
File Number 8360-30
Order Number GC26-3794-0

Systems Reference Library

OS Data Management Macro Instructions

Release 21

This publication is intended for application programmers who are
writing programs in assembler language; it contains a brief
description of each macro instruction and a description of each
operand that can be specified in a macro instruction. Descriptions
of the macro instructions for the following data management access
methods are contained in this publication.

Basic Direct Access Method (BDAM)

Basic Indexed Sequential Access Method (BISAM)

Basic Partitioned Access Method (BP AM)

Basic Sequential A~~ess Method (BSAM)

Queued Indexed Sequential Access Method (QISAM)

Queued Sequential Access Method (QSAM)

This publication does not contain descriptions of macro instructions
for specialized application programs such as teleprocessing, graphics,
magnetic character readers, optical character reader-sorters, optical
character readers, or the time sharing option (TSO).

Before using this publication to code macro instructions, you should
be familiar with the information contained in the OS Data
Management Services Guide.

First Edition (February 1972)

This publication corresponds to OS Release 21. It contains the data management
macro instructions that were previously described in the IBM System/360 Operating
System: Supervisor and Data Management Macro Instructions publication,
GC28-6647-5, which is now obsolete. Supervisor macro instructions are now
described in the OS Supervisor Services and M aero Instructions publication,
GC28-6646.

The entire DCB macro instruction portion of this publication has been rewritten by
access method. Other changes are indicated by a vertical line to the left of the changed
text or figures.

Information in this publication is subject to change from time to time. Any such
change will be reported in subsequent revisions or technical newsletters. Before using
this publication in connection with the operation of IBM systems, consult the latest
SRL Newsletter, GN20-0360, for the editions that are applicable and correct.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM Branch Office serving your locality.

Forms are provided at the back of this publication for reader's comments. If they been
removed, comments may be addressed to IBM Corporation, Programming Publications,
Department D78, San Jose, California 95114.

© Copyright International Business Machines Corporation 1972

PREFACE

This publication contains descriptions and definitions for the data management macro
instructions available in the assembler language. It provides application programmers
who are coding programs in assembler language with the necessary information to code
the macro instructions.

This publication is divided into three parts:

• "Introduction" - This section contains a general description of macro
instructions, the rules to be followed when macro instructions are coded, and a
description of the notational conventions used throughout the publication.

• "Macro Instruction Descriptions" - This section describes the function of each
macro instruction and defines how each macro instruction is to be coded. The
macro instructions are presented in alphabetic order with each macro instruction
beginning on a right-hand page. The standard form of each macro instruction is
described first, followed by the description of the list and execute form
instruction; the list and execute forms are available only for those macro
instructions that pass parameters in a list.

• "Appendixes" - This section includes information about error indications
available following an input/output operation; a list of macro instructions
available for each of the data management access methods; a list of device
capacities; the format of the data control block exit list; and information about
control characters used to control spacing and skipping (printers) and stacker
selection (card read punch or card punch).

Prerequisite Publications

Before programs are coded using data management macro instructions, the user should
be familiar with the information contained in the following publications:

OS Assembler Language, GC28-6514

OS Data Management Services Guide, GC26-3746

OS Introduction, GC28-6534

OS Supervisor Services and Macro Instructions, GC28-6646

Related Macro Instruction Publications

The following publications contain descriptions of macro instructions for specialized
applications such as teleprocessing, graphics, and magnetic/optical character
recognition devices:

OS BTAM, GC30-2004

OS Data Management Macros and Services for IBM 1285, 1287, and 1288
Optical Readers, GC21-5004

OS 1419/1275 Data Management Macro Instructions and Services, GC21-5006

OS GPS for IBM 2250 Display Unit, GC27-6909

OS GPS for IBM 2260 Display Station (Local Attachment), GC27-6912

OS GPS for IBM 2280 and 2282 Display Units, GC27-6927

OS QTAM MCP, GC30-2005

iii

Related System Publications

The following publications contain additional information about the operating system.
Depending on the requirements of the individual installation, an application
programmer may need these publications to code programs for the data management
access methods.

Guide to Reading OS System Dumps, GC28-6670

OS Data Management for System Programmers, GC28-6550

os Job Control Language Reference, GC28-6704

OS Loader and Linkage Editor, GC28-6538

OS System Control Blocks, GC28-6628

OS Utilities, GC28-6586

iv

CONTENTS

iii

ix

1
1
1
2
4
5

7
9

13

15

17
19
21
23

25

27
29
31
35
45
51
59
75
85

101

103
105
107
109

111

113

115
117
119
121

123

Preface

Summary of Changes for Release 21

Introduction
Data Management Macro Instructions
Coding Aids
Coding Macro Instructions

Rules for Register Usage
Rules for Continuation Lines

Macro Instruction Descriptions
BLDL - Build a Directory Entry List (BPAM)
BSP - Backspace a Physical Record (BSAM - Magnetic Tape and Direct­
Access Only)

BUILD - Build a Buffer Pool (BDAM, BISAM, BP AM, BSAM,
QISAM, and QSAM)

BUILDRCD - Build a Buffer Pool and Record Area (QSAM)
BUILDRCD - List Form
BUILDRCD - Execute Form
CHECK - Wait for and Test Completion of a Read or Write Operation
(BDAM, BISAM, BPAM, and BSAM)

CLOSE - Logically Disconnect a Data Set (BDAM, BISAM, BPAM,
BSAM, QISAM, and QSAM)

CLOSE - List Form
CLOSE - Execute Form
CNTRL - Control Online Input/Output Device (BSAM and QSAM)
DCB - Construct a Data Control Block for BDAM
DCB - Construct a Data Control Block for BISAM
DCB - Construct a Data Control Block for BP AM
DCB - Construct a Data Control Block for BSAM
DCB - Construct a Data Control Block for QISAM
DCB - Construct a Data Control Block for QSAM
DCBD - Provide Symbolic Reference to Data Control Blocks
(BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM)

ESETL - End Sequential Retrieval (QISAM)
FEOV - Force End of Volume (BSAM and QSAM)
FIND - Establish the Beginning of a Data Set Member (BP AM)
FREEBUF - Return a Buffer to a Pool (BDAM, BISAM,
BP AM, and BSAM)

FREEDBUF - Return a Dynamically Obtained Buffer (BDAM
and BISAM)

FREEPOOL - Release a Buffer Pool (BDAM, BISAM, BPAM,
BSAM, QISAM, and QSAM)

GET - Obtain Next Logical Record (QISAM)
GET - Obtain Next Logical Record (QSAM)
GETBUF - Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM)
GETPOOL - Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

NOTE - Provide Relative Position (BP AM and BSAM - Tape and Direct­
Access Only)

v

125 OPEN - Logically Connect a Data Set (BDAM, BISAM, BPAM,
BSAM, QISAM, and QSAM)

129 OPEN - List Form
131 OPEN - Execute Form
133 POINT - Position to a Relative Block (BPAM and BSAM - Tape

and Direct-Access Only)
135 PRTOV - Test for Printer Carriage Overflow (BSAM and QSAM -

Online Printer and 3525 Card Punch, Print Feature)
137 PUT - Write Next Logical Record (QISAM)
139 PUT - Write Next Logical Record (QSAM)
141 PUTX - Write a Record From an Existing Data Set (QISAM and QSAM)
143 READ - Read a Block (BDAM Only)
147 READ - Read a Block (Offset Read of Keyed BDAM Data Set)
149 READ - Read a Record (BISAM Only)
151 READ - Read a Block (BP AM and BSAM Only)
153 READ - List Form
155 READ - Execute Form
157 RELEX - Release Exclusive Control (BDAM)
159 RELSE - Release an Input Buffer (QISAM and QSAM - Input Only)
161 SETL - Set Lower Limit of Sequential Retrieval (QISAM Input Only)
163 SETPRT - Load UCS and FCB Images (BSAM and QSAM)
167 SETPRT - List Form
169 SETPRT - Execute Form
171 STOW - Update Partitioned Data Set Directory (BP AM)
175 SYNADAF - Perform SYNAD Analysis Function
179 SYNADRLS - Release SYNADAF Buffer and Save Areas
181 TRUNC - Truncate an Output Buffer (QSAM-Output Only-

Fixed-Length or Variable-Length Blocked Records Only)
183 WRITE - Write a Block (Create a Direct Data Set with BSAM)
187 WRITE - Write a Block (BDAM Only)
191 WRITE - Write a Logical Record (BISAM Only)
193 WRITE - Write a Block (BPAM and BSAM Only)
195 WRITE - List Form
197 WRITE - Execute Form
199 XLATE - Translate To and From ASCII

201 Appendix A: Status Information Following an Input/Output Operation
201 The Data Event Control Block

209 Appendix B: Data Management Macro Instructions Available by Access
Method

211 Appendix C: Device Capacities

213 Appendix D: DCB Exit List Format and Contents

215 Appendix E: Control Characters

217 Index

vi

FIGURES

202 Figure
204 Figure
206 Figure
206 Figure
207 Figure

208 FIgure

l.
2.
3.
4.
5.

6.

Exception Code Bits - BISAM and BDAM
Exception Code Bits - QISAM
Register Contents on Entry of SYNAD Routine - QISAM
Register Contents on Entry to SYNAD Routine - BISAM
Register Contents on Entry to SYNAD Routine - BDAM,
BPAM, BSAM, and QSAM

Status Indicators for the SYNAD Routine

vii

SUMMARY OF CHANGES FOR RELEASE 21

Organization of the Publication Changed

The organization of the IBM System/360 Supervisor and Data Management Macro
Instructions publication has been changed as follows:

Supervisor macro instructions are now contained in the OS Supervisor Services
and Macro Instructions publication, GC28-6646. These macro instructions
include: ABEND, ATTACH, CALL, CHAP, CHKPT, DELETE, DEQ,
DETACH, DOM, DXR, ENQ, EXTRACT, FREEMAIN, GETMAIN,
IDENTIFY, LINK, LOAD, POST, RETURN, SAVE, SEGLD, SEGWT, SNAP,
SPIE, STAE, STIMER, TIME, TTIMER, WAIT, WAITR, WTL, WTO, WTOR,
and XCTL.

Macro instructions for the time sharing option (TSO) are now contained in the
OS Time Sharing Option Guide to Writing a Terminal Monitor Program or
a Command Processor, GC28-6764. These macro instructions include:
GTSIZE, RTAUTOPT, SPAUPOPT, STATUS, STAUTOCP, STAUTOLN,
STAX, STBREAK, STCC, STCLEAR, STCOM, STSIZE, STTIMEOU,
TCLEARQ, TGET, and TPUT.

Data management macro instructions are included in this publication. These
macro instructions include: BLDL, BSP, BUILD, BUILDRCD, CHECK,
CLOSE, CNTRL, DCB, DCBD, ESETL, FEOV, FIND, FREEBUF,
FREEDBUF,FREEPOOL, GET, GETBUF, GETPOOL, NOTE, OPEN,
POINT, PRTOV, PUT, PUTX, READ, RELEX, RELSE, SETL, SETPRT,
STOW, SYNADAF, SYNADRLS, TRUNC, WRITE, and XLATE.

DCB Macro Instruction Described by Access Method

The description of the DCB macro instruction has been rewritten by access method;
separate descriptions are included for BDAM, BISAM, BPAM, BSAM, QISAM, and
QSAM.

Addition of New Card Reader and Card Punch: New Programming Feature

The programming support for the 3505 card reader and 3525 card punch are included
in this edition. The macro instructions changed to support these two devices are
CLOSE, CNTRL, DCB (BSAM and QSAM) , OPEN and PRTOV.

Additional Problem Program Exit Provided: New Programming Feature

An additional problem program exit is provided to allow the problem program to
attempt error recovery or ignore or delay abnormal termination when an ABEND
condition occurs during open, close, or end-of-volume processing.

DOS/OS Tape Data Set Compatibility: New Programming Feature

The DOS/OS Interchange feature allows the operating system to recognize and bypass
embedded checkpoint records written in DOS tape data sets. The macro instructions
changed to support this feature are CNTRL and POINT (also see the OPTCD operand

ix

for BSAM and QSAM for the OPTCD that is supplied in the DO statement for the
data set).

Additional Information Added

Three appendixes have been added to aid in coding programs:

Appendix C contains device capacities to aid in determining maximum record
length or blocksize for various input/output devices. This information can also be
used to determine the optimum blocking factor when blocked records are used.

Appendix 0 contains the format of the problem program exit list. This appendix
shows the hexadecimal code for each type of exit and a brief description of exit
list processing.

Appendix E contains a description of the control characters that can be used for
stacker selection or printer spacing and skipping.

AI~ceUaneous Changes

The format of the publication has been changed to aid in coding operands. The
description of each operand includes the type of notation that can be used when
the macro instruction operand is coded.

Macro instructions that require a data control block address for an open data set
have been clarified to indicate that the data set. must be open.

Clarification for the following macro instructions has been included: BLDL,
BUILDRCD, CHECK, CLOSE, ESETL, FREEPOOL, GET, NOTE, OPEN,
POINT, PRTOV, PUT, READ, RELEX, STOW, and WRITE.

x

INTRODUCTION

Data Management Macro Instructions

Coding Aids

A set of macro instructions is provided by IBM for communicating service requests to
the data management access method routines. These macro instructions are available
only when the assembler language is being used, and they are processed by the
assembler program using macro definitions supplied by IBM and placed in the macro
library when the operating system is generated.

The processing of the macro instruction by the assembler program results in a macro
expansion, generally consisting of executable· instructions and data in the form of
assembler-language statements. The data fields are the parameters to be passed to the
access method routine; the executable instructions generally consist of a branch around
the data fields, instructions to load registers, and either a branch instruction or
supervisor call (SVC) to give control to the proper program. The exact macro
expansion appears as a part of the assembler listing.

A listing of a macro definition from SYSl.MACLIB (the library in which macro
definitions are stored) can be obtained by using the utility program IEBPTPCH, which
is described in the OS Utilities publication.

Before macro instructions are coded using this publication, the user should be familiar
with the information contained in the OS Data Management Services Guide.

When programs that request supervisor services are being coded, the user should be
familiar with the information contained in the OS Supervisor Services and Macro
Instructions publication.

When programs are being coded for more specialized applications such as
teleprocessing, graphics, and character recognition, the publication that contains the
specific access method and/or device type should be used. Publications containing
descriptions of the macro instructions for teleprocessing, graphics, and character
recognition devices are listed in the preface of this publication.

The operation of some macro instructions depends on the options selected when the
macro instruction is coded. For these macro instructions, either separate descriptions
are provided or the differences are listed within a single description. If no differences
are explicitly listed, none exist. The description of each macro instruction starts on a
right-hand page; the descriptions that do not apply to the access methods being used
can be removed. Appendix B provides a list of the macro instructions available for
each access method.

The symbols [], { }, and , ... are used in this publication to help defined the macro
instructions. These symbols are not coded; they are only to indicate how a macro
instruction may be written; their general definitions are given below:

[] indicates optional operands. The operand enclosed in the brackets mayor may
not be coded, depending on whether or not the associated option is desired.
If more than one item is enclosed in brackets (for example, [REREAD]) one or

[,LEAVE]
none of the items may be coded.

Introduction 1

{} indicates that a choice must be made. One of the operands from the vertical
stack within braces (for example, {INPUT}) must be coded, depending on

{OUTPUT}
which of the associated services is desired.

indicates that more than one set of operands may be designated in the same
macro instruction.

Coding Macro Instructions

Data management macro instructions are written in the assembler language and, as
such, are subject to the rules contained in the OS Assembler Language publication.
Data management macro instructions, like all assembler language instructions, are
written in the following format:

Name Operation Operands Comments

symbol Macro name None, one or more operands separated
or
blank

by commas

The operands are used to specify services and options to be used and are written
according to the following general rules:

If the selected operand is shown in bold capital letters (for example,
MACRF=WL), code the operand exactly as shown.

• If the selected operand is a character string in bold type (for example, if the type
operand of a READ macro instruction is SF), code the operand exactly as shown.

• If the operand is shown in italic lowercase letters (for example, deb address),
substitute the indicated address, name, or value.

If the operand is a combination of bold capital letters and italic lowercase letters
(for exampl~, LRECL= absexp), code the capital letters and equal sign exactly as
shown and substitute the apporpriate address, name, or value for the italic
lowercase letters.

Commas and parentheses are coded exactly as shown, except that the comma
following the last operand coded should be omitted. The use of commas and
parentheses is indicated by brackets and braces in the same manner as brackets
and braces indicate the use of operands.

• Several macro instructions contain the designation'S'. This operand, when used,
must have the apostrophe on both sides of the S.

When substitution of a name, value, or address is required, the notation used to specify
the operand depends on the operand being coded. The following shows two examples
of the notations used to indicate how an operand can be coded.

DDNAME= symbol

In the above example, the only type of operand that can be coded is a valid
assembler-language sytnbol.

2 OS Data Management Macro Instructions

deb address - RX-Type Address, (2-12), or (1)

In the above example, the operand that can be substituted can be an RX-type address,
any of the general registers 2 through 12, or general register 1.

The following describes the meaning of each notation used to show how an operand
can be coded.

symbol

When this notation is shown, the operand can be any valid assembler-language symbol.

decimal digit

When this notation is shown, the operand can be any decimal digit up to the maximum
value allowed for the specific operand being described.

(2-12)

When this notation is shown, the operand specified can be any of the general registers
2 through 12. All registers as operands must be coded in parentheses; for example, if
register 3 is coded, it is coded as (3). When one of the registers 2 through 12 is used,
it can be coded as a decimal digit, symbol (equated to a decimal digit), or an expression
that results in a value of 2 through 12.

(1)

When this notation is shown, general register 1 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal digit
1 enclosed in parentheses as shown above.

(0)

When this notation is shown, general register 0 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal digit
o enclosed in parentheses as shown above.

RX-Type Address

When this notation is shown, the operand can be specified as any valid
assembler-language RX-type address. The following shows examples of each valid
RX-type address:

Name Operation Operand

ALPHA 1 L 1,39(4,10)
ALPHA2 L REG1,39(4,TEN)
BETAI L 2,ZETA(4)
BETA2 L REG2,ZET A(REG4)
GAMMA 1 L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'1000'
LAMBDA 1 L 3,20(,5)

Both ALPHA instructions specify explicit addresses; REG 1 and TEN are absolute
symbols. Both BET A instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA instructions. GAMMAI and
GAMMA2 specify implied addresses. The second operand of GAMMA3 is a literal.
LAMBDAI specifies an explicit address with no indexing.

Introduction 3

A-Type Address

When this notaion is shown, the operand can be specified as any address that can be
written as a valid assembler-language A-type address constant. An A-type address
constant can be written as an absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are inserted into an A-type
address constant during the macro expansion process. For more details about A-type
address constants, refer to the as Assembler Language publication.

absexp

When this notation is shown, the operand can be an absolute value or expression. An
absolute expression can be an absolute term or an arithmetic combination of absolute
terms. An absolute term can be a non-relocatable symbol, a self -defining term, or the
length attribute reference. For more details about absolute expressions, refer to the
as Assembler Language publication.

relexp

When this notation is shown, the operand can be a relocatable symbol or expression.
A relocatable symbol or expression is one whose value changes by n if the program in
which it appears is relocated n bytes away from its originally assigned area of storage.
For more details about relocatable symbols and expressions, refer to the as Assembler
Language publication.

Rules for Register Usage

Many macro instruction expansions include instructions that use a base register
previously defined by a USING statement. The USING statement must establish
address ability so that macro expansion can include a branch around the in line
parameter list, if present, and refer to data fields and addresses specified in the macro
instruction operands.

Macro instructions that use a BAL or BALR instruction to pass control to an access
method routine, normally require that register 13 contain the address of an 18-word
register-save area. The READ, WRITE, CHECK, GET, and PUT macro instructions
are of this type.

Macro instructions that use a supervisor call (SVC) instruction to pass control to an
access method routine may modify general registers 0, 1, 14, and 15 without restoring
them. Unless otherwise specified in the macro instruction description, the contents of
these registers are undefined when the system returns control to the problem program.

When an operand is specified as a register, the problem program must have inserted the
value or address to be used into the register as follows:

• If the register is to contain a value, it must be placed in the low-order portion of
the register unless the macro instruction description states otherwise. Any unused
bits in the register should be set to zero.

• If the register is to contain an address, the address must be placed in the
low-order three bytes of the register, and the high-order byte of the register
should be set to zero.

4 OS Data Management Macro Instructions

Rules for Continuation Lines

The operand field of a macro instruction can be continued on one or more additional
lines as follows:

1. Enter a continuation character (not blank, and not part of the operand coding) in
column 72 of the line.

2. Continue the operand field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

The operand field being continued can be coded in one of two ways. The operand
field can be coded through column 71, with no blanks, and continued in column 16 of
the next line, or the operand field can be truncated by a comma, where a comma
normally falls, with at least one blank before column 71, and then continued in column
16 of the next line. An example of each method is shown in the following illustration:

Name Operation Operand Comments

NAME 1 OP1

NAME 2 OP2

OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,O X
PERAND7 THIS IS ONE WAY

OPERAND1,OPERAND2,
OPERAND3,
OPERAND4

THIS IS ANOTHER WAY X
X

Introduction 5

MACRO INSTRUCTION DESCRIPTIONS

Macro Instruction Descriptions 7

BLDL-BPAM

BLDL - Build a Directory Entry List (BPAM)

The BLDL macro instruction is used to complete a list of information from the
directory of a partitioned data set. The problem program must supply an area in main
storage; the area must include information about the number of entries in the list, the
length of each entry, and the name of each data set member (or alias) before the
BLDL macro instruction is issued. Data set member names in the list must be in
alphameric order. All read and write operations using the same data control block must
have been tested for completion before the BLDL macro instruction is issued.

The BLDL macro instruction is written as follows:

[symbol] BLDL dcb address, list address

deb address - RX-type Address, (2-12), (1), or the Decimal Digit 0

The deb address operand specifies the address of the data control block for an
open partitioned data set, or zero can be specified to indicate that the data set is
in a job library, step library, or link library.

When a deb address of 0 is specified in a BLDL macro instruction issued by the
job step task, the data sets referred to by either the JOBLIB or STEPLIB DD
statement are first searched for the directory entries. If one or more entries are
not found in these data sets, the link library is searched for the remaining entry or
entries.

When a deb address of 0 is specified in a BLDL macro instruction issued by a
subtask, the data set(s) associated with one or more data control blocks
referenced by previous ATTACH macro instructions in the subtasking chain are
first searched for the directory entries. If one or more entries are not found
during this search, the search is continued as if the BLDL macro instruction had
been issued by the job step task.

list address - RX-Type Address, (2-12), or (0)

The, 'list address operand specifies the main storage address of the list to be
'completed when the BLDL macro instruction is issued. The list address must be

, on a halfword boundary. The following illustration shows the format of the list:

list 0 or
list Description list More

Address ~ ________ E_n-,,-:r_y_(_L_L _b_yt_e_s) ____ "Vv ___ En_t_ri_e...,..s,,_(F_F_t_o_to_I)---..,

Lengj FF I LLI NAME 1 I TTR I+H USER DATA NAME 2 J 0
(bytes) 2 2 8 3 1 1 1 o to 62

Macro Instruction Descriptions 9

FF This field must contain a binary value indicating the total number of
entries in the list.

LL This field must contain a binary value indicating the length, in bytes, of
each entry in the list (must be an even number of bytes). If the exact
length of the entry is known, specify the exact length. Otherwise,
specify at least 58 bytes (decimal) if the list is to be used with an
A TT ACH, LINK, LOAD, or XCTL macro instruction. The minimum
length for a list is 12 bytes.

NAME This field must contain the member name or alias to be located. The
name must start in the first byte of the name field and be padded to the
right with blanks (if necessary) to fill the 8-byte field.

The following fields of the directory entry list are filled in by the system when the
BLDL macro instruction is executed.

IT Indicates the relative track number where the beginning of the data set
member is located.

R Indicates the relative block (record) number on the track indicated by
IT.

K Indicates the concatenation number of the data set. For the first or only
data set, this value is zero.

Z Indicates where the system found the directory entry:

o Private library
1 Link library
2 Job library or step library

C Indicates the type (member or alias) for the name, the number of note
list fields (TTRNs), and the length of the user data field (indicated in
halfwords). The following describes the meaning of the eight bits:

Bit 0=0 Indicates a member name.
Bit 0= 1 Indicates an alias.
Bits 1 and 2 Indicate the number of TTRN fields (maximum of three)
in the user data field.
Bits 3-7 Indicate the total number of halfwords in the user data field.
If the list entry is to be used with an ATTACH, LINK, LOAD, or
XCTL macro instruction, the value in bits 3 through 7 is 22 (decimal).

USER DATA - The user data field contains the user data from the directory
entry. If the length of the user data field in the BLDL list is equal to or
greater than the user data field of the directory entry, the entire user data
field is entered into the list. Otherwise, the list contains only the user data
for which there is space.

10 OS Data Management Macro Instructions

Completion Codes

BLDL-BPAM

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

Hexadecimal Meaning
Code

00 Successful completion.

04 One or more entries in the list could not be filled; the list supplied may
be invalid. If a search is attempted but the entry is not found, the R field
(byte 11) for that entry is set to zero.

08 A permanent input/output error was detected when the system attempted
to search the directory.

Macro Instruction Descriptions 11

BSP-BSAM

BSP - Backspace a Physical Record (BSAM - Magnetic Tape and Direct
Access Only)

Completion Codes

The BSP macro instruction causes the current volume to be backspaced one data block
(physical record). All input and output operations must be tested for completion
before the BSP macro instruction is issued. The BSP macro instruction should not be
used if the CNTRL, NOTE, or POINT macro instructions are being used.

Magnetic Tape: A backspace is always made toward the load point.

Direct Access: A BSP macro instruction must not be issued for a data set created by
using track overflow.

The BSP macro instruction is written as follows:

[symbol] BSP I deb address

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
volume to be backspaced. The data set on the volume to be backspaced must be
opened before issuing the BSP macro instruction.

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

Hexadecimal Meaning Code

00 Successful completion

04 Unsuccessful completion (includes encountering a tapemark or beginning
of an extent)

Macro Instruction Descriptions 13

BUILD - BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM

BUILD - Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM, and
QSAM)

The BUILD macro instruction is used to construct a buffer pool in a main-storage area
provided by the problem program. The buffer pool may be used by more than one
data set through separate data control blocks. Individual buffers are obtained from the
buffer pool using the GETBUF macro instruction, and buffers are returned to the
buffer pool using a FREEBUF macro instruction. Refer to the OS Data Management
Services Guide for an explanation of the interaction of the DeB, BUILD, and
GETBUF macro instructions in each access method, as well as the buffer size
requirements.

The BUILD macro instruction is written as follows:

[symbol1 BUILD area address, {number of buffers, buffer length}
(O)

area address - RX-Type Address, (2-12), or (1)

The area address operand specifies the address of the main-storage area to be
used as a buffer pool. The area must start on a fullword boundary. The
following illustration shows the format of the buffer pool:

-Area
Addre ss

Buffer Pool
Control
Block

I

Buffer

I
[I

Buffer

I
I+--- 8 b tes --L Buffer ~

y Length

Area Length

L Buffer j Length

Area Length={Buffer Length) x (Number of Buffers) + 8

number of buffers - symbol, decimal digit, absexp, or (2-12)

The number-of-buffers operand specifies the number of buffers in the buffer pool
up to a maximum of 255.

Macro Instruction Descriptions 15

buffer length - symbol, decimal digit, absexp, or (2-12)

The buffer length operand specifies the length, in bytes, of each buffer in the
buffer pool. The value specified for the buffer length must be a fullword
multiple; otherwise the system rounds the value specified to the next higher
fullword multiple. The maximum length that can be specified is 32,760 bytes.
For QSAM, the buffer length must be at least as large as the value specified in
the blocksize (DCBBLKSI) field of the data control block.

(0) - Coded as shown

The number of buffers and buffer length can be specified in general register O. If
(0) is coded, register 0 must contain the binary values for the number of buffers
and buffer length as shown in the following illustration.

Register a

Number of Buffers Buffer length

Bits: a 15 16 31

16 OS Data Management Macro Instructions

BUILDRCD - QSAM

BUILDRCD - Build a Buffer Pool and a Record Area (QSAM)

The BUILDRCD macro instruction causes a buffer pool and a record area to be
constructed in a main-storage area provided by the problem program. The buffer pool
and the record area are used by more than one data set through separate data control
blocks. Individual buffers are obtained from the buffer pool using the GETBUF macro
instruction. Use of this macro instruction invokes a logical record interface rather than
a segment interface for spanned records.

The standard form of the BUILDRCD macro instruction is written as follows (the list
and execute forms are shown following the description of the standard form):

[symbol] BUILDRCD area address, number of buffers, buffer length,
record area address[, record area length]

area address - A-Type Address or (2-12)

The area address operand specifies the address of the main-storage area to be
used as a buffer pool. The area must start on a fullword boundary. The
following illustration shows the format of the buffer pool:

Area
Addre~

Buffer Pool
Control
Block

Buffer

--l-- Buffer ~
*--12 bytes Length

Area Length

{ I Buffer

~ Buffer -~-i
Length

Area Length={Buffer Length) x (Number of Buffers) + 12

number of buffers - symbol, decimal digit, absexp, or (2-12)

The number of buffers operand specifies the number of buffers, up to a
maximum of 255, to be in the buffer pool.

buffer length - symbol, decimal digit, absexp, or (2-12)

The buffer length operand specifies the length, in bytes, of each buffer in the
buffer pool. The value specified for the buffer length must be a fullword
multiple; otherwise, the system rounds the value specified to the next higher
fullword multiple. The maximum length that can be specified is 32,760.

Macro Instruction Descriptions 17

record area address - A-Type Address or (2-12)

The record area address operand specifies the address of the main-storage area
to be used as a record area. The area must start on a double word boundary and
have a length of the maximum logical record (LRECL) plus 32 bytes.

record area length - symbol, decimal digit, absexp, or (2-12)

The record area length operand specifies the length of the record area to be used.
The area must be as long as the maximum length logical record plus 32 bytes for
control information. If the record area length operand is omitted, the problem
program must store the record area length in the first four bytes of the record
area.

Note: It is the user's responsibility to release the buffer pool and the record area after
a CLOSE macro instruction has been issued for all the data control blocks using the
buffer pool and the record area.

18 OS Data Management Macro Instructions

BUILDRCD - List Form

BUILDRCD - List Form

The list form of the BUILDRCD macro instruction is used to construct a program
parameter list. The description of the standard form of the BUILDRCD macro
instruction provides the explanation of the function of each operand. The description
of the standard form also indicates which operands are totally optional and those
required in at least one of the pair of list and execute forms. The format description
below indicates the optional and required operands in the list form only.

The list form of the BUILDRCD macro instruction is written as follows:

[symbol) BUILDRCD area address, number of buffers, buffer length,
record area address[, record area length]
,MF=L

area address - A-Type Address

number of buffers - symbol, decimal digit, or absexp

buffer length - symbol decimal digit, or absexp

record area address - A-Type Address

record area length - symbol, decimal digit, or absexp

MF=L - Coded as shown

The MF=L operand specifies that the BUILDRCD macro instruction is used to
create a control program parameter list that will be referenced by an execute form
instruction.

Note: A control program parameter list can be constructed by coding only the MF=L
operand (without the preceding comma); in this case, the list is constructed for the
area address, number of buffers, buffer length, and record area address operands.
If the record area length operand is also required, the operands can be coded as
follows:

[symbol] BUILDRCD ""O,MF = L

The preceding example shows the coding to construct a list containing address
constants with a value of 0 in each constant. The actual values can then be supplied by
the execute form of the BUILDRCD macro instruction

Macro Instruction Descriptions 19

BUILDRCD - Execute Form

BUILDRCD - Execute form

A remote control program parameter list is referred to, and can be modified by, the
execute form of the BUILDRCD macro instruction. The description of the standard
form of the BUILDRCD macro instruction provides the explanation of the function of
each operand. The description of the standard form also indicates which operands are
totally optional and those required in at least one of the pair of list and execute forms.
The format description below indicates the optional and required operands for the
execute form only.

The execute form of the BUILDRCD macro instruction is written as follows:

[symbol] BUILDRCD [area address], [number of buffers],
[buffer length], [record area addressl,
[record area length],
MF=(E, {control program I ist address p

(1)

area address - RX-Type Address or (2-12)

number of buffers - absexp

buffer length - absexp

record area address - RX-Type Address or (2-12)

record area length - absexp

MF=(E, {control program list address })
{(1) }

This operand specifies that the execute form of the BUILDRCD macro
instruction is used, and an existing control program parameter list (created by a
list-form instruction) will be used. The MF= operand is coded as described in
the following:

E - Coded as shown

control program list address - RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 21

CHECK - BDAM, BISAM, BPAM, and BSAM

CHECK - Wait for and Test Completion of a Read or Write Operation
(BDAM, BISAM, BPAM, and BSAM)

The CHECK macro instruction causes the active task to be placed in the wait
condition, if necessary, until the associated input or output operation is completed. The
input or output operation is then tested for errors and exceptional conditions. If the
operation is completed successfully, control is returned to the instruction following the
CHECK macro instruction. If the operation is not completed successfully, the error
analysis (SYNAD) routine is given control or, if no error analysis routine is provided,
the task is abnormally terminated. The error analysis routine is discussed in the
SYNAD operand of the DCB macro instruction.

The following conditions are also handled for BP AM and BSAM only:

When Reading: Volume switching is automatic. The end-of-data-set (EODAD)
routine is given control if an input request is made after all the records have been
retrieved.

When Writing: Additional space on the device is obtained when the current space is
filled and more WRITE macro instructions have been issued.

For BP AM and BSAM, a CHECK macro instruction must be issued for each input and
output operation, and must be issued in the same order as the READ or WRITE macro
instructions were issued for the data set. For BDAM or BISAM, either a CHECK or
WAIT macro instruction can be used. However, if both a CHECK and WAIT macro
instruction are used, the CHECK macro instruction must be issued after the WAIT
macro instruction.

If the ASCII translation routines are included when the operating system is generated,
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement,
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB
subparameter of the DD statement. When translation is requested, the Check routine
automatically translates all BSAM records whose record format (RECFM operand) is
F, FB, D, DB, or U from ASCII code to EBCDIC code on input. Translation occurs
as soon as the Check routine determines that the input buffer is full. For translation to
occur correctly, all input data must be in ASCII code.

The CHECK macro instruction is written as follows:

[symbol] CHECK decb address [,DSORG= {1~L}

decb address - RX-Type Address, (2-12), or (1)

The decb address operand specifies the address of the data event control block
created by the associated READ or WRITE macro instruction or used by the
associated input or output operation.

DSORG= {IS}
{ALL}

The DSORG operand specifies the type of data set organization.

Macro Instruction Descriptions 23

The following describes the characters that can be coded.

IS - Specifies that the program generated is for BISAM use only.

ALL - Specifies that the program generated is for BDAM, BISAM, BPAM, or
BSAM use.

If the DSORG operand is omitted, the program generated is for BDAM, BP AM, and
BSAM use only.

24 OS Data Management Macro Instructions

CLOSE - BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM

CLOSE - Logically Disconnect a Data Set (BOAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The CLOSE macro instruction causes output data set labels to be created, and volumes
to be positioned as specified by the user. The fields of the data control block are
restored to the condition that existed before the OPEN macro instruction was issued,
and the data set is disconnected from the processing program. Final volume positioning
for the current volume can be specified to override the positioning implied by the DD
control statement DISP parameter. Any number of deb address operands and
associated options may be specified in the CLOSE macro instruction.

Associated data sets for a 3525 card punch can be closed in any sequence, but if one
data set is closed, I/O operations cannot be initiated for any of its associated data sets.
Additional information about closing associated data sets is contained in the OS Data
Management Services Guide.

A FREEPOOL macro instruction should normally follow a CLOSE macro instruction
to regain the buffer pool storage space and to allow a new buffer pool to be built if the
DCB is reopened with different record size attributes.

A special operand, TYPE=T, is provided for processing with BSAM.

The standard form of the CLOSE macro instruction is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] CLOSE (deb address, [option] , ••.) [, TYPE=T]

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened data set that is to be closed.

option
One of the following options can be specified for a data set on magnetic tape or a
direct-access device only. These options indicate the volume positioning that is to
occur when the data set is closed. The option operand is ignored for ISAM data
sets.

REREAD - Specifies that the current volume is to be positioned to reprocess the
data set.

LEAVE - Specifies that the current volume is to be positioned to the logical end
of the data set.

REWIND - Specifies that the current volume is to be positioned at the load
point, regardless of the direction of processing. REWIND cannot be
specified when TYPE = T is specified.

Macro Instruction Descriptions 25

DISP - Specifies that the current volume is to be positioned according to the
position implied by the DISP parameter of the corresponding DD statement,
as follows:

DISP Parameter

PASS

DELETE

KEEP, CATLG, or
UNCATLG

Action

Forward space to the end of data set on the
current volume.

Rewind the current volume.

Rewind and unload the current volume.

When the option operand is omitted, the following volume positioning occurs:

If TYPE = T is coded, LEAVE is assumed.

If TYPE=T is not coded, DISP is assumed.

TYPE = T - Coded as shown

The TYPE=T operand can be specified for BSAM use only. It indicates that
labels are created and volumes are positioned, but the fields of the data control
block are not altered except for DCBOFLGS which has bit 0 reset. The data set
can be processed without issuing another OPEN macro instruction. If TYPE = T is
designated, it applies to all of the associated data control blocks and causes the
release parameter of the DD card to be ignored. TYPE = T cannot be specified
when BSAM is used to create a BDAM data set (MACRF=WL).

Note: When a data control block is shared among mUltiple tasks, the task that opened
the data set must also close it.

26 OS Data Management Macro Instructions

CLOSE - List Form

CLOSE - List Form

The list form of the CLOSE macro instruction is used to construct a data management
parameter list. Any number of operands (data control block addresses and associated
options) can be specified.

The CLOSE macro instruction can be used with a variable-length parameter list. The
length of a list generated by a list-form instruction must be equal to the maximum
length required by an execute-form instruction that refers to the same list. A
maximum length list can be constructed by one of two methods:

Code a list-form instruction with the maximum number of parameters that are
required by an execute-form instruction that refers to the list.

Code a maximum length list by using commas in a list-form instruction to acquire
a list of the appropriate size. For example, coding ("""",) would provide a list of
five fullwords (five dcb addresses and five options).

A parameter list constructed by a CLOSE macro instruction, list form, can be referred
to by either an OPEN or CLOSE execute-form instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are completely optional and those required in at least one of
the pair of list and execute forms. The format description below indicates the optional
and required operands in the list form only.

The list form of the CLOSE macro instruction is written as follows:

'~ymboIJ CLOSE ([deb address], [option], ...) [, TYPE=T] ,MF::L

deb address - A-Type Address

option - Same as standard form

TYPE = T - Coded as shown

The TYPE=T operand can be coded in the list-form instruction to allow the
specified option to be checked for validity when the program is assembled.

MF=L - Coded as shown

The MF=L operand specifies that the CLOSE macro instruction is used to create
a data management parameter list that will be referred to by an execute-form
instruction.

Macro Instruction Descriptions 27

CLOSE - Execute Form

CLOSE - Execute Form

A remote data management parameter list is used in and can be modified by the
execute form of the CLOSE macro instruction. The parameter list can be generated by
the list form of either an OPEN macro instruction or a CLOSE macro instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the CLOSE macro instruction is written as follows:

[symbol] CLOSE [([deb address], [option], •.•)] r, TYPE=T]

,MF=(E,{ data management list address})
(1)

deb address - RX-Type Address or (2-12)

option - Same as standard form

TYPE=T - Same as standard form

MF=(E, {data management list address })
{(I) }

This operand specifies that the execute form of the CLOSE macro instruction is
being used, and an existing data management parameter list (created by a
list-form instruction) will be used. The MF= operand is coded as described in
the following:

E - Coded as shown

data management list address - RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 29

CNTRL - BSAM and QSAM

CNTRL - Control Online Input/Output Device (BSAM and QSAM)

The CNTRL macro instruction is used to control magnetic tape drives (BSAM only)
and to control online card readers, 3525 card punches (read and print features), and
printers (BSAM and QSAM). The MACRF operand of the DCB macro instruction
must specify a C. The CNTRL macro instruction must not be used for SYSOUT data
sets that are temporarily stored on a direct-access device. For BSAM, all input and
output operations must be tested for completion before the CNTRL macro instruction
is issued. The control facilities available are as follows:

Card Reader: Provides stacker selection.

QSAM - The CNTRL macro instruction is issued whenever it is necessary to
read a new card. For unblocked records, a CNTRLmacro instruction should be
issued after every input request except the last. For blocked records, a CNTRL
macro instruction is issued after the last logical record on each card is retrieved,
except for the last input request. The move mode of the GET macro instruction
must be used, and the number of buffers (BUFNO field of the DCB) must be
one.

BSAM - The CNTRLmacro instruction should be issued after every input
request. If, however, the device is allocated to SYSIN, the CNTRL macro
instruction does not need to be issued after the request because the CLOSE
macro instruction places the last card in the same stacker as the preceding card.

Printer: Provides line spacing or a skip to a specific carriage control channel. A
CNTRL macro instruction cannot be used if carriage control characters are
provided in the record. If the printer contains the universal character set feature,
data checks should be blocked (OPTCD=U should not appear in the data control
block).

Magnetic Tape: Provides method of forward spacing and backspacing (BSAM only).

If OPTCD=H is indicated in the data control block, the CNTRL macro
instruction can be used to perform record positioning on DOS tapes that contain
embedded checkpoint records. Embedded checkpoint records encountered during
the record positioning are bypassed and are not counted as blocks spaced over.
OPTCD=H must be specified in a job control language DD statement. The
CNTRL macro instruction cannot be used to backspace DOS 7-track tapes that
are written in data convert mode that contain embedded checkpoint records
(BSAM).

3525 Printing: Provides line spacing or a skip to a specific printing line on the card.
The card contains 25 printing lines; the odd numbered lines 1 through 23
correspond to the printer skip channels 1 through 12 (see the SK operand). For
additional information about 3525 printing operations, refer to the OS Data
Management Services Guide.

Macro Instruction Descriptions 31

The CNTRL macro instruction is written as follows:

[symbol] CNTRL deb address, 55, {~}

sp,U}
SK, {;;OU9h }

BSM
FSM
BSR [, number of blocks]
FSR [,humber of blocks]

deb address

The deb address operand specifies the address of the data control block for the
data set opened for the online device.

SS, tIl
I2l

The SS operand is coded as shown to indicate that the control function requested
is stacker selection on a card reader; either 1 or 2 must be coded to indicate
which stacker is to be selected.

tIl
SP, I2}

I3}

The SP operand is coded as shown to indicate that the control function requested
is printer or 3525 line spacing; either 1, 2, or 3 must be coded to indicate the
number of spaces for each print line.

tI}
SK, {through}

tI2}

The SK operand is coded as shown to indicate that the control function requested
is a skip operation on the printer or 3525 card punch, print feature; a number (1
through 12) must be coded to indicate the channel or print line to which the skip
is to be taken.

8SM - Coded as shown

The 8SM operand indicates that the control function requested is to backspace
the magnetic tape past a tapemark, then forward space over the tapemark. When
this operand is specified, the DCBBLKCT field in the data control block is set to
zero.

32 OS Data Management Macro Instructions

CNTRL - BSAM and QSAM

FSM - Coded as shown

The FSM operand indicates that the control function requested is to forward
space the magnetic tape over a tapemark, then backspace past the tapemark.
When this operand is specified, the DCBBLKCT field in the data control block is
set to zero.

BSR - Coded as shown

The BSR operand indicates that the control function requested is to backspace
the magnetic tape the number of blocks indicated in the number-of-blocks operand.

FSR - Coded as shown

The FSR operand indicates that the control function requested is to forward space
the magnetic tape the number of blocks indicated in the number-of-blocks operand.

number of blocks - symbol, decimal digit, absexp, or (2-12)

The number-of-blocks operand specifies the number of blocks to backspace (see
BSR operand) or forward space (see FSR operand) the magnetic tape. The
maximum value that can be specified is 32,767. If the. number-of-blocks operand
is omitted, one is assumed.

If the forward space or backspace operation is not completed successfully, control is
passed to the error analysis (SYNAD) routine~ if no SYNAD routine is designated, the
task is abnormally terminated. Register contents, when control is passed to the error
analysis routine, are shown in Appendix A. If a tapemark is encountered for BSR or
FSR, control is returned to the processing program, and register 15 contains a count of
the uncompleted forward spaces or backspaces. If the operation is completed normally,
register 15 contains the value zero.

Macro Instruction Descriptions 33

DCB-BDAM

DCB - Construct a Data Control Block for BDAM

The data control block for a basic direct access method (BDAM) data set is
constructed during assembly of the problem program. The DCB macro instruction
must not be coded within the first 16 bytes of a control section (CSECT). The
DSORG and MACRF operands must be coded in the DCB macro instruction, but the
other operands can be supplied from other sources. Each of the BDAM DCB operand
descriptions contains a heading, "Source." The information under this heading describes
the sources from which an operand can be supplied to the data control block.

Before a DCB macro instruction for a BDAM data set is coded, the following
characteristics of direct data sets should be considered.

• The problem program must synchronize 110 operations by issuing a CHECK or
WAIT macro instruction to test for completion of read and write operations.

• A BDAM data set is created using the basic sequential access method (BSAM).
A special operand (MACRF=WL) specifies that BSAM is being used to create a
BDAM data set. Operand descriptions for the BDAM DCB macro instruction
include information about both creating and processing a BDAM data set.

• Although a BDAM data set can contain blocked records, the problem program
must perform all blocking and deblocking of records. BDAM provides only the
capability to read or write a data block, but the data block can contain multiple
logical records assembled by the problem program.

• When a BDAM data set is being created, buffers can be acquired automatically,
but buffer control mu<:)t be provided by the problem program. The problem
program must place data in the output buffer before issuing a WRITE macro
instruction to write the data block.

When a BDAM data set is being processed, the problem program can control all
buffering, or dynamic buffering can be specified in the DCB macro instruction
and subsequently requested in a READ macro instruction.

• The actual organization of a direct data set is determined by the programmer to
meet the needs of the application. The data set can be processed by using one of
the following addressing methods:

Actual device addresses (in the form MBBCCHHR).

• Relative track addresses (in the form TTR). These addresses specify a track (and
a record on the track) of the direct-access device relative to the beginning of the
data set.

Relative block addresses can be used with fixed-length records. These addresses
specify a data block relative to the beginning of the data set.

For additional information about the characteristics of BDAM data sets, refer to the
as Data Management Services Guide.

Macro Instruction Descriptions 35

The following describes the DeB operands that can be specified for creating and
processing a BDAM data set:

{F}
BFALN= {D}

The BFALN operand specifies the boundary alignment for each buffer in the
buffer pool. The BFALN operand can be specified when (1) BSAM is being used
to create a BDAM data set and buffers are acquired automatically, (2) when an
existing BDAM data set is being processed and dynamic buffering is requested, or
(3) when the GETPOOL macro instruction is used to construct the buffer pool.
If the BFALN operand is omitted, the system provides doubleword alignment for
each buffer. The following describes the characters that can be specified:

F Specifies that each buffer is aligned on a fullword boundary that is not
also a double word boundary.

D Specifies that each buffer is aligned on a double word boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the
problem program controls all buffering, the problem program must provide the
main-storage area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set. If
both the BF ALN and BFTEK operands are specified, they must be supplied from the
same source.

BFTEK=R

The BFTEK operand specifies that the data set is being created for or contains
variable-length spanned- records. The BFfEK operand can be coded only when
the record format is specified as RECFM= VS.

When variable-length spanned records are written, the data length can exceed the
total capacity of a single track on the direct-access device being used, or it can
exceed the remaining capacity on a given track. The system divides the data
block into segments (if necessary), writes the first segment on a track, and writes
the remaining segment(s) on the following track(s).

When a variable-length spanned record is read, the system reads each segment
and assembles a complete data block in the buffer designated in the area address
operand of a READ macro instruction.

Note: Variable-length spanned records can also be read using BSAM. When BSAM is
used to read a BDAM variable-length spanned record, the record is read one segment
at a time, and the problem program must assemble the segments into a complete data
block. This operation is described in the section for the BSAM DeB macro instruction.

Source: The BFTEK operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFTEK and BFALN operands are
specified, they must be supplied from the same source.

BLKSIZE= absexp (maximum value is 32,760)

The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, of each data
block for variable-length or undefined-length records.

36 OS Data Management Macro Instructions

DCB-BDAM

If keys are used, the length of the key is not included in the value specified for
the BLKSIZE operand.

The actual value that can be specified in the BLKSIZE operand depends on the
record format and the type of direct-access device being used. If the
track-overflow feature is being used or if variable-length spanned records are
being used, the value specified in the BLKSIZE operand can be up to the
maximum. For all other record formats (F, V, VBS, and U), the maximum value
that can be specified in the BLKSIZE. operand is determined by the track capacity
of a single track on the direct-access device being used. Device capacity for
direct-access devices is described in Appendix e of this publication. For
additional information about device capacity and space allocation, refer to the
OS Data Management Services Guide.

Source: The BLKSIZE operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB= relexp

The BUFCB operand specifies the address of the buffer pool control block when
the buffer pool is constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically, dynamically, or by a GETPOOL
macro instruction, the system places 'the address of the buffer pool control block
into the data control block, and the BUFCB operand is not required. The
BUFCB operand is not required if the problem program controls all buffering.

Source: The BUFeB operand can be supplied in the DeB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffers are acquired automatically (create BDAM) or dynamically
(existing BDAM).

When buffers are acquired automatically (create BDAM), the BUFL operand is
optional; if specified, the value must be at least as large as the sum of the values
specified for the KEYLEN and BLKSIZE operands. If the BUFL operand is
omitted,the system constructs buffers with a length equal to the sum of the values
specified in the KEYLEN and BLKSIZE operands.

The BUFL operand must be specified when an existing BDAM data set is being
processed and dynamic buffering is requested. Its value must be at least as large
as the value specified for the BLKSIZE operand when the READ or WRITE
macro instruction specifies a key address, or the value specified in the BUFL
operand must be at least as large as the sum of the values specified in the
KEYLEN and BLKSIZE operands if the READ and WRITE macro instructions
specify'S' for the key address.

The BUFL operand can be omitted if the buffer pool is constructed by a BUILD
or GETPOOL macro instruction or if the problem program controls all buffering.

Source: The BUFL operand can be supplied in the DeB macro instruction, in the DeB
subparameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

Macro Instruction Descriptions 37

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers to be constructed by a
BUILD macro instruction, or it specifies the number of buffers and/or segment
work areas to be acquired by the system.

If the buffer pool is constructed by a BUILD macro instruction or if buffers are
acquired automatically when BSAM is used to create a BDAM data set, the
number of buffers must be specified in the BUFNO operand.

If dynamic buffering is requested when an existing BDAM data set is being
processed, the BUFNO operand is optional; if omitted, the system acquires two
buffers.

If variable-length spanned records are being processed and dynamic buffering is
requested, the system also acquires a segment work area for each buffer. If
dyanmic buffering is not requested, the system acquires the number of segment
work areas specified in the BUFNO operand. If the BUFNO operand is omitted
when variable-length spanned records are being processed and dynamic buffering
is not requested, the system acquires two segment work areas.

If the buffer pool is constructed by a GETPOOL macro instruction or if the
problem program controls all buffering, the BUFNO operand can be omitted,
unless it is required to acquire additional segment work areas for variable-length
spanned records.

Source: The BUFNO operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DO statement, or by the problem program before completion
of the data control block exit routine.

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition (DO) statement that defines the data set being created or
processed.

Source: The DDNAME operand can be supplied in the DeB macro instruction or by
the problem program before an OPEN macro' instruction is issued to open the data set.

{DA}
DSORG= {DAU}

The DSORG operand specifies the data set organization and if the data set
contains any location-dependent information that would make it unmovable. For
example, if actual device addresses are used to process a BDAM data set, the data
set may be unmovable. The following describes the characters that can be
specified:

DA - Specifies a direct organization data set.

DAU - Specifies a direct organization data set that contains
location-dependent information.

When a BDAM data set is created, the basic sequential access method (BSAM) is
used. The DSORG operand in the DeB macro instruction must be coded as
DSORG=PS or PSU when the data set is created, and the DeB subparameter in
the corresponding DD statement must be coded as DSORG=DA or DAU. This
creates a data set with a data set label identifying it as a BDAM data set.

Source: The DSORG operand must be specified in the DeB macro instruction. See
the above comment about creating a BDAM data set.

38 OS Data Management Macro Instructions

DCB-BDAM

EXLST = relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand must be specified if the problem program processes user labels
during the Open or Close routine, if the data control block exit routine is used for
additional processing, or if the DCB ABEND exit is used for ABEND condition
analysis.

Refer to Appendix D of this publication for the format and requirements of exit
list processing. For additional information about exit list processing, refer to the
OS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the exit- is needed.

{OJ
HIARCHY= U}

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is to be constructed. The following describes the characters that can be
specified:

o - Specifies that the buffer pool is constructed in processor storage.
1 - Specifies that the buffer pool is constructed in IBM 2361 Core Storage.

The storage hierarchy can also be specified in a GETPOOL macro instruction. If
HIARCHY is omitted from all sources, the system constructs the buffer pool in
processor storage.

The buffer pool is constructed in the user region or partition within the indicated
hierarchy; if space is not available within the indicated hierarchy, the task is
abnormally terminated. The HIARCHY operand is ignored in systems that do not
have hierarchy support. The HIARCHY operand must not be specified for MVT
systems with Model 65 multiprocessing.

Source: The HIARCHY operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

KEYLEN= absexp (maximum value is 255)

The KEYLEN operand specifies the length, in bytes, of all keys used in the data
set. When keys are used, a key is associated with each data block in the data set.
If the key length is not supplied by any source, no input or output requests that
require a key can be specified in a READ or WRITE macro instruction.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the completion
of the data control block exit routine, or by an existing data set label.

LIMCT = absexp

The LIMCT operand specifies the number of blocks or tracks to be searched
when the extended search option (OPTCD=E) is requested.

When the extended search option is requested and relative block addressing is
used, the records must be fixed-length record format. The system converts the
number of blocks specified in the LIMCT operand into the number of tracks

Macro Instruction Descriptions 39

required to contain the blocks, then proceeds in the manner described below for
relative track addressing.

When the extended search option is requested and relative track addressing is
used (or the number of blocks has been converted to the number of tracks), the
system searches for the block specified in a READ or WRITE macro instruction
(type DK), or it searches for available space in which to add a block (WRITE
macro instruction, type DA). The search is as follows:

• The search begins at the track specified by the block address operand of a
READ or WRITE macro instruction.

The search continues until the search is satisfied, the number of tracks
specified in the LIMCT operand have been searched, or the entire data set
has been searched. If the search has not been satisfied when the last track
of the data set is reached, the system continues the search by starting at the
first track of the data set. This operation allows the number specified in the
LIMCT operand to exceed the size of the data set, causing the entire data
set to be searched.

The problem program can change the DCBLIM CT field in the data control block
at any time, but if the extended search option is used, the DCBLIMCT field must
not be zero when a READ or WRITE macro instruction is issued.

If the extended search option is not requested, the system ignores the LIMCT
operand, and the search for a data block is limited to a single track.

Source: The LIMCT operand can be supplied in the DCB macro instruction, the DCB
subparameter of a DD statement, or by the problem program before the count is
required by a READ or WRITE macro instruction.

MACRF = {(R {K I
{I I
{KI I

{(W {A I
{K I
{I I
{AK I
{AI I
{KI I
{AKI I

{(R {K I
{I I
{KI I

[X
[S
[XS

[C))

[X
[S
[XS

[C))

IC] ,W {A I
{K I
{I I
{AK I
{AI I
{KI I
{AKI I

I

I

[C]) I

The MACRF operand specifies the type of macro instructions (READ, WRITE,
CHECK, and WAIT) used when the data set is processed. The MACRF operand
also specifies the type of search argument and BDAM functions used with the
data set. When BSAM is used to create a BDAM data set, the BSAM operand
MACRF=WL is specified. This special operand invokes the BSAM routine that

40 OS Data Management Macro Instructions

DCB-BDAM

can create a BDAM data set. The following describes the characters that can be
specified:

A Specifies that data blocks are to be added to the data set.

C Specifies that CHECK macro instructions are used to test for
completion or read and write operations. If C is not specified, WAIT
macro instructions must be used to test for completion of read and
write operations.

I Specifies that the search argument is to be the block identification
portion of the data block. If relative addressing is used, the system
converts the relative address to a full device address (MBBCCHHR)
before the search.

K Specifies that the search argument is to be the key portion of the data
block. The location of the key to be used as a search argument is
specified in a READ or WRITE macro instruction.

R Specifies that READ macro instructions are used. READ macro
instructions can be issued when the data set is opened for INPUT,
OUTPUT, or UPDAT.

S Specifies that dynamic buffering is requested by specifying'S' in the
area address operand of a READ or WRITE macro instruction.

W Specifies that WRITE macro instructions are used. WRITE macro
instructions can be issued only when the data set is opened for
OUTPUT OR UPDAT.

X Specifies that READ macro instructions request exclusive control of a
data block. When exclusive control is requested, the data block must
be released by a subsequent WRITE or RELEX macro instruction.

Source: The MACRF operand must be supplied in the DCB macro instruction.

OPTCD= IR)IE)IF)IW)
IA)

The OPTCD operand specifies the optional services that are to be used with the
BDAM data set. These options are related to the type of addressing used, the
extended search option, block position feedback, and write-validity checking.
The following describes the characters that can be specified; the characters can be
specified in any order and no commas are required between characters.

A Specifies that actual device addresses (MBBCCHHR) are provided to
the system when READ or WRITE macro instructions are issued.

E Specifies that the extended search option is used to locate data blocks
or available space into which a data block can be added. When the
extended search option is specified, the number of blocks or tracks to
be searched must be specified in the LIMCT operand. The extended
search option is ignored if actual addressing (OPTCD=A) is also
specified.

F Specifies that block position feedback requested by a READ or
WRITE macro instruction is to be in the same form that was originally

Macro Instruction Descriptions 41

presented to the system in the READ or WRITE macro instruction. If
the F operand is omitted, the system provides feedback, when
requested, in the form of an 8-byte actual device address.

R Specifies that relative block addresses (in the form of a 3-byte binary
number) are provided to the system when a READ or WRITE macro
instruction is issued.

W Specifies that the system performs a validity check for each record
written. If the device is a 2321, the system performs a validity check
for each write operation whether it is requested or not.

Note: If OPTCD=A and R are both omitted, the system requires that READ and
WRITE macro instructions provide 3-byte relative track addresses (in the form TTR).

Source: The OPTCD operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set.

RECFM= {U }
{V (S) }

(BS)
{F(T)

The RECFM operand specifies the format and characteristics of the records in the
data set. The following describes the characters that can be coded; if the optional
characters are coded, they must be coded in the order shown above.

B Specifies that the data set contains blocked records. The record
format RECFM=VBS is the only combination in which B can be
specified. RECFM= VBS does not cause the system to process
spanned records; the problem program must block and segment the
records. RECFM= VBS is treated as a variable-length record by
BDAM.

F Specifies that the data set contains fixed-length records.

S Specifies that the data set contains variable-length spanned records
when it is coded as RECFM= VS. When RECFM= VBS is coded, the
records are treated as variable-length records, and the problem
program must block and segment the records.

T Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be partially written on one
track and the remainder is written on the following track (if required).

U Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD= relexp

The SYNAD operand specifies the address of the error analysis routine to be
given control when an uncorrectable input/output error occurs. The contents of
the registers when the error analysis routine is given control are described in
Appendix A of this publication.

42 OS Data Management Macro Instructions

OCB-BOAM

The error analysis routine must not use the save area pointed to by register 13
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can issue a RETURN macro instruction which uses the address in register 14 to
return control to the system. When control is returned in this manner, the system
returns control to the problem program and proceeds as though no error had been
encountered. When a BDAM data set is being created, a return from the error
analysis routine to the system causes abnormal termination of the task.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAO operand can be supplied in the DeB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions 43

DCB -BISAM

DCB - Construct a Data Control Block for BISAM

The data control block for the basic indexed sequential access method (BISAM) is
constructed during assembly of the problem program. The DCB macro instruction
must not be coded within the first 16 bytes of a control section (CSECT). The
DSORG and MACRF operands must be coded in the DCB macro instruction, but the
other DCB operands can be supplied from other sources. Each BISAM DCB operand
description contains a heading, "Source." The information under this heading describes
the sources from which the operand can be supplied to the data control block.

Before a DCB macro instruction for a BISAM data set is coded, the following
characteristics of BISAM data sets should be considered:

BISAM cannot be used to create an indexed sequential data set.

• BISAM performs the functions of direct retrieval of a logical record by key, direct
update-in-place for a block of records, direct insertion of a new record in its
correct key sequence.

Buffering can be controlled by the problem program, or dynamic buffering can be
specified in the DCB macro instruction and subsequently requested in a READ
macro instruction.

• The problem program must synchronize I/O operations by issuing a CHECK or
WAIT macro instruction to test for completion of Read and Write operations.

• Additional DCB operands provide the capability of reducing input/output
operations by defining main-storage work areas to contain the highest level
master index and the records being processed.

For additional information about the characteristics of BISAM processing, refer to the
as Data Management Services Guide.

The following describes the DCB operands that can be supplied when the basic indexed
sequential access method is used.

{F}
BFALN= {D}

The BFALN operand specifies the boundary alignment for each buffer in the
buffer pool when the buffer pool is acquired for use with dynamic buffering or
when the buffer pool is constructed by a GETPOOL macro instruction. If the
BFALN operand is omitted, the system provides doubleword alignment for each
buffer. The following describes the characters that can be specified.

F Specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D Specifies that each buffer is on a double word boundary.

If the BUILD macro instruction is used to construct the buffer pool or the
problem program controls all buffering, the problem program must provide a
main-storage area for the buffers and control buffer alignment.

Macro Instruction Descriptions 45

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label for the data set being
processed.

BUFCB= relexp

The BUFCB operand specifies the address of the buffer pool control block when
the buffer pool is constructed by a BUILD macro instruction.

If dynamic buffering is requested or the buffer pool is constructed by a
GETPOOL macro instruction, the system places the address of the buffer pool
control block into the data control block, and the BUFCB operand must be
omitted. The BUFCB operand must be omitted if the problem program controls
all buffering.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length of each buffer to be constructed by a
BUILD or GETPOOL macro instruction. When the data set is opened, the
system computes the minimum length required and verifies that the length in the
buffer pool control block is equal to or greater than the minimum required. The
system then inserts the computed length into the BUFL field of the data control
block.

If dynamic buffering is requested, the system computes the buffer length required,
and the BUFL operand is not required.

If the problem program controls all buffering, the BUFL operand is not required.
However, an ISAM data set requires additional buffer space for system use. For
a description of the buffer length required for various ISAM operations, refer to
the OS Data Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the DCB
sub parameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers requested for use with
dynamic buffering, or it specifies the number of buffers to be constructed by a
BUILD macro instruction. If dynamic buffering is requested but the BUFNO
operand is omitted, the system automatically acquires two buffers for use with
dynamic buffering.

If the GETPOOL macro instruction is used to construct the buffer pool, the
BUFNO operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

46 OS Data Management Macro Instructions

DCB-BISAM

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition statement that defines the ISAM data set to be
processed.

Source: The DDNAME operand can be supplied in the DeB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data set.

DSORG=IS

The DSORG operand specifies the indexed sequential organization of the data
set. IS is the only combination of characters that can be coded for BISAM.

Source: The DSORG operand must be coded in the DeB macro instruction.

EXLST = relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block
exit routine for additional processing or if the DeB ABEND exit is used for
ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements for exit
list processing. For additional information about exit list processing, refer to the
OS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DeB macro instruction or by the
problem program before the associated exit is required.

HIARCHY= to}
tt}

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. The following describes the characters that can be specified.

o Specifies that the buffer pool is constructed in processor storage.

1 Specifies that the buffer pool is constructed in IBM 2361 eore Storage.

The HIARCHY operand can also be specified in a GETPOOL macro instruction.
If the HIARCHY operand is omitted from all sources, the buffer pool is
constructed in processor storage.

The buffer pool is constructed within the user region or partition within the
indicated hierarchy; if space is not available within the indicated hierarchy, the
task is abnormally terminated. The HIARCHY operand is ignored in systems that
do not have hierarchy support. The HIARCHY operand must not be specified for
MVT systems with Model 65 multiprocessing.

Source: The HIARCHY operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

Macro Instruction Descriptions 47

{(R [S] [C]) }

MACRF= {V}
{(W {A} [C]) }

{VA}

{(R [S] [C],W {V} [C]) }
[V] {A}
[VS] {VA}

The MACRF operand specifies the type of macro instructions (READ, WRITE,
CHECK, WAIT, and FREEDBUF) and type of processing (add records, dynamic
buffering, and update records) to be used with the data set being processed. The
operand can be coded in any of the combinations shown above; the following
describes the characters that can be coded.

A Specifies that new records are to be added to the data set. This
character must be coded if WRITE KN macro instructions are used
with the data set.

C Specifies that the CHECK macro instruction is used to test 1/0
operations for completion. If C is not coded, WAIT macro instructions
must be used.

R Specifies the READ macro instructions are used. When R is coded,
the routines that allow the FREEDBUF macro instruction to be used
are also included.

S Specifies that dynamic buffering is requested in READ macro
instructions.

V Specifies that records in the data set will be updated in place. If V is
coded in combination with R, it must also be coded in combination
with W. For example, MACRF=(RV,WV).

W Specifies that WRITE macro instructions are used.

Source: The MACRF operand must be coded in the DeB macro instruction.

MSHI= relexp

The MSHI operand specifies the address of the main-storage area used to contain
the highest level master index for the data set. The system uses this main-storage
area to reduce the search time required to find a given record in the data set. The
MSHI operand is coded only when the SMSI operand is coded.

Source: The MSHI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

MSWA= relexp

The MSW A operand specifies the address of the main-storage work area to be
used by the system when new records are being added to the data set. This
operand is optional, but the system acquires a minimum-size work area if the
operand is omitted. The MSW A operand is coded only when the SMSW operand
is coded.

Processing efficiency can be increased if more than a minimum-size work area is
provided. For more detailed information about work area size, refer to the OS
Data Management Services Guide.

48 as Data Management Macro Instructions

DCB -BISAM

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The MSW A operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

NCP= absexp (maximum value is 99)

The NCP operand specifies the maximum number of READ/WRITE macro
instructions that are issued before the first CHECK (or WAIT) macro instruction
is issued to test for completion of the I/O operation. The maximum number that
can be specified may be less than 99 depending on the limit established when the
operating system is generated. If the NCP operand is omitted, one is assumed. If
dynamic buffering is used, the value specified for the NCP operand must not
exceed the number of buffers specified in the BUFNO operand.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before an OPEN macro
instruction is issued to open the data set.

SMSI= absexp (maximum value is 65,535)

The SMSI operand specifies the length, in bytes, required to contain the highest
level master index for the data set being processed. The size required can be
determined from the DCBNCRHI field of the data control block. When an
ISAM data set is created (with QISAM), the size of the highest level index is
inserted into the DCBNCRHI field. If the value specified in the SMSI operand is
less than the value in the DCBNCRHI field, the task is abnormally terminated.

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields as a work
area; these fields contain meaningful information only when the data set is opened for
BISAM.

Source: The SMSI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

SMSW= absexp (maximum value is 65,535)

The SMSW operand specifies the length, in bytes, of a work area in main storage
that is used by BISAM. This operand is optional, but the system acquires a
minimum-size work area if the operand is omitted. The SMSW operand is coded
only when the MSW A operand is also coded. If the SMSW operand is coded but
the size specified is less than the minimum required, the task is abnormally
terminated. The as Data Management Services Guide describes the methods of
calculating the size of the work area.

If unblocked records are used, the work area must be large enough to contain all
the count fields (eight bytes each), key fields, and data fields contained on one
direct-access device track.

If blocked records are used, the work area must be large enough to contain all the
count fields (eight bytes each) and data fields contained on one direct-access
device track plus additional space for one logical record (LRECL value).

Macro Instruction Descriptions 49

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The SMSW operand can be supplied in the DCBmacro instruction or by the
problem program before completion of the data control block exit routine.

SYNAD= relexp

The SYNAD operand specifies the address of the error anlaysis routine given
control when an uncorrectable input/output error occurs. The contents of the
registers when the error analysis routine is given control are described in
Appendix A of this publication.

The error anlaysis routine must not use the save area pointed to by register 13
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can issue a RETURN macro instruction which uses the address in register 14 to
return control to the system. When control is returned in this manner, the system
returns control to the problem program and proceeds as though no error had been
encountered. If the error analysis routine continues processing, the results are
unpredictable.

For ISAM data sets, if the error analysis routine receives control from the Close
routine, bit 3 of the IOBFLAG 1 field in the input/output block is set to one. In
this case, the error analysis routine must not issue a CLOSE macro instruction.
To complete Close processing, the error analysis routine must return control to
the Close routine with a branch to the address in register 14.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time.

50 OS Data Management Macro Instructions

DCB-BPAM

DCB - Construct a Data Control Block for BPAM

The data control block for the basic partitioned access method (BP AM) is constructed
during assembly of the problem program. The DCB macro instruction can be coded at
any point in a control section (CSECT). The DSORG and MACRF operands must be
specified in the DCB macro instruction, but the other DCB operands can be supplied
from other sources. Each of the BP AM DCB operand descriptions contains a heading,
"Source." The information under this heading describes the sources which can supply
the operand to the data control block.

Before a DCB macro instruction for a BP AM data set is coded, the following
characteristics of partitioned data sets should be considered:

The entire partitioned data set must reside on one direct-access volume, but
several such data sets, on the same or different volumes, can be concatenated for
input.

When a partitioned data set is being created, the first (or only) DD statement for
the data set must contain a SPACE parameter defining th~ size of the entire data
set and its directory. From this information, the system allocates space for the
data set and pre-formats the data set directory. As subsequent data set members
are added, they are added in the space originally allocated.

• A single member of a partitioned data set can be added or retrieved using BSAM
or QSAM without using the BLDL, FIND, or STOW macro instructions. In this
case, the data set member is being processed as a sequential data set
(DSORG=PS). Processing a member in this manner does not provide the full
capability of the basic partitioned access method. For more information about
processing a member using BSAM or QSAM, refer to the OS Data Management
Services Guide.

• A single member or multiple members can be added, retrieved, or updated using
BP AM (many of the routines used by BP AM are actually BSAM routines).

Buffers for a BP AM data set can be acquired automatically, but buffer control
must be provided by the problem program. The problem program must issue a
READ macro instruction that provides a buffer address to fill an input buffer, and
it must place the data in an output buffer before issuing a WRITE macro
instruction to write a data block.

• Although a BP AM data set can contain blocked records, the problem program
must perform all blocking and deblocking of records. BP AM provides only the
capability to read or write a data block, but the data block can contain mUltiple
logical records assembled by the problem program.

The STOW macro instruction can be used to add, delete, change, or replace a
member name or alias in the directory.

• Multiple members of the data set can be processed by building a list of member
locations (with a BLDL macro instruction) and using the FIND macro instruction
(in conjunction with the list) to locate the beginning of each member.

The problem program must synchronize I/O operations by issuing a CHECK
macro instruction for each READ or WRITE macro instruction issued.

Macro Instruction Descriptions 51

These characteristics of partitioned data sets and the basic partitioned access method
are described in more detail in the OS Data Management Services Guide.

The following describes the DCB operands that can be specified when a BP AM data
set is being created or processed.

{F}
BFALN= {D}

The BFALN operand specifies the boundary alignment for each buffer in the
buffer pool when the buffer pool is constructed automatically or by a GETPOOL
macro instruction. If the BF ALN operand is omitted, the system provides
double word alignment for each buffer. The following describes the characters
that can be specified in the BF ALN operand.

F Specifies that each buffer is aligned on a fullword boundary that is not
also a doubleword boundary.

D Specifies that each buffer is aligned on a double word boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the
problem program controls all buffering, the problem program must provide a
main-storage area for the buffers and control buffer alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BLKSIZE= absexp (maximum value is 32,760)

The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, for
variable-length or undefined-length records. If keys are used, the length of the
key is not included in the value specified for the BLKSIZE operand.

The actual blocksize that can be specified depends on the record format and the
type of direct-access device being -used. If the track-overflow feature is used, the
blocksize can be up to the maximum. If the track-overflow feature is not used,
the maximum blocksize is determined by the track capacity of a single track on
the direct-access device being used. Device capacity for direct-access devices is
described in Appendix C of this publication. For additional information about
device capacity and space allocation, refer to the OS Data Management Services
Guide.

For variable-length records, the value specified in the BLKSIZE operand must
include the maximum logical record length (up to 32,756 bytes) plus four bytes
for the block descriptor word (BDW).

For undefined-length records, the value specified for the BLKSIZE operand can
be altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted into the DCBBLKSI field of the
data control block or specified in the length operand of a READ/WRITE macro
instruction.

52 OS Data Management Macro Instructions

DCB -BPAM

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DeB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB= relexp

The BUFCB operand specifies the address of the buffer pool control block when
the buffer pool is constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro
instruction, the system places the address of the buffer pool control block into the
data control block and the BUFCB operand can be omitted. Also, if the problem
program controls all buffering, the BUFCB operand should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is acquired automatically. If the BUFL operand is omitted
and the buffer pool is acquired automatically, the system acquires buffers with a
length that is equal to the sum of the values specified in the KEYLEN and
BLKSIZE operands. If the problem program requires longer buffers, the BUFL
operand should be specified.

If the problem program controls all buffering, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DeB macro instruction, in the DeB
subparameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers to be constructed by a
BUILD macro instruction, or it specifies the number of buffers to be acquired
automatically by the system.

If the problem program controls all buffering or if the buffer pool is constructed
by a GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BUFNO operand can be supplied in the DeB macro instruction, in the
DeB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition (DD) statement that defines the data set being created or
processed.

Source: The DDNAME operand can be supplied in the DeB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data set.

Macro Instruction Descriptions 53

{POI
DSORG= {POUI

The DSORG operand specifies the data set organization and if the data set
contains any location-dependent information that would make it unmovable. The
following describes the characters that can be specified.

PO - Specifies a partitioned data set organization.

POU - Specifies a partitioned data set organization and that the data set
contains location-dependent information.

Note: If BSAM or QSAM are used to add or retrieve a single member of a partitioned
data set, a sequential access method is being used, and the DSORG operand is
specified as PS or PSU. The name of the member being processed in this manner is
supplied in a DD statement.

Source: The DSORG operand must be specified in the DCB macro instruction.

EODAD= relexp

The EODAD operand specifies the address of the routine given control when the
end of the input data set is reached. Control is given to this routine when an
input request is made (READ macro instruction) and there are no additional input
records to retrieve. The routine is entered when a CHECK macro instruction is
issued and the end of the data set is reached. If the end of the data set is reached
and no EODAD address has been supplied, the task is abnormally terminated.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST = relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block
exit routine for additional processing or if the DeB ABEND exit is used for
ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of the
exit list processing. For additional information about exit list processing, refer to
the OS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the OPEN macro instruction is issued to open the data set.

{Ol
HIARCHY= {II

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. The following describes the characters that can be specified.

o Specifies that the buffer pool is constructed in processor storage.

1 Specifies that the buffer pool is constructed in IBM 2361 Core Storage.

The HIARCHY operand can also be specified in a GETPOOL macro instruction.
If the HIARCHY operand is omitted from all sources, the system constructs the
buffer pool in processor storage.

54 OS Data Management Macro Instructions

DCB-BPAM

The buffer pool is constructed in the user region or partition within the indicated
hierarchy; if space is not available within the indicated hierarchy, the task is
abnormally terminated. The HIARCHY operand is ignored in systems that do not
have hierarchy support. The HIARCHY operand must not be specified for MVT
systems with Model 65 multiprocessing.

Source: The HIARCHY operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

KEYLEN= absexp (maximum value is 255)

The KEYLEN operand specifies the length, in bytes, of the key associated with
each data block in the direct-access device data set. If the key length is not
supplied from any source by the end of the data control block exit routine, a key
length of zero (no keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB sub parameter of a DD statement, by the problem program before the completion
of the data control block exit routine, or by the data set label of an existing data set.

LRECL= absexp (maximum value is 32,760)

The LRECL operand specifies the length, in bytes, of each fixed-length logical
record in the data set; It is required only for fixed-length records. The value
specified in the LRECL operand cannot exceed the value specified in the
BLKSIZE operand.

If the records are unblocked, the value specified in the LRECL operand must
equal the value specified in the BLKSIZE operand. If the records are blocked,
the value specified in the LRECL operand must be evenly divisible into the value
specified in the BLKSIZE operand.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB sub parameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(R)}
{(W)}
{(R,W)}

The MACRF operand specifies the type of macro instructions (READ, WRITE,
and NOTE/POINT) that are used to process the data set. The following
describes the characters that can be specified:

R Specifies that READ macro instructions are used. This operand
automatically provides the capability to use both the NOTE and
POINT macro instructions with the data set.

W Specifies that WRITE macro instructions are used. This operand
automatically provides the capability to use the NOTE macro
instruction with the data set.

All BP AM READ and WRITE macro instructions issued must be tested for
completion using a CHECK macro instruction. The MACRF operand does not
require any coding to specify that a CHECK macro instruction will be used.

Source: The MACRF operand must be specified in the DCB macro instruction.

Macro Instruction Descriptions 55

NCP= absexp (maximum value is 99)

The NCP operand specifies the maximum number of READ and WRITE macro
instructions that will be issued before the first CHECK macro instruction is
issued. The maximum number may be less than 99 depending on the limit
established when the operating system is generated. If chained scheduling is
specified, NCP must be specified as more than one. If the NCP operand is
omitted, one is assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before an OPEN macro
instruction is issued to open the data set.

OPTCD= IC}
IW}
IWC}

The OPTCD operand specifies the optional services performed by the system.
The following describes the characters that can be specified; they can be
specified in any order and no commas are required between characters.

C Specifies that chained scheduling is used.

W Specifies that the system performs a validity check for each record
written. If the device is a 2321, the system performs a validity check
for each write operation whether it is requested or not.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. However, all optional services must be
requested from the same source.

RECFM= IV [T] [A] }
[M]

IV [B] [A]
[T] [M]
[BT)

IF [B] [A]
[T) [M)
[BT)

The RECFM operand specifies the record format and characteristics of the data
set being created or processed. All the record formats shown above can be
specified, but in those formats that show blocked records, the problem program
must perform the blocking and deblocking of logical records; BP AM recognizes
only data blocks. The following describes the characters that can be specified.

A Specifies that the records in the data set contain American National
Standards Institute (ANSI) control characters. Refer to Appendix E
for a description of control characters.

B Specifies that the data set contains blocked records.

F Specifies that the data set contains fixed-length records.

56 OS Data Management Macro Instructions

DCB-BPAM

M Specifies that the records in the data set contain machine code control
characters. Refer to Appendix E for a description of control
characters.

T Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one
track of a direct-access device and the remainder of the record written
on the following track (if required). Chained scheduling (OPTCD=C)
cannot be used if the track-overflow feature is used.

U Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DeB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD= relexp

The SYNAD operand specifies the address of the error analysis (SYNAD) routine
to be given control when an uncorrectable input/output error occurs. The
contents of the registers when the error analysis routine is given control are
described in Appendix A.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can return control to the system by issuing a RETURN macro instruction. If
control is returned to the system, the system returns control to the problem
program and proceeds as though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions 57

DCB-BSAM

DCB - Construct a Data Control Block for BSAM

The data control block for the basic sequential access method (BSAM) is constructed
during assembly of the problem program. The DCB macro instruction must not be
coded within the first 16 bytes of a control section (CSECT). The DSORG and
MACRF operands must be coded in the DCB macro instruction, but the other DCB
operands can be supplied, to the data control block, from other sources. Each DCB
operand description contains a heading, "Source." The information under this heading
describes the sources from which an operand can be supplied.

Before a DCB macro instruction for creating or processing a BSAM data set is coded,
the following characteristics of BSAM data sets should be considered:

Although several record formats with blocked records can be specified for BSAM,
the problem program must perform all blocking and deblocking of records.
BSAM provides only the capability to read or write a data block, but the block
can contain one or more logical records assembled by the problem program.

Buffers for a BSAM data set can be acquired automatically, but buffer control
must be provided by the problem program. The problem program must issue a
READ macro instruction that provides a buffer address to fill an input buffer, and
it must place the data in an output buffer before issuing the WRITE macro
instruction to write a data block.

• The problem program must synchronize 110 operations by issuing a CHECK
macro instruction for each READ and WRITE macro instruction issued.

BSAM provides capability for nonsequential processing by using the NOTE and
POINT macro instructions.

Keys for direct-access device records can be read or written using BSAM.

Specifying the DEVD operand in the DCB macro instruction can make the
program device dependent.

These characteristics of basic sequential access method data sets are described in more
detail in the OS Data Management Services Guide.

The following describes the operands that can be specified in the DCB macro
instruction for a BSAM data set.

BFALN= IF}
ID}

The BFALN operand specifies the boundary alignment for each buffer in the
buffer pool when. the buffer pool is constructed automatically or by a GETPOOL
macro instruction. If the BF ALN operand is omitted, the system provides
doubleword alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a
block prefix, the block prefix is entered at the beginning of the buffer, and data
alignment depends on the length of the block prefix. F or a description of how to
specify the block prefix length, refer to the DCB BUFOFF operand.

Macro Instruction Descriptions 59

The following describes the characters that can be specified.

F Specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D Specifies that each buffer is on a double word boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the
problem program controls all buffering, the problem program must provide a
main-storage area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data block exit routine, or by the data set label of an existing data set. If both the
BFALN and BFfEK operands are specified, they must be supplied by the same source.

BYrEK=R

The BYrEK=R operand specifies that BSAM is used to read unblocked
variable-length spanned records with keys from a BDAM data set. Each read
operation reads one segment of the record and places it in the area designated in
the READ macro instruction. The first segment enters at the beginning of the
area, but all subsequent segments are offset by the length of the key (only the
first segment has a key). The problem program must provide an area in which to
assemble a record, identify each segment, and assemble the segments into a
complete record.

Source: The BYrEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BYrEK and BF ALN operands are
specified, they must be supplied from the same source.

BLKSIZE= absexp (maximum value is 32,760)

The BLKSIZE operands specifies the length, in bytes, for fixed-length records, or
it specifies the maximum length, in bytes, for variable-length or undefined-length
records. The BLKSIZE operand includes only the data block length~ if keys are
used, the length of the key is not included in the value specified for the BLKSIZE
operand.

The actual value that can be specified in the BLKSIZE operand depends on the
device type and the record format being used. Device capacity is shown in
Appendix C of this publication. For additional information about device capacity,
refer to the OS Data Management Services Guide. For direct-access devices
when the track-overflow feature is used or variable-length spanned records are
being processed, the value specified in the BLKSIZE operand can be up to the
maximum value. For other record formats used with direct-access devices, the
value specified for BLKSIZE cannot exceed the capacity of a single track.

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified for the
logical record length (LRECL); otherwise the system will adjust the block size
downward to the nearest multiple.

If variable-length records are used, the value specified in the BLKSIZE operand
must include the maximum logical record length (up to 32,756 bytes) plus the
four bytes required for the block descriptor word (BDW). For format-D

60 OS Data Management Macro Instructions

DCB-BSAM

variable-length records (ASCII data sets), the minimum value for BLKSIZE is 18
and the maximum value is 2,048.

If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

If BSAM is used to read variable-length spanned records from a BDAM data set,
the value specified for the BLKSIZE operand must be as large as the longest
possible record segment in the BDAM data set, including four bytes for the
segment descriptor word (SDW) and four bytes for the block descriptor word
(BDW).

If undefined-length records are used, the value specified for the BLKSIZE
operand can be altered by the problem program when the actual length becomes
known to the problem program. The value can be inserted directly into the
DCBBLKSI field of the data control block or specified in the length operand of a
READ /WRITE macro instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB= relexp

The BUFCB operand specifies the address of the buffer pool control block in a
buffer pool constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro
instruction, the system places the address of the buffer pool control block into the
data control block, and the BUFCB operand should be omitted. If the problem
program controls all buffering, the BUFCB operand is not required.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, for each buffer in the buffer
pool when the buffer pool is acquired automatically. The system acquires buffers
with a length equal to the sum of the values specified in the KEY LEN and
BLKSIZE operands if the BUFL operand is omitted; if the problem program
requires larger buffers, the BUFL operand must be specified. If the BUFL
operand is specified, it must be at least as large as the value specified in the
BLKSIZE operand. If the data set is for card image mode, the BUFL operand
should be specified as 160. The description of the DEVD operand contains a
description of card image mode.

If the data set contains ASCII tape records with a block prefix, the value specified
in the BUFL operand must include the block length plus the length of the block
prefix.

If the problem program controls all buffering or if the buffer pool is constructed
by a GETPOOL or BUILD macro instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

Macro Instruction Descriptions 61

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers constructed by a BUILD
macro instruction or the number of buffers to be acquired automatically by the
system.

If the problem program controls all buffering or if the buffer pool is constructed
by a GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BYFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFOFF= { absexp}
{L}

The BUFOFF operand specifies the length, in bytes, of the block prefix used with
an ASCII tape data set. When BSAM is used to read an ASCII tape data set, the
problem program must use the block prefix length to determine the location of the
data in the buffer. When BSAM is used to write an output ASCII tape data set,
the problem program must insert the block prefix into the buffer followed by the
data (BSAM considers the block prefix as data). The block prefix and data can
consist of any characters that can be translated into ASCII code; any character
that cannot be translated is replaced with a substitute character. The following
can be specified in the BUFOFF operand:

absexp - Specifies the length, in bytes, of the block prefix. This value can be
from 0 to 99 for an input data set. The value must be 0 for writing an
output data set with fixed-length or undefined-length records (BSAM
considers the block prefix part of the data record).

L - Specifies that the block prefix is 4 bytes long and contains the block
length. BUFOFF =L is used when format-D records (ASCII) are
processed. When BUFOFF=L is specified, the BSAM problem
program can process the data records (using READ and WRITE macro
instructions) in the same manner as if the data were in format-V
variable-length records.

If the BUFOFF operand is omitted for an input data set with format-D
records, the system inserts the record length into the DCBLRECL field
of the data control block; the problem program must obtain the length
from this field to process the record.

If the BUFOFF operand is omitted from an output data set with
format-D records, the problem program must insert the actual record
length into the DCBBLKSI field of the data control block or specify
the record length in the length operand of a WRITE macro instruction.

Source: The BUFOFF operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set.

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition (DD) statement that defines the data set being created or
processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data set.

62 OS Data Management Macro Instructions

DSORG= {PSI
{PSU}

DCB-BSAM

The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following can be specified.

PS - Specifies a physical sequential data set.

PSU - Specifies a physical sequential data set that contains
location-dependent information that would make it unmovable.

Source: The DSORG operand must be coded in the DeB macro instruction.

DEVD= {DA (,KEYLEN= absexp]

{TA (,DEN= {O}](,TRTCH= {C}]
UI {E}
{2} {T}
{3} {ET}

{PT (,CODE= {All
{B}
{C}
{F}
{I}
{NI
{T}

{PR (,PRTSP= {Oll
U}
{2}
{3}

{PC I,MODE= (C](R]]I,STACK=
IE]

U}][,FUNC=
{2}

{RD I,MODE= IC) IO]](,STACK= U}]
IE] IR] {2}

{I n
{P I
{PW(XT] }
{R I
{RPID] }
{RW(T] }
{RWPIXT][D] I
{WIT] I

The DEVD operand specifies the device type on which the data set can or does
reside. The device types above are shown with the optional operand(s) that can
be coded when a particular device is used. The devices are listed in order of
device-independence. For example, if DEVD=DA is coded in a DeB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the
data control block constructed during assembly could later be used for any of the
other devices, but if DEVD=RD is coded, the data control block can be used only
with a card reader or card reader punch. For MVT systems, only DA or TA can
be specified if the DEVD operand is coded.

If system input is directed to an intermediate storage device, the DEVD operand
is omitted, and the job control language for the problem program designates the
system input device to be used. Likewise, if system output is directed to an

Macro Instruction Descriptions 63

intermediate storage device, the DEVD operand is omitted, and the job control
language for the problem program designates the system output device to be used.

The following describes the device type and the optional operands that can be
specified for each device type:

DA - Specifies that the data control block can be used for a direct-access
device (or any of the other device types described following DA).

KEYLEN = absexp

The KEYLEN operand can be specified only for data sets that
reside on direct-access devices. Since the KEYLEN is usually
coded without a DEVD operand (default taken), the description
of the KEYLEN operand is in alphabetic sequence with the other
operands.

TA - Specifies that the data control block can be used for a magnetic tape
data set (or any of the other device types described following TA). If
T A is coded, the following optional operands can be coded.

DEN= IO}
IU
12}
13}

The DEN operand specifies the recording density in the number of
bits-per-inch per track as shown in the following chart.

DEN 7-Track Tape 9-Track Tape 9-Track Tape 9-Track Tape
(Phase Encoded) (Dual Density)

0 200
1 556
2 800 800
3 1600

NRZI is for non-return-to-zero-inverse mode
PE is for phase encoded mode

800 (NRZI)
1600 (PE)

If the DEN operand is not supplied by any source, the highest
applicable density is assumed.

TRTCH= IC}
IE}
lET}
IT}

The TRTCH operand specifies the recording technique for 7-track
tape. One of the above four character combinations can be coded. If
the TRTCH operand is omitted, odd parity with no translation or
conversion is assumed. The following describes the characters that can
be specified:

C Specifies that the data-conversion feature is used with odd
parity and no translation.

E Specifies even parity with no translation or conversion.

64 OS Data Management Macro Instructions

DCB-BSAM

ET - Specifies even parity with BCDIC to EBCDIC translation
required and no data-conversion feature.

T Specifies that BCDIC to EBCDIC translation is required
with odd parity and no data-conversion feature.

PT - Specifies that the data control block is used for a paper tape device (or
any of the other devices following PT). If PT is coded, the following
optional operand can be coded.

PR-

CODE= {A}
{B}
{C}
{F}
{II
{N}
tT}

The CODE operand specifies the code in which the data was punched.
The system converts these codes to EBCDIC code. If the CODE
operand is not supplied by any source, CODE=I is assumed. The
following describes the characters that can be specified.

A Specifies 8-track tape in ASCII code.

B Specifies Burroughs 7 -track tape.

C Specifies National Cash Register 8-track tape.

F Specifies Friden 8-track tape.

I Specifies IBM BCD perforated tape and transmission code
with 8 tracks.

N Specifies that no conversion required.

T Specifies Teletype S-track tape.

Specifies that the data control block is used for an online printer (or
any of the other device types following PR). If PR is coded, the
following optional operand can be coded.

PRTSP= to}
ttl
t2}
t31

The PRTSP operand specifies the line spacing on the printer. This
operand is not valid if the RECFM operand specifies either machine
(RECFM=M) or ANSI (RECFM=A) control characters. If the
PRTSP operand is not specified from any source, one is assumed. The
following describes the characters that can be specified.

o Specifies that spacing is suppressed (no space).

1 Specifies single-spacing.

2 Specifies double-spacing (one blank line between printed
lines).

Macro Instruction Descriptions 65

3 - Specifies triple-spacing (two blank lines between printed
lines).

PC - Specifies that the data control block is used for a card punch (or any
of the other device types following PC). If PC is coded, the following
optional operands can be specified.

MODE= (C] (R]
(E]

The MODE operand specifies the mode of operation for the card
punch. The following describes the characters that can be specified. If
the MODE operand is omitted, E is assumed.

C Specifies that the cards are to be punched in card image
mode. In card image mode, the 12 rows in each card
column are punched from two consecutive bytes in main
storage. Rows 12 through 3 are punched from the
low-order 6 bits of one byte and rows 4 through 9 are
punched from the low-order six bits of the following byte.

E Specifies that cards are to be punched in EBCDIC code.

R Specifies that the program runs in read-column-eliminate
mode (3505 card reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of
a DD statement, either C or E must be specified if R is specified.

STACK= {II
{21

The STACK operand specifies the stacker bin into which the card is
placed after punching is completed. If this operand is omitted, stacker
number 1 is used. The following describes the characters that can be
specified:

1 Specifies stacker number 1.

2 Specifies stacker number 2.

FUNC= {I I
{P I
{PW(XT] I
{R I
{RP(D] I
{RW(T] I
{RWP(XTUD] I
{WIT] I

The FUNC operand defines the type of 3525 card punch data sets that
are used. FUNC operand is omitted from all sources, a data set
opened for input defaults to read only, and a data set opened for
output defaults to punch only. The following describes the characters
that can be specified in the FUNC operand.

D Specifies that the data protection option is to be used. The
data protection option prevents punching information into
card columns that already contain data. When the data
protection option is used, an 80-byte data protection image

66 OS Data Management Macro Instructions

DCB-BSAM

(DPI) must have been previously stored in
SYS 1.IMAGELIB. Data protection applies only to the
output I punch portion of a read and punch or read punch
and print operation.

I Specifies that the data in the data set is to be punched into
cards and printed on the cards; the first 64 characters are
printed on line 1 of the card and the remaining 16
characters are printed on line 3.

P Specifies that the data set is for punching cards. See the
description of the character X for associated punch and
print data sets.

R Specifies that the data set is for reading cards.

T Specifies that the two-line print option is used. The
two-line print option allows two lines of data to be printed
on the card (lines 1 and 3). If T is not specified, the
multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be
the same as the data punched in the card, or it may be
entirely different data.

W Specifies that the data set is for printing. See the
description of the character X for associated punch and
print data sets.

X Specifies that an associated data set is opened for output for
both punching and printing. Coding the character X is used
to distinguish the 3525 printer output data set from the
3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI)
must be specified in the FCB subparameter of the DDstatement for
the data set.

RD - Specifies that the data control block is used with a card reader or card
read punch. If RD is specified, the data control block cannot be used
with any other device type. When RD is coded, the following optional
operands can be specified.

MODE= (e] (0)
(E) (R]

The MODE operand specifies the mode of operation for the card
reader. The following describes the characters that can be specified:

C Specifies that the cards to be read are in card image mode.
In card image mode, the 12 rows in each card column are
read into two consecutive bytes of main storage. Rows 12
through 3 are read into one byte and rows 4 through 9 are
read into the following byte.

E Specifies that the cards to be read contain data in EBCDIC
code.

Macro Instruction Descriptions 67

o Specifies that the program runs in optical-mark-read mode
(3505 card reader only).

R Specifies that the program runs in read-column-eliminate
mode (3505 card reader and 3525 card reader only).

Note: If the MODE operand for a 3505 or 3525 is specified in the
DCB subparameter of a DO statement, either C or E must be specified
if R or 0 is specified.

STACK= U}
12}

The STACK operand specifies the stacker bin into which the card is
placed after reading is completed. If this operand is omitted, stacker
number 1 is used. The following describes the characters that can be
specified.

1 Specifies stacker number 1.

2 - Specifies stacker number 2.

Source: The DEVD operand can be supplied only in the DCB macro instruction.
However, the optional operands can be supplied in the DCB m~cro instruction, the
DCB subparameter of a DO statement, or by the problem program b'efore completion
of the data control block exit routine.

EODAD= relexp

The EODAD operand specifies the address of the routine given control when the
end of an input data set is reached. Control is given to this routine when a
READ macro instruction is issued and there are no additional input records to be
retrieved. If the record format is RECFM=FS or FBS, the end-of-data condition
is sensed when a file mark is read or when more data is requested after reading a
truncated block. The end of data routine is entered when the CHECK macro
instruction determines that the READ macro instruction reached the end of the
data. If the end of the data set is reached but no EODAD address has been
supplied, the task is abnormally terminated.

When the data set has been opened for UPDA T and volumes are to be switched,
the problem program should issue a FEOV macro instruction after the EODAD
routine has been entered.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST= relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program requires additional processing
for user labels, user totaling, data control block exit routine, end-of-volume,
block count exits, to define a forms control buffer (FCB) image, or to use the
DCB ABEND exit for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit
list processing. For additional information about exit list processing, refer to the
OS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program any time before the exit is required by the problem program.

68 OS Data Management Macro Instructions

HIARCHY = to}
{I}

DCB-BSAM

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. The following describes the characters that can be specified.

o Specifies that the buffer pool is constructed in processor storage.

1 Specifies that the buffer pool is constructed in IBM 2361 Core Storage.

The HIARCHY operand can also be specified in the HIARCHY operand of a
GETPOOL macro instruction. If the HIARCHY operand is omitted from all
sources, the buffer pool is constructed in processor storage.

The buffer pool is constructed in the user region or partition within the indicated
hierarchy; if space is not available in the indicated hierarchy, the task is
abnormally terminated. The HIARCHY operand is ignored in systems that do not
have hierarchy support. The HIARCHY operand must not be specified for MVT
systems with Model 65 multiprocessing.

Source: The HIARCHY operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

KEYLEN= absexp (maximum value is 255)

The KEYLEN operand specifies the length, in bytes, for the key associated with
each data block in a direct-access device data set. If the key length is not
supplied from any source before completion of the data control block exit routine,
a key length of zero (no keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the completion
of the data control block exit routine, or by the data set label of an existing data set.

LRECL= {absexp}
{X}

The LRECL operand specifies the length, in bytes, for fixed-length records, or it
specifies the maximum length, in bytes, for variable-length records. LRECL=X is
used for variable-length spanned records that exceed 32,756 bytes. Except when
variable-length spanned records are used, the value specified for the LRECL
operand cannot exceed the value specified for the BLKSIZE operand.

Except when variable-length spanned records are used, the LRECL operand can
be omitted for BSAM; the system uses the value specified in the BLKSIZE
operand. If the LRECL value is coded, it is coded as described in the following.

For fixed-length records that are unblocked, the value specified in the LRECL
operand should be equal to the value specified in the BLKSIZE operand. For
blocked fixed-length records, the value specified in the LRECL operand should
be evenly divisible into the value specified in the BLKSIZE operand.

F or variable-length records, the value specified in LRECL must include
the maximum data length (up to 32,752 bytes) plus 4 bytes for the RDW.

For undefined-length records, the LRECL operand should be omitted; the actual

Macro Instruction Descriptions 69

length can be supplied dynamically in a READ/WRITE macro instruction. When
an undefined-length record is read, the actual length of the record is returned by
the system in the DCBLRECL field of the data control block.

When BSAM is used to create a BDAM data set with variable-length spanned
records, the LRECL value should be the maximum data length (up to 32,752)
plus four bytes for the record descriptor word (RDW), or if the logical record
length is greater than 32,756 bytes, LRECL=X is specified.

2596: The 2596 is a 96-column card read punch which reads and punches records of
up to 96 columns in length.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(R [CD
[P]

{(W [CD }
[P]
[L]

{(R [C],W [CD}

The MACRF operand specifies the type of macro instructions (READ, WRITE,
CNTRL, and NOTE/POINT) that are used with the data set being created or
processed. The BSAM MACRF operand also provides the special form
(MACRF=WL) for creating a BDAM data set. The MACRF operand can be
coded in any of the forms shown above. The following characters can be coded:

C Specifies that the CNTRL macro instruction is used with the data set.
If C is specified to be used with a card reader, a CNTRL macro
instruction must follow every input request.

L Specifies that BSAM is used to create a BDAM data set. This
character can be specified only in the combination MACRF=WL.

P Specifies that POINT macro instructions are used with the data set
being created or processed. Specifying P in the MACRF operand also
automatically provides the capability of using NOTE macro
instructions with the data set.

R Specifies that READ macro instructions are used.

W Specifies that WRITE macro instructions are used.

Note: Each READ and WRITE macro instruction issued in the problem program must
be checked for completion by a CHECK macro instruction.

Source: The MACRF operand must be specified in the DCB macro instruction.

NCP= absexp (maximum value is 99)

The NCP operand specifies the maximum number of READ IWRITE macro
instructions that will be issued before the first CHECK macro instruction is issued
to test for completion of the 110 operation. The maximum number may be less
than 99 depending on the limit established when the operating system is

70 OS Data Management Macro Instructions

DCB-BSAM

generated. If chained scheduling is specified (OPTCD=C), NCP must be
specified as more than one. If the NCP operand is omitted, one is assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before an OPEN macro
instruction is issued to open the data set.

OPTCD= {B } [T]
{C }
{H }
{Q }
{V }
{VC }
{W }
{WC}
{Z }
{ZC }

The OPTCD operand specifies the optional services that are used with the BSAM
data set. Two of the optional services (OPTCD=B and OPTCD=H) cannot be
specified in the DCB macro instruction; since all optional services must be
specified from the same source, the OPT CD operand must be omitted from the
DCB macro instruction if either of these options is requested. The following
describes the characters that can be specified; these characters can be specified in
any order (in one of the combinations shown above), and no commas are
required between characters.

C Requests that chained scheduling be used. OPTCD=C cannot be
specified if BFTEK=R is specified for the same data control block.
Also, chained scheduling cannot be specified for associated data sets or
printing on a 3525.

Q Requests that ASCII tape records in an input data set be converted to
EBCDIC code after the input record has been read, or it requests that
an output record in EBCDIC code be converted to ASCII code before
the record is written.

T Requests the user totaling facility. If this facility is requested, the
EXLST operand should specify the address of an exit list to be used.

V Specified only for a printer with the universal character set (UCS)
feature. This option unblocks data checks (permits them to be
recognized as errors) and allows ahalysis by the appropriate error
analysis routine (SYNAD routine). If the V option is omitted, data
checks are not recognized as errors.

W Specifies that the system performs a validity check on each record
written on a direct-access device. If the device is a 2321 data cell, the
system performs a validity check for each write operation whether it is
requested or not.

Z For magnetic tape, input only, the Z option requests the system to
shorten its normal error recovery procedure to consider a data check as
a permanent 110 error after five unsuccessful attempts to read a
record. This option is available only if it is selected when the

Macro Instruction Descriptions 71

operating system is generated. OPTCD=Z is used when a tape is
known to contain errors and there is no need to process every record.
The error analysis routine (SYNAD) should keep a count of permanent
errors and terminate processing if the number becomes excessive.

For direct-access devices only, the Z option requests the system to use
the search direct option to accelerate the input operations for a data
set. OPTCD=Z cannot be specified when RECFM= VT, FS, FBT, VS,
or VBS.

Note: The following describes the optional services that can be requested in the
DCB subparameter of a DD statement. If either of these options is requested, the
complete OPTCD operand must be supplied in the DD statement.

B If OPTCD=B is specified in the DCB subparameter of a DD
statement, it forces the end-of-volume (EOV) routine to disregard the
end-of -file recognition for magnetic tape.

H If OPTCD=H is specified in the DCB subparameter of a DD
statement, it specifies that the DOS/OS interchange feature is being
used with the data set.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. However, all optional services must be
requested from the same source.

RECFM= {V IT) IAn
1M)

{V IB] IAn
IS) 1M)
IT)
IBS)
IBT)

{D IB] IAn

{F IB) [An
[S) [M)
[T)
[BS]
(BT)

The RECFM operand specifies the record format and characteristics of the data
set being created or processed. All the record formats shown above can be
specified, but in those record formats that specify blocked records, the problem
program must perform the blocking and deblocking of logical records; BSAM
recognizes only data blocks. The following describes the characters that can be
specified:

A Specifies that the records in the data set contain American National
Standards Institute (ANSI) control characters. Refer to Appendix E
for a description of control characters.

B Specifies that the data set contains blocked records.

D Specifies that the data set contains variable-length ASCII tape records.
See OPTCD=Q and the BVFOFF operand for a description of how
to specify ASCII data sets .

. 72 as Data Management Macro Instructions

DCB-BSAM

F Specifies that the data set contains fixed-length records.

M Specifies that the records in the data set contain machine code control
characters. Refer to Appendix E for a description of control
characters. RECFM=M cannot be used with ASCII data sets.

S For fixed-length records, S specifies that the records are written as
standard blocks; the data set does not contain any truncated blocks or
unfilled tracks, with the exception of the last block or track in the data
set.

For variable-length records, S specifies that a record can span more
than one block. Spanned records can be read (reading a BDAM data
set) or written (creating a BDAM data set) using BSAM.

T Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one
track of a direct~access device and the remainder of the record written
on the following track(if required). Chained scheduling cannot be
used if the track-overflow feature is used.

U Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

Note: RECFM=V cannot be specified for a card reader data set or an
ASCII tape data set.

Note: The record format RECFM= VBS does not provide the spanned record function;
if this format is used, the problem program must block and segment the records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD= relexp

The SYNAD operand specifies the address of the error analysis (SYNAD) routine
to be given control when an uncorrectable input/output error occurs. The
contents of the registers when the error analysis routine is given control are
described in Appendix A of this publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can issue a RETURN macro instruction which uses the address in register 14 to
retttfn eontfel-te-fhe system. If cQutroJ is returned to the system, the system
returns control to the problem program and proceeds as though no error had been
encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions 73

DCB-QISAM

DCB - Construct a Data Control Block for QISAM

The data control block for a queued indexed sequential access method (QISAM) data
set is constructed during assembly of the problem program. The DCB macro
instruction must not be coded within the first 16 bytes of a control section (CSECT).
The DSORG and MACRF operands must be coded in the DCB macro instruction, but
the other DCB operands can be supplied from other sources. Each QISAM DCB
operand description contains a heading, "Source." The information under this heading
describes the sources which can supply the operand to the data control block.

Before a DCB macro instruction for a QISAM data set is coded, the following
characteristics of QISAM should be considered:

• The characteristics of a QISAM data set are established when the data set is
created; these characteristics cannot be changed without reorganizing the data set.
The following DCB operands establish the characteristics of the data set and can
be coded only when creating the data set: BLKSIZE, CYLOFL, KEYLEN,
LRECL, NTM, OPTCD, RECFM, and RKP.

• The data set can contain the following record formats: Unblocked fixed-length
records (F), blocked fixed-length records (FB), unblocked variable-length records
(V), or blocked variable-length records (VB).

QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume load
mode), update a record in place, or retrieve records sequentially (QISAM, scan
mode).

The track-overflow feature cannot be used to create an ISAM data set.

• When an indexed sequential data set is being created, space for the prime area of
the data set, the overflow area of the data set, and the cylinder/master index(es)
for the data set can be allocated on the same or separate volumes. For
information about space allocation, refer to the OS Job Control Language
Reference manual.

The system automatically creates one track index for each cylinder in the data set
and one cylinder index for the entire data set. The DCB NTM and OPT CD
operands can be specified to indicate that the data set requires a master index(es);
the system creates and maintains up to three levels of master indexes. The OS
Data Management Services Guide contains additional information about indexes
for indexed sequential data sets~

A record deletion option can be specified (OPTCD=L) when the ISAM data set
iSCIeated. This option allows a-Feeet=d~.Qt:-del.e.ti.oll-h¥-P.ladng a
hexadecimal value of 'FF' in the first data byte of the record (first byte of a
fixed-length record or fifth byte of a variable-length record). Records marked
for deletion are ignored during sequential retrieval by QISAM.

• Reorganization statistics can be obtained by specifying OPTCD=R when the
ISAM data set is created. These statistics can be used by the problem program to
determine the status of the overflow areas allocated to the data set.
Reorganization of ISAM data sets is described in the OS Data Management
Services Guide.

Macro Instruction Descriptions 75

When an ISAM data set is created, the records must be written with the keys in
ascending order.

These characteristics of queued indexed sequential access method data sets are
described in more detail in the OS Data Management Services Guide.

The following describes the DCB operands that can be specified when a QISAM data
set is being created or processed.

BFALN= lFJ
lDJ

The BFALN operand specifies the alignment of each buffer in the buffer pool
when the buffer pool is constructed automatically or by a GETPOOL macro
instruction. If the BF ALN operand is omitted, the system provides double word
alignment for each buffer. The following describes the characters that can be
specified:

F Specifies that each buffer is on a fullword boundary that is not also a
double word boundary.

D Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, the problem
program must provide a main-storage area for the buffers and control buffer
alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BLKSIZE= absexp (maximum value is device-dependent)

The BLKSIZE operand specifies the length, in bytes, for each data block when
fixed-length records are used, or it specifies the maximum length in bytes, for
each data block when variable-length records are used. The BLKSIZE operand
must be specified when an ISAM data set is created. When an existing ISAM
data set is processed, the BLKSIZE operand must be omitted (it is supplied by the
data set label).

Track capacity of the direct-access device being used must be considered when
the BLKSIZE for an ISAM data set is specified. For fixed-length records, the
sum of the key length, data length, and device overhead plus 10 bytes (for ISAM
use) must not exceed the capacity of a single track on the direct-access device
being used. For variable-length records the sum of the key length,
block-descriptor word length, record-descriptor word length, data length, and
device overhead plus 10 bytes (for ISAM use) must not exceed the capacity of a
single track on the direct-access device being used. Device capacity and device
overhead are described in Appendix C of this publication. For additional
information about device capacity and space allocation, refer to the OS Data
Management Services Guide.

If fixed-length records are used, the value specified in the BLKSIZE operand
must be an integral multiple of the value specified in the LRECL operand.

Source: When an ISAM data set is created, the BLKSIZE operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an

76 OS Data Management Macro Instructions

DCB-QISAM

existing ISAM data set is processed, the BLKSIZE operand must be omitted from the
other sources, allowing the data set label to supply the value.

BUFCB= relexp

The BUFCB operand specifies the address of the buffer pool control block
constructed by a BUILD macro instruction.

If the system constructs the buffer pool automatically or if the buffer pool is
constructed by a GETPOOL macro instruction, the system places the address of
the buffer pool control block into the data control block, and the BUFCB operand
should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is constructed by a BUILD or GETPOOL macro
instruction. When the data set is opened, the system computes the minimum
buffer length required and verifies that the length in the buffer pool control block
is equal to or greater than the minimum length required. The system then inserts
the computed length into the data control block.

The BUFL operand is not required for QISAM if the system acquires buffers
automatically; the system computes the minimum buffer length required and
inserts the value into the data control block.

If the buffer pool is constructed with a BUILD or GETPOOL macro instruction,
additional space is required in each buffer for system use. For a description of
the buffer length required for various ISAM operations, refer to the OS Data
Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers to be constructed by a
BUILD macro instruction, or it specifies the number of buffers to be acquired
automatically by the system. If the BUFNO operand is omitted, the system
automatically acquires two buffers.

If the GETPOOL macro instruction is used to construct the buffer pool, the
--Bl:J-FNQ-operand is IlQt--t=eq.u.i.t:ed,_--

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

Macro Instruction Descriptions 77

CYLOFL= absexp (maximum value is 99)

The CYLOFL operand specifies the number of tracks on each cylinder that is
reserved as an overflow area. The overflow area is used to contain records that
are forced off prime area tracks when additional records are added to the prime
area track in ascending key sequence. ISAM maintains pointers to records in the
overflow area so that the entire data set is logically in ascending key sequence.
Tracks in the cylinder overflow area are used by the system only if OPTCD=Y is
specified. For a more complete description of the cylinder overflow area, refer to
the space allocation section of the OS Data Management Services Guide.

Source: When an ISAM data set is created, the CYLOFL operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the CYLOFL operand must be omitted, allowing
the data set label to supply the operand.

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition (DD) statement that defines the data set being created or
processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data set.

DSORG= {IS}
{ISU}

The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following characters can be specified.

IS Specifies an indexed sequential data set organization.

ISU Specifies an indexed sequential data set that contains
location-dependent information. ISU can be specified only when an
ISAM data set is created.

Source: The DSORG operand must be specified in the DCB macro instruction. When
an ISAM data set is created, DSORG=IS or ISU must also be specified in the DCB
subparameter of the corresponding DD statement.

EODAD= relexp

The EO DAD operand specifies the address of the routine to be given control
when the end of an input data set is reached. For ISAM, this operand would
apply only to scan mode when a data set is open for an input operation. Control
is given to this routine when a GET macro instruction is issued and there are no
more input records to retrieve.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST = relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required only if the problem program uses the data control
block exit routine for additional processing or if the DCB ABEND exit is used for
ABEND condition analysis.

78 OS Data Management Macro Instructions

DCB-QISAM

Refer to Appendix D of this publication for the format and requirements for exit
list processing. For additional information about exit list processing, refer to the
as Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the associated exit is required.

HIARCHY = to}
{l}

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. The following describes the characters that can be specified.

o Specifies that the buffer pool is constructed in processor storage.

1 Specifies that the buffer pool is constructed in IBM 2361 Core Storage.

The HIARCHY operand can also be specified in a GETPOOL macro instruction.
If the HIARCHY operand is omitted from all sources, the buffer pool is
constructed in processor storage.

The buffer pool is constructed within the user region or partition within the
indicated hierarchy; if space is not available within the indicated hierarchy, the
task is abnormally terminated. The HIARCHY operand is ignored in systems that
do not have hierarchy support. The HIARCHY operand must not be specified for
MVT systems with Model 65 multiprocessing.

Source: The HIARCHY operand can be supplied in the DCB macro instruction, in the
DeB sub parameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

KEYLEN= absexp (maximum value is 255)

The KEYLEN operand specifies the length, in bytes, of the key associated with
each record in an indexed sequential data set. When block records are used, the
key of the last record in the block (highest key) is used to identify the block.
However, each logical record within the block has its own identifying key which
ISAM uses to access a given logical record.

Source: When an ISAM data set is created the KEYLEN operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the KEYLEN operand must be omitted, allowing
the data set label to supply the key length value.

LRECL= absexp (maximum value is device-dependent)

The LREeL operand specIfIes the length, In bytes, for fixed::.rengtlrTI:;cords, or -'rr---------­
specifies the maximum length, in bytes, for variable-length records. The value
specified in the LRECL operand cannot exceed the value specified in the
BLKSIZE operand. When unblocked records are used and the relative key
position (as specified in the RKP operand) is zero, the value specified in the
LRECL operand should include only the data length (the key is not written as
part of the record when RKP=O).

The track capacity of the direct-access device being used must be considered if
maximum length logical records are being used. For fixed-length records, the

Macro Instruction Descriptions 79

sum of the key length, data length, and device overhead plus 10 bytes (for ISAM
use) must not exceed the capacity of a single track on the direct-access device
being used. For variable-length records, the sum of the key length, data length,
device overhead, block-descriptor-word length, and record-descriptor-word
length plus 10 bytes (for ISAM use) must not exceed the capacity of a single
track on the direct-access device being used. Device capacity and device
overhead are described in Appendix C of this publication. For additional
information about device capacity and space allocation, refer to the as Data
Management Services Guide.

Source: When an ISAM data set is created, the LRECL operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the LRECL operand must be omitted, allowing the
data set label to supply the value.

MACRF= HPM)
HPL)
HGM[,S

HGL[,S

[K]])
[I]

[K]][,PU])
[I]

The MACRF operand specifies the type of macro instructions, the transmittal
mode, and type of search to be used with the data set being processed. The
operand can be coded in any of the combinations shown above; the following
describes the characters that can be coded.

The following characters can be specified only when the data set is being created
(load mode) or additional records are being added to the end of the data set
(resume load).

PL Specifies that PUT macro instructions are used in the locate transmittal
mode; the system provides the problem program with the address of a
buffer containing the data to be written into the data set.

PM - Specifies that PUT macro instructions are used in the move transmittal
mode; the system moves the data to be written from the problem
program work area to the buffer being used.

The following characters can be specified only when the data set is being
processed (scan mode) or when records in an ISAM data set are being updated in
place.

GL - Specifies that GET macro instructions are used in the locate transmittal
mode; the system provides the problem program with the address of a
buffer containing the logical record read.

GM - Specifies that GET macro instructions are used in the move mode; the
system moves the logical record from the buffer to the problem
program work area.

I Specifies that actual device addresses (MBBCCHHR) are used to
search for a record (or the first record) to be read.

K Specifies that a key or key class is used to search for a record (or the
first record) to be read.

80 OS Data Management Macro Instructions

DCB -QISAM

PU Specifies that PUTX macro instructions are used to return updated
records to the data set.

S Specifies that SETL macro instructions are used to set the beginning
location for processing the data set.

Source: The MACRF operand must be coded in the DCB macro instruction.

NTM= absexp (maximum value is 99)

The NTM operand specifies the number of tracks to be contained in a cylinder
index before a higher-level index is created. If the cylinder index exceeds this
number, a master index is created by the system; if a master index exceeds this
number, the next level of master index is created. The system creates up to three
levels of master indexes. The NTM operand is ignored unless the master index
option (OPTCD=M) is selected.

Source: When an ISAM data set is being created, the NTM operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
ISAM data set is being processed, master index information is supplied to the data
control block from the data set label, and the NTM operand must be omitted.

OPTCD= (I)(L)(M)(R)(U)(W)(Y]

The OPTCD operand specifies the optional services performed by the system
when an ISAM data set is being created. The following describes the characters
that can be specified; these characters can be specified in any order, and no
commas are required between characters.

I Specifies that the system uses the independent overflow areas to
contain overflew records. Allocated independent overflow areas are
not used unless OPTCD=I is specified.

L Specifies that the data set will contain records flagged for deletion. A
record is flagged for deletion by placing a hexadecimal value of 'FF' in
the first data byte. Records flagged for deletion remain in the data set
until the space is required for another record to be added to the track.
Records flagged for deletion are ignored during sequential retrieval of
the ISAM data set (QISAM, scan mode). This option cannot be
specified for blocked fixed-length records if the relative key position is
zero (RKP=O), or it cannot be specified for variable-length records if
the relative key position is four (RKP=4).

When an ISAM data set is being processed with BISAM, a record with
a duplicate key can be added to the data set (WRITE KN macro
instruction), only when OPTCD=L has been specified and the original
record (the one whose key is being duplicated) has been flagged for
deletion.

M Specifies that the system creates and maintains a master index(es)
according to the number of tracks specified in the NTM operand.

R Specifies that the system places reorganization statistics in the
DCBRORG 1, DCBRORG2, and DCBRORG3 fields of the data
control block. The problem program can analyze these statistics to
determine when to reorganize the data set. If the OPTCD operand is

Macro Instruction Descriptions 81

omitted completely, the reorganization statistics are automatically
provided. However, if the OPTCD operand is supplied, OPTCD=R
must be specified to obtain the reorganization 'statistics.

U Specifies that the system accumulates track index entries in main
storage and writes them as a group for each track of the track index.
OPTCD=U can be specified only for fixed-length records. The
entries are written in fixed-length unblocked format.

W Specifies that the system performs a validity check on each record
written. If the device is a 2321 data cell, the system performs a
validity check for each write operation whether it is requested or not.

Y Specifies that the system uses the cylinder overflow area(s) to contain
overflow records. If OPTCD= Y is specified, the CYLOFL operand
specifies the number of tracks to be used for the cylinder overflow
area. The reserved cylinder overflow area is not used unless
OPTCD=Y is specified.

Source: When an ISAM data set is created, the OPTCD operand can be supplied in
the DeB macro instruction, in the DeB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
However, all optional services must be requested from the same source. When an
existing ISAM data set is processed, the optional service information is supplied to the
data control block from the data set label, and the OPTCD operand must be omitted.

{V[B]}
RECFM= {F[B]}

The RECFM operand specifies the format and characteristics of the records in the
data set. If the RECFM operand is omitted, variable-length records (unblocked)
are assumed. The following describes the characters that can be specified.

B Specifies that the data set contains blocked records.

F Specifies that the data set contains fixed-length records.

V Specifies that the data set contains variable-length records.

Source: When an ISAM data set is created, the RECFM operand can be supplied in
the DeB macro instruction, in the DeB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
When an existing ISAM data set is processed, the record format information is supplied
by the data set label, and the RECFM operand must be omitted.

RKP= absexp

The RKP operand specifies the relative position of the first byte of the key within
each logical record. For example, if RKP=9 is specified, the key starts in the
tenth byte of the record. The delete option (OPTCD=L) cannot be specified if
the relative key position is the first byte of a blocked fixed-length record or the
fifth byte of a variable-length record. If the RKP operand is omitted, RKP=O is
assumed.

If unblocked fixed-length records are used, the key is not written as a part of the
data record, and the delete option can be specified. If blocked fixed-length
records are used, the key is written as part of each data record; either RKP must
be greater than zero or the delete option must not be used.

82 OS Data Management Macro Instructions

DCB-QISAM

If variable-length records (blocked or unblocked) are used, RKP must be four or
greater if the delete option is not specified; if the delete option is specified, RKP
must be specified as five or greater. The four additional bytes allow for the block
descriptor word in variable-length records.

Source: When an ISAM data set is created, the RKP operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DO statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the RKP information is supplied by the data set
label and the RKP operand must be omitted.

SYNAD= relexp

The SYNAD operand specifies the address of the error analysis routine given
control when an uncorrectable input/output error occurs. The contents of the
registers when the error analysis routine is given control are described in
Appendix A of this publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can issue a RETURN macro instruction which uses the address in register 14 to
return control to the system. When control is returned in this manner, the system
returns control to the problem program and proceeds as though no error had been
encountered; if the error analysis routine continues processing, the results may be
unpredictable.

For ISAM data sets, if the error analysis routine receives control from the Close
routine, bit 3 of the IOBFLAG 1 field in the input/output block is set to one. In
this case, the error analysis routine must not issue a CLOSE macro instruction.
To complete close processing, the error analysis routine must return control to the
Close routine with a branch to the address in register 14.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time.

"--"'.~"'~_~ __ ~ __ '_~M.v·· ___ ~"_, __ ~ _.~ ______ ~_,_ _._v~_. ____ ."_~_._. __ ~.~~ .. _______ .. __ . _______ .~._~ .. _._ _.,_. __ _
~.-.-.-.-.~---"--~.-------.--- .. ---.-,.-........ - .. --......-.--~-~-----.---.-,---.. ---." .. --.,---.~",--

Macro Instruction Descriptions 83

DCB-QSAM

DCB - Construct a Data Control Block for QSAM

The data control block for the queued sequential access method (QSAM) is constructed
during assembly of the problem program. The DCB macro instruction must not be
coded within the first 16 bytes of a control section (CSECT). The DSORG and
MACRF operands must be coded in the DCB macro instruction, but the other DCB
operands can be supplied, to the data control block, from other sources. Each DCB
operand description contains a heading, "Source." The information under this heading
describes the sources from which the operand can be supplied.

Before a DCB macro instruction for creating or processing a QSAM data set is coded,
the following characteristics of QSAM data sets should be considered.

All record formats can be processed.

Automatic blocking and deblocking of records is provided.

Automatic buffer control is provided; this function fills input buffers when they
are empty and writes output buffers when they are full.

A logical record interface is provided; a GET macro instruction retrieves the next
sequential logical record from the input buffer, and a PUT macro instruction
places the next sequential logical record in the output buffer.

• 1/ 0 operations are synchronized automatically.

Four transmittal modes (move, locate, data, and substitute) are provided. These
transmittal modes provide flexibility in buffer management and data movement
between buffers.

Keys for direct-access device records cannot be read or written using QSAM.

• Specifying the DEVD operand in the DCB macro instruction can cause the
program to be device-dependent.

These characteristics of queued sequential access method data sets are described in
more detail in the OS Data Management Services Guide.

The following describes the operands that can be specified in the DCB macro
instruction for a QSAM data set.

{F}
BFALN= {D}

The BF ALN operand specifies the boundary alignment of each buffer in the
buffer pool when the buffer pool is constructed automatically or by a GETPOOL
lllaCIeJ instltlctielfl. If the BFALN o})erand is omitted, the system pro¥ides.;>--__ _
doubleword alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a
block prefix, the block prefix is entered at the beginning of the buffer, and data
alignment depends on the length of the block prefix. For a description of how to
specify the block prefix length, refer to the BUFOFF operand.

Macro Instruction Descriptions 85

The following describes the characters that can be specified.

F Specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D Specifies that each buffer is on a doubleword boundary.

When exchange buffering (BFTEK=E) is specified and the records are in blocked
fixed-length format, each buffer segment is aligned as specified in the BFALN
operand.

If the BUILD macro instruction is used to construct the buffer pool, the problem
program must control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label for an existing data set. If
both the BFALN and BFTEK operands are specified, they must be supplied from the
same source.

{SI
BFTEK= {EI

{AI

The BFTEK operand specifies the buffering technique that is used when the
QSAM data set is created or processed. If the BFTEK operand is omitted, simple
buffering is assumed. The following describes the characters that can be
specified.

S Specifies that simple buffering is used.

E Specifies that exchange buffering is used. Exchange buffering can be
used only with record formats (RECFM operand) F, FB, FBS, or FS~
the track-overflow feature cannot be used with exchange buffering. If
exchange buffering is used with ASCII tape records, the BUFOFF
operand must be zero (no block prefix).

A Specifies that a logical record interface is used for variable-length
spanned records. When BFTEK=A is specified, the Open routine
acquires a record area equal to the length specified in the LRECL field
plus 32 additional bytes for control information. When a logical
record interface is requested, the system uses the simple buffering
technique.

To use the simple or exchange buffering technique efficiently, the user should be
familiar with the four transmittal modes for QSAM and the buffering techniques
as described in the as Data Management Services Guide.

Source: The BYrEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFTEK and BF ALN operands are
specified, they must be supplied from the same source.

BLKSIZE= absexp (maximum value is 32,760)

The BLKSIZE operand specifies the tength, in bytes, of a data block for
fixed-length records, or it specifies the maximum length, in bytes, of a data block
for variable-length or undefined-length records.

86 OS Data Management Macro Instructions

DCB-QSAM

The actual value that can be specified in the BLKSIZE operand depends on the
device type and record format being used. Device capacity is shown in Appendix
C of this publication. For additional information about device capacity, refer to
the OS Data Management Services Guide. For direct-access devices when the
track-overflow feature is used or variable-length spanned records are being
processed, the BLKSIZE operand can be up to the maximum value. For other
record formats used with direct-access devices, the value specified in the
BLKSIZE operand cannot exceed the capacity of a single track.

Since QSAM provides a logical record interface, the device capacities shown in
Appendix C also apply to a maximum length logical record. One exception to the
device capacity for a logical record is the size of variable-length spanned records.
Their length can exceed the value specified in the BLKSIZE operand (see the
description of the LRECL operand).

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified in the
LRECL operand; otherwise, the system will adjust the blocksize downward to the
nearest multiple. If the records are unblocked fixed-length records, the value
specified in the BLKSIZE operand must equal the value specified in the LRECL
operand if the LRECL operand is specified.

If variable-length records are used, the value specified in the BLKSIZE operand
must include the data length (up to 32,756 bytes) plus four bytes required for the
block descriptor word (BDW). For format-D variable-length records, the
minimum blocksize is 18 bytes and the maximum is 2048 bytes.

If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

If variable-length spanned records are used, the value specified in the BLKSIZE
operand can be the best one for the device being used or the processing being
done. When unit record devices (card or printer) are used, the system assumes
records are unblocked; the value ~pecified for the BLKSIZE operand is equivalent
to- one print line or one card. A logical record that spans several blocks is written
one segment at a time.

If undefined-length records are used, the problem program can insert the actual
record length into the DCBLRECL field. See the description of the LRECL
operand.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

---,-------:-------·--------B-BF€B=-relexp-------·- ----------,-----.----------- .

The BUFCB operand specifies the address of the buffer pool control block
constructed by a BUILD or BUILDRCD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro
instruction, the system places the address of the buffer pool control block into the
data control block, and the BUFCB operand should be omitted.

Macro Instruction Descriptions 87

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL= absexp (maximum value is 32,760)

The BUFL operand specifies the length, in bytes, of each buffer in the buffer pool
when the buffer pool is acquired automatically. The system acquires buffers with
a length equal to the value specified in the BLKSIZE operand if the BUFL
operand is omitted; if the problem program requires larger buffers, the BUFL
operand is required. If the data set is for card image mode, the BUFL operand is
specified as 160 bytes. The description of the DEVD operand contains a
description of card image mode.

If the data set contains ASCII tape records with a block prefix, the value specified
in the BUFL operand must also include the length of the block prefix.

If the buffer pool is constructed by a BUILD, BUILDRCD, or GETPOOL macro
instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block exit routine.

BUFNO= absexp (maximum value is 255)

The BUFNO operand specifies the number of buffers in the buffer pool
constructed by a BUILD or BUILDRCD macro instruction, or it specifies the
number of buffers to be acquired automatically. If the BUFNO operand is
omitted and the buffers are acquired automatically, the system acquires three
buffers if the device is a 2540 card read punch or two buffers for any other
device type.

If the buffer pool is constructed by a GETPOOL macro instruction, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

I absexp}
BUFOFF= ILl

The BUFOFF operand specifies the length, in bytes, of the block prefix used with
ASCII tape data sets. When QSAM is used to read ASCII tape records, only the
data portion (or its address) is passed to the problem program; the block prefix is
not available to the problem program. Block prefixes (except BUFOFF=L)
cannot be included in QSAM output records. The following can be specified in
the BUFOFF operand:

absexp - Specifies the length, in bytes, of the block prefix. This value can be
from 0 to 99 for an input data set. The value must be 0 for writing
an output data set with fixed-length or undefined-length records.

L Specifies that the block prefix is 4 bytes long and contains the block
length. BUFOFF=L is used when format-D records (ASCII) are
processed. QSAM uses the four bytes as a block-descriptor word
(BDW).

88 OS Data Management Macro Instructions

DCB-QSAM

Source: The BUFOFF operand can be supplied in the DeB macro instruction, in the
DeB sub parameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set.

DDNAME= symbol

The DDNAME operand specifies the name used to identify the job control
language data definition (DD) statement that defines the data set being created or
processed.

Source: The DDNAME operand can be supplied in the DeB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data set.

DEVD= IDA
ITA [,DEN= IO})

U}
12}
13l

IPT [,CODE= IA} I
IB}
IC}
IF}
U}
IN}
IT}

IPR (,PRTSP= IO})
U}
12}
13}

[, TRTCH= IC} I
IE}
IT}
lET}

}
}

}

IPC (,MODE= (CI (RII(,STACK= U}Il,FUNC= un}
(EI 12} IP }

IPW(XTI }
IR }
IRP[DI }
{RW(TI }
{RWP(XTIlDI }
{W(TI }

{RD (,MODE= (CI (OIIl,STACK= un }
(EI (RI {2}

The DEVD operand specifies the device type on which the data set can or does
....... -..... -----..... ---.. -.-.-.-.----.---.. ----.---·-··-restde.-ihe device types above-are-shuwn with the optional OpeTand(-s}-t-hat-ean-·--···----··· .. ··----

be coded when a particular device is used. The devices are listed in order of
device independence. For example, if DEVD=DA is coded in a DeB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the
data control block constructed during assembly could later be used for any of the
other devices, but if DEVD=RD is coded, the data control block can be used only
with a card reader or card reader punch. For MVT systems, only DA or TA can
be specified when the DEVD operand is coded.

Macro Instruction Descriptions 89

If system input is directed to an intermediate storage device, the DEVD operand
is omitted, and the job control language for the problem program must designate
the system input to be used. Similarly, if system output is directed to an
intermediate storage device, the DEVD operand is omitted, and the job control
language for the problem program must designate the system output to be used.

The following describes the device type and the optional operands that can be
specified for each device type.

DA- Specifies that the data control block can be used for a direct-access
device (or any of the other device types described following DA).

TA- Specifies that the data control block can be used for a magnetic tape
data set (or any of the other device types described following TA). If
T A is coded, the following optional operands can be coded:

IO}
U}

DEN= 12}
13}

The DEN operand specifies the recording density in the number of
bits-per-inch per track as shown in the following chart.

DEN 7-Track Tape 9-Track Tape 9-Track Tape
(Phase Encoded)

0 200
1 556
2 800 800
3 1600

NRZI is for non-return-to-zero-inverse mode
PE is for phase encoded mode

9-Track Tape
Dual Density

800 (NRZI)
1600 (PE)

If the DEN operand is not supplied by any source. The highest applicable
density is assumed.

TRTCH= IC}
IE}
lET}
IT}

The TRTCH operand specifies the recording technique for 7-track tape.
One of the above character combinations can be coded. If the TRTCH
operand is omitted, odd parity with no translation or conversion is assumed.
The following describes the characters that can be specified:

C Specifies that the data-conversion feature is used with odd parity
and no translation.

E Specifies even parity with no translation or conversion.

ET Specifies even parity with BCDIC to EBCDIC translation
required, but no data-conversion feature.

T Specifies that BCDIC to EBCDIC translation is required with
odd parity and no data-conversion feature.

90 OS Data Management Macro Instructions

DCB-QSAM

PT - Specifies that the data control block is used for a paper tape device (or any
of the other devices following PT). If PT is coded, the following optional
operand can be coded.

CODE= {AI
{BI
{CI
IFI
tIl
{NI
{TI

The CODE operand specifies the code in which the data was punched. The
system converts these codes. to EBCDIC code. If the CODE operand is not
supplied by any source, CODE=I is assumed. The following describes the
characters that can be specified.

A Specifies 8-track tape in ASCII code.

B Specifies Burroughs 7 -track tape.

C Specifies National Cash Register 8-track tape.

F Specifies Friden 8-track tape.

I Specifies IBM BCD perforated tape and transmission code with
8-tracks.

N Specifies that no conversion required.

T Specifies Teletype 5-track tape.

PR - Specifies that the data control block is used for an on-line printer (or any of
the other device types following PR). If PR is coded, the following optional
operand can be coded.

PRTSP= {Ol
ttl
121
131

The PRTSP operand specifies the line spacing on the printer. This operand
is not valid if the RECFM operand specifies either machine (RECFM=M)
or ANSI (RECFM=A) control characters. If the PRTSP operand is not
specified from any source, one is assumed. The following describes the
characters that can be specified.

o Specifies that spacing is suppressed (no space).

1 Specifies single-spacing.

2 Specifies double-spacing (one blank line between printed lines).

3 Specifies triple-spacing (two blank lines between printed lines).

PC - Specifies that the data control block is used for a card punch (or any of the
other device types following PC). If PC is coded, the following optional
operands can be specified.

Macro Instruction Descriptions 91

MODE= [C] [R]
[E]

The MODE operand specifies the mode of operation for the card punch.
The following describes the characters that can be specified. If the MODE
operand is omitted, E is assumed.

C Specifies that the cards are punched in card image mode. In card
image mode, the 12 rows in each card column are punched from
two consecutive bytes of main storage. Rows 12 through 3 are
punched from the low-order 6 bits of one byte, and rows 4-9 are
punched from the 6 low-order bits of the following byte.

E Specifies that cards are punched in EBCDIC code.

R Specifies that the program runs in read column eliminate mode
(3505 card reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of a DD
statement, either C or E must be specified if R is specified.

STACK= {II
{21

The STACK operand specifies the stacker bin into which the card is placed
after punching is completed. If this operand is omitted, stacker number 1 is
used. The following describes the characters that can be specified:

1 -Specifies stacker number 1.

2 -Specifies stacker number 2.

FUNC= {I I
{P I
{PW[XT] I
{R I
{RP[D) I
{RW[T) I
{RWP[XT) [D) }
{W[T] I

The FUNC operand defines the type of 3525 card punch data sets that are
used. If the FUNC operand is omitted from all sources, a data set opened
for input defaults to read only, and a data set opened for output defaults to
punch only. The following describes the characters that can be specified in
the FUNC operand.

D Specifies that the data protection option is to be used. The data
protection option prevents punching information into card
columns that already contain data. When the data protection
option is used, an 80-byte data protection image (DPI) must
have been previously stored in SYS l.IMAGELIB. Data
protection applies only to the output punch portion of a read and
punch or read, punch, and print operation.

I Specifies that the data in the data set is to be punched into cards
and printed on the cards; the first 64 characters are printed on
line 1 of the card and the remaining 16 characters are printed on
line 3.

92 OS Data Management Macro Instructions

DCB-QSAM

P Specifies that the data set is for punching cards. See the
description of the character X for associated punch and print data
sets.

R Specifies that the data set is for reading cards.

T Specifies that the two-line option is used. The two-line print
option allows two lines of data to be printed on the card (lines 1
and 3). If T is not specified, the multiline print option is used;
this allows printing on all 25 possible print lines. In either case,
the data printed may be the same as the data punched in the
card, or it may be entirely different data.

W Specifies that the data set is for printing. See the description of
the character X for associated punch and print data sets.

X Specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to
distinguish the 3525 printer output data set from the 3525 punch
output data set.

Note: If data protection is specified, the data protection image (DPI) must
be specified in the FCB subparameter of the DD statement for the data set.

RD - Specifies that the data control block is used with a card reader or card read
punch. If RD is specified, the data control block cannot be used with any
other device type. When RD is coded, the following optional operands can
be specified.

MODE= [CI [01
[EI [RI

The MODE operand specifies the mode of operation for the card reader.
The following describes the characters that can be specified.

C Specifies that the cards to be read are in card image mode. In
card image mode, the 12 rows of each card column are read into
two consecutive bytes of main storage. Rows 12 through 3 are
read into the low-order 6 bits of one byte, and rows 4 through 9
are read into the low-order 6 bits of the following byte.

E Specifies that the cards to be read contain data in EBCDIC code.

o Specifies that the program runs in optical mark read mode (3505
card reader only).

R Specifies that the program runs in read column eliminate mode
(3505 card reader and 3525 card punch, read feature).

Note: If the MODE operand for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if R or 0
is specified.

Macro Instruction Descriptions 93

STACK= U}
{2}

The STACK operand specifies the stacker bin into which the card is placed
after reading is completed. If this operand is omitted, stacker number 1 is
used. The following describes the characters that can be specified.

t Specifies stacker number 1.

2 Specifies stacker number 2.

Source: The DEVD operand can be supplied only in the DCB macro instruction.
However, the optional operands can be supplied in the DCB macro instruction, the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DSORG= IPS}
{PSU}

The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following can be specified in the DSORG operand:

PS Specifies a physical sequential data set.

PSU - Specifies a physical sequential data set that contains
location-dependent information.

Source: The DSORG operand must be coded in the DCB macro instruction.

EODAD= relexp

The EODAD operand specifies the address of the routine given control when the
end of an input data set is reached. Control is given to this routine when a GET
macro instruction is issued and there are no additional records to be retrieved. If
the record format is RECFM=FS or FBS the end-of-data condition is sensed
when file mark is read or if more data is requested after reading a truncated
block. A GET macro instruction should not be issued after an end-of-data
condition is sensed. If the end of the data set has been reached but no EODAD
address has been supplied to the data control block, the task is abnormally
terminated.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set has been reached.

{ACC}
EROPT= {SKP}

{ABE}

The EROPT operand specifies the action taken by the system when an
uncorrectable input/output data validity error occurs and no error analysis
(SYNAD) routine address has been provided, or it specifies the action taken by
the system after the error analysis routine has returned control to the system with
a RETURN macro instruction. The specified action is taken for input operations
or for output operations to a printer.

Uncorrectable input/output errors reSUlting from channel operations or
direct-access operations that make the next record inaccessable cause the task to
be abnormally terminated regardless of the action specified in the EROPT
operand.

94 OS Data Management Macro Instructions

DCB-QSAM

ACC - Specifies that the problem program accepts the block causing the error.
This action can be specified when a data set is opened for INPUT,
RDBACK, UPDAT, or OUTPUT (OUTPUT applies to printer data
sets only).

SKP - Specifies that the block that caused the error is skipped. Specifying
SKP also causes the buffer associated with the data block to be
released. This action can be specified when a data set is opened for
INPUT, RDBACK, or UPDAT.

ABE - Specifies that the error results in the abnormal termination of the task.
This action can be specified when the data set is opened for INPUT,
OUTPUT, RDBACK, or UPDAT.

If the EROPT operand is omitted, the ABE action is assumed.

Source: The EROPT operand can be specified in the DCB macro instruction, in the
DCB sub parameter of a DD statement, or by the problem program at any time. The
problem program can also change the action specified at any time.

EXLST = relexp

The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program requires additional processing
for user labels, . user totaling, data control block exit routine, end-of -volume,
block count exits, to define a forms control buffer (FCB) image, or to use the
DCB ABEND exit for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit
list processing. For additional information about exit routine processing, refer to
the OS Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program any time before the exit is required by the problem program.

HIARCHY = {O}
{l}

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. The following describes the characters that can be specified:

o Specifies that the buffer pool is constructed in processor storage.

1 Specifies that the buffer pool is constructed in IBM 2361 Core Storage.

The storage hierarchy can also be specified in a GETPOOL macro instruction. If
the HIARCHY operand is omitted from all sources, the system constructs the
buffer pool in processor storage.

The buffer pool is constructed in the user region or partition within the indicated
hierarchy; if space is not available indicated hierarchy, the task is abnormally
terminated. The HIARCHY operand is ignored in systems that do not have
hierarchy support. The HIARCHY operand must not be specified for MVT
systems with Model 65 multiprocessing.

Macro Instruction Descriptions 95

Source: The HIARCHY operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or in the HIARCHY operand of a GETPOOL
macro instruction.

LRECL= {absexp I {XI

The LRECL operand specifies the length, in bytes, for fixed-length logical
records, or it specifies the maximum length, in bytes for variable-length or
undefined-length (output only) logical records. The value specified in the
LRECL operand cannot exceed the value specified in the BLKSIZE operand
except when variable-length spanned records are used.

For fixed-length records that are unblocked, the value specified in the LRECL
operand must be equal to the value specified in the BLKSIZE operand. For
blocked fixed-length records, the value specified in the LRECL operand must be
evenly divisible into the value specified in the BLKSIZE operand.

For variable-length logical records, the value specified in the LRECL operand
must include the maximum data length (up to 32,752) plus four bytes for the
record-descriptor word (RDW).

For undefined-length records, the problem program must insert the actual logical
record length into the DCBLRECL field before writing the record, or the
maximum length record will be written.

For variable-length spanned records, the logical record length (LRECL) can
exceed the value specified in the BLKSIZE operand, and a variable-length
spanned record can exceed the maximum blocksize. When the logical record
length exceeds the maximum blocksize, the logical record length is specified as
LRECL=X.

2596: The 2596 is a 96-column card read punch which reads and punches records of
up to 96 columns in length.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(G {M[Cn
{L I
{T I
{O I

{(P {M I
{L I
{T I
{O I

{(G {M[Cn
{L I
{T I
{O I

) I

[C)) I

,P {MIlC]) I
{LI
{TI
{Ol

The MACRF operand specifies the type of macro instructions (GET, PUT or
PUTX, CNTRL, RELSE, and TRUNC) and the transmittal modes (move, loca~e,

96 OS Data Management Macro Instructions

DCB-QSAM

data, and substitute) that are used with the data set being created or processed.
The operand can be coded in any of the combinations shown above; the following
describes the characters that can be coded:

C Specifies that the CNTRL macro instruction is used with the data set.
If the CNTRL macro instruction is specified, the data set should be
for a card reader (stacker selection) or printer (carriage and spacing
control). The CNTRL option can be specified with GET in the move
mode only.

D Specifies that the data transmittal mode is used (only the data portion
of a record is moved to or from the work area). Data mode is used
only with variable-length spanned records.

G Specifies that GET macro instructions are used. Specifying G also
provides the routines that allow the problem program to issue RELSE
macro instructions.

L Specifies that the locate transmittal mode is used; the system provides
the address of the buffer containing the data.

M Specifies that the move transmittal mode is used; the system moves the
data from the buffer to the work area in the problem program.

P Specifies that PUT or PUTX macro instructions are used. Specifying P
also provides the routines that allow the problem program to issue
TRUNC macro instructions.

T Specifies that the substitute transmittal mode is used; the system
substitutes a buffer for a work area contained in the problem program.

Note: For data sets on paper tape that are processed by QSAM, only MACRF=(GM)
can be specified.

Source: The MACRF operand can be supplied only in the DCB macro instruction.

IB I
IC I
IH I
IQ I
ID I

OPTCD= IDC I [T)
IW I
IWC I
IZ I
IZC I

___ 'Ih~ OPTCD~Qerand swcifies the.Q.plkmaLKeryic~e~_.use.d with the QSAM data
set. Two of the optional services (OPTCD=B and OPTCD=H) cannot be
specified in the DCB macro instruction. Since all optional services must be
specified from the same source, the OPTCD operand must be omitted from the
DCB macro instruction if either of these options is requested. The following
describes the characters that can be specified.

Macro Instruction Descriptions 97

C Requests that chained shceduling be used. OPTCD=C cannot be
specified when either BFTEK=A or BFTEK=R is specified for the
same data control block. Also, chained scheduling cannot be specified
for associated data sets or printing on a 3525.

Q Request that ASCII tape records in an input data set be converted to
EBCDIC code when the input record has been read, or an output
record in EBCDIC code be converted to ASCII code before the record
is written.

T Requests the user totaling facility. If this facility is requested, the
EXLST operand should specify the address of an exit list to be used.

U Specified only for a printer with the universal-character-set feature.
This option unblocks data checks (permits them to be recognized as
errors) and allows analysis by the appropriate error analysis routine
(SYNAD routine). If the U option is omitted, data checks are not
recognized as errors.

W Specifies that the system performs a validity check for each record
written on the direct-access device being used. If the device is a 2321
data cell, the system performs a validity check whether it is requested'
or not.

Z For magnetic tape, input only, the Z option requests the system to
shorten its normal error recovery procedure to consider a data check as
a permanent I/O error after five unsuccessful attempts to read a
record. This option is available only if it is selected when the
operating system is generated. OPTCD=Z is used when a tape is
known to contain errors and there is no need to process every record.
The error analysis routine (SYNAD) should keep a count of permanent
errors and terminate processing if the number becomes excessive.

For direct-access devices only, the Z option requests the system to use
the search direct option to accelerate the input operations for a data
set. OPTCD=Z cannot be specified when RECFM= UT, FS, FBT, VS,
or VBS.

Note: The following describes the optional services that can be specified in the DCB
subparameter of a DD statement. If either of these options is requested, the complete
OPTCD operand must be supplied in the DD statement.

B If OPTCD=B is specified in the DCB subparameter of a DD statement, it
forces the end-of-volume (EOV) routine to disregard the end-of-file
recognition for magnetic tape.

H If OPTCD=H is specified in the DCB sub parameter of a DD statement, it
specifies that the DOS/OS interchange feature is being used with the data
set.

98 OS Data Management Macro Instructions

DCB-QSAM

IV [T [AU
[M]

[B
[S
[T

RECFM= IV [BS [AU
[BT [M]
[ST]
[BST]

ID [B [AU

[B
[S

IF [T [AU
[BS [M]
[BT

The RECFM operand specifies the record format and characteristics of the data
set being created or processed. All record formats can be used in QSAM. The
following describes the characters that can be specified.

A Specifies that the records in the data set contain American National
Standards Institute (ANSI) control characters. Refer to Appendix E
for a description of control characters.

B Specifies that the data set contains blocked records.

D Specifies that the data set contains variable-length ASCII tape records.
See OPTCD=Q and the BVFOFF operand for a description of how
to specify ASCII data sets.

F Specifies that the data set contains fixed-length records.

M Specifies that the records in the data set contain machine code control
characters. Refer to Appendix E for a description of control
characters. RECFM=M cannot be used with ASCII data sets.

S For fixed-length records, S specifies that the records are written as
standard blocks; the data set does not contain any truncated blocks or
unfilled tracks, with the exception of the last block or track in the data
set.

For variable-length records, S specifies that a record can span more
than one block. If spanned records are used, exchange buffering

-·~·-~tB-FFE-K: - E-)~eanfl<:)t-be-s-peetf.ied~-----",,~------~----~-··-----,,·-._- -.-----~--.-~ -...~ -...

T . Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one
track and the remainder of the record on the following track (if
required). Chained scheduling (OPTCD=C) and exchange buffering
(BFTEK=E) cannot be used if the track-overflow feature is used.

V Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

Macro Instruction Descriptions 99

Note: RECFM=V cannot be specified for a card reader data set or an
ASCII tape data set.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD= relexp

The SYNAD operand specifies the address of the error analysis routine given
control when an uncorrectable input/output error occurs. The contents of the
registers when the error analysis routine is given control are described in
Appendix A of this publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers
when it regains control from the error analysis routine. The error analysis routine
can issue a RETURN macro instruction that uses the address in register 14 to
return control to the system.

If the error condition was the result of a data-validity error, the control program
takes the action specified in the EROPT operand; otherwise, the task is
abnormally terminated. The control program takes these actions when the
SYNAD operand is omitted or when the error analysis routine returns control.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

100 OS Data Management Macro Instructions

DCBD - BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM

DCBD - Provide Symbolic Reference to Data Control Blocks (BDAM, BISAM,
BPAM, BSAM, QISAM, and QSAM)

The DCBD macro instruction is used to generate a dummy control section that
provides symbolic names for the fields in one or more data control blocks. The names
and attributes of the fields appear as part of the description of each data control block
in the OS System Control Blocks publication. Attributes of the symbolically named
fields in the dummy section are the same as the fields in the data control blocks, with
the exception of fields containing 3-byte addresses. The symbolically named fields
containing 3-byte addresses have length attributes of four and are aligned on fullword
boundaries.

The name of the dummy control section generated by a DCBD macro instruction is
IHADCB The use of any of the symbolic names provided by the dummy section must
be preceded by a USING instruction specifying IHADCB and a dummy section base
register (which contains the address of the actual data control block). The DCBD
macro instruction can only be issued once within any assembled module; however, the
resulting symbolic names can be used for any number of data control blocks by
changing the address in the dummy section base register. The DCBD macro instruction
can be coded at any point in a control section; if coded at any point other than at the
end of a control section; however, the control section must be resumed by coding a
CSECT instruction.

The DCBD macro instruction is written as follows:

blank DCaD [DSORG=([[a~ (,DA] [,IS] [,LR] [,PO] [,Ps] [QS~J
~DEVD=([DA] [,PC] [,PRJ [,PT] [,RD] [, TA] [,MR]~

DSORG= ([GS))
([BS)[,DA)[,IS)[,LR)[,PO)[,PS)[,QS))

The DSORG operand specifies the types of data control blocks for which
symbolic names are provided. If the DSORG operand is omitted, the DEVD
operand is ignored, and symbolic names are provided only for the "foundation
block" portion that is common to all data control blocks. One or more of the
following pairs of characters can be specified; each pair of characters must be
separated by a comma:

BS -

DA

IS

LR

PO -

Specifies a data control block for a direct data set.

Specifies a data control block for an indexed sequential data set.

Specifies a dummy section for the logical record length field
(DCBLRECL) only.

Specifies a data control block for a partitioned data set.

Macro Instruction Descriptions 101

PS Specifies a data control block for a sequential data set. PS includes
both BS and QS.

QS Specifies a data control block for a sequential data set and queued
access method.

GS - Specifies a data control block for graphics~ this operand cannot be
used in combination with any of the above.

DEVD= (DAJ[,PC)[,PR)[,PT)[,RD)[, T AH,MR)

The DEVD operand specifies the types of devices on which the data set can
reside. If the DEVD operand is omitted and a sequential data set is specified in
the DSORG operand, symbolic names are provided for all of the device types
listed below. One or more of the following pairs of characters can be specified;
each pair of characters must be separated by a comma:

DA­

PC

PR

PT

RD

TA

MR

Direct-access device

Online punch

Online printer

Paper tape

Online card reader or read punch feed

Magnetic tape

Magnetic character reader

102 OS Data Management Macro Instructions

ESETL - QISAM

ESETL - End Sequential Retrieval (QISAM)

The ESETL macro instruction ends the sequential retrieval of data from an indexed
sequential data set and causes the buffers associated with the specified data control
block to be released. An ESETL macro instruction must separate SETL macro
instructions issued for the same data control block.

The ESETL macro instruction is written as follows:

[symbol] ESETL I deb address

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block opened
for the indexed sequential data set being processed.

Macro Instruction Descriptions 103

FEOV - BSAM and QSAM

FEOV - Force End of Volume (BSAM and QSAM)

The FEOV macro instruction causes the system to assume an end-of -volume
condition, and causes automatic volume switching. Volume positioning for magnetic
tape can be specified by the option operand. If no option is coded, the positioning
specified in the OPEN macro instruction is used. Output labels are created as required
and new input labels are verified. The standard exit routines are given control as
specified in the data control block exit list. For BSAM, all input and output operations
must be tested for completion before the FEOV macro instruction is issued. The
end-of-data-set (EODAD) routine is given control if an input FEOV macro
instruction is issued for the last volume of an input data set.

The FEOV macro instruction is written as follows:

[symbol] FEOV [
,REWIND]

deb address , LEAVE

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for an
opened sequential data set.

The following operands request optional services.

REWIND - Requests that the system position the tape at the load point regardless
of the direction of processing.

LEAVE Requests that the system position the tape at the logical end of the
data set on that volume; this option causes the tape to be positioned at
a point after the tapemark that follows the trailer labels.

Macro Instruction Descriptions 105

FIND-BPAM

FIND - Establish the Beginning of a Data Set Member (BP AM)

The FIND macro instruction causes the system to use the address of the first block of a
specified partitioned data set member as the starting point for the next READ macro
instruction for the same set. All previous input and output operations that specified the
same data control block must have been tested for completion before the FIND macro
instruction is issued.

The FIND macro instruction is written as follows:

[symbol] FIND deb address, {name address, D }
relative address list, C

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened partitioned data set being processed.

na';'e address - RX-Type Address, (2-12), or (0)

The name address operand specifies the main-storage address of a doubleword
that contains the data set member name. The name must start in the first byte of
the double word and be padded on the right (if necessary) to complete the
eight-byte doubleword.

D Specifies that only a member name has been supplied, and the access
method must search the directory of the data set indicated in the data
control block to find the location of the member.

relative address list - RX-Type Address, (2-12), or (0)

The relative address list operand specifies the main-storage address that contains
the relative address (TTRK) for the beginning of a data set member. The relative
address can be a list entry completed by using a BLDL macro instruction for the
data set being processed, or the relative address can be supplied by the problem
program.

C Specifies that a relative address has been supplied, and no directory search is
required. The relative address supplied is used directly by the access method
for the next input operation.

Macro Instruction Descriptions 107

Completion Codes

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

name address, D

00

04

08

Successful execution

Name not found

Permanent input/output
error found during
directory search

108 OS Data Management Macro Instructions

relative address list, C

00 - At all times. If the relative
address is in error, execution
of the next READ macro
instruction causes control to
be passed to the error
analysis (SYNAD) routine.

FREEBUF - BDAM, BISAM, BPAM, and BSAM

FREEBUF - Return a Buffer to a Pool (BDAM, BISAM, BPAM, and BSAM)

The FREEBUF macro instruction causes the system to return a buffer to the buffer
pool assigned to the specified data control block. The buffer must have been acquired
using a GETBUF macro instruction.

The FREEBUF macro instruction is written as follows:

[symbol] FREEBUF deb address, register

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for an
opened data set to which the buffer pool has been assigned.

register - (2-12)

The register operand specifies one of registers 2 through 12 that contains the
address of the buffer being returned to the buffer pool.

Macro Instruction Descriptions 109

FREEDBUF - BDAM and BISAM

FREEDBUF - Return a Dynamically Obtained Buffer (BDAM and BISAM)

The FREEDBUF macro instruction causes the system to return a buffer to the buffer
pool assigned to the specified data control block. The buffer must have been acquired
through dyn'amic buffering; that is, by coding'S' for the area address operand in the
associated READ macro instruction.

Note: A buffer acquired dynamically can also be released by a WRITE macro
instruction; refer to the description of the WRITE macro instruction for BDAM ,or
BISAM.

The FREEDBUF macro instruction is written as follows:

[symbol] FREEDBUF decb address, { ~} , deb address

deeb address - RX-Type Address, (2-12), or (0)

The deeb address operand specifies the address of the data event control block
(DECB) used or created by the READ macro instruction that acquired the buffer
dynamically.

K Specifies that BISAM is being used.

D Specifies that BDAM is being used.

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened data set being processed.

Macro Instruction Descriptions 111

FREEPOOL - BDAM, BISAM, BPAM, BSAM, QISAM and QSAM

FREEPOOL - Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The FREEPOOL macro instruction causes an area of main storage, previously assigned
as a buffer pool for a specified data control block, to be released. The main-storage
area must have been acquired either automatically or by the execution of a GETPOOL
macro instruction. For queued access methods, the FREEPOOL macro instruction
must not be issued until after a CLOSE macro instruction has been issued for all the
data control blocks using the buffer pool. For basic access methods, the FREEPOOL
macro instruction can be issued as soon as the buffers are no longer required. A buffer
pool should be released only once, regardless of the number of data control blocks
sharing the buffer pool.

If BFALN=F is supplied from a source other than the DCB macro instruction, the
CLOSE macro instructions removes the bit that designates fullword alignment from the
data control block. In this case, if a FREEPOOL macro instruction is issued after the
CLOSE macro instruction, the system does not release the complete buffer area (eight
bytes are not released).

The FREEPOOL macro instruction is written as follows:

[symbol] FREEPOOL I deb address

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of a data control block to which
the buffer pool has been assigned.

Macro Instruction Descriptions 113

GET-QISAM

GET - Obtain Next Logical Record (QISAM)

The GET macro instruction causes the system to retrieve the next record. Control is
not returned to the problem program until the record is available.

The GET macro instruction is written as follows:

GET deb address [,area address]

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened input data set being retrieved.

area address - RX-Type Address, (2-12), or (0)

The area address operand specifies the main-storage address into which the
system is to move the record (move mode only). Either the move or locate mode
can be used with QISAM, but they must not be mixed within the specified data
control block. The following describes operations for move and locate modes:

Locate Mode: If the locate mode has been specified in the data control block,
the area address operand must be omitted. The system returns the address of the
buffer segment containing the record in register 1.

Move Mode: If the move mode has been specified in the data control block, the
area address operand must specify the main-storage address in the problem
program into which the system will move the record. If the area address operand
is omitted, the system assumes that register 0 contains the area address. When
control is returned to the problem program, register 0 contains the area address,
and register 1 contains the address of the data control block.

Notes:

1. The end-of-data-set (EODAD) routine is given control if the end of the data set
is reached; the data set must be closed or an ESETL macro instruction must be
issued. An attempt to continue to use the data set will have unpredictable results.

2. The error analysis (SYNAD) routine is given control if the input operation could
not be completed successfully. The contents of the general registers when control
is given to the SYNAD routine are described in Appendix A.

3. When the key of an unblocked fixed-length record is retrieved with the data, the
address of the key is returned as follows (see the SETL macro instruction):

Locate mode - The address of the key is returned in register O.

Move mode - The key appears in front of the record in the main-storage area.

4. If a GET macro instruction is issued for a data set and the previous request issued
for the same data set was an OPEN, ESETL, or unsuccessful SETL (no record
found), a SETL B (key and data) is invoked automatically, and the first record in
the data set is returned.

Macro Instruction Descriptions 115

GET-QSAM

GET - Obtain Next Logical Record (QSAM)

The GET macro instruction causes the system to retrieve the next record. Various
modes are available and are specified in the DCB macro instruction. In the locate
mode, the GET macro instruction locates the next sequential record or record segment
to be processed. The system returns the address of the record in register 1 and places
the length of the record or segment in the logical-record-Iength (DCBLRECL) field of
the data control block. The user can process the record within the input buffer or
move the record to a work area.

In the move mode, the GET macro instruction moves the next sequential record to the
user's work area. This work area must be big enough to contain the largest logical
record of the data set and its record-descriptor word (variable-length records). The
system returns the address of the work area in register 1. (This feature provides
compatibility with the substitute mode GET.) The record length is placed in the
DCBLRECL field. The move mode can be used only with simple buffering.

In the data mode, which is available only for variable-length spanned records, the GET
macro instruction moves only the data portion of the next sequential record to the
user's work area.

In the substitute mode, the GET macro instruction transfers ownership of the next
sequential record in a data set from the system to the user. In return, the ownership of
a work area is transferred from the user to the system for future use as an input buffer.
There is no movement of data. The address of an input buffer containing the record is
returned to the user in register 1 after the instruction is executed. The system returns
the record length in the DCBLRECL field. For undefined-length records, the
DCBLRECL field is equal to the BLKSIZE field for chained scheduling. The
substitute mode can be used only with exchange buffering and cannot be used with
variable-length records.

If the ASCII translation routines are included when the operating system is generated,
translation can be requested by coding LABEL= (,AL) or (,AUL) in the DD statement,
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB
subparameter of the DD statement. When translation is requested, all QSAM records
whose record format (RECFM operand) is F, FB, D, DB, or U are automatically
translated from ASCII code to EBCDIC code as soon as the input buffer is full. For
translation to occur correctly, all input data must be in ASCII code.

The GET macro instruction is written as follows:

[symbol] GET deb address [, area addres~

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened input data set being retrieved.

area address - RX-Type Address, (2-12), or (0)

Macro Instruction Descriptions 117

GET Routine Exits

The area address operand specifies the main-storage address of an area into
which the system is to move the record (move or data mode), or it specifies the
main-storage address of an area to be exchanged for the buffer containing the
record (substitute mode). The move, locate, data, or substitute mode can be used
with QSAM, but they must not be mixed within the specified data control block.
If the area address operand is omitted in the move, data, or substitute mode, the
system assumes that register 0 contains the area address. The following describes
the operation of the four modes:

Locate mode: If the locate mode has been specified in the data control block,
the area address operand must be omitted. The system returns the address of
the buffersegment contaInmg the recoroin register 1.

When retrieving variable-length spanned records, the records are obtained one
segment at a time. The problem program must retrieve additional segments by
issuing subsequent GET macro instructions, except when a logical record interface
is requested (by specifying BFTEK=A in the DCB macro instruction or by
issuing a BUILDRCD macro instruction.) In this case, the control program
retrieves all record segments and assembles the segments into a complete logical
record. The system returns the address of this record area in register 1. To
process a record when the logical record length is greater than 32,756 bytes,
LRECL=X must be specified in the data control block, and the problem program
must assemble the segments into a complete logical record.

Move mode: If the move mode has been specified in the data control block, the
area address operand specifies the main-storage address of an area in the
problem program into which the system will move the record.

For variable-length spanned records, the system constructs the record-descriptor
word in the first four bytes of the main-storage area and assembles one or more
segments into the data portion of the logical record; the segment descriptor words
are removed.

Data mode: If the data mode has been specified in the data control block (data
mode can be specified for variable-length spanned records only), the area address
operand specifies the address of the main storage area in the problem program
into which the system will move the data portion of the logical record; a
record-descriptor word is not constructed when data mode is used.

Substitute mode: If the substitute mode is specified in the data control block, the
area address operand specifies the main-storage address of an area in the
problem program that will be exchanged for the buffer containing the record.
The system returns the/address of the buffer containing the record in register 1.

The end-of-data-set (EODAD) routine is given control if the end of the data set is
reached; the data set must be closed. Issuing a GET macro instruction in the EODAD
routine results in abnormal termination of the job step.

The error analysis (SYNAD) routine is given control if the input operation could not be
completed successfully. The contents of the general registers when control is given to
the SYNAD routine are described in Appendix A.

118 OS Data Management Macro Instructions

GETBUF - BDAM, BISAM, BPAM, and BSAM

GETBUF - Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM)

The GETBUF macro instruction causes the control program to obtain a buffer from the
buffer pool assigned to the specified data control block and to return the address of the
buffer in a designated register. The BUFCB field of the data control block must
contain the address of the buffer pool control block when the GETBUF macro
instruction is issued. The system returns control to the instruction following the
GETBUF macro instruction. The buffer obtained must be returned to the buffer pool
using a FREEBUF macro instruction.

The GETBUF macro instruction is written as follows:

[symbol] GETBUF deb address, register

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block that
contains the buffer pool control block address.

register - (2-12)

The register operand specifies one of the registers 2 through 12 in which the
system is to place the address of the buffer obtained from the buffer pool. If no
buffer is available, the contents of the designated register are set to zero.

\If acro Instruction Descriptions 119

GETPOOL - BDAM, BISAM, BPAM, BSAM, QISAM, and QSAM)

GETPOOL - Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM)

The GETPOOL macro instruction causes a buffer pool to be constructed in a
main-storage area provided by the system. The system places the address of the buffer
pool control block in the BUFCB field of the data control block. The GETPOOL
macro instruction must be issued either before an OPEN macro instruction is issued or
during the data control block exit routine for the specified data control block.

The GETPOOL macro instruction is written as follows:

[symbol] GETPOOL deb address, jnumber of buffer Sf buffer length I [,HIARCHY= {~}
(0)

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block to which
the buffer pool is assigned. Only one buffer pool can be assigned to a data
control block.

number of buffers - symbol, decimal digit, absexp, or (2-12)

The number-of-buffers operand specifies the number of buffers in the buffer pool
up to a maximum of 255.

buffer length - symbol, decimal digit, absexp, or (2-12)

~he buffer length operand specifies the length, in bytes, or each buffer in the
buffer pool. The value specified for the buffer length must be a doubleword
multiple; otherwise the system rounds the value specified to the next higher
double word multiple. The maximum length that can be specified is 32,760 bytes.
For QSAM, the buffer length must be at least as large as the value specified in
the blocksize (DCBBLKSI) field in the data control block.

(0) - Coded as shown

The number of buffers and buffer length can be specified in general register O. If
(0) is coded, register 0 must contain the binary values for the number of buffers
and buffer length as shown in the following illustration:

Register 0

Number of Buffers Buffer' Length

Bits: 0 15 16 31

Macro Instruction Descriptions 121

to}
HIARCHY= {I}

The HIARCHY operand specifies the main-storage hierarchy in which the buffer
pool is constructed. If the HIARCHY parameter is omitted, the buffer pool is
formed in the main-storage hierarchy indicated in the data control block. If no
HIARCHY parameter is specified in the data control block, hierarchy 0 is
assigned. The HIARCHY operand is ignored in an operation system that does not
have main-storage hierarchy support. The following characters can be specified
in the HIARCHY operand.

o Specifies that the buffer pool is constructed in processor storage.

I Specifies that the buffer pool is constructed in IBM 2361 Core
Storage.

The following illustration shows the format of the buffer pool. The buffer pool and the
associated main-storage area are released by issuing a FREEPOOL macro instruction
after issuing a CLOSE macro instruction for the data set indicated in the specified data
control block.

-Area
Addre ss

Buffer Pool
Control
Blo'ck

I

Buffer [I
Buffer

I
+-- 8 b tes ---1- Buffer ---J

Y Length

~ Area Length

L Buffer j Length

Area Length=(Buffer Length) x (Number of Buffers) + 8

122 OS Data Management Macro Instructions

NOTE - BPAM and BSAM

NOTE - Provide Relative Position (BPAM and BSAM - Tape and Direct
Access Only)

The NOTE macro instruction causes the system to return the relative position of the
last block read from or written into a data set. All input and output operations using
the same data control block must be tested for completion before the NOTE macro
instruction is issued.

The capability of using the NOTE macro instruction is automatically provided when a
partitioned data set is used (DSORG=PO or POD), but when a sequential data set
(BSAM) is used, the use of NOTE/POINT macro instructions must be indicated in the
MACRF operand of the DCB macro instruction. The relative position, in terms of the
current volume, is returned in register 1 as follows:

Magnetic Tape: The block number is in binary, right-adjusted in register 1 with
high-order bits set to zero. Do not use a NOTE macro instruction for tapes without
standard labels when:

The data set is opened for RDBACK (specified in the OPEN macro instruction).

The DISP parameter of the DD statement for the data set specifies DISP=MOD.

Direct-Access Device: TTRz format, where:

TT is a 2-byte relative track number.

R is a I-byte block (record) number on the track indicated by TT.

z is a byte set to zero.

Note: When a direct-access device is being used, the amount of remaining space on
the track is returned in register 0 if a NOTE macro instruction follows a WRITE macro
instruction; if a NOTE macro instruction follows a READ macro instruction, the track
capacity of the direct-access device is returned in register O.

The NOTE macro instruction is written as follows:

~ymbolJ NOTE I deb oddress

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block opened
for the partitioned or sequential data set being processed.

Macro Instruction Descriptions 123

OPEN - BDAM, BISAM, BPAM, BSAM, QISAM and QSAM

OPEN - Logically Connect a Data Set (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The OPEN macro instruction causes the specified data control block(s) to be
completed and the data set(s) identified in the data control block(s) to be prepared for
processing. Input labels are analyzed and output labels are created. Control is given to
exit routines as specified in the data control block exit list. The processing method
(option 1) is designated to provide correct volume positioning for the data set and
define the processing mode (INPUT, OUTPUT, etc.) for the data set(s). Final volume
positioning (when volume switching occurs) can be specified (option 2) to override the
positioning implied by the DD statement DISP parameter. Any number of data control
block addresses and associated options may be specified in the OPEN macro
instruction.

If associated data sets for a 3525 card punch are being opened, all associated data sets
must be open before an I/O operation is initiated for any of the data sets. For a
description of associated data sets, refer to the OS Data Management Services Guide.

The standard form of the OPEN macro instruction is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] OPEN (deb address, [(options)] ' .•.)

deb address - A-Type Address or (2-12)

The deb address operand(s) specifies the address of the data control block(s) for
the data set(s) to be prepared for processing.

options

The options operands shown in the following illustration indicate the volume
positioning available based on the device type and access method being used. If
option 1 is omitted, INPUT is assumed. If option 2 is omitted, DISP is assumed.
Option 1 must be coded if option 2 is coded. Options 1 and 2 are ignored for
BISAM and QISAM (in the scan mode), and the data control block indicates the
operation. OUTPUT or OUTIN must be specified when creating a data set.

Macro Instruction Descriptions 125

ACCESS
METHOD

QSAM

BSAM

QISAM
(Load Mode)

BPAM,
BDAM

DEVICE TYPE

Magnetic tape Direct access Other Types
Option 1 Option 2 Option 1 Option 2 Option 1 Option 2

[INPUT] [,REREAD] [INPUT] [,REREAD] [INPUT]
[OUTPUT] [,LEAVE] [OUTPUT] [,LEAVE] [OUTPUT]
[RDBACK] [,DISP] [UPDAT] [,DISP]

[INPUT] [,REREAD] [INPUT] [,REREAD] [INPUT]
[OUTPUT] [,LEAVE] [OUTPUT] [,LEAVE] [OUTPUT]
[INOUT] [,DISP] [INOUT] [,DISP]
[OUTIN] [OUTIN]
[ROBACK.] [UPDAT]

[OUTPUT]

[INPUT]
[OUTPUT]
[UPDAT]

The following describes the options shown in the preceding illustration. All option
operands are coded as shown.

Option 1

INPUT

INOUT

OUTPUT

OUTIN

ROBACK

UPDAT

Option 2

LEAVE

REREAD

DISP

Meaning

Input data set.

The data set is first used for input and, without reopening, it is used as
an output data set. The data set is processed as INPUT if
LABEL= (",IN) is specified in the DO statement.

Output data set (for BDAM, OUTPUT is equivalent to UPDAT).

The data set is first used for output and, without reopening, it is used
as an input data set. The data set is processed as output if
LABEL= (",OUT) is specified in the DO statement.

Input data set, positioned to read backward.

Data set to be updated in place.

Meaning

Positions the current volume to the logical end of the data set.

Positions the current volume to reprocess the data set when volume
switching occurs.

Performs volume positioning implied by the DISP parameter of the DO
control statement, as follows:

DISP Parameter Action

PASS Forward space to the end of the data set on the
current volume

DELETE Rewind the current volume

KEEP, CATLG, or Rewind and unload the current volume
UNCATLG

126 OS Data Management Macro Instructions

OPEN - BDAM, BISAM, BPAM, BSAM, QISAM and QSAM

Note: When the DELETE option is specified, the system waits for the completion of
the rewind operation before it continues processing subsequent reels of tape.

After the OPEN macro instruction has been executed, bit 3 of the DCBOFLGS field in
the data control block is set to 1 if the data control block has been opened successfully,
but is set to 0 if the data control block has not been opened successfully.

Note: The following errors cause the results indicated:

Error

Opening a data control block that
is already open.

Attempting to open a data control
block when the deb address ,
operand does not specify the
address of a data control block.

Opening a data control block when
a corresponding DD statement has
not been provided.

Result

No action.

Unpredictable.

A "DD STATEMENT MISSING" message
is issued. An attempt to use the
data set causes unpredictable· results.

The last of these errors can be detected by testing bit 3 of the DCBOFLGS field in the
data control block. Bit 3 is set to 0 in the case of an error and can be tested by the
sequence:

TM DCBOFLGS,X'10'

BZERRORRTN (Branch to user's error routine)

Executing the two instructions shown above requires writing a DCBD macro instruction
in the program, and a base register must be defined with a USING statement before
the instructions are executed.

Macro Instruction Descriptions 127

OPEN - List Form

OPEN - List Form

The list form of the OPEN macro instruction is used to construct a data management
parameter list. Any number of operands (data control block addresses and associated
options) can be specified.

The OPEN macro instruction can be used with a variable-length parameter list. The
length of a list generated by a list form instruction must be equal to the maximum
length list required by any execute form instruction that refers to the same list. A
maximum length list can be constructed by one of two methods:

• Code a list-form instruction with the maximum number of parameters that are
required by an execute form instruction that refers to the list.

• Code a maximum length list by using commas in a list-form instruction to acquire
a list of the appropriate size. for example, coding OPEN ("""",) would provide a
list of five fullwords (five dcb addresses and five options).

A parameter list constructed by an OPEN, list form, macro instruction can be referred
to by either an OPEN or CLOSE execute form instruction.

The description of the standard form of the OPEN macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are completely optional and those required in at least one of
the pair of list and execute forms. The format description below indicates the optional
and required operands in the list form only.

The list form of the OPEN macro instruction is written as follows:

[symbol] OPEN ([deb address] , [(options)] , ...),MF=L

deb address - A-Type Address

MF=L - Coded as shown

The MF=L operand specifies that the OPEN macro instruction is used to create a
data management parameter list that is referenced by an execute form instruction.

Macro Instruction Descriptions 129

OPEN - Execute Form

OPEN - Execute Form

A remote data management parameter list is used in, and can be modified by, the
execute form of the OPEN macro instruction. The parameter list can be generated by
the list form of either an OPEN or CLOSE macro instruction.

The description of the standard form of the OPEN macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the OPEN macro instruction is written as follows:

[symbol] OPEN [([deb address], [(options)J , •••)]

,MF=(E, l data management I ist address f)
(1J

deb address - RX-Type Address or (2-12)

{data management list address }
MF=(E, {(1) })

This operand specifies that the execute form of the OPEN macro instruction is
used, and an existing data management parameter list (created by a list-form
instruction) is used. The MF= operand is coded as follows:

E - Coded as shown

data management list address - RX-Type, (2-12), (1)

Macro Instruction Descriptions 131

POINT - BPAM and BSAM

POINT - Position to a Relative Block (BPAM and BSAM - Tape and
Direct-Access Only)

The POINT macro instruction causes the system to start processing the next READ or
WRITE operation at the specified block in the data set on the current volume. All
input and output operations using the same data control block must have been tested
for completion before the POINT macro instruction is issued. When processing an
output data set, the POINT macro instruction must be followed by a WRITE macro
instruction prior to closing the data set, unless a CLOSE macro instruction (with
TYPE=T specified) was issued prior to the POINT macro instruction. Issuing a
POINT macro instruction for the system input data set or a system output data set on
magnetic tape results in an effective NOP instruction.

The POINT macro instruction is written as follows:

[symbol] POINT dcb address, block address

dcb address - RX-Type Address, (2-12), or (1)

The dcb address operand specifies the address of the data control block for the
opened data set that is to be positioned.

block address - RX-Type Address, (2-12), or (0)

The block address op~rand specifies the address of a full word on a fullword
boundary containing the relative address of the block in the data set that is to be
processed next. The relative address is specified as follows:

Magnetic Tape: The block number is in binary and is right-adjusted in the
fullword with the high-order bits set to zero; add one if reading tape backward.
Do not use the POINT macro instruction for tapes without standard labels when:

The data set is opened for RDBACK.

The DD statement for the data set specifies DISP=MOD.

If OPTCD=H is indicated in the data control.block, the POINT macro instruction
can be used to perform record positioning on DOS tapes that contain embedded
checkpoint records. Any embedded checkpoint records that are encountered
during the record positioning are bypassed and are not counted as blocks spaced
over. OPTCD=H must be specified in a job control language DO statement. Do
not use the POINT macro instruction to backspace DOS 7-track tapes that are
written in data convert mode and that contain embedded checkpoint records.

Direct-Access Device: The fullword specified in the block address operand
contains the relative track address (in the form TTRz), where:

TT is a 2-byte relative track number.

R is a I-byte block (record) number on the track indicated by TT.

z is a byte set to zero; it may also be set to 1 to retrieve the block following
the TTR block.

Macro Instruction Descriptions 133

Note: The first block of a magnetic tape data set is always specified by the
hexadecimal value 00000001. The first block of a direct-access device data set
can be specified by either hexadecimal 00000001 or 00000100 (see the previous
description of TTRz).

If the volume cannot be positioned correctly or if the block identification is not of the
correct format, the error analysis (SYNAD) routine is given control when the next
READ or WRITE macro instruction is executed.

134 OS Data Management Macro Instructions

PRTOV - BSAM and QSAM

PRTOV - Test for Printer Carriage Overflow (BSAM and QSAM - Online
Printer and 3525 Card Punch, Print Feature)

The PRTOV macro instruction is used to control the page format for an online printer
when carriage control characters are not being used or to supplement the carriage
control characters that are being used.

The PRTOV macro instruction causes the system to test for an overflow condition on
the specified channel (either channel 9 or channel 12) of the printer carriage control,
and either skip the printer carriage to the line corresponding to channel 1, or transfer
control to the exit address, if one is specified. Overflow is detected after printing the
line that follows the line corresponding to channel 9 or channel 12.

When the PRTOV macro instruction is used with a 3525 card punch, print feature,
channel 9 or 12 can be tested. If an overflow condition occurs, control is passed to the
overflow exit routine if the overflow exit address is coded, or a skip to channel 1 (first
print-line of the next card) occurs.

To request overprinting (for example, to underscore a line), the PRTOV macro
instruction is issued before the first PUT or WRITE macro instruction only. The
PRTOV macro instruction should be issued only when the device type is an online
printer or 3525 card punch.

The PRTOV macro instruction is written as follows:

[symbol] PRTOV deb address'll~ ~ Goverflow exit address]

deb address - RX-Type Address or (2-12)

The deb address operand specifies the address of the data control block opened
for output to an online printer or 3525 card punch with a print feature.

9 Coded as shown

12 Coded as shown

These operands specify which channel is to be tested by the PRTOV macro
instruction. For an online printer, 9 and 12 correspond to carriage control
channels 9 and 12. For the 3525 card punch, 9 corresponds to print line number
17, and 12 corresponds to print line number 23. More detail about the card
print-line format is included in the OS Data Management Services Guide.

overflow exit address - RX-Type Address or (2-12)

The overflow exit address operand specifies the address of the user-supplied
routine to be given control when an overflow condition is detected on the
specified channel. If this operand is omitted, the printer carriage skips to the first
line of the next page or the 3525 skips to the first line of the next card before
executing the next PUT or WRITE macro instruction.

Macro Instruction Descriptions 135

When the overflow exit routine is given control, the contents of the registers are
as follows:

Register

o and 1
2 - 13
14
15

Contents

The contents are destroyed.
The same contents as before the macro instruction was executed.
Return address.
Overflow exit routine address.

136 OS Data Management Macro Instructions

PUT-QISAM

PUT - Write Next Logical Record (QISAM)

The PUT macro instruction causes the system to write a record into an indexed
sequential data set. If the move mode is used, the PUT macro instruction moves a
logical record into an output buffer from which it is written. If the locate mode is
specified, the address of the next available output buffer segment is available in register
1 after the PUT macro instruction is executed. The logical record can then be
constructed in the buffer for output as the next record. The records are blocked by the
system (if specified in the data control block) before being placed in the data set. The
system uses the length specified in the record length (DCBLRECL) field of the data
control block as the length of the record currently being written. When constructing
blocked variable-length records in the locate mode, the problem program may either
specify the maximum record length once in the DCBLRECL field of the data control
block or provide the actual record length in the DCBLRECL field before issuing each
PUT macro instruction. Use of the maximum record length may result in more but
shorter blocks, since the system uses this length when it tests to see if the next record
can be contained in the current block.

The PUT macro instruction is used to create or extend an indexed sequential data set.
To extend the data set, the key of any added record must be higher than the highest
key existing in the data set, and the disposition parameter of the DD card must be
specified as DISP=MOD. The new records are placed in the prime data space, starting
in the first available space, until the original space allocation is exhausted.

To create a data set using previously allocated space, the disposition parameter of the
DD card must specify DISP=OLD.

The PUT macro instruction is written as follows:

[symbol] PUT deb address [, area address]

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address o{ the data control block for the
opened ISAM data set.

area address - RX-Type Address, (2-12), or (0)

The area address operand specifies the main-storage address of the area that
contains the record to be written (move mode only). Either move or locate mode
can be used with QISAM, but they must not be mixed within the specified data
control block. The following describes operations for locate and move modes:

Locate Mode: If the locate mode is specified in the data control block, the area
address operand must be omitted. The system returns the address of the next
available buffer in register 1; this is the buffer into which the next record is
placed. The record is not written until another PUT macro instruction is issued
for the same data control block. The last record is written when a CLOSE macro
instruction is issued to close the data set.

Macro Instruction Descriptions 137

Put Routine Exit

Move Mode: If the move mode has been specified in the data control block, the
area address operand must specify the main-storage address in the problem
program that contains the record to be written. The system moves the record
from the area to an output buffer before control is returned. If the area address
operand is omitted, the system assumes that register zero contains the area
address.

The error analysis (SYNAD) routine is given control if the output operation could not
be completed satisfactorily. The contents of the registers when the error analysis
routine is given control are described in Appendix A.

138 OS Data Management Macro Instructions

PUT-QSAM

PUT - Write Next Logical Record (QSAM)

The PUT macro instruction causes the system to write a record in a sequential data set.
Various modes are available and are specified in the DCB macro instruction. In the
locate mode, the address of an area within an output buffer is returned in register 1
after the macro instruction is executed. The user should subsequently construct, at this
address, the next sequential record or record segment. The move mode of the PUT
macro instruction causes a logical record to be moved into an output buffer. In the
data mode, which is available only for variable-length spanned records, the PUT macro
instruction moves only the data portion of the record into one or more output buffers.
When the substitute mode is specified, the macro transfers ownership of a work area
containing a record to the control program. In return, the ownership of a buffer
segment is transferred to the user, for use as a work area. There is no movement of
data in main storage.

The records are blocked by the control program (as specified in the data control block)
before being placed in the data set. For undefined-length records, the DCBLRECL
field determines the length of the record that is subsequently written. For
variable-length records, the DCBLRECL field is used to locate a buffer segment of
sufficient size (locate mode), but the length of the record actually constructed is
verified before the record is written. For variable-length spanned records, the system
segments the record according to the record length, buffer length, and amount of
unused space remaining in the output buffer. The smallest segment created will be 5
bytes, 4 for the segment descriptor word plus one byte of data.

If the ASCII translation routines are included when the operating system is generated,
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement,
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB
subparameter of the DD statement. When translation is requested, all QSAM records
whose record format (RECFM operand) is F, FB, D, DB, or U are automatically
translated from EBCDIC code to ASCII code. For translation to occur correctly, all
output data must be in EBCDIC code; any EBCDIC character that cannot be
translated into an ASCII character is replaced by a substitute character.

The PUT macro instruction is written as follows:

[symbo~ PUT deb address ~area address]

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
data set opened for output.

area address - RX-Type Address, (2-12), or (0)

The area address operand specifies the address of a main-storage area that
contains the record to be written (move or data mode), or it specifies the address
of a main-storage area to be exchanged for a buffer (substitute mode). The
move, locate, data, or substitute mode can be used with QSAM, but they must
not be mixed within the specified data control block. If the area address operand

Macro Instruction Descriptions 139

Put Routine Exit

is omitted in the move, data, or substitute mode, the system assumes that register
zero contains the area address. The following describes the operation of the four
modes:

Locate Mode: If the locate mode is specified, the area address operand must be
omitted. The system returns the address of the next available buffer in register 1;
this is the buffer into which the next record is placed.

When variable-length spanned records are used and a record area has been
provided for a logical record interface (BFTEK=A has been specified in the data
control block or a BUILDRCD macro instruction has been issued), the address
returned in register 1 points to an area large enough to contain the maximum
record size (up to 32,756 bytes). The system segments the record and writes all
segments, providing proper control codes for each segment. If, for
variable-length spanned records, an area has not been provided, the actual length
remaining in the buffer will be returned in register O. In this case, it is the user's
responsibility to segment the records and process them in terms of record
segments. The record or segment is not written until another PUT macro
instruction is issued for the same data control block. The last record is written
when the CLOSE macro instruction is issued.

When a PUT macro instruction is used in the locate mode, the address of the
buffer for the first record or segment is obtained by issuing a PUT macro
instruction; QSAM returns the address of the buffer, but the record is not written
until the next PUT macro instruction is issued.

Move Mode: If the move mode has been specified in the data control block, the
area address operand specifies the address of the main-storage area that contains
the record to be written. The system moves the record to an output buffer before
control is returned. The address of the main-storage area is returned in register 1
(this action provides compatibility with substitute mode operations, and makes it
possible for the problem program to be used in instances where substitute mode is
requested but cannot be supported by the system).

Data Mode: If the data mode is specified in the data control block (data mode
can be specified for variable-length spanned records only), the area address
operand specifies the address of a main-storage area in the problem program that
contains the data portion of the record to be written. The system moves the data
portion of the record to an output buffer before control is returned. The user
must place the total data length in the DCBPRECL (not DCBLRECL) field of
the data control block before the PUT macro instruction is issued.

Substitute Mode: If the substitute mode is specified in the data control block,
the area address operand specifies the address of a main-storage area in the
problem program that contains the next record to be written. The area is
exchanged for an empty buffer. The address of the empty buffer is returned in
register 1.

The error analysis (SYNAD) rou~ine is given control if the output operation could not
be completed satisfactorily. The contents of the registers when the error analysis
routine is given control are described in Appendix A.

140 OS Data Management Macro Instructions

PUTX - QISAM and QSAM

PUTX - Write a Record from an Existing Data Set (QISAM and QSAM)

The PUTX macro instruction causes the control program to return an updated record
to a data set (QISAM and QSAM) or to write a record from an input data set into an
output data set (QSAM only). There are two modes of the PUTX macro instruction.
The output mode (QSAM only) allows writing a record from an input data set on a
different output data set. The output data set may specify the spanning of
variable-length records, but the input data set must not contain spanned records, unless
the user specifies an area for logical record interface by specifying BFTEK=A in the
DCB macro instruction or by issuing the BUILDRCD macro instruction.

The update mode returns an updated record to the data set from which it was read.
The record must always have been brought into main storage by a locate mode GET
macro instruction. The logical records are blocked by the control program, as specified
in the data control block, before they are placed in the output data set. The control
program uses the length specified in the DCBLRECL field as the length of the record
currently being stored. Control is not returned to the user's program until the control
program has processed the record.

The PUTX macro instruction is written as follows:

[symbol] PUTX deb address ~ input deb address]

deb address RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for a data
set opened for output.

input deb address - RX-Type Address, (2-12), or (0)

PUTX Routine Exit

The input deb address operand specifies the address of a data control block
opened for input. The PUTX macro instruction can be used for the following
modes:

Output Mode: This mode is used with QSAM only. The input deb address
operand specifies the address of the data control block opened for input. If this
operand is omitted, the system assumes that register 0 contains the input dcb
address.

Update Mode: The input deb address operand is omitted for update mode.

The error analysis (SYNAD) routine is given control if the operation is not completed
satisfactorily. The contents of the registers when the error analysis routine is given
control are described in Appendix A.

Macro Instruction Descriptions 141

READ-BDAM

READ - Read a Block (BDAM Only)

The READ macro instruction causes a block to be retrieved from a data set and placed
in a designated area of main storage. Control may be returned to the problem program
before the block is retrieved. The input operation must be tested for completion using
a CHECK or WAIT macro instruction. A data event control block, shown in
Appendix A, is constructed as part of the macro expansion.

The standard form of the READ macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol] READ d eeb name, type, de b address, {a rea address} ~ e n9th} ,
'5' '5'

{key address}, block address[,next address]
's'

decb name - symbol

The decb name operand specifies the name assigned to the data event control
block created as part of the macro expansion.

type - IDI [F] [R] }
[X) [RU)

IDK [F) [R] }
[X) [RU)

The type operand is coded in one of the combinations shown above to specify the
type of read operation and the optional services performed by the system.

DI Specifies that the data and key, if any, are to be read from a specific
device address. The device address, which can be designated by any of
the three addressing methods, is supplied by the block address
operand.

DK - Specifies that the data (only) is to be read from a device address
identified by a specific key. The key to be used as a search argument
must be supplied in the area specified by the key address operand; the
search for the key starts at the device address supplied in the area
specified by the block address operand. The description of the DCB
macro instruction, LIMCT operand, contains a description of the
search.

F Requests that the system provide block position feedback into the area
specified by the block address operand. This character can be coded
as a suffix to DI or DK as shown above.

X Requests exclusive control of the data block being read, and it requests
that the system provide block position feedback into the area specified
by the block address operand. The descriptions of the WRITE and
RELEX macro instructions contain a description of releasing a data
block that is under exclusive control. This character can be coded as a
suffix to DI or DK as shown above.

Macro Instruction Descriptions 143

R- Requests that the system provide next address feedback into the area
specified by the next address operand. When R is coded, the feedback
is the relative track address of the next data record. This character can
be coded as a suffix to DI or DK, DIF, DIX, DKF, or DKX as shown
above, but it can be coded only for use with variable-length spanned
records.

RU - Requests that the system provide next address feedback into the area
specified by the next address operand. When R U is coded, the
feedback is the relative track address of the next capacity record (RO)
or data record whichever occurs first. These characters can be coded
as a suffix to DI, OK, OIF, DIX, OKF, or DKX, but it can be coded
only for use with variable-length spanned records.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block opened
for the data set to be read.

area address - A-Type Address, (2-12), or '8'

The area address operand specifies the address of the main-storage area into
which the data block is to be placed. If '8' is coded instead of an address,
dynamic buffering is requested (dynamic buffering must also be specified in the
MACRF operand of the DCB macro instruction). When dynamic buffering is
used, the system acquires a buffer and places its address in the data event control
block.

length - symbol, decimal digit, absexp, (2-12), or '8'

The length operand specifies the number of data bytes to be read up to a
maximum of 32,760. If '8' is coded instead of a length, the number of bytes to
be read is taken from the data control block.

key address - A-Type Address, (2-12), '8', or 0

The key address operand specifies the address of the main-storage area for the
key of the desired data block. If the search operation is made using a key, the
area must contain the key. Otherwise, the key is read into the designated area. If
the key is read and '8' was coded for the area address, '8' can also be coded for
the key address; the key and data are read sequentially into the buffer acquired
by the system. If the key is not to be read, specify 0 instead of an address or '8'.

bloek address - A-Type Address or (2-12)

The block address operand specifies the address of the main-storage area
containing the relative block address, relative track address, or actual device
address of the data block to be retrieved. The device address of the data block
retrieved is placed in this area if block position feedback is requested. The length
of the main-storage area that contains the address depends on whether the
feedback option (OPTCD=F) has been specified in the data control block and if
the READ macro instruction requested feedback.

If OPTCD=F has been specified, feedback (if requested) is in the same form as
was originally presented by the READ macro instruction, and the field can be
either three or eight bytes long depending on the type of addressing.

144 OS Data Management Macro Instructions

READ-BDAM

If OPTCD=F has not been specified, feedback (if requested) is in the form of an
actual device address, and the field must be eight bytes long.

next address - A-Type Address or (2-12)

The next address operand specifies the address of the main-storage area where
the system places the relative address of the next record. The length operand
must be specified as'S'. When the next address operand is specified, an R or RU
must be added to the type operand (for example, DIR or DIRU). The R indicates
that the next address returned is the next data record. RU indicates that the next
address returned is for the next data or capacity record, whichever occurs first.
The next address operand can be coded only for use with variable-length spanned
records.

Macro Instruction Descriptions 145

READ-BSAM

READ - Read a Block (Offset Read of Keyed BDAM Data Set Using BSAM)

The READ macro instruction causes a block to be retrieved from a data set and placed
in a designated area of main storage. The data set is a BDAM data set and its record
format is unblocked variable-length spanned records. BFTEK= R must be specified in
the data control block. Control may be returned to the problem program before the
block is retrieved. The input operation must be tested for completion using a CHECK
macro instruction. A data event control block, shown in Appendix A, is constructed as
part of the macro expansion.

The standard form of the READ macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol] READ deeb name, type, deb address, area address

deeb name - symbol

The deeb name operand specifies the name assigned to the data event control
block (DECB) created as part of the macro expansion.

type - SF
The type operand is coded as shown to specify the type of read operation.

SF Specifies normal, sequential, forward operation.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened BDAM data set to be read.

area address - A-Type Address or (2-12)

The area address operand specifies the address of the main-storage area into
which the record is placed.

When a spanned BDAM data set is created with keys, only the first segment of a
record has a key; successive segments do not. When a spanned record is retrieved by
the READ macro instruction, the system places a segment in a designated area
addressed by the area address operand. The problem program must assemble all the
segments into a logical record. Since only the first segment has a key, the successive
segments are read into the designated area offset by key length to ensure that the
block-descriptor word and the segment-descriptor word are always in the same relative
position.

Macro Instruction Descriptions 147

READ -BISAM

READ - Read a Record (BISAM Only)

The READ macro instruction causes a block containing a specified logical record to be
retrieved from a data set. The block is placed in a designated area of main storage, and
the address of the logical record is placed in the data event control block. The data
event control block is constructed as part of the macro expansion and is described in
Appendix A.

Control may be returned to the problem program before the block is retrieved. The
input operation must be, tested for completion using aWAIT or CHECK macro
instruction.

The standard form of the READ macro instruction is written as follows for BISAM
(the list and execute forms are shown following the descriptions of the standard form):

[symbol] READ decb name, type,dcb address, 1 area address!,
'$'

{length} ,key address
'$'

deeb name - symbol

The deeb name operand specifies the name assigned to the data event control
block (DECB) created as part of the macro expansion.

type - {KHKUI

The type operand is coded as shown to specify the type of read operation.

K Specifies normal retrieval.

KU Specifies that the record retrieved is to be updated and returned to the data
set; the system saves the device address to be returned.

When an ISAM data set is being updated with a READ KU macro
instruction and a WRITE K macro instruction, both the READ and WRITE
macro instructions must refer to the same data event control block. This
update operation can be performed by using a list-form instruction to create
the list (data event control block) and by using the execute form of the
READ and WRITE macro instructions to refer to the same list.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened data set to be read.

area address - A-Type Address, (2-12), or'S'
The area address operand specifies the address of the main-storage area into
which the data block is placed. The first sixteen bytes of this area are used by
the system and do not contain information from the data block. Dynamic
buffering is specified by coding'S' instead of an address; the address of the

Macro Instruction Descriptions 149

acquired main-storage area is returned in the data event control block. Indexed
sequential buffer and work area requirements are described in the OS Data
Management Services Guide.

length - symbol, decimal digit, absexp, (2-12), or'S'

The length operand specifies the number of bytes to be read up to a maximum of
32,760. If'S' is coded instead of a length, the number of bytes to be read is
taken from the count field of the record; for blocked records, 'S' must be coded.

key address - A-Type Address or (2-12)

The key address operand specifies the address of a main-storage area containing
the key of a logical record in the block that is to be retrieved. When the input
operation is completed, the main-storage address of the logical record is placed in
the data event control block.

150 OS Data Management Macro Instructions

READ - BPAM and BSAM

READ - Read a Block (BPAM and BSAM Only)

The READ macro instruction causes a block to be retrieved from a data set and placed
in a designated area of main storage. Control may be returned to the problem program
before the block is retrieved. The input operation must be tested for completion using
a CHECK macro instruction. A data event control block, shown in Appendix A, is
constructed as part of the macro expansion.

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE macro
instruction must refer to the same data event control block. Refer to the list form of
the READ or WRITE macro instruction for a description of how to construct a data
event control block; refer to the execute form of the READ or WRITE macro
instruction for a description of how to modify an existing data event control block.

The standard form of the READ macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form instructions):

[symbol] READ deeb name, type, deb address, area .address, I length I
'5'

deeb name - symbol

The deeb name operand specifies the name assigned to the data event control
block (DECB) created as part of the macro expansion.

type - ISFHSB}

The type operand is coded as shown to specify the type of read operation.

SF Specifies normal, sequential forward, retrieval.

SB Specifies a read backward operation; this operand can be specified only for
magnetic tape with format-F or format-U records.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened data set to be read.

area address - A-Type Address or (2-12)

The area address operand specifies the address of the main-storage area into
which the record is placed. When a READ SB macro instruction is issued, the
area address must be the address of the last byte of the area into which the
record is read. If the data set contains keys, the key is read into the buffer
followed by the data.

Macro Instruction Descriptions 151

length - symbol, decimal digit, absexp, (2-12), or '8'

The length operand specifies the number of data bytes to be read, to a maximum
of 32,760. (If the data is translated from ASCII code to EBCDIC code, the
maximum number of bytes that can be read is 2048.) A number can be coded
only for format-U records. The number of bytes to be read is taken from the
data control block if '8' is coded instead of a number. (This operand is ignored
for format-F or format-V records.) For format-D records, the length of the
record just read is automatically inserted into the DCBLRECL field if
BUFOFF=(L) is not specified in the data control block.

152 OS Data Management Macro Instructions

READ - List Form

READ - List Form

The list form of the READ macro instruction is used to construct a data management
parameter list in the form of a data event control block (DECB). Refer to Appendix A
for a description of the various fields of the DECB for each access method.

The description of the standard form of the READ macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates the operands used for each access method, as well as the meaning of'S' when
coded for the area address, length, and key address operands. For each access method,
'S' can be coded only for those operands for which it can be coded in the standard
form of the macro instruction. The format description below indicates the optional and
required operands in the list form only.

The list form of the READ macro instruction is written as follows:

[symbol]

decb name

type

deb address

area address

length

key address

block address

next address

MF=L

READ decb name, type, [dcb address]'lrea addres~,
'5'

~engt~,~ey addresj' [block address], [next address]
'5' '5'

,MF=L

symbol

Code one of the types shown in the standard form

A-Type Address or'S'

A-Type Address or'S'

symbol, decimal digit, absexp, or'S'

A-Type Address or'S'

A-Type Address

A-Type Address

Coded as shown

The MF=L operand specifies that the READ macro instruction is used to create a
data event control block that can be referenced by an execute-form instruction.

Macro Instruction Descriptions 153

READ - Execute Form

READ - Execute Form

A remote data management parameter list (data event control block) is used in, and
can be modified by, the execute form of the READ macro instruction. The data event
control block can be generated by the list form of either a READ or WRITE macro
instruction.

The description of the standard form of the READ macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates the operands used for each access method, as well as the meaning of '8' when
coded for the area address, length, and key address operands. For each access method,
'8' can be coded only for those operands for which it can be coded in the standard
form of the macro instruction. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the READ macro instruction is written as follows:

[symbol]

decb address

type

deb address

area address

length

key address

block address

next address

MF=E

READ decb address, type, [dcb address], [a rea addres~,
·S·

~engt~ ,[key addres~, [block address], [next address]
·S· ·S·

,MF=E

RX-Type Address or (2-12)

Code one of the types shown in the standard form

RX-Type Address or (2-12)

RX-Type Address, (2-12), or'S'

symbol, decimal digit, absexp, (2-12), or '8'

RX-Type Address, (2-12), or '8'

RX-Type Address, or (2-12)

RX-Type Address or (2-12)

Coded as shown

The MF=E operand specifies that the execute form of the READ macro
instruction is used, and that an existing data event control block (specified in the
decb address operand) is used by the access method.

Macro Instruction Descriptions 155

RELEX-BDAM

RELEX - Release Exclusive Control (BDAM)

Completion Codes

The RELEX macro instruction causes release of a data block from exclusive control.
The block must have been requested in an earlier READ macro instruction which
specified either DIX and DKX. The RELEX macro instruction must be issued by the
same task that opened the data set.

Note: A WRITE macro instruction which specifies either DIX or DKX can also be
used to release exclusive control.

The RELEX macro instruction is written as follows:

[symbol] RELEX D, deb address, block address

D - Specifies direct access.

dcb address - RX-Type Address, (2-12), or (1)

The dcb address operand specifies the address of the data control block for a
BDAM data set opened for processing. The dcb address operand must specify
the same data control block as designated in the associated READ macro
instruction.

block address - RX-Type Address, (2-12), or (0)

The block address operand specifies the address of the main-storage area
containing the relative block address, relative track address, or actual device
address of the data block being released. The block address operand must specify
the same main-storage area as designated in the block address operand of the
associated READ macro instruction.

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

Hexadecimal Code

00

04

08

Meaning

Operation completed successfully.

The specified data block was not in the exclusive control list.

The relative track address, relative block address, or actual device
address was not within the data set.

Macro Instruction Descriptions 157

RELSE - QISAM and QSAM

RELSE - Release an Input Buffer (QISAM and QSAM - Input Only)

The RELSE macro instruction causes immediate release of the current input buffer.
The next GET macro instruction retrieves the first record from the next input buffer.
For variable-length spanned records (QSAM), the input data set is spaced to the next
segment which starts a logical record in a subsequent block. Thus, one or more blocks
of data or records may be skipped. The RELSE macro instruction is ignored if a buffer
has just been completed or released, or if the records are unblocked.

The RELSE macro instruction is written as follows:

[symbol] RELSE I deb odd ress

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened input data set.

Macro Instruction Descriptions 159

SETL-QISAM

SETL - Set Lower Limit of Sequential Retrieval (QISAM Input Only)

The SETL macro instruction causes the control program to start processing the next input
request at the specified record or device address. Sequential retrieval of records using the
GET macro instruction continues from that point until the end of the data set is encountered
or a CLOSE or ESETL macro instruction is issued. An ESETL macro instruction must be
issued between SETL macro instructions that specify the same data set.

The SETL macro instruction can specify that retrieval is to start at the beginning of the data
set, at a specific address on the device, at a specific. record, or at the first record of a specific
class of records. In each case, retrieval starts with the first record that has not been marked for
deletion.

The SETL macro instruction is written as follows:

r 'I

[symbol] SETl deb address, K[H], lower limit address
KC, lower limit address
KD[H], lower limit address
KCD, lower limit address
I, lower limit address
I D, lower limit address
B
BD

deb address - RX-Type Address, (2-12), or (l)
The deb address operand specifies the address of the data control block opened for the
indexed sequential data set being processed.

The following operands are coded as shown, and they specify the starting point and type of
retrieval.

K

KC

H

KD

Specifies that the next input operation begins at the record containing the key specified
in the lower-limit address operand.

Specifies that the next input operation begins at the first record of the key class
specified in the lower-limit address operand. If the first record of the specified key class
has been deleted, retrieval begins at the next nondeleted record regardless of key class.

This option used with either K or KD, specifies that, if the key in the lower-limit address
operand is not in the data set, retrieval begins at the next higher key. The character H
cannot be coded with the key class operands (KC and KCD).

Specifies that the next input operation begins at the record containing the key specified
in the lower-limit address operand, but only the data portion of the record is retrieved.
This operand is valid only for unblocked records.

Macro Instruction Descriptions 161

SETL Exit

KeD

I

ID

B

BD

Specifies that the next input operation begins at the first record of the key class specified
in the lower-limit address operand, but only the data portion of the record is retrieved.
This operand is valid only for unblocked records.

Specifies that the next input operation begins with the record at the actual device address
specified in the lower-limit address operand.

Specifies that the next input operation begins with the record at the actual device address
specified in the lower-limit address operand, but only the data portion of the record is
retrieved. This operand is valid only for unblocked records.

Specifies that the next input operation begins with the first record in the data set.

Specifies that the next input operation begins with the first record in the data set, but only
the data portion is retrieved. This opeand is valid only for unblocked records.

lower limit address - RX-Type Address, (2-12), or (0)
The lower-limit address operand specifies the address of the main storage area containing
the key, key class, or actual device address that designates the starting point for the next
input operation. If I or ID has been specified, this area must contain the actual device
address (in the form MBBCCHHR) of a prime data record; the otheriypes require tha the
key or key class be contained in this area.

The error analysis (SYNAD) routine is given control if the operation could not be completed
successfully. The exceptional condition code and general registers are set as shown in
Appendix A. If the SETL macro instruction is not reissued, retrieval starts at the beginning of
the data set.

162 OS Data Management Macro Instructions

SETPRT - BSAM and QSAM

SETPRT - Load ues and FeB Images (BSAM and QSAM)

The SETPRT macro instruction is used with printers that have a universal character set
(UeS) buffer or a forms control buffer (FeB). When a SETPRT macro instruction is
issued, ues and FeB images are fetched from the image library and loaded from main
storage into their respective buffers. The SETPRT macro instruction is also used to
block or unblock printer data checks.

IBM character sets and forms control images are included in the image library at system
generation; user-defined character sets and forms control images can be added to the
image library as described in the OS Data Management for System Programmers
publication. The FeB image can also be defined in the problem program using the exit
list (EXLST) parameter of the DeB macro instruction.

When BSAM is being used, all write operations must be checked for completion before
the SETPRT macro instruction is issued; any incomplete write operations are purged.
Issuing the SETPRT macro instruction for a device other than an online ues printer
results in a NOP instruction.

The standard form of the SETPRT macro instruction is written as follows (the list and
execute form are shown following the standard form):

[symbol] SETPRT deb address

r
[,F[OLD] ~ "'"

,UCS= (ese ,F[OLDJ ,V[ERIFY])
" V[ERIFY]

L FCB= (;mage-;d [- V[ERIFY]]> [,OPTCD= {B P
,A[U GNJ U >-

,FCB= (;mage-;d [, V[ERIFY]] 1 [,OPTCD= ({B }[, F[OLD] Jl]
,A[UGN] U ,U[NFOLD]

,OPTCD= ({B } [,F[OLD] Jl
U ,U[NFOLD]

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
data set to be printed; the data set must be opened for output before the
SETPR T macro instruction is issued.

UCS= - A character code with options

The UCS operand specifies that the ues buffer is to be loaded from the image
library. When the UCS operand is specified, the FCB and OPTCD operands can
also be specified.

Macro Instruction Descriptions 163

esc (character set code)

The csc operand specifies the character set to be loaded. A character set is
identified by a 1-4 character code. Codes for standard IBM character sets are as
follows:

1403 Printer: AN, HN, PCAN, PCHN, PN, QN, QNC, RN, SN, TN, XN,
and YN

3211 Printer: All, Hll, GIl, Pll, and TIl

For descriptions of the standard IBM character sets, refer to the as Operator's
Procedures publication; codes for user-designed character sets are defined by the
installation.

F or FOLD
Specifies that the character set image is to be loaded in the fold mode. The
fold mode is most often used when the EBCDIC code for lowercase
alphabetic characters is printed as uppercase characters by a print train with
lowercase type.

V or VERIFY
Requests that the character set image be displayed on the printer for visual
verification.

FCB = - A character code with options

The FCB operand specifies that the forms control buffer (FCB) is to be loaded
from the image library. When the FCB operand is specified, the OPTCD operand
can also be specified.

image id

The image id operand specifies the forms control image to be loaded. A
forms control image is identified by a 1-4 character code. IBM-supplied
images are identified by image id value of SIDI and STD2; user-designed
forms control images are defined by the installation. For descriptions of the
standard forms control images, refer to the as System Generation
publication.

V or VERIFY
Requests that the forms control image be displayed on the printer for visual
verification. This operand allows forms alignment using the WTOR macro
instruction.

A or ALIGN
Allows forms alignment using the WTOR macro instruction.

OPTCD= - A printer option code

The OYfCD operand specifies whether DCS printer data checks are blocked or
unblocked and if the printer is to operate in fold or normal mode.

B

u

Specifies that DCS printer data checks are blocked; this option updates the
DCBOPTCD field of the data control block.

Specifies that DCS printer data checks are unblocked; this option updates
the DCBOPTCD field of the data control block.

F or FOLD
Specifies that printing is in fold mode.

164 OS Data Management Macro Instructions

Completion Codes

SETPRT - BSAM and QSAM

U or UNFOLD
Specifies that printing is in normal mode; this operand causes fold mode to
revert to normal mode.

After the SETPRT macro instruction is executed, a return code is placed in register 15,
and control is returned to the instruction following the SETPRT macro instruction.
Bits 16-23 indicate the result of the attempt to load the forms control buffer (FCB).
Bits 24-31 indicate the result of the attempt to load a universal-character-set (DCS)
buffer. The codes in the following table are in hexadecimal.

Bits 16-23
FCB Code

00

04

08

OC

10

14

Bits 24-31
UCS Code

00

04

08

OC

10

14

18

lC

20

24

Meaning

Successful completion.

The operator canceled the load because either the image
could not be found in the image library or, in the case
of the DCS image, the requested chain or train was not
available.

A permanent I/O error was detected when the BLDL
macro instruction was issued to locate the image in the
image library.

A permanent I/O error persisted after two attempts
were made to load the FCB/DCS buffer.

A permanent I/O error was detected when an attempt
was made to display the character set image or forms
control image on the printer for visual verification.

The operator canceled the load because the wrong
image was displayed for visual verification.

No operation was performed for one of the following
reasons:

· The data control block was not open.

· The data control block was not valid for a
sequential data set.
The SETPR T parameter list was not valid.

· The output device was not a DCS printer.

No operation was performed because an uncorrectable
error occurred in a previously initiated output operation.
The error analysis (SYNAD) routine is entered when
the next PDT or CHECK macro instruction is issued.

Not enough space has been provided for the
IMAGELIB control blocks. Increase the amount of
space allocated for the job step.

SYS I.1MAGELIB cannot be opened to load the
specified DCS/FCB image.

Macro Instruction Descriptions 165

SETPRT - List Form

SETPRT - List Form

The list form of the SETPRT macro instruction is used to construct a data management
parameter list.

The description of the standard form of the SETPRT macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands for the list form only.

The list form of the SETPRT macro instruction is written as follows:

~ymbol]
r--- -SETPRT deb address

,,-

[F[OLD] ~ ,UCS= (ese ,F[OLD] ,V[ERIFY])
" V[ERIFY]

. [. FCB~ (image-id [V[ERIFY]J)JLOPTCD~ {B}1
,A[lIGN] U

,FCB~ (image-id [V[ERIFYJ]) LOPTCD~ ({B} [FrOLD] J))
,A[lI GN] U ,U[NFOLD]

,OPTC~ ({ B}~ F[OLD] J)
U ,U[NFOLD]

..... .J

- -
,MF=L

deb address - A-Type Address

UCS= - A character code with options

It is coded as described in the standard form of the macro instruction.

FCB= - A character code with options

It is coded as described in the standard form of the macro instruction.

OPTCD= - A printer option code

It is coded as described in the standard form of the macro instruction.

MF=L

The MF=L operand specifies that the list form of the macro instruction is used to
create a parameter list that can be referenced by an execute form of the SETPRT
macro instruction.

Macro Instruction Descriptions 167

SETPRT - Execute Form

SETPRT - Execute Form

A remote data management parameter list is referred to, and can be modified by, the
execute form of the SETPRT macro instruction.

The description of the standard form of the SETPRT macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands for the execute form only.

The execute form of the SETPRT macro instruction is written as follows:

[symbol]
r-- -

SETPRT deb address

r

[F[OLD]]

....,

,UCS= (ese ,F[OLD] ,V[ERIFY]))
" V[ERIFY]

[, FCB= Umage-;d [V[ERIFY]J)] LOPTCD= {B}J
,A[U GN] U

, FCB= U mage-; d [' V[ER I FY]J) L ° PTCD= ({ B } f F[O LD]]n
,A[LI GN] U ,U[NFOLD]

,OPTCD= ({ B} [FI9LDJ])
U ,U[NFOLD]

'--

,MF- (E,)
_ I data manogement Bst address I

(1)

deb address - RX-Type Address or (2-12)

UCS= - A character code with options

It is coded as shown in the standard form of the macro instruction.

FCB= - A character code with options

It is coded as shown in the standard form of the macro instruction.

OPTCD= - A printer option code

It is coded as shown in the standard form of the macro instruction.

MF = (E, {data management list address })
{(1) }

-

This operand specifies that the execute form of the SETPRT macro instruction is
used, and an existing data management parameter list is used.

E - Coded as shown

data management list address - RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions 169

STOW-BPAM

STOW - Update Partitioned Data Set Directory (BPAM)

The STOW macro instruction causes the system to update a partitioned data set
directory by adding, changing, replacing, or deleting an entry in the directory. Only
one entry can be updated at a time using the STOW macro instruction. If the entry to
be added or replaced is a member name, the system writes an end-of-data indication
following the member. All input and output operations using the same data control
block must have previously been tested for completion.

The STOW macro instruction is written as follows:

[symbol] STOW dcb address, I ist address [, directory octionJ

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
opened partitioned data set. The STOW macro instruction can be used only when
the data set is opened for OUTPUT, UPDAT or OUTIN (BSAM).

list address - RX-Type Address, (2-12), or (0)

The list address operand specifies the address of the main-storage area containing
the information required by the system to maintain the partitioned data set
directory. The size and format of the area depend on the directory action
requested as follows:

Adding or Replacing a Directory Entry: The list address operand must specify an
area at least 12 bytes long and beginning on a halfword boundary. The following
illustration shows the format of the area:

li st Address

Length ! NAME TTR
I C I

USER DATA ~
Bytes 8 3 0 to 62

NAME

TT

R

Specifies the 111e111beI name VI alias being added or -replaced. The name
must begin in the first byte of the field and be padded on the right with
blanks, if necessary, to complete the 8-byte field.

Specifies the relative track number on which the beginning of the data set is
located.

Specifies the relative block (record) number on the track identified by IT.

Macro Instruction Descriptions 171

Note: The TTR field shown above must be supplied by the problem program if
an alias (alias bit is 1) is being added or replaced. The system supplies the TTR
field when a member name is being added or replaced.

C

Specifies the type of entry (member or alias) for the name, the number of
note list fields (TTRNs), and the length in halfwords, of the user data field.
The following describes the meaning of the eight bits.

Bit 0=0 Indicates a member name.

Bit 0= 1 Indicates an alias.

Bits 1 and 2 Indicate the number of TTRN fields (maximum of
three) in the user data field.

Bits 3-7 Indicate the total number of halfwords in the user data
field.

Deleting a Directory Entry: The list address operand must specify an 8-byte area
that contains the member name or alias to be deleted. The name must begin in
the first byte of the area and be padded on the right with blanks, if necessary, to
complete the eight bytes.

Changing the Name of a Member: The list address operand must specify the
address of a 16-byte area; the first 8 bytes contain the old member name or alias,
and the second 8 bytes contain the new member name or alias. Both names must
begin in the first byte of their 8-byte area and be padded on the right with
blanks, if necessary, to complete the 8-byte field.

directory action - IA]
IC]
ID]
IR]

The directory action operand is coded as shown to specify the type of directory
action. If the operand is not coded, A (add an entry) is assumed.

A

C

D

R

Specifies that an entry is to be added to the directory.

Specifies that the name of an existing member or alias is to be changed.

Specifies that an existing directory entry is to be deleted.

Specifies that an existing directory entry is to be replaced by a new directory
entry. If R is coded but the old entry is not found, the new entry is added
to the directory as if A were specified.

172 OS Data Management Macro Instructions

Completion Codes

STOW-BPAM

When the system returns control to the problem program, register 15 contains one of
the following return codes in the low-order byte; the three high-order bytes of register
15 are set to zero.

Code

(Hexa­
decimal)

00

04

08

OC

10

14

18

Directory Action

A R D C

The update of tbe directory was completed successfully

The directory
already contains
the specified name.

The specified name could
not be found.

No space left in the directory.
The entry could not be added
or replaced.

The directory already contains
the specified new name.

The specified old name could
not be found.

A permanent input or output error was detected when attempting to update the
directory. Control is not given to the error analysis (SYNAD) routine.

The specified data control block is not open or is opened incorrectly.

Conditional GETMAIN with STOW macro instruction was unsuccessful.

Macro Instruction Descriptions 173

SYNADAF

SYNADAF - Perform SYNAD Analysis Function

The SYNADAF macro instruction is used in an error analysis routine to analyze
permanent input/output errors. The routine can be a SYNAD routine specified in a
data control block for BDAM, BISAM, BP AM, BSAM, QISAM, QSAM, or a routine
that is entered directly from a program that uses the EXCP macro instruction. (The
EXCP macro instruction is described in the OS Data Management for System
Programmers publication.)

The SYNADAF macro instruction uses register 1 to return the address of a buffer
containing a message. The message describes the error, and can be printed by a
subsequent PUT or WRITE macro instruction. The message consists of EBCDIC
information and is in the form of a variable-length record. The format of the message
is shown following the descriptions of the SYNADAF operands.

The system does not use the save area whose address is in register 13. Instead, it
provides a save area for its own use, and then makes this area available to the error
analysis routine. The system returns the address of the new save area in register 13
and in the appropriate location (word 3) of the previous save area; it also stores the
address of the previous save area in the appropriate location (word 2) of the.new save
area.

The SYNADAF macro instruction passes parameters to the system in registers 0 and 1.
When used in a SYNAD routine, it passes the parameters that are in these registers
when the routine is entered, and it should therefore be coded at the entry point of the
routine. (Refer to Appendix A, Figures 2 and 3.) To save these parameters for use by
the SYNAD routine, the system stores them in a parameter save area that follows the
message buffer as shown in the message buffer format. The system does not alter the
return address in register 14 or the entry point address in register 15.

When a SYNADAF macro instruction is used, a SYNADRLS macro instruction must
be used to release the message buffer and save areas, and to restore the original
contents of register 13.

The SYNADAF macro instruction is written as follows:

[symbol] SYNADAF rSMETH~BDAM ! ACSMETH=BPAM . .
A C S METH =BSA M . [, PA RM I ~parm reg ISter 1 [, PA RM2 =perm reg ISte r 1]
ACSMETH=QSAM
ACSMETH=BISAM
ACSMETH=EXCP[,PARM1=iob address] .

\ ACSMETH=QISAM[, PARM 1 =dcb address] [, PARM2=parm register]

ACSMETH=BDAM, BPAM, BSAM, QSAM, BISAM, EXCP, or QISAM

The ACSMETH operand specifies the access method used to perform the
input/ output operation for which error analysis is performed.

Macro Instruction Descriptions 175

PARMI= parm register, iob address, or deb address - (2-12) or (1)

The PARMI operand specifies the address of information that is dependent on
the access method being used. For BDAM, BP AM, BSAM, or QSAM, the
operand specifies a register that contains the information that was in register 1 on
entry to the SYNAD routine. For BISAM and QISAM, the operand specifies the
address of the data control block; for EXCP, it specifies the address of the
input/output block. If the operand is omitted, PARMI =(1) is assumed.

PARM2= parm register - (2-12), (0), or RX-Type Address (only if
ACSMETH=QISAM)

Completion Codes

The P ARM2 operand specifies the address of additional information that is
dependent on the access method being used. For BDAM, BISAM, BP AM,
BSAM, QISAM, and QSAM, the operand specifies a register that contains the
information that was in register 0 on entry to the SYNAD routine. For EXCP,
the operand is meaningless and should be omitted. If the operand is omitted,
except in the case of EXCP, PARM2=(O) is assumed.

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

Hexadecimal Code

00

04

08

Meaning

Successful completion. Bytes 8-13 of the message buffer
contain blanks.

Successful completion. Bytes 8-13 of the message buffer
contain binary data.

Unsuccessful completion. The message can be printed, but
some information is missing in bytes 50-127 and is
represented by asterisks. Bytes 8-13 contain either blanks or
binary data.

176 as Data Management Macro Instructions

SYNADAF

Message Buller Format

Messafi!e Buffer
Byte 0

III b b

Doubleword
Boundary

The following illustration shows the format of the message buffer; the address of the
buffer is returned in register 1.

8 12 14

Input No. of
Input: Buffer Bytes

4

1"_
Address Read

1'4 ~ I~ II I b b 8 (Blanks) I'
Output: (Blanks)

LL = 128; II = 124; bb = 00
I

1'4

50 59 68

Jobname Stepname Unit , ,
Address

84 91

Operation 1, Error Description Attempted

107

Unit Record: (Asterisks)

107 115

Relative Block Access
Number (decimal) , Method

Magnetic Tape:

107

Direct Access:
Actual Track Address and Block Number
(BBCCHHR in hexadecimal format)

72 75

,

120

Device
Type ,

107

,

,

Access
Method

(Blanks)

122

Access
Method

DDname

12 8

128

8 4

,

(End of Buffer -
-Beginning of

Parameter Save Area)

Parameter Save Area
128 132 136

I
Parameter Parameter
Register 0 Register 1
(PARM2) (PARMI)

Notes

• The device type field (bytes 72-73) contains DR for a unit record device, T A for
a magnetic tape device, or DA for a direct-access device.

If a message field (bytes 91-105) is not applicable to the type of error that
occurred, it contains N/ A or NOT APPLICABLE.

If no data was transmitted, or if the access method is QISAM, bytes 8-13 contain
blanks.

If the access method is BISAM, bytes 68-70, 84-89, and 107-120 contain
asterisks.

If the access method is BDAM, and if the error was an invalid request, bytes
107-120 contain EBCDIC zeros.

Macro Instruction Descriptions 177

SYNADRLS

SYNADRLS - Release SYNADAF Buffer and Save Areas

The SYNADRLS macro instruction releases the message buffer, parameter save area,
and register save area provided by a SYNADAF macro instruction. It must be used to
perform this function whenever a SYNADAF macro instruction is used.

When the SYNADRLS macro instruction is issued, register 13 must contain the address
of the register save area provided by the SYNADAF macro instruction. The control
program loads register 13 with the address of the previous save area, and sets word 3
of that save area to zero. Thus, when control is returned, the save area pointers are
the same as before the SYNADAF macro instruction was issued.

The SYNADRLS macro instruction is written as follows:

I [symbol] I SYNADRLS I
When the system returns control to the problem program, the low-order byte of
register 0 contains one of the following return codes; the three high-order bytes of
register 0 are set to zero.

Hexadecimal Code

00

08

Meaning

Successful completion.

Unsuccessful completion. The buffer and save areas were not
released; the contents of register 13 remain unchanged.
Register 13 does not point to the save area provided by the
SYNADAF macro instruction, or this save area is not properly
chained to the previous save area.

Macro Instruction Descriptions 179

TRUNC - Truncate an Output Buffer (QSAM Output Only­
Fixed- or Variable-Length Blocked Records Only)

TRUNC-QSAM

The TRUNC macro instruction causes the current output buffer to be regarded as full.
The next PUT or PUTX macro instruction specifying the same data control block uses
the next buffer to hold the logical record.

When a variable-length spanned record is being truncated and logical record interface
is specified (that is, if BFIEK=A is specified in the DCB macro instruction, or if a
BUILDRCD macro instruction is issued), the system segments and writes the record
before truncating the buffer. Therefore, the block being truncated is the one that
contains the last segment of the spanned record.

The TRUNC macro instruction is ignored if it is used for unblocked records; if it is
used when a buffer is full, or if it is used without an intervening PUT or PUTX macro
instruction.

The TRUNC macro instruction is written as follows:

[symbol] TRUNC I deb address

deb address - RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block for the
sequential data set opened for output. The record format in the data control
block must not indicate standard blocked records (RECFM=FBS).

Macro Instruction Descriptions 181

WRITE-BSAM

WRITE - Write a Block (Create a Direct Data Set with
BSAM)

The WRITE macro instruction causes the system to add a block to the direct data set
being created. For fixed-length blocks, the system writes the capacity record
automatically when the current track is filled; for variable- and unspecified-length
blocks, a WRITE macro instruction must be issued for the capacity record. Control
may be returned before the block is written. The output operation must be tested for
completion using a CHECK macro instruction. A data event control block, shown in
Appendix A, is constructed as part of the macro expansion.

The standard form of the WRITE macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol} WRITE deeb name, type, deb address,area address~ lengt~ ~ next addres~
, 'S'

decb name - symbol

The decb name operand specifies the name assigned to the data event control
block created as part of the macro expansion.

type - {SF}
{SFR}
{SD }
{SZ }

The type operand is coded as shown, to specify the type of write operation
performed by the system.

SF

SFR

SD

SZ

Specifies that a new data block is to be written in the data set.

Specifies that a new variable-length spanned record is to be written in the
data set, and next address feedback is requested. This operand can be
specified only for variable-length spanned records (BFTEK= Rand
RECFM=VS are specified in the data set control block).

Specifies that a dummy data block is to be written in the data set; dummy
data blocks can be written only when fixed-length records with keys are
used.

Specifies that a capacity record (RO) is to be written in the data set;
capacity records can be written only when variable-length or
undefined-length records are used.

Macro Instruction Descriptions 183

WRITE-BSAM

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block opened
for the data set being created. DSORG=PS (or PSU) and MACRF=WL must be
specified in the DCB macro instruction to create a BDAM data set.

area address - A-Type Address or (2-12)

The area address operand specifies the address of the main-storage area that
contains the data block to be added to the data set. If keys are used, the key
must precede the data in the same area. For writing capacity records (SZ), the
area address is ignored and can be omitted (the system supplies the information
for the capacity record). For writing dummy data blocks (SD), the area need be
only large enough to hold the key plus one data byte. The system constructs, a
dummy key with the first byte set to all one bits (hexadecimal FF) and adds the
block number in the first byte following the key. When a dummy block is
written, a complete block is written from the area immediately following the area
address; therefore, the area address plus the value specified in the BLKSIZE
operand must be within the main-storage area allocated to the program writing
the dummy blocks.

length - symbol, decimal digit, absexp, (2-12), or'S'

The length operand is used only when undefined-length (RECFM= U) blocks are
being written. The operand specifies the length of the block, in bytes, up to a
maximum of 32,760. If'S' is coded, it specifies that the system is to use the
length in the blocksize (DCBBLKSI) field of the data control block as the length
of the block to be written.

If the length operand is omitted for format-U records, no error indication is given
when the program is assembled, but the problem program must insert a length
into the data event control block before the data set is opened.

next address - A-Type Address or (2-12)

The next address operand specifies the address. of a main-storage area where the
system places the relative track address of the next record to be written. Next
address feedback can be requested only when variable-length spanned records are
used.

Note: When variable-length spanned records are used (RECFM= VS and BFTEK=R
are specified in the data control block), the system writes capacity records (RO)
automatically in the following cases:

• When a record spans a track.

• When the record cannot be written completely on the current volume. In this
case, all capacity records of remaining tracks on the current volume are written;
tracks not written for this reason are still counted in the search limit specified in
the LIMCT operand of the data control block.

• When the record written is the last record on the track, the remaining space on
the track cannot hold more than eight bytes of data.

184 Macro Instruction Descriptions

Completion Codes

When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes; the three high-order bytes of
register 15 are set to zero.

Code Meaning

00

04

08

Fixed-Length

(SF or SD)

Variable- or Unspecified-Length

(SF or SFR)

Block was written. (If the previous return code
was 08, a block is written only if the DD
statement specifies secondary space allocation
and sufficient space is available.

Block was written,
followed by a capacity
record.

Block was written,
followed by capacity
record. The next block
requires secondary
space allocation.

Block was not written;
write a capacity record
record (SZ) to complete
the current track, then
reissue.

(SZ)

Capacity record was
written; another track
is available.

Capacity record was
written. The next
block requires secondary
space allocation. This
code is not issued if
the WRITE SZ is the
only WRITE macro
instruction issued on
a one-track secondary
extent.

OC Block will not be written; issue a CHECK macro instruction for the previous
WRITE macro instruction, then reissue the WRITE macro instruction.

as Data Management Macro Instructions 185

WRITE-BOAM

WRITE - Write a Block (BDAM Only)

The WRITE macro instruction causes the system to add or replace a block in an
existing direct data set. (This version of the WRITE macro instruction cannot be used
to create a direct data set because no capacity record facilities are provided.) Control
may be returned before the block is written. The output operation must be tested for
completion using a CHECK or WAIT macro instruction. A data event control block,
shown in Appendix A is constructed as part of the macro expansion.

The standard form of the WRITE macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol] WRITE deeb nome, type, deb address, {area address},
·S· II eng th I ' I key add ress I ,b lack add ress

·S· ·S·
0

decb name - symbol

The decb name operand specifies the name assigned to the data event control
block created as part of the macro expansion.

type - {OA [F)}

{OI [Fll
[Xl

{OK [F)}
[Xl

The type operand is coded in one of the combinations shown to specify the type
of write operation and optional services performed by the system.

OA

OI

Specifies that a new data block is to be added to the data set in the first
available space; the search for available space starts at the device address
indicated in the area specified in the block address operand. The
description of the DCB macro instruction, LIMCT operand, contains a
description of the search.

Specifies that a data block and key, if any, are to be written at the device
address indicated in the area specified in the block address operand. Any
attempt to write a capacity record (RO) is an invalid request when relative
track addressing or actual device addressing are used, but when relative
block addressing is used, relative block 0 is the first data block in the data
set.

Macro Instruction Descriptions 187

OK

F

x

Specifies that a data block (only) is to be written using the key in the area
specified by the key address operand as a search argument; the search for
the block starts at the device address indicated in the area specified in the
block address operand. The description of the DCB macro instruction,
LIMCT operand, contains a description of the search.

Requests that the system provide block position feedback into the area
specified in the block address operand. This character can be coded as a
suffix to OA, OJ, or OK as shown above.

Requests that the system release the exclusive control requested by a
previous READ macro instruction and provide block position feedback into
the area specified in the block address operand. This character can be
coded as a suffix to OJ or OK as shown above.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened BDAM data set.

area address - A-Type Address, (2-12), or '8'

The area address operand specifies the address of a main-storage area that
contains the data block to be written. '8' can be coded instead of an area address
only if the data block (or key and data) are contained in a buffer provided by
dynamic buffering; that is, '8' was coded in the area address operand of the
associated READ macro instruction. If '8' is coded in the WRITE macro
instruction, the area address from the READ macro instruction data event control
block must be moved into the WRITE macro instruction data event control block;
the buffer area acquired by dynamic buffering is released after the WRITE macro
instruction is executed. See Appendix A for a description of the data event
control block.

length - symbol, decimal digit, absexp, (2-12) or '8'

The length operand specifies the number of data bytes to be written up to a
maximum of 32,760. If '8' is coded, it specifies that the system uses the value in
the blocksize (DCBBLKSI) field as the length. When undefined-length records
are used, if the WRITE macro instruction is for update and the length specified
differs from the original block, the new block will be truncated or padded with
binary zeros accordingly. The problem program can check for this situation in the
SYNAD routine.

If the length operand is omitted for format-U records, no error indication is given
when the program is assembled, but the problem program must insert a length
into the data event control block before the WRITE macro instruction is
executed.

key address - A-Type Address, (2-12), '8', or 0

The key address operand specifies the address of the main-storage area that
contains the key to be used. '8' is specified instead of an address only if the key

188 OS Data Management Macro Instructions

WRITE-BDAM

is contained in an area acquired by dynamic buffering. If the key is not written
or used as a search argument, zero is specified instead of a key address.

block address - A-Type Address or (2-12)

The block address operand specifies the address of a main-storage area that
contains the relative block address, relative track address, or actual device address
used in the output operation. The length of the area depends on the type of
addressing used and if the feedback option (OPTCD=F) is specified in the data
control block.

If OPTCD=F has been specified, feedback, when requested, is in the same form
as was originally presented by the WRITE macro instruction; the area is either
three or eight bytes long depending on the type of addressing.

If OPTCD=F has not been specified, feedback, when requested, is in the form of
an 8-byte actual device address (MBBCCHHR); the area must be eight bytes.

Macro Instruction Descriptions 189

WRITE - BISAM

WRITE - Write a Logical Record (BISAM Only)

The WRITE macro instruction causes the system to add or replace a record or replace
an updated block in an existing indexed sequential data set. Control may be returned
to the problem program before the block or record is written. The output operation
must be tested for completion using aWAIT or CHECK macro instruction. A data
event control block, shown in Appendix A, is constructed as part of the macro
expansion.

The standard form of the WRITE macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol] WRITE deeb nome type deb address {area addreSS}
" I 'S' I

{ length} 's' ,key address

deeb name - symbol

The deeb name operand specifies the name assigned to the data event control
block created as part of the macro expansion.

type - {KJ {KNJ

The type operand is coded as shown to specify the type of write operation.

K Specifies that either an updated unblocked record or a block containing an
updated record is to be written. If the record has been read using a READ
KU macro instruction, the data event control block for the READ macro
instruction must be used as the data event control block for the WRITE
macro instruction, using the execute form of the WRITE macro instruction.

KN Specifies that a new record" is to be written, or a variable-length record is to
be rewritten with a different length. All records read using a READ KU
macro instruction for the same data control block must be written back
before a new record can be added except when the READ KU and WRITE
KN refer to the same DECB.

deb address - A-Type Address or (2-12)

The deb address operand specifies the address of the data control block for the
opened existing indexed sequential data set. If a block is written, the data control
block address must be the same as the deb address operand in the corresponding
READ macro instruction.

Macro Instruction Descriptions 191

area address - A-Type Address, (2-12), or'S'

The area address operand specifies the address of the main-storage area
containing the record to be written. The first sixteen bytes of this area are used
by the system and should not contain your data. When new records are written,
the area address of the new record must always be supplied by the problem
program. This area may be altered by the system. 'S' may be coded instead of
an address only if the record is contained in an area provided by dynamic
buffering; that is, 'S' was coded for the area address operand in the associated
READ macro instruction. If'S' is coded here, the area address in the READ
macro instruction data event control block must be moved into this data event
control block; the area is released after execution of the WRITE macro
instruction.

Indexed sequential buffer and work area requirements are discussed in OS Data
Management Services Guide.

length - symbol, decimal digit, absexp, (2-12) or'S'

The length operand specifies the number of data bytes to be written, to a
maximum of 32,760. If the length is already known to the system (if new records
are being added or a block containing an updated record is written), specify'S'
instead of a length.

key address - A-Type Address or (2-12)

The key address operand specifies the address of a main-storage area containing
the key of the new or updated record. For blocked records, this is not necessarily
the high key in the block. For unblocked records, this field should not overlap
with the work area specified in the MSW A parameter of the DCB macro
instruction.

Note: When new records are written, this area may be altered by the system.

192 OS Data Management Macro Instructions

WRITE - BPAM and BSAM

WRITE - Write a Block (BPAM and BSAM Only)

The WRITE macro instruction causes the system to add or replace a block in a
sequential or partitioned data set being created or updated. Control may be returned
to the problem program before the block is written. The output operation must be
tested for completion using the CHECK macro instruction. A data event control block,
shown in Appendix A, is constructed as part of the macro expansion.

If translation from EBCDIC code to ASCII code is requested, issuing multiple WRITE
macro instructions for the same record causes an error because the first WRITE macro
instruction issued causes the output data in the output buffer to be translated into
ASCII code.

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE macro
instructions must refer to the same data event control block. Refer to the list form of
the READ or WRITE macro instruction for a description of how to construct a data
event control block; refer to the execute form of the READ or WRITE macro
instruction for a description of modifying an existing data event control block.

The standard form of the WRITE macro instruction is written as follows (the list and
execute forms are shown following the descriptions of the standard form):

[symbol] WRITE

deeb name - symbol

deeb name,type,deb address, area address [, length]
, '5'

The deeb name operand specifies the name assigned to the data event control
block created as part of the macro expansion.

type - SF

This operand is coded as shown to specify the type of Write operation.

SF Specifies normal, sequential forward operation.

deb address - A-Type Address, or (2-12)

The deb address operand specifies the address of the data control block for the
opened data set being created or processed. If the data set is being updated, the
data control block address must be the same as the deb address operand in the
corresponding READ macro instruction.

area address - A-Type Address or (2-12)

The area address operand specifies the address of a main-storage area that
contains the data block to be written; if a key is written, the key must precede the
data in the same area.

Macro Instruction Descriptions 193

length - symbol, decimal digit, absexp, (2-12) or'S'

The length operand specifies the number of bytes to be written; this operand is
specified for only undefined-length records (RECFM= U) or ASCII records
(RECFM=D) when the DCB BUFOFF operand is zero. If the data is to be
translated from EBCDIC code, to ASCII code the maximum length is 2048;
otherwise, the maximum length is 32,760 bytes. 'S' can be coded to indicate that
the value specified in the blocksize (DCBBLKSI) field of the data control block is
used as the length to be written. The length operand should be omitted for all
record formats except format-U and format-D (when BUFOFF=O).

If the length operand is omitted for format-U or format-D (with BUFOFF=O)
records, no error indication is given when the program is assembled, but the
problem program must insert a length into the data event control block before the
data set is opened.

194 OS Data Management Macro Instructions

WRITE - List Form

WRITE - List Form

The list form of the WRITE macro instruction is used to construct a data management
parameter list in the form of a data event control block (DECB). Refer to Appendix A
for a description of the various fields in the DECB for each access method.

The description of the standard form of the WRITE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates the operands used for each access method as well as the meaning of'S' when
coded for the area address, length, and key address operands. For each access
method, 'S' can be coded only for those operands for which it can be coded in the
standard form of the macro instruction. The format description below indicates the
optional and required operands in the list form only.

The list form of the WRITE macro instruction is written as follows:

[symbol] WRITE decb name, type, [dcb address], ~rea addres~,
·S·

~engt~ I [key addres~, [block address], [next address]
·S· ·S·

,MF=L

deeb name - symbol

type - Code one of the types shown in the standard form

deb address - A-Type Address

area address - A-Type Address or'S'

length - symbol, decimal digit, absexp, or'S'

key address - A-Type Address or'S'

block address - A-Type Address

next address - A-Type Address

MF=L - Coded as shown

The MF=L operand specifies that the WRITE macro instruction is used to create
a data event control block that will be referenced by an execute-form instruction.

Macro Instruction Descriptions 195

WRITE-Execute Form

WRITE - Execute Form

A remote data management parameter list (data event control block) is used in, and
can be modified by, the execute form of the WRITE macro instruction. The data event
control block can be generated by the list form of either a READ or WRITE macro
instruction.

The description of the standard form of the WRITE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates the operands used for each access method, as well as the meaning of'S' when
coded for the area address, length, and key address operands. For each access
method, 'S' can be coded only for those operands for which it can be coded in the
standard form of the macro instruction. The format description below indicates the
optional and required operands in the execute form only.

The execute form of the WRITE macro instruction is written as follows:

[symbol] WRITE decb address, type, [dcb address], ~rea addres~,
'5'

~engthJ' ~ey addres~, [block address], [next address]
'5' '5'

,MF=E

decb address - RX-Type Address or (2-12)

type - Code one of the types shown in the standard form

deb address - RX-Type Address or (2-12)

area address - RX-Type Address, (2-12), or'S'

length - symbol, decimal digit, absexp, (2-12), or'S'

key address - RX-Type Address, (2-12), or'S'

block address-RX-Type Address or (2-12)

next address - RX-Type Address or (2-12)

MF=E - Coded as shown

The MF=E operand specifies that the execute form of the WRITE macro
instruction is used, and an existing data event control block (specified in the decb
address operand) is to be used by the access method.

Macro Instruction Descriptions 197

XLATE

XLATE - Translate to and from ASCII

The XLA TE macro instruction is used to translate the data in an area in main storage
from ASCII code to EBCDIC code or from EBCDIC code to ASCII code.

The XLATE macro instruction is written as follows:

[symbol] XLATE area address, Ie n9th [, T 0.\ ~ 11

area address - RX-Type Address, symbol, decimal digit, absexp, or (2-12)

The area address operand specifies the address of the main-storage area that is to
be translated.

length - symbol, decimal digit, absexp, or (2-12)

The length operand specifies the number of bytes to be translated.

{A}
TO = {E}

The TO operand specifies the type of translation that is requested. The following
describes the characters that can be specified. If this operand is omitted, E is
assumed.

A Specifies that translation from EBCDIC code to ASCII code is requested.

E Specifies that translation from ASCII code to EBCDIC code is requested.

Macro Instruction Descriptions 199

APPENDIX A: STATUS INFORMATION FOLLOWING AN
INPUT/OUTPUT OPERATION

Following an input/output operation, the control program makes certain status
information available to the problem program. This information is a 2-byte exception
code, or a 16-byte field of standard status indicators, or both.

Exception codes are provided in the data control block (QISAM), or in the data event
control block (BISAM and BDAM). The data event con~l block is described below,
and the exception code lies within the block as shown in the illustration for the data
event control block. If a DCBD macro instruction is coded, the exception code ~n a
data control block can be addressed as two I-byte fields, DCBEXCDI and
DCBEXCD2. The exception codes can be interpreted by referring to Figures 1 and 2.

Status indicators are available only to the error analysis routine designated by the
SYNAD entry in the data control block. A pointer to the status indicators is provided
either in the data event control block (BSAM, BPAM, and BDAM), or in register 0
(QISAM and QSAM). The contents of registers on entry to the SYNAD routine are
shown in Figures 3-5; the status indicators are shown in Figure 6.

The Data Event Control Block

A data event control block is constructed as part of the expansion of READ and
WRITE macro instructions and is used to pass parameters to the control program, help
control the read or write operation, and receive indications of the success or failure of
the operation. The data event control block is named by the READ or WRITE macro
instruction, begins on a fullword boundary, and contains the information shown in the
following illustration:

Field Contents
Offset From DECB
Address (Bytes) BSAM and BPAM BISAM BDAM

0 ECB ECB ECB1

+4 Type Type Type

+6 Length Length Length

+8 DCB address DCB address DCB address

+12 Area address Area address Area address

+16 Status indicator Logical record Status indicator
address address address
(Figure 6) (Figure 6)

+20 Key address Key address

+24 Exception code Block address
(2 bytes)

+28 Next address

1 Exception codes are returned in the second and third bytes of the ECB by the control program. See Figure 1.

Appendix A: Status Information Following an Input/Output Operation 201

Exception
Code Bit

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1.

READ

X

X

X

X

X

X

The event control block (ECB) is used by the control program to test for completion of
the read or write operation. The type, length, data control block address, area address,
key address, block address, and next address information is taken from the operands of
the macro instruction for use by the control program. Exception codes are returned by
the control program after the corresponding WAIT or CHECK macro instruction is
issued, as indicated in Figure 1; for BDAM, BSAM, and BP AM the control program
provides a pointer to status indicators shown in Figure 6.

BISAM BDAM

WRITE Condition if On READ WRITE Condition if On

Type K Record not found X X Record not found

X Record length check X X Record length check

Type KN Space not found X Space not found

Type K Invalid request X X Invalid request - see bits 8-15

X Uncorrectable I/O X X Uncorrectable I/O error
error

X Unreachable block X X End of data

Overflow record X X Uncorrectable error (other than I/O)

Type KN Duplicate record Type X Not read with exclusive control

8-15 reserved for Not used
control program use

X DCB operand for input

X X Extended search with DCBLI MCT = 0

X X Block requested was outside data set

X Tried to write capacity record

X X Specified key as search argument when
KEYLEN = 0 or no key address supplied

X Channel program X X Request for options not in data control
initiated by an block
asynchronous
routine (variable-
length records
only)

Reserved for X Attempt to add fixed-length record with
control program key beginning with hex FF
use

Exception Code Bits - BISAM and BDAM

Record Not Found: This condition is reported if the logical record with the specified
key is not found in the data set, if the specified key is higher than the highest key in
the highest level index, or if the record is not in either the prime area or the overflow
area of the data set.

Record Length Check: This condition is reported, for READ and update WRITE
macro instructions, if an overriding length is specified and (1) the record format is
blocked, (2) the record format is unblocked but the overriding length is greater than
the length known to the control program, or (3) the record is fixed length and the

202 OS Data Management Macro Instructions

overriding length does not agree with the length 'known to the control program. This
condition is reported for the add WRITE macro instruction if an overriding length is
specified.

When blocked records are being updated, the control program must find the high key in
the block in order to write the block. (The high key is not necessarily the same as the
key supplied by the problem program.) The high key is needed for writing because the
control unit for direct-access devices permits writing only if a search on equal is
satisfied; this search can be satisfied only with the high key in the block. If the user
were permitted to specify an overriding length shorter than the block length, the high
key might not be read; then, a subsequent write request could not be satisfied. In
addition, failure to write a high key during update would make a subsequent update
impossible.

Space Not Found in Which to Add a Record: This condition is reported if no room
exists in either the appropriate cylinder overflow area or the independent overflow area
when a new record is to be added to the data set. The data set is not changed in any
way in this situation.

Invalid Request: This condition is reported for either of two reasons. First, if byte 25
of the data event control block indicates that this request is an update WRITE macro
instruction corresponding to a READ (for update) macro instruction, but the
input/ output block (lOB) for the READ is not found in the update queue. This
condition could be caused by the problem program altering the contents of byte 25 of
the data event control block. Second, if a READ or WRITE macro instruction
specifies dynamic buffering (that is, 'S' in the area address operand) but the
DCBMACRF field of the data control block does not specify dynamic buffering.

Uncorrectable Input/Output Error: This condition is reported if the control program's
error recovery procedures encounter an uncorrectable error in transferring data
between main storage and secondary storage.

Unreachable Block: This condition is reported if an uncorrectable input/output error
occurs while searching the indexes or following an overflow chain. It is also posted if
the data field of an index record contains an improper address (that is, points to the
wrong cylinder or track or is an invalid address).

Overflow Record: This condition is reported if the record just read is an overflow
record. (See the section on Direct Retrieval and Update of an Indexed Sequential Data
Set in the OS Data Management Services Guide for consideration during BISAM
updating.)

Duplicate Record Presented for Inclusion in the Data Set: This condition is reported if
the new record to be added has the same key as a record in the data set. However, if
the delete option was specified and the record in the data set is marked for deletion,
this condition is not reported. Instead the new record replaces the existing record.

If the record format is blocked and the relative key position is zero, the new record
cannot replace an existing record that is of equal key and is marked for deletion.

Appendix A: Status Information Following an Input/Output Operation 203

Exception Code Code Set by

Field Bit CLOSE GET PUT PUTX SETL Condition if On

DCBEXCD1 0 Type K Record Not Found

Type I Invalid actual address for lower limit

2 X Space not found in which to add a record

3 X Invalid request

4 X Uncorrectable input error

5 X X X Uncorrectable output error

6 X X Block could not be reached (input)

7 X X Block could not be reached (update)

DCBEXCD2 0 X Sequence check

X Duplicate record

2 X Data control block closed when error routine
entered

3 X Overflow record 1 •

4 X I ncorrect record length

5-7 Reserved for future use

lThe SYNAD routine is entered only if bit 4, 5, 6, or 7 of DCBEXCDI is also on.

Figure 2. Exception Code Bits - QISAM

Record Not Found: This condition is reported if the logical record with the specified
key is not found in the data set, if the specified key is higher than the highest key in
the highest level index, or if the record is not in either the prime area or the overflow
area of the data set.

Invalid Actual Address for Lower Limit: This condition is reported if the specified lower
limit address is outside the space allocated to the data set.

Space Not Found in Which to Add a Record: This condition is reported if the space
allocated to the data set is already filled. In the locate mode, a buffer segment address
is not provided. In the move mode, data is not moved.

Invalid Request: This condition is reported if (1) the data set is already being referred
to sequentially by the problem program, (2) the buffer cannot contain the key and the
data, or (3) the specified type is not also specified in the DCBMACRF field of the
data control block.

Uncorrectable Input Error: This condition is reported if the control program's error
recovery procedures encounter an uncorrectable error when transferring a block from
secondary storage to an input buffer. The buffer address is placed in register 1, and
the SYNAD routine is given control when a GET macro instruction is issued for the
first logical record.

Uncorrectable Output Error: This condition is reported if the control program's error
recovery procedures encounter an uncorrectable error when transferring a block from
an output buffer to secondary storage. If the error is encountered during closing of the
data control block, bit 2 of DCBEXCD2 is set to 1 and the SYNAD routine is given

204 as Data Management Macro Instructions

control immediately. Otherwise, control program action depends on whether load mode
or scan mode is being used.

If a data set is being created (load mode), the SYNAD routine is given control when
the next PUT or CLOSE macro instruction is issued. In the case of a failure to write a
data block, register 1 contains the address of the output buffer, and register 0 contains
the address of a work area containing the first 16 bytes of the lOB; for other errors,
the contents of register 1 are meaningless. After appropriate analysis, the SYNAD
routine should close the data ~et or end the job step. If records are to be subsequently
added to the data set using the queued indexed sequential access method (QISAM), the
job step should be terminated by issuing an ABEND macro instruction. (ABEND
closes all open data sets. However, an ISAM data set is only partially closed, and it
can be reopened in a later job to add additional records by using QISAM). Subsequent
execution of a PUT macro instruction would cause reentry to the SYNAD routine,
since an attempt to continue loading the data set would produce unpredictable results.

If a data set is being processed (scan mode), the address of the output buffer in error is
placed in register 1, the address of a work area containing the first 16 bytes of the lOB
is placed in register 0, and the SYNAD routine is given control when the next GET
macro instruction is issued. Buffer scheduling is suspended until the next GET macro
instruction is reissued.

Block Could Not be Reached (lIiput): This condition is reported if the control program's
error recovery procedures encounter an uncorrectable error in searching an index or
overflow chain. The SYNAD routine is given control when a GET macro instruction is
issued for the first logical record of the unreachable block.

Block Could Not be Reached (Output): This condition is reported if the control
program's error recovery procedures encounter an uncorrectable error in searching an
index or overflow chain.

If the error is encountered during closing of the data control block, bit 2 of
DCBEXCD2 is set to 1 and the SYNAD routine is given control immediately.
Otherwise, the SYNAD routine is given control when the next GET macro instruction
is issued.

Se'tUence Check: This condition is reported if a PUT macro instruction refers to a
record whose key has a smaller numerical value than the key of the record previously
referred to by a PUT macro instruction. The SYNAD routine is given control
immediately; the record is not transferred to secondary storage.

Duplicate Record: This condition is reported if a PUT macro instruction refers to a
record whose key duplicates that of the record previously referred to by a PUT macro
instruction. The SYNAD routine is given control immediately; the record is not
transferred to secondary storage.

Data Control Block Closed When Error Routine Entered: This condition is reported if
the control program's error recovery procedures encounter an uncorrectable output
error during closing of the data control block. Bit 5 or 7 of DCBEXCD 1 is set to 1,
and the SYNAD routine is immediately given control. After appropriate analysis, the
SYNAD routine must branch to the address in return register 14 so that the control
program can finish closing the data.control block.

Overflow Record: This condition is reported if the input record is an overflow record.

Appendix A: Status Information Following an Input/Output Operation 205

Incorrect Record Length: This condition is reported if the length of the record as
specified in the record-descriptor word (RDW) is larger than the value in the
DCBLRECL field of the data control block.

Register Bits Meaning

Not used. o 0-7

8-31 Address of a work area containing the first 16 bytes of the lOB (after an
uncorrectable input/output error caused by a GET, PUT, or PUTX macro
instruction; original contents destroyed in other cases). If the error condition was
detected before I/O was started, register 0 contains all zeros.

0-7 Not used.

8-31 Address of the buffer containing the error record (after an uncorrectable
input/output error caused by a GET, PUT, or PUTX macro instruction while
attempting to reaq or write a data record; in other cases this register contains 0).

2-13 0-31 Contents that existed before the macro instruction was issued.

14 0-7 Not used.

15

8-31 Return address. This address is either an address in the control program's Close
routine (bit 2 of DCBEXCD2 is on), or the address of the instruction following the
expansion of the macro instruction that caused the SYNAD routine to be given
control (bit 2 of DCBEXCD2 is off).

0-7 Not used.

8-31 Address of the SYNAD routine.

Figure 3. Register Contents on Entry of SYNAD Routine - QISAM

Register Bits Meaning

Not used. o 0-7

2-13

14

15

8-31 Address of the first lOB sense byte. (Sense information is valid only when
associated with a unit check condition.)

0-7 Not used.

8-31 Address of the DECB.

0-31

0-7
8-31

0-7
8-31

Contents that existed before the macro instruction was issued.

Not used.
Return address.

Not used.
Address of the SYNAD routine.

Figure 4. Register Contents on Entry to SYNAD Routine - BISAM

206 OS Data Management Macro Instructions

Register Bits

0 0-7

8-31

0
1
2

3

4

5

6
7
8-31

2-13 0-31

14 0-7
8-31

15 0-7
8-31

Meaning

Value to be added to the status indicators address to provide the address of the
first CCW (QSAM only).
Address of the associated data event control block for BDAM, BPAM, and BSAM;
address of the status indicators shown in Figure 6 for QSAM.

Bit is on for error caused by input operation.
Bit is on for error caused by output operation.
Bit is on for error caused by BSP, CNTRL, or POINT macro instruction (BPAM
AND BSAM only).
Bit is on if error occurred during update of existing record or if error did not
prevent reading of the record. Bit is off if error occurred during creation of a new
record or if error prevented reading of the record.
Bit is on if the request was invalid. The status indicators pointed to in the data
event control block are not present (BDAM, BPAM, and BSAM only).
Bit is on if an invalid character was found in paper tape conversion (BSAM and
QSAM only).
Bit is on for a hardware error (BDAM only).
Bit is on if no space was found for the record (BDAM only).
Address of the associated data control block.

Contents that existed before the macro instruction was issued.

Not used.
Return address.

Not used.
Address of the error analysis routine.

Figure 5. Register Contents on Entry to SYNAD Routine - BDAM, BPAM, BSAM,
and QSAM

Appendix A: Status Information Following an Input/Output Operation 207

Offset From Status
Indicator Address Meaning Name
Byte Bit

+2 0 Command reject Sense byte 1
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun
6,7

! 1
Device-dependent

+3 0-7 Refer to the appropriate"device Sense byte 2
manual

+8 0-7 Beginning of a channel status word

+9 Command address

+12 0 Attention Status byte 1
1 Status modifier (Unit)
2 Control unit end
3 Busy
4 Channel end
5 Device end
6 Unit check - must be on for channel

sense bytes to be meaningful
7 Unit exception status

+13 0 Program-controlled interrupt Status byte 2 word
1 Incorrect length (Channel)
2 Program check
3 Protection check
4 Channel data check
5 Channel control check
6 I nterface control check
7 Chaining check

+14 Count field

Figure 6. Status Indicators for the SYNAD Routine

208 OS Data Management Macro Instructions

APPENDIX B: DATA MANAGEMENT MACRO INSTRUCTIONS
AVAILABLE BY ACCESS METHOD

Macro Instruction BDAM BISAM BPAM BSAM OISAM OSAM

BLDL X
BSP X
BUILD X X X X X X
BUILDRCD X

CHECK X X X X
CLOSE X X X X X X
CNTRL X X

DCB X X X X X X
DCBD X X X X X X

ESETL X

FEOV X X
FIND X
FREEBUF X X X X
FREEDBUF X X
FREEPOOL X X X X X X

GET X X
GETBUF X X X X
GETPOOL X X X X X X

NOTE X X

OPEN X X X X X X

POINT X X
PRTOV X X
PUT X X
PUTX X X

READ X X X X
RELEX X
RELSE X X

SETL X
SETPRT X X
STOW X
SYNADAF X X X X X X
SYNADRLS X X X X X X

TRUNC X

WRITE X X X X

Appendix B: Data Management Macro Instructions Available by Access Method 209

APPENDIX C: DEVICE CAPACITIES

The following information provides a guide to coding the blocksize (BLKSIZE) and
logical record length (LRECL) operands in the DCB macro instruction. These values
can be used to determine the maximum blocksize and logical record length for a given
device, and they can be used to determine the optimum blocking factor when records
are to be blocked.

Card Readers and Card Punches

Printers

The logical-record length for a card reader or card punch is fixed at 80 bytes;
variable-length records are not supported for these devices. If the optional control
character is specified, the logical-record length is 81 (the control character is not part
of the data record). If card image mode is used, the buffer required to contain the data
must be 160 bytes.

The following shows the record length that can be specified for the various printers. In
some cases, two values are shown; the larger of the two values requires that an optional
feature be installed on the printer being used. If the optional control character is
specified to control spacing and skipping, the record length is specified as one greater
than the actual data length (the control character is not part of the data record).

1403 printer
1404 printer
1443 printer
3211 printer
1052 printer keyboard
3210 printer keyboard
3215 printer keyboard
3525 card punch,

print feature

120 or 132 bytes
120 or 132 bytes
120 or 144 bytes
132 or 150 bytes
130 bytes
130 bytes
130 bytes

64 bytes

Paper-Tape Reader

2671 paper tape - 32,760 bytes

Magnetic-Tape Units

2400/3400 magnetic-tape units - 32,760

(7 tracks and 9 tracks)

Appendix C: Device Capacities 211

Direct-Access Devices

The following chart shows the capacity of direct-access devices by track, cylinder, and
total capacity in bytes. .

Device Volume Track Tracks/ Number of Total
Type Type Capacity I Cylinder Cylinders Capacity I

2311 Disk 3625 10 200 7,250,000
23142 Disk 7294 20 200 29,176,000
2302 Disk 4984 46 246 56,398,944
3330 Disk 13030 19 404 101,751,270
2303 Drum 4892 10 80 3,913,600
2305-1 Drum 14136 8 48 5,428,224
2305-2 Drum 14660 8 96 11,258,880
2301 Drum 20483 8 253 4,096,600
2321 Cell 2000 204 9804 39,200,000

I Capacity indicated in bytes (when RO is used by the IBM programming system).
2
3

Applies also to the 2319 Disk Storage Device.

4
There are 25 logical cylinders in a 230 I Drum.
A volume is equal to one bin in a 2321 Data Cell.

Device
Type

2311
2314/2319
2302
3330
2303
2301
2305-1
2305-2
2321

Each record written on a direct-access device requires some "device overhead." The
term device overhead means the space required by the device for address markers,
count areas, gaps between the count, key, and data areas, and gaps between blocks.
The following formulas can be used to compute the number of bytes required for each
data block including the space required for device overhead. Note that any fraction of
a byte must be treated as an extra byte. For example, if the formula computation
results in 15.067 bytes, 16 bytes must be used to determine track capacity.

Bytes Required by Each Data Block
Blocks With Keys Blocks Without Keys
Bi Bn Bi Bn

81 +(KL+DL)537 /512 20+KL+DL 61+(DL)537/512 DL
146+(KL+DL)534/512 45+KL+DL 101 +(DL)534/512 DL
81+(KL+DL)537+512 20+KL+DL 61+(DL)537/512 DL
191+KL+DL 191+KL+DL 135+DL 135+DL
146+KL+DL 38+KL+DL 108+DL DL
186+KL+DL 53+KL+DL 133+DL DL
632+KL+DL 632+KL+DL 430+DL 430+DL
289+KL+DL 289+KL+DL 198+DL 198+DL
100+(KL+DL)537/512 16+KL+DL 84+(DL)537/512 DL

Bi is any block but the last on the track.
Bn is the last block on the track.
DL is data length.
KL is key length.

When the track overflow feature is being used or variable-length spanned records are
written, the size of a data block or logical record can exceed the capacity of a single
track on the direct-access device used.

212 OS Data Management Macro Instructions

APPENDIX D: DCB EXIT LIST FORMAT AND CONTENTS

The following shows the format and contents that must be supplied by the problem
program when the EXLST operand is specified in a DCB macro instruction. The exit
list must begin on a fullword boundary and each entry in the list requires one fullword.

Routine Type

Inactive entry
Input header label
Output header label
Input trailer label
Output trailer label
Data control block exit
End-of -volume
User totaling
Block count exit
Defer input trailer
label

Defer nonstandard
input trailer label

FCB Image
DCB ABEND exit

Last entry

Hexadecimal
Code 3-Byte Routine Address - Purpose

00 Ignored; the entry is not active.
01 Process a user input header label.
02 Create a user output header label.
03 Process a user input trailer label.
04 Create a user output trailer label.
05 Data control block exit routine.
06 End-of-volume exit routine.
OA Pointer to user's totaling area.
OB Block count unequal exit routine.
OC Defer processing of a user input trailer label

from the end-of ..a..data until the CLOSE macro
instruction is issued.

on Defer processing a nonstandard input trailer
label on magnetic tape unit from the end-of­
data until the CLOSE macro instruction is
issued (no exit routine address).

10 Define an FCB image.
11 Allow analysis of ABEND condition and select

one of several options.
80 Last entry in list. A high-order bit can be

specified with any of the above codes but must
always be specified with the last entry.

The list can be dynamically shortened during execution by setting the high-order bit of
a word to a value of 1. An entry in the list can be made inactive dynamically by
setting the high-order byte of the word to a value of hexadecimal 00.

When control is passed to an exit routine, the general registers contain the following
information:

Register

o
1
2-13
14
15

Contents

Variable; the contents depend on the exit routine used.
Address of the data control block currently being processed.
Contents prior to execution of the macro instruction.
Return address (must not be altered by the exit routine).
Address of the exit routine entry point.

The conventions for saving and restoring registers are as follows:

• The exit routine must preserve the contents of register 14. It need not preserve
the contents of other registers. The control program restores registers 2-13
before returning control to the problem program.

Appendix D: DCB Exit List Format and Contents 213

• The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls another
routine or issues supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

For a detailed description of each exit list processing option, refer to the OS Data
Management Services Guide.

214 OS Data Management Macro Instructions

APPENDIX E: CONTROL CHARACTERS

Machine Code

Each logical record, in all record formats, can contain an optional control character.
This control character is used to control stacker selection on a card punch or card read
punch, or it is used to control printer spacing and skipping. If a record containing an
optional control character is directed to any other device, it is considered to be the first
data byte, and it does not cause a control function to occur.

In format-F and format-U records, the optional control character must be in the first
byte of the logical record.

In format-V records, the optional control character must be in the fifth byte of the
logical record, immediately following the block descriptor word of the record.

Two control character options are available. A control character option is selected by
coding the appropriate character in the RECFM operand of the DCB macro
instruction. If either option is specified in the data control block, a control character
must be included in each record, and other spacing or stacker selection options also
specified in the data control block are ignored.

The record format field in the data control block indicates that the machine code
control character has been placed in each logical record., If the record is written, the
appropriate byte must contain the command code bit configuration specifying both the
write and the desired carriage or stacker select operation. If the record is not written,
the byte can specify any command other than write.

Command codes for specific devices are contained in IBM System Reference Library
publications describing the control units or devices.

American National Standards Institute Control Characters

In place of machine code, control characters defined by the American National
Standards Institute (ANSI) can be specified. These characters must be represented in
EBCDIC code.

Appendix E: Control Characters 215

American National Standards Institute control characters (ANSI) are as follows:

Code

b
o

+
1
2
3
4
5
6
7
8
9
A
B
C
V
W

Action Before Printing a Line

Space one line (blank code)
Space two lines
Space three lines
Suppress space
Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12
Select punch pocket 1
Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or V, depending on the device being used;
no error indication is returned.

216 OS Data Management Macro Instructions

INDEX

Indexes to Systems Reference Library publications are consolidated in as Master Index to Reference
Manuals, GC28-6644. For additional information about any subject listed below, refer to other
publications listed for the same subject in the Master Index.

A-Type Address defined 4
ABEND exit, DCB

BDAM 39
BISAM 47
BPAM 54
BSAM 68
list format 213
QISAM 78
QSAM 95

absexp defined 4
absolute expression defined 4
access methods

DCBD options 101
general description

BDAM 35
BISAM 45
BPAM 51
BSAM 59
QISAM 75
QSAM 85

macro instructions available by 209
SYNADAF options 175

actual device addressing (BDAM) 35,41
add data to a data set

BDAM 41,187
BISAM 48,191
BPAM 171,193
BSAM 193
QISAM 137
QSAM 139

address
A-Type defined 4
RX-Type defined 4

address feedback
current block position 143,189
next block position 144,184

address of buffers '
obtained from a pool 119
returned to a pool 109

addressing, types of (EDAM) 40-42
aids, coding 1-2
alias names in a directory 171-172
alignment of buffers

BDAM 36
BISAM 45
BPAM 52
BSAM 59
QISAM 76
QSAM 85

allocating space for a data set
BPAM 151
ISAM 75

American National Standards Institute
(ANSI) control characters

BPAM 56
BSAM 72
defined 216
QSAM 99

analysis of I/O errors
BDAM 42,201-203
BISAM 50,201-208
BPAM 57,201-208
BSAM 73,201-208
QISAM 83,201-208
QSAM 100,201-208
SYNADAF 175,201-208

ANSI (see American National Standards Institute)
Argument, search

BDAM 41
QISAM 80

ASCII data sets
block prefix

BSAM 62
QSAM 88
restriction 86

blocksize
BSAM 65
QSAM 91

buffer length
BSAM 61
QSAM 88

on paper tape
BSAM 73
QSAM 100

restriction on record format
BSAM 73
QSAM 100

ASCII translation
Check routine 23
DCB option

BSAM 71
QSAM 98

Get routine 117
Put routine 139
Write routine 193
XLA TE macro instruction 199

associated data sets (3525)
closing 25
opening 125
type of

BSAM 66-67
QSAM 92-93

automatic buffer pool construction
BDAM 35
BISAM 46
BPAM 53
BSAM 62

Index 217

automatic buffer pool construction (continued)
QISAM 78
QSAM 88

automatic volume switching (FEOV) 105

backspacing
BSP 13
CNTRL 31

backward read
Open option 126
Read operation 151

base registers for
dummy sections 101
macro instructions 4

BCD 8-track paper tape code
BSAM 65
QSAM 91

BDAM (basic direct access method)
general description 35
macro instructions available for 209

BF ALN operand
BDAM 36
BISAM 45
BPAM 52
BSAM 59
QISAM 76
QSAM 85

BFTEK operand
BDAM 36
BSAM 60
QSAM 86

BISAM (basic indexed sequential access method)
general description 75
macro instructions available for 209

BLDL macro instruction
description 10
used with FIND 107

BLKSIZE operand
BDAM '36
BPAM 52
BSAM 60
QISAM 76
QSAM 86

block
backspacing by 31
count exit

BSAM 68
list format 213
QSAM 95

data control 35-100
data event control 201
description word (see BLKSIZE operand)
event control 201
position feedback 143-145,188
positioning with POINT 133
prefix

(see also BUFOFF operand)
effect on buffer length 61,88
effect on data alignment 59,85

218 OS Data Management Macro Instruction

block (continued)
reading of 143-155
size of (see BLKSIZE operand)
standard 99
writing of 183-197

blocking
data checks (UCS printer) 165
records

BDAM 35,42
BPAM 51,56
BSAM 59,72
QISAM 82,137
QSAM 99,139

blocksize
(see also BLKSIZE operand)
for SYSOUT data sets

BSAM 60
QSAM 86

BOLD type, meaning of 2
boundary alignment (see BF ALN operand)
BPAM (basic partitioned access method)

general description 51
macro instructions available for 209

BSAM (basic sequential access method)
general description 59
macro instructions available for 209

BSP macro instruction 13
BUFCB operand

BDAM 37
BISAM 46
BPAM 53
BSAM 61
QISAM 77
QSAM 87
relationship to

buffer

BUILD 155
BUILDRCD 17
GETBUF 119
GETPOOL 121

alignment (see BF ALN operand)
control

automatic 115-118,137-139
dynamic 111,192

FREEBUF 109
FREEDBUF 111
GETBUF 119
RELSE 159

forms control 164
length

(see also BUFL operand)
BUILD 16
BUILDRCD 17
GETPOOL 121
for card image mode 61,88
for ASCII data sets 61,88

message format (SYNADAF) 117
offset (see BUFOFF operand)
pool construction

(see also BUFeB operand)
automatic (see BUFNO operand)
BUILD 15
BUILDRCD 17
GETPOOL 121

buffer (continued)
FREEBUF 109
FREEDBUF 111
FREEPOOL 121
RELSE 159
SYNADRLS 179

buffering, types of
automatic 115-118,137-139
dynamic 111,192
exchange 86
problem program controlled

BDAM 38
BISAM 46
BPAM 53
BSAM 62
simple 86
variable-length spanned record

BDAM 38
BUILDRCD 17
QSAM 86

BUFL operand
BDAM 37
BISAM 46
BPAM 53
BSAM 61
QISAM 77
QSAM 88

BUFNO operand
BDAM 38
BISAM 46
BPAM 53
BSAM 62
QISAM 77
QSAM 88
relationship to NCP operand 49

BUFOFF operand
BSAM 62
QSAM 88

BUILD macro instruction
description 15
relationship to

buffer length (see BUFL operand)
buffer pool control block (see BUFCB operand)
number of buffers (see BUFNO operand)

BUILDRCD
description

execute form 21
list form 19
standard form 17

relationship to
buffer length (see BUFL operand)
GET 117
number of buffers (see BUFNO operand)
PUT 139

Burroughs 7-track paper tape code
BSAM 65
QSAM 91

card
code

BSAM 66-68
QSAM 92

image mode
defined 66,92
buffer length required 61,88

punch 66,92
reader 66,92

carriage
control channel

CNTRL 31
PRTOV 135

control characters
ANSI 216
CNTRL 31.
machine 216
PRTOV 135

change partitioned data set member name 172
chained scheduling option

BPAM 56
BSAM 71
QSAM 98

channel
carriage control (see carriage control channel)
overflow 135
programs, number of

BISAM 49
BPAM 56
BSAM 70

CHECK macro instruction
description 23
relation to

end of data (EODAD) 54,68
number of Read and Write operations
(NCP) 49,56,70

return of exception codes 201
with READ 143-152
with WRITE 181-193

checking, write-validity
BDAM 41
BPAM 56
BSAM 71
QISAM 81
QSAM 97

checkpoint records, embedded (DOS)
BSAM 72
CNTRL 31
POINT 133
QSAM 98

CLOSE macro instruction
execute form 29
I/O error while executing

BDAM 42
BISAM 50
BPAM 57
BSAM 73
QISAM 83

Index 219

CLOSE macro instruction (continued)
QSAM 100

list form 27
relationship to

CNTRL 31
FREEPOOL 25
GETPOOL 122
PUT 137.139
SETL 161

standard form 25
TYPE=T (BSAM) 25-26

CNTRL macro instruction
description 31-33
restriction on use 13.31
specified in MACRF operand

BSAM 70
QSAM 96

Code
card

BSAM 66-68
QSAM 92

completion (see code. return)
control character (see control characters)
conversion

ASCII to EBCDIC 23,117,199
EBCDIC to ASCII 139.193,199
paper tape 65,91

exception 201-206
return

BLDL 11
BSP 13
FIND 108
RELEX 157
SETPRT 166
STOW 173
SYNADAF 176
SYNADRLS 179
WRITE 185

CODE operand
BSAM 65
QSAM 91

coding
aids 1
macro instructions 4
registers as operands ·4
restrictions for CLOSE options 126
variable-length parameter lists 27,129

column
binary (see card image mode)
eliminate mode, read

BSAM 66-68
QSAM 92

completion code (see code, return)
completion testing of I/O operations 23
concatenation

input data sets (BPAM) 51
number 10

condition, exception 25,201-206
connect a data set, logically 125
construct

a data control block (see DeB macro instruction)
a DECB (data event control block) 195
a buffer pool (see buffer pool construction)

220 OS Data Management Macro Instruction

contents of registers on entry to
exit list 213
SYNAD 206

control
I/O device 31-33
page format 135
releasing of

buffer (FREEBUF) 109
buffer pool (FREEPOOL) 121
data block 157
dynamically acquired buffer 111,187-192
QSAM buffer (RELSE) 159

requesting of
buffer (GETBUF) 119
buffer pool (GETPOOL) 121
data block 143

control block
buffer pool (see BUFCB operand)
data (see DCB macro instruction)
data event 201

control characters
ANSI 216
CNTRL 31
machine 216
PRTOV 135

control section (CSECT) (see DCB macro instruction)
count exit, block

BSAM 68
format list 213
QSAM 95

CYLOFL (cylinder overflow area)
operand 78
option 82

cylinder
index 81
overflow area 82

II
D-format records

BSAM 72
QSAM 99

data block
exclusive control of 143
locating with POINT 133
release of exclusive control 157
retrieval of 115-118,143-152
writing of 137-141,183-194

data checks
blocking and unblocking of 71,97,165
restriction with CNTRL 31

data control block
completing of 125
construction of (see DCB macro instruction)
DCBBLKCT field 32-33
DCBEXCD 1 field 201
DCBEXCD2 field 201
DCBNCRHI field 49
DCBOFLGS field 127
DCBPRECL field 140
description of (see DCB macro instruction)
dummy section for 101

data control block (continued)
exception codes 201
exit list (see EXLST operand)
restoring of 125
special options with BLDL 9
symbolic references to 101

data definition statement (see DD statement)
data, end of (see EODAD operand)
data event control block

checking for I/O errors 23
construction of 143-153,183-195
description of 201
exception code 201
extended search option 40
modifying with execute form 155,197
requirement with CHECK 23
requirement with FREEDBUF 111

data management parameter list 29,131
data mode

GET 117-118
PUT 139-140

data set
blocksize for SYSOUT 60,86
closing of 25
connecting to 125
disconnecting from 25
disposition at close 25
labels 25,125
opening of 125
organization (see DSORG operand)
temporary closing 25
types of (see access methods)

data translation (see code conversion)
data transmittal modes

data 117-118,139-140
locate 115-118,137-140
move 115-118,137-140
specified in DCB 80,96
substitute 117-118,139-140

data protection image (3525) 66,92
DCB ABEND exit

BDAM 39
BISAM 47
BPAM 54
BSAM 68
list format 213
QISAM 78
QSAM 95

DCB macro instruction
BDAM 35-44
BISAM 45-50
BPAM 51-58
BSAM 59-74
QISAM 75-84
QSAM 85-100

DCB operands
description (see DCB macro instruction)
symbolic names for 101

DCBD macro instruction
description 101
used to test for open data set 126

DDNAME operand
BDAM 38

BISAM 47
BPAM 53
BSAM 62
QISAM 78
QSAM 89

DO statement. relationship to
data control block (see DDNAME operand)
NOTE 123
OPEN 125
POINT 133

deblocking records
BDAM 35,42
BPAM 51,56
BSAM 59,72
QISAM 82,137
QSAM 99,139

DECB (see data event control block)
delete option

description 81
effect on sequential retrieval 161

density, recording (see DEN operand)
DEN operand

BSAM 64
QSAM 90

DEVD operand
BSAM 63-68
DCBD 101
QSAM 89-94

device addressing, types of (RDAM) 41
device capacities 211-212
device types in a dummy section 101
direct data set (see BDAM)
direct search option

BSAM 72
QSAM 98

directory, partitioned data set
creation 51
obtaining contents with BLDL 9
operations performed by STOW 171
search by FIND 107

disconnect a data set, logically 25
disposition option

CLOSE 26
OPEN 126
requirement for extending an ISAM data set 137

DISP option (see disposition option)
DOS embedded checkpoint records

BSAM 72
CNTRL 31
POINT 133
QSAM 98

doubleword alignment (see BF ALN operand)
DSECT for

DCB symbolic names 101
testing for open data set 126

DSORG operand
BDAM 38
BISAM 47
BPAM 54
BSAM 63
DCBD 101
QISAM 78
QSAM 94

Index 221

dummy data block (BDAM) 183-184
dummy section (see DSECT)
dynamic buffering

effect on buffer length 37,46
effect on number of channel programs 49
requesting in· READ 144,150
requesting in WRITE 192
returning buffer to the pool 111,187

EBCDIC ·(see extended binary coded decimal interchange
card)

ECB (see event control block)
eliminate mode, read column

BSAM 66-68
QSAM 92

embedded checkpoint records (DOS)
BSAM 72
CNTRL 31
POINT 133
QSAM 98

end of data (see EODAD operand)
end of file on magnetic tape, ignoring of

BSAM 72
QSAM 98

end of volume
forced 105
exit

BSAM 68
QSAM 95

end sequential retrieval 103
entry to

exit routine 213
SYNAD routine 206-207

EODAD operand
BPAM 54
BSAM 68
QISAM 78
QSAM 94

EROPT operand (QSAM) 94
ERP (error recovery procedure)

BSAM 71
QSAM 98

error analysis, I/O
BDAM 42,201-208
BISAM 50,201-208
BPAM 57,201-208
BSAM 73,201-208
QISAM 83,201-208
QSAM 100,201-208
SYNADAF 175,201-208

error codes. (see return codes)
error conditions during OPEN 127
error option operand (QSAM) 94
error recovery procedure (see ERP)
error tape reading of (see ERP)
error exits

GET 118
PUT 138,140
PUTX 141

222 OS Data Management Macro Instruction

ESETL macro instruction 103
event control block 201
event control block, data

checking for I/O errors 23
construction of 143-153,183-195
description of 201
exception code 201
extended search option 40
modifying with execute form 155,197
requirement with CHECK 23
requirement with FREEDBUF 111

exception code 201-206
exchange buffering

buffer alignment for 86
restrictions for

record format 86
track overflow feature 86,99
variable-length spanned records 99

specified in DCB 86
exclusive control of data block (BDAM)

requesting of 143
releasing of 157
specified in DCB 41

execute form instructions
BUILDRCD 21
CLOSE 29
OPEN 131
READ 155
SETPRT 169
WRITE 197

exit
(see also EXLST operand)
block count 68,95
data control block (see EXLST operand)
DCB ABEND (see EXLST operand)
end of data (see EODAD operand)
end of volume 68,95
error analysis (see error analysis, I/O)
FCB image 68,95
list format 213
user labeling 68,95
user totaling 68,95

EXLST operand
BDAM 39
BISAM 47
BPAM 54
BSAM 68
list format 231
QISAM 78
QSAM 95

expression
'absolute (absexp) 4
relocatable (relexp) 4

extended binary coded decimal interchange code
ASCII translation

Check routine 23
DCD option 71,98
Get routine 117
Put routine 139
Write routine 193
XLA TE macro instruction 199

paper tape translation
ISAM 65
QSAM 91

extended search option
LIMCT operand (BDAM) 41
OPTCD operand (BDAM) 37

II
F-format records (see RECFM operand)
FCB image

exit 68,95
list format 213
operand (SETPR T) 164

feedback
block position 143,189
next address 144,184

FEOV macro instruction 105
file, end of (see end of file)
final volume positioning 25,125
FIND macro instruction 107
fixed length records (see BLKSIZE and RECFM operands)
format

exit list 213
page 135
record

BDAM 41
BPAM 56
BSAM 72
QISAM 82
QSAM 99

forms alignment 164
forms control buffer

description 164
exit 213
image 164

forward space 31 ,33
FREEBUF macro instruction

description 109
relationship to GETBUF 119

FREEDBUF macro instruction
description III
used with BDAM 187
used with BISAM 48

FREEPOOL macro instruction
description 113
relationship to CLOSE 25
relationship to GETPOOL 121
restriction on buffer alignment 113

Friden 8-track paper tape code
BSAM 65
QSAM 91

full-track-index Write operation 82
full word boundary alignment (see BF ALN operand)
FUN C operand

BSAM 66
QSAM 92

GET macro instruction
ASCII translation 117
data mode (QSAM) 96,117
locate mode

QISAM 80,115
QSAM 96,117
used with PUTX 141

move mode
QISAM 80,115
QSAM 96,117
restriction when using CNTRL 31
restriction when using paper tape 97

specified in DCB
QISAM 80
QSAM 96

substitute mode (QSAM) 96,118
relationship to

EODAD (see EODAD operand)
RELSE 97,159
SETL 161

Get routine exits 118
GETBUF macro instruction

description 119
relationship to

BUILD 15
BUILDRCD 17
FREEBUF 109

GETPOOL macro instruction
description 121
relationship to

III

BUFCB (see BUFCB operand)
BUFL (see BUFL operand)
BUFNO (see BUFNO operand)
FREEPOOL 113

HIARCHYoperand
BDAM 39
BISAM 47
BPAM 54
BSAM 69
GETPOOL 122
QISAM 79
QSAM 95

hierarchy of buffer pool (see HIARCHY operand)
highest level master index in main storage

address of 48
size of 49

Index 223

D
IEBPTPCH utility program 1
IHADCB dummy section 101
image

FCB (forms control buffer) 164
UCS (universal character set) 164

image, data protection
BSAM 66
QSAM 92

image mode, card
BSAM 66
QSAM 92

independent overflow area 81
index

cylinder 81
highest level

add ress of 48
size of 49

master
number of tracks per level 81
specified in MACRF 81

space allocation for 75
indicators, status 201,208
initial volume positioning 125
INOUT open option 126
INPUT open option 126
input data sets

basic access methods
BDAM 143
BISAM 149
BPAM 151
BSAM (read a direct data set) 147
BSAM (sequential data set) 151
testing completion of I/O operations 23

closing 125
opening 25
queued access methods

QISAM 115
QSAM 117

READ or GET
specified in DCB

BDAM 40
BISAM 48
BPAM 55
BSAM 70
QISAM 80
QSAM 96

input/ output devices
2540 card punch 88
card reader and card punch 31
control of 3 I
magnetic tape 31
printer

CNTRL 31
PRTOV 135

input/ output error analysis
BDAM 43,201-208
BISAM 50,201-208
BPAM 57,201-208

224 OS Data Management Macro Instruction

BSAM 73,201-208
QISAM 83,201-208
QSAM 100,201-208
SYNADAF 175,201-208

input/output operation
completion of 23
status indicators 201,208
synchronizing I/O 23

interface, logical record
invoked by BUILDRCD
specified in DCB

BDAM 36
BSAM 60
QSAM 86

used with GET 118
used with PUT 139

II
job control language

DO statement, relationship to DCB
data control block (see DDNAME operand)
NOTE 123
OPEN 125
POINT 133

DISP parameter for extending ISAM 137
LABEL parameter to request ASCII translation
SPACE parameter for ISAM 75

key, dummy (BDAM)
search for 187
specified in DCB 41
writing of 183

key length (see KEY LEN operand)
key position, relative (RKP) 82
key, record

PUT 137
READ 143-152
RKP operand 82
SETL 161
WRITE 183-194

KEYLEN operand
BDAM 39
BPAM 55
BSAM 69
QISAM 79

II
label

(see also EXLST operand)
exit list format 213
input data set 105,125
output data set 25,105,125

LABEL parameter in DO statement 23

LEA VE option
CLOSE 25
FEOV 105
OPEN 125

length
buffer (see BUFL operand)
record (see LRECL operand)

levels of master index (ISAM) 81
LIMCT operand (BDAM) 39
line spacing, printer

list

CNTRL 31
PRTSP operand

BSAM 65
QSAM 91

directory contents (BLDL) 9
relative address (FIND) 107
variable-length parameter 27,129

list address, data management 29,131
list format, exit 213
list form instructions

BUILDRCD 19
CLOSE 27
OPEN 129
READ 153
SETPRT 170
WRITE 195

load mode (QISAM) 75
loading

universal character set buffer (UCS) 164
forms control buffer (FCB) 164

locate mode
GET

QISAM 115
QSAM 117

PUT
QISAM 137
QSAM 139

specified in DCB
QISAM 80
QSAM 97

logical record length for
(see also LRECL operand)
GET 115,117
PUT 137,139
PUTX 141

logically
connect a data set 125
disconnect a data set 25

lower limit of sequential retrieval (ESETL) 161
LRECL operand

BPAM 55
BSAM 69
QISAM 79
QSAM 96

machine control characters
BPAM 56
BSAM 72

description 215
QSAM 99

MACRF operand
BDAM 40
BISAM 48
BPAM 55
BSAM 70
QISAM 80
QSAM 96

macro
definition 1
expansion 1,4
library 1

macro instruction coding 2
magnetic tape

backspace
BSP 13
CNTRL 32

density 64,90
end of file, ignored 71,98
final volume positioning (FEOV) 105
forward space 33
read backward 151
recording technique 64,90
restriction when using NOTE 123
restriction when using POINT 133
short error recovery procedure 71,98

mark read mode, optical
BSAM 66-68
QSAM 93

master index
number of tracks per level 81
option specified in DCB 81

master index, highest level in main storage
address of main storage area 48
size of main storage area 49

member, partitioned data set
complete a list with BLDL 9
locate beginning with FIND 107
update directory with STOW 171

mode
(see also MACRF operand)
card image

BSAM 66
QSAM 92

data (QSAM) 117,139
load (QISAM) 75
locate

QISAM 115,137
QSAM 117,139

move
QISAM 115,137
QSAM 117,139

optical mark read
BSAM 66-68
QSAM 92

read column eliminate
BSAM 66-68
QSAM 92

scan (QISAM) 75,115
substitute (QSAM) 117,139

MODE operand
BSAM 66-68
QSAM 92

Index 225

modifying a parameter list
BUILDRCD 19
CLOSE 27
OPEN 129
READ 153
SETPRT 170
WRITE 195

move mode
QISAM 80,115,137
QSAM 97,117,139

MSHI operand 48
MSW A operand 48
multi-line print option

BSAM 67
QSAM 93

National Cash Register 8-track paper tape code
BSAM 65
QSAM 91

NCP operand
BISAM 49
BPAM 56
BSAM 70

next address feedback
BDAM (creating) 184
BDAM (existing) 144-145

non-sequential processing of sequential data 59
NOTE macro instruction

description 123
restriction when using BSP 13
specified in DCB for BSAM 70
used with BPAM 55

NTM operand (QISAM) 81
number of channel· programs (see NCP operand)
number of tracks per index level (see NTM operand)

online printer
control 31-33,215
skipping 135,215
spacing 135,215

open operation, testing of 127
open options 125,126
OPEN macro instruction

execute form 131
list form 129
relationship to
CLOS~TYPE=T 2~26

FEOY 105
GETPOOL 121
NOTE 123
POINT 133

standard form 125
operand, substitution for 2-4

226 OS Data Management Macro Instruction

OPTCD operand
BDAM 41
BPAM 56
BSAM 71
QISAM 81
QSAM 97
SETPRT 165

optical mark read mode
BSAM 66-68
QSAM 93

option codes (see OPTCD operand)
organization, data set (see access methods)
OUTIN open option 126
output data sets

basic access methods
BDAM (creating with BSAM) 183
BDAM (existing) 187
BPAM 193
BSAM 193

closing 125
opening 25
queued access methods

QISAM 137
QSAM 139

WRITE or PUT specified in DCB
BDAM 40
BPAM 55
BSAM 70
QISAM 80
QSAM 96

writing an input record in an output data set using
PUT X 141

output header labels
BSAM 68
QSAM 95
exit list format 213

OUTPUT open option 126
output trailer labels

BSAM 68
QSAM 95
exit list format 213

overflow
area

cylinder 78,82
independent 81

channel 135
exit address (PRTOY) 135
printer carriage 135
records (see overflow area)

overflow feature, track
BDAM 41
BPAM 57
BSAM 73
QSAM 86

overprinting 135

paper tape codes
BSAM 65
QSAM 91

parameter list, construction
BUILDRCD 19
CLOSE 27
OPEN 129
READ 153
SETPRT 170
WRITE 195

parameter list, modification
BUILDRCD 21
CLOSE 29
OPEN 131
READ 155
SETPRT 169
WRITE 197

partitioned data set
general description 51
macro instructions available for 209
relationship to

BLDL 10
FIND 107
STOW 171

POINT macro instruction
description 133
relationship to

BSP 13
BPAM 55
BSAM 59

pool construction, buffer
(see also BUFCB operand)
automatic (see BUFNO operand)
BUILD 15
BUILDRCD 17
GETPOOL 121

position, relative key (RKP) 82
position feedback

current block 143,189
next block 144,184

positioning volumes
CLOSE 25
FEOV 105
OPEN 125

prefix, block
BSAM 62
QSAM 88
relationship to

buffer length 61,88
data alignment 59,85

print options (3525)
BSAM 66
QSAM 92

printer
carriage control 31,215
character set buffer loading 164
control characters 215
control tape 135
forms control buffer loading 164
skipping 31,215
spacing 31,215

program, channel
BISAM 49
BPAM 56
BSAM 70

protect option, data
BSAM 66
QSAM 92

PRTOV macro instruction 135
PR TSP operand

BSAM 65
QSAM 91

punch, card 66,92
PUT macro instruction

data mode (QSAM) 139
locate mode

QISAM 137
QSAM 139

move mode
QISAM 137
QSAM 139

specified in DCB
QISAM 80
QSAM 97

substitute mode 139
PUTX macro instruction 81,141

m
QISAM (queued indexed sequential access method)

general description 75
macro instructions available for 209

QSAM (queued sequential access method)
general description 85
macro instructions available for 209

queued access technique (see QISAM and QSAM)

ROBACK open option 126
read backward, magnetic tape 151
read column eliminate mode

BSAM 66-68
QSAM 92

READ macro instruction
execute form 155
list form 153
relationship to

CHECK 23
EODAD 54,68
FIND 107
FREEDBUF 111
LIMCT 39
NCP 49,56,70
POINT 133
RELEX 157

specified in DCB
BDAM 40
BISAM 48
BPAM 55
BSAM 70

standard form
BDAM 143

Index 227

READ ma~ro instruction (continued)
BISAM 149
BPAM 151
BSAM (rcad direct data set) 147
BSAM (read sequential data set) 151

RECFM operand
BDAM 42
BPAM 56
BSAM 72
QISAM 82
QSAM 99

record
area

construction 17,86
use of 86
deletion option (ISAM) 81
descriptor word (see LRECL operand)
format (see RECFM operand)
length.(see LRECL operand)
logical
GET 115,117
PUT 137,139

physical (see BLKSIZE operand)
retrieval 115,117
segment 117,139,147
variable-spanned 17,86
writing 137,139

recording density, magnetic tape
BSAM 64
QSAM 90

recording technique, magnetic tape
BSAM 64
QSAM 90

recovery procedure, error
BSAM 71
QSAM 98

register
contents on entry to

DCB exit routine 213
overflow exit routine 136
SYNAD routine 206-207

DCBD base 101
usage rules 4

relative addressing
BDAM 35,41
BLDL 107
FIND 107
POINT 133

relative key position 82
release

buffer 109
buffer pool 113
dynamically acquired buffer 111
exclusive control 157
QSAM buffer 159

RELEX macro instruction 157
relexp defined 4
relocatable expression defined 4
RELSE macro instruction 159
reorganization statistics ((SAM) 75,81
REREAD option

CLOSE 25
FEOV 105
OPEN 126

228 OS Data Management Macro Instruction

rt!store data control block 25
return codes

BLDL 11
BSF 13
FIND 108
RELEX 157
SETPRT 166
stow 173
SYNADAF 176
SYNADRLS 179
WRITE 185

return from error analysis routine
BDAM 42
BISAM 50
BPAM 57
BSAM 73
QISAM 83
QSAM 100

REWIND close option 25
RKP operand 81-82

save area
requirement for 4
SYNADAF requirement 175
SYNADRLS 179

search
partitioned data set directory

BLDL 9
FIND 107

type of
BDAM 187
QISAM 80

search direct option 72,97
search option, extended 39,41
segment

descriptor word 117,139,147
interface 147
work area 38

sequential access methods (see access methods)
services, optional (OPTeD)

BDAM 41
BPAM 56
BSAM 71
QISAM 81
QSAM 97
SETPRT 164

SETL macro instruction
description 161
ESETL 103
GET 115

SETPRT macro instruction
execute form 169
list form 167
standard form 163

simple buffering 86
skipping. printer

(see also spacing, printer)
CNTRL 31
control characters 215

SMSI operand 49
SMSW operand 49
space allocation, data set

BPAM 51
QISAM75

space, magnetic tape
backward 13,31
forward 31

spacing, printer
(see also skipping, printer)
CNTRL·· 31
control characters 215
specified in DCB

BSAM 65
QSAM 91

ST ACK operand
BSAM 66,68
QSAM 92,94

stacker selection
CNTRL 32
control characters 215
specified in DCB

BSAM 66,68
QSAM 92,94

statistics reorganization (ISAM) 81
status

following an I/O operation 201-208
indicators 208

storage hierarchy
BDAM 39
BISAM 47
BPAM 54
BSAM 69
GETPOOL 122
QISAM 79
QSAM 95

STOW macro instruction 171
substitute mode

GET 117
PUT 139
specified in DCB 96

switching volumes
CLOSE 25
FEOV 105

symbol defined 3
SYNAD operand

(see also error analysis 0/0»
BDAM 42
BISAM 50
BPAM 57
BSAM 73
QISAM 83
QSAM 100

SYNADAF macro instruction 175
SYNADRLS macro instruction 179
synchronizing I/O operations 23
synchronous error exit (see SYNAD operand)
SYSIN restrictions

CNTRL 31
DEVD

BSAM 63
QSAM 89

II

tape codes, paper
BSAM 65
QSAM 91

tape density, magnetic
BSAM 64
QSAM 90

tape error recovery procedure
BSAM 71
QSAM 97

tape recording technique
BSAM 64
QSAM 90

teletype 5-track paper tape code
BSAM 65
QSAM 91

temporary close of data set 25
termination, abnormal

Check routine 23
end of data (see EODAD operand)
uncorrectable I/O error (see SYNAD operand)

testing completion of I/O 23
testing for open data set 127
totaling exit, user

BSAM 68
list format 213
QSAM 95

track addressing, relative
BDAM 35,41
BLDL 10
FIND 107
POINT 133

track index write, full 82
track overflow feature

BDAM 42
BPAM 57
BSAM 73
QSAM 99
restrictions

chained scheduling 57,99
exchange buffering 86,99
ISAM 75
variable-length spanned records 99

translation
ASCII to EBCDIC 23,117,199
EBCDIC to ASCII 139,193,199
paper tape code 65,91

transmittal modes
(see also MACRF operand)
data 117,139
locate 115-118,137-140
move 115-118,137-140
substitute 1 17,139

TR TCH operand
BSAM 64
QSAM 90

Index 2~9.

TRUNC macro instruction 181
truncating a block 181
TYPE= T 25-26

ID
U-format records

BDAM 42
BPAM 56
BSAM 72
QSAM 99

UCS operand 164
unblocking data checks (UCS)

BSAM 68
QSAM 95
SETPRT 164

uncorrectable I/O errors (see SYNAD operand)
undefined length records (see V-format records)
universal character set (see UCS operand)
unmovable data sets (see DSORG operand)
UPDAT open option 126
update partitioned data set directory 171
user

data in partitioned data set directory
BLDL 10
STOW 171

label exit
BSAM 68
list format 213
QSAM 95

totaling exit
BSAM 68
list format 213
QSAM 95

USING statement requirement
DCBD 101
macro expansions 4

V-format records
BDAM 42
BPAM 56
BSAM 72
QISAM 82
QSAM 99

230 OS Data Management Macro Instruction

validity checking, write
BDAM 41
BPAM 56
BSAM 71
QISAM 81
QSAM 97

variable-length parameter list 27,129
variable-length records (see V-format records)
variable-length spanned records

BDAM 36,143,183
BSAM 60,147,183
QSAM 86,117,139

volume, force end of 105
volume positioning

CLOSE 25
FEOV 105
OPEN 125
POINT 133

work area for BISAM
address of 48
size of 49

WRITE macro instruction
execute form 197
list form 195
relationship to

CHECK 23
NCP 49,56,70
RELEX 157

specified in DCB
BDAM 40
BISAM 48
BPAM 55
BSAM 70

standard form
BDAM (create with BSAM) 183
BDAM (existing) 187
BISAM 191
BPAM 193
BSAM 1~3

testing for completion 23

XLA TE macro instruction 199

READER'S COMMENT FORM

OS Data Management Macro Instructions Order Number GC26·3794-0

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen­
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes D Job Title

No 0 Address

__________________________ z~------------------______ __
No postage ~ecessary if mailed in the USA

Order Number GC26-3794-O

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back.of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
pUblishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.,

POSTAGE WILL BE PAID BY.

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

fold

.... _-----------------------------_ _-------_ _----_ _---- ------

fold

International Bu.lne •• Machine. Corporation
Da .. Proceulng Division
1133 We.che.er Avenue, WhRe Plain., New York 10804
(U.S.A. only)

IBM World Trade CorporaUon
821 United Nation. Piau, New York, New York 10017
(International)

fold

Order Number GC26-3794-O

Intematlonal Bu.lne •• Machine. Corporation
Da .. Proce .. lng Dlvl.lon
1133 We.tche.ter Avenue, White Plain., New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nation. Plaza, New York, New York 10017
(Intematlonal)

