
File No. S360-31
Order No. GC28-6719-2 OS

Systems Reference Library

IBM System/360 Operating System:

Service Aids

OS Release 21

This publication explains when, why, and how to use
IBM service aids to diagnose and fix failures in
system or application programs. Each service aid is
described in a separate chapter. The service aids are:

• IFCDIPOO Initializes the SYS1.LOGREC data set.

• IFCEREPO Summarizes and prints records from the
SYS1.LOGREC data set.

• GTF (Generalized Trace Facility) -- Traces selected
system events such as SVC and I/O interruptions.

• IMCJQDMP -- Operates as a stand-alone program to
format and print the system job queue.

• IMBLIST -- Formats and prints object modules, load
modules, and CSECT identification records.

• IMBMDMAP -- Maps load modules.

• IMCOSJQD -- Operates as a problem program to format
and print the system job queue.

• IMDPRDMP -- Formats and prints dumps, TSO swap data
set, and GTF trace data.

• IMAPTFLE -- Generates JCL needed to apply to a PTF
and/or applies the PTF.

• IMDSADMP -- Operates as a stand-alone program to
produce a high-speed or low-speed dump of main storage.

• IMASPZAP -- Verifies and/or replaces instructions
and/or data in a load module.

Information about how to write EDIT user programs
is provided in a separate appendix.

Third Edition (March, 1972)

This is a major revision of, and obsoletes, GC28-6719-1
and Technical Newsletter GN28-2478. Text changes and
illustration changes in chapters containing few changes
are indicated by vertical lines to the left of the
changes. Consult the Summary of Amendments following
the Contents Directory for information about which
chapters are new and which are changed.

This edition applies to release 21, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical News­
letters. Changes are continually made to the information
herein; before using this publication in connection with
the operation of IBM Systems, consult the latest IBM
System/360 and System/370 SRL Newsletter, Order No.
GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM pUblications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica­
tions, Department 058, PO Box 390, Poughkeepsie, N. Y. 12602.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1970,1971,1972

Preface

This publication is for system programmers and IBM programming systems
representatives. It explains when, why, and how to use IBM service aids
to diagnose and fix failures in system or application programs.

Each service aid is described in a separate chapter. The chapters
are arranged so that the corresponding index tabs will appear in
alphabetical order. The index tabs show the names of the programs minus
the three-character component identifier (such as IMC). The form of the
name shown on the index tab also appears in the index to help you locate
the chapter you want.

Some information about service aids is not included in this
publication, but is covered in the following publications:

IBM System/360 Operating System:

• service Aids Logic PLM, GY28-6721 -- describes the internal logic of
the service aid programs (how they work).

• Programmer's Guide to Debugging, GC28-6670 -- describes the
dump-type output of the service aids .•

• Messages and Codes" GC28-6631
issued by the service aids.

describes the numbered messages

You should also be familiar with the following publications:

IBM System/360 Operating System:

• Utilities, GC28-65a6 -- describes how to use utility programs to
print certain types of service aid output .•

• Operator's Reference, GC28-6691 -- describes how to perform certain
basic operations, such as loading a. stand-alone program.

• Job Control Language Reference" GC28-6704 -- describes how to use
job control statements to override default parameters, use cataloged
procedures, allocate space for data sets, etc.

,

4 Service Aids (Release 21)

Introduction
Explains the service aid concept; guides selection of a service aid;
summarizes the ways to retrieve service aids.

Chapter 1: I FCD I POO
Initializes the SYS1.LOGREC data set.

Chapter 2: IFCEREPO
Summarizes and prints records from the SYS1.LOGREC data set.

Chapter 3: GTF (Generalized Trace Facility)
Traces selected system events such as SVC and 1/0 interruptions.

Chapter 4: IMCJODMP

CONTENTS DIRECTORY

Operates as a stand-alone program to format and print the system job queue.

Chapter 5: IMBLIST
Formats and prints object modules, load modules, and CSECT identification records.

Chapter 6: 1M BM DMAP
Maps load modules.

Chapter 7: IMCOSJQD
Operates as a problem program to format and print the system job queue.

Chapter 8: IMDPRDMP
Formats and prints dumps, TSO swap data set, and GTF trace data.

Chapter 9: IMAPTFLE
GeneratesJCL needed to apply a PTF and/or applies the PTF.

Chapter 10: IMDSADMP
Operates as a stand-alone program to produce a high-speed or
low-speed dump of main storage.

Chapter 11: I MASPZAP
Verifies andlor replaces instructions and/or data in a load module.

Appendix: Writing EDIT User Programs
Tells how to write and use EDIT user programs.

Each chapter has its own Table of Contents.

•
•
•

•
•
•
•
•
•
•
•
•

6 Service Aids (Release 21)

GENERAL CO~~ENTS

Summary of Amendments
for GC28-6719-2

as Release 21

• Program Design information has been moved to a new publication,
the Service Aids Logic PLM, GY28-6721.

• Information relating to the Primary Control Program (PCP) has
been deleted.

• Chapter order has been revised to accomodate several new
chapters.

I NTRODUcr ION

References to services aids as a SYSGEN option have been deleted.

CHAPTER 1: IFCDIPOO

IFCDIPOO has been moved from the Utilities SRL and rewritten. All
information concerning the PARM parameter of IFCDIPOO has been
deleted.

CHAPTER 2: IFCEREPO

IFCEREPO has been moved from the Utilities SRL and rewritten. All
information concerning SDR records has been deleted. Information
for the Reliability Data Extractor (RDE) and MES has been added.

CHAPTER 3: GTF (THE GENERALIZED TRACE FACILITY)

GTF is a new feature of the operating system that executes as a
problem program and is invoked by the START command. It traces
selected system events, such as 10 interruptions, SIO operations,
program interruptions, etc. A special feature of GTF, the GTRACE
macro instruction, allows you to record user data in GTF's output
buffers. GTF output can be printed and formatted using the EDIT
function of IMDPRDMP, which is described in Chapter 8.

CHAPTER 4: IMCJQDMP

This chapter is essentially unchanged.

CHAPTER 5: IMBLIST

IMBLIST is a new service aid that formats and prints object modules
and CSECT Identification Records (IDRs) and maps load modules. It
assumes the function of ~lAPTFLS, a service aid which is no longer
documented in this publication.

CHAPT ER 6: IMBMDMAP

This chapter is essentially unchanged.

CHAPTER 7: IMCOSJQD

IMCOSJQD is a new service aid that dumps the system job queue data
set (SYSl.SYSJOBQE), or formats and prints selected records from it.
IMCOSJQD is identical in function to the IMCJQDMP service aid, but
IMCOSJQD executes as a problem program whereas· IMCJQDMP is
stand-alone.

Summary of Amendments 7

CHAPT ER 8: IMDPRDMP

IMDPRDMP now includes the EDIT function, which formats and prints
GTF output. The parameters of the EDIT control statement, which
invokes the EDIT function, allow you to select records to be
formatted; some of the parameters are: JOBNAME= , 10= , EXT.

The EDIT function also provides interfaces for user-written exit
routines and format appendages. Exit routines examine every trace
record to determine how it should be handled. Format appendages format
and print specific types of user records. Information about how to
write exit routines and format appendages is provided in the Appendix:
Writing EDIT User Programs.

CHAPTER 9: IMAPTFLE

IMAPTFLE now allows you to include a Linkage Editor IDENTIFY control
statement in the IMAPTFLE input stream; this is required for the
application function and optional for the generate function. The
purpose of the IDENTIFY statement is to flag specific CSECTs that
are to be updated with PTFs.

CHAPTER 10: IMDSADMP

This chapter is essentially unchanged.

CHAPTER 11: IMASPZAP

IMASPZAP now provides a control statement, IDRDATA, that allows you
to update the CSECT Identification Record of any module that is
successfully updated with a REP operation.

APENDIX: Writing EDIT User Programs

This appendix provides all the information you need to write an exit
routine or a format appendage for use with the EDIT function of
IMDPRDMP and the GTRACE macro instruction. It describes the
interfaces with EDIT, illustrates the use of the IMDMEDIT mapping
macro instruction, shows samples of both exit routines and format
appendages, discusses ways to avoid unrecoverable errors, and
describes how to debug an exit routinem

Please note that change bars are not used in any chapter described as
"new" in this summary of amendments.

8 Service Aids (Release 21)

Summary of Amendments
for GC28-6719-1

as Updated by GN28-2478
as Release 20.1

r----------------.--T-------------------,
lItem I Description IAreas Affected I
t----------------t--+------------------~
IIMAPTFLE IPermits IMAPTFLE to apply a PTF to OS/360 1235-241,243-245 1
1 Improvements I directly. I I
t----------------f--+-------------------~
12305 and 3330 IPermits service aids to be used with these 1188,207,251 1
I Support I devices. I I
t----------------f--+------------------~
IMultiprocessing IPermits IMDSADMP to dump the contents of both 1159,166,173-177, I
I Support lepus of the IBM System/360 Model 65 1179,180,184,185, I
1 1 Multiprocessing System. 1187-189,191,194,1 95 1
~----------------+--+-------------------~
IIMBMDMAP I Message improvement. 1318 I
1 Improvement I I I
~~---------------f--+-------------------~
IIMAPTFLE IMessage improvement -- blocksize error. 1243 I
I Improvement I I 1 L ________________ ~ __ ~ ___________________ J

Summary of Amendments 9

Summary of Amendments
for GC28-6719-1
OS Release 20

r-----------------------T---------------------------------------1-----------------------1
I Item Description Pages Affected 1

~-----------------------+---------------------------------------f-----------------------1
I System Generation IPermits six service aids to be added toI2,16,17,183,,280 I
lithe operating system during system I I
I I generation. 1 1
t--------------~--------+---------------------------------------f-----------------------1
IS\7C Dump IPermits IMDPRDNP to format and print 125,26,29,,32,33,37-39 1
1 1 system dumps. I 1
~-----------------------+---------------------------------------f-----------------------1
ISystem/370 IPermits service aids to be used with 1173-175,178-182,,185, 1
1 Ithe IBM System/370. 1187-191,194,195,251 1
t-----------------------+---------------------------------------t-----------------------~
I TSO I Permits IMDPRDtilP to format and print 11,11,13,26,28,,31,33,34, I
I ITSO Ciumps and swap data sets. 139,40,42,46,,47.,77,83, I
I 1 1134-155 1
t-----------------------+---------------------------------------t-----------------------~
IIMDSADMP Improvement IThe address of the input dump device 1180,185 1
I 1 can be specified from the operator 1 1
I I console. 1 1
t-----------------------+---------------------------------------t-----------------------~
I Restriction IRelease 20 I~~PTFLE will not process a 1241,243 I
1 IStage I output tape from a release 1 I
I Ibefore release 19. 1 1
t-----------------------+---------------------------------------f-----------------------~
I IMDPRDMP Program Designl'I'he "IMDPRD1YiP Program Design" section 125.,56-71 I
I I of the "IMDPRDIV'lP" chapter has been 1 I
I 1 rewritten. I 1
t-----------------------+---------------------------------------t-----------------------~
IPRDMP IThe PRDMP PROCLIB procedure for callingl43,44 1
I 1 IMDPRDMP has been documented with I 1
I 1 examples. I 1
t-----------------------+---------------------------------------f-----------------------~
IIMDPRDMP Examples IExamples on how to use the IMDPRDMP 144-47 1
I Icontrol statements and PRDMP PROCLIB I 1
I Iprocedure are included in the 1 I
I I"IMDPRDMP" chapter. I I
t-----------------------+---------------------------------------f-----------------------~
IMFT QCB Trace IIMDPRD~~ formats and prints QCB traces 128 1
1 1 for IVlF'I' users. 1 1
t-----------------------+---------------------------------------f-----------------------~
IONGO Clarification I When the ONGO verb of an IMDPRDMP 139 1
I I control sta temen t has no parameters I I
I 1 specified, the original GO parameters 1 1
I I are restored: QCBTRACE, LPAMAP" 1 I
1 I FOR1<lAT" and PRINT ALL. I 1
t-----------------------+---------------------------------------t-----------------------~
165MP Clarification IOccasionally only one prefix is shown 141 1
I Ion an IMDPRDMP listing. This occurs I I
I I when the dump is initiated on one CPU, 1 I
I linterrupted and then dispatched to the I I
I lother CPU. I I
t-----------------------+---------------------------------------f-----------------------~
I Messages I~ll messages have been altered, where 148-55,192,,193,,223-227, I
1 Inecessary" to agree with the 1242,243,266-268,285, I
I Ipublication IBM System/360 Messages and1286,315-318 I
I I g,odes, GC28-6631. I I L _______________________ ~ _______________________________________ i-______________________ J

(Part 1 of 2)

10 Service Aids (Release 21)

r-----------------------T---------------------------------------T-----------------------,
I Item I Description I Pages Affected I
t-----------------------+---------------------------------------+-----------------------~
I Module Name I For dumps that are formatted and 177-79,.82,.83,.102.120, 1
I 1 printed by IMDPRDJ.VlP, the name of the 1135-137,156-158,,160 1
1 Imodule that invoked the dump is printed I I
I lin the header of the dump listing. 1 I
r-----------------------+---------------------------------------+-----------------------~
IOutput Comments 1 Within the IMDPRDMP formatted dump, a 177,83,161-167 I
1 Inumner of output comments may be 1 I
I Iprinted to assist in reading and 1 1
I linterpreting the dump. These comments I 1
1 lare explained. 1 1
t-----------------------+---------------------------------------+-----------------------~
IIMAPTFLE Region Size IIMAPTFLE requires a 46K region or 1236 1
1 1 partition. 1 1
t-----------------------+---------------------------------------+-----------------------~
IMFT LPA Maps IMFT link pack area maps do not include 1314 1
1 Iresident SVC routines (IMBMD~ffiP). 1 1
r-----------------------+---------------------------------------t-----------------------~
IControl Blocks IVarious changes have been made to 184,85,87,,88,106,107 I
I Isystem control blocks tnat are 1 1
I 1 formatted and printed by IMDPRDJ.VlP. 1 1
r-----------------------+---------------------------------------+-----------------------~
ITables and Examples ITable and example numbers have been IAII 1
I Iconverted to figure numners. All 1 1
I Ifigures have been renumbered. See the I 1
I Ifigure list in each chapter. 1 1 L _______________________ ~ _______________________________________ ~ ______________________ J

(Part 2 of 2)

Summary of Amendments 11

12 Service Aids (Release 21)

Introduction

Service aids are programs designed to help system programmers and IBM
programming system representatives diagnose and fix failures in system
or application programs. Service aids have three general functions:

Information Gathering

• To dump main storage, use the stand-alone program IMDSADMP. Its
output can be formatted and printed using IMDPRDMP.

• To trace system evenets such as SVC and I/O interruptions, use GTF
(the Generalized Trace Facility). Its output can be formatted and
printed using the EDIT function of IMDPRDMP.

Formatting and Printing: Mapping

• To summarize and print records in the SYS1.LOGREC data set, use
IFCEREPO.

• To format and print load module, use IMBMDMAP or IMBLIST.

• To format and print object modules and CSECT identification records,
use IMBLIST.

• To format and print the system job queue, use IMCJQDMP (stnad-alone)
or IMCOSJQD (problem program).

• For format and print IMDSADMP output, other system dumps, TSO swap
data sets, and GTF trace output, use IMDPRDMP.

Generating and Applying Fixes

• To apply a PTF, use IMDPTFLE.

• To verify and/or replace instructions and/or data in a load module,
use IMASPZAP.

• To initialize the SYS1/LOGREC data set, use IFCDIPOO.

For more detailed information about choosing a service aid, refer to the
table in figure INTRO-1.

Introduction 13

•

SYMPTOM GATHERING
MAPPING, FORMATTING,

AND PRINTING PATCHING
IMCOSJQD

~ORMATION

IMDSADMP GTF IMDPRDMP IMBLIST IFCEREPO IMBMDMAP IMCJQDMP IMAPTFLE IMASPZAP IFCDIPOO

Warm Start Fai lure 1

Scheduler ABEND -
Writer ABEND -
Prablem Program ABEND -
Recursive ABEND 1

Disabled Loop 1

Problem Program Loop -
Large Loop with I/o 1

DAR Loop 1

Hard Wait 1

Enabled Wait 1

Reader/Interpreter Fai lure -
I/o Failure (e.g. console) 1

Allocation Failure 1

Enqueued Job Lost -
Chain Scheduling Problem 1

Access Method Fai lure -
Data Mgt. Program Check -
Module Level Unknown -
User Modification Unknown -
Applyi ng PTF -
Applying Local Fix -
APAR Documentation 1

Print SYS1.DUMP -
TSO Failure 1

Capturi ng System Before Re-I PL 1

INFORMATION GATHERING

IMDSADMP

1. Dumps the contents of main storage to a tape,
which can be formatted and printed using
PRDMP. (Note that IMDSADMP output may
also be directed to a printer.)

GTF (Generalized Trace Facility)

1. Traces all system events.
2. Traces selected events, such as I/O

interruptions, SIO operations, etc.
3. Traces user programs with GTRACE macro

instruction.

MAPPING, FORMATTING
AND PRINTING

IMDPRDMP

1. Formats and prints the following from SADMP
high-speed output:
a. Link Pack Area.
b. Queue Control Block Trace.
c. Major Control Blocks.
d. Selected Areas of Main Storage.
-e. Operating System Nucleus.

2. Formats and prints TSO contro I blocks and
main storage from a SYS I.DUMP data set.

3. Formats and prints TSO Swap data set(s).

- lc,d,e - - -
1 4 1,2 - 1,2,3

1 4 - - -
3 4a 2 - 2

1 la,lc-d,4 2 - 1,3

1 lc-e,4 - - 1,3

3 4a 2 - 2

1 la,lc-e, - - 1,3

4b-d
1 lc,1e,4 2 la 1,2,3

1 lc-e,4 1,2 la 1,2,3

1 lb,4 2 la 1,2,3

- - - - 1

2 la-e,4b-d - lb,2 -
- lb-d 2 - 2

- - - - -
2 la,lc-e, - - -

4b-d

2 4 - 2 -
1,3 4 2 - 2,3

- - 3 - -
- - 4 - -
- - - - -
- - - - -

1,3 la,lc-e,4 3 - 1,2,3

-
1

-

lb-d,2,4 - - -
2,3,4 - - -
la-e,4 - - -

4. Formats and prints selected records from the
GTF Trace data set or from trace buffers in a
SYS I.DUMP or SADMP output data set.
Records are selected by keywords such as:
a. JOBNAME.
b. I/O.
c. SVC.
d. SIO.

IMBLIST

1. Lists specific object modules or load modules
in a dat-a set.

2. Maps control sections and overlay structure
and I ists cross-references with ina load modu Ie.

3. Lists CSECT identification Records for
specific load modules.

4. Lists translation data, linkage editor
modification data, or SPZAP modifications to
control sections in a load module.

IFCEREPO

Se lects, formats, and pri nts error records in the
SYS 1. LOGREC data set.
1. Selects records by record type, such as:

a. Machine check and/or inboard.
b. Outboard.

2. Selects records by device type or device
address.

IFCEREPO can also select records by model number
or time of creation.

IMBMDMAP

1. Maps the operating system nucleus.
2. Maps a failing module.
3. Maps the. link pack area.

Figure INTRO-l. Service Aids Symptom Table

14 Service Aids (Release 21)

1 - 2

1 - 2

3 - , 2

- - 2

2 - 2

- - -
- - -
- - 2

- - -
- - -
- - -
1 - 2

- - 2,4

- - 2

3 - -
- - -

- - 4

- - -
- - 3

- - 3

- 1 1

- - 1

1 - 3

- - -
- - 2

1 - -
IMCJQDMP (Stand-Alone) and
IMCOSJQD (Problem Program)

-
-
-
-
-
-
-
-
1

1

1

-
1

-
-
-

-
-
-
-
-
-
-
-
-
-

1. Dumps entire SYS1.SYSJOBQE data set.
2. Se lects, formats, and pri nts job queue records

associated with a specific job.
3. Selects, formats, and prints job queue records

associated with a specific work queue.

PATCHING

IMAPTFLE

1. Generates control statements and JCL needed
to apply PTFsi the application function also
invokes the linkage ed itor.

IMASPZAP

Verifies or replaces instructions or data in a load
module stored on a direct access storage device.
1. Modifies code or data in a load module.

-2. Sets traps by inserting invalid instructions or
user-written SVCs.

3. Dumps load modules by CSECT to allow
examination of the text.

4. Dumps selected data to verify the count, key,
and contents of the data.

IFCDIPOO

1. Reinitializes the SYS 1. LOGREC data set if
destroyed. (Can also be used to allocate
more space to SYS 1 • LOGREC.)

Retrieving Service Aids •

All service aids except IMDSADMP and IMCJQDMP execute as problem
programs unde·r the operating system. They are automatically transferred
to SYSI.LINKLIB during system generation. IMDSADMP and IMCJQDMP are
stand-alone programs that must be retrieved from the distribution
library before they can be used.

Retrieving IMCJQDMP

IMCJQDMP resides as an object module in distribution library
SYS1.DN554A. Before you can load it into the system as a stand-alone
program, you must retrieve it from the distribution library. To do this
you can either transfer the module onto punch cards using the IEBPTPCH
utiltiy, or copy it to magnetic tape using the IEBGENER utility,.

Retrieving IMDSADMP

IMDSADMP resides as a macro definition in distribution library
SYS1 .• MACLIB. The easiest way to retrieve IMDSADMP is to specify the
MACLIB macro isntruction at system generation; IMDSADMP will
automatically be transferred to the SYS1.MACLIB data set in the
operating system.

If you choose not to create a SYSI.MACLIB data set at system
generation, you can retrieve IMDSADMP by three other methods:

• If you want to retrieve IMDSADMP and execute it all in the same
step,. you can treat the distribution library as a private macro
library. Figure INTRO-2 shows the job control statements needed to
do this.

• You can copy IMDSADMP from the distribution library into a private
library.

• You can punch IMDSADMP from the distrubtion library onto cards using
the IEBPTPCH utility.

//ASMSAD
//STEP
/ /ASM.SYSLIB
/ /ASM.SYSIN

/*

I MDSADMP
END

JOB
EXEC
DD
DD

MSGLEVEL= (1, 1)
ASMFC
DSN=SYS1.MACLIB,DISP=OLD

*

Figure INTRo-2. Sample JCL Statements Need to Assemble IMDSADMP
Directly from the Distribution Library

Introduction 15

16 Service Aids (Release 21)

Chapter 1: IFCDIPOO
Initializes the SYS1.LOGREC data set. •

C~apter 1~ IFCDIPOO 17

18 Service Aids (Release 21)

I NT RODUCT ION

INPUT TO IFCDIPOO • • • • •
The SYS.LOGREC Data Set.
Job Control Statements

RUNNING IFCDIPOO •••• • • • • •
Reinitializing SYS1.LOGREC • Q ••

Changing Space Allocation for SYS1.LOGREC •

Figures

Figure DIPOO-l. Reinitializing the SYS1.LOGREC
Data Set • • • • • • • • • • • •

Figure DIPOO-2. Changing the Space Allocation
for SYS1.LOGREC •••••••

Contents

21

22

· 22

· 22

23
23
23

23

• • • • • 24

Chapter 1: IFCDIPOO 19

•

20 Service Aids (Release 21)

Introduction

IFCDIPOO is a service aid that runs under the IBM System/360 Operating
System.. IFCDIPOO has three applications:

1. Initializing the SYSl.LOGREC data set during system generation.
This application is discussed in the publication IBM systern/360
Operating: System Generation.

2. Reinitializing the SYSl.LOGREC data set. During processing, some
types of errors may destroy the SYS1.LOGREC header and make the data
set unusable; IFCDIPOO can then be used to reinitialize the
SYS1.LOGREC data set~

3. Modifying the space allocation for the SYS1.LOGREC data set. In
some situations, the SYS1.LOGREC data set may be too large or too
small for the system using it; IFCDIPOO can then be used to increase
or decrease the space allocation for SYS1.LOGREC.

Chapter 1: IFCDIPOO 21

•

Input to IFCDIPOO

The input to IFCDIPOO consists of the SYS1,.LOGREC data set and job
control statements.

The SYS1.LOGREC Data Set

The SYS1,. LOGREC data set consists of a header record followed by
environment records.

The header record is created by IFCDIPOO; it keeps track of the
number and location of the environment records.

The environment records are generated by the outboard recording
routine (OBR), the miscellaneous data recorder (MDR), the recovery
management routines MCH and CCH, and the reliability data extractor
program RDE, and the environment recording routines SERO and SERlo Each
record reflects the condition that prevailed in the system when an error
occurred.

Job Control Statements

IFCDIPOO is run and controlled by job control statements; no user or
utility control statements are needed.

22 Service Aids (Release 21)

Running IFCDIPOO

You run IFCDIPOO by praviding jab cantral language pracedures to.
reinitialize and reallacate the SYS1.LOGREC data set. The fallawing
sectians cantain detailed examples af reinitializing and reallacating
SYS1.LOGREC.

Reinitializing SYSl.LOGREC

Figure DIPOO-l is an example af the jab cantral statements needed to.
reinitialize the SYS1.LOGREC data set using IFCDIPOO.

//INSERLOG
//
//SERERDS

II

JOB
EXEC
DD

PGM=IFCDIPOO
DSNAME=SYS1.LOGREC,UNIT=2311,DISP=(OLD,KEEP),
VOL=SER=llllll

Figure DIPOO-l. Reinitializingthe SYS1.LOGREC Data set

Cantral Statements far Figure 1

The JOB statement initiates the jab; the job name INSERLOG has no
signifigance.

The EXEC statement specifies the pragram name (PGM=IFCDIPOO).

The SERERDS DD statements specifies the output (SYS1.LOGREC) data set;
the DSNAME must be SERERDS.

Changing Space Allocation for SYSl.LOGREC

IFCDIPOO maY,be used in conjunctian with the IEHPROGM utility to
increase or decrease the space allacated for the SYS1,. LOGREC data set·.
First the SYS1.LOGREC data set is scratched and uncataloged, ~sing
IEHPROGM; then, using IFCDIPOO, the data set is reallocated with
increased or decreased space specifications; and, finally, the newly
allacated data set is reinitialized.

If yau use the preceding procedure and an error occurs after the
SYS1.LOGREC data set has been scratched, but befare it has been
reallacated, the IFCDIPOO jab will be terminated and the system will be
marked ineligible far IPL pracedures. To solve this problem, do one of
the following:

• Use the IBCDMPRS utility to restore the system and thereby restore
the SYS1.LOGREC data set. After the SYS1.LOGREC data set has been
restared, yau can reinitialize the system and reallocate SYS1. LOGREC .•

• Execute the reallocate operation on another IBM system/360 Operating
System, if one is available.

Chapter 1: IFCDIPOO 23

•

Figure OIPOO-2 is an example of reallocating the SYS1.~JREC data set.

//RELGREC
//SCR
//DD1
//SYSIN

/*

SCRATCH
UNCATLG

//R
//SERERDS
//

JOB
EXEC
00
DD

EXEC
DD

PGM=IEHPROGM
UNIT=2311,VOLUME=SER=111111..DISP=OLD

* DSNAME=SYS1.LOGREC,VOL=231.1.=1.1.1.1.11
DSNAME=SYS1,. LOGREC

PGM=IFCDIPOO
DSNAME=SYS1.LOGREC"UNIT=2311,DISP=(NEW,CATLG),
VOL=SER=11.1.11.1" SPACE= (allocation, CONTIG)

Figure DIPOO-2. Changing the Space Allocation for SYS1.LOGREC

24 Service ~ids (Release 21)

Chapter 2: I FCEREPO
Summarizes and prints records from the SYS1.LOGREC data set. •

Chapter 2: IFCEREPO 25

26 Service Aids (Release 21)

INTRODUCTION • • • • • • • • • • • • •
Editing and Writing Selected Records • • • • •
Accumulating Selected Records • • • • •
Summarizing Selected Records ••••••••
Processing Records Produced on Different Machine Models •

INPUT TO IFCEREPO • •
Environment Records •

RUNNING AND CONTROLLING IFCEREPO
Job Control statements • • • •
Keyword Parameters for IFCEREPO • •

IFCEREPO EXAMPLES • • • • • • • 0 • • • •

Example 1: Printing Machine Check Records
Example 2: Writing Machine Check Records onto a 7-Track

Magnetic Tape • • • • • • • • • •
Example 3: Printing and Accumulating Machine Check and Channel

Inboard Records • • • • • • • • • • • • • • • • •
Example 4: Printing and Accumulating Machine Check Records

Contained in a History Data Set • • • • 0 • • • •

Example 5: Printing Recently Generated Machine Check Records
and Accumulated Machine Check Records

IFCEREPO OUTPUT • • • • •
Format of Edited Records

Figures

Figure EREPO-l.
Figure EREPO-2.
Figure EREPO-3.

Figure EREPO-4.

Figure EREPO-5.

Figure EREPO-6.
Figure EREPO-7.
Figure EREPO-8.
Figure EREPO-9.

Job Control Statements ••••••••
Output Record Printout Structure • • • •
Sample Printout -- Outboard Data Editing
and Printing section ••.•••••••
First Sample Printout -- TCAM Data Editing
and Printing section •••••••••••
Second Sample Printout -- TCAM Data Editing
and Printing section
Machine-Check Summary
Channel Inboard Summary
I/O Outboard Summary ••••
TCAM I/O Outboard summary

Contents

· · · · ·
· ·
· · ·
· ·
·
·
·
·
· ·

29
29
29
30
30

31
31

32
32
33

36
36

37

38

39

40

41
41

32
41

44

45

45
46
47
48
49

Chapter 2: IFCEREPO 27

•

28 Service Aids (Release 21)

Introduction

IFCEREPO is a service aid that runs under the IBM System/360 Operating
System. You can use IFCEREPO to:

• Select and format environment records from the SYSl.LOGREC data set
and write them to an output device. The environment records on the
SYS1.LOGREC data set are generated by the error environment
recording programs OBR, SERO, SERl, MDR, by the recovery management
programs CCH, and MCH, and by the reliability data extractor program
ROE.

• Select environment records from the SYSl.LOGREC data set and
accumulate them on a history data set.

• Write the records accumulated on the history data set to an output
device.

• summarize the information contained in the records on the
SYS1.LOGREC data set or the history data set.

• Process (edit, write, accumulate, and summarize> records produced on
different machine models.

Editing and Writing Selected Records

You can use IFCEREPO to retrieve selected environment records from the
SYS1.LOGREC data set or a history data set, edit them, and write them to
an output device. After the record is written to the output device, it
is cleared to hexadecimal zeros on the SYS1.LOGREC data set unless you
specify otherwise. If the input data set is the history data set, the
records remain unchanged. The selection of records that IFCEREPO will
process is based on the following factors:

• Record type: you can specify any type of environment record, or any
combination of types.

• Model number: you can specify the model number of any computing
system that is writing records on the SYSl.LOGREC data set; this
specification is useful when several computing systems are writing
records on the same SYS.LOGREC data set.

• Time period: you can specify that IFCEREPO only process records that
were generated on certain dates.

• Devices: you can specify that IFCEREPO process records that are
related to a specific device or device type.

Accumulating Selected Records

You can use IFCEREPO to move selected environment records from the
SYSl.LOGREC data set to a history data set; this enables you to
accumulate specific types of environment records on different volumes or
on the same volume. When you move an environment record from the
SYS1.LOGREC data set to the history data set, the environment record or
the SYS1.LOGREC data set, is cleared to hexadecimal zeros unless you
specify otherwise.

Chapter 2: IFCEREPO 29

•

Summarizing Selected Records

You can use IFCEREPO to extract pertinent data from selected records and
print the data in the form of a summary. The contents of the summary
depend on the type of error you monitor.

Processing Records Produced on Differenit Machine Models

You can use IFCEREPO to edit, write, summarize, and accumulate
environment records for any IBM System/360 or IBM System/370 model that
supports the IBM System/360 Operating system. In addition, any
SYS1.LOGREC data set or history data set generated on one system can be
printed on another system.

30 Service Aids (Release 21)

Input to IFCEREPO

The input to IFCEREPO consists of environment records located on the
SYS1.LOGREC or history data sets.

Environment Records

You can use IFCEREPO to process six types of environment records:

1. Machine check records - which are produced and stored in SYS1.LOGREC
by the system environment recorders SERO and SER1, and by the
machine check handler (MCH). They record machine check
interruptions caused by malfunctions in the central processing unit.

2. Inboard records - which are produced and stored by SERO. SER1, and
by the channel check handler (CCH). They record input/output
interruptions caused by specific channel failures.

3. Outboard records - which are produced and stored by the outboard
recorder. They record permanent errors on input/output devices, and
terminal statistics and errors for TCAM.

4. Miscellaneous data records - which are produced and stored by the
miscellaneous data recorder (MOR). They record errors that are not
reflected in any other record type.

5. System initialization (IPL) records - which are produced and stored
in the SYS1.LOGREC data set by the reliability data extractor (ROE)
programs. They record information related to each system
initialization.

6. System termination (EOO) records - which are produced and stored in
the SYS1.LOGREC data set by the reliability data extractor (ROE)
programs. They record information related to each system
termination. For a complete explanation of ROE see the publication,
IBM System/360 Operating System: ROE Guide, GC28-6741.

Chapter 2: IFCEREPO 31

•

Running and Controlling IFCEREPO

You run and control IFCEREPO by job control statements and by specifying
keyword parameters on the EXEC statement of your IFCEREPO procedure; no
user or utility control statements are needed.

Job Control Statements

IFCEREPO Figure 1 shows the job control statements necessary for running
IFCEREPO.

statement

JOB
Statement

Usage

This statement initiates the job.

EXEC This statement specifies the program name and keyword
Statement p~rameters necessary to control the function of the

program.

SERLOG DD This statement defines the input data set as being the
Statement SYS1.LOGREC data set. Either a SERLOG DD statement or the

ACCIN DD statement must be included for each application of
the IFCEREPO program.

ACCIN DD This statement defines the input data set as being
a history data set. Either an ACCIN DD statement or
the SERLOG DD statement must be included for each
application of the IFCEREPO program.

EREPPT DD This.statement defines the edited output data set. It
Statement must be included with each application of the program..

ACCDEV DD This statement defines an accumulated output data set.
Statement The accumulated data set can reside or magnetic tape or

a direct access device. Space must be allocated for a
new output data set that is to reside on a direct access
volume. Space cannot be allocated for an existing output
data set.

Notes: The SERLOG, ACCIN, EREPPT, and ACCDEV DD statements define
sequential data sets.

If records produced on different machine models are to be
processed, a JOBLIB DD statement is required to define the
original system's link library.

Figure EREPO-l. Job Control Statements

32 Service Aids (Release 21)

Keyword Parameters for IFCEREPO

You can specify the following keyword parameters to control the
functions of the IFCEREPO program.

TYPE

PARM= [TYPE [M] [C] [0] [T] [I] [E],]

[MOD= (nnn [, nnn ...]) ,]

[VOLID=(VOLIDl,VOLID2,VOLID3,VOLID4)]

[CUA= (CUU [, CUU]) ,]

[DEV=NNNN,]

[DATE=([YYDDD] [,YYDDD]),]

[

PS
PRINT= PT

SU
NO

[Acc=l~t .]
~IST=\~!.]
[TERMN=1-8 chars,]

[M67=1!!,]

[RDESUM=\ ~ LJ

specifies the type of records to be processed.

Code Meaning

M Machine-check records

C Channel inboard records

a I/O outboard records

T T-type records

I IPL Records

E Eon Records

A combination of records can be specified. For example,
PARM=(TyPE=MC, ••••). If no record type is specified, all record types
are processed.

Chapter 2: IFCEREPO 33

•

MOD

MES

indicates that all records created on the model or models specified
are to be processed. The operand is to be right justified and may
be up to three digits in length.

indicates that error statistics for specific volume/serials are to
be summarized and printed. This parameter is valid only for the
3410 and 3420 tape subsystems, when "TYPE=O' is coded, or when no
record type is specified.

VOLID

indicates specific volumes for error statistics (MES) processing. A
maximum of four volumes can be specif·ied. If this parameter is not
coded and MES=Y is coded, all volumes will be processed.

If no model numbers are specified all models are accepted for
processing.

CUA (maximum of two)

indicates that the selected record types that are related to the
specific channel(s) and unites) are to be processed.

DEV (maximum of one)

indicates that selected record types that are related to a specific
device type are to be processed.

if DEV is not specified, all selected records (as specified in the
TYPE subparameter) are processed regardless of the device type.

if DEV =3410 or DEV =3420 is specified, both devices will be
included in the report.

DATE (maximum of one set)

indicates that all of the selected record types generated within a
specific period of calendar time are to be processed. The date is
written yyddd yyddd where yyddd represents the year and the day
(of the year) when the time period begins and yyddd represents the
year and the day when the period ends.

ZERO

If no date is specified, all selected records are processed
regardless of when they were generated.

indicates whether input records in the SYS1.LOGREC data set are to
be cleared with hexadecimal zeros after they are processed. Records
are not cleared to zeros in the history data set.

Note: It is possible to use the same operating system on several
machines. Before moving the system packs to another machine, the
operator must use the EREP program to copy the SYS1.LOGREC data set
to tape so that the environmental data can later be related to the
system that generated it.

34 Service Aids (Release 21)

PRINT

ACC

indicates how records are to be processed and written.

Code Meaning

SU Suppress full printing (print summary only).

PT Suppress summary printing (print full record only).

NO Suppress full printing and summary printing.

PS Print full record and summary.

indicates whether selected records are to be accumulated in a
history data set. If ACC=Y is coded; ZERO=Y must be coded if the
input data set is SYS1.LOGREC.

HIST

indicates whether the input data set is a history data set. If
HIST=Y is coded" the input data set must be defined with an ACCIN DD
statement.

If EIST is not coded HIST=N is assumed and the input data set will
be the SYS1.LOGREC data set.

TERMN

M67

indicates the OBR and TCAM records are to be selected by terminal
name. up to eight characters may be specified.

IfTERMN is not coded all terminal names are selected.

indicates which Model 67 records are to be processed.

If M67 is not coded mod 1 Model 67 records are processed.

RDESUM

indicates that the IFCEREPO summary function for RDE records is to
be run. The summary function produces an IPL report and a hardware
error report. This parameter can be coded only if ROE has been
selected during system generation. For a complete explanation of
ROE see the publication IBM System/360 Operating System: RDE Guide,
GC28-6741.

Chapter 2: IFCEREPO 35

•

IFCEREPO Examples

The following examples show some of the typical uses of the IFCEREPO
program.

Example 1: Printing Machine Check Records

In this example:

• Machine check records are printed in a full record format.

• The records on SYS1.LOGREC are zeroed.

//JOBA
//
//SERLOG
//EREPPT

JOB
EXEC PGM=IFCEREPO,PARM='TYPE=M,ZERO=Y,PRINT=PT,ACC,=N'
00 OSNAME=SYS1.LOGREC,DISP=(OLD,KEEP)
DO SYSOUT=A

Control Statements for Example 1

The EXEC statement specifies (1) that machine check records are to be
processed, (2) the type of printout (full record), (3) no accumulation
is to take place.

The SERLOG DO statement defines the input (SYS1.LOGREC> data set.

The EREPPT DD defines the edited output data set (printer assumed).

36 Service Aids (Release 21)

Example 2: Writing Machine Check Records onto a 7 -Track Magnetic Tape

In this example:

• Date-dependent machine check records are written in full record and
summary formats onto a 7-track magnetic tape at a density of 200 bits
per inch.

• The SYS1.LOGREC data set is zeroed.

//JOB
//

//SERLOG
//EREPPT

/*

JOBA
EXEC PGM=IFCEREPO,PARM='TYPE=M,DATE=(62110,62117),

ZERO=Y,PRINT=PS,ACC=N'
DD DSNAME=SYS1.LOGREC,DISP=(OLD,KEEP)
DD DSNAME=ERRDATA, UNIT=2400-2,LABEL=(, NL) ,

DCB=(DEN=O,TRTCH=C),DISP=(NEW,CATLG)

Control statements for Example 2

The EXEC statement specifies (1) that machine check records are to be
processed, (2) the type of printout (full record and summary), (3) the
applicable time period" and (4) that no accumulation is to take place.

The SERLOG DD statement defines the input (SYS1.LOGREC) data set.

The EREPPT DD statement defines the output data set.

Chapter 2: IFCEREPO 37

•

Example 3: Printing and Accumulating Machine Check and Channel Inboard Records

In this example:

• Machine check and channel inboard records are printed in a full
record and summary format.

• Machine check and channel inboard records are accumulated on a
history data set.

• The records on SYS1.LOGREC are zeroed.

//JOB
//
//SERLOG
//EREPPT
//ACCDEV

/*

JOBA
EXEC
DD
DD
DD

PGM=IFCEREPO,PARM='TYPE=MC,ACC,Y.PRINT=PS,ZERO=Y'
DSNAME=SYS1.LOGREC,DISP=(OLD,KEEP)
SYSOUT=A
DSNAME=ACUMSET,UNIT=2311,DISP=(NEW.CATLG),
VOLUME=SER=111112,SPACE=(TRK, (40,10»

Control Statements for Example 3

The EXEC statement specifies (1) that machine check and channel inboard
records are to be processed, (2) the type of printout (full record and
summary). and (3) accumulation on a history data set.

rhe SERLOG DD statement defines the input (SYS1.LOGREC) data set.

The EREPPT DD statement defines the output data set.

The ACCDEV DD statement defines the accumulated (history) output data
set. The set is cataloged for ease of retrieval.

38 Service Aids (Release 21)

Example 4: Printing and Accumulating Machine Check Records Contained in a
History Data Set

In this example:

• Machine check records in the history data set are printed in a full
record format.

• Machine check records in the history data set are moved to a second
(output) history data set.

//JOB
//
//ACCIN
//EREPPT
//ACCDEV
/*

JOBA
EXEC
DD
DD
DD

PGM=IFCEREPO ,PARM= 'TYPE=M, HIST=Y, PRINT=.Pl' ,ACC=Y'
DSNAME=HISTRYIN,DISP=(OLD,CATLG)
SYSOUT=A
DSNAME=EXISTACC,DISP=(MOD,CATLG)

Control Statements for Example 4

'rhe EXEC statement specifies (1) that machine check records are to be
processed, (2) a history data set is the input data set, (3) the type of
printout full record, and (4) accumulation.

The ACCIN DD statement defines the input (history) data set.

The EREPPT DD statement defines the output data set.

The ACCDEV DD statement defines the accumulated (history) output data
set.

Chapter 2: IFCEREPO 39

•

Example 5: Printing Recently Generated Machine Check Records and
Accumulated Machine Check Records

This example is a two-step job. Together the job steps produce a
printout of machine check records from the SYS1.LOGREC data set and
machine check records from a history data set.

In the first job step (STEP1):

• Machine check records on SYS1.LOGREC are edited and printed in a
full record format.

• Machine check records on SYS1.LOGREC are accumulated on a history
data set.

• The records on SYS1.LOGREC are zeroed.

In the second job step (STEP2):

• Machine check records in the history data set, updated in STEP1, are
printed in a full record format.

//JOBA
//STEPl
//SERLOG
//EREPPT
//ACCDEV
/*
//STEP2
//ACCIN
//EREPPT
/*

JOB
EXEC
DD
DD
DD

EXEC
DD
DD

PGM=IFCEREPO,PARM='TYPE=M,PRINT=PT,ACC=Y,ZERO=Y'
DSNAME=SYS1.LOGREC,DISP= (OLD, CATLG)
SYSOUT=A
DSNAME=HISTORY,DISP=(MOD,CATLG)

PGM=IFCEREPO,PARM='TYPE=M,PRINT=PT,HIST=Y,ACC=N'
DSNAME=HISTORY,DISP=(OLD,CATLG)
SYSOUT=A

Machine Records (for comparison)

Control Statements for Example 5

STEPl

The EXEC statement specifies (1) that machine check records are to be
processed, (2) the type of printout, and (3) accumulation.

The SERLOG DD statement defines the input (SYS1.LOGREC) data set.

The EREPPT DD statement defines the output data set.

The ACCDEV DD statement defines the accumulation (history) data set.

STEP2

The EXEC statement specifies (1) that machine check records are to be
processed" (2) a history data set is the input data set, (3) the type of
printout (full record) " and (4) no accumulation.

The ACCIN DD statement defines the input (history) data set.

The EREPPT DD statement defines the output data set.

40 Service Aids (Release 21)

IFCEREPO Output

You can use IFCEREPO to write output to any output device supported by
the basic sequential access method (BSAM). The output is written as
120-byte records with a control character as the first character of each
record. After the records are written to the output device, they are
normally cleared to hexadecimal zeros in the SYS1.LOGREC data set; the
space occupied by the cleared records cannot be reused until the entire
SYS1.LOGREC data set is cleared. You can, however, specify that the
records remain uncleared in your procedure for running IFCEREPO.

Format of Edited Records

Fi~lre EREPO-2 shows the printed format of an edited output record.

Program heading

Program section

Model

Source Record type

Record data

Additional data

Figure EREPO-2. Output Record Printout Structure

Program heading
identifies the IFCEREPO program on the first page of the listing:

• ENVIRONMENT RECORD EDITING AND PRINTING PROGRAM

Program section
identifies the program section that is generating the printout.
Valid program sections are:

• CPU (MC> DATA EDITING AND PRINTING SECTION
• INBOARD DATA EDITING AND PRINTING SECTION
• OUTBOARD DATA EDITING AND PRINTING SECTION
• MDR DATA EDITING AND PRINTING SECTION
• TCAM OUTBOARD DATA EDITING AND PRINTING SECTION

Model

identifies the IBM System/360 Model or System/370 for which the
printout is applicable. Valid entries are:

• Model 40, 50, 65, 67, 75, 85, 91, 95, 135, 145, iSS, 165, or
195 for machine-check records.

• Model 40, 50, 65, 75, 85, 91, 95, 135, 145, 155, 165, or 195
for channel inboard records. (Model 67 and 95 channel inboard
records appear as Model 65 and 91 records, respectively.)

• Universal for I/O outboard printouts produced by Model 30, 40,
50, 65, 67, 75, 85, 91, 95, 135, 145, 155, 165, or 195.

Chapter 2: IFCEREPO 41

•

Note: SER can produce channel inboard records on any of the SER
supported models. CCH can produce channel inboard records on IBM
Systems/360 Models 65, 75, 85, 91, and 195, and IBM System/370
Models 135, 145, 155 and 165. The channel recording facilities of
some MCH programs can produce channel inboard records on these
models when CCH is not in the system or when the channel error
cannot be recorded by CCH.

Source

identifies the error environment or recovery management program
that generated the record placed in the SYS1.LOGREC data set.
valid sources are:

• RECORD ENTRY SOURCE - OBR
• RECORD ENTRY SOURCE - SERO
• RECORD ENTRY SOURCE - SER1
• REcORD ENTRY SOURCE - MCH
• RECORD ENTRY SOURCE - CCH
• RECORD ENTRY SOURCE - MDR

Record type

indicates the type of printout. Valid types are:

• TYPE - CPU
• TYPE - INBOARD
• TYPE - OUTBOARD
• TYPE - MDR

Record data

is a listing of the edited record from the input data set. This
data, which constitutes the bulk of the printout, is the programming
data and machine data collected at the time of the error.

Additional data

is a listing of records that were recorded in the SYS.LOGREC data
set while the program was being executed.

The heading:

• THE FOLLOWING RECORDS WERE GENERATED WHILE EXECUTING EREP

is followed by a printout of the records.

Figure EREPO-3 shows a sample outboard printout of an environment
record that was processed by the outboard data editing and printing
section of the utility program. The record was generated by the OBR
program on an IBM System/360 Model 30, 40,50" 65,67,75,85,91,95,
or 195 and on an IBM System/370 Model 135, 145, 155, or 165 <indicated
by UNIVERSAL in the printout). The device falure occurred on a 2311 disk
with a channel and unit address of 190.

42 Service Aids (Release 21)

Figures EREPO-4 and EREPO-5 show samples of a TCAM outboard printout
of an environment record that was processed by the TCAM outboard data
editing and printing section. The record was generated by the OBR
program on an IBM System/360 Model 30, 40, 50, 65, 67 1 85, 91, or 195,
and on an IBM System/370 Model 135, 145~ 155, or 165 (indicated by
UNIVERSAL in the printout).

Note: The format for the MDR record is variable and requires special
editing modules from the specific sub-types. Because of this variation,
no sample printouts are shown for MDR record editing.

Chapter 2: IFCEREPO 43

•

tI::o
tI::o

(J)

CD
ti
<:
1-'­
o
CD

~
1-'-
0..
Ul

~
CD
I-'
CD
III
Ul
CD

tv
I-'

---RECORD ENTRY TYPE - UNIT CHECK SOURCE- OUTBOARD
OS RELEASE xxx

DAY YEAR HH MM SS.TH
DATE- xxx xx TIME- xx xx xx xx

OBR RECORD CONVERTED TO THE STANDARD FORMAT

DEVICE TYPE xxxx
PRIMARY CHANNEL UNIT ADDRESS xxxx
ALTERNATE CHANNEL UNIT ADDRESS xxxx
PHYSICAL DRIVE x
PHYSICAL CONTROL UNIT x
VOLUME LABEL xxx xxx

CC CA FL CT
FAILING CCW xx xxxxxx xx xx xxx x

M B B C C P. H R
LAST SEEK ADDRESS x xxxx xxxx xxxx xx

CSW
K CA

MODEL- xxx SERIAL NO_ xxxxxx

JOB IDENTITY xxxxxxxx
xxxxxxxxxxxxxxxx

MULTIPROCESSOR - CPU xx

US CS CT
xx xxxxxx xx xx xxxx

UNIT STATUS CHANNEL STATUS STATISTICAL DATA STATISTICAL DATA

YYYYYY YYYY x yyyyyyyyy yyyyyy x yyyy yyyy yyyyyy xxxx
yyyy yyyy yyyyyy x yyyy yyyy yyy x yyyyyyy xxxx
yyyyyy yyyy x yyyyy yyyy yyy x yyyy yyy yyyy xxxx
yyyy yyy x yyyyyyyyyyyyyyyy x yyyyyy yyyyyyy xxxx
yyyyyyyy yyyyyyy x yyy yyy x yyy yyy xxxx
yyyy yyy x yyyy yyy x yyyy yyy xxxx
yyyyyy x yyyyyy yyy yyy x yyyyyyyyyy yyyyy xxxx
yyyyyyyy yyy x yyyyy x yyy yyy xxxx

SENSE BYTE DATA

BYTE 0 xx BYTE 1 xx BYTE 2 xx BYTE 3 xx BYTE 4 xx BYTE 5

yyy yyyyyyy x yyy yyy yyy x xxxxxxxx yyyyy yy yy x yy yyy yyyy x xxxxxxxx
yyyy yyy x yyyy yyy x x yyy yyy yyy x
yyyyy yyy x yyy yyy yyy x yy yyyy x yyy yy x
yyyyyy yyy x yyyyyyy x yyy yyy yyy x yyyy yyy x
yyyy yyy yy x yyyyyyy yy x x yyyyyy yyy x
yyy yyy yyy x yyy yyy x yyy yyy x yyy yyy x
yyyy yyy x yyy yyy yyy x yyyyy yyy x x
yyyyy yyy x yyyy yyyyyy x yyyyyy yyyy x yyyy yyy x

Figure EREPO-3. Sample Printout -- Outboard Data Editing and
Printing Section

yyyy yyyy xxx
yyyyyy yyy yyy xxx
yy yyy xxx
yyyy yyyy yyy yy xxx
yyyyy yyy xxx
yyyy xxx
yyy yyy yyy yyy xxx
yy yyyyyy xxx

xx

TCAM OUTBOARD DATA EDITING AND PRINTING SECTION

MODEL-UNIVERSAL
---RECORD ENTRY SOURCE - OBR
CHANNEL/UNIT ADDRESS 0180
COMMUNICATION ADAPTER TYPE
PROGRAM IDENTITY TRINETTE

NONE

DAY YEAR
DATE 040 69

CC DA FL
FIRST CCW
FAILING CCW

08
01
K

0004C8 40 00
000510 80 00

CA US CS
CSW FO 00102A FF FF
UNIT STATUS

ATTENTION
STATUS MODIFIER
CONTROL UNIT END
BUSY
CHANNEL END
DEVICE END
UNIT CHECK
UNIT EXCEPTION

1
1
1
1
1
1
1
1

SENSE BYTE DATA
INITIAL FAILURE
BYTE 0 10101010

CMNDREJ
INTV REQD
BUS 0 CHI<
EQUIP CHK
DATA CHK
OVERRUN
LOST DATA
TIME OUT

TERMINAL NAME PITTSB
SIO CNTR 00039
MASK 01010001

1
o
1
o
1
o
1
o

CT
0001
0028

CT
0222

TYPE - OUTBOARD
DEVICE TYPE 2701

HH MM SS TH
TlME-OO 12 34.56

CHANNEL STATUS
PRGM-CTLD IRPT
INCORRECT LENGTH
PROGRAM CHECK
PROTECTION CHECK
CHAN DATA CHECK
CHAN CTL CHECK
I/F CTL CHECK
CHAINING CHECK

1
1
1
1
1
1
1
1

FINAL RETRY
BYTE 0 10101010

CMND REJ
INTV REQD
BUS 0 CHK
EQUIP CHK
DATA CHK
OVERRUN
LOST DATA
TIME OUT

1
o
1
o
1
o
1
o

RECORDING MODE *UNRECOVERABLE*
TEMPORARY ERR CNTR 050
INITIAL SELECTION 1

Figure EREPO-4. First Sample Printout -- TCAM Data Editing and
Printing Section

rCAM OUTBOARD DATA EDITING AND PRINTING SECTION

MODEL-UNIVERSAL
--- RECORD ENTRY SOURCE - OBR
CHANNEL/UNIT ADDRESS 0190
COMMUNICATION ADAPTER TYPE NONE
PROGRAM IDENTITY TRINETTE

DAY YEAR
DATE - 040 69
TERMINAL NAME PITTSB
SIO CNrR 00004
MASK 00000101

TYPE - OUTBOARD
DEVICE TYPE 2701

HH MM SS TH
TIME-OO 12 34.56
RECORDING MODE *END OF DAY*
TEMPORARY ERR CNTR 001
INITIAL SELECTION 0

Figure EREPO-5. Second Sample Printout -- TCAM Data Editing
and Printing Section

Chapter 2: IFCEREPO 45

•

Machine-Check Summary: A machine-check summary can be generated on IBM
Sytem/360 Models 40,. 50" 65. 67, 85, 91, 95, and 195 .. and on IBM
System/370 Model 135. 145, iSS. 165. A summary consists of:

• Items that provide clues as to the type of machine malfunction.

• Parity information for registers in the diagnostic scan-out area
(logout area), general purpose registers, and floating point
registers.

• The status of binary triggers recorded in the logout area.

Notes: For the model 85, only the error triggers are summarized.

Figure EREPO-6 shows the format· of a machine-check summary. Each
summarized item is listed with its frequence of occurrence.

***MOD xx MACHINE-CHECK SUMMARY ***
NUMBER OF RECORDS EXAMINED = 10

TITLE
ROBAR SUMMARY

OAAAA
lBBBB
lCCCC

TOTAL
(UP TO FIRST 10)

3
4
3

LOGOUT REG PARITY CHECK SUMMARY
REG A 5
REG B 2
REG C 3

CHECKS AND INDICATORS SUMMARY
ROAR CHECK 1
LSAR' PTY CHECK 3
H DECODE CHECK 4
D/Y8 CHECK 2

Figure EREPO-6. Machine-Check Summary

Channel Inboard Summary: A channel inboard summary can be generated on
IBM System/360 models 40, 50, 65, 75, 85, 91, and 195 and IBM System/370
Model 165,. (Model 67 and Model 95 channe 1 inboard summaries are
identified as Model 65 and 91 summaries. respectively.) Channel inboard
records are summarized according to channel address. Each channel
summary contains:

• The addresses of devices connected to the channel (a maximum of
10 devices).

• The status of hardware elements (pertaining to the channel) in
the logout area .•

• A summary of failing CCW command codes (a maximum of 24
entries). (The 24th CCW command code entry is a logical OR of
the remainder of the failing command codes, if any.)

46 Service Aids (Release 21)

Figure EREPO-7 shows the format of channel inboard summary. Each
summarized item is listed with its frequence of occurrence.

***MOD xx CHANNEL 1 SUMMARY ***
TOTAL NO. OF RECORDS FOR THE CHANNEL = 20

TITLE TOTAL
SUMMARY OF DEVICE ADDRESSES

(MAX 10 ENTRIES)
180 5
190 6
1FO 5
UNDET. 4

SUMMARY OF CMND CODES
(MAX 24 ENTRIES)
CMND CODES TOTAL
'01' 7
'02' 6
'03' 3
1141 4

SUMMARY OF HARDWARE
IF PARITY
LWR WR
IF TAG CHK
WO PARITY CHK

LOGOUT
8
6
2
4

Figure EREPO-7. Channel Inboard summary

I/O Outboard Summary: An I/O outboard summary can be generated on IBM
System/360 Models 30, 40, 50, 67, 75, 85, 91, 95, and 195, and IBM
System/370 Models 135, 145, 155 and 165. I/O outboard summaries are
organized according to device address; however, the order of appearance
of the summaries is determined by the order in which device addresses
are encountered in the OBR records selected for summarization. Where
TCAM is used the summary will appear in CUA (channel unit address) and
line (terminal name) sequence. Each I/O outboard summary contains:

• Volume labels (a maximum of 10 entries).

• A summary of failing CCW command codes (a maximum of 24
entries). (The 24th CCW command code entry is a logical OR of
the remainder of the failing command codes, if any.)

• The sense bits (a maximum of 6 bytes)

Note: Selected records can be edited and written, accumulated, and/or
summarized in one execution of the program.

Figure EREPO-8 shows the format of an I/O outboard summary. Each
summarized item is listed with its frequency of occurrence.

Figure EREPO-9 shows the format of the TCAM I/O outboard summary.
All totals reference the CUA/line. All subtotals reference terminal
names. Individual errors appear under their type of error for every
terminal. Graphic errors always appear on the third line under their
type of error.

Chapter 2: IFCEREPO 47

•

SUMMARY OF I/O OUTBOARD ENVIRONMENT RECORDS FOR DEVICE 031
TOTAL NUMBER OF RECORDS 005 DEVICE TYPE 2311

VOLUME LABELS ENCOUNTERED (MAXIMUM OF 10 ENTRIES)
VOL. LABEL 22222 001
VOL. LABEL 22222 002
VOL. LABEL 22224 002

CCW COMMAND CODES ENCOUNTERED (MAXIMIM OF 24 ENTRIES)
CMND TOTAL
02 005

SENSE BYTE SUMMARY

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4

CMND REJ 0 DATA CHK 0 UNSAFE 1 READY 0 BIT 0
INTV REQ 0 TRK OVERF 0 BIT 1 2 ON LINE 0 BIT 1
BUS OUT 0 CYL END 1 SERIAL CH 3 UNSAFE 0 BIT 2
EQUIP CHI< 0 INV SEQ 2 TAG LINE 4 BIT 3 1 BIT 3
DATA CHK 0 REC UNFND 0 ALU CHK 0 ON LINE 0 BIT 4
OVERRUN 0 FILE PROT 3 UNSEL STA 0 CYL END 0 BIT 5
TRK COND 0 MISG A MK 4 BIT 6 0 BIT 6 1 BIT 6
SEEK CHK 1 OVFL INC 5 BIT 7 0 SEEK INCP 1 BIT 7

Figure EREPO-8. I/O Outboard Sununary

48 Service Aids (Release 21)

BYTE 5

0 COMMAND
1 IN
2 PROGRESS
3 WHEN
4 OVERFLOW
5 I NCMPLETE
1 OCCURS
1

0
0
0
0
0
0
0
1

()
l:J"
PJ
"0
rt
ro
Ii

tv

H
I'lj
()
tz:j

G1
"tI
o

~
\0

---RECORD ENTRY TYPE -
OS RELEASE xxx

UNIT CHECK SOURCE - OUTBOARD MODEL- xxx SERIAL NO. xxxxxx

DAY YEAR
DATE- xxx xx

OBR RECORD CONVERTED TO THE STANDARD FORMAT

DEVICE TYPE xxxx
PRIMARY CHANNEL UNIT ADDRESS xxx x
ALTERNATE CHANNEL UNIT ADDRESS xxxx
PHYSICAL DRIVE x
PHYSICAL CONTROL UNIT x
VOLUME LABEL xxx xxx

CC CA FL CT
FAILING CCW xx xxxxxx xx xx xxx x

M B B C C H H R
LAST SEEK ADDRESS x xxxx xxxx xxxx xx

HH MM SS.TH
TIME- xx xx xx xx

K CA

JOB IDENTITY xxxxxxxx
xxxxxxxxxxxxxxxx

MULTIPROCESSOR - CPU xx

US CS CT
CSW xx xxxxxx xx xx xxxx

UNIT STATUS CHANNEL STATUS STATISTICAL DATA STATISTICAL DATA

yyyyyy yyyy x
yyyy yyyy yyyyyy x
yyyyyy yyyy X
yyyy yyy x
yyyyyyyy yyyyyyy x
yyyy yyy x
yyyyyy x
yyyyyyyy yyy x

SENSE BYTE DATA

BYTE 0 xx BYTE 1 xx

yyy yyyyyyy x yyy yyy yyy x
yyyy yyy x yyyy yyy x
yyyyy yyy x yyy yyy yyy x
yyyyyy yyy x yyyyyyy x
yyyy yyy yy x yyyyyyy yy x
yyy yyy yyy x yyy yyy
yyyy yyy x yyy yyy yyy x
yyyyy yyy x yyyy yyyyyy x

yyyyyyyyy yyyyyy x yyyy yyyy yyyyyy xxxx
yyyy yyyy yyy x yyyyyyy xxxx
yyyyy yyyy yyy x yyyy yyy yyyy xxxx
yyyyyyyyyyyyyyyy x yyyyyy y yyyyyy xxxx
yyy yyy x yyy yyy xxxx
yyyy yyy x yyyy yyy xxxx
yyyyyy yyy yyy x yyyyyyyyyy yyyyy xxxx
yyyyy x yyy yyy xxxx

BYTE 2 xx BYTE 3 xx BYTE 4 xx BYTE 5

xxxxxxxx yyyyy yy yy x yy yyy yyyy x xxxxxxxx
x yyy yyy yyy x

yy yyyy x yyy yy x
yyy yyy yyy x yyyy yyy x

x yyyyyy yyy x
yyy yyy x yyy yyy x
yyyyy yyy x x
yyyyyy yyyy x yyyy yyy x

Figure EREPO-9 .• TeAM I/O Outboard Summary

yyyy yyyy xxx x
yyyyyy yyy yyy xxxx
yy yyy xxxx
yyyy yyyy yyy yy xxxx
yyyyy yyy xxxx
yyyy xxxx
yyy yyy yyy yyy xxxx
yy yyyyyy xxxx

xx

•

50 Service Aids (Release 21)

Chapter 3: GTF (Generalized Trace Facility)
Traces selected system events such as SVC and I/O interruptions. •

Chapter 3: IHLGTF 51

52 Service Aids (Release 21)

Contents

INTRODUCTION · • 55

FEATURES • • 56

STARTING GT}' •• '. '. • • • • • • • 57
Using the START Command • • • 57
using the GTF Cataloged Procedures
specifying GTF Trace Options

• • 59
•• 60

Prompting • • • • • • ,. • .• • • • • • • 62
storing Trace options in SYS1.PARMLIB • • 63

CALCULATING S'I'ORAGE REQUIREMENTS 65

RECORDING USER DATA. • • • • •••
Printing User Data

• • 67
• • 67

Coding the GTRACE Macro • • • • .' . • • 67

GTF ERROR RECOVERY HANDLING • • • 69

GTF OU'TPUT
Trace Records • •
Control Records •

• • 70
70
76

Figures

Figure GTF-l.
Figure GTF-2.
Figure GTF-3.
Figure GTF-4.
Figure GTF-5.
Figure GTF-6.
Figure GTF-7.
Figure GTF-8.
Figure GTF-9.

Figure GTF-10.

Figure GTF-ll.

Figure GTF-12.

Figure GTF-13.
Figure GTF-14.
Figure GTF-15.

General Format of the START Command •• •• • • 57
GTF Cataloged Procedure •••• • • • •• • • • 59
GTF Messages and Operator Replies While Starting GTF. 63
Adding Trace Options to SYS1.PARMLIB Using IEBUPDTE • 64
Main Storage Requirements for GTF Opt.ions, by Module. 66
General Format of the GTRACE Macro, Standard Form 67
An Example of the GTRACE Macro • • • • • • • • 68
Fields in a Trace Record • • '. • • • •• • • • 70
Format of Comprehensive Trace Records for DSP,
10 (Including PCI, SIO, PI, EXT, and SVC (MFT
an d MVT • • • • • .• • • • • • • • • • '. • • • • • • .• 7 2
Format of Comprehensive Trace Records for DSP,
10 (including PCI),SIO, PI (including SSM)
and EXT (Model 65 Multiprocessing) '. • • • • • • 73
Format of Minimal Trace Records for DSP, 10
(including PCI), SIO, PI, EXT, and SVC (MFT
an d MVT • '. .• • • • • '. I. . '. '. . . '. . '. 7 4
Format of Minimal Trace Records for DSP, 10
(including PCI), SIO, PI (including SSM), EXT,
and SVC (Model 65 Multiprocessing) •••••• 75
Hexadecimal Format Record •• ,. • • • •• • • 75
General format of a timestemp Control Record • 76
General Format of a Lost Event Control Record 77

Chapter 3: IHLGTF 53

•

54 Service Aids (Release 21)

Introduction

The Generalized Trace Facility (GTF) is a feature of 05/360 that allows
you to trace selected system events. It also allows you to create your
own user trace records and include them in the trace output. The trace
output, when formatted and printed by the EDIT function of IMDPRDMP, is
useful in determining and diagnosing problems that may arise while using
the operating system.

Chapter 3: IHLGTF 55

•

Features

GTF operates as a system task under the operating system; it is
compatible with all·configurations of the operating system. If the
TRACE option has been selected at system generation, the os Trace
facility will function normally except during GTF processing, when OS
Trace processing will be suspended.

GTF can trace any or all of the following system events:

• Input/output interruptions (10)

• START I/O operations (SIO)

• Supervisor Call interruptions (SVC)

• Program interruptions (PI) (including SSM)

• External interruptions (EXT)

• Dispatcher task-switch operations (DSP)

If you choose 10 or SIO, you can supply specific device names in
response to a prompting message; GTF will then filter out all 10 or SIO
events that are not associated with the devices you specified.
Similarly, you can supply specific SVC numbers when you choose SVC
tracing, and specific program interrupt codes when you choose PI tracing.

GTF will ordinarily ignore traceable events that are associated with
its own task, but you can request that such events be included as part
of the trace output (TRC). You can also request that a timestamp be
included in each trace record (TIME=YES).

GrF trace output can be maintained in main storage (MODE=INT) or
directed to a data set on an external storage device (MODE=EXT). The
output device may be any magnetic tape or direct access device supported
by the operating system.'

If data is maintained internally or written to a direct access
output device, it is "wrapped". That is, when the buffers or available
tracks become full, GTF will overlay previously stored or written
information beginning at the first buffer or block.

Any abnormally terminating user who has requested ABEND processing
will be supplied with formatted trace data as part of the ABEND dump if
GTF was active with MODE=INT when ABEND was given control. Similarly,
trace data will be provided for SNAP dumps if the user has included the
SDATA=TRT parameter in the SNAP macro.

56 Service Aids (Release 21)

Starting GTF

Use the START command to initiate GTF processing. By specifying certain
optional parameters, you can choose whether the trace records should be
recorded internally or externally, whether or not they should be
time-stamped, and whether or not GTF should terminate if it encounters
errors while gathering trace information. You can also select trace
options, either by entering them directly through the console or by
retrieving them from SYSl.PARMLIB where you have stored them.

Using the START Command

Figure GTF-l shows the general format of the START command as it is used
to start GTF.

STARr procname[.identifierl,[devaddrl,[volserl, [parmvaluel
[,keyword=optionl [••• ,keyword=optionl [,REG=sizel

Figure GTF-l. General Format of the Start Command for GTF

The following discussion describes the parameters of the START command
as they are used for GTF.

procname

defines one of the two cataloged procedures (GTF and GTFSNP)
described in the next section.

devaddr

indicates the address of the device to which trace output is to be
written, if you have specified MODE=EXT. If you have specified
MODE=INT, omit this field.

volser

defines the volume serial number of the direct access storage pack
to which trace output is to be written, if you have specified
MODE=EXT. If you specified MODE=INT, omit this field.

parrnvalue

overrides the value specified in the PARM= parameter of the EXEC
statement in the cataloged procedure GTF or GTFSNP. This field may
contain any combination of the following parameters:

MODE=l~i l
(INT, S)~

defines where the trace data is to be maintained. If you omit
this parameter, GTF will assume the default specified in the
cataloged procedure (MODE=EXT) and write the trace data on the
SYS1.TRACE data set .• When MODE=EXT is in effect, you will be
prompted to supply trace options unless you have specified a
member of SYS1 .• PARMLIB where trace options are stored.

Chapter 3: IHLGTF 57

When MODE=INT is in effect, the trace data is maintained in
main storage, and GTF will not prompt you to supply trace
options. It will gather basic data (similar to that contained
in the os trace table) for the following events:

• Dispatcher entries

• External interrupts

• I/O interrupts, including program-controlled interrupts.

• Program interrupts

• SIO operations

• SVC interrupts.

When any task in the. system terminates abnormally and the ABEND
routine is invoked, GTF will suspend tracing until the ABDUMP
program can format the trace data as part of the dump output.
Trace events missed during ABEND processing will be counted in
a special control record that will be included in the trace
buffers. If ABEND is not invoked, tracing will continue
unaffected. If you specified MODE=(INT,S), GTF will not pause
for ABEND or SNAP processing, and the trace buffers will not be
formatted.

TIME=YES requests that every logical trace record be
timestamped (in addition to the block time stamp associated
with every block of data). This record timestamp will be four
bytes of timer units for systems without Time-of-Day Clock
support; for systems with Time-of-Day Clock support, the
record timestamp will be the clock value at the time the record
was constructed. Note that if no timer option is present in the
system, this parameter will be ignored and a warning message
will be issued.

If you code TIME=NO, or if you omit this parameter, GTF will
not timestamp individual records.

DEBUG={~~S}

GTF may encounter errors while attempting to create a trace
record. If you specify DEBUG=YES, most errors of this kind
will cause GTF to issue an error message and then. terminate, so
that the contents of the GTF buffers immediately prior to the
error will be unchanged. If you have named the GTFSNP
procedure in the START command, a SNAP dump will be produced if
GTF terminates abnormally. .

If you specify DEBUG=NO, or if you omit this parameter, GTF
will not terminate immediately, but instead will initiate error
recovery procedures. For more information about error recovery
procedures, refer to the section "GTF Error Recovery Handling"
later in this chapter.

58 Service Aids (Release 21)

keyword=option

You may use this parameter to override specific parameters in
the IEFRDER DD statement in the cataloged procedure. For
example:

• To specify a different name for the trace data set, code
DSNAME=newname.

• To prevent the system from sending mount messages to the
operator's console when specifying MODE=INT, code DSN=NULLFILE.

• To request more than two output buffers, code
DCB=(BUFNO=nurnber).

• To modify the GTF buffer size code, DCB=(BLKSIZE=nurnber). The
block size cannot be less than 350 bytes.

• To specify an existing data set as the output data set, code
DISP=OLD. (Note: If you specify DISP=MOD, GTF will change the
data set disposition to OLD.)

Do not use this parameter to request DCB=OPTCD=Ci GTF does not
support chain-scheduling.

REG=size

supplies a region size for GTF. This will override the value
specified in the REGION= parameter of the EXEC statement in the
cataloged procedure.

Using the GTF Cataloged Procedures

The srART command f::>r GTF names one of two cataloged procedures supplied
in SYS1.PROCLIB. The first, GTF, contains job control statements as
shown in Figure GTF-2. The second, GTFSNP, is identical to cataloged
procedure GTF except that the SNAPDUMP DD statement, shown as optional
in Figure GTF-2, is supplied, and the default region size is 30K.

//GTF PROC REG=26
//IEFPROC EXEC PGM=IHLGTF,REGION=®.K,
// PARM='MODE=EXT,DEBUG=NO,TIME=NO'
//IEFRDER DD DSNAME=SYS1. TRACE, UNIT=SYSDA,
// SPACE=(3500,20),DISP=(NEW,KEEP)
//SYSPRINT DD SYSOUT=A,SPACE=(TRK, (1,1»
[IISYSLIB DD DSN=SYS1.PARMLIB (membername),1
[II DISP=SHR]
[IISNAPDUMP DD SYSOUT=A]

Figure GTF-2. The GTF Cataloged Procedure

PROC Statement

defines the default region size for the symbolic REGION= parameter
in the EXEC statement. This default value is used if you do not
specify a region size in the START command.

EXEC Statement

calls for the execution of GTF. The REGION parameter is specified
as a symbolic parameter so that you can vary it according to need.

Chapter 3: IHLGTF 59

•

IEFRDER DD Statement

defines the trace output data set. If you do not override this
statement in the START conunand, the trace output data set will have
the name SYS1.TRACE; .it will be directed to a direct access device
with sufficient allocation to allow the data set to contain twenty
3500-byte physical blocks.

SYSPRINT DD statement

defines the GTF message data set.

SNAPDUMP DD statement (Optional in the cataloged procedure GTF, supplied
in GTFSNP.)

causes GTF to issue the SNAP macro to dump the nucleus and the GTF
region if an error condition causes GTF to terminate. This
statement increases GTF's region size requirements by 4K.

SYSLIB DD Statement (Optional)

defines a member in the SYS1.PARMLIB data set that contains GTF
options. If such a member exists, GTF will not prompt you to supply
options, but will use the options in the member.

Specifying GTF Trace Options

when you start GI'F with MODE=EXT I you will receive the following message:

IHL100A SPECIFY TRACE OPTIONS.

Use the following format to specify the events to be recorded during GTF
execution:

TRACE=optionl[,option21 ••• [,optionxl

You can specify any of the following trace option values:

lSYS ! SYSM
SYSP

SYS requests that comprehensive trace data be recorded for the
following system events:

• I/O interrupts

• SVC interrupts

• Program interrupts

• External interrupts

• Start I/O operations

Note: Dispatcher task switching must be requested separately
through the DSP keyword. similarly, program-controlled interrupt
must be requested separately through the PCI keyword.

60 Service Aids (Release 21)

SYSM requests that minimal trace data be recorded for all system
events listed above. SYSP requests further prompting for 10, SIO,
SVC, and PI; that is, if you specify SYSP, GTF will prompt you to
supply specific device addresses, SVC numbers, or program interrupt
codes. Comprehensive trace data will be recorded for events
associated with the devices or interrupts that you specify; all
other events will be filtered out and ignored. If SYS and SYSM, or
SYS and SYSP, are both specified, SYS will be ignored. Simila.rly,
if SYSP and SYSM are both specified, SYSP will be ignored.

{
SIO }
SlOP

SIO requests comprehensive recording for system SIO operations on
all devices. SlOP requests further prompting for specific devices
for which trace data should be recorded.

This keyword will be ignored if SYS, SYSM, or SYSP has also been
specified.

10 requests comprehensive recording for all I/O interrupts except
program-controlled interrupts, which must be requested separately
through the PCI keyword. lOP requests further prompting for
specific devices for which I/O interrupts should be recorded.

This keyword will be ignored if SYS, SYSM, or SYSP has also been
specified.

{
SVC }
SVCP

EXT

SVC requests comprehensive recording for all SVC interrupts. SVCP
requests further prompting for specific SVC numbers for which trace
data should be recorded.

rhis keyword will be ignored if SYS, SYSM, or SYSP has also been
specified.

PI requests comprehensive recording for all program interrupts. PIP
requests further prompting for specific interrupt codes for which
trace data should be recorded.

rhis keyword will be ignored if SYS, SYSM, or SYSP has also been
specified.

requests comprehensive recording for all external interrupts. This
keyword will be ignored if SYS, SYSM, or SYSP has also been
specified.

Chapter 3: IHLGTF 61

DSP

USR

PCI

rRC

SSM

requests that a trace record be created whenever the dispatcher is
entered for task switching. The trace data collected will be
comprehensive unless you have requested SYSM.

requests that all data passed to GTF via the GTRACE macro be
recorded with the system data in the trace data set.

requests that all program-controlled I/O interrupts be recorded.
rhis keyword will be ignored unless 10, lOP, SYS, SYSM, or SYSP is
also specified. If you have specified lOP or SYSP,
program-controlled I/O interrupts will be recorded only for those
devices that you supplied in response to a prompting message.

requests tracing of trace events associated with the trace task
while operating under GTF's task control block. Such events will be
traced according to the GTF trace options selected while starting
GrF. If this keyword is not specified, GTF task events will be
filtered out and not recorded •.

requests all program interrupts caused by SSM instructions to be
recorded. This keyword is effective only in a multiprocessing
environment, and only when PI, PIP, SYS, SYSM or SYSP is also
specified.

Prompting

When you specify SYSP, lOP, SlOP, SVCP, or PIP as trace options, GTF
will prompt you to supply specific values. These values are:

SIO=(devaddrl[,devaddr2] [••• ,devaddr50])

specifies up to 50 device addresses for which you want SIO
operations traced. All other SIO operations will be filtered out.
If you have specified SlOP or SYSP, and do not specify SIO= in
response to the prompting message, no SIO filtering will take place.

IO=(devaddrl[,devaddr2] [••• ,devaddr50])

specifies up to 50 device addresses for which you want I/O
interruptions traced. All other 10 interruptions will be filtered
out. If you have specified lOP or SYSP, and do not specify 10= in
response to the prompting messages, no 10 interruption filtering
will take place.

SVC=(svcnuml[,svcnum2] (••• ,svcnum50])

specifies up to 50 SVC numbers that you want traced. All other SVC
numbers will be filtered out. If you have specified SVCP or SYSP,
and do not specify SVC= in response to the prompting message, no SVC
filtering will take place.

62 Service Aids (Release 21)

PI=(codel[,code2) [••• ,code151)

specifies up to 15 program interrupt codes that you want traced. All
other program interruptions will be filtered out. If you have
specified PIP or SYSP, and do not specify PI= in response to this
prompting message, no program interruption filtering will take place.

IO=SIO=(devaddrl[,devaddr21 [••• ,devaddr50)

specified after requesting SYSP or both lOP and SlOP, names up to 50
device addresses for which you want GTF to trace both 10 and SIO
events. All other 10 and SIO events, except those requested
specifically by 10= or SIO=, will be filtered out.

Note that in each case GTF imposes a limit on the number of specific
values you can supply through prompting. If you exceed this limit, GTF
will issue a message and you must respecify all values.

Figure GTF-3 shows an example of an exchange between GTF and the
operator when GTF is being started.

s'rART GTF", (MODE=EXT) ,REG=34

00 IHL100A SPECIFY TRACE OPTIONS
rOO, 'rRACE=SYSP,USR'

01 IHL101A SPECIFY 'rRACE EVENT KEYWORDS--SVC=, 10=, SIO=, PI=
rOl, 'SVC=(1,2,3,4,10),IO=(191,192),

02 IHLI02A CONTINUE TRACE DEFINITION OR REPLY END
r02, 'SIO=282,END'
IHLI03I TRACE OPTIONS SELECTED--SYSP,USR
IHLI03I SVC=(1,2,3,4,10),IO=(191#192),SIO=(282)

03 IHL125A RESPECIFY TRACE OPTIONS OR REPLY U
r03, 'u'

Figure GTF-3. GTF messages and operator replies while starting GTF.

Storing Trace Options in SYS1.PARMLIB

You can save time in starting GTF by storing one or more set
combinations of trace options as members in SYS1.PARMLIB. GTF will not
prompt you to supply trace options, but will will look in SYS1.PARMLIB
if you include a SYSLIB DD statement in the GTF or GTFSNP cataloged
procedures.

Chapter 3: IHLGTF 63

•

Figure GTF-4 shows the job control statements and utility control
statements needed to add trace options to SYS1.PARMLIB using IEBUPDTE.
For full descriptions of the statements, refer to the publications IBM
Systern/360 Operating System: Utilities, GC28-6586, and Job Control
Language Reference, GC28-6703.

//GTFPARM
//
//SYSPRINT
//SYSUT2
//SYSIN
./ ~D

JOB MSGLEVEL=(l,l)
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.PARMLIB,DISP=SHR
DD DATA

NAME=GTFA,LIST=ALL,SOURCE=O
TRACE=SYSP,USR
SVC=(l,2,3,4,10),IO=(191,192),SIO=282,PI=15
./ ADD NAME=GTFB,LIST=ALL,SOURCE=O
rRACE=Io,SIO,TRC
./ ADD
TRACE=SYS,PCI,SSM
/*

NAME=GTFC,LIST=ALL,SOURCE=O

Figure GTF-4. Adding Trace Options to SYS1.PARMLIB Using IEBUPDTE.

A sample //SYSLIB DD statement to be included in the GTF or GTFSNP
cataloged procedure might look like this:

//SYSLIB DD DSN=SYS1.PARMLIB(GTFA),DISP=SHR

64 Service Aids (Release 21)

Calculating Storage Requirements

GTF's region requirements vary according to the GTF options that you
specify.

If you have requested MODE=INT, you must specify a minimum region
size of 16K bytes of main storage. This minimum will provide you with
four 1024-byte buffers. If you need more buffers, you must specify 1K
of additional storage for each buffer. If you use the GTFSNP cataloged
procedure, or if you use an installation-defined procedure that contains
a SNAPDUMP DD statement, you must add 4K to the minimum region size •

If you have requested MODE=EXT, you must specify a minimum region
size of 26K. For larger regions, use the following formula to compute
your region requirements. Note that all intermediate values must be
rounded up to the nearest 2K multiple. The final region size that you
calculate must also be rounded up to the nearest 2K multiple.

where:

16K

n

b

88

m

region = 16K + n(b+8) + 88(n) + m + a

minimum main storage required for minimal trace.

number of trace buffers, ordinarily two unless you have
specified more in the START command.

the size of the trace buffers, ordinarily 3500 bytes unless you
have specified a different value in the START command. (Note:
When trace output is directed to a direct access device, the
buffer size should equal the track size. This is necessary to
prevent too much previously stored data from being lost when
the trace data is "wrapped". The 8 additional· bytes are needed
for the GTF buffer prefix.

the size of the input/output block (lOB); one lOB is requir€d
for each buffer.

total main storage required to process GTF options requested.
In some cases, several GTF options are contained within one
module. Even if you request two or more GTF functions that are
contained in the same module, you only need to provide enough
space for one copy of the module. Refer to Figure GTF-5 for a
summary of GTF options, the modules that contain them, and the
amount of main storage required for each module.

Chapter 3:· IHLGTF 65

•

GTF

a

To calculate m, add together the storage requirements for each
module that you will need, and add ~K to the total if you have
requested filtering for any option. For example, if you specify
EXT, SVCP, and USR:

m = 2K + 8K +lK + O.SK

m = 11.SK

The amount of main storage required for ABEND or SNAP
processing. If you have requested either ABEND or SNAP, or
both, when starting GTF, this value is 4K. If you have not
requested ABEND or SNAP, this value is zero.

OprIONS SELECTED MODULES REQUIRED MAIN STORAGE REQUIRED

SYSM[, DSP] [, PCI] IHLSYSV lK
or

IHLSYSP

DSP IHLTPED 2K
EXr
PI
PI=
SSM

10 IHLTSIO lK
10=
SIO
SIO=
PCI

SVC IHLTSVC 8K
SVC=

SYS[,DSP] [,Pcr] IHLTPED, 11K
[, SSM] IHLTSIO,

and
IHLTSVC

USR IHLTUSR O.SK

lOP IHLTFIL lK
SlOP
SVCP
PIP

Figure GTF-S. Main Storage Requirements for GTF Options, By Module.
Note that TRC can be considered to require 0 (zero K) bytes of main
storage.

66 Service Aids (Release 21)

Recording User Data

If you want your own trace data to be recorded in the GTF trace buffers,
you can specify that data in the GTRACE macro instruction. In one
invocation of GTRACE, an application program can record up to 256 bytes
of data in a GTF trace buffer. Secure data should not be recorded using
the GTRACE macro since security protection cannot be guaranteed. Note,
however, that GTRACE can record only data that has the same protect key
as the GTRACE user.

GTRACE will be effective only when GTF is active, when it is directing
its output to an external data set, and when it is accepting user data
-- that is, when GTF has been started with MODE=EXT and TRACE=USR
specifications.

Printing User Data

Like other trace data, information recorded by the GTRACE macro can be
printed by the EDIT function of IMDPRDMP. Usually user data will be
printed in hexadecimal, since EDIT cannot format records not created by
GTF. However, you can write format appendages to format specific types
of user data records.

Every time you issue GTRACE to create a user record, you specify
Nhich format appendage should process it; you do this by including the
optional FID (format identifier> parameter in the GTRACE invocation.
rhe FID corresponds to the last two hexadecimal characters in the name
of the format appendage" IMDUSRxx.

Coding the GTRACE Macro

Figure GTF-6 shows the general format of th e GTRACE macro, standard
form.

[symbol] GTRACE DATA=address,LNG=nurnber,ID=number[,FID=value]

Figure GTF-6. The General Format of the GTRACE Macro, Standard Form

rhe parameters in the macro are described below.

DATA=address

gives the main storage address of the data to be recorded.

LNG=number

specifies the number of bytes (1 to 256) to be recorded from the
address specified in the DATA= parameter. The number maybe
specified in decimal or in hexadecimal (as X'number').

Chapter 3: IHLGTF 67

•

ID=value

is the identifier to be associated with the record. ID values are
assigned as follows:

o to 1023 -- user events

1024 to 4095 -- reserved

rhe value may be specified in decimal or in hexadecimal (as
X'value').

FID=value

indicates the format appendage that is to format this record when
the trace output is processed by the EDIT function of I~illPRDMP. FID
values are assigned as follows:

o (or FID= parameter omitted) record to be dumped in hexadecimal

1 to 80 user format identifiers

81 to 255 reserved

rhe value may be specified in decimal or in hexadecimal (as
X'value').

Figure GTF-7 shows how the GTRACE macro might be coded to record 200
bytes of data, beginning at the address of ARE~, with an event
identifier of 37 and to be formatted by the format appendage with the
name IMDUSR64.

3TRACE DATA=AREA,LNG=200,ID=37,FID=100

Figure GTF-7. An Example of the GTRACE Macro.

For more details about the GTRACE macro instruction, consult the
publication IBM System/360 Operating System: supervisor services and
Macro Instructions, GC28-6646.

68 Service Aids (Release 21)

GTF Error Recovery Handling

GTF recognizes all errors that occur while building a trace record as
potentially recoverable. Whether recovery takes place or not depends on
what you code in the START command.

If you specify DEBUG=YES, GTF will not attempt error recovery. It
will issue an error message and then terminate, so that the contents of
the GTF buffers immediately prior to the error will be preserved.

If you specify DEBUG=NO, GTF will initiate the following error
procedures:

For minor errors in the routine that builds the trace record (the
build routine), GTF flags the field that led to the error and
continues processing. It does not issue a message to the operator's
console or disable the function that caused the error; instead, it
proceeds as if no error had occurred. All errors that occur while
building an svc record fall into this category.

For severe errors in the build routine, GTF flags the entire record
that was being built, issues a message to the console, and continues
processing with the function that caused the error suppressed.

For errors in the routine that filters trace events, GTF suppresses
filtering for future events of the same type, issues a message to
the console, and continues processing.

Errors that occur outside the build and filter routines are not
recoverable; they result in immediate abnormal termination of GTF.

Note that the termination of GTF will never cause termination of a
user's task.

Chapter 3: IHLGTF 69

•

GTF Output

GTE' creates two kinds of records: trace records and control records.

Trace Records

GTF creates trace records for each system event you select. The records
have the general format shown in Figure GTF-8.

length 00 AID FID

T imeLs tamp EILD DALTrace data (up to 256 bytes)

Event identifier (2 bytes)

Timestamp (optional; 8 bytes)

Format Identifier (1 byte)

~--- Application Identifier (1 byte)

Always zero (2 bytes)

Number of bytes in trace record (2 bytes)

Figure GTF-8. Fields in a trace recor:1.

rhe fields in the record are described as follows:

length

00

AID

FID

indicates the total length of the record.

always zero.

defines whether the data record is a trace record or a GTF control
record.

X'FF" trace record

X'OO' GTE' control record

X'Ol) to X'FE' -- reserved

is the format identifier, a one-byte hexadecimal number that
identifies the program that will format the trace record during EDIT
execution. (For information on specifying the FID in the GTRACE
macro, refer to the section nCoding the GTRACE Macro" in this
chapter.)

If this field is zero, the trace record will not be formatted, but
will be dumped in hexadecimal.

70 Service Aids (Release 21)

timestamp

EID

data

If TIME=YES was specified in the START command and a timer option is
in effect in the system, a time stamp will be included in this
eight-byte field. If GTF is executing on a system without the
rime-Of-Day Clock, the time stamp will be four bytes of timer units,
right justified. On a system with Time-Of-Day clock support, the
value in the record will be the clock value at the time the record
was constructed.

defines the event that caused the trace record to be created. It is
not present in GTF control rec9rds. You can determine the EID of a
trace record by issuing the IMDMEDIT mapping macro, which is
described in the Appendix: Writing EDIT User Programs.

This field contains the trace data gathered for the requested event.
The length of this fiel'd varies according to the event being
traced.

Figures Gl'F-9 through GTF-13 are examples of trace output as processed
by the EDIT function of IMDPRDMP. In all the examples, fields flagged
~ith hhhhhhhh are hexadecimal representations, and fields flagged with
cccccccc are alphameric characters. N/A signifies that the field label
does not apply to this paricular record. For explanation of the fields
in the records, refer to the Programmer's Guide to Debugging, GC28-6670.

Chapter 3: IHLGTF 71

•

-...J
tv

(I)
(1)
Ii
<l
()
(1)

~
p,.
tn

-~
(I)
I-'
(1)
PJ
tn
(I)

tv
t-'

DSP RES PSW hhhhhhhh hhhhhhhh JOBN ~ccccccccl
I N/A)

MODN{ WAITTCB } NUTCB hhhhhhhh
SVC-cccc
SVC-RES
IRB*
cCcccccc
Iccccccc

PRTY hh

1;~If cuu OLD PSW hhhhhhhh hhhhhhhh
JOBN /*** * 1 DDNM

1***'**** 1
OLTCB hhhhhhhh

SIO CUU

PGM ccc

cccccccc cccccccc
N/A N/A

CSW hhhhhhhh hhhhhhhh
RQE 1******** ******** ********1 RQE TeB 1********1 SENS ~hhhhhhhh~

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh N/A
N/A N/A

CC hh CAW hhhhhhhh JOBN jccCCCCCCl OLTCB hhhhhhhh CSW hhhhhhhh hhhhhhhh RQE hhhhhhhh hhhhhhhh hhhhhhhh
I N/A ~

OLD PSW hhhhhhhh hhhhhhhh JOBN jccccccccl
/ N/A f MODN {WAITTCB } OLTCB SVC-cccc

SVC-RES
IRB*
cccccccc
Iccccccc

hhhhhhhh

RO hhhhhhhh RI hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh R7 hhhhhhhh
R8 hhhhhhhh R9 hhhhhhhh RIO hhhhhhhh RII hhhhhhhh RI2 hhhhhhhh RI3 hhhhhhhh RI4 hhhhhhhh R15 hhhhhhhh

RQE TCB hhhhhhhh

EXT OLD PSW hhhhhhhh hhhhhhhh JOBN jccccccccl

i N/A f
MODN {WAITTCB } OLTCB. hhhhhhhh

SVC-cccc
SVC-RES
IRB*

TQEFLG/TCB 1********1. EXIT 1:********1
hhhhhhhh hhhhhhhh

N/A N/A

cccccccc
Iccccccc

SVC nnn OLD PSW hhhhhhhh hhhhhhhh JOBN cccccccc MODN cccccccc OLTCB hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh

Figure Gr F- 9. F~rm~t of Comprehensive Trace Records for nsp, IO
(including PCI), SID, PI, EXT, and SVC (MFT and MVT)

(J
::r
III
I'd
rt
CD
Ii

w

H
::r:
S
1-3
tTj

-J
W

{~} DSP RES PSW hhhhhhhh hhhhhhhh JOBN {CCCCCCCC} MODN {WAITTCB 1 NUA hhhhhhhh NUB hhhhhhhh
N/A SVC-cccc

SVC-RES
IRB*
cccccccc
Iccccccc

PRTY hh

{~} {~gI} CUU OLD PSW hhhhhhhh hhhhhhhh JOBN 1********1 DDNM 1********1 OLA hhhhhhhh OLB hhhhhhhh
cccccccc cccccccc

fA}
\B

{~}

{~}

{~}

{~}

N/A N/A

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 1 N/A ~
CSW hhhhhhhh hhhhhhhh RQEI******** ******** ********1 RQE TCB 1********1 SENS~hhhhhhhht

N/A N/A

SIO cuu CC hh CAW hhhhhhhh JOBN ~ccccccccl OLA hhhhhhhh OLB hhhhhhhh CSW hhhhhhhh hhhhhhhh

PGM ccc

1 N/A ~

RQE hhhhhhhh hhhhhhhh hhhhhhhh RQE TCB hhhhhhhh

OLD PSW hhhhhhhh hhhhhhhh JOBN ~ccccccccl
1 N/A f

MODN {WAITTCB } aLA hhhhhhhh OLB hhhhhhhh
SVC-cccc
SVC-RES
IRB*
ecce ecce
Iccccccc

RO hhhhhhhh Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh R7 hhhhhhhh
RB hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh Rll hhhhhhhh R12 hhhhhhhh R13 hhhhhhhh R14 hhhhhhhh R15 hhhhhhhh

SSM OLD PSW hhhhhhhh hhhhhhhh JOBN ~ccccccccl
) N/A ~

MOON fWAITTCB } OLA hhhhhhhh
SVC-cccc

aLB hhhhhhhh 'LKID hh

EXT OLD PSW hhhhhhhh hhhhhhhh JOBN cccccccc

TQEFLG/TCB 1********1
hhhhhhhh

N/A

EXIT 1********1
hhhhhhhh

N/A

SVC-RES
IRB*
CCCCCCCC

I....Iccccccc

MODN{WAITTCB } OLA hhhhhhhh OLB hhhhhhhh
SVC-cccc
SVC-RES
IRB*
cccccccc
Iccccccc

STMSK hhhhhhhh

JOBN 1********1
cccccccc

N/A

SVC nnn OLD PSW hhhhhhhh hhhhhhhh MODN{**IRB***} OLA hhhhhhhh OLB hhhhhhhh
SVC-RES
SVC-cccc

N/A

R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh

Figure GTF-lO. format of Comprehensive Trace Records for DSP, 10 (including PCI),
510, PI (including SSM) EXT, and SVC (Model 65 ~ultiprocessing)

-....J
~

en
CD
Ii
<
1-'"
n
CD

!l:'
1-'"
p"
til

:;c
CD
I-'
CD
SlJ
til
CD

t\)

I-'

DSP NEW PSW hhhhhhhh hhhhhhhh

{
ro } OLD PSW hhhhhhhh hhhhhhhh
pcr

R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh NEW TCB hhhhhhhh

CSW hhhhhhhh hhhhhhhh RQE TCB 1********1 OLD TCB hhhhhhhh
hhhhhhhh

N/A

sro CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh RQE TCB 1********1 OLD TCB hhhhhhhh
hhhhhhhh

PGM

EXT

SVC

Figure GTF-ll.

N/A

OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLD TCB hhhhhhhh

OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh
TQE TCB 1********1 hhhhhhhh

N/A

OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLD TCB hhhhhhhh

Format of Minimal Trace Records for DSP, 10 (including PCI),
SIO, PI, EXT, and SVC (MFT and MVT)

()
~
III
~
rT
CD
Ii

w

H
::r::
t"l
G)
1-3
I'%j

-...J
U1

{~} DSP RES PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh

{~} {~gI} OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh RQE TCB 1********1 OLA hhhhhhhh OLB hhhhhhhh
hhhhhhhh

{~}

{~}

{~}

{~}

{~}

SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh

PGM OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh

N/A

RQE TCB 1********1 OLA hhhhhhhh OLB hhhhhhhh
hhhhhhhh

N/A

Rl hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

SSM LK hh OPSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

EXT OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh Rl hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

Figure GTF-12. Format of Minimal Trace Records for DSP, IO (including PCI),
SIO, PI (including SSM), EXT, and SVC (Model 65 Multiprocessing)

HEXFORMAT
USER
SYSTEM
SUBSYS

AID hh FID hh EID hh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhh ...

Figure GTF-13. Hexadecimal Format Records

•

Control Records

GTF produces two types of control records: timestamp records and lost
data records. The first record in every block of trace output is a
timestamp record. A lost data record appears to signal trace events
that were not recorded because the GTF buffers were full or because GTF
has temporarily suspended operations during ABEND or SNAP processing.
Figure GTF-14 shows the general format of a timestamp record.

length 00 AID FID reserved timestamp

L4 bytes

date options

2 bytes

1 byte
2 bytes

l4 bytes

bytes

Figure GTF-14. General Format of a Timestamp Control Record.

rhe fields in the record contain the following information:

length

total length of the record in bytes.

00

always zero.

AID

For control records this field is always zero.

FID

For timestamp control records, this field is always X'04'.

reserved

reserved for future use.

timestamp

L4 bytes

timer units (in hexadecimal) representing the time when the control
record was constructed. If GTF is running on an MFT system with no
timer option, this field is zero.

date

year and julian day, in hexadecimal. The format is X'OO yy dd dc',
where c is the packed decimal sign.

options

GTF options in effect. For detailed information about this field"
see Figure APNDX-2 in the Appendix.

76 Service Aids (Release 21)

Figure GTF-l5 shows the general format of a lost event record.

length 00 AID FID reserved timestamp events bytes (optional)

L4 bytes LJL4 J~:s bytes L 4
1 byte

'----- 1 byte
2 bytes

'----2 bytes

bytes

Figure GTF-15. General Format of a Lost Event Record.

rhe fields in the record contain the following information •

length

total record length in bytes.

00

always 00

AID

always 00 in control records

FIe

format identifier. Valid values are:

X'OS' events lost because buffers full.

X'06' events lost because GTF disabled temporarily.

reserved

reserved for future use.

timestamp

timer units (in hexadecimal) representing the time when the control
record was constructed. If GTF is running on an MFT system with no
timer option, this field is zero.

events

number of traceable events lost (in hexadecimal).

bytes (present only in records created under buffer-full condition)

number of bytes of data lost (in hexadecimal). This field is not
formatted by the EDIT function of IMDPRDMP.

Chapter 3: IHLGTF 77

•

78 Service Aids (Release 21)

Chapter 4: IMCJQDMP
Operates as a stand-alone program to format and print the system job queue. •

Chapter 4: IMCJQDMP 79

80 Service Aids (Release 21)

INTRODUCTION • • • .

FUNCTION OF IMCJQDMP •

RETRIEVING IMCJQDMP

JOB QUEUE FORMAT • •

USING IMCJQDMP •••
Device Identification Command • • • • • • • • •

Output Address Parameter • • •
Input Address Parameter
Selective Dumping Parameters • • • • • • • • •

QCR= Parameter •• •• • • •
JOBNAlViE= Parameter •• • • • •
Combining QCR= and JOBNAME= Parameters

Completion Message • • • • • • •
Tape Output Processing • • • • • • • •

standard Label Processing • • • • • • • •
Standard Labeled Output • • • •
Non-Labeled Output • • •

Abnormal Termination of IMCJQDMP •

IMCJQDMP OUTPUT • •• • •
Record Identification
Zero Records in the Dump •
Contents of the Dump Listing

OPERATIONAL CONSIDERATIONS •

Figures

Contents

• • 83

• 84

• • • • • • • • 86

• • 88

• • • 91
• 91

• • 91
92

• • • • • 92
• • • • • 92

93
• • • • • 93

• • • • • 93
• 94

• • • • • 94
• • • • • 95

95
• • • • 95

• • • • 97
• • • • • • 99

• • • • • • • • 100
• • • • • • • • 101

• 102

Figure JQDMP-l. Sample JCL Statements Needed to Punch IMCJQDMP
from Component Library SYS1.DN554A • 86

87 F'igure JQDMP-2.
Figure JQDMP-3.

Figure JQDMP-4.
Figure JQDMP-5.
Figure JQDMP-6.
Figure JQDMP-7.

Figure JQDMP-8.
Figure JQDMP-9.
Figure JQDMP-l0.
Figure JQDMP-ll.

Flow of Processing from IMCJQDMP • • • •
Sample Job Queue (SYS1.SYSJOBQE) Format
After Initialization • • • • • • • • • • • • •
Logical Track Header (LTH) Record Format
Example of Minor Job Queue Control Record
Master Job Queue Control Record Format • • • •
Sample JCL Needed to Print 9-Track IMCJQDMP

88
89
90

• • 90

Tape Output • • • • • • • • • • • • • • • • • • 94
Sample of IMCJQDMP Output Listing • • • • • • • • • 98
Queue Record Type Identification • • • • • .100
Queue Control Record Identification. • • .100
IMCJQDMP Execution Time Per 100 Tracks of Input,
As a Function of the Output Device ••••• 102

Chapter 4: IMCJQDMP 81

•

82 Service Aids (Release 21)

Introduction

IMCJQDMP is a service aid program that produces a formatted copy of the
contents of the IBM System/360 operating system's job queue data set
(SYS1.SYSJOBQE). The program operates in stand-alone mode; that is, it
is independent of any operating system.

It may be said that system control is centered in the job queue. Its
component tables and blocks store the dynamic environmental descriptions
that regulate the processing of all jobs submitted to the operating
system. Detailed descriptions and layouts of the record types which may
be encountered in the job queue data set may be found in the following
publications: IBM System/360 Operating System: MVT Job Management,
GY28-6603, and Control Program with MFT, GY27-7128.

IMCJQDMP may be used to dump the entire job queue, or the user may
optionally specify selected portions of it for printing.

Chapter 4: IMCJQDMP 83

•

Function of IMCJQDMP

In determining the cause of a job or system failure, it is often
desirable to know precisely what was contained in the job queue, or in
specific portions of it., at the time of such failure.

For example, the user may attempt to initiate a warm start, and
fail. A warm start failure tends to be a critical problem, as it is
dependent upon job queue structure for 'its proper functioning. A dump of
the job queue would be an invaluable aid in tracing the cause of such a
failure.

There are also the instances in which the scheduler ABEND OBO occur,
indicating an I/O error on the job queue data set. This ABEND is often
caused by an invalid TTR-address being used to access the job queue. A
job queue dump provides precise information as to the address of each
record, and, in addition, allows access to certain queue records which
are chained together by a TTR-address contained in a primary record.
Such information is vital in determining the cause of the I/O failure.

In many other situations, it may be necessary to interpret and
examine the main storage chains reflected in the control blocks
contained in the job queue.

Optimally, this information should be made available to the user:

• Without disturbing the prevailing status of the job queue;

• whether or not the system is operational;

• without prior knowledge of the exact location of the job queue data
set on its assigned direct access volume;

• on a record-by-record basis, according to direct access volume
address; and

• conveniently formatted for ready access and interpretation.

The IMCJQDMP program is designed to supply specialized job queue dumps
incorporating all these features.

The program functions in stand-alone fashion, a circumstance which
is particularly beneficial in instances where the system is involved in
the failure. since it does not function under the operating system, it
is not enqueued upon the job queue data set and, therefore, does not
alter the existing status of the records that are to be dumped. The
printed queue records reflect precisely what they contained at the time
of malfunction. Nor is it required that the user know the explicit
address of SYS1.SYSJOBQE. Only the address assigned to the direct access
device on which the volume containing the job queue is mounted need be
supplied to the dump program. The program determines the address of the
job queue data set by reading the queue volume's VTOC (volume table of
contents). The VTOC contains data set control blocks (DSCBs)
corresponding to each data set and to contiguous blocks of unassigned
tracks on the volume.

84 Service Aids (Release 21)

When the queue has been found by IMCJQDMP, records are read and,
according to the user's exercise of the available options, are either
serially or selectively identified by type and address, formatted, and
written to the chosen output device. This may be either a 1403 printer
or an unlabeled 9- or 7-track magnetic tape volume. Printing the tape
output of IMCJQDMP is discussed under "Tape Output Processing."

Chapter 4: IMCJQDMP 85

•

Retrieving IMCJQDMP

The Job Queue Dump program is supplied in object module form, together
with an absolute loader. The program resides on the 05/360 Distribution
Library packs as a member (IMCJQDMP) of component library 5YS1.DN554A.
In preparing the program for use, the module IMCJQDMP must be punched
from the component library or copied to a nonlabeled magnetic tape. The
card deck or tape may then be used to load the program for execution.

The JCL statements for punching the program from the component
library are shown in Figure JQDMP-l. This example assumes that the
distribution libraries are cataloged; if they are not, add the UNIT and
VOL=SER parameters to the 5YSUT1 data definition statement.

//QDUMP
//STEP
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PUNCH
/*

JOB
EXEC
DD
DD

DD
DD

MSGLEVEL= (1, 1)
PGM=IEBPTPCH
SYSOUT=A
DSN=SYS1.DN554A(IMCJQDMP),DISP=OLD,

DCB= (BLKSIZE=3600.,LRECL=80,RECFM=FB)
UNIT=2540-2

*

Figure JQDMP-l. Sample JCL Statements Needed to Punch IMCJQDMP
from Component Library SYS1.DN554A

86 Service Aids (Release 21)

IMCJQDMP may be used with any S/360 or S/370 CPU, and requires about
18K bytes of main storage for execution. I/O device requisites are a
card reader (or, optionally, a 2400 tape drive) for initial program
loading (IPL); one of the following consoles: 1052, 3066, 3210, 3215, or
5450; and one of the following DASD devices -- 2311, 2312, 2313, 2314,
2318, 2319, 2301, 2303, 2305, or 3330 -- for input, and either a 1403
printer or a 2400 tape drive for output. Figure JQDMP-2 describes the
flow of processing when IMCJQDMP is used.

IMCJQDMP Module and Loader

Program Initialization

Processing

SYS l.SYSJOBQE

Figure JQDMP-2. Flow of Processing for IMCJQDMP

Chapter 4: IMCJQDMP 87

•

Job Queue Format

Input to IMCJQDMP is the system's job queue data set (SYS1.SYSJOBQE),
which is maintained on a permanently resident direct access volume. The
job queue is composed of control records and work queues, created and
updated by diverse system components. Figure JQDMP-3 shows the format
of a job queue.

Master OCR
36

1

HOLD OCR
36

1

ASB OCR
36

1

12961
:~ 36 Output OCRs

(Classes A-Z and 0 - 9)

1
RJE OCR

' 15 Input OCRs

I
(Classes A - 0)

I
-r- 21 Reser;ved OCRs

LTH for First 20 I First 176-Byte Record in First Logical Track Logical Track
I

l J Additiona I 176-Byte Records

7 in First Logical Track

~~
;

IA Additional Logical Tracks

~ LTH for Last
Logical Track

Y/20 I
Last Logical Track's 176-Byte Records -....

T

Figure JQDMP-3. Sample Job Queue (SYS1.SYSJOBQE) Format
After Initialization

The job queue data set consists of 76 work queues:

• 15 input queues, one for each job class.

• 36 output queues" one for each output class.

• 1 free-track queue, from which work queue space is assigned as
needed. Immediately after job queue initialization, the entire data
set consists of free tracks.

• 1 automatic SYSIN batching (ASB) queue.

• 1 TSO Background Reader queue.

• 1 remote job entry (RJE) queue.

• 1 HOLD queue for temporarily dequeued jobs.

• 21 reserved queues .•

88 Service Aids (Release 21)

-
36

540,

7561
-r-

176

~:::

-....

T

Cc
Re
Ar

Lo!
Tre
An

These work queues consist of assigned logical tracks. A logical
track may be defined as an area of contiguous space in the data set
large enough to contain a 20-byte logical track header (LTH) record,
followed by a predetermined number of 176-byte data records. Figure
JQDMP-4 describes the format of a logical track header record.

Offset
Hex Dec

0 0 4
Reserved

4 4 4
Reserved

8 8
11

First Logical 2 1
Reserved T rack of the Job Reserved

C 12 Next Logical 2 Number of 1 1
Track of the Job Tracks Assigned Type

10 16 11 Jobc lass 1 Last Logica I Track 2
Reserved of the Job of the Next Job

Figure JQDMP-4. Logical Track Header (LTH) Record Format

In Figure JQDMP-4 and subsequent figures, where applicable, byte size of
a field is shown in the upper right corner; offset from the beginning of
the record, in hexadecimal and decimal notation, is given along the left
margin.

Content of the type field in an LTH record indicates the type of
queue to which the logical track has been assigned:

Field Content

1
2
3-38
39
40-54

Queue Type

HOLD Queue
ASBQueue
Output class queues
RJE Queue
Input class Queues

Chapter 4: IMCJQDMP 89

•

To keep track of individual work queues, a control area in the job queue
data set maintains a series of 36-byte minor queue control records
(QCRs) -- one QCR for each work queue arrayed upon the job queue (see
Figure JQDMP-S), plus a master QCR (see Figure JQDMP-6).

Offset
Hex Dec

0 0 Address of Last LTH of Highest
Priority Entry on Queue

4 4
13

8 8
11

C 12
9

10 16
7

14 20
5

18 24
3

lC 28
1

20 32 Hold
I

Highest
11

I

Queue I Priority I

2
14

2
12

2
10

2
8

2
6

2
4

2
2

2
0

Address of ECI3 for First Task Requesting Work

-- ---

2
~

2

2

2

2

2

2

2
r+-

3

-,
I
I

I
I
I

Addresses of last L TH of I
entry having indicated pI

I
I
I
I
I
I

__ -.J

Figure JQDMP-S. Example of Minor Job Queue Control Record

Offset
Hex Dec

o 0

8-byte Disk Address of the Master QCR
MBBCCHHR

8 8
Reserved 1\ Displacement of First Track of the Free Queue 2\ Reserved

C 12 Number of. Logical Tracks in 2 Number of Logical Tracks in
the Job Queue Data Set the Free-track Queue

10 16 Number of Tracks Reserved for Canceling 2 Number of Tracks Reserved for
of Job Steps When Queue Is Full Any Initiator

14 20 Displacement of Last Avai lable 2 Displacement of First Track
Logical Track Containing Only Job Queue Records

18 24
Number of QCRs per Physical Track

2 Number of Job Queue Records
per Physical Track

lC 28
Number of Records per Logical Track

2 Number of Logical Tracks for Each
Problem Program Partition

20 32 2 Address of First Record on First Track
Number of QCRs on the Mixed Track

Containing Only Job Queue Records

Figure JQDMP-6. Master Job Queue Control Record Format

90 Service Aids (Release 21)

Using IMCJQDMP

To use IMCJQDMP, initial program load (IPL) the program from the card
reader or from the tape unit on which a tape-copy of the deck is
mounted. This is done by setting the LOAD UNIT dials on the console
control panel to the unit address of the card reader or the tape drive,
and depressing the LOAD key on the control panel. When loading has been
accomplished, the program enters a wait state, indicated by the lighting
of the WAIT light on the console. Pressing the console request or enter
key at this point results in the console message:

IMCOOOA ENTER O=XXXD., Q=YYY (, S) OR PRESS
INTERRUPT KEY FOR O=00K,Q=191

Message IMCOOOA is a request for parameters g1v1ng specifications for
the desired dump. If the operator responds by depressing the external
interrupt key without entering a device identification command through
the console, the dump output will be written to the 1403 printer
assigned device address OOE; input will be read from the direct access
volume mounted on the disk drive assigned device address 191.

Device Identification Command

If the device identification command is entered, its format is:

o=xxxd., Q=yyy 1: ~ELECT I
where

O=xxxd

is the output address parameter;

Q=yyy

is the input address parameter;

SELECT (or s)

indicates that selective rather than full printing of the job queue
is desired.

Output Address Parameter

The output address parameter may be omitted entirely. If it is, the
output address will default to the 1403 printer at device address OOE.
If the parameter is entered, it must precede the input address
parameter. In making the entry,

xxx

is replaced with the address of the desired output device. Valid
choices are the 1403 printer and the 2400 tape drive.

Chapter 4: IMCJQDMP 91

•

d

indicates the output device type. The character T is entered if a
2400 tape drive address has been specified in the xxx field.
Example: 0=182T.

The d field is omitted if output is to go to the 1403 printer.
Example: O=OOE.

Input Address Parameter

In the input address parameter,

yyy

is replaced with the address of the direct access device upon which
the volume containing the SYS1 .• SYSJOBQE data set has been mounted.

Selective Dumping Parameters

If an entire job queue data set is to be dumped, the SELECT (or S)
parameter is omitted from the device identification command.

If the SELECT (or S) parameter is included in the command, the
program will issue the console message:

IMC001A SPECIFY SELECT PARAMETERS

and wait for a reply .• The two valid parameters, QCR= and JOBNAME=, and
their possible values are discussed separately.

QCR= Parameter

The QCR= parameter specifies that a particular work queue within the job
queue data set is to be dumped. When this parameter is specified, the
dump output listing will contain the data set's master queue control
record and the queue records associated with the named work queue. The
possible values for the QCR= parameter are:

where:

y is replaced with one of the 15 input job class indicators, A
through 0, and

x is replaced with one of the 36 output class indicators, A through
Z and 0 through 9.

If FREE is the value used~ the master QCR and all logical tracks
enqueued upon the free-track queue are dumped. The output listing for
any of the other values will include the associated minor QCRs as well.

92 Service Aids (Release 21)

The values CLASS= and SYSOUT= must be completed with the
system-assigned symbol of the particular input or output class desired.
Examples:

QCR=SYSOUT=C

will result in a dump of the job queue's master QCR, the C-class output
work queue's minor QCR, and the logical tracks assigned to the C-class
output work queue.

QCR=RJE

will produce output consisting of the job queue's master QCR, the RJE
work queue's minor QCR, and its assigned logical tracks.

JOBNAME= Parameter

rhe JOBNAlfili= parameter signifies to IMCJQDMP that the fifteen input work
queues are to be searched for logical track areas assigned to the named
job or jobs. Associated system message blocks and data set blocks will
also be dumped. From one to four jobnames, enclosed in parentheses, may
be specified in the value field of the parameter. Example:

JOBNAME=(TAX,NUMBER)

will produce a dump listing containing the assigned logical track areas,
the system message blocks and the data set blocks, if any, associated
with jobs named TAX and NUMBER, respectively.

Combining QCR= and JOBNAME= Parameters

The time required to search out the records associated with a particular
job may be considerably reduced if the input class is known to the dump
program. This passing of class information to IMCJQDMP may be effected
by using the QCR= and JOBNAME= parameters in combination. For instance:

QCR=CLASS=G,JOBNAME=(LIST)

will cause only the class G input work queue to be searched for records
concerned with the job named LIST.

Completion Message

After the selective dump parameters have been accepted, IMCJQDMP
performs the requested task. When the operation has been completed,
message IMC001A is reissued. Additional selective dump parameters may be
entered if more information is desired. When all user requests have been
fulfilled:

END

is entered through the console. The message:

IMC004I DUMP COMPLETED

Chapter 4: IMCJQDMP 93

•

is then issued. Note that when no selective dump parameters are entered,
the program ends automatically after dumping the full job queue, issuing
message IMC004I at completion of the operation.

Tape Output Processing

For magnetic tape output, IMCJQDMP creates 121-byte records, one record
to a block. Each record contains a machine control character in its
first byte.

Figure JQDMP-7 gives a sample of the job control statements needed
to print IMCJQDMP 9-track tape output with the IEBPTPCH utility program.

//PRINT
//STEP
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

PRINT
/*

JOB
EXEC
DD
DD

DD
DD

MSGLEVEL= (1, 1)
PGM=IEBPTPCH
SYSOUT=A
UNIT=2400" LABEL= (, NL) , VOL=SER=QDUMPT,

DISP=(OLD,KEEP),DCB=(RECFM=F,BLKSIZE=121,LRECL=121)
SYSOUT=A

* PREFORM=M

Figure JQDMP-7. Sample JCL Needed to Print 9-Track JQDMP Tape Output

For 7-track tape printing, there is an additional consideration.
Initial program loading of IMCJQDMP generates a system reset which, on a
7-track control unit, has the following effect:

1. Mode is set to 800 bits per inch.

2. If the data conversion feature is present in the control unit, the
data converter is turned on.

3. The translator is turned off.

4. Odd parity is established.

When the dump output has been written to 7-track tape, therefore,
the following additional DCB parameters should be coded on the SYSUT1 DD
statement for the IEBPTPCH utility if the data conversion feature exists:

DEN=2,TRTCH=C

If the data conversion feature is not included in the system, the TRTCH
keyword must be omitted.

Standard Label Processing

For output to magnetic tape" IMCJQDMP automatically performs standard
label processing; the user has no option to-bypass this function. The
extent of the label processing is confined to protecting security
protected data sets and tapes with unexpired expiration dates; and, if
multiple-volume output is produced, to maintaining standard labeled
tapes, provided the first volume of IMCJQDMP output has standard labels.

94 Service Aids (Release 21)

When verifying that a mounted tape has standard labels, IMCJQDMP
will read the labels (if present) in the density set for the tape drive;
therefore, the user must be careful to ensure that the labels on the
tape were recorded in the same density as the recording density set for
the tape drive on which the tape is mounted. If the recording density
for the drive is different from that of the tape, IMCJQDMP will assume
that the tape has no labels, and will create non-labeled tape output.

standard Labeled Output

If the user desires standard labeled output, he must mount a standard
labeled tape. IMCJQDMP checks for an IBM standard volume label (VOLl)
and the standard data set header label one (HDR1). Any user labels will
be ignored and destroyed if the tape is eventually used for IMCJQDMP
output. If the mounted tape contains a security protected data set,
IMCJQDMP will request a new tape. If the expiration date in the HDRl
label has not occurred, IMCJQDMP will request permission to use the
tape; if the operator's reply is negative (M), a new tape is requested.
otherwise, the tape will be used, and will contain standard labels, with
the VOLl label remaining the same as it was when the tape was mounted.
rhe header and trailer labels will be created to be compatible with
OS/360 standard labels, with a data set name of "JQDUMP."

Non-Labeled Output

If the user desires non-labeled tape output, the first volume mounted
must be non-labeled. A non-labeled tape, to the IMCJQDMP program, is a
tape that does not have a first record of 80 characters whose first four
characters are equal to "VOL1." If the first record on the first volume
is a standard volume label, processing as outlined in "standard Labeled
Output" will occur.

Abnormal Termination of JQDMP

It is conceivable that a condition can arise that will prevent IMCJQDMP
from running to normal completion. Indeed, it may be the same error
condition that caused the system to malfunction; that is., I/O error on
the queue device, or invalid chaining of queue records. Under
unrecoverable error conditions, the program comes to a halt in a wait
state. The type of error encountered by the program may be determined by
examination of the contents of the program status word (PSW) which was
current at.the time of the malfunction.

The PSW is a dOubleword, having the following format:

Program status word

System Mask Interruption Code

o 78 11 12 15 16 31

Program Mask Instruction Address

32 33 34 3536 39 40 63

The publication IBM System/360 Principles of Operation, GA22-6821,
gives a comprehensive description of each of the fields in the PSW. For
the purpose of locating the cause of trouble in running IMCJQDMP, the
user would be concerned mainly with the contents of the instruction
address field, bits 40 through 63, in the event of a program check
error, or with the interruption code, bits 16 through 31, if there has
been an unrecoverable I/O error.

Chapter 4: IMCJQDMP 95

•

By displaying the contents of the instruction address register (IAR)
on the system maintenance panel of the console, the address in main
storage of the pertinent PSW can be obtained. The two low-order bytes of
the IAR will be set according to the pattern:

ODnn

where nn will contain the hexadecimal value of the location where the
PSW was stored at the time the error condition was discovered.

For example, should a program check occur, the IAR will be set to
0028, indicating that the double word at location hex 28 will contain
the Program Interrupt old PSW.· (A note for use·rs of doubleword fetch
machines, such as M65 or M75: The IAR is updated by 8 after an
interrupt, and this must be subtracted from the IAR setting to obtain
the true location to be checked. In this example, for instance, the
reading would be 0030, and subtracting hex 8 would give the true 0028
location.)

If the IAR display indicates 0020, inspecting the interruption code
in the PSW stored at hexadecimal location 20 will indicate the nature of
the I/O error:

IC Content

x'OO'

x' 02'

x'03'

x'20'

x' 26'

Error Cause

Channel end, device end, and unit check bits are
all off in a stored channel status word (CSW).

Invalid track-per-cylinder count in the format 4
OSCB (data set control block) of the queue
volume.

I/O error during write operation to output
device or system console. The number of retries
for recoverable tape I/O errors is set at 20.

I/O error during read operation from
SYS1/SYSJOBQE data set. The number of retries
for recoverable OASD I/O errors is set at 16.

I/O error during read operation from system
console.

96 Service Aids (Release 21)

IMCJQDMP Output

IMCJQDMP dumps the contents of job queue records in hexadecimal
representation, with six 4-byte words appearing in a line of printed
output. In addition, translatable EBCDIC characters are printed in a
one-character-per-byte format at the end of the printline. EBCDIC
characters which cannot be interpreted in print are represented by
periods. Record identification is shown on the sample listing page
depicted in Figure JQDMP-8.

Chapter 4: IMCJQDMP 97

•

TTR NN TYPE OISP SYSJoBQE OIJMF PAGE 0001
\.0
00 O=OOE, Q= 192

til 000001 QCR 0000 oceoocoo 020000e1 C0066701 01910180 0006000C 05B10003 * •••••••••••••••••••••••• *
CD MASTR 0018 oe250COF OOOCCOC6 00020010 * .•.•.....•.. *
Ii
<: 000002 OCR 0000 ceooocoo coooeoee OOOOOOOC COCOOCCC ccoooeoo 00000000 * •••••••••••••••••••••••• *

HOLD 0018 oeooooeo 00000000 00000000 •............ * ()
CD

000003 QCR 0000 ocoeoceo oocoooeo ceceecce cccoeoco OOOOOCOO 00000000 * •••••••••••••••••••••••• *
~ ASB C018 aCOOGCOO OO~OOOC eooceooe * .••••••.•••. *
0.. COOO04 OCR oooe ocoeoceo 00000000 oeocooec COCOOOCO ocoeoooo cooooooo * •••••••••••••••••••••••• *
til OUT=A 1)018 ccceoceo CCOOOOOO 0006056C * •••••••••••• *

~ COCoo~ QCR 0000 ooooocoo COOOOOOO OCOOOOOO OCCCOCCC ceoooceo 00000000 * •••••••••••••••••••••••• *
CD OUT=B OOII'! ecccocoo COCO~OCC C0000000 ~ * ..••..•.•..•
I--'
CD
III
til
CD

tv
I--'

TTR NN TYPE orsp SYSJOBQE CU~F PAGE 0006

000202 OCR 0000 OCOOOCCC COOOOOOO oooroooc Deceocoo OOOOOCOO 00000000 * •••••••.•••••••••••••••• *
RESRV 0018 ccococee COOOOOCO oeocoooo :t •••••••••••• *

000203 OOCI LTH 0000 C~C5C503 06C74040 000eC104 00000100 OCOFQCOO *[EELoG *

000204 0002 0000 E2E8E2F1 4BE2E8E2 E503D6C7 E74C4040 40404040 40404040 *SYS1.SYSVLOGX *
0018 4C404040 4C404040 40404040 4C4C4040 4C404040 40404040 * *
0030 40404C40 COOOCOOO 00000000 ceceCGOO oe0001eo 02010000 * •••••••••••••••••••• *
0048 OCOCOCOO 8COOOOOO 63016E63 015Eocec OCOOOOOO COOOOOOO * ..•••••••••••••••••••••• *
0060 FF744CCO 50800E28 oooeococ caccoooc COOOOCOO 000lE2E8 * ••••••••••••••••••••• SY*
0078 E209C5E2 40404040 40404040 40404040 40404040 40404040 *SRES *
C090 40404C40 C0000206 00000C88 ccecocco COOOOOOO OOOOOOCO * •••••••••••••••••••• *
00A8 aecooecc 00000100 * •••••••• *

eo0205 0003 oooc E2E8E2Fl 4AE2E8E2 E5D306C7 E84C4C40 40404C40 40404040 *SYS1.SYSVLOGY *
CO 18 4C404C40 40404040 40404040 40404040 40404040 40404040 * *
0030 4C4C4C40 00000000 OCOOOOOO ceeeocoe CC00010C 00000000 * •••••••••••••••••••• *
0048 oeceoroe 80COOOOO 63016E63 C15EOC80 00000000 00000000 * •••••••••••••••••••••••• *
0060 OE294000 508COE28 oooeocec cceoooee eocooeoo 0001E2E8 * .•••••.•••••••••••••• s~*
0078 E209C5E2 40404040 4C40404C 4C404040 40404040 40404040 *SRES *
C090 4C404C40 COCOC207 00000088 OOCOOOCO ceoooooo 00000000 * •••••••••••••••••••• *
OOA8 oeooocoo COOCC100 * •••••••• *

000206 0004 ENTIRE RECORD CO~TAINS BJN~PY ZEROS

00020F 0000 ZER(RECORDS SUPPRESSED

000210 OOOE lTH 0000 E2D4C640 40404040 OOOOOEG4 COC001CO OCOFOOOO *SMF *

000211 OOOF 0000 E2E8E2F1 4AC4CID5 E74C404C 4040404C 40404040 404C4040 *SYS1.MANX *
4C404C40 40404040 40404040 40404040 40404040 40404040 * *
40404C40 coeoooeo 00000000 OOOCOOOO 00000100 OOOOOOOC *••
ooocoecc COOOOOOO OOOOOOO~SAC§C OChOOOOO~ocOOQQ * •••••••••••••••••••• ::;;*

Figure JQDMP-8 .• Sample of IMCJQDMP Output Listing

Record Identification

Record identification on the listing includes:

TTR

NN

The direct access address, relative to the beginning of
SYS1.SYSJOBQE, is supplied for both QCR and logical track records.

Supplied for logical track records only, this address is a binary
number assigned relative to the beginning of the specific work queue
in which the printed record resides. Starting with an assignment of
1 for the first logical track header allotted to the queue, the NN
address increases by 1 for each additional record in the work queue.

TYPE

Figure JQDMP-9 lists the types of queue records dumped by IMCJQDMP,
and the listing identification given to each recognizable type. QCRs
and LTHs are identified through their position in the job queue's
structure. Identification for records from the logical track area
is obtained from the ID field, hexadecimal offset 03 (byte 4) of
each record. Recognizable ID values are listed in the figure.
Unidentifiable nonzero records -- the job file control block (JFCB),
job file control block extension (JFCBX)J and system output class
directory (SCD) -- are printed without type labelinga

QCR ID

DISP

Each queue control record is further labeled with the name of the
unique work queue with which the QCR is associated. Figure JQDMP-l0
lists the identification given by IMCJQDMP to each work queue type.

Indicates the displacement, or position, within a queue record of
the next hexadecimal word to be printed on the listing. The first
word of the first printed line for a given record is at displacement
0000; the first word of the second printed line, if one exists, is
displacement 0018 hex (24 decimal).

Chapter 4: IMCJQDMP 99

•

Hex ID Value Output Type ID Job Queue Record

01
15
OF
07
00

OA

02
OC
03
05
06

Fi9Ure JQDMP-9.

OutputQCR ID

ASB
CLS=y

HOLD
MASTR
OUT=x

RESRV
RJE
SUBMT

Figure JQDMP-10.

ACT
DSB
DSENQ
DSNT
JCT

LTH
POT
QCR

SCT
SCTX
SlOT
5MB
VOLT

Account Control Table
Data Set Block
Data Set Enqueue Table
Data Set Name Table
Job Control Table
Job File Control Block (JFCB)
Job File Control Block Extension (JFCBX)
Logical Track Header
Procedure Override Table
Queue Control Record
System output Class Directory (SCD)
Step Control Table
step Control Table Extension
step Input Output Table
System Message Block
Volume Table

Queue Record Type Identification

Corresponding Work Queue

Automatic SYSIN Batching Queue.
System Input Job Class Queues; y is replaced

with the appropriate class, A-O.
Hold queue.
Master QCR.
System Output Job Class Queues; x is replaced

with the appropriate class, A-Z or 0-9.
Reserved QCRs.
Remote Job Entry Queue.
TSO Background Reader Queueo

Queue Control Record Identification

Zero Records in the Dump

Records in each logical track are read and dumped sequentially. When a
record in the logical track area contains only binary zeroes, its TTR
and NN positions are given, but the record is not dumped. The notation:

ENTIRE RECORD CONTAINS BINARY ZEROES

is printed on the listing. A second contiguous zero-filled record would
be similarly treated. But when three or more contiguous zero-filled
records are encountered, only the first is treated as outlined above.
Subsequent records are bypassed until a nonzero record or a logical
track header, whichever occurs first, is encountered. Then the TTR and
NN of the last zero-filled record and the listing message:

ZERO RECORDS SUPPRESSED

are printed. The number of suppressed records may be computed by
subtracting the NN of the first such record from that of the last.

100 Service Aids (Release 21)

Contents of the Dump Listing

If an entire job queue is being dumped, the output listing is produced
in two sections. The first contains all queue control records; the
second, the logical track area records.

If selective dumping of a job queue data set is stipulated, the program
prints the specified parameters on the top of an output page, then
follows with the appropriate QCRs and logical track area records. When
particular job names are given as the selective dump parameters (see
"Using The Job Queue Dump Program"), the records associated with each
job are collected and printed under the given name. Each data set block
(DSB) is printed immediately following the related step input/output
table (SlOT) and labeled as such. The system message block (SMB) chain
is printed as the last records for a given job.

Chapter 4: IMCJQDMP 101

•

Operational Considerations

• The time required to produce a full job queue dump is dependent upon
space allocated to the SYS1.SYSJOBQE data set. The time required for
this stand-alone operation may be reduced by using the tape output
option of the program. In this way, the operating system may be more
quickly brought back into service and the queue dump tape printed
with a system utility program such as IEBPTPCH. Figure JQDMP-11
shows the execution time difference between tape and printer output
for various queue devices.

Output Device
Queue Device Printer (1403) Tape (2400)

2311 11.3 minutes 4.0 minutes
2314 19.5 minutes 6.9 minutes
2301 49.5 minutes 17.4 minutes

Figure JQDMP-ll. IMCJQDMP Execution Time per 100 Tracks of Input,
As a Function of the Output Device

102 Service Aids (Release 21)

Chapter 5: IMBLIST
Formats and prints object modules, load modules, and CSECT identification records. •

Chapter 5: IMBLIST 103

104 Service Aids (Release 21)

Contents

INTRODUCTION • • .107

FEATURES •• ·108

EXECUTING LIST • .109
Listing a Load Module • • • • • • ••••• 109

• •••• 110 Listing an Object Module • • • • •
Listing CSECT Identification Records • • ••• 111

OUTPUT • • . .112

EXAMPLES
Example 1: Listing Several Object Modules •

• .119
.119
.120 Example 2: Using the LISTLOAD Control Statement • • • •

Example 3: Using the LISTIDR Control Statements • • • • • • • • • ·121
·122 Example 4: Verifying an Object Deck • • • • • •

Example 5: Combining LISTOBJ, LISTLOAD, and LISTIDR • • ·123

Figures

Figure LIST-i.
Figure LIST-2.

Figure LIST-2.

Figure LIST-3.

Figure LIST-3.

Figure LIST-4.
Figure LIST-5.

Sample Module Summary for LISTLOAD ••••••••• 112
Sample LISTLOAD Output - Load Module Map
(Part 1 of 2) • • • • • • • '.. • • • • • • 113
Sample LISTLOAD Output - Load Module Map
(Part 2 of 2) • • • • • • • • • • • • • • • 114
Sample LISTLOAD Output - Cross-Reference
Listing (Part 1 of 2) • • • • • • • '. • • • 115
Sample LISTLOAD output - Cross-Reference
Listing (Part 2 of 2) •••••••••••••• 116
Sample LISTOBJ output ••••• 117
Sample LISTIDR output • • • • • • • • • • • • • • .118

Chapter 5: IMBLIST 105

•

106 Service Aids (Release 21)

Introduction

IMBLIST is a service aid that operates as a problem program under the
IBM System/360 Operating System. It produces the following kinds of
output that can help you debug complex programs:

• A formatted listing of an object module.

• A formatted listing of a load module.

• A load module cross reference listing.

• A formatted listing of all information in a load module's CSECT
identification records (IDRs).

• A listing of all program modifications for a load module or library •

Chapter 5: IMBLIST 107

•

Features

IMBLIST can help you solve programmdng problems in several ways.

If you want to verify an object module, you can use IMBLIST to
obtain a formatted listing of it. The listing contains SYM records
produced by TESTRAN (if there are any), the external symbol dictionary
(ESD), the relocation dictionary (RLD), the text of the program
containing instructions and data~ and the END record.

If you are interested in the relationships of control sections in a
load module, you can use IMBLIST to get a listing of the load module
along with its module map and cross-reference listing. You can then
examine the control sections in the load module, the overlay structure,
and the cross-references for each control section.

If you want to trace modifications to the executable code in a
control section, you can use IMBLIST to produce a formatted listing of
all information in the load module's CSECT identification records
(IDRs). An IDR provides the following information:

• It identifies the version and modification level of the language
translator and the date that each control section was translated.
(Translation data is available only for control sections that were
produced by a translator that supports IDR generation.)

• It identifies the version and modification level of the linkage
editor that built the load module and gives the date the load module
was created.

• It identifies by date modifications to the load module performed by
IMASPZAP.

An IDR also may contain optional user-supplied data associated with the
executable code of the control sections.

108 Service Aids (Release 21)

Executing IMBLIST

You control IMBLIST processing by supplying control statements in the
input stream. You must code the control statements according to the
following rules:

• Leave column 1 blank, unless you want to supply an optional symbolic
name. A symbolic name must be terminated by one or more blanks.

• If a complete control statement will not fit on a single card, end
the first card with a comma and continue on the next card. Begin
all continuation cards in columns 2 - 16. You must not split
parameters between two cards; the only exception is the MEMBER
parameters, which may be split at any internal comma..

Listing a Load Module

Use the LISTLOAD control statement to get a formatted listing of a load
module. The format of this statement is:

LISTLOAD [OUTPUT=lM~~~ST!] [,TITLE=('title',position)]

[,DDN=ddname] [,MEMBER= l<list, ...) lJ
membername~

'rhe parameters of the LISTLOAD control statement are as follows:

OU'l.'PUT=type

specifies the type of load module listing to be produced.
OUTPUT=MODLIST requests a formatted listing of the control and text
records of a load module, including its External Symbol Dictionary
and Relocation Dictionary Records. OUTPUT=XREF requests a module map
and cross-reference listing for the load module. OUTPUT=BOI'H
requests both a formatted listing of the load module and its map and
cross-references. If this parameter is omitted, OUTPUT=BOI'H will
be assumed.

rITLE=('title',position)

specifies a title, from one to forty characters long, to be printed
below the heading line on each page of output. (The heading line
identifies the page number and the type of listing being printed,
and is not subject to user control.) The position subparameter
specifies whether or not the title should be indented; if
TITLE=('title',l) is specified, or if the position parameter is
omitted, the title will be printed flush left, that is, starting in
the first column. If you want the title indented from the margin,
use the position parameter to specify the number of characters that
should be left blank before the title. Note: Do not punctuate your
title with commas" since IMBLIST recognizes these as delimiters.
Anything that follows an embedded comma in a title will be ignored.

Chapter 5: IMBLIST 109

•

DDN=ddname

identifies the DD statement that defines the data set containing the
input module. If the DDN= parameter is omitted, IMBLIST will assume
SYSLIB as the default ddname.

MEMBER=l (memberl, ••• membern)l
member

identifies the input load module (s) by membername or alias name.. To
specify more than one load module, enclose the list of names in
parentheses and separate the names with commas. If you/omit the
MEMBER= parameter, IMBLIST will print all modules in/the data set.

Listing an Object Module

Use the LISTOBJ control statement to obtain a listing of an object
module. The format of this control statement is:

LISTOBJ [TITLE=('title' ,position)]
[,DDN=ddname] [,MEMBER= 1 (memberl, 0 oomembern)IJ

member

TITLE=('title'., position)

specifies a title, from one to forty characters long, to be printed
below the heading line on each page of output. (The heading line
identifies the page number and the type of listing being printed,
and is not subject to user control.> The position parameter
specifies whether or not the title should be indented; if
TITLE=('title',l) is specified, or if the position parameter is
omitted, the title will be printed flush left, that is, starting in
the first column. If you want the title indented from the margin,
use the position parameter to specify the number of characters that
should be left blank before the title. Note: Do no~ punctuate your
title with commas" since IMBLIST recognizes these as delimiters.
Anything that follows an embedded comma in a title will be ignored.

DDN=ddname

identifies the DD statement that defines the data set containing the
input module. If the DDN= parameter is omitted, IMBLIST will assume
SYSLIB as the default ddname.

MEMBER= 1 Cme~berl" ••• mernbern> I
member

identifies the input object moduleCs> by membername or alias name.
To specify more than one object module, enclose the list of names in
parentheses and separate the names with commas. CAUTION: You must
include the MEMBER= parameter if the input object modules exist as
members in a partitioned data set. If you do not include the MEMBER=
parameter, IMBLIST will assume that the input data set is organized
sequentially, and that it contains a single, continuous object
module.

110 Service Aids (Release 21)

Listing CSECT Identification Records

Use the LISTIDR control statement to get a formatted listing of a
module's CSECT identification record (IDR). The format is:

LISTIDR [OUTPUT= { i~l£NT}] [, TITLE= (, ti tIe' , pos i tion)]

[,DDN=ddname] [,MEMBER= {(memberl, 0 0 omembern)}]
member

OUTPUT= type

specifies whether IMBLIST should print all CSECT identification
records or only those containing lMASPZAP data and user data. If
you specifiy OUTPUT=ALL, all IDRs associated with the module will be
printed. If you specify OUTPUT=IDENT, IMBLIST will print only those
IDRs that contain lMASPZAP data or user-supplied data. If you omit
this parameter, IMBLIST will assume a default of OUTPUT=ALL.

TITLE=('title',position)

specifies a title" from one to forty characters long, to be printed
below the heading line on each page of output. (The heading line
identifies the page number and the type of listing being printed,
and is not subject to user control.) The position parameter
specifies whether or not the title should be indented; if
TITLE=('title',l) is specified, or if the position parameter is
omitted, the title will be printed flush left, that is, starting in
the first column. If you want the title indented from the margin,
use the position parameter to specify the number of characters that
should be left blank before the title. Note: Do not punctuate your
title with commas" since IMBLIST recognizes these as delimiters.
Anything that follows an embedded comma in a title will be ignored.

DDN=ddname

identifies the DD statement that defines the data set containing the
input module. If you omit the DDN= parameter, IMBLIST will assume
SYSLIB as the default ddname.

MEMBER=l (memberl, membern) ~
member ~

identifies the input load module(s) by membername or alias name. To
specify more than one load module, enclose the list of names in
parentheses and separate the names wi th commas. If you omit the
MEMBER= parameter, IMBLIST will print all modules in the data set.

Chapter 5: IMBLIST III

•

Output

IMBLIST produces a separate listing for each control statement that you
specify. The first page of each listing always shows the control
statement as you entered it. The second page of the listing is a module
summary, unless you requested LISTOBJi in that case, no module summary
will be produced, and the second page of the listing will be the
beginning of the formatted output.

The module summary gives the member name (with aliases), the entry
point, the linkage editor attributes, and system status index
information (SSI) for the module being formatted. Figure LIST-i shows a
typical module summary.

MOD U L E SUM MAR Y *****
MEMBER NAME PL1LOAD MAIN ENTRY POINT 000720

** ALIASES ** SECONDARY ENTRY POINT ADDRESSES ASSOCIATED WITH ALIASES:

**** LINKAGE EDITOR ATTRIBUTES OF MODULE ****
BIT STATUS BIT STATUS BIT STATUS BIT STATUS

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 EP > ZERO 11 RLD
12 EDIT 13 NO-SYMS 14 F-LEVEL 15 NOT-REFR

MODULE SSI: NONE

Figure LIST-i. Sample Module Summary for LISTLOAD

rhe third page of the listing (or, for LISTOBJ, the second page) is
the beginning of the formatted output itself.

For LISTLOAD, this consists of the load module and/or the module map
and cross-reference listing. Figure LIST-2 shows an example of LISTLOAD
module map output. Figure LIST-3 shows an example of the
cross-reference listing for the same module.

For LISTOBJ, the body of the listing consists of the object module
listing, the module's external symbol dictionary, and its relocation
dictionary. Figure LIST- 4 shows an example of LISTOBJ output.

For LISTIDR, the third page of the listing begins a complete list of
all CSECT identification records for the module. Figure LIST-5 shows an
example of LISTIDR output.

Complete descriptions of the fields in the formatted output listings
can be found in the publication IBM Systern/360 Operating System: Linkage
Editor (E) Program Logic Manual, GY28-66i0, and Linkage Editor (F)
Program Logic Manual, GY28-6667.

112 Service Aids (Release 21)

RECORD!! 1

RECORD!! 2

RECORO# 3

RECORO!! 4

RECORO!! 5

LISTING OF LOAD MODULE PL1LOAO

TYPE 20 - CESO ESOIO 1 ESO SIZE 240

CESO!! SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH IDEC) <HEX)
1 PL1TC02 00 (SO) 000000 1 1206 4B6
2 PL1TC02A 00(50) 0004B8 1 608 260
3 IHEQINV 06(PR) 000000 3 4 4
4 IHESAOA 02(ER) 000000
5 IHESADB 02(ER) 000000
6 IHEQERR 06 (PR) 000004 4 4
7 IHEQTIC 06(PR) 000008 4 4
8 IHEMAIN 00 (SO) 000718 4 4
9 IHENTRY 00(50) 000720 12 C

10 IHESAPC 02 (ER) 000000
11 IHEQLWF 06(PR) OOOOOC
12 IHEQSLA 06 (PR) 000010
13 IHEQLWO 06(PR) 000014
14 PL1TC02B 06 (PR) 000018
15 PL1TC02C 06(PR) 00001C

TYPE 20 - CESO ESOID 16 ESO SIZE 240

CESO!! SYMBOL TYPE ADDRESS SEGNUM IO/LENGTHIDEC) <HEX)
16 IHELOOA 02 (ER) 000000
17 IHELOOB 02(ER) 000000
18 IHEIOBT 02 (ER) 000000
19 IHEIOBC 02(ER) 000000
20 IHESAFA 02 (ER) 000000
21 IHESAFB 02(ER) 000000
22 AA 02 (ER) 000000
23 C 00 (SO) 000730 4 4
24 B 00 (SO) 000718 4 4
25 A 00(50) 000740 4 4
26 IHESPRT 00(50) 000748 56 38
27 IHEQSPR 06(PR) 000020 4 4
28 IHEONC 02(ER) 000000
29 IHEVPF 02(ER) 000000
30 IHEOMA 02 (ER) 000000

TYPE 20 - CBSO ESOIO 31 ESO SIZE 64

CESO!! SYMBOL TYPE AOORESS SEGNUM IO/LENGTH (DEC) <HEX)
31 IHEVPB 02(ER) 000000
32 IHEVSC 02 (ER) 000000
33 IHEUPA 02(ER) 000000
34 IHEVQC 02(ER) 000000

LISTING OF LOAO MOOULE PL1LOAO

TYPE 01 - CONTROL CONTROL SIZE 32 CCW 06000000 40000780

CESOII
1
2
8
9

23
24
25
26

LENGTH
04B8
0260
0008
0010
0008
0008
0008
0038

T EXT
47FOF014 070703F1 E3C3FOF2 00000008 000004B8 90EBOOOC 58BOF010 5800FOOC
58FOB020 05EF05AO 419000B8 500C0018 92000062 92010063 92COOOOO 92020063
F8110090 B132F810 0092B080 FA110092 B130F821 00A80090 F82100AB 00920203
00AEB134 F8110090 B13CF810 0092B080 FA110092 B13AF821 00B20090 F82100B5
009241AO A0600700 92030063 4110B174 58FOB05C 05EF4110 B1144120 B18358FO
B05405EF 92030063 58FOB058 05EF9204 00635880 B070F821 00908000 F8210093
8002FA20 0093B111 5870B06C 02017000 00910201 70020094 920500.63 F821D090
7000F821 00937002 FA200093 B10F5860 B0680201 60000091 02016002 00949206
00634150 00AE5050 00944150 00905050 00989680 00984110 009458FO BOM05EF
5880B070 02038000 00909207 0063F811 0090B10C F8100092 B080FA11 0092B10A
F9118000 00904770 AOC8F911 80020092 4780AOEE 92080063 4110B168 58FOB05C
05EF4110 B14058FO B05005EF 92080063 58FOB058 05EF9208 00639210 00634180
OOA85080 00984180 00B25080 009C4180 00905080 00A09680 00A04110 009858FO
B04005EF 020500B2 00909211 00630202 009000B2 F921D090 B0019200 00904780
A13E9280 D0900202 009100B5 F9210091 BOCF9200 l)0914780 A1569280 00910200
00940090 06000094 00919180 00944780 A19E9212 00634110 B15C58FO B05C05EF
4110BOAO 4120B183 58FOB054 05EF4110 00B24120 B18758FO B05405EF 92120063
58FOB058 05EF9213 00634110 B15058FO B05c05EF 4110B084 4120B183 58FOB054
05EF9213 006358FO B05805EF 921·40063 58FOB030 05EF47FO 47FOFOOC 03C1E7F1
00000000 90EBOOOC 18AF41EO A0285830 B0381£22 50203050 58FOB02C 47FOF062
92010084 58E01000 50E00088 4580A03A 07FA05AO 419000BO 50DC001C 9200D062
92090063 41AOA088 07F80700 47FOFOOC 03C1C3F1 00000258 90EBOOOC 58AOF008
45EOA016 92020084 0207DOAO 10009200 00A458EO 100850EO 00884580 A03A47FO

000000
000020
000040
000060
000080
OOOOAD
OOOOCO
OOOOEO
000100
00·0120
000140
000160
000180
0001AO
0001CO
0001EO
000200
000220
000240
000260
000280
0002AO
0002CO
0002EO
000300
000320
000340
000360
000380
0003AO
0003CO
0003EO
000400
000420
000440
000460
000480
0004AO
0004CO
0004EO

A0000700 47FOFOOC 03C1C3F2 00000258 90EBOOOC 58AOF008 45EOA016 92030084
020700A8 10009200 00Ac58EO 100850EO 00884580 A03A47FO A0860700 920B0063
920C0063 588000AO F8210090 80005870 00A4FA21 00907000 F8210093 8002FA21
00937002 95020084 4780A062 95030084 4780A076 58600088 F8720098 00904FEO
009810FE 54EOB078 90EF0098 964E0098 2B006AOO D0987000 600047FO A0805880
00880201 80000091 02018002 009447FO A0805880 0088D20580000090 58FOB060
05EF9200 0063920E 00635880 00A8F822 00908000 587000AC FB220090 7000F822
00938003 FB220093 70039502 00844780 AOE89503 00844780 A.oFC5860 0088F872
00980090 4FE00098 10FE54EO B07890EF 0098964E 00982BOO 6A000098 70006000
47FOA106 58800088 02018000 00910201 80020094 47FOA106 58800088 02058000
009058FO B06005EF 920F0063 58FOB02C 05EFF014 91800001 4780F03C 58200050
12224770 F03C590C 00104770 F03C5800 0004500c 00109180 00004710 F0325800
000447FO F0225020 000898EB 000C07FE 58FOB030 07FF584C 00001244 47BOF056
587C0014 02033050 70504140 4001504C 00005040 30549200 304C5030 00081803
583C0010 50300004 500C0010 50200008 50200060 07FE1C44 00001000 000014B8
000024B8 000034B8 000044B8 000054B8 000064B8 00.0074B8 00000000 00000000
00000434 00000434 00000000 89300008 00000648 41660001 000002E4 000002AC

PAGE 0001

PAGE 0002

Figure LIST-2. Sample LISTLOAD Output - Load Module Map (Part 1 of 2)

Chapter 5: IMBLIST 113

•

LISTING OF LOAD MODULE PL1LOAD PAGE 0003

000500 00000258 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000520 00000730 00000738 00000740 00000748 80000000 00000001 OC020000 00000544
000540 00140014 40D7D3Fl E3C3FOF2 6060C3D6 D4D7D3C5 E3C5C440 00000560 00270027
000560 40c5D9D9 D6D96BC5 E7D7c5C3 E3C5C440 C1C440C9 E240F4FO 4EF2FOC9 40C2E4E3
000580 40C1C440 C9E24002 OC040COO 00000594 002C002C 40C5D9D9 D6D96BC5 E7D7C5C3
0005AO E3C5C440 C140C9E2 40F1F84E F4F1C940 C2E4E340 C140C9E2 40D9C5Cl D3D3E840
0005CO 000C041C 018COC2C OC1COOOO 000005D4 00120012 40D7D3Fl E3c3FOF2 6060C5D5
0005EO E3C5D9C5 C440000C 040c050c 000C006C 000C020c 010C001C 0000058C 0000063B
000600 00000740 80000638 00000748 00000242 80000534 00000748 0000021C 80000534
000620 00000748 0000016C 80000534 00000748 000000A4 80000534 8903802C 8A060089
000640 04800620 41C90008 C08000DO lC021ACl 95043008 47808200 D2AFCOOO 40009680
000660 900647FO 8206D2AF 4000COOO lBFF50FD 00101817 41000038 OAOA98EC DOOC07FE
000680 00033BC8 00480AOA 05804860 B08050E7 00309180 90064780 80189205 701047FO
0006AO 801C9206 70104150 A05818C6 41DOO020 lCCC1AD5 50D70014 184D9505 70104770
0006CO 80404800 900447FO 80581B22 8D200008 41100001 19128C20 00084780 809648D7
0006EO 00224820 B07A4BDO B0864740 807A1BCC 4810B07E lDC11AD2 89DOOO08 41DCDOOl
000700 47F0808A 4AOOB086 4ADOB084 06208920 00081AD2 410DOOOO 00000000 47F0809E
000720 58FOF008 07FFOOOO 00000000 50070034 003C004C 001058FO 003C004C 58070034
000740 003C004C D2071024 00201002 00000000 00000004 00000000 00000000 00000000
000760 07E2E8E2 D7D9C9D5 E3000000 00000000 00000000 00000000 00000000 00000000

RECORD# 6 TYPE 02 - RLD RLD SIZE 236

R-PTR P-PTR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR
2 1 OC 000010

14 1 2Li 00002E
15 1 24 00029A

1 1 OD 0002B4 Oc 0002EC
12 1 25 000448 24 000454

3 1 2Li 000478
13 1 24 000482

3 1 24 000490
12 1 25 0004A2 24 0004AA

2 2 OD 0004BC OD 0004CO OD 0004C4 OD 0004C8 OD 0004CC OD 0004DO
OC 0004D4

4 2 8C 0004D8
5 2 8C 0004DC
1 2 OD 0004EO OC 0004E4
2 2 OC 0004FO
1 2 OD 0004F8 OD 0004FC OD 000500 OC 000504

16 2 9C 000508
17 2 9C 00050c
18 2 9C 000510
19 2 9C 000514
20 2 9C 0004E8
21 2 9C 000518
22 2 9C 00051C
23 2 OC 000520

LISTING OF LOAD MODULE PL1LOAD PAGE 0004

RECORD# 7 TYPE OE - RLD RLD SIZE 188

R-PTR P-PTR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR
24 2 OC 000524
25 2 OC 000528
26 2 OC 00052C

2 2 09 00053D 09 000559 09 00058D 09 0005CD OD 0005F8 OC 0005FC
25 2 OC 000600

2 2 08 000605
26 2 Oc 000608

1 2 OC 00060C
2 2 08 000611

26 2 OC 000614
1 2 Oc 000618
2 2 08 00061D

26 2 OC 000620
1 2 OC 000624
2 2 08 000629

26 2 Oc 00062C
1 2 OC 000630
2 2 08 000635
1 8 OC 000718

10 9 8c 000728
27 26 24 000748

******END OF LOAD MODULE LISTING

Figure LIST-2. Sample LISTLOAD Output - Load Module Map (Part 2 of 2)

114 Service Aids (Release 21)

LMOD LOC

10
4D8
4DC
4EO
4E4
4E8
4F8
4FC
500
504
508
SOC
510
514
518
51C
520
524
528
52c
bOO
608
60C
614
618
620
624
62C
630
118
728

LENGTH OF LOAD

NUMERICAL MAP AND CROSS-REFERENCE LIST OF LOAD MODULE PL1LOAD

CONTROL SECTION ENTRY
LMOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC

00 PL1TC02 4B6 SD
4B8 PL1TC02A 260 SD
118 IHEMAIN 04 SD
720 IHENTRY OC SD
730 C 04 SD
738 B 04 SD
740 A 04 SD
748 IHESPRT 38 SD

CSECT LOC IN CSECT REFERS TO SYMBOL AT LMOD LOC CSECT LOC

10 PL1TC02 PL1TC02A 4B8 00
20 PL1TC02A IHESADA
24 PL1TC02A IHESADB
28 PL1TC02A PL1TC02 00 00
2C PL1TC02A PL1TC02 00 00
30 PL1TC02A IHESAFA
40 PL1TC02A PL1TC02 00 00
44 PL1TC02A PL1TC02 00 00
48 PL1TC02A PL1TC02 00 00
4C PL1TC02A PL1TC02 00 00
50 PL1TC02A IHELDOA
54 PL1TC02A IHELDOB
58 PL1TC02A IHEIOBT
5C PL1TC02A IHEIOBC
60 PL1TC02A IHESAFB
64 PL1TC02A AA
68 PL1TC02A C 730 00
6C PL1TC02A B 738 00
70 PL1TC02A A 740 00
74 PL1TC02A IHESPRT 748 00

148 PL1TC02A A 740 00
150 PL1TC02A IHESPRT 748 00
154 PL1TC02A PL1TC02 00 00
15C PL1TC02A IHESPRT 748 00
160 PL1TC02A PL1TC02 00 00
168 PL1TC02A IHESPRT 748 00
16C PL1TC02A PL1TC02 00 00
174 PL1TC02A IHESPRT 748 00
178 PL1TC02A PL1TC02 00 00

00 IHEMAIN PL1TC02 00 00
08 IHENTRY IHESAPC

MODULE 780

NUMERICAL MAP AND CROSS-REFERENCE LIST OF LOAD MODULE PL1LOAD

PSEUDO REGISTER
VECTOR LOC NAME

00
04
08
DC
10
14
18
1C
20

IHEQINV
IHEQERR
IHEQTIC
IHEQLWF
IHEQSLA
IHEQLWO
PL1TC02B
PL1TC02C
IHEQSPR

LENGTH

4
4
4
4
4
4
4
4
4

LENGTH OF PSEUDO REGISTERS 24

NAME

IN CSECT

PL1TC02A
$UNRESOLVED
$UNRESOLVED

PL1TC02
PL1TC02

$UNRESOLVED
PL1TC02
PL1TC02
PL1TC02
PL1TC02

$UNRESOLVED
$UNRESOLVED
$UNRESOLVED
$ UNRESOLVED
$UNRESOLVED
$ UNRESOLVED

C
B
A
IHESPRT
A
IHESPRT
PL1TC02
IHESPRT
PL1TC02·
IHESPRT
PL1TC02
IHESPRT
PL1TC02
PL1TC02

$UNRESOLVED

Figure LIST-3. Sample LISTLOAD Output - Cross Reference Listing
(Part 1 of 2)

PAGE 0001

PAGE 0002

Chapter 5: IMBLIST 115

•

ALPHABETICAL MAP OF LOAD MODULE PL1LOAD

CONTROL SECTION ENTRY
NAME LMOD LOC LENGTH TYPE NAME LMOD LOC

A 740 04 SO
B 738 04 SO
C 730 04 SD
IHEMAIN 718 04 SD
IHENTRY 720 OC SO
IHESPRT 748 38 SO
PL1TC02 00 4B6 SO
PL1TC02A 4B8 260 SD

PSEUDO REGISTER
NAME VECTOR LOC LENGTH

IHEQERR 04
IHEQINV 00
IHEQLWF OC
IHEQLWO 14
IHEQSLA 10
IHEQSPR 20
IHEQTIC 08
PL1TC02B 18
PL1TC02C 1C

ALPHABETICAL CROSS-REFERENCE LIST OF LOAD MODULE PL1LOAD

SYMBOL AT LMOD LOC CSECT LOC IN CSECT IS REFERRED TO BY LMOD LOC

A 740 00 A 528
A 740 00 A 600
AA $ UNRESOLVED 51C
B 738 00 B 524
C 730 00 C 520
IHEIOBC $UNRESOLVED 514
IHEIOBT $ UNRESOLVED 510
IHELDOA $UNRESOLVED 508
IHELDOB $UNRESOLVED SOC
lHESADA $UNRESOLVED 4D8
IHESADB $ UNRESOLVED 4DC
IHESAFA $UNRESOLVED 4E8
IHESAFB $UNRESOLVED 518
IHESAPC $UNRESOLVED 728
IHESPRT 748 00 IHESPRT 52C
IHESPRT 748 00 IHESPRT 608
IHESPRT 748 00 IHESPRT 614
IHESPRT 748 00 IHESPRT 620
IHESPRT 748 no IHESPRT 62c
PL1TC02 00 00 PL1TC02 4EO
PL1TC02 00 00 PL1TC02 4E4
PL1TC02 00 00 PL1TC02 4F13
PL1TC02 00 00 PL1TC02 4FC
PL1TC02 00 00 PL1TC02 500
PL1TC02 00 00 PL1TC02 504
PL1TC02 00 00 PL1T.C02 60C
PL1TC02 00 00 PL1TC02 6113
PL1TC02 00 00 PL1TC02 624
PLl.TC02 00 00 PL1TC02 630
PL1'I'C02 00 00 PL1TC02 718
PL1TC02A 4B8 00 PL1TC02A 10

******END OF MAP AND CROSS-REFERENCE LISTING

CSECT LOC

CSECT LaC

70
148

64
6C
68
5C
58
50
54
20
24
30
60
08
74

150
15C
168
174

28
2C
40
44
48
4C

154
160
16C
178

00
10

CSECT NAME

IN CSECT

PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
IHENTRY
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
PL1TC02A
IHEMAIN
PL1TC02

Figure LIST-3. Sample LISTLOAD Output - Cross Reference Listing
(Part 2 of 2)

116 Service Aids (Release 21)

PAGE 0003

PAGE 0004

()
::r
!lJ
"0
rt­
(1)
Ii

U'1

H :s:
to
~
H
en
t-3

I-'
I-'
...,J

OBJECT MODULE LISTING PAGE 0003

TXT: SOLV0017
ADD~=000020 ESDID= 0001 TEXT: 000002C4 00000028 00000294

TXT: SOLV0018
ADDR=000074 ESDID= 0001 TEXT: 000000D8

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR SOLV0019
0002 0001 OC 0000E8 0002 0001 OC OOOOEC 0003 0001 Oc OOOOFO
0004 0001 lC 0000F4 0001 0001 OC 000020 0001 0001 OC 000024
0001 0001 OC 000028

TXT: SOLV0020
ADDR=000078 ESDID= 0001 TEXT: 800000CC 000000C8 800000DO OOOOOOEO 800000D4

TXT: SOLV0021
ADDR=0000F8 ESDID= 0001 TEXT: 00000000 00000000 00000110 00000210

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR SOLV0022
0001 0001 OC 000074 0001 0001 OC 000078 0001 0001 OC 00007c
0001 0001 OC 000080 0001 0001 OC 000084 0001 0001 OC 000088
0001 0001 OC 000100

TXT: SOLV0023
ADDR=000108 ESDID= 0001 TEXT: 00000266 0000026E

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR SOLV0024
0001 0001 OC 000104 0001 0001 OC 000108 0001 0001 OC 00010C

END RECORD: LENGTH=000002DE DATE 71. 313/1S. 47. 08 SOLV0025

ESD RECORD: EVALOOOl
ESDID TYPE NAME ADDR ID/LTH

0001 SD(OO) EVAL 000000 000000

TXT: EVAL0002
ADDR=OOOOOO ESDID= 0001 TEXT: 47FOFOOC 07000000 CSESC1D3 90ECDOOC 184D98CD F020S040 000450DO 400807FC 40404040 40404040

020AOA02 06020C12 0622

ESD RECORD:
ESDID TYPE

0002 CM(OS)

TXT:

NAME
EVAL

ADDR
000000

ID/LTH
000018

ADDR=000088 ESDID= 0001 TEXT: 40800000

ESD RECORD:
ESDID TYPE

0003 ER(0 2)
NAME

IBCOM#
ADDR

000000
ID/LTH
000000

Figure LIST-4. Sample LISTOBJ Output

EVAL0003

EVAL0004

EVAL0005

•

I-'
I-'
00

C/)

CD
Ii
<:
()

CD

~
p..
CIl

:::0
CD
I-'
CD
PJ
CIl
CD

l'V
I-'

CSECT

SAMPI
SAMP2
SAMP4
SAMP4
SAMP4

LISTIDR FOR LOAD MODULE SAMPLE

YR/DAY

71/329
71/329
71/329
71/329
71/329

IMASPZAP DATA

FIX12345
LEVEL003
PATCHOOI
PATCH002
PATCH003

PAGE 0001

THIS LOAD MODULE WAS PRODUCED BY LINKAGE EDITOR 360SED521 AT LEVEL 21.01 ON DAY 329 OF YEAR 71.

CSECT TRANSLATOR VR MD YR/DY

SAMPI 360SAS037 21 00 71/329
SAMP2 360SAS037 21 00 71/329
SAMP3 360SAS037 21 00 71/329
SAMP4 360SAS037 21 00 71/329
SAMP5 360SAS037 21 00 71/329

CSECT YR/DAY USER DATA

SAMPI 71/329 CHANGE LEVEL 01
SAMP2 71/329 VERSION 6
SAMP3 71/329 FIX LEVEL 2735
SAMP4 71/329 SORT SUBROUTINE
SAMP5 71/329 CARD SCANNING SUBROUTINE

Figure LIST-S. Sample LISTIDR Output

Examples

Example 1: Listing Several Object Modules

In this example, IMBLIST is used to list all object modules contained in
the data set named OBJMODS, three specific object modules from another
data set called OBJMOD" and finally all object modules in OBJMOD.

//OBJLIST JOB MSGLEVEL=Cl,l)
//LISTSTEP EXEC PGM=IMBLIST
//SYSPRINT DD SYSOUT=A
//OBJLIB DD DSN=OBJMODS,DISP=OLD
//OBJSDS DD DSN=OBJMOD=DISP=OLD
//SYSIN DD *

LISTOBJ DDN=OBJSDS,
TITLE=C'OBJECT MODULE LISTING OF OBJSDS',20)

LISTOBJ DDN=OBJLIB,MEMBER=COBJ1,OBJ2,OBJ3),
TITLE=C'OBJECT MODULE LISTING OF OBJ1 OBJ2 OBJ3),20)

LISTOBJ DDN=OBJLIB,
TITLE=C'OBJ MOD LISTING OF ALL MODS IN OBJLIB',20)

/*

SYSPRINT 00 Statement

defines the message data set. This statement must be included; if
it is omitted, IMBLIST will produce no output.

OBJLIB and OBJSDS DD Statements

define input data sets that contain object modules.

SYSIN DD statement

defines the data set in the input stream containing IMBLIST control
statements.

LISTOBJ Control statement #1

instructs IMBLIST to format the data set defined by the OBJSDS DD
statement, treating them as a single continuous object module. It
also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTOBJ Control statement #2

instructs IMBLIST to format three members of the partitioned data
set defined by the OBJLIB DD statement. It also specifies a title
for each page of output, to be indented 20 characters from the left
margin.

LISTOBJ Control Statement #3

instructs IMBLIST to format the entire data set defined by the
OBJLIB DO statement" treating it as a sequential data set. It also
specifies a title for each page of output, to be indented 20
characters from the left margin.

Chapter 5: IMBLIST 119

•

Example 2: Using the LlSTLOAD Control Statement

In this example, IMBLIST is used to produced formatted listings of
several load modules.

//LOADLIST JOB MSGLEVEL=(l,l)
//LISTSTEP EXEC PGM=IMBLIST
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//LOADLIB DD DSNAME=LOADMOD,DISP=OLD
//SYSIN DD *

LISTLOAD OUTPUT=MODLIST,DDN=LOADLIB,
MEMBER=TESTMOD,
TITLE=('LOAD MODULE LISTING OF TESTMOD',20)

LISTLOAD OUTPUT=XREF,DDN=LOADLIB,
MEMBER= (MOD1., MOD2 ,MOD3) ,
TITLE=('XREF LISTINGS OF MOD1 MOD2 AND MOD3',20)

LIS T LOAD TITLE=('XREF & LD MOD LSTNG - ALL MOD IN LINKLIB',20)
/*

In this example:

SYSPRINT DD Statement

defines the message data set.

SYSLIB DD Statement

defines an input data set, SYS1.LINKLIB, that contains load modules
to be formatted.

LOADLIB DD statement

defines a second input data set.

SYSIN DD Statement

defines the data set (in the input stream) containing the 1MB LIST
control statements.

LISTLOAD Control Statement #1

instructs IMBLIST to format the control and text records, including
the external symbol dictionary and relocation dictionary records, of
the load module TESTMOD in the data set defined by the LOADLIB DD
statement. It also specifies a title for each page of output, to be
indented 20 characters from the left margin.

LISTLOAD Control Statement #2

instructs IMBLIST to produce a module map and cross=reference
listing of the load modules MOD1, MOD2, and MOD3 in the data set
defined by the LOADLIB DD statement. It also specifies a title for
each page of output, to be indented 20 characters from the left
margin.

120 Service Aids (Release 21)

LISTLOAD Control Statement #3

instructs IMBLIST to produce a formatted listing of the load module
and its map and cross-reference listing. Because no DDN= parameter
is included, the input data set is assumed to be the one defined by
the SYSLIB DD statement. Because no MEMBER= parameter is specified,
all load modules in the data set will be processed. This control
statement also specifies a title for each page of output, to be
indented 20 characters from the left margin.

Example 3: Using the LlSTIDR Control Statement

In this example, IMBLIST is used to list the CSECT identification
records in several load modules.

//IDRLIST
//LISTSTEP
//SYSPRINT
//SYSLIB
//LOAOLIB
//SYSIN

JOB MSGLEVEL=(l,l)
EXEC PGM=IMBLIST
DD SYSOUT=A
DD DSN=SYS1.LINKLIB,DISP=OLD
DD DSN=LOADMODS,DISP=OLD
DD *

/*

LISTIDR
LISTIDR

LISTIDR

TITLE=('IDR LISTINGS OF ALL MODS IN LINKLIB',20)
OUTPUT=IDENT,DDN=LOADLIB,MEMBER=TESTMOD
TITLE=('LISTING OF MODIFICATIONS TO TESTMOO',20)
OUTPUT=ALL,DDN=LOADLIB,MEMBER=(MOD1,M002,MOD3),
TITLE=('IDR LISTINGS OF MOOl MOD2 M003',20)

In this example:

SYSPRINT DD Statement

defines the message data set.

SYSLIB DD statement

defines the input data set SYS1.LINKLIB, which contains load modules
to be processed.

LOADLIB OD statement

defines a second input data set.

SYSIN DD Statement

defines the data set (in the input stream) containing the IMBLIST
control statements.

LISTIDR Control Statement #1

instructs IMBLIST to list all CSECT identification records for all
modules in SYS1.LINKLIB (this is the default data set since no DON=
parameter was included). It also specifies a title for each page of
output, to be indented 20 characters from the left margin.

LISTIDR Control statement #2

instructs IMBLIST to list CSECT identification records that contain
IlfillSPZAP or user-supplied data for load module TESTMOD. TESTMOD is a
member of the data set defined by the LOADLIB 00 statement. This
control statement also specifies a title for each page of output, to
be indented 20 characters from the left margin.

Chapter 5: IMBLIST 121

•

LISTIDR Control Statment #3

instructs IMBLIST to list all CSECT identification records for load
modules MOD1,MOD2, and MOD3. These are members in the data set
defined by the LOADLIB DD statement. This control statement also
specifies a title for each page of output, to be indented 20
characters from the left margin.

Example 4: Verifying an Object Deck

In this example, IMBLIST is used to format and list an object module
included in the input stream.

//LSTOBJDK JOB
// EXEC
//SYSPRINT DD

MSGLEVEL= (1,1)
PGM=IMBLIST
SYSOUT=A

//OBJDECK DD * object deck
//SYSIN DD *

LISTOBJ DDN=OBJDECK,
TITLE=('OBJECT DECK LISTING FOR MYJOB', 25)

/*

SYSPRINT DD statement

defines the message data set.

OBJDECK DD statement

defines the input data set, which follows immediately. In this case
the input data set is an object deck.

SYSIN DD statement

defines the data set containing IMBLIST control statements, which
follows immediately.

LISTOBJ Control statement

instructs IMBLIST to format the data set defined by the IBJDECK DD
statement. It also specifies a title for each page of output, to be
indented 20 characters from the left margin.

122 Service Aids (Release 21)

Example 5: Combining LlSTOBJ, LlSTLOAD, and LlSTIDR

An unsuccessful attempt has been made to link edit an object module with
two load modules to produce one large load module. This example shows
how to use IMBLIST to verify all three modules.

//LSTLOOBJ JOB MSGLEVEL=(l,l)
// EXEC PGM=IMBLIST
//SYSPRINT OD SYSOUT=A
//OBJMOD DD DSN=MYMOD,OISP=OLO
//LOAOMODl DD DSN=YOURMOD,DISP=OLD
//LOADMOD2 DD DSN=HISMOD,DISP=OLD
//SYSIN DD *

LISTOBJ DON=OBJMOO,
TITLE=C'OBJECT LISTING FOR MYMOO',20)

LISTLOAD DDN=LOADMOD1,OUTPUT=BOTH,
TITLE=C'LISTING FOR YOURMOD',25)

LISTIDR DON=LOAOMOD1,OUTPUT=ALL,
TITLE=C'IORS FOR YOURMOO',25)

LISTLOAD DDN=LOAOMOD2,OUTPUT=BOTH,
TITLE=C'LISTING FOR HISMOO',25)

LISTIDR DDN=LOADMOD2,OUTPUT=ALL,
TITLE=C'IDRS FOR HISMOD',25)

/*

SYSPRINT DD statement

defines the message data set.

OBJMOD DD statement

defines an input load module data set.

LOADMOD1 and LOADMOD2 DO statements

define input load module data sets.

SYSIN OD statement

defines the data set containing IMBLIST control
statements, which follows immediately.

LISTOBJ Control Statement

instructs IMBLIST to format the data set defined by the OBJMOD DD
statement. Itvalso specifies a title for each page of output, to be
indented 20 characters from the left margin.

LISTLOAD Control Statement #1

instructs IMBLIST to format all records associated with the data set
defined by the LOADMOD1 DD statement. It also specifies a title for
each page of output, to be indented 25 characters from the left
margin.

LISTIDR Control Statement #1

instructs IMBLIST to list all CSECT identification records
associated with the data set defined by the LOADMOD1 DD statement.
It also specifies a title for each page of output, to be indented 25
characters from the left margin.

Chapter 5: IMBLIST 123

•

LISTLOAD Control Statement #2

instructs IMBLIST to format all records associated with the data set
defined by the LOADMOD2 DD statement. It also specifies a title for
each page of output, to be indented 25 characters from the left
margin.

124 Service Aids (Release 21)

Chapter 6: IMBMDMAP
Maps load modutes.

Chapter 6: IMBMDMAP 125

•

126 Service Aids (Release 21)

INTRODUCTION • • •

CHARACTERISTICS OF THE LOAD MODULE MAP •
Load Module and Nucleus Maps •
Link Pack Area Maps

Contents

••• 129

• • • • • • .130
• .130

• • • • • • .130
Specialized Maps • • • • .130

INPUT TO MDMAP •
Load Modules • •

The Modular Concept
Control sections • •
Object Modules • • • • •

External Symbol Dictionaries •
Relocatable Load Dictionaries
Text • ,. • '. • • '. • •

Linkage Editor Output • •• • •
Load Module Attributes • . • '. • • • • • •

Programmer-Assigned Attributes ••• • •
Linkage Editor-Assigned Attributes •

Load Modules with Overlay Characteristics
MVT Link Pack Area • • • • • • • • •
MFT Resident Reenterable Load Module Area
Nucleus

EXECUTING MDMAP
JCL Statements •
EXEC Statement Parameters

OUTPUT FOrur.iATS • • • '.
Numerical ESD Listing
Numerical RLD Listing
Alphabetic ESD Listing
Alphabetic RLD Listing • •

MDMAP EXAMPLES

• • • • • '. • 131
••••• 131

.131
• .131
• .131

• ••••• 132
• • • • • • .133

• .133
• • • • • • .133
• •••••• 135

• ••••• 135
• • • • • • .136

• •••• ·136
• • • • • • .137
• • • • • • .137

.138

.140
• .140

• •• 140

• ••••• 143
• .143
• .144

• ••• • ·144
• ••••• 145

Example 1:
Example 2:

Mapping an MVT Link Pack Area and Nucleus • • • •
Mapping the ESDs of a Load Module, Using the
Relocation Option • • .•

• .146
.146

.148
Example 3: Mapping a Load Module with the DEBUG and

Relocation Options •

OPERATIONAL CONSIDERATIONS • •

Chapter 6:

.150

.152

IMBMDMAP 127

•

Figures

Figure MDMAP-l.
Figure MD.t-'lAP-2.
Figure IV".lDMAP- 3 •
Figure MDMAP-4.
Figure MDMAP-5.
Figure MDMAP-6.
Figure MDMAP-7.
Figure MDMAP-8.
Figure MDMAP-9.
Figure MDMAP-l0.
Figure MDMAP-ll.

Structure of an Object Module ••••••••••• 132
Creation of a Load Module by the Linkage Editor •• 134
structure of a Load Module With Overlay •••••• 136
Upper Main storage After IPL of an MVT System ••• 137
Lower Main storage Organization in MFT •••••• 138
A Nucleus After IPL • • • • • • • • • .139
IMBMDIV"lAP Execution JCL •• • • • • • •• • • • 140
Snap Dumps Taken When the DEBUG Parmaeter Is Used .141
Excerpts from the Map Resulting From Example 1 •• 147
Excerpts from the Map Resulting From Example 2 •• 149
Excerpts from the Map Resulting F'rorn Example 3 •• 151

128 Service Aids (Release 21)

Introduction

IMBMDMAP, the Load Module Mapping service aid program, operates under
the control of IBM Operating System/360, and provides the facility for
mapping:

• A system's nucleus;

• The load modules included in an MVT link pack area or an MFT
resident reenterable load module area; or

• Load modules previously link edited into a partitioned data set.

In determining the cause of problems in the execution of system
component programs or complex user problem programs, the load module
maps produced by IMBMDMAP, used in conjunction with main storage dumps,
constitute powerful debugging aids. They enable the user to readily
locate and identify individual control sections and their entry points,
and to verify load module attributes and aliases.

Chapter 6: IMBMDMAP 129

•

Characteristics of the Load Module Map

A load module map contains edited information regarding the control
sections, entry points, aliases, external references, attributes, type
codes, overlay segments and hierarchy designations for each load module
for which a map is requested.

Load Module and Nucleus Maps

A map of load modules from a partitioned data set (PDS) or a map of a
nucleus consists of external symbol dictionary (ESD) and relocatable
load dictionary (RLD) items, sorted first to numeric order by location,
and then to alphabetic order by name. ESD and RLD items are discussed
more fully under their respective headings in this chapter.

Link Pack Area Maps

A map of an MVT link pack area (LPA) contains contents directory entries
(eDEs); that of an MFT resident reenterable load module area (analogous
to the Mvr link pack area) contains loaded program request block (LPRB)
entries. The nature of these entries is discussed under the headings
nMVT Link Pack Area" and "MFT Resident Reenterable Load Module Area" in
this chapter.

In a map of either area type., the entries are sorted numerically,
then alphabetically; and the length, entry points, and relative
addresses of each module in the area are listed.

Specialized Maps

The user can request a map containing only ESD items in numeric sequence
Nhen executing IMBMDMAP. Or, an address relocation value may be
specified to the program; that value will be assigned as the map's base
address, and the result will be the printing of an absolute main storage
location for each record, providing an added storage dump debugging aid.
Or, the user may request a map that includes a series of "snapshot"
dumps, taken at strategic points in time during IMBMD~mp's execution,
and useful in determining the cause of certain load module structural
problems -- including those which might arise during execution of
IMBMDMAP.

130 Service Aids (Release 21)

Input to MDMAP

Input to IMBMDMAP may be a load module, a link pack area (MVT), a
resident reenterable load module area (MFT), or any OS/360 nucleus. The
following sections describe the contents and function of each type of
input.

Load Modules

A load module is composed of all the edited modules (object, load, or an
intermix of both types) that are input to the linkage editor for a given
linkage. In addition to text items, a load module contains composite ESD
and RLD entries. Any load module is both relocatble and executable.

The Modular Concept

Every program is designed to fulfull a particular purpose. In achieving
that purpose, a program can be divided into logical functional units.
Each of these units, defined as a section of coding that performs a
specific task or several related functions, can be termed a module.

Control Sections

A module contains one or more control sections. A control section, or
CSECT, is a unit of instructions and data that, within itself, is an
entity. All elements of a control section (CSECT) are loaded and
executed in a constant relationship to one another. A CSECT is,
therefore, the smallest separately relocatable unit of a program.

Object Modules

Each module within a program can be separately assembled or compiled by a
language translator. During this processing, references between the
module's component control sections are unresolved. Object modules, the
output of the language translator, consist of control dictionaries and
text. Control dictionaries contain the information necessary to resolve
cross-references between control sections and modules. A module's text
area contains its instructions and data. Figure MDMAP-l illustrates the
structure of an object module. An object module is relocatable, but not
executable.

Chapter 6: IMBMDMAP 131

•

External Symbol Dictionary

CSECT T

CSECT 2 Text

CSECT 3

Relocatable Load Dictionary

Figure MDMAP-l. structure of an Object Module

External Symbol Dictionaries

An external symbol dictionary (ESD) entry identifies and defines the
position of the external symbols contained, or referred to, in a module.
Each entry is classified as either an external name or an external
reference.

External Names

An external name is a defined value within the module, bearing a name
that can be referred to by any control section or by any separately
assembled or compiled module. There are four types of external names:

a. Control Section Name: The symbolic name of a control section.
The ESD entry specifies the name l the assembled origin, and the
length of a control section. The defined value of the symbol is
the address of the first byte of the control section.

b. Entry Name: A name within a control section defining a point in
the coding unit where processing may begin, or "enter." The ESD
entry specifies the assembled address of the name and
identifies the control section to which it belongs.

c. Blank or Named Common Area: A control section used to reserve a
main storage area (containing no data or instructions) for
CSECTs supplied by other modules, or as a center for
communication between modules within a program. The ESD entry
specifies the name and length of a named common area. The name
field of a blank common area contains blanks.

d. Private Code: An unnamed control section. The ESD entry
specifies the assembled address and assigned length of the
area. The name field contains blanks. Since it has no name, a
private code area cannot be referred to by any other control
section.

132 Service Aids (Release 21)

External References

An external reference is a symbol referred to in a given module, but
defined as an external name in another module. The ESD dictionary for
the current module specifies the name only.

Relocatable Load Dictionaries

Relocatable load dictionaries (RLDs) contain information about address
constants within the module. Each RLD entry identifies an address
constant by:

• Indicating its location within the module, and

• Identifying the ESD symbol whose contents are used in determining
the value of the address constant.

For a detailed discussion of ESD and RLD items, see the publication, IBM
System/360 Operating System: Linkage Editor and Loader, GC28-6538.

Text

A text item includes the addresses of the instructions and data in a
module, and indicates the ESD entry defining the CSECT in which the
subject text is contained.

Linkage Editor Output

The linkage editor's output, a completed load module, is placed in a
partitioned data set (SYSLMOD library) as a named member. In addition to
its member name, the load module may carry as many as sixteen other
names, or aliases. Under MFT it can contain up to 524,288 bytes; MVT
allows larger modules. Figure MDMAP-2 illustrates the relationship of
input to output of the linkag-e process.

In linking the input modules, the linkage editor resolves all
references between control sections, just as if they had been assembled
as a single module. The output load module contains the information
necessary to load and relocate the module in main storage, and to
compute the relocated value of location-dependent address constants.
When it places the load module in the output module library, the linkage
editor stores the module's member name, aliases, and attribute control
information in the library's PDS directory.

Chapter 6: IMBMDMAP 133

•

Input Output

Object Module and/or Load Module
Load Module

ESD

TXT

RLD

Figure MDMAP-2. Creation of a Load Module by the Linkage Editor

134 Service Aids (Release 21)

Load Module Attributes

Each load module has specific characteristics, or attributes, which are
used by the control program when the module is loaded for execution.
Some of these attributes are programmer-specified; others are assigned
by the linkage editor as a result of information obtained during its
processing of the module.

Programmer-Assigned Attributes

A.ttributes that can be assigned to a load module by the programmer, and
the characteristics assumed by the load module under each assignment,
are:

ASSIGNED ATTRIBUTE

Reenterable

Serially Reusable

Refreshable

Scatter Format

Hierarchy Format

Not Editable

Only Loadable

Downward Compatible

Overlay

Test

LOAD MODULE CHARACTERISTICS

Executable by more than one task at a time;
cannot be modified by any other load module
during execution; cannot modify itself unless
disabling techniques (such as the ENQ macro
instruction, the test and set (TS) instruction.
etc.) are used to prevent another routine from
using this load module.

Executable by only one task at a time; will
initialize itself and/or will restore any
altered instructions or data before a new task
takes control.

Cannot be modified by itself or by any other
load module during execution, since it must be
capable of being replaced by a new copy during
execution without changing the results of
proecessing.

Is suitable for either block loading {placement
in main storage in one contiguous block of
space}; or scatter loading {possible placement
in main storage, by control section, in
non-contiguous areas}, thus taking better
advantage of available storage space.

suitable for either block or scatter loading
into either hierarchy 0 or hierarchy l, as
specified to the linkage editor when hierarchy
support is included in the system.

Cannot be rep~ocessed by the linkage editor;
that is, cannot be link edited again into a
larger load module.

Can be brought into main storage only by use of
the LOAD macro instruction.

Can be reprocessed by either level E or level F
of the linkage editor.

Structured as directed by linkage editor OVERLAY
statements.

Applies only to Assembler Language programs that
are to be tested; causes inclusion of the test
symbol dictionary.

Chapter 6: IMBMDMAP 135

•

Linkage Editor-Assigned Attributes

Linkage editor-assigned a'l:tributes, and the load module characteristics
that result, are:

ASSIGNEDATTRIBUI'E

Block Format

Not Executable

LOAD MODULE CHARACTERISTICS

Suitable for block loading only.

Assigned when errors that would prevent
successful execution of the load module are
detected during linkage editing.

Load Modules with Overlay Characteristics

When a load module contains overlay characteristics, the linkage editor
st.ructures the module somewhat differently, incorporating segment and
entry tables (SEGTABs and ENTABs) into the text.

The single segment table created by the linkage editor fo:...- an
overlay program structure is used to keep track of:

• the relationship of the segments in the program;

• which segments are in main storage, or in the process of being
loaded; and

• other control information.

Entry tables are linkage editor-generated for control program use in
determining the segment to be loaded in response to a branch instruction
.or one of the macro instructions used to transfer control between
overlay segments. Figure MDMAP-3 illustrates the structure of a load
module cont.aining overlay characteristics.

ESD

SEGTAB

TEXT

fNTAB

TEXT

ENTAB

TEXT

RLD

Figure MDtvlAP-3. structure of a Load .Module With Overlay

136 Service Aids (Release 21)

MVT Link Pack Area

The link pack area in MVT is a required feature of the system. It
resides in upper main storage and contains reenterable routines from the
linkage and supervisor call libraries (SYS1.LINKLIB and SYS1.SVCLIB).

MVT link pack area routines are available to all tasks requiring
them, and thus need not be separately loaded into the various regions of
main storage. Figure MDMAP-4 shows the arrangement of the library
routines in an MVT link pack area. The types 3 and 4 SVC routines
operate in the supervisor state; the others generally operate in the
same state as the calling routine.

In MVT systems, the link pack area control queue (LPACQ) is composed
of contents directory entries (CDEs), which are linked together. Each
CDE on the LPACQ describes a routine resident in the LPA, giving the
name, entry point and other attributes.

For a more detailed explanation of the link pack area control queue
and associated control blocks, consult the publications, MVT Supervisor,
~Y28-6659, and System Control Blocks, GC28-6628.

~

\

~
BLDL List

Reenterable Routi nes From
SYS1.SVCLlB and SYS1.LlNKLIB

Modules of Types 3 and 4 SVC Routines

Master Scheduler Region

Dynamic Area

~ -

Link
Pack
Area

Figure MDMAP-4. Upper Main storage After IPL of an MVT System

MFT Resident Reenterable Load Module Area

Under MFT, the resident reenterable load module area is a SYSGEN option.
If the option is selected, the access method routines from SYS1.SVCLIB
and the routines from SYS1.LINKLIB which are to be made resident are
loaded during system initialization. Figure MDMAP-5 shows the relative
location of these routines in main storage.

Chapter 6: IMBMDMAP 137

•

Fixed
Area

Partition
n

Resident Types 3 and 4
SVC Modules

Resident Reenterable Routines

BLDL Table

System Queue Area (SQA)

Nucleus

Dynamic Area

Resident
Reenterable
Load
Module
Area

Lower Core

Figure MDMAP-S. Lower Main storage Organization in MFT

In ~~T systems with the resident routine option selected, a queue of
request blocks (RBs), called the reenterable load module queue, is
maintained. Each request block describes a resident routine and can be
either a loaded program request block (LPRB) or a loaded request block
(LRB). For a more detailed description of the resident reenterable load
module area and the associated control blocks, consult the publications
Control Program with MFT, GY27-7128, and System Control Blocks,
:;C2 8- 6628.

For ease of reference, the term "link pack area" will herafter be
used to denote either the MVT link pack area or the MFT resident
reenterable load module area.

Nucleus

The nucleus, a member of the partitioned data set SYS1.NUCLEUS, is the
resident portion of a control program. It is loaded into the fixed area
of main storage at IPL time. The nucleus contains:

• all task supervision routines, except the nonresident types 3 and 4
SVC routines;

• the data management I/O supervisor and BLDL routine;

• the resident recovery management routines; and

• small transient areas into which certain nonresident SVC routines
and I/O error handling routines, all resident in SYS1.SVCLIB, are
loaded as needed.

138 Service Aids (Release 21)

Figure MDMAP-6 shows the layout of a nucleus after IPL. All control
programs assign the nucleus to lower main storage.

I/o Supervisor Transient
Area

Fixed Area

SVC Transient Areas

Figure MD¥~P-6. A Nucleus after IPL

Chapter 6: IMBMDMAP 139

•

Executing MDMAP

IMBMDMAP runs in the problem program mode under any of the OS/360
control programs.

IMBMDMAP can be executed by use of the job control statements
described in the next section. Main storage requirements for executing
IMBMDMAP are variable, depending upon the number of ESD and RLD items
present in the module being mapped. The average execution requires about
35Ki an extremely complex module might require 70K.

JeL Statements

The statements required for executing IMBMDMAP are shown in Figure
MDMAP-7.

Statement Usage

JOB Statement This statement initiates the JOB.

EXEC Statement This statement specifies the program name:
I PGM=IMBMDMAP I

The statement may, in addition, contain from one to four parameters, randomly coded in any combination, to designate
particular specialization of a map's format. These parameters are:

[,PARM='L1 NKPACK,BASIC ,DEBUG ,hhhhhh 'J
These will be discussed individually under "EXEC Statement Parameters."

SYSPRINT DD Statement This statement defines a sequential message data set, such as SYSOUT. The device defined for SYSPRINT may be a system
output class, system output device, magnetic tape volume, or direct access volume.

/ /ddname DD Statement This statement defines the load module to be mapped. One such statement must be supplied for each load module for which
a map is to be produced. The statement's format is:

\//ddname DD DSN=YYY(ZZZ),DISP=SHRI

in which //ddname is any unique ddname.

YYY is the dsname of the partitioned data set in whi ch the load modu Ie to be mapped resides;
e.g., SYS1.NUCLEUS.

ZZZ is the name or alias of the member load module -- resident in the YYY data set -- to
be mapped. For example,

DSN=SYS 1. NUCLEUS (IEANUC01)

would accomplish mapping of the nucleus. IEANUC01 is the name of a load module contained
in the data set called SYS1.NUCLEUS.

/ /SNAPDUMP DD This statement defines a sequential output data set, to be used as output for the SNAP dumps taken as a result of the DEBUG
Statement parameter (discussed under "EXEC Statement Parameters" in this section). This DD statement is required only if the DEBUG

parameter is specified on the EXEC statement. The device specified for SNAPDUMP·may be a system output class or any
system output devi ce.

/ /SYSABEND DD These statements define a sequential output data set, to be used as output for the ABEND dump issued by IMBMDMAP as a
Statement or result of the DEBUG parameter (discussed under "EXEC Statement Parameters" in this section). One of these statements is
/ /SYSUDUMP DD required only if the DEBUG parameter is specified on the EXEC statement. The device specified for either SYSABEND or
Statement SYSUDUMP may be a system output class or any system output device.

Figure MDMAP-7. IMBMDMAP Execution JCL

EXEC Statements Parameters

The parameters associated with IMBMDMAP's EXEC statement are:

140 Service Aids (Release 21)

PARM='LINKPACK'

indicates that a map of the link pack area of main storage under an
MVT or MFT environment is to be produced. To obtain a complete map
of all LPA modules (that is, to pick up the resident SVC routines),
the nucleus currently resident in main storage must also be mapped.
The user must, therefore, include in the jobstream a DD statement
for the nucleus currently in core when requesting a link pack area
map.

PARM=' BAS IC'

specifies that the resultant map is to contain only
numerically-ordered external symbol dictionary items. Neither the
alphabetic ESD nor either of the RLD listings is produced. The
LINKPACK BASIC map will contain only numeric CDE or LPRB items.

PARM= • hhhhhh •

where hhhhhh is a hexadecimal address of from one to six characters,
and represents a relocation, or base, address. This parameter causes
the program to add this value to the relative address of each mapped
item, thus providing an absolute main storage address for the output
listing. This does not apply to mapping a nucleus, which already has
relocated addresses.

PARM='DEBUG'

provides for up to seven "snapshots" of main storage, taken at
strategic intervals during execution of IMBMD~~P. These dumps are
useful in the debugging of module construction problems, including
any which may arise during the running of IMB~illMAP. The content of
each dump, and the interval at which it is taken, are described in
Figure MDMAP-8.

DUMP NUMBER

1

2

3

4

5

6

7

CONTENT

ESD entries
RLD entries

TRANSLATE table
SCATTER table

IPLTABLE

TRANSLATE Table
SCATTER Table

ESD entries
RLD entries

ESD entries

RLD entries

CDE Table or
LPRB Table

EXECUTION INTERVAL WHEN TAKEN

After read
After read and first sorting pass

After read (nucleus only)
After read (nucleus only)

Simulation of IPL conditions to ensure
accuracy of map (nucleus only)

After read
After read or after IPL
relocation (nucleus only)

After relocation (scatter loading
After second sorting pass

After EXEC parameter relocation
if specified
After EXEC parameter relocation
if specified

If MVT link pack area is being mapped
If MFT link pack area is being mapped

Figure MDMAP-8. Snap Dumps Taken When the DEBUG Parameter Is Used

Chapter 6: IMBMDMAP 141

•

Of course, the production of certain of these dumps depends upon the
nature of the area being mapped. For example , maps 2, 3, and 4 would not
be provided if the modules in the nucleus were not being mapped.

rhe jobstream ~ust include a SNAPDUMP DD statement, defining a
sequential message data set, for output of these dumps.

Additionally, the DEBUG parameter produces:

• a hexadecimal dump of each mapped module, the text portion of which
may be truncated;

• a dump of each involved PDS directory; and:

• an ABEND dump, if a SYSABEND or SYSUDUMP DD statement has been
provided, since IMBMDMAP terminates with a user 100 ABEND code. The
SYSABEND statement provides the user with a more complete main
storage dump than the SYSUDUMP statement.

142 Service Aids (Release 21)

Output Formats

The printed output of IMBMDMAP is a formatted listing, giving the user
detailed information about the CSECTs contained in each mapped load
module. The nregulation" map -- that is, one not limited or expanded
through the use of parameters -- provides this information in four
sections.

Numerical ESD Listing

A map, ordered by main storage location, of:

• all attributes assigned to a given load module,

• all aliases assigned to the load module,

• the module's primary entry point,

• all CSECTs and entry points within the load module, and

• all external references within the load module.

CSECTs are listed to the left of a page; entry points, in two sets of
columns, in the center; and external references to the right. Each CSECT
is identified, in addition to name, address, and length, by one of six
type codes:

• CM (Common) indicates that the name defines a common area, named or
unnamed. A constant, $BLK COM, is assigned to the name field if the
area is unnamed. For example,

CSECT

NAME ADDRESS LENGTH TYPE

$BLK COM 080090 000008 CM

• LR (Label Reference) indicates that the name defines a label, or
symbol, within a control section.

• PC (Private Code) indicates that the name defines the beginning of
an unnamed control section. A constant, $ PRIVATE, is assigned to the
name field of such CSECTs on the listing.

• PD (Private Code Marked Delete) indicates that this is an ENTAB or a
SEGTAB. The code is used with modules having the overlay attribute.

• PR (Pseudo Register) defines an area external to the load module,
but referred to within it, for which storage is alloc~ted at the
time the load module is executed.

• SD (Section Definition) indicates that the CSECT name defines the
beginning of a named control section.

Two additional mutually exclusive CSECT definitions exist. When
applicable, they appear immediately to the right of the type column on
the listing. They are:

Chapter 6: IMBMDMAP 143

•

• SEG <Segment), a column heading under which appears the overlay
segment in which a CSECT is contained. This is used with modules
that have the overlay attribute. An example of the use of this
identification is:

NAME

$SEGTAB
IEKAAOl

IEKXRS

IEKVFP
IEKP25

ADDRESS

010A20
010A70

017B78

0225C8
023028

CSECT

LENGTH

00004C
000114

0000E8

000A60
000244

TYPE

PD
SD

SD

SD
CM

SEG

01
01

02

OD
OD

• HIERARCHY1, a constant printed beside the TYPE when a load module
has been link edited with hierarchy designation, and the CSECT has
been marked for loading into Hierarchy 1. Hierarchy 0 loading is
indicated by the absence of such a notation. An example of the use
of this identification is:

CSECT

NAME ADDRESS LENGTH TYPE

IMBTST05 000000 OOOOOC SD
IMBTST06 000010 OOOOOC SD
IMBTST07 000020 OOOOOC SD HIERARCHYl
IMBTST08 000030 OOOOOC SD HIERARCHYl

Numerical RLD Listing

A map, in order by main storage location, of the RLD items within a load
module. Column headings on the listing are:

1 234 5

LOCATION REL ADR IN CSECT REFERS TO IN CSECT

This line of column headings may be interpreted as:

"In this location (column 1) • • • at this relative address (column
2) in this control section (column 3) • there is a reference
to the area identified by this name (column 4) • • • which resides in
this control section <column 5).

Alphabetic ESD Listing

The same as the numerical ESD listing but sorted to order by ESD name
rather than by location.

144 Service Aids (Release 21)

Alphabetic RLD Listing

The same as the numerical RLD listing but sorted to order by reference
name (column 4) rather than by location.

A map of a link pack area is formatted to give the following
information, appearing in two sets of columns on a listing page:

LOCAT ION' LENGTH NAME EP ADR EP REL ADR

where EP ADR is entry point address, and EP REL ADR is entry point
relative address.

Chapter 6: IMBMDMAP 145

•

MDMAP Examples

The following examples and figures illustrate the job control language
statements needed to produce sample configurations of IMBMDMAP maps;
excerpts from the resulting maps show the headings and data for the
edited portions of the information.

Example 1: Mapping an MVT Link Pack Area and Nucleus

This example shows the statements for a map of an MVT nucleus and
link pack area. Figure MDMAP-9 shows the resulting map.

//JOBl
//STEP1
//DD1
//SYSPRINT
/*

JOB
EXEC
DO
DO

MSGLEVEL= (1,1)
PGM=IMBMOMAP,PARM=ILINKPACK'
DSN=SYS1.NUCLEUS(IEANUC01),DISP=SHR
SYSOUT=A

146 Service Aids (Release 21)

(j
::r
SlJ
"'0
rt'
CD
Ii

~

H :s:
~

~
'"tj

~
os::.
...J

LOAO MODULE MAP VERSION 0 LEVEL 0.190

IMBMOMAP - SYS1.NUCLEUS(IEANU(01)

ATTRIBUTES - DC ,SCTR

NAME - lEANUCOl ALIASES - NONE

CSECT

DATE=7C.091 NUMERICALLY BY ESD ITEM

ENTRY ENTRY E Xl REF

NAME ADDRESS LENGTH TYPE NAME ACDRESS REL ADR NAME ADDRESS REL ADR

IfAQFXOO 000000 o 1 liFO SO

IM8MO
MAP

_ SYSl.NUCLEustIEANUCOll

lOtATION REl AOR IN tSEtT REFERS TO

IMR~O

.AP _ SYSI IEAOF'OO IEAt-
T

.NUtlEUS! IEAOE'OO IEANUCOl) -onoKQO

__ A.I"\/ .. r.

CSECT
NAME ADDRESS LENGTH TYPE

NAME $PRIVATE 0267F8 000000 PC $PRIVATE 026F28 COOOOO PC $PRIVATE 026F28 00 $PRIVATr-
$PRI VAT

IMBMDMAP - SYS1.NUCLEUStIEANUCOl)

LOCATION REL ADR IN CSECT REFERS TO

IN CSECT

lEAQBKOO
lEAQNUOO
IEAQNUOO
_r- _nNUOC

ENTRY

ADORE SS

IN CSECT

REt ADR

LOCAT ION

00005 4

0000 64
000014
000080
00112.0

oe2110

O~l NUMERICALLY SY RLO ITEM
UP,E:10. v -''' ,.­

REl AO' IN tSEtT REFERS TO IN tSEtT

000054
0000 04
000014
OOOC80
001120
002110
0021CO

IEAQHOO
I EAQHOO
I EAQHOO
I HoQHOO
lEAQHCO
IEAQF)(OO
lEAOHOO
1 EAQF)(OO

TRPTR
IfAQSCOO
IGFNOOOO
IFBACT A
lHS100
IHS10l
lHB10
IHB20 6
IFFS20 1

lEAQTRCE
lEAQNUOO
lGFNUCOO
IFBCTAOO
IFFBoA
IFFBDA
IHSoA
IFFBOA
IFf BOA
Iff BOA
~oA

DATE:70.091 ALPHABETICALLY BY ESD ITEM

ENTRY

BOA
BOA
001
23)(

A
EXT REF

Nt.ME ACDRESS REl ADR
NAME

DATE=10.091 ALPHABETICALLY BY RLO ITEM

LOCATION REL ADR IN CSECT REFERS TO IN CSECT

DECENT I. 021184 000004 IFBDCBOO CCHPTTAB IGFCAT 014F88 000090 IEAQGMOO COOESTRY IGC003 I - - f\'H r7~ nnnQ7R JFAOJ KOO CDHKEEP 1GC093
MVT LINK PACK MAP

lOCATlON LENGTH NAME EP AOE(EP REl AOR

078000 000400 IGG02C II C7800e 000000 078800 000400 IGGI)200Y !Jltlaoc nnnnnn

OATE=70.091 NUMERICALLY BY LOCATION

LOCAT ION LENGTH NAME EP ADR EP REl AOR

078400 078400 000400 IGG02001

MVT LINK PACK MAP OATE=70.091 ALPHABETICALLY BY NAME

LOCATION LENGTH NAME EP ADI< EP REl ADR LOCATION LENGTH NAME EP AOR EP REl AOR

01F5DO 000068 IEEPAL TR 01F5DC 000060 IEEPDISC 01EEl8
07F048 000068 IEEPPRES 01F04E 000040 I EEPRTN 01F868
07F81C 0001)58 IEEVMNTl 07F81 C 000058 lEEVSTRT 07F8A8
01F638 OC01C8 IEEVWIlK 01F63 E 000058 IEfQINTl 01F518
01F4FO 000088 IEFSDI02 01F4fC 000060 IEFSD105 01EFAO
07FOBO 000440 I EFS0263 07F 21C 000128 IEFVME 01EE78
070288 000400 IGcooe 11 0102B E 000400 IGCOO05E 07CCOO
01EDB~ 07EDSC
07DB10 010B7e

000068 IGG019AB 07E048
OOOOCO IGGC19AO 070968

.01007 E

F~gure MDMAP-9. Excerpts From the Map Resulting From Example 1

•

Example 2: Mapping the E5Ds of Load Module, Using the Relocation Option

The statements in this example will produce a basic map of a load
module in SYS1.LINKLIB with relocation of the relative addresses to base
address lOAlO. Only the numerically arranged ESO entries are produced.
See Figure MOMAP-10 also.

//JOB3
//MAPMOD
//003
//SYSPRINT
/*

JOB
EXEC
DO
DD

MSGLEVEL= (1, 1)
PGM=IMBMDMAP,PARM='BASIC,10A20'
DSN=SYS1.LINKLIB(IEFAS061),OISP=SHR
SYSQUT=A

148 Service Aids (Release 21)

LOAD MOOULE MAP VERSION C LEVFl C.190

fMBMDMIlP - SYSI.NUCLEUSC tEANUCCll OATE=10.091 NUMERIC~LL' BY ESD ITEM

ATTRleUTES - DC .SCTR

NAMF - IEANUCO I ALIASES - NONE

CSECT ENTRY ENTRY EXT REF

NAME ADDRESS LENGTH TYPE NAME ACDRESS REl ACfl NAME ADDRESS REL ADR NAME

CCHPTTA8
IEAAIHOO 000000 OC5802 SO

IEAHPTCR 000180 CCCl8C IEAPPTCB 00C180
IEAHEAO COO 1% oe0180 JORGSAV 000100
IEAMSBBX C002C8 eCC2CS IEIlTIBBX 000230
PISAV OOC2AO OOC2AC PCSAV C002CD
S'oiF COO2E7 CC02E7 SVEX C002E8
AIDS C002FO CCC2FC sun 000304
IDRGSW CC0306 CC03N: I EAO 1002 OOC~16

DISMISS 000346 (100346 IEAOXEOO 00C45A
S'oiCSAV CONce CCC4CO RESUMPSW C00500
IEACOS CIJ051C eOC510 J EATCBP 000'378
IEATCBlK 000578 C00518 IECIERLC 00C582
IEA~ CCC5C;C SIRB _ 0!l.C.6..E8
lEe 000762

I~BMDMAP - SYSl.NUCLEUSI IEANUC011 OATE:70.0~1 NUMERICALLY BY RLD ITEM

LOCATION REL AOR IN CSECT REFERS TO IN CSFCT LCCAl leN REL ADR IN CSECT REFERS TO IN CSECT

OOOOlC 000010 IEAAIHOO IEACVT I EAC VTRIIi 000014 000014 IEAAII-'OO IEATRT8L IEATRC
O(lOO4C OCOO4C tF.AAIHOO IEACVT IEACVTR~ OCI)08C 000080 IEAA 1"'00 IFBACTA IFBCTAOC
000174 000174 IEAA I HOt' lEANIP4 IEAAN(PO OIJ02EC "C02EO IEAAIHOO SVCTBL IHASVCOO
OM2E4 0OO2E4 IEAA IHOI' SVPRFX IHASVCOC 0OO2ES eC02ES IEAAI/-iOO SVE IEAATAOO
('I1)O"2EC 0OO2EC IEAAIHCO OXA IEAATAOO 0OO2F8 OOC2F8 1 EAA 1..00 IEAOPlOO IEACPLOO
OOOlFC 0OO2FC IEUIHOO PSW"lDX2 lEATRC 000300 000300 IEAA 11"00 PSWNDX IEATRC

n 000360 OC03BO IEAAIHOO IEEBC 1PE I HBC IPE OOO.3R4 0003B4 IEAAIHOO lEAOTIOO IEAQTIOO
t:r 000570 000570 IFAAIHCO JEAQTEOO IEAQTICO OC0574 000574 IEAAII"OO IEAQTOO1 IEAQTlOO
PJ 0(10748 000748 lfAAIHOC IEAOFNOO IGC006 OC12F8 COl2F8 IEAAI ... OO IEATCBLK IEAAIHOC

'"0 001300 0013eo IEAAIHOO tEAOPTCl IGCOO2 0('1304 001304 IEAAlI-'OO ER2311 IEC23XXE
rt 001310 001310 IEAAtHCC TRACE IEATRC 00131C OOlHC IEAAII-OO IEASVDCB IGCCC6
CD 00132C OO132C IEAAIHCQ IEAOEFCQ IEAAIHOO OC 133C 001330 IEAAIt-OO IEAAJOBQ IEAAJOBQ Ii 001'384 001384 IEAAIHCO lEEBAl IHBAI 00 l3BC 0013BC IEAAII-'OO IEFDPOST IEFDPCST
0'\ OO13CO 0013CO IEAAJHCO IFF 10M IFFABA OOlR80 001880 IEMII-CC IFFB016 IFFBDA

"02500 (102500 IEAAIHOO IFF B lEO IFFBOA OC2535 002535 IEAAII-'OO IffB206 IFFSDA
Ol)2E39 002E39 IF.AAIHnc tFFB2E(, IFFBDA 002E61 oelE61 I EAA noo IFFB2El IFF80A

H
005FQO OMOES IGCOOq SVCSAV IEAAIHOQ OC5FZ2 t:'OOlOA IGCOO9 SVCSAV [EAAIHOO

;3: 005F70 00015B IGCOOq IEAARAM4 IGCOO6 OC626A OC02EA IGeOO6 IEAOIOO2 IEAAIHOO

~
00626E "OO2EE tGCC06 IEAOIOO2 IEAAIHOO 006401 OC0551 IGeOO6 [EAOIOC2 IEAAIHOO
006558 000508 IGC~06 IEAOIOO2 IEAAIHOO OC6598 000618 IGCOO6 XSNTCC IEAATAOO

~
00659C 0OO6lC }GC006 JEWMSEPT IEWFTHSL 001022 000002 IEAOPLOO CBP IEAAIHOO
007026 0 006 IEAOPLOO IORGSW IEAAlHOO 00702E 00 IEAOPLOO IEAAIHOO

ttl 007042 IEAOPLOO PISAV IEAAJHOa 00704 00
COlO EACPLOO IEACXECfl IEAAtHOO 007

PlOO IEACABCO IE'ACABOO
J-I r 00 IE4T
~
\.,0

Figure MD.tJlAP-1O. Excerpts From the Map Resulting From Example 2

•

Example 3: Mapping a Load Module with the DEBUG and Relocation Options

This example includes the DEBUG and relocation options. Because of
the nature of the module being mapped, IMBMDMAP produced (in addition to
the regulation map items) hexadecimal dumps of the PDS directory and of
the load module, and snapdumps 1, 5, and 6 of the series described under
the DEBUG parameter discussion. Figure MDMAP-ll shows excerpts from the
listing.

//JOB4
//DEBUGDMP
//DD4
//SYSPRINT
//SNAPDUMP
/*

JOB
EXEC
DD
DD
DD

MSGLEVEL= (1,1)
PGM=IMBMDMAP,PARM='DEBUG,7FFFF'
DSN=SYS1.LINKLIB(IEFW21SD),DISP=SHR
SYSOUT=A
SYSOUT=A

150 Service Aids (Release 21)

LOAD MODULE MAP VERSION 0 LEVEL 0.190

I~BMDMAP - SYS1.LINKLI8(IEFSOO6l) EP:OI0~20 DATE=70.091 NUMERICALLY BY ESD ITEM

ATTRIBUTES - REUS, RENT

NAME - IEFS0061 ALIASES - IEFSD065 IEFSDIC4 IEFV4221 IEF\oi42SD

CSECT ENTRY ENTRY EXT REF

NAME ADDRESS LENGTH TYPE NAME ADDRESS REl ADR NAME ADDRESS REL AOR NAME

IEFSD06l 010A20 000784 SO
QMTMSG o lllQ8 000035 SO
t EFSD064 011210 OCC4E8 SO
IEFS0065 01l6F8 000138 SO
IEFSD066 011830 000256 SO
I EFOSTAL OllAS8 0002R8 SO
IEFOSlST 011040 000180 SO
IEFOSTRT 011Ece oee1FF SO
IEFACTlK 0120CO OCC4lC SO
I EFACTRT 0124EC 000002 SO
I EFUJ I 0124E8 000004 SO
I EFUS I 0124FO 000004 SO
IEFSMFWI O124F8 0004E6 SO
IEFSMFIE 0129EC 000210 SO
IEFSOO62 012BFIJ OOGlSC SO
IEFSDl04 012060 0000A2 SO
IEFIOMPM 012E58 000219 SO
I EFW42S0 ('13078 000146 SO

IEFV4221 O1300E 000066
IEFIDUMP 0131CO OC041A SO
I EFYN 0135EO 000568 SO
WTERM020 013848 000036 SO
I EFYP 013B80 0OO2AF SO
IEFVJ 013E3C OC0178 SO
WTERM030 013FAS 00004B SO
IEFIG o 13FFB OCOA67 SO

ZGOJ5 014286 caC28E IGOJ8 0142A8 COG2BO
IEFIG2 C14A6C 000933 SO

IGOK09 014A60 cooooe 100Al 014El4 000384
(J lOOEI0 015048 oeC5E8 ZPOC 10 01515E 0OO6FE
~ ZPCQMGR1 01521C 0007BC IlJ
to IEFW22S0 015398 000006 SO
rt- f EFIGMSG 015470 OCOtA2 SO
CD IEFZH O1561R 000A14 SD
Ii ZGOE60 01564A 000032 lKOOl 0158EO 0002C8

0"'1 lKOOtA 015B48 oe0530 lKOEl (;15B82 00056A
XPS631 C15E60 000848

I EFWTERM 01603C 000065 SO
WTF.RM050 01605C ooe02C

H IEFW31S0 016098 OOC5BE SD :s: I EFS0060 016658 000016 SO

~ IEFYT 01667C f.lOO28E SO

0 I EFCMSSS 016<;00 O(,OOIC SO

~ JEFYS 016920 00C114 SO
IEFQASGN 0161\98 0OO48A SO

"0 lEFQASNM 016F28 000055 SO
I EFCMRAW C16F8C 000140 SO

f--I I EFQMWTO 0170CO 0OO03F SO
l.11
f--I

Figure MDMAP-ll. Excerpts From the Map Resulting From Example 3

•

Operational Conside:ratio:ns

You should pay careful attention to thef oll,owi ngpointswhen using
I MBlV'.J)MAP :

• A maximum of sixteen aliases will be printed, since the linkage
editor assigns no more than sixteen.

• Link packar;ea maps :for MFT do not include resident sve routines.

• If the DEBUG parameter is used., a SNAPDUMP DD stat,ement must be
incluicledintne jobstream.

• ,A DO statement is j['eguired for each load .module to be mapped,.

• To map a nucl .. eus load module, the nucleus must be a member of a
part,itioned data set named SYSn.NUCLEUS, or incorrect will result.

• To obtain a main storage dump in the event ,of abnormal termination
when using the DEBUG paramet.,er, a SYSABEND or SYSUDUMP DD statement
must be included in the jObstream.

152 Servic,~Aids .(Rel€ase 21)

Chapter 7: IMCOSJQO
Operates as a problem program to format and print the system job queue. •

Chapter 7: IMCOSJQD 153

154 Service Aids (Release 21)

I NT RODUCT ION • •

STARTING OSJQD • • • • • • •
Restarting the System • • • •
Invoking OSJQD by JCL • • • • • •
Invoking OSJQD from the System Console •

CONTROLLING OSJQD • • • • • • • • •
Defining the Input Data Set
Using the Control Statements ••

OSJQD OUTPUT • • • • • • • •
Record Identification Headings
Output Comments •• • • • • • • •
Error Recovery Procedures

Contents

.157

• .158
•••••• 158

• .159
• .159

.162
• .162
• .162

• • • • • 164
.166

• • 167
• • • • • 167

JCL AND CONTROL STATEMENT EXAMPLES .169
Example 1: Dumping the Input Job Queues. • • .169
Example 2: Searching the Input Job Queues for a specific Job ••• 169
Example 3: Dumping the Entire Job Queue. • ••••••••• 169

Figures

Figure OSJQD-1.

Figure OSJQD-2.

Figure OSJQD-3.
Figure OSJQD-4.

Figure OSJQD-5.

Figure OSJQD-6.

Sample Job Control Statements Used
to Invoke OSJQD • • • • • • • • • • • .159
An Example of a User-Written Cataloged
Procedure to Call OSJQD from the System Console •
A Sample Exchange Between the Operator and OSJQD
OSJQD Execution Time as a Function of
Output and Input Devices • • • • • • • • • • • •
Sample Job Control Statements and Control

• 160
.161

.164

Statements Used to Print a 9-Track Tape
Containing OSJQD Output • . • • • •
Sample OSJQD Output, Showing Output Comments

••• 164
.165

Chapter 7: IMCOSJQD 155

•

156 Service Aids (Release 21)

Introduction

IMCOSJQD is a service aid that formats and prints the contents of the
system job queue data set (SYS1.SYSJOBQE). IMCOSJQD is similar in
function to the standalone service aid IMCJQDMPi however, IMCOSJQD
operates as a problem program under the operating system, using standard
access methods. IMCOSJQD can therefore be used without disrupting
normal operating system processing; this is a great advantage in a
large installation where stopping and restarting the operating system
can take a long time~

To save even more time, you can specify that IMCOSJQD output should
be stored temporarily on tape rather than printed immediately. The tape
can be printed later, at your convenience.

You can use IMCOSJQD to dump the entire job queue, or you can select
specific queues within the job queue and their associated logical tracks •

Chapter 7: IMCOSJQD 157

•

Starting IMCrQSJQD

IMCOSJQD resides in the linkage library (SYS1.LINKLIB data set). You
can invoke it either through job control statements in the input stream
or through the system console.

In almost every case you will run IMCOSJQD to produce a listing that
~ill help you diagnose a problem connected with the job queue. If the
problem is relatively minor, and the system can continue processing, you
can schedule IMCOSJQD immediately. For more severe problems, when the
operating system cannot continue processing, you must restart the system
before running IMCOSJQD.

Restarting the System

If the system goes down, first try a system restart (warm start); that
is, IPL without reformatting the job queue. If the restart fails, take
action as suggested below:

If your installation has a volume containing an alternate
SYS1.SYSJOBQE data set, restart the system, requesting that that volume
be formatted as the new job queue data set. Then run IMCOSJQD,
specifying the original job queue data set as input.

If your installation has more than one operating system, and time is
not critical, mount the volume containing the job queue on another
system. Then run IMCOSJQD on that system, specifying the transferred
data set as input.

If you cannot use an alternate volume, or if the volume containing
the job queue data set cannot be moved, dump the job queue data set to
another direct access volume with a different volume serial number, as
follows:

1. Execute the IBCDMPRS utility to dump the SYS1.SYSJOBQE data set to a
direct access device. Use IBCDMPRS control statements like those
shown in the following example:

DUMP JOB DUMP 2314 ONTO 2314
DUMP FROMDEV=2314,FROMADDR=230,

TODEV=2314,TOADDR=232,
VOLID=ALTQUE

END

For more information about the IBCDMPRS utility program, refer to
the publication IBM System/360 Operating system, Utilities,
GC2 8- 6586.

2. Restart the opera ting system, specifying that the job queue should
be reformatted. This will establish a fresh job queue.

4. Run IMCOSJQD, specifying the new direct access data set as input.

158 Service Aids (Release 21)

Invoking OSJQD by JCL

Figure OSJQD-l shows an example of job control statements used to invoke
IMCOSJQD. The statements are described below.

//DUMP JOB MSGLEVEL=(l,l)
EXEC PGM=IMCOSJQD //

//OSJQDIN
//
//OSJQDOUT
//
//SYSPRINT
[//SYSIN

DD DSNAME=SYS1.SYSJOBQE,
UNIT=2314,VOL=SER=111111,DISP=SHR

DD UNIT=2400,DISP=(NEW,KEEP),
DSNAME=QUEUEOUT,LABEL=(,NL)

DD SYSO UT=A
DD *1

/*
Figure OSJQD-l. An Example of Job Control statements Used to Invoke

IMCOSJQD

EXEC Statement

calls for the execution of IMCOSJQD.

OSJQDIN DD statement

defines the job queue to be processed. Note that the DD statement
that defines the input data set must be named OSJQDIN.

OSJQDOUT DD statement

defines the output data set. In this case the output data set,
named QUEUEOUT, resides on a tape device. Note that the DD statement
that defines the output data set must be named OSJQDOUT.

SYSPRINT DD statement

defines the IMCOSJQD message data set.

SYSIN DD Statement (optional)

defines the data set that contains IMCOSJQD options. In this case,
the options follow the job control statements in the input stream.
If this statement is omitted, the operator will be prompted to
supply options.

Invoking OSJQD from the System Console

If you wish, you can include the job control statements shown in Figure
OSJQD-l as a cataloged procedure in the procedure library (SYS1.PROCLIB
data set); this allows the operator to initiate IMCOSJQD processing from
the console.

Use the IEBUPDTE Utility to include your IMCOSJQD cataloged
procedure in SYS1.PROCLIB. The name you specify in the ADD control
statement for IEBUPDTE is the name of the procedure that you must
specify in the START commanq. For information on using IEBUPDTE, refer
to the publication IBM System/360 Operating system: Utilities, GC28-6586.

Chapter 7: IMCOSJQD 159

•

Figure OSJQD-2 shows an example of a cataloged procedure that calls
IMCOSJQD.

IIOSJBQDMP PROC REG=20,D='SYS1.SYSJOBQE',U=2314,VS=111111,
II DSP=SHR,UN=2400,DISP=(NEW,KEEP),DSN=QUEUEOUT
II EXEC PGM=IMCOSJQO,REGION=®.K
IIOSJQDIN OD OSNAME=&O,UNIT=&U,VOL=SER=&VS,OISP=&DSP
IIOSJQOOUT DO UNIT=&UN,DISP=&OISP,DSNAME=&DSN
/ISYSPRINT DO SYSOUT=A
1*
Figure OSJQD-2. An Example of a User-Written Cataloged Procedure

to Call IMCOSJQD from the system Console

PROC Statement

defines the name of the cataloged procedure and default values for
any symbolic parameters included in the remaining statements in the
procedure. In this case, the defaults are as follows: the input
data set is SYS1.SYSJOBQE, the output data set is QUEUEOUT, and the
region size is 20K. Note that you can specify any name for the
procedure on the PROC statement.

EXEC Statement

calls for the execution of IMCOSJQD, and specifies the region size
by a symbolic parameter. (The default region size specified in the
PROC statement is 20Ki this is the minimum region size required for
IMCOSJQD processing.)

OSJQDIN DD statement

defines the input data set. In this case, symbolic parameters
permit the operator to specify an input data set or accept the
defaults specified in the PRoe statement.

OSJQDOUT DO statement

defines the output data set. In this case, symbolic parameters
permit the operator to specify an output data set or accept the
defaults specified in the PROC statement.

SYSPRINT DD Statement

defines the message data set.

Note that the SYSIN DD statement has been omitted from this cataloged
procedurei as a result the operator will be prompted to supply options
when he starts IMCOSJQD.

160 Service Aids (Release 21)

Figure OSJQD-3 shows an example of an exchange between the operator
and IMCOSJQD while starting IMCOSJQD. Note that in this example the
operator made an error the first time he selected dump parameters, and
IMCOSJQD prompted him to correct his error.

start osjbqdmp",reg=24

00 IMC001A SPECIFY SELECT PARAMETERS OR END
rOO, 'qcr=cls=c'

01 IMC002A COMMAND ERROR - ENTER QDUMP PARAMETERS
rOl, 'qcr=class=c'

00 IMC001A SPECIFY SELECT PARAMETERS OR END
rOO, 'qcr=class=g'

IMCOOSI SPECIFIED QUEUE IS EMPTY
02 IMC001A SPECIFY SELECT PARAMETERS OR END

r02, 'qcr=class=a,jobname=(myj9b ,youjob,hisjob),

IMC006IrHESE JOBS NOT FOUND
HIS JOB

03 IMC001A SPECIFY SELECT PARAMETERS OR END
r03,'qcr=class=a,jobname=(myjob,herjob) •

04 IMC001A SPECIFY SELECT PARAMETERS OR END
r 04, 'end'

IMC004I QDUMP COMPLETE

Figure OSJQD-3. A s~mple exchange between operator and IMCOSJQD •

Chapter 7: IMCOSJQD 161

•

Controlling OSJQD

You control IMCOSJQD processing by defining the input data set and by
supplying control statements.

Defining the Input Data Set

In most cases, the input to IMCOSJQD will be the system job queue,
SYS1.SYSJOBQE. However, IMCOSJQD will accept as input any data set on a
direct access device that has the format of the system job queue. This
feature is useful when you have transferred the contents of the
SYS1.SYSJOBQE data set to another volume, as described earlier in
"Preparing to Use IMCOSJQD".

Using the Control Statements

Several control statements allow you to specify how much of the job
queue you want IMCOSJQD to format and print. You can enter these
control statements in two ways:

• If you invoke IMCOSJQD with JCL and include a SYSIN DD *, you can
include control statements as cards in the input stream. If you
want more than one dump operation, you must supply a separate card
for each dump. IMCOSJQD will process the cards sequentially and
produce a separate output listing for each one. (Blank cards will be
ignored.) IMCOSJQD will terminate when it reaches end-of-file.

• If you start IMCOSJQD from the console, or if you omit the SYSIN DD
* statement from the JCL, IMCOSJQD will prompt you to supply dump
options. In reply you should define one dump operation fully.
IMCOSJQD will prompt you again when it has finished processing the
first dump, and you can then define a new dump operation. If you
want to terminate IMCOSJQD processing, you must wait for a prompting
message and reply END. (see Figure OSJQD-3.)

There are four IMCOSJQD control statements: QCR=, JOBNAME=, ALL., and
END.

specifies that the job queue data set's master queue control record
and the queue records associated with the named work queue should be
formatted and printed. The parameters are mutually exclusive; if
you want more than one specific work queue, you must request
separate dump operations for each.

For each QCR= option, IMCOSJQD dumps the master queue control
record, the requested minor queue control record, and the logical
tracks associated with that minor queue. The QCR= options and the
minor queue control records they request are as follows:

162 Service Aids (Release 21)

ASB - Automatic SYSIN Batchin9 Queue

CLASS=y - An input job queue (A through 0)

FREE - Free Track Queue

HOLD - Hold Queue

RJE - Remote Job Entry Work Queue

SYSOUT=x - An output job queue (A through Z and 0 through 9)

SUBMIT - TSO Background R'eader Queue

JOBNAME=(jobname1[••• ,jobname4])

ALL

requests IMCOSJQD to search all fifteen input work queues for
logical track areas assigned to the specified jobname(s). These
will be dumped along with associated system message blocks and data
set blocks.

Note that searching all the input work queues for a job is a
time-consuming operation. To reduce this time, use the QCR=CLASS=x
control statment in combination with the JOBNAME= control statement
to specify the input class of the requested job(s). For this
purpose both control statements may be coded on a single card or
entered as a single reply to a prompting message. An example of
such an entry is:

QCR=CLASS=B,JOBNAME=(NEWJOB)

requests a dump of the entire job queue. This is the default
option; it will take effect if the operator replies to the message
prompting him for dump options by entering r xx, 'Ute

Chapter 7: IMCOSJQD 163

•

IMCOSJQD Output

IMCOSJQD output can be directed either to a printer device or to a
scratch tape, from which it can be printed later. Immediate printing
can take a long time, so in most cases you should direct IMCOSJQD's
output to a tape. Figure IMCOSJQD-4 shows the differences in execution
time per 100 tracks between tape and printer output for various devices
on which the job queue can reside.

Output Device

Queue Device Printer (1403) Tape (2400)

2311 11.3 minutes 4.0 minutes

2314 19.5 minutes 6.9 minutes

2301 49.5 minutes 17.4 minutes

Figure OSJQD-4. IMCOSJQD Execution Time per 100 Tracks of Input
as a Function of Output and Input Devices

Once IMCOSJQD's output is on a scratch tape, you can print 'it at any
time using IEBPTPCH. Figure OSJQD-S-shows an example of the job control
statements needed for this operation. For more information, refer to
the publication IBM System/360 Operating System, Utilities, GC28-6586.

//PRINT JOB MSGLEVEL=(l,l)
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD UNIT=2400,LABEL= (,NL), VOL=SER=QDUMPT,

//
//SYSPRINT
//SYSUTl
//
//SYSUT2
//SYSIN

DISP= ('OLD, KEEP) _,DCB= (RECFM=F,BLKSIZE=121,LRECL=121)
DD SYSOUT=A
DD *

PRINT PREFORM=M
/*
Figure OSJQD-S. Sample JCL and Control Statements Used to Print a

9-Track Tape Containing IMCOSJQD Output

Figure OSJQD-6 shows a sample listing of a job queue as produced by
IMCOSJQD.

164 Service Aids (Release 21)

TTR NN TYPE DISP SYSJOBQE CUMF PAGE 0001

O=OOE,Q=192

000001 QCR 0000 oeooocoo 02000001 C0066701 01910180 0006000C 05610003 * •••••••••••••••••••••••• *
t<4ASTR 0018 CC250COF OOOCOOC6 00020010 * ...•...••••. *

000002 QCR 0000 ceooocoo ooooeoco ODOOOOOC cocoocce OCOOOCOO 00000000 * •••••••••••••••••••••••• *
HOLD 0018 OOOOOCCO 00000000 00000000 * .••••.••.••. *

000003 QCR 0000 occcoceo ooeoooco ccceccce CCCCOOCO 00000000 ooooooeo * ••••••.•••••••.•••••.••• *
ASB C018 GeorCCOo oocooooe cooooooe * ..••.••..••. *

000004 QCR OOOC OCOOOCOO 00000000 oeoeoooc cocoeDce 00000000 COOOOOOO * •••••••••••••••••••••••• *
OUT=A COlS oceeocco CCOOOOOO 0006056C * ...••...•... *

QCR 0000 oeoooteo COOOOOOO 00000000 oeceoeoe OCOOOCOO 00000000 * •••••••••••••••••••••••• *
OUT=B 0018 cecco COO OOCOOOCO 000C0000 ~ --- $: ••••••••••••

TTR NN TYPE OISP SYSJOBQE ()U~F PAGE 0006

000202 OCR (001) oeoooree 00000000 OOOCOOOC 00000000 OOOOOCOO OO~OOOOO * •••••••••••••••••••••••• *
RESRV 0018 ecoeoceo ooeooooo 00000000 ~ *

000203 0001 LTH 0000 CGC5C503 06C7404C 000CCI04 00000100 OCOFOOOO *IEElOG *

000204 00(12 COOO E2E8E2F1 4BE2E8E2 E50306C7 £7404040 40404040 40404040 *SYS1.SYSVLOGX *
0018 4C404C40 40404040 40404040 4C4C4040 40404040 40404040 * *
0030 40404C40 COCOCOCO 00000000 OOCCCCCC oe000100 02010000 *•
0048 00000000 8COOOOOO 63016E63 C15EOC80 OCOOOOOO COOOOOOO * •••••••••••••••••••••••• *
C060 fF144CCO 50800E28 COOGoace ccccocoe CCOOCOOO 0001E2E8 * •.•••••••••••.••••••• sv*
C018 E20QC5E2 40404040 40404040 40404040 40404040 40404040 *SRES * coqo 40404040 00000206 00000C88 CCCCODeo ccoooooo coooooco *•
COM OCCCOCCO COOOOI00 * ..•••... * (')

::r 00(1205 0003 OOCO E2E8E2Fl 4BE2E8E2 E5D306C7 £8404040 40404040 40~n404C *SVS1.SVSVLOGY * PJ CO 18 4[404C40 40404040 40404040 40404040 40404040 40404040 * * "0 0030 4[404(40 000000(0 OCOOOOCO Deceocec 0000010C ooooooco *•.. * rT
0048 oeceoroo 80COOOOO 63016E63 C15EOC80 C0000000 oo~OOOCO * •••••••••••••••••••••••• * CD

Ii 0060 CE294000 508COE28 OOOOOOOC cccooece OOCCCCOC 000lE2E8 * ••••••••••••••••••••• sv*
0078 E209C5E2 4C404040 4C4C404C 4C404040 40404040 40404040 *SRES *

-....J ocqO 4C404C40 00C00201 00000088 OOCOOOCO ceocoooo OOOCOOOO * •••••••••••••••••••• *
OOA8 OCOOOCOO COOOClOO * •.•••••• *

H 000206 0004 ENTIRE RECORD CC~TAINS 8IN~~Y ZEROS
:s:
(') 0002CF COCO ZER(RECORDS SUPPRESSED
0
(Jl 000210 eOCE lTH 0000 E2D4Ct4C 40404040 OOCOOEG4 C000010C OOOFDOOO *SMF .•.......... * '-I
10
t:I 000211 OOOF cooo E2E8E2F1 4BC4C105 E74C404C 40404040 4C404040 404C4040 *SYSl.MANX *

4C404(40 40404040 40404040 40404040 40404040 40404040 * *
40404C40 COCOOOCO OOOOOOOC 00000000 00000100 OOOOOOCO * •••••••••••••••••••• *

I-' ~o~ooc(')!LCOC 00000000 00000000 c~C~~OOCOO MoaoaM * •••••••••••••••••••••••• lI<
~
U1

Sample OSJQD-6. Sample OSJQD Output • Showing output Comments

•

Record Identification Headings

For each record, IMCOSJQD supplies information under the following
headings:

rTR

Direct access address, relative to the beginning of the data set.
for QCR and logical track records.

NN (not supplied for queue control records)

TYPE

gives the sequence number of the logical track record within the
specific work queue. This is a hexadecimal number assigned to each
new record as it is added to the queue. The first logical track
header record in the queue is always 1; for each new record added
to the queue, the value of nn is increased by 1.

identifies the record type. IMCOSJQD recognizes the record type in
two ways: queue control records and logical track header records
are identified through their position in the structure of the job
queue. Records from the logical track area are identified by the
value in the ID field of each record (byte 4, at offset X'03').

The following table shows the type labels and their significance.
Where applicable, the ID field value is also shown.

TYPE ID RECORD

QCR Queue Control Record.

LTH Logical Track Header Record

ACT 01 Account Control Table

DSB 15 Data Set Block

DSENQ OF "Data Set Enqueue Table

DSNT 07 Data Set Name Table

JCT 00 Job Control Table

POT OA Procedure Override Table

SCT 02 Step Control Table

SCTX OC Step Control Table Extension

SlOT 03 step Input Output Table

5MB 05 System Message Block

VOLT 06 Volume Table

If no TYPE identifier is shown in the listing, the record is either
a job file control block (JFCB). job file control block extension
(JFCBX), or system output class directory (SCD>. etc.

166 Service Aids (Release 21)

DISP

The column headed TYPE in the listing also identifies the name of
the specific work queue associated with a queue control record. The
following table shows the work queue identifiers and their
significance.

ASB

CLS=y

HOLD

MASTR

OUT=x

RESRV

RJE

SUBMT

Automatic SYSIN Batching Queue

System Input Job Class Queues; y is the class identifier
(A through 0).

Hold queue

Master queue control record.

SYSTEM Output Class Queues; x is the class identifier (A
through Z and 0 through 9).

Reserved queue control records.

Remote Job Entry Queue.

Background Reader Queue

gives the displacement within a record of the next hexadecimal word
to be printed on the listing. The first word of the first printed
line for a given record has a displacement of X'OOOO'; the first
word of the second printed line, if one exists, has a displacement
of X·OOlS'.

Ou~put Comments

IMCOSJQD does not dump records that consist entirely of binary zeroes.
Instead, when it comes to an all-zero record, it prints

ENTIRE RECORD CONTAINS BINARY ZEROES

and supplies TTR and NN information as described in the previous
section. If IMCOSJQD comes to subsequent all-zero records, it will stop
printing records until it comes to the next non-zero record or the next
logical track header record. To indicate that all-zero records are not
being printed, IMCOSJQD prints

ZERO RECORDS SUPPRESSED

See Figure OSJQD-6 for an example of an output listing showing these
comments.

Error Recovery Procedures

IMCOSJQD error recovery depends on what kind of dump is being produced,
what record was being read when the error occurred, and how many times
the error has already occurred.

Chapter 7: IMCOSJQD 167

•

If you have requested a full dump (by specifying ALL when starting
IMCOSJQD), IMCOSJQD will attempt to recover from all errors except those
that occur while reading the master queue control record. To recover,
IMCOSJQD prints an output error indicator, attempts to print the record
associated with the error, and proceeds by reading the next record. If
IMCOSJQD could not read the record associated with the error, it prints
an appropriate output error indicator on the output listing, and then
continues processing with the next queue record.

IMCOSJQD will permit up to 20 consecutive errors to occur before
abandoning its attempts to recover. After the twentieth consecutive
error, however, it will issue message IMC016I (PERMANENT I/O ERROR ON
OSJQDIN), print the contents of the SYNAD buffer, and obtain the next
dump option.

If you have requested a selective dump, or if an error occurs while
reading the master queue control record, IMCOSJQD does not attempt to
recover from any errors. It prints the record associated with the error
or an output error indicator, issues message IMC016I, prints the
contents of the SYNAD buffer, .and obtains the next dump option. It does
this by searching the SYSIN data set, if control statements were entered
from the input stream, or by prompting the ·operator to supply dump
options, if control statements were entered from the console. It will
not terminate processing unless it encounters an END control statement
or an end-of-file condition.

The error messages and their meanings are as follows:

badttr - INVALID TTR

IMCOSJQD wil.l print this line in place of the record it could not
find, followed by the contents of the SYNAD buffer.

UNABLE TO READ RECORD

An input/output error occurred while IMCOSJQD was trying to read a
queue record. IMCOSJQD prints the TTR and NN values associated with
the record, and substitutes this message for the contents of the
record itself. The message is followed by the contents of the SYNAD
buffer.

I/O ERROR READING FOLLOWING RECORD

An input/output error occurred while IMCOSJQD was trying to read a
queue record; the error did not prevent IMCOSJQD from reading the
record. IMCOSJQD prints this message to indicate that the record
contains an error, and follows it with the record itself and the
contents of the SYNAD buffer. It also prints the TTR and NN values
assocaited with the record.

INVALID LENGTH RECORD

IMCOSJQD has encountered a record which is not a standard length
(for a normal queue record, standard length is 176 bytes; for
logical track header records, 20 bytes; for queue control records,
36 bytes). IMCOSJQD prints this message, followed by the record
and its associated TTR and NN values. No SYNAD information is
included.

168 Service Aids (Release 21)

JCl and Control Statement Examples

The following examples illustrate some of the functions that IMCOSJQD
can perform.

Example 1: Dumping the Input Job Queues

This example shows how to format and print three input job queues, the
automatic SYSIN batching queue, and two output job queues. Note that
the only JCL statement shown is the SYSIN DD statement; for an example
of the other JCL statements required to invoke IMCOSJQD, see Figure
OSJQD-l.

//SYSIN DD
QCR=CLASS=A
QCR=CLASS=B

QCR=CLASS=C
QCR=ASB

QCR=SYSOUT=A
QCR=SYSOUT=B
/*

*

Note that each control statement requests a separate queue, and that the
control statements are entered in free form.

Example 2: Searching the Input Queues for a Specific Job

This example shows how to combine the QCR= and JOBNAME= control
statements to search a limited number of queues for specific jobs. Note
that the only JCL statement shown is the SYSIN DD statement; for an
example of the other JCL statements required to invoke IMCOSJQD, see
Figure OSJQD-l.

//SYSIN DD *
QCR=CLASS=A,JOBNAME=(MYJOB,YOURJOB,HISJOB,HERJOB)

/*

Note that the maximum of four jobnames are specified in the JOBNAME=
control statement.

Example 3: Dumping the Entire Job Queue

This example shows how to dump the entire job queue. Note that the only
JCL statement shown is the SYSIN DD statement; for an example of the
other JCL statements required to invoke IMCOSJQD, see Figure OSJQD-l.

//SYSIN DD *
ALL

/*

Coding the ALL control statement has the same effect as replying
r xx, 'U' to message IMC001A.

Chapter 7: IMCOSJQD 169

•

170 Service Aids (Release 21)

Chapter 8: IMDPRDMP
Formats and prints dumps, TSO swap data set, and GTF trace data. •

Chapter 8: IMDPRDMP 171

172 Service Aids (Release 21)

INTRODUCTION ..

FUNCTIONS • • • • • • • • • •
Formatting Control Blocks • • • • •
Editing GTF Trace Data • • • •
Dumping the TSO Swap Data Set
Clearing SYS1.DUMP
Selective Printing

Mapping Resident system Modules •
Tracing Queue Control Records •

JOB CONTROL LANGUAGE STATEMENTS
Input DD Statements •
Output DD Statements

USER CONTROL STATEMENTS •
Function Control statements •
Format Control Statements • • • • •
EDIT Control Statement • • • •

EDIT Parameters
EDIT Parameter Defaults and Priorities

Combining Control Statements ••• • • •

ALLOCATING SPACE FOR THE OUTPUT DATA SET
Specifying the Maximum Output Block Size
Increasing the Space Allocated to SYSOUT
Calculating Space Requirements by Block Size • • • •
Calculating Space Requirements for EDIT Output

Editing Internal Trace Data • • • • • • • • •
Editing an External Trace Data Set • • • • •

CATALOGED PROCEDURE •

PRDMP OUTPUT • • • • • • • •

CONTROL STATEMENT EXAMPLES JCL AND
Example 1:
Example 2:
Example 3:
Example 4:
Example 5:
Example 6:
Example 7:

Using the Cataloged Procedure •
Transferring a Dump Data Set
Processing Multiple Data Sets •
Processing a TSO Dump • • • •
Recording the TSO Swap Data Set •
Editing GTF Trace Data From a Dump
Editing a GTF Trace Data Set

Contents

· .175

• .177
• .177
• ·177
• • 177
• ·177
• .177
• .178
• .178

• .179
• .180
• .181

• .183
• • 183
• • 185
• • 187
• ·187
• .191
• .192

• .193
• • 193
• .193
• .194
• .194
• .194
• .195

• .196

• .197

• .208
• .208
• .209
• .210
• .212
• .213
• .215
• .216

Chapter 8: IMDPRDMP 173

•

Figures

Figure PRDMP-l.
Figure PRDMP-2.

Figure PRDMP-3.

Figure PRDMP-4.

Figure PRDMP-5.

Figure PRDMP-6.
Figure PRDMP-7.
Figure PRDMP-8.
Figure PRDMP-9.
Figure PRDMP-10.
Figure PRDMP-ll.
Figure PRDMP-ll.
Figure PRDMP-ll.
Figure PRDMP-12.
Figure PRDMP-13.
Figure PRDMP-14.
Figure PRDMP-15.

IMDPRMDP Input and Output • • • • • • • • • • • • • 176
IMDPRDMP Function and Format Control Statements,
Standard and Abbreviated Forms ••••••• 183
Format of the EDIT Control Statement, Showing
All Valid Keywords • • • • • • • • • • • 188
Priorities and Effects of EDIT Keywords Used
to Select Records by Trace Event Type. • .192
Number of Lines of EDIT Output Per Buffer
As a Function of Maximum Buffer Size and
Trace Type •••••• • • • •• • •••••• 195
The Cataloged Procdure PRDMP •••••••• 196
Sample Queue Control Block Trace ••••••• 197
Sample MVT Link Pack Area Map ••••••••••• 198
Sample MVT Major Control Block Format ••••••• 199
Sample MFT Major Control Block Format •• 200
Sample TSO Control Block Format (Part 1 of 3) .201
Sample TSO Control Block Format (Part 2 of 3) ••• 202
Sample TSO Control Block Format (Part 3 of 3) .203
Sample TCB Summary for MVT or MFT With Subtasking .204
Sample TCB Summary for MFT Without Subtasking ••• 205
Sample Dump - General Format • • '. • • • • • • 206
Sample EDIT for Trace Data Set •••••••••• 207

174 Service Aids (Release 21)

Introduction

IMDPRDMP is a service aid that prints system dump and trace information.
Its principal function is to save you time; it does this by producing
formatted output that you can scan quickly and easily. Within certain
limits, it even allows you to suppress formatting and printing of
information that does not interest you.

IMDPRDMP can process the following kinds of input:

• Dump data sets. These include:

• IMDSADMP high-speed dump data set.

• SYS1.DUMP data set.

• TSO dump data set.

• TSO swap data sets.

• GTF trace data. This may exist as:

• GTF external trace data set (usually called SYS1.TRACE).

• GTF trace data in buffers within a main storage dump.

Chapter 8: IMDPRDMP 175

•

Figure PRDMP-l shows the general characteristics of these types of input
and how they relate to IMDPRDMP processing.

r SYSIN

DUMPS o
or

SWAP

TRACE

INPUT

Conwle J

IMDSADMP
Hi-speed output.

SYS 1 .DUMP or
TS 0 dump output

TS 0 Swap data
sets.

G TF Externa I
trace data set.

IMDPRDMP

Formats and
prints input
data sets.

Input DD Statements:

/ /SYSIN - Control statements.

OUTPUT

Formatted
output

Messages

//TAPE or //anyname - Dump data sets and GTF
trace data sets.

Output DD Statements:

/ /PR INTER - Formatted output.

//SYSPRINT - IMDPRDMP messages.

Figure PRDMP-l. IMDPRMDP Input and Output

176 Service Aids (Release 21)

Functions

You vary the formatting and printing of a dump by supplying IMDPRDMP
control statements. You can enter these either as replies to prompting
messages issued to the console, or as cards in the input stream.

The control statements provide the following functions:

Formatting Control Blocks

You can specify one control statement (FORMAT) that will cause IMDPRDMP
to format all major system control blocks for each task in the system.
When printed, the formatted output will look like a SYSABEND dump_
Note: IMDSADMP low-speed dump tapes can be printed using IMDPRDMP, but
they will not be formatted.

Editing GTF Trace Data

IMDPRDMP can format GTF trace data either as records in the trace data
set or as buffers contained in a dump data set. You can edit trace data
by specifying special keywords in the EDIT control statements. You can
also write exit programs to inspect the data before IMDPRDMP formats it.
Suggestions on how to write a user exit program will be provided in the
Appendix: Writing EDIT User Programs.

Dumping the TSO' Swap Data Set

If a failure occurs in the TSO subsystem or in the operating system, it
is important to capture the TSO SWAP data set quickly so that TSO can be
restarted without undue delay. You can do this by executing IMDPRDMP
against a SWAP data set and a dump data set, and directing its output to
tape. The tape may be printed later, at your convenience.

Clearing SYSl.DUMP

You can use IMDPRDMP to transfer the contents of the SYS1.DUMP data set
to another data set for later formatting and printing at a more
convenient time. This allows you to clear the SYS1.DUMP data set and
resume processing without pausing to print the contents.

Selective Printing

In a single control statement called PRINT, you can specify precisely
what areas of main storage you want IMDPRDMP to print. IMDPRDMP will
format and print control blocks that are associated with specified areas
of main storage, unless you specify only PRINT NUCLEUS or PRINT STORAGE.

Chapter 8: IMDPRDMP 177

•

PRINT allows you to specify printing of main storage areas that are
associated with:

• A certain jobname.

• The current task.

• The task terminated by the damage assessment routine (DAR), where
applicable.

You can also choose printing of the nucleus, system queue area,
and/or all of allocated main storage.

Other control statements provide the following functions:

Resident System Module Mapping

IMDPRDMP can generate a link pack area map (MVT) or a resident
reenterable load module area map (MFT). These maps describe resident
system modules that were loaded into main storage by the nucleus
initialization program (NIP). If you request a map, it will be printed
on a separate page or pages of the IMDPRDMP formatted dump listing.
These maps are useful in diagnosing system failures that occurred in
program modules residing outside the user's region or partition.

Queue Control Block Trace

IMDPRDMP can provide a separate listing of the formatted queue control
blocks for all task control blocks in the system. This listing, known as
a QCB trace, may be used to resolve problems arising from task
contention or system interlock.

178 Service Aids (Release 21)

Job Control Language Statements

Job control statements are important in determining what functions
IMDPRDMP is to perform. This section describes the JCL statements that
have special significance in executing IMDPRDMP. For more complete
information about using JCL statements, refer to the publication IBM
System/360 Operating System: Job Control Language Reference, GC28-6704.

JOB statement

initiates the job, and provides the opportunity to override the
default region size. IMDPRDMP requires a minimum region size of
64K. In most cases it executes more efficiently if its region size
is larger than the minimum.

EXEC Statement

calls for the execution of IMDPRDMP and specifies certain actions
that IMDPRDMP should take. The operands are:

PGM=IMDPRDMP

identifies IMDPRDMP to the system. This is the only required
operand.

PARM='[n] [,T] [,FREEnnn] [,LINECNT=nn] [,S] [,ER=x] ,

n should be used only when the input is a dump data set. It
specifies what IMDPRDMP should do if it detects a permanent I/O
error or format error while processing a dump.

o -- print the nucleus (and the system queue area in MVT)

1 (or n not specified) -- print the entire input data set.

2 -- read the next control card from the SYSIN data set,
or request control statements from the operator •

T specifies that the operator should be prompted to supply a
title for the listing. If T is not specified, no prompting
will occur.

FREEnnn specifies the size of the work space within IMDPRDMP's
region or partition, excluding the size of the root module ,
control module, service modules, and input buffer area. nnn is
the number of K-bytes in the work space. The default is 8K.
This value is usually adequate; however, if the input data set
is very large or complex, use the FREEnnn parameter to specify
a larger work space. Also, if you need additional storage for a
work area in an EDIT user program, use the FREEnnn parameter to
reserve it.

LINECNT=nn specifies the number of lines per page to be printed
on the output listing. The value specified for nn may be any
decimal integer greater than 10. If this parameter is omitted,
LINECNT=58 is assumed.

Chapter 8: IMDPRDMP 179

•

s instructs IMDPRDMP to issue a message which the operator may
reply to at any time during processing. In his reply, the
operator may stop IMDPRDMP from processing the current input
data set and start a new phase of IMDPRDMP execution.

ER=x specifies what action the EDIT portion of IMDPRDMP should
take if it detects an error in an exit or format routine while
editing trace data from a dump or trace data set. The valid
values of x and their meanings are:

o EDIT will display in hexadecimal the record
associated with the error and ignore the faulty routine in
subsequent processing. If the error was in a format
routine, all subsequent records that require processing by
the same format routine will be ignored. If the error was
in an exit routine, record formatting will continue.

1 -- EDIT will display in hexadecimal the record
associated with the error and ignore the faulty routine in
subsequent processing. If the error was in a format
routine, all subsequent records that require processing by
the same format routine will be dumped in hexadecimal. If
the error was in an exit routine, record formatting will
continue.

2 -- EDIT will display in hexadecimal the record
associated with the error; EDIT will then terminate, and
the next IMDPRDMP verb will be executed.

3 -- EDIT will allow ABEND to get control if a program
check occurs in an exit or format routine. (If ER=3 is
not specified, EDIT will issue the SPIE macro before
entering the exit routine or format appendage and thus
bypass ABEND processing.) If the recognized error is not
a program check, the associated record will be dumped in
hexadecimal; then EDIT will terminate and the next
IMDPRDMP verb will be executed.

If this value is not included in the PARM= parameter list, a
value of ER=2 will be assumed. Note that ER=l and ER=2 are the
same for exit programs.

Input DD Statements

{
TAPE }
anyname

DD statement

defines an input dump or trace data set, which may reside on direct
access storage or on tape. If the input data set is a dump, you can
specify any ddname. Remember, however, that for ddnames other than
TAPE, you must use a NEWDUMP control statement to identify the input
data set. You can define any number of input data sets, as long as
each is identified by a different ddname, and each ddname except
TAPE is specified in a separate NEWDUMP control statement.

If the input is a GTF trace data set, the ddname must be the
same as the one specified in the DDNAME parameter of the EDIT
control statement. You can define any number of trace data sets,
provided that you identify each data set with a unique ddname and a
separate EDIT control statement.

180 Service Aids (Release 21)

Here are some of the parameters that you may use to describe
each input data set; note that you may also need other parameters to
describe certain types of input data set. For more information about
DD statement parameters, refer to the publication Job Control
Language Reference, GC28-6704.

* DSNAME=name
VOL=SER=volser
UNIT=ddd

(for direct access only)

(for tape only) * LABEL=) (,NL) I
(, SL)

DISP=OLD
DCB=(BUFNO=number,BLKSIZE=size) (for trace data sets only)

* If the input is a trace data set on a standard label tape,
you must include the DSNAME= parameter and code the LABEL= parameter
as LABEL= (, SL).

Use the DCB parameter to specify a greater block size or more
input buffers, or both, if you think the default values will be
inadequate. The default blocksize is 3500 bytes; the default
number of buffers is 2.

Do not specify a file sequence number in the lABEL= parameter
if you intend to use the NEWTAPE or NEWDump FlLESEQ=x control
statement.

If you omit the TAPE DD statement, IMDPRDMP assumes that the
input data is in the SYSUT1 data set, and has the correct format.

SYSWAPmn DD Statement

defines the TSO swap data set(s). With one possible exception, the
operands should be identical to those used in the TSO procedure; the
exception is that if the TSO procedure is coded DISP=(NEW,KEEP), the
IMDPRDMP SYSWAPmn DD statment should be coded DISP=(OLD,KEEP). For
an explanation of the values for m and n, refer to the TSO Guide.

SYSIN DD Statement

defines the data set that contains the IMDPRDMP control statements.
(If you want to enter control statements from the console, omit this
statement.)

Output DD Statements

PRINTER DD Statement

defines the IMDPRDMP output data set.

SYSPRINT DD Statement

defines the IMDPRDMP message data set.

Chapter 8: IMDPRDMP 181

•

SYSUTl DD Statement (optional if input is a dump data set on tape, not
used if input is an external trace data set)

defines a direct access work data set in which IMDPRDMP can collect
input data. Performance improves when a SYSUTl DD statement is
included, because IMDPRDMP can reference dump information directly
rather than searching for records in a sequential data set.

Required parameters are:

UNIT=ddd

SPACE=(2052, (n,10»

n is calculated as (K/2048)+1, where K is the number of bytes of
input data.

SYSUT2 DD statement

identifies a data set into which IMDPRDMP may transfer the contents
of the SYS1.DUMP data set when time will not permit immediate
formatting and printing of the SYS1.DUMP data set. For more
information about this function, refer to the section nTransferring
a Dump Data Set" later in this chapter.

182 Service Aids (Release 21)

User Control Statements

User control statements allow you to select specific dump formatting
options and control basic operation of the IMDPRDMP program.

IMDPRDMP will prompt you to supply control statements if no SYSIN
data set exists, or if the supply of control statements in the SYSIN
data set is exhausted before IMDPRDMP finds an END control statement.

There are two kinds of user control statements: function control
statements and format control statements. All the control statements
are fully described below. Figure PRDMP-2 shows the complete format of
the function control statements.

Function Control Statements
Standard Form

CVT={hh~hhh}

NEWDUMP [DDNAME={TAPE }][,FILESEQ=nn] [,DUMPSEQ=nn]
anyname

NEWTAPE

GO

ON GO [QCBTRACE] [,LPAMAP] [,FORMAT] [,CVT=parm]

{

[, PRINT parm]}
[,TSO parm]
[, EDIT parm]

TITLE text

END

Format Control Statements
Standard Form

QCBTRACE

LPAMAP

FORMAT

PRINT [ALL] [,CURRENT] [,NUCLEUS] [,STORAGE=(parm)]
[,JOBNAME=(parm)] [,F03]

TSO [SYSTEM={YES }] [, USER=I
PRI

. NT I] USER STORAGE
NO FORMAT

NO

Abbreviated Form

C={hh~hhh}

ND [DD= {TAPE }] [, F=nn] [, D=nn]
anyname

N

G

o [Q] [,L] [,F] [,C=parm]

{

[,P parm] }
[,TSO parm]
[,E parm]

T text

EN

Abbreviated Form

Q

L

F

P [A] [,C] [,N] [,S= (parm)]
(,J= (parm)] [,F]

EDIT parm E parm

Figure PRDMP-2. IMDPRDMP Function and Format Control statements,
standard and Abbreviated Forms

Function Control Statement

The function control statements allow you to control certain operations
bf the IMDPRDMP program, such as input tape handling, dump listing
titles, job termination., etc.

Chapter 8: IMDPRDMP 183

•

CVT={~hhhhh}

allows you to specify the address of the communications vector table
(CVT) in the main storage dump information. Use this if you think that
the CV'l' pointer, in main storage location X'4C' of the system that was
dumped, has been destroyed. If you omit this control statement, and
IMDPRDMP cannot locate the CVT at location X'4C', it will scan the dump
data set for unique identifiers associated with the CVT. If IMDPRDMP
cannot locate the CVT by this scanning process, it will not format the
input but will instead take action as specified by "n" in the parameter
list supplied in the PARM= operand of the EXEC statement. Once the CVT
has been located, it remains in effect until a NEWDUMP or NEWTAPE
control statement is encountered.

hhhhhh

P

NEWDUMP

is a hexadecimal address specifying the location of the CVT in
the input dump information.

specifies that the location found at X'4C' in the system on
which IMDPRDMP is being executed can be used as a valid pointer
to the CVT of the dumped system.

DDNAME={. TAPE } [,FILESEQ=nJ [,DUMPSEQ=nl
anyname

defines an input data set. If you want to process more than one
input data set in a single execution of IMDPRDMP you must supply a
separate NEWDUMP control statement for each. If there is only one
input data set, NEWDUMP is not needed.

NEWDUMP has three keyword parameters:

DDNAME=

gives the ddname of the input dump data set. This parameter is
not required if the TAPE DD statement describes the input data
set.

FILESEQ=

identifies the sequence number of an input data set that is one
of several data sets on a single magnetic tape volume. If this
parameter is omitted, IMDPRDMP assumes a default value of
FILESEQ=l.

DUMPSEQ=

NEWTAPE

specifies the sequence number of a TSO dump that is one of
several TSO dumps in a single data set. If this parameter is
omitted, IMDRPDMP assumes a default value of DUMPSEQ=l.

has the same function as the NEWDUMP statement with parameters
specified as DDNAME=TAPE, FILESEQ=l, and DUMPSEQ=l. Use it when the
TAPE DD statement defines a single tape device on which are to be
mounted multiple volumes, each containing one dump data set.

184 Service Aids (Release 21)

GO

specifies a predefined set of format control statements. They are:
QCBTRACE, LPAMAP, FORMAT, EDIT, and PRINT ALL. The effects of the GO
control statement may be overridden by the ONGO control statement,
which is described next.

ONGO [QCBTRACE1[,LPAMAP1 [,CVT=parm1 [,FORMAT1 [,PRINT parrn1
[,EDIT parm1 [,TSO parm1

overrides the predefined set of format control statements requested
by the GO control statement. The new set of format control
statements will remain in effect for all subsequent uses of the GO
control statement, until IMDRPDMP ends or a new ONGO control
statement is entered. An ONGO control statement with no parameters
restores the original GO functions: QCBTRACE, LPAMAP, FORMAT, EDIT,
and PRINT ALL.

NOTE: The ONGO-GO combination is not required for IMDPRDMP execution.
You need not specify GO unless you want to use a predefined set of
IMDPRDMPoptions; you need not use ONGO unless you want to change
that predefined set. Each IMDPRDMP control statement may be
specified directly at any time.

l'I'I1LE text

END

specifies a title to be printed at the top of each page in the
output listing. Use this statement if you do not expect IMDPRMDP to
prompt you to supply title information; that is, if you did not
specify T in the PARM= field of the EXEC statement or if you are not
entering control statement from the console. You can specify any
title up to 62 characters in length.

signals IMDPRMDMP to stop processing, close all data sets, and
return control to the system control program. (If END is the only
control statement specified, IMDPRDMP will load the data set defined
by the SYSUT2 DD statement. See Example 1.)

Format Control Statements

Format control statements allow you to choose particular parts of the
input to be formatted and printed.

QCBTRACE

requests a trace of the queue control blocks (QCBs) in the input
data set.

LPAMAP

causes IMDPRDMP to format and list the contents of the link pack
area (MVT) or the resident reenterable load module area (MFT) in the
input data set. If the input data set does not contain these areas,
LPAMAP wIll be ignored.

Chapter 8: IMDPRDMP 185

•

FORMAT

causes IMDPRDMP to format and print the contents of the major system
control blocks in the input data set.

PRINT [ALL] [,CURRENT] [,NUCLEUS] [,STORAGE=(addresses)]
[,JOBNAME=(jobnames)] [,F031

indicates which parts of the input data set IMDPRDMP should print,
according to several parameters.

ALL

instructs IMDPRDMP to print the nucleus, the system queue area,
and all allocated regions of main storage in the input data
set. This parameter also requests printing of the dumped
system's registers.

CURRENT

instructs IMDPRDMP to print only the area of main storage that
was associated with the current task when the input data set
was created. This parameter also requests printing of the
dumped system's registers.

NUCLEUS

instructs IMDPRDMP to print the nucleus portion of the input
data set. If the input data set was taken from a system that
was executing under MVT, the system queue area will also be
printed. For the IBM System/360 Model 65 Multiprocessor, both
the high and the low prefixes will be shown on the dump
listing.

STORAGE= (startaddrl,endaddrl" ••• [, startaddrn, endaddrnl)

allows you to supply beginning and ending addresses of areas in
the input data set that you want printed. You may specify any
number of pairs of hexadecimal addresses, so long as the
beginning address in each pair is lower than the ending
address. If you specify a beginning address and no ending
address, IMDPRDMP prints the entire contents of main storage
starting at the address you specify. If you do not specify any
addresses, IMDPRDMP will print the entire contents of main
storage, whether allocated or not. If you specify this
parameter at all, IMDPRDMP will also print the dumped system's
registers.

JOBNAME=(jobnamel,jobname2 ••• ,jobnamel0)

F03

allows you to limit the scope of the output listing to areas in
main storage that are associated with specific jobs. You can
specify up to ten jobnames. IMDPRDMP will print the areas
associated with each job name in the order specified in the
JOBNAME= parameter.

instructs IMDPRDMP to print areas of main storage that were
associated with a task terminated by the damage assessment
routine (DAR).

186 Service Aids (Release 21)

TSO

[

SYSTEM=lYES I] [,USER=IPRINT] US ER . STORAGE
NO FORMAT

NO

instructs IMDPRDMP to process the TSO dump data set and the TSO swap
data sets. IMDPRDMP will not format the swap data sets unless you
have defined them in SYSWAPmn DD statements.

Two parameters allow you to limit the amount of formatting that
IMDPRDMP will do. If you omit a parameter, IMDPRDMP will give you
maximum formatting.

SYSTEM=

USER=

defines the extent of formatting for TSO system control blocks.
The default value is SYSTEM=YESi it causes IMDPRDMP to format
the following control blocks:

TCB family for TSC
TSCVT
RCBs for each TS region
Active TJBs
SWAP CBs for each swap device
Active TSBs
User Main Storage Map.

If you specify SYSTEM=USER, IMDPRDMP will format only active
TJBs, active TSBs, and the User Main storage Map. If you
specify SYSTEM=NO, IMDPRDMP will not format any TSO system
control blocks.

defines the extent of formatting for the TSO user region and
the TSO user control blocks. The default is USER=PRINT, which
causes IMDRPDMP to format both the region and the control
blocks. USER=STORAGE requests only the region, USER=FORMAT
requests only the control blocks. USER=NO requests no
formatting of the user region or control blocks.

EDIT Control Statement

The EDIT control statement causes IMDPRDMP to obtain and process trace
data created by the Generalized Trace Facility (GTF). Like other
control statements, it may be specified either from the operator's
console or through cards in the input stream.

Edit Keyword Parameters

The keywords associated with the EDIT control statement are shown in
Figure PRDMP-3; they are described on the next page. All EDIT keyword
parameters are optional.

Chapter 8: IMDPRDMP 187

•

EDIT [EXIT=pgmname]

[,START=(ddd,hh.mm.ss)]

[,STOP=(ddd,hh.mm.ss)]

[, {~OBNAME} = (jobname1 [, jobname2] ... [, jObname5])J

[, TeB= (address 1 [, address2] ... [, address 5])]

[,SYS]

[, I IO I [= (cuu1 [,cuu2] ... [,CUU50])]J
IO=SIO
SIO=IO
SIO

['{~~~=(SVCnUm1 [,svcnum2] ... [,SVCnUm256]JJ

['{~i= (code1 [, code2] ... [, code15] [, SSM])}J

[,EXT]

[,DSP]

[
, USR= ({~~~=~~~1} [, {~~~~~~~2}] ... ['{ ~~~~~~~~o}]) 1

idrangel idrange2 idrange20

Figure PRDMP-3. FOrmat of the EDIT Control statement, Showing All
Valid Keywords

EXIT=pgmname

defines the program name of a user-written exit routine that will
inspect all trace records when IMDPRDMP gives it control. If the
routine does not exist or cannot be loaded successfully, EDIT
execution will terminate and the next IMDPRDMP control statement
will be read.

DDNAME=ddname

specifies the name of the DD statement that defines the input trace
data set. If you omit this keyword, IMDPRDMP assumes that trace data
exists in buffers in a dump of 'main storage, and therefore will not
accept any other EDIT keywords except EXIT. You must include this
parameter if you want to selectively edit data management trace
records.

START=(ddd,hh.mm.ss)

STOP=(ddd,hh.mm.ss)

These optional keywords specify that IMDPRDMP is to edit all trace
records produced during the time of day indicated. If no START=
time is specified, EDIT processing will begin at the beginning of
the trace data set. If no STOP= time is specified, EDIT processing
will continue to the end of the data set.. If the trace data was
recorded on an MFT system with no timer option, IMDPRDMP will ignore
these keywords.

188 Service Aids (Release 21)

JOBNAME=(jobname1], [,jobname2] ••• [,jobname5])

allows you to specify up to five 8-character jobnames for which EDIT
will process trace data. If all the jobnames to be specified cannot
fit on one line, close the first line with a right parenthesis
followed by a comma; on the next line respecify the JOBNAME keyword
with the additional jobnames.

This keyword is not valid if SYSM data is to be edited.

TCB=(address1[,address2] ••• [,address5)

SYS

10

allows you to specify addresses of up to five task control blocks
for which EDIT should process trace data. The addresses must be
specified as 1- to 6-digit hexadecimal addresses. If all addresses
cannot fit on one line, close the first line with a right
parenthesis followed by a comma; on the next line respecify the TCB
keyword with the additional addresses.

This keyword is not valid if SYSM data is to be edited.

This optional keyword requests EDIT to process all system event
trace records -- that is, SVC, SIO, 10, PI, EXT, and DSP. If no
EDIT keyword except DDNAME, EXIT, START, STOP, JOBNAME, and/or TCB
is specified, EDIT will assume SYS as the default.

[=(cuu1, [,cuu2] 0 •• [,cuu50)]
SIO
10=SIO
SIO=IO

SVC

defines up to fifty different devices for which 19 trace records,
SIO trace records, or both should be formatted. If no specific
devices are requested, all 10 and/or SIO trace records will be
formatted. If any specific devices are specified, only trace
records associated with those devices will be formatted and all
others will be ignored.

Devices should be specified as 3-digit device addresses. If
all devices to be specified cannot fit on one line, close the first
line with a right parenthesis followed by a comma; on the next line
respecify the keyword with the remaining addresses.

SVC=(svcnum1[,svcnum2] ••• ,[,svcnum2561

defines up to 256 SVC trace records that EDIT is to format. svcnum
is a 1- to 3~digit decimal SVC number.

If no svcnum parameters are specified or if both SVC and SVC=
are specified, all SVC trace records will be formatted. If any SVC
numbers are specified, only trace records associated with those SVC
numbers will be formatted; all others will be ignored.

If all SVC numbers' cannot fit on one line, close the first line
with a right parenthesis followed by a comma; on the next line
respecify the keyword with the remaining SVC numbers.

Chapter 8: IMDPRDMP 189

•

PI

PI=(code [, code2l ••.• L, codelS] [, SSM]

EXT

DSP

requests EDIT to format trace records associated with up to fifteen
specified program interrupt codes.. If no program interrupt codes
are specified or if both PI and PI= are specified, all program
interrupt trace records will be formatted. If any program interrupt
codes are specified" only those program interrupt trace records will
be formatted; all others will be ignored. If SSM is specified, EDIT
will format SSM interrupt trace records for data recorded on a Model
6S ~ultiprocessing System.

If all codes to be specified cannot fit on one line, close the
first line with a right parenthesis followed by a comma; on the next
line respecify the keyword with the remaining codes.

requests that EDIT format all external interrupt trace records.

requests that EDIT format all dispatcher task-switch trace records.

USR= ALL

l ~~:~~!li [1: ~~~~~~:2l] [1 : : : : ~~~~~:~ol]
1drangel~ ,1drange2f ... '1drange20~

specifies which user/subsystem trace records should be formatted;
(user or subsystem trace records are created by the GTF GTRACE
macro.) You can specify up to 20 ID values, ranges or symbols
representing single components or subsystems. Idvalue is a 3-digit
hexadecimal ID specified in the GTRACE macro when the records to be
formatted were created. Idrange is a pair of idvalues defining a
range of records to be formatted, for example,
USR=(010-040,BFD-BFF). If you want to edit data management trace
records, specify USR=DMA1.

If ALL is specified alone or in combination with other
parameters, all user or subsystem trace entries will be formatted.
(See Figure PRDMP-4.)

If all parameters cannot fit on one line, close the first line
with a right parenthesis followed by a comma, making sure that any
idrange specified is complete; on the next line respecify the USR=
keyword and continue with the remaining parameters.

190 Service Aids (Release 21)

EDIT Parameter Defaults and Priorities

All EDIT defaults depend on the presence or absence of the DDNAME=
parameter.

• If it is present, the input is an external trace data set. All
parameters are valid. If none except DDNAME= are specified, EDIT
assumes a default of SYS.

• If it is absent, the input is a main storage dump containing trace
buffers. No parameters except EXIT= are valid, since EDIT cannot
select records from a dump. All records, both system and user, will
be processed. If you attempt to select specific records, EDIT will
prompt you to supply the missing DDNAME= parameter or terminate EDIT
processing.

Figure PRDMP-4 summarizes the priority and effect of those EDIT
parameters that select records by trace event type. Any keyword shown
in the table can be considered to include as subsets all the parameters
shown indented below it; for example, SVC=svcnum is a subset of SVC, and
SVC is a subset of SYS. Any parameter can override another parameter in
the same set that has a lower priority.

You should not combine any parameter with another parameter that can
override it; for example, do not combine SIO with SIO=ddd. You can,
however, combine parameters that are part of separate sets; for example,
you can combine SIO=ddd with 10 and SVC, or SYS with USR=ALL. You can
also combine any parameters that have the same priority; for example,
you can combine SIO=aaa with SIO=IO=bbb. In this case the effect will
be IO=bbb and SIO=(aaa,bbb).

Note: START=, STOP=, JOBNAME=, and TCB= have no effect on trace event
selection. They merely exercise further selectivity over records
already chosen by default or by by parameters that select system trace
events.

Chapter 8: IMDPRDMP 191

•

EDIT Parameter Priorities Trace Events Selected

1 2 3 4

SYS All SIO, 10, SVC, PI, DSP, and EXT

SIO=IO All SIO and 10

SIO All SIO

SIO=ddd SIO for device(s) ddd

SIO=IO=ddd SIO and 10 for device(s) ddd

10 All IO

IO=ddd 10 for device(s) ddd

IO=SIO=ddd 10 and SIO for device(s) ddd

SVC All SVCs

SVC=num Specified SVCs

PI

I
PI=code

All PIs

Specified PI code(s)

DSP All DSP

EXT All EXT

All USR

Specified USR

Figure PRDMP-4. Priorities and Effects of EDIT Parameters Used to
Select Records by Trace Event Type

Combin ing Control Statements

rhe following control statements may be combined freely with each other
on a single card or in a single reply to a prompting message. They may
be specified in any order.

CVT=parm
NEWTAPE
QCBTRACE
LPAMAP
FORMAT
EDIT (coded with no parameters)

All other control statements are restricted; that is, no more than
one may be specified on a single card or in a single reply to a
prompting message. If a control statement from this group is combined
with any of the control statements listed above, the restricted control
statement must come last.

Here are some examples of control statements combined correctly:

LPAMAP,EDIT,P N

F,QCBTRACE,EDIT DDNAME=TRACE,SVC,SIO=IO=ALL,PI

F,P F

Q,L,F,E,TSO S=YES,U=NO

192 Service Aids (Release 21)

Allocati ng Space for the Output Data Set

IMDPRDMP output is usually directed to a SYSOUT device; therefore in
nost cases its output is stored temporarily on a direct access storage
device from which it is later written to the printer. This temporary
storage allows the user to specify space allocation and blocking factors
that will enhance IMDPRDMP's performance.

(Note that if time is not critical and the output data set is very
large, the output data set may be allocated directly to a printer. Do
this by specifying the UNIT parameter in the PRINTER DO statement, for
example UNIT=OOE.)

Specifying the Maximum Output Block Size

Since IMDPRDlVlP uses QSAM as the access method for the SYSOUT data set,
you can improve performance by specifying the largest possible block
size for the data set. The maximum block size within the limits of the
track capacity of the output device can be calculated by the following
method: Divide the maximum track capacity in bytes by the output record
length, 121 bytes, and ignore any remainder. The quotient is the number
of records per block. Multiply this number by 121 to find the maximum
block size.

ro illustrate: A 2311 disk storage unit has a track capacity of
3625 bytes. The IMDPRDMP output record length is 121 bytes. Thus the
number of records per block is 29. This value multiplied by the output
record length (121) gives the maximum block size, 3509 bytes. Code this
value in the DCB= parameter of the PRINTER DD statement as follows:

DCB=(BLKSIZE=3509)

Increasing the Space Allocated to SYSOUT

Depending on the number of lines to be printed, the amount of space
normally allocated to a SYSOUT data set may not be enough to contain the
entire formatted dump or trace listing. To eliminate this potential
problem, allocate extra direct access storage space for the SYSOUT data
set via the SPACEr operand in the PRINTER DO statement that represents
the data set. This extra space may be expressed in terms of bytes,
tracks, or cylinders.

Chapter 8: IMOPRDMP 193

Use the table below to determine the approximate number of lines
that will be printed in a dump listing. (The table does not include
figures for the EDIT function of IMDPRDMP.)

STORAGE SIZE PRINTED LINES

16K 500

32K 1000

64K 2000

128K 4000

256K 8000

512K 16000

1024K 32000

Calculating Space Requirem~nts by Block Size

Each printed line is represented by a 121-byte record; the space
requirement can therefore be expressed in bytes as the record length
multipled by the number of records. As an example, the SPACE= operand
for a 512K dump SYSOUT data set might be expressed as:
SPACE=(121,(16000,~00».

If a blocking factor was specified for this SYSOUT data set (as
discussed above), the space allocation can be expressed in terms of
block size. For example, if the block size has been calculated as 3509
bytes (or a blocking factor of 29 records per block), the same 512K dump
listing would require 552 blocks to contain all of the listing
information. This block figure was calculated as follows:

16000 Output records / 29 Records per block = 552 Blocks

The PRINTER DD statement might then be expressed as:

//PRINTER DD SYSOUT=x,
/ / SPACE: (3509, (552,10» ,
// UNIT=2311,DCB=(BLKSIZE=3509)

Calculating Space Requirements for EDIT Output

When GTF trace data is edited using the EDIT function of IMDPRDMP, the
number of lines of output can be estimated provided the maximum GTF
trace buffer size and the number of blocks to be edited are known.
Figure PRDMP-5 shows the number of lines of EDIT output as a function of
maximum buffer size (block size) and the type of trace.

Editing Internal Trace Data

To estimate the number of lines to be printed when GTF buffers are
edited from a dump data set, use the following formula to determine the
number of buffers:

(GTF Region Size-11K) / Buffer Size = Number of Buffers

194 Service Aids (Release 21)

Then multiply the number of buffers by the number of lines per buffer as
shown in Figure PRDMP-5. (Note that the size of the region in which GTF
was running must be known.)

Maximum Trace
Buffer Size

1024

2048

3500

4096

SYSM Trace

25

50

65

100

SYSM With
User Time Stamp

50

100

130

200

Comprehe nsi ve Comprehensive Trace
Trace With User Time Stamp

30 60

60 120

110 220

120 240

Figure PRDMP-5. Number of Lines of EDIT Output per Buffer as a
Function of Maximum Buffer Size and Trace Type

To illustrate: if a GTF internal (SYSM) trace is to be edited from
a stand-alone dump taken by IMDSADMP, and GTF had been running in a 20K
region, then the buffer size is 1024 bytes (implied by the specification
MODE=INT); thus

Number of buffers = (20K-llK)/lK

Number of buffers 9

Figure PRDMP-5 indicates that for a SYSM trace the number of lines per
buffer is 25; thus 9 (25) or 225 is the expected number of printed
lines. The PRINTER DD statement in this case might be expressed as

//PRINTER DD SYSOUT=A,SPACE=(121,(225,10»

Editing an External Trace Data SET

To estimate the number of lines to be printed when GTF data is edited
from the trace data set on a direct access device, determine the number
of blocks per track and multiply that value by the allocated number of
tracks; the resulting value is the number of blocks per data set.
Multiply that value by the number of lines per block as indicated in
Figure PRDMP-5.

For example: A comprehensive trace with user time stamps is to be
edited from a data set that occupies 50 tracks of a device whose track
capacity is 7200 bytes. The maximum blocksize for the trace
(established by the IEFRDER DD statement in the GTF start procedure) is
3500 bytes. Thus the number of blocks per track (in round figures) is
2, and the number of blocks in the data set is 2(50) or 100. Figure
PRDMP-5 indicates that for a comprehensive trace with user time stamps
the number of lines per block is 220; thus the expected number of
printed lines is 100(220) or 22000.

In this case the PRINTER DD statement might be expressed as:

//PRINTER DD SYSOUT=A, SPACE= (121, (22000,100»

If the trace data set is on a tape volume, you can estimate the
maximum number of lines to be printed by calculating the number of
blocks per foot of tape and multiplying by the length of the tape.

Chapter 8: IMDPRDMP 195

•

Cataloged Procedure

Figure PRDMP-6 shows the cataloged procedure, PRDl-'IP, that IBM supplies
for executing IMDPRDMP.

//PRDMP
//DMP
//SYSPRINT
//TAPE
//PRINrER
//SYSUrl

PROC
EXEC
DD
DD
DD
DO

PGM= IMDPROMP
SYSOUT=A
DSNAME=SYS1.DUMP,DISP=OLD
SYSQUT=A
UNIT=SYSDA,SPACE=(20521 (257,64»

Figure PRDME-6. The cataloged procedure PRDMP.

rhe statements are explained below.

EXEC Statement

calls for the execution of IMDPRDMP.

SYSPRINT DD statement

defines the IMDPRDMP message data set.

rAPE DO Statement

defines the input data set. Unless overridden with other data set
names, this statement defines SYS1.OUMP as the input data set.

PRINrER DD Statement

defines the output data set.

SYSUrl DO Statement

defines the work data set.

Note that the SYSIN DO statement has been omitted. Unless this
statement is supplied, IMDPROOP will prompt the operator to enter
control statements through the console.

196 Service Aids (Release 21)

PRDMP Output

Figures PRDMP-7 through PRDMP-15 are samples of IMDPRDMP output. The
formats are explained in detail in the Programmer's Guide to Debugging,
GC2 8- 6670.

SAMPLE QCB TRACE MODULE IMDSADMP DATE 7/04/70 TIME 0.10 PAGE

* * * * QUE U E CON T R 0 L B L 0 C K ~ R ACE * * * *

MAJOR 024100 NAME SYSDN

MINOR 0239AO NAME FF SYS1.LINKLIB
QEL 024068 TCB 023488 SHARED

MINOR 023838 NAME FF SYS1.MACLIB
QEL 023ED8 TCB 023448 SHARED

MAJOR 0235E8 NAME SYSIEFSD

MINOR 0235C8 NAME FF Q5
QEL 023208 TCB 023480 EXCLUSIVE
QEL 023C10 TCB 0238EO EXCLUSIVE

Figure PRDMP-7. Queue Control Block Trace Sample

2

Chapter 8: IMDPRDMP 197

••

I--'
\0 MODULE IMOSAOMP DATE 11/12110 TIME 00.15 PAG~ 0001
00

* * * * LIN K PAC K ARE A MAP * * * *
CJ)
(J)
Ii NAME EPA STA LNGH TYPE
<: I EELWAIT 072418 072418 0003E8 MAJOR
() IGG0209Z C14800 C74800 000400 MAJOR
(J)

IGG0201Z (74COO C74COO 000400 MAJOR

~ IGG0201Y 075000 075000 000400 MAJOR
...... IGG0200Z 075400 C75400 000400 MAJOR
p,. IGG0200Y 075800 C75800 000400 MAJOR
C/l IGG0200H 075COO 075COO 000400 MAJOR

IGG0200G 076000 076000 000400 MAJOR

~ IGG0200F 076400 076400 000400 MAJOR
(J) IGG0200A (16800 076800 000400 MAJOR
I--' IGG0199M 076COO 076COO 000400 MAJOR
(J) IGG0196B C77000 017000 000400 MAJOR
III IGG0196A C17400 077400 000400 MAJOR
C/l IGG01917 C17800 C11800 000400 MAJOR (J)

IGGOl911 (17COO 071COO 000400 MAJOR
IV IGGOl910 C78000 018000 000400 MAJOR
I--' IGG0191D C18400 078400 000400 MAJOR

IGG019lG C78800 C78800 000400 MAJOR
IGG019l0 018COO 078COO 000400 MAJOR
IGG0191B (79000 C19000 000400 MAJOR
IGG0191A (79400 C79400 000400 MAJOR
IGG0190S (19800 079800 000400 MAJOR
IGG0190N 079COO 079COO 000400 MAJOR
IGG0190M (7AOOO 01AOOO 000400 MAJOR
IGG0190L C7A400 (7A400 000400 MAJOR
IGCOO05E C7A800 C1A800 000400 MAJOR
IGCOO02 C7ACOO 01ACOO 000400 MAJOR
IGCOOOI I 07B360 07B360 000400 MAJOR
IGG019CK C7CAOO C1CAOO 000060 MAJOR
IGG019BC C7CA60 C7CA60 0000E8 MAJOR
IGG019BO 07CB48 07CB48 000128 MAJOR
IGG019AO C7CC10 01CC70 OOOOCO MAJOR
IGG019AL C7C030 01C030 000158 MAJEJR
IGG019AC 070848 070848 0000E8 MAJOR
I GG019CA 070930 C70930 000088 MAJOR
IGG019CB C71)9B8 0109B8 000098 MAJOR
IGG019AG C70A50 C70A50 000090 MAJOR
IGG019BE C7DAEO C70AEO 000188 MAJOR
IGG019AM C70C68 070C68 000078 MAJOR
IGG019AN e70CEO C70CEO 000008 MAJOR
IGG019AV C700B8 C100B8 000058 MAJOR
IGG019MO 010EIO 070EIO OOOOFO MAJOR
I GG019MB 07B760 01B160 0010AO MAJOR
IGG019MA C7CE88 07CE88 000978 MAJOR
IGG019CL C7E820 07E820 000040 MAJOR
IGG019CF C70FOO C70FOO 000100 MAJOR
I GG019CE 07E038 07E038 000088 MAJOR
IGG019AJ 07EOCO 07EOCO 000120 MAJOR
IGG019AI C7ElEO 07E lEO 000080 ~AJOR

IGG019BB C7E86C 07E860 000058 MAJOR
IGG019BA C7E260 C7E260 000180 t-1AJOR

Figure PRDMP-8. Sample MVT Link Pack Area Map

()
::J
Pl
"0
r1"
CD
Ii

00

H
::s:

-0
1'0
::0 o
::s:
1'0

I-'
\.0
\.0

MODULE IMDSADMP DATE 11/12/70 TIME 00.15 DAGE 002 0

JOB JOB4 STEP GO PROCSTEP STEP 1

***** CURRENT TASK *****
TCB 020400 RBP 0002E410 PIE 00000000 DEB 00020ABC TID 0002E IfO CMP 00000000 TRN 00000000

MSS 0002E770 PK-FLG FOOOOOOO FLG 00001B1B LLS OC02E3EO JLB 00000000 JPQ 0002E3E8
RG 0-7 OOOOOOCO 00000066 00020FBC 00000000 00020660 000201E8 0002E234 0002DBA8
RG 8-15 00020FAO 00000000 0002DFC8 00050F08 40050E56 00050F08 6007F060 60008342
FSA 0006BF68 TCB 00000000 TME 00000000 JST 00020400 NTC 00000000 OTC 000201E8
LTC 00000000 IQE 00000000 ECB 0002DFC4 TSPR 00000000 O-PQE 0002E770 SQS 00020A90
STA 00000000 TCT 0002CF28 USR 00000000 DAR 00000000 RES 00000000 JSCB 0002E33C

ACTIVE RBS

PRB 02E410 RESV OCOOOOOO APSW 00000000 WC-SZ-STAB 00040082 Fl-COE 0002E5E8 PSW FFF50009 AC050EF9
Q/TTR 00000000 WT-LNK 00020400 NM GO EPA 050E50 STA 050E50 IN 0001BO ATR1 OB

..,AIN STORAGE

D-POE 0002E770 FIRST 0002E688 LAST 0002E688

PQ'= 02E688 FFB 0005ECCO lFB 0005EOOO NPQ 00000000 PPQ 00000000
TCa 0002DIE8 RSI OOOOFOOO RAO 00050800 FlG 0000

LOAD LIST

COE 02E3E8 NM RETURNS IJSE 01 RESP 01 ATR1 OB EPA 050DC8 STA 05DOC8 l"l 000088
CDE 02BB50 NM IGG019CC USE 03 RESP 01 ATR1 BO EPA 07E928 STA 07E928 LN COOO08
CDE 02BB20 NM IGG019CH LSE 03 RESP 01 ATR1 BO EPA 07E8B8 STA 07E8B8 IN 000070
COE 02B730 NM IGG019AC LSE 02 RESP 01 ATRl BO EPA 070848 STA 070848 LN 000OE8
CDE 02BBfO NM IGGOl9AQ USE 03 RESP 01 ATR1 BO EPA 07F020 STA 07F020 IN 000078

JOB PACK QUEUE

CDE 02E3E8 NM RETURt\S USE 01 RESP NA ATR1 OB EPA 0500C8 STA 0500C8 l"l 000088
CDE 02E5E8 NM GO USE 01 RESP NA ATR1 OB EPA 050E50 STA 050E50 l"l 0001BO

JEB 020ABC APPENDAGES END Of EXT 07E8B8 SID 000072 PCI 000072 CH END 000072 AB END 000072

TIOT 02E1FO

PFX 00000000 G5000006 00010BEO 11000000
TCB·04020400 f\OEB 1CCOOOOO
AVT 0402CA98

FM-UCB START END
580026AC 00020003 COC20003

JOB JOB4 STEP GO

OFFSET
0018
OOZC

IN-STA
14040101
14040101

DDNAME
PGM=*.DD
QUMNlY

AS YN F8000000 SPRG 00000000

TRKS
0001

PROC STEP1

TTR-STC
00271500
00271900

STB-UCB
800026AC
800026AC

Figure PRDMP-9 • Sample MVT Major Control Block Format

•

UPRG 0106BE18 PlST 1BOOOOOO OCB FF050FAO

II.>
o
o

CJ:l
('l)

~ ...,.
o
(J)

):I
1-'­
Q.J
(Il

-!:tI
CD
I-'
CI>
PI
en
CI>

N
I-'

MFf DUMP 1.1SUr-.G I'4J:JuLi;: IMOSADiwiP DATI: U/12170 TIME 00.50

JtJ~ J08S STEPGu PROcsrE P STEPI

TC~ 009148

ACTl~E R6S

Rap OOOC9Z28 PIE 00000000
MSS 00009~lO PK-FLG 10000008
RGlo-l 00071760 OC02A910
RG 2-9 00000000 0002C304
FSA 080H730 Tea 00009348
LT~ OC~uGOJO lQE 00000000
STA CCJ~OOJO TeT 000209A8

***** CURRENT TASK *****
DEB 00071634 TID 00071728
FLG OOOOOlE3 LI.-5 D0071ZF8

500ZA826 96C71280 4D02A896
0007176C 0000004C \>0009 ... 48

TME 00009228 Pld E0019AS8
fee 00000000' XT(:a 0,)0.00000
USR 00000000 CAR OOOCOOOO

eMP 00000000 TRN coecooco
JL8 00000000 JST 000'$148

50D07FD2 occococe OOOCOIIA
000117F8 00C71778 oooeoooo

NTC oooooece OTe 00000000
LP/FL E30aoeoe RES 00000000

RES OOOOOCOO JSCB 00021284

PAGe. 0011

PRo 02A800 111M GO SZlSTAS OC2COOCO USE/EP 0OO2A820 PS~ FF150080 9002AE7A Q 00000000 hT-UIiJ(OOCOSl4S

IRd 009228 HM $GKO ARV SZ/STA6 eCOE404C us EI EP 0002AS7 E PSW fF150193 8002ASAA Q CCCC~2S8 hT-LNK eCC2A800
RG 10-1 fAOOOO48 00009228 00000000 0002(;304
RG 2-9 00071778 COOOOOOO 000717BO 0OO2A910
EXTSA OJOOOOOO 00071260 00009228 00009148

PIP 80UND~IES

HI~R 0 0002A8'~ TO 00071800 HIER 1 O~OOOOO TO 00000000

LOAD LIST

LRB 071300 NM DuM,'4VGL
LPRB 071390 NM RETuRNS

JOd PACK QUEUE

~OrHING IN JOd PACK

Sl C00088 USE/EP 01071310
Sl COOOA8 USE/EP 01071380

JOO717QC
500ZA826

DEd I) 7l63<t APPENDAG~S END OF EXT 0229CO S10 003FF4 PCI 003Ff4

D E8 07150C

T 10 T on72a

PFX OCJCOIJOO 05COOO05 OOOlOBEO 11000000
T\.d 0400914-8 NDEB 1007150C AS VN F8COOOOO SPRG OU 000000
AVT 04u7J..610

FM-UCd START END TRKS
5800156C 00020003 00020C03 0001

APPt:NDAGi:S END OF EXT 0138FO S10 013922 PCI O136F8
PfX OOuOCIJOO 05COOO07 00OO07EO OFOOOOOO
TCd OCOOS148 NOEB 00000000
AliT 04013bE4

fM-UCd
580015EC

JOB Joe 5
OFFSET

OOlS
v02C

START END
00C40003 OCC 50009

STEP GO
LN-STA DDNAME

14040100 PGM=*.DD
14-040100 DU~MY

ASYN A8000000 SPRG 00000000

TRKS
0011

PRCC STEPl
TTR-STC
00700ceo
007F0300

STB-UCB
800015EC
8000156C

0000004C DOOOSl48 COO717f8
OC02AS10 13COCOCC 4001Z2fA

CH END 003fF4 AS END 003FF4

UPRG 01071440 PLST E30COOOO

CH END 013264 AB END C1392.2

UPRG 01000000 PLST E3cooeoo

Figure PRDMP-10. Sample MFT Major Control Block Format

eCB 1F02A8BO

cca OF07177 8

()
::r
OJ

I'Cl
rt
CD
Ii

(X)

H :s: o
'"d
:;tJ

~
'"d

N
o
I-'

MnOUlE 1~I)SAOMP DATE 11/12/70 TIME 00.12 PAG':: 000f.

TSCVT ODOA90 TJB 000LOCE8 RCB 000OOFB8 RPT 00009000 FlG 0000 FLl 0000 SOC 00000000
CUS 0004 lUS OOOA NTJ OOOA SZU 0030 CTR 0001 MUS OOOA
SAV 00000B20 ECB 000DDB14 SIA OOODDCDC ICB 00000C34 101 000D38C4 TOE 00014674
102 00003B50 103 000D3E46 002 000D28C8 lCQ 00000000 TRB 00000000 LPA 00000000
SlF 000COF10 TSC OOOlACDO SPl 0001B4E8 RSZ 0028 RSV 0000 SVT 00000000
SVQ CCCCOOOO ABN 000D1C20 003 0000E880 FlM 0000"'040 OTP 000DFD40 T08 000DEAD8
DMP 000DD998 T06 0001A5D8

~CB ODOFB8 R.CT 0001A7B8 ECB COOOOO01 DIECB 00000000 TJ ID 0004 RSIZE 004B lSQSZ 0005
NMBR 01 PKEY EO UMSMN 04 FlG 40 FlG2 20 FBQE 01
UTTMQ 0000 CUSE 0004 EXTNT 000A7F68 UMSM 000DDFA8 SDCB OOODE120 PQE 0001AC20
PRG OEOOOOOO PRG1 000A79DO PRG2 000A7FlC QPL OOOA 7F10 STECB 00000000 RCOVR OBOOFFOO
CONID 00 RESV 000000

UMSM 00DFA8 ADDR-lN OA580060 ADOR-lN OCB80020 ADDR-LN 00000000 ADDR-lN OOOOOOCO

SW~P DCB OOOOJO

GA5800 STORAGE KEY 0
OA5800 0 00000000 000A58C8 00CA7260 00000000 000A5800 00002800 OOGA5820 000A5820 · -~•......••..••.•.......... -
OA5820 0 00000000 OOOAFOOO 00000000 00000000 0001A7B8 00028000 000A5800 00000000 * •• •••• 0 •••••••••••••• ••••••••••• ,~,
OA584G 0 00000000 000C1468 OCCCOOOC 00000000 00000000 00000000 00000000 00000000 · '~
OA5860 0 00000000 00000000 OCCOOOOO 00000000 00000000 00000000 00000000 00000000 * •.••....•.••.••......•.•.••..•.. *
OA5880 0 TO NEXT lINE ADDRESS SAME AS ABOVE
OA6C20 0 0012C002 OCCOOOOO FFC40000 0000CAF8 00000000 000A7700 00000000 00000000 * ••....••.•••••• 8 •••••••••••••••• -
OA6C40 0 000CCFA3 0000C28C 000A6D68 000A7100 4000A4B6 00000001 000DD018 00009DoO * B ••••••••• -~
OA6C60 0 000A1788 0001C1CO 000D9DF4 00000000 AOOOA5F8 9000A60C 00000000 00000000 * •••••• A •••• 4 ••••••• 8 •••••••••••• *
OA6C80 0 00000000 00000000 OCOOOOOO OCOOOOOO 00000000 00000000 00000000 00000000 · . ~ •..•...•.•...•.•••...•••.•...•.• -
OA6CAO 0 OOOCOOOO 00000000 000A1418 00000098 000C0710 00000000 00124034 0000B834 * .••••••••••••••••• P ••••••• -
OA6CCO 0 00040COO (CCCCOCO OCCOOOOO 00000000 00000000 00000000 00000000 00000000 · . -.........•••...........•..•..... -
OA6CEO 0 COOOOOOO OOOCOOOO C(CCOOOO 00000000 ooooooro OOOOOOOC 00000000 00000000 *•....... *

Figure PRDMP-ll. Sample TSO Control Block Format (Part 1 of 3)

•

N
o
N

(J)

CD
Ii
<:
1-'.
()

CD

:t:='
1-'.
0.
en

::0
CD
I--'
CD
III
en
CD

N
I--'

MODULE I~DSAQMP OATE 11/1Z/70 TIMf 00.12 PAGE 0007

***** TSO USER CONTROL BLOCKS *****

****************** USER KGNOI TJID=OOOI ********************

TJB ODDD18 TSB 000D9DF4 ATTN 00 STAX 01 STAT 00 STAT2 00 EXTNT 000A7F68
RCB 00ODCFB8 UMSM 000DDF08 SDCB 000DEl20 UTTMQ 0002 RSTOR 48 UMSMN 04
USER KGNOI IPPB 00000000 NEWID 00 FLUSL 00 TJID 0001 MClNI 00
RSV ceoooo

IjMSM ODDF08 AODR-LN OA580C38 ADDR-LN OA980058 ADDR-lN OCBOO028 ADDR-LN 00000000

TS8 OD9DF4 STAT 81 TJB OOCD18 FLGI 00 WTSB 000000 LNSZ 78 OTBFP 000000
NOBF 00 CBFP 000000 BPKFL 00 ITBFP 000000 NI.TR 01 IBFP ODAOFO
CLEAR 00 QCB OEICCO ECB 00000000 TJID 0001 STCC 0000 ATNLC 0016
ATNTC 0000 LNNO 00 ,BLNK 00 ASRC;E 0000 ATNCC 00·03 AUTOS 00000000

-AUTOI 00000000 ERSDS 00000000

*~~** THE FOLLOWING TJBX,TAXE,PSCB,TCB'S AND STORAGE ARE FROM THE SWAPPED DATA SET *****

TJBX OA7F68 XFST COOA7DAC XLAST OOOA6D68 XDSE Q.OOA732 0 XSVRB 000A1700 XRQE 00000000 XIQE 00000000
TAXE 000A6CBO XLECB 00000000 XPSWD RSV 00000000 XAIQE 00000000 XQPL 000A7C:I0
XNQPE OOOA XNTCB 0002 XLQPL 0054 HBFL 0000 XACT 00000000 XAECB 0001A534
XKEYA 00CA7FBO

JJB KGNOI STEP KGNOI PROCSTEP STARTING

TCB OA7DAO RBP 000A7D18 PIE 00000000 DEB 00000000 TID 000A7864 CMP 00000000 TRN 00000000
MSS 030A79AO PK-FLG EOOOOOOO FLG 0001B8B8 LLS OOOA 7EAO JLB 00000000 JPQ 000A7E80
RG 0-7 00000001 FFF58C74 0001A534 0001A500 OOOA 7510 000A7DAO 00000000 00000001
RG 8-15 000A7370 FFFFfFF9 000A7564 000A6D68 600HABZ OOOA 7534 400FEB30 600062FA
FSA 0300COCO
LTC 000A6D68
ST A 200CC498

ACTIVE RBS

DRB OA7D18 RESV 00000000
Q/TTR 00000000

MAIN STORAGE

TCB
IQE
TCT

000A6D68
00000000
00CA73D8

APSW 00000000
WT-LNK 010A7DAO

TME 00000000 JST 000A7DAO NTC 00000000
ECB OOODDFBC TSPR 8000B82B D-PQE 000A5810
USR 00000000 DAR 00001000 RE S 00000000

WC-SZ-STAB 00040083 FL-CDE 00010580
NM IEFSD263 EPA OFEABO STA OFEABO

eJ-PQE 000A5810 FIRST 000A':820 LAST 000A5820

PQE OA5820 FFB OCCCOOOO
TCB OOOlA7B8

lFB OOOAFOOO
RSI 00028000

NPQ 00000000
RAD 000A5800

PPQ 00000000
FLG 0000·

Figure PRDMP-ll. Sample TSO Control Block Format (Part 2 of 3)

OTC 0001A7B8
SQS 000A6D40

JSCB 000A7EOO

PSW FF050001 500FEC8A
LN 000550 ATR1 B9

()
::r
III

'"0
rt
CD
Ii

00

H
::s: o
'"tI
~

~
'"tI

tv
o
w

DEB OA74A4

TI oT OA6E28

PSCB OA7B88

TAXE OMC80

MODULE IMDSADMP DATE 11/12/70 TIME 00.12

APPENDAGES END OF EXT 01516E SID 01516C PCI 0151DC CH END 0151AO AB END 01516C
PFX 00000000 C2COOOOB 00003FE2 11000000
TCB 050A6D68 ~DEB 01000000 ASYN 69000000 SPRG 00000000 UPRG 02000000 PLST B8000000
AVT 04015158

FM-UCB START END TRKS
50002AFO OC61COOO OC920013 03E8
50002ABO 009FOOOO 00C60013 0320

JOB KGN01 STEP TMP PROC KGNP01

OFFSET LN-STA DDNAME TTR-STC
0018 140401CO SYSPRINT 00491600
002C 14040140 SYSCCMD 00480AOO
0040 14040100 00481000
0054 14040100 SYSUCUMP 00491800
0068 14040100 SYSUTl 00481200
007C 14040100 SYSUT2 004B0600
0090 14040100 BSLOUT 00491AOO
00A4 14040100 SNAPTAPE 004C1100
00B8 14000010 001 C04B0800
OOCC 14000010 002 004BOCOO
OOEO 14000010 003 004BOEOO
00F4 14000010 004 004EOI00
0108 14000010 005 004E0300
OllC 14000010 DD6 004E0500
0130 140COOI0 007 004E0900
0144 14000010 008 004EOBOO

STB-UCB
80.002570
80002AFO
80002ABO
80002530
80002530
80002570
800{)25FO
80002530
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

PAGE 0010

DCB EFOCCE64

USER KGNOl
SWP 004C33FD
RLGB OCCA8700
USE2 C(CCOOCO

USRL 05
L TIM 008A0560
UPT 000A86FO

GPNM SYSDA
TCPU 00000000
UPTL 0010

ATR1 EOOO
TSWP OOOJOOOO
R SVIJOOO

ATR2 0000
TCON 00000000
RSV2 0(000001)

CPU 00018800
TC01 00')00000
US",1 1)000000')

TMFLD 00 PPSAV OCD710 ABOPS\<' 00000000 WCSA 00 SIZE 12 STAB 4034
EP 0000B834 LOPSW 00040000 R.OPSW OC'OO')i3C2 USE 00 TOE 000000 \4CF 00
LIN\(000000 GRO oooooooe GRl 00000000 GR2 OJOQoaOO GQ.3 00000000 GR4 00000000
GR5 00000000 GR6 00000000 GR7 00000000 GR8 00000000 GR9 00000000 GRI0 00000001}
GRll 00000000 GR12 0')000000 GR13 oeoooooo GR14 00000000 GR15 00000000 NIQE OOOOOOO(
LNl< 000A6Dl 1t PRM1 00000000 IRB 000IA6'CB;6 TCB OOOA6CBO rLNK 000A6D68 XPSW 00000000
EXIT 001)00000 STAT 00000000 PARM OOOABBF8 TAlE COOCCF7C IP-UF 00000000 USER 'OOOCCDBG.

Figure PRDMP-ll. Sample TSO Control Block Format (Part 3 of 3)

•

MODULE IMOSADMP DATE llOi /70 TIME 00.15 PAGE 0032

* * * * T C B SUMMARY * * * * N
0
~ JOB STEP

TCB 0085E8 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0004
CJ)

CD JOB STEP Ii TCB 008728 CMP oaooocoo NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0005 <!
1-'-
() JIJB STEP
CD TCB 008868 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0006
~
1-'- JOB STEP
P. TCB 0089A8 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0007 C/l

JOB STEP
~ TCB 008AE8 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0008
CD
I-' JOB STEP CD
PJ TCB 008C28 CMP 00'000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0009
C/l
CD JOB STEP
N TCB 008068 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0010
I-'

J3B STEP
TCB 008EA8 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0011

JOB STEP
TCB 008F E8 CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0012

MODULE IMOSAOMP DATE 11/12/70 TIME 00.15 PAGE 0033

* * * * T C B SUM MAR Y * * * *

JOB MASTER STEP SCHDULR
TCB 009CAO CMP 000 eo COO NTC 00000000 OTC 00000000 LTC 0002E268 PAGE 0022

JOB MASTER STEP SCI-EOULR
TCB 0288C8 CMP 00000000 NTC 00009BA8 OTe 00009CAO LTC 00000000 PAGE 0025

JOB JOB4 STEP GO
TCB 02EOF8 CMP 00000000 NTC 000288C8 OTC 00009CAO LTC 0002D1E8 PAGE 0027
TCB 020lE8 CMP 00000000 NTC 00000000 OTC 0002EOF8 LTC 00020400 PAGE 0028
TCB 020400 CMP 00000000 NTC 00000000 OTC 0002D1E8 LTC 00000000 PAGE 0029

JOB WTR STEP aCE
TCB 02E268 CMP 00000000 NTC C002EOF8 OTC 00009CAO LTC 00020108 PAGE 0030
TCB 020108 CMP 00000000 NTC 00000000 OTC 0002E268 LTC 00000000 PAGE 0031

Firgure PRDMP-12. Sample TCB Summary for MVT or ~WT With Subtasking

NFT OUMP LISTING ,>\OOlJLc IMDSADMP DATE llf12+10 TIME 00.50 PAGE OC22

* * * * TCB SUI"IMARY * * * *

JOe STEP
TCB 00a778 CM? OOOOOCOC PAGE 0001

JOB MASTER STEP SCHcDULR
TCB J08 a58 CMP 00000000 PAGE 0002

JOe STEP
TCB ooa938 CMP OOOOOCOC PAGE 0004

JOe STEP
TCB ooaAl d CMP OOOOOOOG PAGE 0005

JOe MASTER STEP SCHEDULR
TCB 008368 CM? 00000000 PAGE OC06

JOB MASTER STEP SCHEDULR
TCB 00a:48 CMP 00000000 PAGE 0001

JOe IITR STEP PO
TCB 008J48 CMP OOOOCOOC PAGE 0009

JJe STEP
TCB OJaF4d CMP OOCOOCOO PAGE 0010

JOd JOB5 STEP GJ
TCB 009148 CM? 00000000 PAGE COLI

JJ8 STEP
TCB 009348 CMP OCOOOOOC PAGE 0013

JJe STEP
TCB 009548 CMP OOOOOCOC PAGE 0014

JOB STEP
() TCB· 009148 CMP 00000000 PAGE 0015
::r
SlJ J ad STEP

'U TCB 009,48 CMP 00000000 PAGE 0016 rt
(i)
Ii JOd STEP

TCB 009348 CMP OOCOOOOO PAGE 0017
00

JOd STEP
TCB 009iJ48 CMP 00000000 PAGE 001a

H
~ JOB STEP
0 TCB 009F48 CMP 00000000 PAGE 0019
'"cl
~ JOB STEP 0
~ TCB OOA148 CM? 00000000 PAGE 0020
'"cl

J08 STEP
TCB 00A348 CMP 00000000 PAGE 0021

N
0
U1

Figure PRDMP-13. Sample TC~Ummary for ~~T Without Subtasking

I

~
o
0"\

C/l
CD
Ii
<:
1-'­
()

CD

~
1-'­
P,
en

~
CD
I-'
CD
PJ
en
CD

~
I-'

MODULE IM05AOMP DATE 11/12/70 TIME 00.15 DAGE 0001

R 0-7
R 8-15
000000
000020
000040
000060
000080
OOOOAO
OOOOCO
OOOOEO
000100
000120
000160
000180
0001AO
0001CO
O:)OlEO
000200
000220
000240
000260
000280
C002AO
0002CO
a002EO
C00300
000320
000340
000360
000380
0003AO
C003CO
0003EO
000400
C00420
000440
000460
000480
0004AO
0004CO
0004EO
000500
000520
000540
000560
000580
0005AO
0005CO
0005EO
000600
000620
000640
000660
000680
0006AO
0006CO

00000000 000022C8
00000000 00000000
00000191 00001COO
FF040001 50008882
000022E8 OCOOOOOO
982400C8 90001000
310000A6 40000005
00000000 00000000
020000C8 20000048
40404040 40404040
61FOF161 F~F94040
00000000 00000000
00000000 00000000
FFti60009 80000000
00009AOO 00009AF4
000117EO 00009BB4
OOOOOOCC 000729CO
00072600 OD067594
00004E98 00000000
5834002C 05022015
30104770 02724873
302291FF 700247EO
000418AA 43A7COOA
5084927F 2004501B
071C1812 58EOOFC8
91011001 47100352
OF9CI000 40105088
47500E2A 91107006
4BA0508C 50A00024
91102000 471003E6
4770065C 58AC7030
91082000 4780030A
066447FO 06249104
040694E7 20019110
50007031 91012000
91082001 471C0490
47100402 05017031
05017035 AOOC47CO
90006000 47B004AO
00444780 8008945F
4BC05096 41A07031
20119101 20004780
91027013 47800530
001C58FF 000005EF
41EOODA2 94FE7006
06249602 70064060
05AE9101 70064780
05D658A2 00189101
41C00664 41800624
94DF2000 58F3001C
507407FB 92000048
600005AO 88A00018
04A005CC 4770068E
509A45EO 075207F8
20090041 471006E4
70069120 00444710

00000000
00000000
40002084
FFF50004
00002280
00020000
08000080
00000450
C2C5D5C4
40404040
40404040
00000000
00000000
0000018A
00009968
00000040
00000000
00065D40
41500800
30194770
00229170
OED491AO
89A00003
000094FD
07FE4180
4C710002
18A00200
471000E6
18B09620
41A05020
91042001
50A05030
20014780
20014710
47100432
05037033
A0044770
04900201
48A00044
700691AO
40AOC002
051C0202
58A00048
47F0055C
940F2000
70044010
00D247FO
20004710
50A00048
58FF0004
91017006
42A20010
96A07006
02C37031
18E096AO
80049608

8000214A
00000000
60000028
A006E7C2
00005E08
00000003
40000001
00020650
40404040
404040C6
40404040
00000000
82000170
018A018A
000099B4
00009B74
0006FOOO
00072798
1A551821
OE0491FO
70124780
50984790
410A52FC
50984580
020245CO
90231004
1008A023
48A00006
802092FO
0200AOOO
471003CO
92085030
050647FO
05709102
02077030
A0064740
053E9104.
7035A008
54A05058
50984790
43B07030
C0112019
47F005EO
47F00554
47F00752
701447FO
040E9407
050258A2
91202000
50B05074
47800638
58900FCO
43907004
50004720
70069106
70069140

00002280
00000000
08000080
OOOOFFOO
5A643360
90001000
05001COO
44500088
40404040
FOF8C107
00000000
00000000
00040000
FF000190
00009AFO
5000BCA4
5006E596
4006E7AE
92825098
00214780
02824393
029E58FO
07FC4012
02F647FO
02A247FO
5001000C
45EOOAOO
07FA0502
09771899
302045CO
58A20010
41A05028
03889140
70064710
20201BAA
053E0503
30084780
41A05038
477006A8
800818B6
89B00004
91082001
45C00624
47F00432
58C20018
04CA4910
702C940F
001047FO
47800604
05EF47FO
91102001
05B91899
lA994079
070C58AO
00454770
0044071E

OOOOOOOA 00000000 00000000
00000000 00000000 40002084
40000001 FFE50000 900432B6
00000000 FF060009 80000000
48100002 412000CO 50200048
47700070 91030044 4750007C
40000500 06001COO 000004BO
47F0006C 02002000 00084040
40404040 40404040 40404040
D9F7F040 FOF04BF1 F140FIF4
00000000 00000000 00000000
00000000 00000000 00000000
00036018 00000000 00000000
FF000190 00000001 FFFF6528
80009874 00009AOO 4000B862
6000A57A 00000030 0006F9F4
000729B8 A006E740 00000001
0001828C 00000000 00000000
18114010 50881804 58420014
025A45EO OE681B99 18A991FE
001C43A2 002089AO 9000487A
OFC445EF C00041CO 02B25882
001E0708 20082008 04032000
02E247FO 02EA4700 000045EO
03444810 OF9C1211 4740035C
92001004 0300100C 00210201
91EF7006 47708008 91FFOFBO
20150FOl 47800308 58A00024
58AOOFBC 5090AOOO 47FC02E2
05E407BC 48A00044 54A05058
91012000 478003CO 58A20018
02005020 701850AO 004841CO
702C4710 05929101 70064770
040241AO 703140AO 503A0203
43A70030 89A00004 41AA3020
7033AOOA 4720053E 91027013
04900501 7035A008 4740048A
41B00578 45C005E8 47700688
96A27006 02062009 00419104
88B00008 89B00002 48CB5204
439B3020 4290COOO 0202COl1
4780051C 9618COOO 50C00048
077C96A6 700647FO 066C58F3
41E00960 47F00564 92422004
47F0051C 05037031 50004770
702A4770 00069148 702C4710
200047FO 040E9110 20004710
05EOD200 50082018 41A05008
910C402C 47800624 943F402C
061E41EO 096447FO 075258BO
4710063E 03000048 100C9COO
40607004 40107014 58A02010
52F00600 700C509A 0700700C
004841AO A00850AO 00400206
OF8C9110 00444780 0714945F
91840044 47808008 41808004

Figure PRDMP-14. Sample Dump - General Format

* ...•... H •••••••••••••••••••••••• *
* ...•.•.•.............•......... *
* •••••••••.•••••• ~ •••••• v •••••• *
* 5 •••• XB •••••••••••••••• *
* ••• y ••••••••••••••• 5 •••••••••••• *
* ... H •••••••••••••••••••••••••• ~.*
* •.••••••••••••••.•••••••••••.•
* ..•..•..•.••• K ••••••• O •• K •••• Q *
* ••• H ••••• ENO *
* *.01.99

F08APR70 00.11 14*

* •..........•.................... *
* ••....•.•.•..•.•..•...........•. *
* •••••.•••...•.•••..•.•...••..... *
* ••••••• 4 ••••••••••• 0 ••••••••••• ~
* •••.•.•.••....•••.•.•..•.•••• 94*
* ..•••.••.•••.• o ••• v ••••••• x •••• *
¥ •••••••••••••••• x ••••••••••••• *

* •••• N •••••••• M.O •••••••••••••••• *
* •.••..••••.••..•••...••••.....•• *
* ••••••••• M ••••••••• O.O •••••••••• *
* •.••••••.••.•••.•••.• P ••••• M ••• *
* ••••••••••••••••• 6.0.5.0 •••••••• *
* .••••.. H ••••• K ••••• O ••••••••••• *
* ••..••••.•.••••••.•..•• L ••••• K.*
* .•..•.••. K ••••••••••••••••••••• *
* •••••••••• ~w •••••• N •••• J •••••••• *
* •••.••••••••••• O ••••••••••••• O.~*
* ••••••• W~ ••• K •••••••• u •••••••••• *
* •.••.•••••.•.••••••••••••••.•••. *
*•......•...•.. K ••••••••••• *
* ••• 0 ••••••••• 0.0 ••••••••••••••• *
* .•• x ••••••••••••••••• K ••••••• K.*
* ••••.••••••• K ••••••••••••••••••• *
* •••••••• N •••••••• N ••••••••••••• *
* ..• KN ••••••••••••••••• N •••••• •• "
*N ••••••••• K •••••••••••••••• y •••• *
* ••.•..••...•.•.•.••....• K ••••••• *
*•.•••.••••••.•••••••.••... ~*
* ..••••••.•.••..••.•••.•.... K ••• *
* ••••••••.• K ••••••••••••••••••••• *
* ••••••••••••• 0 ••••••••••••• 0 ••• 3*
* •••..•••. 0 ••• 0 ••• 0 ••••••• 0 •••••• *
* ..•...•••.••. O ••• B ••• O •• N ••••••• *
* ••••••••••••• 0 ••••••••• 0 •••••• *
* K.O ••••••••••• O •••••••• *
*.O ••••••••••• K ••••• O •• K ••••••••• *
* •••••••••••••••••••••••••••.•••
* ••.•. 3 ••••••••••••• 0 ••••••• 0 •••• *
* ••••••••••••••••••..•••• L ••••••• *
*••••.••••••••.••.......... *
* •••••••••••••••••••• OO ••••• P ••• *
* 8K •••••••••••••••••••• K.*
* •••• ~ •• u •••••••••••••••••••••••• * -.....•.•.•••....•.•....•..•.... ~

()
::t
Pl
"0
("1-
CD
Ii

co

H :s:
t1
'i:I
~

~
'i:I

I'V
o
~

EXTER~AL TRACE - DD TRACEDD

*** DATE DAY 307 YEAR 1971 TIME 11.15.00

.DSP RES. PSji FF060350 80000000 JOBN N/A MODN WUiTCB NurCIB 00013220 PElTY 00
CSW 00051768 OCOOOOOO RQE 4454231L1 0005A6F8 lB05A71C RQE TCB 0003D3B8 SENS 00200040

DSP RES PSi FF040001 4000E934 JOBN LlSTPDS MODN SVC-551F NUTCB 0003D3B8 PRTY 1B
SVC 010 OLD PSW FF04000A 4000EA98 JOBN USTPDS MODN SVC-551F OLTCB 0003D3B8 R15/R0 00J5A750 00000008
SVC 007 CLD PSW FF040007 600223C6 JOBN LlSTPDS MODN SVC-551F OLTCB 0003D3B8 R 15/R 0 000517BO 0005A6F4

PLlST 8005A7B8 00000000 NAME IFG0551H
SVC 003 OLD PSi 00040003 60011D78 JOBN LISTPDS MODN SVC- RES OLTCB 0003D3B8 R 15/R 0 OOOOEBDO 0005A6F4
DSP RES PSW FF040007 OOOOEBDO JOBN LlSTPDS MODN SVC-551H NUTCB 0003D3B8 PRTY 1B
svc 007 OLD PSW FF040007 600223C6 JOB N LISTPDS MODN SVC-551H OLTCE 0003D3B8 R15/RO 0005A7BO 0005A6F4

PLlST 8005A7B8 00000000 NAME IFG0553P
svc 003 OLD PSW 00040003 60011D78 JOBN LISTPDS MODN SVC- RES OLTCB 0003D3B8 R15/RO 0000F018 0005A6F4
DSP RES PSW FF040007 0000F018 JOBN IISTPDS MODN SVC-553P NUTCB 0003D3B8 PRTY lB
SVC 007 OLD PSW FF040007 600223C6 JOBN LISTPDS liODN SVC-553P OLTCB 0003D3B8 R15/RO 0005A7BO 0005A6F4

PLlST 8005A7B8 00000000 NAME lFGO 552X
SVC 003 OLD PSW 00040003 60011 D78 JOBN LISTPDS MODN SVC-oRES OLTCB 0003D3B8 R15/R0 0000F460 0005A6F4
DSP RES PSW FF040007 000OF460 JOBN LISTPDS MODN SVC-552X NUTCB 0003D3B8 PRTY 1 B
SVC 010 OLD PSW FF04000A 4000F73E JOBN LISTPDS MODN SVC-552X OLTCB 0003D3B8 R 15/R 0 00048DEE 00000008
SVC 010 OLD PSW FF04000A 4000F6C2 JOBN LlSTPDS MODN SVC-552X OLTCB 0003D3B8 R15jRO 00048DEE 00000218
SVC 003 OLD PSi FF040003 5000F6CA JOBN USTPDS MODN SVC-552X OLTCB 0003D3B8 R15/RO 00000000 00000218
DSP RES PSi FFC50037 60048DEE JOBN LlSTPDS MODN IEHLIST NUTCB 0003D3B8 PRTY 1B
SVC 000 OLD PSW FFC50000 400FCD5E JOBN LlSTPDS MODN lEHLlST OLTCB 0003D3B8 R15/RO 010FCAC8 00059D40

DDNAME DDA DCB 000476F8 DEB 0003 CF44
SIO 350 CC 0 CAW COOOA568 JOBN LISTPDS OLTCB 0003D3B8

CSW 0005A768 OCOOOOOO RQE 4434354C 00059D18 lB03CF44 RQE TCB C003D3B8
SVC 001 OLD PSi FFC50001 400FC548 JOBN LlSTPDS MODN lEHLIST OLTCB 0003D3B8 R 15/RO 000FC520 00000001

PLlST 0004913C
DSP RES PSW FF060236 80000000 JOBN N/A MODN WAITT CB NUTCB 00013220 PRTY 00
I/O 350 OLD PSi FF060350 80000000 JOBN LlSTPDS DDNM DDA OLTCB 00013220

CSW C0059D68 OE400008 RQE 4434354C 00059D18 lB03CF44 RQE TCB C003D3B8 SEN S 00001800
DSP RES PSi FFC50001 400FC548 JOBN LISTPDS MODN lEHLIST NUTCB 0003D3B8 PRTY 1B
SVC 055 OLD PSi FFC50037 600FC55E JOBN LlSTPDS MODN IEHLIST OLTCB 0003D3B8 R15/RO 0000CF9A 00059Dl0

DDNAME DDA
SVC 010 OLD PSW FF04000A 400F9DC6 JOBN LISTPDS MODN SVC- RES OLTCB 0003D3B8 R15/RO 0000CF9A 00000218
SVC 007 OLD PSW FF040007 400F9E1C JOBN LISTPDS MODN SVC- RES OLTCB 0003D3B8 R15/RO 0005A7BO 00000218

PLlST 8005A7B8 00000000 NAME lFG0551F
SVC 003 OLD PSW 00040003 60011D78 JOBN LISTPDS MODN SVC- RES OLTCB 0003D3B8 R15/RO 0000E788 00000218
DSP RES PSi FF040007 0000E788 JOB N IISTPDS MODN SVC-551F NUTCB 0003D3B8 PRTY lB
DSP RES PSW FF040283 8000E788 JOBN LISTPDS MODN SVC-551F NUTCB 0003D3B8 PRTY lB
SVC 000 OLD PSW FF040000 4000E92A JOBN IISTPDS MODN SVC-551F OLTCB 0003D3B8 R15/RO 0703D3B8 00221600

DDNAME N/A DCB 0005A720 DEB 0005A71C
SIO 236 CC 0 CAW 00006550 JOBN LISTPDS OLTCB 0003D3B8

CSW 0006E6E8 OCOOOOOO RQE 44542314 0005A6F8 lB05A71C RQE TCB 0003D3B8
SIO 236 CC 0 CAW 00006670 JOBN LlSTPDS OLTCB 0003D3B8

CSW 00006558 OCOOOOOO RQE 44542314 0005A6F8 1.605A71C RQE TCB 0003D3B8
SVC 001 OLD PSW FF040001 4000E934 JOBN LlSTPDS MODN SVC-551F OLTCB 0003D3B8 R 15/R 0 00005EDA 00000001

PLlST 0005A6F4
DSP RES PSi FF060350 80000000 JOBN N/A MODN WAITT CB NUTCB 00013220 PRTY 00
I/O 236 OLD PSW FF060236 80000000 JOBN LISTPDS DDNM N/A OLTCB 00013220

CSW 0005A768 OCOOOOOO RQE 44542314 0005A6F8 lB05A71C RQE TCB 0003D3B8 SENS 00200040
DSP RES PSW FF040001 4000E934 JOBN LISTPDS MODN SVC-551F NUTCB 0003D3B8 PRTY 1B
SVC 010 OLD PSW FF04000A 4000EA98 JOBN LISTPDS MODN SVC-551F OLTCB 0003D3B8 R15/RO 0005A750 00000008

Figure PRDMP-15. Sample EDIT for Trace Data set

I

PAGE 0002

R1 8000EA96
R1 000515D8

Rl 0005A5D8

R1 0005A5D8

R 1 0005A5D8

R1 0005A5D8

Rl 0005A5D8

Rl 0005A5D8
R1 0005A5 EO
R 1 0005A5EO

R1 00059D18

Rl 0004913C

R1 000476FB

Rl 800F9DBC
Rl 000476F8

R 1 000476F8

R1 0005A6F8

Rl 0005A6F4

Rl 8000EA96

JCL and Control Statement Examples

rhe following examples illustrate some of the functions that IMDPRDMP
can perform.

Example 1: Using the Cataloged Procedure

IBM supplies a cataloged procedure, called PRDMP, that defines the
input and output data sets and a work data set for IMDPRDMP. This
example shows how to use the cataloged procedure.

//PROCDMP
//
//DMP.SYSIN

/*

GO
END

JOB
EXEC
DD

In this example:

EXEC Statement

MSGLEVEL= (1,1)
PROC=PRDMP,PARM=DMP=T

*

calls the cataloged procedure, and requests prompting for a dump
title.

DMP.SYSIN DD statement

defines the data set that contains the IMDRPDMP control statements.
The data set follows immediately.

GO COntrol statement

requests formatting and printing according the the QCBTRACE, LPAMAP,
FORMAT, EDIT, and PRINT ALL control statements.

END Control Statement

terminates IMDPRDMP processing.

208 Service Aids (Release 21)

Example 2: Tranferring a Dump Data Set

If you need to clear the SYSl •. DUMP data set quickly to make room for
![lore dump information, you can use IMDPRDMP to transfer its contents to
another data set. This new data set is not formatted or printed during
this execution of IMDPRDMP, but it can be used as input later.

'This example shows how to transfer the SYS1. DUMP data set, which
ordinarily is a cataloged data set on direct access storage, to a tape
volume described by the SYSUT2 DD statement.

//CLEAR
//
//SYSPRINT
//PRINTER
//TAPE
//SYSUT2

JOB
EXEC
DD
DD
DD
DD

//
//SYSIN

DISP=NEW
DD

END
/*

In this example:,

SYSPRINT DD statement

MSGLEVEL= (1,1)
PGM=IMDPRDMP
SYSOUT=A
SYSOUT=A
DSNAME=SYS1.DUMP,DISP=OLD
UNIT=2400,VOL=SER=DUMP,LABEL=(,NL),

*

defines the message data set.

PRINrER DD Statement

defines the data set to which IMDPRDMP ordinarily directs its
output. This statement must be included, even though its function
is not used in this application.

TAPE DD Statement

defines the input data set, SYSl.DUMP.

SYSUT2 DD statement

defines the data set to which the contents of SYSl.DUMP will be
transferred

SYSIN DD statement

defines the data set that contains the IMDPRDMP control statements.
The da.ta set fol.l.ows irmnediately.

END Control statement

terminates IMDPRDMP' processing.. Note that this is the only IMDPRDMP
control statement needed.

Chapter 8: IMDP'RDMP 2(1'9

Example 3: Processing, Multiple Data Sets

IMDPRDMP can process any number of input data sets in a single
execution, provided that each data set is properly defined by both DD
statements and control statements. This example shows how to process
three data sets in the same execution, two of which are on the same tape
volume.

//NOLINK JOB MSGLEVEL=(l,l)
/ / EXEC PGM= IMDPRDMP " PARM=T
//SYSPRINT DD SYSOUT=A
//PRINTER DD SYSOUT=A,SPACE=(121,(1600,100»
//TAPE DD UNIT=2400,VOL=SER=DPTAPE,
// LABEL=(,NL),DISP=OLD
//TODAYDMP DD UNIT=SYSDA,VOL=SER=DPD~DMP,

// DSNAME=DMPDS,DISP=OLD
//SYSU'rl DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(2052,(257,10»
//SYSIN DD *

/*

ONGO Q,F,P A
GO
NEWDUMP FILESEQ=2
GO
NEWDUMP
ONGO
GO
END

DDNAME=TODAYDMP

In this example:

EXEC Statement

invokes IMDPRDMP and requests that the operator be prompted for a
dump title.

SYSPRINT DD Statement

defines the message data set.

PRINTER DD Statement

defines the output data set.

rAPE DD Statement

defines two input data sets on the same tape volume.

rODAYDMP DD Statement

identifies an input data set on a direct access volume.

SYSUTl DD Statement

defines the IMDPRDMP work data set; it is required in this example
because one of the input data sets is on a direct access volume.

SYSIN DD statement

defines the data set containing the control statements. The data
set follows immediately.

210 Service Aids (Release 21)

ONGO Control Statement with Q, F, and P A parameters

alters the default parameters for all subsequent GO statements by
deleting the LPAMAP and EDIT parameters.

GO Control statement

instructs IMDPRDMP to process the first data set on the volume
described by the TAPE DD statement.

NEWDUMP Control Statement with FILESEQ=2

identifies the second data set to be processed. Since no DDNAME=
parameter is specified, IMDPRDMP assumes that the data set resides
on the volume described by the TAPE DD statement. FILESEQ=2
specifies that the second data set on the volume should be
processed.

GO Control Statement

instructs IMDPRDMP to process the data set described by the NEWDUMP
control statement.

NEWDUMP Control Statement with DDNAME=TODAYDMP

identifies the third data set to be processed. DDNAME=TODAYDMP
specifies that the data set is the one described by the TODAYDMP DD
statement.

ONGO Control Statement with No Parameters

restores the original default parameters for the GO control
statement.

GO Control Statement

instructs IMDPRDMP to process the data set described by the last
NEWDUMP control statement. The original default parameters will be
used.

END Statement

terminates IMDPRDMP processing.

Chapter 8: IMDPRDMP 211

•

Example 4: Processing a TSO Dump

IMDPRDMP can produce a complete dump of a TSO system by merging the
system dump data set with the TSO swap data sets and formatting and
printing the resulting data set. This example shows how to request a
rso dump.

//TSODUMP JOB MSGLEVEL={l,l)
// EXEC PGM=IMDPRDMP
//SYSPRINT DD SYSQUT=A
//PRINTER DD SYSOUT=A,SPACE={121,{32000,lOO»
//TAPE DD UNIT=2400,VOL=SER=DUMP,
// LABEL=(,NL),DISP=OLD
//SYSUr1 DD UNIT=SYSDA, DISP= {NEW, DELETE) ,
// SPACE={2052, (513,10»
//SYSWAPOO DD DSNAME=SYS1. SWAP. DllOO, UNIT=2311,
/ / VOL=SER=SWAPOO, DISP=OLD
//SYSIN DD *

LPAMAP
FORMAT
PRINT ALL
TSO
END

/*

In this example:

PRINTER DD statement

defines a very large output data set. If you prefer not to allocate
so much space to SYSQUT=A, you can direct IMDPRDMP's output directly
to a printer by coding this statement as:

//PRINTER DD UNIT=printeraddress

CAUTION: In a multiprogramming environment conflicts with the
system writers may arise if the output data set is allocated
directly t.o a pr inter.

TAPE DD Statement

defines the input dump data set.

SYSUTl DD statement

defines the IMDPRDMP work data set. Although it is not required in
this example, it has been included to reduce.IMDPRDMP processing
time.

SYSWAPOO DO Statement

defines the swap data set for this particular TSO system. If this
system had more than one swap data set, each one would have to be
defined on a separate SYSWAPnn DO statement.

SYSIN DO Statement

defines the data set containing the IMDPRDMP control statements.
The data set follows immediately.

212 Service Aids (Release 21)

LPAMAP Control statement

requests a map of the link pack area of the dumped system.

FORMAT Control Statement

requests that the major control blocks of the dumped system be
formatted and printed.

PRINr Control statement with the ALL Parameter

requests printing of the nucleus, system queue area, and all
allocated regions of main storage in the dumped system.

rso Control statement with No Parameters

requests formatting and printing of all TSO system and user control
blocks and TSO user regions.

END Control Statement

terminates processing.

Note that the GO control statement is not used in this example.

Example 5: Recording the TSO Swap Data Set

If the TSO subsystem fails and must be restarted, or if the operating
system fails while TSO is being used, the TSO swap data sets must be
recorded so that the failure may be diagnosed. The fastest way to do
this is to restart the operating system, if necessary, and useIMDPRDMP
to store the swap data set on tape before restarting TSO. Later, if the
failure cannot be diagnosed solely by analyzing the main storage dump
that was produce when the failure occurred, the swap data set that was
stored on tape may be printed using IEBPTPCH.

rhis example shows how to use IMDPRDMP to store the swap data set and
how to use IEBPTPCH to print it later.

//SWAPDUMP JOB MSGLEVEL=(l,l)
// EXEC PGM=IMDPRDMP,REGION=200K
//SYSPRINT DD SYSOUT=A
//PRINTER DD UNIT=2400,VOL=SER=SCRTCH,
// DISP=(NEW,KEEP},LABEL=(,NL},
// DCB=(BLKSIZE=1210,LRECL=121,RECFM=FB,BUFNO=100.0PTCD=C)
//TAPE DD UNIT=2400,VOL=SER=DUMP.
// DISP=(OLD,KEEP},LABEL=(,NL}
//SYSUTl DD UNIT=SYSDA,DISP=(NEW,DELETE},
// SPACE=(2052,(S13,lO»
//SYSWAPOO DD DSN=SYS1.SWAPOO,VOL=SER=SWAPOO,
// DISP=(OLD,KEEP),UNIT=2314
//SYSWAPOl DD DSN=SYS1.SWAP01,VOL=SER=SWAP01,
// DISP=(OLD,KEEP},UNIT=2314
//SYSIN DD *

TSO
END

/*

Chapter 8: IMDPRDMP 213

•

************************* RESTART TSO ***************************

JOB MSGLEVEL=(l.l)
EXEC PGM=IEBPTPCH
DD SYSO UT=A
DD UNIT=2400.VOL=SER=SWPDMP,

//PRNTSWAP
//
//SYSPRINT
//SYSUrl
// DISP=(OLD.KEEP),LABEL=C,NL),

DCB=(BLKSIZE=1210,LRECL=121,RECFM=FB) //
//SYSUT2
//SYSIN

DD UNIT=1403
DD *

PRINT PREFORM=M
/*

rhis example is actually composed of two job steps. In the IMDPRDMP
step:

EXEC Statement

invokes IMDPRDMP and overrides the default region size with a value
of 200K. This large figure is necessary to accomodate the large
number of output buffers requested in the PRINTER DD statement.

SYSPRINT DD Statement

defines the message data set.

PRINTER DD Statement

defines the output jata set. The output is directed to magnetic
tape to make IMDPRDMP execution time as brief as possible; speed is
further increased by the blocked records, large number of output
buffers, and chain scheduling requested in the DCB operand.

rAPE DD Statement

defines an input dump data set.

SYSUTl DD Statement

defines the IMDPRDMP work data set. Although it is not required in
this example because the input data set is on tape, it is included
to reduce IMDPRDMP processing time.

SYSWAPOO and SYSWAPOl DD Statements

define the TSO swap data sets. These statements are identical to
those used in the cataloged procedure for starting TSO.

SYSIN DD Statement

defines the data set containing the IMDPRDMP control statements.
The data set follows immediately.

rso Control Statement

requests formatting and printing of TSO system and user control
blocks and TSO user regions.

END Statement

terminates IMDPRDMP processing.

In the IEBPTPCH step:

214 Service Aids (Release 21)

EXEC statement

invokes IEBPTPCH.

SYSPRINT DD statement

defines the IEBPTPCH message data set.

SYSUrl DD Statement

defines the input data set, which in the IMDPRDMP step was the
output data set defined by the PRINTER DD statement.

SYSUT2 DD Statement

defines the IEBPTPCH output data set, which in this case is
allocated directly to a printer.

SYSIN DD statement

defines the data set containing the IEBPTPCH control statements.
The data set follows immediately.

PRINr control statement with PREFORM=M

tells IEBPTPCH that each record begins with a machine control
character.

Example 6: Editing GTF Trace Data from a Dump

//EDIT
//
//SYSPRINT
//PRINTER
//TAPE
// DISP=OLD
//SYSUTl
//SYSIN

/*

EDIT
END

In this example:

EXEC statement

JOB
EXEC
DD
DD
DD

DD
DD

invokes IMDPRDMP.

SYSPRINT DD Statement

MSGLEVEL=(l,l)
PGM=IMDPRDMP
SYSOUT=A
SYSOUT=A
UNIT=2400,VOL=SER=DUMP,LABEL=(,NL),

UNIT=SYSDA,SPACE=(2052,(257,lO»

*

defines the message data set.

PRINTER DD Statement

defines the output data set.

TAPE DD Statement

defines the input data set.

Chapter 8: IMDPRDMP 215

•

SYSU'l'l .DD statement

defines the IMDPRDMPwork data set. Although it is not required
unless the input data set is on direct access. it should be included
to reduce IMDPRDMP processing time. When it is included, it must
speci£yenough space to contain the entire dump.

SYSIN DD Statement

defines the data set containing the IMDPRDMP control statements.
The data set follows immediately.

EDIT Control Statement with No Parameters

instructs IMDPRDMP to format and print GTF trace buffers in the
input data set, according to the default options SYS and USR=ALL.

END Control. Statement

term ina t·es I·MDPRDMP processing.

ExampJe 7: Editing aGTF Trace Data Set

~hen GTF trace data is recorded in an external data set, you can specify
editin9 of only selected records. This example shows how to edit trace
records associated with two specific jobs.

//EDIT
//
//SYSPRINT
//PRINTER
//TRACE

JOB MSGLEVEL= (1, 1)
EXEC PGM=IMDPRDMP.PARM='ER=O'
DD SYSOUT=A
DD SYSOUT=A
DD UN1T=2400.LABEL=(,NL).VOL=SER=TRACE.

// D1SP=OLD,DCB=(BLKSIZE=2048.BUFNO=10)
//SYSIN DD *

/*

EDIT
EDIT

END

DDNAME=TRACE,JOBNAME=XS7A
DDNAME=TRACE.JOBNAME=XS6B.

S 10= 10= (190.191)

In this ex-ample:

EXEC Statement

invokes 1MDPRDMP and specifies the action that IMDPRDMP should take
if a program interruption occurs in a user program.

SYSPRINT DD statement

defines the message data set.

PRINTER DD statement

defines the output data set.

216 Service Aids (Release 21)

rRACE DD Statement

defines the input trace data set. Since this data set resides on a
non-labeled tape, subparameters of the DCB parameter are used to
specify the same trace block size as was specified when creating the
trace record, and to request that ten input buffers be used to
process the trace data.

SYSIN OD statement

defines the data set containing the IMDPRDMP control statements.
The data set follows immediately.

EDIT Control Statement

instructs IMDPRDMP to edit trace records in the data set defined by
the TRACE DD statement. The JOBNAME=X57A parameter requests editing
for only those records associated with job X57A.

EDIT Control Statement

instructs IMDPRDMP to edit trace records from the data set defined
by the TRACE DD statement; that is, the same data set referred to
in the first EDIT statement. This time, however, only records
associated with job X56B are to be processed; of those, only SIO and
I/O interrupt traces for devices 190 and 191 are edited.

END Control Statement

terminates IMDPRDMP processing.

Chapter 8: IMDPRDMP 217

•

218 Service Aids (Release 21)

Chapter 9: IMAPTFLE
Generates JCL needed to apply a PTF and/or applies the PTF. •

Chapter 9: IMAPTFLE 219

220 Service Aids (Release 21)

INTROOOcrION • • • •
Generate Function • • • •
Application Function •

Contents

• •• 223
.224
.225

.227 EXECUrING PTFLE
Application Function •
Generate Function • • • •

....... 227

CONT ROL STATEMENTS •
IMAPrFLE Control Statements
IDENTIFY Control Statement •

• .228

.230

.230

.231

• •• 233
.233

OUTPUT • • • • •
Application Function •
Generate Function • • • • .. ••••• 233

.236 EXAMPLES ..
Example 1:
Example 2:

Generate Function • • • •
Application Function •

• .236
.237

OPERATIONAL CONSIDERATIONS .. • •
General Considerations •. • • • •
Generate Function considerations •
Application Function Considerations

.238

.238
• ... 239

.239

Figures

Figure PTFLE-l.
Figure PTFLE-2.
Figure PTFLE-3.

Figure PTFLE-4.
Figure PTFLE-S.

Figure prFLE-6.

Figure PTFLE-7.

Figure PTFLE-8 ..

Figure PTFLE-9.

The Generate Function of IMAPTFLE
The. Application Function of IMAPTFLE . . • .
Minimum Main Storage Required for IMAPTFLE

· .224
• .225

When Using the Application Function •227
PTFLE Cataloged Procedure.. • . • • .227
Sample JCL Needed to Execute the Generate Function
of IMAPTFLE • • • • • • • • • • • • • • • • • .229
Sample Linkage Editor (IEWL) output from IMAPTFLE
Generate Function (Sample #1). •• • •• • • • • • .234
Sample Linkage Editor (IEWL) Output from lMAPTFLE
Generate Function <Sample #2) • .235
Sample IEBCOPY output from lMAPTFLE Generate
Function • • . .0 • • • • • • • • • • • .235
Sample IEHIOSUP output from lMAPTFLE Generate
Function • • • • • •. • • • • • • • • • • • • .·235

Chapter 9: IMAPTFLE 221

•

222 Service Aids (Release 21)

Introduction

The lMAPTFLE service aid is a problem program that is used to apply
program temporary fixes (PTFs) to the IBM system/360 Operating System.
You can use IMAPTFLE to;

• Generate the JCL and execution control statements needed to add PTF
to an operating system in a later step, or

• Apply PTFs to an operating system by dynamically invoking the
linkage editor.

Either the generate function or the application function of lMAPTFLE can
be used to add PTFs to an operating system. The method is determined by
the PARM operand of the EXEC statement in the execution JCL.

Both functions of IMAPTFLE require the stage I output from sysgen as
input. A brief explanation of the system generation process will clarify
this requirement.

An operating system is generated in two stages. During Stage I,
user-supplied macro instructions that describe both the installation's
machine configuration and the desired programming options are analyzed
and used to generate a job stream. The stage I output contains the JCL
that makes up this job stream. In stage II, the job stream is processed
to generate the libraries that form the user's operating system. Each
member of these libraries has a certain set of attributes. When a
member (load module) is to be modified by a PTF, these attributes must
be maintained.

The attributes of the load module being modified by the PTF are
contained in the JCL and control statements for the linkage editor and
IEBCOPY utility generated during stage I of system generation (SYSGEN).
ro ensure that the PTF will be correctly applied, lMAPTFLE uses the
Stage I output to determine the attributes of the load module being
replaced with the PTF module.

Chapter 9: IMAPTFLE 223

•

Generate Functi,on

When using the generate function, two steps are required to apply PTFs.
In the first step, IMAPTFLE generates the JCL and control statements for
the linkage editor and IEBCOPY utility that are needed to apply the
PTFs. In the second step, these JCL and control statements are executed
to apply the PTFs to the operating system. Figure PTFLE-l shows the
generate function; the shaded area is performed after lMAPTFLE completes
process ing.

One control statement is provided for each module that comprises the
PTF. Each control statement contains the module name and system status
index (SSI) for the PTF module. (Alias names of modules that were copied
by the IEBCOPY utility during system generation must be provided in
additional control statements following the control statements that
contain the associated module name .. These additional control statements
should contain only one alias each. They may not be used to add new
alias names.) lMAPTFLE searches the Stage I output for the module names
contained in the control statements. From this search, IMAPrFLE produces
the necessary JCL and control statements needed to apply the PTFs to the
operating system.

Generate Funct ion

I'MA"TF" I------'-'-----I~

Figure PTFLE-l. The Generate Function of lMAPTFLE

224 Service Aids (Release 21)

Application Function

When using the application function, only one step is required to apply
PTFs. One control statement is used for each module that comprises the
PTF. Each control statement contains the module name and system status
index (SSI) for the PTF module. (Alias nanes of modules that were copied
by the 1EBCOPY utility during system generation must· be provided in
additional control statements following the control statements that
contain the associated module name. These additional control statements
should contain only one alias each. They may not be used to add new
alias names.) When preparing the input, the PTF object modules are
placed immediately behind their corresponding control statement(s), as
shown in Figure PTFLE-2.

1¥~PTFLE reads all of the control statements and object modules into
a work data set, creates a table of PTF module names, and then searches
the Stage I output from the generated system being updated. When a
module name from the Stage I output matches a PTF module name in the
table, lMAPTFLE internally produces the information necessary to apply
the prF, and then invokes the linkage editor to update the operating
system~ lMAPTFLE then repeats the operation until all PTFs have been

I applied or the Stage I output reaches end-of-file.

Application Function

IIM~PT~~ I
I I
r I
I I
I I
~ }

.....

Linkage
Editor

Figure PTFLE-2. The Application Function of IMAPTFLE

Chapter 9: IMAPTFLE 225

•

226 Service Aids (Release 2l)

Executing IMAPTFLE

rhe requirements for executing the lMAPTFLE service aid vary according
to the desired function: generate or application.

Application Function

For execution of the application function, the main storage space is
dependent on both the linkage editor and operating system, as shown in
Figure PTFLE-3. Input to IMAPTFLE consists of the stage I output from
the generated system to be updated, lMAPTFLE control statements
identifying the CSECTs being replaced, and the object module PTF CSECT
replacements. The control statements are discussed under "IMAPTFLE
Control statement."

Design Level
of

Linkage Editor

Mi ni mum Ma i n
Storage Requirements

MVT MFT

44K (F)
88K (F)

128K (F)

68K
109K
149K

58K
103K
144K

Figure PTFLE-3. Minimum Main Storage Required for lMAPTFLE When
Using The Application Function.

Figure PTFLE-4 shows the cataloged procedure that IBM supplies for
executing the application function of lMAPTFLE. This procedure, called
PTFLE, resides in the SYS1.PROCLIB data set.

//
//PTF
/ /PRINT
//PCHF

PROC USE='IEWL',LIB1=LINKLIB,REG=68K
EXEC PGM=IMAPTFLE,PARM=&USE,REGION=®
DD SYSOUT=A
DD UNIT=SYSQ,LABEL=(,NL),DISP=OLD,

// VOL=SER=STAGE1, DCB= (BLKSIZE=80)
//OUTF
//SYSUTl
//SYSUT2
//SYSPRINT
//SYSLMOD

DD UNIT=SYSDA, SPACE=(TRK, (20,20»
DD UNIT=SYSDA, SPACE= (TRK, (20,20»
DD UNIT=SYSDA, SPACE= (TRK, (20,20»
DD SYSOUT=A
DD DSNAME=SYS1.&LIB1,DISP=OLD

Figure PTFLE-4. PTFLE Cataloged Procedure.

rhe statements in the cataloged procedures and their meanings are:

PROC Statement

defines values for the symbolic parameters in the PTFLE cataloged
procedure. The default values are designated by USE, LIB, and REG
in the parameter field of this statemento

Chapter 9: IMAPTFLE 227

•

EXEC Statement

specifies the program to be executed, in this case lMAPTFLE. The
PARM= field contains the symbolic parameter &USE that will be
assigned the default value of 'IEWL' in the PROC statement; if IEWL
is not the linkage editor to be used, override &USE with the name of
another linkage editor.

The default value for the symbolic region size (®) is 68K;
this value assumes that MVT is being used with the 44K linkage
editor. If these assumptions do not apply, replace the PROC
statement with one that contains the appropriate region size.

PRINT DD statement

defines the message data set for lMAPTFLE.

PCHF DD Statement

defines the Stage I output from the generated system to be updated.
This data set is input to lMAPTFLE. If the data set resides on an
unlabeled tape, add a DCB parameter specifying the logical record
length (80 bytes) and the blocksize.

OUTF DD Statement

defines a temporary sequential data set used by IMAPTFLE and the
linkage editor. This data set may reside on magnetic tape or a
direct access device. Do not specify the blocksize.

SYSUTl DD Statement

defines a work data set for the linkage editor. This data set must
reside on a direct access device.

SYSUT2 DD Statement

defines a work data set for lMAPTFLE. This data set must reside on
a direct access device. Do not specify the blocksize.

SYSPRINT DD statement

defines the message data set for the linkage editor.

SYSLMOD DD statement

defines the output module library for the PTF being added to the
system the DSNAME keyword contains the symbolic parameter &LIB1.
The &LIBl parameter is assigned the value LINKLIB from the PROC
statement when the procedure is invoked. Before overriding the
LINKLIB data set name, see the publication IBM System/360 Operating
System: Job Control Language Reference, GC28-6704.

Generate Function

For execution of the generate function, lMAPTFLE requires at least a 46K
region or partition. Input to I~ffiPTFLE must consist of the Stage I
output from SYSGEN and control statements identifying the modules for
which JCL output is to be produced.

228 Service Aids (Release 21)

Figure PTFLE-5 illustrates the JCL needed to execute the generate
function.

//JOB
//STEP
//PRINT
//OUTF
//
//PCHF
//
//MODF

JOB MSGLEVEL=(1,1),REGION=46K
EXEC PGM=IMAPTFLE
DD SYSOU'I'=A
DD UNIT=2400,LABEL=(,NL),

DISP=(,KEEP),VOL=SER=OUTPUT
DD UNIT=2400,LABEL=(,NL),

DISP=OLD, VOL=SER= SYSGEN, DCB= (BLK SI ZE=S 0)
DD *

control statements

Figure PTFLE-5. Sample JCL Needed to Execute the Generate Function
of IMAPTFLE

JOB S ta ternen t

initiates the job, and specifies a region size of 46K.

EXEC Statement

invokes IMAPTFLE. Do not specify any other parameters on this
statement.

PRINT DD Statement

defines the I~~TFLE message data set.

OUTF DD Statement

defines a sequential data set to which IMAPTFLE will direct its
output. This data set may reside on a direct access device or a
magnetic tape, or it may be directed to a SYSOUT data set. Do not
specify a block size.

PCHF DD Statement

defines the Stage I output from SYSGEN to be used as input to
lMAPTFLE. If an unlabeled tape is used, the DCB parameter
specifying logical record length (SO bytes) and block size must be
specified.

MODF DD Statement

defines the input stream that contains the IMAPTFLE control
statements .•

Chapter 9: IMAPTFLE 229

•

Control Statements

Two types of control statement are valid in IMAPTFLE: the IMAPTFLE
control statement and the linkage editor IDENTIFY statement. When using
the application function, each IMAPTFLE control statement must be
followed by the PTF object module named in the control statement, which
in turn must be followed by the corresponding IDENTIFY control statement.
When using the generate function, the IDENTIFY control statement is
optional; if used it must follow the corresponding IMAPTFLE control
statement.

The following sections describe the IMAPTFLE control statement and
the IDENTIFY control statement.

IMAPTFLE Control Statement

The I~APTFLE control statement has the following general format:

module name SSI number comments

module name

identifies the name of the module for which JCL is to be created.
The length of this name can vary, but it must not exceed eight
characters. If an input module can be specified by either of two
names (component library name or system library name), the component
library name must be used. statements containing duplicate module
names will be ignored by IMAPTFLE. JCL will be produced for the
module the first time the name is encountered.

88I number

reflects the bit settings that are to be placed in the library
directory entry for a load module after the PTF has been applied.
The SSI information consists of indicators that reflect the status
of the load module. The S8I must be updated to show that a module
has been modified. The number must begin in column 10 and be exactly
eight characters long. To determine the exact bit settings of the
S8I before the PTF is applied" the utility program IEHLIST may be
used to obtain the current SSI information for all the members of a
library.

comments

any user data.

rhe coding specifications for this statement are:

• Each control statement must contain only one module name and its
8-character system Status Index (S81) number. (As mentioned, when a
user applies a PTF to a module, he is responsible for making sure
that 'the 8SI is updated to reflect these changes. For information on
the SSI see the discussion "Updating System status Information" in
the IMASPZAP chapter of this publication" and the publication IBM
System/360 Operating System: Maintenance Program, GC27-6918.

230 Service Aids (Release 21)

• The module name must begin in column 1 of the control card. If the
module name is less than eight characters, leave blanks between the
end of the module name and column 9.

• The 881 number must begin in column 10 of the control card.

• comments are permitted through and including columns 19 and 80 of
the control card.

• Columns 9 and 18 may contain delimiting blanks or commas.

• When using the application function, each control statement must be
followed by the PTF object module named in the control statement.

Directory entries for existing alias names of modules that were copied
by the IEBCOPY utility during system generation will be updated properly
only if such alias names are provided in control statements that follow
the control statements for associated module. These additional control
statements need not contain SSI information. (Note: The alias names in
additional control statements must be only those that appear in the same
copy step as the true name of the module in the Stage I output from
system generation.)

IMAPTFLE control statements are included in the input stream
following the MODF DD statement, as previously described. A /* record
denotes the end of input for the execution of IMAPTFLE.

Multiple control statements can be used in any execution of
I MAPTFLE, but the total number of control statements must not exceed
150. After the limit has been reached, error message IMA001I will be
issued.

The IMAPTFLE control statements may be entered in any order. Any
module named in a control statement must exist on the Stage I output
tape. Any module names that cannot be found on this tape will be listed
by an error message. Duplicate module names detected will also be
flagged by the message.

IDENTIFY Control Statement

An IDENTIFY statement for use by the Linkage Editor may also be included
in the input defined by the MODF DD statement.

The IDENTIFY statement is not a control statement for IMAPTFLE, but
for the linkage editor. IMAPTFLE will copy it (exactly as it appears in
the MODF input stream) into the SYSLIN input stream that it creates for
the linkage editor.

The IDENTIFY statement is required for the application function and
optional for the generate function. For the application function each
PTF object module must be followed immediately by an IDENTIFY statem~nt;
if the IDENTIFY statement is absent, lMAPTFLE will terminate proces~ing
and issue message IMA010I. For the generate function the IDENTIFY
statement must follow the IMAPTFLE module name control statement that it
is associated with. Only 150 IDENTIFY statements, including continuation
statements, are permitted in a job step. If this limit is exceeded,
lMAPTFLE will terminate processing with a return code of 16 and issue
message IMA011I.

Chapter 9: IMAPTFLE 231

•

The format of the statement must be identical to that of the Linkage
Editor IDENTIFY control statement, as follows:

IDENTIFY (c sectname (• da ta •) , csectname (• da ta •))
csectname(Wdata l

)

csectname

data

is the symbolic name of the control section that is to be
identified. If the CSECT name is changed at system generation by a
CHANGE statement" the resulting name should be used.

is the identi£yinq inf,ormation (maximum of 40 characters> that is
used to identify the CSECT. This must be enclosed in quotes.

Column one of the statement must be blank. The outer parentheses may be
deleted i:f only one control section is identified in the operand field.

232 Service Aids (Release 21)

Output

lMAPTFLE produces two different types of output, as described below.

Application Function

rhe final result of running the lMAPTFLE application function is the
updated load module. Because the application function is a
self-contained operation, it produces no physical printed output.

Generate Function

rhe final result of running the lMAPTFLE generate function is a data set
that consists of the job control language statements, linkage editor
control statements, and the IEBCOPY control statements needed to add the
PTFs to the generated operating system in a later run. Three types of
JCL statements are produced:

• Linkage Editor (IEWL) JCL: This type of JCL is produced if the load
module requested for processing was originally link edited into the
system during system generation.

• IEBCOPY JCL: This type of JCL is produced if the member was
originally copied into the system.

• IEHIOSUP JCL: This type of JCL is produced in addition to LINK EDIT
and/or IEBCOPY JCL. The IEHIIOSUP statements are used to execute the
IEHIOSUP utility .• This program updates any TTR entries in the
transfer control tables of the supervisor call library (SVC library)
that may require a change as a result of applying a PTF.

Figures PTFLE-6, 7, 8, and 9 show sample output from the generate
function of lMAPTFLE. All of these samples were derived by using the
lMAPTFLE JCL and control statements illustrated in Figure PTFLE-5. For a
more detailed explanation of the JCL statements and their parameters,
refer to the publication IBM System/360 Operating system: Job Control
User's Guide, GC28-6703.

Note: The generate function lMAPTFLE will produce a JOB statement to
precede any other JCL produced.

Chapter 9: IMAPTFLE 233

•

/ /SG43 EXEC PGM=IEWL,COND= (8, LT),
/ / PARM='NCAL"LIST,XREF ,OVLY ,LET, DC'
//SYSUT1 DD DISP=OLD,VOLUME=(,RETAIN),DSNAME=SYS1.UT3
//SYSPRINT DD SPACE=(121,(SOO,100),RLSE),DCB=(RECFM=FB,
// LRECL=121,BLKSIZE=121),SYSOUT=A
//SYSLMOD DD DISP=OLD,UNIT=2311,VOLUME=SER=111111,
// DSNAME=SYS1.LINKLIB
//UTS06 DD DISP=OLD,VOLUME=(,RETAIN),DSNAME=SYS1.UTS06
//SYSPUNCH DD DISP=OLD,VOLUME=(,RETAIN),
// DCB=(,RECFM=F,BLKSIZE=SO),DSNAME=SYS1.0BJECT
//SYSLIN DD *

/*

INCLUDE UTSO 6 (IEBGEN03)
ENTRY IEBGENER
INCLUDE SYSLMOD(IEBGENER)
OVERLAY 1
INSERT IEBCCS02
INSERT IEBGSCAN
OVERLAY 1
INSERT IEBGENR3
INSERT IEBCONP2
INSERT IEBCONH2
INSERT IEBCONZ2
INSERT IEBEDIT2
INSERT IEBLENP2
INSERT IEBMOVE2
OVERLAY 2
INSERT IEBGENS3
OVERLAY 2
INSERT IEBGEN03
SETSSI OS199133
NAME I EBGENER (R)

Figure PTFLE-6. Sample Linkage Editor (IEWL) output from IMAPTFLE
Generate Function (Sample #1)

//SG63 EXEC PGM=IEWL,COND=(S,LT),
/ / PARM=' NCAL"LIST ,XREF ,DC'
/ /SYSUT1 DD DISP=OLD, VOLUME= (, RETAIN) , DSNAME=SYS1. UT3
//SYSPRINT DD SPACE=(121,(SOO,100),RLSE),DCB=(RECFM=FB,
// LRECL=121,BLKSIZE=121),SYSOUT=A
//SYSLMOD DD DISP=OLD,UNIT=2311,VOLUME=SER=111111,
// DSNAME=SYS1.LINKLIB
//ALS31 DD DISP=OLD,VOLUME=(,RETAIN),DSNAME=SYS1.AL531
//SYSPUNCH DD DISP=OLD,VOLUME=(,RETAIN),
/ / DCB= (" RECFM=F, BLKSIZE=SO) , DSNAME=SYS1. OBJECT
/ /SYSLIN DD *

/*

INCLUDE AL531(IEX51)
ENTRY IEXS1000 ,
ALIAS IEXS1000,IEXS1002,IEXS1ER1,IEXS1ER2
INCLUDE SYSLMOD(IEX51)
IDENTIFY IEX51000('PTF20191')
SETSSI 02150191
NAME IEX51(R)

Figure PTFLE-7. Sample Linkage Editor (IEWL) output from IMAPTFLE
Generate Function (Sample #2)

234 Service Aids (Release 2l)

//SG44 EXEC PGM=IEBCOPY,COND=(S,LT)
//SYSUT3 DD DISP=SHR,DSNAME=SYS1.UT3
//SYSPRINT DD SPACE=(121,(500,1000),RLSE),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=121),
// SYSOUT=A
//CI505 DD DISP=SHR,VOLUME=(,RETAIN),DSNAME=SYS1.CI505
//SVCLIB DD DSNAME=SYS1.SVCLIB,VOLUME=(,RETAIN,SER=SYSRES),
// UNIT=2314,DISP=OLD
//SYSIN DD *

COpy OUTDD=SVCLIB,INDD=CI505
SELECT MEMBER=«IGEOOOOA"R»
SELECT MEMBER=«IGEOOOOD"R»
SELECT MEMBER=«IGEOOOOG"R»

/*

Figure PTF·LE~S. Sample IEBCOPY Output from IMAPTFLE Generate Function

//SG79
//SYSPRINT
//
//SYSUTl
//

EXEC PGM=IEHIOSUP
DD SPACE=(121, (SOO,1000),RLSE,DCB=RECFM=FB,

LRECL=121,BLKSIZE=121),SYSOUT=A
DD DSNAME=SYS1.SVCLIB,DISP=(OLD,PASS),

VOLUME=(,RETAIN,SER=111111),UNIT=2311

Figure PTFLE-9. Sample IEHIOSUP Output from IMAPTFLE Generate Function

Chapter 9: IMAPTFLE 235

•

Examples

Example 1: Generate Function

This example shows the JCL and control statements needed to execute the
generate function of IMAPTFLE. In this case, the input data set from
sysgen resides on a magnetic tape.

//JOB
//STEP
//PRINT
//OUTF
//
//PCHF
//

JOB
EXEC
DD
DD

DD

//MODF DD
IEBGEN03 05199133
IEX51 02150191

MSGLEVEL= (1,1)
PGM=IMAPTFLE
SYSOUT=A
UNIT=SYSDA,VOL=SER=OUTPUT,DISP=(,KEEP),

DSNAME=DAOUTPUT,SPACE=(TRK,(20,10»
UNIT=2400,LABEL=(,NL),DISP=OLD,

VOL=SER=SYSGEN,DCB=(BLKSIZE=80)

*

IDENTIFY IEX51000('PTF20191')
IGEOOOOA 03144004
IGEOOOOD 02155123
IGEOOOOG 05194025
/*

In this example:

JOB Statement

initiates the job.

EXEC Statmen t

invokes IMAPTFLE.

PRINT DD Statement

defines the message data set.

OUTF DD Statement

defines the output data set, in this case residing on a direct
access volume.

PCHF DD Statement

defines the input data set containing the Stage I SYSGEN output.

MODF DD Statement

defines the input stream that contains the IMAPTFLE control
statements.

236 Service Aids (Release 21)

Example 2: Application Function

This example illustrates the JCL needed to execute the Application
function of IMAPTFLE using the cataloged procedure PTFLE.

/ /PI'FPROC JOB
EXEC
DD

MSGLEVEL= (1,1)
PTFLE //STEP

//PTF.MODF
IEFSD082 01117251 *

Insert PTF Object Deck
Insert Linkage Editor IDENTIFY

IEFSD085 01117251
statement

Insert PTF Object Deck
Insert Linkage Editor IDENTIFY statement

/*

JOB Statement

initiates the job.

EXEC Statement

invokes the PTFLE cataloged procedure, which executes the
application function of IMAPTFLE,. When PTFLE is invoked, these
statements merge with the JCL statements in the cataloged procedure.

PTF.MODF DD statement

defines the input stream, which contains the IMAPTFLE control
statements.

IMAPTFLE Control Statements

identify the module to be updated with the PTF, and supplies the SSI
information to be placed in the library directory entry for the
module once the PTF has been successfully applied.

IDENTIFY Control Statements

identify the CSECT within the module identified by the IMAPTFLE
control statement that is to be updated with a PTF, and supplies
information needed to identify that CSECT once the PTF application
is successful.

Chapter 9: IMAPTFLE 237

•

Operational Considerations

Before attempting to use IMAPTFLE, the following considerations should
be examined.

General Considerations

•

I •

•

IMA'PTFLE will not accept more than 150 module names as input. If the
number of names exceeds this limit, the job must be divided into
more than one job of no more than 150 module names each. If control
statements are provided for alias names of modules that were copied
during system generation, these additional names must be counted
toward the total of 150 when the generate function is being invoked.

The Stage I output must be from the generated system of the
operating system being updated with the PTFs.

If Stage I output is an unlabeled tape, the DCB parameter containing
the logical, record length and blocksize must be added to the PCHF DD
statement.

The Stage I output must not contain control characters ti. e.,
printer or punch) '.

If an input module name can be specified by either of two names
(component library name or system library name), the component
library name must be used. For example, IEAATM02 is a component
library name; its system name is IGC0201C. If JCL were required for
this module, IEAATM02 would have to be specified as the input module
name.

• It is the user's responsibility to ensure that the SSI is correctly
updated when the module is applied to the system. The user,
therefore, should make sure that the correct SSI information is
placed on each control card. (The correct SSI data appears on the
cover letter for the PTF.) Absence of the SSI on the control card
will cause the SSI in the module's directory entry to be set to
zeros.

• If an input load module was created from multiple load modules in
the distribution library, the user should make sure that a linkage
editor ENTRY statement exists for that module in the Stage I output
from system generation. If no such statement is present, IMAPTFLE
should not be used, since it may cause the module to be updated with
an incorrect entry point.

• IMAPTFLE should not be used to apply a PTF to a module if the module
name in the distribution library is different from the CSECT name in
the module, and if the module's overlay structure was defined during
system generation by INCLUDE statements rather than by INSERT
statements. An example of such a module is the FORTRAN H compiler.

238 Service Aids (Release 21)

• lMAPTFLE should not be used to apply a PTF to a module that is a
member of a library copied totally from the distribution library at
system generation. Libraries containing modules to be processed by
lMAPTFLE should have been copied selectively by the IEBCOPY utility
during system generation (that is, the SELECT statement must have
been used.)

Generate Function Considerations

• lMAPTFLE will not produce JCL for either an lMASPZAP PTF (discussed
in Section III of this publication) or a PTF that requires some
degree of system generation for its application.

• lMAPTFLE requires Stage I output from a system generation of Release
19 or later. Output from earlier system generations cause the
lMAPTFLE program to be terminated with an error message.

• The system library being updated by a PTF must not be used as a
driver to run the JCL job stream created by lMAPTFLE. It is
recommended that the STARTER SYSTEM be used instead.

• The user should verify that both the component libraries and the
four utility data sets are cataloged on the driver system before the
PTF is applied. (For more complete information on utility data sets,
refer to the publication IBM System/360 Operating system: Utilities,
GC28-6670. system data sets are cataloged, and successful
application of the PTF therefore depends on their being cataloged as
described.

• lMAPTFLE does not produce JCL to apply PTFs to the Distribution
Libraries (DLIBs). The JCL produced by lMAPTFLE is designed to be
used in updating the system by using the DLIBs. Therefore, before
running the JCL produced by lMAPTFLE, the user must apply the PTFs
to the DLIBs to ensure a successful update of the system when the
JCL stream is run.

• The lMAPTFLE generate function will not accept more than 150
IDENTIFY cards, including continuation cards. If the number of cards
exceeds this limit, the job should be divided into more than one
step of no more than 150 IDENTIFY cards and continuation cards each.

Application Function Considerations

• PTFs containing multiple CSECTs can only be applied to load modules
residing on the same system library.

• TTR entries in the transfer control tables of the supervisor call
library (SVCLIB) are updated for PTFs applied to SYS1.SVCLIB. It is
not necessary to run the IEHIOSUP utility.

Chapter 9: IMAPTFLE 239

•

(

240 Service Aids (Release 21)

Chapter 10: IMDSADMP
Operates as a stand-alone program to produce a high-speed or
low-speed dump of main storage. •

Chapter 10: IMDSADMP 241

242 Service Aids (Release 21)

Contents

INTRODUCTION • • 245

SIZE OF SADMP • • 246

rHE HIGH- SPEED DUMP PROGRAM • •
Loading the High-Speed Dump Program
Output of the High-speed Dump Program •

• • 248
• • 248
• .248

THE LOW-SPEED DUMP PROGRAM • • •• • • • • • •
Loading the Low-Speed Dump Program

• • 250
• • 250

Output of the Low-Speed Dump Program • • • • • • .250

SPECIFYING THE DUMP • • • • 253

RETRIEVING AND CREATING THE DUMP PROGRAM • ·258
The Specification Step • • • • • ·258
rhe Initialization Step •••• • ·262

Tape Initialization (High-Speed Only)
Direct Access Initialization

• ·262
• .263

EXECUTING THE DUMP PROGRAM • • 265

OPERATIONAL CONSIDERATIONS • .267

ERROR CONDIT IONS •• • • • • • • • • • 270
Error Handling • • • • • • • • • • • • • • '. • •• 270

Errors During Initialization of Direct Access Resident Programs .270
Errors During Dump Execution • • • • • .270

Macro Expansion Messages •••••••••••••••••••••• 272

Figures

Figure SADMP-l.
Figure SADMP-2.

Figure SADMP-3.

Figure SADMP-4.
Figure SADMP-5.

Figure SADMP-6.
Figure SADMP-7.
Figure SADMP-8.

Figure SADMP-9.

Figure SADMP-l0.
Figure SADMP-ll.
Figure SADMP-12.

Size of the IMDSADMP Program in Bytes ••••••• 246
Format of Cylinder 0, Track 0 for Disk
Resident IMDSADMP • • • • • • • • • • • • • 247
Output Tape Formats for the High Speed Version
of the Dump Program •• • • • • • • • • • • • • 249
IMDSADMP Low-Speed Dump Output Sample ••••••• 251
IMDSADMP Low-Speed Dump Output sample of a
Model 65 Multiprocessing system • • .• • • • • • • .252
IMDSADMP Parameter-Dependent Program Generation •• 253
The IMDSADMP Macro Instruction Statement •• 254
Availability of IMDSADMP Macro Definition
Statements ••••• • • • • • • • • • •• 259
An Example of IMDSADMP JCL Statements for
for Designating SYSLIB •••• • • • • .260
Example of the IMDSADMP Specification Step •••• 261
IMDSADMP Initialization Procedures .262
An Example of IEBGENER JCL Statements for
Dump Tape • • • • • • • • • • • • • • • ·263

Figure SADMP-13. Maximum Number of User Labels Depending on
Device and Options Selected • • • • • • ·263

Chapter 10: IMDSADMP 243

•

244 Service Aids (Release 21)

Introduction

when a system goes into a disabled wait state or an unending loop, a
stand-alone dump program is needed to dump the contents of main stor,age
so that the condition can be analyzed. Optimally, this dump program
should be high-speed so that the system is inoperative for as short a
p~riod of time as possible. IBM provides IMDSAD'MP for this purpose.
IMDSADMP is a macro instruction that allows a user to generate a
stand-alone dump program specifically tailored to. his installation's
needs.

IMDSADMP can generate two types of dump program: ,a high-speed
version that can quickly write the contents of main storaqe to a tape
volume in large blocks, and a low-speed version in which the contents of
main storage are written to either a printer or a tape volume in
unblocked, printable format.

The high-speed version of the dump program may reside on either a
tape or direct access volume; the low-speed version may reside only on a
direct access volume. See the IMDPRDMP service aid for instructions on
processing the high-speed output of IMDSADMP.

creation and usage of the dump program is simple. The user emp10ys
the IMDSADMP macro instruction to define the type of dump program be
wants (see the topic "Specifying the Dump"). The dump creation process
includes a specification step and an initialization step. In the
specification step, the macro instruction is assembled with the
I&r.t-provided IMDSADMP macro d,efinition. This specification step produces:

• IPL text necessary to make the dump program loadable for execution ..

• Code that allows the IPL text and the dump program module to be
stored on a selected tape or dire'ct access volume.

• The dump proqram itself.

In the initializa tiOD step, the IPL text and the dump program modu1e
are placed on the specifi,ed device. To execute the dump proqram. the
user loads it into main storage from the device by .means of standard IPL
procedure. The main storaqe dump information is written to either ,a tape
'Or printer device based upon user-speci£ied operands of the IMDSADMP
macro instruction. During execution of the di.rect access resident
version of the dump program. the operator can override the device
address which was specifie,das ,a result of the expansion of the macro
instruction.

The two steps required to create an executable dump program and a
discussion of dump program execut.ion folloW' the detailed descriptions of
the high and low-speed versions.

Multiprocessinq: In multiprocessing sy.stems. TMDSADMP ,can dump the
contents of the registers in both CPUs when the direct control feature
is operational. and can dump all of addressable main storage. This is
accomplished by an optional. parameter of the nmSADMP macro instruction.

Chapter 10: .DlDSADMP 245

Size of SADMP

The size of the assembled IMDSADMP program depends on the output option
selected and whether or not IMDSADMP will be on a multiprocessing
system; see Figure SADMP-1. The size of IMDSADMP is the same both in
main storage and on the resident volume; see Figure SADMP-2.

Output Option Without Multiprocessing With Multiprocessing

High-Speed 1024 1088

Low-Speed Printer 1088 1344

Low-Speed Tape 1280 1472

Figure SADMP 1. Size of the IMDSADMP Program in Bytes

246 Service Aids (Release 21)

I P L 1 (24 bytes)

IPL PSW

Read IPL2 CCW

TIC to IPL2 CCW

IPL2 (144 bytes)

Search Dump Record

TIC * - 8

Write Work Record

Reserved

Address

•
• (optiona I user

labels)
•
•
•
•

/.
IMDSADMP
Work Record Same Size as the IMDSADMP Program

• Figure SADMP 2. Format of Cylinder 0, Track 0 for Disk Resident IMDSADMP

Chapter 10: IMDSADMP 247

The High-Speed Dump Program

This version of the IMDSADMP generated dump program (hereinaft·er
referred to as the dump program) dumps the contents of main storage to a
tape volume. Each dump record is 2052 bytes long. To further expedite
the dump and conserve program storage requirements, the main storage
information is written to a nonlabeled tape volume in an untranslated,
hexadecimal form. FOrmatting, converting and printing of the
information is performed by the IMDPRDMP service aid.

Loading the High-Speed Dump Program

The high-speed dump program may reside on either a tape or direct access
volume. In either case, the user loads the program from the device into
main storage by means of the IPL procedure. The high-speed dump program
is loaded into the CPU Log Out Area or into a storage specified by the
user through an operand of the IMDSADMP macro instruction. If IMDSADMP
is loaded into the CPU logout area, IMDSADMP destroys the contents of
the logout area. In case of hardware errors, or when requested by the
system, it may be necessary to display the contents of the CPU Log Out
Area before invoking the dump program.. This can be done by executing the
System Environment Recording, Edit and Print routine, SEREP, which is
discussed in the publication IBM System/360 Operating system: Operator's
Reference. GC28-6691.

Output of the High-Speed Dump Program

If the user selects the high-speed version of the dump program during
the specification step, he must select a tape device as the output
medium, even though the dump program itself may reside on either tape or
disk. The input device type selected has an effect on Qutputretrieval.

248· Service Aids (Release 21)

If the dump program resides on a tape volume, the dump information
is written to the nonlabeled tape that contains the program. The
information, in untranslated, hexadecimal form, follows the IPL text and
the dump program module records (see Figure SADMP-3, format 1). Each
dump information record is 2052 bytes long (see Figure SADMP-3, formats
2 and 3).

I

I PL or Program Instructions

I
0 79

Format 1
(Only present if the dump program is loaded from tape.)
Blocks 1 through 5 contain the IPL and program records. 80 bytes long.

)1

I

II

I
80000000 'IMDSADMP' Unused CSW CAW

J\ I
0 3 4 11 12 II

Generol pu;'re 'egh'e"

23 24 ' 87 88 95 96 99

Multiprocessing Only
/

.
\

:-e :§
Second Set of General Purpose Registers :::> Vl Unused

D- C» U Q)
0::

100 163 164 165 166 2051

First block of actual dump information. Contains general register and channel information. 2052 bytes toto I length.

Format 2
Byte 164 identifies the CPU that loaded IMDSADMP. Byte 165 gives the status of the second set of general purpose
registers:

X'OO' - registers not stored.
X'FF' - registers stored.

He=dedmol Dump of 2048 ,y,;; of Main S,arog,

I

:>..
Q) Block ~

Starting
e Address

D-

O 1 3 4 2051

Subsequent blocks of the dump. Contains storage protection key indicators (byte 0 above) and the block starting address
Format 3 followed by 2048 bytes of main storage information. 2052 bytes total length.

Figure SADMP 3. Output Tape Formats for the High Speed Version of the Dump Program

If the dump program resides on a direct access device, the 2052-byte
dump information record~ are written to the nonlabeled output tape
volume (see Figure SADMP-3, formats 2 and 3). The IPL text and ,dump
program records and work record are contained on cylinder 0, track 0 of
the volume on which the dump program resides (see Figure SADMP-2). The
work record is used to temporarily record the main storage information
from the area into which the dump program is to be loaded.

Chapter 10: IMDSADMP

•
249

The Low-Speed Dump Program

The low-speed version of the dump program writes the contents of main
storage to either a printer or a tape device. If output is to tape, the
information may be subsequently printed by a program such as the
IEBGENER utility program" as discussed in the publication IBM Systern/360
Operating System: Utilities, GC28-6586, or by IMDPRDMP.

Loading the Low-Speed Dump Program

The low-speed dump program must reside on disk. To execute the program,
the user performs the IPL procedure to load the dump program from its
resident device. The IPL statements and dump program reside on cylinder
0, track 0 (see Figure SADMP-2).

During the specification step, the user may either select an address
at which to begin loading, or use the default value. If the user
selects his own starting address, the value he specifies must be at
least 128 decimal or 80 hexadecimal.

Output of the Low-Speed Dump Program

The low speed version of the dump program writes dump information to
~ither a tape volume or a printer. The format of the main storage
information is the same, regardless of the output device type to which
it is being written. Each dump record contains 120 characters of
formatted dump information. An output sample is shown in Figure SADMP-4.
The contents of the general purpose registers are printed first,
followed by the remainder of main storage. (Note that for low-speed
dumps of a Model 65 Multiprocessing System, IMDSADMP shows both sets of
general purpose registers; see Figure SADMP-5.) A storage location
field containing the address of the first byte is printed to the left of
each line. A character translation field, showing the EBCDIC translation
of the hexadecimal contents, is displayed to the right of each line.
Only alphabetic or numeric representations of hexadecimal information
are given in the character translation field; all other bytes are
represented by a period. If a line duplicates the contents of the
previous line, it is not printed; instead the duplicate line is left
blank.

If the output of the dump program is directed to a tape volume, each
dump information record is preceded by a one-byte ASA character that is
used by the subsequent printing program to control printer spacing. This
results in a total record length of 121 bytes. This tape volume may be
printed by using the IEBGENER utility program or IMDPRDMP.

250 Service Aids (Release 21)

R ~7 OOOOOO~O OOOOOOOC 4C:40404C 4CC14E7C 40404C40 00014E~8 OCCCOCCC 00C00000 *•...•.•••.•••• *
R 8-15 00000000 OOOOOCCC 00000000 OC000(OC onococcc ooorocco 40014E12 oooorooo *•.....•.•.•...•.....•.•••
CCOOOO 00000191 00015004 OOeorono 6COOOC50 C8015C38 COOOOOOI FFF5CC8C 900622C2 * ••••••••••••••••••••••••• 5 ••••• K*
000020 FF050001 5005DIDF CCOC00CQ 00n00000 oonCFFOO 00000000 FF06000C 80000000 * •••••• J ••••••••••••••••••••••••• *
000040 00014fl0 OCOCOOOO OO~14EB8 CC01410C 57RC636E 48100C02 412000CO 50200048 * ••••••••••••••••••• 1 •••••••••••• *
000060 982400C8 9000100C 47700064 GCOOICOO 900CI000 47700C70. G1030C44 4150007C * ••• ~ •••••••••••••••••••••••••••• *
000080 91fF0045 47500084 582000CC G5E7CCCA 478000A2 Q5050CCA 4770006C 15240783 * •••.••..•...• x ••••••• N •••••••••• *
OCOOAO 07F21523 47AQOOAA 18324850 OC020t50 44500088 41FOOC6C C20020CO 00080000 *.2 ••••••••••• K ••••••• O •• K •••• Q •• *
OCOOC0 020000C8 20000048 02C505C4 40404C40 40404040 404C4040 4040404C 40404040 * ••• ~ ••••• ENO *
OOC0EO 40404040 40404040 40404040 4C404(C6 F3FOE2C5 07F6FS4C FOFC48F1 F340F1FO * F30SEP6G 00.13 10*
000100 61f1F361 F6f94040 40404040 4C404040 ccoeocoo 00000000 COOOOOCC 00000000 *.13.69 ••.•••..•••••••• *
000120 00"00000 oocoooec oe000000 oeooocoo 00000000 C000000C OOOOOOCO 00000000 * •••••••••••••••••••••••••••••••• *

000160 ooocoooc oooeoooo COOOOOOO 8200C170 0004CCOO 00036000 00000000 00000000 * •••••••••••••••••••••••••••••••• *
oe0180 Ff06000C 800C0000 0000018A 01eA018A FFOOClqO FF000190 OOCOOOCI FFF9fA9C * ••••••••••••••••••••••••••••• 9 •• *
n~OlA0 0006076C 000205CC 8(06056C COC6C~68 C006016C C0060564 E2C4F7F~ 50050182 * •••••• N ••••••••••••••••• SD1~ •• J ••
oe01CO 00050180 00000003 C~C6C56C 00060780 5Q05CFB4 00050180 00000000 00000000 * .. J ••••••••••••••••••• J ••••••••• *
oe01EO ooooooeo nC00000C ooooooeo CCGooeOO coccocoe 00000000 OOOOOCCC OOCOOOOO *•.........•......•...•
000220 00020460 OOCOOOOO OC80FFCO CCCOOCOO 07010COO OOFOFOfC 10C00808 00000000 * •• M •••••••••••••••••• OOO ••••••• ~*
000240 0080FFOO 00010006 28020000 C(FOFOF1 53104092 ooooeoco C08CFFOO 00020006 *•..... 001 •••
OC026 n 29030000 OOFOFOF2 51014C82 CO(COCOO 008CFFOG 00030006 29040000 OOFOFOF3 * ••••• OC2 •• •••••••••••••••••• 003*
000280 54284012 00000000 0080FFCC SC04CC06 28050000 00fOFOF4 52SC40G2 00000000 * •••••••••••••••••••• 004 •••
0002AO 0080fFOC 00050006 2Q06COCO OCF0FCf5 51904012 00000C(0 oceCFFCC 00C60006 * ••••••••••••• 005 •• .•••••••••••• *
0002CO 29070000 OOFOFOF6 51Q04012 OOOOOCOO 008CFFOO 0007C006 29080000 OOFOFOF7 * ••••• 006 •• •••••••••••••••••• 007*
or02EO 54284012 00000000 OC80FFCO OC080C06 29CGOCOC OOFOFOF8 51004022 OOCOOOOO * ..•................. OC8 ••••••••
00030~ C080FF82 00090000 040AC004 OGFOFCF9 10000e20 75EOOOOO 0080FF80 OOOCOOOO * ..••......... 009 •••••••••••••••••
000320 00080000 OOFOFOC3 1C000R01 COF04CCO 0080ff80 OOODOOOC COOCOOCO 00FOFOC4 * ••••• OOC ••••• O •••••••••••••• 000*
000340 10000802 00000000 0080FFR8 OCOEOOOO 07000000 OOFCFOC5 10000808 75FOC100 * ••..••.•••..•.••.••.• OCE ••••• O •• *
000360 0080FFOO 000F0000 C7CEOOCO ~CFOFCC6 10800808 COOOOCOO 00000000 00000000 * ••••••••••••• OOF •••••••••••••••• *
000380 0080FFOO 00100006 290FCO~0 COFOF1FO 51014011 00000000 008CFFOO 00110006 * 010 •••
0003AO 291COOOO 00FOF1F1 51914011 OCOOCCOO 008CFFCO 00120006 2B110000 OOFOF1F2 * ••••• 011 •• •••••••••••••••••• 012*
ooo~co 52004092 00000000 C080FfOO 00130006 29120000 OOFOFIF3 51~14051 00000000 * .••................. 013 •• ..••• *
OC03EO 0080FFCC 00140006 28130000 OCFCF1f4 53904092 000000CO C08CFFOO 00150006 * ••••••••••••• 014 ••••...• •• *
000400 28140000 OOfOFIF5 539040Q2 coooecoo OC8CFFOO 00160006 29150000 OOFOF1F6 * ••••• 015 •• •••••••••••••••••• 016*
000420 51014011 OOCOOOOO C080FFCO OC170006 29160000 00FOF1F7 54014011 00000000 * •••••••••••••••••••• 017 ••• *
000440 0080FFOO 00190006 29170000 OOFCFIF9 51904012 OOOOOOCO 0080FFCO 0OlAC006 * ••••••••••••• 019 •• .•..••.•.•••. *
OC0460 28180000 00FOF1Cl 531040Q2 OOOOOCOO OC80FFOO 00180006 2819000C 00FOF1C2 * ••••• OIA •• •....•••.••.•••••• cle*
000480 52004092 00000000 OC80FfOO CCICOCOO 001AOOOO 00FOf1C3 10000801 00000000 * •••••••••••••••••••• 01C •••••••• *

0 0004AO 0080FfOO 00100000 001RCC00 00FOF1C4 10000802 eooooooo C08CFFOO 001EOO06 * ..••••.•••.•. 010 •••••••••••••••• *
~ OO~4cn 2Q1COOOn nOFOF1C5 51004012 OOOCOCOO 0080FFOO C01FOC06 28100000 OGFOF1C6 * .•••• OIE •• •••••••••••••••••• 01F*
~ 0004EO 52004092 00000000 0080FFOO OC20000C 661ECcio OOFOF2FC 12081003 OOCOOOOO * ...•................ 02C •••••••• *
~ OC0500 OOOOOOCO 00000000 00000000 OCOOOOCO C080FFOO 00210COC 661FOOIC OOFOF2F1 * ...••..•.•.•.••.........••.•• 021* ~
ro 000520 120BI003 00000000 ceoooooo coooocoo 00000000 ooooooeo oceCFFOO 0022000C * ..••.•.•....•.•.....•....•...••• *
~ 000540 66200010 OOFOF2F2 120BI003 ccooocoo OOOOOCOO OOOOOCOO 00000000 00000000 * ••••• 022 •••••••••••••••••••••••• *

000560 0080fFOC 00230006 2921000C CCFOF2F3 51904C13 coocccoe 0080FFCO 00240006 * ••••••••••••• 023 •••.•
~ 000580 29220000 00FOF2f4 51004013 OCOOOCOO 0080FFCO 00250006 29230000 00FOF2F5 * ••••• 024 •••••••••••••••••••• 025*
0 OC05AO 51004013 00000000 0080FFOO OC260006 29240CCO 00fOF2F6 51004013 00000000 * •..••..•••.•••••••.. 026 •• *

oe05CO 008CFFOO 00270006 29250000 00FOF2F7 51004013 00000000 0080fFCO 00280006 * •••••••••••.• 027 •• *
COOSEO 29260000 OOFOF2F8 51004013 0CCCOCOC 0080FFOO 00290006 29270000 00FOF2F9 * ••••• 028 •• •••••••••••••••••• 029*

H 000600 51004013 00000000 OC80FFCO 002AOC06 29280000 COFOF2C1 51C04023 00000000 * •••••••••••••••••••• 02A ••••••• *
~ 000620 OOROFFOO 002R0006 2G29000~ OOFOF2C2 52004013 00000000 cceOFFCO 002COO06 * •••.....••... 02B ••• *
0 000640 292AOOOO OOFOF2C3 54004013 ooooecoo 0080FFOO 00200006 29280000 OOfOF2C4 * ••••• 02C •••••••••••••••••••• 020*
00 000660 54004013 00000000 0080FFOO OC2EOC06 292CCCCO OOFOF2C5 54004013 00000000 * ••....••••..•...•••• 02E •••••••• ~ 000680 0080FFOO 002F0006 292 00 COFOF2C6 54004013 00000000 008aFFOO 00300C06 * •••.••..•••.• 02F •• ••••••••••••• * 0
~ 0006AO 292EOOOO OOFOF3F~ OCOOOCOO 0080FFOO 00310006 2G2fOOOO OOFOF3Fl * ••••• 030 •• •••••••••••••••••• 031*
~ 0006CO 51004013 00000000 320C06 29300000 00FOF3F2 51004013 00000000 * ••••••••••••••.•••.• 032 ••••••• *

OC06EC OC80FFOO 51004013 00000000 0080FF~0006 * ••••••••••••• 033 •• ~ •••••••••••• *
000700 200 OFFOO 00350006 29 N 00 OOF ~

~

Figure SADMP-4. IMDSADMP Low-Speed Dump Output Sample

•

I\.)

VI
I\.)

(J)

CD
Ii
<
1-'-
()
CD

~
1-'-
0..
CIl

!::t!
CD
I-'
CD
III
CIl
CD

I\.)

I-'

lPl 0-7 OCCOC~C~ ~~O~2A10 o"ocon~o PC002e90
IPl ~-15 ~O~O~O~O 000027AO O~l~O~OO OO~0~C09

OTH 0-7 FFFFFF2E ~C0607F8 onC2POA4 OCOOOOOO
OTH 8-15 0002P088 onococoo OCC~BOBO 00000000

00000(\
000(\2"
00(\04/"1
00("06(1
O"'O"A(I
O(,O"AO
ooOOCO
ooCOI:O
00010"
00':.112"

00lPCC
00lPEC
O(\lCO{\
(\0IC2,)
0('11(40
1'I01r60
/"101(:8"
00 If AI:'
001CCO
00lCFO
0011'0(1
(1010:>"
001040
(\01D6O
"01080
00lnAr'l
el'llOe"
1)01DEO
(1011"'00
(Ir'1F2"
001F41)
1'1011=60
NHFM
"('lIf:AO
0011=("
1:'01HO
(\011"0"
('011'=20
O()11'=4('
0011=6n
O(llF8"
00lFAO
001e CO
CO'l.FFC
n02CO!'
01'12020
002(140
00206')
002n 80
(102"AQ
0"2(1('1'1
0020FO
002100

CCC00330 O(l0022~8 4COr,27FA 60000028
COC~COO~ 00000000 0('000005 ECOC2~4A
CO~02A31) OCOCOCOO C00029C8 1)00000,,0
~p2400r8 q000100C CC020000 00000C03
~IC"~OA6 40~00CC~ C80~on80 40000001
COCOC~Cn~c~ooc~C C~C00450 00020650
C2COCCC~ 20000C48 02r~05C4 40404C40
404n4~4n 404C4C4C 4~404~40 40404CC6
61FOF161 F~F94C40 404~4040 4C4C4C40
COCOCCCO O~OOOOOO 00000000 ~OOOOOOO

5CFOCOC4 0~Fon203 F38f0004 900EI=!52
F2F.EC2 n3 1=32Aocoe D2CBF32E 00404180
F012~OCO 80004770 FC940102 F3AEF!P~
~lCICn44 4710FC2C D4~2F3~E F3BE4780
COC~4110 F084~640 000095Cl 00"04740
FOp.4eCA~ 000446CO FC5R8880 00144090
F~CIF3Cl 41n"F222 45EOF1CA 471~F170
478CFI10 q4BFF226 ~48FFIF3 45ECF1CA
5PAOF2E2 41DOF2~A 45EOFtCA Ql010C44
12AA4100 F10E0207 006RF2AA 58COA(00
50AOf2c2 Q201F262 ~cA~F2CE 471CFCE6
~2C6COCF 92~6CCtO D206COli F21B4100
F2AC47~0 F~FA~9AO F2~24740 I=OFF47FO
FICA91C1 0044418C F1~44100 F25245EO
5CF~CC04 O~l=on203 F4QA0004 90~EF45F
F446C2C3 F4R2C~OP n20RF486 004041~0
F01290CO ~nO~477C FC9(107C2 F30eF3D8
4710F02C n402F308 F3n~4780 FC9041CO
FCfO~64C ooon95C1 COC04140 F29495C6
C~C4~6CC F~54A8RO OC144~80 ~4?44e~C
F2A14190 ~4e2Q40~ F2E5n2~~ ~3671=~57
D2C7COf! 1=4125AAO F42A41CC 07 F F43CC
~~FOC~04 05FOD2 n3 1=3P.FCO~4 QCCEF352
f2~E~2C3 F~2ADCOA O'~PF~2E 004041BO
FC12S~rc QnO~477C fCQ4D102 F3~EF38E

~lCl~C44 47101=C?C D40?F3RE F3RI=4780
D~CC471~ FC84Q64C n~00q5Cl n0004740
FOf4~eAO OO~44fro F~~8AaRI'I nOI44~~0
F3CIF3C1 4100F222 45eCFICA 471C~17C
47FOF1~O q4BFF22~ S48FF1F3 45EOF1CA
58AOF2~2 410nF25A 45EOFICA 91010044
12AA470C F10FD207 Cn6AF2AA 5eCCAC~O
50AOF2f.2 0201F262 S~AOF2CF 477Cl=CE6
~2C6COCF Q2~6C~10 D2C6CC11 F2~e41ro
F2AC47F~ ~OEA59AO F2B2474~ FCFE47F~
FICA~101 ~044478C ~19441QO F2524~I=O
(C444780 F194~61=C F171020A F416qC~O
~6C6C~Cl R2~COCOC ~DC080no 4770FICA
47P.OF10E 913F~045 477CF21C 9102C~44
4~rOC04A 078e~202 1=24~C049 n7FC4q~O
C7C~CCCC ~~OOOC~~ 020021QF 20CC~C~4
C8CCC~~0 ~COCOC~l 1FC~OOOC 40000('01
010F~A~0 2~OOC8~0 01002684 AOCOacn4

000C2~e8 OOCOOOOA CO~C2699 900024ce * ..•..•.•...•.....•. H ••••••••••• O
00000000 000026E8 e0002584 400027FA * ••••••••••••••••••••••• Y •••••••

0002A~6e aCC2A61~ 0002~F58 C002BAEO * •••••• P8 •• ~ •••••••••••••••••••••
4001C4A2 0006D7Bt OOOlPQ24 400022C6 * ••••••• ~ ••••••••• M ••• P ••••••• F

080COOAC 400000Cl COOOCOOO OOOOOOCO
00000000 OOOCOOOC OOOOCOOO OOOOOOCO
FeE10~OC 48100002 412C~CCO sn200C48
90001000 4770007C ~103C044 47S0007C
05C02240 400C05CC C6~C2240 OOOOO~CO
445r0098 47F0006C C2002~OO 00084040
40404040 4040404C 404~4C40 40404040
FOF8C101 D9F7F04C F2F24PF2 F140Flf4
oonooco~ OOOOOOOC COOOCCOO COOOOCCC
00000000 00000000 COryOCOOO 00000000

96020001 8200000C 50FOC008 05FO~CCE
OOlF9000 6000478(~C2C41eo OOlF40FO
41~OF3FO 410QF282 45FOF1CA 4710FC2C
FO~441CO 000341CC f36C4~AO OOOO~lfO
F17095C6 000("4720 fl10~AAO F2EA47FC
F2AC48~0 F2AC41~C F3D8940f F171D1C3
0503F3C1 F3C5478C F170C~03 f3C1F3C9
45EOF33A'921FF24~ ~40FF1PF 4190F406
47EQFOFE 41~OF3CC 47FOF170 5AAOF2E6
50AOF2D6 1BCC09C~ e8C~COO!'42COF2C6
5eCOC010 4100C02C 5000C008 920700(8
C00848BO 000245EC FICA4100 F26A48PO
FIAC410Q F24A48~C f2AC~6FO FIF34~En
FICA9000 80004780 FIA84730 F194~IC4
96020001 82000r.OC 50FOCOC8 C5F09CCE
001F9000 8000478C FC2C41PO 001f40EO
4190F4AC 41COF3F~ 45EOF2P2 91010C44
oa0341DC F30A43At COOO~IFO CCOC471C
00004720 F2944AAC F4q~47FO FO~08CAO
F42441DO F3E241AC f4464570 F1S094CF
45701"150 D207F436 0028C207 f43EOC~8
ooo~sceo F42Alqe~ 41CCC800 4740fCCO
~6~2~OOl 8200COOC 50FOCOC8 05FO~CCE
oooq~ooc B000478C F02C41PQ 00IF40~O
419CF3FO 41COF282 45EOflCA 4110F02C
~09441CO 0003410C F3Br.43~C OOOOQlfO
F1109~C6 DOC0472C F1104AAO F2EA47FC
F2AC48BO F2AC419C F308~40F f17107C3
0503F3C1 F3C5418C F170t503 F3CIF3(9
45ECF33A 921FF24~ 940FFIPF 4190F~C6
41ECfOFE 419CF3cr 47FOF170 5AAOF2Ef
50AOF2D6 1BCC09C~ e8(OC003 42COF2C6
58COCOI0 4100C02C ~OOOC008 Q2070CC8
00084890 oon24~EC F1CA41DO F26A4eeo
FIAC41DC F24A48BC F2AC~6FO F1F345EO
F1CA9DOC B000478~ F1A~4130 F19491C4
48~OFC12 41COF292 45EOFICA 4700FC2C
50000C48 QCOOBOO~ 4140flE6 9Dcoeoco
01fE41CO F1CA49BC F2ACC77C 4100F2~2
F0124780 F1C2419C F3F847FO F1700CCO
27MOOO~ 6000010C 1700COCO '600oo0Cl
~F~~OOOO OOCOCOCl ~10C~fe4 ACCOOCC4
01002000 A00003CC 010~18CO 20000440

*.•....
* •.••••••...•...•.••.•...••..••.•
* t .•••• H •••• e •• .; ••••••••••••
* ••• H ••••••••••••••••••••••••••••
*.
* ..••.• ~ .•.••• K ••••••• O •• K •••• O
* ..• H ••••• END

* f~eAPp7C 22.21 14
*.01.99
* ..•.•.••..•••••...•..••...••...•
*.O ••• 0~.3 ••••• 3 •••••••••• 0 ••• 0 ••
*2.K.3 ••• K.3 •••••••• 4 ••• 0 ••••••
*~ .••..•• O.P.3.3 ••• 30 •• 2 ••• 1 ••• 0.
* •..... O.~.3.~ ••• C ••••••• 3 •••••• c
* ...• 0 ••••• ~ ••• 1 •• F •••• l ••• 2 •• a
*c o 2 ••• 2 ••• ~Q •• l.P.
*3A3A •• L ••• l ••• l.N.3A~E •• l.N.3A~I
* .. 1 ••• ~ ••• 1~ •• 1 ••• ~ ••• 2 ••• 1 ••• 4.
* •. 2S •• t ••• 1 ••••••• 0 ••• 3 •• 01 ••• 2~ * ...• 1.~ ••• 2 ••••••• 2C •••••••••• 2C
••• 2 ••• i ••• 2 ••• 0k ••••••••••••••••
$ •••••••• ~t •• 2 ••••••••••• 1 ••• 2 •••
*2 •• CC ••• 2 •• 0 •• 01 ••• 2 ••• 2 •• 013 ••
*1 ••••••• 1 ••• 2 ••• 1 ••••••• 1 ••• 1 •••
*.C ••• c~.~ ••••• 4 •••••••••• 0 ••• 0 ••
~4.K.4 ••• ~.4 •• •••••••••• c ..•.••
$O ••••••• ~.P.j.3 ••• 4 ••• 3 ••• 2 •••••
* •. c.~.;.; ••. o ••••.•• ~ ••••.• c ••••
*~ ••••• ~ ••. 2 •• F •••• 2 ••• 4 •• 00 •••
* .••• ~ .••... 4 ••• 4 ••• !S •• 4 ••• 1 •••
*2 ••• 4e •• 2~K.~.3 ••• 1.K.4 ••• K.4 •••
.K ••• ~ ••• , ••••••••••• 4 •••••••• ~.

*.O ••• C~.3 ••••• ~ •••••••••• O ••• c ••
*2.K.~ ••• ~.~ •• •••••••••• c ••...•
*o ••••••• C.p.3.3 ••• ~C •• 2 ••• 1 ••• ~.
• •••••• C.~.3.! ••• C ••••••• ! •.•••• O
* C ••••• A ••• 1 •• F •••• 1 ••• ?.C
~~ ••••••• ~ •••••• 2 ••• 2 ••• ~Q •• l.P.
*!A~A •• 2 ••• 1 ••• 1.N.3A3E •• l.N.~A31
* •• 1 ••• 2 ••• 13 •• 1 ••• 3 ••• 2 ••• 1 ••• 4.
* .• 25 •• 2 ••• 1 ••••••• 0 ••• 3 •• 01 ••• 2~
* .••. 1.~ ••• 2 ••••••• 20 •••••••••• 2r
* •• 2 ••• 2 ••• 2 ••• 0~ ••••••••••••••••
* •••..•.. ~ ..• 2 ••••••••••• 1 ••• 2 •••
*2~.OO ••• 2 •• C •• 01 ••• 2 ••• 2 •• r1~ ••
*1 ••••••• 1 ••• L ••• 1 ••••••• 1 ••• 1 •••
* •••. 1 •• Cl.K.4 ••••• C ••• 2 ••• 1 ••• 0.
*••...... 1 •••••••••• 1~ ••••
* .. 1 ••••••• 2 ••••••••• 1 ••• 2 ••••• 2.
* •••••• ~.~ ••••••• ~ ••• 1P. •• 3 •• Cl ••• •................................
* " •... ". .• • .•.••.•••••..•••.. * .. 8 ••••••••••••••••••••••••••••

Figure SADMP 5. IMDSADMP LOW-Speed Dump Output Sample of a Model 65
Multiprocessing System

Specifying the Dump

rhe particular version of the IMDSADMP dump program to be generated is
specified by the operands entered in the IMDSADMP macro instruction.
Depending upon the operands coded, the program will be generated as
shown in Figure SADMP-6. The IMDSADMP macro instruction statement is
coded as shown in Figure SADMP-7.

Generate
Parameter­
Dependent
Description
in Listing

Generate loader
and Assembly
Code to Store
Program on Direct
Access Devi ce

Generate

Generate
IEBGENER JCl

Generate Assembly
High Code to Write

Core Image Dump
to Tape

Generate

Generate
t---+i loader and

Dump Program
Object Code

Generate

/*

Tape Assembly Code to
Write EBCDIC I------~
Dump to Tape

Assembly Code to I--------------l~
Write EBCD IC
Dump to Printer

Figure SADMP-6. IMDSADMP Parameter-Dependent Program Generation

Chapter 10: IMDSADMP 253

•

[symbo~ IMDSADMP I ~PL=TAPE] [CPU= g~~}] [-PROTECT= {~~}J J

I I
< fTYPE"HI,ouTPuT",'""]['PROTECT"I~611 [~ f"'} ~r t~Pl" {~;;}l [] [I POOE I] tSTART c~ I t~::~, lOOm ,cPUc (! :~ I ' I ~~MP l)] ,CONSOLE" I :: l- !m ,I :::) I

,TYPE=LO ,OUTPUT= Pcuu 5450

Tcuu

* Note: The default value of the START= operand is dependent upon the value specified for the CPU= operand.

X'80' is the default if CPU=360 is specified or if CPU= is omitted.

X'lOO' is the default if CPU=370 is specified.

Figure SADMP-7. The IMDSADMP Macro Instruction statement

symbol

any symbol may be associated with the IMDSADMP macro instruction.
However, this symbol should not be referenced by any other assembler
input statement, such as the END statement.

IMDSADMP

IPL=

The name of the macro instruction is coded as shown.

describes the device upon which the dump program resides. As such,
it dictates the operation of the initialization step of the dump
creation procedure. The allowable options for the IPL= operand and
their meanings are:

rAPE

cuu

specifies that the dump module is stored on a tape device. If
this option is coded, all keywords except CPU= and PROTECT= are
ignored. TYPE=HI is assumed. ·When the dump is executed, output
is written to the same tape device on which the dump program
resides, immediately following the IPL and dump program records.

specifies a direct access device address where nc" indicates
the channel address, and "uu n indicates the device address. The
direct access volume that is to contain the dump program must
be mounted on this device during the initialization phase.
After initialization, the volume may be moved to any other
direct access device.

If the IPL= operand is not specified, a default value of direct
access device 191 is assumed.

254 Service Aids (Release 21)

rYPE=

specifies the version of the dump program to be generated for direct
access residence. The allowable options for this operand and their
meanings are:

HI

LO

OUTPUT=

specifies the high-speed version of the dump program that will
write unformatted core-image output to a tape volume in
2052-byte blocks. Note: The resultant output tape must be used
as input to the Print Dump service aid (IMDPRDMP) to format and
print the dump information.) If this option is coded and the
dump program resides on a direct access device, OUTPUT=Tcuu is
required. (See the options for the OUTPUT=keyword operand.)

specifies the low-speed version of the dump program that will
produce formatted EBCDIC output to either a tape device or the
printer. If no options are entered for the TYPE= operand,
TYPE=LO is assumed.

specifies the output device type. It also specifies the default
output device address to which the dump is to be written if the
operator chooses to use the default address rather than specify an
address through a console reply in response to a message. The
allowable options for this operand and their meanings are:

rcuu

Pcuu

specifies the channel and unit address of a tape output device
where nT n indicates tape, nc n indicates the channel address,
and nuun indicates the unit address. This is the only valid
option for this operand when TYFE=HI is specified. If TYPE=HI
is specified and this option is not specified or the entire
OUTPUT= operand is omitted, TYPE=HI will be changed to TYPE=LO
and the default value of POOE will be used as the OUTPUT=
operand.

specifies the channel and unit address of a printer where npn
indicates printer output, nc n indicates the channel address,
and "uun indicates the unit address,.

If the OUTPUT= operand is not specified and TYFE=LO is coded, a
default value of printer OOE (POOE) is assumed.

PROTECT =

applicable only if TYPE=HI is selected. This operand specifies
whether or not the storage protection feature is available on the
cpu. The allowable options for this operand and their meanings are:

YES

This value must not be coded if the storage protection'feature
is not available on the CPU on which the dump program is
intended to be executed, as the dump program will not work. If
it is coded or assumed, it specifies that the feature is

Chapter 10: IMDSADMP 255

•

NO

implemented. The storage protection key field in the output of
the high-speed version of the dump program will ~ontain the
storage protection key associated with the block of storage
being dumped (see Figure SADMP-3, format 3).

If the storage protection feature is not available on the CPU,
or if it is not to be used, the NO value must be coded for the
PROTECT= operand. If NO is coded, the storage protection key
field in the output of the high-speed version of the dump
program will contain zero (see Figure SADMP-3, format 3).

If this operand is not coded, PROTECT=YES is assumed.

START=

specifies the storage location into which the CCW·s for loading the
direct access.resident dump program will be read. 43 bytes of
storage 'are required for the load CCW's and, with the 24 bytes of
storage starting at location 0 that are required for the IPL
procedure, represent the only storage destroyed by execution of the
dump program.

The START parameter is valid for both high and low speed options of
the direct access resident dump program. Allowable values for this
operand and their meanings are:

address

specifies the starting address of the CCW loading area
expressed as a decimal number. The storage address must be
greater than or equal to 128 and be aligned on a doubleword
boundary. If the value specified is less than 128, it is
ignored and 128 is used; if the value is not a multiple of
eight, the next higher multiple of eight is used. The maximum
allowable address must be at least 48 bytes less than the
maximum main storage address of the CPU on which the dump
program is to be executed.

X'address'

specifies the starting address of the CCW loading area
expressed as a hexadecimal number. The address specified in
this operand must be X'80' or greater, and be aligned on a
doubleword boundary. If the value specified is less than
X'80'. it is ignored and X'80' is used; if the value is not a
multiple of eight, the next higher multiple of eight is used.
The maximum allowable address must be at least X'30' bytes less
than the maximum main storage address of the CPU on which the
dump program is to be executed.

The default value for the START parameter is dependent on the values
of the CPU parameter. If CPU=360 is specified, or if the CPU
paramet.er is omitted, the default value used for the START parameter
will be X'80'. If CPU=370 is specified, a default of X'lOO' will be
used for the START parameter. Adjusting the START, value in this way
is done to ensure that the storage overlayed by the dump program
will be contained in the log-out area of the CPU on which the dump
proCJram is to be executed.

256 Service Aids (Release 21)

CPU=

defines the IBM computer system that IMDSADMP will dump. There are
two possible subparameters:

1. The system subparameter -- 360 or 370 for the IBM System/360
and I~l System/370 respectively.

2. The multiprocessing subparameter -- NOMP for
non-multiprocessing systems and MP for multiprocessing systems.

Implicit in the system subparameter is the location of the log-out
area (sometimes called the diagnostic scan-out area). For the IBM
System/360, the log-out area is located at X'80': for System/370, it
it located at X'100'.

When IMDSADMP is loaded from magnetic tape (IPL=TAPE), the IPL
procedure overlays the first 24 bytes of main storage and the entire
256 bytes of log-out area.

When IMDSADMP is loaded from a direct access device (IPL=cuu), the
log-out area is used as the default value for the START parameter
(refer to START).

One version of IMDSADMP is used for a non-multiprocessing system,
and another version is used for a multiprocessing system;
CPO=(,NOMP) and CPU=(,MP) specify the different systems. When
applied to a multiprocessing system. IMDSADMP must be resident on a
direct access device; in that case, therefore, define IPL=cuu. At
the present time, the only multiprocessing system that IMDSADMP can
be used with is the IBM System/360 Model 65 Multiprocessing system;
for this system define CPU=(360,MP).

CONSOLE=

specifies the address and type of the console through which commands
will be entered. Valid values and their meanings are:

{ 009}
cuu

1052
3066
3210
3215
5450

~ 01F}
tcuu

The console address. If you omit the CONSOLE= parameter.
IMDSADMP assumes a default address of 009.

The console device type. If you omit the CONSOLE=parameter.
assumes 1052 as the default device type. (Model 65
Multiprocessing only).

The address of the second console in a multiprocessing system.
'I;his val ue is not valid for non-multiprocessing systems. If
this value is omitted, IMDSADMP assumes a default address of
OlP for the second console.

Chapter 10: IMDSADMP 257

•

Retrieving and Creating the Dump Program

The dump program is created in two steps: a specification step and an
initialization step. The specification step involves the creation of a
dump initialization deck that will be used as input to the
initialization step. These two steps are discussed below:

The Specification Step

Before commencing operation on the specification step, the user must
have made two decisions. First, he must have decided which version and
options of the dump program he wishes to be in effect, as detailed in
the previous discussion. Second, he must also have decided whether he
wants the macro definition to be in a library (and, if so, which one) or
in card image form.

Before the IMDSADMP macro definition can be assembled into a
stand-alone program, the macro definition statements must be available
on a media from which they can be assembled. Figure SADMP-8 shows five
media from which IMDSADMP can be assembled.

258 Service Aids (Release 21)

Operating System

Figure SADMP-8.

Assembler

IMDSADMP
Program

Assembled

Distribution Library

Program Ready to Use

Availability of IMDSADMP Macro Definition statements

Chapter 10:

•
IMDSADMP 259

If the MACLIB macro instruction was specified During system
generation, the macro definition for IMDSADMP is transferred from the
SYS1.MACLIB component data set in the distribution library to the
SYS1.MACLIB system data set. The IMDSADMP stand-alone program can then
be assembled in the same manner as any other program in macro definition
form. If MACLIB was not specified, use one of the following techniques
to obtain the IMDSADMP macro definition:

Distribution Library as a Private Library: The distribution library can
be used as a private library for the assembling of the IMDSADMP
stand-alone program, see Figure SADMP-9. This example assumes that the
distribution libraries are cataloged; if not, add the UNIT and VOL=SER
operands to the ASM.SYSLIB data definition statement.

//ASMSAD
//
/ /ASM. SYSLIB
/ /ASM.SYSIN

/*

JOB
EXEC
DD
DD

END

MSGLEVEL= (1, 1)
ASMFC
DSN=SYS1.MACLIB,DISP=OLD

*
(include the IMDSADMP macro instruction here)

Figure SADMP-9. An Example of IMDSADMP JCL statements
for Designating SYSLIB

Copying to a Private Library: The IMDSADMP member of the SYS1.MACLIB
component of the distribution library can be copied to a user defined
library. The IMDSADMP stand-alone program can then be assembled from the
user defined library.

Punching the Definition Statements: The IMDSADMP member of the
SYS1.MACLIB component of the distribution library can be punched into
cards using a utility program. with the macro definition statements on
cards, the IMDSADMP stand-alone program can be assembled using these
cards as input. Figure SADMP-10 shows the specification step when the
macro definition statements are in punched card form.

260 Service Aids (Release 21)

IMDSADMP
Initialization
Deck

/*

END

IMDSADMP
Macro Definition

Assembler JCL

Assemble

Assembly Li sti n9

Figure SADMP-10. Example of the IMDSADMP Specification Step

Prior to executing the specification step, the user should ensure
that he has all the required elements:

• The Assembler job control cards.

• The IMDSADMP macro definition, in either card image form or in a
library as discussed above.

• rhe IMDSADMP macro instruction containing the operands that defines
the version of the dump program that the user wishes to generate,
rhe macro instruction may be included only once per assembly.

·rhe specification step, then, is an assembly that creates a dump
initialization deck, to be used as input to the initialization step.
rhis dump initialization deck consists of:

•

•

Code that allows the remainder of the dump initialization deck to be
stored on the selected tape or direct access device.

IPL text necessary to make the dump program loadable for execution.

Chapter la~ IMDSADMP '26t

•

The Initialization Step

rhe specification step provides input to the initialization step. The
output of the initialization step is an executable dump program, stored
on an I/O device from which it is loaded by the IPL procedure into main
storage f9r execution. Initialization may be performed in one of two
ways, depending upon the device type specified in the IMDSADMP macro
instruction IPL= operand. The different initialization step procedures
are illustrated by Figure SADMP-ll.

IPL = Tape

IEBGENER
(Card to

Tape)

IMDSADMP Module
and Dump Tape

~
Cylinder 0,
Track 0

IPL = Disk

Load Deck
From Card
Reader

Figure SADMP-ll. IMDSADMP Initialization Procedures

rape Initialization (High-Speed Only)

If the user has specified that the high-speed version of the dump
program is to reside on tape, the specification step will have provided
three types of statements to the initialization step: job control
statements, IPL text and the dump program object module. The JCL
.statements invoke and control the operation of the IEBGENER utility
program (as discussed in the publication IBM System/360 Operating
System; Utilities, GC28-6586) that copies the remainder of the dump
initialization deck to the specified tape volume. The IPL text allows
the dump program to be loaded from the tape volume into main storage for
execution. The dump program object module consists of the actual machine
instructions that perform the desired dump function. The initialization
process for a dump program that is loadable from a tape volume is under
control of the operating system, and is performed in the same manner as
for any other job. During execution of the job, the operator will
receive message IEF233A from the job scheduler, asking for tape serial
number "DUMP". At this time, a non-labeled scratch tape is mounted to be
initial ized.

Note: The output of IEBGENER describes the tape to be initialized as is
shown in Figure SADMP-12. If a 7-track unit is to be used to initialize
a dump tape, the UNIT= parameter must be changed to describe a 7-track
tape device; that is, UNIT=2400-2. If the data conversion feature is not
present on the 7-track unit, the TRTCH=C parameter should be removed.

262 Service Aids (Release 21)

//SYSUT2
//

DD VOL=SER=DUMP,LABEL=(,NL),DISP=(NEW,KEEP),
UNIT=2400,DCB=(BLKSIZE=80,LRECL=80,RECFM=F,DEN=2,TRTCH=C)

Figure SADMP-12. An Example of IEBGENER DD Statements for Dump Tape
Initialization

The JCL statements that head the dump initialization deck invoke the
IEBGENER utility program, which in turn copies the remainder of the dump
initialization deck onto the selected tape volume. When a user wishes to
obtain a high-speed dump of main storage, the necessary program and
storage space are available to him on the yolurne he has initialized.

Direct Access Initialization

A direct access device must be used to store the low-speed dump program,
whereas the high-speed version may be stored on either direct access or
tape devices. When the user specifies a direct access device, the
specification step will have passed a loader and initialization program,
IPL text, and the dump program object module to the initialization step.
The initialization program transfers the IPL and program statements to
cylinder 0, track 0, of the volume on the specified direct access device.

The volume on which the assembled IMDSADMP service aid resides must
have a standard 80-character label located at cylinder 0, track O. There
may be up to seven SO-character labels on that track. The number of
labels depends upon the IMDSADMP options selected and the track capacity
of the device; see Figure SADMP-13.

Dump
Residence
Device

2301

2303

2305

2311

2314
2319

3330

IMDSADMP Options

All Options

Multiprocessing Low-Speed Tape Output
All Other Options

All Options

High-Speed Tape Output
Low-Speed Tape Output
Low-Speed Printer Output
Multiprocessing High-Speed Tape Output
Multiprocessing Low-Speed Tape Output
Multiprocessing Low-Speed Printer Output

All Options

All Options

Figure SADMP-13. Maximum Number of User Labels Depending on
Device and Options Selected

Maximum
Number of
User Labels

7

6
7

7

7
5
6
6
o
2

7

7

Chapter 10: IMDSADMP 263

•

The IPL text is then used to load the dump program from the direct
access device into main storage for execution. The dump program object
module consists of actual machine instructions that perform the
specified dump function. Initialization of a dump program that is
loadable from a direct access volume is a stand-alone process and
proceeds as follows:

• Ready the desired direct access volume on the device specified by
the IPL= operand of the IMDSADMP macro instruction.

• Place the dump initialization deck in the card reader.

• Set the Load Unit dials to the address of the card reader.

• Press the Load key on the operator's console.

When the initialization program has successfully transferred the IPL
text and the dump program module to the direct access volume, a
completion code of X'Ol' appears in the instruction address register
(IAR). After the initialization step has been completed, the direct
access volume containing the dump program may be moved to any device.
The direct access volume may be repeatedly dumped and restored without
reinitialization of the dump program. If the user keeps the dump program
direct access volume permanently mounted, the dump program is
immediately available when the user wishes to obtain a stand-alone dump
of main storage.

If the direct access initialization process is not successful, an
error code is set in the IAR. This code indicates the cause of the
initialization failure:

X'04'

The VTOC of the volume being initialized begins on cylinder 0, track
0; hence the record containing the dump program cannot be written on
this track. Such a direct access volume cannot contain the IMDSADMP
program.

X'OS'

The unused space on cylinder 0, track 0 is not sufficient to hold
the dump program. Only standard IPL records, the SO-character volume
label, and one to seven user labels can reside on cylinder 0, track
o.

X'OFOFOF'

A permanent I/O error (the condition persisted after 16 retries)
occurred on the direct access device being initialized. This
condition is usually caused by cylinder 0, track 0 being defective.
A direct access volume with a defective cylinder 0, track 0 is not
suitable for use as an IPL volume. The volume should be analyzed,
using either utility program IEHDASDR or IBCDASDI, and the
initialization process repeated.

264; Service Aids (Release 21)

Executing the Dump Program

The operating procedures for the tape resident version of the dump
program vary slightly from those of the direct access resident version.
Console operation procedures for the execution of the tape resident
version of the dump program are as follows:

• Ensure that the initialized tape volume containing the dump program
has the write ring in place.

• Mount the initialized dump tape volume (discussed under Creating the
Dump) on an appropriate tape device.

• Set the Load Unit dials to the address of the tape device containing
the initialized dump tape volume.

• Press the Load key on the operator's console.

rhe contents of main storage are written to the same tape volume that
contains the dump program. The dump information is written to the tape
volume immediately behind the dump program records (see Figure SADMP-3).

Successful completion of the dump is indicated by the appearance of
X'01' in the instruction address register. At this point, the user must
perform the OS/360 IPL procedure in order to restart the operating
system. The tape containing the dump information must then be used as
input to the Print Dump service aid to format and print t~e information.
After the information contained on the tape volume has been printed, the
same initialized volume may be used to perform another dump. The IPL
text and the program module heading the initialized tape volume are not
destroyed in the dump process.

A direct access resident dump program is executed as follows:

• Mount the initialized direct access volume (discussed under
"Creating the Dump") on any suitable direct access device and bring
the device to ready status. (Usually, the dump program would be
stored on a permanently mounted direct access volume, so that it
would always be available.)

• Set the Load Unit dials to the address of the direct access device
containing the initialized volume,.

• Press the Load key on the operator's console.

• Message IMD001A will be issued to the console at the address
specified by the CONSOLE= parameter. This message asks for the
address of the device to which the dump output is to be written.
When message IMD001A is issued, the operator should ready the
desired output device and enter the address of that device or signal
end-of-block if the default output device is to be used. If the
operator responds with end-of-block, or if an error occurs during an
I/O console operation, the output device specified by the OUTPUT=
parameter when the IMDSADMP macro was assembled will be used. If the
OUTPUT= parameter had not been specified, the default value of POOE
will be used.

The device address specified in response to message IMD001A
must be that of a device whose type agrees with the device type
specified by message IMDOO1A. If Tuu was specified for the OUT PUT =
parameter as the device type., message IMDOOlA TAPE= will be issued,

Chapter 10: IMDSADMP 265

•

indicating that a tape device is desired. If Puu was specified for
the OUTPUT= parameter as the device type, or if the OUTPUT=
parameter was allowed to default, the message IMD001A PTR= will be
issued, indicating that a printer device is desired. When output is
to a tape device. the volume mounted on the specified device is
checked for standard labels before the dump is written. standard
labels are checked by comparing the first four bytes of the first
record for VOLle (The VOLl identifier is checked against both EBCDIC
and ASCII encodings .•) If such a label is found, or if an I/O error
occurs during the label checking procedure, the volume is unloaded
and the message IMD002I LBL ERR is issued. Message IMD001A is
reissued and the operator must ready and specify the output device
again. The operator can mount a non-labeled scratch tape and enter
the device address again, or he can enter the address of a different
device on which a non-labeled tape has been previously mounted.

rhe contents of main storage are written to the specified output
device. Successful completion of the dump is indicated by the appearance
of message IMD005I. At this point, the user must perform the IPL
procedure in order to restart the operating system. If the dump
information is written to tape, it must be printed by a subsequent
program. In the case of the low-speed version of the dump program, the
tape output may be printed by the IEBGENER utility program, as discussed
in IBM System/360 Operating System: Utilities, GC28-6586, or ·by
IMDPRDMP. Tape output produced by the high-speed version of the dump
program must be formatted and printed by IMDPRDMP.

Note 1: If the printer runs out of paper during the execution of the
dump program, insert more paper and start the printer. IMDSADMP will
continue normally.

Note 2: Neither version of the dump program issues a mode set command
to the tape output device. If output is, to a 7-track tape, additional
JCL parameters are required on the input DD statement'for programs which
read the dump tape. When the dump has been written to a 7-track tape,
the following must be coded as subparameters of the DCB parameter:
DEN=2,rRTCH=C. If the data conversion feature is not included on the
7-track device, the TRTCH= keyword myust be omitted.

266 Service Aids (Release 21)

Operational Considerations

Following are points to which careful consideration should be given when
using the stand-alone dump service aid (IMDSADMP):

• If IMDSADMP output is to tape, the tape volume mounted must be
non-labeled. If the output volume has standard labels, or if an I/O
error occurs during this checking procedure, the tape volume is
unloaded and message IMD002I is issued. A non-labeled scratch tape
(e.g., one with a tapemark as the first record) must then be mounted
and IMDSADMP reloaded.

• Non-labeled scratch tapes on 7-track devices may not be accepted by
IMDSADMP. The volume on a 7-track unit will be unloaded unless it is
one of the following types:

1. A scratch tape with a tapemark as the first record, or

2. A non-labeled tape with data recorded in the mode: 800 BPI. odd
parity, translator off. For example, a dump tape previously
produced by IMDSADMP.

• If the user specifies the disk resident version of IMDSADMP he must
consider the direct access space requirements. The IPL text l dump
program records, and work record are contained on cylinder 0, track
o of the volume on which the dump program resides (see Figure
SADMP-2). This direct access volume must have the standard
80-character volume label, and may have one to seven 80-character
user labels, on cylinder 0, track O. The number of user labels
possible is dependent upon the dump program output option specified
by the user.

Option specified

High-Speed
Low-Speed to Printer
Low-Speed to Tape

Number of User
Labels Possible

1 to 7
1 to 6
1 to 5

• Depending on the track capacity of the IMDSADMP resident direct
access device, the user may need to limit the number of user labels
written on that track; see Figure SADMP-l0.1.

• When specifying the IMDSADMP macro instruction operands, PROTECT=YES
must not be coded if the storage protect feature is not implemented,
as the dump program will not execute,.

• If the dump program resides on a direct access volume, the IPL text
and dump program records are contained on cylinder 0, track 0, of
that volume. The resident volume must have a standard 80-character
label on cylinder 0, track o. With the IBM System/360 Disk Operating
System, the volume table of contents for that volume must begin at
some location other than cylinder 0, track o.

• If IPL=cuu or IPL=191 is specified or implied, the direct access
volume that contains the dump program must be mounted on the
specified direct access device during the initialization step.
After initialization the volume may be moved to any other applicable
device.

Chapter 10: IMDSADMP 267

•

• If the IMDSADMP macro definition resides in either the component
library or a private library, the user should not attempt to
concatenate either library to SYS1.MACLIB unless the attributes and
device type are identical.

• Neither version of the dump program issues a mode set command.
Therefore, output to a 7-track tape may produce a volume that cannot
be read by other programs. If output is to a 7-track tape"
additional JCL parameters are required on the input DO statement for
programs which read the dump tape. When the dump has been written
to a7-track tape, the following must be coded as subparameters of
the DCB parameter: DEN=2"TRTCH=C. If the data conversion feature is
not included on the 7-track device, the TRTCH= keyword must be
omitted.

• If the user specifies the START= parameter for the disk resident
version of IDSADMP, the address he specifies must be equal to or
greater than 128 or X'80'. The address specified must also be at
least 48 bytes (X'30'> less than the maximum main storage address of
the CPU on which the dump program is to be executed.

• The low-speed version of the dump program must reside on a direct
access device. The high-speed version may reside on either a tape
or direct access device.

• Initialization of a disk-resident dump program must be performed on
a System/360 model 40, or higher.

• The output tape produced by the high-speed version of the dump
program must be printed by IMDPRDMP.

• The output tape produced by the low-speed version of the dump
program may be printed by the IEBGENER utility program or IMDPRDMP.

• Error recovery during dump execution: If output is to tape, a
failing I/O operation is retried indefinitely. Before the operation
is retried, the tape volume is backspaced and a record gap is erased.

• Occurrence of a Unit Check or Unit Exception condition on the
printer as the result of an I/O operation will cause the WRITE
Operation to be retried until the condition is cleared. If the Unit
Check condition exists when the I/O operation is initiated, the
program will enter a two instruction loop. When the Unit Check
condition is cleared (that is, when the device is made ready>, the
dump operation will continue.

• Occurrence of the Unit Check condition on the first I/O operation to
the console causes the dump to be written to the device specified by
OUTPUT=.

• IMDSADMP supports only the following devices:

1. Printer - 1403, 3211

2. TAPE - 2400 series, 3400 series

3. DASD - 2311,2312,2313,2314,2318,

2319,2301,23031 2305,3330

4. Card reader - 2540

5. Console - 1052,3066,3210,3215,5450

268 Service Aids (Release 21)

Note: IMDSADMP uses data chaining when writing a high-speed dump.
Therefore. when running IMDSADMP on a System/360 Model 30, do not direct
output to a tape device with a high data transfer rate.

• Location X'lO' is used by the system to locate the CVT. The IPL
procedure used to load the dump program when using IMDSADMP destroys
this location. Therefore. if there is reason to believe that this
location has been overlaid during processing by the system, its
value must be manually displayed and recorded prior to taking the
stand-alone dump.

When using IMDSADMP on a multiprocessing (MP) system, the following
additional points should be considered:

• IMDSADMP should be permanently resident on a shared volume to permit
IMDSADMP to be loaded by either cpu.

• IMDSADMP must be loaded by the cpu whose prefix switch is set to
disable. If the CPU that is not prefixing has had a hardware
malfunction, set the prefix switch on the other cpu to disable and
load IMDSADMP from that cpu.

• For IMDSADMP to dump the registers of both CPUs, both CPUs must be
in multiprocessing mode when IMDSADMP is executed.

Chapter 10: IMDSADMP 269

•

Error Conditions

This section describes various error conditions which can occur during
execution of IMDSADMP. During such execution, it is imperative that the
data in core to be dumped remain unaltered. Error recovery is
consequently limited to providing attempted retries of I/O operations
and presenting an indication of the error. If an error occurs, the
system operator should note the error indication (IAR content, wait
state, loop, load light on, or incomplete output), and execute the
program again. If the problem recurs, call IBM for programming support.

Error Handling

All operations of IMDSADMP are executed with machine check disable. A
machine check during IMDSADMP execution will remain pending so that the
dumping function can continue to completion. When dump execution is
complete, a wait PSW is loaded by IMDSADMP to enable machine checks. Any
pending machine check interrupts will be presented at this time.

All I/O operations in IMDSADMP are done with the system mask
disabled for I/O interrupts. I/O status is received by IMDSADMP through
use of the TIO instruction.

Errors During Initiaiization of Direct Access Resident Version

1. Loading of Initialization Program

a. If, during IPL, an I/O error occurs on the card reader,
the CPU will enter a wait state with the console load
light on.

b. Loading of the initialization program is done by IMDSADMP,
executing within the cpu. Each I/O operation to the card
reader is checked for unit check, unit exception or any
condition indicated in the second status byte in the CSW.
If any of these conditions is present, a one-instruction
loop is entered.

2. Once the initialization program is loaded, I/O errors can occur
only on the direct access device being initialized. I/O errors
on this device are indicated by light settings in the IAR.
Possible indications and remedial actions are described in the
initialization discussion in this section.

3. A program interrupt during initialization will result in the
program entering a WAIT condition with X'03' set in the IAR.

Errors During Dump Execution

If an I/O error should occur on the load device during loading of the
dump program from tape or direct access, the cpu will enter a wait state
with console load light on.

270 Service Aids (Release 21)

The program check new PSW is modified after the storage location
containing that PSW is written. A program interrupt before this PSW has
been initialized cannot be indicated, since to do so would overlay the
data to be dumped. Therefore, the result of a program check at this time
is unpredictable. If a program check occurs after this PSW has been
modified, the dump will be terminated normally with message IMD005I, but
output will be incomplete.

1. Direct Access Resident Dump Program

IMDSADMP tests console availability by issuing a TIO instruction to
the console device. If the resulting condition code is zero, the
console is assumed to be operational. All other condition codes
indicate to IMDSADMP that the console is not operational; therefore,
the dump is written to the output device specified in the OUTPUT
parameter of the macro instruction.

Before each I/O operation, a TIO instruction is issued to the device
to be used. If the device is not available the TIO instruction is
repeated until the device is ready. When an I/O operation
completes, the CSW is checked for the following conditions:

• Channel program check.

• Protection violation.

• Channel data check.

• Interface control check.

• Chaining check~

If any of these conditions occurs"it is indicated by message
IMD003I CHAN ERR and execution is terminated. If unit check is indicated
in the CSW and the I/O operation was not being performed on the dump
output device, the operation is retried until the unit check condition
is cleared. Unit exception conditions on devices other than the output
device are ignored.

a. Printer Output

Condition code zero is the only status accepted on the SIO
instruction. The SIO is repeated until the condition code
becomes zero (that is, when the device is made ready). If an
I/O operation completes with either unit check or unit
exception, then the write operation (not the spacing command)
is retried until the condition is cleared. The dump then
continues.

b. Tape Output

Condition Code 1 following the SIO instruction is interpreted
as an error condition and the error recovery procedure for that
device is entered. If unit exception is indicated when an
operation to tape completes, message IMD004I EOR is issued and
execution is terminated. A unit check condition will initiate a
recovery channel program which will be retried repeatedly until
the unit check condition is cleared.

Chapter 10: IMDSADMP 271

•

2. Tape Resident Dump Program

I/O operation are issued only to the tape device from which the dump
program was loaded. If condition codes 2 or 3 occur as a result of
the SIO instruction" the SIO instruction is repeated until the
condition is cleared. A unit exception condition is ignored. If a
unit check condition occurs, a recovery channel program will be
initiated and repeated until the condition is cleared. A condition
code of 1 occurring as a result of an instruction also causes the
recovery channel program to be executed.

Macro Expansion Messages

During the expansion of the IMDSADMP macro definition, the operands of
the IMDSADMP macro instruction statement are examined for validity. If
an invalid operand value is detected, a diagnostic error message is
issued, indicating the error and showing what corrective action was
taken, or what assumption has been made. The message texts, their
severity codes, and their meanings are shown in the table below:

ALTERNATE CONSOLE AVAILABLE ONLY FOR CPU=(360,MP). ALTERNATE IGNORED

Explanation: The user specified two consoles in the CONSOLE=
parameter, but did not specify CPU=(,MP). A second console can be
specified only for a multiprocessing system (MP). The assembly
continues, and the alternate console definition is ignored.

Sever ity Code: 4.

CONSOLE DEVICE TYPE XXXX NOT SUPPORTED, 1052 CONSOLE ASSUMED

Explanation: IMDSADMP does not support the device specified in the
CONSOLE= parameter. A 1052 console is assumed.

severity code: 4

CPU VALUE ERROR, S/360 ASSUMED

Explanation: The value specified by the user for the CPU= parameter
was not one of the valid values, 360 or 370. The default value of
360 is assumed.

Severity Code: 4.

CPU=xxx INVALID, CPU=(yyy,NOMP)IS ASSUMED

Explanation: The second subparameter of the CPU parameter is
invalid. The first parameter has already been tested. The second
subprarameter must be either MP or NOMP. xxx is the entry made by
the user; yyy is the CPU type, either 360 or 370, entered as the
first parameter of CPU=. The assembly continues, and NOMP is
assumed.

Severity Code: 4.

CPU=xxx INVALID, CPU=(360,MP) IS ASSUMED

Explanation: The user has specified CPU'=(360,MP), which is invalid.
The MP option of IMDSADMP is available only for the M65MP system,
for which the CPU= parameter must specify CPU=(360,MP). IMDSADMP
assembly continues with CPU=(360,MP) assumed.

Sever ity Code: 4.

272 Service Aids (Release 21)

HIGHSPEED MEMORY DUMP REQUIRES TAPE OUTPUT, TYPE = HI IGNORED

Explanation: The user has attempted to generate the high-speed
version of the dump program with the output directed to a printer.
The output must be assigned to a tape device. The TYPE=HI operand
has been ignored and output has been assigned to the printer. Check
the specifications of the OUTPUT= operand.

Sever ity Code: 4.

IMDSADMP MACRO ALLOWED ONLY ONCE PER ASSEMBLY

Explanation: The use has attempted to issue the IMDSADMP macro
instruction more than once within this assembly.

Severity Code: 8.

INVALID CHARACI'ER IN DECIMAL PARAMETER, START= xxx INVALID, X '80' USED

Explanation: The value specified for the START= operatind was not
decimal. The value was coded as xxx. Review the description of the
START= operand. The two parts of the message in this discussion may
be issued independently.

severity Code: 4.

MP OPTION NOT AVAILABLE FOR IPL=TAPE. IPL=TAPE IS ASSUMED

Explanation: Parameter conflict. The user specified both the MP
and IPL=TAPE parameters. MP requires the direct access resident
option. The assembly continues, and the MP option is ignored.

Sever ity Code: 4.

OUTPUT = xyyy IS INVALID. OUTPUT = POOE USED

Explanation: The channel and unit address (yyy) specified for the
output device is invalid. (x indicates the device type, ,P' for a
printer and 'T' for a tape device.) The printer (POOE) will be used
for output if possible.

severity Code: 4.

x DENOTES INVALID OUTPUT DEVICE, A PRINTER IS ASSUMED

Explanation: The device type indicator of the OUTPUT= operand was
specified as other than ,P' (for a printer) or 'T' (for a tape
device); x is the character that was coded. POOE is assumed.

severity Code: 4.

Chapter 10: IMDSADMP 273

•

274 Service Aids (Release 21)

Chapter 11: I MASPZAP
Verifies and/or replaces instructions and/or data in a load module. •

Chapter 11: IMASPZAP 275

276 Service Aids (Release 21)

INTRODUCTION •• • •
Capabilities of SPZAP
Monitoring the Use of SPZAP •

DATA MODIFICATION AND INSPECTION • • '. •
Inspecting and Modifying a Load Module
Accessing a Load Module • • • • • • • • •
Inspecting and Modifying a Data Record
Accessing a Data Record •

DUMPING DATA

UPDA:fING SYSTEM STATUS INFORMATION

OPERATIONAL CONSIDERATIONS

EXECUTING SPZAP •• • • • • • •
JCL Statements ••••• •
IMASPZAP Control Statements •

IMASPZAP OUTPUT • • • • •
The Formatted Hexadecimal Dump
The Translated Dump • • •

lMASPZAP EXAMPLFS • • • •

· ·

· ·

· ·

· ·
· · · · · ·

Example 1: Inspecting and Modifying a Load Module Containing
a Single CSECT . · · · · · · · Example 2: Inspecting and Modifying a CSECT in a
Multiple-CSECT Load Module · · · · . · · Example 3: Inspecting and Modifying Two CSECTS in the
Same Load Module · · · · · · · · · · · Example 4: Inpsecting and Modifying a Data Record · · Example 5: Entering SPZAP Control Statements Through
the Console . . . · · · · · · · · · · · Example 6: Using the BASE Control Statement · . . .

Figures

Sample Assembly Listing Showing Multiple

Contents

· · · • 279

· • 279

· • 279

· • 281

· · · • 281

· .281

· .283

· · · .283

· .284

· .285

· · · .287

· · · • 288
· · · ·288

· · · • 288

• .296
• • 296
• .298

• • 300

· ·300

· · · ·301

· · · ·303

· · · .305

· · · ·306

· ·307

Figure SPZAP-1.

Figure SPZAP- 2.
Figure SPZAP-3.
Figure SPZAP-4.
Figure SPZAP-5.

Control Sections •• • • • • • • • • • • • • • • • 282
SSI Bytes in a Load Module Directory Entry
Flag Buts in the System status Index Field
Sample Formatted Hexadecimal Dump
Sample Translated Dump •• • • • • • • • •

• 285
• • 286

297
• • 299

Chapter 11: IMASPZAP 277

•

278 Service Aids (Release 21)

Introduction

IMASPZAP is a service aid program that operates under control of the
System/360 Operating System. This program is designed to enable
authorized personnel to:

• Inspect and modify instructions and data in any load module that
exists as a member of a partitioned data set.

• Inspect and modify data in a specific data record that exists in a
direct access data set.

• Dump an entire data set, a specific member of a partitioned data
set, or any portion of a data set residing on a direct access device.

• Update the System status Index (SSI) in the directory entry for any
load module.

Capabilities of SPZAP

rhe functions of IMASPZAP provide the user with many capabilities. Three
of these are suggested below.

• By using the inspect and modify functions of IMASPZAP, programming
errors that require only the replacement of instructions in a load
module can be fixed on the spot, thus eliminating the need for
immediate recompilation of the program.

• In another instance, the user may want to obtain a storage dump for
the purpose of diagnosing a problem. The modify function of IMASPZAP
could be used to alter an instruction in the problem program and
cause the execution of the job to terminate at a precise location. A
dump of storage would automatically be given at the forced
termination of the program.

• Since IMASPZAP can replace data directly on a direct access device,
it could also be used to reconstruct VTOCs or data records that may
have been destroyed as the result of a device I/O error or a
programming error.

Monitoring the Use of SPZAP

Because IMASPZAP provides the ability to modify data on a direct access
storage device, misuse of this program could result in serious damage to
both user and system load modules or data sets. To protect against the
occurrence of such damage by IMASPZAP, two means of controlling its use
are suggested below:

• One means of exercising control is provided by IBM under MFT II and
MVT. The System Management Facility (SMF) provides a system
interface with user exit routines for the purpose of monitoring the
job stream. Essentially, this facility, when incorporated into the
system, affords an internal means of checking to see whether a
particular user is authorized to execute the program specified on
t;he EXEC job control language statement. (For further information
on the SMF facility, refer to the publication Data Management for
System Programmers, GC28-6550.)

Chapter 11: IMASPZAP 279

•

• A second means of protecting against unauthorized use of IMASPZAP is
to store IMASPZAP in a "password protected" private library. If
lMASPZAP is located in such a library, any persort trying to execute
this program would be required to include in his JCL statements a
JOBLIB DD statement defining the library, and at initiation time he
would be required to give the password associated with the library.
Only personnel knowing the password would then be able to execute
IMASPZAP. Password protected libraries are discussed in the
publication Data Management for System Programmers, GC28-6550.

280 Service Aids (Release 21)

Data Modification and Inspection

IMASPZAP can be used to inspect and modify data in either a specific
record of a direct access data set or a load module that is part of a
partitioned data set. The specific functions performed are governed by
the use of control statements.

The modification of data is implemented through the REP control
statement. The REP operation allows the user to replace instructions or
data at a specific location in a load module or physical record.

The inspection of data is implemented through the VERIFY statement.
This operation is provided to protect the user against erroneous
replacement of data and to allow him to conditionally modify data. The
VERIFY function should be used to check the contents of a specific
location in a load module or physical record prior to replacing it. If
the contents at the specified location do not agree with the contents as
specified in the VERIFY statement, subsequent REP operations will not be
performed.

Note: Although it is not required that the VERIFY function be
employed prior to the REP function, it is strongly recommended that this
control function be utilized to avoid possible errors in the replacement
of data.

Inspecting and Modifying a Load Module

To reference data in a load module. the user must supply IMASPZAP with
the member name of the load module through the use of a NAME control
statement. The load module must be a member of the partitioned data set
identified by the SYSLIB DD statement included in the execution JCL.

If the load module being inspected or modified contains more than
one control section (CSECT), the user must also supply IMASPZAP with the
name of the CSECT that is to be involved in the operations of the
program. If no CSECT name is given in the NAME statement, IMASPZAP will
assume that the control section to be referenced is the first one
encountered in searching the load module.

lMASPZAP will place descriptive maintenance data in the IMASPZAP
CSECT Identification Record (IDR) of the load module whenever a REP
operation associated with a NAME statement is performed on a control
section contained in that module. This function will be performed
automatically after all REP statements associated with the NAME
statement have been processed; any optional user data that has to be
placed in the IDR will come from the IDRDATA statement (See "IMASPZAP
Control Statements" for an explanation of the IDRDATA statement).

Accessing a Load Module

Once the CSECT has been found, lMASPZAP must locate the data that is to
be verified and replaced. This is accomplished through the use of offset
parameters in the VERIFY and REP statements. These parameters are
specified in hexadecimal notation, and define the displacement of the
data relative to the beginning of the CSECT. For example, if a
hexadecimal offset of X'40' is specified in a VERIFY statement, lMASPZAP
will find the location that is 64 bytes beyond the beginning of the
CSECT identified by the NAME statement, and begin verifying the data
from that point.

Chapter 11: IMASPZAP 281

•

Normally, the assembly listing address associated with the
instruction to be inspected or modified can be used as the offset value
in the VERIFY or REP statement. However, if a CSECT has been assembled
with other CSECTs so that its origin is not at assembly location zero,
then the locations in the assembly listing do not reflect the correct
displacements of data in the CSECT. The proper displacements must be
computed by subtracting the assembly listing address delimiting the
start of the CSECT from the assembly listing address of the data to be
referenced.

To eliminate the need for such calculations and allow the user to
use the assembly listing locations, IMASPZAP provides a means of
adjusting the offset values on VERIFY and REP statements. This is
achieved through the use of the BASE control statement. This statement
should be included in the input to IMASPZAP immediately following the
NAME statement that identifies the CSECT. The parameter in the BASE
statement must be the assembly listing address (in hexadecimal) at which
the CSECT beings. IMASPZAP will then subtract this value from the
offset specified on any VERIFY or REP statement that follows the BASE
statement, and use the difference as the displacement of the data.

The usage of the control statements mentioned in the above
discussion is explained in detail in the section entitled "IMASPZAP
Control statements."

Figure SPZAP-l exemplifies an assembly listing showing more than one
control section. If a user were to reference the second CSECT
(IEFCVOL2), he could include in the input to lMASPZAP a BASE statement
with a location of 0398. Then, to refer to the subsequent LOAD
instruction (L R2,LCTJCTAD), he could use an offset of 039A in the
VERIFY or REP statements that follow in the lMASPZAP input stream.

LISTING TITLE

LOC OBJECT CODE

000000

000384 00000000

000388 00000000
00038C D200 1000

000392 D200 1001

000398
000398 0590
00039A
00039A 5820 COlO

8000

1000

ADDRl ADDR2 STMT SOURCE STATEMENT

00000 00000

00001 00000

00010

1 IEFCVOLl CSECT

378 VCNQMSSS
379 * 380 VCMSG15
381 MVCMSG
382 * 383 MVCBLNKS
384 *

386 IEFCVOL2
387
388
389

DC

DC
MVC

MVC

CSECT
BALR
USING
L

V <IEFQMSSS)

V <IEFVMG15)
0(1 ,R1> ,0 (R8)

1 (l"Rl), 0 (R1)

R9,0
*.R9
R2,LCTJCTAD

10000017

55800017
56000017
56100017
56200017
56300017
56400017
56500017

56600017
56700017
56800017
56900017

Figure SPZAP-l. Sample Assembly Listing Showing Multiple Control
Sections

282 Service Aids (Release 21)

Inspecting and Modifying a Data Record

To reference a specific data record, the user must specify the actual
cylinder, track and record numbers. that comprise the direct access
address associated with it. The CCHHR control statement used by
IMASPZAP relates this information to the program. This CCHHR address
must be within the limits of the direct access data set defined in the
SYSLIB DD control statement.

To provide a record of modifications to potentially sensitive data
records, a REP operation associated with a CCHHR statement will cause
IMASPZAP to write message IMA121I to 'the operator.

Accessing a Data Record

When this type of reference is used, IMASPZAP is able to read directly
the physical record the user wants to inspect or modify. The offset
parameters specified in subsequent VERIFY and REP statements are then
used to locate the data that is to be verified or replaced within the
record. These offsets must be specified in hexadecimal notation and
define the displacement of data relative to the beginning of the record.
Also, the user must include the length of any key data field in the
calculation of his offset values. This is because IMASPZAP considers the
key associated with a direct access record to be part of it •

Chapter 11: IMASPZAP 283

•

Dumping Data

rhe dumping options provided by IMASPZAP constitute a very necessary
facility for the user. By providing a visual picture of the load module
or data record that has been changed. the dump feature allows the user
to double check the modifications he has made.

There are two formats in which the data may be dumped. In the first
(formatted hexadecimal dump) the data requested for the dump is printed
in hexadecimal. The second format (translated dump) includes the
hexadecimal data, a translation of all printable characters, and, where
applicable, an indication of mnemonic operation code equivalents. (Refer
to "IMASPZAP Output" for figures showing these two kinds of dumps.)

The DUMP and ABSDUMP statements are the control statements used to
specify the options described above. A user may also indicate the
portion of the data he wants IMASPZAP to dump. The operation code in the
DUMP and ABSDUMP statements indicates the kind of dump wanted; the
parameters identify the portion of the data to be dumped. (Use of the
DUMP and ABSDUMP statements is discussed in detail under the topic
.. IMASPZAP Control Statements.")

284 Service Aids (Release 21)

Updating System Status Information

rhe system status index (SSI) is a 4-byte field created (upon request)
in the directory entry of a load module at linkage editor processing
time. Its primary function is to retain information pertaining to the
status of the load module. This index is useful for keeping track of any
modifications that are performed on a load module. The lMASPZAP program
will, as part of its normal function, update the system status index
(when there is one> to reflect local modification when a replacement of
data in a module is effected. The user can also, by means of the SETSSI
control statement, insert his own 4-byte information field into the SSI,
overlaying the information originally stored there. However, for
purposes of maintaining an accurate record of the status of a load
module, the SETSSI statement should be used with caution.

To ensure proper use of the SETSSI statement, an explanation of the
location, significance, and format of the system status index is
provided here. For more detailed information regarding the SSI, refer to
the publication IBM System/360 Operating System: Maintenance Program,
GC27- 6918.

The System status Index (if it exists> is located in the last four
bytes of the user data field in the directory entry for a load module.
Figure SPZAP-2 shows the position of the SSI in load module directory
entries.

I Member Name TTR I C User Data Field SSI

1 8 9 11 12 13 to 70 maximum variable

Figure SPZAP-2. SSI Bytes in a Load Module Directory Entry

Figure SPZAP-3 gives a breakdown of the system status Index field
and the flag bits used to indicate the types of changes made to the
corresponding load module program. A detailed explanation of this field
and its applicability to the IMASPZAP program follows.

As shown in Figure SPZAP-3, the first byte of SSI information
contains the member's change level. When a load module is initially
released by IBM, its change level is set at one. Thereafter, the change
level is incremented by one for each release that includes a new version
of that program. If a user makes a change to the SSI for any of the
IBM-released programs, he should take care not to destroy this
maintenance level indicator unless he purposely means to do so. To keep
the change level byte at its original value, he should find out what
information is contained in the SSI before using the SETSSI function of
lMASPZAP.

Chapter 11: IMASPZAP 285

•

Bits: 7 /

I I I I I I I I I
I ili-r-
I I I I I

(Reserved)- -- - - _J I I I I

Force Flag -- - - - __J I II II i
I I I I I

LocaIFixFlag-------..J I I I

Program Temporary Fix Flag - - - - J I :
I I

Dependency Flag - - - - - - - - -J I

Critical Flag -- - - - - - - __ J

IBM Flag - - - - - - - - - - - - _..J

/

/
/

/

Figure SPZAP-3. Flag Bits in the system Status Index Field

Note: I~~LIST can be used to determine the SSI setting prior to making
any modification to this status indicator.

The second byte of the SSI is termed the flag byte. Bits within the
flag byte contain information reflecting the member's maintenance
status. Using l~ffiSPZAP, a user need only be concerned with two of the
eight bits:

• The local fix flag contained in the third bit (bit 2) is used to
indicate that the user has modified a particular member. (This is
opposed to IBM PTF changes.) lMASPZAP sets this local fix flag bit
on after successful completion of a modify operation to a load
module.

• The program temporary fix flag (relative bit 3) is set on when an
IBM-authorized program temporary fix (PTF) is applied to a system
library to correct an erroneous IBM module.

All other bits in the flag byte should be retained in the SSI as
they appeared before the SETSSI operation was enacted, so as not to
interfere with the normal system maintenance procedures.

The third and fourth bytes of the system status index are used to
store a serial number that identifies the first digit and the last three
digits of a PTF number. These bytes are not altered by lMASPZAP unless
the user deliberately changes them with a SETSSI statement.

286 Service Aids (Release 21)

Operational Considerations

rechnical considerations for the use of the IMASPZAP service aid program
are listed below:

• IMASPZAP utilizes system OPEN, and therefore canno~ modify
"read-only" or inspect "write-only" password protected data sets
unless the correct password is provided at OPEN.

• Unexpired data sets such as system libraries cannot be modified
unless the operator replies r OO,'U' to the expiration message that
occurs during OPEN.

• If IMASPZAP is used to mOdify an operating system module that is
loaded only at IPL time, an additional IPL is required to invoke the
new version of the altered module.

• The SYSLIB DD statement cannot define a concatenated data set.

• IMASPZAP supports only the following direct access devices: 2311,
2312, 2313, 2314, 2318, 2319, 2301, 2302, 2303, 2305, 2321, and
3330. One of these devices must be specified in the unit parameter
of the SYSLIB DD statement.

• lMASPZAP is a non-reusable module.

• When modifying a system data set, such as SYS1.LINKLIB, DISP=OLD
should be specified on the SYSLIB DD statement.

Chapter 11: IMASPZAP 287

•

Executing IMASPZAP

Both JCL and control statements are requred to execute lMASPZAP. The
following sections describe the required statements.

JCL Statements

SPZAP can be executed using the following job control statements. The
minimum region for execution is 13K plus the larger of 3K or the
blocksize in bytes for the data set specified on the SYSLIB DD
statement.

JOB Statement

marks the beginning of the job.

EXEC Statement

invokes the program IMASPZAP.

SYSPRINT DD Statement

defines a sequential output message data set, that can be written on
a system printer, a magnetic tape volume, or a direct access volume.
This statement is required for each execution of lMASPZAP.

SYSLIB DD Statement (required for each execution)

defines the direct access data set that will be accessed by IMASPZAP
when performing the operations specified on the control statements.
The DSNAME parameter and DISP=OLD or DISP=SHR must always be
defined. The VOLUME and UNIT parameters are necessary only of the
data set is not cataloged. When this data set is the VTOC,
DSNAME=FORMAT4.DSCB must be specified. This statement cannot define
a concatenated data set.

SYSABEND DD Statement

defines a sequential output data set to be used in case lMASPZAP
terminates abnormally. This data set can be written to a printer, a
magnetic tape volume, or a direct access volume.

SYSIN OD Statement

defines the input stream data set that contains IMASPZAP control
statements.

IMASPZAP Control Statements

The IMASPZAP control statements (entered either through the' user's input
stream or through the system console) are used to define the processing
functions to be enacted during a particular execution of IMASPZAP. The
statements may be grouped into three categories depending upon the
program's usage of them: those that are used to reference load modules

I (NAME, D~MP, DUMPT, IDRDATA, SETSSI, BASE), those that refer to specific
records within a data set (CCHHR, ABSDUMP, ABSDUMPT), and those that can
be used to specify processing control for either type of input mentioned
in the first two categories (VERIFY, REP, CONSOLE).

288 Service Aids (Release 21)

IMASPZAP control statements must be coded according to the following
rules:

• IMASPZAP control statements may begin in any column, but the
operation name must precede the parameters.

• There must be at least one blank between the specified operation
name and the first parameter.

• All parameters must also be separated by at least one blank space.

• Data field parameters may be formatted with commas for easier visual
check, but imbedded blanks within data fields are not permitted.

• Data and offset parameter values must be specified as a multiple of
two hexadecimal digits.

• rhe size of an IMASPZAP control statement is 80 bytes.

• Following the last required parameter and its blank delimiter, the
rest of the control statement ,space can be used for comments.
Exceptions to this are the NAME and DUMP control statements. If the
CSECT parameter is omitted from either of these statements, the
space following the load module parameter should not be used for
comments •

• ' A record beginning with an asterisk and a blank is considered to be
a comment statement.

rhe control statements are the following:

NAME member [csect]

used to identify a CSECT in a load module that is to be the object
of subsequent VERIFY, REP, or SETSSI operations. The parameters are:

member

csect

the member name of the load module that contains the control
section in which the data to be inspected and/or modified is
resident. The load module must be a member of the partitioned
data set defined by the SYSLIB DD statement.

the name of the particular control section that contains the
data to be verified or replaced. When this parameter is
omitted, it is assumed that the first CSECT contained in the
load module (if there is more than one) is the one to be
referenced. If there is only one CSECT in the load module, this
parameter is not necessary.

Note: More than one NAME statement can be defined in the input
to I¥~PZAP. However, the VERIFY, REP and SETSSI statements
associated with each NAME statement must immediately follow the
N~lE statement to which they apply.

CCHHR record address

used to identify a physical record on a direct access device that is
to be modified or verified. The record must be in the data set
defined by the SYSLIB DD statement. Any immediately following REP or
VERIFY statements will reference the data in the specified record.
rhe parameter is:

Chapter 11: IMASPZAP 289

•

record address

the actual direct access device address of the record
containing the data to be replaced or verified. It must be
specified as a 10-position hexadecimal number in the form
cccchhhhrr. FOr all direct access devices other than the 2321
data cell, cccc is the cylinder, hhhh is the track, and rr is
the record number. For example, 0001000AOl addresses record 1
of cylinder 1, track 10.

In the case of the 2321 data cell, cccc indicates the subcell
and strip; hhhh indicates the cylinder and track; rr indicates
the record number. The bin number to which the CCHHR applies is
determined by the UNIT parameter in the SYSLIB 00 statement.
For example, if the SYSLIB 00 specifies UNIT=2321/2 and the
CCHHR statement specifies 0102000103, then record 3 of subcell
1, strip 2, cylinder 0, track 1 in bin 2 will be retrieved.

In both cases a zero record number is invalid and will default
to 1.

Note: More than one CCHHR statement can be defined in the input to
IMASPZAP. However, the VERIFY, REP and SETSSI statements associated
with each CCHHR statement must immediately follow the specific CCHHR
statement to which they apply.

!
VERIFYI

VER

offset expected content

causes the contents at a specified location within a control
section or physical record to be compared with the data the user
supplies in the statement. If the two fields being compared are not
in agreement, no succeeding REP or SETSSI operations, pertinent to
the NAME or CCHHR statement in effect, will be performed. The
parameters are:

offset

the hexadecimal displacement of the data to be inspected in a
CSECT or record. This displacement does not have to be aligned
on a fullword boundary, but it must be specified as a multiple
of two hexadecimal digits (00, 021C, 014682, etc.). If this
offset value is outside the limits of the CSECT or data record
defined by the preceding NAME or CCHHR statement, the VERIFY
statement will be rejected. When inspecting a record with a
key, the length of the key should be considered in the
calculation of the displacement; i.e., offset zero is the first
byte of the key.

expected content

defines the bytes of data that are expected at the specified
location. As with the offset parameter, the number of bytes of
data defined must be specified as a multiple of two hexadecimal
digits. If desired, the data within the parameters may be
separated by commas (never blanks), but again, the number of
digits between commas must also be a multiple of two. For
example, the data may look like this:

5840C032 (without commas),

or like this:

5840,C032 (with commas)

290 Service Aids (Release 21)

If all the data will not fit into one VERIFY statement (SO-byte
logical record), then another VERIFY statement must be defined.

A formatted dump of the CSECT or data record is automatically
provided following each rejected VERIFY, so that the cause of the
rejection can be determined. Subsequent REP (replacement) or SETSSI
operations will not be performed if a verification is rejected, but
other VERIFY operations will be performed, permitting complete
verification in one execution of lMASPZAP. The error condition
caused by the VERIFY reject will be in effect only until another
NAME or CCHHR statement is encountered. Any subsequent VERIFY or REP
statements can then be processed.

REP offset data

used to mOdify data at a specified location in a CSECT or physical
record that has been previously defined by a NAME or CCHHR
statement. The data specified on the REP statement will replace the
data at the record or CSECT location stipulated in the offset
parameter field. This replacement is on a "one for one" basis; that
is, one byte of data defined in the statement replaces one byte of
data at the specified location. The parameters are:

offset

data

is the hexadecimal displacement of the data to be replaced in a
CSECT or data record. This displacement need not address a
fullword boundary, but it must be specified as a multiple of
two hexadecimal digits (00, 02CS, 001C52). If this offset
value is outside the limits of the data record (physical block)
or CSECT being modified, the replacement operation will not be
performed. When replacing data in a record with a key, the
length of the key should be considered in the calculation of
the displacement; i.e., offset zero is the first byte of the
key.

defines the bytes of data that are to be inserted at the
specified location. As with the offset parameter, the number
of bytes of data defined must be specified as a multiple of two
hexadecimal digits. If desired, the data within the parameter
may be separated by commas (never blanks), but again, the
number of digits between commas must also be a multiple of two.
For example, a REP data parameter may look like this:

4160BS20 (without commas)

or like this:

4160,BS20 (with commas).

If all the data to be modified will not fit into one REP
statement (SO- byte logical record), then another REP statement
must be defined.

NOTE: ALTHOUGH IMASPZAP DOES NOT REQUIRE THE USER TO VERIFY A
LOCATION BEFORE PERFORMING A REP OPERATION, IT IS ADVISABLE TO CHECK
THE CONTENTS TO MAKE SURE THAT THE DATA BEING CHANGED IS, IN FACT,
WHA'l' THE USER EXPECTS IT '10 BE.

'The user should also keep in mind the fact that IMASPZAP, as a
part of its normal function, updates the system status index (SSI)
for the specified module upon successful completion of the last REP
operation performed on a control section of that particular module.

Chapter 11: IMASPZAP 291

•

For a more complete explanation of the value of the SSI to the
maintenance of a load module, refer to "Updating System Status
Information" in this chapter.

Two programming notes that are pertinent to this discussion of
the REP statement are listed below:

• If multiple VERIFY and REP operations are to be performed on a
CSECT, then all the VERIFY statements should precede all the
REP statements. This procedure will ensure that all the REP
operations are ignored if a VERIFY reject occurs.

• When a record in the VTOC (i.e., a DSCB) is accessed for
modification, message IMAl17D is written to the console. No
message is issued, however, when an ABSDUMPT operation is
performed on the VTOC.

IDRDATA xxxxxxxx

causes lMASPZAP to place up to eight bytes of user data into the
IMASPZAP CSECT Identification Record of the load module; this is
only done if a REP operation associated with a NAME statement is
performed and the load module has been processed by the Linkage
Editor to include CSECT Identification Records. The parameter is:

xxxxxxxx

is the eight (or less) bytes of user data (with no imbedded
blanks) that is to be placed in user data field of the IMASPZAP
IDR of the load module. If more than eight characters are in
the parameter field only the first eight characters will be
usea.

rhe IDRDATA statement is valid only when used in conjunction with
the NAME statement. It must follow its associated NAME statement and
precede any DUMP or ABSDUMP statement. IDRDATA statements associated
with CCHHR statements will be ignored.

SETSSI xxyynnnn

places user-supplied system status information in the PDS
(partitioned data set) directory entry for the library member
specified in the preceding NAME statement. The SSI, however, must
have been created when the load module was link edited. The
parameter is:

xxyynnnn

represents the 4 bytes of system status information the user
wishes to place in the SSI field for this member. Each byte is
supplied as two hexadecimal digits signifying the following:

xx - change level

yy - flag byte

nnnn - modification serial number

If an error has been detected in any previous VERIFY or REP
operation, the SETSSI function will not be performed.

292 Service Aids (Release 21)

Note: Since all bits in the SSI entry are set (or reset) by the
SETSSI statement, extreme care should be exercised in its use to
avoid altering information vital to the depiction of the maintenance
status of the program being changed. (See the discussion in this
chapter entitled "Updating System Status Information.")

{ DUMP}
DUMPT

member csect
ALL

used to dump a specific control section or all control sections in a
load module. The format of the output of this dump is hexadecimal
(see the discussion in this chapter entitled "IMASPZAP Output"). The
DUMPT statement differs from the DUMP statement in that it also
gives the user an EBCDIC and instruction mnemonic translation of the
hexadecimal data. The parameters are:

member

csect

the member name of the load module that contains the control
section(s) to be dumped. (Note: This load module must be a
member of a partitioned data set that is defined by the SYSLIB
DD statement.)

defines the name of the p~rticular control section that is to
be dumped. To dump all the CSECTs of a load module, code" ALL"
instead of the CSECT name; if the CSECT parameter is omitted
entirely, it is assumed that the user means to dump only the
first control section contained in the load module.

{
ABSDUMP }
ABSDUMPT I startaddr stopaddr!

membername
ALL

These statements are used to dump a g~oup of data records, a member
of a partitioned data set, or an entire data set, as defined in the
SYSLIB DD statement. If the key associat~d with eac~record is to be
formatted, DCB=(KEYLEN=nn), where "nn" is the length of the record
key, must also be specified by the SYSLIB DD statement. Note that
when dumping a VTOC, DCB=(KEYLEN=44) should be specified; when
dumping a PDS directory, DCB=(KEYLEN=8) should be specified.,
ABSDUMP produces a hexadecimal printout only, while ABSDUMPT prints'
the hexadecimal data, the EBCDIC translation, and the mnemonic
equivalent of the data (see "IMASPZAP Output"). The parameters are:

startaddr

is the absolute direct access device address of the first
record to be dumped. This address must be specified in
hexadecimal in the form cccchhhhrr (cylinder, track and record
numbers) •

stopaddr

is the absolute direct access device address of the last record
to be dumped, and it must be in the same format as the start
address.

Chapter 11: IMASPZAP 293

•

Note: Both addresses must be specified when this method of
dumping records is used, and both addresses must be within the
limits of the data set defined by the SYSLIB DD statement. The
record number specified in the start address must be a valid
record number. The record number specified as the stop address
need not be a valid record number, but if it is not, the dump
will continue until the last record on the track specified in
the stop address has been dumped.

membername

ALL

is the name of a member of a partitioned data set. The member
can be a group of data records or a load module. In either
case, the entire member is dumped when this parameter is
specified.

specifies that the entire data set defined by the SYSLIB DD
statement is to be dumped.

How much of the space allocated to the data set is dumped
depends on how the data set is organized:

For sequential data set, IMASPZAP dumps until it reaches
end of file.

For indexed sequential and direct access data sets,
IMASPZAP dumps all extents.

For partitioned data sets, lMASPZAP dumps all extents,
including all linkage editor control records, if any exist.

BASE xxxxxx

used by IMASPZAP to adjust offset values that are to be specified in
any subsequent VERIFY and REP statements. This statement should be
used when the offsets given in the VERIFY and REP statements for a
CSECT are to be obtained from an assembly listing in which the
starting address ot the CSECT is not location zero.

For example, assume that CSECT ABC begins at assembly listing
location X'000400', and that the data to be replaced in this CSECT
is at location X'00040S'. The actual displacement of the data in the
CSECT is X'OS'. However, an offset of X'040S' <obtained from the
assembly listing location X'00040S') can be specified in the REP
statement if a BASE statement specifying X'000400' is included prior
to the REP statement in the IMASPZAP input stream. When IMASPZAP
processes the REP statement, the base value X'000400' will be
subtracted from the offset X' 040S' to determine the proper
displacement of data within the CSECT. The parameter is:

xxxxxxxx

is a 6-character hexadecimal offset tnat is to be used as a
base for subsequent VERIFY and REP operations. This value
should reflect the starting assembly listing address of the
CSECT being inspected or modified.

The BASE statement should be included in the IMASPZAP input stream
immediately following the NAME statement that identifies the control
section that is to be involved in the IMASPZAP operations. The
specified base value remains in effect until all VERIFY, REP, and
SETSSI operations for the CSECT have been processed.

294 Service Aids (Release 21)

CONSOLE

indicates that IMASPZAP control statements a~e to be entered through
the system console.

When this statement is encountered in the input stream, the
following message is written to the operator:

IMA116A ENTER IMASPZAP CONTROL STATEMENT OR END

The operator may then key in any valid lMASPZAP control
statement conforming to the specifications described at the
beginning of this control statement discussion. After each operator
entry through the console is read, validated, and processed, the
message is reissued, and additional input is accepted from the
console until "END" is replied. lMASPZAP will then continue
processing control statements from the input stream until an
end-of-file condition is detected.

Note: The control statements can be entered through the console in
either upper or lower case letters.

* <Comment)

can be used to annotate the lMASPZAP input stream and output
listing. Any number of comment statements can be included in the
input stream. When such a statement is encountered, lMASPZAP writes
the entire statement to the data set specified for SYSPRINT.

The asterisk <*) can be specified in any position of the
statement, but it must be followed by at least one blank space as a
delimiter.

Chapter 11: IMASPZAP 295

•

IMASPZAP Output

lMASPZAP provides two different dump formats for the purpose of checking
the data that has been verified and/or replaced. These dumps (written to
the SYSPRINT data set specified by the user) may be of the formatted
hexadecimal type or the translated form. Both formats are discussed
below in detail with examples showing how each type will look.

The Formatted Hexadecimal Dump

When DOl'tlP or ABSDUMP is the control 'statement used, the resulting
printout will be a hexadecimal representation of the requested data.
Figure SPZAP-4 gives a sample of the formatted hexadecimal dump. A
heading line is printed at the beginning of each block. This heading
consists of the hexadecimal direct access address of the block, a
two-byte record length field, and the names of the member and the
control section that contain the data being printed (if the dump is for
a specific CSECT or load module). Each printed line thereafter has a
three-byte displacement address at the left, followed by eight groups of
four dat.a bytes each. The following message:

lMA1131 COMPLETED DUMP REQUIREMENTS

is printed directly under the last line of the dump printout.

296 Service Aids (Release 21)

()

::J
III

t-tj
it
(I)

r!

I-'
I-'

H

~
til
tU
~

~
"'d

IV
0..0
-....J

•

IMIISPZAP VERSION 0 - INSPECTS, MODIFIES. AND DUMPS CSECTS OR SPECIFIC DATA RECORDS ON DIRECT ACCESS STORAGE.
NAME IMAPTFlS
DUM P I MAPTFl S

**CCHHR- 00C4000201
000000 47FCF012
000020 50400008
000040 03E131039
000060 00181822
000080 C0660502
OOOOM 96FCC241
OOOOCO 40049200
ooaOH' 039F0048
000100 OA18952('1
000120 47E()C130
000140 043441FO
000160 OA164530
000180 58F10008
0OOlA0 50 A00568
0001CO C1680207
0001EO C2604162
000200 05000523
000220 C2280204
000240 4700C32C
000260 91<"22014
(100280 05290804

RECORD LENGTH- ecoc
CCC904C 1 07E3C603 E24BF 1F9
18040700 4510C03C 8FOCCOA4
96F003EF 020103EA 03EB924B
43240000 12224780 00C050 7
40040852 4780C(:86 05074004
02240480 085547FO C01369540
07960276 04F4D4F3 02180435
02050461 DOBED7CF 05680588
025A477f1 C7204110 C1540A18
91COO12(, 05A04710 C14C92FF
C 14C021 B 043501E8 1A425040
C3500700 4510C18G 00000000
5RFOF030 C'5EF'tllO C16C58EO
91FF031E 4710C68C 18884A80
04F420!)O 434201)08 89400018
000CF384 f)51F6CCO OC07051F
96F QC 230 912C6COI 47F:OC21A
fJ5190P.83 F3630512 20080CC5
940FC230 027604F4 04F305C7
4710C276 02000529 081E96FO
47FOC2A8 91402014 4780C29A

MEMBER NAME ITJAPTFLS CSECT NAME IMAPTFlS
FI)0090EC 0C'OC18CF 5000C784 4140C780
(A139l10 1":6544780 OAC581C 0010F342
03EC5811 00005811 00045811 000C4141
40040798 4780C086 05074004 07A04780
07A84780 COB60507 400407BO 4770COAE
40044770 CO BCI A42 47FOC062 020705F4
D7C8070C 4510CGOC 80COO04C OA400226
02030704 07E44110 C5F44100 02581300
12FF4770 C632C201 037C012E 91C2011E
01960501 0124081C 4180C146 02160435
05AC9200 05840700 4510C160 8000C04C
8080000G COOOQ04C 00OOO9EE 00000000
10085SFO E034C5EF 58A00588 41AAOOOl
02764780 C3F8412C D27895FF 20004180
8840001A 12444780 C21A91FF 07964780
047C9240 05279110 6C0147EO C2C80203
D2C80501 C87A96FC C2309180 20064780
0512047C 92400'518 4130C244 47COC32C
D26E200C 47COC16R 4124200C 41FOC16A
C23047F0 C3009180 20144780 C2880203
0203052" D80847FO C2A89101 20154780

O~ ;~D~C 91042014 4180Cz,a A ~203052E ~.2~

o~ COOCEO 4040 40 40404040 404'0'4'!r40'~F5F6 0
000000 F5F3C9C9 04C1FOF5 F4C9C904 C C940F2F3 D7C1C3C5 6E3
000020 4000604 D7E4E3C5 C4000000 OOOOOOOC 870G07C8 OOCCC'OCC 00000000 00000000
000040 0000nooo (lOOCOO00 00001"1}0(' 00000000 oooC'oont; oceceoco 000'00000 08COOOOO
000060 00000001 (1000400(' rOOOOOOI COOOO40A 8100003C' E7E7E7E7 E7E1E7E7 02C02000
000080 00000001 000006AO OOOOC1eo 00000000 COOOOOOI 00000001 OOCOOOOI 00C00100
oooolle 00000001 00000000 00(100000 00000000 00001)000 00000000 00000001 00C04000
OOOOCO OC000001 00000001 84COOOCO E2E8E2D7 09C9D5E3 02000050 00000001 oeOOOOOl
OOOOEO 00000019 OOOOOOOC 00000001 000COO01 oooeOOOl COOOO079 00000001 00000000
OOOEOI') 00000001 OOOOOOOC OOOOOOCO 00000000 00000000 CCOCOCGC 00000000 OOOOCOOO
000E20 000('0000 00000000 OOOOOOCO 00000000 COOOOOOC 00000('00 OOOOOOOC 00000000
MOE40 00000000 OOOOOOOC COOO000C 000001)00 00C0000(\ C904C107 E3C603E2 FCC4CIE3
OOOE60 C140E2C5 E340C 306 05E3C1C9 05E24040 404040C4 C909C5C3 E30609E8 40C20306
eOOEM C302E26fl 40404040 40C109C5 4CE405E4 E2C5C4C2 C3C60C2 E2C9E9CS 40C9E240
eOGEM 40404040 40C4C1E3 C140E2C5 E340C8C1 E240404C 40C5E1E3 C505E3E2 68404040
OOOEeo 404040E3 09C 1C 302 E240E306 E3C103613 40404040 4040E309 CI002E2 40CI09C5
(100EEO 40C1E5Cl C903CIC2 03C50506 40E2C5C3 0605C4C1 09E840Cl 0303060 C1E3C9D6
OOOFOO 0540C6Cl C3E306D9 40C9E240 40404040 40404040 40400000 01C6C203 C9C24040
GOOF20 E2E3C507 03C9C 240 01C7047E 5C4flC4C4 D3C9E2E3 C9C5F.2E3 C4C1E3Cl 40E2C5E3
00OF40 40D506E3 4007C4E2 03C90502 C1C7C540 C5C4C9E3 060940C1 E3E309C9 C2E4E3C5
00OF60 E2404040 050605C5 E3C8C9E2 4CC9E240 C140C3C 1 09C440C9 04C1C7C5 4003C9C2
000F80 09C109E8 09C505E3 09C5E4E2 09(5C609 E2C3E309 06E503E8 E3C5E2E3 0050DS06
OOOFAO E340C5£'7 C5C3E4E3 C1C203C5 C4C305C5 0603001A 00240022 002CC3E8 03404040
MOFeo C20306C3 02E2E30Cl C1C302E2 C4C405C1 04C5E2E8 E2C3CClE2 E34006C6 40CI0303
OOOFEO 4004C504 C2C509E 2 40404040 40404040 4040404C 40404040 40400306 C3C10340
001000 C6C9E1Cl 0~C9CIE2 05064C07 E3C64006 0940D306 OC 10340 C6C9E7C1 0303C60
001020 C1E3C5C4 40C4CSE5 C9C3C 540 0506E340 C4C14110 50045031

IMA113I COMPLETED OU~P REQUIREMENTS

Figure SPZAP-4. Sample Formatted Hexadecimal Dump

The Translated Dump

rhe control statements DUMPT and ABSDUMPT also provide an operation
code translation and an EBCDIC representation of the data contained in
the dump_ Figure SPZAP-S shows the format of the translated dump_ The
fi~st byte of each halfword of data is translated into its mnemonic
operation code equivalent, provided such a translation is possible. If
there is no equivalent mnemonic representational value to be given, the
space is left blank. This translated line of codes and blanks is
printed directly under the corresponding hexadecimal line. An EBCDIC
representation of each byte of data is printed on two lines to the right
of the corresponding line of text with periods (.) substituted for
those bytes that do not translate to valid printable characters.

298 Service Aids (Release 21)

OUMPT IMAPTFLS

**CCHHR- 00C4000201 RECORD LENGTH- OCOO MEt-IBER NAME I M~PTFLS CS EO NAME IMAPTFLS
COOOOO 47FO F012 OCC9 D4C 1 D7E3 C603 E24B F1F9 F000 90Ee DOOC 18CF SCOO C784 4140 C780 *.00 •• IMAPTFL5.1~*

BC NC XC MVO ST~ lR 5T LA *O ••••••• &.G •• G.*
000020 5040 0008 1804 0700 4510 C030 8FOO OOA4 CA13 9110 0654 4780 C3AC 5810 001C F342 *&(••• M •••••••••• *

ST LR BCR BAL SlOA SVC Hi OC BC L UNPK * •••• 0 ••• C ••••• 3.*
000040 03EB 1039 96FO D3EF 0201 03EA 03EB 924B 03EC 5811 0000 5811 ('004 5811 OOOC 4141 *L •••• Cl.K.L.l ••• *

MVZ' LPR DI MVZ MVC MVZ MVI MVI MVI L L l LA *l ••••••••••••••• *
000060 0018 1B22 4324 COOO 1222 478(' C30C 0507 4004 D7~8 4780 CCB6 0507 4004 07AO 4780 * •••••••••••• C.N.*

SR IC LTR BC CLC STH XC 8C CLC STH XC BC * .P ••••• N •• P ••••
000080 COB6 0<)02 4004 0852 4780 CCB6 0507 4004 07A8 4780 CC86 OS07 4(104 07Be 4170 CCAE * •• N •• ~ ••••• ~ •• *

CLC STH BC CLC STH XC BC CLC STH XC Be *P ••••• N •• P ••••• *
OOOOAO 96FO C24l 0224 08SS 47FC COB6 9540 4004 4770 ceec 1A42 47FO C062 0207 05F4 *.OB.K.M.C •• C ••• *

01 MVC BC CLI STH BC AR BC MVC CLC * •••••••• 0 •• K.N4*
OOOOCO 4004 9200 0796 D4F4 04F3 0218 0435 07C8 07CC 4510 CCOC 8000 OIJ4C OMO 0228 * ••• P.K.M4~3K.M.*

STH MVI XC NC NC MVC NC XC BCR BAL SSM 5VC MVC *PH •••••••••). K.*
OOOOEO D39F 0048 0205 DO BE 07CF 05B8 05B8 D203 1J704 D7E4 4110 C5F4 4100 C2S8 1300 *L ••• K.M/ •• P.N.N.*

MVI MVC XC CLC CLC MVC XC XC LA CLC LA MVC LCR *K.P.PU •• N4 •• K ••• *
COOI00 OA18 9520 025A (720 411C C754 OA1S 12FF 4770 C632 C201 037C 012E 9102 DllE * •••• K- •• G ••• G ••• *

SVC CLI MVC LA SVC LTR BC MVC MVI MVN TM MVN * •••• F.K.l·J ••• J.*
000120 47EO C730 91CI) 4710 C14C 92FF D796 05C 1 0124 C8lC 4780 C146 02lB 0435

BC TM BC MVI XC CLC MVN BC MVC NC
000140 0434 C 14C 07E8 lA42 5040 OSAC 92CO 0584 0700 4S10 C160 8COO OC4

NC XC ST CLC MVI C~_8
000lM OA16 001) 8080 ooc.

SVC 5SM
100

----'

MVI LOCK5IZE (S •
F34C C8Cl E240 4040 40(5 DATA SET HA*

STH STH EXTENTS, *
OOOECO 40F3 C302 E240 E306 E3C 1 036B 4040 4C40 4('40 E3C9 C10 02E2 * TRACKS TOTAl,*

STH MVI 5TH STH STH MVC * TRACKS ARE*
OOOEEO E SCI C<>03 C1C2 03C5 OS06 40E2 C5C3 0605 C4(1 09E8 40C1 C3C3 C6C 3 C906 * AVAILABlENG SEC.

MVI CLC STH DC STH MVI OC *ONOARY ALLOCATIO*
OOOFOO C6C1 C3E3 0609 40C9 E24C 4040 4040 4040 4040 4040 0000 0106 C203 CGC2 4040 *N FACTOR IS * OC STH 5TH STH STH STH STH MVN STH * •• JOBUB *
OOOF20 C507 03C9 C240 D7C7 047E SC48 C4C4 03C9 E2E3 0<;C5 E2E3 C4C 1 E3C 1 4CE2 C5E3 *5TEPLIR PGM=*.CO*

MVI xc NC M MVI STH *lI5TRESTOATA SET*
OOCF4Q 4005 D6E3 4007 C4E2 D3CC; OS02 C1C7 C540 C5C4 C9E3 06C9 40C1 E3E3 09C9 C2E4 E3C5 * NOT PDSLINKAGE *

STH DC STH MVZ CLC DC STH *EOITOR ATTRIBUTE*
() OCOF60 E240 4040 0506 05C5 nC8 C<;£2 40C9 E240 C14C C3C1 C<;C4 4CC9 04C1 C7C5 4003 C9(2 *5 NONETliI5 IS *
::r STH CLC ClC STH 5TH NC STH *A CARD IMAGE LIB*
Pl OOOF80 09(1 09E8 09CS DSt:3 09C5 E4E2 D9C5 C609 E2C3 E3C9 C6ES C3E8 E3C5 E2E3 005C 0506 *RAR~RENTREUSREFR.

"0 CLC DC MVZ C'LC *SCTROVLYTE5T.&NO*
rt- OOOFAO E340 C5E7 C5C3 E4E.3 C 1C 2 0~C5 C4C3 05C5 0603 OOIA 0024 0022 002C C3E8 C~4C 4040 *T EXECUTABlEDC~E*
CD MVI CLC OC MVI STH *Ol •••••••• CYl * Ii OooFCO C203 06C3 02E2 E309 ClC3 C2E2 C4C4 05C1 04C5 E2E8 E203 (9E2 E340 06C6 40C1 0303 *BLOCKSTR~CKSCDN~*

I--' DC MVC MVC CLC NC OC STH MVI *MESYSlIST OF All*
I--' OOOFEO 4004 CS04 C2C5 09E2 4040 4C40 4040 4040 4040 4040 4C40 4C40 4040 0306 C~CI 034C * ME~BERS *

5TH STH 5TH STH STH STH 5TH STH STH 5TH MVZ MVZ * LOCAL *
001000 C6C9 E7C 1 03C9 CIE2 D506 4C07 E3C6 4006 0940 03[6 C3C1 0340 C6C9 E7C1 D303 06C3 *FIXAlIASNO PTF 0*

H
MVZ ClC STH STH MVZ MVI MVZ ac *R LOCAL FIXAlLOC*

:s: 001020 CIE3 C5C4 40(4 C5E5 (9C3 C540 0506 E340 C4C1 4110 5004 5031 *ATEO DEVICE ~OT *
~ STH CLC LA 5T ST *DA •• &.&.
Ul IMA113t COMPLETED DUMP REQUIREMENTS
tU
1::'1
~
tU Figure SPZAP-S. Sample Translated Dump

N
\.0

•
\.0

JMASPZAP Examples

Example. 1: Inspecting and Modifying a Load Module Containing a Single
CSECT '

rhis example shows how to. inspect an medify a lead medule centaining a
single CSECT.

//ZAPCSECT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD
DD

MSGLEVEL=(l,l)
PGM=IMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD

*

/*

NAME
VERIFY
REP
SETSSI
IDRDATA
DUMP

IEEVLNKT
0018
0018
01211234
71144
IEEVLNKT

C9C8,D2D9,D1C2,C7DS
ESC6,D3D6,E6FO,4040

In this example:

JOB Statement

initiates the job

EXEC Statement

invekes IMASPZAP.

SYSPRINT DD statement

defines the message data set.

SYSLIB DD Statement

defines the system library SYS1.LINKLIB centaining the medule
IEEVLNKT that SPZAP is to. precess.

SYSIN DD Statement

defines the input stream.

NAME Centrel statement

instructs IMASPZAP that the eperatiens defined by the centro I
statements that follow are to be performed on the module IEEVLNKT.

VERIFY Centrol Statement

requests that IMAPSPZAP check the hexadecimal data at the location
that is offset X'0018' from the start of the module IEEVLNKT to make
sure that it is the same as the hexadecimal data specified in this
statement. If the data is the same, IMASPZAP continues processing
the subsequent statements sequentially. If the data is not
identical, IMASPZAP dumps a hexadecimal image of the module IEEVLNKT
to. the SYSPRINT data set. As a result of this RVERIFY REJECTR,
I~ASPZAP will not perform the REP and SETSSI operations requested
for the module. It will, however, perform the DUMP eperation

300 Service Aids (Release 21)

requested before discontinuing the processing.

REP Control Statement

causes IMASPZAP to replace the data at hexadecimal offset 0018 from
the start of module IEEVLNKT with the data given in this control
statement, provided the VERIFY statement was successful.

SETSSI Control statement

instructs lMASPZAP that it is to replace the system status
information in the directory entry for module IEEVLNKT with the SSI
data given in the statement, provided the VERIFY statement was
successful. The new SSI is to contain:

1. A change level of 01,

2. A flag byte of 21,

3. A serial number of 1234.

IDRDAI'A Control Statement

causes IMASPZAP to update the IDR in module IEEVLNKT with the data
71144, if the REP operation is successful.

DUMP Control statement

requests that a hexadecimal image of module IEEVLNKT be dumped to
the SYSPRINT data set. Since the DUMP statement follows the REP
statement, the image will reflect the changes made by lMASPZAP
(provided the control statements were successfully verified).

Example 2: Inspecting and Modifying a CSECT in a Multiple-CSECT Load Module

This example show how to apply an IBM-supplied PTF in the form of an
lMASPZAP fix, rather than a module replacement PTF.

//PTF40228
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD
DD

MSGLEVEL=(l,l)
PGM=IMASPZAP
SYSOUT=A
DSNAME=SYS1.NUCLEUS,DISP=OLD

* NAME
IDRDATA
VERIFY
VERIFY
REP

lEANUCOl
LOCFIXOl

IEWFETCH

/*

REP
SETSSI
DUMPT

JOB Statement

01FO 47FOC018
0210 5830C8F4
01FO 4780C072
0210 4130C8F4
02114228
lEANUCOl IEWFETCH

initiates the job.

EXEC statement

invokes lMASPZAP.

SYSPRINT DD Statement

Chapter 11: IMASPZAP 301

•

defines the message data set.

SYSLIB DD Statement

defines the library (SYS1.NUCLEUS) that contains input module
IEANUC01.

SYSIN DD Statmenet

defines the input stream that contains the SPZAP control statements.

NAME Control Statement

instructs IMASZAP that the operations defined by the control
statements that immediately follow this statement are to be
performed on the CSECT IEWFETCH contained in the load module
IEANUC01.

IDRDATA Control Statement

causes IMASPZAP to update the IDR in module IEANUCOl for CSECT
IEWFETCH with the data LOCIX01, if either of the REP operations is
successful.

VERIFY Control statements

request that IMASPZAP compare the contents of the locations X'OlFO'
and X'0210' in the control section IEWFETCH with the data given in
the VERIFY control statements. If the comparisons are equal·,
IMASPZAP will continue processing subsequent control statements in
the order in which they are encountered. However, if the data at
the locations does not compare identically to the data given in the
VERIFY control statements, IMASPZAP will dump a hexadecimal image of
CSECT IEWFETCH to the SYSPRINT data set; the subsequent REP and
SETSSI statements will be ignored. The DUMPT function specified will
be performed before IMASPZAP terminates processing.

REP Control statements

cause IMASPZAP to replace the data at hexadecimal offsets X'OlFO'
and X'0210' from the start of CSECT IEWFETCH with the hexadecimal
data specified on the corresponding REP statements.

SETSSI Control statement

requests that IMASPZAP replace the system status information in the
directory for module IEANUCOl with the SSI data given in the SETSSI
statement after the replacement operations have been effected. The
new SSI will contain:

1. A change level of 02,

2. A flag byte of ii,

3. A serial number of 4228.

DUMPT Control Statement

causes IMASPZAP to perform the DUMPT function for CSECT IEWFETCH of
load module IEANUC01.

302 Service Aids (Release 21)

Example 3: Inspecting and Modifying Two CSECTs in the Same Load Module

rhis example shows how to inspect and modify two control sections in the
s arne module.

//CHANGIT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD

MSGLEVEL=(l,l)
PGM=IMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD

DD *

/*

NAME
VERIFY
REP
I DR DATA
SETSSI
DUMPT
NAME
VERIFY
REP
IDRDATA
SETSSI
DUMPT

IEFX5000 IEFQMSSS
0284 4780,C096
0284 4770,C096
P'I'F01483
01212448
IEFX5000 IEFQMSSS
IEFX5000 IEFQMRAW
0154 4780,C042
0514 4770,C042
P'I'F01483
01212448
IEFX5000 IEFQMRAW

JOB Statement

initiates the job.

EXEC Statement

invokes IMASPZAP.

SYSPRINT DD statement

defines the message data set.

SYSLIB DD Statement

defines the data set to be accessed by IMASPZAP while performing the
operations specified by the control statements. In this case, it
defines the system library SYS1.LINKLIB containing the load module
IEFX5000 that is to be changed by IMASPZAP.

NAME Control statement #1

instructs I~~SPZAP that the operations requested via the control
statements immediately following it are to be performed on CSECT
IEFQMSSS in load module IEFX5000 that resides in the data set
defined by the SYSLIB DD statement.

VERIFY Control statement #1

requests that IMASPZAP check the hexadecimal data at offset X'0284'
from the beginning of CSECT IEFQMSSS to make sure it is the same as
the data specified in this control statement. If the two data fields
match, IMASPZAP continues processing the control statements that
follow sequentially. If the data is not identical, IMASPZAP dumps a
formatted hexadecimal image of CSECT IEFQMSSS to the SYSPRINT data
set. If a "VERIFY REJECT" occurred, IMASPZAP would not perform the
REP or SETSSI functions for CSECT IEFQMSSS, but it would implement
the DUMPT function specified for this CSECT and continue to process
the control statements that follow in the same job step.

Chapter 11: IMASPZAP 303

•

REP Control statement #1

causes lMASPZAP to replace the data at hexadecimal displacement 0284
from the beginning of CSECT IEFQMSSS with the hexadecimal data given
in this control statement.

IDRDATA Control Statement #1

causes lMASPZAP to update the IDR in module IEFXSOOO for CSECT
IEFQMSSS with the data PTF01483, if the first REP operation is
successful.

SETSSI Control statement #1

instructs lMASPZAP that it is to replace the system status
information in the directory entry for module IEFXSOOO with the SSI
data given. The new SSI will contain:

1. A change level of 01,

2. A flag byte of 21,

3. A serial number of 2448.

DUMPT Control Statement #1

causes IlfUlliPZAP to perform the DUMPT operation on CSECT IEFQMSSS,
and nullifies any previous "VERIFY REJECTS" that may have been
encountered.

N~lE Control Statement #2

indicates that the operations defined by the contro'l statements that
immediately follow this statement are to be performed on CSECT
IEFQMRAW in the load module IEFXSOOO.

VERIFY Control Statement #2

requests that IMASPZAP perform the VERIFY function at offset X'0154'
from the start of CSECT IEFQMRAW. If the VERIFY operation is
successful, IMASPZAP will continue processing the subsequent control
statements sequentially. If the VERIFY is rejected, however,
lMASPZAP will not perform the following REP or SETSSI operations,
but it will dump a hexadecimal image of CSECT IEFQMRAW to the
SYSPRINT data set and perform the DUMPT operation as requested.

REP Control statement #2

causes lMASPZAP to replace the data at hexadecimal offset X'OlS4'
from the start of CSECT IEFQMRAW with the hexadecimal data that is
specified in this control statement.

IDRDATA Control Statement #2

causes IMASPZAP to update the IDR in module IEFXSOOO for CSECT
IEFQMRAW with the data PTF01483, if the second REP operation is
successful.

SETSSI Control Statement #2

causes lMASPZAP to perform the same function as the previous SETSSI,
but it is performed only if the second VERIFY is not rejected.

304 Service Aids (Release 21)

DUMPT Control Statement #2

causes IMASPZAP to perform the DUMPT function on control section
IEFQMRAW.

Example 4: Inspecting and Modifying a Data Record

In this example, the data set to be modified is a volume table of
contents.

//ZAPIT
//STEP

JOB MSGLEVEL=(l,l)
EXEC PGM=IMASPZAP
DD SYSOUT=A
DD DSNAME=FORMAT4.DSCB,DISP=OLD,

/ /SYSPRIN'l'
//SYSLIB
// UNIT=2311,VOLUME=SER=111111,DCB=(KEYLEN=44)
//SYSIN DD *

/*

CCHHR
VERIFY
REP
REP

005000001
2C 0504
2C OAOS
2E 0001,03000102

ABSDUMPT ALL

JOB statement

initiates the job.

EXEC statement

invokes IMASPZAP.

SYSPRINT DD Statement

defines the message data set.

SYSLIB DD Statement

defines the data set to be accessed by IMASPZAP in performing the
operations specified by the control statements. In this example, it
defines the VTOC (a Format 4 DSCB) on a 2311 volume with a serial
number of 111111. DCB=(KEYLEN=44) is specified so that the dump
produced by the ABSDUMPT control statement will show the dsname
which is a 44 byte key. Note that this is not necessary for the
VERIFY and REP control statements.

CCHHR Control Statement

indicates that lMASPZAP is to access the direct access record
address "0005000001" in the data set defined by the SYSLIB DD
statement while performing the operations specified by the following
control statements.

VERIFY Control Statement

requests that IMASPZAP check the data at hexadecimal displacement
X'2C' from the start of the data record defined in the CCHHR
statement to make sure it is the same as the hexadecimal data
specified in this control statement. If the data is the same,
IMASPZAP continues processing the tollowing control statements
sequentially. If the data is not identical, lMASPZAP dumps a
formatted hexadecimal image of the data record defined by the CCHHR

Chapter 11: IMASPZAP 305

•

statement to the SYSPRINT data set. If a "VERIFY REJECT" occurred,
IMASPZAP would not perform the REP functions requested, but it would
give the dump specified by the ABSDUMPT statement.

REP Control Statements

cause the eight bytes of data starting at displacement 2C from the
beginning of the record to be replaced with the hexadecimal data in
the REP control statements. The 2C displacement value allows for a
44-byte key at the beginning of the record.

ABSDUMPT Control Statement

causes IMASPZAP to dump the entire data set to the SYSPRINT data
set. Since DCB=(KEYLEN=44) is specified on the SYSLIB DD statement,
the 44 nyte dsname will also be dumped.

Note: If the VTOC is to be modified, message IMAl17D will be issued
to the operator. requesting permission for the modification.

Example 5: Entering SPZAP Control Statements Through the Console

This example shows how to enter IMASPZAP control statement through the
console.

//CONSOLIN
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

CONSOLE
/*

JOB Statement

JOB
EXEC
DD
DD
DD

initiates the job.

EXEC Statement

invokes I~~PZAP.

SYSPRINT DD Statement

MSGLEVEL=(l,l)
PGM=IMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD

*

defines the message data set.

SYSLIB DD statement

defines the data set that contains the module to be updated.

,SYSIN DD Statement

defines the input stream.

CONSOLE Control Statement

indicates that IMASPZAP control statements are to be entered through
the console.

306 Service Aids (Release 21)

Example 6: Using the BASE Control Statement

This example shows how to inspect and modify a CSECT whose starting
address does not coincide with assembly listing location zero.

//MODIFY
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD
DD

MSGLEVEL= (1, 1)
PGM=IMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD

*

/*

NAME
BASE
IDRDATA
VERIFY
REP
DUMP

IEFMCVOL IEFCVOL2
0398
MOD04
039A 5820C010
039A 47000000
IEFMCVOL IEFCVOL2

JOB statement

initiates the job.

EXEC Statement

invokes IMASPZAP.

SYSPRINT DD Statement

defines the message data set.

SYSLIB DD statement

defines the data set to be accessed by IMASPZAP when performing the
operations requested via the control statements. In this case, it
defines the system library, SYS1.LINKLIB, that contains the module
IEFMCVOL in which the CSECT to be changed, IEFCVOL2, resides.}

SYSIN DD Statement

defines the input stream that contains the IMASPZAP control
statements.

NAME Control statement

instructs IMASPZAP that the operations defined by the control
statements that immediately follow it are to be performed on CSECT
IEFCVOL2 in the load module IEFMCVOL.

BASE Control Statement

provides IMASPZAPwith a base value that is to be used to readjust
the offsets on the VERIFY and REP statements that follow it.

IDRDATA Control Statement

causes IMASPZAP to update the IDR in module IEFMCVOL for CSECT
IEFCVOL2 with the data MOD04, the the REP operation is successful.

Chapter 11: IMASPZAP 307

•

VERIFY Control Statment

requests that IMASPZAP inspect the data at offset X'039AI. The base
value X'0398'given in the previous BASE statement is subtracted
from this offset to determine the proper displacement of the data
within CSECT IEFCVOL2. Therefore, IMASPZAP checks the data at the
location that is actually displaced X'0002 1 bytes from the beginning
of CSECT IEFCVOL2 to ensure that it is the same as the hexadecimal
data specified in this control statement.

If the data is the same, IMASPZAP continues processing the
following statements in the order in which they are encountered. If
the data is not identical, IMASPZAP dumps a hexadecimal image of
CSECT IEFCVOL2 to the SYSPRINT data set.

If a "VERIFY REJECT" occurs, IMASPZAP will not perform the REP,
SETSSI, and IDRDATA functions, but it will perform the DUMP function
requested for CSECT IEFCVOL2.

REP Control Statement

causes lMASPZAP to replace the data at displacement X'0002' (offset
039A minus base value 0398) into CSECT IEFCVOL2 with the hexadecimal
data specified in this control statement.

DUMP Control Statement

requests thatIMASPZAP dump a hexadecimal image of CSECT IEFCVOL2 to
the SYSPRINT data set. Since the DUMP statement follows the REP
statement, the image will reflect the changes made by IMASPZAP
(assuming no verification has been rejected).

308 Service Aids (Release 21)

Appendix: Writing EDIT User Programs
Tells how to write and use EDIT user programs.

309 •

310 Service Aids (Release 21)

INTRODUCTION

USER PROGRAM INTERFACES
Gaining Control •••••
Using the Parameter List •

Input Record • • • • • • • • • •
GTF Option Word • • • • • • • •

Contents

. 313

• •• 314
• .314

.314

.315

.316
Returning to EDIT • • • • • • • • • • • • • • •

Exit Routine Return Codes • • • •
• • • • • • 316
• • • • • • 317

Format Appendage Return Codes ••• • • ••••• 317
Handling Errors • • • • • • • • • • • ••••• 317

Errors in Finding or Loading a User Program
Invalid Return Codes and Program Checks

AVOIDING UNRECOVERABLE ERRORS

SAMPLE USER EXIT ROUTINE •

SAMPLE FORMAT APPENDAGE

DEBUGGING A USER PROGRAM •

.318
• ·318

• .319

• •• 321

.324

.329

JCL AND CONTROL STATEMENT EXAMPLES. • • • • • • • • • • • • .331
Example 1: Link Editing a User Exit Routine into a Library •••• 331
Example 2: Testing a User Exit Routine ••••••• 332
Example 3: Testing a User Format Appendage •• • • • • • • • .333

Figures

Figure APNDX-l.
Figure APNDX-2.

Figure APNDX-3.

Figure APNDX-4.
Figure APNDX-4.
Figure APNDX-4.
Figure APNDX-5.
Figure APNDX-5.
Figure APNDX-6.

Figure APNDX-6.

Figure APNDX - 6 .

EDIT Parameter List and Related Fields
Contents of GTF Option Word, Showing GTF
Options in Effect • . . .
PRDMP/EDIT Actions in Response to Errors

· .. 315

• .316

. . . • .318
· .. 321

.322

in Finding or Loading User Programs .
Sample Exit Routine (Part 1 of 3) . •
Sample Exit Routine (Part 2 of 3) ...
Sample Exit Routine (Part 3 of 3) ..
Sample Format Appendage (Part 1 of 2)
Sample Format Appendage (Part 2 of 2)
Sample ABEND Dump Showing Fields Needed for
Debugging User Exit Routine ABENDXIT
(Part 1 of 3) • • . .
Sample ABEND Dump Showing Fields Needed for
Debugging User Exit Routine ABENDXIT
(Part 2 of 3) • .
Sample ABEND Dump Showing Fields Needed for
Debugging User Exit Routine ABENDXIT
(Part 3 of 3)

· .323
· .324

.325

· • . .326

· . . .327

· . . .328

Appendix - Writing EDIT User Programs 311 •

312 Service Aids (Release 21)

Introduction

You may want to code special programs to supplement GTF and
IMDPRDMP/EDIT operation. EDIT allows for two types of user programs:
exit routines and format appendages. Neither type may occupy more than
10K bytes of main storage.

• An exit routine allows you to inspect each input trace record before
EDIT begins processing it; on the basis of the inspection you must
decide whether EDIT should process the record normally or take
special action.

• A format appendage allows you to format all user trace records of a
specified type. A format appendage must be named IMDUSRxx, where xx
is the hexadecimal form of the format identifier (FID) specified in
the GTRACE macro when the record was created.

This appendix is designed to help you write efficient, helpful user
programs.

Appendix - Writing EDIT User Programs 313 •

User Program Interfaces

A user program interfaces with the EDIT function of IMDPRDMP in the
following ways:

Gaining Control

Until EDIT calls them, user programs reside in SYS1.LINKLIB or in a data
set defined by the JOBLIB or STEPLIB DO statement. Once a user program
is loaded into main storage, it remains there until EDIT processing is
complete, or until it is deleted due to a need for space.

An exit routine is named in the EXIT= parameter of the EDIT control
statement. It gets control every time EDIT reads an input trace record,
and always completes its examination of the record before EDIT processes
it.

A format appendage is invoked only when EDIT encounters a record
that contains an FlO field corresponding to the name of the format
appendage. It remains in main storage until deleted, but only gets
control when EDIT encounters a record with the corresponding FlO.

Using the Parameter List

When EDIT passes control to a user program, register 1 contains the
address of a parameter list. The contents of that parameter list, and
its related fields are shown in figure APNDX-l. The exit routine or
format appendage uses the parameter list to find the record it is to
process, determine how to process it, and decide where to put the
processed record.

314 Service Aids (Release 21)

Input record

As shown in Figure APNDX-l, the first four bytes of the parameter list
give the address of the input record. Four-byte fields at offset 12 and
16, respectively, point to the event identifier (EID) field and the data
area in the input record.

For a complete description of the input record format, see Figure
GTF-8 in Chapter 3: GTF (Generalized Trace Facility).

Register 1 Output area
~~------------------------~ t LIST

(256 bytes maximum for user exit)
(246 bytes maximum for format appendage)

input record

output area GTF option word

GTF option word

EID field (4 bytes)

Data
see Figure APNDX-2 for detai Is

Timestamp Data

Figure APNDX-1. EDIT Parameter List and Related Fields

Appendix - Writing EDIT User Programs 315 •

GTF Option Word

A four-byte field at offset 8 in the parameter list gives the address of
the GTF option word, a four-byte table that summarizes the GTF options
in effect when the input trace records were produced. Figure APNDX-2
lists the contents of the GTF option word.

BITS BYTES OPTIONS IN EFFECT DURING TRACE

1 ..• Byte 1 SYSM-- minimal tracing for system events
. 1 ..
· .1.
••. 1

1 ...
.1 .•
•. 1.
• •• 1

SYSP-- maximum tracing, prompting requested •
SYS-- maximum tracing for system events
USR all GTRACE-generated interrupts traced
TRC all GTF interrupts traced
DSP all task-switches traced
SSM all SSM interrupts traced (MP only)
PCI program-controlled interrupts traced

1 ... Byte 2 SVC all SVC interrupts traced
.1 .•
· .1.
· .. 1

1 ...
.1 ..
•. 1.
· •. 1

SVCP -- SVC interrupts selected by prompting
SIO -- all SIO events traced
SlOP -- SIO events selected by prompting
PI -- all program interrupts traced
PIP -- program interrupts selected by prompting
10 -- all I/O interrupts traced
lOP -- I/O interrupts selected by prompting

1 ••• Byte 3 EXT -- external interrupts traced
.xxx xxx. reserved bits

· •. 1 IO=SIO -- identical devices selected for 10 & SIO

1 ••• Byte 4 tracing system - MFT
.1 ••
•• 1.
... 1

1 •••
0 •••
.1 ••
.• 1.
• •• 1

tracing system - MFT with ATTACH
tracing system - MVT
tracing system - Model 65 Multiprocessing
real Monitor Call instruction
simulated monitor call instruction
no timer option selected at SYSGEN
Tracing system has time-of-day clock
user timestamp requested

Figure APNDX-2. Contents of GTF Option Word, showing GTF Options
in Effect During Trace

For more information about any of the GTF options, refer to Chapter 3,
GTF (Generalized Trace Facility).

Returning to EDIT

A user program must return to EDIT with one of the return codes listed
below. If EDIT recieves an invalid return code from a user program, it
takes action as specified by the ER= subparameter of the PARM= parameter
of the EXEC statement that invokes IMDPRDMP. This parameter, its values
and their meanings are described in Chapter 8: PRDMP in the section "Job
C~ntrol Language Statements".

316 Service Aids (Release 21)

Exit Routine Return Codes

An exit routine must return to EDIT with one of the following return
codes:

Code

o

4

8

12

16

20

24

28

Meaning

EDIT should print the contents of the output area, clear the
area, and return immediately to the exit routine. This allows
the exit routine to print more than one line of output. (Note
that the output buffer may be in a different location when the
format appendage receives control again.)

EDIT should print the contents of the output area and obtain
the next logical record.

EDIT should format and print the trace record according to the
selectivity specified in the EDIT control statement.

EDIT should obtain the next logical input trace record without
printing the contents of the output buffer.

EDIT should print the contents of the output buffer and no
longer invoke the exit routine, which is no longer needed.

EDIT should format and print the trace record according to the
selectivity specified in the EDIT control statement, and should
no longer invoke the exit routine, which is no longer needed.

EDIT should terminate processing and return control to IMDPRDMP
so that the next IMDPRDMP control statement may be processed.

EDIT should format and print this record as though no
selectivity had been specified in the EDIT control statement.

Format Appendage Return Codes

A format appendage must return to EDIT with one of the following return
codes:

Code

o

4

8

Meaning

EDIT should print the contents of the output buffer and return
immediately to the format appendage. (Note that the output
buffer may be in a different location when the format appendage
receives control again.)

EDIT should print the contents of the output buffer and obtain
the next logical input trace record.

EDIT should obtain the next logical input trace record without
printing the contents of the output buffer.

Handling Errors

EDIT is prepared to handle two types of errors: invalid return codes
and program checks. Other types of errors and their consequences are
discussed later in this appendix, in the section "Avoiding
Unrecoverable Errors".

Appendix - Writing EDIT User Programs 317 •

Errors in Finding or Loading a User Program

If EDIT cannot find or load a user program, it takes action as shown in
Figure APNDX-3.

~
Exit Routine Format Appendage

Input Type Not Found Not Loaded Not Found Not Loaded

Dump A A B B

Trace Data Set A A B A

Action A: EDIT terminates processing and returns control to
IMDPRDMP,which obtains the next IMDPRDMP control
statement.

Action B: EDIT dumps the associated record in hexadecimal and
obtains the next input trace record. Any subsequent
records that have the same FID will be dumped in
hexadecimal.

Figure APNDX-3. IMDPRDMP/EDIT Actions in Response to Errors in
Finding or Loading User Programs.

Invalid Return Codes and Program Checks

EDIT's action in response to invalid return codes and program checks
depends on the value for ER= that you specify in the PARM= parameter of
the EXEC statement that invokes IMDPRDMP. For an explanation of the
valid values for ER=, refer to the section "Job Control Language
statements" in Chapter 10: IMDPRDMP.

318 Service Aids (Release 21)

Avoiding Unrecoverable Errors

As shown in the previous sections, EDIT can recover from two kinds of
errors in a user program: invalid return codes and program checks. EDIT
cannot protect you, however, against errors that you may generate, for
example by performing I/O operations or issuing GETMAIN macro
instructions. In fact, you should avoid issuing any SVcs in your user
program. Ordinarily this is not difficult, since EDIT provides you with
the ability to examine records, manipulate data, and request formatted
output to be printed. If you must issue an SVC, EDIT will permit you to
do so; you should be prepared, however, for possibly unpredictable
results if an error occurs during an operation that you have requested
by issuing an SVC.

Another error condition that EDIT cannot handle, but which you can
avoid, arises when you assign IMDPRDMP too small a region. You must
specify a region large enough to accomodate all of IMDPRDMP's work areas
and buffers plus all format appendages that can be called plus any exit
routine. If you do not do so, IMDPRDMP may delete one or more user
programs already in main storage to make room for a new one.

Deletion is critical if the deleted program issues an OPEN because
the reinitialization that is necessary when the program is reloaded can
cause two DCBs to be open at the same time. Deletion is also critical if
the deleted program is an exit routine that sets a switch before
relinquishing control and tests the same switch when it gets control
again. Resulting errors may not cause abnormal termination, but they
can prevent successful operation of the exit routine.

If none of your user programs will be damaged by deletion, you need
not allow extra space for them in IMDPRDMP's region. IMDPRDMP's minimum
region size includes 10K for use by system format appendages and user
programs.

If your user program must issue a GETMAIN macro, be sure to specify
a region large enough to include the amount of main storage requested in
the user program. Also be sure to reserve that amount of storage for
your own use by means of the FREEnnn subparameter of the PARM= parameter
in the EXEC statement. If you do not reserve it, IMDPRDMP will make
available to your program only a limited amount of storage and your
GETMAIN may fail. For more information about the FREEnnn parameter,
refer to the section "Job Control Language statements" in Chapter 10:
IMDPRDMP.

On completion of your user program, be sure to issue a FREEMAIN
macro for all storage that you reserved for your own use. If you do not
do so, and your program is deleted, the storage you reserved will remain
allocated to you and thus unavailable to subsequent users.

Appendix - Writing EDIT User Programs 319 •

A few examples may further clarify the areas in which EDIT does not
provide error recovery:

• A user program, known as module A, issues the LINK SVC for module B.
A program check occurs in module B. EDIT will attempt error
recovery, since the error is a program check, but it knows nothing
about module B. Therefore when it produces diagnostic information
it will give the entry point of module A as the entry point of the
failing module, and attribute the registers at the time of the
program check to module A.

• A user program issues the OPEN SVC (SVC X' 13') unsuccessfully and is
posted with a system completion code of 213. EDIT cannot recover,
so EDIT, the user program and IMDPRDMP will all be terminated.

• A user program opens a DCB. Before it can close the DCB, the
program is deleted to make room for another user program. When the
deleted program is reloaded, it creates a new DCB and opens it.
rhus there are two open DCBs with the same name in storage at the
same time. The operating system will not tolerate this situation,
so the user program is abnormally terminated.

• A user program issues the SPIE SVC, thereby nullifying EDIT's SPIE
routine. As a result any program checks in the user program that
EDIT would normally handle will go through the user's own SPIE
routine, perhaps with unpredictable results.

320 Service Aids (Release 21)

Sample User Exit Routine

Figure APNDX-4 shows a sample exit routine. This routine, named
ABENDXIT, was written to aid diagnosis of an abnormal termination
condition in a particular job. It scans each input trace record,
suppressing printing until it finds a record with the specified jobname.
When it finds such a record, ABENDXIT signals IMDPRDMP to print that
record. All subsequent records will be printed until ABENDXIT encounters
an SVC 13 record for the specified jobname; then ABENDXIT instructs
IMDPRDMP to print that record and terminate.

Note that this program decides how to treat each new record on the
basis of the way it treated previous records. To do this it must
maintain certain switches intact between records, and as a result this
program is not serially reusable. To guarantee the integrity of the
switches in the program, therefore" it is necessary to specify a region
large enough to hold both IMDPRDMP and the user exit routine
contiguously. This is the only way to make sure that the exit routine
will not be deleted if EDIT needs more room to execute.

* ABENDXIT IS AN EDIT USER EXIT ROUTINE DESIGNED TO CONTROL PRINTING
* OF ALL GTF RECORDS ASSOCIATED WITH A PROGRAM THAT HAS
* PROGRAM CHECKED AND ABENDED

ABENDXIT CSECT
* EQUATE STATEMENTS
FRSTREG EQU 0
PARMREG EQU 1
EIDREG EQU 2
DATAREG EQU 3
WORKREG EQU 4
CHAINREG EQU 9
BJiliE EQU 12
SAVEPrR EQU 13
RETPTR EQU 14
CODEREG EQU 15

STM RETPTR,BASE,12 (SAVEPTR)
BALR BASE, 0
USING *,BASE
ST SAVEPTR,SAVE+4
LA CHAINREG,SAVE
ST CHAINREG,8(SAVEPTR)
LR SAVEPTR,CHAINREG

Figure APNDX-4. Sample Exit Routine.

STORE REGISTERS
ESTABLISH ADDRESSABILITY
USING REGISTER 12
BACKWARD CHAINING
MY SAVE AREA POINTER
FORWARD CHAINING
REG 13 ~DDRESSES SAVE AREA

(Part 1 of 3)

Appendix - Writing EDIT User Programs 321 •

+*/**/
+*/*THE IMDMEDIT MACRO MAPS THE EID. VALUES ASSOCIATED WITH IBlv'l */
+*/* SYSTEM AND SUBSYSTEM EVENTS. THE STORAGE FOR ANY OR ALL OF */
+*/* THE MAPPED VALUES MUST BE CONTAINED IN THE MODULE REFERENCING */
+*/* THE DESIRED EIDS. IMDMEDIT IS DESIGNED TO BE USED BY IBM- */
+*/* SUPPLIED FORMAT APPENDAGES., AND USER-SUPPLIED USER EXIT */
+*/* MODULES. */
+*/**/
+IMDMPCI EQU X'2FDF' PCI I/O INTERRUPT
+IMDMSVC EQU X'3FFF' SVC INTERRUPT
+IMDMDSP EQU X'4FE7' TASK SWITCH
+IMDMI01 EQU X'SFEE' I/O INTERRUPT
+IMDMI02 EQU X' SFEF' I/O INTERRUPT
+IMDMSIO EQU X'SFFO' SIO OPERATION
+IMDMSSM EQU X'DFFC' SSM INTERRUPT
+IMDMPI EQU X'DFFD' PROGRAM INTERRUPT
+IMDMEXT EQU X'DFFE' EXTERNAL INTERRUPT
+IMDMDMAl EQU X'EFFF' OPEN/CLOSElEOV

BC 1,FINISH

PRINTSW,X'Ol
1,PRINTALL
WORKREG,O
WORKREG,ECBl
7 MYJOBLAB

ECB=ECBl

YES,TELL EDIT TO TERMINATE

Q/HAS JOBN ALREADY BEEN FOUND
YES, SO PRINT THIS RECORD
GET ZERO CONSTANT
Q/HAS THIS ECB BEEN POSTED
YES CHECK IF JOBN FOUND

WORKREG,MYJOBN ADDRESS OF JOBNAME SELECTED
OC O(S,wORKREG),BLANKS CONVERT LOWER-CASE CHARS TO

* UPPER CASE
MYJOBLAB CLC O(S,DATAREG),MYJOBN Q/IS THIS MY JOBNAME

BC 7,NOPRINT NO -- JUST RETURN
* ONCE JOBNAME FOUNDI SET SWITCH AND PRINT ALL RECORDS UNTIL
* ENCOUNTER AN SVC 13 (ABEND) CONTAINING THIS JOBNAME

or PRINTSW,X'Ol' TURN ON JOBNAME FOUND SWITCH
PRINTALL CLC O(2,EIDREG),SVCEID Q/ IS THIS AN SVC RECORD

BC 7,PRINTREC NO, SO PRINT AND CONTINUE
CLI lS(DATAREG),X'OD' Q/IS THIS AN SVC 13 (ABEND)
BC 7,PRINTREC NO, SO PRINT AND CONTINUE
CLC O(S,DATAREG),MYJOBN Q/IS THIS MY JOBNAME
BC 7,PRINTREC NO, SO PRINT AND CONTINUE

EXIT 01 TERMSW,X'Ol' INDICATE THAT THIS IS LAST

* PRINTREC LA
L
L
LM
BCR

RECORD TO BE PRINTED
CODEREG,S FORMAT AND PRINT THIS RECORD
SAVEPTR,4(SAVEPTR) RESTORE SAVE AREA POINTER
RETPTR,12(SAVEPTR) RESTORE REGISTER 14
FRSTREG,BASE,20(SAVEPTR) RESTORE OTHER REGS EXCEPT 15
lS,RETPTR RETURN TO EDIT

Figure APNDX-4. Sample Exit Routine (Part 2 of 3)

322 Service Aids (Release 21)

FINISH LA

* B
NOPRINT LA

B
SAVE DC
SVCEln bc'

it!::

TERMSW DC
PRINTSW DC
ECB1 DC
MYJOBN DC
BLANKS DC

END
/*

CODEREG, 24

RETURN
CODEREG,12
RETURN
18F'O'
AI:ZttMDM.SV'C)

X'OO'
X'OO'
F'O'
C'
C'

TERMINATE EDIT PROCESSING
SINCE SVC 13 WAS LAST RECORD
RESTORE REGISTERS AND RETURN
IGNORE RECORD
RESTORE REGISTERS AND RETURN
SAVE AREA
~$tA~~~~+i,~~~!l.,J\,~~:.;?"Q~"'>/',';'/:ty{"{ :',ie"',?,}}?"";'
E.IIi>i~~Qr1i"l'Mt>~EiP;;ta:',· .•• ~g"g~q~~;"·"
INDICATION TO REQUEST TERM
JOBN FOUND, SO PRINT REC IND
FOR POST
PLACE FOR OPR TO PUT JOB NAME
TO CONVERT LOWER TO UPPER CASE

Figure APNDX-4. Sample Exit Routine. (Part 3 of 3)

Some instructions in the sample exit routine require special attention.
These are shaded in Figure APNDX-4, and they are discussed below.

IMDMEDIT

This mapping macro expands, as shown, into a list of equate
statements that supply symbolic names for the event identifiers (EIDs).
You should use the symbolic name in your program; this is your
protection against program failure, if for any reason, the EID values
are later changed.

TM TER~~W,X'Ol'

This instruction tests a switch to determine a course of action.
Because of instructions like these, which any user exit is likely to
use, you should always make sure your region is large enough so that the
user exit need not be deleted at any time during EDIT execution.

L EIDREG,12 (PARMREG)

L DAT AREG ,16 (P ARMREG)

These two instructions access the EDIT parameter list. (See Figure
APNDX-1.)

wTOR 'SPECIFY 8-CHARACTER JOBNAME OF ABENDING PROGRAM', MYJOBN,8,ECB1

rhis instruction requests information that cannot be obtained from
the EDIT parameter list. You can use a WTOR to request any information
that the operator is likely to have, such as the EDIT options in effect.
Note, however, that when you issue an SVC in a user program you risk
abnormal termination if an error occurs during the SVC operation. For
more information about this point, refer to the section "Avoiding
Unrecoverable Errors" eariler in this chapter.

SVCEID DC AL2(IMDMSVC)

This establishes a main storage location for the value equated to
IMDMSVC in the expansion of the IMDMEDIT mapping macro.

Appendix - Writing EDIT User Programs 323 •

Sampre Format Appendage

Fi9ure APNDX-S shows how to use the EDIT parameter list and how to
handle multiple EIDs. It consists of excerpts from a sample format
appendage named IMDUSR01, which formats three different types of user
records. For each record IMDUSROl produces two lines of output. The
first line varies according to the record type. The second line is the
same for all records.

*** * IMDUSR'Ol IS AN EDIT USER FORMAT APPENDAGE MODULE THAT PROCESSES
* THREE DIFFERENT TYPES OF INPUT RECORDS, THUS, THREE DIFFERENT EIDS.
* LINE ONE OF THE FORMATTED OUTPUT VARIES ACCORDING TO THE EID. LINE
* TWO OF THE FORMATTED OUTPUT IS THE SAME FOR ALL EIDS, AND IS
* PRODUCED IN COMMON CODE.

IMDUSROl CSEeT
* EQUATE STATEMENTS
FRSTREG EQU '0
PARMREG EQU 1
EIDREG EQU 2
DATAREG EQU 3
CHAINREG EQU 9
BASE EQU 12
SAVEPTR EQU 13
RETPTR EQU 14
CODEREG EQU 15

STM RErPTR,BASE,12 (SAVEPTR) STORE REGISTERS

*

Rl'Nl

BALR BASE,O
USING *,BASE
ST SAVEPTR,SAVE+4
LA CHAINREG,SAVE
ST CHAINREG,8(SAVEPTR)
LR SAVEPTR, CHAINREG
L EIDREG,12'(PARMREG)
L DATAREG,16 (PARMREG)
TM SWITCH,X'Ol'
Be 1,LINETWO

CLC
Be
CLC
BC
CLC
Be
LA
B

B

WHICH IS COMMON TO
O(2,EIDREG),EID1
8,RTN1
O{2,EIDREG},EID2
8,RTN2
'0 (2, EIDREG), EID3
8,RTN3
CODEREG.,8
RETURN

ZEROCODE

ESTABLISH ADDRESSABILITY
USING REGISTER 12
BACKWARD CHAINING
MY SAVE AREA POINTER
FORWARD CHAINING
REG 13 ADDREESES SAVE AREA
GET POINTER TO EID
GET POINTER TO FIRST LINE DATA
Q/ HAS FIRST LINE BEEN OUTPUTTED
YES, BRANCH TO FORMAT LINE TWO

ALL THREE EID RTNS
NO--Q/IS THIS A RECORD WITH EID1
YES--FORMAT LI NE ONE
Q/IS THIS A RECORD WITH EID2
YES--FORMAT LINE ONE
Q/IS THIS A RECORD WITH EID3
YES--FORMAT LINE ONE
NO--IF NONE OF THESE EIDS, IGNORE
REC, RESTORE REGS, AND RETURN

SET ZERO RETURN CODE

Figure APNDX-5. Sample Format Appendage (Part 1 of 2)

324 S'ervice Aids '(Release 21)

RTN2

B
RTN3

ZEROCODE OI
SR

*

LINErwo

NI
LA

RETURN L
L
LM
BCR

SAVE DC
SWITCH DC
EIDl DC
EID2 DC
EID3 DC

END
/*

ZEROCODE SET ZERO RETURN CODE

SWITCH,X'Ol' FIRST LINE COMPLETE INDICATOR
CODEREG,CODEREG OUTPUT THIS LINE AND RETURN

IMMEDIATELY TO THIS FORMAT APPENDAGE
RETURN RESTORE REGISTERS AND RETURN

SWITCH,X'FE' TURN OFF LINE 2 INDICATOR
CODEREG,4 OUTPUT THIS LINE--COMPLETE
SAVEPTR,4 (SAVEPTR) RESTORE SAVE AREA POI NTER
RETPTR,12(SAVEPTR) RESTORE REGISTER 14
FRSTREG, BASE, 20 (SAVEPTR) RESTORE OTHER REGS EXCEPT 15
lS,RETPTR RETURN TO EDIT

18F'0' REGISTER SAVE AREA
X'OO' READY FOR LINE TWO SWITCH
X' EOO1' EIDl
X, E002' EID2
X'E003' EID3

Figure APNDX-S. Sample Format Appendage (Part 2 of 2)

Appendix - Writing EDIT User Programs 325 •

Figure APNDX-6. Sample ABEND Dump Showing Fields Needed for Debugging
User Exit Routine ABENDXIT (Part 1 of 3)

326 Service Aids (Release 21)

4.B(:0.50C8 9~.1l.lD040 4111C.C.COt,43112F.F.
91CO~Q05478C!114 ~lOe20J44'805114
411MCH4BHOOOE ~14J40C5 41805086
4 14 LAi'~140 2C5C471~ 50C64580

70«(4'180 .!U4it7F" 5eMPl07
7(;003(0 C7Fe4~eC5.0EA1e88

· .. ~~.~C71:L;;~ ~;~ti~t~ c 1 ~ E IB e~· 4!8 C2 04 2 T C1F£C7CC 0100070.0

Figure APNDX-6. Sample ABEND Dump Showing Fields Needed for Debugging
User Exit Routine ABENDXIT (Part 2 of 3)

Appendix - Writing EDIT User Programs 327 •

Figure APNDX-6. Sample ABEND Dump Showing Fields Needed for Debugging
User Exit Routine ABENDXIT (Part 3 of 3)

328 Service Aids (Release 21)

Debugging a User Program

Figure APNDX-6 shows a sample ABEND dump of the user exit routine
ABENDXIT, shown in Figure APNDX-S. Certain important fields are
highlighted in the figure and marked with numbers; the numbers refer to
the explanations below:

1. PSW for the abnormally terminating program. The address in the
second half of the PSW is an address in the abnormally terminated
program. To find the entry point and name of the program, compare
this address to the entry point addresses in the contents directory
entry list. The abnormally terminating program is the one whose
entry point address is closest to and greater than the address in
the PSW.

NOTE: If the address in the PSW does not imrnediately indicate the
entry point address of th~ failing program, you can locate the
beginning address of the abnormally terminating program by tracing
IMDPRDMP's save area chain. See point 4# below.

2. Part of a contents directory entry (CDE). This shows the name of
the abnormally terminating program, ABENDXIT, its entry point,
X'OSD080', and the pointer to the appropriate entry in the extent
list.

3. An extent list entry. This shows the beginning address (not
necessarily the entry point) of the abnormally terminating program.
Subtract this address from the address in the psw·to find the
address of the instruction following the instruction that failed.

For example, in this case:

address in PSW - beginning address offset (hex)

SD092 - 5D080 = 12

The failing instruction in ABENDXIT can be found at offset X'12' in
the program. (See part 2 of Figure APNDX- 6, number 3 .•)

4. The first save area in the save area trace table (system save area)
is chained to the following IMDPRDMP module save areas:

IMDPRCTL - IMDPRDMP control routine
IMDPRMSC - IMDPRDMP scan routine
IMDPRFRM - EDIT control routine
IMDPRFLT - EDIT trace record selection routine
IMDPREXT (or IMDPRAPP) - EDIT user program selection routine.

5. The user program's registers are stored in IMDPREXT's or IMDPRAPP's
save area. Add the contents of register 12 to X'6AC' to get the
address of a full word that points to an EDIT communication table .• At
offset X'lDO' into this table are the following:

A. The 8-byte EBCDIC name of the current user program (the failing
program) •

B. The entry point address of the current user program (the
failing program).

Appendix - Writing EDIT User Programs 329 •

rhese fields are shown in part 3 of Figure APNDX-6.

6. Register 1 in IMDPREXT's or IMDPRAPP's save area points to the
~arameter list that EDIT passes to the user program. (See Figure
APNDX-l.)

330 Service Aids (Release 21)

JCL and Control Statement Examples

The following examples show how to test a user program.

Example 1: Link Editing a User Exit Routine into a Library

This example shows how to make a user exit routine available to IMDPRDMP
by link-editing it into a system library.

//LKUSRPGM JOB MSGLEVEL= (1, 1)
PGM=IEWL,PARM='XREF,LET,LIST,NCAL', // EXEC

// REGION=96K
//SYSPRINT DD SYSOUT=A

DSNAME=SYS1.LINKLIB,DISP=OLD //SYSLMOD DD
//SYSLIN DD *

/*

object deck
NAME EXITNAME

In this example:

EXEC Statement

invokes the linkage editor and requests maximum diagnostic listings.

SYSPRINT DD statement

defines the message data set.

SYSLMOD DD statement

defines the output data set, in this case the linkage library,
SYS1.LINKLIB. The output data set can also be a permanent library to
be invoked later by a JOBLIB or STEPLIB DD statement; in that case
the SYSLMOD DD statement should be coded as follows:

//SYSLMOD DD
//

SYSLIN DD statement

DSNAME=MYLIB,UNIT=2314,VOL=SER=231400,
DISP=(NEW,KEEP),SPACE=(1024, (20,2,1»

defines the input data set, in this case, the object deck for the
user program.

NAME Control statement

specifies the member name, and thus the program name, to be assigned
to the user program. In this case, the member name is EXITNAMEi to
invoke this program in a later execution of IMDPRDMP, you would have
to speciy EXIT=EXITNAME on the EDIT control statement.

Appendix - Writing EDIT User Programs 331 •

Example 2: Testing a User Exit Routine

This example shows how to link edit a user exit routine into a library
for testing.

//TSEXTRTN
//STEPl

JOB
EXEC

MSGLEVEL= (1, 1)
PGM=IEWL,PARM='XREF,LET,LIST,NCAL',

// REGION=96K
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=MYLIB,UNIT=2314,VOL=SER=231400,
// DISP=(NEW,KEEP),SPACE=(1024,(20,2,1»
//SYSLIB DD *

/*

object deck
NAME MY EX IT

//STEP2 EXEC PGM=IMDPRDMP,PARM='ER=l'
DSNAME=MYLIB,UNIT=2314,VOL=SER=231400, //STEPLIB DD

// DISP=OLD
//SYSPRINT DD SYSOUT=A
/ /PRINTER DD SYSOUT=A ,
//TRACEDD DD DSNAME=TRACE2,UNIT=2400,VOL=SER=TRC2TP,
// LABEL=(,NL),DISP=OLD
//SYSIN DD *

EDIT DDNAME=TRACEDD,SYS,EXIT=MYEXIT
/*

This example consists of two steps. In the first step:

EXEC Statement

invokes the linkage editor and requests diagnostic information.

SYSPRINT DD Statement

defines the message data set.

SYSLMOD DD statement

defines the output data set" in this case a permanent job or step
library named MYLIB.

SYSLIN DD Statement

defines the input data set, in this case an object deck containing
the user program.

NAME Control Statement

specifies a member name (program name) to be assigned to the user
program. Specify this program name on the EDIT control statement
(EXIT=MYEXIT) when you need the exit routine for a particular
IMDPRDMP execution.

In the second step:

EXEC Statement

invokes IMDPRDMP and specifies that, if an error occurs in the exit
routine, EDIT should print the record associated with the error and
delete the exit routine". (see the discussion of the EXEC statement
in the section "Job Control Language Statements" earlier in this
chapter.)

332 Service Aids (Release 21)

STEPLIB DD Statement

defines the data set that contains the exit routine, which, in this
case, is MYLIB, a data set defined in STEPl by the SYSLMOD DD
statement.

SYSPRINT DD Statement

defines the message data set.

PRINTER DD Statement

defines the data set to which IMDPRDMP output will be directed.

TRACEDD DD Statement

defines the data set containing trace records to be processed by the
exit routine.

SYSIN DD Statement

defines the data set that contains the IMDPRDMP control statement.
The data set follows immediately.

EDIT Control Statement

invokes the EDIT function of IMDPRDMP, specifies that the trace data
exists as an external trace data set, and supplies the name of the
exit routine. Note that this name is the same as the membername
specified in the NAME control statement in STEP1.

Example 3: Testing a User Format Appendage

This example shows how to add a user format appendage to a temporary
data set for testing.

//TSTFMT JOB MSGLEVEL= (1,1)
//STEPl EXEC PGM= IEWL., PARM= , XREF, LET, LIST, NCAL' ,
// REGION=96K
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=&TEMPLIB,UNIT=SSYSDA,
/ / SPACE= (1024, (20,2,1)) , DISP= (NEW., PASS)
//SYSLIN DD *

/*

object deck
NAME IMDUSROl

//STEP2 EXEC PGM=IMDPRDMP,PARM='ER=3'
//STEPLIB DD DSNAME=&TEMPLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//PRINTER DD SYSOUT=A
//TRACEDD DD DSNAME=TRACE,UNIT=2400,VOL=SER=TRCTPE,
// LABEL=(,NL),DISP=OLD
//SYSIN DD *

EDIT DDNAME=TRACEDD,USR=ALL
/*

This example consists of two steps. In the first step:

EXEC Statement

invokes the linkage editor.

Appendix - Writing EDIT User Programs 333 •

SYSPRINT DD statement

defines the message data set.

SYSLMOD DD Statement

defines a temporary data set that contains the format appendage.

SYSLIN DD Statement

defines the input data set, in this case the object deck containing
the format appendage.

NAME Control statement

specifies a member name (program name) for the format appendage.
Note that the name shown in this example conforms to the convention
for naming format appendages; that is, it is formed from the prefix
IMDUSR concatenated with the format identifier (FID) to be
specified in the GTRACE macro when user records are created.

In the second step:

EXEC Statement

inVOkes IMDPRDMP and specifies that ABEND processing should not be
suppressed if a program check occurs in the format appendage. (See
the discussion of the EXEC statement in the section "Job Control
Language Statements" earlier in this chapter.)

STEPLIB DD Statement

defines the data set where the format appendage resides.

SYSPRINT DD statement

defines the message data set.

PRINTER DD Statement

defines the data set to which the format appendage will direct its
output.

TRACEDD DD statement

defines the trace data set containing the records that the format
appendage will process. In this case, the trace data set is on tape.

SYSIN DD Statement

defines the data set containing IMDPRDMP control statements. The
data set follows immediately.

EDIT Control Statement

invokes the EDIT function of IMDPRDMP, specifies that the trace data
exists as an external trace data set,' and specifies that EDIT is to
process all user-created records .•

334 Service Aids (Release 21)

Indexes to systems reference library
manuals are consolidated in the publication
IBM Systern/360 Operating system: Systems
Reference Library Master Index, Order No.
C28-6644. For additional information about
any subject listed below, refer to other
publications listed for the same subject in
the Master Index.

@USE parameter
of PTFLE EXEC statement 227,228

* control statement 295
used in SPZAP

function 295
parameter 295

abbreviations for PRDMP control
statements 183

ABSDUMP control statement 293-294
used in SPZAP

format 293
function 293
parameters 293-294

ABSDUMPT control statement 293-294
used in SPZAP

example 305
format 293
funct ion 293
parameters 293-294

AID (application identifier)
in GTF output record 70,76,77

ALL parameter
(see PRINT control statement)

allocated main storage
(see PRINT control statement)

application identifier
(see AID)

BASE control statement 294
used in SPZAP

example 307
format 294
function 294
parameters 294

CCHHR control statement 289-290
used in SPZAP

example 305
format 289
function 289
parameters 290

changing space allocation for
SYS1.LOGREC 23

choosing a service aid 13-14
combining PRDMP control statements 192
comment control statement

(see * control statement)
communications vector table

address of, how to specify 184
(see also CVT control statement)

comprehensive trace
how to request 60

CONSOLE= parameter
(see IMDSADMP macro instruction)

console communications
in GTF 63
in JQDMP 91-93
in OSJQD 161
in PRDMP 183
in SADMP 265-266

CONSOLE control statement 295
used in SPZAP

examples 306
format 295
function 295
parameters 295

Index

consoles supported by SADMP 257-258,268
control block formatting by PRDMP 177,186

(see also FORMAT control statement)
control section, description of 131

(see also CSECT Identification Record)
control statements

for DIPOO 23
for EREPO 32
for LIST 109~111

for OSJQD 162
for PRDMP 183-192
for PTFLE 230-232
for SPZAP 289-295

CPU= parameter
(see IMDSADMP macro instruction)

cross-reference listing
output of LIST

contents of 115-116
how to obtain 109

CSECT identification record
how to create (PTFLE) 231
how to print (LIST) 111
how to update (SPZAP) 292

CURRENT parameter
(see PRINT control statement)

current task's main storage, printing of
(see PRINT control statement)

CVT address, how to specify 184
CVT (communications vector table)

(see CVT= control statement)
CVT control statement 184

used in PRDMP
function 184
format 184

damage assessment routine
(see F03)

DAR (damage assessment routine)
(see F03)

Index 335

DATA= parameter
(see GTRACE macro instruction)

data management records, printing of 188
DD statements

in DIPOO 23
SERERDS 23

in EREPO 32
ACCIN 32
ACCDEV 32
EREPT 32
JOBLIB 32
SERLOG 32

in LIST 119-124
input 119-124
output 119-124
SYSPRINT 119-124

in MDMAP 140
input 140
SNAPDUMP 140
SYSABEND 140
SYSPRINT 140
SYSUDUMP 140

in OSJQD 159
OSJQDIN 159
OSJQDOUT 159
SYSIN 159
SYSPRINT 159

in PRDMP 180-182
anyname 180
PRINrER 181
SYSIN 181
SYSPRINT 181
SYSUTl 182
SYSUT2 182
SYSWAPmn 181
TAPE 180

in PTFLE 228,229
OUTF 228,229
PCHF 228,229
PRINT 228,229
PTF.MODF 237
SYSLMOD 228
SYSPRINT 228
SYSUTl 228
SYSUT2 228

in SPZAP 288
SYSABEND 288
SYSIN 288
SYSLIB 288
SYSPRINT 288

DDN= paramete~
(see LISTIDR control statement;
LISTLOAD control statement;
LISTOBJ control statement)

DDNAME= Parameter
(see NEWDUMP control statement;
EDIT control statement)

DEBUG= parameter
(see GTF START command parameters)

device identification command (JQDMP) 91
differences between JQDMP and OSJQD 157
DIPOO service aid 17

control statements 22
JCL statements 22-24
how to run 23-24
input 22

DMA1 190

336 Service Aids (Release 21)

DSP trace option in GTF 62
DSP parameter

(see EDIT control statement)
DUMP control statement 293

used in SPZAP
example 300
format 293
function 293
parameters 293

dump title, how to specify
in LIST

in LISTIDR control statement 111
in LIST LOAD control statement 109
in LISTOBJ control statement 110

in PRDMP
in TITLE control statement 185

dumping main storage 245
dumping SYS1.LOGREC 29
DUMPT control statement 293

used in SPZAP
example 301
format 293
function 293
parameters 293

EDIT control statement 187-191
used in PRDMP
format 188
function 187
parameters 188-190

DSP 190
EXIT= 188
EXT 190
DDNAME= 188
10 189
10= 189
IO=SIO 189
IO=SIO= 189-
JOBNAME= 189
PI 190
PI= 190
SIO 189
SIO= 189
SIO=IO 189
SIO=IO= 189
START= 188
STOP= 188
SVC 189
SVC= 189
SYS 189
TCB= 189
USR= 190

EDIT function
control statement format 188
defaults 191-192
error recovery 180
examples 215-217
JCL 179-182
output 207
output space requirements 194-195
parameters 188-190
storage requirements 179

EDIT parameter defaults 191

EDIT parameter priorities 191
editing GTF trace data 187-191

from buffers in a dump 215
from external trace data set 216

EID
as field in GTF output 70-71
extracted by IMDMEDIT macro 322,323

END control statement
used in PRDMP 185

environment records
as input to EREPO 31

ER= parameter
of PRDMP EXEC statement 180

EREPO service aid 25
capabilities 29,30
control statements 32-35
examples 36-40
how to execute 32,36-40
input 31
JCL 32
output 41-49

ESD definition 132
event identifier

(see EID)
examples

DIPOO 23,24
EREPO 36-40
GTF 68
LIST 119-123
MDMAP 146-151
OSJQD 169
PRDMP 208-216
PTFLE 236-237
SADMP 260,261,263
SPZAP 300-308

EXEC statement parameters
used in GTF cataloged procedure 59
used in MDMAP 140-142
used in PRDMP 179-180
used in PTFLE 238

EXIT= parameter
(see EDIT control statement)

exit routines
function 313
sample exit routine 321-323

EXT parameter
(see EDIT control statement)

EXT trace option in GTF 61

FID
as field in GTF output 70,77,78
as parameter in GTRACE macro 67,68
used in naming format appendage 67

FID= parameter
(see GTRACE macro 'instruction)

format appendages
function 313
sample format appendage 324

FORMAT control statement 186
used in PRDMP

example 212
format 186
function 186

format control statements in
PRDMP 185-190

EDIT 187-190
FORMAT 186
LPAMAP 185
PRINT 186
QCBTRACE 185
TSO 187

format identifier
(see FID)

FREEnnn parameter
of PRDMP EXEC statement 179

function control statements
in PRDMP 183-185

CVT= 184
END 185
GO 185
NEWDUMP 184
NEWTAPE 184
ONGO 185
TITLE 185

functions of service aids, summary of 13
F03 parameter

(see PRINT control statement)

GO control statement 185
used in PRDMP

format 185
function 185
use with ONGO control statement 185

GO option
(see GO control statement)

GTF service aid 51
calculating storage requirements 65
error recovery handling 69
output 70-77

control record format 76-77
trace record format 70

recording user data 67-68
coding the GTRACE macro 67
printing user data 67

starting GTF 57-64
cataloged procedure 59
prompting 62
specifying trace options 60-61
START command 57-58
storing trace options in SYS1.PARMLIB

63-64
GTF START command parameters 57

devaddr 57
keyword=option 59
parmvalue 57-58

MODE= 57
TIME= 58
DEBUG= 58

procname.identifier 57
REG= 59
volser 57

GTF trace options 60-62
DSP 62
EXT 61
IO,IOP 61
PI, PIP 61
PCI 62
SIO,SIOP 61
SSM 62
SVC,SVCP 61

Index 337

SYS,SYSM,SYSP 60
TRC 62
USR 62

GTRACE macro instruction in GTF 67
effect on EDIT user programs 67
function 67
how to code 67
parameters 67-68

DATA= 67
LNG= 67
ID= 68
FIO= 68

high-speed dump
as output of SADMP

how to print 245
how to specify 248,249,258-265

ID= parameter
(see GTRACE macro instruction)

IDR
(see CSECT identification record)

IOROATA control statement
used in SPZAP 292

IFCDIPOO
(see DIPOO service aid)

IFCEREPO
(see EREPO service aid)

IHLGTF
(see GTF)

I MaPTFLE
(see PTFLE service aid)

IMASPZAP
(see SPZAP service aid)

IMBLIST
(see LIST service aid)

IMBMDMAP
(see MDMAP service aid)

I MCJQDMP
(see JQDMP service aid)

I MCOSJQD
(see OSJQD service aid)

IMDPRDMP
(see PRDMP service aid)

IMDSADMP
(see SADMP service aid)

IMDSADMP macro instruction
format 254
function 253
parameters 254-258

CONSOLE= 257-258
CPU= 257
IPL= 254
OUTPUT= 255
PROTECT= 256
START= 256
TYPE= 255

input address parameter in JQDMP 92
10 parameter (PRDMP)

(see EDIT control statement)
10 trace option in GTF 61
lOP trace option in GTF 61

(see also prompting, how to request)
IPL= parameter

(see IMDSADMP macro instruction)

338 Service Aids (Release 21)

JCL
(see job control language statements)

job control language statements
DIPOO 22-24
EREPO 32
LIST 119-123
MDMAP 140
OSJQD 159
PRDMP 179-182
PTFLE 238,239
SADMP

for initializing dump program 261
for retrieving macro instruction 260

SPZAP 288
job queue data set

JQDMP 88-90
OSJQD 162

JOBNAME= parameter
in JQDMP 93
in OSJQD 163
in PRDMP

in PRINT control statement 186
in EDIT control statement 189

JQDMP service aid 79
device identification command 91-93
error handling 95
job queue format 88
operational considerations 102
output 97-101
retrieval 15

LINECNT= parameter
of PRDMP EXEC statement 179

link pack area formatting
(see LPAMAP control statement)

link pack area maps
MDMAP 137.146
PRDMP 185

LINKPACK parameter
of MOMAP EXEC statement 141

LIST service aid 103
control statements 109-111

LISTIDR 111
LISTLOAD 109
LISTOBJ 110

examples 119-123
executing LIST 109-111

listing a load module 109-110
listing an object module 110
listing CSECT identification
records 111

features 108
JCL 119-123
output 112-118

LISTIDR control statement 111
used in LIST

example 121
format 111
function 111
parameters 111

listing local fixes 111
listing PTFs 111

LISTLOAD control statement 109
used in LIST

example 119
format 109
function 109
parameters 109

LISTOBJ control statement 110
used in LIST

example 120
format 110
function 110
parameters 110

LNG= parameter
(see GTRACE macro instruction)

load module attribute definitions 135-136
linkage-editor assigned 136
programmer assigned 135

load module, definition of 131
load module listing

output of LIST
contents of 115-116
how to obtain 109

load module map
output of MDMAP

contents of 143-145
how to obtain 140

low speed dumps
output of SADMP

printing 250
specifying 255

LPAMAP control statement
used in PRDMP 185

LPA maps
(see link pack area maps)

macro expansion messages (SADMP) 272-273
main storage, printing of by PRDMP

allocated storage 186
current task 186
specific addressses 186
jobnarnes, by 186
DAR terminated task 186
F03 186

main storage requirements
EDIT user programs 313
GTF 59
OSJQD 160
PRDMP 179
PTFLE 227

major control blocks, formatting of
by PRDMP 186

maps
link pack area 137,185
load modules 131
main storage

MVT 186
TSO UMSM 187

nucleus 138

MDMAP service aid 125
definitions

of input 131-138
of output 143-145

examples 146-151
EXEC statement parameters 140

BASIC 141
DEBUG 141
hhhhhh 141
LINKPACK 141

input types
load modules 131
MFT resident reenter able load module
area 137

MVT link pack area 137
nucleus 138

JCL 140
operational considerations 152
output 143-145

messages
(see output comments; output

error indicators)
minimal trace

how to request 61
MODE= parameter

(see GTF START command parameters)
MODF DD statement

used in PTFLE 229
modifying data (SPZAP) 283
module definition

(see load module definition,
object module definition)

multiple dump processing (PRDMP) 210

N parameter
of PRDMP EXEC statement 179

NAME control statement 289
used in SPZAP

example 300
format 289
function 289
parameters 289

NEWDUMP control statement 184
used in PRDMP

example 210
format 184
funct ion 184
parameters

DDNAME= 184
FILESEQ= 184
DUMPSEQ= 184

NEWTAPE control statement 184
used in PRDMP

format 184
function 184

NUCLEUS parameter
(see PRINT control statement)

nucleus maps 146
output of MDIVlAP

contents of 146
how to obtain 146

Index 339

object module, definition of (MDMAP) 131
ONGO control statement 185

used in PRDMP
example 210
format 185
function 185
parameters 185

CVT= 185
EDIT 185
FORMAT 185
LPAMAP 185
PRINT 185
QCBTRACE 185
TSO 185

relationship to GO control
statement 185

OSJQD service aid 153
control statements 161,162-163

ALL 163
END 161
JOBNAME= 163
QCR= 162

JCL 159
output 164,168

OUTF DD statement
used in PTFLE 228,229

output address parameter in JQDMP 91
OUTPUT= parameter

(see IMDSADMP macro instruction>
output comments

OSJQD 167
object module listing

output of LIST
contents of 117
how to obtain 110

output
of DIPOO 23,24
of EREPO 41-49
of GTF 70-78
of JQDMP 97-101
of LIST 112-118
of MDMAP 143-145,147,149,151
of OSJQD 164-168
of PRD~~ 197-207
of PTFLE 233-235
of SADMP 248-252
of SPZAP 296-299

output space requirements (PRDMP) 193-19

P control statement
(see PRINT eontrol statement (PRDMP»

parameters
of control statements

(see DIPOO service aid;
EREPO service aid; LIST
service aid; OSJQD service
aid; PRDMP service aid;
PTFLE service aid; and
SPZAP service aid)

of EXEC statement
in GTF cataloged procedure 59
in MDMAP 140-142
in PRDMP 179-180
in PTFLE 227

in GTF START command 57-59
in IMDSADMP macro instruction 254-258

340 Service Aids (Release 21)

PARM= parameter in EXEC statement
in EREPO 33-35

ACC= 35
CUA= 34
DATE= 34
DEV= 34
HIST= 35
MES= 34
MOD= 34
M67= 35
PRINI'= 35
RDESUM= 35
TERMIN= 35
TYPE= 33
VOLID= 34
ZERO= 34

in GTF cataloged procedure 57-58
DEBUG= 57
MODE= 58
TIME= 58

in MDMAP 140-142
base address 141
BASIC 141
DEBUG 141-142
LINKPACK 141

in PRDMP 179-180
ER=x 180
FREEnnn 179
LINECNT 179
n 179
S 179
T 179

in PTFLE 228
&USE 228

PCHF DD statement
used in PTFLE 228,229

PCI trace option in GTF 62
PI parameter

(see EDIT control statement)
PI trace option in GTF 61
PIP trace option in GTF 61

(see also prompting, how to request)
PRDMP cataloged procedure 196
PRDMP service aid 171

cataloged procedure 196
control statements 183

CVT= 184
END 185
FORl-'lAT 186
GO 185
LPAMAP 185
NEWOOMP 184
NEWT APE 184
ONGO 185
PRINI' 186
QCBTRACE 185
TITLE 185
TSO 187

EDIT function 187-191
control statement 187-191
defaults 191
error recovery 180
examples 215-216
JCL 179-182
output 207
storage requirements 179

examples 208-216
functional summary
JCL 179-182
output 197-207
storage requirements

PRINT control statement
used in PRDMP

format 186
function 186
parameters 186

ALL 186
CURRENT 186
F03 186
JOBNAME= 186
NUCLEUS 186
STORAGE= 186

PRINT DD statement

175

179
186

used in PTFLE 228~229
printing and accumulating records

(EREPO) 38,39
printing machine check records (EREPO)

36-37
prompting, how to request (GTF) 62
PROTECT= parameter

(see IMDSADMP macro instruction)
PTF 223
PTF.MOD DD statement

used in PTFLE 237
PTFLE control statement 230

example 236,237
format 230
function 230

PTFLE service aid 219
application function

control statements 230-232
examples 237
execution 227-229
introduction 225
JCL 228
operational considerations 239
output 233

generate function
control statements 230-232
examples 236
execution 228
introduction 223-224
JCL 228-229
operational considerations 239
output 233

QCB formatting
(see QCBTRACE control statement)

QCBTRACE control statement
used in PRDMP 185

QCR= parameter
in JQDMP 92
in OSJQD 162

queue control block formatting
(see QCBTRACE control statement)

RDE records (EREPO) 35
RDESUM parameter (EREPO) 35
reinitializing SYS1.LOGREC data set

(see DIPOO service aid)

REP control statement 291
used in SPZAP

example 300
format 291
function 291
parameters 291

retrieving stand-alone service aids
JQDMP 15
SADMP 15

S parameter
of PRDMP EXEC statement 179

SADMP macro instruction
(see IMDSADMP macro instruction)

SADMP output, printing of
low-speed

by IEBGENER 263
by PRDMP 177

high-speed
by PRDMP 175

SADMP service aid
assembling the macro instruction 258-259
coding the macro instruction 254-258
error conditions 270-272
executing the dump program 265-266
IMDSADMP macro instruction 254
initializing the residence volume 262-263
operational considerations 267-269
output 248-252

select options
(see select parameters)

select parameters
in JQDMP 92-93
in OSJQD 162-163

SERERDS DD statement
used in DIPOO 123

(see also OSJQD control statements)
SETSSI control statement 292

used in SPZAP
example 300
format 292
function 292
parameters 292

service aids 13
SIO parameter

(see EDIT control statement)
SIO trace option in GTF 61
SlOP trace options in GTF 61

(see also prompting, how to request)
SNAPDUMP DD statement

used by GTF 60
used by MDMAP 140,142,150

specialized tracing action 56
specifying the GO option

(see GO control statement)
SPZAP service aid 275

control statements 289-295
data modification and
inspection 218-283

dumping data 284
examples 300-308
executing SPZAP 288
JCL 288
operational considerations 287
output 296-299
updating system status

information 285-286

Index 341

SSM trace option in GTF 62
START= parameter

in PRDMP
(see EDIT control statement)

in SADMP 256
STOP= parameter

(see EDIT control statement)
storage requirements

(see main storage requirements)
STORAGE= parameter

(see PRINT control statement)
SVC parameter

(see EDIT control statement)
SVC trace option in GTF 61
SVCP trace option in GTF 61

(see also prompting, how to request)
SWAP data sets, how to print 213
SYS parameter

(see EDIT control statement)
SYS trace option in GTF 60
SYSABEND DD statement

used in MDMAP 140,142
used in SPZAP 288

SYSIN DD statement
used in PRDMP 181
used in SPZAP 288

SYSLIB DD statement
used in SPZAP 288

SYSM trace option in GTF
function 61
How to request 60

SYSOUT space, allocation of by
PRDMP 193-195

SYSP trace option in GTF 61
(see also prompting, how to request)

SYSPRINT DD statement
used in PRDMP 181
in SPZAP 288

system events (GTF) 56
SYSTEM= parameter

(see TSO control statement)
SYSUDUMP DD statement

used by MDMAP 140,142
SYSUTl DD statement

used in PRDMP 182
used in PTFLE 228

SYSUT2 DD statement
used in PRDMP 182
used in PTFLE 228

SYSWAPmn DD statement
used in PRDMP 181

SYS1.DUMP data set
as input to PRDMP

printing the dump data set 175
clearing the dump data set 209

SYS1.LOGREC data set
changing space allocation 23
dumping 29
initializing 23
processing selected records 29

accumulating 29,38-40
editing and writing 29,36-37
summarizing 30

342 Service Aids (Release 21)

T parameter
of PRDMP EXEC statement 179

TAPE DD statement
used in PRDMP 180

TIME= parameter
(see GTF START command parameters)

timestamp
how to request 58
field in GTF output 70,77,78

TITLE control statement 185
used in PRDMP

format 185
function 185

title, how to specify
(see dump title, how to specify)

trace options
(see GTF trace options)

tracing with prompting 62
tracing without prompting 60-62
TRC trace option in GTF 62
TSO control statement 187

used in PRDMP
format 187
function 187
parameters

SYSTEM= 187
USER= 187

TSO dumps, how to print 187
TYPE= parameter

(see IMDSADMP macro instruction)
TYPE=HI option 255
TYPE=LO option 255

user programs 309
error handling 317-318
exit routines 313,321-323
format appendages 313,324-325
interfaces with EDIT 314-318
parameter list 314
return codes 317

USER= parameter
(see TSO control statement)

USR= parameter
(see EDIT control statement)

USR trace option in GTF 62
(see also GTRACE macro)

VER control statement
(see VERIFY control statement)

VERIFY control statement 290-291
used in SPZAP

example 303
format 290
function 290
parameters 290-291

work data set, use of in PRDMP 182

GC28-6719-2

International Business Machines Corporation
nata Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

»

READER'S COMMENT FORM

IBM System/360 Operating System:
Service Aids Order No. GC28-6719-2

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

o Frequently for reference in my work.

o As an introduction to the subject.

o As a textbook in a course.

o For specific information on one or two subjects.

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage necessary if mai led in the U. S.A.

GC28-6719-2

YOUR COMMENTS, PLEASE ••.

This manual is part of a library that serves as a reference source for systems analysts,
programmers and, operators of ffiM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of ffiM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Pu/)Jications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
{U.S.A. only]

I BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

Fold

()

So
>
0'
:::J
co
C
:::J

VI

~
it
~
W
0-
o
VI
I'D

< o·
I'D

>
~
VI
W
0-
o
I

W

(;)
()
N
0:>
I

0-
'-J

-0
I

N

READER'S COMMENT FORM

IBM System/360 Operating System:
Service Aids Order No. GC28-6719-2

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of 18M.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

D Frequently for reference in my work.

D As an i ntro~ucti on to the sub ject •

D As a textbook in a course.

D For specific information on one or two subjects.

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6719-2

YOUR COMMENTS, PLEASE ...

This manual is part of a Jibrary that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Pul5lications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

Fold

»

