Systems Reference Library

IBM System/360 Operating System:
Job Control Language Reference

0S Release 21

The job control language is used with all
System/360 Operating System control programs.
Every job submitted for execution by the
operating system must include job control
language statements. These statements contain
information required by the operating system to
initiate and control the processing of jobs.

This publication describes the facilities
provided with the job control language and
contains the information necessary to code job
control language statements.

File No.
Order No.

S360-36
GC28-6704=-2

Third Edition (March, 1972)

This is a major revision of, and obsoletes, GC28-6704~1.
Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

This edition applies to release 21, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM Systems, consult the latest IBM System/360
and System/370 SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

This publication contains all of the information necessary
to code job control language statements. It is the result
of combining two earlier JCL volumes, the IBM System/360
Operating System: Job Control Language User's Guide,
GC28-6703, and the IBM System/360 Operating System: Job
Control Language Reference, GC28-6704.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica=-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1970,1971,1972

Preface

This publication describes the facilities provided with the job control
language and contains the information necessary to code job control
language statements. It is intended for use by both the experienced and
inexperienced JCL user.

This publication is the result of merging the Job Control Lanquage
User's Guide, GC28-6703, into the Job Control lLanguage Reference,
GC28-6704. It is a reference book with some introductory material for
programmers inexperienced with JCL. All information in this book
applies to MFT and MVT configurations of the control program, unless
otherwise noted.

This publication consists of five parts preceded by a general
introduction:

1. Programming notes, which contain coding conventions used in coding
job control language statements.

2. Job control language statements, which describe the format of each
statement and the format of the parameters associated with the
statement. There is a separate section for each statement.

3. Appendixes, which include additional information on the job control
language facilities, such as how to write and use cataloged
procedures, and what default values are provided when certain
parameters are not coded.

4. Glossary, which contains definitions of many of the terms used in
this publication.

5. Foldout charts, which show the format of JOB, EXEC, and DD statement
parameters. The foldout charts appear after the index.

Before you read this publication, you should understand the concepts
and terminology introduced in the prerequisite publication mentioned

below. In addition, the text refers you to other publications for
detailed discussions beyond the scope of this publication.

PREREQUISITE PUBLICATION

IBM System/360 Operating System: Introduction, GC28-6534

PUBLICATIONS TO WHICH THE TEXT REFERS
IBM Systemv/360 Operating System:

Data Management for System Programmers, GC28<6550
Utilities, GC28-6586

Operator's Reference, GC28-6691

Operator's Procedures, GC28-6692

Supervisor Services and Macro Instructions, GC28-66U46
Data Management Macro Instructions, GC26-3794

MVT Guide, GC28-6720

Storage Estimates, GC28-6551

Tape Labels, GC28-6680
Advanced Checkpoint/Restart, GC28-6708

4 JCL Reference (Release 21)

Programming Notes > Notes

JOB Statement >

EXEC Statement ' —>»>
DD Statement | > u
Command Statement >
Comment Statement >
Delimiter Statement >
Null Statement —
.PEND Statement ' o
PRQC Statement >
Appendixes —>
Glossary —>
- , >
Foldout Charts >

Contents Directory 5

6 JCL Reference {(Release 21)

SUMMARY OF AMENDMENTS. .
Release 21 . . « . « « « &
Release 20.1
Release 20 . . . + « «

« o o

o o o o
.

o o o o

THE FORMAT OF THIS PUBLICATION . .

INTRODUCTION TO THE JOB
CONTROL LANGUAGE e .
The IBM System/360 Operatlng System
Processing Programs and JCL. . .
The Control Program and JCL. . .
Control Program Configurations
Job Control Language Statements. .
Job Statement

EXEC Statement . . . « ¢« « « « .
DD Statement+ ¢ .+ o+ . .
Delimiter and Null Statements. .
PROC and PEND Statements
Comment Statement.
Command Statement.
Defining Your Job.
Cataloged and In-Stream Procedures
Processing Your Job.

Capabilities of the Job Control
Language « « « ¢ o« o ¢ ¢ o o o «

SECTION I: PROGRAMMING NOTES. . .
Fields in Control Statements . . .
Parameters in the Operand Field.
Continuing Control Statements. .
Backward Reference . . .
Concatenating Data Sets.
Character Sets
Using Special Characters
Coding Form.,

. e

-

« & & e
s e o o e

“ & o o

SECTION II: THE JOB STATEMENT .
Job Statement Format
Rules for Coding

Positional and Keyword Parameter
Sample JOB Statements.
Assigning a Jobname.
Examples of Valid Jobnames . . .
Accounting Information Parameter .
Rules for Coding . « . « « « « .« .
Supplying Information Parameters .

e o 5 & e o =

-

.

.

s s e & o o & s s

* s+ & e & e e & @

Examples of the Accounting Information

Parameter. . . « .« ¢« o + o ¢« o + .
Programmer's Name Parameter. . . .
Rules for Coding «
When to Code the Programmer's Name
Parameter. . .« « ¢« ¢ ¢ « ¢ o o o .
Examples of the Programmer's Name
Parameter. . . .« « & ¢ ¢ o o o « .
The CLASS Parameter.
Rules for Coding

Assigning a Job Class to Your Job
The CLASS Parameter and Time-Slici

Examples of the CLASS Parameter. .

The COND Parameter

in

.
.
-
.
.
.

e o+ o o

Contents

Rules for Coding. «. . .
Using the COND Parameter.
Examples of the COND Parameter. .
The MSGCLASS Parameter.
Rules for Coding.
Assigning an Output Class to System
MesSSagesS. « ¢ o « o o ¢ o o o o o
Examples of the Parameter
The MSGLEVEL Parameter. . .
Rules for Coding. . .
Requesting Output of Job Control
Statements and Certain Messages . .
Examples of the LEVEL Parameter . .

.
e o o o
.

" e e o o

o o o o

The NOTIFY Parameter (For MVT with TSO)

Rules for Coding. . . o e e e e
What the NOTIFY Parameter Does.
What .is Time Sharing. . .
Example of the NOTIFY Parameter
The PRTY Parameter.
Rules for Coding. « . .
What the PRTY Does.

e o-e o o
.

The PRTY Parameter and Tlme-Sllc1ng

Examples of the PRTY Parameter. . .
The RD Parameter. . . « +« « « o o
Rules for Coding.
Using the Restart Facilities. . .
Defining Restart.
Examples of the RD Parameter. . .
The REGION Parameter - Without Main
Storage Hierarchy Support (For MVT)
Rules for Coding. « .« . .
Requesting Main Storage
Acquiring Additional Main Storage
Examples of the REGION Parameter. .
The REGION Parameter - With Main
Storage Hierarchy Support (For MVT,
Excluding M65MP) . . « +« & « « o « &
Rules for Coding. . . « .+ « « « « .

e e e+ o .

Requesting Main Storage in One or Two

Hierarchies « . « « . .
Acquiring Additional Main Storag
Examples of the REGION Parameter.
The RESTART Parameter
Rules for Coding.
When to Code the RESTART Parameter.
Rules for Referencing Generation
Data Sets and Using Backward
References. . « +« « ¢« o« ¢« o & &
Examples of the RESTART Parameter
The ROLL Parameter (For MVT). .
Rules for Coding.
When to Code the ROLL Parameter
Examples of the ROLL Parameter.
The TIME Parameter. . . . « . .
Rules for Coding.
Specifying a Time Limit for the
Time Limit for Wait States. .
How to Eliminate Timing
Examples of the TIME Parameter.
The: TYPRUN Parameter (For MFT, MVT
Holdinga Job

e e e Do

e o Cqye o o o o o
[e)
¢ 04 o 2 T o o s o o o

Contents

© 2 e e & o o o & s s e o

e o o o o

e e s e o o

e 5 o o ® e e & o s e & s e

67
67

67
68
69

69
69

7

Example of the TYPRUN Parameter. . . .

SECTION III: THE EXEC STATEMENT .
EXEC Statement Format.
Rules for Coding . . « « « « « .
Positional and Keyword Parameter
Sample EXEC Statements
Assigning a Stepname
Examples of Valid Stepnames. .
The PGM Parameter.
Identifying the Program to be Execu

Temporary Library. .

.
* .
.

.

.
« e
e o
LY
.

. o .

System Library« .

s ﬂ- « e e e

Private Library.
The IEFBR14 Program.
Examples of the PGM Parameter. .
The PROC Parameter
Identifying the Cataloged or In-Str
Procedure to be Called
Examples of the PROC Parameter .
The ACCT Parameter « « « « o« = o
Rules forxr Coding e @ & e @& e° ® »
Providing Accounting Information
Job Step or Procedure Step . -
Examples of the ACCT Parameter
The COND Parameter « + « o «
Rules for Coding « « « o + «
Using the COND Parameter . .
Bypassing a Job Step < . -«
Executing a Job Step . . .
When You Call a Cataloged Procedure
Examples of the COND Parameter . . . -
The DPRTY Parameter (For MVT) . . o «
Rules for COAINg « o« « o o o o « o o @
Assigning a Dispatching Priority . . .
The DPRTY Parameter and Time-Slicing
When You Call a Cataloged Procedure
Examples of the DPRTY Parameter . . .
The PARM Parameter o« « o« o o o = « o =
Rules for Coding « « « « « o « = o « =«
Providing a Processing Program With
Information at Execution Time
When You Call a Cataloged or
In-Stream Procedure . . . »
Examples of the PARM Parameter -
The RD Parameter « o« « « o « o o

Hoe o o o oo g. “ e e e e

a.

s Do o oe

SN
[+VIN S T

-

fo

s s & 3 8 8
4 & & & 8 2

s o @ & s

-
-
-
.

Rules for Coding « « « w « <« «
Using the Restart Facilities .

Defining Restart«

When You Call a Cataloged Procedure
Examples of the RD Parameter
The REGION Parameter - Without Maln
Storage Hierarchy Support (For MVT) .
Rules for Coding « « o« « ¢ o o o« o o &
Requesting Main Storage « « « « « « =«

Acquiring Additional Main Storage .

When You Call a Cataloged Procedure
Examples of the REGION Parameter . . .
The REGION Parameter - With Main
Storage Hierarchy sSupport (For MVT,
Excluding M65MP) . w o o = o o o s o o
Rules for COAing « « o o o « o o « o @
Requesting Main Storage in One or Two
Hierarchies <« « « o w « 2 o o o o o =

Acquiring Additional Main Storage .

When You Call a Cataloged Procedure
Examples of the REGION Parameter . « .

s s 8 s 8
¢ & s 3 »

s & & & & &

8 JCL Reference (Release 21)

s & 8 5 8 8 & 8 G B 8 B 8 b s s B

s s & » s @

98
98

98
99
99
99

The ROLL Parameter (For MVT) . . . « .
Rules for Coding « « « w « o o « o = =
When to Code ROLL Parameter
When You Call a Cataloged Procedure
Examples of the ROLL Parameter
The TIME Parameter « « o« « o« = o = o « 2102
Rules for Coding « « « . e o o 4102
Specifying a Time Limit for a Job Step .102
Time Limit for Wait States . « . . . 102
How to Eliminate Timing « « « o o« « « 103
How the Job Time Limit Affects the
Step Time Limit« - o @
When You Call a Cataloged Procedure
Examples of the TIME Parameter

.100
100
.100
.100
.100

«103
»103
-103

SECTION IV: THE DD STATEMENT . . .
DD Statement Format . « « o o o = @
Rules for Coding . « « o« o = o o -
Positional and Keyword Parameterq - = =106
Sample DD Statements « « = « o « o « o«
Assigning a Ddname < « . o o w e
when Adding or Overrlding
Information in a Cataloged Procedure
SteP ¢« ¢ o o ¢ o o o & s o
Examples of Valid Ddnames .
Special DAnames <« « « o o =
JOBLI B - - - - - - - - - - - L
Rules for Coding the JOBLIB DD
Sta teme nt - - - - - - - - - L] - - -
The DISP PGarafi€ler o o o « o = o
When the Library Is Cataloged . .
When the Library Is Not Cataloged.
Concatenating Libraries . . . e
When the Job Includes a STEPLIB DD
Statement - . o - e
Examples of the JOBLIB DD Statement -
STEPLIB . . e o e . . . - e
Rules for Codlng the STEPLIB DD
Statement . . . - o .
When the Library Is Cataloged . o
When the L1brary Is Not Cataloged
or Passed . . . o e e o o @
When the lerary Is Passed By a
Previous Step .« « « « + « o o+ o+
Concatenating Libraries .
When the Job Includes a JOBLIB DD
S t atem alt - - - - - - - - - - - -
Examples of the STEPLIB DD Statement .
SYSABEND and SYSUDUMP . « . « s e @
ertlng the Dump to a Unit Record
D evl Ce - - - - - - - - - - - L] - -
Storing the Dump e ® o o e ° o @ e

Examples of the SYSABEND and S5YSUDUMP
DD Statements . . . ¢ < & 5 e = e w @
SYSCHK « = o« « e ® % 8 o o s ° a e
Rules for COdlng the SYSCHK DD
Statement . . . - o« o
When the Checkpoint Data Set Is
Cataloged e .« .
When the Checkp01nt Data Set Is
Not Cataloged . « o « « o « o
Examples of the SYSCHK DD statement
The *# Parameter « o « ¢ o« o o « o »
Rules for COAing « « « o « o o o «
Defining Data in the Input Stream .

108
« « «109
« « 2110
« » 2110

.« ® = = o
- ® =
.- e e
- -

<110
« 111
<111
«111
-112

<112
.112
.113

113
»114

<114

-114
«115

<115
«115
«116

<116
- 116

11
.J.J..7

«118
.118
.118

- 119
«119
.120
.120
120

The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS « =« =« = o« @
Examples of the * Parameter . . .
The DATA Parameter « « o « « o «
Rules for Coding . . -
Defining Data in the Input Stream
‘'The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS v w « « «
Examples of the DATA Parameter .
The DUMMY Parameter .+ . « o« o o
Rules for Coding « « 2 o o« =« = o
What the DUMMY Parameter Does .
Coding the DUMMY Parameter . . .
Examples of the DUMMY Parameter
The DYNAM Parameter.
Rules for Coding « « « « &
What the DYNAM Parameter Does
Coding the DYNAM Parameter . .
Example of the DYNAM Parameter
The AFF Parameter . o« « « « «
Rules for Coding « « « = & « =
Optimizing Channel Usage . .
Requesting Channel Separation
Example of the AFF Parameter .
The DCB Parameter .« « « « « «
Rules for Coding « w « o« « « o
Completing the Data Control Block
DCB Macro Instruction
DCB Parameter . « o« o o o« o «
Data Set Label . ¢ « « «
Specifying DCB Information on the DD
Statement <« « « o « < o & o W - .
Supplying DCB Keyword Subparameters
Copying DCB Information From a Data
Set Label . ¢ o « o 4 o « o o o s
Copying DCB Information From an
Earlier DD Statement « « « « o« o« o =«
Glossary of DCB Subparameters
Examples of the DCB Parameter
The DDNAME Parameter « « o « -
Rules for Coding « « « « « « o »
What the DDNAME Parameter Does .
When You Code the DDNAME Parameter
The DCB Subparameters BLKSIZE,
BUFNO, and DIAGNS & o « « .
Examples of the DDNAME Parameter
The DISP Parameter « « « « o« o« «
Rules for Coding . . o e e e
What the DISP Parameter Does .
Specifying the Data Set's Status
When you Specify NEW as the Data
Set's Status
When You Specify OLD as the Data
Set's Status . . . « e e m e e
When You. Specify SHR as the Data
Set's Status . . . « s @ o o
When You Specify MOD as the Data
Set's Status « « ¢ ¢ « ¢ o o o o e
Specifying a Disposition for the Data
SEL 4 4 ¢ ¢ e e 4 4 4 v e 4 e 8 e «
When You Specify DELETE as the
DispoSition . « « o « o o o o « «
When You Specify KEEP as the
Disposition . . . - . « v =
When You Specify PASS as the
DisposSition . o « o o « o o « o o

« ® e e e

s s s s
LR Y T R }

* & & 3 o & s =
* a2 ® & 8 s &

8 & o
8 & s & 4 a s & s 8 * 5 s a s s s @

® 4 & 8 & 5 8 ¢t s 3 a2 & s

o & 3 8 & 8 & s 3 s s 3 s s

s & 8

s & & & s &
s & s & &

s 8 @ & 8
8 & s 5 B
s 8 s & s s

.121
.121

.123

.123
«123

. 124
.124
<126
. 126
.126
. 126
. 127
.128
.128
.128

-~ 128

<128
- 129
- 129
<129
<129
- 130
- 131
«131
«131

-132

- 133
-133

«133
«133

.133
.134

. 165

. 166
. 167
. 169
. 170
. 170

170

. 171
.171
.171
. 172

173

«173
<174

.174

When You Specify CATLG as the
Disposition« .« o«
When You Specify UNCATLG as the
Disposition « « o o o ¢ o o o @« o
Specifying a Conditional Disposition
for the Data Set . . o s e
When You Specify DELETE as the

Conditional Disposition . « « « « 176
When You Specify KEEP as the
Cconditional Disposition . . <« o. « 176
When You Specify CATLG as the
conditional Disposition .« <« « « - <176
When You Specify UNCATLG as the
Conditional Disposition . . . « « 177
Examples of the DISP Parameter179
The DIM Parameter. « + . . .180
Rules for Coding180
What the DIM Parameter Does.180
Examples of the DLM Parameter.180
The DSNAME Parameter « « « « o« o « o « o182
Rules for Coding .. . e o = e w « 2182
Identifying the Data Set e w = = o « 183
Creating or Retrieving a Nontemporary
Dat@a St <« o o o © = o o o @ « o o« o« o 183
Nontemporary Data Set '« « « « « « .183
Members of a Partitioned Data Set . 184
Generations of a Generation Data
Set . .-184
Areas of an Indexed Sequentlal
Data Set w o o o « o = w « « « o « o184
Creating or Retrieving a Temporary
Data Set ¢ « o o o @ = « o w o = e+ 2 «185
Temporary Data SetS « « « « » » « «185
Members of a Temporary Partitioned
Data Set « o o « « e » o o o «186
Areas of a Temporary Indexed
Ssequential Data S€t « « o« « + « « o186
Using a Dedicated Data Set186
Copying the Data Set Name From an
Earlier DD Statement . . « « « « » « o« o187
Specifying the DSNAME Parameter in
Apostrophes . . . @ s« o » e e s o o« o187
Examples of the DSNAME Parameter 188
The FCB Paxamete€r . « « o « « o« « o « o189
Rules for Coding « « « « o« = « o« « « » o189
Image Identifier « « « « o o « « « « . . 189
Requesting Alignment of Forms 189
Requesting Operator Verification . . . 190
Examples of the FCB Parameter 190
The LABEL Parameter .« « o« « = « = o« « o191
Rules for CoAing o « « o « o o o « « « 192
Data Set Labels .« « o« o & « e o o o192
When to Code the LABEL Parameter e o o« +193
The Data Set Segquence Number
Subparameter « o o « o o o o o o o « «193
The Label Type Subparameter . . . « 193
The PASSWORD and NOPWREAD
SUbparameters .« « « « o « o @« o o o «195
The IN and OUT Subparameters 195
The RETPD and EXPDT Subparameters . . 196
Examples of the LABEL Parameter 196
The OUTLIM Parameter « « « o« ¢ « o o o .198
Rules for Coding « o o« o« « « w o « » « »198
What the OUTLIM Parameter Does o198
Determining the Output Limit « « « « . .198
Example of the OUTLIM Parameter198

Contents

175
175
175

9

The QNAME Parameter -- MFT and
with TCAM 4« o o o o o o 2 o = «
Rules for Coding « « o o o o « «
What the QNAME Parameter Does. .
Example of the QNAME Parameter .
The SEP Parameter.
Rules for Coding e .
Requesting Channel Separatlon- .
Example of the SEP Parameter . . .
The SPACE Parameter.
Rules for Coding & « o« .

Requesting Space for a Data Set.

Specifying the SPACE Parameter .
Letting the System Assign Specific
Tracks e .

Specifying the Unlt of Measurement

Specifying a Prlmary Quantity. . .

Secondary Quantity

« & ¢ o s B @

e e e 0

Requesting Space for a Dlrectory or

Index.« .

Releasing Unused Space -~ RLSE . .

Specifying the Format of Allocated
Space -- CONTIG, MXIG, or ALX. . .

« s e ¢ o * e s o 8 &

o o * o

Allocating Whole Cylinders -~ ROUND.

Assigning Specific Tracks.
Examples of the SPACE Parameter. .
The SPLIT Parameter + «
Rules for Coding
Requesting Space for a Data Set.
Specifying the SPLIT Parameter . .
Requesting Space in Units of
Cylinders. . o + o o o o o o o o &
Requesting Space in Units of
Blocks
Examples of the SPLIT Parameter
The SUBALLOC Parameter « . . « «
Rules for Coding « « « « « «
Requesting Space for a Data Set
Specifying the SUBALLOC Parameter
Specifying the Unit of Measurement
Specifying a Primary Quantity . .
Identifying the Original Data Set
Specifying a Secondary Quantity
Requesting Space for a Directory
Examples of the SUBALLOC Parameter
The SYSOUT Parameter . . « « « .« «
Rules for Coding . . . e
Advantages to Coding the
Parameter <« « « o « o o
The Classname . . « <
The Program Name . . .«
The Form Number . . .
Coding Other Parameters With
SYSOUT Parameter « « o o« « o
Job Separators .« « o .
Examples of the SYSOUT Paramet
The TERM Parameter -- MVT and T
Rules for Coding . .
What the TERM Parameter Does .
Example of the TERM Parameter.
The UCS Parameter « « o <« « »
Rules for Coding « « o« « « « &
Special Character Sets . . .
Identifying the Character set
Requesting Fold Mode
Requesting Operator Verlflcation
Examples of the UCS Parameter . .

« ® s .

e s o o o

s 8 &

¢ 2 » 0 8

. e

¢ s o o [N
. , 9
7]
(]
=

¢ & s &

® e e o =

s 6 0 3 & @

[

.-...-mgo.no.'.o

a8 & & 8 & 8 .

10 JCL Reference (Release 21)

«199
. 199
. 199
. 199
. 200
. 200
- 200
. 201
. 202
. 203
- 203
. 204

204
204

s 4 s e
N
o
(8]

205

206
207

. 207
208
208
208
210
210
211
211

. 211

212
212
214
214
215

- 216
« 216
- 216
« 216
-217

« 217

- 219
« 219

- 219

. 220

- 220
. 220

..220
. 221

.221
- 223
.223
. 223
. 223
.224

. 224
225
. 226
« 226
« 226

SECTION VII:

The UNIT Parameter . «
Rules for Coding . « « « &
Providing Unit Information
Identifying the Device
Unit Address . . .
Device Type . «
Group Name « . .+ .
Unit Count « « « .« .
Parallel Mounting .
Deferred Mounting .
Unit Separation . .
Unit Affinity . . .
Pa

s

We 8 o s 6 3 3 & 5 4 o o

e

1]

Examples of the UNIT
The VOLUME Parameter
Rules for Coding « « « « o « «
Providing Volume Information .
Specific Volume Request .
Nonspecific Volume Request
The PRIVATE Subparameter . .
When PRIVATE Is Not Coded
The RETAIN Subparameter . .
The Volume Sequence Number
Subparameter « « « « 4 ¢ ¢ ¢ ¢ W
The Volume Count Subparameter . .

o (Fe & 5 o ¥ s B 4 4 4 s ,

-
. -
. e
.
- @
- -
o e
- -
o =
axram
.

L]
3 5 & 8 & 2 & & & 8 4 s 8 8 B b s 3 3 @ @

‘lo-i..u..liaiooo.i.,
a 8 & & B s 3 a2 & e B & 0 s 8 b s 43 4 &

Supplying Volume Serial Numbers (SER)

Referring the System to an Earlier
Specific Volume Request (REF) .
Vo lume Affi nity - - - - - - - - -
Volume State€S o« o o o« o » 2 o o «
The Mount and Use Attributes . .
Nonsharable Attribute «

Satisfying Specific Volume Requests

Satisfying Nonspecific Volume
REJUESES 2 « o o o « o @ @ o s o
Examples of the VOLUME Parameter . .

SECTION V: THE COMMAND STATEMENT .
The Command Statement Format « « « «
Rules for Coding « « o « o o « «
Commands That Can Be Entered Through
the Input Stream « + « «
MPT o o @ o « @« o o o @« s o o o @
MVT - - - - - - . - - - - - - - -
Example of the Command Statement . .

SECTION VI: THE COMMENT STATEMENT .
The Comment Statement Format . . . «
Rules for COAing o« « o o « © @« o =« o

Output Listings .« « ¢ o« w « o o =«

Example of the Comment Statement . .

The Delimiter Statement Format . . .
Rules for COAINg « o o = o « o o o o
Example of the Delimiter Statement .
SECTION VIITI: THE NULL AT“MEn; .
The Null Statement Format e o o o @

Example of the Null Statement . . .

SECTION IX: THE PEND STATEMENT
The PEND Statement Format . .

Rules For Coding . « . . e e
Examples of the PEND Statement

LR I}
s b a &
s s 8.8

SECTION X: THE PROC STATEMENT .
The PROC Statement Format .+ « « « «

e & & o 5 8 8 & 2 s 2 s o B 8 3 s 4 3 8

THE DELIMITER STATEMENT

s & s s @

«227
227

.228

«229
. 229
229
232
233
233
233
234
234
235
236
237
237
237
238
238
238
239

e s &2 3 ®» s » 2 3

. 239
. 240
240

241
241
242
242
246
246

» 8. & & 3

. 246
247

3

265

.
N
=)}
w

« 265
266

267
268

269
269
269
269
269

271
271
271
271

~ -

VA
273
273

« 275

< 275
- 276

. 277
-277

Rules for Coding « « o« <« « « .
Assigning a Value on a PROC Statement
t0 a Symbolic Parameter . « « o« « o« .
Example of the PROC Statement « « « .

« 277

- 278
« 279
SECTION XI: APPENDIXES « o« « « = o« o o281
APPENDIX A: CATALOGED AND IN-STREAM

PRmEDURES - - - - - - - . L] - L] L] - - - 2 8 3

USING CATALOGED AND IN-STREAM

PROCEDURES - o e a - : 284
How To Call a Cataloged Procedure . . . 284
How to Call An In-stream Procedure . . . 284
Assigning Values to Symbolic Parameters 285

. @ @ @ ® @ e 5

Mullifying a Symbolic Parameter . . . 287
Example of Assigning Values to
Symbolic Parameters .« « o « = o o « « <287
overriding, Adding, and Nullifying
Parameters on an EXEC Statement289
Overriding EXEC STATEMENT Parameters . 289
Adding EXEC STATEMENT Parameter . . .291
Nullifying EXEC STATEMENT Parameters . 291
Examples of Overriding, Adding, and
Nullifying Parameters on an EXEC
Statement . . . - « o o o « o 292
Overriding, Adding, and Nulllfylng
Parameters on a DD Statement « . « « . .293
Overriding DD STATEMENT Parameters . . 293
Adding DD Statement Parameters 295
Nullifying DD STATEMENT Parameters . . 295

Examples of Overriding, Adding, and
Nullifying Parameters on a DD Statement 296
Overriding DD Statements That Define

Concatenated Data SEtS « « « « o « « « 298
Adding DD Statements to a Procedure . .298
Examples of Adding DD Statements to a
ProcedUre o« « « o« o o o o o o o o « o 299
WRITING PROCEDURES: CATALOGED AND
IN"STREAM « e e -« e @ 301 .
Why Catalog Job Control Statements « « 301
Why Use In-Stream Procedures . . « « « « 301
The Contents of Cataloged And
In-stream Procedures . « « = « « « « <301
Using Symbolic Parameters in a
ProcedUre .« « o« o o« = © o o e o 302
Adding and Modifying Cataloged
ProcedUres « « « « « « o a « o « o o« o304
APPENDIX B: USING THE RESTART
FACILITIES « « o « o o o « o o« o o o o «305
Restarts - . e ® & e o e e o e ® & e . - 305
Automatic Step Restart « « « « « « « <305
Automatic Checkpoint Restart - . « . .« 305
Deferred Step Restart « « « « o« « « o305
Deferred Checkpoint Restart 306
Examples of Using the Restart
FacilitieS o o « o« o o « o o o o « » « «308
APPENDIX C: CREATING AND RETRIEVING
INDEXED SEQUENTIAL DATA SETS « ¢ « o « 311

Creating an Indexed Sequential
The DSNAME Parameter . .
The UNIT Parameter .
The VOLUME Parameter
The LABEL Parameter
The DCB Parameter .
The DISP Parameter .
The SPACE Parameter .

Nonspecific Allocation Technlque
Absolute Track Technique . .
The SEP or AFF Parameter . « « o -

Area Arrangement of an Indexed

sequentlal Data Set .

Retrieving an Indexed Sequentxal

Set . . .
The
The
The

. @ e e ® o

RIS
LI S S I
s s o 4 o
e & 2 & @
s & s &
ioiaic
6 5 ¢ o 8 @

-« e

e« @ e o

13
»

[
[

. ® ®© @ @ @ e

DSNAME Parameter .
UNIT Parameter . .
VOLUME Parameter .
The DCB Parameter . .
The DISP Parameter . « «
Example of Creating and Retr1
Indexed Sequential Data Set

. =

o s @ &

s 8 & o @ @

-q,alao.iico
[
=}

lmbll.l
lp-luoc.i

.
[

APPENDIX D: CREATING AND RETRIEVING
GENERATION DATA SETS « « « o o o o = &«
Before You Define the First Generation
Data Set - - - - - - - -
Creating a Model Data Set Label o
Referring the System to a
Cataloged Data Set . «
Creating a Generation Data
The DSNAME Parameter . .
The DISP Parameter . «
The UNIT Parameter .
The VOLUME Parameter
The SPACE Parameter
The LABEL Parameter
The DCB Parameter .
Retrieving a Generation Data
The DSNAME Parameter . .
The DISP Parameter .
The UNIT Parameter .
The LABEL Parameter
The DCB Parameter . o o
Resubmitting a Job for Restart
Example of Creating and Retr1ev1ng
Generation Data Sets

e 6 » & & @&
e o 8 & 5 & s N
iciomuuocaoogl

& & & 0 @

-
.
-
-
-
.
-
-
-
et

.
- e
- e

-

8 a2 & o
s 8 8 8 & 5 & 8 8 P 8 & & o @ @

e 8 & 8 A a2 & 8 8 B s 0 s b & o
8 5 8 8 85 3 B & & & » & s » »

« @ ® © e e & o

APPENDIX E: DEFAULT PARAMETER VALUES
SUPPLIED IN THE INPUT READER PROCEDURE
How To Keep Track of the Default
Values and Restrictions . « « « « o« &«

APPENDIX F: A CﬁECKLIST
Examples « « o o«

SECTION XIT: GIOSSARY « = « o « o o «
INDEX o« o o « o o« © @« = @ s o 2 o o o

SECTION XIII: CONTROL STATEMENT
FOLDOUT CHARTS « o« « « o « o s o o o =

Data Set 311

«312
J312
.312
. 313
. 313
. 313
. 313
. 313
. 314

314

. 314

. 316
. 316
.316
. 316
. 316
- 317

- 317

« 319

« 319
. 319

. 320
« 320
« 320
. 320
« 321
« 321
- 321
- 321
« 321
- 322
. 322
« 322
« 322
« 322
. 322
<323

- 323

« 325
« 325

« 327
« 327

<333
«343

«355

Contents 11

12 JCL Reference (Release 21)

Figure 1. Processing Programs . . .
Figure 2, Job Management
Figure 3., Defining Job Boundaries .
Figure 4. Defining Job Step
Boundari€s . « o o« ¢ o o o o o ¢ o o
Figure 5, Your Jo e s e e s & e e
Figure 6. Control Statement Field
Figure 7. Character Sets
Figure 8, Coding Form for Coding
Control Statements o« o .

Figure 9. How the Data Control Bloc
is Filled ¢ v o « o « o o o o o o« s &
Figure 10. DCB Subparameters for Car
Punch o ¢ ¢ v ¢ v 4 v v e e e e e
Figure 11. DCB Subparameters for

Printer . ¢« v o o o o o o o o s o o =

Figure 12, DCB Subparameters for
Creating a Data Set on Magnetic Tape
Figure 13, DCB Subparameters for

Creating a Sequential Data Set on
Direct Access Devices « . .
Figure 14, DCB Subparameters for
Creating a Direct Data Set
Figure 15, DCB Subparameters for
Creating a Partitioned Data Set . . .

Figure 16. Parameters for Retrieving
aData Set . . . ¢ . . 4 e e e e e e
Figure 17. DCB Subparameters for

Card Reader . ¢« v v o« 4 o « o o o o o
Figure 18. DCB Subparameters for
Paper Tape Reader « ¢ « = o &
Figure 19. DCB Subparameters for
Retrieving a Data Set on Magnetic
TAPE ¢ ¢ o ¢ o o o o o o o o o o o o
Figure 20. DCB Subparameters for
Retrieving a Sequential Data Set on
Direct Access Device « « « &
Figure 21. DCB Subparameters for
Retrieving a Direct Data Set
Figure 22. DCB Subparameters for
Retrieving a Partitioned Data Set . .

Figure 23. Disposition Processing
Chart ¢« ¢ ¢ ¢ 4 ¢« o ¢ o o o o o o o =
Figure 24, Combinations of Mount and

Use Attributes . . « o ¢ ¢ o« o o » &

24
28

30
32
38
43
45
132
153
154

155

156
157
158
159
160
161

162

163
164
16l
178
245

Hlustrations

Figure 25. Parameters for Creating a
Data Set . ¢ ¢ ¢ o 4 ¢ e s e e o e s .
Figure 26. Creating a Data Set on a
Unit Record Device (Card Punch or
Printer . ¢ ¢ o ¢ ¢ o ¢ ¢ o o o o o o o
Figure 27. Creating a Data Set on a
System Output Device
Figure 28. Creating a Data Set on a
Magnetic Tape (Part 1 of 2)
Figure 29. Creating a Data Set on
Direct Access Devices (Part 1 of 3) . .
Figure 30, Retrieving a Existing

Data Set from a Unit Record Device
(Card Reader or Paper Tape Reader) . .
Figure 31. Retrieving a Data Set

from the Input Stream . . « « « o o « &
Figure 32, Retrieving a Passed Data
Set (Magnetic Tape or Direct Access) .
Figure 33. Retrieving a Cataloged
Data Set (Magnetic or Direct Access) .
Figure 34, Retrieving a Kept Data

Set {Magnetic Tape or Direct Access) .
Figure 35. Extending a Passed Data
Set (Magnetic Tape or Direct Access) .
Figure 36, Extending a Cataloged

Data Set (Magnetic Tape or Direct
ACCESS) v 4 o o o o o o o o o o s o o o
Figure 37. Extending a Kept Data Set
(Magnetic Tape or Direct Access
Figure 38. Postponing Definition of a
Data Set .+ o ¢ o ¢ o o o o o o o o o o
Figure 39. Area Arrangement of

Indexes Sequential Data Sets =
Figure #40: Default Values and
Restrictions Supplied in the Input
Reader . .
Figure 41.

e o o o .

A éhécklist (Part 1 of 3) .

Figure 42. Job Statement Chart
(FOLlAOUt) & o « o o o o o o o o« « o o @
Figure 43, Execute Statement Chart

(FOldout) « v o o « & ¢ o o o o o o s &
Figure 44, Data Definition Statement
Chart (Foldout) . « « o « ¢ o o o o o« o

Illustrations

249

251
251
252
254

257
257
258
259
260

261

262
263
263

315

326
327

357
359
361

13

14 JCL Reference (Release 21)

Summary of Amendments
for GC28-6704-2
OS Release 21

The Release 21 changes listed below are described in this manual. They
are indicated in the text by a vertical line to the left of the change.

DOS Emulator Scheduler Support

New Programming Feature: The DLM parameter is now available on the DD *
or DD DATA statement. If the DLM parameter is coded, the delimiter
terminating the group of data is the value assigned in the DLM
parameter.

DOS/0s Interchange Environment

New Programming Feature: The LTM subparameter of the IABEL parameter
allows use of Disc Operating System (DOS) unlabeled tapes with the
System/360 Operating System without modifying the tape.

Specification Change: The value "H" coded with the OPTCD parameter
under DOS requests the system to check for and bypass any DOS checkpoint
records on the tape.

OPEN/CLOSE/EOV Trace Feature

New Programming Feature: The DCB subparameter DIAGNS requests the
OPEN/CLOSE/EOV trace option. The trace option gives a module-by-module
trace of the OPEN/CLOSE/EOV routines' workarea and the user's DCB.

350573525 Card Reader/Punch

New Programming Feature: The FUNC subparameter of the DCB parameter
specifies the type of data set to be opened for the 3505/3525 card
Read/Punch. The punch unit also interprets the cards punched.

Specification Change: The MODE subparameter of the DCB parameter has
been extended to include the 3505/3525 card read/punch.

Reorganization of Publication
This is a combination of topics previously covered in the JCL User's

Guide, GC28-6703, and the JCL Reference, GC28-6704, prior to
Release 21.

Miscellaneous Changes

New Sections: The "Introduction®, the DCB subparameter tables, and the
"Summary of the DD Statement"™ are all new additions to the manual.

Rewritten Sections: The discussion of the COND parameter on the JOB
card has been rewritten for increased clarity.

New Devices Included: The following devices are new for Release 21; the
3420/3803 Magnetic Tape Subsystem, the 3410 Magnetic Tape Device, the
3505 Card Reader, the 3525 Card Punch, the 3277 Display Station, the
3284 Printer, and the 3286 Printer.

Glossary: Some additions and amendments have been made to reflect the
new and changed material in the publication.

Summary of Amendments 15

16 JCL Reference (Release 21)

Summary of Amendments
for GC28-6704-1
OS Release 20.1

The Release 20.1 changes listed below are described in this manual.

Item Description

L s
s e

| support for | The 2305-1, 2305-2, 2319, and 3330 direct

| 2305-1, 2305-2, | access devices have been added to the section

| 2319, and 3330 |on the UNIT parameter. 2Z, a character coded in
| the subparameter OPTCD of the DCB parameter, has
|an additional meaning when referring to input
|from a direct access storage device.

i

L]

Support for 3211 | The 3211 printer has been added to the section
jon the UNIT parameter. FCB, a new parameter to
[be coded on the DD statement, allows you to
| specify forms control information. The UCS
| parameter can also be coded for the 3211;
jcharacter set codes to be specified in the UCsS
| parameter for the 3211 printer have also been
|added.
4

Removal of PCP iAll references to the Primary Control Program
information |have been removed. All information in this
| manual now applies to systems with MFT or MVT,
|unless restrictions are specifically noted.
L

[o e e e B e s e G . e e . S S, s e
e e B Y

Summary of Amendments 17

18 JCL Reference (Release 21)

Summary of Amendments
for GC28-6704-0

as updated by GN28-2451
OS Release 20

r
{ Item

ASCII support

o
| Description
'
1

|All references to USASCII have been changed to
|ASCII (American Standard Code for Information
|Interchange). In the DCB subparameter BLKSIZE,
|you can specify the minimum and maximum lengths
| for blocks of ASCII records on magnetic tape. D
|]and DB can be specified as values for the RECFM
| subparameter of the DCB parameter; D means that
| the ASCII records are of variable length and DB
|means that the ASCII records are of variable
length and that they are blocked. A new DCB
subparameter BUFOFF allows you to specify a]
|puffer offset for a block of one or more ASCII

| records on magnetic tape. Q can be specified as
a value for the DCB subparameter OPTCD; Q |
specifies that translation from ASCII input to
|EBCDIC is required or that translation from

| EBCDIC to ASCII output is required. AL and AUL |
jare new values for the LABEL parameter; AL |
specifies that the data set has American
National Standard labels and AUL specifies that
the data set has both American National Standard
|labels and American National Standard user

| labels.

[

— o w——— ———— —— gy w— e

Dynamic Allocation
Support for TSO

1

|DYNAM, a new DD statement parameter, allows you
|to defer definition of a data set until you

| require it.

4

NOTIFY Parameter

+
|NOTIFY, a new JOB statement parameter, indicates
|to the system that you are requesting that a
|message be sent to your time sharing terminal
|when your background job completes.

H ,

R)
NOPWREAD Subparameter|NOPWREAD, a new subparameter of the LABEL

| parameter, specifies that a data set can be read
|without a password, but that the operator must
|give the password before the data set can be
|written in or deleted.

i

TERM Parameter

Y e . B s S — o — T S a— — — Y G S — T . f—— f— o S S

)

| TERM, a new DD statement parameter, allows you
| to identify a job as a time-sharing task.

1

|155/165
|Model Dependency
L

T

|3210 and 3215 printer-keyboards have been added
| to the section on the UNIT parameter.

g

et s s e et e gy — o S e et iy = c— —— i g — e i el S

(Continued

Summary of Amendments 19

0S8 Release 20 (Continued)

|Changes to Support
| TCAM (Telecommuni-
|cations Access
|Method)

|BUFL, LRECL, OPTCD, RECFM.
1

IQNAME, a new parameter for the DD statement, |
|allows you to access messages received by means |
jof TCAM for processing by an application

| program. Seven new subparameters have been
|added to the DCB parameter: BUFIN, BUFOUT,
|BUFMAX, BUFSIZE, PCI, RESERVE, THRESH. 1In
|addition, five other subparameters of the DCB

| parameter may also be used with TCAM: BLKSIZE,

| Input/Output
|Recovery Management

| Support
L

| statement.
L

b

L}
| The command SWAP has been deleted from the list
| of commands that can be coded on the command

- J

20 JCL Reference

(Release 21)

The Format Of This Publication

This publication is designed for easy reference. The Introduction to
this publication contains information that is common to all job control
language statements; for instance, one of the topics in this section is
how to continue a field onto another control statement. You may want to
review the Introduction from time to time.

Section I contains programming notes. This section includes a
discussion of format conventions used in this book to describe job
control language parameters.

Sections II through X contain descriptions and examples of the
different control statements. The job control statements are described
in the following order:

II. The JOB statement.

III. The EXEC statement.
IV. The DD statement.
V. The command statement.
Vi. The comment statement.
ViI. The delimiter statement.
VIII. The null statement.
IX. The PEND statement.
X. The PROC statement.
Each statement description includes the purpose and rules for coding a
statement. The JOB, EXEC, and DD statements are described first, in the
.order in which they normally appear in the input stream. The remaining
statements are described in alphabetical order.

The statement description for the JOB, EXEC, and DD statements is
followed by a chapter on assigning a name in the name field of the
statement and a chapter for each positional and keyword parameter that
can be coded on the statement. The chapters on positional parameters
appear before the chapters on keyword parameters. Both positional and
keyword parameters are described in alphabetical order.

The format of the positional or keyword parameter appears at the
beginning of the chapter. Each subparameter is then described briefly.
The text following the format description of the parameter describes the
purpose of the parameter and each subparameter. Each chapter ends with
examples of the use of the parameter and its subparameters.

Section XI consists of Appendixes A through F. These appendixes
include:

1. Appendix A: Cataloged and In-stream Procedures
2. Appendix B: Using the Restart Facilities

3. Appendix C: Creating and Retrieving Indexed Sequential Data Sets

The Format of This Publication 21

4. Appendix D: Creating and Retrieving Generation Data Sets

5. Appendix E: Default Parameter Values Supplied in the Input Reader
Procedure

6. Appendix F: A Checklist
Section XII is a glossary of terms used in this publication.

Section XIII, which follows the index, is a set of foldout charts.
These charts summarize syntax of JOB, EXEC, and DD statement parameters.

22 JCL Reference (Release 21)

Introduction to the Job Control Language

The IBM System/360 Operating System was designed to meet the many
diverse needs of the computer user. Data processing needs differ greatly
from one installation to another and between individual users within an
installation. The purpose of the operating system is to aid you in
getting your work done. It achieves its purpose by managing all
available resources, including the central processing unit, main
storage, input/output devices, and any programs that are a part of the
system. To use the operating system, you must describe to the system the
work you want done and the resources you will need. You provide the
operating system with this information through use of the job control
language.

The job control language, commonly referred to as JCL, consists of
nine control statements. On these control statements, you code
information to be used by the operating system to direct the execution
of the programs you have written. The programs you write are called
source programs (or source modules). Your source program and the JCL
statements needed to describe what the operating system is to do for
you, together with whatever related data you may have, constitute a job.
Every job submitted for execution by the operating system must include
JCL statements. The design and coding of the JCL portion of your job can
require a considerable amount of time.

The job control language is a very flexible language and with this
flexibility come many optional features. You should become familiar
enough with the language to be able to decide what information the
operating system will need to process your job and which features of the
language will aid you in getting your job done most efficiently.

J‘Th;é.:|BM System /360 Operating System

An IBM System/360 Operating System consists of a control program
together with a number of optional processing programs such as language
translators, utility programs, and a sort/merge program. The purpose of
the control program is to efficiently schedule, initiate, and supervise
the work performed by the computing system. The processing programs (see
figure 1) are designed to help you program solutions to problems and
design new applications. They do this by giving you a combination of
programming aids, services, and precoded routines that you can use with
whatever programming language you choose.

PROCESSING PROGRAMS AND JCL

You can use the processing programs provided by IBM singly or in
combination to process your job. The IBM processing programs available
for your use can be supplemented with programs written by you or others
at your installation. The IBM processing programs are classified as
either language translators or service programs (see Figure 1).

The language translators enable you to write a problem solution or an
‘application in a language that can be more readily learned and more
easily used than the strictly numerical machine language of the
computing system. IBM provides six language translators (see Figure 1).
The language translators create machine language programs based upon
computer programs written in higher-level languages. All higer-level
language translators are called compilers. The assembler is a low-level

Introduction to the Job Control Language 23

language translator. That is, each assembler statement translates into

one machine instruction. A compiler generates one or more machine

instructions for each higher-level language statement. This process is ‘:]@
known as compilation (or assembly in the case of the assembler). The

machine language program that is produced from a source program is

called an object module.

r]
| Processing Programs |
t iy _'
L3 T

| Language Translators | Service Programs |
b t {
| ALGOL | Iinkage Editor |
| Assembler | Loader |
] COBOL | Sort/Merge]
| FORTRAN | TESTRAN |
| PL/I | Data set utilities]
| RPG | System utilities |
| | Independent utilities |
L A J
Figure 1. Processing Programs

The linkage editor is one of the service programs. It combines
object modules that have been individually compiled or assembled. The
result is a load module. A load module is one ready to be loaded into
main storage and executed. Another service program you can use to
accomplish link editing is the loader. It combines linkage editing and
execution by loading object modules produced by the language translators
and load modules produced by the linkage editor into main storage for
execution. Other service programs supplied to aid in processing jobs
are the sort/merge program and the utility programs. The sort/merge
program is a generalized program that can be used to sort or merge ‘
fixed- or variable-length records in ascending or descending ordexr. The Q;;D
utility programs are divided into three subsets: data set, system, and
independent utilities. Data set utilities are designed to help you in
the manipulation of data. They aid you in doing such things as
transferring, copying, or merging sets of data from one I/0 device onto
another. The system utilities are used to change or extend the indexing
structure of the system library catalog and to print an inventory of the
data and programs that are cataloged in the system library. Independent
utilities are used chiefly by the system programmer to prepare direct
access storage for use under the operating system.

In order to use the processing programs you simply request the
particular program you want by coding the name of the program on a job
control language statement. For example, you may write a program in
COBOL to process insurance premium payments. Your program must be
compiled (translated into machine language) and linkage edited before it
can be executed. This means that your job will be organized into three
parts. The parts of a job are known as job steps and, in this case, you
would have three job steps.

In the first step, you code the name of the COBOL compiler you are
requesting on a JCL statement. In this step, you also include JCL
statements to describe any data sets that the compiler requires. The
COBOL compiler will translate your source program into machine
instructions and produce an object module. In the next step, you use a
JCL statement to request the linkage editor. Again you include JCL
statements to describe any data sets that may be required by the linkage
editor. The linkage editor uses the object module as its input data and
produces a load module. A load module is the executable form of a
program. In the last step, you request that your program (the load P
module form) be executed. You will have to describe any data sets that *{;;
will be used by your program (such as the actual insurance premiums and
the master file) and where the output of the job step is to go.

24 JCL Reference (Release 21)

THE CONTROL PROGRAM AND JCL

‘:Z% The control program must perform three functions: job management, task
’ management, and data management.

. Job management involves reading and interpreting job control
language statements, scheduling jobs, initiating and terminating
jobs and job steps, and recording job output data.

. Task management monitors and controls the entire operating system,
and is used throughout the operation of both the control program and
processing programs.

° Data management's purpose is to simplify storage, retrieval, and
maintenance of all data, regardless of the way it is organized.

Through the use of job control language (JCL), you communicate with
the job management area of the control program and specifically with the
job scheduler. Figure 2 gives you a brief summary of the components of
job management and a synopsis of what each component does. JCL
statements indicate to the job scheduler the work you want done. With
JCL statements, you tell the job scheduler at what point your job
begins, the name of your job, how you organized your job, where your
data is, the programs you want executed, and the main storage
requirements of those programs.

r
i MASTER SCHEDULER JOB SCHEDULER
b .
| ® Relays messages to and from | Reader/Interpreter
| the system to or from the
| operator. e. Reads and analyzes job control
v | . Statements from the input |
e Executes operator commands. - stream.
| ® Responds to replies from the e Places information contained |
operator. in the job control statements
into a series of tables.
e Starts and stops the Initiator/Terminator
reader/interpreter,
| initiator/terminator, and | ® Allocates resources required |
| the output writer tasks. | to perform a step of the job.

e Loads and transfers control to
the program that is to be
executed to perform the job
step. |

e Terminates the Jjob step when
execution of the program is
completed.

| | ® Selects a job from the input |

work queue.

| ' Output Writer

e Controls the writing of job
output data.

N

R

Figure 2. Job Management

Introduction to the Job Control Language 25

The job scheduler consists of three areas: the reader/interpreter,
the initiators/terminator, and the output writer. The reader/interpreter
reads and analyzes your job control statements. It checks to make sure
that you have not made errors in coding your statements. The
reader/interpreter places the information contained in the job control
statements into a series of tables for system use. The
initiator/terminator assigns to each step of your job the resources that
you have requested, notifying the operator of any tapes or disk packs
that have to be mounted. A job step is a logical division of your job.
Each step is associated with one processing program or procedure, and
related data. A job consists of one or more job steps.

After the initiator/terminator has assigned the requested resources
to a job step, it requests the supervisor program, a part of task
management, to initiate the execution of the program you have specified
in your job step. When the program is completed, the
initiator/terminator terminates the job step, releasing the resources
assigned to the step and, thereby, making them available for use by
other job steps. After the execution of the last step in your job, the
output writer records the output of your job. Your output is directed to
the device you have specified in your JCL.

Ccontrol Program Configqurations

There are two configurations of the control program:
° MFT -- multiprogramming with a fixed number of tasks.
o MVT -- multiprogramming with a variable number of tasks.
The MFT control program reads jobs in sequential order from up to
three input streams concurrently. Up to 15 job steps, from 15 different

jobs, can be performed simultaneously. The MFT control program can. also
concurrently record as many as 36 streams of job output.

Q

The MVT control program reads one or more input streams of jobs and
schedules the jobs in order of priority (you assign priority). Up to 15
independent jobs can be performed concurrently. Job steps within a
single job are performed in sequential order because one step may depend
on the completion of another. Within a job step, any number and type of
data processing tasks can be initiated. The MVT control program can
concurrently record job system output on as many as 36 devices.

The job control language statements are basically the same for the
two configurations, but some parameters coded on the statements are not
meaningful for both. For example, in both MFT and MVT, you can use a
parameter to assign a dispatching priority to a job. In MVT, you can
also use a parameter to assign a dispatching priority to a job step.
This parameter, however, has no meaning in MFT. All the parameters in
this book apply to systems with MFT and MVT unless otherwise noted.

Job Control Language Statements

The nine job control language statements used to describe a job to the
system are:

1. Job (JOB) statement.
2. Execute (EXEC) statement.

3. Data definition (DD) statement. [{:D

26 JCL Reference (Release 21)

4. Delimiter statement.

5. Null statement.

6. Procedure (PROC) statement.

7. Procedure end (PEND) statement.
8. Comment statement.

9. Command statement.

A job control statement consists of one or more 80-byte records.
Most jobs are submitted to the operating system for execution in the
form of 80-column punched cards. or as card images off direct access
devices. The operating system is able to distinguish a job control
statement from data included in the input stream. In columns 1 and 2 of
all the statements except the delimiter statement, you code //. For the
delimiter statement, you code /* in columns 1 and 2 and this notifies
the operating system that the statement is a delimiter statement. For a
comment statement, you code //*% in columns 1, 2, and 3 respectively.

Parameters coded on these JCL statements help the job scheduler to
requlate the execution of jobs and job steps, retrieve and dispose of
data, allocate I/0 resources, and communicate with the operator.

JOB STATEMENT

The job statement (or JOB statement) indicates to the system at what
point a job begins (see figure 3). On the JOB statement, you code the
name of your job. This name is used to identify messages to the operator
and to identify your program output. By using the parameters allowed on
the JOB statement, you can provide accounting information for your
installation's accounting routines, specify conditions for early
termination of your job, assign job priority, request a specific class
for job scheduler messages, hold a job for later execution, and limit
the maximum amount of time the job may use the central processing unit
(CPU). With MVT, you can also specify the amount of main storage to be
allocated to the job. .

Introduction to the Job Control Language 27

Job

Input EXEC & DD
Stream Statements
JOB Statement

Null Statement

Job

Input Stream Data

EXEC & DD
Statements

Job ’ JOB Statement

2 - /
(/) EXEC & DD

Statements

JOB Statement

Figure 3. Defining Job Boundaries

EXEC STATEMENT

The EXEC statement marks the beginning of a job step and the end of the
preceding step (see figure 4). On the EXEC statement, you identify the
program to be executed or the cataloged procedure or in-stream procedure
to be called. A cataloged procedure is a set of job control language
statements that has been assigned a name and placed in a partitioned
data set known as the procedure library.

The EXEC statement can also be used to provide job step accounting
information, to give conditions for bypassing or executing a job step,
to assign a limit on the CPU time used by a job step, and to pass
information to a processing program such as the linkage editor. All this
information is communicated to the system by the parameters that you can
code on the EXEC statement. In systems with MVT, you can use a parameter
to specify the amount of main storage to be allocated to the job step.

DD STATEMENT

A DD statement identifies a data set and describes its attributes.
There must be a DD statement for each data set used or created in a job
step. The DD statements are placed after the EXEC statement for the
step. The parameters of the DD statement provide the system with such
information as the name of the data set, the name of the volume on which
it resides, the type of I/0 device that holds the data set, the format
of the records in the data set, whether a data set is old or new, the
size of newly created data sets, and the method that will be used to
create or access the data set. The name of the DD statement provides a
symbolic link between a data set (on data file) named in your program
and the actual name and location of the correspondlng data set. This
symbolic link allows you to relate the data set in your program to
different data sets on different occasions.

28 JCL Reference (Release 21)

U

DELIMITER AND NULL STATEMENTS

The delimiter statement (or /#* statement) and null statement (or //
statement) are markers in an input stream. The delimiter statement is
used to separate data placed in the input stream from any JCL statement
that may follow the data. The null statement can be used to mark the end
of the JCL statements and data for a job.

PROC AND PEND STATEMENTS

The PROC statement may appear as the first JCL statement in a cataloged
or in-stream procedure. For cataloged procedures or in-stream
procedures, the PROC statement is used to assign default values to
parameters defined in a procedure. An in-stream procedure is a set of
job control language statements that appear in the input stream. The
PROC statement is used to mark the beginning of an in-stream procedure.
The PEND statement is used to mark the end of an in-stream procedure.

COMMENT STAT EMENT

The comment statement can be inserted before or after any JCL statement
that follows the JOB statement and can contain any information you thlnk
would be helpful to you or anyone interested 1n your program.

COMMAND STATEMENT

The command statement is used to enter commands through the input
stream. Commands can activate and deactivate system input and output

units, regquest printouts and displays, and perform a number of other
operator functions.

Introduction to the Job Control Language 29

Null Statement

DD Statements

Input Stream

EXEC Statement

JOB Statement

Null Statement

Job Steps

Input Stream Data

DD Statements

EXEC Statement

Delimiter Statement

Input Stream Data

DD Statements

EXEC Statement

JOB Statement

DD Statements

EXEC Statement

JOB Statement

Figure 4. Defining Job Step Boundaries

30 JCL Reference (Release 21)

Defining Your Job

Now that you have been introduced to the nine JCL statements, let us use
these statements to define a job. Basically, the statements with which
you will be most concerned are the JOB, EXEC, the DD statements. The
delimiter and null statements may be used but they are usually
unnecessary. That is, the system will provide delimiters by default at
the end of the data set.

Assume you have coded and punched (transcribed onto cards) a program
to process payroll records. The program is coded in PL/I and, like the
insurance premium program discussed earlier, it must be compiled and
link-edited (or linkage edited) before it can be executed. Therefore,
your job will have three steps: compilation, link-editing, and execution.

First, you must code a JOB statement to mark the beginning of your
job. On this statement, you must assign a name to your job so that both
the system and the operator will be able to identify it. For example,
you could code:

//PAYROLL JOB (D58706,GROUP1) ,R.R.RUSSELL
Name of Accounting Programmer's
the job information name

After the JOB statement, you code an EXEC statement to mark the
beginning of the first step. On this statement, you code the name of
the PL/I compiler you are requesting to translate your source program
into machine language. For example, you would code:

//COMPILE EXEC PGM=IEMAA, PARM="LOAD, NODECK"'
Name of Name of the Information being
the job step PL/I compiler passed to the compiler
requested

Following the EXEC statement, you code a DD (data definition)
statement for each data set the PL/I compiler requires. One of these DD
statements must tell the compiler that you are placing your source
program in the input stream. Another DD statement must be used to tell
the compiler where to place the machine language translation of your
program (the object module). The other DD statements should be used to
define work areas, for printing messages, and for listings. (A listing
is a printout of the source language statements of a program.) After you
code all the DD statements needed by the PL/I compiler, you code a
delimiter statement to separate your source program from the JCL
statements of the next step. Your source program will be placed in the
input stream immediately following a //SYSIN DD * statement and before
the delimiter statement.

The next step begins with an EXEC statement. On this statement, you
request execution of the linkage editor. The linkage editor, like the
PL/I compiler, will require certain data sets. Each data set required by
this step must have a DD statement coded to describe it. In this step,
you must include a DD statement telling the linkage editor where the
PL/I compiler placed the object module. You must also include a DD
statement telling the linkage editor where it is to place the load
module it produces. The load module is the executable form of your
program. Once it is loaded into main storage, it can be executed by the
central processing unit. Other DD statements should be included for work
areas, for printing messages, and for listings.

Introduction to the Job Control Language 31

The third step calls for the actual execution of your program. The
EXEC statement for this step requests that your program (the load module)
produced by the previous step) be executed. You will need to code DD 0.’*
statements to tell your program where the payroll records are that you
intend to process. Following the DD statements for this step, you can
include the payroll records (if they are in card form). Otherwise you
indicate to your program that the payroll records are on magnetic tape
or direct access. The last DD statement for the step should indicate
to the system that the data following it is to be used by your program.
You will need DD statements to tell your program where the master file
is and where you want the output of your program to go, and to define
any work areas or other data required by your program. You can code a
null statement to be placed at the end of your deck. The null statement
will indicate to the system that this is the end of your job. Once your
entire job (the JCL, the payroll records, and your source program) is
either properly identified by JCL control cards or included in the input
stream (see figure 3), it is ready to be submitted for processing.

Another way of defining your job is through the use of a cataloged
procedure. IBM supplies a catalog procedure which defines the steps
needed for compilation, link-editing, and executing your program, or you
can write your own. The procedure described in the previous discussion
might be cataloged for this purpose.

Null Statement

(Payroll Records)
Input Data

DD Statements

"y

DD Statements

Delimiter Statement

(Source Program)

{nput Data

DD Statements

Figure 5. Your Job

32 JCL Reference (Release 21)

Cataloged and In-Stream Procedures

Often the same set of job control statements is used repeatedly with
little or no change (for example, to specify compilation, link-editing,
and execution of programs). To save programming time and to reduce the
possibility of error, standard job step definitions can be prepared and
placed (or cataloged) in a partitioned data set known as the procedure
library. The procedure library (SYS1.PROCLIB) is a system data set
maintained on direct access storage by the control program. A set of job
control language statements placed in the procedure library is called a
cataloged procedure. A cataloged procedure consists of EXEC and DD
statements.

By simply using a JOB statement and an EXEC statement, you can
retrieve a specific catalog procedure. You specify on the EXEC statement
the name of the procedure you want. This directs the job scheduler to
use the job step definition from the procedure library. The effect is
the same as if the job control statements of the cataloged procedure
appeared in the input stream in the place of the EXEC statement that
calls the procedure. If necessary, you can modify the cataloged
procedure by a process known as overriding.

Before putting a procedure into the procedure library, you may want
to test it. This can be done by converting the procedure to an in-stream
procedure. An in-stream procedure is a set of JCL statements placed in
the input stream that can be used any number of times during a job by
naming that procedure in an execute (EXEC) statement. Another advantage
to in-stream procedures is that they can give you the facility of a
cataloged procedure without being placed on the procedure library. After
testing the procedure, you may keep it in card form and simply insert it
in the input stream whenever you want to use it.

Processing Your Job

To have a job processed, you must submit the JCL statements and any
related input data to the operating system through an input/output (I/0)
device chosen by the operator. The input unit can be a card reader, a
magnetic tape, a telecommunications line, or a direct access device.
The sequence of JCL statements and input data for all the jobs being
submitted through an input unit is called the input stream.

Assume you submit a PL/I payroll job to be processed by a system with
MFT. The program is in the form of punched cards, called a deck. The
operator places your deck in the card reader (input unit) together with
decks for other jobs to be processed. In this case, the card decks for
all these jobs constitute the input stream (see figure 4).

The operator starts the system reader; that is, he instructs the
operating system (job management) to start reading the input stream. Job
management stores the job control statements in the job queue data set
(SYS1.SYSJOBQE) until they are used. Then it examines the first step and
determines its needs. The first step of your job requests the PL/I
compiler and defines several data sets. The operating system (data
management) determines whether there is any space available on the
devices you requested for the data sets the PL/I compiler will create
during this step (for example, the object module) and whether the data
sets required by the compiler are available (for example, your source
program).

If all data set requirements are met, the PL/I compiler is brought
into main storage and given control. After your program is compiled, the
operating system reads and determines the requirements of the second
step which requests the linkage editor. The operating system performs

Introduction to the Job Control Language 33

the same operations for the data sets required by the linkage editor and

then brings the linkage editor into main storage and gives it control.

After the linkage editor produces the load module, the operating system @i:p
reads and processes the next step. Its requirements are determined, and

your program is brought into main storage and given control.

While this job is being executed, the system can also execute up to
15 other jobs from up to 3 input streams.

Capabilities of the Job Control Language

The job control language provides you with many capabilities to help in
efficiently getting your job coded and processed. The language allows
you to:

. Specify the device requirements of a program at the time it is
executed rather than when it is assembled or compiled. You do this’
by writing a program in such a way that it is not directly tied to a
particular I/O device. A device-independent program could, for
example, accept an input data set from any magnetic tape or direct
access device, or from any card reader; output could be recorded on
any appropriate I/0 device. At the time you submit the program for
execution, you code in your JCL the type of device required.

. Copy existing data set names, control statements, and control blocks
with a backward reference facility to reduce recoding. When coding a
DD statement, you simply use this facility to refer the system to an
earlier DD statement that contains certain information you want
copied.

o Pass data sets used by more than one step from one step to another, -
to reduce mounting and retrieval time.

I

. Retrieve a data set by name using the system catalog, eliminating
the need to know its exact location.

. Optimize use of channels, units, volumes, and direct access space.
For example, when two or more data sets are to be used in a job
step, processing time may be shortened by requesting that the system
transmit data over separate channels (A channel is a hardware device
that connects a CPU and main storage with input/output control
units). It would be faster to have your input data set and your
output data set on separate channels than to have them on the same
channel. A JCL parameter allows you to request channel separation
for data sets in each job step.

° Specify that data sets are to be shared by two or more job steps
that are operating independently.

. Classify jobs according to their characteristics and importance so
that the system may balance the mix of jobs for more efficient
operation. The characteristics of the job will determine its class
and the turnaround time required by a job will determine its
priority. For example, an installation may assign jobs that use a
large amount of main storage to one class, jobs that run for a long
time to another, and teleprocessing jobs to another class. Within
each class you may assign priorities to determine the order of
execution. In the class of "jobs that run for a long time", you may
wish to assign a higher priority to the weekly payroll program than
to the monthly analysis program. Each job is executed one step at a
time and steps of different jobs can be interleaved. For example, AT
if, while the system is executing a job that runs for a long time, {:D
enough resources are available to process teleprocessing jobs, h
several teleprocessing jobs can also run. '

34 JCL Reference (Release 21)

Once you learn the basics of the job control language, you should
become familiar with these and other capabilities of the language that
have been designed to make the most efficient use of the operating
system. Part II of this publication will introduce you to the various
parameters that can be coded on the JCL statements. The facilities that
have been briefly explained here are discussed in greater detail with
examples of their use.

Introduction to the Job Control Language 35

36 JCL Reference (Release 21)

Section I: Progrémming Notes 5

The formats of the parameters described in this publication for the JOB,
EXEC, and DD statements appear at the beginning of the chapter on the
corresponding parameter. Notations used in the format descriptions are
described below.

1. Uppercase letters and words are coded on the control statement
exactly as they appear in the format description, as are the
following characters.

ampersand
asterisk
comma

equal sign
parentheses
period

* ¢n

¢ s
-~

2. Lowercase letters, words, and symbols appearing in the format
description represent variables for which specific information is
substituted when the parameter is coded.

For example, PRTY=priority is the format description for the PRTY
parameter. When you code the PRTY parameter on a JOB statement, you
substitute a number for the word "priority."

3. Braces { } are a special notation and are never coded on a control
statement. Braces are used to group related items; they indicate
that you must code one of the items.

For example,
CYL

TRK % is part of the format description
block size

for the SPACE parameter. When you code the SPACE parameter, you must
code either TRK, CYL, or a substitute for "block size," which would
be a number.

4. Brackets [] are a special notation and are never coded on a control
statement. Brackets indicate that the enclosed item or items are
optional and you can code one or none of the items.

For example, [,DEFER] is part of the format description for the UNIT
parameter. When you code the UNIT parameter, you can include ,DEFER
in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

RETPD=nnnn

—a

EXPDT=yyddd} . which is part of the format description for the
LABEL parameter. When you code the LABEL parameter, you can include
either EXPDT=yyddd or RETPD=nnnn in the LABEL parameter or omit both.
Sometimes, one of a group of items enclosed in brackets is a comma.

You code the comma when none of the other items in the group is used
and a following part of the parameter is still to be coded. The

Section I: Programming Notes 37

comma indicates to the system that you have not selected to code any
of the items enclosed in the brackets.
For example, ,progname]l,form numberl) is part of the format

[}
description for the SYSOUT parameter. When you code the SYSOUT
parameter, you have the option of coding both ",progname® and ",form
number", omitting both, or coding only one. The comma enclosed in
brackets with ",progname" must be coded when ",progname®™ is not

coded but ",form number" is coded; that is, you would code: ,,form
number) .

5. An ellipsis ... (three consecutive periods) is a special notation
and is never coded on a control statement. An ellipsis is used to
indicate that the preceding item can be coded more than once in
succession. . '

For example, COND=((code,operator),...) is the format description
for the COND parameter on the JOB statement. The ellipsis indicates
that (code,operator) can be repeated.

Fields in Control Statements

Every control statement is logically divided into different fields.
There are four fields -- name field, operation field, operand field,
comments field -- but not all of the control statements can contain all
of these fields. Figure 6 shows the fields for each statement.

q
Columns

Statement 1 and 2 Fields *
Job ' | /77 name operation(JOB) operand® comments?
Execute | /77 name* operation(EXEC) operand comments?i
Data Definition| 7/ named* operation(DD) operand comments?
PROC(Cataloged) | 7/ . |name* operation(PROC) operand comments?
PROC (in-stream) | 7/ name operation (PROC) operand?® comments?2
|Procedure end | /7 |namet* operation(PEND) comments? |
Command 7/ operation(command) operand comments®
Delimiter /* comments
Null /7

Statement Colums 1,2,3 Field |
Comment | /7% | comments

1 1

1pptional
3o§tiona1 -- If operand(s) are not coded, comments cannot be coded. If

| ‘ operand(s) are coded, comments are optional. !
L .

Fiqure 6. Control Statement Fields

The name field identifies the control statement so that other
statements and system control blocks can refer to it. The name field is
1 to 8 alphameric and national (#, @, $) characters; the first character
must be alphabetic or national. The name field must begin in column 3.

38 JCL Reference (Release 21)

O

The operation field specifies the type of control statement, or, in
the case of the command statement, the command. The operation field must
follow the name field and must be preceded and followed by at least one
blank.

The operand field contains parameters separated by commas. The
operand field must follow the operation field and must be preceded and
followed by at least one blank. The operand field is described in more
detail in the next chapter "Parameters in the Operand Field."

The comments field contains any information deemed helpful by the
person who codes the control statement. The comments field must follow
the operand field and must be preceded by at least one blank.

Control statement fields -- except the name field, which must begin
in column 3 -- can be coded in free form. Free form means that the
fields need not begin in a particular column. Separate each fleld with a
blank; the blank serves as a delimiter between fields.

Except for the comment statement, which can be coded through column
80, fields cannot be coded past column 71. If the total length of the
fields will exceed 71 columns, you must continue the fields onto one or
more succeeding statements. How to continue fields is described in the
chapter "Continuing Control Statements."

Some examples of how the different fields appear on control
statements are:

Columns :
123
Name Operation Operand Comments
/ / JOBS JOB MSGLEVEL=(1,1) THE FIRST STATEMENT IN JOB
/ / STP1 EXEC PGM=PROG4,REGION=80K EXECUTES PROGRAM NAMED PROG4
/ / WORK DD UNIT=2400 DEFINES A TEMPORARY DATA SET

Parameters in the Operand Field

The operand field is made up of two types of parameters: one type is
characterized by its position in the operand field in relation to other
parameters (a positional parameter); the other type is positionally
independent with respect to others of its type, and is characterized by
a keyword followed by an equal sign and variable information (a keyword
parameter). Both positional parameters and the variable information
associated with keyword parameters can assume the form of a list of
several items (subparameters) of information.

All positional and keyword parameters and subparameters coded in the
operand field must be separated from one another by commas.

Positional parameters must be coded first in the operand field in a
specific order. The absence of a positional parameter is indicated by a
comma coded in its place. However, if the absent parameter is the last
one, or if all later positional parameters are also absent, you need not
code replacing commas. If all positional parameters are absent from the
operand field, you need not code any replacing commas.

Keyword parameters can be used anywhere in the operand field with
respect to one another. Because of this positional independence, you
need not indicate the absence of a keyword parameter.

Section I: Programming Notes 39

A positional parameter or the variable information in a keyword
parameter sometimes assumes the form of a list of subparameters. Such a
list may be composed of both positional and keyword subparameters that
follow the same rules and restrictions as positional and keyword
parameters. You must enclose a subparameter list in parentheses, unless
the list reduces to a single subparameter.

The EXEC statements and DD statements in cataloged procedures can
contain one other type of parameter -- a symbolic parameter. A symbolic
parameter is characterized by a name preceded by an ampersand (&); a
symbolic parameter stands as a symbol for a parameter, a subparameter,
or a value. Symbolic parameters allow you to make any information in the
operand field of a procedure EXEC statement or DD statement variable. A
value to be assumed by a symbolic parameter may be coded on the EXEC
statement that calls the procedure. This value is in effect only while
the procedure is being executed. For a detailed discussion on how to
assign values to symbolic parameters, refer to the chapter "Assigning
Values to Symbolic Parameters" in Appendix A; for a detailed discussion
on how to use symbolic parameters in a set of control statements that
you plan to catalog as a procedure, refer to the chapter "Using Symbolic
Parameters in a Procedure" in Appendix A.

Continuing Contrpl Statements

When. the total length of the fields on a control statement will exceed
71 columns, you must continue the fields onto one or more succeeding
statements.

The command, comment, delimiter, and null statements cannot be
continued.

You can continue the operand field or the comments field. To { jJ
continue either of these fields, you must follow the continuation A\
conventions.

To continue the operand field:

1. Interrupt the field after a complete parameter or subparameter,
including the comma that follows it, at or before column 71.

|2H4bﬂ78901ZEIEEIEEEIEBHBB789GhﬁlﬂﬁﬂjﬂﬁﬁhﬂiffrWEEM#TTTTTTETT%EEWTEWEBonlﬂﬂs67@Q@

//DDY) DD, DSNAME=FPROBY 3531, D) SOz NEW, KEEP |, DELETED | vy v L i e ails,

2. Comments can be included by following the interrupted field with at
least one blank.

51—60] 61~70 7i~80
23]456789 Hslas-aeola‘s«i[e'/ 90|2T890:234567390|2345673901234 J7Isj]‘9loulzsas:7eso
\//DD) DD . | DSVMAME=PROBH IS IALE £, DEL | E7. A TESTRL | vl

3. Optionally, code any nonblank character in column 72. (The nonblank
character in column 72 is required only when you are continuing a
comments field.) If you do not code a character in column 72 when
continuing the operand field, the system treats the next statement
as a continuation statement as long as you follow the conventions
outlined in items 4 and 5. /{jm

40 JCL Reference (Release 21)

/s

4.

QBHBBIEEEHZBHEBIGBEHEEEBEIEHEHBBBBEIUBEHBB4BBIEBEHEHEEEIEE@HEBHBEIBBEEEBEBBIUEO

| it-20

71-80

4 S, E=PRO D/ 35A= LEIT.E), SET Fok 785784 (X . 1. ..,

Code the identifying characters // in columns 1 and 2 of the
following statement.

AL

HBBHBEIBEEUQEBBBIBEEHBEHBBIBEEHEBHBBIGEEHEHBBBIEEEHEEHBEIGEEﬂEBﬂBBIBEEHESﬂBEIGBo

71-80

(i..t.!...ul....!....l...x!...Al..u.!....I....!....I....!....I....I.AJ_.L.‘..
T

5'.

Continue the interrupted operand beginning in any column from 4
through 16. If you leave the statement blank after column 2 or if
you begin coding after column 16, the system assumes that no other
operands are present and treats any characters you code as a comment
field.

fapspitield

Lf UM T =23 L, VO UME =\ SER= BT ST, SPACEs(E00, (/50 &SDD i)y e el il

-10 i1-20 21-30 31-40 41-50 - 7i-80

Ol 2Eal5[el7e 8]0l 1 2314156l 7I8IS]0l [2[3[4l5[6l7I8lS[0] 1 [2[3]al5[el7 [8S [0l i [2[3[a[SI6l7I8Is[0] i [2]3[4Is[67[8[s]o]1 [2[3145[6[7[8Is]0)

To _continue the comments field:

1.

Interrupt the comment at a convenient place before column 72.

/

2.

\L“ﬂ”"FBEUHBBHBEIEEEUBBBBEIBEEHEBBBEIEBEUEEBEBlﬁﬂ@ﬂﬂBﬂEBIEEEﬂEBﬂBBIEBEﬂEBﬂBGIDQO

-i0 il-20 21-30 31-40 41-50 51-60 61-70 71-80

ElP () 21 6/.0 K = 7 1.3, SULT, EST]

"

Code a nonblank character in column 72.

3.

Code the identifying characters // in columns 1 and 2 of the
following statement.

_ I-i0 11-20 21-30 31-40 41-50 - 7i1-80 |
[FeE e EERISEITEE0l PERIsEl7 B0 23R Sl 7IsRlol [ZBIalsle FIelsIol T RIS lls el T eIalol T T34 [S6l TeIS[0l [ZI3IalSIe TIarelo
LA..l.”.4.‘..u...;(‘“(...\g\“‘l.‘..p.,.1‘.ng.,..lux.g,..A,‘l.!H..l,.”
4. Continue the comments field beginning in any column after column 3.

1-10
(IR eET

MM‘QA—&M—&—M'—‘—‘E&M"Ill‘llIIllll!lllAlllIl!lllxlkllllllllllxll

11-20 21-30 31-40 = - 71-80
8130l 112 [314ls]e[7IeIsIo[TT2[3]a]sT6[7I8]Slol 1 [2[3]4l5]6[7[8IS[ol 1 [2[3[4]Se]Z[8[ol0] T[2]3[atsTel7[e]slo] T [2T3[4 516 7Ie[s[o] i [2[314]5[6]7]8]SI0

Any control statements in the input stream, other than a comment

statement, that the system considers to contain only comments have //%*

Section I: Programming Notes 41

{'IIIHHHE%IIIII

in columns 1 through 3 on an ocutput listing. Any control statements in a

cataloged procedure, other than a comment statement, that the system

considers to contain only comments have XX* in columns 1 through 3 on an

output listing. For an in-stream procedure ++* appears in columns 1-3. y
In both cases for a comment statement, #*** appears in columns 1 through

3 on an output listing.

Backward Reference

A facility of the job control language allows you to refer the system to
an earlier DD statement in the job for certain information. A backward
reference is of the following form:

[parameter=*.ddname ~- use this form when the earlier DD statement is
contained in the same job step.

. parameter=+*.,stepname.ddname -- use this form when the earlier DD
statement is contained in an earlier job step.

. parameter=*.stepname.procstepname.ddname -- use this form when the
eariier DD statement is contained in a cataloged procedure called by
an earlier job step. ("Stepname"™ is the name of the step that calls
the procedure.)

You can use the backward reference facility only with certain
parameters. These parameters and the information the system obtains when
the backward reference facility is used are:

] PGM -- the data set that contains the program to be executed in this
job step.

. DCB -- all DCB subparameters coded on the earlier DD statement. (If Gl
you code any DCB keyword subparameters following the backward Wy

reference, these subparameters override any of the corresponding
subparameters coded on the earlier DD statement. If a DD statement
defines an existing data set and contains a backward reference in
the DCB parameter, the system copies only those subparameters from
the earlier DD statement that were not previously specified for the
existing data set.)

. DSNAME -- the name of the data set being defined on this DD
statement. ‘

. VOLUME-REF -~ the volume serial number(s) on which the data set
resides or will reside; unit information is also obtained by the
system.

Concatenating Data Sets

Up to 255 sequential or up to 16 partitioned input data sets, each of
which may reside on a different volume, can be logically connnected for
the duration of a job step. To concatenate data sets, simply omit the
ddnames from all the DD statements except the first in the sequence.
When this ddname is encountered in a data control block in the
processing program, each data set is automatically processed, in the
same sequence as the DD statements defining them.

If concatenated data sets have unlike characteristics, e.g., the
device types, block lengths, or record formats differ, the DCBOFLGS
field of the data control block must be modified while the program is)
executing. For details, refer to the topic "Concatenating Sequential and ”(:E
Partitioned Data Sets" in the Data Management Serxrvices publication.

. .

42 JCL Reference (Release 21)

If you make a backward reference to a concatenation (using an

asterisk), the system obtains information only from the first data set
0 defined in the sequence. Notes

If you make a forward reference to a concatenation (using the DDNAME
parameter), the system only obtains information from the first data set
defined in the sequence.

You should not concatenate other data sets to a data set you have
defined using the DUMMY parameter. When the processing program asks to
read a dummy data set, an end-of-data-set exit is taken immediately and
any concatenated data set is ignored.

The following example illustrates a group of DD statements defining
concatenated data sets, including a data set in the input stream.

//7INPUT DD DSNAME=A.B.C,DISP= (OLD,DELETE)

/7 DD DSNAME=X.Y.Z,DISP=OLD,LABEL=(, NL)
/77 DD DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12,DISP=(OLD,DELETE)
7/ DD *
data
/*)

Character Sets

‘::m Job control statements are coded using a combination of the characters
from three different character sets. The contents of each of the
character sets are described in figure 7.

Character Set Contents

A through 2
0 through 9

Alphameric Alphabetic

Numeric

"At" sign
Dollar sign
Pound sign

*Tr

National

T

I

|

i

|

|

|

1
Comma |
Period |
Slash |
Special Apostrophe |
Left parenthesis |
Right parenthesis |
Asterisk |
Ampersand |
Plus sign |
Hyphen |
Equal sign |
Blank |
L

L™ ¥~~~ =\~

= e e e . o S . . S, S, . . WA . . s, Wi S S B .
e e A e S
foa e e e s s . . s S s S S oy P e e gy . s sy e ad

Figure 7. Character Sets

When you code any special characters, certain rules must be followed.
‘ These rules and the use of special characters are described next.

Section I: Programming Notes 43

Using Special Characters

" Special characters are used in the job control languagé to:
1. Delimit parameters (the comma).
2. Delimit fields (the blank).

3. Perform syntactical functions. (For example, the appearance of && as
the first two characters following DSNAME= tells the system that a
temporary data set name follows. The appearance of / in the UNIT
parameter, UNIT=293/5, tells the system that a specific 2321 bin is
desired.) '

Sometimes you can code a special character that does not satisfy one
of the three uses of special characters. In most of these cases, you
must indicate that special characters are being used by enclosing the
item that contains the special characters in apostrophes (5-8 punch),
€.g., ACCT='123+456". If one of the special characters is an apostrophe,
you must code two consecutive apostrophes (two 5-8 punches) in its
place, e.g., 'O''NEILL'.

The following list contains those parameters that can have special
characters as part of their variable information, and indicates when the
apostrophes are not required.

1. The accounting information on the JOB statement. The account number
and additional accounting information can contain hyphens without
being enclosed in apostrophes.

2. The programmer's name on the JOB statement. The programmer's name
can contain periods without being enclosed in apostrophes.

3. The checkid field in the RESTART parameter on the JOB statement.

4. The ACCT parameter on the EXEC statement. The ACCT parameter can
contain hyphens without being enclosed in apostrophes.

5. The PARM parameter on the EXEC statement.

6. The DSNAME parameter on the DD statement. The DSNAME parameter can
contain hyphens without being enclosed in apostrophes. If the DSNAME
parameter contains a qualified name, it can contain periods without
being enclosed in apostrophes. If the DD statement identifies a
generation of a generation data group, the generation number in the .
DSNAME parameter can contain a plus or minus (hyphen) sign without
being enclosed in apostrophes. If the DD statement defines a
temporary data set, the DSNAME parameter can contain, as the first
two characters, ampersands without being enclosed in apostrophes. If
the DD statement defines a member of a partitioned data set, a
generation of a generation data group, or an area of an indexed
sequential data set, the DSNAME parameter contains parentheses that
enclose the member name, generation number, or area name; these
parentheses are not enclosed in apostrophes.

7. The volume serial number in the VOLUME parameter on the DD
statement. The volume serial number can contain hyphens without
being enclosed in apostrophes.

IS. The DLM parameter on the DD statement.

44 JCL Reference (Release 21)

Coding Form

For your convenience in coding control statements, you can use Form Notes
N74167, a punch card containing formatted lines, each representing a

different type of statement. (See figure 8.) Some of the lines can be

used for concatenations, overrides, and continuation statements.

/1 23456 78 91011121314 1516 1718152021 222324 25 26 27 28 28 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 53 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 12{73 74 1576 77 78 79 80| \
/ T Z[3Jcbnome-Var. 0] [iZ 4] [i6 JOB Statement Cperands s 1D/SEQ g
AL L0 8 7
3 Stepname - Var. 12 g EXEC Statement Qperands *
a0 00000003
o] EEe [. 3
EXEC Statement Operands N [v]
000001 00
o /] IEXER . ;
3 ddnome -)
/7 | 'l ;'l DD Statement Operands 5 00000200%
@ [T For Concatenati ¢ B
o . T For Concatenations) DD Statement Operands g 00000300 c
lepname . ddname-var. 21 24 DD t Op: ds (This ? o
00004
z //ulaoc Opfonal T 110D Eo > °°¥
e -vor e PROC Statement Operands T .
00000500
ALl mecl g R
3 -
/% Delimiter Statement Comments 000006 00{L
[4 Command varb-var | |13 d Stat t nds
/) mand \arb=Var [_ Command Statement Operands 00000700 %
T (Flxedl
X Blank Nuil Statement 00000800 A
1/ T
4 G C
//il St 000009005
3 t tat For all limiter, Comtmand, Null, t State t: E
/) Continuation Statements (For afl above excep?t Delimiter,Command, Null, Commen lements) E 0000 1000|N
,(\)I , 3[4 GContinued Operands From Preceding Statement, Starting Before Column |7 "':7 00001100 ;
E 1234856 78 9101112131 1516171819 20 2122 23 24 25 26 27 2829 30 31 32 33 34 3536 37 38 39 40 41 47 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 13 4 75 75 77 79 79 40}
m t———J-Variable Fields Shorter Than Maximum as Shown, Allow Left Justification of Fields That Follow. IWMNT4IET

Figure 8. <Coding Form for Coding Control Statements

Section I: Programming Notes 45

46 JCL Reference (Release 21)

O

0

O

"I EreIeFEIEPl i [2[314[S]6[7Ie[SI0[1 [2[3[4[8 [6[7I6[S[0[1[2

Section II: The JOB Statement

The JOB statement marks the beginning of a job and, when jobs are

stacked in the input stream, marks the end of the control statements for JOB
the preceding job. The JOB statement must contain a valid jobname in its

name field. All parameters in its operand field are optional, unless

your installation has established that the account number and the

programmer 's name parameters must be coded. If no parameters are coded

in the operand field of the JOB statement, no comments can be coded on

the statement.

JOB Statement Format

//jobname JOB operands comments

The JOB statement consists of the characters //, in columns 1 and 2, and
four fields -- the name, operation (JOB), operand, and comments fields.

Rules for Coding
Follow the order listed below when coding the JOB statement:

1. Code the characters // in columns 1 and 2.

I-10 71-80

I./.‘.I.U.lr.t..i,.,.!....l.“‘!..,.lt..‘l.|..|..A.x‘..‘l,..‘!....I.A..;....l....
! }

2. Select a name for the job; code that name, starting in column 3.

N7 A B B B I PO U S I I S S S S

3. Follow the jobname with at least one blank.

4. Code JOB.

ALCALC, TOB o\ i e e e e e

5. Follow JOB with at least one blank.

6. Code any desired positional parameters. Separate each parameter with
a comma.

Section II: The JOB Statement 47

1-10 11-20 21-30 31-40 4i-50 51-60 61-70 7i—-80
8’ 112[3]a]5]el7]8]9]0] iT2]3]al5]6]7]8]elo] 1 [2][3]4]5]6]7I8[olo]l i [2[314]5]el7[8[s[O] 1 [2[3][4]5]6]7]8[9]0] | [2[3]4]5/6|7(8I9/0(! [2i3]4i5!6(7{8]9l0
/ ¢ Mol BROWA Uy e b e e b e
7. Code any desired keyword parameters. Separate each parameter with a
: comma .
=10 =20 21-30 31-40 41-50 51—-60 6i—-70 71-80
8, 1]2}3l4]5]e}7]8]9[0] 1[2[3]a]5]6]7]8]9]0] | [2]3]4i5]6]7]8[9]0] 1 [2]3]4]5]6]7I8]9]0! 1 [2[3]4]5]6]7[8[9]0] 1 [2[3]4]5]6]7]8[9]0] 1]2]3]4]5]6]7]8]9!
[l1cALe, T ey ’ L =(CTON2I/ 00K | 0 Ly
8. Code at least one blank.
9'

Code any desired comments.

50] 51-60 61-70 71-80
LBl e 101 2 3[4al5[6l7ielslol 12341516l 7]e[el0 1 [2[3[a 15 el 7[8[8ol [[2I3 1Al el 7 [a[elol1 [2[31a] 5 [6[718 [3[0] 1 [2[3[aI5[6] 7 6 30l [2[3[4[5[6[7161S[0

i-1C f 1-20 21~30 A-40 i 4=

LLCAUC TO8 10" Ll RROMA NS L EVE L= (R10), REET.ON=1/,00K DELT. 82 RuM , . |

Positional and Keyword Parameter

There are two types of parameters that can be coded on the JOB statement:

Positional parameters, which must precede any keyword parameters and
must be coded in the following order:

accounting information
programmer 's name

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order after the positional
parameters. Any of the following keyword parameters can be coded on the
JOB statement:

CLASS

COND

MSGCLASS

MSGLEVEL

NOTIFY (MVT with TSO)
PRTY

RD

REGION (MVT only)
RESTART

ROLL (MVT only)
TIME

TYPRUN

These keyword parameters are described, after the positional parameters,
in the order listed above.

48

JCL Reference (Release 21)

>

O

Sample JOB Statements

1.
2.
3’.

4.

//ALPHA
//L0S
//MART

/7/TRY8

JOB

JOB

JOB

JoB

843,LINEE, CLASS=F,MSGLEVEL=(1, 1)

BROWNLY ,REGION=90K, TIME=(4, 30) ,MSGLEVEL=(2,0)

1863,RESTART=STEP4

Section II:

The JOB Statement 49

JOB

Assigning a Jobname

r/}/jobname JOB

You must assign a name to every job submitted for execution. The jobname
must begin in column 3 of the JOB statement and must consist of 1
through 8 alphameric and national (#, @, $) characters. The first
character must be an alphabetic or national character.

No two jobs in a multiprogramming environment should have the same
jobname.

The following names and characters should not be used as jobnames,
because they are keywords of the DISPLAY command:

CONSOLES [§)
DSNAME
JOBNAMES
SPACE
STATUS

HDo 2P

If you must assign one of these keywords as a jobname, notify the
operator, so he will be sure to enclose the jobname in parentheses when
he uses it with the DISPLAY command. For example, if you have assigned
the jobname SPACE to a job and the system operator wishes to display the
status of the job, he must issue a command stating DISPLAY (SPACE). If
the parentheses were omitted, the operator would get the amount of
available space on a particular direct access volume resulting from a
DISPLAY SPACE command.

Examples of Valid Jobnames

//RERUNA4. JOB
//7#123A JOB
//J0OBD58 JOB

50 JCL Reference (Release 21)

Accounting Information Parameter

(laccount numberl [,additional accounting information,...1l)

account number
the account number to which this job is to be charged.

additional accounting information
any other accounting information required by an installation's
accounting routines. When additional accounting information consists
of more than one item, each must be separated by a comma.

Rules for Coding

1. When accounting information is supplied, it must be coded before any
other parameter on the JOB statement.

2. The account number and each item of additional accounting
information are considered subparameters and each must be separated
by a comma.

3. When accounting information consists of more than one subparameter,
you must enclose the information in either parentheses or
apostrophes (5-8 punch), e.g., '5438,GROUP6"' or (5438,GROUP6). If
apostrophes are used, all accounting information enclosed in the
apostrophes is considered as one field.

4. If the accounting information must be continued on another
statement, enclose the accounting information in parentheses. You
may not continue on another statement any accounting information
enclosed in apostrophes.

5. The account number and other accounting information cannot exceed
142 characters, including the commas that separate the subparameters.

6. If any of the subparameters contain special characters (except
hyphens), either: (1) enclose the accounting information in
apostrophes, or (2) enclose the subparameter in apostrophes and the
accounting information in parentheses, e.g., '5438,10/08/66' or
(5438,'10/08/766'). (The enclosing apostrophes are not considered
part of the information.) If one of the special characters is an
apostrophe, code two consecutive apostrophes in its place, e.g.,
(5438, "O'"NEILL"'). If one of the special characters is an ampersand
and you are not defining a symbolic parameter, code two consecutive
ampersands in its place, e.g., '348&8241°. ‘

7. If you do not supply accounting information but do code the
programmer's name, you must code a comma preceding the programmer's
name to indicate that the accounting information parameter, which is
a positional parameter, has been omitted.

Supplying Information Parameters

Accounting information is optional unless the installation establishes
it as a requirement in a PARM field parameter of the cataloged procedure
for the input reader.

Routines that process accounting information must be supplied by the
installation. For information on how to add accounting facilities, refer
to "Handling Accounting Information™ in the Data Management for System
Programmers publication.

Section II: The JOB Statement -- Accounting Information Parameter 51

Examples of the Accounting Information Parameter
i. //730B43 JOB d548-868

Account number only; no parentheses are required.
2. //J0B44 JoB (D5u48-868,'12/8/69',WILSON)

Account number plus additional accounting information; parentheses
are required.

3. /s/J0B45 JoB (,F1659,GROUP12),GREGORY

Only additional accounting information; parentheses are required.

52 JCL Reference (Release 21)

Programmer’s Name Parameter

programmer's name

programmer's name
the name or identification of the person responsible for the job. JOB

Rules for Coding

1. If the programmer's name parameter is coded, it must follow the
accounting information parameter, or the comma that indicates its
absence, and must precede all keyword parameters.

2. The name cannot exceed 20 characters, including all special
characters.

3. If the name contains special characters, other than periods, enclose
the name in apostrophes. If the special characters include
apostrophes, each must be shown as two consecutive apostrophes.

4. If you are not required to specify a name, you need not code a comma
to indicate its absence.

When to Code the Programmer’s Name Parameter
The programmers' name parameter is optional unless the installation
establishes it as a requirement in a PARM field parameter of the
‘:j) cataloged procedure for the input reader.
Examples of the Programmer's Name Parameter
i. //APpP JOB ,C.K.DAVIS
Programmer's name, without accounting information supplied.

2. //DELTA JOB 'T.0.''NEILL'

Programmer®s name containing special characters, without accounting
information supplied. (The leading comma is optional.)

3. //7#308 JOB (846349,GROUP12) ,WALKER

Account number plus additional accounting information and
programmer's name.

Section II: The JOB Statement -- Programmer's Name Parameter 53

The CLASS Parameter

CLASS=jobclass

jobclass
assigns a job class to your job. Code any alphabetic character from
A through O, depending on the characteristics of your job and the
installation's rules for assigning a job class.

Rules for Coding

1. The jobclass is an alphabetic character from A through O.

‘Assigning a Job Class to Your Job

The CLASS keyword parameter provides a way of establishing a good
mixture of jobs requiring different system resources. A good mixture
can be established since the job class determines where a job will be
placed on the input work queue and jobs with common characteristics are
assigned to the same job class. Jobs within a job class are assigned a
priority, either in the PRTY parameter or by default. This allows jobs
within a class to be selected for processing based on their priorities.

If you do not specify the CLASS parameter, the default job class of
is assigned to the job.

THE CLASS PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities with MFT, the
CLASS parameter can be used to make a job part of a group of jobs to be
time-sliced. At system generation, a group of contiguous partitions are
selected to be used for time-slicing, and each partition is assigned at
least one job class. To make your job part of a group of jobs to be
time-sliced, specify a class that was assigned only to the partitions
selected for time-slicing. (With MVT, you use the PRTY parameter and the

DPRTY parameter to make, respectively, a job or job step part of a group
of jobs and job steps to be time-sliced.)

Examples of the CLASS Parameter
1. //SETUP JOB CLASS=C

Assign a job to job class C.
2. //JAN JOB CLASS=M,PRTY=10

Assigning a job to job class M with a priority of 10.

54 JCL Reference (Release 21)

The COND Parameter

COND=((code,operator),...)

code
a decimal number from 0 through #4095. This number is compared with
the return code issued by each job step.

operator
the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT...greater than
GE...greater than or equal to
EQ...equal to

LT...less than

LE...less than or equal to
NE...not equal to

Rules for Coding
1. Code from one through eight different return code tests.

2. When making only one return code test, you need not code the outer
parentheses.

Using the COND Parameter

‘) The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the continuation of a job on the completion of
one or more of its job steps.

The operating system determines whether a job is to be discontinued
after a given job step by comparing the return code produced by that job
step to the conditions specified with the COND parameters. A return code
is a number determined by the operating system or by the processing
program which indicates the relative "success" of the job step. The
return codes of the operating system and IBM-supplied processing
programs are fixed numbers with specific meanings. They are listed in
the publication IBM System/360 Operating System: Messages and Codes and
in the publications associated with each processing program.

Only those user processing programs written in the assembler
language, ANS COBOL, FORTRAN, or PL/I can set return codes for testing.
The user return codes are usually standardized in each installation.

For example, each step in your installation's payroll program may have
its own set of return codes. One return code for a given job step may
indicate that all payroll records were successfully processed while
another may indicate that there were faulty input records. You can set
up the COND parameter so that the job is discontinued if the return code
that indicates faulty records is produced by that job step.

Not all return codes indicate either success or failure. For
example, in the case of a compiler one return code can indicate no
errors during compilation, a second code can indicate that the minor
errors encountered are not likely to prevent link editing and execution
of the compiled program, a third code can indicate that the major errors

) encountered will probably cause further processing of the compiled
O program to fail, and a fourth code can indicate that the compilation
process has terminated abnormally. The COND parameter allows you to

Section II: The JOB Statement -- COND Parameter 55

JOB

discontinue the job if any of these return codes are produced. You may
choose to continue processing only if no errors are found or, for
debugging purposes, you may choose to continue processing even if major
errors are found.

Note: If any job step is abnormally terminated (ABEND), all subsequent
steps are bypassed unless the COND parameter of the EXEC statement is
used to prevent it. (See the section on "The EXEC Statement.") If you
want to restart the same step that terminated abnormally you can use the
restart facilities of the operating system.

If you coded COND=((50,GE), (60,LT)), it would read "if 50 is greater
than or equal to a return code, or 60 is less than a return code, I want
the remaining job steps bypassed."™ In other words, the job continues as
long as return codes range from 51 through 60. If you want to make only
one return code test, you need not code the outer parentheses. For
example, COND=(8,NE). A maximum of eight conditions can be established.

For example, if you code: COND=((5,GT), (8,EQ),(17,EQ), (19,EQ), (21,EQ),
(23,LE)) your job will continue only if the return codes are:
5,6,7,9,10,11,13,14,15,16,18,20, or 22.

The tests you specify with the COND parameter are made to the return
code, if any, produced by each step in your job. You can best take
advantage of this parameter when the return codes of each job step have
compatible meanings. For example, a return code of 4 from the ALGOL
compiler indicates that the source program was compiled and some minor
errors were found; the same return code of 4 from the linkage editor
indicates that a load module was produced, but an error which may cause
failure at execution time has been found. If you want to take a chance
and continue processing even if small errors are found, you should code
COND=(4,1LT), that is, the job will terminate if the return code of any
step is greater than 4. If you only want to continue processing if no
errors are found, you should code COND=(4,LE), that is, the job will
terminate if the return code of any step is greater than or equal to 4.
(All codes greater than 4 indicate major errors for both the ALGOL
compiler and the linkage editor.)

If the same return code has different meanings in different job
steps, or if you want to take different actions according to which job
step produced the return code, you should use the COND parameter of the
EXEC statement to set up conditions for individual job steps.

If you omit the COND parameter from the JOB statement, no return code
tests are performed throughout the job. If you want return codes tested
for a given job step, use the COND parameter of the EXEC statement for
that job step. If the COND parameter is not used in either the JOB or
the EXEC statements, no return code tests are performed and the system
will try to execute each step in the job.

If you code the COND parameter on the JOB statement and on one or
more of the job's EXEC statements, the return code tests requested on
the JOB statement have precedence over those requested on the EXEC
statements. Therefore, any return code test requested on the JOB’
statement that is satisfied causes termination of the job, even if the
return code test is not satisfied for a particular step.

Note: The COND parameter of the EXEC statement is slightly different
from the COND parameter of the JOB statement. See the section on "The
EXEC statement". Examples of using the COND parameter in both the JOB
and EXEC statements are also shown in that section.

56 JCL Reference (Release 21)

Examples of the COND Parameter
& 1. //TYPE JOB COND=(7,LT)

If 7 is less than the return code, the job is terminated. (Any
return code less than or equal to 7 allows the job to continue.)

2. //TEST JOB COND=((20,GE), (30,LT))

IF 20 is greater than or equal to the return code, or 30 is less
than the return code, the job is terminated. (Any return code of 21
through 30 allows the job to continue.)

Sec Section II: The JOB Statement -- COND Parameter 57

The MSGCLASS Parameter

MSGCLASS=output class

output class
the output class to which system messages for your job are to be
routed by the system. Code an alphabetic (A-Z) or numeric (0-9)
character depending on your installation's rules fOr assigning an
output class for system messages.

Rules for Coding

1. The output class is an alphabetic (A~Z) or numeric (0-9) character.

Assigning an Output Class to System Messages

If the MSGCLASS parameter is not coded, system messages associated with
your job are routed to the default output class specified in the PARM
field of the input reader procedure. The default for the MSGCLASS
parameter is A unless changed by your installation. (Default values and
restrictions supplied by IBM in the input reader procedure are listed in
Appendix E. For more information on the input reader procedure, consult
Data Management for System Proqrammers.) Your installation may require
that you specify a different output class other than the default value
in order to separate different types of output or to distribute the
workload of the output writers. One or more output classes is associated
with each output writer; each output writer is associated with a
specific output device. &EJJ

You can route a job's system messages and output data sets to the
same output class. You do this by coding the same output class in both
the MSGCLASS parameter on the JOB statement and the SYSOUT parameter on
the DD statements for the data sets.

Examples of the Parameter

i. //IN JOB MSGCLASS=F
Specifying an output class.

2. J//BOTLE JOB |

Specifying no output class. In this case, the output class will
default to the MSGCLASS value specified in the PARM field of the
input reader procedure. The default is A unless changed by your
installation.

3. //A1430 JOB MSGCLASS=L

/7/STEPL EXEC PGM=PRINT
//70UTPUT DD SYSOUT=L

Specifying that a job's system messages (MSGCLASS parameter) and

output data set (SYSOUT parameter) are to be routed to the same
output class.

58 JCL Reference (Release 21)

The MSGLEVEL Parameter

MSGLEVEL=(statements, messages)

statements

specifies which job control statements are to be written as output
from your job. Code:

0 - when only the JOB statement is to be written.

1 - when all input job control statements, cataloged procedure
statements, and the internal representation of procedure
statement parameters after symbolic parameter substitution are
to be written.

2 - when only input job control statements are to be written.

messages

specifies what allocation/termination messages (consisting of
allocation, disposition, and allocation recovery messages) are to be
written as output from your job. Code:

0 - when no allocation/termination messages are to be written,
unless the job abnormally terminates. If this occurs, these
messages are to be written as output.

1 - when all allocation/termination messages are to be written.

Rules for Coding

1.

2.

If the first subparameter of the MSGLEVEL parameter is omitted, you
must code a comma to indicate its absence, e.g., MSGLEVEL=(,1).

If the second subparameter of the MSGLEVEL parameter is omitted, you
need not code the parentheses, e.g., MSGLEVEL=2.

Requesting Output of Job Control Statements and Certain Messages

The MSGLEVEL keyword parameter is used to tell the job scheduler what
output from your job is to be written as part of the output listing.
You can request the following output:

The JOB statement.

All input job control statements.

All cataloged procedure statements for procedures called by any of
the job's steps and the internal representation of procedure
statement parameters after symbolic parameter substitution.

Allocation, disposition, and allocation recovery messages
(allocation/termination messages).

You need to code the MSGLEVEL parameter only when the established

default will not provide you with the desired output. The default is
established as a PARM parameter field in the cataloged procedure for the
input reader. The established default is assumed when MSGLEVEL is not
coded or when one of the subparameters is not coded. For system tasks,
the system assumes a message level of (1,0).

Section II: The JOB Statement -- MSGLEVEL Parameter 59

Examples of the MSGLEVEL Parameter

1'.

//GD40 JOB MSGLEVEL=(2,1)

Requesting that only input statements and all allocation/termination
messages be written.

//STEP JOB MSGLEVEL=(0,1)

Requesting that only the job statement and all
allocation/termination messages be written.

//SYM JOB MSGLEVEL=(1,0)

Requesting that all input control statements, procedure statements,
the internal representation of procedure statements after symbloic
parameter substitution, and no allocation/termination messages be
written.

60 = JCL Reference (Release 21)

o
7

The NOTIFY Parameter (For MVT with TSO)

NOTIFY=user identification

user identification
specifies the identification that is to be used to notify you when,
your background job is complete. Code a 1 to 7 character alphameric JOB
identification. The first character must be an alphabetic character.

Rules for Coding

1. If the NOTIFY parameter is coded for MFT, or MVT without the Time
Sharing Option (TSO), the parameter is not used, but is checked for
syntax.

2. The user identification must be the same as the one you specify when
you start the terminal session (LOGON).

What the NOTIFY Parameter Does

The NOTIFY keyword parameter indicates to the system that you are
requesting that a message be sent to your time sharing terminal when
your background job completes. Under TSO, a background job is one that
is entered through the SUBMIT command or through the input stream
(SYSIN).

What is Time Sharing

Time sharing is a method of using a computing system that allows a
number of users to execute programs concurrently and to interact with
them during execution. The Time Sharing Option (TSO) is an option of the
operating system providing conversational time sharing from remote
terminals. That is the user "converses" with the system through the use
of the terminal.

Reference:

1. For a detailed discussion of the Time Sharing Option, refer to IBM
System/360 Operating System: Time Sharing Option Guide.

Example of the NOTIFY Parameter
1. //SIGN JOB NOTIFY=POK1

When the job "SIGN" is complete, a message will be sent to the user
"POK1" informing him that his job has been completed.

Section II: The JOB Statement -~- NOTIFY Parameter 61

The PRTY Parameter
PRTY=priority @
priority

assigns a priority of 0 through 13 to your job. (The highest
priority is 13.)

Rules for Coding

1. Avoid using priority 13 since this priority is used by the system to
expedite processing of jobs in which certain errors were diagnosed.

2. In MVT, if you want a job step to have a different dispatching
priority than the job's, code the DPRTY parameter on the EXEC
statement associated with that job step.

What the PRTY Does

The PRTY keyword parameter determines the job's initiation priority
within its job class. (The job class is assigned in the CLASS parameter
on the JOB statement.) When the job is initiated, the system converts
the job's priority into a dispatching priority so that the job's tasks
can compete with other tasks for use of main storage and CPU resources.

If you do not specify the PRTY parameter, a default priority is
assumed. The default is specified as a PARM parameter field in the
cataloged procedure for the input reader.

G:“N
The PRTY Parameter and Time-Slicing e

If your installation provides time-slicing facilities in MVT, the PRTY
parameter can be used to make a job part of a group of jobs and job
steps to be time-sliced. The priorities of the time-sliced groups are
‘selected at system generation. To make your job part of a group of jobs
to be time-sliced, specify a priority number selected for time-slicing.
(To make one of the job's steps part of a group of jobs and job steps to
be time-sliced, code the DPRTY parameter on the associated EXEC
statement.)

E_xamples of the PRTY Parameter
1. 7/7#1930 JOB PRTY=8,CLASS=C

The job will have an initiation priority of 8 in the job class C.
2. //RING JOB PRTY=U

The job will have an initiation priority of 4 in the job class A.

(since the CLASS parameter is not specified, the job is assigned to
the default job class A.)

62 JCL Reference (Release 21)

The RD Parameter

RD=|R
RNC
NC
NR
R
specifies that automatic step restart is permitted.
RNC
specifies that automatic step restart is permitted and automatic
checkpoint restart is not permitted and no checkpoints can be
established.
NC
specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established.
NR

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction can
establish a checkpoint.

Rules for Coding

1. Be sure to code MSGLEVEL=(1,0), MSGLEVEL=(1,1), or MSGLEVEL=1 when
RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign each step a
unique step name.

3. Code the RD parameter on EXEC statements, instead of the JOB
statement, when you want to make different restart requests for each
job step. (If the RD parameter is coded on the JOB statement, RD
parameters coded on the job's EXEC statements are ignored.)

Using the Restart Facilities

The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities, to suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
restarted at a job step after the job abnormally terminates or after a
system failure occurs. Through the RD parameter, you can specify that
execution of a job is to be automatically restarted at the beginning of
a job step that abnormally terminates (step restart).

Execution of a job can also be automatically restarted within a job
step that abnormally terminates (checkpoint restart). In order for
checkpoint restart to occur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. When you
use the RD parameter to request suppression of CHKPT macro instruction
action, automatic checkpoint restart cannot occur.

If the RD parameter is not coded, step restart cannot occur. If the

RD parameter is not coded and the processing programs contain CHKPT
macro instructions, checkpoint restart can occur.

Section II: The JOB Statement =-- RD Parameter 63

The following three conditions must be met before automatic step or
checkpoint restart can occur: (1) the completion code returned during)
abnormal termination indicates that the step is eligible for restart, Y
(2) the operator authorizes restart, and (3) MSGLEVEL=(1,0),
MSGLEVEL=(1,1), or MSGLEVEL=1 must be coded on the JOB statement. If
these conditions are satisfied, special disposition processing is
performed before restart. If automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to steps following the restart step, are kept. All
data sets in the restart step with a status of NEW are deleted. If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept.

DEFINING RESTART

You define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the job's
processing programs do net include any CHKPT macro instructions, coding
RD=R permits execution to be resumed at the beginning of any step that
abnormally terminates. If any program does include a CHKPT macro
instruction, coding RD=R permits step restart to occur only if the step
abnormally terminates before execution of the CHKPT macro instruction;
thereafter, only checkpoint restart can occur. If you cancel the effects
of the CHKPT macro instruction before a checkpoint restart is performed,
the request for automatic step restart is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and

automatic checkpoint restart is not permitted. RD=RNC should be

specified when you want to suppress the action of all CHKPT macro ﬂr“\
instructions included in the job's processing programs and to permit WY
automatic step restart.

RD=NC: NC indicates that neither automatic step restart nor automatic
checkpoint restart is permitted. RD=NC should be specified when you want
to suppress the action of all CHKPT macro instructions included in the
job's processing programs and not to permit automatic step restart.
RD=NC has no effect on processing if CHKPT macro instructions are not
included in the programs. :

- RD=NR: NR indicates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at which
execution is to be resumed. (The RESTART parameter is coded on the JOB
statement of the resubmitted job.) RD=NR has no effect on processing if
CHKPT macro instructions are not included in the job's processing
programs.

References

1. Por detailed information on the checkpoint/restart facilities, refer
to the publication Advanced Checkpoint/Restart, Form GC28-6708. Form
C28-6708, the topic "Checkpoint and Restart™ in the publication

Supervisor Services and Macro Instructions, and "Using the Restart
Facilities™ in Appendix B of this publication.

2. For information on how to code the CHKPT macro instruction, refer to
the publication Supervisor Services and Macro Instructions.

64 JCL Reference (Release 21)

Examples of the RD Parameter

1.

®

//MAY. JOB RD=R,MSGLEVEL=(1,0)

Permits execution to be automatically restarted with the step that
abnormally terminates.

//TRY56 JOB RD=RNC,MSGLEVEL=1 JOB

Permits execution to be automatically restarted beginning with the
step that abnormally terminates and suppresses the action of CHKPT
macro instructions.

//PASS JOB RD=NR,MSGLEVEL=(1,1)

Neither automatic step nor checkpoint restart can occur, but CHKPT
macro instructions can establish checkpoints.

Section II: The JOB Statement -- RD Parameter 65

The REGION Parameter - Without Main Storage Hierarchy Support (For MVT)

REGION=valueK @

valuekK
"value" specifies the number of contiguous 1024-byte areas of main
storage to be allocated to each job step. The number can range from
one to five digits but may not exceed 16383.

Rules for Coding

1. Code an even number followed by a "K". (If you code an odd number,
the system treats it as the next highest even number. When the value
16383K is coded, the system treats it as 16384K. However, the value
16384K must not be coded on the JOB statement.)

2. Code the REGION parameter on EXEC statements, instead of the JOB
statement, ‘'when you want to specify a different region size for each
job step. (If the REGION parameter is coded on the JOB statement,
REGION parameters coded on the job's EXEC statements are ignored.)

3. If the REGION parameter is coded for MFT, the parameter is not used,
but is checked for syntax.
Requesting Main Storage

The REGION keyword parameter is used to specify how much main storage,
in contiguous bytes, is to be allocated to each job step. Code the

region parameter when you want more storage or less storage than would N
be allocated if the default region size was used; the default value is ¢
used if you do not code the REGION parameter on either the JOB or EXEC ¥

statement. The default region size is established as a PARM parameter
field in the cataloged procedure for the input reader. You can consult
the Storage Estimates publication to help you determine how much main
storage is required to process your job.

ACQUIRING ADDITIONAL MAIN STORAGE

If any of the job's steps may require use of more storage than has been
allocated, you can code the ROLL parameter and request that the system
try to provide you with additional main storage. The ROLL parameter is
described in the chapters "The ROLL Parameter" later in this section and
in Section III.

Examples of the REGION Parameter
1. //COLE JOB REGION=112K

Specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to each job step.

2. //J34 JOB REGION=70K,ROLL=(YES, YES)

The REGION parameter specifies that 70 contiguous 1024-byte areas of

main storage are to be allocated to each job step. In the ROLL

parameter, the first subparameter tells the system that any of the

job's steps may be rolled out if additional storage is required by

another job; the second subparameter tells the system that it P
should try to provide you with main storage if it is required. 'i:b

66 JCL Reference (Release 21)

The REGION Parameter - With Main Storage Hierarchy Support (For MVT, Excluding

Q M65MP)

valuekK
specifies the number of contiguous 1024-byte areas in hierarchy 0 to JOB
be allocated to each job step. If IBM 2361 Core Storage is present,
the number cannot exceed 16383.

REGION= (valueK, value,; K)

valuesK
specifies the number of contiguous 1024-byte areas in hierarchy 1 to
be allocated to each job step. If IBM 2361 Core Storage is present,
the number cannot exceed 1024 (for each Model 1) or 2048 (for each
Model 2).

Rules for coding

1. When processor storage includes hierarchies 0 and 1, the sum of
value and value; cannot exceed 16383.

2. Code even numbers. (If you code an odd number, the system treats it
as the next highest even number. When 16383K is coded, the system
treats it as 16384K. However, a sum of 16384K must not be coded on
the JOB statement.)

3. When you are requesting storage only in hierarchy 1, precede valuey
with a comma, to indicate the absence of "value".

X 4. When you are requesting storage only in hierarchy 0, you need not
‘ code the parentheses.

5. Code the REGION parameter on EXEC statements, instead of the JOB
statement, when you want to specify a different region size for each
job step. (If the REGION parameter is coded on the JOB statement,
REGION parameters coded on the job's EXEC statements are ignored.)

6. If the REGION parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

Requesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies main storage is to be allocated. With main storage hierarchy
support, storage hierarchies 0 and 1 are provided. If IBM 2361 Core
Storage, Model 1 or 2, is present in the system, processor storage is
referred to as hierarchy 0 and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core Storage is not present, a two-part region is
established in processor storage when regions are requested in two
hierarchies. The two parts are not necessarily contiguous.

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job is to be
allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size,
which is a PARM parameter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy 0. If you code the
REGION parameter and request storage only from hierarchy 1, no hierarchy
0 segment will be allocated. You can consult the Storage Estimates

Section II: The JOB Statement -- REGION Parameter 67

publication to help you determine how much main storage is required to
process your job. Then, depending on your reasons for using hierarchies,
determine how much storage is required in each.

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from hierarchy
1, an attempt is made to allocate the region from processor storage.

ACQUIRING ADDITIONAL MAIN STORAGE

If your job may require use of more main storage than has been allocated
in a particular hierarchy, you can code the ROLL parameter and request
that the system try to provide you with additional main storageé in that
hierarchy. The ROLL parameter is described in the chapters "The ROLL
Parameter" later in this section and in Section III.

Examples of the REGION Parameter
1. //MAIN JOB REGION= (80K, 30K)

Specifies that the system is to allocate 80 contiguous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. //WEEK JOB REGION=(,98K)

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 1.

O
3. //JWC JOB REGION=98K <‘~

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 0.

4. //TEST12 JOB REGION=(100K,50K) ,ROLL=(YES, YES)

The REGION parameter specifies that the system is to allocate 100
contiguous 1024-byte areas of storage in hierarchy 0 to 50.
contiguous 1024-byte areas of storage in hierarchy 1. 1In the ROLL
parameter, the first subparameter tells the system that any of the
job's steps may be rolled out if additional storage is required by
another job; the second subparameter tells the system that it
should try to provide you with additional main storage if it is
required.

68 JCL Reference (Release 21)

The RESTART Parameter

RESTART=((* [,checkidl)
stepname
stepname.procstepname

* JOB
indicates that execution is to be restarted at or within the first
job step.
stepname
specifies that execution is to be restarted at or within the named
job step.

stepname.procstepname
specifies that execution is to be restarted at or within a cataloged
procedure step. Stepname is the name of the job step that calls the
cataloged procedure, and procstepname is the name of the procedure
step. You can code * in place of stepname.procstepname if the first
job step calls a cataloged procedure and you want execution to be
restarted at or within the first procedure step.

checkid ,
is the name of the checkpoint at which execution is to be restarted.
When checkid is coded, execution is restarted within the specified
job step at the named checkpoint. If checkid is not coded, execution
is restarted at the specified job step.

Rules for Coding

(Jj 1. You need not code the parentheses if execution is to be restarted at
a job step, i.e., if you do not code the checkid subparameter.

2. If the checkpoint name contains special characters, the name must be
enclosed in apostrophes. If one of the special characters is an
apostrophe, identify it by coding two consecutive apostrophes in its
place.

3. Be sure to include the SYSCHK DD statement when execution is to be
restarted within a job step. (The SYSCHK DD statement is described
in the section titled "SYSCHK" in the chapter "Assigning a Ddname"
in Section IV of this publication.)

When to Code the RESTART Parameter

The RESTART keyword parameter is coded when you are resubmitting a job
for execution and you want to make use of the restart facilities. The
restart facilities allow a job that is resubmitted for execution to be
restarted at or within a particular job step. This reduces the time
required to execute the job since execution is resumed, not repeated.
If the RESTART parameter is not coded, execution of the entire job is
repeated.

Through the RESTART parameter, you can specify where execution is to
be restarted. Execution of a resubmitted job can be restarted at the
beginning of a step (step restart) or within a step (checkpoint
restart). In order for checkpoint restart to occur, the CHKPT macro
instruction must have been executed in the processing program during the
original execution of the job. If execution is to be restarted at a
checkpoint, the resubmitted job must include an additional DD statement.
This DD statement defines the checkpoint data set and has the ddname

Section II: The JOB Statement -- RESTART Parameter 69

SYSCHK. (For additional information on the SYSCHK DD statement, see the
section titled "SYSCHK" in the chapter "Assigning a Ddname" in Section

IV of this publication.)

RULES FOR REFERENCING GENERATION DATA SETS AND USING BACKWARD REFERENCES

Because the resubmitted job has been previously executed and because you
may not be restarting with the first job step, there are certain rules
that apply to referencing generation data sets and using backward
references. They are:

1.

If step restart is performed, generation data sets that were created
and cataloged in steps preceding the restart step must not be
referred to in the restart step or in steps following the restart
step by means of the same relative generation numbers that were used
to create them. Instead, you must refer to a generation data set by
means of its present relative generation number. For example, if the
last generation data set created and cataloged was assigned a
generation number of +2, it would be referred to as 0 in the restart
step and in steps following the restart step. In this case, the
generation data set assigned a generation number of +1 would be
referred to as -1. If generation data sets created in the restart
step were kept instead of cataloged (i.e., DISP=(NEW,CATLG,KEEP) was
coded), you can during checkpoint restart refer to these data sets
and generation data sets created and cataloged in steps preceding
the restart step by the same relative generation numbers used to
create them.

Before resubmitting a job, check all backward references to steps

that precede the restart step. Eliminate all backward references for

the following keywords: PGM and COND, on the EXEC statements, and,

SUBALLOC and VOLUME=REF=reference, on the DD statements. (A backward
reference of VOLUME=REF=reference is allowed if the referenced "
statement includes VOLUME=SER= (serial number,...).) \ -

Reference

1.

For detailed information on the checkpoint/restart facilities, refer
to the publication Advanced Checkpoint/Restart, Form GC28-6708, the
topic "Checkpoint and Restart" in the publication Supervisor
Services and Macro Instructions and "Using the Restart Facilities"
in Appendix B of this publication.

Examples of the RESTART Parameter

1.

70

//LINES JOB RESTART=COUNT

Specifies that execution is to be restarted at the job step named
COUNT .

//3aL0C5 JOB RESTART= (PROCESS, CHKPT 3)

Specifies that execution is to be restarted within the job step
named PROCESS at the checkpoint named CHKPT3. This JOR statement
must be followed by a DD statement named SYSCHK, which defines the.
data set or which an entry for the checkpoint named CHKPT3 was
written.

//WORK JOB RESTART= (¥ ,CKPT2)

Specifies that execution is to be restarted at the checkpoint named
CKPT2 in the first job step. /T:;

//CLIP5 JOB RESTART= (PAY.WEEKLY, CHECKS8)

JCL Reference (Release 21)

Specifies that execution is to be restarted within the procedure
step named WEEKLY at the checkpoint named CHECK8., PAY is the name
of the job step that calls the cataloged procedure that contains the
procedure step named WEEKLY. This JOB statement must be followed by
a DD statement named SYSCHK, which defines the data set on which an
entry for the checkpoint named CHECK8 was written.

JOB

Section II: The JOB Statement -- RESTART Parameter 71

The ROLL Parameter (For MVT)

ROLL=(x,y)
. ‘
declares whether the steps of the job may be rolled out. Code YES if
the job's steps can be rolled out; code NO if the job's steps cannot
be rolied out.
y

declares whether the steps of the job may cause rollout of another
job step. Code YES if the job"s steps can cause rollout of another
job step; code NO if the job"s steps cannot cause rollout of another
job step. YES must be coded if you want additional main storage
allocated to the job's steps when additional main storage is
required.

Rules for Coding
1. If you code the ROLL parameter, both subparameters must be specified.

2. Code the ROLL parameter on EXEC statements, instead of the JOB
statement, when you want to make different requests for each job
step. (If the ROLL parameter is coded on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.)

3. Code ROLL=(NO,YES) or ROLL=(NO,NO) if this job is a teleprocessing
job that uses the Auto Poll option. If you allow the job's steps to
be rolled out, the job cannot be restarted properly.

4. If the ROLL parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

When to Code the ROLL Parameter

The ROLL keyword parameter should be coded if any of the job's steps may
require more main storage than was requested in the REGION parameter.
When you specify in the ROLL parameter that this job can cause rollout
of other job steps, an attempt is made to allocate additional storage if
a job step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority may have to be rolled
out, i.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over
whether the job's steps can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
default established in the PARM parameter field in the cataloged
procedure for the input reader is used.

Examples of the ROLL Parameter

1. //DINTER JOB ROLL=(YES,YES),REGION=100K
Specifies that the job's steps can be rolled out and can cause
rollout of another job step if a step requires more than 100K of
main storage.

2. //TEST332 JOB ROLL=(NO,YES)
Specifies that the job's steps cannot be rolled out but can cause
rollout of another job step.) '

72 JCL Reference (Release 21)

The TIME Parameter

TIME= § (minutes,seconds)
1440
minutes
specifies the maximum number of minutes the job can use the CPU.
The number of minutes must be less than 1440 (24 hours).

seconds
specifies the maximum number of seconds beyond the specified number
of minutes the job can use the CPU, or, if no minutes are specified,
the maximum number of seconds the job can use the CPU. The number
of seconds must be less than 60.

1440
specifies that the job is not to be timed. Code 1440 if the job may
require use of the CPU for 24 hours or more or if any of the job's
steps should be allowed to remain in a wait state for more than the
established time limit.

Rules for Coding

1. If the CPU time limit is given in minutes only, you need not code
the parentheses.

2. If the CPU time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. You can also code the TIME parameter on EXEC statements to indicate
how long each step can use the CPU.

Specifying a Time Limit for the Job

The TIME keyword parameter can be used to specify the maximum amount of
time a job may use the CPU. By coding the TIME parameter, you can limit
the CPU time wasted by a step that. goes into a loop. Normally, a job
that exceeds the specified time limit is terminated. However, if the
System Management Facilities option is included in the system and a user
exit routine is provided, this routine can extend the time limit so that
processing can continue. When the TIME parameter is not coded on the JOB
statement, there is no CPU time limit assigned to the job; however, each
job step is still timed.

TIME LIMIT FOR WAIT STATES

Since a job step can go into an extremely long wait state, the time a
job step may remain in a wait state is limited. If the System Management
Facilities option is included in the system, the installation determines
this time limit. In this case, a job step remaining in a wait state for
more than the established time limit causes termination of the job
unless a user-provided exit routine extends the wait-state time limit
for that step. If the System Management Facilities option is not
included, the system automatically provides a 30-minute time limit for
wait states; a job step remaining in a wait state for more than 30
consecutive minutes causes termination of the job.

Section II: The JOB Statement -- TIME Parameter 73

How to Eliminate Timing

Certain applications require that a job use the CPU for 24 hours or @:jp
more. In these cases you must eliminate job and step timing by coding >
TIME=1440. You should also code TIME=1440 when any of the job's steps

should be allowed to remain in a wait state for more than the

established time limit.

If your system includes the System Management Facilities (SMF)
feature and you code TIME=1440, SMF termination messages will indicate
that no CPU time was used; messages indicating the time the job started
and stopped will not, however, be affected.

Reference

1. A discussion of the System Management Facilities option is contained
in the Introduction. Information on user exit routines to be used
with the System Management Facilities option is contained in the
System Management Facilities.

Exampies of the TIME Parameter

1. //SEED JOB TIME(12,10)

Specifies that the maximum amount of time the job can use the CPU is
12 minutes 10 seconds.

2. J//TYPE41l JOB TIME=(,30)

Specifies that the maximum amount of time the job can use the CPU is

30 seconds. QZJD

3. J//FORMS JOB TIME=5

,Specifies that the maximum amount of time the job can use the CPU is
5 minutes.

4. //7RAINCK JOB TIME=1440
Specifies that the job is not to be timed. Therefore, the job may

use the CPU and may remain in a wait state for an unspecified period
of time.

74 JCL Reference (Release 21)

The TYPRUN Parameter (For MFT, MVT)

TYPRUN=HOLD

HOLD

specifies that the job is to be held in the job queue until the

operator issues a RELEASE command. JOB
Holding a Job

Code TYPRUN=HOLD when the job should be held for execution until some
event has occurred. The operator must be informed of what it is you are
waiting for. When the event has occurred, the operator issues a RELEASE
command, thereby allowing the job to be selected for processing.

Example of the TYPRUN Parameter

Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE
uses a program that adds and deletes members of a library; the job LIST
uses a program that lists the members of a library. In order to get an
up-to-date listing of the library, UPDATE must be executed before LIST.
This is accomplished by coding TYPRUN=HOLD on the JOB statement for the
job named LIST. If a DISPLAY JOBNAMES command is issued by you or the
operator, the operator is notified on the console when UPDATE has
completed processing; he issues a RELEASE command for LIST. The job LIST
can then be selected for execution.

Section II: The JOB Statement -~ TYPRUN Parameter 75

76 JCL Reference (Release 21)

Section Ill: The EXEC Statement

The EXEC statement is the first statement of each job step and cataloged
procedure step. The EXEC statement is followed by DD statements and data
that pertain to the step. The principal function of the EXEC statement

is to identify the program to be executed or the cataloged procedure to
be called. All other parameters in the operand field are optional. A job

cannot contain more than 255 job steps and procedure steps. EXEC

EXEC Statement Format

r;/stepname EXEC operands comments

The EXEC statement consists of the characters //, in columns 1 and 2,
and four fields -- the name, operation (EXEC), operand, and comments
fields.

Rules for Coding
Follow the order listed below when coding the EXEC statement:

1. Code the characters // in columns 1 and 2.

Y /T P IR AP ATSPUPIrE AR TP
|

I
u T T

...l..nA!.‘.AI....I....I....!....I.A+.
t

2. Optionally, you may assign a name to the job step; if you do, code
the stepname starting in column 3.

AN £ P N B R RS DS T AP AP A U LU W S

— T

3. Follow the stepname or // with at least one blank.

4. Code EXEC.

a4
STEAN EXEC vyl L e e e e e e

5. Follow EXEC with at least one blank.

6. Identify the program to be executed (PGM), or the cataloged
procedure to be called (PROC). (When you are calling a procedure,
you may omit PROC=.)

Section III: The EXEC Statement 77

=10 71-80
LIZises e 18 1850]1 2[3[a[5[67[8]8]0]]2[3a[5Tel7[8o[o] 1 [2]3[als[6[7IalSIo] i T2[3]4lsIel7I8IsIol 1121314156 7]8]S0l T [2[3[4l5]e[7I8[o]0] t [2[3[4I56[7I8[S [0

S7&ls EXEC P =VERTEY, o s Lo bbb bbb e e by

7. Code any desired keyword parameters. Separate each parameter with a
comma .

1-20 2130 3i-40 41=-50 51-60 6i-70 71-80
8 1[2[314]5]e(7]e]olol12[3[4ls]6T7I8I0[0] I [2]3]4]5]6]7]8[o]o] iT2]3]4]5]6]7I8IS[o[1]2]3]4[5]6[718]9]0] I [2]3]4]5[6]7I8IS[0] t [2[3]4[5]6]7[8[9]0

1(S T4 =VERIF =L 843, 11+M’ = 7.

8. Code at least one blank.

9. Code any desired comments.

1-i0 11~-20 2!-30 31-40 41~50 5i-¢0 61-70 Ti-80
gl aester e ol 21314Is[el7]es[ol1[2[3[4[S[e[7 [BIS[ol 1 [2[BIAI5 6l 718 8]0l [2[3]4]5 e[7 8IS0l [2I3[AI56l 7I8 IS I0l 1 [2[3[aIslel7[8[e[o] 1 [2[3[a [5]6] 7[8[SIO)

W STERL EXEC, PoM=NERZEY ,PARM=" 1L 843, 1T+M), ACCTDINTER BOB, CALCK OUTPUT o |\ vy Lo]

Positional and Keyword Parameter

There are two types of parameters that can be coded on the EXEC
statement:

Positional parameters must precede any keyword parameters. One of the f”ﬁ
following two parameters is coded: '
PGM
PROC

These positional parameters are described in the following pages.

Keyword parameters may be coded in any order after the first parameter.
Any of the following keyword parameters can be coded on the EXEC
statement:

ACCT

COND

DPRTY (MVT only)
PARM

RD

REGION (MVT only)
ROLL (MVT only)
TIME

These keyword parameters are described, after the positional parameters,
alphabetically.

Sample EXEC Statements

1. //STEP4 EXEC PGM=DRBC,PARM='3018,NO’'

2. /7 EXEC PGM=ENTRY,REGION=80K,TIME=(2,30),DPRTY=(11,11) /

3. //FOR EXEC PROC=PEU489,TIME=4 <(:D
4. //PICY EXEC SAL83,ACCT.STEP1=123019

78 JCL Reference (Release 21)

\

Assigning a Stepname

f,//stepname EXEC

The stepname identifies a job step within a job. The stepname is
optional. You must assign a stepname if you wish to do any of the
following:

1. Make backward references to the step.

2. Override parameters on an EXEC statement or DD statement in a
cataloged procedure step, and add DD statements to a cataloged
procedure step.

3. Perform a step or checkpoint restart at or within the step.

The stepname must begin in column 3 of the EXEC statement and must

consist of 1 through 8 alphameric and national (a, #, $) characters.

The first character must be an alphabetic or national character. Each
stepname within a job or a cataloged procedure must be unique.

Examples of Valid Stepnames
1. //STEP4 EXEC

2. /ralocC EXEC

3. //PRINT EXEC

Section III: The EXEC Statement -~ Assigning a Stepname 79

EXEC

The PGM Parameter

PGM=(program name
*.stepname .ddname
*,stepname.procstepname.ddname

program name
is the member name or alias of the program to be executed. The
program must be a member of a partitioned data set that resides in a
temporary, system, or private library.

*.stepname.ddname
is a backward reference to a DD statement that defines, as a member
of a partitioned data set, the program to be executed; stepname is
the name of the step in which the DD statement appears. Usually,
this form is used when a previous job step creates a temporary
partitioned data set to store one program until the program is
required.

* .stepname.procstepname.ddname
is a backward reference to a DD statement within a cataloged
procedure step that defines, as a member of a partitioned data set,
the program to be executed. Stepname is the name of the step that
calls the procedure, and procstepname is the name of the procedure
step that contains the DD statement. Usually, this form is used
when a cataloged procedure step, called by an earlier job step in
the job, creates a temporary partitioned data set to store a program
until the program is required.

identifying the Program to be Executed (,_
9

All programs that can be executed are members of partitioned data sets
(libraries). The library that contains the program may be a temporary
library, the system library, or a private library. In order to execute
a program contained in any of these libraries, you must code the PGM
parameter as the first parameter on the EXEC statement.

TEMPORARY LIBRARY

If in a job you want to assemble, linkage edit, and then execute a
program, you must make the output of the linkage editor a member of a
partitioned data set. This is accomplished by creating a temporary
library. A temporary library is a partitioned data set created in the
job to store a program, as a member of the data set, unitl it is
executed in a following job step. When the program is required, you may
refer back to the DD statement that defines the temporary library and
the member by coding PGM=*.stepname.ddname or
PGM=#*.stepname.procstepname.ddname. You may also request use of a
program that is a member of a temporary library by coding PGM=program
name and including a DD statement name JOBLIB or STEPLIB that defines
the temporary library. (Information on the JOBLIB and STEPLIB DD
statements can be found in the chapter "Assigning a Ddname" in Section
IV. of this publication.)

If you want to keep this program available for use by other jobs,
you must make the program a member of the system library or a private
library.

i

80 JCL Reference (Release 21)

SYSTEM LIBRARY

The system library is a partitioned data set named SYS1.LINKLIB and it
contains frequently used programs, as well as programs used by the
system. You request the use of a program that is a member of the system
library simply by coding PGM=program name. The system automatically
looks in SYS1.LINKLIB for a member with the corresponding name.

A program that resides in the system library may also be executed by

coding PGM=#%.stepname.ddname or PGM=%*.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as

a member of the system library. EXEC

PRIVATE LIBRARY

A private library is a partitioned data set that contains programs not
used frequently enough to warrant their inclusion in the system library.
You request use of a program that is a member of a private library by
coding PGM=program name and including a DD statement named JOBLIB or
STEPLIB that defines the private library. The system automatically
looks in the private library and, if the program is not found there, in
SYS1.LINKLIB for a member with the corresponding name. (Information on
the JOBLIB and STEPLIB DD statements can be found in the sections titled
"JOBLIB" and "STEPLIB" in the chapter "Assigning a Ddname" in Section IV
of this publication.)

A program that resides in the private library may also be executed by
coding PGM=#*.stepname.ddname or PGM=#.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as
a member of a private library.

THE IEFBR14 PROGRAM

If space allocation and disposition processing requests are contained in
your job control statements, you can satify these requests prior to
executing your program. To do this, substitute IEFBR14 for your
program's name. This also allows you to check the accuracy of your
control statements. (If you created data set when using this program,
the data set's status will be old when you execute your own program.)

Examples of the PGM Parameter
1. /7 STEP 1 EXEC PGM=TABULATE

Specifies that the program named TABULATE is a member of
SYS1.LINKLIB.

2. //J0OB8 JOB MSGLEVEL=(2,0)
//JOBLIB DD DDSNAME=DEPT12.LIB4, DISP=(OLD, PASS)
- //STEP1 EXEC PGM=USCAN

Specifies that the system is to look for a program named USCAN in a
private library named DEPT12.LIB4, and, if not found there, the
system is to look in the system library.

Section III: The EXEC Statement -- PGM Parameter 81

3. //CREATE EXEC PGM=IEWL,REGION=96K v
//SYSLMOD DD DSNAME= £ EPARTDS (PROG), UNIT=2311,DISP=(MOD,PASS), X (
SPACE= (1024, (50,20,1)) !
//EXECUTE EXEC PGM=+%.,CREATE. SYSLMOD

The stepname must begin in column 3 of the EXEC statement and must
consist of 1 through 8 alphameric and national (3, #, 3$) characters.
The first character must be an alphabetic or national character.
Each stepname within a job or a cataloged procedure must be unique.

4. //STEP2 EXEC PGM=UPDT
//DDA DD DSNAME=SYS1.LINKLIB(P40) ,DISP=0LD
//STEP3 EXEC PGM=*.STEP2.DDA

Use of backward reference to a DD statement that defines the system
library. The program named P40 is stored as a member of
SYS1.LINKLIB and is executed in the step named STEP3.

5. //CHECK EXEC PGM=I1EFBR14
Executing the program named IEFBR1L zallows you to satisfy space
allocation and disposition processing requests prior to executing

_your program. The remaining job control statements in the job are
‘talso checked for syntax.

82 JCL Reference (Release 21)

The PROC Parameter

PROC=procedure name
procedure name

procedure name .
the member name (or alias) of the cataloged procedure or the name of
the in-stream procedure to be called.

ldentifying the Cataloged or In-Stream Procedure to be Called

A cataloged procedure is a set of job control statements that has been
placed in a special partitioned data set referred to as the procedure
library. (The IBM-supplied procedure library is named SYS1.PROCLIB; at
particular installations, there may be additional procedure libraries,
which would have different names.) Each cataloged procedure is a member
of this data set. An in-stream procedure is a set of job control
statements, beginning with a PROC statement and ending with a PEND
statement, that have been placed in the input stream. An in-stream
procedure can be executed any number of times during the job in which it
appears. Both cataloged and in-stream procedures consist of one or more
procedure steps; each procedure step consists of an EXEC statement,
which identifies the program to be executed, and DD statements, which
define the data set requirements of the step. :

In order to use a cataloged or in-stream procedure, you must code the
PROC statement as the first parameter on the EXEC statement, instead of
the PGM parameter, and give the name of the cataloged procedure. You
can, instead, code only the cataloged or in-stream procedure name; the
job scheduler will recognize that it is a procedure name since it must
appear first in the operand field.

C

When the EXEC statement specifies that a cataloged or in-stream
procedure is to be called, subsequent parameters in the operand field
can be used to override EXEC statement parameters in the procedure.
Also, any DD statements that follow the EXEC statement are either
overring DD statement or DD statements that are to be added to the
cataloged or in-stream procedure for the duration of the job step.
Overriding or adding to cataloged procedures is discussed in the chapter
"Using Cataloged and In-stream Procedures"™ in Appendix A of this
publication.

Examples of the PROC Parameter
1. //SP3 EXEC PROC=PAYWKRS

N

Specifies that the cataloged or in-stream procedure named PAYWKRS is
to be called.

2. //BK3 EXEC OPERATE
Specifies that the cataloged or in-stream procedure named OPERATE is

to be called. This specification has the same effect as coding
PROC=0OPERATE.

Section III: The EXEC Statement ~-- PROC Parameter 83

The ACCT Parameter

ACCT=(accounting information,...)

accounting information

includes one or more subparameters of accounting information to be
passed to the installation's accounting routines by the system.

Rules for Coding

1&'

2.

If the accounting information includes several subparameters, each
must be separated by a comma.

If the accounting information consists of only one subparameter, you
need not code the parentheses.

The maximum number of characters of accounting information, plus the
commas that separate the subparameters, is 142.

If a subparameter contains special characters (other than a hyphen),
enclose the subparameter in apostrophes. The apostrophes are not
considered part of the information. If one of the special characters
is an apostrophe, code two consecutive apostrophes in its place. The
same is true for the special character &. In order to include §
within the apostrophes, code &&.

Providing Accounting Information for a Job Step or Procedure Step

Code the ACCT keyword parameter when you want to provide accounting
information for a step. If the job step calls a cataloged procedure, the
ACCT parameter overrides any ACCT parameters coded in the procedure
steps and pertains to all the procedure steps. If different steps in the
procedure require different accounting information, code
ACCT.procstepname= (accounting information,...) for each step that
requires accounting information. Accounting information will then
pertain only to the named procedure step.

Examples of the ACCT Parameter

1.

84

//STEP1 EXEC PGM=JP5,ACCT= (LOCATIONS, "CHGE+3"')

Specifies that this accounting information pertains to this job step.
//STP3 EXEC LOOKUP,ACCT=("'/83468")

Specifies that this information pertains to this job step. Since
this step calls a cataloged procedure, the accounting information

pertains to all the steps in the procedure.

//STP4 EXEC BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
// ACCT.BILL="121+366"

Specifies that different accounting information pertains to each of
the named procedure steps (PAID, LATE, and BILL).

JCL Reference (Release 21)

N

R i ST

The COND Parameter

i
‘:ET COND=(| (code,operator) 1o+« [,1]EVEN])
(code,operator,stepname) ONLY
; (code,operator,stepname. procstepname) . g

code
a decimal number from 0 through 4095. This number is compared with
the return code issued by all previous steps or a specific step.

operator
the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT...greater than
GE...greater than or equal to
EQ...equal to

LT...less than

LE...less than or equal to
NE...not equal to

stepname
the name of a preceding job step that issued the return code to be
tested.

stepname.procstepname
the name of a procedure step "procstepname" that issued the return
code to be tested; the procedure step is part of a procedure that
was called by an earlier job step named "stepname."

EVEN
w specifies that the job step is to be executed even if one or more of
the preceding job steps have abnormally terminated. If the current
job step specifies that return code tests are to be made and if any
of the tests are satisfied, this job step is bypassed. Do not code
EVEN when ONLY is coded.

ONLY
specifies that the job step is to be executed only if one or more of
the preceding job steps have abnormally terminated. If the current
job step specifies that return code tests arxe to be made and if any
of the tests are satisfied, this job step is bypassed. Do not code
ONLY when EVEN is coded.

Rules for Coding

1. When neither EVEN nor ONLY is coded, you can make as many as eight
tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. When either EVEN or ONLY
is coded, you can make as many as seven tests on return codes.

2. If you want only one test made, you need not code the outer
parentheses.

3. If you code only EVEN or ONLY, you need not enclose it in
parentheses.

4. If you want each return code test to be made on the return code
w .issued by every preceding step, do not code a stepname.

Section III: The EXEC Statement —~- COND Parameter 85

5. The EVEN or ONLY subparameter can appear before, between, or after
return code tests.

Using the COND Parameter

The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the execution of a job step on the successful
completion of one or more preceding job steps. When the COND parameter
is coded on the JOB statement, any return code test that is satisfied
causes all remaining job steps to be bypassed. If, instead, you want a
particular job step to be bypassed when a return code test is satisfied,
code the COND parameter on the EXEC statement. Besides allowing you to
specify the conditions for bypassing a job step, the COND parameter
allows you to specify the condition for executing a job step.

The compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language, ANS
COBOL, FORTRAN, or PL/I, you can use the COND parameter to test return
codes issued by .your programs.

BYPASSING A JOB STEP

The return code tests specified in the COND parameter determine whether
a job step is to be bypassed. Each return code test consists of a code,
an operator, and, optionally, a stepname. The operator indicates the
mathematical relationship between the code specified on the EXEC
statement and the code returned by a completed job step. The operator or
operators are compared with the return code or codes and if any of the
relationships are true, the job step is bypassed.

) If the return code test includes a stepname, the test is made using

the return code issued by the named step. If the named step was not
executed, the request for a test is ignored. If the return code test
does not include a stepname, the test is made using the return code
issued by every preceding job step that completed normally. To test in a
later job step the return code issued by a cataloged procedure step,
specify both the name of the job step that called the procedure and the
procedure stepname, i.e., stepname.procstepname.

EXECUTING A JOB STEP

Abnormal termination of a job step normally causes subsequent steps to
be bypassed and the job to be terminated. By means of the COND
parameter, you can specify the condition for executing a job step after
one or more of the preceding job steps have abnormally terminated. For
the COND parameter, a job step is considered to abnormally terminate if
a failure occurs within the user's program once it has received control.
(If, during scheduling, a job step is not scheduled for execution
because of failures such as job control language errors or inability to
allocate space, the remainder of the job steps are bypassed, whether or
not a condition for executing a later job step was specified.)

The condition for executing a job step after one or more of the
preceding job steps have abnormally terminated is either EVEN or ONLY.
EVEN causes the step to be executed even if one or more of the preceding
job steps have abnormally terminated; ONLY causes the step to be
executed only if one or more of the preceding job steps have abnormally
terminated. When a job step abnormally terminates, the COND parameter on
the EXEC statement of the next step is scanned for the EVEN or ONLY
subparameter. If neither is specified, the next job step is bypassed and

86 JCL Reference (Release 21)

the EXEC statement of the following step is scanned for EVEN or ONLY. If
EVEN or ONLY is specified, return code tests, if any, are made on all
previous steps specified that did not abnormally terminate. The step is
bypassed if any one of these tests is satisfied, or if one of the
previous job steps abended because it exceeded the time limit for the
job. Otherwise, the job step is executed.

Caution: When a job step that contains the EVEN or ONLY subparameter
refers to a data set that was to be created or cataloged in a preceding
step, the data set (1) will not exist if the step creating it was
bypassed, or (2) may be imcomplete if the step creating it abnormally
terminated. Also, if the job step refers the system to an earlier job

step for volume and unit information, this information is not available EXEC
if the earlier job step was bypassed.

WHEN YOU CALL A CATALOGED PROCEDURE

The COND parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all COND parameters in the procedure or only certain
COND parameters. To override all COND parameters, code the COND
parameter on the EXEC statement that calls the procedure. This
establishes one set of return code tests and the EVEN or ONLY
subparameter for all steps in the procedure. To override only certain
COND parameters, code, on the EXEC statement that calls the procedure,
COND.procstepname for each procedure step that you want to override.
Return code tests and the EVEN or ONLY subparameter will then pertain
only to the named procedure step. When the condition parameter appears
on both JOB and EXEC statements, the conditions on the JOB card override
those on the EXEC.

Examples of the COND Parameter
1. //STEP6 EXEC PGM=BAB,CON=(4,GT,STEP3)

If 4 is greater than the return code issued by STEP3, this step is
bypassed. (A return code of 4 or greater allows this step to be
executed.) If STEP3 was not executed, however, the request for a
test is ignored. Since neither EVEN nor ONLY is specified, this job
step is automatically bypassed if a preceding step abnormally
terminates.

2. //TEST2 EXEC PGM=BACK,COND=((16,GE), (90,LE, STEP1) ,ONLY)

If 16 is greater than or equal to the return code issued by any of
the preceding job steps or if 90 is less than or equal to the return
code issued by STEP1, this step is bypassed. If none of the tests
are satisfied (any return code of 17 through 89 does not satisfy the
tests) and a preceding job step has abnormally terminated, this step
is executed because ONLY is coded..

3. k//PRCH EXEC PGM=SPE,COND=(12,EQ, STEP 4. LOOKUP)
If 12 is equal to the return code issued by the procedure step named
LOOKUP, the job step is bypassed. Since neither EVEN nor ONLY is

specified, this job step would be automatically bypassed if a
preceding step abnormally terminated.

Section III: The EXEC Statement -- COND Parameter 87

4. //STP4 EXEC BILLING, COND.PAID= (EVEN, (20,LT)), X
/7 COND.LATE=(60,GT,FIND) ,COND.BILL=((20,GE), (30,LT,CHGE))

Specifies that different return code tests pertain to each of the @::D
named cataloged or in-stream procedure steps (PAID, IATE, and BILL). ‘

If the return code test specified for the procedure step named PAID

is not satisfied, the step is executed even if a preceding step

abnormally terminated.

88 JCL Reference (Release 21)

C

The DRPTY Parameter (For MVT)

DPRTY= (valuel, value2)

valuel
a number from 0 through 15. If you do not assign a number, a value
of 0 is assumed.

value2
a number from 0 through 15. If you do not assign a number, a value

of 11 is assumed. "EXEC

Rules for Coding

1. Avoid assigning a number of 15 to valuel. This number is used for
certain system tasks.

2. If you omit walue2, you need not code the parentheses.

3. If you omit wvaluel, you must code a comma preceding value2 to
indicate the absence of valuel.

4. If the DPRTY parameter is coded for MFT, the parameter is not used,
but is checked for syntax.

Assigning a Dispatching Priority

. The DPRTY parameter is used to assign a dispatching priority to a job

step. Dispatching priority determines in what order tasks will use main

storage and CPU resources. If you do not code the DPRTY parameter, the N
job step is assigned the priority assigned to the job either on the JOB

statement (the PRTY parameter) or by default.

Valuel of the DPRTY parameter has the same meaning as the value you
assign in the PRTY parameter on the JOB statement. That is, if you code
PRTY=10 on the JOB statement and DPRTY=10 on the EXEC statement, the job
and step priority are the same. Also, in this case the job and step have
the same dispatching priority. This is because the system converts the
number 10 to an internal priority and then adds 11 to the internal
priority to form the dispatching priority (11 is always the number added
to the job's internal priority; 11 is the number added to the job step's
internal priority when value2 of the DPRTY parameter is omitted).

If you code value2 of the DPRTY parameter, the system adds that value
to the internal priority to form the dispatching priority. (The internal
priority is formed by the system by converting the value assigned to
valuel in the DPRTY parameter.)

When you want the job step to have a different dispatching priority
than the job, you code the DPRTY parameter and either raise or lower the
values, depending on whether the step is to have a higher or lower
priority than the job.

Section III: The EXEC Statement -- DPRTY Parameter 89

THE DPRTY PARAMETER AND TIME-SLICING

™
If your installation provides time-slicing facilities in a system with QEJﬁ
MVT, the DPRTY param