File No. $360-33 (0S) |
order No. Gc28-6543-8 | 08

Systems Reference Library

0S Sort/Merge Program
Program Number 360S-SM-023

0S-Release 21

This publication describes the use of the 0S
Sort/Merge Program. It discusses:

Program capabilities.

Sorting and merging techniques.
Sort/merge program control statements.
Intermediate storage requirements.
Job control language requirements.
Program initiation.

Program modification.

Efficient program use.

Standard operating system collating
sequence.

e Sort/merge program messages.

The program has generalized sorting and merging
capabilities that can be tailored to the needs of
a particular installation and application.

Ninth Edition (February, 1973)

This is a major revision of, and obsoletes, GC28-6543-7. The
changes, which have been made principally for purposes of
clarification, are indicated by a vertical line to the left
of the change.

This edition applies to Release 21 and subsequent releases
of the IBM Operating System.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to

your IBM representative or to the IBM branch office serving
your locality.

©Copyright International Business Machines Corporation 1965, 1966, 1967, 1968, 1970, 1972, 1973

~z

This publication is a guide for users of
the System/360 Operating System Sort/Merge
program. It contains a general description
of the program and specific information
about control statement formats, program
operation, the inclusion of user-written
routines, efficient use of the program, and
program generated messages. Merging
techniques used by the program are briefly
described. General information about basic
sorting and merging methods is contained in
the IBM publication Sorting Techniques,
Order No. GC20-1639.

ORGANIZATION AND USE OF THIS PUBLICATION

If you want to set up a simple sort or
merge quickly, fold out the chart in
Appendix A at the back of the bock and
refer to Section 2 for details as you
follow the chart. Eventually, however, you
should plan to read the entire publication,
which is organized as follows:

Section 1: Sort/Merge Program -- This

section describes sorting and merging
specifications, control fields, sorting and
merging techniques used by the program, and
error correction facilities.

Section 2: How to Use Sort/Merge -- This

section is divided into four main topics:
"Defining the Sort oxr Merge" which
describes the format and use of sort/merge
control statements and contains a number of
complete sorting and merging examples;
"Determining Intermediate Storage
Requirements" which describes how to
calculate the amount of intermediate
storage for a given application; ®"Required
Job Control Language Statements®™ which
describes the JOB, EXEC, and DD statements
necessary for sort/merge execution and
contains a number of complete JCI and
sort/merge statement examples; and
"Invoking the Sort/Merge Program" which
describes initiating sort/merge via the
system input stream and via a macro
instruction in another program.

Section 3: Program Modification -- This

section describes sort/merge program exits
and the requirements for user-written
routines that use them. Users who do not

Preface

include their own routines to modify
records or handle errors during sort/merge
program execution can skip this section.

Section #4: Efficient Program Use -- This
section describes the factors that
contribute to efficient use of the
sort/merge program.

Appendixes -- These sections contain a flow
chart summary of how to use the sort/merge
program, a summary of considerations for
MVT users, the standard operating system
collating system, and sort/merge messages.

PREREQUISITE PUBLICATIONS

0S Introduction, Order No. GC28-6534

SUGGESTED READING

0S Sort/Merge Timing Estimates, Order
No. GC28-6662 for information about
sorting speeds with a variety of work
devices, input data set sizes, main

storage sizes, blocking factors, etc.

0S Supervisor Services and Macro
Instructions, Order No. GC28-6646 and
0S Data Management Macro Instructions,
Order No. GC26-3794 for descriptions of
linkage conventions, program and task
management, data organization, and
access features, and the use of macro
instructions.

0S Job Control Lanquage Reference, Order
No. GC 28-6704 for a reference to job
control language statements.

0S Advanced Checkpoint/Restart Planning
Guide, Order No. GC28-6708.

The following additional publications
are referred to in the text:

0S Loader & Linkage Editor, Order No.
GC28-6538

0S Storage Estimates, Order No.
"GC28-6551

0S bData Management for Systems

Programmers, Order No. GC28-6550
0S Sysgen, Order No. GC28-6554.

INTRODUCTION o . .
Relationship to the Operatlng System
Minimum Machine Requirements
Main Storage Requirements
Determining Region Size
Intermediate Storage Requirements
Operating System Options

s & & 4 s s 0

SECTION 1: SORT/MERGE PROGRAM
Control Fields . . « o« « ¢ & &
Sort Requirements . « « ¢ « o o

Merge Requirements
Sorting Technique
Sequence Distribution Techniques .
Tape Techniques « « .
Direct Access Techniques
Forcing a Technique
Error Correction Facilities . . .
I/0 EXYOXS « o« o o = « « . .
Exceeding Intermediate Storage
CapacCity o o ¢ o o o o o o o o o o

¢ o

o & & o s ¢ 0 0
o o

SECTION 2: HOW TO USE THE SORT/MERGE
PROGRAM e o o o o e o o
Defining the Sort or Merge « «
Control Statement Format
Continuation Cards
Sort Control Statement
Parameters . .« .« o o o o o o o o o
Options e e e e o =
SORT Statement Examples « s e e .
Merge Control Statement
Parameters- . - e e e .
MERGE Statement Examples « e e .
Record Control Statement
Parameters - . .
Defining Fixed- Length Records .- .
Defining Variable-Length Records
RECORD Statement Examples . . .
MODS Control Statement .
Parameters . . . ¢« o« ¢ o o o o
MODS Statement Examples
END Control Statement« .
Control Statement Compatlblllty - .
Summary of Sort/Merge Control
Statements . « ¢ ¢ ¢ . 4 ¢ ¢ e o . .
Sort/Merge Control Statement Examples
Example 1 - Simple Sort . . .
Example 2 -- Simple Merge
Example 3 -- Sorting With
Modification Routines
Example 4 - Merging With
Modification Routines
Example 5 - Sort« ¢« ¢ o < .
Example 6 = SOrt « « « o« « « o « &
Example 7 - Sort+ 4 < . .
Determining Intermediate Storage
Requirements « « « o« « « « o « o o o« =
Intermediate Storage Devices
Intermediate Storage Space
Requirements . . o« <« ¢ ¢ o o « & o .
Tape Intermediate Storage

e e e e e =
-
-
e o e o o o
.

15

43
44

44
44

45
45

Contents

2311, 2301, and 2314 (Balanced
Technique) Intermediate Storage .
Intermediate Storage Assignment
Example
2314 (Crisscross Technique)
Intermediate Storage
Intermediate Storage Assignment
Formulas -- Summary
Nunber of Tapes Required for
Intermediate Storage (n)
Total Number of Tracks Required for
Direct Access Intermediate Storage .
Job Control Language for Sort/Merge .

e e o e e e o o @

JOB Statement

EXEC Statement

PARM Field Options . . « « « « .+ .

DD Statements

Required DD Statement Parameters . .
SORTIN DD Statement . . .
SORTINO1 -- SORTIN16 LD Statements
SORTWKO1 -- SORTWK32 DD Statements
SORTOUT LD Statement
SORTMODS DD Statement
SORTCKPT DD Statement

Job Control Language Statements for
Sort/Merge -- Summary . .« « o « o + =
JCL and Sort/Merge Statement Examples

e ® e, e e o

Example 1 -- Sort
Example 2 -- Sort < . .
Example 3 -- Merge« . .
Example 4 -- Sort < . .
Example 5 -- Sort < < .
Example 6 —— Sort . . . « ¢ o o+ .
Example 7 -- Sort
Example 8 -- Sort
Example 9 -- Merge
Example 10 -- Simple Merge . -
Example 11 -- Sort
Example 12 -- Sort -

Initiating Sort/Merge
Using the System Input Stream
Cataloged Procedure SORT . .
Cataloged Procedure SCRTD .
Using ATTACH, LINK or XCTL . . .
Supplying the Needed LD Statement
Passing Parameters to the Sort . .
Tape Sorting « « ¢« o o ¢ o o o o« .
Disk Sorting <« . . .
Considerations When Using XCTL .
Example 1 ¢ « ¢ ¢« « « .
Example 2 . . . ¢ ¢ . 4 4« o e
Further Considerations When Using
ATTACH, LINK, or XCTL
Completion Codes . o« « < ¢ o & « o

-
-
-
-
. o
-
-
-

-
-
-
-
-
-
. o
-
.
S

L T S)

SECTION 3: PROGRAM MODIFICATION
Program Description
Cefinition Phase
Optimization Phase
Equals Module
Extract Module
Sort Phase . « ¢ ¢ ¢ o o o o« o o =

D T 'Y
L Y S Y

L R Y SR B T)

ue
46
47

48

Intermediate Merge Phase 85
Final Merge Phase « « . . . 86
General Information 86
Efficiency Considerations 86
Bypassing the Linkage Editor 87

Operating Considerations 88
Routines in the System Input Stream . 89
Linkage Considerations 89
Linkage Examples 89
Assignment Component Exits (E11, E21,
E31) & ¢ 4 o o ¢ e o o e o e o o o o« «.9
Running Component Exits .
Record Change Exits (E1S, E25 E35) . 91

EXit E15 . & v v ¢ ¢ ¢ ¢« o o o o « « 9
EXit E25 . . 4 4 4 ¢ ¢ 4 4 o o « « < 93
EXit E35 . ¢ & 4 ¢ ¢ o v o o o o« « « 94
Nmax Exit (E16) « 96

Exits for Closing Data Sets (E17

E27, E37) ¢ ¢ ¢ ¢ ¢ 4 e 4 4 e o o « & 97

Read/Write Error Routines
Read Error Exits (E18, E28, E38) . . 98
Write Error Exits (E19, E29, E39) .100

Control Field Modification Exit (E61) 101

SECTION 4: EFFICIENT PROGRAM USE105
Supplying Information To The Program . .105
Data Set Size 105

Blocking Input Records . . « « « . . 105
Record Format . .« « « « « « « « « - 105
Intermediate Storage Assignment105
Assigning Pirect Access Intermediate
Storage ¢ e e e e 4 e s o - 106
Assigning Tape Intermediate Storage .107
Multiprogramming the Sort/Merge Program 107
System Generation Options and
Requirements . . . « v ¢« ¢ ¢ o « « « o 2107
Limiting Main Storage108
Altering the Main Storage Allocation .108
Altering the Message Specification . .109
GLOSSARY v &« ¢ o o ¢ o o « o o = « « « 2111
APPENDIX A: SUMMARY OF HOW TO USE THE
SORT/MERGE PROGRAM ¢« « « <« « « 113
APPENDIX B: CONSIDERATIONS FOR MVT
USERS - SUMMARY . «v v ¢ o o 2 « « « « 115
Region Size e e o e e o & <115
Optional Characters For DD Names . . .115
Altering the Main Storage Allocation .115
Other . . ¢ ¢ 4« 4 ¢ ¢ ¢ o ¢ o« o « « 115

APPENDIX C: STANDARD SYSTEM/360
OPERATING SYSTEM COLLATING SEQUENCE . .117

APPENDIX D: SORT/MERGE MESSAGES119

Figure 1. Estimated Maximum Record
Sizes for Input and Output with
Fixed-Length or Variable-Length
RECOXAS .« o v o o o o o o o o o
Figure 2. Estimated Maximum Record
Sizes for Input and Output with
Variable-Length Spanned Records
(VRE) & « o o « = o « o o o «
Figure 3. Control Word With Five
Fields e e e e e e e e e e e
Figure 4. Replacement Selection
Sorting Technique
Figure 5. Sequence Distribution
Technique Requirements e o o o @
Figure 6. Control Statement
Example . . « ¢ ¢ « ¢ o o « o o« -
Figure 7. SORT Control Statement
Format « e e e e o o
Figure 8. MERGE Control
Format “ s ° o 2 = s o = o s o =
Figure 9. RECORD Control Statement
Format e ¢ e o o s o e e o e =

- e o o o

Statemen

1

11
13
16
18
22
24
30
31

Figures

MODS Control Statement

Figure 10.
Format . .
Figure 11.
Format e o o e e o e o e o & o
Figure 12. Summary of DD Statement
Parameters Required by the
Sort/Merge Program « e e s e o e
Figure 13. Summary of DCB
Subparameters Required by the
Sort/Merge Program « e e e & e @
Figure 14. Arrangement of
Statements for Sort/Merge
Execution
Figure 15. Passing Parameters to
the Sort e e e e e e e e e e
Figure 16. Phase-level Flowchart
Figure 17. Summary of Functions
Permitted at Sort/Merge Program
EXits .« ¢ o ¢ o v o e o e o o o
Figure 18. DD Statements
Illustrating Channel Overlap - .

END Control Statement

34

37

52

53

54

80

84

87

. 107

Introduction

This publication explains how to use the System/360 Operating System Sort/Merge
Program to fulfill the sorting and merging requirements of System/360
installations that use magnetic tape and direct access input and output devices.

The sort/merge program can arrange data sets into a predesignated order. The
program places the records of a data set in sequence according to the contents of
a control word which is contained in each record. The program is generalized to
perform a variety of sorts and merges. Because of this ability, the sort/merge
program can simplify many data processing applications that require the sequential
updating of previously created data sets.

Input to and output from the program can be any data set that consists of
fixed-length or variable-length, blocked or unblecked records (except U format)
and can be accessed by the queued sequential access method (QSAM). Any I/0 device
that operates with QSAM can be used for input and output.

The program uses sorting and merging techniques that take advantage of machine
configurations and data set sizes. These techniques are designed to provide
efficient operation for a great variety of sorts and merges. The technique used
by sort/merge depends upon information supplied to the program through control
statements which define the application to be performed. These statements can be
supplied to the program in the operating system input stream or as parameters
passed by another program.

User-written routines can operate in conjunction with the sort/merge program to
perform many functions during sort/merge execution. The program gives control to
user-written routines at various exits in the program. When they receive control,
the routines can insert, summarize, delete, and alter the records being sorted or
nerged.

Relationship to the Operating System

The sort/merge program is part of the System/360 Operating System and operates
under the supervisory control of the operating system control program. Sort/merge
execution must be initiated according to operating system conventions, and any
data sets used by the program must be defined according to operating system
standards. At the user's option, the checkpoint and label checking (standard and
nonstandard) facilities of the operating system can be used during a sort/merge
program execution. Information about operating system label checking facilities
can be found in the publication 0S Data Management for System Programmers.

The sort/merge program also makes extensive use of the operating system data
management facilities. All data sets necessary for program operation must be
defined in data definition statements; these statements must be placed in the
operating system input stream with the job step that initiates sort/merge
execution. DD statements are described in the publication 0S JCL Reference.

The sort/merge program can be tailored to the needs of a particular
installation when the operating system for that installation is generated.

Introduction 9

Minimum Machine Requirements
The sort/merge program reguires:

e For main storage, a System/360 model that is 1arge enough to use the operating
system and provide at least 15,500 bytes of main storage for sort/merge
execution. (Sort/merge uses 12 000 bytes; system functions use 3,500 bytes.)

e At least one selector channel or one multiplexor channel.

e For intermediate storage, at least one IBM 2311 Disk Storage Drive, or one IBEM

2301 Drum Storage Drive, or one drive of an 1IBM 2314 Direct Access Storage
Facility or three magnetic tape units.

MAIN STORAGE REQUIREMENTS

Sort/merge performance usually improves as the amount of main storage available to
the program increases. Approximately 44K bytes of main storage are required for
efficient operation. Refer to "Section 4: Efficient Program Use" for more
information about main storage requirements.

Determining Region_ Size

Use the following formula to estimate the region size required when the sort/merge
program is run under MVT:

Region size = 1.2 (sort size) + 8K

Sort size is the amount of main storage assigned to the sort/merge program at
system generation time. If the user overrides the SYSGEN value at execution time,
then the overriding value is used for sort size. The constant 1.2 provides for
space lost through fragmentation, and the additional 8K is used by the system.

If the formula yields a region size less than the minimum allowed, use the

minimum. If calculated region size is not a multiple of 2K, round up to the
nearest 2K multiple .

INTERMEDIATE STORAGE REQUIREMENTS

The amount of intermediate storage needed to perform sorting applications depends
upon the size of the input data set. This storage may be allocated on either
magnetic tape or direct access devices. The program needs at least threee
magnetic tape units or one direct access device for intermediate storage.

The amount of main storage available to the sort/merge program affects the size
of records that the program can handle. Figure 1 shows the maximum record size
that the program will accept for a given amount of main storage when fixed- or
variable-length unspanned records are used. Figure 2 gives sizes for
variable-length spanned records. (Spanned records, also referred to as VRE
records, are records that can have fractional blocking factors such as -one third,
two and one half, etc. Thus a record may "span®™ blocks and/oxr direct access
tracks.)

Figures 1 and 2 assume that the minimum number of intermediate storage data
sets are assigned, and no control fields are to be extracted (placed in a work
area and modified by user-written routines). Minimum record size is 18 bytes.
Conditions such as control field extraction, or large numbers of intermediate
storage data sets require additional main storage. Since a work area is used for
VRE records, the available storage space for buffers and sorting is decreased and
therefore, the maximum record lengths for VRE records are somewhat smaller than
for unspanned records.

10

Maximum Record Size for Input and Output Records

—

r
|
| Main Storage Intermediate Storage Device |
| Available to P T T 4
the Sort | | IBM 2314 Facility |
| | (Bytes) |
Tape IBM 2311 pisk | 1IBM 2301 Drum }-- - 1 4
| | (Bytes) | (Rytes) | (Bytes) | 3 workareas | 6 workareas |
L - — 4 S 4 4 4 (]
v T T T T T 1
| 18K* (18,432) | 1,100 | 1,300 | 1,300 | 1,300 | - |
¢ ¢ -t 4
44R (45,056) 5,500 3,600 | 6,600 | 6,600 | 3,500 |
—4-———- + S 4
| 100K (102,400) | 14,900 | 3,600 | 18,000 | 7,272 | 7,272 |
b + + " t frmmmmmmo o 1
|200K (and up) | 32,000 | 3,600 | 20,458 | 7,272 | 7,272 |
| (204,800) | | [| I |
p N 4L L 1 i {
1The value of K is 1,024 bytes. |
|
Figure 1. Estimated Maximum Record Sizes for Input and Output with Fixed-Length
or Variable-Length Records
r T - 1
| | Maximum Record Size for Input and Output Records |
| 1
| Main Storage Intermediate Storage Device |
| Available to T T T 4
| the Sort | | | IBM 2314 Facility |
I I I [(Bytes) |
| | Tape | 1IBM 2311 pisk | IBM 2301 Drum } i
| | (Bytes) | (Bytes) | (Bytes) | 3 Workareas 6 Workareas |
[R L 4 4 L 4
1) T T L} T 1
| 18K" (18,423) | 800 | 900 | 1,100 | 900] -— I
L . L 4 1 4 1 d
13 T i T T] 1
44K (45,056) | 4,600 | 3,600 | 5,100 | 5,100 | 3,100 |
1 L N 1 i 4
r T T T 1
| 100K (102,&00){ 12,800 | 3,600 | 12,900 7,272 | 7,272 |
L 4 s iR +]
r T L] T T 1
|200K (and up) | 27,400 | 3,600 | 20,458 | 7,272 | 7,272
| (204,800) | | | | | |
} 1 IS 4 L 1 {
| *The value of X is 1,024 bytes. |
L 3

Figure 2. Estimated Maximum Record Sizes for Input and Output with
Variable-Length Spanned Records (VRE)

OPERATING SYSTEM OPTIONS

The sort/merge program is part of the System/360 Operation System and operates
under the control of the Operating System control program. The following
Operating System services may be used with the sort/merge program if they are
included in the system when it is generated:

1. Checkpoint/Restart

2. Input/Output Recovery Management Support (see O0S_ Introduction)

3. Multiple Console Support and Message Routine (see 0S Data Management for
System Programmers)

4. System support for up to 12 channel addresses.

When the system is generated, certain sort/merge facilities may be omitted if they
are not needed by a particular installation. This saves library space. You
should be aware of what particular Operating System features and options are
available at your installation.

Introduction

11

Section 1: Sort/Merge Program

This section discusses control fields, sort and merge requirements, the sorting
technique used by sort/merge, the sort/merge sequence distribution techniques, and
error correction facilities.

Control Fields

Each record in a data set is sorted or merged on the basis of control information
contained in the record's control word. A control word, which can be up to 256
bytes long, has from 1 to 64 control fields. Control fields can overlap; the end
of one control field can share data with the beginning of another control field.
Figure 3 shows a control word with five control fields.
Control Word
A

-

;V—J J
N
l— Control Field 5

Control Field 3

Control Field 1 — Major Control Field

Control Field 2

Control Field 4

Figure 3. Control Word With Five Fields

Each control word, along with the record in which it appears, is sorted into
either ascending or descending order, using standard IBM System/360 collating
sequences.

Nonstandard collating can be achieved without physically changing the control
fields. A user-written routine can modify one or more of the control fields each
time the sort/merge program collates a record. The modified control fields are
used for collating purposes only; they do not replace the fields in the records.
User-written routines can be entered at sort/merge program exits. (These exits
and the requirements for user-written routines that use them are discussed in
"Section 3: Program Modification".)

The maximum control field lengths for the various control field data formats
accepted by the sort/merge program are:

e Character, fixed-point, or normalized floating point data -- 1 through 256
bytes.

e Packed or zoned decimal data -- 1 through 32 bytes.

e Binary data -- 1 bit through 256 bytes.

Control fields must be contained within the first 4,092 bytes of a record.

s - — v

*The collating sequence for character data and binary data is absolute; that is,
character and binary fields are not interpreted as having signs. (Refer to
Appendix C: Collating Sequence.) For packed decimal, zoned decimal, fixed point,
and normalized floating-point data, collating is algebraic; that is, each quantity
is interpreted as having an algekraic sign.

Section 1: Sort/Merge Program 13

Sort Requirements

Control fields for a sorting application are defined in a SORT control statement
such as

SORT FIELDS= (10,30,A) ,FORMAT=CH

(described in "Defining the Sort or Merge"™ in Section 2) . Input, output, and
intermediate storage data sets are defined on standard job control language DD
statements such as

//SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP= (NEW,CATLG) , X
// DCB= (RECFM=FB,LRECL=90,BLKSI1Z2E=900)

(described in "Job Control Language for Sort/Merge®™ in Section 2).
guag g9

INPUT: Sort input can be a blocked or unblocked sequential data set containing
fixed- or variable-length records on any I/0 device that can be used with QSAM.

QUTPUT: Output from the sort can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device can be any device
that can be used with QSAM. It need not be related in any way to the input
device. '

INTERMEDIATE STORAGE: All intermediate storage for a particular sort/merge
application must be on the same type of device. Up to 32 tape units, 17 modules
of a 2314 storage facility, six 2311 disk storage drives, or six 2301 drum storage
devices can be used for intermediate storage. Data set organization must be
sequential. The amount of intermediate storage required is based primarily on the
size of the input data set. The amount of main storage available to sort/merge is
also a factor in determining intermediate storage requirements. Intermediate
storage is discussed in greater detail and formulas for the amount of storage
needed are given in "Determining Intermediate Storage Requirements" in Section 2.

USER MODIFICATIONS: User-written routines can summarize, insert, delete, shorten,
lengthen, or otherwise alter records while they are being sorted. A detailed
discussion of exits in the sort/merge program that permit control to be
transferred to user-written routines is given in "Section 3: Program
Modification."

INVOKING THE SORT: Execution of the sort is initiated by control statements in
the operating system input stream, or by another program through the use of an
ATTACH, LINK, or XCTL macro instruction.

Merge Requirements

Control fields for a merging application are defined in a MERGE control statement
such as

MERGE FIELDS= (10,30,3) , FORMAT=CH

(described inr"Defining the Sort or Merge®™ in Section 2) . Input and output data
sets are defined on standard job control language statements such as

//SORTINO1 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=0LD, X
7/ LABEL= (,NL) ,UNIT=2400,DCB= (RECFM=FB, X
// LRECL=80,BLKSIZE=240)

(described in "Job Control Language for Sort/Merge®” in Section 2).

INPUT: Input to the merge can be up to 16 blocked or unblocked sequential data
sets containing fixed- or variable-length records. For a given application, all
records must be of the same format (only blocking factors may differ). The
records in the input data sets must be in proper sequence. The input devices must
be acceptable for use with QSaAM.

14

OUTPUT: Output from the merge can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device must be
acceptable for use with QSAM. It need not be related in any way to the input
device type.

INTERMEDIATE STORAGE: Not needed for a merge-only operation.

USER_MODIFICATION: The merge provides exits for user-written routines to
summarize, insert, delete, lengthen, shorten, or otherwise alter output records.
A detailed discussion of these exits and the requirements for routines that use
them is given in "Section 3: Program Modification."

INVOKING THE MERGE: Execution of the merge can only be initiated by control
statements in the operating system input stream.

Sorting Technique

The sort/merge program uses the replacement selection technique to sort records.
Figure 4 shows in general how this technique works.

The input data set is almost always too large to be brought into main storage
and sorted all at once. Instead, it is broken up into sections. Each section is
placed in sequence and stored on an intermediate storage device. The sorted
sections of the input data set are called sequences.

Section 1: Sort/Merge Program

15

Input Data Set SORTIN

Next record from buffer

91
7491 3 8 217 18 17 8 119 72 12 § 70
8W25<—Fourrh record selected for output
3*
Input Buffer (usually one of two)
P Record 8 does not fit 74
|74| 91! 3 l 8 |21 l 7 l18 I 17| 89I in the current sequence
Output Buffer
Record from buffer RSA (already primed) l25 | 11 ‘ 6] 5 I
6
74 compare 70
25 Next record from buffer
to see if record 74 fits 1) . 21
in current sequence ; 5-<€—First record selected for co 70 <€—Fifth record selected for output
i.e., collates higher output Z]W ° 7
than record selected 3*
for output Record 21 does not fit 74
.Output Buffer Qutput Buffer
| Bl [EEITEE
Next record from buffer Next record from buffer
91 . 6 <€—Second record selected 91
compare 70 for output 21*

Record 91 fits in 25

. 11
this sequence 74

Output Buffer

7 8*
compare 3% .
74 <4—Sixth record selected for output

Record 7 does not fit

Output Buffer

| [6]s] L [#]wofzs[un]e]s]
Next record from buffer Next record from buffer
3 91 18 91-€—Seventh record selected for output
70 omeere T 1
compare 25 8*
11— Third record selected Record 18 does not fit 3%
74 for output 7*
This record does not fit into
the current sequence. It
replaces record 11 and is Output Buffer
flagged. It will not be .
examined again until the [|» |74] 70 25 [11]6 5]
next output sequence is
begun.
End current sequence - 18
begin new sequence 21
Output Buffer 8
[1]e]5] ;
Figure 4. Replacement Selection Sorting Technique

Sequence Distribution Techniques

The sort/merge program selects one of five sequence distribution techniques based

on information it has about a specific sorting application.

The object of all

five techniques is to enable the intermediate merge phase of the program to
combine the many small sequences of records produced by the sort phase into a few

longer sequences.

The number of sequences must be reduced to the point where the

final merge phase of the sort/merge program can combine them into a single

sequence in one pass.

16

TAPE TECHNIQUES

If the intermediate storage medium is tape, the program chooses the balanced tape
technique, the polyphase tape technique, or the oscillating tape technique.

DIRECT ACCESS TECHNIQUES

If the intermediate storage medium is direct access, the program chooses either
the balanced direct access technique or the crisscross direct access technique.

Figure 5 lists the basic requirements for the five sequence distribution
techniques and their major advantages and disadvantages.

FORCING A TECHNIQUE

If you find that for a particular sort/merge application, the sort/merge program
does not choose the most efficient technique, you can request sort to use another
technique. The program will comply if you provide enough main storage and work
areas to meet the technique's requirements (see Figure 5). If the requirements
cannot be met, sort will use another technique rather than terminate the program.

Caution: Be extremely cautious about forcing a technique. The sort/merge program
attempts to choose the most efficient technique for a given application. 1If it is
forced to use another technique, performance is usually not as efficient.

Refer to the discussion of the EXEC statement PARM field in "Job Control
Language Statements for Sort/Merge® in Section 2 for information on how to force a
sequence distribution technique.

Section 1: Sort/Merge Program

17

P = T B

T L) T v T T g |
Technique	Minimum [Maximum	Minimum	Maximum	Comments
	Main Storage]Input	Intermediate	Intermediate	
	Foxr Sort/		Storage Areas	Storage Areas

| | Mexge | | Required | Permitted]

b + t ¢ + +

| Balanced 112,000 bytes| 15 reels |2 (x+1), where [32 tape units |Always used if more

| Tape | | |x is the num- | than three inter-

| BALN | | |ber of input | mediate storage tapes

| | | | volumes | are available and

| | | | | |input data set size is
| | | | | not specified or

| | | | | estimated.

¢ t t $ + t

|Polyphase |[12,000 bytes|1 reel |3 reels |17 tape units |Always used if only

| Tape | | | | three intermediate
{POLY | |] | | storage tapes are

| | | ! | available.

t -+ == t 1 t

|Oscillating 21,000 bytes| 15 reels |[x+2 or 4, |17 tape units |[Input data set size

| Tape | | |whichever is | |must be given or

|{OSCL | | |greater, where| |closely estimated. The
] | | |x is the num- | | tape drive containing

| | | |ber of input | SORTIN, the input data
| | | | volumes | set,cannot be assigned
| |] | | as an intermediate

| | | { | storage unit. |
L 4 L 1 4 L d
r T LB T T L)

|Balanced 113,000 bytes| |3 areas |6 areas | The only technique
|Direct | | | | available for the 2301
|Access |] | | and 2311. Always used

| BALN | |No fixed | | on 2314 when less than
| | |maximum, | | |six work areas are

| | |depends | | |available. Used on

| | |on | | 12314 when six areas

| | |available] | |are available unless

| | |main | | |CRCX is forced.

t + {storage | : 1

|Crisscross |24,000 bytes|and |6 areas |17 areas |Always used on 2314 |
[Direct | |availakble]| | |when more than six |
Access		inter-			work areas are avail-
CRCX		mediate		jable. Used on 2314	
		storage			when six areas are
					available but must be
					forced. Not used on
]	12301 or 2311.		
L L L L 4 1 (]
Figure 5. Sequence Distribution Technique Requirements

Error Correction Facilities

The sort/merge program provides exits where control can be transferred to

user-written error routines.

These routines may be able to correct:

(Refer to "Section 3:

e I/0 errors that cannot be corrected by the operating system.
e Errors that arise because the input data set is larger than the intermediate
storage capacity estimated by the program for a given application.

1/0 ERRORS

Program Modification®".)

The sort/merge program passes control to a user-written I/0 error routine only

when the operating system cannot correct the error condition.

In the case of a

permanent read error the user-written routine can accept the block as is, attempt

to correct the error, skip the block, or request termination.

18

For an

uncorrectable write error, the user-written routine can perform any necessary
abnormal end-of-task operations kefore the program is terminated.

If no user-written routines are supplied, the sort/merge program issues the

message 1IER061A-I/0 ERR xxX, where xxx represents the number of the unit on which
the error occurred. Then the prcgram terminates.

EXCEEDING INTERMEDIATE STORAGE CAPACITY

The sort/merge program estimates a maximum intermediate storage capacity (Nmax)
from the information supplied to it at the beginning of the sorting operation.

Note: Nmax for magnetic tape is calculated for 2400-foot tapes.. For shorter
tapes the figure should be reduced proportionately.

You can supply an actual or an estimated input data set size to the program.
(This is done via the SI1ZE parameter on a SORT control statement, described in
"Defining the Sort or Merge" in Section 2.) 1f you supply an actual data set
size, and the size is larger than Nmax, the program terminates before starting to
sort. If you supply an estimated data set size, or if you do not give a data set
size, and the number of records grocessed while sorting reaches Nmax, the program
gives control to a user-written Nmax routine, if one is supplied. The Nmax
routine can take one of the following actions:

e Indicate to sort/merge that it should continue sorting the entire input data
set with available intermediate storage. (If the estimated input data set
size was high, there may be enough intermediate storage left to complete the
application.)

e Direct sort/merge to continue sorting with only part of the input data set.
(The remainder of the data set could be sorted later and the two results
merged tc complete the application.)

e Terminate the program without any further processing.

If an Nmax routine is not supprlied, sort/merge continues to process records
beyond Nmax. If the intermediate storage capacity is sufficient to contain all
the records in the input data set, the sort completes normally; when intermediate
storage is not sufficient, the program terminates.

The sort generates a separate message for each of the three possible error
conditions. These messages are:

IERO41A-N GT NMAX: Generated before sorting begins when the exact data set size
supplied on a SORT control statement is greater than Nmax.

IERO46A-SORT _CAPACITY EXCEEDED: Generated when the sort has used all available
intermediate storage while processing.

IERO48I-NMAX EXCEEDED: Generated when the sort has exceeded Nmax and has
transferred control to a user-written Nmax routine for further action.

(A full description of all program messages is contained in Appendix D.)

Section 1: Sort/Merge Program

19

Section 2: How to Use the Sort/Merge Program

There are three basic things you must do to use the sort/merge program:

1. Define your sorting or merging job with sort/merge control statements. (See
"pDefining the Sort or Merge®™ in this section.)

2. If your job is a sort, determine the amount of intermediate storage your data
will require while it is being sorted and merged. (See "Determining
Intermediate Storage Requirements™ in this section.)

3. Prepare job control language statements for the job and combine them in
proper order with the sort/merge control statements. (See "Job Control
Language for Sort/Merge" in this section.)

Defining the Sort or Merge

The sort/merge program must know what to do with your input data. The program
needs a general description of the input data, information about the control
fields in the input records, and a description of your modification routines, if
any, that will be used during sort/merge execution. Sort/merge control statements
supply this information to the program. ‘

Control statement formats for all System/360 sort/merge programs are constant
even though operating environments and data descriptions are different.
Compatibility of control statements among System/360 sort/merge programs is
discussed later in this section. The five control statements that are acted uron
by the operating system sort/merge program are:

SORT Statement Provides information about control fields and data set size. Use
this statement if your job is a sort. Do not use this statement
for a merge-only job.

MERGE Statement Provides the same information as a SORT statement. Use this
statement if your job is a merge. Do not use this statement for
a sort operation.

RECORD Statement Provides record length and type information. This statement is
required only when your modification routines change record
lengths during sort/merge execution.

MODS Statement Associates your modification routines with particular sort/merge
program exits. This statement is required only when you supply
modification routines to be executed at sort/merge exits.
("Section 3: Program Modification®™, describes these exits and
the requirements for routines that use them.)

END Statement Signifies the end of a related group of sort/merge control
statements. This statement is required when sort/merge
statements are not followed immediately in the input stream by a
/¥ statement.

Each statement is checked for validity before it is acted upon by the
sort/merge program. If the program finds an error, it issues a diagnostic
message. (See Appendix D for descriptions of messages.) . However, the program may
not be able to detect all errors or inconsistent combinations of entries so you
should be very careful in preparing control statements. ‘

Section 2: How to Use the Sort/Merge Program

21

CONTROL STATEMENT FORMAT

All sort/merge control statements have the same general format:

be blank 72 73-80
'y

[Column 1 must

Operation Operand Comments Sequence or

Identification

Continuation Column

The control statements are free-form; that is, the operation definer, operand (s),
and comments may appear anywhere in a statement, as long as they appear in the
proper order, and are separated by one or more blank characters. Column 1 of each
control statement must be blank.

Operation Field: This field must appear first on the card. It must not extend
beyond column 71 of the first card. It contains a word (SORT, MERGE, RECORD,
MODS, or END) that identifies the statement type to the sort/merge program. 1In
Figure 6, the operation definer SORT is in the operation field of the sample
control statement.

Operand Field: The operand field is made up of one or more operands separated by
commas. This field must be the second field on the card and be separated from the
operation field by at least one blank. 1If the statement occupies more than one
card, this field must begin on the first card. Operands supply parameters to the
sort/merge program. Each operand is made up of an operand definer, or keyword (a
group of characters that identifies the operand type to the sort/merge program).

A value or values may be associated with a keyword. The three possible operand
formats are:

e keyword= (value,,value,,...,valuep)
¢ keyword=value
e keyword

Figure 6 contains an example of each of these formats.

r
|Column 1 must
|be blank ' 72 73-80

H

| { SORT FIELDS=(10,30,A),FORMAT=CH,CKPT X 000001

|

|Operation Operand 1 Operand 2 Operand 3 Continuation Sequence
|Field Punch Field

b e et s e o e o e S . e

Figure 6. Control Statement Example

Comments Field: This field may contain any information you desire. It is not
required, but if it is present, it must be separated from the operand field by at
least one blank. Message IER0091 appears for each statement containing comments.

Continuation Column (72): Any character other than a blank in this column
indicates that the present statement is continued on the next card. In Figure 6,
X is used to specify that the next card contains more information pertaining to
this SORT control statement.

Columns 73-80: This field may be used for any purpose you desire. It may be used
for identification, or as shown in Figure 6, for sequencing.

22

Continuation Cards

The format of the sort/merge continuation card is:

column
| 16 72 73-80
(/ b.continued Operand or Comments 4 Ssequence
Continuation Column

The continuation column and columns 73-80 of a continuation card fulfill the
same purpose as they do on the first card of a control statement. Columns 1
through 15 of a continuation card must be blank. The maximum number of
continuation cards allowed for each type of control statement is shown in the
following table:

Control Maximum Number of
Statement Type Continuation Cards
SORT 19

MERGE 19

RECORD 5

MODS 19

END none allowed

A continuation card is treated as a logical extension of the preceding card.
Either an operand or a comments field may begin on one card and continue on the
next. The following rules apply to continuing operands or comments fields:

e If an operand is continued through column 71, the next character of the

operand must appear in column 16 of the continuation card. Columns 1-15 must
be left blank. For example:
71————-1—-72

FORX

MAT=CH

N TN

16
e Tf an operand field is broken between two cards without filling the first card
through column 71, it must be done in either of two ways:

1. At the end of a complete operand followed by a comma and a blank (or
blanks). For example:

(SORT FIELDS=(10,30,3), ' . X

r/ FORMAT=CH, CKPT

2. At the end of any of the values in an operand of the type keyword—(valuel,
value,,...,valuep), followed by a comra and a blank. For example:

('SORT FIELDS=(10, X

(30,3) , FORMAT=CH, CKPT

Section 2: How to Use the Sort/Merge Program

23

The following rules apply to control statement preparation:
e Column 1 of each control statement must be blank.

e The operation field must be the first field on the first card of a control
statement and may not be carried over onto a continuation card.

e The operand field, if present, must begin on the first card of a control
statement. The last operand in a statement must be followed by at least one
blank.

. Embedded blanks are not allowed in operands. Anything following a blank is
considered part of the comments field.

e Values may contain no more than eight alphameric characters.

e Commas ‘and blanks can be used only as field delimiters. They must not be used
in values.

e Each type of sort/merge control statement may appear only once for each
execution of the sort/merge program.

e No more than 33 control statement cards, including continuation cards, are
allowed for a sort/merge program execution.

SORT CONTROL STATEMENT

The SORT control statement must be used when a sorting application is to be
performed. 1t describes the control fields on which the program will sort.

The format of the SORT statement is shown in Figure 7. The first field in the
statement must be the operation definer SORT, followed by at least one blank.

{
|Column 1 must
|be blank

FIELDS= ((P1sM1s£1¢SarecerPgurMgyrfsysSey,) -
SORT [,SIZE=yl}[,SKIPREC=z][,CKPT]
FIELDS= (pl,ml,sl,...,psq,msq,seu),FORMAT=xx

b s e s — ——— ——— o]

Figure 7. SORT Control Statement Format

Parameters

The FIELDS operand describes control fields. As shown in Figure 7, it can be
written in two ways. Use the FIELDS format shown at the top of Figure 7 to
describe control fields that contain different data formats. Use the format at
the bottom of the figure to describe control fields that contain data of the same
format. The format at the bottom of the figure is optional; you can always use
the top format if you prefer.

The sort/merge program requires four facts about each control field in the
input records: the position of the field within the record, the length of the
field, the format of the data in the field, and the sequence into which the field
is to be sorted. These facts are communicated to the program by the values of the
FIELDS operand which are represented by p, m, £, and s in Figure 7.

The major contrcl field, the one sort examines first, is specified first.
Successive minor control fields are specified follobing the major control field.
Up to 64 control fields can be used. In Figure 7, pq,Mmq,fq4,s¢ describe the major
control field. pa,mM2,f5,S2/++sCeurMeurfsurSey, describe the successive minor
control fields.

24

specifies the beginning (high-order location) of a control field relative to
the beginning of the record which contains the control field. (For
variable-length records, the .logical record includes the four-byte record
length indicator.) The first (high-order) byte in a record is byte 1, the
second is byte 2, etc. BAll control fields, except binary, must begin on a
byte boundary. Fields containing binary values are described in bytes and
bits as follows:

First give the byte location relative to the beginning of the record and
follow it with a period. Then give the bit location relative to the
beginning of that byte. The resulting notation is then -- bytes.bits. The
first (high-order) bit of a byte is bit 0; the remaining bits are numbered
1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field keginning
on the third bit of the third byte of a record is represented as 3.2. When
the beginning of a field falls on a byte boundary, (say, for example, the
fourth byte) you can write it in one of three ways:

4.0
4.
4

Other examples of this notation are:

\ N

=}

I

i>\‘----

——
.o .

specifies the length of the control field. All control fields except binary
must be a whole number of bytes long. The length of a control field that is
a whole number (d) bytes long can be expressed in one of three ways:

4.0
d.
d
Binary fields are expressed in the notation -- bytes.bits. The number of

bits specified must not exceed 7. A control field two bits long would be
represented as 0.2.

specifies the format of the data in the control field. £ can be any one of
the following two-character abbreviations:

CH -- Character

ZD -- Zoned decimal
PD -- Packed decimal
F1 -- Fixed-point

BI -- Binary

FL -- Floating-point

I1f all the control fields contain the same type of data, you can omit the f
parameters and use the optional FORMAT=xx operand.

Section 2: How to Use the Sort/Merge Program

25

The table below contains the data formats, indicates whether or not they are
signed, and shows the maximum control field length for each format.

F v L) q
| FORMAT | SIGNED | NUMBER OF BYTES |
t } 4 1
CH	NO	1-256
ZD	YES	1-32
PD	YES	1-32
FI	YES	1-256 l
BI	NO	1 bit - 256 bytes]
FL	YES	1-256 l
t i N L J
s
specifies how the control field is to be ordered. One of the following
one-character codes must be used for s:
A -- Ascending sequence
D -- Descending sequence
E -- Usex modification
If you are including your own routine to modify control fields before the
sort/merge program sequences them, use E. After your program has modified
the control fields, the sort/merge program orders the fields in absolute
ascending sequence. (See "Exit E61", described in "Section 3: Program
Modification", for further information about modifying control fields.)
Options

You can use the following optional operands with the SORT control statement.

FORMAT=xx: If all the control fields contain the same type of data, you can use
this operand instead of the f parameter of the FIELDS operand to specify the data
format. If all the control fields are not of the same type, you must use the f£f
parameter of the FIELDS operand. The possible values for xx are the same as those
for the f parameter.

S1ZE=y: This operand specifies the number of records in the input data set. The
value y can be either the actual data set size or an estimate of the size.

If you give an actual data set size, do not include any records inserted in the
input data set by one of your routines. If the number of records in the input
data set, as counted by the sort/merge program, does not agree with the value of
the SIZE parameter, the sort terminates. The value specified in the SIZE)
parameter is placed in the IN field of message IERO47A or IEROS541I. 1If you give an
estimated data set size, precede the value by E (for example, E5000) .

If you omit the SIZE operand, the sort/merge program assumes that:

e I1f intermediate storage is tape, the input data set can be contained on one
volume at the blocking factor used by the sort.

e If intermediate storage is direct access, the input data set will fit into the
space you have allocated.

SKIPREC=z: If you want the sort to skip a certain number of records before
starting to process the input data set, use this operand. Substitute the number
of records you want skipped for z. On a preceding sort/merge program execution
you may have exceeded storage capacity and only part of your input data was
sorted. (The program prints a message specifying the number of records sorted in
a partial run.) Using this operand, you could request that sort skip over the
records it processed in the preceding run and sort the remaining records. You
could then merge the output from the two sort runs to complete the sort/merge
operation. »

I1f you were using a routine toc insert or delete records in a run during which
sort capacity was exceeded, you will have to provide a routine that will

26

reposition the modified data set before the second part of the data set can be
sorted.

CKPT: This operand tells the sort/merge program to activate the checkpoint
facility of the operating system. The program takes checkpoints at the start of
the sort phase and at the start of the final merge phase. 1In addition when the
balanced or polyphase tape techniques are used, the program takes a checkpoint at
the start of each intermediate merge phase pass. If the oscillating tape
technique is used, the program takes checkpoints at intervals during the
intermediate merge phase.

In addition to those taken at the beginning of each pass, the balanced direct
access technique takes checkpoints at selected intervals during the intermedate
merge phase.

You can have the program restart from the last checkpoint taken or from the
checkpoint written at the start of the sort phase.

When you use the checkpoint/restart facility, you must define a data set for
the checkpoint records. The data set is described further in this section under
"Job Control Language for Sort/Merge"”.

The following rules apply to the control fields described on a SORT control
statement:

e All control fields must be located within the first 4,092 bytes of a record.

e The first byte of a floating-point field is interpreted as a signed exponent.
The rest of the field is interpreted as the fraction.

e All floating-point data must be normalized before the sort/merge program can
collate it properly. You can use your own routine to do this at execution
time. (See "Exit E61" in "Section 3: Program Modification™.) Specify the E
option for the value of s in the FIELDS operand for each control field you are
going to modify.

e The total number of bytes occupied by all control fields must not exceed 256.
A binary field is considered to occupy an entire byte if it occupies any part
of it. For example, a binary field that begins on byte 2.6 and is 3 bits long
occupies two bytes.

This three bit binary control field
A

77

4

NN |
Y

v
Occupies two bytes

Section 2: How to Use the Sort/Merge Program

27

SORT Statement Examples

r
|Column 1
jmust be blank

|
|(SORT FIELDS=(2.0,5.0,CH,R),SIZE=29483
l : .

SR

SORT Statement Example 1. One Control Field and Size Option.

FIELDS operand
2.0 means that the control field beglns on the second byte of each record in
the input data set.
5.0 means the control field is five bytes long.
CH means the control field contains character data.
A instructs the program to sort the fields into ascending oxder.

SIZE operand
The input data set contains exactly 29,483 records.

1

|Column 1 must Column 72

|be blank

|

l :

(/SORT FIELDS=(7.0,3.0,CH,D,1.0,5.0,FI,A,398.4,7.6,B1,D,99.0,230.2,BI,A,X

Column 16

|
|
|
]
i
}
|(452.0,8.0,FL,A), SIZE=10693,CKPT
|

]

L

S —

SORT Statement Example 2. Fi?e Control Fields, Size and Checkpoint Options

FIELDS operand The first four values describe the major control field. It
begins on byte 7 of each record, is 3 bytes long, contains
character data, and is to be sorted into descending sequence.
The next four values describe the second control field. It
begins on byte 1, is 5 bytes long, contains fixed-point data,
and is to be sorted into ascending sequence.

The third control field begins on bit 5 (bits are numbered 0
through 7) of byte 398. The field is 7 bytes and 6 bits long
(occupies 9 kytes), and contains binary data to be placed in
descending order.

The fourth control field beglns on byte 99, is 230 bytes and 2
bits long, contains binary data, and should be sorted into
ascending order.

The fifth control field begins on byte 452, is 8 bytes long,
contains normalized floating-point data which is to be sorted
into ascending order. If the data in this field was not
normalized, you would specify E instead of A and include your
own routine to normalize the field, before sort/merge examines

them.

SIZE operand The input data set contains exactly 10693 records.

CKPT operand Instructs the scrt/merge program to take checkpoints during
this run.

28

L 1
|Column 1 must |
|be blank |
| |
|(SORT FIELDS=(3.0,8.0,2D,E,40.0,6.0,CH,D),SIZE=E30000 |
| I
| I
L 4
SORT Example 3. Two Control Fields, User Modification, Size Option
FIELDS operand The first four values describe the major control field. It
begins on byte 3 of each record, is 8 bytes long, contains
zoned decimal data that will be modified by your routine
before sort examines the field.
The second field begins on byte 40, is 6 bytes long, contains
character data and will be sorted into descending sequence.
SIZE operand The input data set contains approximately 30,000 records.
r 1
|Column 1 must |
|[be blank '
| |
|(SORT FIELDS=(25,4,A,48,8,R),FCRMAT=2D |
| |
| I
L . 3
SORT Statement Example 4. Two Control Fields, Format Option
FIELDS operand The major control field begins on byte 25 of each record, is 4
bytes long, contains zoned decimal data (FORMAT=ZD), and is to
be sorted into ascending sequence.
The second control field begins on byte 48, is 8 bytes long,
has the same data format as the first field, and is also to be
sorted into ascending order.
The FORMAT=xx option can be used because both control fields
have the same data format. It would also be correct to write
this SORT statement as follows:
I 1
|Column 1 must |
|be blank |
| |
|(SORT FIELDS=(25,4,2D,A,48,8,%ZD,A) |
| |
I |
L 1
MERGE CONTROL STATEMENT
The MERGE control statement must be used when a nmerge-only operation is to be
performed. 1t provides essentially the same information to the sort/merge program
for a merge as the SORT statement does for a sort. As you can see from Figure 8,
the format of the MERGE statement is very much like that of the SORT statement.
There are the following differences:
e The operation definer is MERGE.
e The SKIPREC and CKPT options are not used.
e The value of the SIZE 6perand is the total number of records in all the input
data sets.
Section 2: How to Use the Sort/Merge Program 29

T
|Column 1 must
| be blank

FIELDS=(pP1,M3,f1,S1,P2¢M2,f2,S250,0__,0__,E__ ,5_.)
MERGE eut eut eat e4 1 [,51z2E=y]
FIELDS:(plImllsilp2lm2'S2l'"lpsulmsulssu)lFORMAT:xx

[T s . ", ——

P ———

Figure 8. MERGE Control Statement Format

Parameters

The FIELDS operand is written exactly the same way for a merge as it is for a
sort. The meanings of p, m, £, and s were described previously in the discussion
of the SORT statement.

The SIZE operand is optional. Its value can be either exact or estimated. The

value refers to the total number of records in all the input data sets to be
merged.

MERGE Statement Examples

I
|Column 1 must
|be blank

|
|(MERGE FIELDS=(2.0,5.0,CH,A),SIZE=29483
| : ‘

bt o e e e i e e)

MERGE Statement Example 1. One Control Field, Size Option

FIELDS operand The control field begins on byte 2 of each record in the input
data sets. The field is S bytes long, and contains character
data that has been presorted into ascending order.

SIZE operand The input data sets contain exactly 29,483 records.

]
|Column 1 must
|be blank

|
|(MERGE FIELDS=(3.0,8.0,ZD,E,40.0,6.0,CH,D),SIZE=E30000
|

e e

MERGE Statement Example 2. -Two Control Fields, User Modification, Size Estimate

FIELDS operand The major control field begins on byte 3 of each record, is 8
bytes long, and contains zoned decimal data that will be
modified by your routine before the merge examines it.

The second control field begins on byte 40, is 6 bytes long,
and contains character data that is in descending order.

SIZE operand The input data sets contain approximately 30,000 records.

30

r

|Column 1 must
|be blank

|

|
|(MERGE FIELDS=(25,4,A,48,8,A),FORMAT=2D
|

L

e e s e . — —

MERGE Statement Example 3. Two Control Fields, Format Option

FIELDS operand The major control field begins on byte 25 of each record, is 4
bytes long, and contains zoned decimal data that has been
placed in ascending sequence.

The second control field begins on byte 48, is 8 bytes long,
is also in zoned decimal format, and is also in ascending
sequence. The FORMAT=xx option can be used because both
control fields have the same data format.

RECORD CONTROL STATEMENT

The RECORD statement is required only when your routines change record lengths
during a sort/merge program run. The statement describes the format and lengths
of the records being sorted or merged. The format of the RECORD statement is
shown in Figure 9.

Parameters

The RECORD statement has two operands, TYPE and LENGTH. Both are required when
the RECORD statement is used.

TYPE: The TYPE operand specifies whether the input records to sort/merge are
fixed- or variable-length format.

TYPE=F indicates fixed-length records.
TYPE=V indicates variable-length records.

LENGTH: The LENGTH operand specifies the length in bytes of the input records,
the length in bytes of the records that enter the sort phase of the sort/merge
program, (you can include your own routine to change record lengths before the
records are sorted), and the length in bytes of the records in the output data
set. (You can change record lengths during the final merge phase of the program.)

The value 1; is required whenever the RECORD statement is used. The values 1,
and 1, are required only when your routines change record lengths before the sort

or during the final merge. The values 1 and 1 are used only for variable-length
records. ’

r _— _—
[Column 1 must
|be blank

RECORD {

TYPE=F ,LENGTH= (14 ,12,13)
TYPE=V,LENGTH=(11,12.13.la:15)}

S —
e e A N S

Figure 9. RECORD Control Statement Format

Section 2: How to Use the Sort/Merge Program 31

Defining Fixed-Length Records

If your input records are fixed-length, use 14, 1, and 15 as follows:

1,

1,

is the length of each record in the input data set. If you use the RECORL
control statement, you must include this value. The value should be the same
as the value you specified in the LRECL subparameter of the DCB parameter on
the SORTIN DD statement (discussed later in this section.) If the values are
not the same, sort/merge uses the value specified on the DD statement.

is the length of each record handled by the sort phase. If you do not
specify a value for 1,, the program assumes that it is equal to 1, as it is
specified on the record card. If you are going to change record lengths in
the sort phase, you must include a value for 1l,. You do not need 1, for a
merging application.

is the length of each record in the output data set. 1If you do not specify a
value for 1,, the program assumes that 1;=1, for a sorting application and
that 13=1, for a merging apglication. If your routines change record lengths
during the final merge phase of the program, you must specify a value for 1,.
This value should be the same as the value you specified for the LRECL
subparameter of the DCB parameter on the SORIOUT DD statement (discussed
later in this section). If the values are different, the sort/merge program
uses the value given on the LD statement.

Pefining Variable-Length Records

If your ihput records are variable-length, use 1,, 15, 13, 1,4, and 15 as follows:

1,

1,

1,

32

is the maximum length of the records in the input data set. 1If you use the
RECORD statement, you must specify a value for 1,. The value should be the
same as the value you specified in the LRECL subparameter of the DCR
parameter on the SORTIN DD statement (discussed later in this section). 1If
the values are not the same, the program uses the LRECL value.

is the maximum length of the records handled by the sort phase. If you do
not specify a value for 1,, the program assumes it is equal to 1, as it is
specified on the record card. 1If you change record lengths in the sort
phase, you must provide a value for 1,. You do not need 1, for a merging
application.

is the maximum length of each record in the output data set. If you do not
specify a value for 1,;, the program assumes 1li3=1, for a sort and 1,5=1, for a
merge. If you include a routine that changes record lengths in the final
merge phase, you must specify a value for 13. The value should be the same
as the value you provided for the LRECL subparameter of the DCB parameter on
the SORTOUT DD statement. If it is not, the program uses the LRECL value.

is the minimum length of records in the input data set. I1f you do not
specify a value for 1,, the program assumes it is equal to the minimum record
size necessary to contain the control fields defined on the SORT or MERGE
control statement, or the minimum record length allowed by the operating
system, whichever is greater. You need not specify this value for a merge.

is the record length that occurs most frequently in the input data set (modal
length) . You should use this value to help define a data set biased toward a
particular length. 1If you do not specify a value for 1lg, the program assumes

it is equal to the average of the maximum and minimum record lengths in the
input data set. 1f, for example, your data set contains mostly small records
and just a few long records, the program would assume a high modal length and
would allocate a larger record storage area than necessary. Conversely, if
your data set contains just a few short records and many long records, the
program would assume a low modal length and might not allocate a large enough
record storage area to sort your data.

When you use the RECORD statement, consider the following:

The lengths you specify for variable length records must include the #-byte
count field that the operating system places at the beginning of each record.

e When you use a direct access device for intermediate storage, record length
cannot exceed the capacity of one track.

e The sort/merge control fields defined in the SORT control statement must be
contained in the minimum length 14, if stated.

e The minimum logical record length that can be handled by the program is 18
bytes.

e The record format you specify in the TYPE operand must be the same as the
format you used in the RECFM subparameter of the DCB parameter on the SORTIN
and SORTOUT DD statements (described later in this section). If the formats
are not the same, the program uses the one you specified in the LD statement.

e When you use an operand like the LENGTH operand of the type,
keyword= (valuey,value,,...,valuenp), you can omit values that are equal to
those assumed by the program. The following rules apply to omitting values
from the LENGTH operand:

1. You can drop values from right to left. 1If all the values after 1, are
equal to the values assumed by the program, you could write --
LENGTH=(1,,1,) .

2. 1If you drop values from the middle or from left to right, you must use

commas to indicate their omission. If 1, is equal to the value assumed
by the program, you could write -- LENGTH=(l,4,,1l3).

RECORD Statement Examples

{
|Column 1 must
|be blank

|
| RECORD TYPE=F,LENGTH=(60,40,50)
|

S S ———

RECORD Statement Example 1. Fixed-length, Three Length Values

TYPE operand The input records are fixed-length.
LENGTH operand The records in the input data set are each 60 bytes long. You

change the records to 40 bytes in the sort phase and to 50
bytes in the final merge phase.

Section 2: How to Use the Sort/Merge Program

[}
|Column 1 must
| be blank

I ,
|(RECORD TYPE=V,LENGTH=(200,175,180,50,100)
|

|

L

Y p—

RECORD Statement Example 2. Variable-length, Five Length Values

TYPE operand The records in the input data set are variable-length.

LENGTH operand . The maximum length of the records in the input data set is 200
bytes. 1In the sort phase, you reduce the maximum record
length to 175 bytes. You add five bytes to each record in the
final merge phase, making the maximum record length in the
output data set 180 bytes. The minimum record length in the
input data set is 50 bytes and the most frequent record length
in the input data set is 100 bytes.

k
|Column 1 must
|be blank

|
I RECORD TYPE=F,LENGTH=(76,,50)
' .

1

R S ——

RECORD Statement Example 3. Fixed-length, Two Length Values

TYPE operand The records in the input data set are fixed-length.

LENGTH operand The input records are 76 bytes long. You do not change record
length in the sort phase so you omit 1, because sort/merge
will assume the proper value for it. 1In the final merge
phase, you change the record length to 50 bytes.

MODS CONTROL STATEMENT

The MODS statement is required only if you want the sort/merge program to transfer
control to your routine (s) at various points during sort/merge execution. The
statement associates your routines with specific exits in the sort/merge program
and provides the program with basic descriptions of your routines. For details
about exits in the sort/merge program and how to use them, refer to "Section 3:
Program Modification."”

Figure 10 shows the format of the MODS statement.

r
|Column 1 must
|be blank

N N
(;ODS exit=(n1,m1,s1[ggﬂ),...,exit=(n17,m17,317[£Sﬂ)

Figure 10. MODS Control Statement Format

34

Parameters

The sort/merge program provides seventeen exits at which control can be
transferred to your routines. These exits are described in detail in "Section 3:
Program Modification". The exits have three-character names such as E11, E15,
E16, E28, etc. To use one of these exits, you substitute its three-character name
for the word "exit" in the MODS statement format example. The values associated
with the three-character name describe your routine. These values are:

n
the name of yocur routine (member name if your routine is in a library). 1If
your routine has been linkage edited previously and you do not want to have
it linkage edited again, its name must be the same as the three-character
exit name with which it is associated.

o
the number of bytes, exact or approximate, of main storage that your routine
uses.

S

either the name of the LD statement in your sort/merge job step that defines
the partitioned data set in which your routine is located, or SYSIN if your
routine is in the input stream. If your routines are in a concatenated data
set the value of s for all the routines must be the ddname of the data set.

indicates the linkage editor requirements of your routine.

N means that your routine has already been linkage edited and can be used in
the sort/merge run without further linkage editing. Your routines must be
in the same library or in libraries defined as a concatenated data set
with one LD name.

S means that your routine requires linkage editing but that it can be
linkage edited separately from the other routines you are using in a
particular sort/merge program phase. Only routines at exits E11, E21, and
E31 are eligible for separate linkage editing; see Section 3.

Absence of these parameters means that your routine must be linkage edited
together with the other routines you are using in a particular sort/merge
program phase.

Refer to the topic "Bypassing the Linkage Editor™ in ®"Section 3: Program
Modification" for details on how to design your routines.

When you are preparing your MCDS statement, consider the following:

e The sort/merge program must know the amount of main storage your routine needs
so that it can allocate main storage properly for its own use. If you do not
know the exact number of bytes your program requires, make a slightly high
estimate. The value of m in the MODS statement is written the same whether it
is an exact figure or an estimate. In other words, you do not precede the
value by E for an estimate as you did on the SORT or MERGE statement.

e If the routines you are using for a particular sort/merge run are in several
system libraries, you need a DD statement for each library. DD statements
required for sort/merge are described later in this section.

e If your routines are in the system input stream (SYSIN), you must arrange them
in numerical order (the E11 routine before the E15 routine, etc.). If you use
the same routine in several sort/merge program phases, you must provide a
separate copy of the routine for each use.

e Your routines can also reside in private libraries. The use of private
libraries is described in the publication 0S_JCL Reference.

Section 2: How to Use the Sort/Merge Program

35

MODS Statement Examples

r 1
|Column 1 must |
|be blank |
| |
| mops E15=(E15,554 ,MODLIB,N) ,E35= (E35, 11032, MODLIB, N) |
| |
| |
L J
MODS Statement Example 1. Two Routines in a Library, No Linkage Editing
E1S5 At exit E15, the sort/merge program will transfer control to your routine.

Your routine is in the library defined by the MODLIB DD statement. Its

member name is E15, it is 554 bytes long, and has been linkage edited

previously, and does not require further linkage editing.
E35 At exit E35, the program will transfer control to your routine. Your

routine is in the library defined by the MODLIB DD statement, its member

name is E35, it is 11032 bytes long and has been linkage edited previously.
L 1
|Column 1 must |
|be blank |
i i
| |
| (MODS E17=(CLSE, 348,SYSIN) |
| I
| |
L J

MODS Statement Example 2. One Routine in SYSIN, lLinkage Fditing is Needed

E17 At exit E17, the sort/merge program will transfer control to your routine

which is named CLSE. Your routine is in object form in the system input

stream and will be linkage edited together with other routines in the sort

phase of the sort/merge prcgram.
F 1
|Column 1 must |
|be blank Column 72 —— |
| , |
| (MODS E16=(NMAXERR,1000,MYLIB),E21=(E21,550,MODLIB,N), X |
| |

N E31=(E31,450,MODLIB,N) ,E35=(SUMUP, 5000 ,SYSIN) |
N |
| |
L J

MODS Statement Example 3. Four Routines

E16 The sort/merge program will transfer control to your routine at exit E16.
Your routine is named NMAXERR, is located in the library defined by the
MYLIB DD statement, and is approximately 1000 bytes long.

E21 At exit E21, the program will transfer control to your routine which resides
in the library defined by the MODLIB DD statement under the member name E21.
Your routine is 550 bytes long and does not require additional linkage
editing. ‘

36

E31 Another of your routines in the library defined by the MODLIB LD statement
will gain control at exit E31. 1Its member name is E31, it is 450 bytes long
and does not require additicnal linkage editing.

E35 You have placed a routine named SUMUP in object form in the input stream.
It is approximately 5000 bytes long, must be linkage edited together with
other routines in its phase, and will receive control at exit E35.

{
[Column 1 must
|be blank

{
|(MODS E11=(E11,500,MYLIB,S)
|
|

L

U —

MODS Statement Example 4. One Routine, Separate Linkage Editing

E11 At exit E11 on the sort phase, the sort/merge program will transfer control
to your routines. Your routine, named E11, is located in a library defined
on a statement with the ddname MYLIB, is 500 bytes long, and can be linkage
edited separately from other routines in the sort phase. After the sort
phase is initialized, your E11 routine will be overlaid. Because you have

specified S for separate linkage editing, your routine can have no external
references.

END CONTROL STATEMENT

The END statement marks the end of all sort/merge control statements and
continuation statements for a particular sort/merge run. The END statement must
be used whenever the sort/merge control statements are not immediately followed in
- the input stream by a /* statement. For example, if you include you own routines
in the input stream, they are placed between the sort/merge control statements and
the /* statement, so you must use an END statement.

The format of the ENL statement is shown in Figure 11. The statement has no
operands.

I
|Column 1 must
|be blank

|
|
|{ END
|
|
)

S =

Figure 11. END Control Statement Format

CONTROL STATEMENT COMPATIBILITY

There are eight control statement types used by System/360 sort/merge programs.
The System/360 Operating System sort/merge program acts upon the SORT, MERGE,
RECORD, MODS, and END statements described above. The three remaining control
statement types, INPFIL, OUTFIL, and OPTION, are used only by other System/360
sort/merge programs. The operating system sort/merge program recognizes INPFIL,
OUTFIL, and OPTION as valid control statements, but does not act upon them.

Section 2: How to Use the Sort/Merge Program

37

The information contained in INPFIL and OUTFIL statements is supplied to the
operating system sort/merge program in DD statements. The information contained
in the OPTION statement is specified at system generation time.

The operating system sort/merge program accepts SORT, MERGE, RECORD, and ENLC
statements used by other System/360 sort/merge programs. If these statements
contain parameters not recognized by the operating system sort/merge program, the
program ignores those parameters. However, because of differences in the way
parameters are specified, the operating system sort/merge program will not accept
MODS statements used by other System/360 sort/merge programs.

38

Summary of Sort/Merge Control Statements

= e o oy ! ’ f !
FIELDS (Pl' My fyesg Py mye fyr sy Pear Mea’ ‘64 S<s4)

SORT
FIELDS = (p], Mys)0 Por Mor Sor e o or Pggr Megr 564)' FORMAT = xx

[, SlZE=y][, SKIPREC=z][) CKPT]

FIELDS = (p], my, f1. 51, P2 M, Fou sps o o s Peas Mads Toas 564)
FIELDS = (p.l, My 510 P Mos Sp0 v o as Py Moy 564>, FORMAT = xx

MERGE

[, SIZE = y]

SORT and MERGE Statement Parameters

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
p Control field position within record. All fields except binary must start on a 4.2 -~ a binary field starting on the
byte boundary. No field may extend past 3rd bit of the 4th byte.
byte 4092,
m Control field length, Character 1 - 256 bytes 32 - a maximum length packed decimal
Zoned Decimal 1 - 32 bytes field
Packed Decimal 1 - 32 bytes
Fixed - Point 1 - 256 bytes
Floating - Point 1 - 256 bytes
Binary - 1 bit - 256 bytes
f " | Control field data format. Must be one of the following: ZD - the code for a zoned decimal field
CH, ZD, PD, Fi, FL, or BI.
s Y Sequencing desired Must be one of the following: E - exit E61 will modify the control field
A - ascending to achieve a unique sequencing.
D - descending
E - user modification then absolute
ascending
FORMAT = xx | Optional. Used when all control field XX must be CH, ZD, PD, Fi, FL, or B!, FORMAT = PD - all control fields are
data formats are the same. packed decimal.
SIZE=y Optional. The number of records If y is an estimate, precede value with E40200 - an estimate of 40200 records.
in the input data set. May be an the character E.
estimate.
SKIPREC =z Optional. Program will skip z Not valid for a merge. SKIPREC =900 - the first 200 input
records before sorting. records are ignored.
CKPT Optional. Checkpoints are taken. Not valid for a merge. CKPT
END

The END statement must be used when user routines or data are in the input stream. The statement has no parameters.

Section 2: How to Use the Sort/Merge Program 39

RECORD TYPE = x, LENGTH=<11, L, 45, 2,, 25)

RECORD Statement Parameters

length

record length

See Figures 1 & 2 for maximum.

80 bytes, or maximum variable -
length input record is 80.

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
TYPE =x Tells program whether input x must be For V TYPE =V - input is variable - length
records are fixed or variable
length.
Fixed Variable
ll Input record Maximum input zl may not be less than 18 bytes 80 - fixed - length input records are

Maximum
record length of]
input to sort
phase

2 Length of input
to sort phase

lz is not used for a merge.

60 - input to sort phase is 60, or a
maximum of 60. User routine has

modified original input record length.

1,1,

Maximum
record length of|
output records.

Record length
of output
records

If specified, must be same as LRECL
for output, or else LRECL is used.

90 - output records are all 90 bytes
or a maximum of 90,

13 =ky for a sort
lg =k for a merge

14 Minimum input
record length.

Not used for fixed - length records.

30 - minimum variable - length
record is 30 bytes

14 = sum of control field
lengths, or 18 bytes,
whichever is greater.

) Modal input
record length

Not used for fixed - length records.

50 - in a variable-length input data
set, 50 bytes is the most frequently
occurring length,

45:'41 +214

MODS exit=(n‘, my, sy [, {':}]) e e ey exif=<r\‘7, my7, $17 [, {?}])

MODS Statement Parameters

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
exit = xx The name of an exit to be Must be a valid exit name. E28
activated,
n Name of the routine. Member CHANGE1
name if routine is in a library.
m Size, in bytes, of the routine. 514
s Location of the routine. Either the ddname of data set USERLIB - the routine is in a data set
containing routines, or SYSIN. defined by the DD statement named
USERLIB.
N Tells if no additional link Must be the character Nor S, N - no additional link editing is If not used, assumes
editing or separate link required. link editing together.
editing is required.

40

Sort/Merge Control Statement Examples

Following are a number of examples showing groups of sort/merge control
statements. Each example shows all the sort/merge control statements that are
necessary to accomplish a particular job. However, these control statements must
be accompanied by job control language statements before the job can be run.
Later in this section the JCL required for sort/merge execution is discussed. At
the end of that discussion is a group of complete JCL and sort/merge control
statement examples. The operands and values of the sort/merge control statements
shown there are the same as the ones in these examples.

Example 1 - Simple Sort

This example shows a simple sorting application. No modification routines are
included so neithexr the RECORD nor the MODS statement is required.

SORT F1ELDS=(1.0,6.0,A,28,5,D) ,FORMAT=CH,SIZE=E10000
END

SORT statement The FIELDS operand describes two fields. The first begins on
: byte 1 of each record, is 6 bytes long, contains character data,
and is to be sorted into ascending order. The second field
begins on byte 28, is 5 bytes long, contains character data, and
is to be sorted into descending order. The optional FORMAT
operand is used because both fields contain data of the same
format.

END statement This statement is shown for completeness. It is not necessary

since no modification routines which would come between the SORT
statement and the /* statement are included.

Example 2 -- Simple Merge

This example shows a simple merge application. The values of the FIELDS operand
are the same as those on the SORT statement in Example 1. No modification
routines are included in this aprlication.

MERGE FIELDS=(1.0,6.0,A,28,5,T) ,FORMAT=CH,SIZE=E10000
END

Example 3 -- Sorting With Modification Routines

This example shows a more complicated sorting application. Modification routines
are included, therefore a MODS statement is required. Some of the modification
routines change record lengths during sort/merge program execution, therefore a
RECORD statement is required.

SORT FIELDS=(3.0,8.0,2D,E,40.0,6.0,CH,D),SIZE=E30000

RECORD TYPE=F,LENGTH= (120,100,80)

MODS E15= (E15,780,MODLIB,N) ,E16= (E16, 1024 ,MODL1B, N) , X
E35= (ADDUP, 912, SYSIN) , E6 1= (CHGE, 1000, SYSIN)

END

SORT Statement The FIELDS operand describes two control fields. The first will
be changed by a modification routine (at exit E61, see the MOLS
statement) before sort/merge orders it into absolute ascending
sequence. The second control field will not be modified and will
be placed in descending sequence.

Section 2: How to Use the Sort/Merge Program

41

RECORD Statement The fixed-length recoxds in the input data set are 120 bytes

MODS Statement

END Statement

long. A modification routine (at exit E15) changes them to 100
bytes during the sort phase. A modification routine (at exit
E35) changes them again during the final merge phase (to 80 bytes
each) . - o .

The. statement describes four modification routines. The first
two are in a library that is defined on the MODLIB LD statement
with member names of E15 and E16 respectively. Neither routine
requires additional linkage editing. The next two routines are
in object form in the input stream. Their names are ALDUP and
CHGE, respectively. They must be linkage edited together with
other routines in their phases that require linkage editing.

This statement is.required because of the modification routines
in the input stream.

Example 4 - Merging With Modification Routines

This example is a merging application. Modification routines that change record
lengths and control fields are included.

MERGE FIELDS= (5,6,CH,E) ,SIZE=8150

RECORD TYPE=V,

LENGTH= (240,,200,, 160)

MODS E35= (CALC,800,USERLIB) ,E61= (E61, 450, MODLIB, N)

END

MERGE Statement

RECORD Statement

MODS Statement

END Statement

42

The FIELDS operand describes one control field that will be
modified (by the routine at exit E61) before it is examined by
the merge. The exact size of the input data sets is given.

All the records in the input data sets are variable-length. The
maximum record length in the input data sets is 240. A
modification routine (at exit E35) shortens all records by 40
bytes making the maximum record length in the output data set 200
bytes. The most frequent record length in the input data set is
160 bytes.

A routine named CALC receives control at exit E35. CALC is
approximately 800 bytes long, resides in the library defined on
the USERLIB DD statement and must be linkage edited together with
other routines in its phase which require linkage editing. At
exit E61, the sort/merge program transfers control to a routine
from the library defined by the MODLIB LD statement. The member
name of this routine is E61. This routine is 450 bytes long and
does not need further linkage editing.

The END statement is not required because there are no
modification routines in the input stream, but it is shown here
for completeness.

Example S - Sort

This example shows a one-field sort with fixed-length records whose length is
changed during the course of sort/merge execution by a routine at exit E35.

SORT FIELDS=(10,5,CH,A) ,SIZE=10000

RECORD TYPE-F,

MODS E35= (E35,

END

SORT Statement

RECORD Statement

MODS Statement

END Statement

Example 6 - Sort

LENGTH= (80, ,50)

534, SYSIN)

The FIELDS operand describes one control field that begins on
byte 10 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are exactly 10,000 records in the
input data set.

This statement indicates that the input data set contains 80-byte
fixed-length records and that the records will be shortened to 50
bytes each as they leave the final merge.

The statement describes a modification routine that will receive
control at sort/merge program exit E35. The name of the routine
is E35, it is 534 bytes long, appears in object form in SYSIN,
and must be linkage edited together with other routines in its
phase which require linkage editing..

This statement is required because the sort/merge control
statements are not followed immediately by a /* statement. (The
E35 object deck follows the END statement in the input stream.)

This example shows a one-field sort with variable-length records. Modification

routines receive

control at exits E11 and E16.

SORT FI1ELDS= (20,5,CH,RA) ,SIZE=E25500

RECORD TYPE=V,

MODS E11=(E11,

END

SORT Statement

RECORD Statement

MODS Statement

LENGTH= (120, ,,60,80)
500,USERLIB,S) ,E16= (E16,554 ,USERLIB, N)

The FIELDS operand describes one control field that begins on
byte 20 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are approximately 25,500 records in
the input data set.

This statement indicates that the input data set contains
variable-length records with a maximum record length of 120
bytes, a minimum record length of 60 bytes and a modal (most
frequent) length of 80 bytes. The RECORD statement is not
required for this example, but without it, sort/merge would
assume a minimum record length of 24 bytes (large enough to
contain the specified control field) and a modal length of 72
bytes (the average of maximum and minimum lengths) .

The statement describes two modification routines. One will
receive control at exit E11. It is named E1%, is 500 bytes long
and can be linkage edited separately. (See "Bypassing the
Linkage Editor" in "Section 3: Program Modification®", for a
description of the requirements for separate linkage editing.)

Section 2: How to Use the Sort/Merge Program

43

The E11 routine is in a library described on a LL statement with
the ddname USERLIB. The other modification routine, named E16
will receive control at exit E16. The routine is 554 bytes long
and the library in which it resides is described on the DD
statement USERLIB. The E16 routine has been linkage edited
previously and does not require further linkage editing prior to
its use in this application.

END statement This statement is not required in this example. It is shown for
completeness only.

Example 7 - Sort

This example shows a two-field sort. A modification routine at E35 places part of
the output data set on a device other than SORTOUT.

SORT FI1ELDS=(1,10,CH,A,11,6,PL,D) ,SIZE=E15000
MODS E35= (SUBSET, 1024, SYSIN)
END

SORT Statement The FIELDS operand describes two control fields. The first is a
: 10-byte field beginning on byte 1. It contains character data
which is to be sorted into ascending order. The second is a
6-byte field which begins on byte 11 and contains packed decimal
data to be placed in descending order. The input data set
contains approximately 15,000 records.

MODS Statement A routine named SUBSET will receive control at sort/merge exit
E35. The routine is 1024 bytes long, must be linkage edited
together with other routines in the final merge phase of the
program, and will appear in object form in SYSIN.

END Statement This statement is required for this example because the SUBSET
routine will aprear in the input stream between the sort/merge
control statements and the /* statement.

Determining Intermediate Storage Requirements

If you are performing a sorting application, you must calculate the amount of
intermediate storage the sort/merge program needs to sort your data. The basic
factors to consider are the type of device on which you assign intermediate
storage and the number of records in your input data set. BAnother factor which
must sometimes be weighed is the amount of main storage assigned to the sort/merge’
program. In general, the less main storage sort/merge has to operate in, the more
intermediate storage it needs to complete a sorting application.

INTERMEDIATE STORAGE DEVICES

You can assign intermediate storage either on magnetic tape or direct access
devices, but not on a mixture of both.

IBM 2400 Series or IBM 3400 Series Magnetic Tape Units can be used for
intermediate storage. The sort/merge program can operate with a mixture of
7-track and 9-track tapes. If the sort input data set is on 7-track tape, you can
use any combination of 7-track and 9-track tapes for intermediate storage and
output, or intermediate storage and output can be on 2311 disks, 2314 storage
facilities, or 2301 drums. However, if 7-track tape is not used for input, it
cannot be used for intermediate storage or output. When 7-track tape is used for

~intermediate storage, variable length records cannot be handled.

If you assign 7-track tapes for input, you can use the data converter. If you

assign 7-track tape for intermediate storage, you cannot use the data converter,
nor can you use the translation feature for anything but character data.

4y

dir
typ

INT

1f you use direct access devices for intermediate storage, use only one type of
ect access device as intermediate storage for a given sorting application. The
es of direct access devices available for intermediate storage are:

IBM 2311 Disk Storage Drive.
IBM 2301 Drum Storage Drive.
IBM 2314 Direct Access Storage Facility.
IBM 2319 Direct Access Storage Facility.

ERMEDIATE STORAGE SPACE REQUIREMENTS

Use
nec
tec
whi
int
tec
pro
cal
lar

Tap:

the following formulas to calculate the amount of intermediate storage

essary for a given sorting application, device type, and sequence distribution
hnique. Unless you force a sequence distribution technique, you do not know
ch one sort will use. This causes no difficulty, however. The amount of
ermediate storage you assign may affect the sort/merge program's choice of a
hnique. 1In other words, you may implicitly rule out one technique by not
viding enough intermediate storage for its use. To avoid this possilbility,
culate the intermediate storage required by all the techniques and provide the
gest amount needed.

e Intermediate Storage

1f
of
dis

Formula 1 n

Formula 2 n

For

| The
set
sor
wil
pub

you use tape for intermediate storage, the following formulas give the number
tapes needed to complete a tapre sort for a given data set size and sequence
tribution technique:

2 (x+1) -- balanced tape technique -- maximum input is 15 reels.

X+2 -- oscillating tape technique -- maximum input is 15 reels.

mula 3 n = 3 reels -- polyphase tape technique -- maximum input is 1 reel.

X represents the minimum numker of volumes required to contain the input data
with a blocking factor equal to that used for intermediate storage by the
t/merge program. If input is spanned, or uses a more efficient blocksize, you
1 need more space. For an approximate sort blocking figure refer to the
lication 0S_Sort/Merge Timing Estimates under your particular configuration and

record length.

;

The maximum number of tape units that can be used for intermediate storage are:

The
osc

32 for the balanced technique.
17 for the oscillating technique.
17 for the polyphase technique.

se maximums permit the sorting of 15 reels of input with the balanced and
illating techniques. The polyphase technique allows only one reel of input.

Section 2: How to Use the Sort/Merge Program

45

2311, 2301, and 2314 (Balanced Technigue) Intermediate_ Storage

Use the following formula to calculate the approximate number of tracks (T)
required to complete a direct access sort for a given data set size when
intermediate storage is on 2311 or 2314 disk or 2301 drum. 1If the data set tends
to be ordered in reverse of the sequence you want the output to be in, more
intermediate storage may be necessary. Conversely, if the input data set tends to
be ordered in the desired sequence, less intermediate storage is necessary.

Formula 4 T = _S(N) + 2N
k (N-1)

where:
N is the number of intermediate storage areas. You must have at least three,

but no more than six.
S is the number of records in the input data set, exact or approximate.
k= _B

L
where:

B is 3,400 for the 2311
18,000 for the 2301
7,000 for the 2314

L is the length in bytes of each record in the input data set. For
variable-length records, L is the maximum length.

Only the integer portion of k is used for calculating T. Disregard the
remainder, whatever its value. If the formula yields k = 0, use the value 1.

You must make at least three intermediate storage areas available to the sort
and define each as a separate data set. Assign at least three tracks to the
smallest area (five for the 2314). All tracks in an area must be contiguous. You
can use up to six areas. Divide the number of tracks (T) among the areas you
select. The formula is based on areas of equal size. More tracks will be needed
if T is not divided equally.

Intermediate Storage Assignment Example

Determine T for 2301 using 4 intermediate storage data sets, variable-length
records; maximum length 120, estimated input data set size 25500 records.

T=25500(4) + 8 = 102000 + 8 ~ 235
18000 (3) 450
120

Divide T among the 4% data sets: 59, 59, 59, 58.

If the sort/merge program has less than 44K bytes of main storage to execute
in, you may have to increase the value of T. If sort/merge has 12K bytes of main
storage, you should increase T by about 50%. If main storage is between 12K and
44K, the percentage of increase is correspondingly less.

For information on assigning intermediate storage for efficient program
operation, refer to "Section U4: Efficient Program Use".

46

2314 (Crisscross Technigue) Intermediate Storage

Use the following formula to calculate the approximate total number of tracks (T)
required to complete a sort when intermediate storage is on a 2314 and the
crisscross sequence distribution technique is used:

Formula S T = 1.25S
k
where:
S is the number of records in the input data set, either actual or approximate.
k=8B
L
where:

B is 7,000
L is the number of bytes in each record in the input data set.

For variable-length records, L is the maximum record length. Use only the
integer portion of k. Disregard the remainder, whatever its value. 1If
the formula yields k=0, use the value 1.

When the input data set is on 2314, and you know how much space it occupies,
you do not need to use the above formula to determine intermediate storage space.
Assign intermediate storage space that is at least 25% larger than the space
occupied by the input data set.

If the data set tends to be ordered in reverse of the desired output sequence,
more intermediate storage space is necessary. Conversely, if the data set tends
to be ordered in the desired sequence, less space is required. Also, if the
sort/merge program is assigned less than 44K bytes of main storage in which to
execute, you may have to increase the value of T. If sort/merge has 24K bytes of
main storage, you should increase T by about 50%. If main storage is between 24K
and 44K, the percentage of increase is correspondingly less.

The sort/merge program requires a minimum of six 2314 areas when the crisscross
technique is used and permits a maximum of 17. (When the balanced technique is
used, the minimum number of 2314 areas is three.) Each area must contain at least
five tracks. All tracks in an area must be contiguous.

Efficient assignment of 2314 space is discussed in "Section 4: Efficient
Program Use".

Section 2: How to Use the Sort/Merge Program

47

Intermediate Storage Assignment Formulas—Summary

Device Typés for Intermediate Storage

INPUT

INTERMECIATE STORAGE

7-track tape

7- and/or 9-track tape
or

2311 disk
or

2301 drum
or

2314 facility

Any device but 7-track tape

oo o T o e . . . G . e S e i e e g . 20

9-track tape

or
2311 disk

or
2301 drum

or
2314 facility

e e e e e e e e e e e e e e o e

I T SN RyS S———

NUMBER OF TAPES REQUIRED FOR INTERMEDIATE STORAGE (N)

Formula 1 n = 2(x+1) -- for the balanced technique, maximum n=32, maximum input 15
reels.)

Formula 2 n = x+2 -- for the oscillating technique, maximum n=17, maximum input
15 reels.

Formula 3 n = 3 -- for the polyphase technique, maximum n=17, maximum input 1
reel. :

where:

X is the number of tapes that would be required to contain the input data set

at sort blocking.

TOTAL NUMBER OF TRACKS REQUIRED FOR DIRECT ACCESS INTERMEDIATE STORAGE

Formula for 2301, 2311 and 2314 with balanced technique

Formula 4 T = _S (N) + 2N
kN-1)

Formula for 2314 with crisscross technique

Formula 5 T = 1.25S
k

where:

N is the number of intermediate storage areas
3<N<6 for 2311, 2301 and 2314 with the balanced technique
6<N<17 for 2314 with crisscross technique

S is the number of input records

it

B is 3,400 for the 2311
18,000 for the 2301
7,000 for the 2314

L is the input record length

(maximum length for variable-length records)

Note: Use only the integer portion of k. Never round upwards. If k = 0, use 1.

48

Job Control Language for Sort/Merge

When the sort/merge program is initiated via the system input stream, it requires
a JOB statement, an EXEC statement, and DD statements.

JOB STATEMENT

The JOB statement for a sort/merge job is a standard System/360 Operating System
JOB statement.

(}/jobname JOB accounting info,programmer name, etc.

EXEC STATEMENT

The EXEC statement identifies either a sort/merge cataloged procedure or the
sort/merge program. The statement

PARM='optional parameters®

PGM=SORT
//stepname EXEC v
DISCUSSED LATER

PGM=IERRCO00

identifies the sort/merge program. The statement

PROC=SORT

//Stepname EXEC PROC=SORTD ,PARM="'optional parameters"'
SORT discussed later
SORTD

identifies a sort/merge cataloged procedure. The procedures, SORT and SORTLC are
shown later in this section under "Initiating Sort/Merge®™. The PROC= notation
merely serves as a reminder that a cataloged procedure is being used.

PARM Field Options

NO
' BALN XXXXXX (an cc
PARM= 0SCL ,CORE=optional main ,MSG={Cp [, DIAG]
POLY storage value) AC
CRCX AP

The first PARM field option specifies a sequence distribution technique to be used
by the sort/merge program. If the intermediate storage medium is tape, BALN means
use the balanced tape technique, OSCL means use the oscillating tape technique,
and POLY means use the polyphase tape technique. If the intermediate storage
medium is on a 2314 storage facility, BALN means use the balanced direct access
technique, CRCX means use the crisscross direct access technique.

Note: You cannot choose a sequence distribution technique if intermediate storage
is on 2311 or 2301; sort/merge always uses the balanced technique. There are
certain restrictions on your choice of a technique for the 2314:

e If less than six work areas are provided, the sort/merge program always uses
the balanced technique.

e If more than six work areas are provided, the program uses the crisscross
technique.

e If exactly six work areas are provided, the program uses the balanced
technique unless CRCX is specified in the PARM field.

Section 2: How to Use the Sort/Merge Program

49

You should be extremely cautious when forcing the sort/merge program to use a
specific technique. The program tries to select the most efficient technique for
a given application. If it is forced to use another, performance may not be as
efficient. Refer to Figure 5 in Section 1 for information about the requirements
of the sequence distribution techniques.

The second PARM field option is an optional main storage value which will
temporarily override the sort/merge storage allocation set up at system generation
time. Refer to "Altering the Main Storage Allocation®™ in Section 4.

You can use the third PARM field option to override temporarily the message
option specified at system generation time. The option is requested by MSG=xx.
Valid entries for xx are:

e NO - no messages are printed.

e CC - critical messages only are printed. They appear on the system console.

e CP - critical messages only are printed. They appear on the printer.
e AC - all messages are printed. They appear on the system console.
e AP - all messages are printed. They appear on the printer.

Note: When using ASP you cannot specify MSG=CP or MSG=AP.

The DIAG PARM field option is only for use in customer problem determination. It
should never be used for normal sort or merge jobs, as it degrades sort/merge
performance. It causes the program to print diagnostic messages and control
cards. If the program terminates in the sort or merge phases with a critical
message, use of this parameter also produces an 0C1 abnormal termination dump for
diagnostic use. '

DD STATEMENTS

1f you do not use a sort/merge cataloged procedure to invoke the sort/merge
program, you must include system DD statements in the input stream. These are the
DD statements that would be contained in the cataloged procedure. They are:

//SYSPRINT DD used by the linkage editor. Include this statement when your
routines that require linkage editing are included in the
application.

//SYSLMOD DD defines a data set that contains output from the linkage

editor. 1Include this statement when your routines that need
linkage editing are included in the application.

//SYSUT1 DD defines a data set used as a work area by the linkage editor.
Use this statement when your routines that must be linkage
edited are included.

//SYSLIN DD defines a data set created by the program, for input to the
linkage editor. Use this statement when your routines that
require linkage editing are included.

//SORTLIB DD defines a data set that contains load modules for the
sort/merge program. Always include this statement.

//SYSOUT DD defines a data set used as the system output data set. Always
use this statement.

50

The following DD statements are required whether sort is initiated directly or
through a cataloged procedure:

//SORTIN

//SORTINO1

- i b

- -

//SORTIN16

//SORTWKO 1

//SORTWK32

//SORTOUT

//SORTMODS

//SORTCKPT

DD

DD

DD

DD

Db

DD

DD

DD

defines the input data set for a sorting application. Not
required for a merge-only application.

define the input data sets for a merging application.
Not required for a sorting application.

define intermediate storage data sets for a sorting
application. Not required for a merging application.
Refer to the section "Determining Intermediate Storage
Requirements" for information on how many SORTWKxx LD
statements are needed.

defines the output data set for sorting and merging
applications.

defines a temporary partitioned data set large enough to
contain all of your modification routines that appear in the
input stream for a given application. 1If your routines are
not in the input stream, this statement is not required. If
your routines are on libraries, DD statements defining the
libraries must be included.

defines a data set for checkpoint records. If you are not
using the checkpoint facility this statement is not required.

Section 2: How to Use the Sort/Merge Program

51

REQUIRED DD STATEMENT PARAMETERS

The sort/merge program requires that certain parameters be included in the LD

statements described above.

These parameters, the conditions under which they are

required, a summary of the information contained in them, and the value assumed

(default) if the parameter is not included are shown in Figure 12.

and subparameters which are not required are not discussed.

The parameters

[3 LD Ll 1 1
| PARAMETER | CONDITION UNDER WHICH REQUIRED | SUMMARY OF PARAMETER VALUE | DEFAULT VALUE|
[iy iy 1) |
r L] : T 1 R
| DSNAME | When the DD statement defines | Specifies the fully | The system |
| | a labeled input data set | qualified name or the | assigns a]
: } ge.g., SOgTIN), or whgn the } ;emporary name of the } unigque name. :
ata set being created is to ata set.

| | be kept or cataloged (e.g., | | |
| | SORTOUT) , or passed to another | { |
! | step. | | |
b t == ¢ {
DCB	Always required for the input	Spec1f1es 1nformat10n used	----
	and output data sets; and when	to £fill the data control	
-	7-track tape is used for inter-	block (DCB) associated	
	mediate storage.?	with the data set.	
L 4 4.] J			
T T h] T 1			
UNIT	When the input data set is	Specifies (symbolically	---=~
	neither cataloged nor passed	or actually) the type	
	or when the data set is being	and quantity of 1/0 units	1
	created.	required by the data set.	
[X 4 1 1]			
¥ T T T A			
SPACE	When the DD statement defines	Specifies the amount of	===
	@ new direct access data set.	space needed to contain	
		the data set.]	
L 4 1]]			
v T L] T 1			
VOLUME	When the input data set is	Specifies information used	----
neither cataloged nor passed, to identify the volume or			
for multi-reel input, or when volumes occupied by the			
tpe output data set is on data set.			
	direct access and is to be kept]		
	or cataloged.		
b t : e r— : ¢ {			
LABEL When the default value is not Specifies information	The system {		
applicable. about labeling and	assumes l		
{ retention for the data	standard		
		set.	labeling. l
; t + + 1			
DISP	When the default value is not	Indicates the status and	The system
	applicable. disposition of the data	assumes (NEW,	
:	set.	DELETE)	
L L 4 [Rp——

k 1
| |
[l i

1Input, on

direct access devices only, is an exception.

Figure 12.

A full description of other DL statement parameters and subparameters is
contained in the publication 0S_JCL Reference.

52

Summary of DD Statement Parameters Required by the Sort/Merge Program

Figure 13 is a summary of the DCB subparameters that are required by the
sort/merge program if the DCB parameter is used. A more detailed discussion of
these and other DCB subparameters is contained in the publication 0S_Data
Management Macro Instructions.

be taken that the shortened records still include all the control fields.

r T L] L] 1
| SUBPARAMETER | CONDITION UNDER WHICH REQUIRED |SUMMARY OF SUBPARAMETER VALUE|LDEFAULT VALUE|
L i & 4 4 3
r T T t 1
DEN	When the data set is located	Specifies the density at	800 bpi
J]on a 7-track 2400-series tape	which the tape was recorded.		
lunit.			
t t + 1 1			
TRTCH [When the data set is located	Specifies the technique used	Converter not	
lon a 7-track 2400-series tape	to record 8-bit bytes on a	used, trans-	
junit.	7-track tape.	lator not	
			used, odd
I]	[parity. I		
b t 4 t {			
RECFM When the DCB parameter is	Specifies the format of the	[----	
required, except on SORTWK	records in the data set.		
‘ statements. | , | |

-- $ 1 + {
LRECL |When the DCB parameter is | Specifies the maximum length |---- |
| required, except on SORTWK | in bytes) of the logical | |

statements. Not required for |records in the data set.? | |

fixed-length unblocked | | |

| | recoxds | |]
t 1 : e

BLKSIZE |When the DCB parameter is |Specifies the maximum length |---- |
|required, except on SORTWK | (in bytes) of the physical | |

| statements. |records in the data set. | |

4 L -— I 8 1

1

|

|

J

[

t -

| "When used in the SORTOUT DD statement to shorten the output records, care must
|

L

Figure 13.

Summary of DCB Subparameters Required by the Sort/Merge Program

Figure 14 illustrates the order in which control statements must be placed in
the input stream.

Section 2: How to Use the Sort/Merge Program 53

(rNext JOB statement or null statement

(f Subsequent job steps, if any

/9* delimiting statement

(bata for your modification routines, if any

Your modification routines, if any, in the same order they
will be used

(END statement

MODS statement, if needed
RECORD statement, if needed
SORT or MERGE statement

l/)/sysxm DD *

(bD statements: SORTIN, SORTOUT, SORTWK, SORTMODS, etc. as needed

(%XEC statement

(freceding job steps, if any

(SOB statement
Figure 14. Arrangement of Statements for Sort/Merge Execution

Each of the DD statement types required by the sort/merge program are discussed
in the following text. Examples of the statements are included.

SORTIN DD Statement

For a sort, the SORTIN data set may be cataloged or uncataloged, or it may be
inserted by your routine at exit E15 (see "Section 3: Program Modification").
The SORTIN data set may not be a LD DUMMY.

DD _Example 1: SORTIN DD Statement

This example shows DD statement parameters that define a previously cataloged
input data set:

//SORTIN DD DSNAME=INPUT,LCISP= (OLD,DELETE) , X
DCB= (RECFM=FB ,BLKSIZE=800,LRECL=80)

B
N

i s v s e . s e i)

DSNAME causes the system to search the catalog for a data set with the
name INPUT. When the data set is found, it is associated with the
ddname SORTIN. The control program obtains the unit assignment and
volume serial numker from the catalog and types a mounting message
to the operator if the volume is not already mounted.

DISP indicates that the data set is passed or cataloged (OLD) and that
it should be deleted (DELETE) after the current job step.

DCB indicates that the data set contains fixed-length blocked records
(RECFM=FB) with a block size of 800 bytes and a record length of 80
bytes.

54

I1f the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate the
serial numbers of the tape reels. 1In the following volume parameter example, the
input data set is on three reels that have serial numbers 75836, 79661, and 72945,

DD_Example 2: Volume Parameter on SORTIN DD

r 1
{ VOLUME=SER= (75836 ,79661,72945) |
L 3

When input to the sort/merge program is a concatenated data set, all data sets
in the concatenation must have identical attributes. If they do not, results are
unpredictable. This causes sort to terminate if an actual data set size appears
in the S1ZE parameter of the SORT control card because of the ensuing record count
off condition.
SORTINO1 -- SORTIN16 DD Statements
These DD statements define the input data sets for a merge operation. They must
be numbered in ascending sequence. SORTINO1 is the name of the first DL
statement; SORTINO2 is the name of the second DD statement, etc. No numbers can
be skipped. The maximum block size and the maximum record length of all the data
sets to be merged must be defined in the SORTINO1 DD statement. RECFM and LRECL
must be the same for all input data sets. Mixtures of fixed- and variable-length
records are not allowed. Fixed~length records must all be of the same length.
DD _Example 3: SORTINOt1 -- SORTINO3 LD Statements for a Merge
r . 1
| //SORTINO 1 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=0LD, X |
\// LABEL= (,NL) ,UNIT=2400, X |
|7/ DCB= (RECFM=FB,LRECL=80, BLKSIZE=240) |
| //SORTINO2 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=0LD X |
{7/ LABEL= (,NL) ,UNIT=2400, X |
V44 DCB= (RECFM=FB,LRECL=80, BLKSIZE=240) {
| //SORTINO3 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=0LD, X |
\// LABEL= (,NL) ,UNIT=2400, X |
V4 DCB= (RECFM=FB,LRECL=80, BLKSIZE=240) |
L ¥ |
DD Example 4: SORTINO1 and SORTINO2 DD Statements for a Merge
r 1
| //SORTINO1 DD DSNAME=INPUT1,VOLUME=SER=000101, X i
V44 UNIT=2301,DISP=0LD,DCB= (RECFM=VB, X i
\// LRECL=240,BLKSIZE=2400) {
|//SORTINO2 DD DSNAME=INPUT2,VOLUME=SER=000201, X |
V4 UNIT=2301,DISP=0LD,DCB= (RECFM=VB, X |
\// LRECL=240,BLKSIZE=2400) |
L d
SORTWKO1 -- SORTWK32 DD Statements
These statements define the intermediate storage data sets for a sort operation.
For a merge-only operation, these statements are not required. Intermediate
storage data sets can be on tape or direct access devices but not on a mixture of
both. Your selection of an intermediate storage device type is not related to the
device types used for input or output with one exception: seven-track tape cannot
be used for intermediate storage unless the input device is also 7-track tape.
Refer to "Intermediate Storage Space Requirements® in this section for information
about how much intermediate storage is required for a particular application.

Section 2: How to Use the Sort/Merge Program 55

If you are using the checkpoint/restart facility and may be making a deferred
restart, you must make the following two additions to each of your SORTWK DL
statements so that the sort work data sets will not be lost:

DSNAME=anyname
D1Sp= (NEW,DELETE ,KEEP)

Thus a complete SORTWK DD statement for deferred restart might be:

//SORTWKO1 DD DSNAME=WORK1,UNIT=2311,SPACE (TRK, (20) ,,CONTIG) , X
// D1SP= (NEW,DELETE, KEEP)

o o e oy
"

With this DD statement, the data set will be kept, if the job step aborts, and
will be in the system until the step has been successfully rerun or until the data
set has been deleted by some other means.

When the intermediate storage data sets are on direct access devices, only the
primary space allocation is used by sort/merge and the space must be contiguous.
Partitioned data sets cannot be used for SORTHWK.

The ddnames for intermediate storage data sets must be numbered in ascending

sequence. SORTWKO1 must be the first, SORTWKOZ the second, etc., and no numbers
can be skipped. .

DD Example S5: SORTIWKO1 DD Statement Defining a Tape Intermediate Storage Data Set

r
| //SORTWKO 1 DD UNIT=2400,LABEL= (,NL)
L

These parameters specify an unlabeled data set on a 2400 series tape unit. The
system assigns a unique name to the data set because the DSNAME parameter is
omitted. Because the DISP parameter is omitted, the system assumes
DISP= (NEW,DELETE) ; the data set has not been previcusly cataloged and it will be
deleted at the end of the current job step. The disposition PASS is not allowed
for a SORTWK data set.

DD Example 6: SORTWKO1 DD Statement Defining a Direct Access Data Set for
Intermediate Storage

78

r
| //SORTWKO 1 DD UNIT=2311,SPACE= (IRK, (200) , ,CONTIG)
i

UNIT specifies a 2311 disk. The LABEL parameter is omitted. The default is
standard labels.

SPACE specifies 200 contiguous tracks for the data set.

The omission of the DSNAME parameter causes the system to assign a unique name
to the data set. The DISP parameter is omitted; the system assumes NEW, DELETE.

| 56

SORTOQUT DD Statement

This DD statement is used to define all the characteristics of the output data
set.

DD Example 7: SORTOUT DD Statement

//SORTOUT DD DSNAME=OQUTPT,UNIT=2400,DISP= (NEW,CATLG) , X
// DCB= (RECFM=FB,LRECL=90, BLKSIZE=900)

e e e o

DSNAME The data set is to be called OUTPT.

D1SP The data set is unknown to the operating system (NEW) and it is to be
cataloged (CATLG) under the name OUTPT.

UNIT indicates that the data set is on a 2400 series tape unit.

DCB specifies a fixed-length blocked data set with a record length of 90

bytes and a block size of 900 bytes.

SORTMODS DD_Statement

This statement is required if your routines are included in the system input
stream. 1t must define a temporary partitioned data set large enough to hold all
your routines that appear in the input stream. The sort/merge program transfers
your routines to the SORTMODS data set before they are linkage edited for
execution. If all your routines are located in libraries, the SORTMODS DD
statement is not required, but DL statements defining the libraries must be
included.

DD Example 8: SORTMODS DD Statement Defining a SORTMODS Data Set on 2311

r 1

| //SORTMODS DD UNIT=2311,SPACE= (TRK, (10,,3)) |

[] — "]
These parameters allot ten tracks of a 2311 disk to the SORTMODS data set.

Space for three directory blocks is also requested.

SORTCKPT DD Statement

The SORTCKPT data set may be assigned on any device that operates with BSAM.

Processing can be restarted from the last checkpoint taken. If the MOD

disposition is specified for the checkpoint data set, processing can be restarted

from the checkpoint taken at the start of the sort phase as well as the last

checkpoint taken.

DD_Example 9: SORTCKPT DD Statement

r R |

| //SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,DISP= (NEW,KEEP) , X]

V4 UNIT=2400 ,

t 3

Section 2: How to Use the Sort/Merge Program 57

Job Control Language Statements for Sort/Merge—Summary

) 1 T R
|Sstatement | Purpose |Wwhen Required |
L 'l 4 J
r T Ll 1
| 77/ jobname Job |Introduces the job. |Always. |
L 1 | |
¥ 1 L] 1
| 7/ stepname EXEC |Introduces the step. |Always. |

//SORTIN DD

Defines input data set for a sort.

o ,
|For a sort, always unless LINK, |
| ATTACH, or XCTL is used to - |
|invoke sort and the input data |
|set is inserted by your routinej|
Jat sort/merge exit E15. Not
|used for a mexge.

[l

//SORTINO1-16 DD

Define input data sets for a merge.

]
|For a merge, always.
|[Not used for a sort.
1

//SORTWK01-32 DD

Define intermediate storage data

1)

|For a sort, always.
|Not used for a merge.
4

//SORTOUT DD

Defines sort/merge output data set.

et e e ke s s, S e, e

13

|Always, unless LINK, ATTACH, or|
|XCTL is used to invoke sort and|
|your routine disposes of |
joutput via sort/merge exit E35. |
} :

|
|
|
|
|
|
L
T
|
|
1
T
|
|sets for a sort.
_lr
|
|
|
|
1
1
|
|
|
L
4

|
|
|
|
|
|
N
]
|
|
i
L]
|
|
L
]
|
|
|
|
[
1)
|
|
|
L
L]
|
|
R
1
|
|
|
[
§
|
i
r
|
L

4

i , 1

//SORTMODS DD Defines a temporary data set for |When you supply modification |
your modification routines in |routines through the system |

SYSIN. |input stream. |

I 1

T N 1

//SORTCKPT DD |Dpefines data set for checkpoint |When you use the checkpoint |
|records. |facility. ‘ |

+ 1 4

//SYSIN DD |]Indicates that data set containing |Always. |
|sort/mexge control statements | |

|follows in input stream. | |

[l 1 i |

T T |

/* |Marks the end of SYSIN data set. |Always. |
1 1 _Jl

|

J

Shaded statements are provided by SCRT or SORTD cataloged procedure.

58

JCL and Sort/Merge Statement Examples

Following are a number of examples showing all the JCL and sort/merge statements
necessary to accomplish a particular job. The sort/merge control statements shown
have the same operands as those illustrated and explained at the end of the topic
"Defining the Sort or Merge™ in this section.

Example 1 -- Sort
r T H 1 H 1
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
1 4 4 i} 4 1
g T T 1 1 1
| Blocked | Blocked | Fouxr | None | FORMAT=xx
| fixed-length | fixed-length | 9-track | | for control
| records on | records on | tapes | | fields of
| 9-track tape | 9-track tape | | | like format.
| | | | | Estimated
| | | | | data set
I I |] | size.
% L L L L J
| //EXAMP 1 JOB A402,PROGRAMMER 01
|//STEP1 EXEC SORTD ’ 02
|//SORT.SORTIN DD DSNAME=INPUT,VOLUME=SER=000101, 03
\// UNIT=2400,DISP= (OLD,DELETE) , 04 [
V24 DCB= (RECFM=FB,LRECL=80, 05
V4 BLKSIZE=800) 06
| //SORT.SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP= (NEW, 07
V74 CATLG) , VOLUME=SER=000102,DCB= (RECFM=FB, 08
V4 LRECL=80, BLKSIZE=800) 09
{//SORT.SORTWKO1 DD UNIT=2400 10
| //SORT.SORTWKO02 DD UNIT=2400 11
|//SORT.SORTWK0O3 DD UNIT=2400 12
| //SORT.SORTWKO4 DD UNIT=2400 13 |
|//SORT.SYSIN DD * 14
| SORT FIELDS=(1.0,6.0,3,28,5,D) ,FORMAT=CH,SIZE=E10000 15
{ END 16 |
|/* 17 |
L J
01 The JOB statement introduces this job to the operating system. The card
contains accounting information and programmer identification. Message
level 0, indicating that only incorrect control statements and associated
diagnostic messages are to be printed, is specified by default.
02 The EXEC statement invokes the cataloged procedure SORTLD. It can be
written as shown or as EXEC PROC=SORTD. The contents of the two
cataloged procedures surplied by IBM for sort/merge are shown in Section
2. The SORT cataloged procedure could be used for this example, but it
causes allocation of linkage editor data sets which are not needed since
no user-written modification routines that require linkage editing are
included. The SORT procedure is therefore less efficient than the SORTD
procedure for this examgle.
The remaining DD statements are being added to the SORTD procedure for
this job step only. Therefore they are qualified by the stepname (SORT)
of the SORTD procedure. The SORT procedure also has the stepname SORT.
03-06 The SORTIN DD statement describes an input data set named INPUT. The
data set is on a 9-track tape that has the serial number 000101. The
DISP parameter indicates that the data set is known to the operating
system and that it should be deleted from the system after this job step.
The DCB parameter shows that the data set consists of fixed-length
records with a record size of 80 and a block size of 800.
Section 2: How to Use the Sort/Merge Program 59

07-09

10-13

14

15-16

17

60

The SORTOUT DD statement describes the output data set. OUTPUT will be
recorded on a 9-track tape drive and will be cataloged after it is
created. The data set will be placed on tape volume number 102.
OUTPUT's format, record length and block size are the same as those for
SORTIN. '

These DD statements define temporary intermediate storage data sets. The
three data sets are on 9-track tape drives. No other parameters are
necessary since the standard system default options are acceptable for
this application.

The SYSIN DD #* statement informs the operating system that a data set
follows in the input stream.

Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge".

The /* delimiter statement marks the end of the SYSIN data set.

Example 2 -- Sort

r 1
|Example 2 is a sorting application exactly like that shown in Example 1 except |
|that a cataloged procedure is not used. The sort/merge program is called |
|directly. Only the EXEC statement, which is different from Example 1, and the |
|two extra DD statements are described. Note that the DD statements need not be]
lqualified by the word SORT. |
L §]
r 1
| //EXAMP2 JOB A402,PROGRAMMER [
|//STEP1 EXEC PGM=IERRCO00,REGION=26K 01 !
| //5YSOUT DD SYSOUT=A 02 |
| //SORTLIB DD DSNAME=SYS1. SORTLIB,DISP=SHR 03 |
| //SORTIN DD DSNAME=INPUT ,VOLUME=SER=000101, |
V4 UNIT=2400,D1SP= (OLD, DELETE) , |
1// DCB= (RECFM=FE,LRECL=80, |
V4 BLKSIZE=800) |
| //SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP= (NEW, |
\// CATLG) ,VOLUME=SER=000102,DCB= (RECFM=FB, |
1// LRECL=80,BLKSIZE=800) |
|//SORTWKO 1 DD UNIT=2400 |
| //SORTWKO02 DD UNIT=2400 |
|//SORTWKO3 DD UNIT=2400 |
|//SORTWKO Y DD UNIT=2400 |
|//SYSIN DD * |
| SORT FIELDS=(1.0,6.0,A,28,5,D) ,FORMAT=CH,SIZE=E10000 |
| END |
/> [
L .
01 This EXEC statement initiates the sort/merge program and indicates that
it needs a 26K region in which to operate.
02 This DD statement directs the system output to system output class A.
03 This DD statement defines the data set containing the sort/merge program
modules.
Section 2: How to Use the Sort/Merge Program 61

Example 3 -- Merge

[/*
L

r T T T T ‘1l
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
% » frmmm e + ¥ t {
Blocked	Blocked	None is	None	FORMAT=xx
fixed-length	fixed-length	required for		for control
records on	records on	a merge		fields of
four 9-track	one 9-track			like
unlabeled	tape			format.
tapes				Estimated
				data set I
x			size.	
l_ L i L 1 -4				
//EXAMP3 JOB A402,PROGRAMMER 01				
//STEP1 EXEC SORTD 02]				
//SORT.SORTINO1 DD DSNAME=MERGINO1,VOLUME=SER=000111, 03				
1// D1SP=0LD,LABEL= (,NL) ,UNIT=2400, - 04				
V4 DCB= (RECFM=FB, LRECL=80, BLKSIZE=240) 05 [
//SORT.SORTINO2 DD DSNAME=MERGINO2Z2,VOLUME=SER=000222, 06				
17/ DISP=01LD,IABEL= (,NL) ,UNIT=2400, 07 [
\// DCB= (RECFM=FB, LRECL=80, BLKSIZE=240) 08				
//SORT.SORTINO3 DD DSNAME=MERGINO3,VOLUME=SER=000333, 09				
4 D1SP=0LD,LABEL= (,NL) ,UNIT=2400, 10				
\// DCB= (RECFM=FB, LRECL=80, BLKSIZE=240) 11				
//SORT.SORTINO4 DD DSNAME=MERGINO4,VOLUME=SER=000444, 12				
17/ DISP=0LD,LABEL= (,NL) ,UNIT=2400, 13				
\// DCB= (RECFM=FB, LRECL=80, BLKSIZE=240) 14				
//SORT.SORTOUT DI DSNAME=MERGOUT,VOLUME=SER=000101, 15				
\// DISP= (NEW,KEEP) ,LABEL= (,NL) ,UNIT=2400, 16				
177 DCB= (RECFM=FB, LRECL=80, BLKSIZE=240) 17				
//SORT.SYSIN DL * 18				
MERGE FIELDS=(1.0,6.0,7,28,5,r) ,FORMAT=CH,SIZE=E10000 19				
END : 20]				
21 |

1

01-02 The basic JOB and EXEC statements.

cataloged procedure SORID.

03-14 These DD statements describe the merge input data sets.

The EXEC statement invokes the

They are all on

9-track unlabeled tape and consist of fixed-length records with a

blocking factor of three.

The total number of records on all of the

data sets is about 10,000 as indicated by the SIZE parameter on the
MERGE statement.

15-17 The result of the merge is recorded on 9-track tape at the same blocking
factor and in the same format as the input data sets.

18 A data set follows in the input stream.

19-20 Sort/Merge control statement$ described in Example 2 at the end of the

topic "Defining the Sort or Merge".

21 Marks the end of the SYSIN data set.

62

Example 4 -- Sort

r T T T T — %
| Input | Output | Intermediate | User | Options |
| | | Storage |Modifications | |
b $ -1 ¢ t 4
Fixed-length | Fixed-length | Three 2311 |Four - two change |Estimated |
blocked | blocked | areas of 540 |record lengths, |data set |
records on | records on | tracks each |]one changes con- |size |
9-track tape | 9-track tape, | |trol fields, one | |

| same unit as] |decides what to do | |

| | input data set | |if Nmax is exceeded] |
'L L L L L 3
| //EXAMPY JOB Al402,PROGRAMMER 01 |
//STEP1 EXEC SORT 02 |
//SORT.SORTIN DD UNIT=2400,CSNAME=INPUT,VOLUME=SER=000101, 03 |
// DCB= (RECFM=FB,LRECL=120, 04]
BLKSIZE=480) ,DISP= (OLD,DELETE) 05 |

//SORT.SORTOUT DD UNIT=AFF=SCRTIN,DSNAME=QUTPUT, 06 |
// VOLUME=SER=000101,DCB= (RECFM=FB, 07 |
LRECL=80, BLKSIZE=320) ,DISP= (NEW, PASS) 08 |

//SORT.SORTWKO1 DD UNIT=2311, SPACE= (TRK, (540) , ,CONTIG) 09 |
//SORT.SORTWKO02 DD UNIT=2311,SPACE= (TRK, (540) ,,CONTIG) 10 |
//SORT.SORTWK03 DD UNIT=2311,SPACE=(TRK, (540) ,,CONTIG) 11 |
//SORT.MODLIB DD DSNAME=YOURRTNS,DISP=0OLD 12 |
//SORT.SORTMODS DD UNIT=2311,SPACE= (TRK, (10,,3)) 13 |
| //SORT.SYSIN DD #* 14 |
| SORT FI1ELDS=(3.0,8.0,2D,E,40.0,6.0,CH,D),SIZE=E30000 15]
| RECORD TYPE=F,LENGTH= (120, 100,80) 16 |
| MODS E15=(E15,780,MODLIB,N) ,E16=(E16, 1024 ,MODLIB) , 17 |
| E35= (ADDUP, 912, SYSIN) ,E61= (CHGE, 1000, SYSIN) 18 I
| END 19 [
|Object deck for ADDUP routine |
|Object deck for CHGE routine |
[/* 20 !
L]

01-02 The basic JOB and EXEC statements. The EXEC statement specifies the SORT
cataloged procedure because user-written routines that require linkage
editing are included in the application.

03-05 This DD statement descrikes an input data set that consists of
fixed-length blocked records on 9-track tape. Each record is 120 bytes
long and the blocking factor is 4. The data set, which is already known
to the operating system, will be deleted after this job step.

06-08 This DD statement descrikes the output data set. UNIT=AFF=SORTIN means
that the data set is to ke placed on the same unit as the input data set.
The output records have the same format as the input records, but they
are each 40 bytes shorter. The blocking factor is the same.

09-11 The next three DD statements describe three intermediate storage areas on
2311 disk. Each area contains 540 contiguous tracks.

12 Defines the data set that contains the E15 and E16 modification routines.
13 Defines a data set on which the ADDUP and CHGE routines will be placed.
14 A data set follows in the input stream.

15-19 Sort/Merge control statements described in Example 3 at the end of the
topic "Defining the Sort or Merge".

Object decks for your modification routines must appear in the input stream in
numerical exit number order. ADLUP is the routine for exit E35, so it appears
first. CHGE, the routine used at exit E61, appears second.

20 Marks the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program

Example 5 -- Sort

6

DSNAME parameter is omitted, the system will assign unique names to the
data sets.

4

4
L)) 1
{ Input T Output } Intermediate | User | Options |
| | | Storage | Modifications] |
¢ 4 ¢ S {
Fixed-length | Fixed-length | Four | Four - two | Estimated |
blocked | blocked | 9-track | change record | data set: |
| recoxrds on | recoxrds on | tapes | lengths, one | size, |
two 9-track | one 9-track | | changes con- | oscillating |
tape volumes | tape i | trol fields, | technique |
		one decides	forced.
		what to do if	
		Nmax is exceeded.	
L ———— i 1 L f]			
//EXAMPS JOB A402,PROGRAMMER 01 {			
//STEP1 EXEC SORT,PARM='0SCL’ 02 {			
//SORT.SORTIN DD DSNAME=INPUT,VOLUME=SER= (000333,000343), 03 [
// UNIT=2400,DISP= (OLD,DELETE) , o4			
1// DCB= (RECFM=FE,LRECL=120, 05			
// BLKSIZE=480) 06			
//SORT.SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP= (NEW, 07			
// CATLG) ,VOLUME=SER=456, DCB= (RECFM=FB, 08			
// LRECL=80,BLKSIZE=320) 09			
//SORT.SORTWKO1 DD UNIT=2400 10			
//SORT.SORTWK02 DD UNIT=2400 1M			
//SORT.SORTWK03 DD UNIT=2400 12			
//SORT.SORTWKO4 DD UNIT=2400 13			
"	{//SORT.MODL1B DD DSNAME=YOURRTNS, DISP=0LD 14		
{//SORT.SORTMODS DD UNIT=2311,SPACE= (TRK, (10,,3)) 15			
//SORT.SYSIN DD * 16			
SORT FIELDS=(3.0,8.0,2D,E,40.0,6.0,CH,D) ,SIZE=E30000 17			
RECORD TYPE=F,LENGTH= (120,100, 80) 18			
MODS E15= (E15,780,MODLIB,N) ,E16= (E16, 1024 ,MODLIB,N) , X 19			
E35= (ADDUP, 912, SYSIN) ,E61= (CHGE, 1000, SYSIN) 20			
END			
{Object deck for ACDUP routine 22			
Object deck for CHGE routine 23			
/* 24			
L]
01 The basic JOB statement.
02 The EXEC statement specifies the cataloged procedure SORT. OSCL in the
PARM field directs the sort/merge program to use the oscillating tape
sequence distribution technique if it possibly can, whether or not it
considers the oscillating technique most efficient for this application.
03-06 Defines the input data set. Note that the SORTIN LD statement is
prefaced by the step name of the SORT cataloged procedure because it and
other DD statements so prefaced are being added to the procedure for this
job step. The input data set consists of fixed-length blocked records on
two 9-track tape volumes numbered 000333 and 000343, respectively.
07-09 Defines the output data set. The output data set also consists of
fixed-length blocked records. It is on one 9-track tape.
10-13 Defines four intermediate storage data sets on 9-track tape. Since the

14 Describes a data set that contains the E15 and E16 modification routines.

15 Defines a data set on which the ADDUP and CHGE routines will be placed.
16 A data set follows in the input stream.

17-21 Sort/merge control statements described in Example 3 at the end of the
topic "Defining the Sort or Merge".

22 The object deck for the ALCDUP routine comes before the deck for CHGE.
23 The object deck for the CHGE routine.
24 SYSIN data set delimiter.

Section 2: How to Use the Sort/Merge Program 65

Example 6 -~ Sort.

r Rl T 1 L]

| Input | Output | Intermediate | User |Options

| | | Storage | Modifications]

% ¢ fomme $---- t

| Blocked | Blocked | Six 7-track | None | FORMAT=xx for
| £ixed-length | fixed-length | tapes ° | |control fields
| records on | records on | | |of like format,
| 7-track | 7-track i | |estimated data
| unlabeled tape | labeled tape | | |set size.

ll_ L 1 L 1

]

———— — c—— Sv— — — d— b —— . ey Wt . vt vt s s . D s, e Swb

//EXAMP6 JOB A402,PROGRAMMER 01

|//STEP1 EXEC SORT 02

| //SORT.SORTIN DD DSNAME=INPUT,VOLUME=SER=000101, 03

\// UNIT=2400-2,DCB= (DEN=2, RECFM=FB, ou

\// LRECL=80, BLKSIZE=800, TRTCH=ET) , 05

\// DISP= (OLD,PASS) ,LABEL= (, NL) 06

|//SORT.SORTOUT DD DSNAME=OUTPUT,UNIT=2400-2,DISP=(NEW, 07

V24 CATLG) ,VOLUME=SER=102,DCB= (RECFM=FB, 08

\// LRECL=80, BLKSIZE=800,DEN=2, TRTCH=ET) 09

|//SORT.SORTWKO1 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 10

TRTCH=ET) 11

|//SORT.SORTWK02 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 12

\/7 TRTCH=ET) 13

| //SORT.SORTWKO3 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 14

TRTCH=ET) 15
|//SORT.SORTWKO4 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 16 |

V74 TRTCH=ET) 17

|//SORT.SORTWKOS5 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 18

t//7 TRTCH=ET) 19

1//SORT.SORTWKO6 DD UNIT=2400-2,LABEL= (,NL) ,DCB= (DEN=2, 20

\// TRTCH=ET) 21 |

|//SORT.SYSIN DD * 22

| SORT FIELDS=(1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000 23

| END 24

1/* 25 I

[R]

01-02 Standard JOB and EXEC statements. The EXEC statement invokes the SORT
cataloged procedure. The SORTD procedure would be more efficient for
this application since there are no modification routines that need
linkage editing, but the SORT procedure can be used.

03-06 The SORTIN DD statement defines the input data set. The data set is
named INPUT, it is on an unlabeled 7-track tape with a serial number
000101. The DCB subparameters indicate that the tape was recorded at
800 bpi, is composed of fixed-length blocked records. The TRTCH=ET sub-
parameter indicates that the tape was recorded with even parity and that
BCDIC to EBCDIC translation is required. The DISP parameter shows that
the data set is in existence and that it should be retained after this
job step. The data set is the first one or only one of this unlabeled
volume.

07-09 The SORTOUT DD statement defines the output data set. It is named
OUTPUT, and is recorded on 7-track tape on a volume that has the serial
number 102. The other parameters on this statement are the same as
those on SORTIN, with the exception of DISP. DISP indicates that this
data set will be created in this job step and will be cataloged for
future reference by another job.

10-21 These DD statements define intermediate storage for the sort/merge
program. The storage is on six 7-track unlabeled tapes. These tapes
are to be recorded with even parity and BCDIC to EBCDIC translation.

22 A data set follows in the input stream.

23-24 Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge®.

25 Delimiter statement marks the end of the SYSIN data set.

66

Example 7 -- Sort

f r=—======== T T T L]
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
5 + == + + 1 i
Fixed-length	Fixed-length	Three 2311	Exit E35	Exact
unblocked	blocked	areas, 120	routine	data set
records on	records on	tracks each	shortens	size,
2311 disk	2311 disk		each record	message
			by 30 bytes	option
(as it leaves]		
			the merge	
% L L 4 —— 1 ,J.				
//EXAMP7 JOB A402,PROGRAMMER 01				
//STEP1 EXEC PROC=SORT, PARM="'MSG=CC" 02				
//SORT.SORTIN DD DSNAME=INFILE,VOLUME=SER=INP214, 03				
1// UNIT=2311,DCB= (RECFM=F,LRECL=80, o4				
7/ BLKSIZE=80) ,DISP= (OLD,DELETE) 05				
//SORT . SORTOUT DD DSNAME=OUTFI1LE,VOLUME=SER=DLIBO02, 06				
1// UNIT=2311,DCB= (RECFM=FB,LRECL=50, 07				
V4 BLKSIZE=500) ,DISP= (NEW, KEEP) , 08				
V4 SPACE= (TRK, (500,5)) 09]				
//SORT.SORTWKO1 DD UNIT=2311,SPACE= (TRK, (120) ,,CONTIG) 10				
//SORT.SORTWK02 DD UNIT=2311,SPACE= (TRK, (120) ,,CONTIG) 11				
//SORT.SORTWK03 DD UNIT=2311,SPACE= (TRK, (120) ,,CONTIG) 12				
//SORT.SORTMODS DD UNIT=2311,SPACE= (TRK, (10,,3)) 13				
//SORT.SYSIN DD * 14 [
SORT FIELDS=(10,5,CH,A),SIZE=10000 15				
RECORD TYPE=F,LENGTH= (80,,50) 16				
MoDs E35= (E35,534, SYSIN) 17				
END 18				
Object deck for E35				
/* 19				
{ : - 1
01 Standard JOB statement.
02 The EXEC statement invokes the SORT cataloged procedure and specifies

that critical messages only are to be printed and they are to appear on

the console typewriter.
03-05 The input data set consists of fixed-length unblocked records on volume

INP214 on a 2311 disk storage drive. The data set will be deleted after
this job step.

06-09 The output data set is composed of fixed-length blocked records that
will require 500 tracks of 2311 disk. Each time space is exhausted, 5
additional tracks will ke allotted. The data set will be retained for
future reference.

10-12 Intermediate storage consists of three 2311 areas of 120 contiguous
tracks each.

13 This DD statement defines a data set large enough to contain the E35
routine which appears in object form in SYSIN. Ten disk tracks are
reserved for the partitioned data set plus three blocks of the

directory.
14 A data set follows in the input stream.
15-18 Sort/Merge control statements described in Example 5 at the end of the

topic "Defining the Sort or Merge®.

19 Delimiter statement marks the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program 67

Example 8 -- Sort

r T T T L] - 1
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
; t + t t {
| Variable- | Variable- | Six 2314 | Initialization | Crisscross |
| length | length | areas | routine at | technique l
blocked	blocked		exit E11 and	foxrced,
records on	records on		an Nmax error	Message option,
2314	2314		routine at E16	estimated data
				set size.]
}_ L 1 L L =I				
//EXAMP8 JOB A402,PROGRAMMER 01				
//STEPONE EXEC SORT,PARM='CRCX,MSG=CP* 02				
//SORT.SORTIN DD UNIT=2314,CSNAME=PAY413, 03				
\// VOLUME=SER=231401,DCB= (RECFM=VB, 04				
1/7 LRECL=120,BLKSIZE=840) ,DISP= (OLD, KEEP) 05				
//SORT.SORTOUT DD UNIT=2314,CSNAME=PAY4 14, 06				
17/ VOLUME=SER=2314 04, DCB= (RECFM=VB, 07				
\// LRECL=120,BLKSI ZE=840) ,DISP= (NEW,KEEP) , SPACE= (CYL, (50, 10)) 08 1				
//SORT.SORTWKO1 DD UNIT=2314,SPACE= (CYL, (5) ,,CONTIG) 09				
//SORT.SORTWK02 DD UNIT= (2314 ,SEP= (SORT.SORTWKO01)) ,SPACE= (CYL, (5) , ,CONTIG) 10 i				
//SORT.SORTWKO3 DD UNIT=(2314,SEP= (SORT.SORTWKO1,SORT.SORTWK02)) , 1 1				
\// SPACE= (CYL, (5) , ,CONTIG 12 [
//SORT.SORTWKO4 DD SEP=SORT.SORTWKO1,UNIT=2314, 13				
\// SPACE= (CYL, (5) ,,CONTIG) 14 1				
//SORT.SORTWKO5 DD AFF=SORT.SCRTWKOU4,UNIT= (2314, SEP= (SORT.SORTWKOU4)) , 15				
17/ SPACE= (CYL, (5) , ,CONTIG) 16				
//SORT.SORTWK06 DD AFF=SORT.SORTWKOY4,UNIT= (2314,SEP= (SORT.SORTWKO4, 17				
SORT.SORTWKO5)) , SPACE= (CYL, (5) , ,CONTIG) 18				
//SORT.USERLIB DD DSNAME=JIMSMODS,DISP=0LD 19				
//SORT.SYSIN DD * 20				
SORT FIELDS= (20,5,CH,3) ,SIZE=E25500 21 1				
MODS E11=(11,500,USERLIB,S) ,E16=(E16,554,USERLIB, N) 22				
RECORD TYPE=V,LENGTH= (120,,,60,80) 23 [
END 24				
/* 25				
L i |

68

01 The standard JOB statement.

02 The EXEC statement specifies the SORT cataloged procedure. The options
in the PARM field indicate that the program is to use the crisscross
sequence distribution technique if possible, that critical messages only
are to be printed and that they are to appear on the printer.

03-05 The SORTIN DD statement describes the input data set. 1Its name is
PAY413, it is on volume 231401 on a 2314, and consists of variable
length blocked records. The data set is known to the operating system
and is to be retained after use.

06-08 This statement describes the output data set. The data set, named
PAY414, will be on volume 231404 of a 2314, will consist of variable
length blocked records, is being created in this job step, and is to be
retained in the system.

09-18 These statements define intermediate storage data sets. There are six
data sets of 5 contiguous cylinders each and they are on 2314. Six data
sets is the minimum required for the crisscross technique. SEP and AFF
parameters are used to ensure each area will be on a different unit, for
maximum efficiency.

19 Defines a data set called JIMSMODS which contains the E11 and E16
modification routines described on the MODS statement. The data set is
known to the operating system and is not to be deleted after this job

step.
20 A data set follows in the input stream.
21-24 Sort/merge control statements described in Example 6 at the end of topic

"Defining the Sort or Merge®.

25 Delimiter statement marking the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program 69

Example 9 -- Merge

T L] L] 1
Input T Output | Intermediate | User » | Options |
| | Storage | Modifications | |
t + t + i
Variable- | Variable- | None | E35 routine | Exact input |
length | length | | shortens | data set |
blocked	blocked		records and	size
records on	records on		E61 routine	
2301	2301		modifies]	
		control field		
4 4 iR L %				
//EXAMPY JOB AU402,PROGRAMMER 01				
//STEP1 EXEC SORT 02				
//SORT.SORTINO1 DD DSNAME=WEEKLY,VOLUME=SER=000101, 03				
17/ UNIT=2301,DISP=0LD,DCB= (RECFM=VB, 04				
// LRECL=240,BLKSI ZE=2400) 05				
//SORT.SORTINO2 DD DSNAME=DAILY,VOLUME=SER=000113, 06				
// UNIT=2301,D1ISP= (OLD,DELETE) , 07				
7/ DCB= (RECFM=VB, LRECL=240, BLKSIZE=2400) 08				
//SORT.SORTOUT DD DSNAME=WEEKA,VOLUME=SER=000111, 09				
// UNIT=2301,DISP= (NEW,KEEP) , 10				
1// SPACE= (TRK, (75, 10)) ,DCB= (RECFM=VB, 11				
// LRECL=200,BLKSIZE=2000) 12				
//SORT.USERLIB DD DSNAME=MYMODS,DISP=0LD 13				
{//SORT.MODLIB DD DSNAME=XYZ,DISP=O0OLD 14				
//SORT.SYSIN DD * 15				
MERGE ~ FIELDS=(5,6,CH,E) ,SIZE=8150 16				
{ RECORD TYPE=V,LENGTH= (240,,200,,160) 17				
MODS E35= (CALC,800,USERLIB) ,E61=(E61,450,MODLIB,N) 18 [
END 19				
I/+ 20 |
L J
01-02 The basic JOB and EXEC statements.
03-05 The SORTINO1 DD statement describes one of two input data sets for the
merge. The data set, named WEEKLY, is on volume 000101 of a 2301. The
data set is known to the operating system and is to be retained. It
contains variable length blocked records with a maximum record length of
240 bytes and a blocksize of 2400.
06-08 The SORTINO2 DD statement describes the second of two inputs to the
merge. It is named DAILY, is on volume 000113 of a 2301, is o0l1d and
will be deleted after this job step, and contains records of the same
format, length and block size as the WEEKLY data set.
09-12 The output from the merge will be a data set named WEEKA. It is new and
will be retained in the system on volume 000111 of a 2301. The data set
will be recorded on 75 drum tracks. If this space is not sufficient,
additional space will be allotted in blocks of ten tracks. The data set
consists of variable-length blocked records with a maximum record length
of 200 (see 13 on the RECORD statement) and a block size. of 2000.
13 Defines the library on which the CALC routine for exit E35 resides.
14 Defines the library on which the E61 routine for exit E61 resides.
15 A data set follows in the input stream.
16-19 Sort/merge control statements described in Example 4 at the end of the
topic "pefining the Sort or Merge".
20 limiter statement.

70

Standard de

Example 10 -- Simple Merge
T] e T T - T 1
| Input | Output | Intermediate | User | Options |
] | | Storage | Modifications | |
t fomommom oo + + - + 1
Blocked	Blocked	None	None	Estimated
fixed-length	fixed-length			input data
recoxrds on 3	records on one			set size
7-track tapes	7-track tape			
lL_ 4 1 L i _Jl				
//EXAMP 10 JOB A714,PROGRAMMER 01				
//STEPA EXEC SORTD 02				
//SORT.SORTINO1 DD DSNAME=FILE1,VOLUME=SER=000123, 03				
// UNIT=2400-2,DCB= (DEN=2,RECFM=FB, o4				
// LRECL=80,BLKSIZE=800, TRICH=ET) , 05				
V4 DISP= (OLD,DELETE) 06 [
//SORT.SORTINO2 DD DSNAME=FILE2,VOLUME=SER=000225, 07				
// UNIT=2400-2,DCB= (DEN=2, RECFM=FB, 08				
// LRECL=80,BLKSIZE=800, TRTCH=ET) , 09				
V4 DISP= (OLD,DELETE) 10				
//SORT.SORTINO3 DD DSNAME=FILE3,VOLUME=SER=000179, 11				
// UNIT=2400-2,DCB= (DEN=2,RECFM=FB, 12				
\// LRECL=80,BLKSIZF=800, TRTCH=ET) , 13				
V4 DISP= (OLD,DELETE) 14]				
//SORT.SORTQUT DD DSNAME=FILE123,VOLUME=SER=000111, 15				
17/ UNIT=2400-2,DCB= (DEN=2,RECFM=FB, ' 16]				
1// LRECL=80,BLKSIZF=800, TRICH=ET) , 17				
V4 DISP= (NEW,KEEP) 18				
//SORT.SYSIN DD * 19 1				
MERGE FIELDS=(1.0,6.0,A,28,5,C) ,FORMAT=CH,SIZE=E10000 20				
{ END 21 i				
/* 22				
L —— J
01-02 Standard JOB and EXEC statements.
03-06 Defines one of three inputs to the merge. The data set's name is FILE1.

It is on 7-track tape with a serial number of 000123, and consists of

fixed~length blocked records. The TRTCH=ET DCB subparameter indicates

that the tape was recorded with even parity and that BCDIC to EBCDIC

translation is required.
07-10 Defines another of the inputs to the merge, a data set named FILE2.
11-14 Defines FILE3, the third input to the merge.

~ 15-18 Defines the output data set which is named FILE123. The data set is to

be recorded on 7-track tape, volume 000111. The other parameters are

the same as those for SCRTINO1, with the exception of DISP, which

indicates that the data set is new and is to be retained for future

reference.
19 Data set follows in the input stream.
20-21 Sort/merge control statements described in Example 2 at the end of the

topic "Defining the Sort or Merge".
22 Delimiter statement.

Section 2: How to Use the Sort/Merge Program 71

Example 11_-- Sort
r T T T T 1
| Input | Output | Intermediate | User | Options |
| 1 | Storage | Modifications | |
b $ ¢ 1 ¢ {
Fixed-length	Fixed-length	Eight 2314	One routine shortens	Exact data
blocked records	blocked records	areas of 20	records as they leave	set size
on 2314	on 2314	tracks each	the final merge phase	
% L 1 L L ‘Jl				
//EXAMP 11 JOB B600, PROGRAMMER 01				
//STEP1 EXEC PROC=SORT 02				
//SORT.SORTIN DD DSNAME=INPUT,UNIT=2314,VOLUME=SER=231401, 03				
\// DCB= (RECFM=FB, LRECL=80, BLKSIZE=800) , 04 {				
V74 DISP= (OLD,DELETE) 05				
//SORT.SORTWKO1 DD UNIT=2314,VOLUME=SER=231402, 06				
V24 SPACE= (TRK, (20) ,,CONTIG) 07				
//SORT.SORTWK02 DD UNIT=2314,VOLUME=SER=231403, 08				
\/7/ SPACE= (TRK, (20) , ,CONTIG) 09				
//SORT.SORTWKO03 DO UNIT=2314,VOLUME=SER=23i404, 10 I				
SPACE= (TRK, (20) , ,CONTIG) 1 |

|//SORT.SORTWKO4 DD UNIT=2314,VOLUME=SER=231405, 12 |
17/ ; SPACE= (TRK, (20) ,,CONTIG) 13 i
| //SORT.SORTWKO5 TCD UNIT=2314,VOLUME=SER=231406, 14 |
\// SPACE= (TRK, (20) , ,CONTIG) 15 [
| //SORT.SORTWK06 DD UNIT=2314,VOLUME=SER=231407, 16 |
17/ SPACE= (TRK, (20) ,,CONTIG) : 17 l
| //SORT.SORTWKO7 LD UNIT=2314,VOLUME=SER=231408, 18 |
\7/ SPACE= (TRK, (20) ,,CONTIG) 19 |
| //SORT.SORTWK08 LD UNIT=2314,VOLUME=SER=231409, 20 |
17/ SPACE= (TRK, (20) ,,CONTIG) 21 |
| //SORT.SORTOUT DD DSNAME=OUTPUT,UNIT=2314, 22 |
l\7z7/ VOLUME=SER=2314 10, DCB= (RECFM=FB, 23 |
17/ LRECL=50,BLKSIZE=500) ,DISP= (NEW,KEEP) , 24 |
\// SPACE= (TRK, (200, 10) ,RLSE) 25 |
| //SORT.SORTMODS DD UNIT=2314,SPACE= (TRK, (10,,2)) 26 |
| //SORT.SYSIN DD * ‘ 27 |
{ SORT FIELDS=(10,5,CH,A),SIZE=10000 28 |
| RECORD TYPE=F,LENGTH= (80,,50) 29 |
| MODS E35=(E35,534,SYSIN) 30 |
| END 31 |
|Object deck for E35 routine |
| /* |
[3
01-02 Standard JOB and EXEC statements.
03-05 Defines the input data set. It is named INPUT, is on 2314 volume

231401, consists of fixed-length, blocked records with a length of 80

bytes and a bloc¢king factor of 10.
06-21 These statements descritke eight 2314 work areas. Each area consists of

20 contiguous tracks.
22-25 Defines the output data set. The data set, named OUTPUT, will be on

volume 231410 of a 2314 and will contain fixed-length blocked records.

Two hundred tracks are requested for the data set; if the space is

exhausted, additional tracks are to be assigned in blocks of ten. When

the output data set is closed, unused tracks are to be released.
26 Defines a temporary data set on 2314 for the E35 routine.
27 A data set follows in the input stream.
28-31 Sort/merge control statements described in Example 5 at the end of the

topic "Defining the Sort or Merge".
32 Delimiter statement.

72

Example 12 -- Sort

r T T L] K] 1
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
; t t + ¢ {
| Variable- | Variable- | Four 2301 | E11 routine | Estimated |
| length rec- | length | areas of | performs | data set |
| ords on | recorxds | 60 tracks | initialization | size
| 2301 | on 2301 | each | for the E16 |
| | | NMAX routine |
'L, L L L 4
| //EXAMP 12 JOB B999,PROGRAMMER 01
| //STEPO EXEC SORT 02
| //SORT.SORTIN DD DSNAME=XFILE,VOLUME=SER=000230, 03
/7 UNIT=2301,DISP=CLD,LCCB= (RECFM=V, o4
\// LRECL=120,BLKSI ZE=124) 05
|//SORT.SORTWKO1 LD UNIT=2301,VOLUME=SER=230102, 06
\// SPACE= (TRK, (60) ,,CONTIG) 07
| //SORT.SORTWK02 DD UNIT=2301,VOLUME=SER=230197, 08
// SPACE= (TRK, (60) ,,CONTIG) 09
| //SORT.SORTWK03 LD UNIT=2301,VOLUME=SER=000106, 10
\// SPACE= (TRK, (60) ,,CONTIG) 1 |
| //SORT.SORTWKO4 DD UNIT=2301,VOLUME=SER=000145, 12
V4 SPACE= (TRK, (60) ,,CONTIG) 13
| //SORT . SORTOUT DD DSNAME=YFILE,VOLUME=SER=230198, 14
\// UNIT=2301,DCB= (RECFM=V,LRECL=120, 15
\// BLKSIZE=124) , SPACE= (TRK, (170, 10) ,RLSE) , 16 |
\// DISP= (NEW,CATLG) 17
| //SORT.USERLIB DD DSNAME=MYRTINS,DISP=0LD 18
| //SORT.SYSIN DD * 19
| SORT FIELDS=(20,5,CH,A),SIZE=E25500 20
| MODS E11=(E11,500,USERLIB,S) ,E16= (E16,554,USERLIB, N) 21
| RECORD TYPE=V,LENGTH= (120,,,60,80) 22
| END 23 |
|/* 24 |
L J
01-02 Standard JOB and EXEC statements.
03-05 Defines the input data set. It is named XFILE, resides on volume 000230

of a 2301, is known to the operating system and is not to be deleted,

-~ and consists of variable-length unblocked records.

06-13 Define four intermediate storage areas on 2301. Each area consists of

60 contiguous tracks. :
14-17 Defines the output data set. . It is named YFILE, and is to be placed on

volume 230198 of a 2301. It will contain records of the same format as

the input data set. One hundred seventy tracks are requested for the

data set. If they are not sufficient to contain it, additional tracks

are requested in blocks of ten. The data set is being created in this

job step and is to be cataloged.
18 Defines the library that contains the E11 and E16 modification routines.
19 A data set follows.
20-23 Sort/merge control statements described in Example 6 at the end of the

topic "Defining the Sort or Merge".
24 Delimiter statement.

Section 2: How to Use the Sort/Merge Program 73

Initiating Sort/Merge

There are two ways to initiate a sorting operation:

e By including sort/merge control statements and job control language
statements in the input stream. You can use a cataloged procedure to supply
some of the job control language statements.

e By using ATTACH, LINK, or XCIL macro instructions issued by another program.

There is only one way to initiate a merging operation: by placing sort/merge

control statements and JCL statements in the input stream. As with a sort, a
cataloged procedure can be used to supply some of the JCL.

USING THE SYSTEM INPUT STREAM

When sort/merge program execution is initiated by control statements in the input
stream, it is treated as an ordinary task being executed under operating system
control. You must provide a JOB statement, an EXEC statement and several LD
statements to communicate with the operating system and the sort/merge program.

The job that initiates sort/merge requires a JOB statement. Each job step
within that job requires an EXEC statement. (Other job steps may precede and
follow the sort/merge job step.) The EXEC statement that introduces. the
sort/merge job step can initiate execution either directly or through a cataloged
procedure. LD statements are required to define data sets used by the sort/merge
program, the system, and, if necessary, the linkage editor.

Cataloged Procedure SORT

The SORT cataloged procedure is designed to be used in sorting and merging
applications that have modification routines that require linkage editing. You
can use this procedure for all sort/merge applications, but it is inefficient for
those that do not have modification routines that require linkage editing,
because it causes unnecessary linkage editor data sets to be allocated.

The SORT cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=98K 01
//SYSOoUuT DD SYSOUT=A 02
//SYSPRINT DD DUMMY 03
//SYSLMOD DD DSNAME=¢GOSET,UNIT=SYSDA, SPACE= (3600, (20,20,1)) o4
//SYSLIN DD DSNAME=¢6LOALSET, UNIT=SYSDA, SPACE= (80, (10,10)) 05
//SORTLIB DD DSNAME=SY¥S1.SORTLIB,DISP=SHR 06
//SYSUT1 DD DSNAME=§SYSUT1, SPACE= (1000, (60,20)) , 07
// UNIT= (SYSDA,SEP= (SORTLIB, SYSLMOD, SYSLIN)) 08
01 The stepname of the procedure is SORT. This EXEC statement initiates

the sort/merge program, which is named IERRCO00. A 98K region, large
enough to contain the largest linkage editor, is requested.

02 This DD statement defines an output data set for system use (messages) .
It is directed to system output class A.

03 SYSPRINT is defined as a dummy data set because linkage editor
diagnostic output is not required.

o4 This DD statement defines a data set for linkage editor output. Any
system direct access device is acceptable for the output. Space for 20
records that have an average length of 3,600 bytes is requested; this is
the primary allocation. Space for 20 more records is requested if the
primary space allocation is not sufficient; this is the secondary
allocation, which is requested each time space is exhausted. The last
value is space for a directory, which is required because SYSLMOD is a
new partitioned data set.

74

05 The SYSLIN data set is used by the sort/merge program to create control
records for the linkage editor. 1t is created on any system direct
access device, and it has space for 10 records with an average length of
80 bytes. If the primary space allocation is exhausted, additional
space is requested in blocks large enough to contain 10 records. No
directory space is necessary.

06 The SORTLIB DD statement defines the data set that contains the
sort/merge program modules. It has the qualified name SYS1.SORTLIB, and
it is cataloged.

07-08 The SYSUT1 DD statement defines a work data set for the linkage editor.

Cataloged Procedure SORTD

The SORTD cataloged procedure is designed for sorting and merging applications
that have no modification routines, or have modification routines that do not
require linkage editing. It cannot be used for applications having modification
routines that need linkage editing.

The SORTD cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=26K 01

//SYSOUT DD SYSOUT=A 02

//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR 03

01 The stepname of the SORIL procedure is SORT. A 26K region is the
smallest in which the program can operate.

02 System output is directed to system output class A.

03 This DD statement defines the data set containing sort/merge program
modules.

USING ATTACH, LINK OR XCTL

You can use ATTACH, LINK, or XCTL macro instructions in another program to
initiate operation of a sorting application (but not a merging application).
(For a full description of ATTACH, LINK, and XCTL, see the publication 0S
Supervisor Services and Macro Instructions.)

There are four differences between initiating sort in the input stream and
initiating it by a macro instruction:

1. Sort DD statements must be placed in the input stream with the job step that
issues the macro instruction.

2. Information normally contained on sort/merge control statements must be
passed to the sort/merge program in a parameter list.

3. Only two sort/merge program exits for modification routines (E15 and E35,
see "Section 3: Program Modification") can be used when the sort is
initiated by a macro instruction.

4., If ATTACH is used, checkpoints cannot be taken.

Supplving the Needed DD Statements

When you ATTACH, LINK, or XCTL to the sort/merge program, you must supply the
following DD statements in the input stream with the job step that issues the
macro instruction:

//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR

to define the data set that contains sort/merge program modules.

Section 2: How to Use the Sort/Merge Program

75

//SORTIN . DD with appropriate parameters
(See the examples at the end of "Job Control Language for Sort/Merge") to
define the data set (s) to be sorted.
//SORTWKO01-32 DD with appropriate parameters
to define the intermediate storage data sets required by the sort.
//SYSOUT DD SYSOUT=A
to define an output data set (messages) for system use.
//SORTOUT DD with appropriate parameters
to define the sort/merge output data set.
Note: If you activate sort/merge exit E15, the SORTIN DD statement is not
necessary because your routine must supply all input for the sort. If you
activate exit E35, the SORTOUT DL statement is not necessary because your routine
must handle output from the sort. You may need LD statements to descrike your

sort input and to set up a data set for your output, but they need not be called
SORTIN or SORTOUT.

Passing Parameters to the. Sort

The parameters you pass to sort/merge consist of two control statement images --
SORT and RECORD -- in main storage, and the entry point addresses of your
modification routines (E15 and E35). These are the only modification routines
permitted when sort/merge is initiated by ATTACH, LINK, and XCTL, and they are
optional. You need not use any modification routines.

Your routine must construct the following parameter list and place a pointer
to it in general register 1 before issuing the control-passing macro instruction:

X*'80" - Pointer to list of addresses and options
Lo

oo comen oy

o Ye—

The format of the address list is:

[Unused J Number of bytes in the following list i
fStarting address of the SORT statement]
Ending address of the SORT statement]
lStarting address of the RECORD statement]
iEnding address of the RECORL statement. }
iAddress of the E15 routine or zeros if no routine is providea-]
iAddress of’the E35 routine or zeros if no routine is provided]
{Optional characters for ddnames]
X'00" I Optional main storage value T
{Optional ;;quence distribution technique |
{ X'FF' E Unused i Message option j

Characters for DIAG (diagnostic message option)

76

The address list is variable in length. The first halfword shown in the above
illustration is not considered part of the list. The next halfword, which is
pointed to by the parameter list pointer, contains the number of bytes in the
parameter list excluding the two bytes occupied by the number itself. The list
must contain at least 24 bytes because none of the addresses can be omitted.
(The E15 and E35 routine addresses are zeros if the routines are not used.) The
list can be as long as 40 bytes if all the options are included.

The first address in the address list must begin on a fullword boundary. Each
address is contained in the low order three bytes of a fullword.

The following rules apply to the SORT and RECORD statement images whose
starting and ending addresses appear in the address list:

e The first and last bytes of each statement image must contain a blank, and a
blank (one only) must follow SORT and RECORD. No other blanks are allowed.

e The contents and formats of the SORT and RECORD statements are the same as
those described in Section 2 under "Defining the Sort or Merge®" except that
continuation characters are not allowed. 1In other words, the statement
images are not set up in card image format. Each statement image can be up
to 1,100 bytes long.

e No comments are permitted.

The six addresses (or four addresses and two words of zeros) must appear in the
order shown in the list. The options following the addresses can appear in any
order and any of them can be omitted. For example, to specify only the optional
main storage value, construct the list as follows:

r T T T ETT T T T T R I - 1
| Unused | Count |
I 1 _— _ — 4
T 1
|Address |
'r oo e
|Address |
; - -- -
|Address |
L —— e o o o e et e e e A S S e 2 e A e 2P 2 e e e e e 2 P St e 2 8 e e e e <o e 2 S S e e S et o i e e . e e . e i S {
r

|Address |
b e e
t

|apddress or zeros |
pmmm e -4
|Address or zeros]
b= T -- e y
| Xx'00° | Optional Main Storage Value

L L e o . e 2 e . P o S 2 2 e 2 o D A e S . o e o e

To specify only the balanced sequence distribution technique,

construct:

r - === T - 1
| Unused | Count |
L _— L -
s

|Address |
. -—- -1
.

|Address |
B e o e e e e e o i e e o . e e e e e 2 e . q
r \ 1
|Address |
b e !
|Address !
F e 4
|pddress or zeros |
1

¢ - - -
|Address or zeros |
k T T T 1
! B | A I L | N |
L 4 L 1 4

Section 2: How to Use the Sort/Merge Program 77

OPTIONAL CHARACTERS FOR DDNAMES: You must select this option if you are
operating in a multiprogramming environment and your task initiates two or more
sort applications via ATTACH, LINK, or XCTL. The four characters you place in
this word of the address list will replace the characters "SORT" in the LD names
of the standard DD statements that define input, intermediate storage, and
output. For the four characters, you can use any alphameric characters and the
special characters $, #, and 3, but the first must be alphabetic. If it is not,
the characters are ignored. For example, if you use the characters ABC# as
replacement characters, the statements SORTIN, SORTWKO1 - SORTWK32, and SORTOUT
from the input stream will be converted internally to ABC#IN, ABC#WKO1 -
ABC#WK32, and ABC#OUT.

Caution: Do not use characters that conflict with other ddnames; do not use the
charagters BALN, OSCL, POLY, CRCX, or DIAG.

OPTIONAL MAIN STORAGE VALUE: This parameter serves the same purpose as the CORE
parameter in the EXEC statement PARM field. With it, you can specify the amount
of main storage sort/merge can use for this application. The value you specify
temporarily overrides the main storage assigned to the sort at system generation.
The value must be a binary number and must appear right justified in the last
three bytes of the field. As shown in the address list format, the high-order
byte must contain zeros. The new value must not be less than 12,000, the minimum
number of bytes needed for sort/merge operation. If it is, the number 12,000 is
chosen by default. Refer to the topic "Altering the Main Storage Allocation" in
Section 4 for further information.

OPTIONAL SEQUENCE DISTRIBUTION TECHNIQUES: This parameter takes the place of

another PARM field option. With it you can force the sort/merge program to
choose the balanced, oscillating, or polyphase technique for tape intermediate
storage or the balanced or crisscross technique for disk. The four valid entries
for this parameter are BALN, OSCL, POLY, and CRCX. Refer to the topic "Sequence
Distribution Techniques™ in Section 1 for further information.

This parameter may be ignored under the following conditions:

Tape_ Sorting

e Only three intermediate storage tape drives are assigned. With only three
drives, the polyphase technique is always used.

e No input data set size, exact or estimated, is specified on the SORT
statement. When the sort/merge program is not given an input data set size,
it always uses the balanced technique if more than three work tapes are
available.

e The tape drive containing the input data set is also specified as an
intermediate storage unit. 1In this case, the oscillating technique cannot be
used, so the sort/merge program chooses either the balanced or polyphase
technique.

Disk Sorting

e Technique forcing can occur only on a 2314 facility. All direct access
sorting on 2311 disks and 2301 drums uses the balanced technique.

e Whenever less than six work areas are available, only the balanced technique
can be used on the 2314.

e Whenever more than six work areas are available, only the crisscross
technique can be used on the 2314.

MESSAGE OPTION: This parameter takes the place of the third EXEC statement PARM
field option, MSG. The parameter temporarily overrides the message option’
selected at system generation.

78

The high-order byte of this parameter must be X'FF'. The next byte is unused.
The last two bytes must contain one of the following.codes:

NO -- no messages printed

CC -- critical messages only, printed on the system console
CP -- critical messages only, printed on the printer

AC -- all messages, printed on the system console

AP -- all messages, printed on the printer

DIAG OPTION: Serves the same purpose as the DIAG parameter in the EXEC statement
PARM field.

Considerations When Using XCTL

When you initiate sort/merge via XCTL, you must give special consideration to the
area where the parameter list, address list, and optional parameters, and
modification routines (if you use them) are stored. This information must not
reside in the module that issues the XCTL because the module is frequently
overlaid by the sort/merge program.

There are two ways to overcome this problem. First, the control information
can reside in a task that attaches the module that issues the XCTL. Second, the
module issuing the XCTL can first issue a GETMAIN macro instruction and place the
control information in the main storage area it obtains. This area is not
overlaid when the XCTL is issued. The address of the control information in the
area must be passed to the sort/merge program in general register 1.

The following text contains two examples. The first illustrates passing
parameters to the sort. The second is an assembler language coding example that
shows how to set up the parameter list, address list, and optional fields.

Example 1

Figure 15 shows how the parameter list, address list, and optional fields might
appear in main storage.

General register 1 contains a pointer to the parameter list, which is at
location 1000. The parameter list points to the address list which begins at
location 1006. The first halfword of the address list contains, right adjusted,
in hexadecimal, the number of bytes in the list (40 decimal).

The first two fullwords in the address list point to the beginning (location
1036) and end (location 105A) of the SORT control statement. The next two
fullwords point to the beginning (location 105B) and end (location 1074) of the
RECORD statement.

The fourth and fifth fullwords in the list contain the entry point addresses
of modification routines for exit E15 (2000) and exit E35 (3000).

The next fullword in the list contains four characters to replace the letters
"SORT" in the DD names of standard DD statements.

The next three fullwords in the list specify a main storage value for this
application, a sequence distribution technique, and a message option.

The control statement images must be represented in EBCDIC. The symbol b in
the figure stands for a blank character.

Section 2: How to Use the Sort/Merge Program

79

[St i " ot e i St S S (. S S S At S M s S S — — — — . T— —

General Register 1 Parameter List Address List

Contents ' Location Contents Location Contents
| S 1
| 1000 } 1000 Byte 1
t—— r 1 =T "—7
|x*80° ;001006 1004)00]00]00]28]|
L _1 — 44—
1008}00|00]10}36]|
1036 105A ——+-—+--+—-1
1 100C|00]|00]j10}5A|
bSORT FIELDS=(10,15,CH,A),SIZE=47806b ——+—4++—-A
1010j00|00|10]|5B]|
1058 1074 1014j00j00f20}74])
bRECORD LENGTH=100,TYPE=Fb ‘ 1018|00}00|20|00]|
-ttt
101C}00[00|30]00]
F-=t-=4—4-—1

1020| A| B| c| #|
1024]00]00[65]90]
e
1028| o| s| c| L|
g ——{
102C|FF|00] A| c|
b1 _ 1. J

b e s s . s e S — ——— — — —— — o S —— ——. S—— i s st it it o]

Figure 15. Passing Parameters to the Sort

80

Example 2

The following example shows, in assembler language coding, how to set up the
parameters and card images in Example 1, and how to pass control to the
sort/merge program.

LA 1,PARLST
ATTACH EP=SORT,MF=(E, (1))

cNOP 0,8
PARLST DC X'80°*

DC AL3 (ADLST)

DC X'0000"*
ADLST DC X°*0028°

DC A (SORTCD)

DC A (STCDED)

DC A (RCDCD)

DC A (RDCLED)

DC A (MOD1)

DC A (MOD2)

DC C'ABC#"*

DC X'0000"

DC X'6590°"

DC C'OSCL*

DC X"FF00"

DC C'AC*
SORTCD DC C' SORT FI1ELDS=(10,15,CH,R),"

DC C'SIZE=4780"
STCDED DC ct
RCDCD DC C' RECORD LENGTH=100, TYPE=F"'
RDCDED DC cr *

CNOP 0,8

USING *,15
MOD1 routine for exit E15

CNOP 0,8
USING *,15
MOD2 routine for exit E35

Further Considerations When Using ATTIACH, LINK, or XCTL

If you provide a modification routine for exit E15, sort/merge ignores the SORTIN
data set. Your E15 routine must pass all input records to the sort/merge
program. This means that your routine can only issue a return code of 12 (insert
record) until the input data set is completed and then a return code of 8 (do not
return) .

Similarly, sort/merge ignores the SORTOUT data set if you provide a
modification routine for exit E35. Your routine is responsible for disposing of
all output records. Your routine must issue a return code of 4 (delete record)
for each record in the output data set. When sort/merge has deleted all the
records, your routine issues RC = 8 (do not return).

When sort/merge completes execution, it passes control back to the routine
that invoked it or to the operating system.

Section 2: How to Use the Sort/Merge Program

81

COMPLETION CODES

The sort/merge program returns a completion code to the operating system (or
other invoking program) upon termination. This code may be interrogated by
succeeding job steps. The codes are:

0 - Successful completion of sort/merge
16 - Unsuccessful completion of sort/merge

Successful Completion: When a sort/merge application has been successfully
executed, & completion code of zero is returned, and the sort terminates.

Unsuccessful Completion: If the sort, during execution, encounters an error that
will not allow it to complete successfully, it returns a completion code of 16
and terminates. (Such errors include an out-of-sequence condition or an
uncorrectable 1/0 error.)

82

Section 3: Program Modification

User-written routines can be used during a sort/merge program execution to
perform a variety of functions, such as deleting, inserting, altering, and
summarizing records.

Control is passed to your routines at predesignated places in the executable
code of the sort/merge program called sort/merge program exits. Because these
exits are located in particular program phases (and in one case, in a particular

rodule) , a general understanding of how the sort/merge program operates is
necessary to understand sort/merge program exits.

Program Description

The sort/merge program is a segmented program; that is, it is composed of parts
that can operate independently. Generally, there are two levels of segmentation:

1. Phases -- large program components that accomplish a certain task.
2. Modules -- the independent routines of which phases are composed.

The sort/merge program is composed of five phases. All five phases are used
for sorting applications, but only the first two and the last phases of the

program are used for merging applications. The first two phases -- the
definition and optimization phases -- are strictly initialization phases. Fach
of the remaining three phases -- the sort, intermediate merge, and final merge --

is divided into two components:
1. An assignment component that initializes for the operation of the phase.

2. A running component that performs the actual sorting or merging.

Figure 16 is a phase-level flcwchart of the program. FEach phase is explained
in the following text.

DEFINITION PHASE

The definition phase reads and interprets sort/merge control statements and
decides which phases, and which modules of each phase, should be used. This
phase also decides which of your routines, if any, must be linkage edited. This
phase has no exits for passing control to your routines.

Section 3: Program Modification 83

Definition
Phase

Yes

Linkage
Editor

¢

Optimization
Phase

1

Intermed.
Merge
Phase

Final
Merge
Phase

Figure 16. Phase-level Flowchart

OPTIMIZATION PHASE

The optimization phase, using information obtained from the operating system and
from DD statements, determines the optimum method of using the CPU and 1/0
configuration available.

This phase also generates special routines, if necessary, to perform record
comparisons. One of two routines -- the equals module or the extract module --
may be generated to make record comparisons. (Neither routine is used when
sorting or merging is based on a single control field containing character data
or binary data beginning and ending on a byte boundary.) If one of these
routines is used, it remains in main storage throughout execution of the program.

84

Equals Module

The equals module is used when there are from two to twelve control fields and
all control fields contain character data or binary data beginning and ending on
a byte boundary. It is executed to resolve the collating of records when an
equal comparison arises between two major control fields. This is done by
comparing successive minor control fields until an unequal compare is made, thus
determining the proper order of the two records. If all control fields are
equal, the records are taken in the order which requires the least internal
processing time.

Extract Module

The function of the extract module is to extract and group all of the control
fields into one field so that a single compare instruction can be executed to
collate the record.

The extract module is loaded for one of two reasons:

1. I1f more than one control field is used and the equals module cannot be used
to resolve collating.

2. If specified by the user in either the SORT or MERGE control statement.
(User specifications is accomplished by taking the E option for the s
parameters of the FIELDS operand. See the topic "Defining the Sort or
Merge®™ in Section 2 for further information.)

When the extract module is used, it is executed each time a logical record is
processed. This is done to avoid carrying the extracted information with the
records, which would increase I/C time and, therefore, total sort or merge time.

SORT PHASE

The job of the sort phase is to order the input data set into sequences and
distribute these sequences onto intermediate storage data sets. The method of
distribution is determined by the sequence distribution technique being used.

If tape is being used as intermediate storage, the sequences may be put out in
both ascending and descending order. This enables the intermediate merge phase,
using the read-backward feature, to merge the sequences without rewinding tapes.

If direct access intermediate storage is used, the sequences are distributed
among the areas assigned to the program so that they may be merged in a minimum
number of passes.

This phase has a number of exits at which control can be passed to your
routines.

INTERMEDIATE MERGE PHASE

The intermediate merge phase is loaded and executed following completion of the
sort phase. There are several exits in this phase at which your routines can
receive control. It performs successive merges of the strings produced by the
sort phase. The merges are carried out from intermediate storage device to
intermediate storage device, each successive merge decreasing the number of
strings and increasing the average string length. When one more merge is
required to create one long string (the output data set), control is given to the
final merge phase; note that if only one merge pass is required after the sort
phase, the intermediate merge phase (and any associated routines) will be skipped
entirely, and message IER0491 issued.

Section 3: Program Modification

85

FINAL MERGE PHASE

The final merge phase has two uses:

1. It makes the final merge pass of a sorting application, thus creating the
output data set. , '

2. It merges the input data sets for a merging application to create the output
data set.

Output from this phase can be on any output device supported by QSaAM. After
the execution of this phase, the sort system control component returns control to
the operating system via the RETURN macro instruction. Your routines can receive
control at a number of exits in this phase.

General Information

There are two types of exits available with the sort/merge program.

1. Assignment component exits, one each for the sort, intermediate merge, and
final mexrge phases.

2. Running component exits, a number of which are associated with the running
component of each program phase.

You can use assignment component exits to initialize your routines in each phase
or to open data sets needed by ycur routines. The sort/merge assignment
components are overlaid and used as buffer areas by the running components. Your
routines at assignment component exits are also overlaid unless you linkage edit
them together with the other routines in the phase.

You can use running component exits for a variety of purposes including the
deletion, summarization, inserticn, or any other alteration of the records coming
into or out of the phase. You can also use running component exit routines to
correct some of the errors that may occur during sort/merge execution, including
I1/0 errors and exceeding Nmax. These exits also give you an opportunity to
provide a routine that will close any data sets used by your other routines.

When altering or shortening a record, the sort/merge control fields in the
record itself must not be changed or deleted except in exit E35 when the user can
inhibit further sequence checking.

You can use a running component extract module exit (E61) to alter control
fields temporarily before the prcgram collates them. This is the exit you would
use to normalize floating-point control fields.

Figure 17 is a summary of the sort/merge program exits and their uses. The
first digit of the exit number represents the phase in which the exit is located
-- 1 for the sort phase, 2 for the intermediate merge phase, and 3 for the final
merge phase. The second digit represents the type of function your routine can
perform at the exit.

EFFICIENCY CONSIDERATIONS

When you consider using sort/merge program exits, you should weigh the following
factors:

e Your modification routines occupy main storage that would otherwise be
available to the sort/merge program. Because its main storage is restricted,
the program may need to execute extra intermediate merge phase passes. This,
of course, increases sorting time.

e The execution of your routine adds time to the overall sort/merge program

execution time. Later, in the description of exits, you will note that most
of the exits give your routine (s) control once for each record until you pass

86

"Defining the Sort or Merge" in Section 2.)

Note:

a "do not return" return code to the program.
modification routines with this in mind.

You should design your

To use the sort/merge program exits, you must associate your routines with the
appropriate exits using the MODS control statement.

(

Refer to the topic

If you use the 18K linkage editor with the minimum amount of sort/merge

main storage, your routines are limited to 10 external references.

L L | T
| Possible | Sort Intermediate Merge | Final Merge | Extract
Use for ; T T T T T T +
Exit E11|E1S|E16|E17|E18|E19|E21]|E25|E27|E28|E29|E31|E35|E37|E38| E39 E61
S t---t---t t t -+
Assignment | X | | I | | X | | I]
t---t ===t + + 1 t-—-1
Nmax Error | | X] |] | | | | |
4 i 4 1l 41 1 4 4] 4
N L} T il T T L] T L) L) L}
Logical [I | R N R | [I R |
Record x| x| | | x| I]
| Change | S | | I T I l
b= t-—t-—t--—t-—-t-—t-—t-—-d N et e T S 1
| Control [R (I (| [| |
Field I N I e O X |
Change | | | | o | | | |] | | | | | |
- t-—=t-emp-——t L s S e o B A Sttt i
Opening Fxt1 1 | orxr ot x| |
Data Sets | | | | R R I R R A A A A N |
4 L L 4 4 1 1 l 4 L 1 I [} L L 4 H
. L) L} T T 13 1 L] T L 1 T T T T Ll T)]
Closing [T R D O N A R D O N D T A O I B |
Data Sets | | | { | o ¢ U L v o ¢t o o 1 |] |
4 L i i 4 4 4 4 4 4 4 1 1 i i + 4+ 4
T T T T T T T T T T T T T ¥ T L3 T 1
Read Exxox | | | | X[| o o ©x{ o o -} X 1 | I
Routine v rr [| |
4 L 1 4 4 4 ' 4 1 4 4 1 1 4 | L 4 4
K L} T b 1 h] R T 1 T T i T T 1] LB ¥ T 1
Write Exror| | | | | (x| | | o x| | | I I X]| |
Routine [A I I I I R ! R A I B |
j | 1 1 L L L 1 1 L 4L L i L X | L L L J
Figure 17. Summary of Functions Permitted at Sort/Merge Program Exits
BYPASSING THE LINKAGE EDITOR
To save execution time, you should design your routines so that they do not
require linkage editing each time they are used in a sort/merge application. To
avoid use of the linkage editor at sort/merge execution time, your routines must
meet the following requirements:
e Each routine must be a load module on a partitioned data set (library). 1Its
member name must be the same as its exit number, e.g., E16. The value s on
the MODS statement that defines the routine must be the name of the LD
statement that defines the library, e.q.,
MODS E16= (E16,500,MYLIB,N)
//MYLIB DD DSNAME=MYRTN, etc.
e Each routine must have only one entry point which is the module name.
e The routines cannot have external references.
e All routines must be on the same library or must be defined as a concatenated
data set with one ddname.
Section 3: Program Modification 87

You should code the parameter N on the MODS statement for each routine that
meets the above requirements. This indicates that the routine was previously
linkage edited and does not require further linkage editing.

If you use routines at assignment exits (E11, E21, and E31) that do not meet
the requirements for bypassing the linkage editor, you can still save execution
time by designing them for separate linkage editing. To be eligible for separate
linkage editing, your assignment component routines must meet the following
requirements:

e Each routine must be separate.

e The routines cannot contain external references.

e The routines can have several entry points, but one entry point must be the
same as the exit number e.g., E11.

e The routine must be designed so that it can be overlaid after assignment
time.

To indicate that the routine is eligible for separate linkage editing, code
the parameter 'S for that routine on the MODS statement. If your routine opens
data sets or communicates with running component routines, it will contain
external references and therefore cannot be linkage edited separately.

When your routine does not meet the requirements for bypassing the linkage
editor or for separate linkage editing, do not code a fourth parameter for that
routine on the MODS statement. The routine is then linkage edited together with
all other routines in its phase which do not meet the requirements. In any
phase, you can mix routines that do not require additional linkage editing,
routines that can be linkage edited separately, and routines that must be linkage
edited together.

OPERATING CONSIDERATIONS

Each of your routines must be assembled or compiled as a separate program and
placed either in a partitioned data set (library) or in the system input stream.
The sort/merge general assignment phase includes the names and locations of your
routines in the list of modules to be executed during each program phase. Your
routines are loaded and executed with their associated program phase.

None of your routines may appear more than once in a program phase, but the
same routine can appear in several phases. For example, you can use the same
read error routine in all three rhases, but not twice in any one phase. If a
routine is to be used more than once and the routines are on SYSIN, you must
supply a copy of the routine for each use.

Only one load module is allowed at each sort/merge program exit. If you need
more than one routine at an exit, the routines must be assembled, compiled or
linkage edited as one load module.

All your routines in a phase that require linkage editing can be placed in one
partitioned data set member. The member must have an entry point for each of the
routines you use. When routines are arranged in one member, their individual
lengths specified on a MODS statement are not important, but the sum of the
lengths must be the total length of the module. All but one length can be
specified as zero, with the total member length specified for the remaining
routine.

The exit routines must not be arranged to overlay each other. But if you want
to build a single exit routine as an overlay structure, you must perform the
linkage editing before the sort cr merge and code N in the MODS statement.

88

ROUTINES IN THE SYSTEM INPUT STREAM

The routines that you place in the system input stream are copied into the
SORTMODS data set; they then become input to the linkage editor. Under the MVT
configuration, the entire contents of SYSIN, including control statements, is
first moved to a system direct access data set. Sort/merge strips away the sort
control cards and then copies your routines on SORTMODS.

When data follows your routines, it is also written on the system data set.

When one of your routines opens SYSIN to read the data, it will start reading
from the beginning of the SYSIN data set.

LINKAGE CONSIDERATIONS

Your routine must save and restore all general registers it uses at the
modification exit. The general registers used by the sort/merge program for
linkage and communication of parameters follow operating system conventions. The
registers used are:

e General register 1 -- used to pass the address of a parameter list to the
called routine.

e General register 13 -- contains the address of an area, set aside by the
sort/merge program, in which your routine may save the contents of any
general registers it needs fcr operation.

e General register 14 -- This register contains the address of the sort/merge
program return point.

e General register 15 -- contains the address of your routine. Your routine
can use it as a base register. General register 15 is also used as a
return-code register whereby your routine communicates information to the
sort/merge program.

The sort/merge program uses a CALL macro instruction expansion to enter your
routines. You can also use the RETURN macro instruction to set return codes when
multiple actions are available at an exit. You can use the SBVE macro
instruction to save all general registers that the routine uses. If you save
registers, you must also restore them. You can do this with the RETURN macro
instruction.

All of your routines must contain an entry point defined by an ENTRY or CSECT

statement. The name of the entry point must be the number of the associated
sort/merge program exit.

Linkage Examples

The CALL macro instruction used ky the sort/merge program to link to your
routines is written as follows:

CALL E11
This macro instruction is expanded to form assembler language instructions and,
when executed, places the return address in general register 14 and your

routine's entry point address in general register 15. The sort/merge program has
already placed the register save area address in general register 13. '

Section 3: Program Modification

89

Your routine for the sort phase assignment component exit could incorporate
the following instructions:

ENTRY E11

E11 SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9.
The macro instructions are expanded into the following assembler language code:

ENTRY E11

E11 STM 5,9,40(13)
M 5,9,40 (13)
BR 14

If multiple actions are available at a sort/merge program exit, your routine
sets a return code in general register 15 to inform the sort/merge program of the
action it is to take. The following macro instruction could be used to return to
the sort/merge program with a return code of 12 in general register 15:

RETURN RC=12
(3 full explanation of linkage conventions and the macro instructions

discussed in this section can be found in the publication 0S_Data Management for
System Programmers.)

Assignment Component Exits (E11, E21, E31)
PHASE IN WHICH USEL:

E11 -- Sort phase
E21 -- Intermediate merge phase
E31 -- Final merge phase

POSSIBLE USES OF ROUTINES: You might use routines at these exits to open data
sets needed by your other routines in the associated phases, or to initialize
your other routines.

90

RETURN CODES: None.

LINKAGE CONVENTIONS:

r T H
|Code Sort/Merge Uses to |Code Your Routine Uses to Return |
|Enter Your Routine |to Sort/Merge |
.* | i
| CALL EMN | ENTRY E11

| | .

| | . 1
| |E11 SAVE 5,91 |
| | .

| | .

| { RETURN (5,9)?

L y!

8

| ¥This coding saves and restores the contents of registers 5 through 9. You would save

| and restore whatever registers you use. |
L i]

FURTHER_CONSIDERATIONS: These are the only three routines you can design for separate
linkage editing. Refer to the topic "Bypassing the Linkage Editor" earlier in this
section.

Running Component Exits
Each sort/merge program phase has a number of running component exits associated with it.

Many of these exits perform the same function in each of the program's three phases.
They are explained in the following text according to exit function.

RECORD CHANGE EXITS (E15, E25, E35)

The record change exits can be used to insert, delete, alter, or summarize records.

Exit E15

PHASE IN WHICH USED: Sort phase before any records are sorted.

POSSIBLE USES OF ROUTINE: Add records to the input data set, create the entire input
data set, delete records from the input data set, change records in the input data
set (except control fields). Use exit E61 for control field change.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your routine at exit E15 is
executed each time a new record is brought into the sort phase. Sort/merge places
the address of a parameter list in general register 1. The parameter list contains
the address of the new record. The parameter list starts on a fullword boundary and
is one fullword long. The high order byte of the word is not used; it is represented
by xx in the figure below. The format of the parameter list is:

r T .
| XX | Address of the new record
L i

When sort/merge reaches the end of the input data set, it passes an address of zero
in the parameter list. If there are no records in the input data set, sort/merge
rpasses a zero address the first time it uses exit E15.

Section 3: Program Modification 91

RETURN_CODES: Your routine must pass one of the following return codes to the sort
merge program informing it what to do with the record you have been examining or
changing:

0 -- Alter or no action

4 -- Delete record
8 -- Do not return

12 -- Insert record

0 - No Action: If you want sort/merge to retain the record as is, place the address
of the record in general register 1 and return to sort/merge with a zero return code.

0 - Alter Record: If you want to change the record before passing it back to
sort/merge, your routine must move the record into a work area, perform whatever
modification you desire, place the address of the modified record in general register
1, and return to sort/merge with a zero return code. If your routine changes record
size, you must communicate that fact to the program on a RECORD statement. (See
"Defining the Sort or Merge®™ in Section 2 and the publication O0S Data Management for
System Programmers for further information about the length indicator and the Record
Descriptor Word.) :

4 - Delete Record: If you want sort/merge to delete the record from the input data
set, return with a return code of 4. You need not place the address of the record in
general register 1.

8 -- Do _Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the
sort/merge application. You need not place an address in general register 1 when you
return with RC = 8. Unless you are inserting records after end-of-data set, you must
pass a return code of 8 when sort/merge indicates end-of-data set by passing your
routine a zero address in the parameter list.

12 -- Insert Record: If you want sort/merge to add a record to the input data set,
before the record whose address was just passed to your routine, place the address of
the record to be added in general register 1 and return to sort/merge with a return
code of 12. Sort/merge then returns to your routine with the same record address as
before so that your routine can insert more records at that point or alter the
current record. You can make insertions after the last record in the input data set
(after sort places a zero address in the parameter list). Sort/merge keeps returning
to your routine until you pass a return code of 8.

LINKAGE CONVENTIONS: Linkage conventions for exit E15 are shown in the following
table:

| *This coding saves and restores the contents of registers 5 through 9. You would
| save and restore whatever registers you use.

|radrs refers to the record passed by the sort

|nwrec refers to the record returned to the sort

|x is the return code

L

r i T 3
|Code Sort/Merge Uses to |Code Your Routine Uses to |
|Enter Your Routine |Return to Sort/Merge ’ |
1 4 J
r + 4
I LA 1,param ENTRY E15 |
| CALL E15 . 1
1 . | . |
] . E15 SAVE (5,9) 1]
;param DC A (radrs) . :
| ia 1,nwrec |
| RETURN (5,9) ,° |
| | RC=x [
; -~ 1 -

I

|

|

I

]

4

92

RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program, and use
exit E15, the sort/merge program ignores the SORTIN data set. Your E15 routine
mast pass all input records to the program by placing their addresses one by one
into general register 1 and returning to sort/merge with RC = 12. When sort/merge
returns to your routine after you have passed the last record, return to sort with
RC = 8 indicating "do not return®. Since exit E15 is associated with the sort
phase, it cannot be used during a merge-only operation.

Exit E25

PHASE IN WHICH USED: Intermediate merge phase, after the records have been
merged.

POSSIBLE USES OF ROUTINE: Change (except control fields) or delete records
leaving the intermediate merge phase.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E25 routine is executed
each time sort/merge prepares to place a record (except the first record in each
sequence) in an intermediate merge output sequence. Sort/merge passes two record
addresses to your routine. These are:

e The address of the record leaving the merge, which would normally follow the
record in the output area.

e The address of a record in the output area.

In general register 1, sort/merge places the address of a parameter list that
contains these two record addresses. The parameter list starts on a full word
boundary and is two fullwords long. The high order bytes of both words are not
used (contain zeros). The format of the parameter list is:

r

| 00 Address of Record Leaving Merge

00 Address of Record in Output Area

e e e o

b e e e ned

RETURN CODES: Your routine must pass one of the following return codes to the
sort/merge program informing it what to do with the record leaving the merge:

0 -- Alter or no action
4 -- Delete record or summarize and delete

0 - No Action: If you want sort/merge to retain the record as is in the
intermediate merge sequence, load the address of the record leaving the merge into
general register 1 and return to sort/merge with a zero return code. The next
time sort/merge transfers control to your routine, the record whose address you
just passed will be the record in the output area.

0 - Alter Record: 1If you want to change the record (except its control field)
before passing it back to sort/merge, move the record to a work area, make the
change, place the address of the modified record in general register 1, and return
to sort/merge with a zero return code.

4 - Delete Record: If you want to delete the record leaving the merge, return to
sort/merge with a return code of 4. You need not place an address in register 1.

4 - Summarize and Delete: You can summarize records by changing the record in the
output area and then deleting the record leaving the merge. Sort/merge then
returns to your routine with a new record (leaving the same record in the output
area so that you can summarize further.) If you want to perform summarization
without deletion, you should do it at exit E35 rather than E25 because it is more
efficient. The sort/merge program does not test for equal control fields before
taking exit E25. 1If you want to summarize records with equal control fields, you
must test the fields.

Section 3: Program Modification

93

LINKAGE CONVENTIONS: Linkage conventions for exit E25 are shown in the following

| *This coding saves and restores the contents of registers 5 through 9. ¢You would

| save and restore whatever registers you use.
|rcara refers to the record leaving the merge
|otara refers to the record in the output area
|{modrc refers to the record returned to the merge
|x is the return code

L

r T R |
Code Sort/Merge Uses to Enter Code Your Routine Uses to Return
g
| Your Routine |to Sort/Merge |
L 4 1
r Ll 1
| LA 1,param | ENTRY E25 |
| CALL E25 | . |
}) =E25 SAVE 5,91 :
- r
| param DC A (rcara) | . |
| DC A (otara) | . |
| | LA 1,modrc]
| | RETURN (5,9) ,1 |
I | RC=x 1
L L 5
T L
|
|
|
|
|
|
J

RESTRICTIONS: You must not retain status information in the exit routine; you
must carry it in the records being merged. The entire intermediate merge phase
(including your E25 exit routine) is reloaded into main storage for each
intermediate merge phase pass when the balanced tape or balanced direct access
sequence distribution techniques are used by the program. Your routine would not
work properly when sort/merge chooses either of the balanced techniques, if it
depended upon status information saved within it. Since exit E25 is associated
with the intermediate merge phase, it cannot be used during a merge-only
operation.

Exit E35

PHASE IN WHICH USED: Final merge phase after the records have been merged.

POSSIBLE USES OF ROUTINE: Add records to, delete records from, or change records
in the output data set.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E35 exit routine is
executed each time sort/merge prepares to place a record (including the first
record) in the output area after the final merge. Sort/merge passes two record
addresses to your routine. These are:

e The address of the record leaving the merge which would normally follow the
record in the output area. (This address is zero at end-of-data set.)

e The address of a record in the output area. (This address is zero the first
time your routine is entered because there is no record in the output area at
that time. It will of course remain zero so long as you delete all records
leaving the merge.)

94

Sort/merge also passes your routine a third parameter which is used to control
sequence checking. In general register 1, sort/merge places the address of a
parameter list that contains the two record addresses and the sequence check
switch. The list is three full-words long and begins on a full-word boundary.
The high order bytes of the first two words are not used. The format of the
parameter list is:

XX Address of Record Leaving Merge

XX Address of Record in Output Area

T T

| | Sequence Check
00 | 00 | Switch - 00

[Jor 04

L L

o v e . e e Sy e

e m e e o

The sort/merge program tests the sequence check switch before each record is
written on the output data set. If the word contains all zeros, sort/merge
performs a sequence check. If the low order byte of the word contains a 4,
sort/merge does not perform a sequence check. This switch is initially set to
zero. Your routine can set it and reset it as necessary. If your routine is
altering control fields which would not collate properly in the output data set,
it should set the low order byte of the switch to 4 to eliminate the sequence
check for the records whose control fields have been changed.

RETURN CODES: Your routine must pass one of the following return codes to
sort/merge informing it what to do with the record leaving the merge:

0 -- Alter or no action
4 -- Delete record
8 -- DO not return
12 -- Insert record

0 -- No Action: If you want the program to retain the record as is in the output
data set, load the address of the record leaving the merge into general register 1
and return to sort/merge with a zero return code.

0 -- Alter Record: If you want to change the record before having it placed in
the output data set, move the record to a work area, make the change, load the
address of the modified record into general register 1, and return to sort/merge
with a zero return code. If you change record size, you must communicate that
fact to sort/merge on a RECORD statement.

4 -~ Delete Record: Your routine can delete the record leaving the merge by
returning to sort/merge with a return code of 4. You need not place an address in
general register 1.

8 -- Do_Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the
sort/merge application. When. you return with RC = 8, you need not place an
address in general register 1. ©Unless you are inserting records after end-of-data
set, you must pass RC = 8 when sort/merge indicates end-of-data set by passing
your routine zero as the address of the record leaving the merge.

12 -- Insert Record: If you want to add a record to the output data set before
the record leaving the merge, place the address of the new record in general
register 1 and return to sort/merge with a return code of 12. Sort/merge returns
to your routine with the same addresses as before so that you can make more
insertions at that point, or delete the record leaving the merge, etc. Sort/merge
does not perform a sequence check on records that you insert unless you delete the
record leaving the merge and insert a record to replace it. I1f your new record
will not collate properly, set the sequence check switch to 4 to eliminate the
sequence check for that record.

Section 3: Program Modification

L e

95

Summarize Records: You can summarize records in the output data set by changing
the record in the output area and then, if you desire, deleting the record leaving
the merge. Sort/merge returns to your routine with the address of a new record
leaving the merge and leaves the same record in the output area, so that you can
summarize further. If you do not delete the record leaving the merge, that record
takes the place of the record in the output area and sort/merge returns with the
address of a new record leaving the merge. As with exit E25, sort/merge does not
check for equal control fields.

LINKAGE CONVENTIONS: Linkage conventions for exit E35 are shown in the following
table:

r T

|Cocde Sort/Merge Uses to Enter |Code Your Routine Uses to Return
| Your Routine |to Sort/Merge

i 4

L} T

| LA 1,param | ENTRY E35

| CALL E35 |E35 SAVE (5,9)*
I . I o

|param DC A (rcara) |E35 MVI 11,
| DC A (otara) | . X104’

l DC A (0) | .

| | LA 1,nwrec
| | RETURN (5,9) ,°?
| | RC=x

L L

s

| *This coding saves and restores the contents of registers 5 through 9. You would
| save and restore whatever registers you use.

|xcara refers to the record leaving the merge

|otaxa refers to the record in the output area

|nwrec refers to the record returned to the merge

|x is the return code

L

bt s e s ot s s i s S it et s s et S s s s o e

RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program and use exit
E35, the sort/merge program ignores the SORTOUT data set. Your E35 routine must
dispose of all the output records by writing them out on a data set (you must
supply a DD statement defining that data set), and returning to sort/merge with RC
= 4., When sort/merge returns to your routine after you have disposed of the last
record, return to sort with RC = 8 indicating "do not return."

NMAX EXIT (E16)

PHASE IN WHICH USED: Sort phase.

POSSIBLE USES OF ROUTINE: You would use a routine at this exit to decide what to
do if sort exceeds its calculated estimate of the number of records it can handle
for a given amount of main storage and intermediate storage.

RETURN CODES: Your routine can choose among three actions, and must use one of
the following return codes to communicate its choice to sort/merge:

0 -- Sort current records only.
4 -- Try to sort additional records.
8 -- Terminate the program.

0 -- Sort Current Records Only: If you want sort/merge to continue with only that
part of the input data set it estimates it can handle, return with RC = 0.
(Message 1EROS54I contains the number of records that sort is continuing with. You
can ‘sort the remainder of the data set on another run, using the SKIPREC operand
on the SORT statement to skip over the records already sorted. Then you can merge
the two sort outputs to complete the operation.)

96

4 -- Try to Sort Additional Recoxds: I1f you want sort/merge to continue with all
of the input data set, return with RC = 4. (Enough space may be available for the
program to complete processing. If enough is not available, the program generates
a message and terminates. Refer to "Further Considerations®™ below.)

8 -- Terminate_ the Program: If you want sort/merge to terminate, return with RC =
8. The job steps following the sort step are executed.

LINKAGE CONVENTIONS: Linkage conventions for this exit appear in the following
table:

r

|Code Sort/Merge Uses to Enter Code Your Routine Uses to Return

| Your Routine to Sort/Merge

L

L B

| CALL E16 | ENTRY E16 |
| | . |
I | - |
| |E16 RETURN RC=x |
F L {
|x is the return code |
L ¥]

FURTHER_CONSIDERATIONS: For variable-length input records, sort/merge calculates
Nmax using the maximum record length. Therefore, Nmax tends to be lower than the
actual number of records the program can handle. If the maximum record length is
much larger than the average record length, Nmax is considerably lower than the
number of records the program can handle.

Sort/merge can calculate Nmax very accurately for fixed-length records. When
Nmax is reached, usually little additional space remains.

If the input data set has no natural ordering, and if direct access devices
(balanced technique only) are used for intermediate storage, Nmax tends to be
larger than the number of records the program can handle.

Nmax is recalculated during the sort phase (balanced direct access technique
only) and the final value may be less than the original estimate.

Note: Nmax for magnetic tape is calculated for 2400-foot tapes. For shorter
tapes the figure should be reduced proportionately.

EXITS FOR CLOSING DATA SETS (E17, E27, E37)

Your routines at these exits are executed once at the end of the phase with which
they are associated., They can be used to close data sets used by your other
routines in the phase or to perform any housekeeping functions for your routines.

PHASE_IN WHICH USEL:

E17 Sort phase
E27 Intermediate merge phase
E37 Final merge phase

Section 3: Program Modification 97

LINKAGE CONVENTIONS: -The linkage conventions used with these exits appear in the
following table: :

r - T :
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return
| Your Routine ‘ |to Sort/Merge

ENTRY E17

CALL E17

CLOSE

RETURN

.
e ——
=1
-—
~

e e el I SApp——

READ/WRITE ERROR ROUTINES

You can use the six read/write error exits to incorporate your own or your
installation's I/0 exror recovery routines into the sort/merge program. When the
sort/merge program encounters an uncorrectable I/C error, it passes the same
parametexrs as those passed by QSAM. The following information is passed to your
synchronous error routine:

General Register 0: This register always contains X'10' in the high-order byte.
The remaining three bytes contain the address of the input/output block (IOB)
associated with the error, as follows:

[—————

Rl
| ° X*10" | IOB address
L . i ’

b s 0l

General Register 1: The high-order byte of this register always contains zeros. .
The remaining three bytes contain the address of the data control block (DCB)
associated with the error, as follows:

00 | DCB address

o= e

e

General Register 14: This register contains the return address of the sort/merge
program. -

General Register 15: This register contains the address of your error routine.

Your read and write error routines can reside on a library, or can be placed in
SYSIN. Your library or SYSIN routines are brought into main storage with their
associated phases. (The E28 and F29 routines are reloaded for each pass of the
intermediate merge phase.)

Read Error Exits (E18, E28, E38)

PHASE IN WHICH USED:

E18 -- Sort phase
E28 -- Intermediate merge phase
E38 -- Final Merge phase

POSSIBLE USE OF ROUTINES: Your routines at these exits can pass a parameter list
containing the specifications for three data control block fields -- SYNAD, EXLST,
and EROPT -- to the sort/merge program. Your E18 exit routine can pass a fourth
DCB field -- EODAD -- to sort/merge.

98

Your routines are entered first during the assignment component of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated in the
parameter lists. For example, if you choose the EXLST option for your E18
routine, sort/merge enters your E18 routine during the execution of the sort phase
assignment component. Sort picks up the parameter list, including the EXLST
address. During the running component, sort/merge enters your routine at the
EXLST address when the data set is opened.

INFORMATION YOUR ROUTINE PASSES TO_ SORT/MERGE: Your routine passes the DCB fields
to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort/merge program. The parameter list must
begin on a fullword boundary and be a whole number of fullwords long. The high
order byte of each word must contain a character code that identifies the
parameter. One or more of the words can be omitted. A word of all zeros marks
the end of the list. The format of the list is:

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

1 02 EXLST field

03 0 0 | EROPT code

o4 EODAD field

00

e — - — = —

o e e —

T 1
0 [0 1 0
L L

e e

A full description of these DCB fields is in the publication Data Management
for System Programmers. A brief description of these fields follows:

SYNAD: This field contains the address of your read synchronous error routine.
This routine is entered only after the operating system has tried unsuccessfully
to correct the error. The routine must be assembled as part of your E18, E28, or
E38 exit routine. When the routine receives control, it must not store registers
in the save area pointed to by general register 13.

EXLST: This field contains the location of a list which contains pointers to your
routines that you want used to check labels and perform other functions not done
by data management. The list and the routines to which it points should be
included in your read error routine.

EROPT: The EROPT code is a means whereby you can specify what action sort/merge
should take if an uncorrectable read error is encountered. The three possible
actions and the codes associated with them are:

X'80' -- Accept the record (block) as is
X*'40* -- Skip the record (block)
X*'20' -- Terminate the program

If you include this parameter in the DCB field list, you must place one of the
above codes in the low-order byte of the word. Bytes 2 and 3 of the word must
contain zeros.

When you use the EROPT option, the SYNAD field (and the EOLAD field of exit
E18) must contain either of the following:

e The address of your read synchronous error routine (or end-of-file routine in
the ECDAD field). These must be addresses within your exit routine.

e If you do not provide a read synchronous error routine or an end-of-file
routine, the fields must contain X'01' in byte 4; bytes 2 and 3 must contain
zeros. You can use the instruction DC AL3 (1) to set up the field.

Section 3: Program Modification

929

EODAD: This field is the address of your end-of-file routine. You can specify
this parameter at exit E18 only. If you specify it, your end-of-file routine must
be included in your exit routine. The end-of-file routine is used only for the
SORTIN data set.

LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the
following table: ‘

r T 1
|Code Sort/Merge Uses to Enter’ |Code Your Routine Uses to Return |
| Your Routin |to Sort/Merge |
;, " : 1
| CALL E18 : ENTRY E18 |
| | . | |
! | . I
| |E18 La 1,parm |
| RETURN [
| CNOP 0,4 |
| parnm DC X*01* |
| DC AL3 (ser) |
| DC X'02° |
| DC AL3 (1st) |
| | DC X'03" |
|] DC XL3 (x) |
| | DC A (0) I
| I . |
| 1 . _ |
| | sex erroxr routine |
| | . I
| | - . |
| |1st address list |
b L {
|sexr refers to the read synchronous error routine |
|1st refers to the EXLST address list |
|x is EROPT code |
L J

Write Error Exits (E19, E29, E39)

PHASE IN WHICH USED:

E19 -- Sort phase
E29 -- Intermediate merge phase
E39 -- Final merge phase

POSSIBLE USES OF ROUTINE: Your routines at these exits can pass a parameter list
containing the specifications for two DCB fields -- SYNAD and EXLST -- to the
sort/merge program.

Your routines are entered first during the assignment component of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated by the options
in the parameter lists. ‘

100

INFORMATION YOUR ROUTINE PASSES T0 SORT/MERGE: Your routine passes the DCB fields
to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort. The list must begin on a fullword
boundary and must be a whole numker of fullwords long. The high-order byte of
each word must contain a character code that identifies the parameter. Either
word can be omitted. A word of all zeros indicates the end of the list. The
format of the list is:

Byte 1 Byte 2 Byte 3 Byte 4
r T - - == 1
| 01 | SYNAD field |
t t . - 1
| 02 | EXLST field |
L + —— 4
r T T T h]
[00 I 0 I 0 | 0 |
L 1 L 41 —— J
A full description of these DCB fields can be found in the publication OS Data
Management for System Programmers. A brief description follows:
SYNAD: This field contains the location of your write synchronous error routine.
This routine is entered only after the operating system has unsuccessfully tried
to correct the error. It must be assembled as part of your exit routine.
EXLST: The EXLST field contains the location of a list that contains pointers to
your routines that you want used to check labels and perform other functions not
done by data management. This list and the routines to which it points must be
included as part of your exit routine.
LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the
following table:
| H . 1
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return |
|Your Routine- ' |to Sort/Merge |
i 1 — — 4
[} T 1
| CALL E19 | ENTRY E19 |
! | . |
| I . |
	E19 La 1,parm
	RETURN
	CNOP 0,4
	parm DC x'01*
	DC AL3 (ser)
] DC x'02*	
	DC AL3 (1st)
	DC A (0)
! [. !	
I .	
	ser error routine
] .]	
!	-
	1st address 1list
[& L 4	
v 1	
ser refers to the write synchronous error routine	
1st refers to the EXLST address list	
[A— 1
CONTROL FIELD MODIFICATION EXIT (E61)
You can use a routine at this exit to lengthen, shorten, or alter any control
field within a record. The E option for the s parameters on the SORT or MERGE
control statement must be specified for control fields changed by this routine.
(Refer to the topic "befining the Sort or Merge"™ in Section 2.)
Section 3: Program Modification 101

PHASE IN WHICH USED: Your routine is loaded with the running portion of each
phase and is executed whenever sort/merge encounters a control field specified by
the E option.

POSSIBLE USES OF ROUTINE: Your routine can normalize floating point control
fields or change any other type of control field in any way that you desire. You
should be familiar with the standard data formats used in System/360 before
modifying control fields.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Sort/merge places the address

of a parameter list in general register 1. The list begins on a fullword boundary
and is two fullwords long. It contains the number (in hexadecimal) of the controél
field in the low-order byte of the first word, and the address of the control
field in the three low-order bytes of the second word as follows:

Byte 1 Byte 2 Byte 3 Byte 4

00 00

Ll T
|

00 | 01-40

00 Control Field Address

o e e e
pe e
-

N

Before it passes your routine the control field address, sort/merge moves the
control field to an extract area, an area apart from the record. Your routine, in
effect, changes an image of the control field and not the control field itself.
The format of the field is unchanged.

For all fields except binary, the number of bytes sort/merge passes to your
routine is equal to the length srecified in the m parameters of the SORT or MERGE
statement. All binary fields passed to your routine, however, contain a whole
number of bytes. If a binary field does not begin and end on a byte boundary,
sort/merge pads it with zeroes at beginning and/or end.

Your routine cannot physically change the length of the control field. If you
increase the length for collating purposes, you must specify that length in the m
parameter of the SORT or MERGE statement. If you must shorten the control field,
you must pad the field to the specified length before returning it to sort/merge.
The field your routine returns to sort/merge must contain the same number of bytes
as when it was received.

Sort/merge collates the modified control field in absolute ascending order.That
is, if all major control fields are equal, the "winner"™ record chosen by the
compare network is the one in which the modified copy of a control field is lowest
in the collating order when compared logically with the modified copy of the same
field in other records.

LINKAGE CONVENTIONS: Linkage conventions for exit E61 are shown in the following
table:

r L]
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return
|Your Routine {to Sort/Merge

-

CALL E61 ENTRY E61

SAVE 5,9 "

RETURN (5,9) *

[o e e e s e e e
=
[«
—

r
|
|
|
!
I
I
|
t
I

1This coding saves and restores the contents of registers 5 through 9. You would
|save and restore whatever registers you use.
L

b e e et i e e a— — — — i c— —)

102

Reference Data—Modification Routines

Register Conventions

-+

k) L) 1
EXIT| USE | PHASE i r T 1

t + { |REGISTER USE |
|[E11 |Assignment Opening |Sort | S + {
| | Data Sets | | | 1 | Sort/Merge places address of

+ } .| | |parameter list in this register. |
E15 |Record Change | Sort | - + 4
— + 4 | 13 | Sort/Merge places address of a |
|E16 | NMAX | Sort] | | save area in this register.]
- + + 1 | |Area may be used to save |
|E17 |Closing data sets |Sort | | | contents of registers used by |
b= + | | routine. |
|E18 |Read Error Routine |Sort b= + 4
t + | 14 |Contains address of sort/merge |
|E19 |Write Error Routine]Sort | | |return point. |
b=t + -~ t 1
|E21 |Assignment Opening |Int. Merge | | 15 | Contains address of your |
| |Data Sets | | | |routine. May be used as base |
| + 4 | |register for routine. This |
|E25 |Record Change | Int. Merge | | |register is also used by routinef
3 4 + 1 | |to pass return codes to |
|E27 |Closing Data Sets |Int. Merge | | | sort/merge. |
b===—t t it : -- .
|E28 |Read Error Routine |Int. Merge |
p===-+ ——f-- 4
|E29 |Write Error Routine|Int. Merge |
L L i 5 —_—
{E31 }Assignment Opening TFinal Merge 1
| |{Data Sets | |
b==—-+ +
|E35 |Record Change |Final Merge
o --
I
t

+
E37 |Closing Data Sets |[Final Merge
1

-+

+
|E38 |Read Error Routine |Final Merge
R

-

T T
E39 |Write Erxror Routine|Final Merge
I +

T T
|E61 |Change Control |A11l Phases

| | Field Contents]
L L L

NI SN SR P,

Section 3: Program Modification 103

Section 4: Efficient Program Use

Once you become familiar with the basic functions of the sort/merge program, you
will be concerned with program efficiency -- how to get a faster sort or merge.
In this section the following sukjects involving program efficiency are discussed:

e Information you can supply to the sort/merge program to optimize its
operation.

e Intermediate storage assignment for optimum performance.
e Multiprogramming efficiency considerations.

e System generation options and requirements.

Supplying Information to the Program

The information you give the sort/merge program about the application it is to
perform helps the sort and merge phases to produce a fast, efficient sort or
merge. When you do not supply information such as data set size and record
format, the program must make assumptions, which, if incorrect, lead to
inefficiency.

DATA SET SIZE

The most important information you can give the program is an accurate data set
size using the SIZE parameter of the SORT or MERGE statement. If you know the
exact number of records in the input datra set, use that number as the value of the
SIZE parameter. If you do not know the exact number, estimate it as closely as
you can.

When the sort/merge program has accurate information about data set size, it
can make the most efficient use of both main storage and intermediate storage.

BLOCKING INPUT RECORDS

Sort performance is improved if you block input records as this saves time in
reading your data set.

RECORD FORMAT

When your input data set consists of variable length records, use the RECORD
statement to supply maximum, minimum, and modal (most frequent) lengths to the
sort/merge program. This information allows the program to calculate the optimum
sort.

Intermediate Storage Assignment

1f you can, avoid assigning the bare minimum amount of intermediate storage for a
given application. When a small amount of intermediate storage is assigned to the
program, more intermediate merge phase passes are necessary because only a small
number of record sequences can be merged at one time. Naturally, these extra
passes increase sorting time.

Likewise, when the program has only a small amount of main storage to operate

in, more intermediate merge phase passes are necessary because only a small number
of records can be sorted internally and more sequences are produced.

Section 4: Efficient Program Use 105

The sort/merge program operates efficiently when at least two selector channels
are available. A tape switching device also improves program performance, if the
device is connected so that two channel paths exist between each device and the
central processing unit that is running the sort/merge program.

ASSIGNING DIRECT ACCESS INTERMEDIATE STORAGE

Program performance is improved if you use devices, storage areas, and channels
efficiently. If you use UNIT=2311, 2314, or 2301 on the DD statements that define
intermediate storage data sets, the program assigns areas, and some optimization
occurs automatically. But maximum performance is achieved if you follow these
recommendations:

e Use as many physical devices as you have available. (If you place more than
one intermediate storage data set on a disk, place them as close together as
possible to minimize access arm movement.)

e Use channel overlap whenever you can.

e On 2311 and 2301 and using the balanced technique on 2314, assign as few data
sets as possible. (You néed at least three. Three large data sets are more
efficient than six smaller ones.) Using the criss-cross technique on 2314,
assign as many data sets as possible, (17 maximum) but not more than one for
each device.

* Assign data sets of similar sizes.

Assigning more than three intermediate storage data sets (the minimum number)
on a 2311 disk or a 2301 drum decreases program efficiency unless you assign the
data sets to different devices. . Sometimes you may need the maximum (six for the
2311 and 2301) number of data sets to handle a large input data set. To preserve
efficiency, assign them on separate physical devices.

For example, if a 100-track area is available on each of three 2311 disk
drives, you can handle more records if you define six data sets, each 50 tracks
long, two on each device, but you decrease efficiency. If the size of the input
data set permits, you can increase efficiency by defining fewer areas. For
maximum efficiency, define three 100-track areas, each on a different device.

If your intermediate storage is on 2314, you can obtain maximum efficiency by
assigning one data set per access arm. Also, efficiency decreases as the size of
your input data set approaches sort capacity.

If you use channel overlap program performance is improved because the program
can read input while writing outrput, etc.

Figure 18 shows a method for specifying channel overlap. The SEP parameter on
the SORTWKO1 DD statement requests that the operating system assign that data set
to a channel other than the channel assigned to the SORTIN data set. The AFF
parameter on the SORTWKO3 and SORTOUT DD statements requests that the SCRTWKO03,
and SORTOUT data sets, also be on a channel that is different from SORTIN. The
channel assigned to SORTWKO02 and SORTWKO04 is not necessarily the same as the one
assigned to SORTIN. ‘ '

The operating system will honor your channel assignment requests when the
necessary channel and device resources are available. If the requests cannot be
filled, the system assigns channels. according to the resources it has. Therefore,
specifying channel overlap will never impair performance.

106

—

1

|

//SORTIN DD DSNAME=INPUT,VOLUME=SER=000001,UNIT=2311,DISP= (OLD,KEEP) , X |

// DCB= (RECFM=FB, LRECL=80, BLKSI2E=3200) |
//SORTWKO1 DD DSNAME=WORK 1, VOLUME=SER=000002,UNIT=2311, X |

| /7 SEP=SORTIN, SPACE= (TRK, (15) , , CONTIG) |
| //SORTWKO2 DD DSNAME=WORK2,VOLUME=SER=000003,UNIT=2311, X |
| /7 SPACE= (TRK, (15) , ,CONTIG) [
//SORTWKO3 DD DSNAME=WORK3,VOLUME=SER=000004,UNIT=2311, X |

/7 AFF=SORTWKO 1, SPACE= (TRK, (15) , ,CONTIG) |
//SORTWKO4 DD DSNAME=WORK#, VOLUME=SER=000005,UNIT=2311, X |

| // SPACE= (TRK, (15) , ,CONTIG) |
| //SORTOUT DD DSNAME=OUTPUT,VOLUME=SER=000006,UNIT=2311,DISP= (NEW,KEEP), X |
| // DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200) , X |
| // AFF=SORTWKO 1, SPACE= (TRK, (50) , ,CONTIG) I
| ' |
[R 4

Figure 18. DD Statements Illustrating Channel Overlap

ASSIGNING TAPE INTERMEDIATE STORAGE

You can use the timing tables in the publication 0S_Sort/Merge Timing Estimates as
guide lines for assigning tape intermediate storage.

Multiprogramming the Sort/Merge Program

You should consider the following factors when you execute the sort/merge program
with other programs:

e The sort/merge program may use many 1/0 devices for input, output, and
intermediate storage. You should assign it a relatively high priority to be
sure that it gets control of the central processing unit frequently and does
not tie up the 1/0 devices while it waits for CPU time.

e The sort/merge program tends to be 1I/0 bound. Therefore, you should
multiprogram the sort with programs that are CPU bound.

e When a single task attaches two or more sort applications by ATTACH, LINK, or
XCTL, you must modify the standard DD names (SORTIN, SORTOUT, etc.) so that
they are unique. Do this by specifying four letters in the parameter list
passed to the sort/merge program. These characters replace the letters SORT
in the references to standard DD names in sort/merge program modules. (For
more information, see the toric “Passing Parameters to the Sort" in Section
2.)

System Generation Options and Requirements

When the operating system for your installation is generated, certain sort/merge
facilities may be included; others may not be. You should be aware of what is
available at your installation. The following list is a summary of the sort/merge
facilities that can be included when the program is generated:

e Sort or merge fixed-length records.

e Sort or merge variable-length records.

e Sort or merge records over 256 bytes long.

e Operate with any or all allowable intermediate storage devices. (Cnly one

type can be used for a specific sort run.)

Section 4: Efficient Program Use

107

e Sort or merge multiple contrcl fields.
e Use sort/merge program exits.
e Print non-critical program-generated messages.

e Use (a specific number) of bytes of main storage as a maximum for sort/merge
execution.

Selecting only the required program facilities conserves library space. 1f you

attempt to execute an option that was not selected, the program terminates
abnormally. System generation is described in the publication 0S_Sysgen.

LIMITING MAIN STORAGE

If the amount of main storage to be used by the sort/merge program was not
specified when the system was generated, the program assumes it may use 12,000
bytes. A further 3500-5000 bytes will be needed for system functions. For
reasonably efficient execution of the program 45,000 bytes of main storage are
needed; in general, performance improves as more main storage is made available.

The maximum amount of main storage that can be made available to the program
can be determined by subtracting the amount of storage required by system
functions from the total amount available. The amount of main storage required
for the execution of various operating components is given in the publication 0OS
Storage Estimates. The publication OS Sysgen gives a formula for calculating the
maximum amount of main storage.

On an execution by execution kasis, you can change two of the system generation
specifications: main storage size and types of messages printed.

ALTERING THE MAIN STORAGE ALLOCATION

You can override the amount of main storage specified at system generation time
by using the PARM field of the EXEC statement. Write the field as follows:

PARM="'CORE=XXXXXx"

where xxxxxx is the amount of main storage in bytes that you want to operate with.
XXXXXX cannot be less than 12,000, and at this value, some combinations of 1/0
devices and record lengths make a successful sort impossible. A formula for
determining the maximum possible core size is given in the section describing the
SORTMERG macro in the publication OS_Sysgen. For MVT, the region size must be
bigger than the sort size. Region size should be approximately 1.2 times the sort
size + 8K. The main storage value is changed only for the current job step;
afterwards, the value reverts to the one specified at system generation time.

Changing the main storage allocation is useful when you are running a
sort/merge application in a multiprogramming environment. By reducing the amount
of main storage allocated, you impair sort/merge performance so that other
programs can have the storage they need to operate simultaneocusly. By increasing
the allocation, you can run large sort/merge applications efficiently at the
expense of other jobs sharing the multiprogramming environment.

108

ALTERING THE MESSAGE SPECIFICATICN

You can override the message option selected at system generation by using the
PARM field of the EXEC statement. Write the field as follows:

PARM="'MSG=xx"

where xx is a two-character code that specifies what kind of messages you want
printed and where you want them to appear.

NO

ccC

CP

AC

AP

means that you want no messages to be printed.

means that you want critical messages only to be printed and you want them to
appear on the console.

means critical messages only and that you want them to appear on the printer.

means that you want all messages (critical and informational) printed on the
console .

means that all messages are to be printed on the printer.

The time factor involved in printing messages is relatively small. The printer

is faster than the console so you save a few seconds by specifying CP or AP rather
than CC or AC.

Section 4: Efficient Program Use

109

The following terms and phrases are defined
as they are used in this publication.

ascending sequence: A sequence of records
such that the control word of each
successive record collates equal to or
greater than that of the preceding record.

assignment component: A sort/merge program
component that establishes the basic
constants needed for program execution and
initializes running components for a
specific application.

block: A group of contiguous data read ox
recorded by an 1/0 device as one unit.

collating sequence: A predetermined
sequence into which data can be sorted or
merged.

control field: A group of contiguous data
within a record that forms all or part of a
control word.

control word: A group of control fields
used to order records according to the
collating sequence during a sort or merge.

descending sequence: A sequence of records
such that the control word of each
successive record collates equal to or less
than that of the preceding record.

input data set: The data set (or data
sets) used as input to the sort/merge
program.

intermediate storage data set: A partially
sequenced data set that is either input to

or output from an intermediate merge phase

pass.

major contrxol field: The control field
that is most significant in determining the
collating sequence of a record.

merge: The process used to form one sorted
sequence of records from two oOr more
previously sorted sequences. 2lso, a
program or routine that performs this
function.

merge pass: The passing of all the recorxds
used as input to the sort/merge through a
program phase which merges previously
sorted sequences into fewer, longer
sequences.

minor control field: A control field which
is less significant than the major control
field in determining the collating sequence

Glossary

of a record. Successive minor control
fields are considered to be in decreasing
order of significance.

modal length: The record length that
occurs most frequently in a variable-length
record data set used as input to the
sort/merge program.

nmax: The estimated maximum number of
records of a given length that can be
sorted using a given amount of intermediate
storage.

output data set: The sequenced data set
which is produced by a sort/merge program
execution.

phase: A portion of the sort/merge program
that is designed to perform one of the
following functions: definition,
optimization, sorting, intermediate
merging, or final merging.

program_exit: A place in the executable
code of the sort/merge program component at
which a user-written routine may be given
control to perform various functions.

record: A group of contiquous characters
which is processed as a unit by the
sort/merge program.

running component: A sort/merge program
component that performs a sorting or

merging operation on the data set used as
input to the program. Running components
are initialized by assignment components.

sequence: A group of records that have
been collated into a predesignated order.

sequence distribution technique: One of
several methods used by the sort/merge
program to combine previously sorted
sequences of records into fewer, longer
sequences.

sort: The process used to collate the
records in a data set of unknown order.
Also, a program or routine that performs
this function.

sort blocking factor: The blocking factor
used by the sort/merge program for
intermediate storage data sets.

user-written routine: A routine written by
the user to perform various functions at a
sort/merge program exit.

Glossary 111

Appendix A: Summary of How to Use the Sort/Merge Program

The following is a summary of what you need to do to use the sort/merge program:

e Prepare sort/merge control statements defining the sorting or merging
application. (Refer to the topic "Defining the Sort or Merge®™ in Section 2.)

e For a sorting application, determine the amount of intermediate storage the
sort/merge program will need for your data set. (Refer to the topic
“Determining Intermediate Storage Requirements®™ in Section 2.)

e Prepare job control language statements to accompany the sort/merge
statements. (Refer to the topic "Required Job Control Language Statements® in
Section 2.)

The fold-out chart at the back of this manual shows the three points mentioned
above in greater detail.

The chart does not cover the following points:

e EXEC statement PARM field options: forcing a sequence distribution technique.
(Refer to "Sequence Distribution Techniques®" in Section 1 for descriptions of
the techniques; and "Job Control Language for Sort/Merge®™ in Section 2 for how
to code the option), message option (refer to "Job Control Language for
Sort/Mexrge®™ in Section 2), core value option (refer to "Job Control Language
for Sort/Merge in Section 2).

e The checkpoint option. (Refer to "Defining the Sort or Merge"™ in Section 2
for how to select the option, and "Job Control Language for Sort/Merge" for
information on the required SORTCKPT DD statement.)

e Achieving maximum sort/merge efficiency. (Refer to "Section #4: Efficient
Program Use".)

Appendix A: Summary of How to Use the Sort/Merge Program 113

Appendix B: Considerations for MVT Users—Summary

REGION SIZE

The SORT cataloged procedure requests a region size of 98K. The SORTD cataloged
procedure requests 26K.

A formula for determining region size is given in Introduction: "Determining
Region Size".

OPTIONAL CHARACTERS FOR DD NAMES

I1f a task initiates two or more sort/merge applications via ATTACH, LINK, or XCTL,
this option must be selected. It is discussed in the topic "Passing Parameters to
the Sort" in Section 2.

ALTERING THE MAIN STORAGE ALLOCATION

The amount of main storage assigned to sort/merge at system generation can be
changed. 1t can be temporarily increased to improve sort/merge preformance or
temporarily decreased to permit cther programs to obtain main storage. Refer to
"Altering the Main Storage Allocation®™ in Section 4 for further details.

OTHER

Refer to "Multiprogramming the Sort/Merge Program" in Section 4.

Appendix B: Considerations for MVT Users - Summary 115

Appendix C: Standard System /360 Operating System
Collating Sequence

The following table shows the collating sequence for character and unsigned ,
decimal data. The bit configuration shown is EBCDIC. The collating sequence is
based on the EBCDIC representation of the graphic and ranges from low (00000000)
to high (11111111). The bit configurations which do not correspond to graphics
(e.g., 0 - 73, 81 - 89, etc.) are not shown. Some of these correspond to control
commands for the printer and other devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data
is collated algebraically; i.e., each quantity is interpreted as having a sign.

Collating
Sequence Bit Configuration Graphic Meaning
00000000
74 01001010 # Cent sign
75 01001011 . Period, decimal point
76 01001100 < Less than sign
77 01001101 (Left parenthesis
78 01001110 + Plus sign
79 01001111 | Vertical bar, Logical OR
80 01010000 & Ampersand
90 01011010 ! Exclamation point
91 01011011 $ Dollar sign
92 01011100 * Asterisk
93 01011101) Right parenthesis
94 01011110 ; Semi colon
95 01011111 1 Logical not
96 01100000 - Minus, hyphen
97 01100001 / Slash
107 01101011 ' Comma
108 01101100 % Percent sign
109 01101101 _ Underscore
110 01101110 > Greater than sign
111 01101111 ? Question mark
122 01111010 : Colon
123 01111011 ¥ Number sign
124 01111100 a At sign
125 01111101 ! Apostrophe, prime
126 01111110 = Equals sign
127 . 01111111 " Quotation marks
129 10000001 a
130 10000010 b
131 10000011 c
132 10000100 d
133 10000101 e
134 10000110 £
135 10000111 g
136 10001000 h
137 10001001 i
145 10010001 3j
146 10010010 k

Appendix C: Standard System/360 Cperating System Collating Sequence 117

‘Collating

Sequence Bit Configuration Graphic Meaning
147 10010011 1
148 10010100 m
149 10010101 n
150 10010110 o
151 : 10010111 P
152 10011000 . q
153 . 10011001 r
162 10100010 s
163 10100011 t
164 . 10100100 u
165 10100101 v
166 10100110 w
167 10100111 b'4
168 10101000 y
169 10101001 z
193 11000001 A
194 11000010 B
195 11000011 C
196 11000100 D
197 11000101 E
198 11000110 F
199 11000111 G
200 11001000 H
201 11001001 I
209 11010001 J
210 11010010 K
211 11010011 L
212 11010100 M
213 11010101 N
214 11010110 (0]
215 11010111 P
216 11011000 Q
217 11011001 R
226 11100010 S
227 11100011 T
228 11100100 U
229 11100101 v
230 11100110 W
231 11100111 X
232 11101000 Y
233 11101001 2
240 11110000 0
241 11110001 1
242 11110010 2
243 11110011 3
244 11110100 4
245 11110101 5
246 11110110 6
247 11110111 7
248 11111000 8
249 11111001 9

118

Appendix D: Sort/Merge Messages

The sort/merge program generates two kinds of messages -- those which result from
critical error conditions and those which give information about the program's
operation. The printing of either all messages or only critical messages can be
specified at system generation. The messages can either be printed on a printer
or at the appropriate console.

When a system includes multiple console support, all messages except IER06 1A
are directed to the system master console. IER061A is directed to the tape, DASD,
or unit record pool console to which it applies. If an output error occurs on the
printer, the IER061A message is directed to the console with Routing Code = 11
independent of the message option specified.

The message options set up at system generation can be overridden on a job step
by job step basis by coding the MSG parameter in the PARM field of the EXEC
statement. Refer to the topic "EXEC Statement" in "Section 2: How to Use the
Sort/Merge Program", for a complete discussion of the MSG parameter.

The sort/merge program analyzes control statements in two stages. Stage 1
analyzes the general format of control statements. Stage 2 analyzes the
information contained in the sort/merge control statements and job control
language statements. Stage 2 checks for sort syntax and contents errors. Each
statement is scanned for errors. The first error detected stops the scan for that
statement. The program prints a message and continues the scan on successive
statements.

When the program encounters a critical error in either stage, it prints a
message and continues to analyze control information until the current stage is
completed, then the program terminates. Thus, if a critical error is found in
Stage 1, the program terminates at the end of Stage 1; if the error is encountered
in Stage 2, the program terminates at the end of Stage 2. The system action that
results from encountering a critical control information error is described in the
messages as either "Stage 1 termination®™ or "Stage 2 termination®.

Appendix D: Sort/Merge Messages 119

| L) 1
| Component Name | IER |
L 3 4
T T 1
| Pprogram Producing Message | Sort/merge program. |
b + 1
| Audience and Where Produced | For programmer: SYSPRINT data set or console (system generation |
| | option) . |
; . t {
Message Format	IERnnns - text
	nnn
	Message serial number.
!	s
i	Severity code:
!	
	A Error message; programmer action is required.
	I Information message; no programmer action is required.
	text
	Message text.
L 4	
r T	
Comments	None.
L i
IEROO1A - COL 1 OR 1-15 NOT BLANK a control statement is as follows:
) SORT,MERGE,MOLS 20 cards
Explanation: Critical. Column 1 of a RECORD 6 cards
sort/merge control statement is not blank, END 1 card
or columns 1 through 15 of a sort/merge
continuation card are not blank. System Action: Stage 1 termination. The

1IER002A

120

System Action: Stage 1 termination.

Programmer Response: Probable user error.
Check control statements for nonblank
characters in column 1, and continuation
cards for nonblank characters in columns 1
through 15. Correct any errors and
execute the job step again. If the
problem recurs, do the following before
calling IBM for programming support:

e Make sure that MSGLEVEL=(1,1) was

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master conscle log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

EXCESS CARDS

Explanation: Critical. This message is

generated for one of four reasons:

e More than 33 control cards are supplied
to the sort/ merge program.

e A sort/merge control statement type
appears more than once. (For example,
there is more than one SORT statement.)

e The control statements passed to the
sort/merge program during an ATTACH,
LINK, or XCTL operation contain more
information than is allowed for the
statements passed.

e A control statement occupies too many
cards. The maximum number of cards for

IER003A

program does not analyze contrxol cards
above the 33 limit or duplicate type
statements. If the sort was activated by
an ATTACH, LINK, or XCTL, no information
is processed.

Programmer Response: Probable user error.
Correct any errors and execute the job
step again. If the problem recurs, do the
follow1ng before calling 1BM for
programming support:)

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (1f applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABENL LD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value availakle.

~ NO CONTIN CARD

Explanation: Critical. A continuation
card has been indicated by a nonblank
character in column 72 of the previous
card and no card follows.
System Action: Stage 1 termination.
Programmer Response: Probable user error.
Check for a keypunching error, an overflow
of parameters into column 72, or a missing
continuation card. Correct any errors and
execute the job step again. 1If the
problem recurs, do the following before
calling IBM for programming support:
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.
e Make sure that the PARM parameter of the

IEROO4A

IEROOSA

EXEC statement contained the LCIAG and
MSG=AP subparameters. (1f applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND LD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- INVALID OP DELIMITER

Explanation: Critical. A control
statement ends with a comma or other
incorrect delimiter.

System Action: Stage 1 termination.

Programmer Response: Probable user error.
Check for operands that are incorrectly
split between control and continuation
cards. Correct any errors and execute the
job step again. If the problem recurs, do
the following before calling IBM for
programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (I1f applicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- STMT DEFINER ERR

Explanation: Critical. A control
statement that should contain an operation
definer (SORT, MERG, RECORD, MOLS, or END)
does not contain an acceptable one.

System Action: Stage 1 termination.

Programmexr Response: Probable user error.

Check all statements for incorrect,

misplaced, or misspelled operation

definers. Correct any errors and execute
the job step again. If the probklem
recurs, 4o the following before calling

IBM for programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter- of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

® Note the amount of main storage
specified at sort/merge generation, and
have this value available.

IER006A

IER007A

IER0O08A

- OP DEFINER ERR

Explanation: Critical. The first operand
of a control statement does not begin on
the same statement as the operation
definer.

System Action: Stage 1 termination.

Programmer Response: Probable user error.

Check for statements that contain only the

operation definer. Correct any errors and

execute the job step again. If the

problem recurs, do the following tefore

calllng IBM for programming support:
Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters . (1f applicartle,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing job step.

e Have the associated jok stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- SYNTAX ERR - XxX

Explanation: Critical. A control
statement contains an error in syntax.
xxx is a 3-character code ("S/M," "REC,"
or "MOD") that indicates the control
statement in which the error occurred.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Check the control statements for syntax
errors. Some of the more common syntax
errors are:
e Unbalanced parentheses.
e Missing commas.
e Embedded blanks.
Correct any errors and execute the jok
step again. If the problem recurs, do the
following before calling IBM for
programming support:
e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.
¢ Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters . (1f applicarkle,
the CORE parameter should also ke
included in the EXEC statement.)
s Make sure that a SYSABEND LC statement
was included for the failing jok step.
e Have the associated jok stream and
master console log available.
e Note the amount of main storage
specified at sort/merge generation,
have this value available.

and

- FLD OR VALUE GT 8 CHAR - XXX

Explanation: Critical. A parameter of
greater than 8 characters has been
specified. xxx is a 3-character code
("S/M,"™ "REC," or "MOD") that indicates
the control statement in which the error
occurred.

BAppendix D: Sort/Merge Messages 121

IERO09I

IERO10A

122

System Action:

Programmer Response: Probable user error.
Check control statements for parameters
with more than eight characters. Correct
any errors and execute the job step again.
If the problem recurs, do the following
before calling IBM for programming
support.

e Make sure that MSGLEVEL=(1,1) was

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters . (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

Stage 2 termination.

- EXCESS INFO ON CARD - XXX

Explanation: More information than
necessary appears in a control statement.
This could possibly be caused by a syntax
error which cannot be diagnosed by the
program. xxx is a 3-character code
("S/M," "REC," or "MOD") that indicates
the control statement in which the error
occurred. This message is also printed
when comments appear on a card.

System Action: The excess information is
treated as a comment.

Programmer Response: Probable user error.
Check control statements, unless comments
are intended. Correct any errors and
execute the job step again. If the
problem recurs, do the following before
calling 1BM for programming support:

e Make sure that MSGLEVEL=(1,1) was

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the CIAG and
MSG=AP subparameters . (1f agplicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- NO S/M CARD

Explanation: Critical. All control
statements have been processed and no SORT
or MERGE control statement has been found.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Supply a SORT or MERGE control statement.
Correct any errors and execute the job
step again. If the problem recurs, do the
following before calling IBM for
programming support:

e Make sure that MSGLEVEL=(1,1) was

IERO11A

IERO12A

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters . (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- TOO MANY S/M KEYWORDS

Explanation: Critical. More than the
maximum of 5 keyword operands are defined
on a SORT or MERGE control statement.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that the SORT or MERGE control
statement does not contain too many
keyword operands. Valid keywords are as
follows:

FIELDS, FORMAT, SIZE

(for SORT or MERGE statement)
and

SKIPREC and CKPT

(for SORT statement only.)

Correct any errors and execute the job

step again. If the problem recurs,do the

following before calling IEM for
programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generatlon, and
have this value available.

- NO FLD DEFINER

Explanation: Critical. A SORT or MERGE
control statement does not contain a
control field definition.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Check SORT or MERGE control statement for
lack of a control field definition (FIELDS
operand) . Correct any errors and execute
the job step again. If the problem
recurs, do the following before calling
1BM for programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters . (1f applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

IERO13A

IERO14A

IER015A

Explanation:

Have the associated job stream and
master console log available.

Note the amount of main storage
specified at sort/merge generation, and
have this value available.

INVALID S/M KEYWORD

Critical. An invalid

keyword operand has been detected on a
SORT or MERGE control statement.

System Action:

Programmer Response:

Stage 2 termination.

Probable user error.

Make sure that the SORT or MERGE control
statement does not contain an invalid

keyword operand.
FIELDS, FORMAT, and SIZE.
statements,
valid.)
the job step again.

Valid keywords are
(In SORT
SKIPREC and CKPT are also
Correct any errors and execute
If the problem

recurs, do the following before calling
IBM for programming support:

Explanation:

Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should alsc be
included in the EXEC statement.)

Make sure that a SYSABEND DD statement
was included for the failing job step.
Have the associated job stream and
master console log available.

Note the amount of main storage
specified at sort/merge generation, and
have this value available.

DUPLICATE S/M KEYWORD

Critical. A keyword operand

is defined twice on a SORT or MERGE
control statement.

System Action:

Programmer Response:

Stage 2 termination.

Probable user error.

Check SORT or MERGE control statement for

a

multiply-defined keyword operand.

Correct any errors and execute the job

step again.

If the problem recurs, do the

following before calling IBM for
programming support:

Explanation:

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters . (If applicable,
the CORE parameter should alsc be
included in the EXEC statement.)

Make sure that a SYSABEND DD statement
was included for the failing job step.
Have the associated job stream and
master console log available.

Note the amount of main storage
specified at sort/merge generation, and
have this value available.

TOO MANY PARAMETERS

Critical. Too many

parameters are associated with a keyword
operand on a SORT or MERGE control
statement.

IERO16A

IERO17A

System_Action:

Programmer Response:

Stage 2 termination.

Probable user error.

Check SORT or MERGE control statement
keyword operands for too many parameters.
Correct any errors and execute the jok

step again.

If the problem recurs, do the

following before calling IBM for
programming support:

Explanation:
of values is

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

Make sure that a SYSABEND DD statement
was included for the failing job steg.
Have the associated job stream and
master console log available.

Note the amount of main storage
specified at sort/merge generation, and
have this value available.

INVALID VALUES IN FLD

Critical. An invalid number
specified with a FIELLS

operand on a SORT or MERGE control
statement.

System Action:

Programmexr Response:

Stage 2 termination.

Probable user error.

Make sure that the FIELDS operand of a
SORT or MERGE statement is specified

coxrectly.

Valid formats are: .
FIELDS= (location, length, data format,
order,...)

oxr
FIELDS= (location, length, order,...),
FORMAT=

Correct any errors and execute the job

step again.

If the problem recurs,do the

following before calling IBM for
programming support:

Explanation:

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

Make sure that a SYSABEND DD statement
was included for the failing job step.
Have the associated job stream and
master console log available.

Note the amount of main storage
specified at sort/merge generation, and
have this value available.

ERR IN DISP LENGTH VALUE

Critical. An invalid length

or displacement (position) value is
specified in a control field definition on
a SORT or MERGE control statement.

System Action:

Programmer Response:

Stage 2 termination.

Probable user error.

Make sure that the length and position
values in the FIELDS operand of a SORT or
MERGE control statement were specified

correctly.

Make sure that the length

Appendix D: Sort/Merge Messages 123

IERO18A

IER019A

124

value plus the position value dces not

exceed 4096, and that bit positions are

specified for binary fields only. Correct
any errors and execute the job step again.

If the problem recurs, do the fcllowing

before calling IBM for programming

support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If aprlicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- CTL FLD ERR-

Explanation: Critical. An error in
specifying the type of control field
defined in a SORT or MERGE contzrol
statement has been detected.

System Action: Stage 2 termination.

Programmer Response: Probable user error.

Make sure that all control field types are

specified as either CH, 2D, PD, FI, BI, or

FL. Correct any errors and execute the

job step again. 1f the problem recurs, do

the follow1ng before ca111ng IBM for
programmlng support:
e Make sure that MSGLEVEL—(1 1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If apglicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- SIZE/SKIPREC ERR

Explanation: Critical. An error in
specifying the SIZE operand in either a
SORT or MERGE control statement, or the
SKIPREC operand in a SORT control
statement, has been detected.
System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that the SORT or MERGE control
statement does not contain an invalid SIZE
or SKIPREC operand. (If E is specified in
the SIZE operand, it must precede the
number.) Correct any errors and execute
the job step again. If the proklem
recurs, do the following before calling
IBM for programming support:
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IER020A

IER021A

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (I1f applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value availakle.

'

INVALID REC KEYWORD

Explanation: Critical. An invalid
keyword operand has been found in a RECORD
control statement.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that the keyword operands in the
RECORD control statement are valid and
that they are spelled correctly. Valid
keywords are TYPE and LENGTH. Correct any
errors and execute the job step again. If
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (1f applicable,
the CORE. parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing job step.

e Have the associated jok stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- NO TYPE DEFINER

Explanation: Critical. A RECORD control
statement has been found without a TYPE
operand.

System_Action:

Programmer Response: Probable user error.
Check RECORD control statement for lack of
TYPE operand. Correct any errors and
execute the job step again. If the
problem recurs, do the following before
calllng IBM for programming support:.

e Make sure that MSGLEVEL= (1,1) was

‘specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIRG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value availakle.

Stage- 2 termination.

IER022A - RCD FORMAT NOT F/V

IER023A

IERO24A

Explanation: Critical. An error in
specifying the value associated with the
TYPE operand of a RECORD control statement
has been detected.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Check the RECORD control statement for
keypunching or other errors resulting in
TYPE operand value being some character
other than F (fixed-length records) or V
{(variable-length records). Correct any
errors and execute the job step again.
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If aprlicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

If

- NO LENGTH DEFINER

Explanation: Critical. The LENGTH
operand of a RECORD control statement is
not present.

System_Action: Stage 2 termination.
Programmer Response: Probable user error.
Check RECORD control statement for lack of
LENGTH operand. Correct any errors and
execute the job step again. If the
problem recurs, do the following before
call1ng IBM for programming supgort:

e Make sure that MSGLEVEL= (1, 1) was

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If aprlicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and -
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- ERR IN LENGTH VALUE

Explanation: Critical. An incorrect
value is associated with the LENGTH
parameter of a RECORD control statement.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that the RECORD control

statement does not contain the following
errors:

IER025A

IER026A

e Keypunching errors in length values.
(length values must not contain
non-numeric characters, negative
numbers, etc.)

e More than three length values specified
for fixed length records.

e Minimum length (1,) greater than maximum
length (1,) .

e Modal length (lg) greater than maximum
length (13) .

e Modal length (ls) greater than maximum
input length (14) or the logical recorxd
length specified on the SORTIN LLC
statement.

Correct any errors and execute the job

step again. If the problem recurs, do the

following before calling IBM for
programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABENLD DD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- RCD SIZE GT MAX

Explanation: Critical. The logical
record size specified on a RECORL control
statement is greater than the maximum
allowed by the program.

System_Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that the record length specified
in the RECORD control statement is
correct. Maximum length is 32,000 bytes
(or 27,400 bytes for spanned records) .
Correct any errors and execute the job
step again. 1If the problem recurs, do the
following before calling IBM for
programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABENLC LU statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- L1 NOT GIVEN

Explanation: Critical. The LENGTH
operand of a RECORD control statement
lacks an 14 value.

System Action: Stage 2 termination.

Appendix D: Sort/Merge Messages 125

IER027A

IER028A

126

Programmer Response: Probable user error.
Check RECORD contrxol statement for lack of
1, value in LENGTH operand. Correct any
errors and execute the job step again.
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If apglicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

1f

- CF BEYOND RCD

Explanation: Critical. A control field
has been defined as extending beyond the
maximum record length specified in a
RECORD control statement.

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Check SORT or MERGE control statement for
incorrectly specified control field
displacement. Check RECORD control
statement for incorrectly specified
maximum record length (1z). Correct any
errors and execute the job step again.
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage)
specified at sort/merge generation, and
have this value available.

if

- TOO MANY EXITS

Explanation: Critical. BAn attempt has
been made to activate more than the
maximum number of program exits allowed by
the program (17). :

System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that exit routines are specified
for valid exits only, and that each exit
is associated with only one exit routine.
Valid exits are E11, E15, E16, E17, E18,
E19, E21, E25, E28, E29, E31, E35, E37,
E38, E39, and E61. (Note: For a
perge-only application, only exits E31,
E35, E37, E38, E39, and E61 are valid.)

IER029A

IERO30A

Correct any errors and execute the job
step again. 1If the problem recurs, do the
following before calling IEM for
programming supports:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- IMPROPER EXIT

Explanation: Critical. This message is

generated for one of two reasons:

e An exit other than the 17 allowed by the
program has been activated on a MODS
control statement.

e An exit in the sort or intermediate
merge phase of the program has been
activated during a merge application.

System Action: Stage 2 termination.

Programmexr Response: Probable user error.

Make sure that the MODS control statement

does not contain keypunch or other errors

that resulted in the specification of an
invalid program exit number. Valid
numbers are E11, E15, E16, E17, E18, E19,

E21, E25, E27, E28, E29, E31, E35, E37,

E38, E39, and E61. (Note: For a

merge-only application, only exits E31,

E35, E37, E38, E39, and E61 are valid.)

Correct any errors and execute the job

step again. If the problem recurs, dc the

following before calling IBM for
programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABEND DL statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have value available.

- MULTIPLY DEFINED EXIT

Explanation: Critical. A program exit
has been defined twice in MODS control
statement.

System Action: Stage 2 termination.

Programmer Response: Probable user error.
Check MODS control statement for multiply
defined exits. Correct any errors and
execute the job step again. 1If the
problem recurs, do the following before
calling IBM for programming support:

IERO312

IER032a

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (1f aprlicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- INVALID MODS OP CHAR

Explanation: Critical. An invalid
character in a parameter of a MODS control
statement has been found.

System_Action: Stage 2 termination.
Programmer Response: Probable user error.
Check the parameters of a MODS statement
for a length field containing something
other than numeric data, or a source or
name field beginning with something other
than an alphabetic character or one of the
special characters $, @, # or containing a
special character other than$, @, #.
Correct any errors and execute the job
step again. If the problem recurs, do the
following before calling IBM for
programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (I1f apglicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
nave this value available.

- EXIT E61 REQUIRED

Explanation: Critical. A SORT or MERGE
control statement defines a control field
calling for user-written routine (this is
done by specifying E for the control field
sequence indicator), and exit E61 is not
activated by a MOLS control statement.

System_Action: Stage 2 termination.
Programmer Response: Probable user error.
Check SORT or MERGE control statements for
keypunching errors resulting in the
specification of an E type parameter.
Check the MODS control statement, for lack
of an E61 specification. Correct any
errors and execute the job step again.
the problem recurs, do the follcwing
before calling IBM for programming
support:
s Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.
e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and

1f

IER033A

IERO34A

MSG=AP subparameters. (If applicable,
the CORE parameter should also be :
included in the EXEC statement.)

e Make sure that a SYSABENL DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available. .

- CF SEQ INDIC E REQUIREL

Explanation: Critical. Program exit E61
is activated and no control fields have
been specified for user modification (E
control field sequence parameter missing
on SORT or MERGE control statement).

System Action: Stage 2 termination.
Programmer Response: Probable user exror.
Check MODS, and SORT or MERGE control
statements for keypunching errors
resulting in the activation of exit E61
and the lack of an E type parameter on the
SORT or MERGE control statement. Correct
any errors and execute the job step again.
If the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABEND LD statement
was included for the failing job step.

¢ Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value availakle.

- PARAM ERR FOR MODS

Explanation: Critical. BAn incorrect
number of parameters follow an operand
definer on a MODS control statement, or
SYSIN is specified on the MODS statement
as the source for user-written routines,
and no //SORTMOLS card is present.
System Action: Stage 2 termination.
Programmer Response: Probable user error.
Make sure that any MODS control statements
have the following format:

MODS exit=(name,size,{ddname of library}[{N}]),..
’

SYSIN

If SYSIN has been specified, make sure

that a SORTMODS DL statement is also

included in the step. Correct any errors

and execute the job step again. If the

problem recurs, do the following before

calling IBM for programming support:

e Make sure that MSGLFVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (I1f applicable,

Appendix D: Sort/Merge Messages 127

IER035A

IER0361

IER0371

128

the CORE parameter should also be
included in the EXEC statement.)

e Make sure.that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- DUPLICATE MOD RTN IN PHASE

Explanation: Critical. The same
user-written routine is being used for
more than one exit in a sort/merge program
phase, or two or more routines have the
same name.

System Action: Stage 2 termination.

Programmer Response: Probable user error.
Make sure that the MODS control statement
does not use duplicate names improperly.
Correct any errors and execute the job
step again. If the problem recurs, do the
following before calling IBM for
programming support:

e Make sure that MSGLEVEL= (1, 1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- B = XXXXXX

Explanation: This message communicates
the blocking used by the sort for
intermediate storage recoxrds. For
fixed-length records, the blocking factor
is substituted for xxxxxx in the message
text. For variable-length records, the
size of the buffer area is substituted for
xxxxxx in the message text.

System Action: None.

Programmer Response: None.

- G = XXXXXX

Explanation: This message communicates
the number of records that can fit into
the program's record storage area at one
time during a sort. The number of records
is substituted for the xxxxxx in the text
of the message as shown above.

System Action: None.

Programmer Response: None.

IER038I - NMAX = XXXXXX

Explanation:

This message communicates an

estimate of the maximum number of records
that can be sorted using the intermediate
storage and main storage available to the
sort for the current application. The

number replaces the xxxxxx in the text of

the message as shown above.

Note

System_ Action:

Programmer Response:

.

Nmax for magnetic tape is
calculated for 2400-foot tapes. For
shorter tapes the figure should be reduced
proportionately.

None.

IER039A - INSUFFICIENT CORE

Explanation:

to allow program execution.

System Action:

Programmer Response:

None.

Critical. There is not
enough main storage available to the sort

The program terminates.

Probable user error.

Increase the amount of main storage to be
used by the sort program by coding the
CORE parameter in the PARM field of the
EXEC statement.

To calculate the minimum value for this
parameter:

e For a sort, apply the formula below to
each of the SORTIN and SORTOUT data

sets, and take the greater of the two
results.
records are spanned, add LRECL to the
SORTIN or SORTOUT result respectively.

LEN=LRECL. 1If

input or output

e For a merge, apply the formula with
LEN=the largest input blocksize, and
BLKSIZE=the output blocksize. 1If any
records are spanned, add LRECL x total
no. of spanned files.

Formula:
Min = A x max BLKSIZE + (C x LEN)
1]
a o I
T 1
For a sort for SORTIN | for SORTOUT |
I 5
1 1
BALN (tape) 12000 5 | (WA+1)/2) |
| POLY | 12000 5 | WA
|OsCL | 18000 | max (5,WR) | WA
|BALN (disk) | 12000 5 | wa
CRCX | 18000 | WA | wa
fmmmommet L
For a merge| 12000 | no. of input files.
L 4
WA = no. of intermediate work areas

If user exit routines are used, their size
should be added to this minimum value.

For efficient sorting, allow at least 50%
more storage than the minimum required.

If you are working in an MFT or MVT
environment, be sure to specify a region

IEROU4OA-

or partition size of 1.2 x CORE value +
8K.

If it is not possible to increase the
amount of main storage to be used by the
sort program, try to reduce the storage
requirements by decreasing either the
input blocksize or the number of
intermediate storage areas.

Execute the job step again. 1If the
problem recurs, do the follow1ng before
calllng IBM for programming supports:
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

INSUFFICIENT WORK UNITS

Explanation: Critical. There is not
enough intermediate storage available to
the sort to allow program execution. In a
merge-only application this message may be
caused by incorrect specification of one
or more input units. (SORTINO1, etc...)

System Action: Stage 2 termination.

Programmer Response: Probable user error.
Make sure that the DD statements do not
contain errors and that the SORIWK DD
statements are not out of order or
missing. (The numbers must be in
sequence. If tape is used, make sure that
at least three intermediate storage units
were assigned to the sort program. If
2311 disk or 2301 drum devices were used,
make sure that at least three areas of at
least three tracks each are assigned. If
- the 2314 storage facility is used, at
least three data sets of at least five
tracks each must be assigned.) Correct
any errors and execute the job step again.
If the problem recurs, do the following
before calling IBM for programming
support'

e Make sure that MSGLEVEL= (1, 1) was

specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

IERO41A-

IERO42A-

N GT NMAX

Explanation: Critical. The number of
records specified in the SI2E operand of a
SORT control statement is greater than the
maximum sort capacity calculated by the
program.

System Action: The program terminates
unless data set size was estimated or not
given; then sort continues.

Programmer Response: Probable user error.
Check SIZE operand of SORT control
statement for error. If SIZE operand is
correct, check DD statements for an error
in assigning intermediate storage. 1If DD
statements are correct, assign more
intermediate storage to the program and
rerun. Correct any errors and execute the
job step again. 1If the problem recurs, do
the following before calling IBM for
programming support:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing jokb step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

UNITS ASGN ERROR

Explanation: Critical. A. Different
types of intermediate storage devices, or
an invalid combination of input, work, and
output devices have been assigned to the
sort. B. Duplicate ddnames have been
specified.
System Action: Stage 2 termination.
Programmer Response: Probable user error.
For case A, assign intermediate storage so
that all units are of the same type of
direct access device or are all 9 track
tape units. However if the sort input
unit is a 7 track tape device, then any
combination of 7 and 9 track tape units
may also be used.

r LS k]
| Intermediate Storage

I T v L] T)

| Input All| All] Al11]|9 trk|7 trk|Mixed 789
| Device 2311]12314|2301] tape| tape|trk tapes
L 4 L 4

r K] 1) T

|Any device | | i |

| supported |

|by QsSaM Yes| Yes| Yes| Yes No | No
|except 7 | 1

|track tape | | |

| |

|7 trk tape Yes| Yes| Yes| Yes Yes | Yes

L 1 L L 1]

For case B, make sure that duplicate
ddnames were not specified. Correct any

Appendix D: Sort/Merge Messages 129

errors and execute the job step again. If
the problem recurs, do the follcwing
before calling IBM for programming
support'
e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should alsoc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

IERO43A- DATA SET ATTRIBUTES NOT SPECIFIED

Explanation: Critical. DD statements
that define the input and output data sets
conflict with each other or lack any of
the following information:

e Input or output blocksize (BLKSIZE) .

e Record format (RECFM).

e Record length (LRECL).

System Action: Stage 2 termination.

Programmer Response: Probable user error.
Correct any errors and execute the job
step again. If the problem recurs, do the
following before calling 1BM for
programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (1f applicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

IERO44I- EXIT Exx INVALID OPTION

130

Explanation: BAn invalid data control
block field specification was passed to
the sort/merge program at exit E18, E19,
E28, E29, E38, or E39. The xx value in
the above message text is replaced by the
number of the exit at which the error
occurred.

System Action: The invalid option is

ignored.

Programmer Response: Probable user error.
Check the parameter list passed by the
user-written routine against the following
table before rerunning the application.

An x indicates which options are allowed
with the exit in question.

IER0451

IERO46A

r . q T T T T T 1
| Option |E18|E19|E28|E29|E38|E39]
L 4 L 4 L I i} 1
r T T T] T T 1
| SYNAD | x| x| x X x | x |
L 'y L [} 1 1
r] T T T 1
EXLST x| x| x x| x| x|
1
4
EROPT x X X
ECDAD X
L

Correct any errors and execute the job
step again. If the problem recurs, do the
following before calling IBM for
programming support:

¢ Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- END SORT PH

Explanation: The program's sort phase has
been successfully executed.
System Action: None.

Programmer Response: None.

- SORT CAPACITY EXCEEDED

Explanation: Critical. The sort has used
up all available intermediate storage and
the input data set has not been exhausted.

System Action: The program terminates.

Programmer Response: Probable user error.

If magnetic tape is used for intermediate

storage be sure that all reels contain

full-length tapes. (A bad tape may appear
short because of a large number of write
errors.) If all reels contain full length
tapes, rerun the application and specify
more intermediate devices. 1If a direct
access device is used for intermediate
storage, assign more tracks to the sort.

Note that reverse sequence files may

require more space. If the problem

recurs, do the following before calling

IBM for programming support:

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENLC DD statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value availaktle.

IERO47A - RCD CNT OFF, IN xxxxxx, OUT XXXXxX

IERO481

Explanation: Critical. The number of
records entering and leaving a program
phase are not equal; these numbers do not
include records inserted or deleted by
user-written routines. If an actual data
set size was specified in the SIZE
parameter of the SORT control statement,
it is placed in the IN field of this
message. This message can appear in phase
1 or phase 2. In phase 3 the message is
RCD CNT OFF and message IERO54I contains
the count. The numbers replace the values
specified as xxxxxx in the text of the
message as shown above.

System Action: The program terminates.
Programmexr Response: Probable user error.
Make sure that the value of the SIZE
parameter in the SORT control statement is
accurate. If it is correct, or if no
value has been specified, make sure that
the intermediate storage devices have not
been demounted during the job. Correct
any errors and execute the job step again.
1f the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL= (1, 1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- NMAX EXCEEDED

Explanation: Critical. The sort has
exceeded the calculated sort capacity
while processing the input data set, and
exit E16 is specified.

System Action: The user-written routine
at exit E16 is entered.

Programmer Response: Probable user error.
No response necessary. (The number of
records sorted is equal to the NMAX
calculated by the sort. See sort message
IER038I.) Execute the job step again. If
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should alsoc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage

IER0491

IER0501

IEROS51A

IER0521

IERO53A

specified at sort/merge generation, and
have this value available.

- SKIP MERGE PH

Explanation: It is not necessary to
execute the intermediate merge phase to
complete a sorting application because the
number of sequences created by the sort
phase is < the merge order.

System Action: Control is passed directly
from the sort phase to the final merge
phase.

Programmer Response: None.

- END MERGE PH

Explanation: The program's intermediate
merge phase has been successfully
executed.
System Action: None.

Programmer Response: None.

- UNENDING ‘MERGE

Explanation: Critical. There is not
enough intermediate storage assigned to
successfully complete the program's
intermediate merge phase.

System Action: The program terminates.

Programmer Response: Probable user error.

Assign more intermediate storage and rerun

the job. Note that reverse sequence files

may require more space. If the problem
recurs, do the following before calling

IBM for programming support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also ke
included in the EXEC statement.)

e Make sure that a SYSABENL LD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- EOJ

Explanation: The program's final merge
phase has been successfully executed.

System Action: Return is made to the
operating system for a normal end of task.

Programmer Response: None.
- 0UT OF SEQ
Explanation: Critical. The current

record leaving the final merge phase is
not in collating sequence with the last
record blocked for output.

Appendix D: Sort/Merge Messages 131

IEROS541

IERO55I

IER056A

132

System Action: The program terminates.
Programmer Response: Probable user error.
If variable length format records are
being processed, make sure that the input
records are all large enough to contain
the specified control fields. 1If a
user/written routine was modifying the
records leaving the final merge phase at
the time this message was printed, check
the routine thoroughly. If out of
sequence records are to be inserted by the
user routine, make sure that the correct
parameter to suppress the sequence check
is returned to Sort/Merge. If no user
exit routine was used, rerun the job.
the problem recurs, do the following
before calling IBM for programming
support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the LCIAG and
MSG=AP subparameters. (1f aprlicable,
the CORE parameter should alsc be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

1f

- RCD IN xxxxxx, OUT xXXXXXX

Explanation: This message lists the
number of records accepted by the sort as
input and the number of records in the
output data set. The numbers replace the
xxxxxXx in the text of the message as shown
above. Leading zeros are suppressed; if
there were no records in the input data
set, this field will be blank. 1In a
merging application, the RECORDS IN field
is blank unless an actual data set size
was specified in the SI12E parameter of the
MERGE control card. When an actual size
is specified, it is inserted in the IN
field of the message.

System Action: None.

Programmer Response: None.

- INSERT xxxxxX, DELETE XXXXXX

Explanation: The number of records
inserted and/or deleted during a
sort/merge program execution reglaces the
values shown as xxxxxx in the above
format.

System Action: None.

Programmexr Response: None.

- SORTIN/SORTOUT NOT DEFINED

Explanation: Critical. SORTIN and/or
SORTOUT do not appear as ddnames on DD
statements supplied to the sort/merge
program. This message can also appear
when DD statements are supplied for a

IERO57A

IER058A

merge, and a SORT control statement is
given instead of a MERGE statement.

System_Action: The program terminates.

Programmer Response: Probable user error.

Check DD statements for error. Correct

any error and execute the job step again.

If the problem recurs, do the following

before calling IBM for programming)

support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the

' EXEC statement contained the DIAG and
MSG=AP subparameters. (1f applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DL statement
was included for the failing jok step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- SORTIN NOT SORTWKO1

Explanation: Critical. An intermediate
storage data set other than SORTWKO1 was
assigned to the same tape drive as SORTIN.

System Action: The program terminates.
Programmer Response: Prcbable user error.
Check DD statements for error. Correct
any error and execute the job step again.
If the problem recurs, do the following
before calling IBM for programming
support: :

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (If applicable,
the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND LL statement
was included for the failing job step.

e Have the associated jok stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- SORTOUT A WORK UNIT

Explanation: Critical. SORTOUT was
specified on the same tape drive as an
intermediate storage data set.

System Action: The program terminates.

Programmer Response: Probable user error.

Check DD statements for error. Correct

any error and execute the job step again.

If the problem recurs, do the following

before calling IBM for programming

support:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Make sure that the PARM parameter of the
EXEC statement contained the DIAG and
MSG=AP subparameters. (1f applicable,

IER059A

IER060A

the CORE parameter should also be
included in the EXEC statement.)

e Make sure that a SYSABEND DD statement
was included for the failing job step.

e Have the associated job stream and
master console log available.

e Note the amount of main storage
specified at sort/merge generation, and
have this value available.

- RCD ILNG INVALID FOR DEVICE

Explanation: Critical