

The Command Scan Parameter List

The Command Scan Parameter List (CSPL) is a six-word parameter list
containing addresses required by the Command Scan routine. In order to
ensure the reenterability of the calling program, the CSPL should be
built in subpool 1 in an area obtained by the calling program with the
GETMAIN macro instruction.

The CSPL is defined by the IKJCSPL DSECT. Figure 91 shows the format
of the Command Scan Parameter List.

k] b 1
Numbexr of

Bytes Field Contents or Meaning
1

T
CSPLUPT | The address of the User Profile Table. (See
|Appendix A.)

4

——

RS T

4 CSPLECT The address of the Environment Control Table.
(See Appendix A.)
L

1
CSPLECB |The address of the Command Processor's Event
|Control Block. (Required if Command Scan is
|called by a command processor to scan a
subcommand; zeros if Command Scan is called
by the TMP.)

=
— o efen.

4 CSPLFLG The address of a fullword, obtained via the
| |GETMAIN macro instruction by the routine
linking to Command Scan, and located in
subpool 1. The first byte of the word
pointed to contains flags set by the calling
| routine; the last three bytes are reserved.
L

.]
CSPLOA |The address of an 8-byte Command Scan Output
|Area, located in subpool 1. The output area
|is obtained by the calling routine via a
|GETMAIN macro instruction. It is filled by
| the Command Scan service routine before it |
|returns control to the calling routine. (See|
| |Figure 92.) |

— . . Bl e s, . . . s, KA. G s, it S e, W st K. s, s S oo S
e e ey e e et s . . oy s . e . s b

4 CSPLCBUF The address of the Command buffer.

Figure 91. The Command Scan Parameter List

Flags Passed to Command Scan

The flag word built in subpool 1 and pointed to by the fourth word of
the CSPL, is obtained and freed by the calling routine. Only the first
byte of the field is used by the Command Scan service routine; the
remaining three bytes are reserved. Set the flag byte before linking to
the Command Scan routine to indicate whether or not you want the command
to be syntax checked. The flag byte has the following meanings:

X'00"' syntax Check the command name.
X'80'" Do not syntax check the command name.

The Command Scan Output Arxrea

The Command Scan Service routine returns the results of its scan to the
calling program by f£illing in a two word Command Scan Output Area

(CSOA). The CSOA must be obtained and freed by the calling program. It
must be located in subpool 1 and its address stored into the fifth word
of the Command Scan Parameter List before your program links to IKJSCAN.

Command Scan and Parse - Determining the Validity of Commands 199

The CSOA is defined by the IKJCSOA DSECT. Figure 92 shows the format
of the Command Scan Output Area.

F 1 T 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
| 4 4]
1] 1 1
4	CSOACNM	The address of the command name if the
		command name is present and valid. Zero
		otherwise.
L i] J		
] T T 1		
2	CSOALNM	Length of the command name if the command
		name is present and valid. Zero otherwise.
R 4 ! J		
L]) T 1		
1	CSOAFLG	A flag field. Command Scan sets these flags
		to indicate the results of its scan. See
		Figure 94 'Return from Command Scan - CSOA
		and Buffer Setting'.
i f 1 !		
1		Reserved.
L L L J

Figure 92. The Command Scan Output Area

THE OPERATION OF THE COMMAND SCAN SERVICE ROUTINE

If you set the flags field in the flag word to X'80' -- do not syntax
check the command name -- the command scan service routine merely scans
the buffer to determine if it contains a question mark or a command.

The first character in the command buffer is checked for a question mark
whether or not syntax checking is requested. If it is a question mark,
no further scanning is done. If it is not a question mark, the command
name is considered to begin at the first non-separator character found,
and end at the first command delimiter character found (See Figure 79).

Command Scan translates any lower case letters in the command name to
upper case, fills the Command Scan Output Area, updates the command
buffer offset field, and returns to the calling program.

If you have requested syntax checking (X'00' in the flag field of the
flag word), the command name must meet the syntax requirements, as
follows:

e The first character must be an alphabetic or a national character.
o The remaining characters must be alphameric.
e The length of the command name must not exceed eight characters.

e The command delimiter must be a separator character.

Figure 93 shows the various character types recognized by Command Scan.

200 Guide to Writing a TMP or a CP (Release 21)

CHARACTER TYPE
CHARACTER Command
Separator National | Alphabetic Numeric Delimiter Delimiter Special

Horizontal Tab HT X X
Blank b X X
Comma , x b
Dollar Sign $ x
Number Sign # x
At Sign @ X

a-z

A-z

0-9 P
New line NL X x
Period . X x
Left parenthesis (x x
Right parenthesis) x x
Ampersand & b3 x
Asterisk * X
Semicolon ; x x
Minus sign, hyphen - x X
Slash / x x
Apostrophe ! X x
Equal sign = X x
Cent sign ¢ X x
Less than < x
Greater than > x
Plus sign + x
Logical OR l x
Exclamation point ! X x
Logical NOT —_ x
Percent sign % x
Dash - X
Question mark ? X
Colon x
Quotation Mark " x X

Figure 93.

Command Scan and Parse - Determining the Validity of Commands

Character Types Recognized by Command Scan and Parse

201

RESULTS OF THE COMMAND SCAN

The Command Scan service routine scans the command buffer and returns
the results of its scan to the calling routine by filling the Command
Scan Output Area, and by updating the offset field in the command
buffer. Figure 94 shows the possible CSOA settings and command buffer
offset settings upon return from the Command Scan service routine.

r L
| Command Scan Output Area | Command Buffer ?
8 1 J
L} 1 T T T
|Flag | Meaning Length Field | Offset set to: |
4 4]
T L 1
X"80' |The command name is |Length of command name |The first non- |
|valid and the |separator following]|
| remainder of the |the command name. |
| |buffer contains non- | I
| separator | |
|characters. ! |
Ll v T
[X*40'	The command name is	Length of command name.	The end of the
	valid and there are		buffer.
	no non-separator		
	characters		
	remaining.		
t———1 t !
X'20' |The command name is Zero |Unchanged. |
a question mark. | |
(] 3
LD 1
X'10' |The buffer is empty Zero |The end of the |
or contains only | |buffer. |
separators. | | |
+ + !
|X*"08" |The command name is | Zero |Unchanged. |
| | syntactically | | |
| |invalid. | | |
L L 1 1 K]

Figure 94. Return from Command Scan - CSOA and Command Buffer Settings

RETURN CODES FROM COMMAND SCAN

The Command Scan service routine returns the following codes in general
register 15 to the program that invoked it:

CODE (hex) Meaning
0 Command Scan completed successfully.
4 Command Scan was passed invalid parameters.

202 Guide to Writing a TMP or a CP (Release 21)

Using the Parse Service Routine (IKJPARS)

The Parse serxrvice routine checks the syntax of command operands. To
prepare for this, the command processor creates a Parameter Control List
(PCL) --- a description of permissible operands, default values, text
to be used when prompting, and, if present, the address of a validity
checking subroutine.

The command processor links to Parse, which scans and checks each
operand against the entries (called PCEs: Parameter Control Entries) in
the PCL. In turn, Parse builds and returns results of the scan to the
command processor in a Parameter Descriptor List (PDL), whose entries
(called PDEs: Parameter Descriptor Entries) contain pointers to data
set names, indications of specified options, or pointers to the
subfields entered with the command operands.

The command processor uses the IKIJPARMD DSECT to refer to the PDL.
The command processor specifies the IKIJPARMD DSECT at the time it issues
the PARSE macro instructions to build the PCL. The labels used by the
command processor on the various Parse macro instructions become the
symbolic addresses of the fields in the IKJPARMD DSECT.

Figure 95 depicts a command processor's use of the Parse macro
instructions, the Parse service routine, and the IKJPARMD DSECT.

Command Scan and Parse - Determining the Validity of Commands 203

Command Buffer

Command Name Parameter 1 Parameter 2 Parameter 3

Command Processor @ LINK to Parse Parse Service Routine

D s e, | © -1
instructions to build parameters in the
a PCL describing Command Buffer.

valid parameters
o label 1 Macro PCL

o labelz Macro
o label3 Macro PCE1

PCE2

These macro
instructions also PCE3
create the
IKJPARMD DSECT. PDL

PDE | (/) B.i(d; the PDL.
IKJPARMD @

DSECT PDE
MabelT — 1
llc:bell _; PDE
Mobelz ~ 7]

Habels ™ — 1

-
@ Return to the Command Processor

@ The Command
Processor uses the
IKJPARMD DSECT
to access the various
PDEs within the
PDL.

Figure 95. A Command Processor Using the Parse Service Routine
Parse service routine support consists of the following:
1. The following set of macro instructions:

IRJPARM Begins the Parameter Control List and establishes a
symbolic reference for the Parameter Descriptor List.

IKJPOSIT Builds a Parameter Control Entry. This PCE describes a
positional parameter that contains delimiters recognized by the
Parse Service routine.

IKJIDENT Also builds a Parameter Control Entry; however, this PCE
describes a positional parameter that does not depend upon a
particular delimiter.

IKJKEYWD Builds a Parameter Control Entry that describes a RKeyword
parameter.

204 Guide to Writing a TMP or a CP (Release 21)

IKIJNAME Describes the possible names that may be entered for a
keyword parameter.
IKJSUBF Indicates the beginning of a keyword subfield description.
IKJENDP Indicates the end of the PCL.
IKJRLSA Releases any storage (allocated by the Parse service
routine) that remains after Parse has returned control to the
command processor.

2. A program that checks the syntax of the command operands within the

command buffer against the PCL and builds a PDL containing the
results of the syntax check.

Parse also provides the following services which may be selected by
the calling routine:

e It translates the command operands to upper case.

e Tt substitutes default values for missing operands.

e It prompts the user at the terminal for missing positional
parameters.

o Tt passes control to an exit, supplied by the calling routine, to do
further checking on a positional parameter.

e It inserts implied keywords.

e It appends user supplied second level messages to prompt messages.

This section describes:
e Command Parameter Syntax
e Using the Parse Macro Instructions to Define Command Syntax
e The Parse Macro Instructions
e Passing Control to the Parse Service Routine
e Formats of the PDEs Returned by Parse
o Additional Facilities Provided by Parse
o An Example of Using the Parse Service Routine

e Return Codes from the Parse Service Routine

Command Scan and Parse - Determining the Validity of Commands 205

COMMAND PARAMETER SYNTAX

If you write your own command processors, and you intend to use the
Parse service routine to determine which operands have been entered
following the command name, your command parameters must adhere to the
syntactical structure described in this section.

Command parameters must be separated from one another by one or more
of the separator characters, blank, tabulation, or comma (See Figure
78). The command parameters end either at the end of a logical line
(carriage return), or at a semicolon. If the command parameters end
with a semicolon, and other characters are entered after the semicolon
but before the end of the logical line, Parse ignores that portion of
the line that follows the semicolon. Parse returns no message to
indicate this condition.

There are two types of command parameters recognized by the Parse
service routine:

1. Positional parameters
2. Keyword parameters

Positional Parameters

Positional parameters must be coded first in the parameter string, and
they must be in a specific order.

In general, the Parse service routine considers a positional
parameter to be missing, if the first character of the parameter scanned
is not the character expected. For instance, if a parameter is supposed
to begin with a numeric character and Parse finds an alphabetic
character in that position, the numeric parameter is considered missing.
Parse then prompts for the missing parameter if it is required,
substitutes a default value if one is available, or ignores the missing
parameter if the parameter is optional.

For the purpose of syntax checking, positional parameters are divided
into parameters that include delimiters as part of their definition
(delimiter dependent parameters), and parameters that do not include
delimiters as part of their definition (non-delimiter dependent
parameters).

DELIMITER DEPENDENT PARAMETERS: Those parameters that include
delimiters as part of their definition are called delimiter dependent
parameters. You use the IKJPOSIT macro instruction to describe
delimiter dependent parameters to the Parse service routines. The Parse
service routine recognizes ten delimiter dependent parameter syntaxes.
These are:

1. DELIMITER
2. STRING

3. VALUE

4. ADDRESS
5. PSTRING
6. USERID

7. DSNAME

8. DSTHING
9. QSTRING
10. SPACE

206 Guide to Writing a TMP or a CP (Release 21)

DELIMITER - It may be any character other than an asterisk, left paren,
right paren, semicolon, blank, comma, tab, carriage return,
or digit. A self-defining delimiter character is
represented in this discussion by the symbol . The
delimiter parameter is used only in conjunction with the
string parameter.

STRING - A string is the group of characters between two alike
self-defining delimiter characters, such as

string

or, the group of characters between a self-defining delimiter
character and the end of a logical line, such as

string

The same self-defining delimiter character can be used to
delimit two contiguous strings, such as

string string
or
string string

A null string, which indicates that a positional parameter has not been
entered, is defined as two contiguous delimiters or a delimiter and the
end of the logical line. If the missing string is a required parameter,
the null string must be entered as two contiguous delimiters. Note that
a string received from a prompt or a default must not include the
delimiters.

VALUE - A value consists of a character followed by a string enclosed in
quotes, such as

X'string®

The character must be an alphabetic or national character. The
string may be of any length and may consist of any combination
of enterable characters. If the ending quote is left off the
string, Parse assumes that the string ends at the end of the
logical line. If Parse encounteres two successive single
quotes, it assumes them to be part of the string and continues
to scan for a single ending quote. The Parse service routine
always raises the character preceding the first quote to upper
case. The value is considered missing if the first character is
not an alphabetic or national character, or if the second
character is not a quote.

ADDRESS - There are several forms of the address parameter.

Absolute address - An absolute address consists of from one to six
hexadecimal digits followed by a period.

Relative address - A relative address consists of from one to six
hexadecimal digits preceded by a plus sign.

Command Scan and Parse - Determining the Validity of Commands 207

208

General register address - A general register address consists of a
decimal integer in the range 0 to 15 followed by the letter R. R
can be entered in either upper or lower case.

Floating point register address - A floating point register address
consists of an even decimal integer in the range 0 to 6 followed by
the letter D (for double precision) or E (for single precision).
The letter E or D can be entered in either upper or lower case.

Symbolic address - A symbolic address consists of any r ination,
up to 31 characters in length, of the alphameric char- and the
break character. The first character must be either a. .phabetic

or a national character.

Qualified address - A qualified address has the following format:

loadname .entryname .symbolic address
.relative address

e loadname - any combination of alphameric characters up to eight
characters in length, of which the first character is an
alphabetic or a national character.

e entryname - has the same syntax as a loadname, but it must be
preceded by a period as illustrated in the example.

e symbolic address - as defined above, but must be preceded by a
period as illustrated in the example.

e relative address - as defined above, but must be preceded by a
period as illustrated in the example.

Indirect address - An indirect address is an absolute, relative,
symbolic, or general register address followed by from 1 to 255
percent signs, such as

+A%
The number of percent signs following the address indicate the
number of levels of indirect addressing. In this example (+A%), the
data is pointed to by the location pointed to by +A.

Address expression - An address expression has the following format:

addr[%...l+expression valuel%...][+expression valuel%...11]

addr - represents an absolute, relative, symbolic, or general
register address. 1If a general register address is used, but it
must have indirect address notation, that is, it must be followed
by at least one percent sign.

expression value - consists of from one to six hexadecimal digits
or one to six decimal digits followed by the letter N. The N can
be in either upper or lower case. The expression values can be
indirect. There is nc 1limit to the number of expression values in
the address expression.

Note: Blanks are not allowed within any form of the address
parameter.

Guide to Writing a TMP or a CP (Release 21)

PSTRING - A parenthesized string is a string of characters enclosed
within a set of parentheses, such as

(string)

The string may consists of any combination of characters of any
length, with one restriction; if it includes parentheses, they must
be balanced. The enclosing right parenthesis of a PSTRING can be

omitted if the string ends at the end of a logical line.

A null PSTRING is defined as a left parenthesis followed by a right
parenthesis or the end of a logical line.

USERID - A userid consists of an identification optionally followed by a
slash and a password. The format is:

identification [/passwordl

identification - can be any combination of alphameric characters up
to seven characters in length, the first of which must be an
alphabetic or national character.

password - can be any combination of alphameric characters up to
eight characters in length, the first of which must be an
alphabetic or national character. .

Blanks may be inserted between the identification and the slash,
and between the slash and the password.

If just the identification is entered, Parse does not prompt for
the password. If the identification is entered followed by a slash
and no password, Parse prompts for the password by executing a
PUTGET macro instruction specifying bypass mode, i.e., the terminal
user's reply will not print at the terminal. The terminal user can
reply to a prompt for password by entering either a password or a
null line. If the user enters a null line, PARSE builds the PDE
and leaves the password field blank.

DSNAME - The data set name parameter has three possible formats:

dsname [(membername)l [/passwordl
[dsnamel (membername) [/passwordl
‘dsname [(membername)] ' [/passwordl

dsname - may be either a qualified or an unqualified name.

An unqualified name is any combination of alphameric characters up
to eight characters in length, the first character of which must be
an alphabetic or national character.

A qualified name is made up of several unqualified names, each
unqualified name separated by a period. A qualified name,
including the periods, may be up to 44 characters in length.

membername - one to eight alphameric characters, the first of which
must be an alphabetic or a national character.

Command Scan and Parse - Determining the Validity of Commands 209

Note: PARSE considers the entire DSNAME parameter missing if the
first character scanned is not a quote, an alphabetic character, a
national character, or a left parenthesis.

If the slash and the password are not entered, Parse does not
prompt for the password. If the slash is entered and not the
password, Parse prompts for the password by executing a PUTGET

macro instruction specifying bypass mode, i.e., the terminal user's

reply will not print at the terminal.

DSTHING - A DSTHING is a dsname parameter as previously defined except
that an asterisk can be substituted for an unqualified name or for
each qualifier of a qualified name. PARSE processes the asterisk
as if it were a DSNAME. The asterisk is used to indicate that all
data sets at that particular level are considered.

OSTRING - A quoted string is a string of characters enclocsed within
quotes, such as

'string'

The string can consist of any length combination of characters,
with one restriction: if the user wishes to enter quotes within
the string, two successive quotes must be entered for each single
quote desired; one of the quotes is removed during the parse.

The ending quote is not required if the string ends at the end of
the logical line.

A null quoted string is defined as two contiguous quotes or a
single quote at the end of the logical line.

SPACE - Space is a special purpose parameter; it allows a string
parameter that directly follows a command name to be entered
without a preceding self-defining delimiter character. The space
parameter must always be followed by a string parameter. If the
delimiter of the command name is a tab, the tab is the first
character of the string. The string always ends at the end of the
logical line.

POSITIONAL PARAMETERS NOT DEPENDENT ON DELIMITERS: A positional
parameter that is not dependent on delimiters is parsed as a character
string with restrictions on the beginning character, additional
characters, and length. These restrictions are passed to the Parse
service routine as operands on the IRKJIDENT macro instruction.

The Parse service routine recognizes the following character types as

the beginning character and additional characters of a non-delimiter
dependent positional parameter:

ALPHA - Indicates an alphabetic or national character.
NUMERIC -~ Indicates a number, (0-9).

ALPHANUM - Indicates an alphabetic or national character or a number.

ANY - Indicates that the character to be expected can be any
character other than a blank, comma, tab, semicolon, or carriage
return. Right parenthesis must, however, be balanced by left
parenthesis.

An asterisk can be entered in place of any positional parameter that
is not dependent on delimiters.

210 Guide to Writing a TMP or a CP (Release 21)

ENTERING POSITIONAL PARAMETERS AS LISTS OR RANGES: You may want to have
some positional parameters of your command entered in the form of a
list, a range, or a list of ranges. The two macro instructions that
describe positional parameters to the Parse service routine, IKJPOSIT
and IKJIDENT, provide a LIST and a RANGE operand. If coded in the macro
instruction, they indicate that the positional parameters expected can
be in the form of a list or a range.

LIST
Indicates to the Parse service routine that one or more of the same
type of positional parameters may be entered enclosed in
parentheses as follows:

(positional-parameter positional-parameter ...)

If one or more of the items contained in the list are to be entered
enclosed in parentheses, both the left and the right parenthesis
must be included for each of those items.

The following positional parameter types may be used in the form of
a list:

VALUE

ADDRESS

USERID

DSNAME

DSTHING

Any positional parameter that are not dependent upon delimiters.

0 8 00 © ©

RANGE
Indicates to the Parse service routine that two positional
parameters are to be entered separated by a colon as follows:

positional-parameter:positional-parameter

The following positional parameter types may be used in the form of
a range or a list of ranges:

e ADDRESS
e VALUE
o Any positional parameter that is not dependent upon delimiters.

If the user at the terminal wants to enter a parameter that begins with
a left parentheses, and you have specified in either the IKJPOSIT or
IKJIDENT macro instruction that the parameter can be entered as a list
or a range, the user must enclose the parameter in an extra set of
parentheses to obtain the correct result.
For instance, if you have specified via the IKJPOSIT macro instruction
that the DSNAME operand may be entered as a list, and the terminal user
wishes to enter a dsname of the form:

(membername) /password
He must enter it as:

((membername) /password)

Command Scan and Parse - Determining the Validity of Commands 211

Keyword Parameters

Keyword parameters can be entered anywhere in the command as long as
they follow all positional parameters. They may consists of any
combination of alphameric characters up to 31 characters long, the first
of which must be an alphabetic character.

You describe keyword parameters to the Parse service routine with the
IKJKEYWD, IKJNAME and IKJSUBF macro instructions.

Keyword parameters can have other parameters associated with them.
These parameters, known as subfields, must be enclosed in parentheses
directly following the keyword. A subfield may contain positional as
well as keyword parameters. In the following example posnl and kywd2
are parameters in the subfield of keyword 1:

keywordl(posnl kywd2)

The same syntax rules that apply to commands, apply within keyword
subfields.

e Keyword parameters must follow positional parameters.

e Enclosing right parenthesis may be eliminated if the subfield ends
at the end of a logical line.

e The subfield may not contain unbalanced right parentheses.
If a keyword, with a subfield in which there is a required parameter,
is entered without the subfield, Parse prompts for the required

parameter. The terminal user must not include the subfield parentheses
when he enters the required parameter.

If a subfield has a positional parameter, that can be entered as a
list, and if this is the only parameter in the subfield, the list must
be enclosed by the same parentheses that enclose the subfield, such as

keyword (iteml item2 ijitem3)
where iteml, item2, and item3 are members of a list.

If a subfield has, as its first parameter, a positional parameter
that may be entered as a list, and there are additional parameters in
the subfield, a separate set of parentheses is required to enclose the
list, such as

keyword ((iteml item2 item3) param)

where iteml, item2, and item3 are members of a list, and param is a
parameter not included in the 1list.

212 Guide to Writing a TMP or a CP (Release 21)

USING THE PARSE MACRO INSTRUCTIONS TO DEFINE COMMAND SYNTAX

A Command Processor using the Parse service routine must build a
Parameter Control List (PCL) defining the syntax of acceptable command
parameters. Each acceptable command parameter is described by a
Parameter Control Entry (PCE) within the PCL. The Parse service routine
compares the command parameters within the command buffer against the
PCL to determine if valid command parameters have been entered.

Parse returns the results of this comparison to the Command Processor
in a Parameter Descriptor List (PDL). The PDL is composed of separate
entries (PDEs) for each of the Command Parameters found in the command
buffer.

The Command Processor builds the PCL and the PCEs within it using the
Parse macro instructions. These macro instructions generate the PCL and
establish symbolic references for the PDL returned by the Parse service
routine.

There are eight Parse macro instructions. They are:

IKJPARM
IKJPOSIT
IKJIDENT
IKJKEYWD
IKINAME
IKJSUBF
IKJENDP
IKJRLSA

These macro instruction perform the following functions:

1. The IKJPARM macro instructions begins the PCL CSECT and the PDL
DSECT, and provides symbolic addresses for both.

2. The IKJPOSIT, IKJIDENT, IKJKEYWD, IKJIJNAME, and IKJSUBF macro
instructions describe the positional and keyword parameters valid
for the command processor. These macro instructions expand into
the PCEs required by the Parse service routine during its scan of
the command buffer. The label fields of the IKJPOSIT, IKJIDENT,
and IKJKEYWD macro instructions are used as labels within the DSECT
that maps the PDL returned by the Parse service routine.

3. The IKJENDP macro instruction ends the PCL CSECT.

| 4, The IKJRLSA macro instruction releases the storage obtained by the
Parse service routine for the PDI.

Command Scan and Parse - Determining the Validity of Commands 213

IKJPARM - Beqginning the PCL and the PDL

Code the IKJPARM macro instruction to begin the Parameter Control List
and to provide a symbolic address for the beginning of the Parameter
Descriptor List returned by the Parse service routine. The PCL is
constructed in a CSECT named by the label field of the macro
instruction; the PDL will be mapped by the DSECT named in the DSECT
operand of the macro instruction.

Figure 96 shows the format of the IKJPARM macro instruction. Each of
the operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

dsectname

[1 I
| label | IKJPARM | DSECT=)IKJPARMD
1 i

Figure 96. The IKJPARM Macro Instruction

label

The name you provide is used as the name of the CSECT in which the
PCL is constructed.

DSECT=
Provides a name for the DSECT created to map the Parameter
Descriptor List. This may be any name; the default is IKJPARMD.

THE PARAMETER CONTROL ENTRY BUILT BY IKJPARM: The IKJPARM macro
instruction generates the Parameter Control Entry (PCE) shown in Figure
97. This PCE begins the Parameter Control List.

1
Number of

Bytes
2

Field Name |Contents or Meaning
[l

+
| Length of the Parameter Control List. This
|field contains a hexadecimal number

‘| representing the number of bytes in this PCL.
1

iLength of the Parameter Descriptor List.
|This field contains a hexadecimal number
| representing the number of bytes in the

| Parameter Descriptor List returned by the
| Parse service routine.

|

+
|This field contains a hexadecimal number

| representing the offset within the PCL to the
|first IKJKEYWD PCE or to an end-of-field
|indicator if there are no keywords. An
|end-of-field indicator may be an IKJSUBF or
|an IKJENDP PCE.

L

o e e o e o e . . e e B e e . e e e e s
T Sy SO S———
o e e e e e s iy e . et e, s sy e S e g . e o]

Figure 97. The Parameter Control Entry Built by IKJPARM

214 Guide to Writing a TMP or a CP (Release 21)

IKJPOSIT - Describing a Delimiter Dependent Positional Parameter

Code the IKJPOSIT macro instruction to describe delimiter dependent
positional parameters.

The order in which you code the macros for positional parameters is
the order in which the Parse service routine expects to find the
positional parameters in the command string.

Figure 98 shows the format of the IKJPOSIT macro instruction. Each
of th operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

(,SPACE
,DELIMITER
, STRING
,VALUE
(ADDRESS | {,LIST] [,RANGE]
< ,PSTRING

label IKJPOSIT

T
|

|

|

|

|

|

| | ,USERID
| | ,DSNAME
| | ,DSTHING
| | ,QSTRING
|

|

|

|

|

|

|

|

|

L

Y

[,SOSTRING]

,UPPERCASE| | , PROMPT="prompt data'
+ASIS ,DEFAULT="'"default value'
[,HELP=("help data','help data',...)]

[,VALIDCR=symbolic address]

T ——

|
|
|
[
|
|
|
A
|
[
|
|
|
|
|
|
|
|
|

e e e e e e e e e . o e e . . i . e, e e o]

Figure 98. The IKJPOSIT Macro Instruction

label
This name is used as the symbolic address within the PDL DSECT of
the Parameter Descriptor Entry for the parameter described by this
IKJPOSIT macro instruction.

SPACE) These are the positional parameter types
DELIMITER recognized by the Parse service routine.
STRING A syntactic definition of each is contained
VALUE under the heading, "Delimiter Dependent
ADDRESS Parameters.

PSTRING

USERID

DSNAME

DSTHING

QSTRING |

SQSTRING

The command operand is processed either as a string or as a quoted
string. If the delimiter is a quote, the command operand is
processed as a quoted string. If the delimiter is any of the other
acceptable delimiter characters, the command operand is processed
as a string. The SQSTRING option can only be specified if STRING
is specified for the parameter type. As an example, if SQSTRING is
coded in the IRJPOSIT macro instruction, a user entering a command
could specify either

/string/string... or 'string' 'string' ...

Command Scan and Parse - Determining the Validity of Commands 215

| for this positional parameter.

LIST

The command operand may be entered as a list, that is, in the form:
Command Name (parameter,parameter, ...)

This list option may be used with the following delimiter dependent
positional parameters:

USERID, DSNAME, DSTHING, ADDRESS, and VALUE.

RANGE

The command operand may be entered as a range, that is, in the
form:

Command Name parameter:parameter

This range option may be used with the following delimiter
dependent positional parameters:

ADDRESS and VALUE.
Note: The following options (UPPERCASE, ASIS, PROMPT, DEFAULT,

HELP, and VALIDCK) may be used with all delimiter dependent
positional parameters except SPACE and DELIMITER.

UPPERCASE

ASIs

The parameter is to be translated to uppercase.

The parameter is to be left as it was entered by the terminal user.

PROMPT="prompt data'

The parameter described by this IKJPOSIT macro instruction is
required; the prompt data is the message to be issued if the
parameter is missing. If prompting is necessary and the terminal
is in prompt mode, Parse adds a message identifying number (message
ID) and the word "ENTER" to the beginning of this message before
writing it to the terminal.

If prompting is necessary but the terminal is in no prompt mode,
Parse adds a message ID and the word "MISSING" to the beginning of
this message before writing it to the terminal.

DEFAULT="default value’'

The parameter described by this IKJPOSIT macro instruction is
required, but the user need not enter it. If the parameter is
missing, the value specified as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the parameter is
optional. The Parse service routine takes no action if the
parameter specified by this IKJPOSIT macro instruction is not
present in the command buffer.

HELP=('help data', 'help data'...)

216

You can provide up to 255 second level help messages. Enclose each
message in single quotes and separate the messages by single
commas. These messages are issued one at a time after each
question mark entered by the terminal user in response to a
prompting message from the Parse service routine. These messages
are not sent to the user when the prompt is for a password on a
DSNAME or USERID parameter. '

Parse adds a message ID and the word "ENTER" (in prompt mode) or
"MISSING"™ (in no prompt mode) to the beginning of each message
before writing it to the terminal.

Guide to Writing a TMP or a CP (Release 21)

VALIDCK=symbolic address
Supply the symbolic address of a validity checking subroutine if
you want to perform additional validity checking on this parameter.
Parse calls this routine after first determining that the parameter
is syntactically correct.

THE PARAMETER CONTROL ENTRY BUILT BY IKJPOSIT:

shown in Figure 99.

The IRJPOSIT macro
instruction generates the variable length Parameter Control Entry (PCE)

Number of
Bytes

Field

Contents or Meaning

2

Byte 1
001.
eeel cuen
eeee lea.
eeee «0..
eeee aal.

T

Byte 2

i
T
eele caan

esee laoe

.--0 .000

instruction.

PROMPT

| DEFAULT
|Reserved
| HELP

| VALIDCK
|

|

|LIsT
|AsIs

| RANGE

| SOSTRING
|Reserved
1

Flags. These flags are set to indicate which
options were coded in the IKJPOSIT macro

This is an IKJPOSIT PCE.

1
| Length of the Parameter Control Entry.

|field contains a hexadecimal number
| representing the number of bytes in this

|IXKJPOSIT PCE.
I

This

T
|Contains a hexadecimal offset from the

| beginning of the Parameter Descriptor List to
| the related Parameter Descriptor Entry built

| by the PARSE service routine.
]

N S Ty———

|
|

[N

P e o . S o ——— ————t——— — .t fr. it S . s e, . . DB e . g e EB. e e . . i, . S . i, e, S S, G2 . S . s . T, s, G,)

m
=
>

w\om~4mun:c»wr4

B to FF

T
|This field contains a hexadecimal number

|indicating the type of
|described by this PCE.
| the following meaning:

|

| DELIMITER
| STRING

| VALUE

| ADDRESS

| PSTRING

| USERID

| DSNAME

| DSTHING

| OSTRING

| SPACE

| Not used.
L

psoitional parameter
These numbers have

T e S S

Figure 99. The Parameter Control Entry Built by IKJPOSIT (Part 1 of 2)

Command Scan and Parse - Determining the Validity of Commands

217

Number of
Bytes

P SR

Field

Contents or Meaning

1

Contains the length minus one of the default
or prompt information supplied on the
IKJPOSIT macro instruction. This field and
the next are present only if DEFAULT or
PROMPT were specified on the IKJPOSIT macro
|instruction.

o e el

VARIABLE

I
t !
|This field contains the prompt or default l
| information supplied on the IKJPOSIT macro
|instruction.
4

L

|This field contains a hexadecimal figure

| representing the length in bytes of all the

| PCE fields used for HELP data. The figure
|includes the length of this field. The HELP
|data fields are present only if HELP data was
| supplied on the IKJPOSIT macro instruction.

4

+
|This field contains a hexadecimal number
| representing the number of HELP messages
|contained in this IKJPOSIT PCE.

1

+
|This field contains a hexadecimal number

| representing the length of this HELP segment.
|The length figure includes the length of this
| field, the message segment offset field, and
| the length of the HELP information. These
|fields are repeated for each HELP message

| supplied on the IKJPOSIT macro instruction.

4

]

|This field contains the message segment
|offset. It is set to X'0000'.

L

Variable

+
|This field contains one segment of the HELP
|data supplied on the IKJPOSIT macro
|instruction. This field and the two

| preceding ones are repeated for each segment
|of HELP data supplied on the IKJPOSIT macro
|instruction; these fields do not appear if
|HELP data was not supplied.

[l

L}
|
|
}
L]
|
|
|
|
|
|
L
¥
|
|
|
I
L §
|
|
|
l
I
I
1
g
|
|
|
]
i
|
|
|
|
|
|
I
{
L]
I
|
1
L]
|
|
I
|
|
|
|
L
[]
|
|
!
|
L

[l
T
I
I
|
1
T
|
|
I
I
[
|
|
|
T
|
|
i
+
|
I
|
|
|
|
I
(]
T
|
I
I
|
L

TThe address of a validity checking routine.
|This field is present only if a validity
|checking address was included in the IRKJPOSIT
|macro instruction.

1

e e e e e iy e e e o e e s gy e . gy o T et e o e e gy e e e b

Figure 99.

The Parameter Control Entry Built by IKJPOSIT (Part 2 of 2)

218 Guide to Writing a TMP or a CP (Release 21)

IKJIDENT - Describing a Non-Delimiter Dependent Positional Parameter

Execute the IKJIDENT macro instruction to describe a positional
parameter that does not depend upon a particular delimiter for its
syntactical definition -- those parameters discussed under the heading
"Positional Parameters Not Dependent on Delimiters."

These positioned parameters must be in the form of a character
string, with restrictions on the beginning character, additional
characters, and length.

The order in which you code the macro instructions for positional
parameters is the order in which the Parse service routine expects to
find the positional parameters in the command string.

Figure 100 shows the format of the IKJIDENT macro instruction. Each
of the operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

I T T 1
1label	IKJIDENT	"parameter-type' [,LIST][,RANGE]([,PTBYPS]		
		[,ASTERISKI	,UPPERCASE	[,MAXLNTH=number]
I	,ASIS			
		ALPHA ALPHA		
		FIRST=) NUMERIC +OTHER=)NUMERIC		
		ALPHANUM ALPHANUM		
		ANY ANY		
	-			
		» PROMPT="prompt-data’		
		,DEFAULT="default-data"’]		
		-		
		[VALIDCK=symbolic-address]		
		[,HELP=("help data','help data’,...)]		
L 1 L]

Figure 100. The IKJIDENT Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of
the Parameter Descriptor Entry for this positional parameter.

parameter-type
A name is required so that the parameter can be identified when an
error message is necessary. This field differs from the PROMPT
field in that the PROMPT field is not required and if supplied is
used only for a required parameter that is missing.

LIST
This positional parameter may be entered as a list, that is, in the
form: :
Command Name (parameter,parameter,...)
RANGE
This positional parameter may be entered as a range, that is, in
the form:
Command Name parameter:parameter
PTBYPS

All prompting for the parameter is to be done in print inhibit
mode. This option may be specified only when the PROMPT option is
specified.

Command Scan and Parse - Determining the Validity of Commands 219

ASTERISK

An asterisk may be substituted for this positional parameter.

UPPERCASE

ASIS

The parameter is to be translated to uppercase.

The parameter is to be left as it was entered.

MAXLNTH=number

The maximum number of characters the string may contain. If you do
not code the MAXLNTH operand, the Parse service routine accepts a
character string of any length.

FIRST=

Specify the character type restriction on the first character of
the string.

OTHER=

Specify the character type restriction on the characters of the
string other than the first character.

Note: The restrictions on the characters of the string are
specified by coding one of the following character types after the
FIRST= and the OTHER= operands:

ALPHA
An alphabetic or national character. ALPHA is the default
value for both the FIRST and the OTHER operands.

NUMERIC
A digit, 0 - 9.

ALPHANUM
An alphabetic, numeric, or national character.

ANY
Any character other than a blank, comma, tab, or semicolon.
Parentheses must be balanced.

PROMPT="prompt data’

The parameter is required; the prompt data is the message to be
issued if the parameter is missing. If prompting is necessary and
the terminal is in prompt mode, Parse adds a message identifying
number (message ID) and the word "ENTER" to the beginning of this
message before writing it to the terminal.

If prompting is necessary but the terminal is in no prompt mode,
Parse adds a message ID and the word "MISSING" to the beginning of
this message before writing it to the terminal.

DEFAULT="default value'

220

The parameter is required, but a default value may be used. If the
parameter is missing, the value specified as the default value is
used.

Note: The parameter is optional if neither PROMPT nor DEFAULT is
specified. The Parse service routine takes no action if the
parameter specified by this IKJIDENT macro instruction is not
present in the command buffer.

Guide to Writing a TMP or a CP (Release 21)

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking subroutine if
you want to perform additional validity checking on this parameter.
The Parse service routine calls the addressed routine after first
determining that the parameter is syntactically correct.

HELP=('help data', 'help data’...)
You can provide up to 255 second level help messages. Enclose each
message in single quotes and separate the messages by single
commas. These messages are issued one at a time after each
question mark entered by the terminal user in response to a
prompting message from the Parse service routine. These messages
are not sent to the user when the prompt is for a password on a
DSNAME or USERID parameter.

Parse adds a message ID and the word "ENTER" (in prompt mode) or
"MISSING" (in no prompt mode) to the beginning of each message
before writing it to the terminal.

THE PARAMETER CONTROL ENTRY BUILT BY IKJIDENT: The IKJIDENT macro
instruction generates the variable length Parameter Control Entry (PCE)
shown in Figure 101.

] T T 1
| Number of | | |
| Bytes | Field |[Contents or Meaning |
1 i 1 3
¥ L] T T
2		Flags. These flags are set to indicate which]
		options were coded in the IKJIDENT macro
		instruction.
	Byte 1	
	100.	This is an IKJIDENT PCE.
{ <«e1	PROMPT	
	<<.. 1l...	DEFAULT
] <.es .0..	Reserved	
	<ee«s «.1l. }	HELP
	<eee <<.1	VALIDCK
	Byte 2	
	leee eeee	LIST
	<1..	ASIS
	eel.	RANGE
	<-.-0 0000	Reserved
L L 1 i]		
[) L) T T		
2		Length of the Parameter Control Entry. This
		field contains a hexadecimal number
		representing the number of bytes in this
		IKJIDENT PCE.
L 1 [l J		
r 1		
2 i iContains a hexadecimal offset from the		
		beginning of the Parameter Descriptor List to
		the related Parameter Descriptor Entry built
		by the PARSE service routine.
L 4 L i]		
] T T 1		
15		A flag field indicating the options coded on
		the IKJIDENT macro instruction.
	leee oeae	ASTERISK
	-1.. <...	MAXLNTH]
	eele eaea	PTBYPS
	<<-0 0000	Reserved
L. 1 4 J

Figure 101. The Parameter Control Entry Built by IKJIDENT (Part 1 of 3)

Command Scan and Parse - Determining the Validity of Commands 221

Number of

T
|
Bytes Field |Contents or Meaning
1
$

|This field contains a hexadecimal number
|indicating the character type restriction on
| the first character of the character string
|described by the IKJIDENT macro instruction.

I
I
|Any character type is acceptable.
|Only an alphabetic character is acceptable.
|only an numeric character is acceptable.
|An alphabetic or a numeric character is
| acceptable.
4 to FF |Not used.
4

o]
=
>

wondl

S U S SIS g ——

+
|This field contains a hexadecimal number

| indicating the character type restriction on
| the other characters of the character string |
|described by the IKJIDENT macro instruction. |

: |
|Any character type is acceptable.
|Only an alphabetic character is acceptable.
|Only a numeric character is acceptable.
|An alphabetic or a numeric character is
|acceptable.
4 to FF |Not used.

]

jar]
=
>

UJNI—‘OI

J
L] T
|This field contains a hexadecimal number
| representing the length of the parameter type
| segment. This figure includes the length of |
|this field, the length of the message segment|
|offset field, and the length of the Parameter|
| type name supplied on the IRKJIDENT macro
|instruction.

I
[
1
This field contains the message segment
offset. It is set to X'0012'.

Variable This field contains the name supplied as the
parameter type operand of the IKJIDENT macro
|instruction.

1

]

|This field contains a hexadecimal number

| representing the mexaimum number of
|characters the string may contain. This
|field is present only if the MAXLNTH operand
|]was coded on the IKJIDENT macro instruction.
|

]

|This field contains the length minus one of

| the default or prompt information supplied on
| the IKJIDENT macro instruction. This field
|and the next are present only if DEFAULT or

| PROMPT were specified on the IKJIDENT macro
|instruction.

1

]
Variable |This field contains the prompt or default
| information supplied on the IKJIDENT macro

| instruction.
L

o= e . . B, . e . e e e Wl et s e e BB . s . BB . S B e e, S e .t v W i B e e e B, e S, e, e S s, BBt S, . G e S . e . . e, MO, e, s,
b e e e o e e e e e o e e e e e e e e e e e e e ———————— e e e e e e e e e e e e e e e e o e e

I
|
J
1
|
I
I
]
L)
|
|
|
|
|
]
T
|
|
|
!
|
[
]
L)
I
I
[
3
)

Figure 101. The Parameter Control Entry Built by IKJIDENT (Part 2 of 3

222 Guide to Writing a TMP or a CP (Release 21)

Number of
Bytes

Field

Contents or Meaning

|This field contains a hexadecimal figure

| representing the length in bytes of all the

| PCE fields used for HELP data. The figure
|includes the length of this field. The HELP
|data fields are present only if HELP data was
| supplied on the IKJIDENT macro instruction.

L

b
|This field contains a hexadecimal number
| representing the number of HELP messages
|contained in this IKJIDENT PCE.

]

1
|This field contains a hexadecimal number
| representing the length of this HELP segment.

| the message segment offset field, and the
|1length of the HELP information. These fields
|are repeated for each HELP message supplied

jon the IKJIDENT macro instruction.
1.

1

|This field contains the message segment
|offset. It is set to X"0000°".

1

Variable

1

|This field contains one segment of the HELP
|data supplied on the IKJIDENT macro
|instruction. This field and the two

| preceding ones are repeated for each segment
|of HELP data supplied on the IKJIDENT macro
|instruction; these fields do not agpear if no
| HELP data was supplied.

L

S USSR S S S N —— R S S — G S SR —————— S———

S S A T N W——

1

|The address of a validity checking routine.
|This field is present only if a validity
|checking address was included in the IKJPOSIT|

|macro instruction. |
L i |

1
|
|
]
]
|
|
|
|
|
|
J
1
|
|
|
J
1
}

|The figure includes the length of this field, |
|
|
|
|
3
1)
|
|
]
1)
|
|
|
|
|
|
|
1]
1
|
|

Figure 101.

The Parameter Control Entry Built by IKJIDENT (Part 3 of 3)

Command Scan and Parse - Determining the Validity of Commands 223

IKJKEYWD - Describing a Keyword Parameter

Execute the IKJKEYWD macro instruction to describe a keyword parameter.
Execute a series of IKIJNAME macro instructions to indicate the possible
names for the keyword parameter. Keyword parameters may appear in any
order in the command but must follow all positional parameters. A user
is never required to enter a keyword parameter; if he does not, the
default value you supply, if you choose to supply one, is used.
Reywords may consist of any combination of alphameric characters up to
31 characters in length, the first of which must be an alphabetic
character.

Figure 102 shows the format of the IKJKEYWD macro instruction. Each
of the operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

I LR
|label| IKJKEYWD [DEFAULT="default-value'l]
L 1

b e)

Figure 102. The IKJKEYWD Macro Instruction

label
This name is used within the PDL DSECT as the symbolic address of
the Parameter Descriptor Entry for this parameter.

DEFAULT="'default-value'
The default value you specify is the wvalue that is used if this
keyword is not present in the command buffer. Specify the valid
keyword names with IKIJNAME macro instructions following this
IKJKEYWD macro instruction.

THE PARAMETER CONTROL ENTRY BUILT BY IKJKEYWD: The IKJKEYWD macro
instruction generates the variable length parameter Control Entry (PCE)
shown in Figure 103.

[T T 1
| Number of | | |
| Bytes | Field |]Contents or Meaning |
L 1 1.]
[} T 1 1
2		Flags. These flags are set to indicate which
]options were coded in the IKJKEYWD macro
		instruction.
I	I I	
	Byte 1l	I
	010.	This is an IKJKEYWD PCE
	««<0 «c..	Reserved
	<<« 1...	DEFAULT]
	<--< .000	Reserved.
	Byte 2	
	0000 0000	Reserved.
i] 1 J		
[] L} L] 1		
2		Length of the Parameter Control Entry. This
		field contains a hexadecimal number
		representing the number of bytes in this
		IKJEKYWD PCE.
L] 1]
Figure 103. The Parameter Control Entry Built by IKJKEYWD (Part 1 of 2)

224 Guide to Writing a TMP or a CP (Release 21)

Number of
Bytes

2

Field Contents or Meaning

-+
|
|
1
f

|This field contains a hexadecimal offset from
| the beginning of the Parameter Descriptor
|List to the related Parameter Descriptor
|Entry built by the PARSE sexrvice routine.

i

| the default information supplied on the

| IKJKEYWD macro instruction. This field and
| the next are present only if DEFAULT was

| specified on the IKJKEYWD macro instruction.
4

]

|This field contains the default value

| supplied on the IKJKEYWD macro instruction.
1

Variable

—.——-ﬂ—_——-———-;——————-—_——\
T S SRR SUR

1
|
[
]
}
|
|
|
|
1 T
|This field contains the length minus one of |
|
|
|
I
J
1]
|
l
B |
)

Figure 103. The Parameter Control Entry Built by IRKJKEYWD (Part 2 of 2

IKIJNAME - Listing the Keyword Parameter Names

Execute a series of IKJNAME macro instructions to indicate the possible
names for a keyword parameter. One IKIJNAME macro instruction is needed
for each possible keyword name. Code the IKJIJNAME macro instructiomns
immediately following the IKJKEYWD macro instruction to which they
pertain.

Figure 104 shows the format of the IKINAME macro instruction. Each
of the operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

