
Systems Reference Library

IBM System/3S0 Operating System
Supervisor Services

File Number 8360-36
GC28-6646-5

The title of this manual was formerly IBM System/360
Operating System Supervisor and Data Management
Services. The data management section of the book has
been made a separate publication, IBM System/360
Operating System Data Management Services, GC26-3746.

This ma:nual describes how to use the services of the
supervisor. Among the services of the supervisor are
program management, task creation and management,
main-storage management, checkpoint and restart, ahd
Time Sharing Option.

This book also describes the linkage conventions
used by the operating system.

Intended mainly for the assembler-language
programmer, this book is a guide to using the nacro
instructions described in IBM System/360 Operating
System Supervisor and Data Management ~acro
Instructions, GC28-6647. This book does not discuss
macro instructions used for graphics, teleFrocessing,
optical readers, optical reader-sorters, or magnetic
character readers. These macro instructions are
discussed in separate publications that are listed in
the IBM System/360 Bibliography, GA22-6822.

References in this book to the forms control buffer
(FCB) are applicable to the 3211 printer and are for
planning purposes only.

References in this book to PCP or the primary con­
trol program are no longer applicable.

Sixth Edition (June 1971)

This publication corresponds to Release 20.1. It is a
major revision of GC28-6646-4, which is now obsolete.

The changes to the book include modifications to the
topics wProviding a save Area,w -Bringing the Load
Module into Main Storage,- -creating the Task,­
-Extended-Precision Floating-Point Simulation,-
-Reenterable Load Modules,- and WEstablishing
Checkpoints,- and an explanation of the new operand,
RET=CHNG, in the ENQ macro instruction. In addition,
technical changes and clarifications have been made
throughout the book, and this edition should be
reviewed in its entirety.

The information in the book changes from ti~e to time. Before using
this manual with IBM systems, consult the latest IBM 360 SRL Newsletter,
GN20-0360, for the editions that are current and applicable.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming publications, Department 636, Neighborhood
Road, Kingston, New York, 12401. All comments become the property of
IBM.

© Copyright International Business Machines Corporation 1967,1968,1970,1971

This book is divided into seven
sections: ·Program Management,- ·Task
Creation,· -Task Management,- -Program
Management Services,- -Main-Storage
Management,- -Checkpoint and Restart,- and
-Time Sharing Option (TSO) Services.-

The -Program Management- section
describes linkage conventions and ways that
the supervisor can assist you in linking
together the separate pieces of your
program.

The -Task Creation- section describes
how the system creates a task for you, and
how you can create other tasks (under MVT
or under MFT with subtasking). Basically,
it tells how to use the ATTACH macro
instruction.

The -Task Management- section deals with
communication among separate tasks and with
synchronization of one task with another.

The -program Management Services·
section describes several miscellaneous
services that you can use in your programs.
It covers the ENQ and DEQ macro
instructions, timer services, communication
with t~e operator, abnormal termination and
dumps, and other miscellaneous services.

The -Main-Storage Management- section
describes how to acquire and release main
storage, how to share it with other tasks,
and how to specify which way it is to be
divided into hierarchies.

The -Checkpoint and Restart- section
describes how to take checkpoints on the
progress of your program, and then restart
it if the system fails.

The -Time Sharing Option (TSO) Services­
section describes STAX and STATUS, two
macro instructions that you can use if your
system has TSO.

This book assumes you have a basic
knowledge of the operating system and of
System/360 assembler language. Two books
that contain information about these
subjects are:

PREFACE

IBM System/360 Operating System
Introduction, GC28-65l4
Assembler,Language, GC28-65l4

If you are using the MVT version of the
control program with the time sharing
option (TSO), note that this book also
assumes that you understand how to use TSO.
Specifically, the book assumes that you are
familiar with the concepts discussed in the
following books:

IBM System/360 Operating System

Time Sharing Option Command Language,
GC28-6732, which describes the TSO
command language that a terminal user
must use to request computing services.

Time Sharing Option Guide, GC28-6698,
which describes the concepts, features,
and capabilities of TSO.

Time Sharing Option Guide to Writing a
Terminal Monitor Program or a CORmand
Processor, GC28-6764, which describes
the programming features provided for
user-written terminal monitor programs,
command processors, and application
programs.

If you are using the operating system
without TSO, ignore the sections
-Intercepting Abnormal Termination of
Subtasks- and -Time Sharing Option (TSO)
Services.- Also ignore the TSO, PSB, and
TJID operands of EXTRACT.

In the examples in this book, the macro
instructions are coded in just enough
detail to make the examples clear. For a
complete description of all the operands
and options available with any of the macro
instructions discussed here, see

IBM System/360 Operating System
Supervisor and Data Management Macro
Instructions, GC28-6647.

When other IBM manuals are referred to
in the text, only partial titles are given.
Here is a list of the complete titles and
order numbers of all manuals referred to in
the text.

iii

IBM System/360

Model 91 Functional Characteristics,
GA22-6907
Model 195 Functional Characteristics,
GA22-6943
Principles of Operation, GA22-6821

IBM System/360 Operating System

Job Control Language Reference,
GC28-6704
Linkage Editor and Loader, GC28-6538
Programmer" s Guide to Debugging,
GC28-6670 '
Service Aids, GC28-67l9
Storage,Estimate~, GC2.8-6551
Supervisor and Data Management Hacro
Instructions, GC28~6647
System Programmer's Guide, GC28-6550

IBM System/370 Operating System
Principles of Operation, GA22-7000

iv

CONTENTS

INTRODUCTION . • • • • • • • • • • • • • • •
Types of Services Available • • • • • • • • • • • • • • •

1
1
2 Configurations of the Operating System • • • • • • • •

PROGRAM MANAGEMENT
Initial Requirements
Providing an Initial Base Register
Saving Registers •• • •

The SAVE Macro Instruction • • • •
Providing a Save Area • • • • • • •

Establishing a Permanent Base Register
Linkage Registers • • • • • • • • • •

3
• • •• 3
• • •• 3

4
5
5
7

Acquiring the Information in the Parm Field of the EXEC Statement
Load Module structure Types • •

7
7
8

Simple Structure • • • • •
Planned Overlay structure
Dynamic structure • • • •
Load Module Execution • •
Passing Control in a Simple Structure
Passing Control Without Return

Initial Requirements
Passing Control • • •

Passing Control with Return
Initial Requirements • • • •
Passing Control • • •
Analyzing the Return

How Control is Returned • •
Return to the control Program •

9
9
9

• • • •• 9
. . • • . " 10

• • 10
• 10
• 11

11
• • 12
• • 12

14
• • 15

Passing Control in a Planned Overlay Structure • • • • •
passing Control in a Dynamic Structur~

• • 17
17

• • 17
Bringing the Load Module Into Main Storage

Load Module Location • • • • • •
The Search for the Load Module
Using an Existing Copy • • • •
Using the LOAD Macro Instruction

Passing Control With Return • • • • •
The LINK Macro Instruction • • • •

• • 17
• 17

. 19
• 22
• 23
• 24

24
Using the ATTACH ~acro Instruction (~FT Without Subtasking> • • 26

• • • 27 Using CALL or Branch and Link •
How Control is Returned • • • • • • • • •
passing Control Without Return • • • • • • • • •

Passing Control Using a Branch Instruction
Using the XCTL Macro Instruction • • • •

TASK CREATION • • • • • • •
creating the Task • • • • •
Task Priority • • •
Priority of the Job Step Task •
Priority of Subtasks •••••
Time Slicing • • • • • • • • •
MFT Systems without Subtasking
MFT Systems With Subtasking
MVT Systems

TASK MANAGEMENT • •
Task and Subtask Communications •
Task Synchronization

PROGRAM MANAGEMENT SERVICES • •

• • • • 28
• • • • • 29

• • • • 29
• • • • • • • • • • 29

• 32
• • 32

• 33
• • 33
• • 34

• • • • • • • 35
• • • • 36

36
• 37

• 38
• 39
• 40

• 41

v

Addi tional Entry Points • • • • • • • • • • • •
Entry Point and Calling Sequence Identifiers
Using a Serially Reusable Resource
Naming the Resource • • • • • •
Exclusive and Shared Requests •

41
• • • • 42

• 42
43

• 43
• 44 Processing the Request • • • •

proper Use of 'ENQ and DEQ •• • • • • • • 45
Duplicate Requests • • • • •
Releasing Control of the Resource •
Conditional and Unconditional Requests
Avoiding Interlock • • • • • • •

. 45
• • • • • 45

• • • • • 46
• • • • • • • • • • • 47

Obtaining Information From the Task Control
Timing Services • • . • • • • • • • •

Block • • • • • • • 48

Date and Time of Day ••••••••
Timing Services on the IBM System/37'O
Date and Time of Day ••.••
Interval Timing • • .•.• • • • •
Writing to One or More Operator Consoles
Writing to the Programmer • • •
writing to the Harq Copy Log • • • •
'Writing to the System Log • • •
Message Deletion • . • • • • •

• • 49
• 49

5'0

• 5'0
• 51
• 52

• • 54
• 54

• • • • 55
56

Program Interruption Processing .
Program Interruption Control Area
Program Interruption Element • • • •
Register Contents • • • • • ~ • • •

• • • • • 56
• • • • • • • • 57

Precise and Imprecise Interruptions •
Interruptions in the Models 91 and 195 • • • • •
Decimal Simulation in the Model 91

• • • • 57
• • 58

• • • • 59
• 6'0

• • • 62
• • 62 Extended-Precision Floating-Point Simulation

Abnormal Condition Handling • • • • • • • • • •
Intercepting Abnormal Termination of Tasks
Intercepting Abnormal Termination of Subtasks

• • • • • • • • • 66

The DUMP • • • • • • • • • • • • • • • • •
ABEND and Snap Dumps • • • • •
Indicative Dump • • • • • • • • • • • •
Core Image Dump • • • • • • • • • • • •

• 69
• • 73
• • 74

• 74
• • • 75

75
Operator Communication with a Problem Program • . •.•• • • • • • • '75

~AIN-STORAGE MANAGEMENT •
Explicit Requests • • • •
Specifying Lengths
Types of Explicit Requests
Subpool Handling (in MFT Systems Without Subtasking) ••••
Subpool Handling (in MFT Systems With Subtasking) ••••
Subpool Handling (in MVT Systems) • • • •

Main Storage Control • • • • • • •

• • 77
• 77

78
• • 78

• • • • 79
• 8'0

• • • • 8'0
8'0
83 Subpools in Task Communication

Implicit Requests • • • • • • • •
Load Module Management • • • • •

Reenterable Load Modules

• • • • • 83

Reenterable Macro Instructions ••••
Nonreenterable Load Modules •

Releasing Main Storage • • • •
Storage Hierarchies • • • •

CHECKPOINT AND RESTART
~stablishing Checkpoints • • • • • •
Checkpoints and Serially Reusable Resources

Shared Direct Access Storage Device
Other Serially Reusable Resources •
Checkpoints and Data Management •
Disposition of Data Sets
Positioning of Data Sets
Pre'servation of Data Sets

Checkpoint Data Sets

vi

• • • • 83
• • • • 84
• • • • 84

• 86
• 87

• • • • 88

• • 89
• 9'0
• 92
• 92
• 92
• 93
• 93

93
• • • • 95

• 99

Defining a Checkpoint Data Set
Using a Checkpoint Data Set
Restarting a Job step • • • • •
Deferred Restart •••••••
Checkpoint Identification • • • •
Restart on an Alternate System
Further Information on Restart

TIME SHARING OPTION (TSO> SERVICES
Specifying an Attention Exit Routine
Manipulating Task Processing

INDEX • • • • • •

• • 99
• 99

• .101
• • 101
• .101

.102
.102

• .103
.103

• • • • .103

• .104

vii

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
DCB Operand
Figure 6.
Specifying
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
75, 85, 91,
Figure 19.
Simulator
Figure 20.
Figure 21.
Figul-e 22.
Figure 23.

viii

Sun~ary of Characteristics and Available Options •••• 2
4
8
9

Save Area Format • • • • • • •• • • • •
Acquiring PAR~ Field Information ••••••••
Load Module Characteristics • • • • • • • • •
Search for Module, EP or EPLOC Operands With DCB=O or
Omitted •••••••••••••••••••••••• 20
Search for Module, EP or EPLOC Operands with DCB operand

Private Library • • . . • • • • • • • • • 21
Search for Module Using DE Operand • • • • 22
Misusing Control Program Facilities • 30
Determining Partition Dispatching Priorities • 36
Task Hierarchy • • • . •• • • • • • 38
Event Control Block . • . • • . • • 40
ENQ Macro. Instruction processing • • • •
Interlock Condition •••••.

· 44
• 47

Using WTO and WTOR to Write Messages to
Program Interruption Control Area • • •

the Programmer • 55

Program Interruption Element • • • •• ••••••
Interruption Code in the Old Program Status Word
Precise Interruptions in IBM System/360 ~~dels 65, 67,
195, and System/370 Model 165 . • • • • . • • • • • • •
Return Codes from the Extended-Precision Floating-Point

Interruption Codes Returned by the Simulator
Abnormal Condition Detection • . • •
Work Area for STAE Exit Routine . • ••.
Main-Storage Control • • • . • • • • • • • • • • •

• 57
• 58
• 60

• 61

• 65
• 65

67
· 72
• 81

EXAMPLES

Example 1. Control Section Addressability • • •• 3
Example 2. Internal Entry Point Addressability 4
Example 3. Saving a Range of Registers •••• • • • • • • •• 5
Example 4. Saving Registers 5-10, 14, and 15 • • • • • • • •• 5
Example 5. Nonreenterable Save Area Chaining • • • • • 6
Example 6. Reenterable Save Area Chaining • • • • • •• 6
Example 7. passing Control in a Simple Structure •••• 11
Example 8. Passing Control With a Parameter List • 12
Example 9. passing Control With Return •••• 13
Example 10. Passing Control With CALL •••••••••••• 13
Example 11. Test for Normal Return •••• • • • 15
Example 12. Return Code Test Using Branching Table • • • • • • 15
Example 13. Establishing a Return Code • • • • • • • • • • 16
Example 14. Use of the RETURN Macro Instruction • • • • • • 16
Example 15. RETURN Macro Instruction With Flag •• 17
Example 16. Use of the LINK Macro Instruction With the Job or Link
Library 25
Example 17. Use of the LINK Macro Instruction with a Private
Library ••• • • _ • • • • • • • • • • • • • 26
Example 18. Use of the BLDL Macro Instruction • • 26
Example 19. The LINK ~acro Instruction With a DE Operand. • • 26
Example 20. Two Requests for Two Resources • • • • 48
Example 21. One Request for Two Resources • • 48
Example 22. Day of Year Processing • • • • • • • • 50
Example 23. Interval Timing • • • • • • • • • • 52
Example 24. Writing to the Operator • • 53
Example 25. Writing to the Operator With a Reply • • 54
Example 26. Use of the SPIE Macro Instruction • 58
Example 27. Calling the Extended-Precision Floating-Point Simulator 64
Example 28. Use of STAE Macro Instruction •••••••••• 70
Example 29. Use of the GETMAIN Macro Instruction ••••••••• 79
Example 30. Using the List and the Execute Forms of the DEQ Macro
Instruction • • • • . . 86
Example 31. Establishing a Checkpoint • • • • . • • • . • • • • 91
Example 32. Canceling a Request for Automatic Restart • 91
l:;xample 33. Obtaining Updated 'l'CB Information After Restart . • 91
Example 34. Requesting a Resource After Restart • • • • • 92
Example 35. Checkpoints for Processing Work Data Sets •• 98
Example 36. Alternating Use of Checkpoint Data Sets .100
Example 37. Assigning a Checkpoint Identification •• 101
Example 38. Recording a Checkpoint Identification Assigned by the
Control Progranl • • . • • • • • • • • • • • . • • . • • . • . • • . .102

ix

INTRODUCTION

The job of the supervisor is to provide the resources that your
programs need in such a way that at any given time, as many resources as
possible are in use. By using certain macro instructions, by specifying
certain JCL parameters, and by organizing your program in certain ways,
you can direct the supervisor as it goes about this job. This book
tells you how to do it.

TYPES OF SERVICES AVAILABLE

The kinds of services you can request from the supervisor fall into
four broad classes, with some miscellaneous services left over.

1. Program Management: Most programs are divided into segments of some
sort. When these segments are separate load modules, the supervisor
can be used to help the pieces communicate with each other.

The section of this book called ·Program Management" discusses save
areas, addressability, and passage of control from one piece of a
program to another.

2. Task Management: In some configurations of the operating system,
units of work called tasks can compete with each other for resources
such as CPU time.

You can change your program's priority, you can break it into
smaller units that compete with each other, and you can obtain
certain information about how your tasks are progressing.' You can
find out how to do these things in the "Task Management" and "Task
Creation" sections of this book.

3. Main-Storage Management: Frequently, a program needs more main
storage all together during its run than it does at anyone time.
Your program might, for example, require 20,000 bytes for input
buffers for one data set, and another 15,000 for buffers for
another, although the two ,data sets need not be processed at the
same time. You can use main-storage management services to get as
much storage as you need, and to tell the system when you are
through with the storage so someone else can use it, or so you can
use it for some other purpose.

The services available for obtaining more main storage, for freeing
main storage, and for sharing main storage among several tasks are
described in the "Main Storage Management" section of this book.

4. Checkpoint and Restart: If the system should fail two minutes from
the end of a program that had already been running for four hours,
and if the program therefore had to be run again from the beginning,
a great deal of time would have been lost. The checkpoint and
restart services of the supervisor allow you to take periodic
checkpoints during the progress of your program, and then to restart
the program at any of these checkpoints, if the system should fail.

The "Checkpoint and Restart" section of this manual describes how to
take checkpoints and then how to restart your program at a
checkpoint.

5. Miscellaneous Services: The supervisor has facilities for providing
dumps of main storage, communicating with the operator, handling

Introduction 1

abnormal conditions (such as program checks), allocating serially
reusable resources, and ttming events. These services are discussed
in the ·Program Management Services· section. The supervisor also
has services to use with the time sharing option (TSO). These
services allow you to specify an attention exit routine 'and to
manipulate task processing, and they are discussed in the ·Time
Sharing option services· section.

CONFIGURATIONS OF THE OPERATING SYSTEM

This book covers two major configurations of the operating system:
the operating system that provides multiprogramming with a fixed number
of tasks (MFT), and the operating system that provides multiprogramming
with a variable number of tasks (MVT). Unless otherwise indicated in
the text, the descriptions in this section apply to all configurations
of the operating system; when differences arise because of operating
system options, these differences are explained.

A brief description of the configurations of the operating system is
given in Figure 1. This table does not attempt to cover all of the
options available in the operating system; it on1y summarizes the
options that affect the material covered in this manual.

r---------------------~-----------------------T-----------------------,
I I MFT I MVT I
~----------------------+-----------------------+-----------------------~ IBrief Description I Priority Scheduler, I Priority Scheduler, I
I lone (or, optionally, lone or more tasks per I
I I more than one) task I job step, 1 to 15 I
I I per job step, 1 to 15 I jobs processed con- I
I I jobs processed con- I currently • I
I I currently. I I
~----------------------+---------------------~-+-----------------------~
IMultiple Wait Option I Standard I Standard I
~----------------------+---------------------~-+-----------------------~ I Identify Option I Optional I Standard I
~~---------------------+---~-------------------+-----------------------~
ITime Option I Optional I Standard I
~----------------------+-----------------------+-----------------------~
IInterval Timing Option I Optional I Standard I
~----------------------+-----------------------+------------------.-----~ I System Log Option I Optional I Optional I l ______________________ ~ _______________________ ~ _______________________ J

Figure 1. Summary of Characteristics and Available Options

2 Supervisor Services

PROGRAM MANAGEMENT

The following discussion provides the requirements for the design of
programs to be processed using the IBM System/360 Operating System.
Included here are the procedures required when receiving control from
the control program, the program design facilities available, and the
conventions established for use in program management.

This discussion presents the conventions and procedures in terms of
called and calling programs. Each program given control during the job
step is initially a called program. During the execution of that
program, the services of another program may be required, at which time
the first program becomes a calling program. For example, the control
program passes control to program A which is, at that point, a called
program. During the execution of program A, control is passed to
program B. Program A is now a calling program, program B a called
program. Program B eventually returns control to program A, which
eventually returns control to the control program. This is one of the
simpler cases, of course. Program B could pass control to program C,
which passes control to program D, which returns· control to program C,
etc. Each of these programs has the characteristics of either a called
or calling program, regardless of whether it is the first, fifth or
twentieth program given control during a job step.

The conventions and requirements that follow are presented in terms
of one called and one calling program; these conventions and
requirements apply to ~ll called and calling programs in the system.

INITIAL REQUIREMENTS

The following paragraphs discuss the procedures and conventions to be
used when a program receives control from another program. Although the
discussion is presented in terms of receiving control from the control
program, the procedures and conventions apply as well when control is
passed directly from another processing program. If the requirements
presented here are followed in each of the programs used in a job step,
the called program is not affected by the method used to pass control or
by the identity of the program passing control.

PROVIDING AN INITIAL BASE REGISTER

When control is passed to your program from the control program, the
address of the entry point in your program is contained in register 15.
This address can be used to establish an initial base register, as shown
in Example 1 and Example 2., In Example 1, the entry point address is
assumed to be ~he address of the first byte of the control section; an
internal entry point is assumed in Example 2. Since register 15 already
contains the entry point address in both examples, no register loading
is required.

r----------------------, I PROGNAME CSECT I
I USING .,15 I
I I L _____________________ -J

Example 1. Control Section Addressability

Program Management 3

r----------------------,
I I
I PROGNAME DS OB I
I USING *,15 I
I I L _____________________ -J

Example 2. Internal Entry Point Addressability

SAVING REGISTERS

The first action your program should take is to save the contents of
the general registers. The contents of any register your program will
modify must be saved, along with the contents of registers 0, 1, 14, and
15. The latter registers may be modified, along with the condition
code, when system macro instructions are used to request data management
or supervisor services.

The general registers are saved in an 18-word area provided by the
control program; the format of this area is shown in Figure 2. When

r------T-----------------------------------,
I Word I contents I
~------+-----------------------------------~ I 1 I Used by PL/I language program I
~------+-----------------------------------~
I 2 I Address of previous save area I
I I (stored by calling program) I
~------+--------------:---------------------~ I 3 I Address of next save area I
I I (stored by current program) I
~------+-----------------------------------~
I 4 I Regi~ter 14 (Return address) I
~------+--------------------------------~--~
I 5 I Register 15 (Entry Point address) I
~------+-----------------------------------~
I 6 I Register 0 I
~------+-----------------------------------~
I 7 I Register 1 I
~------+-----------------------------------~
I 8 I Register 2 I
~---'---+-----------------------------------~
I 9 I Register 3 I
~-----t-----------------------------------~
I 10 I Register 4 I
~------+-----------------------------------~
I 11 I Register 5 I
~------+------------------------~----------i
I 12 I Register 6 I
~------+-----------------------------------~
I 13 I Register 7 I
~------+-----------------------------------i
I 14 I Register 8 I
~------+-----------------------------------~
I 15 I Register 9 I
t------+-----------------------------------~
I 16 I Register 10 I
~------+-----------------------------------~
I 17 I Register 11 I
t------+-----------------------------------~
I 18 I Register 12 I L ______ ~ ___________________________________ J

Figure 2. Save Area Format

4 Supervisor Services

control is passed to your program from the control program, the address
of the save area is contained in register 13. As indicated in Figure 2,
the contents of each of the registers must be saved at a predetermined
location within the save area; for example, register 0 is always stored
at word 6 of the save area. register 9 at word 15. The safest procedure
is to save all of the registers; this ensures that later changes to your
program will not result in the modification of the contents of a
register that has not been ·saved.

To save the contents of the general registers, a store-multiple
instruction, such as STM 14,12,12(13). can be written. This instruction
places the contents of all the registers except register 13 in the
proper words of the save area. (Saving the contents of register 13 is
covered later.) If the contents of only registers 14, 15, and 0-6 are
to be saved, the instruction would be STM 14,6.12(13).

THE SAVE MACRO INSTRUCTION

The SAVE macro instruction, provided to save you coding time, results
in the instructions necessary to store a designated range of registers.
An example of the use of the SAVE macro instruction is shown in
Example 3. The registers to be saved are coded in the same order as
they would have been designated had an STM instruction been coded. A
further use of the SAVE macro instruction is shown in Example 4. The
operand T specifies that the contents of registers 14 and 15 are to be
saved in words 4 and 5 of the save area. The expansion of this SAVE
macro instruction results in the instructions necessary to store
registers 5-10, 14, and 15.

When you use the optional identifier name operand, you can code the
SAVE macro instruction only at the entry point of a program. This is
because the code resulting from the macro instruction with this operand
requires that register 15 contain the address of the SAVE macro
instruction.

PROVIDING A SAVE AREA

If any control section in your program is going to pass control to
another control section and receive control back. your program is going
to be a calling program and must provide another save area. Providing a
save area allows the program you call to save registers without regard
to whether it was called by your program, ancther processing program, or
by the control program. If you establish beforehand what registers are
available to the called program or control section, a save area is not
necessary, but this is poor practice unless you are writing very simple
routines.

r------------------------------,
I PROGNAME SAVE (14,12) I
I USING PROGNAME,15 I
I , L ______________________________ J

Example 3. Saving a Range of Registers

r------------------------------, I PROGNAME SAVE (5,10),T I
I USING PROGNAME,15 I
I I L ______________________________ J

Example 4. Saving Registers 5-10. 14. and 15

Program Management 5

Whether or. not your program is going to provide a save area, the
address of the save area you used must be saved. You will need this
address to restore the registers before you return to the program that
called your program. If you are not providing a save area, you can keep
the save area address in register 13, or save it in a fullword in your
program. If you are providing another save area, the following
procedure should be followed:

• Store the address of the save area you used (that is, the address
passed to you in register 13) in the second word of the new save
area •

• Store the address of the new save area (that is, the address you
will pass in register 13) in the third word of the save area you
used.

The reason for saving both addresses is discussed more fully under the
heading wThe Dump.w Briefly, save the address of the save area you used
so you can find the save area when you need it to restore the registers;
save the.address of the new save area so a trace from save area to save
area is possible.

Example 5 and Example 6 show two methods of obtaining a new save area
and of saving the save area addresses. In Example 5, the registers are
stored in the save area provided by the calling program (the control
program). The address of this save area is then saved at the second
word of the new save area, an 18 full word area established through a DC
instruction. Register 12 (any register could have been used) is loaded
with the address of the previous save area. The address of the new save
area is loaded into register 13, then stored at the third word of the
old save area.

In Example 6, the registers are again stored in the save area
provided by the calling program. The entry point address in register 15
is loaded into register 5, which is declared as a base register. The
contents of register 1 are saved in another register, and a GETMAIN

r--------------------------------,
I PROGNAME STM 14,12,12(13) I
I USING PROGNAME,15 I
I ST 13,SAVEAREA+4 I
I LR 12,13 I
I LA 13,SAVEAREA I
I ST 13,8(12) I
I I
I SAVEAREA DC 18A(O) I L ________________________________ J

Example 5. Nonreenterable Save Area Chaining

r-------------------------~-----,
I PROGNAME SAVE (14,12) I
I LR 5,15 I
I USING PROGNAME,5 I'
I LR 3,1 I
I GETMAIN R,LV=72 I
I ST 13,4(1) I
I ST 1,8(13) I
I LR 13,1 I
I I L _______________________________ J

Example 6. Reenterable Save Area Chaining

6 Supervisor Services

macro instruction is issued. The GETMAIN macro instruction (discussed
in greater detail under the heading -Main Storage Management-) requests
the control program to allocate 72 bytes of main storage from an area
outside your program, and to return the address of the area in register
1. The addresses of the new and old save areas are saved in the
established locations, and the address of the new save area is loaded
into register 13.

ESTABLISHING A PERMANENT BASE REGISTER

If your program does not use system macro instructions and does not
pass control to another program, the base register established using the
entry point address in register 15 is adequate. Otherwise, after you
have saved your registers, establish base registers using one or more of
registers 2-12. Register 15 is used by both the control program and
your program for other purposes.

LINKAGE REGISTERS

Registers 0, 1, 13, 14, and 15 are known as the linkage registers,
and are used in an established manner by the control program. It is
good practice to use these registers in the same way in your program.
As noted earlier, registers 0, 1, 14, and 15 may be modified when system
macro instructions are used; registers 2~13 remain unchanged.

REGISTERS 0 AND 1: Registers 0 and 1 are used to pass parameters to the
control program or to a called program. The expansion of a system macro
instruction results in instructions required to load a value into
register 0 or 1 or both, or to load the address of a parameter list into
register 1. The control program also uses register 1 to pass parameters
to your program or to the program you call. This is why the contents of
register 1 were loaded into register 3 in Example 6.

REGISTER 13: Register 13 contains the address of the save area you have
provided. The control program may use this save area when processing
requests you have made using system macro instructions. A program you
call can also use this save area when it issues a SAVE macro
instruction.

REGISTER 14: Register 14 contains the return address of the program
that called you, or an address within the control program to which you
are to return when you have completed processing. The expansion of most
system macro instructions results in an instruction to load register 14
with the address of your next sequential instruction. A BR 14
instruction at the end of any program will return control to the calling
program as long as the contents of register 14 have not been altered.

REGISTER 15: Register 15, as you have seen, contains an entry point
address when control is passed to a program from the control program.
The entry point address should also be contained in register 15 when you
pass control to another program. In addition, the expansions of some
system macro instructions result in the instructions to load into
register 15 the address of a parameter list to be passed to the control
program. Register 15 is also used to pass a return code to a calling
program.

ACQUIRING THE INFORMATION IN THE PARM FIELD OF THE EXEC STATEMENT

The manner in which the control program passes the information in the
PARM field of your EXEC statement is a good example of how the control
program uses a parameter register to pass information. When control is
passed to your program from the control program, register 1 contains the

program Management 7

Register
1

4 Bytes
L~ ______________ ~A~ ____________ ~

1 I
I

Full-Word
Boundary

Length Field PARM Field 0
'-----""'v-----..J"--------"_"''\vr-----..J

2 Bytes
Half-Word
Boundary

o to 100 Bytes

Figure 3. Acquiring PARM Field Information

address of a fullword on a full word boundary in your area of main
storage (refer to Figure 3). The high order bit (bit 0) of this word is
set to 1. This is a convention used by the control program to indicate
the last word in a variable-length parameter list; you must use the same
convention when making requests to the control program. The low-order
three bytes of the fullword contain the address of a two-byte length
field on a halfword boundary. The length field contains a binary count
of the number of bytes in the PARM field, which immediately follows the
length field. If the PARM field was omitted in the EXEC statement, the
count is set to zero. To prevent possible errors, the count should
always be used as a length attribute in acquiring the information in the
PARM field. If your program is not going to use this information
immediately, you should load the address from register 1 into one of
registers 2-12 or store the address in a fullword in your program.

LOAD MODULE STRUCTURE TYPES

Each load module used during a job step can be designed in one of
three load module structures: simple, planned overlay, or dynamic. A
simple structure does not pass control to any other load modules during
its execution, and is brought into main storage all at one time. A
planned overlay structure may, if necessary, pass control to other load
modules during its execution, and it is not brought into main storage
all at one time. Instead, segments of the load module reuse the same
area of main storage. A dynamic structure is brought into main storage
all at one time, and passes control to other load modules during its
execution. Each of the load modules to which control is passed can be
one of the three structure types.

Figure 4 summarizes the characteristics of these load module
structures.

8 Supervisor Services

r-----------------T------------------------T-------------------------,
I I I Passes control to other I
I Structure Type I Loaded All at One Time I Load Modules I
~-----------------+------------------------+-------------------------~
I Simple I Yes I No I
~-----------------+------------------------+-------------------------~
I Planned Overlay I No I Optional I
~-----------------+------------------------+----------~--------------~
I Dynamic I Yes I Yes I L _________________ ~ ________________________ ~ _________________________ J

Figure 4. Load Module characteristics

The following paragraphs cover the advantages and disadvantages of
each type of structure, and discuss the use of each.

SIMPLE STRUCTURE

. A simple structure consists of a single load module produced by the
linkage editor. The single load module contains all of the instructions
required, and is brought into the main storage all at 9ne time by the
control program. The simple structure can be the most efficient of the
three structure types because the instructions it uses to pass control
do not require control program intervention. However, when a program is
very large or complex, the main storage area required for the load
module may exceed that which can be reasonably requested. (Main storage
considerations are discussed under the heading ftMain Storage
Management. ft)

PLANNED OVERLAY STRUCTURE

A planned overlay structure consists of a single load module produced
by the linkage editor. The entire load module is not brought into main
storage at once; different segments of the load module use the same area
of main storage. The planned overlay structure, while not as efficient
as a simple structure in terms of execution speed, is more efficient
than a dynamic structure. When using a planned overlay structure,
control program assistance is required to locate and load portions of a
single load module in a library; in a dynamic structure, many load
modules in different libraries may need to be located and loaded in
order to execute an equivalent program.

DYNAMIC STRUCTURE

A dynamic structure requires more than one load module during
execution. Each load module required can operate as either a simple
structure, a planned overlay structure, or another dynamic structure.
The advantages of a dynamic structure over a planned overlay structure
increase as the program becomes more complex, particularly when the
logical path of the program depends on the data being processed. The
load modules required in a dynamic structure are brought into main
storage when required, and can be deleted from main storage when their
use is completed.

LOAD ~ODULE EXECUTION

Depending on the configuration of the operating system and the macro
instructions used to pass control, execution of the load modules is
serial or in parallel. Execution of the load modules is always serial
in an operating system with MFT without subtasking; there is only one

Program Management 9

task in the job step. Execution is also serial in an operating system
with MFT with subtasking or MVT, unless an ATTACH macro instruction is
used to create a new task. The new task competes for control
independently with all other tasks in the system. The load module named
in the ATTACH macro instruction is executed in parallel with the load
module containing the ATTACH macro instruction. The execution of the
load modules is serial within each task.

The following paragraphs discuss passing control for serial execution
of a load module. Creation and management of new tasks is discussed
under the headings "Task Creation" and "Task Management."

PASSING CONTROL IN A SIMPLE STRUCTURE

There are certain procedures to follow when passing control to an
entry point in the same load module. The established conventions to use
when passing control are also discussed. These procedures and
conventions provide the framework around which ~ll program interface is
built. Knowledge of the information contained 1n the section
"Addressing Program Sectioning and Linking" in the Assembler-Language
publication is required.

PASSING CONTROL WITHOUT RETURN

A control section is usually written to perform a specific logical
function within the load module. Therefore, there will be occasions
when control is to be passed to another control section in the sam~ load
module, and no return of control is required. An example o~ this type
of control section is a "housekeeping" routine at the beginning of a
program which establishes values, initializes switches, and acquires
buffers for the other control sections in the program. The following
procedures should be used when passing contro"l without return.

INITIAL REQUIREMENTS

Because control will not be returned to this control section, you
must restore the contents of register 14. Register 14 originally
contained the address of the location in the calling program (for
example, the control program) to which control is to be passed when your
program is finished. Since the current control section will not make
the return to the calling program, the return address must be passed to
the cORtrol section that will make the return. In addition, the
contents of registers 2-12 must be unchanged when your program
eventually returns control, so these registers must also be restored.

If control were being passed to the next entry point from the control
program, register 15 would contain the entry point address. You should
use register 15 in the same way, so that the called routine remains
independent of which program passed control to it.

Register 1 should be used to pass parameters. A parameter list
should be established, and the address of the list placed in register 1.
The parameter list should consist of consecutive full words starting on
a fullword boundary, each fullword containing an address to be passed to
the called control section in the three low order bytes of the word.
The high-order bit of the last word should be set to 1 to indicate the
last word of the list. The system convention is that the list contain
addresses only. You may, of course, deviate from this convention:
however, when you deviate from any system convention, you restrict the
use of your programs to those programmers who are aware of your special
conventions.

10 Supervisor Services

Since you have reloaded all the necessary registers, the save area
that you used is now available, and can be reused by the called control
section. You pass the address of the save area in register 13 just as
it was passed to you. By passing the address of the old save area, you
save the 72 bytes of main storage area required for a second, and
unnecessary, save area.

PASSING CONTROL

The common way to pass control between one control section and an
entry point in the same load module is to load register 15 with a V-type
address constant' for the name of the external entry point, and then to
branch to the address in register 15. The external entry point must
have been identified using an ENTRY instruction in the called control
section if the entry point is not the same as the control section name.

An example of proper register loading and control transfer is shown
in Example 7. In this example, no new save area is used, so register 13
still contains the address of the old save area. It is also assumed for
this example that the control section ~ill pass the same parameters it
received to the next, entry point. First, register 14 is reloaded with
the return address. Next, register 15 is loaded with the address of the
external entry point NEXT, using the V-type address constant at the
location NEXTACDR. Registers 0-12 are reloaded, and control is passed
by a branch instruction using register 15. The control section to which
control is passed contains an ENTRY instruction identifying the entry
point NEXT.

An example of the use of a parameter list is shown in Example 8.
Early in the routine the contents of register 1 (that is, the address of
the full word containing the PARM field address) were stored at the
fullword PARMADDR. Register 13 is loaded with the address of the old
save area, which had been saved in word 2 of the new save area.' The
contents of register 14 are ~estored, and register 15 is loaded with the
entry point address.

The address of the list of parameters is loaded into register 1.
These parameters include the addresses of two data control blocks (DCBs)
and the original register 1 contents. The high-order bit in the last
address parameter (PARMADDR) is set to 1 using an OR-immediate
instruction. The contents of registers 2-12 are restored. (Since one
of these registers was the base register, restoring the registers
earlier would have made the parameter list unaddressable.) A branch
instruction using register 15 passes control to entry point NEXT.

PASSING CONTROL WITH RETURN

The control program passed control to your program, and your program
will return control when it is through processing. Similarly, control
sections within your program will pass control to other control

r---,
I I
I L 14,12(13) CSECT I
I L 15,NEXTADDR ENTRY NEXT I
I L~ 0,12,20(13) I
I BR 15---------->NEXT SAVE (14,12) I
I I
I NEXTADDR DC V(NEXT) I L ___ J

Example 7. Passing Control in a Simple Structure

program Management 11

r-----------~---,

USING *,12 Establish addressability
EARLY ST 1,PARMADDR Save parameter address

L 13,4(13) Reload address of old save area
L 14,12(13) Load return address
L 15,NEXTADDR Load address of next entry point
LA 1,PARMLIST Load address of parameter list
OI PARMADDR,X'80' Turn on last parameter indicator
LM 2,12,28(13) Reload remaining registers
BR 15 Pass control

PARMLIST DS OA
DCBADDRS DC A(INDCB)

DC A (OUTDCB)
PARMADDR DC A(O)
NEXTADDR DC V (NEXT)

Example 8. Passing Control With a Parameter List

sect~ons, and expect to receive control back. An example of this type
of control section is a WmonitorW portion of a program; the monitor
determines the order of execution of other control sections based on the
type of input data. The following procedures should be used when
passing control with return.

INITIAL REQUIREMENTS

Registers 15 and 1 are used in exactly the same manner as they were
used when control was passed without return. Register 15 contains the
entry point address in the new control section and register 1 is used to
pass a parameter list.

Using the standard convention, register 14 must contain the address
of the location to which control is to be passed when the called control
section completes processing. This tirre, of course, it is a location in
the current control section. The address can be the instruction
following the instruction which causes control to pass, or it can be
another location within the current control section designed to handle
all returns. Registers 2-12 are not involved in the passing of control;
the called control section should not depend on the contents of these
registers in any way.

You should provide a new save area for use by the called control
section as previously described, and the address of that save area
should be passed in register 13. Note that the same save area can be
reused after control is returned by the called controi section. One new
save area is ordinarily all you will require regardless of the number of
control sections called.

PASSING CONTROL

Two standard methods are available for passing control to another
control section and providing for return of control. One is merely an
extension of the method used to pass control without a return, and
requires a V-type address constant and a branch or a branch and link
instruction. The other method uses the CALL macro instruction to
provide a parameter list and establish the entry point and return point
addresses. Using either method, the entry point must be identified by
an ENTRY instruction in the called control section if the entry name is

12 Supervisor Services

not the same as the control section nan'e. Example 9 and Example 10
illustrate the two methods of passing control; in each example, it is
assumed that register 13 already contains the address of a new save
area.

Use of an inline parameter list and an answer area is also
illustrated in Example 9. The address of the external entry point is
loaded into register 15 in the usual manner. A branch and link
instruction is then used to branch around the param~ter list and to load
register 1 with the address of the parameter list. An inline parameter
list such as the one shown in Example 9 is convenient when you are
debugging because the parameters involved are located in the listing (or
the dump) at the point they are used, instead of at the end of the
listing or dump. Note that the first tyte of the last address parameter
(ANSWERAD) is coded with the high-order bit set to 1 to indicate the end
of the list. The area pointed to by the address in the ANSWERAD
parameter is an area to be used by the called control section to pass
parameters back to the calling control section. This is a possible
method to use when a qalled control section must pass parameters back to
the calling control section. parameters are passed tack in this manner
so that no additional registers are involved. The area used in this
example is twelve full words; the size of the area for any specific
application depends on the requirements of the two control sections
involved.

The CALL macro instruction in Example 10 provides the same functions
as the instructions in Example 9. When the CALL macro instruction is
expanded, the operands cause the following results:

NEXT
A V-type address constant is created for NEXT, and the address is
loaded into register 15.

(INDCB,OUTDCB,AREA)
A-type address constants are created for the three parameters coded
within parentheses, and the address of the first A-type address
constant is placed in register ,1.

r---,
L 15,NEXTADDR Entry point address in register 15
CNOP 0,4
BAL 1,GOOUT parameter list address in register 1

PARMLIST DS OA Start of parameter list
DCBADDRS DC A (INDCB) Input dcb address

DC A(OUTDCB) output dcb address
ANSWERAD DC B'10000000' Last parameter bit on

DC AL3(AREA) Answer area address
NEXTADDR DC V (NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains

return address
RETURNPT
AREA DC 12F·O· Answer area from NEXT

Example 9. Passing Control With Return

r---, I CALL NEXT,(INDCB,OUTDCB,AREA),VL I
I RETURNPT I
I AREA DC 12F'O' I L ______________________ ~ ______________________ J

Example 10. Passing Control With CALL

Program Management 13

VL
The high order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The
address of the instruction following the CALL macro instruction is
loaded into register 14 before. control is passed.

In addition to the results described above, the V-type address
constant generated by the CALL macro instruction causes the load module
with the entry point NEXT to be automatically edited into the same load
module as the control section containing the CALL macro instruction.
Refer to the Linkage Editor and Loader publication, if you are
interested in finding out more about this service.

The parameter list constructed from the CALL macro instruction in
Example 10 contains only A-type address constants. A variation on this
type of parameter list results from the following coding:

CALL NEXT, (INDCB,(6),(7»,VL

In the above CALL macro instruction, two of the parameters to be passed
are coded as registers rather than symbolic addresses. The expansion of
this macro instruction again results in a three-word parameter list; in
this example, however, the expansion also contains the instructions
necessary to store the contents of registers 6 and 7 in the second and
third words, respectively, of the paraneter list. The hig·h-order bit in
the third word is set to 1 after register 7 is stored. You can specify
as many parameters as you need as address ~arameters to be passed, and
you can use ~ymbolic addresses or register contents as you see fit.

ANALYZING THE RETURN

When control is returned from th'e control program after processing a
system macro instruction, the contents of registers 2-13 are unchanged.
When control is returned to your control section from the called control
section, registers 2-14 contain the sarr.e information they contained when
control was passed, as long as system conventions are followed. The
called control section has no obligation to restore registers 0 and 1;
so the contents of these registers mayor may not have been changed.

When control is returned, register 15 can contain a return code
indicating the results of the processing done by the called control
section. If used, the return code should te a multiple of 4, so a
branching table can be used easily, and a return code of 0 should be
used to indicate a normal return. The control program frequently uses
this method to indicate the results of the requests you make using
system macro instructions; an example of the type of return codes the
control program provides is shown in the description of the IDENTIFY and
STOW macro instructions in the Supervisor and Data Management Macro
Instructions book.

The meaning of each of the codes to be returned must be agreed upon
in advance. In some cases, either a "good" or "bad" indication (zero or
nonzero) will be sufficient for you to decide your next action. If this
is true, the code shown in Example 11 could be used to analyze the
results. Many times, however, the results and the alternatives are more
complicated, and a branching table, such as shown in Example 12, could
be used to pass control to the proper routine.

14 Supervisor Services

r---,
I RETURNPT LTR 15,15 Test return code for zero I
I BNZ ERRORTN Branch if not zero to error routine I
I I L ___ J

Example 11. Test for Normal Return

r---------------------------~--------------------------------,
I RETURNPT B RETTAB(15) Branch to table using return code I
I RETTAB B NORMAL Branch to normal routine I
I B CONDl Branch to routine for condition 1 I
I B COND2 Branch to routine for condition 2 I
I B GIVEUP Branch to routine to handle I
I impossible situations I
I I l __ J

Example 12. Return Code Test Using Branching Table

HOW CONTROL IS RETURNED

In the discussion of the return under the heading nAnalyzing the
Returnn it was indicated that the control section returning control must
restore the contents of registers 2-14. Because these are the same
registers reloaded when control is passed without a return, refer to the
discussion under nPassing Control Without Return" for detailed
information and examples. The contents of registers 0 and 1 do not have
to be restored.

Register 15 can contain a return code when control is returned. As
indicated previously, a return code should be a multiple of four with a
return code of zero indicating a normal return. The return codes other
than zero that you use can have any meaning, as long as the control
section receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14;
return of control should always be passed to that address. You can
either use a branch instruction such as BR 14, or you can use the RETURN
macro instruction. An example of each method of returning control is
discussed in the following paragraphs.

Example 13 is a portion of a control section used to analyze input
data cards and to check for an out-of-tolerance condition. Each time an
out-of-tolerance condition is found, in addition to some corrective
action, one is added to the value at the address STATUSBY. After the
last data card is analyzed, this control section returns to the calling
control section, which proceeds based on the number of out-of-tolerance
conditions encountered. The coding shown in Example 13 causes register
13 to be loaded with the address of the save area this control section
used, then reloads register 14 with the proper return address. The
contents of register 15 are set to zero, and the value at the address
STATUSBY (the number of errors) is placed in the low-order eight bits of
the register. The contents of register 15 are shifted to the left two
places to make the value a multiple of four. Registers 2-12 are
reloaded, and contr9l is returned to the address in register 14.

The RETURN macro instruction is provided to save coding time. The
expansion of the RETURN macro instruction provides the instructions
necessary to restore a designated range of registers, provide the proper
return code value in register 15, and branch to the address in register
14. In addition, the RETURN macro instruction can be used to flag the
save area used by the returning control section; this flag, a byte
containing all ones, is placed in the high-order byte of word four of

Program Management 15

r--,
I I
I L 13,4(13) Load address of previous save area I
I L 14,12(13) Load return address I
I SR 15,15 Set register 15 to zero I
I IC 15,STATUSBY Load number of errors I
I SLA 15,2 Set return code to multiple of 4 I
I LM 2,12,28(13) Reload registers 2-12 I
I BR 14 Return I
I I
I STATUSBY DC X'OO' I L __ J

Example 13. Establishing a Return Code

the save area after the registers have been restored. The flag
indicates that the control section that used the save area has returned
to the calling control section. You will find that the flag is useful
when tracing the flow of your program in a dump. For a complete record
of program flow, a separate save area Rust be ~rovided by each control
section each time control is passed. This is usually not done because
it requires too much main storage.

The contents of register 13 must be restored before the RETURN macro
instruction is issued. The reg1sters to be reloaded should be coded in
the same order as they would have been designated had a load-multiple
(LM) instruction been coded. You can load register 15 with the return
code value before you code the RETURN rracro instruction, you can specify
the return code value in the RETURN macro instruction, or you can reload
register 15 from the save area.

The code shown in Example 14 provides the same result as the code
shown in Example 13. Registers 13 and 14 are reloaded, and the proper
value is established in register 15. The RETURN macro instruction
causes registers 2-12 to be reloaded, and control to be passed to the
address in register 14. The save area used is not flagged. The RC=(15)
operand indicates that register 15 already contains the return code
value, and the contents of register 15 are not to be altered.

Example 15 illustrates another use of the RETURN macro instruction.
The correct save area address is again established, then the RETURN
macro instruction is issued. In this exam~le, registers 14 and 0-12 are
reloaded, a return code of 8 is placed in register 15, the save area is
flagged, and control is returned. Specifying a return code overrides
the request to restore register 15 even though register 15 is within the
designated range of registers.

r--,
I I
I L 13,4(13) Restore save area address I
I L 14,12(13) Return address in register 14 I
I SR 15,15 Zero register 15 I
I IC 15,STATUSBY Lead number of errors I
I SLA 15,2 Set return code to multiple of 4 I
I RETURN (2,12),RC=(15) Reload registers and return I
I I
I STATUSBY DC X'OO' I L __ J

Example 14. Use of the RETURN Macro Instruction

16 Supervisor Services

r------------------------,
I ... I
I L 13,4(13) I
I RETURN (14,12),T,RC=8 I L ________________________ J

Example 15. RETURN Macro Instruction With Flag

RETURN TO THE CONTROL PROGRAM

The discussion in the preceding paragraphs has covered passing
control within one load module, and has been based on the assumption
that the load module was brought into Irain storage because of the
program name specified in the EXEC statement. The control program
established only one task to be perforrred for the job step. When the
logical end of the program is reached, control is returned to the
address passed in register 14 to the first control section in the
program. When the control program receives control at this point, it
terminates the task it created for the job step, compares the return
code in register 15 with any COND values specified on the JOB and EXEC
statements, and determines whether or not the following job steps, if
any, should be executed.

PASSING CONTROL IN A PLANNED OVERLAY S'IRUCTURE

A complete discussion of the requirements for passing control in an
overlay environment is provided in the Linkage Editor and Loader manual.

PASSING CONTROL IN A DYNAMIC STRUCTURE

The discussion of passing control in a simple structure has provided
the necessary background for the discussion of passing control in a
dynamic structure. Within each load module, control should be passed as
in a simple structure or planned overlay structure. If you can
determine which control sections will n-ake up a load module before you
code the control sections and if they will fit in the main storage
available, you should pass control within the load module without
involving the control program. The macro instructions discussed in this
section provide increased linkage capability, but they require control
program intervention and possibly increased execution time.

BRINGING THE LOAD MODULE INTO MAIN STORAGE

The load module containing the entry point name you specified on the
EXEC statement is automatically brought into main storage by the control
program. Any other load modules you require during your job step are
brought into main storage by the control program as a result of specific
requests for dynamic acquisition; these requests are made through the
use of the LOAD, LINK, ATTACH, or XCTL macro instructions. The
following paragraphs discuss the proper use of these macro instructions.

LOAD MODULE LOCATION

Initially, each load module that you can obtain dynamically is
located in a library (partitioned data set). This library is the link
library, the job or step library, task library, or a private library.

• The link library is always present and is available to all job steps
of all jobs. The control program provides the necessary data
control block for the library, and logically connects the library to
your program, making the members of the library available to your
program.

Program Management 17

• The job and step libraries are explicitly established by including
//JOBLIB and //STEPLIB DD statements in the input stream. The
//JOBLIB DD statement is placed immediately after the JOB statement,
while the //STEPLIB DD statement is placed among the DD statements
for a particular job step. The job library is available to all
steps of your job, except those that have step libraries. A step
library is available to a single job step; if there is a job
library, the step'library replaces the job library for the step.
For either the job library or the step library, the control program
provides the necessary data control block and issues the OPEN macro
instruction to logically connect the library to your program.

• In systems with MVT, unique,task libraries may be established by
using the TASKLIB operand of the ATTACH macro instruction. The
issuer of the ATTACH macro instruction is'responsible for providing
the DD statement and opening the data set or sets. If the TASKLIB
operand is omitted, the task library of the attaching task is
propagated to the attached task. In the following example, Task A's
job library is LIB1. Task A attaches Task B, specifying
TASKLIB=LIB2 on the ATTACH macro instruction. Task B's task library
is therefore LIB2. When Task B attaches Task C, LIB2 is searched
for Task C before LIBl or the link library. Because Task B did not
specify a unique task library for Task C, its own task library
(LIB2) is propagated to Task C and will be the first library
searched when Task C requests that a module be brought into main
storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• A private library is established by including a OD statement in the
input stream, and is available only to the job step in which it is
defined. You must provide the necessary data control block and
issue the OPEN macro instruction for each data set. You may use
more than one private library by including more than one DD
statement and associated data control block.

A library can be a single partitioned data set, or a collection of
such data sets. When it is a collection, you define each data set by a
separate DO statement, but you assign a name only to the statement that
defines the first data set. Thus, a job library conSisting of three
partitioned data sets would be defined as follows:

//JOBLIB DD DSNA~E=PDS1,---
// DD DSNAME=PDS2,---
// DD DSNA~E=PDS3,---

The three data sets (POS1, PDS2, PDS3) are processed as one, and are
said to be concatenated. Concatenation and the use of partitioned data
sets is discussed in more detail in Section II: Data Management
Services.

Operating systems with MFT or MVT may already have some of the load
modules from the link library in main storage in an area called the
resident reenterable module area (optional in MFT) or the link pack area
(MVT). The contents of these areas are determined at Initial Program
Loading time, and will vary depending on the requirements of your
installation. In an operating system with MVT, the link pack area
contains frequently used, reenterable load modules from the link library
along with data management load modules; these load modules can be used
by any job step in any job. When it is started, TSO extends the link
pack area. In an operating system with MFT, the resident reenterable
module area can contain user-written modules and the loader, discussed
in the Linkage Editor and Loader publication, and all reenterable
graphics subroutine package (GSP) modules.

18 Supervisor Services

With the exception of those load modules contained in this area,
copies of all of the load modules you request are brought into your area
of main storage, and are available to any task in your job step. For
systems with MVT and MFT with subtasking, the portion of your area
containing the copies of load modules is called the job pack area.

THE SEARCH FOR THE LOAD MODULE

In response to your request for a copy of a load module, the control
program searches the job pack area (MVT and MFT with subtasking), the
libraries, and the link pack area (MVT) or the resident reenterable
module area (MFT). If a copy of the load module is found in one of the
pack areas, the control program determines whether or not that copy can
be used, based on criteria discussed under the heading "Using an
Existing Copy." If an existing copy can be used, the search stops. If
it can not be used, the search continues until the module is located in
a library. The load module is then brought into the job pack area.

The order in which the libraries and pack areas are searched depends
on whether the system is MVT or MFT, and upon the operands used in the
macro instruction requesting the load module. The operands that define
the order of the search are the EP, EPLOC, DE, and DCB operands. The
EP, EPLOC, and DE operands are used to specify the name of the entry
point in the load module; you code one of the three every time you use a
LINK, LOAD, XCTL, or ATTACH macro instruction. The DCB operand is used
to indicate the address of the data control block for the library
containing the load module, and is optional. Omitting the DCB operand
or using the DCB operand with an address of zero specifies the data
control blocks for the link library, the job or step library, or the
task library.

The following paragraphs discuss the order of the search when the
entry point name used is a member name.

The EP and EPLOC operands require the least effort on your part; you
provide only the entry point name, and the control program searches for
a load module having that entry pOint name. Figure 5 shows the order of
the search when EP or EPLOC is coded, and the DCB operand is omitted or
DCB=O is coded.

When used without the DCB operand, the EP and EPLOC operands provide
the easiest method of requesting a load module from the link, task, job,
or step library. In a system with MVT, the task libraries are searched
before the job or step library, beginning with the task library of the
task that issued the request and continuing through the task libraries
of all its ascendents. The job or step library is then searched,
followed by the link library. In a system with MFT, the job or step
library is the first searched, followed by the link library. Thedata
sets that make up these libraries are searched in the order of their DD
statements.

A job, step, or link library or a data set in one of these libraries
can be used to hold one version of a load module, while another can be
used to hold another version with the same entry point name. If one
version is in the link library, you can ensure that the other will be
found first by including it in the job or step library. However, if
both versions are in the job or step library, you must define the data
set that contains the version you want to use before that Which contains
the other version. For example, if the wanted version is in PDS1 and

Program Management 19

r-----------------------------------T----------------------------------,
I MFT I MVT I
~-----------------------------------+--------------~-------------------~ I The partition is searched. I The job pack area of the region I
I I is searched for an available I
I I copy. I
I .----------------------------------~
I I The requesting task' s task I
I I library and all the unique task I
I I libraries of its direct I
I I ascendants are searched. I
~-----------------------------------+----------------------------------~
I The resident reenterable load I The step library is searched; if I
I module area is searched I there is no step library, the I
I (optional). I job library (if any) is I
I I searched. I
~-----------------------------------+-------------------------------~--~
I The step library or the job I The link pack area is searched. I
I library (if any) is searched. If I I
I both libraries are specified, the I I
I job library is not searched. I I
~-------~---------------------------+----------------------------------~ I The link library is searched. I The link library is searched. I L ___________________________________ i __________________________________ J

Figure 5. Search for Module, EP or EPLOC-Operands With DCB=O or DCB
Operand Omitted

the unwanted version is in PDS2, a stef litrary consisting of these data
sets should be defined as follows:

//STEPLIB DD DSNAME=PDS1,--­
// DD DSNAME=PDS2,---

If, however, the first version in the job or step library has been
previously loaded and the version in the link library or the second
version in the job library is desired. the DCB operand must be coded-on
the macro instruction.

This is not the case for task libraries. Extreme caution should be
used when specifying module names in unique task libraries, because
duplicate names may lead to the wrong module being given to the task
requesting that the module be brought into main storage. Once a module
has been loaded, the module name is known to all tasks in the region and
a copy of that module will be given to all tasks requesting that that
module name be loaded, regardless of the requester's task library.

If you know that the load module you are requesting is a member of
one of the private libraries, you can still use the EP or EPLOC
operands, this time in conjunction with the DCB operand. You would
specify the address of the data control block for the private library in
the DCB operand. The order of the search for EP or EPLOC with the DCB
operand is shown in Figure 6.

, Searching a job step, or task library slows the retrieval of load
modules from the link library; to speed this retrieval, you should limit
the size of the job and step libraries. You can best do this by
eliminating the job litrary altogether, and providing step libraries
where required. You can limit each step library to the data sets
'required by a single step; some steps (such as compile) will not require
a step library, and therefore will not require any unnecessary search in
retrieving modules from the link library. For maximum efficiency, you
should define a job litrary only when a step library would be required
for every step, and every step library would be the same.

20 Supervisor Services

r-----------------------------------T----------------------------------,
I MFT I MVT I
~-----------------------------------+----------------------------------~
I The partition is searched. I The job pack area of the region I
I I is searched for an available I
I I copy. I
~-----------------------------------+----------------------------------~
I The resident reenterable load I The specified library is I
I module area is searched I searched. I
I (optional). I I
~-----------------------------------+----------------------------------~ I The specified library is I The link pack area is searched. I
I searched. ~------------------------~---------~
I I The link library is searched. I L ___________________________________ ~ __________________________________ J

Figure 6. Search for Module, EP or EPLoe Operands With DeB Operand
Specifying Private Library

The DE operand requires more work than the EP and EPLoe operands, but
it can reduce the amount of time spent searching for a load module.
Before you can use this operand, you must use the BLDL macro instruction
to obtain the directory entry for the module. The directory entry is
part of the library that contains the module.

To save time, the BLDL macro instruction used must obtain directory
entries for more than one entry point name. You specify the names of
the load modules and the address of the data control block for the
library when using the BLDL macro instruction; the control program
places a copy of the directory entry for each entry point name requested
in a designated location in main storage. If you specify the link
library and the job or step library, the directory information indicates
from which library the directory entry was taken. The directory entry
always indicates the exact relative track and block location of the load
module in the library. If the load module is not located on the library
you indicate, a return code is given. You can then issue another BLDL
macro instruction specifying a different library.

To use the DE operand, you provide the address of the directory
entry, and code or omit the DeB operand to indicate the same library
specified in the BLDL macro instruction. The order of the search when
the DE operand is used is shown in Figure 7 for the link, job, step, and
private libraries.

The preceding discussion of the search is based on the premise that
the entry point name you specified is the member name. When you are
using an operating system with MFT, the same search results from
specifying an alias rather than a member name. When you are using an
operating system that includes MVT, the control program checks if the
entry point name is an alias when the load module is found in a library.
If the name is an alias, the control program obtains the corresponding
member 'name from the library directory, then searches the link pack and
job pack areas using the member name to determine if a usable copy of
the load module exists in main storage. If a usable copy does not exist
in a pack area, a new copy is brought into the job pack area.
Otherwise, the existing copy is used, conserving main storage and
eliminating the loading time.

As the discussion of the search indicates, you should choose the
operands for the macro instruction that provide the shortest search
time. The search of a library actually involves a search of the
directory, followed by copying the directory entry into main storage,
followed by loading the load module into main storage. If you know the
location of the load module, you should use the operands in your macro

Program Management 21

instruction that eliminate as many of these unnecessary searches as
possible, as indicated in Figure 5, Figure 6, and Figure 7. Examples of
the use of these figures are shown in the disucssion of passing control.

USING AN EXISTING COPY

The control program will use a copy of the load module already in the
link pack area or job pack area if the copy can be used. Whether the
copy can be used or not depends on the reusability and current status of
the load module; that is, the load module attributes, as designated
using linkage editor control statements, and whether or not the load
module has already been used or is in use. The status information is
available to the control program only when you specify the load module
entry point name on an EXEC statement, or when you use ATTACH, LINK, or
XCTL macro instructions to transfer control to the load module. The
control program will protect you from obtaining an unusable copy of a
load module'as long as you always -formally- request a copy using these
macro instructions (or the EXEC statement); if you ever pass control in
any other manner (for instance, a branch or a CALL macro instruction),
the control program, because it is not informed, cannot protect you.

Operating System With MVT: If you are using an operating system with
MVT, all reenterable modules (modules designated as reenterable using

r----------------------------------T-----------------------------------,
I MFT I MVT ,
~----------------------------------~-----------------------------------~
I Directory Entry Indicates Link Library and DCB=O or DCB Operand I
I Omitted I
~----------------------------------T-----------------------------------~ I The partition is searched. I The job pack area for the region I
, I is searched for an available copy.'
~----------------------------------+-----------------------------------~
I The resident reenterable load I The link pack area is searched. I
, module area is searched I I
I (optional). I I
~----------------------------------+----------------------------~------~
, The module is obtained from the I The module is obtained from the ,
I link library. I link library. ,
~----------------------------------~-----------------------------------~
I Directory Entry Indicates Job, Step, or Task Library and DCB=O or I
I DCB Operand omitted ,
~---------------------------------~-----------------------------------~
I The job pack area for the parti- I The job pack area for the region I
I tion is searched for an I is searched for an available copy.'
, available copy. I ,
~----------------------------------+-----------------------------------~ I The module is obtained from the I The module is obtained from the I
, step library; if there is no I step library; if there is no step ,
I step library, the module is I library, the module is obtained I
, obtained from the job library. I from the job library. ,
~----------------------------------~-----------------------------------~
I DCB Operand Indicates Private Library I
~----------------------------------T-----------------------------------~
I The job pack area for the parti- I The job pack area for the region I
I tion is searched for an I is searched for an available copy. I
I available copy. I I
~----------------------------------+-----------------------------------~
I The module is obtained from the I The module is obtained from the I
I specified private library. I specified private library. I L ______ · ____________________________ ~ ___________________________________ J

Figure 7. Search for Module Using DE Operand.

22 Supervisor Services

the linkage editor) from any library are comFletely reusable; only one
copy is ever placed in the link pack area or brought into your job pack
area, and you get immediate control of the load module. If the module
is serially reusable, only one copy is ever placed in the job pack area;
this copy will always be used for a LOAD macro instruction. If the copy
is in use, however, and the request is made using a LINK, ATTACH, or
XCTL macro instruction, the task requiring the load module is placed in
a wait condition until the copy is available. A LINK macro instruction
should not be issued for a serially reusable load module currently in
use for the same task; the task will be abnormally terminated. (This
could occur if an exit routine issued a LINK macro instruction for a
load module in use by the main program.)

If the load module is nonreusable, a LOAD macro instruction will
always bring in a new copy of the load module; an existing copy is used
only if a LINK, ATTACH, or XCTL macro instruction is issued and the copy
has not been used previously. Remember, the control program can
determine if a load module has been used or is in use only if all of
your requests are made using LINK, ATTACH, or XCTL macro instructions.

MFT Systems With subtasking: If you are using an MFT system with
subtasking, the LOAD macro instruction enables all tasks in a partition
to share the same copy of a reenterable modUle invoked by a previous
LOAD macro instruction. If the reenter able module is again invoked by a
LINK, XCTL, or ATTACH macro instruction and a previous request is still
active, a new copy of the module will be brought into main storage.

MFT Systems Without Subtasking: If you are using an operating system
with MFT, the macro instruction used to request the load module also
determines if an existing copy can be used. If a LOAD macro instruction
is issued, an existing copy is always used to satisfy the request,
without regard to the reusability designation or the current status of
the copy. Howev'er, if an ATTACH, LINK, or XCTL macro instruction is
issued, an existing copy is used only if that copy was brought into main
storage as a result of a request using a LOAD macro instruction and the
copy is not in use; otherwise, a new copy is brought into the job pack
area.

MFT Systems with the Resident Reenterable Module Area Option: If you
are using an operating system with the MFT resident reenterable module
area option, and you request use of a module by issuing an ATTACH, LINK,
LOAD, or XCTL macro instruction, the supervisor will search the resident
reenterable module area for a copy of the module before fetching a new
copy into main storage.

USING THE LOAD MACRO INSTRUCTION

The LOAD macro instruction is used to ensure that a copy of the
specified load module is in main storage in your job pack area if it is
not preloaded into the link pack area. When a LOAD macro instruction is
issued, the control program searches for the load module as discussed
previously, and brings a copy of the load module into the job pack area
if required. When the control program returns control, register 0
contains the main storage address of the entry point specified for the
requested load module. Normally, the LOAD macro instruction is used
only for a reenterable or serially reusable load module, since the load
module is retained even though it is not in use.

The control program also establishes a "responsibility" count for the
copy, and adds one to the count each time the requirements of a LOAD
macro instruction are satisfied by the same copy. As long as the
responsibility count is not zero, the copy is retained in main storage.

Program Management 23

---- ---,.,,----

The responsibility count for the copy is lowered by one when a DELETE
macro instruction is issued during the task which was active when the
LOAD macro instruction was issued. When a task is terminated, the count
is lowered by the number of LOAD macro instructions issued for the copy
when the task was active minus the number of deletions.

When the responsibility count for a copy in a job pack area reaches
zero, the main storage area containing the copy is made available; the
copy is never reused after the responsibility count established by LOAD
macro instructions reaches zero.

Copies of load modules are not added to or deleted from the link pack
area; LOAD and DELETEroacro instructions issued for load modules already
in the link pack area result in returns indicating successful
completion, however.

PASSING CONTROL WITH RETURN

The LINK macro instruction is used to pass control between load
modules and to provide for return of control. In an operating system
with MFT without subtasking, the ATTACH macro instruction is executed in
a similar manner to the LINK macro instruction. You can also pass
control using branch or branch and link instructions or the CALL macro
instruction; however, when you pass control in this manner you must
protect against multiple uses of nonreusable or-serially reusable
modules. The following paragraphs discuss the requirements for passing
control with return in each case.

THE LINK MACRO INSTRUCTION

When you use the LINK macro instruction, as far as the logic of your
program is concerned, you are passing control to another load module.
Remember, however, that you are requesting the control program to assist
you in passing control. You are actually passing control to the control
program, using an SVC instruction, and requesting the control program to
find a copy of the load module and pass control to the entry point you
designate. There is some Similarity between passing control using a
LINK macro instruction and passing control using a CALL macro
instruction in a simple structure. These similarities are discussed
first.

The convention regarding registers 2-12 still applies; the control
program does not change the contents of these registers, and the called
load module should restore them before control is returned. You must
provide the address in register 13 of a save area for use by the called
load module; the control program does not use this save area. You can
pass address parameters in a parameter list to the load module using
register 1; the LINK macro instruction provides the same facility for
constructing this list as the CALL macro instruction. Register 0 is
used by the control program and the contents will be modified.

There ~s also some difference between passing control using a LINK.
macro instruction and passing control using a CALL macro instruction.
When you pass control in a simple structure, register 15 contains the
entry point address and register 14 contains the return point address.
When the called load module gets control, that is still what registers
14 and 15 contain, but when you use the LINK macro instruction, it is
the control program that establishes these addresses. When you code the
LINK macro instruction, you provide the entry point name and possibly
some library information using the EP, EPLOC, or DE, and DCB operands.
But you have to get this entry point and library information to the
control program. The expansion of the LINK macro instruction does this,
by creating a control program parameter list (the information required

24 Supervisor Services

by the control program) and placing the address of this parameter list
in register 15. After the control program finds the en~ry point, it
places the address in register 15.

The return address in your control section is always the instruction
following the LINK; that is not, however, the address that the called
load module receives in register 14. The control program saves the
address of the location in your program in its own save area, and places
in register 14 the address of a routine within the control program that
will receive control. Because control was passed using the control
program, return must also be made using the control program.

The control program establishes a responsibility count for a load
module when control is passed using the LINK macro instruction. This is
a separate responsibility count from the count established for LOAD
macro instructions, but it is used in the same manner. The count is
increased by one when a LINK macro instruction is issued, and decreased
by one when return is made to the control program or when the called
load module issues an XCTL macro instruction.

Examples 16 and 17 show the coding of a LINK macro instruction used
to pass control to an entry point in a load module. In Example 16, the
load module is from the link, job, or step library; in Example 17, the
module is from a private library. Except for the method used to pass
control, this example is similar to Examples 9 and 10. A problem
program parameter list containing the addresses INDCB, OUTDCB, and AREA
is passed to the called load module; the return point is the instruction
following the LINK macro instruction. A V-type address constant is not
generated, because the load module containing the entry point NEXT is
not to be edited into the calling load module. Note that the EP operand
is chosen, since the search begins with the job pack area and the
appropriate library as shown in Figure 5.

Examples 18 and 19 show the use of the BLDL and LINK macro
instructions to pass control. Assuming control is to be passed to an
entry point in a load module from the link library, a BLDL macro
instruction is issued to bring the directory entry for the member into
main storage. (Remember, however, that time is saved only if more than
one directory entry is requested in a BLDL macro instruction. Only one
is requested here for simplicity.)

The first operand of the BLDL macro instruction is a zero, which
indicates that the directory entry is on the link or job library. The
second operand is the address in main storage of the list description
field for the directory entry. The first two bytes at LISTADDR indicate
the number of directory entries in the list; the second two bytes
indicate the length of each entry. If the entry is to be used in a
LINK, LOAD, ATTACH, or XCTL macro instruction, the entry must be 58
bytes in length. A character constant is established to contain the
directory information to be placed there by the control program as a
result of the BLDL macro instruction. The LINK macro instruction in
Example 19 can now be written. Note that the DE operand refers to the
name field, not the list description field, of the directory entry.

r--,
I LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=l I
I RETURNPT I
I AREA DC 12F' 0 • I L __ J

Example 16. Use of the LINK Macro Instruction With the Job or Link
Library

Program Management 25

r---,
I OPEN (PVTLIB) I
I I
I LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=l I
I I
I PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R) I L ___ J

Example 17. Use of the LINK Macro Instruction With a Private Library

r-------------~---,
I BLDL O,LISTADDR I
I I
I DS OH List description field: I
I LISTADDR DC H'Ol' Number of list entries I
I DC H'SS' Length of each entry I
I NAMEADDR DC CLS'NEXT' Member name I
I DS 2SH Area required for directory information I L ___ J

Example lS. Use of the BLDL Macro Instruction

r--, I LINK DE=NAMEADDR,DCB=O,PARAM=(INDCB,OUTDCB,AREA),VL=l I L __ J

Example 19. The LINK Macro Instruction With a DE Operand

USING THE ATTACH MACRO INSTRUCTION (MFT WITHOUT SUBTASKING)

This discussion applies only if you are using an operating system
with MFT without subtasking. In an operating system with MVT or with
MFT with subtasking, you use the ATTACH macro instruction to cause
parallel execution, as discussed under the heading "Task Creation."

The ATTACH macroinstruction performs exactly the same functions as
the LINK macro instruction, and should be used in exactly the same way.
You should use the ATTACH macro instruction only when coding for upward
compatibility with an operating system that includes MVT. There are two
additional optional operands provided with the ATTACH macro instruction:
the ECB and ETXR operands. They provide a means of communicating
between tasks from the same job step when they are used in an operating
system with MVT. They do not provide this service in the other
,configurations of the operating system because there is only one task
for each job step. If your program is ever to be run in a system with
MVT, the use of these operands in the other configurations provides an
opportunity to check the routines associated with these operands. Refer
to "Task Management" for a discussion of the ECB and ETXR operands if
this is the case. You may find other uses for these operands in your
current system.

The ECB operand allows you to specify the address of an event control
block, a fullword which will be used by the control program to inform
you of the completion of the called load module. The return code from
the called load module will also be placed in the full word. For a
complete discussion of the event control block and its purpose, see
"Task Management."

The ETXR operand provides the means of specifying an end-of-task exit
routine to be given control following the completion of the called load
module. This exit routine must be in main storage when it is required.
The routine is given control by the control program and must return
control to the control program using the address in register 14. The
control program then returns control to the instruction following the
ATTACH macro instruction.

26 Supervisor services

USING CALL OR BRANCH AND LINK

You can save time by passing control to a load module without using
the control program. passing control without using the control program
is performed as follows: issue a LOAD macro instruction to obtain a
copy of the load module, preceded by a BLDL macro instruction if you can
shorten the search time by using it. The control program returns the
address of the entry point in register o. Load this address into
register 15. The linkage requirements are the same when passing control
between load modules as when passing control ,between control sections in
the same load module: register 13 must contain a save area address,
register 14 must contain the return point address, and register 1 is
used to pass parameters in a parameter list. A branch instruction, a
branch and link instruction, or a CALL macro instruction can be used to
pass control, using register 15. The return will be made directly to
you.

Note: When control is passed to a load module without using the control
program, you must check the load module attributes and current status of
the copy yourself, and you must check,the current status in all
succeeding uses of that load module during the job step, even when the
control program is used to pass control.

The reason you have to keep track of the usability of the load module
has been discussed previously: you are not allowing the control program
to determine whether you can use a particular copy of the load module.
The following paragraphS discuss your responsibilities when using load
modules with various attributes. You must always know what the
reusability attribute of the load module is. If you do not know, you
should not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all
that is ever required for a job step. You do not have to determine the
current status of the copy; it can always be used. The best way to pass
control is to use a CALL macro instruction or a branch or branch and
link instruction.

If the load module is serially reusable, one use of the copy must be
completed before the next use begins. If your job step consists of only
one task, preventing simultaneous use of the same copy involves making
sure that the logic of your program does not require a second use of the
same load module before completion of the first use. An exit routine
must not require the use of a serially reusable load module also
required in the main program.

Preventing simultaneous use of the same copy when you have more than
one task in the job step requires more effort on your part. You must
still be sure that the logic of the program for each task does not
require a second use of the same load ~odule before completion of the
first use. You must also be sure that no more than one task requires
the use of the same copy of the load module at one time; the ENQ macro
instruction can be used for this purpose. Properly used, the ENQ macro
instruction prevents the use of a serially reusable resource, in this
case a load module, by more ~pan one task at a time. Refer to "Program
Management Services" for a coffiplete discussion of the ENQ macro
instruction. A conditional ENQ macro instruction can also be used to
check for simultaneous use of a serially reusable resource within one
task when using an operating system with MFT or MVT.

If the load module is nonreusable, each copy can only be used once;
you must be sure that you use a new copy each time you require the load
module. If you are using an operating system with MVT or with MFT with
subtasking, you can ensure that you always get a new copy by using a
LINK macro instruction or by doing as follows:

Program Management 27

• Issue a LOAD macro instruction before you pass control.

• Pass control using a branch or a branch and link instruction or a
CALL macro instruction only.

• ISsu~ a DELETE macro instruction as soon as you are through with the
copy.

If you are using an operating system with MFT without subtasking, you
should perform the same three steps indicated above, and also make sure
that you do not require a second use of the load module before
completion of the first use.

HOW CONTROL IS RETURNED

The return of control between load modules is exactly the same as
return of control between two control sections in the same load module.
The program.in the load module returning control is responsible for
restoring registers 2-14, possibly establishing a return code in
register 15, and passing control using the address in register 14. The
program in the load module to which control is returned can expect the
contents of registers 2-13 to be unchanged, the contents of register 14
to be the return point address, and optionally, the contents of register
15 to be a retuxn code. The return of control can be made using a
branch instruction or the RETURN macro instruction. If control was
passed without using the control program, that is all there is to it.
However, if control was originally passed using the control program, the
return of control is to the control program, then to the calling
program. The action taken by the control program is discussed in the
following paragraphs. '

When control was passed using a LINR or ATTACH macro instruction, the
responsibility count was increased by one for the copy of the load
module to which control was passed to ensure that the copy would be in
main storage as long as it was required. The return of control
indicates to the control program that this use of the copy is completed,
so the responsibility count is decremented by one. If you are using an
operating system with MFT, the main storage area containing the copy is
made available when the responsibility count reaches zero. If you are
using an operating system with MVT, the copy is retained when the
responsibility count reaches zero if all three of the following
requirements are met:

• The load module attributes are serially reusable or reenterable.

• The count was not reduced to zero because of a DELETE macro
instruction.

• The main storage area is not required for other purposes.

If control was originally passed using an ATTACH macro instruction
(MFT without subtasking), the control program takes the following
action:

• If the ECB operand was specified, the control program posts the
return code in the indicated fullword.

• If the ETXR operand was specified, the control program passes
control to the designated address, using register 15 to contain the
entry point address, and register 1~ to ccntai~ the rct~rn point
address (to the control program). When the exit routine returns
control, the control program passes control to the instruction
following the ATTACH macro instruction without modifying the

28 Supervisor Services

contents of any register except register 14. Register 15 does not,
in this case, contain the return code.

If the ETXR operand was not specified, or if the LINK macro
instruction was used to pass control, the control program only places
the return point address into register 14, and passes control to that
address. No other register contents are modified.

PASSING CONTROL wITHOUT RETURN

The XCTL macro instruction is used to pass control between load
modules when no return of control is required. You can also pass
control using a branch instruction; however, when you pass control in
this manner, you must protect against multiple uses of non-reusable or
serially reusable modules. The following paragraphs discuss the
requirements for passing control without return in each case.

PASSING CONTROL USING A BRANCH INSTRUCTION

The same requirements and procedures for protecting against reuse of
a nonreusable copy of a load module apply when passing control without
return as were stated under "Passing Control With Return." The
procedures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the
load module. The entry point address returned in register 0 is loaded
into register 15. The linkage requirements are the same when passing
control between load modules as when passing control between control
sections in the same load module; register 13 must be reloaded with the
old save area address, then registers 14 and 2-12 restored from that old
save area. Registers 1 is used to pass parameters in a parameter list.
A branch instruction is issued to pass control to the address in
register 15.

Mixing branch instructions and XCTL macro instructions is hazardous.
The next topic explains why.

USING THE XCTL MACRO INSTRUCTION

The XCTL macro instruction, in addition to being used to pass
control, is also used to indicate to the control program that this use
of the load module containing the XCTL macro instruction is completed.
Because control is not to be returned, the address of the old save area
must be reloaded into register 13. The return point address must be
loaded into register 14 from the old save area, as must the contents of
registers 2-12. The XCTL macro instruction can be written to request
the loading of registers 2-12, or you can do it yourself. If you
restore all registers yourself, do not use the EP parameter. This
creates an inline parameter list that needs your base register to be
addressable, and your base register is no longer valid. If EP is used,
you must have XCTL restore the base register for you.

When using the XCTL macro instruction, you pass parameters in a
parameter list, with the address of the list contained in register 1.
In this case, however, the parameter list must be established in a
portion of main storage outside the current load module containing the
XCTL macro instruction. This is because the copy of the current load
module may be deleted before the called load module can use the
parameters, as explained in more detail below.

The XCTL macro instruction is similar to the LINK macro instruction
in the method used to pass control: control is passed by way of the

Program Management 29

control program using a control program parameter list. The control
program loads a copy of the load module, if necessary, establishes the
entry point address in register 15, saves the address passed in register
14 and replaces it with a new return point address within the control
program, and passes control to the address in register 15. The control
program adds one to the responsibility count for the copy of the load
module to which control is to be passed, and subtracts one from the
responsibility count for the current load module. The current load
module in this case is the load module last given control using the
control program in the performance of the active task. If you have been
passing control between load modules without using the control program,
chances are the responsibility count will be lowered for the wrong load
module copy. And remember, when the responsibility count of a copy
reaches zero, that copy may be deleted, causing unpredictable results if
you try to return control to it.

Control Program

~

A

1
LOAD B
BALR B

Control

Program -. A
I
I
I ,

BALR

~ B

--

8 j
XCTL C

Control
Program

I
C

Sr
Control Program ,- -

, I

? B I : ~C-l-. ----.
I I
I I
, I
t

XCTL C I RETURN r--

Step 1

Step 2

Step 3

Figure 8. Misusing Control Program Facilities

30 Supervisor Services

Figure 8 shows in detail how this could happen. Control is given to
load module A, which passes control to load module B (step 1) using a
LOAD macro instruction and a branch and link instruction. Register 14
at this time contains the address of the instruction following the
branch and link. Load module B then is executed, independent of how
control was passed, and issues an XCTL macro instruction when it is
finished (step 2) to pass control to load module C. The control
program, knowing only of load module A, lowers the responsibility count
of A by one, resulting in its deletion. Load module C is executed and
returns to the address which used to follow the branch and link
instruction. Step 3 of Figure 8 indicates the result.

Two methods are available for ensuring that the proper responsibility
count is lowered. One way is to always use the control program to pass
control with or without return. The other method is to use only LOAD
and DELETE macro instructions to determine whether or not a copy of a
load module should remain in main storage.

Program Management 31

TASK CREATION

In any configuration of the operating system, one task is created by
the control program as a result of initiating execution of the job step.
In an operating system with MFT without subtasking, only the control
program can create tasks; your program cannot create tasks.

In an operating system with MVT or with MFT with subtasking, you can
create additional tasks in your program. If you do not, however, the
job step task is the only task in a. job being executed under MVT or _
under MFTwith subtasking. The benefits of a multiprogramming
environment are still available even with only one task in the job step;
work is still being performed when your task is unable to use the system
while waiting for an event" such as an input operation, to occur.

The advantage in creating additional tasks within the job step is
that more tasks are corrpeting for control than the task in the job you
are concerned with. When a wait condition occurs in one of your tasks,
it is not necessarily a task from some other job that gets control. It
may be one of your tasks, a portion or your job.

The general rule is that parallel execution of a job step (that is,
more than one task in a job step> should be chosen only when a
significant amount of overlap between two or more tasks can be achieved.
The amount of time taken by the control program in establishing and
controlling additional tasks, and your increased effort to coordinate
the tasks and provide for communications between them must be taken into
account.

CREATING THE TASK

A new task is created by issuing an ATTACH macro instruction. The
task that is active when the ATT~CH macro instruction is issued is the
originating task; the newly created task is the subtask of the
originating task. The subtask competes for control in the same manner
as any other task in the system, on the basis of priority and the
current ability to use the central processing unit. The address of the
task control block for the subtask is returned in register 1.

If the ATTACH macro instruction is executed successfully, control is
returned to the user with one of the following return codes in register
15:

Hexadecimal
Code
00

04

08

Oc

10

Meaning
Indicates successful completion 'of the ATTACH request.

Indicates that the ATTACH macro instruction was issued in
a STAE exit routine.

Indicates that sufficient main storage was not available
to schedule the exit routine as specified by the STAI
operand. The subtask has not been successfully created.

Indicates that the exit routine or parameter list address
specified in the STAI operand was invalid. The subtask
has not been successfully created.

Indicates that storage for the STAI request is not
available for the propagation of STAIs from the mother to
the daughter task.

32 Supervisor Services

The entry point in the load module to be given control when the
subtask becomes active is specified in the same way as in a LINK macro
instruction, that is, through the use of the EP, EPLOC, DE, and DCB
operands. The use of these operands is discussed in the section titled
"Program Management." Parameters can be passed to the subtask using the
PARAM and VL operands, also described in "Program Management."
Ownership of subpools is transferred or shared using the GSPV, GSPL,
SHSPV, and SHSPL operands discussed in "Main Storage Management." The
only additional operands are those dealing with the priority of the
subtask, the operands that provide for communication between tasks, and
the TASKLIB operand.

The TASKLIB operand is used to specify the address of an opened data
control block (DCB) for a job library to be searched for the entry point
name of the module being attached and for the subsequent modules
accessed by the subtask. If the TASKLIB operand is not specified, the
job library DCB address from the attaching task's TCB is propagated to
the subtask.

Warning: All modules contained in the job library and task libraries
for a job step should be uniquely named. If duplicate module names are
contained in these libraries, the results are unpredictable.

TASK PRIORITY

In a system with MVT or MFT with subtasking, tasks compete for
control on the basis of priority. When a task is created, it is
assigned a priority that can later be revised upward or downward. It is
also assigned a limit to its priority, a value equal to the highest
priority the task can be assigned; this value is called the task's limit
priority. The task's actual priority, the basis on which it competes
for control, is called the task's dispatching priority.

A task can change its own dispatching priority but not its own limit
priority. It can change both the dispatching and limit priorities of
its subtasks, but cannot set the limit priority of a subtask higher than
its own limit priority.

PRIORITY OF THE JOB STEP TASK

The limit priority of the job step task cannot be changed; it is
always equal to the task's initial dispatching priority. You can
specify initial dispatching priority through the DPRTY parameter of the
EXEC statement:

where value1 and value2 are both integers from 0 to 15. Dispatching
priority is then computed as follows:

Dispatching Priority = (value1 x 16) + value2

For example, if value1 is 6 and value2 is 4:

Dispatching Priority = (6 x 16) + 4 = 100

Note that you can specify any dispatching priority from 0 (DPRTY=(O,O»
to 255 (DPRTY=(15,15».

If you omit the DPRTY parameter for a job step, the initial
dispatching priority of the job step task is determined by the job
priority. You specify job priority through the PRTY parameter of the
JOB statement, or omit this parameter and allow the -jobpriQrity to be

Task Creation 33

determined by default. Job priority is used in selecting jobs for
execution and in assigning input/output devices.

When you specify job priority, you code the parameter:

PRTY=value

where value is the job priority, an integer from 0 to 13. If you do not
specify dispatching priority for a job step, it is computed from the job
priority as follows:

Dispatching Priority = (value x 16) + 11

This is the same priority that would result from coding the parameter
DPRTY=(value,ll).

To specify a dispatching priority equal to that which would be
computed from a given job priority, you can specify:

DPRTY=value1

where value1 is the job priority. The omitted value2 has an assumed
value of 11.

Whether you specify dispatching priority or not, you cannot be
absolutely certain of what a job step's initial dispatching priority
will be. To achieve best results from the operating system, the
operations staff may override specified job and dispatching priqrities.
Your program, therefore, cannot simply assume that the job step task
will have a particular initial dispatching priority. To determine this
priority, your program must issue the EXTRACT macro instruction, as
described later in ·Obtaining Information from the Task Control Block."

To summarize, the initial dispatching priority of the job step task
can be determined four ways:

1.

2.

3.

4.

It can be specified directly through the DPRTY parameter of the
EXEC statement.

It can be specified indirectly through the PRTY parameter of the
JOB statement.

It can be determined by default when the PRTY and DPRTY parameters
are both omitted.

It can be determined by the operations staff, overriding your own
specifications.

Whichever way it is determined, the initial dispatching priority is
always the limit priority for the job step task.

The job step task can lower its initial dispatching priority by use
of the CHAP macro instruction. It can later use this macro instruction
to revise its dispatching priority either upward or downward. Of
course, it can never raise its dispatching priority above its initial
dispatching (limit) priority.

PRIORITY OF SUBTASKS

When a subtask is created, the limit and dispatching priorities of
the subtask are the same as the current limit and dispatching priorities
of the originating task except when the subtask priorities are modified
by using the LPMOD and DPMOD operands of the ATTACH macro instruction.
The LPMOD operand specifies the number to be subtracted from the current

34 Supervisor Services

limit priority of the originating task. The result of the subtraction
is assigned as the limit priority of the new task. The DPMOD operand
specifies the number to be added to the current dispatching priority of
the originating task. The result of the addition is assigned as the
dispatching priority of the new task, unless the number is greater than
the limit priority. In that case, the limit priority value is used as
the dispatching priority.

There are no absolute rules for assigning priorities to tasks and
subtasks. Priorities should be assigned on the basis that tasks of
higher priority will be given control when competing with tasks of lower
priority. Tasks with a large number of input/output operations should
be assigned a higher priority than tasks with little input/output
because the tasks with much input/output will be in a wait condition for
a greater amount of time. The lower priority tasks will be executed
when the higher priority tasks are in a wait condition. When the
input/output operation has completed, the higher priority tasks will get
control so that the next operation can be started. In addition, if one
or more subtasks must be completed before the originating task can
proceed beyond a certain point, the subtasks that must be completed
should be assigned a priority which will eliminate as much as possible a
long wait time in the originating task.

Since tasks from other job steps are competing for control, the
priority initially established for the subtasks may be too high or too
low to properly process the job step. To correct this, the priorities
of these tasks can be changed after the tasks have been created by using
the CHAP macro instruction. The EXTRACT macro instruction, discussed
later, can be used to determine the current dispatching and limit
priorities of the current task and its subtasks. Note that each change
of 16 in limit or dispatching priority is equivalent to a change of one
in job priority.

The CHAP macro instruction changes the dispatching priority of the
active task or one of its subtasks. By adding a positive or negative
value, the dispatching priority of the active task or a subtask is
changed. The dispatching priority of the active task can be made less
than the dispatching priority of another task waiting for control. If
this occurs, the waiting task would be given control after execution of
the CHAP macro instruction.

The CHAP macro instruction can also be used to increase the limit
priority of any of the active task's subtasks •. The active task cannot
change its own limit priority. The dispatching priority of a subtask
can be raised above its own limit priority, but not above the limit of
the originating task. When the dispatching priority of a subtask is
raised above its own limit priority, the sUbtask's limit priority is
automatically raised to equal its new dispatching priority.

TI~~ SLICING

Time slicing is an optional feature of the operating system with MFT
or MVT. It enables tasks that are members of the "time-slice group" to
share control of the cpu. When a member of the time-slice group has
been active for a certain length of time, it is interrupted, and control
is given to another member of the group. In this way, all member tasks
are given equal slices of CPU time; no task can use .the CPU to the
exclusion of all others.

Task Creation 35

MFT SYSTEMS WITHOUT SUBTASKING

At system generation, your installation designates certain contiguous
main storage partitions for time slicing. Your tasks (job steps) are
members of the time-slice group if your job is assigned to one of these
partitions. You control partition assignment through the CLASS
parameter of your JOB statement.

MFT SYSTEMS WITH SUBTASKING

Any task or subtask is considered a member of a time-slicing group if
its dispatching priority is within the range of the dispatching
priorities assigned to partitions designated for time slicing.

During execution, a task or subtask can use the CHAP macro
instruction to designate itself as a member of the time-slicing group if
its limit priority is equal to or greater than the lowest dispatching
priority of the time-slicing group. Also, a parent task can use the
ATTACH or CHAP macro instructions to designate a subtask as a member of
the time-slicing group if the limit priority of the parent task is equal
to or greater than the lowest dispatching priority of the time-slicing
group.

Each partition has a range of eleven dispatching priorities assigned
to it. The range of dispatching priorities for a time-slicing group is
from the highest dispatching priority of the highest priority partition
within the group to the lowest dispatching priority for the lowest
priority partition within the group. The highest and lowest dispatching
prioriti~s of a partition are given in Figure 9. The dispatching
priorities indicated in the figure must be decremented by 1 for each of
the following functions that are included in the system:

r------------------T---------------------T--------------------,
I Partition Number I Highest Dispatching I Lowest Dispatching I
~------------------+---------------------+--------------------~ o 251 241

1 240 230
2 229 219
3 218 208
4 207 197
5 196 186
6 185 175
7 174 164
8 163 153
9 152 142

10 141. 131
11 130 120
12 119 109
13 108 98
14 97 87
15 86 76
16 75 65
17 64 54
18 53 43
19 42 32
20 31 21
21 20 10
22 9 1

23-n 0 0 L __________________ ~ ____ ~ ________________ ~ ___________________ _

Figure 9. Determining Partition Dispatching Priorities

36 Supervisor Services

• System Log

• System Management Facility

• I/O Recovery Management support

If Partitions 6 through 8 were assigned to the time-slicing group, any
task or subtask whose dispatching priority fell within the range 185-153
would be a member of the time-slicing group. If the System Log and
System Management Facility functions were included in the system, the
range of time-slicing dispatching priorities would be 183-151.

At system generation, your installation designates certain job
priorities for time slicing. Your tasks are members of the time-slicing
group if their dispatching priorities correspond to these job
priorities. For example, if job priorities 8 and 9 are designated,
tasks are members of the time-slice group when'their dispatching
priorities can be computed as follows:

For job priority 8,
Dispatching Priority = (8 x 16) + 11 139

For job priority 9,
Dispatching Priority = (9 x 16) + 11 = 155

In this example, tasks with priorities 139 and 155 are members of the
time slice group. Note that time slicing applies only to r~ady tasks
with the highest priority; a task with priority 155 would not be
interrupted to give contrel to a task with priority 139.

Time slicing is important chiefly in real-time applications, but it
affects the use of the ATTACH and CHAP macro instructions by all tasks
in the system. These macro instructions determine task priorities, and
therefore determine membership in the time slice group. In using these
macro instructions, you must consider carefully the priorities for which
time slicing is performed at your installation. Using the ATTACH and
the CHA·p macro instructions can affect dispatching priorities, as
discussed above.

Consider again the example in which time slicing is performed for job
priorities 8 and 9. If a job step task has an initial dispatching
priority of 139, it is initially a member of the time-slice group. If
it lowers its priority, it is no longer a member of the group; if it
attaches a subtask, the subtask is a member only if it is assigned a
dispatching priority of 139 (the limit priority of the job step task).

If another job step task is assigned an initial dispatching priority
greater than 155, it is not initially a member of the time-slice group.
However, it can create lower priority subtasks that are members of the
time-slice group, and can itself become a member by lowering its own
dispatching priority to 155 or 139. Note that careless use of the
ATTACH and CHAP macro instructions could result in a task's becoming a
member of the time-slice group when time slicing is not actually
intended.

Task Creation 37

TASK MANAGEMENT

The task management information in this section is required only for
establishing comm,unications among tasks in the same job step, and
therefore applies only to operating systems with MVT or with MFT with
subtasking. The relationship of tasks in a job step is shown in Figure
10.

The horizontal lines in Figure 10 divide the tasks into various
levels. These levels have no relation to task priorities; they serve
only to separate originating tasks and subtasks. Tasks A, B, Al, A2,
A2a, Bl, and Bla are all subtasks of the job step task; Tasks Al, A2,
and A2a are subtasks of Task A. Tasks A2a and Bla are the lowest level
tasks in the job step. Although Task Bl is at the same level as Tasks
Al and A2, it is not considered a subtask of Task A.

/

/
/

/

o
~

/

job
Step
Task

//\ ,

/ \
/ \

/ \
/ ,

/ \

/ \\
// \

CD GJ
\ I /

/
/

\ I
\ I

\
\

\

Q
L:J

I
I
I

~
~

I
I
I

[8
I
I
I

~
~

Figure 10. 'Task Hierarchy

38 Supervisor Services

Task A is the originating task for both Tasks Ai and A2, and Task A2
is the originating task for Task A2a. A hierarchy of tasks exists
within the job step. Therefore the job step task, Task A, and Task A2
are predecessors of Task A2a, while Task B has no direct relationship to
Task A2a.

All of the tasks in the job step compete independently for control;
if no constraints are provided, the tasks are Ferformed and are
terminated asynchronously. However, since each task is performing a
portion of the same job step, you will usually require some
communication and constraints bet~een tasks, such as notification of the
completion of subtasks. If termination of a predecessor task is
attempted before all of the subtasks are complete, those subtasks and
the predecessor task are abnormally terminated.

TASK AND SUBTASK COMMUNICATIONS

Two operands, the ECB and ETXR operands, are provided in the ATTACH
macro instruction to assist in communication between a subtask and the
originating task. These operands are used to indicate the normal or
abnormal termination of a subtask to the originating task. If either
the ECB or ETXR operands, or both, are coded in the ATTACH macro
instruction, the task control block of the subtask is not removed from
the system when the subtask is terminated. The originating task must
remove the task control block from the systeIrI after termination of the
subtask. This is accomplished by issuing a DETACH macro instruction.
The task control blocks for all subtasks must be removed before the
originating task can terminate nornally.

The ETXR operand specifies the address of an end-of-task exit routine
in the originating task to be given control when subtask being created
is terminated. The end-of-task routine is given control asynchronously
after the subtask has terminated, and must be in main storage when it is
required. After the control program terminates the subtask, the
end-of-task routine specified when the subtask was created is scheduled
to be executed. The routine competes for control on the basis of the
priority of the originating task, and can be given control even though
the originating task is in the wait condition. When the end-of-task
routine returns control to the control program, the originating task
remains in the wait condition if the event control block has not been
posted.

The end-of-task routine can issue an EXTRACT macro instruction
specifying the task control block of the terminated subtask. The
address of that task control block is contained in register 1 when the
routine is given control. The EXTRACT macro instruction, discussed
under the heading ·Obtaining Information From the Task Control Block,·
can be used to obtain such information as floating-point register
contents and completion code. Although the DETACH macro instruction
does not have to be issued in the end-of-task routine, this is a good
place for it.

The ECB operand specifies the address of an event control block
(discussed under "Task Synchronization") which is posted by the control
program when the subtask is terminated. After posting, the event
control block contains the completion code specified for the subtask.

If neither the ECB nor ETXR operands are specified in the ATTACH
macro instruction, the task control block for the sul::t.ask is removed ~
from the system when the subtask is terminated. No DETACH macro
instruction is required. Use of the task control block in a CHAP,
EXTRACT, or DETACH macro instruction in this case is risky as is task
termination; since the originating task is not notified of subtask
termination, you may refer to a task control block which has been

Task Management 39

removed from the system, which would cause the active task to be
abnormally terminated.

TASK SYNCHRONIZATION

Task synchronization requires some planning on your part to determine
what portions of one task are dependent on the completions of portions
of all other tasks. The POST macro instruction is used to signal
completion of an event; the WAIT macro instruction is used to indicate
that a task cannot proceed until one or more events have occurred.

The control block used with both the WAIT and POST macro instructions
is the event control block. An event control block is a fullword on a
fullword boundary and is shown in Figure 11. .

An event control block is used when the ECB operand is coded in an
ATTACH macro instruction. In this case the control program issues the
POST macro instruction for the event (subtask termination>. Either the
return code in register 15 (if the task completed normally> or the
completion code specified in the ABEND macro instruction (if the task
was abnormally terminated> is placed in the event control block as shown
in Figure 5. The originating task can issue a WAIT macro instruction
s.pecifying the event control block; the task will not regain control
until after the event has taken place and the event control block is
posted.

When an event control block is originally created, bits 0 and 1 must
be set to zero. An event control block can be reused; if it is reused,
bits 0 and 1 must be set to zero before either the WAIT or POST macro
instruction can be issued. However, if the bits are set to zero before
posting the ECB, any task waiting for that ECB to be posted will remain
in the wait state. When a WAIT macro instruction is issued, bit 0 of
the associated event control block is set to 1. When a POST macro
instruction is issued, bit 1 of the associated event control block is
set to 1, and bit 0 is set to o.

A WAIT macro instruction can specify more than cne event by
specifying more than one event control block. Only one WAIT macro
instruction can refer to an event control block at one time, however.
If more than one event control block is specified in a WAIT macro
instruction, the WAIT macro instruction can also specify that all or
only some of the events must occur before the task is taken out of the
wait condition. When a sufficient number of events have taken place
(event control blocks have been posted> to satisfy the number of events
indicated in the WAIT macro instruction, the task is taken out of the
wait condition.

o 2 31

I wi p I completion code I
Figure 11. Event Control Block

40 Supervisor Services

PROGRAM MANAGEMENT SERVICES

The control program provides a set of optional services which are
available to your program through the use of macro instructions. The
following paragraphs discuss each of these services and the way to
obtain them. The proper use of any of these services results in an
improved and more efficient program; the misuse or overuse of the
services wastes main storage and execution time.

ADDITIONAL ENTRY POINTS

Through the use ,of linkage editor facilities you can specify as many
as 17 different names (a member name and 16 aliases) and associated
entry points within a load module. It is only through the use of the
member name or the aliases that a copy of the load module can be brought
into main storage. Once a copy has been brought into main storage,
however, additional entry points can be provided for the load module,
subject to the following restrictions:

• The ftidentifyft option must have been included in the operating
system during system generation (standard in an operating system
with MVT, optional with the other configurations of the operating
system) •

• The load module copy to which the entry foint is to be added must be
one of the following:

- a copy which satisfied the requirements of a LOAD macro
instruction issued during the same task, or

- the copy of the load module most recently given control through
the control program in performance of the same task.

The entry point is added through the use of the IDENTIFY macro
instruction. An IDENTIFY macro instruction can be issued by any program
in the job step, except by asynchronous exit routines' established using
other supervisor macro instructions. A further restriction exists for
an operating system with MFT: an IDENTIFY macro instruction cannot be
issued when the load module is given control at an entry point that was
added by an IDENTIFY macro instruction.

When you use the IDENTIFY macro instruction, you specify the name to
be used to identify the entry point, and the main storage address of the
entry point in the copy of the load module. The address must be within
a copy of a load module that meets the requirements listed above; if it
is not, the entry point will not be added, and you will be given a
return code of OC (hexadecimal). The name can be any valid symbol of up
to eight characters, and does not have to correspond to a name or symbol
within the load module. The name must not be the same as any other name
used to identify any load module available to the control program;
duplicate names would cause errors. The control program checks the
names of all load modules currently in the link pack area and the job
pack area of the job step when you issue an IDENTIFY macro instruction,
and provides a return code of 08 if a duplicate is found. You are
responsible for not duplicating a member name or an alias in any of the
libraries unintentionally.

The added entry point can be used only in an ATTACH macro instructio'n
when you are using an operating system with MFT, and can be used in an

Program Management Services 41

ATTACH, LINK, LOAD, DELETE, or XCTL macro instruction in an operating
system with MVT. The added entry point can be used in the performance
of any task in the job step; if the copy is in the link pack area, the
entry point can be used in the performance of any task in the system.

The added entry point is available for as long as the copy is
retained in main storage. Proper task synchronization is required when
using an added entry point in the performance of a task which has not
directly requested the associated copy of the load module; the load
module may otherwise be deleted before the use is complete. The added
entry point is treated as an entry point to a reenterable load module by
the control program, regardless of the actual module attributes of the
load module. You must guard against reuse of nonreusable code.

ENTRY POINT AND CALLING SEQUENCE IDENTIFIERS

An entry point identifier is a character string of up to 70
characters which can be specified in a SAVE macro instruction. The
character string is created as part of the SAVE macro instruction
expansion. The dump program uses the calling sequence identifier and
the entry point identifier as shown in the Programmer's Guide to
Debugging.

A calling sequence identifier is a 16-bit binary number which can be
specified in a CALL or a LINK macro instruction. When coded in a CALL
or a LINK macro instruction, the calling sequence identifier is located
in the two low-order bytes of the fullword at the return point address.
The high-order two bytes of the fullword form a NOP instruction.

USING A SERIALLY REUSABLE RESOURCE

The example of a serially reusable resource already encountered was a
load module that was designated serially reusable. In the discussion of
the serially reusable load/module it was en:phasized that simultaneous
uses of the load module must be prevented. This is true for any
serially reusable resource when one or more of the users will modify the
resource.

Consider a data area in main storage that is being used by programs
associated with several tasks of a job step. Some of the users are only
reading records in the data area; since they are not changing the
records, their use of the data area can be simultaneous. Other users 'of
the data area, however, are reading, updating, and replacing records in
the data area. Each of these users must acquire, update, and replace
records one at a time, not simultaneously. In addition, none of the
users that are only reading the records wish to use a record that
another user is updating, until after the record has been replaced.
This illustrates the manner in which all serially reusable resources
must be used.

For all of the uses of the serially reusable resource made during the
performance of a single task, you must prevent incorrect use of the
resource yourself. You must make sure that the logic of your prograrr.
does not require the second use of the resource before completion of the
first use. Be especially careful when using a serially reusable
resource in an exit routine; since exit routines are given control
asynchronously from the standpoint of your program logic, the exit
routine could obtain a resource already in use by the main program. For
the uses of the serially reusable resource required by more than one
task, the ENQ macro instruction is provided to ensure use of the
resource in a serial manner. The ENQ macro instruction cannot be used
to prevent simultaneous use of the resource within a single task. It

42 Supervisor Services

can only be used to test for simultaneous use within one task in an
operating system with MFT or MVT.

The ENQ macro instruction requests the control program to assign
control of a resource to the active task. The control program
determines the current status of the resource, and either grants the
request by returning control to the active task or delays assignment of
control by placing the active task in the wait condition. When the
status of the resource changes so that control can be given to a waiting
task, the task is taken out of the wait condition and placed in the
ready condition. The use of the ENQ macro instruction is discussed in
the following paragraphs.

NAMING THE RESOURCE

You represent the resource in the ENQ macro instruction by two names,
known as the qname and the rname. These names mayor nay not have any
relation to the actual name of the resource. The control program does
not associate the name with the actual resource; it merely processes
requests having the same qname and rna roe on a first-in, first-out basis.
It is up to you to associate the names with the actual resource. It is
up to all users of the resource to use qnaroe and rname to. represent the
same resource. The control program treats requests having different
qname and rname combinations as requests for different resources.
Because the actual resource is not identified by the control program, it
is possible to use the resource without issuing an ENQ macro instruction
requesting it. If this happens, the control program cannot provide any
protection.

If the resource is used only in the performance of tasks in your job
step, you can assign the qname and rnaroe combination. You should, in
this case, code the STEP operand in the ENQ nacro instructions that
request the resource, indicating that the resource is used only in that
job step. The control program will add the job step identifier to the
rname so that no duplicate qname and rname combination will be used
unintentionally in different job steps. If the resource is available to
any job step in the system, the qname and rname combination must be
agreed upon by all users and perhaps published. The SYSTEM operand
should be coded in each ENQ macro instruction requesting one of these
resources.

When selecting a qname for the resource, do not use SYS as the first
three characters; qnames used by the control program start with SYS and
you might accidentally duplicate one of these.

EXCLUSIVE AND SHARED REQUESTS

You can request exclusive or shared control of the resource for a
task by coding either ·E· or ·S·, respectively, in the ENQ macro
instruction. If this use of the resource will result in modification of
the resource, you must request exclusive control. If you are requesting
use of a serially reusable load module and passing control yourself, as
discussed previously, you must request exclusive control, since that
program modifies itself during execution. If you are updating a record
in a data area, you mQst request exclusive control. If you are only
reading a record, and you will not change the record, you can request
shared control. In order to protect any user of a serially reusable
resource, all users must request exclusive or shared control on this
basis. When a task is given control of a resource in response to an
exclusive request, no other task will be given simultaneous control of
the resource. When a task is given control of a resource in response to
a shared request, control will be given to other tasks simultaneously
only in response to other requests for shared control, never in response

Program Iv!anagement Services 43

to requests for exclusive control. A request for shared control will
protect against modification of the resource by another task only if the
above rules are followed.

PROCESSING THE REQUEST

The control program essentially constructs a list for each qname and
rname combination it receives in an ENQ macro instruction, and makes an
entry in the list representing the task which is active when the ENQ
macro instruction is issued. The entry is made in an existing list when
the control program receives a request specifying a qname and rname
combination for which a list exists; if no list exists for that qname
and rname combination, a new list is built. The entry representing the
task is placed on the list in the order the request is received by the
control program; the pz:iority of the task has no effect in this case.
control of the resource is allocated to a task based on two factors:

• The position on the list of the entry representing the task •

• The exclusive control or shared control requirements of the request
which caused the entry to be added to the list.

The control program uses these two factors in determining whether
control of a resource can be 'allocated to a task, as indicated below.
Figure 12 shows the current status of a list built for a very popular
qname and rname combination. The S or E next to the entry indicates
that the request was for shared or exclusive control, respectively. The
task represented by the first entry on the list is always given control
of the resource, so the task represented by ENTRY 1 (Figure 12, Step 1)
is assigned the resource. The request which established ENTRY 2 was for
exclusive control, so the corresponding task is placed in the wait
condition, along with the tasks represented by all the other entries in
the list.

Eventually control of the resource is released for the task
represented by ENTRY 1 and the entry is removed from the list. As shown
in Figure 12, Step 2, ENTRY 2 is now first on the list, and the
corresponding task is assigned control of the resource. Because the
request which established ENTRY 2 was for exclusive control, the tasks
represented by all the other entries in the list are kept in the wait
condition.

Figure 12, Step 3 shows the status of the list after control of the
resource is released for the task represented by ENTRY 2. Because ENTRY
3 is now at the top of the list, the task represented by ENTRY 3 is

ENTRYl (5)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (5) ENTRY3 (5) ENTRY3 (5)

ENTRY4 (5) ENTRY4 (5) ENTRY4 (5)

ENTRY5 (E) ENTRY5 (E) ENTRY5 (E)

ENTRY6 (5) ENTRY6 (5) ENTRY6 (5)
Step 1 5tep 2 5tep 3

Figure 12. ENQ Macro Instruction Processing

44 Supervisor Services

given control of the resource. ENTRY 3 indicated the resource could be
shared, and, because ENTRY 4 also indicated the resource could be
shared, ENTRY 4 is also given control of the resource. In this case,
the task represented by ENTRY 5 will not be given control of the
resource until control has been released for both the tasks represented
by ENTRY 3 and ENTRY 4. The remainder of the list is processed in the
same manner.

The following general rules are used by the control program:

• A task represented by the first entry in the list is always given
control of the resource.

• If the request is for exclusive control, the task is not given
control of the resource until the corresponding entry is the first
entry in the list.

• If the request is for shared control, the task is given control
either when the ,corresponding entry is first in the list or when all
the entries before it in the list also indicate a shared request.

• If the request is for multiple resources, the task is given control
when all of the entries for an exclusive request are first in the
list and all of the entries for a shared request are either first in
the list or are preceded only by entries for other shared requests.

PROPER USE OF ENQ AND DEQ

Proper use of the ENQ and DEQ macro instructions is required to avoid
duplicate requests, to avoid tying up the resource, and to avoid
interlocking the system. Guides to proper use are given in the
following paragraphs.

DUPLICATE REQUESTS

A duplicate request occurs when an ENQ macro instruction is' issued to
request a resource if a task has already been assigned control of that
resource or if a task is already waiting for that resource. If the
second request results in a second entry on the list, the control
program recognizes the contradiction and refuses to place the task in
the ready condition (for the first request) and in the wait condition
(for the second request) simultaneously. The second request results in
abnormal termination of the task. You must plan the logic of your
program to ensure that a second request for a resource is never issued
until control of the resource is released for the first use. Again, be
especially careful when using an ENQ macro instruction in an exit
routine.

RELEASING CONTROL OF THE RESOURCE

The DEQ macro instruction is used to release control of a serially
reusable resource assigned to a task through the use of an ENQ macro
instruction. The task must be in control of the resource. Control of a
resource cannot be released if the task does not have control. As you
have seen, it is possible for many tasks to be placed in the wait
condition while one task is assigned central of the resource. This may
reduce the amount of work being done by the system. Issue a DEQ macro
instruction as soon as possible to release control of the resource, so
that other tasks can be performed. If you return to the control program
at the end of processing for any task which is still assigned control of
a resource, the resource is released automatically; however, in a system
with MVT, the task is abnormally terminated.

Program Management Services 45

CONDITIONAL AND UNCONDITIONAL REQUESTS

The normal use· of the ENQ and DEQ macro instruction is to make
unconditional requests. These are the only requests we have considered
to this point. As you have seen, abnormal termination of the task
occurs when two ENQ macro instructions are issued for the same resource
in performance of the same task, without an intervening DEQ macro
instruction. Abnormal termination also occurs if a DEQ macro
instruction is issued in a task that has not been assigned control of
the resource. Both of these abnormal termination conditions can be
avoided either by more careful program design or through the use of the
RET operand in the ENQ or DEQ macro instructions. The RET operand
(RET=TEST, RET=USE, RET=CHNG and RET=HAVE for ENQ, RET=HAVE for DEQ)
indicates a conditional request for control or release of control.

RET=TEST is used to test the status of the list for the corresponding
qname and rname combination. An entry is never made in the list when
RET=TEST is coded. Instead a return code is provided indicating the
status of the list at the time the request was made. A return code of 8
indicates an entry for the same task already exists in the list. A
return cod~ of 4 indicates the task would have been placed in the wait
condition if the request had been unconditional. A return code of 0
indicates the task would have been given immediate control of the
resource if the request had been unconditional. RET=TEST is most useful
when used to determine if the task has already been assigned control of
the resource. It is less useful when used to determine the current
status of the list and to take action based on that status. In the
interval between the time the control program checks the status and the
time the return codes are checked by your program and another ENQ macro
instruction issued, another task could have been made active and the
status of the list could have been changed.

RET=USE indicates to the control program that the active task is to
be assigned control of the resource only if the resource is immediately
available. A return code of 0 indicates that an entry has been made on
the list and the task has been assigned control of the resource. A
return code of 4 indicates that the task would have been placed in the
wait condition if the request had been unconditional; no entry is made
in the list. A return code of 8 indicates an entry for the same task
already exists in the list. RET=USE can be best used when there is
other processing that could be performed without using the resource.
You would not want to wait for the- resource as long as there was other
work that you could do.

RET=CHNG indicates to the control program that the caller wishes to
have exclusive control of the resource for which he is already enqueued.
A return code of 0 indicates that the resource is immediately available
and has been assigned to the exclusive control of the caller. Either
the caller was already enqueued with the exclusive attribute, or the
requested change from shared to exclusive was honored. A return code of
4 indicates that the requested change in attribute cannot be honored,
because the' caller is currently sharing the resource with another user.
A return code of 8 indicates that the user was not enqueued for the
resource when he requested the attribute change. Although this is an
error condition, control is returned to the. user.

RET=HAVE is used in both the ENQ and DEQ macro instructions. An ENQ
macro instruction is processed as a normal request for control unless an
entry for the same task already exists. A return code of 8 indicates an
entry for the same task already exists in the list. A return code of 0
indicates that the task has been assigned control of the resource. A
DEQ macro instruction is processed as a normal request to return control
unless the task does not have control of the resource. A return code of
o indicates that control of the resource has been released. A return
code of 8 indicates that the task does not have control of the resource

46 Supervisor services

(although the task may be in the wait condition because of a request for
the resource). RET=HAVE can be used to good advantage in an exit
routine to avoid abnormal termination.

AVOIDING INTERLOCK

An interlock condition arises when two tasks are waiting for each
other to complete, yet neither task can gain access to the resource it
needs to complete processing. An exam~le of an interlock situation is
shown in Figure 13. Task A has exclusive access to resource M, and
higher-priority Task B has exclusive access to resource N. Task B is
~laced in a wait condition when it requests exclusive access to resource
M because M is accessible only by Task A. The interlock becomes
complete when Task A requests exclusive access to resource N because N
is accessible only, by Task B. The same interlock would have developed
if Task B issued a single request for multiple resources M and N prior
to Task A's second request. However, the interlock would not have
developed if both tasks had issued single requests for multiple
resources. Other tasks requiring either of the resources are also in a
wait condition because of the interlock, although in this case they have
not contributed to the conditions which caused the interlock.

The above example involving two tasks and two resources is a simple
example of an interlock situation. The example could be expanded to
cover many tasks and many resources. It is im~erative that interlock
situations be avoided. The following procedures indicate some ways of
preventing interlock situations:

• Do not request resources that are not immediately required. If you
can use the serially reusable resources one at a time, you should
request them one at a time, and release control for one before
requesting control for the next.

• Request shared control as much as possible. If the entries in the
lists shown in Figure 13 had indicated shared requests, there would
have been no interlock. This does not mean you should indicate a
request for shared control when you will modify the resource. It
does mean that you should analyze your requirements for the
resources carefully, and not make requests for exclusive control
when requests for shared control would suffice.

• The ENQ macro instruction can be written to request control of more
than one resource at a time. The requesting program is placed in a
wait state until all of the requested resources are available.
Those resources not being used by any other program immediately
become exclusively available to the waiting program and are
unavailable to any other programs that may request access to the
resource. For example, instead of coding the two ENQ macro
instructions shown in Example 20, the one ENQ macro instruction

r---------------------~-T-----------------------l
I Task A I Task B I
~-----------------------+----------------------~
I ENQ (M,A,E,a,SYSTEM) I I
~-----------------------+-----------------------~
I I ENQ (N,B,E,a,SYSTEM) I
~------------~----------+-------------~--------~
I I ENQ (M,A,E,a,SYSTEM) I
~---------------------~-+-----------------------~
I ENQ (N,B,E,a,SYSTEM) I I L _______________________ i _______________________ J

Figure 13. Interlock Condition

program M?nagement services 47

r--------------------------------------,
I ENQ (N~E1ADD,NAME2ADD,E,8,SYSTEM) I
I ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM) I l ____________________________________ ~_J

Example 20. Two Requests fo.r Two Resources

r--~------------------------, I ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM) I l ___ J

Example 21. One Request for Two Resources

shown in Example 21 could be coded. If all requests were made in
this manner, it would avoid the interlock shown in Figure 13. All
of the requests for one task would be processed cefore any of the
requests for the second task. The DEQ macro instruction should be
written in the same manner to release the entire ·set· of resources
at once.

• If the use of one resource always depends on the use of a second
resource, then the pair of resources can be defined as one resource
in the ENQ and DEQ macro instructions. This procedure can be used
for any number of resources that are always used in conjunction.
There would be no protection of the resources if they are also
requested independently, however. The request would always have to
be for the set of resources.

• If there are many users of a group of resources and some of the
users require control of a second resource while retaining control
of the first resource, it is still possible to avoid interlocks. In
this case the order in which control of the resources is requested
should be the same for each user. For instance, if resources A, B
and C are required in the performance of many tasks, the requests
for control should always be made in the order of A, Band C. In
this manner an interlock situation will not develop, since requests
for resource A will always precede requests for resource B.

The above is not an exhaustive list of the procedures to be used to
avoid an interlock condition. You could also make repeated requests for
control specifying the RET=USE operand, which would prevent the task
from being placed in the wait condition; if no interlock situation was
developing, of course, this would be an unnecessary waste of execution
time. The solution to the interlock problem in all cases requires the
cooperation of all the users of the resources.

OBTAINING INFORMATION FROM THE TASK CONTROL BLOCK

Most of the information available from the task control block is
useful primarily in task management. The following paragraphs discuss
the information available and how to obtain it. How you use the
information provided depends on the application of your program.

The EXTRACT ,macro instruction is used to obtain information from the
task control block (TCB), the command scheduler control block (CSCB),
and the interruption request block (IRE). The full power of the EXTRACT
macro instruction is available (and needed) only in an operating system
with MVT or ~~T with subtasking. However, a limited amount of
information can be obtained through the use of the EXTRACT macro
instruction with the other configurations of the operating system.

Information can be obtained f~om the TCB, CSCB, and IRB for the
active task or any of its subtasks. The following information can be
requested:

48 Supervisor Services

• The address of the general and floating point register save areas.
These are the save areas used by the control program when the task
is not active.

• The limit and dispatching priorities of the specified task.

• The completion code if the task has been terminated. If the
specified task has not been terminated, the completion code value is
set to zero.

• The address of the time sharing flags field (TCBTSFLG) and the
protected storage control block (PSCB) from the job step control
block (JSCB). This information can be obtained only when using
EXTRACT in an operating system with the time sharing option (TSO).

CSCB

• The addresses of the task input/output table (TIOT) and of the
command scheduler communications list in the command scheduler
control block (CSCB). (The CSCB is in the system queue space.)
These addresses are the only inforrr:ation provided in response to an
EXTRACT macro instruction when using' an operating system with MFT
without subtasking.

• The address of the end-of-task exit routine to be given control
after the specified task is terminated.

You must provide an area into which the control program places the
information you request. If you request the fields GRS, FRS, AETX, PRI,
CMC, and TIOT by coding FIELDS=ALL, the area must be seven fullwords
long. If you request only a portion of the information, the area must
be one fullword in length for each item of information you request. In
a system with the time sharing option (TSO) you can also request the
fields TSO, PSB, and TJID. If you request information other than the
address of the task input/output table when you are using an operating
system with MFT without subtasking, each additional item of information
requested will result in the corresponding fullword in the answer area
being set to zero.

TIMING SERVICES

The timing services available depend on options selected when the
operating system was generated. These options are the time option,
which provides the ability to request the date and time of day, and the
interval option, which includes the time option functions and also
provides the ability to set, test, and cancel intervals of time. The
interval option is standard in an operating system with MVTi either
option can be selected with the other configurations of the operating
system. If neither of these options was selected, the date is the only
timing service provided. In the Model 65 Multiprocessing system, timing
services must only be obtained through the use of the supervisor macro
instructions: STIMER, TIME, TTIMER. Direct reference to the interval
timer location in a multiprocessing system may produce unpredictable
results.

DATE AND TIME OF DAY

The operator is responsible for initially supplying the correct date
and time of day information, based on a 24-hour clock, for control

Program Management Services 49

program use. The control program updates the time of day information
every 16.7 milliseconds for 60 cycle-per-second line frequency, or every
20 milliseconds for 50 cycle-per-second line frequency. You request the
date and time of day information using the TIME macro instruction. The
control program returns the date in register 1 and the time of day in
register o.

The date is returned in register 1 as packed decimal digits of the
form OOyydddc, where yy are the last two digits of the year and ddd is
the day of the year. C is the sign character hexadecimal F, which
allows the year and day information to be unpacked directly for
printing. One procedure used to request the day of the year is shown in
Example 22.

The time of day is returned in register 0 in the form specified in
the TIME macro instruction. The time of day is returned as an unsigned
32-bit binary number that specifies the elapsed number of either
hundredths of a second, if BIN is coded, or timer units, if TU is coded.
(A timer unit is equal to 26.04166 micro-seconds.) If DEC is coded or
the operand is omitted, the time of day is returned as packed decimal
digits of the form HHMMSSth (hours, minutes, seconds, tenths of a
second, and hundredths of a second). The packed decimal digits can be
unpacked by changing the "h" value to a zone sign and using an UNPK
instruction br by inserting zones between each decimal digit. If both
the time and interval options have not been selected, the operand is
ignored and the content of register 0 is set to zero.

TIMING SERVICES ON THE IBM SYSTEM/370

In an MFT or MVT system generated for SysteK/370 all references to
time of day and date use the time-of-day (TOD) clock. The TOD clock, a
feature of System/370, is a 64-bit binary counter. (For more
information about the TOD clock, see IBM System/370 Principles of
Operation.) Bit 51 of the counter is equivalent to one microsecond.

The TOD clock is incremented continuously while the power is on; the
clock is not affected by the system stop conditions that affect the
interval timer in location 80. The operator normally sets the clock_
only after an interruption of CPU power has caused the clock to stop and
restoration of power has restarted it. The operator sets the clock
using the SET command with the DATE and CLOCK ~arameters.

DATE AND TIME OF DAY

If you use the TIME macro instruction with the BIN, TU, and DEC
operands, the date is returned in register 1 and the time of day is
returned in register o. with the MIC,address operand, the time of day
is returned as an unsigned 64-bit binary number in the area specified by
"address." The time of day is returned with bit 51 equivalent to one
microsecond. With the MIC,addressoperand, register 0 is set to zero.

r------------------------------~~----------------------------,
I I
I TIME, Request date I
I ST 1,ANS Store packed date I
I UNPK DOUBLE,ANS Un~ack date for printing I
I I
IANS DS F Fullword for packed date I
I DOUBLE DS D Double word for unpacked date I L __ J

Example 22. Day of Year Processing

50 Supervisor Services

INTERVAL TIMING

A time interval can be established for any task in the job step
through the use of the STIMER macro instruction, and the time remaining
in the interval can be tested and canceled through the use of the TTIMER
macro instruction. When you are using an operating system with MFT
without subtasking, only one time interval can be in effect at anyone
time during the job step. With an operating system with MVT or MFT with
subtasking, each task in the job step can have an active time interval.

The time interval can be established by anyone of the following four
methods.

• BINTVL - requires an unsigned 32-bit binary number, the low order
bit having a value of 0.01 second.

• TUINTVL - requires an unsigned 32-bit binary number, the low order
bit having a value of 26.04166 microseconds (1 timer unit).

• DINTVL - requires an 8-byte field containing unpacked decimal digits
of the form HHMMSSth (hours, minutes, seconds, tenths and hundredths
of a second, based on a 24-hour clock).

• TOD - requires an 8-byte field similar to the field required for
DINTVL. The control program interprets the time specified as the
time of day at which the interval is to expire.

When you test the time ren.aining in the interval, the time remaining
is returned as a 32-bit unsigned binary number in register 0, the low
order bit having a value of 26.04166 microseconds. If the interval has
already expired, the content of register 0 is set to zero.

When you request a time interval, you also specify the manner in
which the interval is to be decremented, through the use of the TASK,
REAL, or WAIT pararoeter of the STIMER macro instruction. REAL and WAIT
both indicate that the interval is to be decremented continuously
whether the associated task is active or not. TASK indicates that the
interval is to be decremented only when the associated task is active.
If REAL or TASK is coded, the task continues to compete with the other
ready tasks for control; if WAIT is coded, the task is placed in the
wait condition until the interval expires, at which time the task is
placed in the ready condition.

When TASK or REAL is designated, the address of a timer completion
exit routine can be specified. This is the first routine to be given
control when the associated task is made active after the completion of
the time interval. (If the address of the exit routine is not
specified, there is no notification of the completion of the time
interval.) The exit routine must be in main storage when required, and
must save and restore registers and return control to the address in
register 14. After control is returned to the control program, control
is passed to the next instruction in the main program.

Example 23 shows the use of a time interval when testing a new loop
in a program. The STIMER macro instruction sets a time interval of 5.12
seconds, to be decremented only when the task is active, and provides
the address of a routine called FIXUP to be given control when the time
interval expires. The loop is controlled by a BXLE instruction.

The loop continues as long as the value in register 12 is less than
or equal to the value in register 7. If the leop completes, the TTIMER
macro instruction causes any time remaining in the interval to be
canceled; the exit routine is not .given control. If, however, the loop
is still in effect when the time interval expires, control is given to
the exit routine FIXUP. The exit routine saves registers and turns on

Program Management Services 51

r------------------~---,

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP

TM TIMEXP,X'Ol' Test if fixup routine entered
BC 1,NG Go out of loop if time interval expired
BXLE 12,6,LOOP If processing not complete, repeat loop
TTIMER CANCEL If loop completes, cancel remaining time

NG

USING
FIXUP SAVE

OI

FIXUP,15 Provide addressability
(14,12) Save registers
TIMEXP,X'Ol' Time interval expired, set switch in loop

RETURN (14,12) Restore registers

TIME DC
TIMEXP DC

X'00000200' Time is 5.12 seconds
X'OO' Timer switch

Example 23. Interval Timing

the switch tested in the loop. The FIXUP routine could also print out a
message indicating that the loop did not complete successfully.
Registers are restored and control is returned to the control program.
The control program returns control to the main program and processing
continues. When the switch is tested this time, the branch is taken out
of the loop.

If issued by a timer completion exit routine, a STIMER macro
instruction acts as a NOP instruction only for MFT. An exit routine
therefore cannot be used to set a new time interval for MFT.

If issued by a timer completion exit routine, a STIMER macro
instruction is honored for MVT. However, the STIMER issued from the
exit routine should not specify that same exit routine. If it does
specify the same exit routine, an infinite loop will occur.

The accuracy of a time interval is affected by two factors: the
resolution of the timer and the "competition" of other tasks for
control. The resolution of the timer (the time between successive
updating of the timer) is 16.7 milliseconds for 60 cycle per second line
frequency. An attempt to measure an interval of less than 16.7

'milliseconds or an attempt to time to an accuracy of greater than 16.7
milliseconds can lead to erroneous results.

When you are using an operating system with MFT or MVT, the
priorities of other tasks in the systeR may also affect the accuracy of
the time interval measurement. If you code REAL or WAIT, the interval
is decremented continuously and may expire when the task is not active.
(This is certain to happen when WAIT is coded.) After the time interval
expires, assuming the task is not in the wait condition for any other
reason, the task is placed in the ready condition and then competes for
control with the other tasks in the system that are also in the ready
condition. The additional time required before the task becomes active
will then depend on the relative dispatching priority of the task.

WRITING TO ONE OR MORE OPERATOR CONSOLES

The WTO and the WTOR macro instructions allow you to write messages
to the operator. The WTOR macro instruction also allows you to request
a reply from the operator. When an MFT, MVT, or Model 65

52 Supervisor Services

Multiprocessing operating system has the Multiple Console Support (MCS)
option, messages can be sent to (and replies can be received from) as
many as 32 operator consoles.

To use the WTO macro instruction, you code your message within
apostrophes. The message that the operator receives does not contain
these apostrophes. The message can include any character that is valid
in a character (C-type) DC instruction, except the new line control
character (hexadecimal value 15). It is assembled as a variable-length
record, which is'written automatically; you do not have to provide a
data control block.

Routing of the message (in a system with the MCS option) is performed
using the routing codes specified in the WTO macro instruction. At
system generation, each operator's console in the system is assigned
routing codes which correspond to the functions that the installation
wants that console to perform. When any of the routing codes assigned
to a message match any of the routing codes assigned to a console, the
message is sent to that console. For more information about routing
codes, refer to the appendix of the Supervisor and Data Management Macro
Instructions publication.

Disposition of the message (in a system with the MCS option) is
indicated through the descriptor codes specified in the WTO macro
instruction. Descriptor codes functionally classify WTO messages so
that they.may be properly presented on, and deleted from, display type
devices. Each WTO macro instruction should contain one descriptor code.
The descriptor code is not printed. or displayed as part of the message
text. If a descriptor code of one or two is coded into the WTO macro
instruction, an asterisk (*) is inserted as the first character of the
message. The asterisk informs the operator that he is required to take
some immediate action. If a descriptor code other than one or two is
coded, a blank is inserted as the first character, indicating that no
immediate action is needed. For more information about descriptor
codes, refer to the appendix of the supervisor and Data Management Macro
Instructions book.

A sample WTO macro instruction is shown in Example 24. The routing
code (ROUTCDE) and descriptor code (DESC) keyword parameters are ignored
if the operating system does not have the MCS option.

To use the WTOR macro instruction, you code the message exactly as
designated in the WTO nacro instruction. When the message is written,
the control program adds a two-character message identifier before the
message to associate the reply with the message. The control program
also inserts an asterisk as the first character of all WTOR messages,
thereby informing the operator that immediate action is required. You
must, however, indicate the operator response desired. In addition, you
must supply the address of the area in which the control program is to
place the reply, and you must indicate the length of the rep+y. You
also supply the address of an event control block which the control
program will post after the reply has been placed, left-adjusted, in
your designated area. (The use of the event control block is discussed
under the heading "Task Management.")

A sample WTOR macro instruction is shown in Example 25. The routing
code and descriptor code values are ignored if the operating system does

r--,
I WTO 'BREAKOFF POINT REACHED. TRACKING COMPLETED.', C I
I ROUTCDE=14,DESC=7 I L __ J

Example 24. Writing to the Operator

Program Management Services 53

r--,
I I
I XC ECBAD,ECBAD Clear ECB I
I WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO', C I
I REPLY,3,ECBAD,ROUTCDE=(1,15},DESC=7 I
I WAIT ECB=ECBAD I
I I
I ECBAD DC . F' 0' Event control block I
I REPLY DC C ' bbh' Answer area I L ____________________ ~ ___ J

Example 25. Writing to the Operator With a Reply

not have the MCS option. In a system with MFT or MVT, the reply is not
necessarily available at the address yeu s~ecified until a WAIT macro
instruction has been issued.

When a WTOR macro instruction is issued to more than one functional
area (where the WTOR has more than one routing code), any console within
those areas has the authority to reply. The first reply received by the
operating system is returned to the issuer of the WTOR, providing the
syntax of the reply is correct. If the syntax of the reply is not
correct, another reply is accepted. The WTOR is satisfied when the
operating system moves the reply into the issuer's reply area and posts
the event control block as completed. Each console that received the
original WTOR will also receive the accepted reply. The master console
operator may answer any WTOR, even if he did net receive the original
message.

WRITING TO THE PROGRAMMER

The WTO and the WTOR macro instructions al10w you to write messages
to the programmer, as well as to the operator.

At system generation (SYSGEN) time, your installation determines how
many 176-byte system message blocks (S~Bs) to allow. You can override
this number at initial program load (IPL) ti~e; however, the number of
5MBs allowed must range from 1 to 20.

When you submit your job, you can specify the message output class
for your messages by using the MSGCLASS parameter of the JOB statement.
(For a description of the MSGCLASS parameter, refer to the Job Control
Language Reference manual.) All WTO and WTOR rr,essages within the number
of 5MBs allowed per job will appear in the designated message output
class. When you exceed the number of allowable 5MBs, no subsequent
messages will appear in the message output class.

To write a message to the programmer, you must specify ROUTCDE=ll in
the WTO or the WTOR macro instruction. If you use routing code 11 alone
or together with other routing codes, the message goes to the message
output class, as described above. The message can also go to the
console(s} in the situations described by Figure 14.

WRITING TO THE HARD COpy LOG

When using an operating system that has the Multiple Console Support
(MCS) option, you can record information on the hard copy log. since
the Mes option allows more than one console in a system, an installation
might tind it helpful to be able to record all the messages issued by
and to a system. The hard copy log provides a place to collect these
messages, and therefore allows an installation to review system activity
by reviewing message activity.

54 Supervisor Services

r--,
IIf you specify a routing code of 11 (ROUTCDE=ll) I
~---------------------------T-------------T----------------------------~
.IIn this macro instruction: lIn a system: IYour message goes to the: I
t---------------------------+-------------+----------------------------~
I WTO IWith MCS IMessage output class I
I I I Consoles designated to I
I I I receive messages with I
I I I ROUTCDE=11 I
t---------------------------+-------------+----------------------------~
I WTO IWithout MCS IMessage output class I
~---------------------------+-------------+----------------------------~
I WTOR I Wi th MCS I Message output class I
I I IMaster console I
~---------------------------+-------------+----------------------------~
I WTOR IWithout MCS IMessage output class I
I I IMaster Console I
~---------------------------i-------------i-----------_________________ ~
I If, in addition to routing code 11, you specify the appropriate I
I routing code(s) in either a WTO or a WTOR macro instruction with or I
I without MCS, the message appears on the console(s) designated to I
I receive the routing code(s). In addition, the message appears in I
I the same places as it does when you specify only routing code 11 (as I
I shown above), with one exception. For WTOR with MCS, the message I
I goes to the master console only if you specify that console's I
I routing code. I L __ J

Figure 14. Using WTO and WTOR to write Messages to the Programmer

Since the hard copy log is optional, you should know whether your
system was generated with it. The hard copy log is either an operator's
console with output capability or the system log.

To record information on the hard copy log, you use the WTO or WTOR
macro instruction. Your installation must have decided which system
functions are to be logged and assigned·appropriate routing codes to the
hard copy log. The routing codes that you assign to your WTO or WTOR
macro instruction are compared to the routing codes assigned to the log.
If one or more codes match, the message is entered in the log. This
means you do not have to issue a WTL macro instruction to record system
and problem program information when the same information is going to
the operator. You must, however, know which system functions the log is
recording and assign an appropriate routing code to your WTO or WTOR
macro instruction.

For each entry in the hard copy log, both the time when the message
is received by the system and the routing codes for the message are
appended to the beginning of the message text. Recording the time that
the message was received, a procedure called time stamping, allows you
to obtain a chronological record of system activity. For a system that
does not have the timer option, the space for time stamping is filled
with zeros.

Whether the hard copy log is the operator's console or the system
log, the hard copy log information cannot be confused with other
information. This is because the hard copy log entries are prefixed
with the time stamp and the routing codes.

WRITING TO THE SYSTEM LOG

Operating systems with MFT, MVT, or Model 65 Multiprocessing provide
a system log as an optional feature. The system log consists of two

Program Management Services 55

SYSOUT data sets on'which the communication between the operator and the
system is recorded. lou can use the system log by coding the
information that you wish to log in the -text- operand of the WTL macro
instruction.

The data set receiving data from the system, user programs, and/or
operators is the primary data set. The data set being written, or
waiting to be written, to a system output device is the alternate data
set. The primary data set, the one that is currently open and receiving
input, is logically connected to two buffers. The operating system
fills one buffer and writes it to the primary data set while filling the
other buffer. The alternate data set has been logically disconnected
from the buffers because it has been filled and must wait to be· written
to a system output device. After being written to a system output
device, the alternate data set can be used again to receive input. When
receiving input, the alternate data set becomes the primary data set.

When the WTL macro instruction is executed, the system places your
text in one of the buffers and, when the buffer is full, writes the
buffer onto the system log primary ·data set. The system writes the text
of your WTL macro instruction on the roaster console instead of on the
system log if one of the following two conditions exists:

• The system log is not supported •

• Tne system log is supported, but the system log data sets are
temporarily inactive because both are full and waiting to be
written.

Your installation probably has an operator procedure to follow for both
of the above conditions.

Although when using the WTL macro instruction you code the message
within apostrophes, the written message does net contain the
apostrophes. The message can include any character that is valid for
the WTL macro instruction and is assembled and written the same way as
the WTO macro instruction. MCS routing codes and descriptor codes are
not assigned since they are not needed by the WTL macro instruction.

MESSAGE DELETION

If your system is using the Model 85 Operator Console with cathode
ray tube (CRT) display as a console, unnecessary messages can be deleted
from the operator's screen by the programmer.

The operating system assigns a ~essage identification number to each
WTO and WTOR message, and returns the message to the program in register
1. The DOM macro instruction uses the identification number to indicate
which message is to be deleted. The message identification number must
not be confused with the reply identification number that is assigned to
WTOR replies.

PROGRAM INTERRUPTION PROCESSING

Unusual conditions encountered in a program cause a program
interruption. These conditions include incorrect operands and operand
specifications, as well as exceptional results, and are know generally
as program exceptions. For certain exceptions (fixed-point and decimal
overflow, exponent underflow and significance), interruptions can be
disabled by setting the corresponding bits in the program status word to
~ero.

56 Supervisor Services I

When a task becomes active for the first tiRe, all program
interruptions that can be disabled are disabled, and a standard control
program exit routine, included when the system was generated, is
provided. This control program exit routine is given control when any
program interruptions occur, and issues an ABEND macro instruction
specifying task abnormal termination and requesting a durep. By issuing
the SPIE macro instruction, you can specify your own exit routine to be
given control for one or more types of program exception. The macro
instruction specifies the address of the exit routine to be given
control when specified program exceptions occur. If the SPIE macro
instruction specifies an exception for which the interruption has been
disabled, the control program enables the interruption when the macro
instruction is issued.

The SPIE macro instruction can be issued by any program being
executed in performance of the task. When the task is active, your exit
routine receives control for all interruptions resulting from exceptions
specified in the SPIE macro instruction. For other program
interruptions, control is given to the control program exit routine.
Each succeeding SPIE macro instruction completely overrides
specifications in the previous macro instruction.

PROGRAM INTERRUPTION CONTROL AREA

The expansion of the SPIE macro instruction results in a control
program parameter list, called a program interruption control area
(PICA). The PICA, shown in Figure 15, contains the new program mask for
the interruption types that can be disabled, the address of the exit
routine to be given control, and a code for interruption types
(exceptions) specified in the SPIE macro instruction.

A program that issues a SPIE macro instruction must restore the PICA
that was in effect when control was received. It must do so before it
returns control to the calling program, or transfers control to another
program by issuing an XCTL macro instruction. When the SPIE macro
instruction is issued, the control program returns the address of the
previous PICA in register 1. The control program returns zero in
register 1 when there is no previous PICA, that is, when no SPIE macro
instruction has been issued earlier in performance of the task.

Example 26 shows how to restore a previous PICA. The first SPIE
macro instruction designates an exit routine called FlXUP that is to be
given control if fixed-point overflow occurs. The address returned in
register 1 is stored in the fullword called HOLD. At the end of the
program, the execute form of the SPIE ~acro instruction is used to
restore the previous PICA.

PROGRAM INTERRUPTION ELEMENT

At the first execution of a SPIE macro instruction during the
performance of a task, the control program creates a 32-byte program
interruption element (PIE) in the main storage area assigned to the job

DISPLACEMENT
{Bytes} 0 2 3 .4 5

I
I Pro- Interruption

0000 I gram Exit Routine Address Type I Mask

Figure 15. Program Interruption Control Area

Program Management Services 57

r------~---,
I I
I SPIE FIXUP,(8) Provide exit routine for fixed-point overflow I
I ST 1,HOLD Save address returned in register 1 I
I I
I L 5,HOLD Reload returned address I
I SPIE MF=(E,(5» Use execute form and old PICA address I
I I
I HOLD DC F'O' I L _______ ~ __ J

Example 26. Use of the SPIE Macro Instruction

step (subpool 0 in an operating system with MVT). This program
interruption element is used each time a SPIE macro instruction is
issued during the performance of the task, and contains the information
shown in Figure 16.

The PICA address in 'the program interruption element is the address
of the program interruption control area used in the last execution of a
SPIE macro instruction for t~e task. When control is passed to the
routine indicated in the PICA, . the old program status word contains the
interruption code in bits 16-31; these bits can be tested to determine
the cause of the program interruption. The contents of registers 14,
15, 0, 1, and 2 at the time of the interruption are stored by the
control program as indicated.

REGISTER CONTENTS

When control is passed to the designated exit routine the register
contents are as follows:

DI SPLACEMENT
{Bytes} 0

4

12

16

20

24

28

32

Reserved

Old Program
Status Word

2 3

Pica Address

I (Interruption Codes)
I L-. ------ ---

Register 14

Register 15

Register 0

Register 1

Register 2

Figure 16~ Program Interruption Element

58 Supervisor Services

• Register 0: internal control program information.

• Register 1: address of the program interruption element for the
task that caused the interruption.

• Registers 2-12: same as when the program interruption occurred.

• Register 13: address of the save area for the main program. The
exit routine must not use this save area.

• Register 14: return address (to the control program).

• Register 15: address of the exit routine.

The exit routine must be in main storage when it is required, and
must return control to the control program using the address passed in
register 14. The control program restores registers 14, 15, 0, 1, and 2
from the program interruption element after control is returned, but
does not restore the contents of registers 3-13. If a program
interruption occurs when the program interruption exit routine is in
control, the control program exit routine is given control.

To determine which type of interruption occurred, the exit routine
can interrogate bits 28 through 31 of the old program status word (OPSW)
in the program interruption element. The routine can then take
corrective action or can simply ignore the exceptional condition.

The exit routine can alter the contents of the registers when control
is returned to the interrupted program. For registers 3 through 13, the
routine alters the contents of the actual registers. For registers 14
through 2, the routine alters the contents of the register save area in
the program interruption element. This is because the control program
reloads these registers from this area when it returns control to the
interrupted program.-

The exit routine ~an also alter the last four bytes of the OPSW in
the program interruption element. By changing the OPSW, the routine can
select any return point in the interrupted program.

The control program returns control to the interrupted program by
loading a PSW constructed from the possibly modified OPSW saved in the
program interruption element.

PRECISE AND IMPRECISE INTERRUPTIONS

After an interruption, the old program status word contains the
address of the next instruction to be executed in bits 40-63, and the
length of the previous instruct:;.on in bits 32 and 33. In System/360
Models 65, 67, 15, 85, 91, 195, and System/370 Model 165, however, the
address of the next instruction may not be precise; if the address is
not precise, the instruction length cod~ (ILC) in bits 32-33 is set to
zero. You should therefore test the instruction length code for zero
before using the next instruction address.

In Models 65-85, imprecise interruptions can result only from
protection and addressing ex~eptions. In the Model 91, imprecise
interruptions result from these and eight other types of exceptions. In
the Model 195, imprecise interruptions result from nine other types of
exceptions. Figure 17 summarizes the types of program exceptions that
can result in an imprecise interruption.

Except for the protection exception in the Model 91, any exception
that can result in an imprecise interruption can also result in a
precise interruption. You therefore should not assume that a specific

Program Management Services 59

type of exception will always produce an imprecise interruption. Figure
17 defines the conditions under which interruptions are precise in
Models 65-195. Note that interruptions are always precise in systems
with lower model numbers.

INTERRUPTIONS IN THE MODELS 91 AND 195

As shown in Figure 18, the interruption code in the Models 91 and 195
differs for precise and imprecise interruptions. For precise
interruptions (as for all int~rruptions in other models), exceptions are
indicC;:lted in bits 28-31 of the old program status word. For imprecise
interruptions, bits 28-31 are zero, and exceptions are indicated in bits
16-27.

Before testing the interruption code to determine the cause of an
interruption, you should test the instruction length code to determine
whether the interruption is precise or imprecise. If the instruction
length code is zero, indicating an imprecise interruption, you should
test bits 28-31 of the old program,status word to determine whether the
interruption has occurred on a Model 91 or 195. If bits 28-31 are zero,
the interruption has occurred on a Model 91 or 195 and the cause of the
interruption is indicated in bits 16-27. If bits 28-31 are not zero,
the interruption has not occurred on a Model 91 or 195, and these bits
themselves indicate the cause of the interruption.

r---------------------T---,
I I Type of Interruption I
I ~----------------T---~~
I IPrecise (ILC*O) 1 Imprecise (ILC=O) I
I ~----------------+----------------T-------------------T-------------------~
I Type of Exception I I Models 65- 85 and I I I
1 I I System/370 1 1 I
1 1 All Models 1 Model 165 1 Model 91 1 Model 195 1
1 ~----------T-----+----------T-----+------------T------+------------T------~
1 IBits 16-27128-31IBits 16-27128-311 Bits 16-27 128-31 I Bits 16-27 128-31 I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Operation 1 (zero) 10001 I I I I I 1 I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I privileged Operation I (zero) 100101 I I I I I I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Execute 1 (zero) 10011 1 1 I I I I I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Protection I (zero) 10100 I (zero) 10100 1100000000000 I (zero) 1100000000000 I (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
1 Addressing I (zero) 10101 I (zero) 1 1010111010000000000 I (zero) 1010000000000 I (zero) I
~-----------~---------+----------+-----+----------+-----+------------+------+------------+------~
I Specification I (zero) 10110 I I 1001000000000 I (zero) I I I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Data I (zero) 10111 I I 1000100000000 I (zero) 1000100000000 I (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Fixed-Point Overflow I (zero) 11000 I I 1000010000000 I (zero) 1000010000000 I (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
IFixed-Point Divide I (zero) 11001 1 I 1000001000000 I (zero) 1000001000000 I (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
IDecimal Overflow I (zero) 11010 I I I I 10000000000101 (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Decimal Divide I (zero) 11011 I I 1 I 10000000000011 (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
IExponent Overflow I (zero) 11100 I I 10000001000001 (zero) 10000001000001 (zero) I
~---------------------+----------+-----+----------+-----+------------+--~---+------------+------~
IExponent Underflow I (zero) 11101 I I 10000000100001 (zero) 10000000100001 (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
I Siginificance I (zero) 11110 I I 1000000001000 I (zero) I 000000001000 I (zero) I
~---------------------+----------+-----+----------+-----+------------+------+------------+------~
IFloating-point Divide I (zero) 11111 I I 10000000001001 (zero) 1000000000100 I (zero) 1
~---------------------~----------~-----+----------~-----+------------~------~-----------~~------~
I 11 Except Model 651 I L ______________________________________ ~ ________________ ~ _______________________________________ J

Figure 17. Interruption Code in the Old Program Status Word

60 Supervisor Services

r---------------------T-----------------T-------------------------------------~------------------------1
1 IModels 65-85 and 1 1 1
1 I System/370 I 1 I
I I Model 165 I Model 91 1 Medel 195 I
I ~-------T---------t-------T---------T-------T-----------+-------T---------T-------~
I Type of Exception 1 1 1 I IPrecisel 1 1 I Precise I
I 1 1 I I I in I 1 I I in I
1 I I I I 1 INHIBIT I Precise 1 1 1 INHIBIT I
1 IAlways IsometimeslAlways I Sometimes 1 OVERLAP Ifor DecimallAlways 1 Sometimes I OVERLAP I
1 I Precise I Precise1 1Precisei precise2 1 Mode3 ISimulation~IPrecisel Precisesl Mode 3 I
~---------------------+-------+---------t-------t---------t-------+-----------+-------+---------+-------~
I Operation 1 X 1 I X I I 1 I X 1 I 1
~---------------------t-------t---------t-------+---------t-------+-----------+-------+---------t-------~
IPrivileged Operation I X I 1 X 1 I I 1 XII 1
~---------------------+-------t---------+-------+---------+-------+-----------+-------+---------+-------~
I Execute I X I I X I I I 1 X I I 1
~---------------------+-------t---------+-------+~--------+-------+-----------+-------+---------+-------~
I Protection I I X 1 I I I XII I I
~--------------------+-------+---------+-------t---------t-------+-----------+-------+---------+-------~
1 Addressing I I X I 1 X I I X I I X I 1
~---------------------+-------t---------t-------+---------+-------+-----------+-------+---------+-------~
1 Specification I X I I I X 1 I X 1 X 1 I 1
~---------------------+-------+---------+-----~-+---------t-------+-----------+-------+---------+-------~
1 Data I XII I I X' I X 1 I I X 1
~---------------------+-------t---------t-------+---------t-------+-----------+-------+---------+-------~
I Fixed-point overflow I XII I 1 X I 1 1 I X 1
~---------------------+-------+---------+-------+---------+-------+-----------+-------+---------+-------~
IFixed-point Divide I X 1 I I I. X I I I 1 X 1
~---------------------+-------+---------+-------+---------t-------+-----------+-------+---------t-------~
1 Decimal Overflow 1 Xliii 1 XII 1 X 1
~---------------------+-------+---------+-------+---------+-------+-----------+-------+---------+-------~
1 Decimal Divide 1 Xliii I X I 1 1 X 1
~---------------------+-------t---------+-------+---------+-------+-----------+-------+---------+-------i
1 Exponent Overflow 1 Xliii Xliii X I
~---------------------+-------+---------+-------+---------t-------+-----------+-------+---------+-------+
IExponent Underflow 1 Xliii Xliii X I
~---------------------+-------t---------t-------+---------+-------+-----------+-------+---------+-------~
1 Significance 1 Xliii Xliii X 1
~---------------------+-------+---------+-------+---------+-------+-----------+-------+---------+-------~
IFloating-point Divide 1 Xliii X I 1 I I X 1
~---------------------~-------~---------~-------~---------~-------~-----------~-------~---------~-------i
11A protection or addressing exception results in a precise or imprecise interruption, depending on the
1 cause of the exception.
12An addressing or specification exception results in a precise or imprecise interruption, depending on
1 the cause of the exception. For details, refer to the Model 91 Functional Characteristics
I publication.
13 The indicated interruptions are preCise if the INHIBIT OVERLAP switch is set on the system control
I panel.
I~The interruption for a protection exception is precise only when simulated by the control program
1 decimal simulator routine. Interruptions for decimal overflow and decimal divide exceptions occur
1 only as simulated interruptions; they do not occur if the control program does not include the
1 decimal simulator routine.
I SAn addressing exception results in a precise or imprecise interruption, depending on the cause of the
I exception. For details, refer to the Model 195 Functional Characteristics publication. L ___ J

Figure 18. Precise Interruptions in IBM Systero/360 Models 65, 67, 75,
85, 91, 195, and System/370 Model 165

In the Model 91, there are ten types of program exceptions that can
cause an imprecise interruption. In the Model 195, there are eleven
types of program exceptions that can cause an imprecise interruption.
Each is represented by a separate bit in the interruption code (bits
16-27). After an imprecise interruption, the interruption code may
indicate more than one type of exception. When it does, the indicated
exceptions may be due toa single instruction, or to several
instructions whose execution was overlapped. Note that each of the
indicated exceptions may have occurred more than once, and there is no
indication as to which occurred first.

If you provide an exit routine to handle any of the exceptions that
may result in an imprecise interruption, you should specify all ten such
exceptions in the SPIE macro instruction. When an imprecise
interruption occurs, your exit routine will be entered only if the PICA
indicates all of the exceptions that are indicated in the old program
status word. For example, if you provide a routine to handle
fixed-point overflow, and if you specify only fixed-point overflow in
the SPIKmacro instruction, the routine will not be entered if both
fixed-point overflow and specification excepticns are indicated for the
same interruption.

Program Management Services 61

DECIMAL SIMULATION IN THE MODEL 91

The instruction set for the model 91 does not include the decimal
instructions AP, CP, DP, MP, SP, and ZAP; each of these instructions
causes an operation exception, which results in a precise interruption.
If the decimal simulator routine was sFecified at system generation, the
control program simulates the decimal operation. Otherwise, control is
passed to your program interruption exit routine, or to the control
program exit routine.

Decimal simulation may result in an exceptional condition. When it
does, the control program simulates a precise interruption as indicated
in Figure 18. For decimal overflow, execution is comple,ted and the
condition code is set. For other exceptions, execution is suppressed;
the condition code and the contents of main storage remain unchanged.
Note that the control program does not simulate a,n interruption for
decimal overflow if the interruption is disabled.

EXTENDED-PRECISION FLOATING-POINT SIMULATION

The OS/360 Extenqed-Precision Floating-Point Simulator provides full
extended-precision arithmetic for alIOS users. A divide macro
instruction (DXR) is provided for the models that have the
extended-precision floating arithmetic facility and all eight
instructions are provided for the models that do not. ThUS, you can use
extended-precision floating-point instructions whether or not your
particular machine model has the extended-precision floating-point
facility. To do so, write a program-interruption-handling exit routine.
The exit routine is required:

• If your machine model already has the extended-precision
floating-point facility, and you also wish to use the
extended-precision floating-point divide (DXR) macro instruction.

• If your machine model does not have the extended-precision
floating-point instructions, but you wish to use these instructions
and the extended-precision floating-point divide instru~tion.

To determine if the extended-precision floating-point feature is
installed in your CPU, call the module IEAXPSIM, which returns a pointer
to the appropriate simulator.

The format of the extended-precision floating-point divide (DXR)
instruction is described in supervisor and Data Management Macro
Instructions and the formats of the other extended-precision. floating­
point instructions are described in the Principles of Operation.

To use the extended-precision floating-Foint instructions that your
machine model does not have, call the extended-precision floating-point
simulator from a program-interrupti on-handling exit routine. The
simulator is a program that is automatically included in your operating
system at system generation time. Writing an exit routine to handle
program interruptions is discussed above under "Program Interruption
Processing."

If you wish to use the extended-precision floating-point simulator,
specify in the SPIE macro instruction that your exit routine is to
rece1ve control if an operation exception occurs. In addition, the exit
routine must perform the following tasks, in this order:

• Prepare a parameter list to pass to IEAXPSIM •

• Pass control to IEAXPSIM, using standard oFerating system
conventions.

62 Supervisor Services

• Prepare a parameter list to pass to the simulator.

• Pass control to the simulator, using standard operating system
conventions.

• Check the code returned by the simulator.

• Perform corrective action if' necessary.

In addition, the exit routine may perform the following tasks:

• Load the IEAXPSIM module, using the LOAD macro instruction, before
its use.

• Delete the IEAXPSIM module, using the DELETE macro instruction,
after its use.

• Load the simulator, using the LOAD macro instruction, the first time
it is needed.

• Delete the simulator, using the DELETE macro instruction, at the end
of the job step.

Read the following paragraphs and then look at Example 27, which
should help you design your exit routine.

The parameter list that you pass to IEAXPSIM must be pointed to by
register 1 and must contain a pointer to a doutleword area into which
IEAXPSIM will move the name or the simulator module to which you will
pass control.

The parameter list that you pass to the simulator must be pointed to
by register 1 and must contain the following:

1. A pointer to the PIE.

2. A pointer to the area containing the contents of general registers 0
through 15 at interrupt time.

3. A pointer to a work area.

4. A pointer to a byte that is nonzero if the last bit of the quotient
for a DXR need not be correct.

The work area must be at least 30 doublewords (240 bytes) if your
installation's machine model has the extended-precision floating-point
facility or at least 50 doublewords (400 bytes) if it does not. The
exit routine shown in Example 27 can be used for either type machine
model because its work area is 50 doublewords.

To obtain the name of the extended prec1s10n floating point simulator
installed in your system, call the module IEAXPSIM, which returns a
pointer to the name of the simulator in the doubleword that you provide.
In Example 27, the doubleword is SIMUL.

Before passing control to the simulator, you can use the LOAD macro
instruction to bring the simulator into main storage if it is not
already there. The entry point name is specified as the name returned
from IEAXPSIM. After issuing LOAD, you can pass control to the
simulator, using standard calling conventions.

Upon regaining control from the simulator, the exit routine should
check register 15 for one of the two return codes shown in Figure 19.

Program Management Services 63

r--,
USING EXTPRE,15

EXTPRE STM 3,13,SIMSV+12 Save registers not in PIE

TOSIM

LR 4,15
USING EXTPRE,4
MVC SIMSV(12),20C1)
MVC SIMSV+56CS),12C1)
ST 14,RET
ST 1,PARMB
LA 13, SAVES 1M
L 15,SIMADD
LTR 15,15
BNZ TOSIM
LOAD EP=IEAXPSIM
LR 15,0

LA
BALR
DELETE
LOAD
LR

ST
LA
BALR
LTR

1,PARMA
14,15
EP=IEAXPSIM
EPLOC=SIMUL
15,0

O,SIMADD
1,PARMB
14,15
15,15

Establish addressability
Registers 0-2 from PIE
Registers 14-15 from PIE
Save return address
Pointer to PIE
I.oad save area address

Does SIMADD contain address?
If so, go directly to simulator

Put IEAXPSIM's address in
register

Load pointer to doubleword
, Get simulator' s address

Load simulator
Put simulator'S address in

register
Save address of simulator
Parameter list address
Go to simulator
Error or exceptional condition?

*HERE THE EXIT ROUTINE SHOULD DETERMINE THE ERROR OR THE
*EXCEPTIONAL CONDITION THAT OCCURRED IN SIMULATING AND
*TAKE APPROPRIATE ACTION.

BOUT
GOODOUT EQU *

*HERE THE EXIT ROUTINE SHOULD TAKE APPROPRIATE ACTION WHEN
*NO ERROR OR EXCEPTIONAL CONDITION OCCURRED DURING SIMULATION.

OUT L
LM
BR

14, RET
3, 13, SIMSV+12
14

. Restore registers
Return

*WHEN THE EXIT ROUTINE NO LONGER NEEDS THE SIMULATOR,
*THE ROUTINE SHOULD DELETE IT.

PARMA
SIMUL
PARMB

DELETE EPLOC=SIMUL

DS X'SO' ,AL3CSIMUL) Pointer to simulator name
DS D Simulator name
DS F For pointer to PIE
DC ACSIMSV) Address of register area
DC ACWORK) Address of work area
DC X'SO',A13CZERO) Divide adjust switch pointer

. ZERO DC x'O' Adjust switch for divide
WORK DC 500 Word area
SIMSV DS l6F Register area
SIMADD DC F'O' Address of simulator
RET DS ~ Return address
SAVESIM OS lSF Save area __ J

Example 27. Calling the Extended-Precision Floating-Point Simulator

64 Supervisor Services

r-------------T---,
I Hexadecimal I I
I Code I Meaning I

~-------------+---~
I 00 I The operation was successful. I

I I I
I FF I The operation was not successful, or an exceptional I
I I condition occurred. I L _____________ i ___ J

Figure 19. Return Codes from the Extended-Precision Floating-Point
Simulator

If the return code was X'FF', the exit routine determines the kind of
error encountered by the simulator by examining the interruption code in
bits 28-31 of the PSW. Figure 20 shows the possible settings of the
interruption code.

The simulator will adjust the condition code in the old PSW in the
PIE (bits 34-35) to indicate the result of an AXR or SXR macro
instruction. When a program interruption occurs within the simulator
while fetching the argument of the MXD macro instruction, the
instruction address in the PSW in the PIE is restored to its setting at
operation-interrupt time.

The simulator never alters the Program Check Old PSW at location 40.
Its interruption code will be an o~eration exception except for the MXD
macro instruction, when it may be a protection, addressing, or
specification exception.

r---T------------------,
I Meaning of Interruption I Bits 28-31 I
~----------~--+------------------~

The simulator found that the operation was not an 0001 I
extended-precision floating-point operation and I
returned control without further processing. I

Protection exception 1. 3

Addressing exception 1. 3

Specification exception ~ 2 3

Exponent overflow exception ~

Exponent underflow exception ~

Significance exception ~

0100

0101

0110

1100

1101

1110

I
I
I
I
I
I
I
I
I
I
I
I
I

Floating-point divide ~ 1111 I
~---i-_________________ ~
I~When the simulator encounters these exceptions, it stops processing I
I and returns control to the exit routine. I
12 An incorrect extended-precision floating-point register was I
I specified, the third byte of the DXR macro instruction was not X'OO' I
I or a register other than 0 or 4 was specified in the Rl or R2 field I
I of the DXR macro instruction. I
13 The error occurred during the processing of an MXD macro I
I instruction. I
I~The error occurred during simulation. I l _________________________ ~ __ J

Figure 20. Interruption Codes Returned by the Simulator

Program Management Services 65

The simulator should be deleted by the using program if it was
obtained via the LOAD macro instruction.

To use the simulator, you need to code a SPIE macro instruction, such
as the one below which specifies the exit routine named EXTPRE as the
one to be" given control if an operation interrupt occurs.

SPIE EXTPRE, (1)

The routine EXTPRE sets up a parameter list and calls the
extended-precision floating-point simulator. When control is returned
from the simulator, tests are made for errors and exceptional
conditions. The rest of what you have to do to use the simulator is
shown in Example 27.

If the full simulator (IEAXPALL) is loaded on a CPU that already has
the extended-precision floating-point facility, no abnormal conditions
will result. Only the DXR macro instruction will be simulated.
However, the simulation of the DXR function is slower than if the
IEAXPDXR were used, since the other extended-precision operations in the
divide algorithm are also simulated.

If IEAXPDXR is loaded on a CPU without the extended-precision
floating-point facility, a OC1 ABEND will occur when an
extended-precision divide is simulated. In the simulation of the other
extended-precision macro instructions, a return code of X'FF' is passed
to the caller and no simulation is attempted.

ABNORMAL CONDITION HANDLING

It is not possible to provide procedures for all possible conditions
which can occur during the execution of a program. You should, of
course, be sure that you can process all valid data, and that your
program satisfies all the requirements of the problem. The more general
you make the program, the greater the number of additional routines you
will require to handle special cases. But you will not be able to
provide routines to detect and correct all of the special or abnormal
conditions that can occur.

The control program does a great deal of checking for abnormal
conditions. A standard program interruption routine is provided to
detect and process errors such as protection violations or addressing
errors. The data management and supervisor routines proyide some error
checking facilities to ensure that, based on the information you have
provided, only valid data is being processed, and that no requests with
conflicting requirements have been made. For the abnormal conditions
that can possibly be corrected, control is returned to your program with
a return code indicating the probable source of the error. For
conditions that indicate that further processing would result in
degradation of the system or destruction of existing data, the control
program abnormal termination routine is given control.

There will be abnormal conditions unique to your program, of course,
that the contrel program cannot detect. Figure 21 is an example of one
of these. The routine shown in Figure 21 ,checks a control field in an
input parameter list to determine which function the program is to
perform. Only characters between 1 and 4 are valid in the control
field. The presence of any other character is invalid, but the routine
must be prepared to detect and handle these characters. The routine
should indicate its inability to continue processing by returning
control to the calling program with an error return code. The calling
program should then try to interpret the return code and to recover from

66 Supervisor Services

the error. If it cannot do so, the calling program should detach its
incomplete subtasks, execute its usual terrr-ination procedures, and
return control to its calling program, again with an error return code.
This procedure may result in termination of all the tasks of a job step;
if it does, the COND parameters of the JOB and EXEC statements may be
used to determine whether or not subsequent job steps should be
executed.

An alternative to this procedure is to pass control to the control
program abnormal termination routine by issuing an ABEND macro
instruction. This alternative is simpler, but it offers less
opportunity for error recovery and continued processing unless a STAE
macro instruction, specifying a STAE exit routine address, is issued to
override the ABEND. The abnormal termination facilities available
through the use of the ABEND macro instruction are discussed below; an
explanation of the facility to intercept abnormal termination through
the STAE macro instruction is presented following the ABEND discussion.

Yes

Yes

Yes

Yes

No

?

Figure 21. Abnormal Condition Detection

Program Management Services 67

The position within the job step hierarchy of the task for which the
ABEND macro instruction is issued determines the exact function of the
abnormal termination routine.

If an ABEND macro instruction is issued wh~n the job step task (the
highest level or only task) is active, or if the STEP operand is coded
in an ABEND macro instruction issued during the performance of any task
in the job step, all the tasks in the job step are terminated. An ABEND
macro instruction (without a STEP operand) that is issued in performance
of any task other than the job step task usually causes only that task
and the subtasks of that task to be abnormally terminated. However, if
the abnormal termination cannot be fulfilled as requested, it may be
necessary for the supervisor to abnormally te~minate the job step task.
The most frequent cause of this is that the subtask does not have
sufficient main storage for ABEND's processing. ABEND "steals" main
storage- allocated to the job step task and needed by it to continue
normal processing. The abnormal termination routine works in the same
manner whether it is given control fron. the control program or a problem
program.

When a task is abnormally terminated, the control program performs
the following functions:

• Low~rs the responsibility counts for the load modules brought into
main storage during the performance of the task.

• Releases the main storage subpools owned by the tasks.

• Cancels the time interval if one had been established for the task.

• Issues a CLOSE macro instruction for any data control blocks which
were opened during the performance of the task.

• Purges any outstanding input or output requests.

• Cancels any requests for operator replies made using a WTOR macro
instruction.

• Cancels any requests for resources made using an ENQ macro
instruction.

If the job step is not to be terminated, the following action is
taken:

• The abnormal termination functions listed above are performed,
starting with the lowest level task, for each of the subtasks of the
task which was active when the ABEND macro instruction was issued.
A DETACH macro instruction is issued by the control program for each
of the subtasks.

• The completion code specified in the ABEND macro instruction is
placed in the task control block of the active task (the task for
which the ABEND macro instruction was issued).

• If the ECB operand was designated in the ATTACH macro instruction
issued to create the active task, the completion code specified in
the ABEND macro instruction is placed in the designated event
control block, and the completion bit is turned on.

• If the ETXR operand was designated in the ATTACH macro instruction
issued to create the active task, the end-of-task exit routine is
scheduled to be given control when the originating task becomes
'active.

- 68 Supervisor Services

• If neither the ECB nor ETXR operands were designated when the ATTACH
macro instruction was issued, a DETACH macro instruction is issued
by the control program for the active task.

If the job step is to te terminated, the following action is taken:

• The abnormal termination functions listed above are performed,
starting with the lowest level task, for all tasks in the job step.
All main storage belonging to the job stef is released. None of the
end-of-task exit routines are given control.

• The completion code specified in the ABEND macro instruction is
written on the system output device.

• Unless you specify otherwise in your job control statements, the
remaining job steps in the job are skipped. However, the statements
defining these steps are checked fer proper syntax. In

In any operating system, it is possible to restart a job step that
has been abnermally terminated. Restart can occur either at the
beginning of the job step or at an internal checkpoint. A detailed
discussion of checkpoint and restart appears later in this section.

INTERCEPTING ABNORMAL TERMINATION OF TASKS

Abnormal termination of a task can be intercepted through the use of
the STAE macro instruction. When a task that has previously issued a
STAE macro instruction is scheduled for abnormal termination,
termination processing is intercepted and control is returned to the
user at his STAE exit routine address, as specified in the STAE macro
instruction. within the STAE exit routine, the user can perform
pre-termination functions or diagnose the error. He can also determine
whether abnormal termination should continue for the task, or whether a
STAE retry routine, which would circumvent abnormal termination, should
be scheduled. For further information'on scheduling a STAE retry
routine, see the System Programmer's Guide.

At the time the abnormal termination is scheduled, the STAE exit
routine must be resident. It must either be part of the program issuing
STAE or be brought into storage via the LOAD macro instruction.

The STAE exit routine can contain an ABEND macro instruction, but it
must not contain a STAE or an ATTACH macro instruction.

A single user program can issue more than one STAE macro instruction
with the create (CT) operand. Each issuance makes the previous STAE
environment temporarily inactive. The suspended STAE environment can be
reestablished by canceling the current STAE. Unless it is intended that
the existing STAE environment be saved, it should be canceled prior to
issuing another STAE. Otherwise, main storage will be wasted by STAE
control blocks for inactive STAE environments.

If the user wishes to use the same exit routine for several tasks at
the same time, it must be reenterable. For convenience sake, it is
recommended that all STAE exit routines be reenterable.

The user can cancel (make the previous STAE request active) or
overlay the current STAE request. The STAE request that is canceled or
overlaid is the one most recently made. If no STAE requests are active
for the task at the time a cancel or overlay is issued, or if the user
attempts to cancel or overlay a STAE request not associated with his
Request Block level of control, he will be informed that his request is
invalid by a return code. A STAE request can be canceled by issuing the
STAE macro instr~ction with the STAE exit routine address sp~cified as

Program Management Services 69

r--~---------------,

STAE EXIT1,CT,PARAM=LIST1, C
XCTL=YES,ASYNCH=YES, C
PURGE=QUIESCE Initial STAE request

LA S,EXIT2 Put new exit routine address in
register 5

STAE (S),OV,PURGE=NONE STAE request for overlay

LIST1 DC F'O' Parameter list for exit routines
DC X'AO'

EXIT1 EQU * Entry ~oint of first exit routine
EXIT2 EQU * Entry point of second exit routine __ J

Example 28. Use of STAE Macro Instruction

zero. Overlaying is done by issuing a STAB macro instruction specifying
OV.

When a program issuing STAE returns control to a previous level via
an SVC 3, all STAE requests issued by that program are canceled. A STAE
request specifying XCTL=YES is not canceled when the STAE user issues an
XCTL macro instruction and the STAE environment is connected to the
program in control after XCTL. If a program terminates by any means
other than an SVC 3 or a RETURN macro instruction, all STAE requests
must be canceled by the terminating program before returning control to
another program.

STAE requests issued by a program are queued for that program so that
the last STAE request issued is the active on~, that is, it is the one
that causes the STAE exit routine to receive control if the program is
abnormally terminated. If the active STAE request is canceled, the
next-to-the-last STAE request becomes the last and thus the active one.

Example 28 shows the use of the STAE macro instruction. The STAE
request is initially made specifying a STAE exit routine address (EXIT1)
and parameter list address (LIST1). The XCTL=YES parameter indicates
that this STAE request will not be canceled if the program terminates
via the XCTL macro instruction. The ASYNCH=YES parameter indicates that
asynchronous interruptions will be allowed during STAE exit routine
processing. The PURGE=QUIESCE parameter indicates that input/output
requests not yet performed are removed from the system's active
input/output queue (purged) but can later be returned to that queue
(restored). If PURGE=QUIESCE cannot be honored by the system, the
input/output requests are removed from the queue with the halt option
and therefore cannot be restored.

In the second issuance of STAE, the previous STAE request is modified
through the overlay (OV) option. The STAE exit routine address is now
EXIT2, and input/output intervention will now be bypassed, but the
parameter list address, the XCTL=YES, and the ASYNCH=YES remain the
same.

After a STAE macro instruction has been issued, the register contents
upon return to the user are as follows:

• Registers 0, 1: Unpredictable.

• Registers 2-13: Same as when STAE was issued.

• Register 14: Unpredictable.

70 Supervisor Services

• Register 15:

Decimal Code

o

4

8

12

16

Completion code.

Indication

Successful comfletion of creating, overlaying, or
canceling a STAE request.

No storage obtainable for a STAE request.

A STAE request to be canceled or overlaid did not
exist, or a STAE was issued in the user's exit
routine.

Invalid exit routine or parameter list address.

Attempt to cancel or overlay another user's STAE
request.

When a program with an active STAE request encounters an ABEND
situation, control is passed to the STAE exit routine. ABEND processing
continues and the STAE exit routine does not receive control in the
following situations:

• If the abnormal termination is caused ty an operator's CANCEL, job
step timer expiration, or the detaching of an incomplete task.

• If the terminating task is in must comflete status and problem
program mode. (Putting a task in the must complete status is
explained in the System Programmer's Guide.)

• If the OUTLIMIT is excee4ed for SYSOUT.

• If an invalid ABEND recursion (an abnormal condition encountered
during abnormal termination> occurs.

• If an abnormal condition is encountered during normal termination.

• If the failing task has been in a wait state for more than 30
minutes.

• If the STAE macro instruction was issued by a subtask and the mother
task abnormally terminates.

• If the exit routine was specified for a subtask, via the STAI
operand of the ATTACH macro instruction, and the mother task
abnormally terminates.

• If the abnormal termination is because the task that issued the STAE
still has active subtasks when it returns to the control program via
an SVC 3.

• If any other problem arises while the control program is preparing
to give control to the STAE exit routine.

Before the STAE exit routine receives control, any existing SPIE
requests are canceled and the purge request specified in the STAE macro
instruction is fulfilled. The register contents upon entry to the STAE
exit routine are as follows:

• Register 0:

Decimal Code

o

Indication

Active I/O at the time of the ABEND was quiesced
and is restorable.

Program Management Services 71

4

8

Active I/O at the time of the ABEND was halted and
is not restorable.

No I/O was active at the time of the ABEND.

• Register 1: Address of a 104-byte work area, as shown in
Figure 22.

• Registers 2-12: Unpredictable.

• Register 13: Address of a supervisor-Frovided register save
area.

• Register 14: Return address.

• , Register 15: Address of the STAE exit routine •

Note: Registers 13 and 14, if used by the STAE exit routine, must be
saved and restored prior to returning to the calling program. standard
subroutine linkage conventions apply.

Bytes 4-7 in Figure 22 are used as follows:

o
o
1
1

2-7
8-19

20-31

I 0

8

16

24

Content Indication

1
o
1
o

Dump to be given.
Dump not to be given.
Job step to be terminated.
Only failing task to be terminated.
Not used.
System completion code (packed, unsigned, decimal).
User completion code (hexadecimal).

Address of STAE exit routine Flags
System and user

parameter list or 0 completion codes

PSW at time of ABEND

Last problem program PSW before ABEND

Contents of registers 0-15 at
time of ABEND (64 bytes)

If a problem program issued STAE:

88

96
Name of abnormally terminated program or 0

Address of entry poi nt to
abnormally terminated program

If supervisor program issued STAE:

88 Address of request block of
abnormally terminated program I

96 0

o

o

Figure 22. Work Area for STAE Exit Routine

72 Supervisor Services

If main storage was not available for the work area, the register
contents upon entry to the STAE exit routine are as follows:

• Register

• Register

• Register

• Register

• Register

• Register

0:

1:

2:

3-13:

14:

15:

-12 (decimal)

Flags and completion codes (see Figure 22, bytes 4-7
for format).

Address of STAE exit parameter list.

Unpredictable.

Return address.

Exit routine address.

Note: If a work area could not be provided by the control program, a
register save area will not be provided either. A save area is never
provided for a retry routine.

Before returning control to the operating system from the STAE exit
routine, the user must put a return code in register 15. The return
code indicates whether ABEND processing ,is to be continued for the task
or whether a STAE retry routine should be scheduled. (The details about
scheduling a STAE retry routine are in the System Programmer's Guide.)

The return codes to be placed in register 15 are defined as follows:

Decimal
Code Indication

o No retry routine provided.

4 A STAE retry routine has been ~rovided and the Request Block
chain should be purged.

8 A STAE retry routine has been ~rovided and the Reques~ Block
chain should not be purged. (To be used by routines in
supervisor state only.)

12 A STAI (Subtask ABEND intercept) retry routine has been
provided.

16 No further STAI processing; ABEND ~rocessing is to continue.

For further information on the option of STAE retry, see the System
Programmer's Guide.

INTERCEPTING ABNORMAL TERMINATION OF SUBTASKS

To provide an exit in your program to intercept abnormal termination
of a subtask, use the STAI (subtask ABEND intercept) operand of the
ATTACH macro instruction you,issue to create the subtask. The STAI
request issued for any subtask will be propagated for all subtasks
further down the tree. For example, Task A attaches Task B and uses the
STAI operand on the ATTACH macro instruction. When Task B attaches Task
C, the STAI request issued by A will be active for C as well as B.

Since more than one subtask may abnormally terminate at the same
time, the STAI exit routine may be used by more than one task
concurrently. Therefore, the exit routine must be reenterable, or it
may fail during the second entry.

program Management Services 73

THE DUMP

There are three types of main-storage dumps produced by the operating
system:

• A dump obtained through use of the DUMP operand in the ABEND macro
instruction.

• A dump obtained through use of the SNAP macro instruction.

• A core image dump, produced in the event of a failure by a system
routine.

You can request a dump by using the ABEND or'SNAP macro instruction.
You cannot request the core image dump -- it is produced automatically
by the system whenever a failure occurs in a system routine.

ABEND AND SNAP DUMPS

When the dump is requested using an ABEND macro instruction, no
further processing is performed for the active task; use of the SNAP
macro instruction allows the task to continue after the completion of
the dump. The control program generally requests a dump for you when it
issues an ABEND macro instruction.

The data set containing the dump can reside on any device which is
supported by the basic access technique using sequential organization
(BSAM). The dump is placed in the data set described by the DD
statement you provide. If a printer is selected the dump is printed
immediately. However, if a direct access or tape device is designated,
a separate job is scheduled to obtain a listing of the dump, and to
release the space on the device.

The format of the dump is shown in the publication Programmer's Guide
to Debugging. The entire dump shown in that publication is provided in
an abnormal termination dump if a DD statement with a ddname of SYSABEND
is provided; only the problem program areas and system control blocks
associated with the problem program are dureped if a DD statement with a
ddname of SYSUDUMP is provided. Use of the SNAP macro instruction
allows you to request only selected portions of the entire dump for any
task in the job step; the format of the portions selected is the same as
the format of the same portions of an abnormal termination dump.

When an abnormal termination dump is requested, the entire dump is
provided for the active task, along with a dump of the control blocks
and save area for each of the higher level tasks which are predecessors
of the active task being terminated and for each of the subtasks of the
active task. The control program dump routine uses the addresses you
stored in words 2 and 3 of each save area to follow the "chain" of save
areas provided by each calling program in each task. If an ABEND macro
instruction was issued when task Bi (Figure 4) was active, for example,
a complete dump would be provided for task Bl. The control blocks and
save areas for task B, task Bla, and the job step task would also be
provided in separate dumps.

To get a dump:

• You must provide a DD statement for each job step in which a dump is
requested. For an abnormal termination dump, the ddname ,must be
SYSABEND or SYSUDUMP; for a SNAP macro instruction dump, the ddname
m~st be any name except SYSABEND or SYSUDUMP. The requirements for
writing the DD statement are described in the Programmer's Guide to
Debugging.

74 Supervisor Services

• To obtain a dump using the SNAP macro instruction, you must provide
a data control block, and issue an OPEN macro instruction for the
data set before any SNAP macro instructions are issued. The data
control block. must contain the following parameters: DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=nnn, and LRECL=125, where nnn is 882 for
MFT and either 882 or 1632 for MVT. (The data control block is
discussed in the Data Management Services manual.> If your program
is to be processed by the loader, you should also issue a CLOSE
macro instruction for the SNAP data control block •

• sufficient unused nain storage must be available in the area
assigned to the jot step to hold the control program dump routine
and, if not already in main storage, the BSAM data management
routines. For an abnormal termination dump, additional main storage
is required for the routines to process the OPEN macro instruction
issued by the control program, and for the trace table. Refer to
the Storage Estimates publication for storage requirements.

INDICATIVE DUMP

In an operating system with MFT, you can obtain an indicative dump,
as shown in the programmer's Guide to Debugging. This dump is provided
in response to a request for an abnormal termination dump when either
you did not provide a DD statement with the ddname SYSABEND or SYSUDUMP,
or the control program entry for that DD statement was destroyed. The
indicative dump is printed on the system output device. The indicative
dump is not provided in an operating system with MVT.

CORE IMAGE DUMP

If a system routine fails, the system automatically supplies a dump
of main storage. This dump, called the core image dump, provides
diagnostic information. The system writes the core image dump in the
system data set SYS1.DUMP or in a tape volume at the device designated
when the operating system was initially loaded.

In systems with MFT or MVT, use the IMDPRDMP Service Aid program to
obtain a printout of the dump. A description of IMDPRDMP and the core
image dump forrr,ats appear in the Service Aids publication.

For guidance in using the core image dumps from all configurations of
the operating system, refer to the Programmer's Guide to Debugging.

OPERATOR COMMUNICATION WITH A PROBLEM PROGRAM

The operator can pass information to a problem program by issuing a
STOP or a MODIFY command. In order to accept these commands, the
program must be set up in the following manner.

An EXTRACT macro instruction is issued to obtain a pointer to the
communications ECB, which is posted when a STOP or a MODIFY command is
issued, and a pointer to the first Command Input Buffer (CIB) on the CIB
chain for the task:

EXTRACT answer area, FIELDS=COMM

EXTRACT will return the following:
answer area

Address of the
communication area

.. ...
ECB address

CIB address

Program Management Services 15

The CIB contains the information specified on the STOP or the MODIFY
command:

o

8

10

- -
Address of next CIB Verb code CIB length

~.

Reserved TSO terminal ID Console ID Reserved

Data (length specified on the command)

Verb code x'04'
x'40'
x'44'

START
STOP
MODIFY

Reserved

Length of
data field

If the job was started from the console, the CIB pointed to-when the
EXTRACT macro instruction is issued will be the START CIB. If the job
was not started from the console, the address of the first CIB will be
zero. If the address of the START CIB is present, the QEDIT macro
instruction should be used to free this CIB after any parameters passed
in the START command have been examined:

QEDIT ORIGIN=address of pointer to CIB,BLOCK=address of crB

The CIB counter should then be set to allow CIBs to be chained and
MODIFY commands accepted for the job. This is also accomplished by
using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero,
no MODIFY commands will be accepted for the job. STOP commands,
however, will be accepted for the job regardless of the value set for
CIBCTR.

For the duration of the job, the communications ECB may be waited on
or checked at any time to see if a command has been entered for the
program. The verb code in the CIB should be examined to determine
whether a STOP or a MODIFY command has been entered. After the data in
the CIB has been processed, a QEDIT macro instruction should be issued
to free the CIB.

The communications ECB will be cleared each time a CIB is freed.
Care should be taken if multiple subtasks are examining these fields.
Any CIBs not freed by the task will be unchained by the system when the
task is terminated. The area addressed by the pointer obtained by the
EXTRACT macro instruction, the communications ECB, and all CIBs are in
protected main storage and may not be altered.

76 Suoervisor Services

MAIN-STORAGE MANAGEMENT

No matter which configuration of the operating system you are using,
there' is a finite amount of main storage available to your job step.
you are using the primary control program, you have available all main
storage not, used by the control program; if you are using an operating
system with MFT or MVT, you have a partition or region of fixed size
available to your job step.

In an operating system with MFT, the main storage available to
problem programs is divided into 1 to 15 fixed partitions. The division
is made during system generation, but the operator can enlarge a
partition by combining it with others. Each partition is associated
with one or more Wjob classes,w which can be varied by the operator. On
the basis of job class and priority specified in a JOB statement, a job
is assigned to a partition and scheduled for execution. A job step will
be abnormally terminated if it requires more main storage than is
available in the partition.

In a system with MVT, available main storage is divided into regions,
which vary in size and number according to the requirements of the job
steps being performed. Job steps are selected for execution according
to job class and priority, and each is assigned a region of the size
specified in a JOB, or EXEC statement. If the highest priority job step
requires a larger region than can be made available, its execution is
delayed, and a lower priority job step (one with sufficiently lower
storage requirements) is initiated. After a job step has been
initiated, its region can be extended only if the rollout/rollin option
has been included in the system. (For a descripticn of rollout/rollin,
refer to the System Programmer's Guide.)

You obtain the use of the main storage area assigned to your job step
through implicit and explicit requests for main storage. The use of a
LINK macro instruction is an implicit request for main storage; the
control program allocates space before bringing the load module into
your job pack area. The use of the GETMAIN macro instruction is an
explicit request for a certain number of bytes of main storage to be
allocated to the active task. In addition to your requests for main
storage, requests are made by the control program and data management
routines for areas to contain some of the control blocks required to
manage your tasks.

The following paragraphs discuss some of the techniques that can be
applied for efficient use of the main storage area reserved for your job
step. These techniques apply as well to the data management port'ions of
your programs. The specific data management main storage allocation
facilities are discussed in Section II of this publication; the
principles discussed here provide the background you will need to use
these facilities.

EXPLICIT REQUESTS

Main storage can be explicitly requested for the use of the active
task by issuing a GETMAIN'macro instruction. The main storage request
is satisfied by allocating a portion of the Jrain storage area reserved
for the job step to the active task. You cannot use the main storage
area reserved for the job step without first requesting it; if you
attempt to use it without requesting it, the task is abnormally
terminated. The main storage area is not set to zero when allocated.

Main-Storage Management 77

You return control of main storage by issuing a FREEMAIN macro
instruction. This does not release the area from control of the job
step; it only makes the area available to satisfy the requiremen~s of
additional requests for any task in the job step. The main storage
assigned to a task is also released for other uses when the task
terminates, except as indicated under "Subfool Handling."

SPECIFYING LENGTHS

Main storage areas are always allocated to the task in multiples of
eight bytes and begin on a doubleword boundary. The request for main
storage is given in terms of bytes; if the number specified is not a
multiple of eight, it is rounded to the next higher multiple of eight.
You can make repeated requests for a small number of bytes as you need
the area or you can make one large request to completely satisfy the
requirements of the task. There are two reasons for making one large
request: it is the only way you can be sure of getting contiguous
storage area and, because you only make one request, the amount of
control program overhead is less.

TYPES OF EXPLICIT REQUESTS

There are four methods of explicitly requesting main storage using a
GET~~IN macro instruction. Each of the methods, which are designated by
coding an associated character in the operand field of the GETMAIN macro
instruction, has certain advantages, depending on the requirements of
your program. The last three methods do not produce reenterable code
unless coded in the list and execute forms as~ indicated in the paragraph
"Implicit Requests.- The methods are as follows:

REGISTER TYPE (R): Specifies a request for a single area of main
storage of a specified length. The address of the area is returned in
register 1. This type of request produces reenterabl~ code, because
parameters are passed to the control program in registers, not in a
parameter list.

ELEMENT TYPE (E): Specifies a request for a single area of main storage
of a specified length. The control program places the address of the
allocated area in a fullword you supply.

LIST TYPE (L): Specifies a request for one or more areas of main
storage. You place the length of each area in a list= each list entry
represents a request for one area of main storage. The control program
places the addresses of the allocated areas in consecutive full words in
another list you supply. The addresses are placed in the list in the
same order they were requested. This type of request can be made only
in an operating system with MVT.

VARIABLE TYPE (V): Specifies a request for a single area of main
storage with a length between two values you specify. The control
program will attempt to allocate the maximum length you specify= if not
enough storage is available to allocate the maximum length, the largest
area with a length between the two values is allocated. The control
program places the address of the area and the length allocated in two
consecutive fullwords you supply.

In addition to the above methods of requesting main storage, you can
designat€ the request as conditional or unconditional. (A register type
request is always unconditional.) If the request is unconditional and
sufficient main storage is not available to fill the request, the
activetask is abnormally terminated. If the request is conditional,
however, and insufficient Rain storage is available, a return code of
four is provided in register 15; a return code of zero is provided if

78 Supervisor Services

r--.,

PROCEED 2
PROCEED1
MIN
SIZES

ANSWADD

GETMAIN

LTR
BZ

DELETE
GETMAIN

L

CH

BNL

DC
DC

DC

DC
DC

EC,LV=16000,A=ANSWADD,
HIARCHY=O

15,15
PROCEED1

EP=REENTMOD
VU,LA=SIZES,A=ANSWADD,
HIARCHY=O

4,ANSWADD+4

4,MIN

PROCEED1

H'SOOO'
F'4000'

F'16000'

F'O'
F'O'

Conditional request for
16000 bytes in processor
storage

Test return code
If 16000 bytes allocated,
proceed

If not, free main storage
Try to get smaller

amount in processor
storage
Load and test allocated
length

If SOOO or more, use
procedure 1

If less than SOOO, use
procedure 2

Min. size for procedure 1
Min. size to proceed at
all

Size of area for maximum
efficiency

Address of allocated area
Size of allocated area

Example 29. Use of the GETJlAIN Macro Instruction

the request was satisfied. When a conditional list-type request is
made, no main storage is allocated unless all of the requested areas can
be allocated.

An example of the use of the GETMAIN macro instruction is shown in
Example 29. The example assumes a program which operates most
efficiently with a work area of 16,000 bytes, with a fair degree of
efficiency with 8000 bytes or more, inefficiently with 4000 to 8000
bytes, and not at all with less than 4000 bytes. The program uses a
reenterable load module with an entry ~oint name of REENTMOD, and will
use it again later in the program; to save time, the load module was
brought into the job pack area using a LOAD macro instruction so that it
would be available when it was required.

A conditional request for a single element of main storage with a
length of 16000 bytes is' requested in Example 29. The return code in
register 15 is tested to determine if the area was available; if the
return code was zero (the 16,000 bytes were allocated), control is
passed to the processing routine. If sufficient area was not available,
an attempt to obtain more main storage area is made by issuing a DELETE
macro instruction to freE the area occupied by the load module REENTMOD.
A second GETMAIN macro instruction is issued, this time an unconditional
request for an area between 4000 and 16000 bytes in length. If the
minimum size is not available, the task is abnormally terminated. If at
least 4000 bytes were available, however, the task can continue. The
size of the area actually allocated is determined and one of the two
procedures (efficient or inefficient) is given control.

SUBPOOL HANDLING (IN ~FT SYSTEMS WITHOUT SUBTASKING)

There is only one unnumbered subpool in an operating system with MFT.
In this configuration of the operat~ng system all main storage requests

Main~Storage Management 79

are satisfied by allocating storage from this unnumbered subpool. If
subpool numbers are specified, the numbers are ignored if they are not
greater than 127 (the greatest number that is valid in a system with
MVT). If subpool numbers greater than 127 are specified, the job step
is abnormally terminated.

SUBPOOL HANDLING (IN MFT SYSTEMS WITH SUBTASKING)

Although subpools are not created in MFT systems, it is convenient to
call the partition itself "subpool 0." That is, all main storage in a
partition is shared by all tasks active in that partition. Main storage
not allocated to any task is called "free storage." "Subpool 240" is
used by the supervisor to enable the sharing of a reenterable program
invoked by a LOAD macro instruction. nSubpool 255" is used by the
supervisor to request storage from the system queue area. User programs
may request main storage from the partition by specifying any subpool
number from 0 to 127 or by specifying no number at all (this provides
compatibility with MVT). User-program implied requests for storage,
initiated when the user executes an ATTACH, LINK, LOAD, or XCTL macro
instruction, are recorded by the supervisor in order for the storage to
be freed during termination.

SUBPOOL HANDLING (IN MVT SYSTEMS)

In an operating system with MVT, subpools of main storage are
provided to assist in main storage management and for communications
between tasks in the same job step. Because the use of subpools
requires some knowledge of how the control program manages main storage,
a discussion of main storage control is presented here.

MAIN STORAGE CONTROL

When the job step is given a region of main storage, all of the
storage area available for your use within that region is unassigned.
Subpools are created only when a GETMAIN macro instruction is issued
designating a subpool number. If no subpool number is designated, the
main storage is allocated from subpool 0, which is created for the job
step by the control program when the job step task is initiated.

Note: If main storage is allocated to a subtask by the user program
while the system is executing in the supervisor state or with a
protection key of 0, no other task should free that main storage. If
some other task does free that main storage, you get unpredictable
results.

For purposes of control and main storage protection, the control
program considers all main storage within the region in terms of
2048-byte blocks. These blocks are assigned to a subpool, and space
within the blocks is allocated to a task, by the control program when
requests for main storage are made. When there is sufficient
unallocated main storage within any block assigned to the designated
subpool to fill a request, the main storage is allocated to the active
task from that block. If there is insufficient unallocated main storage
within any block assigned to the subpool, a new block (or blocks,
depending on the size of the request) is assigned to the subpool, and
the storage is allocated to the active task. The blocks assigned to a
subpool are not necessarily contiguous unless they are assigned as a
result of one request. Only blocks within the region reserved for the
associated job step can be assigned to a subpool.

Figure 23 is a simplified view of a main-storage region containing
four 2048-byte blocks of storage. All the requests are for main storage

80 Supervisor Services

from sUbfool O. The first request from some task in the job step is for
504 bytes; the request is satisfied from the block shown as BLOCK A in
the figure. The second request, for 2000 bytes, is too large to be
satisfied from the unused portion of BLOCK A, so the control program
assigns the next available block, BLOCK B, to subpool 0, and allocates
2000 bytes from BLOCK B to the active task. A third request is then
received, this time for 1000 bytes. There is not sufficient unallocated
area remaining in BLOCK B (blocks are checked in the order last in,
first out), but there is enough space in BLOCK A, so an additional 1000
bytes are allocated to the task from BLOCK A. Because all tasks may
share subpool 0, Request 1 and Request 3 do not have to be made from the
same task, even though the areas are contiguous and from the same
2048-byte block. Request 4, for 3000 bytes, requires that the control
program allocate the area from 2 contiguous blocks which were previously
unassigned, BLOCK D and BLOCK C. These blocks are assigned to subpool
O.

As indicated in the preceding example, it is possible for one
2048-byte block in, subfool 0 to contain many small areas allocated to
many different tasks in the job step, and it is possible that numerous
blocks could be split up in this manner. Areas acquired by a task other
than the job step task are not released automatically on task
termination. Even if FREE~AIN macro instructions were issued for each
of the small areas before a task terminated, the probable result would
be that many small unused areas would exist within each block, while the
control program would be continually assigning new blocks to satisfy new
requests. To avoid this situation, you can define subpools for
exclusive use by individual tasks.

Any subpool can be used exclusively by a single task or shared by
several tasks. Each time that yoU create a task, you can specify which
subpools are to be shared. Unlike other subpools, subpool 0 is shared
by a task and its subtask, unless you specify otherwise. When subpool 0
is not shared, the control program creates a new subpool 0 for use by
the subtask. As a result, both the task and its subtask can request
storage from subpool 0, but both will not receive storage from the same
2048-byte block. When the subtask terminates, its main storage areas in

Request 2 - 2000 bytes

Request 4 - 3000' bytes

Block D

~
2048 Bytes

Block C

. Request 1 ""' 504 bytes

Request 3 - 1000 bytes

Figure 23. Main-Storage Control

Main~Storage Management 81

subpool 0 are released; since no other tasks share this subpool,
complete 2048-byte blocks are made available for reallocation.

When there is a need to share subpool 0, you can define other
subpools for exclusive use by individual tasks. When you first request
storage from a subpool other than subpool 0, the control program assigns
a new 2048-byte block to thatsubpool, and allocates storage from that
block. The task that is then active is assigned ownership of the
subpool and, therefore, of the block. When additional requests are made
by the same task for the same subpool,' the requests are satisfied by
allocating areas from that block and as many additional blocks as are
required. If another task is active when a request is made with the
same subpool number, the control program assigns a new block to a new
subpool, allocates storage from the new block, and assigns ownership of
the new subpool to the second task.

A task can specify subpools numbered from 0 to 127. FREEMAIN macro
. instructions can be issued to release any subpool except subpool 0, thus
releasing complete 2048-byte blocks. When a task terminates, its
unshared subpools are released automatically.

Owning and Sharing: A subpool is initially owned by the task that was
active when the subpool was created. The subpool can be shared with
other tasks, and ownership of the subpool can be assigned to other
tasks. Two macro instructions are used in the handling of subpools:
the GETMAIN macro instruction and the ATTACH macro instruction. In the
GETMAIN macro instruction, the SP operand can be written to request
storage from subpools 0 to 121; if this operand is omitted, subpool 0 is
assumed. The operands that deal with subpools in the ATTACH macro
instruction are:

• GSPV and GSPL, which give ownership of one or more subpools (other
than subpool 0) to the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools
(other than subpool 0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the
subtask.

All of these operands are optional. If they are omitted, no subpools
are given to the subtask, and only sub~ool 0 is shared.

creating a Subpool: A new subpool is created whenever any of the
operands described above is written in an ATTACH or a GETMAIN macro
instruction, and that operand specifies a subpool which-is not currently
owned by or shared with the active task. If one of the ATTACH macro
instruction operands causes the subpool to be created, the subpool
number is entered in the list of subpools owned by the task, but no
blocks are assigned and no storage is actually allocated. If.a GETMAIN
macro instruction results in the creation of a subpool, the subpool
number is assigned to one or more 2048-byte blocks, and the requested
storage is allocated to the active task. In either case, ownership of
the subpool belongs to the active task; if the subpool is created
because of an ATTACH macro instruction, ownership is transferred or
retained depending on the operand used.

Transferring Ownership: An owning task gives ownership of a subpool to
a direct subtask by using the GSPV or GSPL operands in the ATTACH macro
instruction issued when that subtask is created. Ownership of a subpool
can be given to any subtask of any task, regardless of the control level
of the two tasks involved and regardless of how ownership was obtained.
A subpool cannot be shared with one or more subtasks and then
transferred to another subtask, however; an attempt to do this results

82 Supervisor Services

in abnormal termination of the active task. Ownership of a subpool can
only be transferred if the active task has ownership; if the active task
is sharing the subpool and an attempt is made to pass ownership to a
subtask, the subtask receives shared centrol and the originating task
relinquishes the subpool. Once ownership is transferred to a subtask or
relinquished, any subsequent use of that subpool number by the
originating task results in the creation of a new subpool. When a task
that has ownership of one or more subpools ter«inates, all of the main
storage areas in those subpools are released. Therefore, the task with
ownership of a suhpool should not terminate until all tasks or subtasks
sharing the subpool have completed their use of the subpool.

Sharing a Subpool: Shared use of a subpool can be given to a direct
subtask of any task with ownership or shared control of the subpool.
Shared use is given by specifying the SHSPV and SHSPL operands in the
ATTACH macro instruction issued when the subtask is created. Any task
with ownership or shared control of the subpool can add to or reduce the
size of the subpool through the use of GET~AIN and FREEMAIN macro
instructions. When a task that has shared control of the subpool
terminates, the subpool is not affected.

SUBPOOLS IN TASK COMMUNICATION

The advantage of subpools in main storage management is that, by
assigning separate subpools to separate subtasks, the breakdown of main
storage into small fragments is reduced. An additional benefit from the
use of subpools can be realized in task communication. A subpool can be
created for an originating task and all parameters to be passed to the
subtask placed in the subpool. When the subtask is created, the
ownership of the subpool can be passed to the subtask. After all
parameters have been acquired by the sUbtask, a FREEMAIN macro
instruction can be issued, under control of the subtask, to release the
subpool main storage areas. In a similar manner, a second subpool can
be created for the originating task, to be used as an answer area in the
performance of the subtask. When the subtask is created, the subpool
ownership would be shared with the subtask. Before the subtask is
terminated, all parameters to be passed to the originating task are
placed in the subpool area; when the suhtask is terminated, the subpool
is not released, and the originating task can acquire the parameters.
After all parameters have been acquired for the originating task, a
FREEMAIN macro instruction again makes the area available for reuse.

IMPLICIT REQUESTS

You make an implicit request for main storage every time you issue a
LINK, LOAD, ATTACH, or XCTL macro instruction. In addition, you make an
implicit request for main storage when you issue an OPEN macro
instruction for a data set. The data management routines required to
process the data set must be in main storage; the main storage areas
used as buffers may also be allocated. When you make an implicit
request for more main storage than is available, the active task is
abnormally terminated. This section discusses some of the techniques
you can use to cut down on the amount of main storage required by a job
step, and the assistance given you by the control program.

LOAD MODULE MANAGEMENT

The discussion of program structures indicates the advantages and
disadvantages of each of the three types of program designs; simple,
planned overlay, and dynamic. The program structure you selected was
based on the complexity of the program and the execution time
considerations. Once you have selected the program structure, you
should plan efficient use of the main storage area that will be assigned

Main-Storage Management 83

to your job step. Note that main storage is assigned in 2048-byte
blocks for implicit requests made in an operating system with MVT. The
size of your load modules should be planned to take advantage of this
method of allocation. The maximum size load module that can be brought
into main storage is 524,248 bytes in an o~erating system with MFT.

REENTERABLE LOAD MODULES

A reenterable load module is designed so that it does not in any way
modify itself during execution. It is "read-only". The advantage of a
reenterable load module is most apparent in an operating system with
MVT; only one copy of the load module is brought into main storage to
satisfy the requirements of any number of tasks in a job step. This
means that even though there are six tasks in the job step and each task
concurrently requires the load module, the only main storage area
requirement is for an area large enough to hold one copy of the load
module (plus a few bytes for control blocks). The same «ain storage
requirement would apply if the load module were serially reusable;
however, the load module could not be used by more than one task at a
time.

An additional benefit of a reenterable load module occurs when the
module is placed in the link pack area. In this case not only is time
saved because no loading must be performed, but in addition no main
storage area assigned to the job step is required to hold the load
module. A link pack area exists only in an operating system with MVT.
The contents are established when the operating system is generated and
when the operator performs the initial program loading procedure. Any
reenterable load module from the link library may be placed in the link
pack area. Many of the frequently used data management routines are
also placed in the link pack area. If any of your reenterable load
modules are used frequently or are used by many jobs, it may save
considerable time and space to have those load modules placed in the
link pack area.

Because a reenterable module does not modify itself, it offers
greater reliability than a nonreenterable module. When there is a
machine-check interruption due to a parity error, the Machine-Check
Handler program can overlay the damaged copy with a new copy. "This is
only true for the System/360 Model 65. If the module is designated
"refreshable," a fresh copy is loaded automatically by the Machine-Check
Handler.

You can designate a module as refreshable without also designating it
as reenterable. However, the module must actually be reenterable in its
design, because it must not modify itself during execution.

REENTERABLE MACRO INSTRUCTIONS

All of the macro instructions described in the Supervisor and Data
Management Macro Instructions manual can be written in reenterable form.
From the standpoint of reenterability, these macro instructions are
classified as one of two types: macro instructions which pass
parameters in registers 1 and 0, and macro instructions which pass
parameters in a list. The use of the Il'acro instructions which pass
parameters in registers presents little problem in a reenterable
program; when the macro instruction is coded, the required operand
values should be contained in registers. For example, the POINT macro
instruction requires that the dcb address and block address be coded as
follows:

r----------T-------T---------------------------,
I [symbol] I. POINT I dcb address,block address I L __________ ~ _______ ~ ___________________________ J

84 Supervisor Services

One method of coding a reenterable program would be to require that both
of these addresses refer to a portion of main storage allocated to the
active task through the use of a GETMAIN macro instruction. The
addresses would change for each use of the load module. Therefore, you
would load one of general registers 2-12 with the address, and designate
the appropriate registers when you code the II.acro instruction. If
register 4 contained the dcb address and register 6 contained the block
address, the POINT macro instruction would be written as follows: POINT
(4),(6).

The macro instructions wh1ch pass parameters in a list require the
use of special forms of the macro instruction when used in a reenterable
program. The macro instructions that pass parameters in a list are
identified in ·Section III: List and Execute Forms· of the Supervisor
and Data Management Macro Instructions manual. The expansion of the
standard form of these macro instructions (that is, the form described
in Section II of that publication) results in an in-line parameter list
and executable instructions required to branch around the list, to load
the address of the list', and to pass control to the required control
program routine. The expansions of the list and execute forms of the
rracro instruction simply divide the functions provided in the standard
form expansion: the list form provides only the parameter list, and the
execute form provides executable instructions to modify the list and
pass control. You provide the instructions to load the address of the
list into a register.

The list and, execute forms of a macro instruction are used in
conjunction to provide the same services available from the standard
fornl of the macro instruction. The advantages of using list and execute
forms are as follows:

• Any operands which remain constant in every use of the macro
instruction can be coded in the list form. These operands can then
be omitted in each of the ~xecute forms of the macro instruction
which use the list. This~aan save appreciable coding time and main
storage area when you use a macro instruction many times. (Any
exceptions to this rule are listed in the description of the execute
form of the applicable macro instruction.)

• The execute form of the macro instruction can modify any of the
operands previously designated. (Again, there are exceptions to
this rule.)

• The list used by the execute form of the macro instruction can be
located in a portion of main storage assigned to the task through
the use of the GETMAIN macro instruction. This ensures that the
program remains reenterable.

Example 30 shows the use of the list and execute forms of a DEQ macro
instruction in a reenterable program. The length of the list
constructed by the list form of the macro instruction is obtained by
subtracting two symbolic addresses; main stora'ge is allocated and the
list is moved into the allocated area. The execute form of the DEQ
macro instruction does not modify any of the operands in the list form.
The list had to be moved to allocated storage because the control
program can store a return code in the list when RET=HAVE is coded.
Note that the code in the routine labeled MOVERTN is valid for lengths
up to 255 bytes only. Some macro instruction$ do produce lists greater
than 255 bytes when many operands are coded (for example, OPEN and CLOSE
with many data control blocks, or ENQ and DEQ with many resources), so
in actual practice a length check should be made.

Main-Storage Management 85

r------------~--------------------------~----------------------------,

LA
LA
SR
BAL
DEQ

3,MACNAME
5,NSIADDR
5,3
14, MOVER TN
,MF= (E, (4»

Load address of list form
Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool 0 and moves up to 255
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 4.

MOVERTN

MOVEINST

MAC NAME
NSIADDR
NAME 1
NAME2

GETlilAIN

LR
BCTR
EX
BR
MVC

DEQ

DC
DC

R,LV=(5),
HIARCHY=1
4,1
5,0
5,MOVEINST
14
0(1,4),0(3)

Allocate main storage for list
In IBM 2361 Core storage
Address of area in register 4
Subtr~ct 1 from area length
Move list to allocated area
Return

(NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L

CLS'MAJOR'
CLS'MINOR' ---------___ J

Example 30. Using the List and the Execute Forms of the DEQ Macro
Instruction

NONREENTERABLE LOAD MODULES

The use of reenterable load modules does not automatically conserve
main storage; in many applications it will a~tually prove wasteful. If
a load module is not used in many jobs and if it is not employed by more
than one task in a job step, there is no reason to make the load module
reenterable. The allocation of main storage for the purpose of moving
code from the load module to the allocated area is a waste of both time
and main storage when only one task requires the use of the load module.

You may remember that, in an operating system with MVT, the area
occupied by a reenterable or serially reusable load module is not
released automatically when the module returns control to the control
program. (Refer to nHow Control is Returnedn in the discussion of
wPassing Control in a Dynamic Structure. W

) In anticipation of future
use, the used copy of the module is retained intact .for as long as
possible; its area is available to fill both implicit and explicit
requests for storage, but only after all other available storage has
been allocated. If copies of several modules are retained when they are
not needed, available storage may be fragmented as first the areas
between the modules are allocated, and then the module areas themselves.

To prevent this fragmentation, you should not make a load module ,
reenterable or serially reusable if reusability is not really important
to the logic of your program. Of course, if reusability is important,
you can issue a LOAD macro instruction to load a reusable module, and
later issue a DELETE macro instruction to release its area. If
reusability is not important, but you need to execute a module that has
been made reusable, you can make the module temporarily nonreusable by
bringing its directory entry into storage, modifying the contents of the
entry, and using the entry to refer to the module. After issuing a BLDL
macro instruction to build a list containing the directory entry~ you,
need only set the first two bits of the twenty-third byte in the entry
to zero; the module will then be treated as nonreusable when given
control by a LINK, ATTACH, or XCTL macro instruction with a DE operand

86 Supervisor Services

that points to the entry. To set the appropriate bits to zero, you can
use an AND-immediate instruction like the following, which could be
placed after the BLDL macro instruction in Example 18:

NI NAMEADDR+22,B'00111111'

This instruction ensures the nonreusability of the module to which
NAMEADDR refers.

One method of conserving main storage when reusability is not a
consideration is to use a planned overlay structure. A complete
description of the planned overlay structure is contained in the Linkage
Editor and Loader manual. Briefly, in a planned overlay structure only
portions of the load modules are brought into main storage at a time;
wben a portion of the load module not in main storage is required, it is
loaded in the area occupied by existing portions of the load module.
While the use of an overlay structure requires more planning on your
part to determine all the portions of a load module required at anyone
time, .it can result in a considerable saving of ~torage. A well planned
overlay structure can result in a savings of 50 percent or more over
bringing the entire load module into main storage at once. This does
increase the amount of time spent in bringing in portions of the load
module, however.

It is also possible for you to use an overlay type of approach in the
design of your load module without using the linkage editor by reusing
the areas containing completed routines within a load module. For
example, if your load module consists of three control sections of 2000
bytes each which are always executed sequentially, as soon as control is
passed to the second control section you have 2000 bytes (the size of
the first control section) available to use as a data area. If you
reuse this area, you can save up to 2000 bytes of additional main
storage which would otherwise be allocated using DS instructions or
GETMAIN macro instructions.

RELEASING MAIN STORAGE

As indicated in Program Management, the control program establishes
two responsibility counts for every load module brought into main
storage in response to your requests for that load module. The
responsibility counts are lowered as follows:

• If the load module was requested in a LOAD macro instruction, that
responsibility count is lowered using a DELETE macro instruction.

• If the load module was requested in a LINK, ATTACH, or XCTL macro
instruction, that responsibility count is lowered using an XCTL
macro instruction or by returning control to the control program.

• When a task is terminated, the responsibility counts are lowered by
the number of requests for the load module made in LINK, LOAD,
ATTACH, and XCTL macro instructions during the performance of that
task, minus the number of deletions indicated above.

Except for those modules contained in the link pack area, the main
storage area occupied by a load module is available for reuse when the
responsibility counts reach zero. When you plan your program, you can
design the load modules to give you the best trade-off between execution
time and efficient main storage use. Naturally, if you will use a load
module many times in the course of a job step, you will issue a LOAD
macro instruction to bring it into main storage, and you will not issue
a OELETE macro instruction until all uses of the load module have
completed. In this case it is better to have the load module in main
storage all the time than to bring it in every time you require it.

Main-Storage Management 87

Conversely, if a load module is used only once during the job step, or
if its uses are widely separated, it will conserve main storage if you
issue a LINK macro instruction to load the module and issue an XCTL from
the module (or return control to the control program) when it has
completed.

There is a minor problem involved in the deletion of load modules
containing data control blocks. An OPEN macro instruction must be
issued before the data control block is used, and a CLOSE macro
instruction issued after the use is finished. If you do not issue a
CLOSE macro instruction for the data control block, the control program
will issue one for you when the task is terminated. However, if the
load module containing the data control block has been removed from main
stcrage, the attempt to issue the CLOSE macro instruction will cause
abnormal termination of the task. You must either issue the CLOSE macro
instruction yourself before deleting the load module, or ensure that the
data control block is still in main storage when the task is terminated.

STORAGE HIERARCHIES

Main storage may be expanded by including IBM 2361 Core Storage in
the system (excluding the Model 65 Multiprocessing System). Main
Storage Hierarchy Support for IBM 2361 Models 1 and 2 permits selective
access to either processor storage (storage associated with the Central
Processing Unit) or IBM 2361 Core Storage. Processor Storage is
referenced as hierarchy 0; IBM 2361 Core Storage is referenced as
hierarchy 1. The first address in IBM 2361 Core Storage is one higher
than the last address in processor storage.

Since IBM 2361 Core Storage is an extension of main storage, no
special instructions are required for its use. Hierarchies 0 and 1 may
be specified by using the hierarchy parameter (HIARCHY=) in the ATTACH,
DCB, GET~~IN, GETPOOL, LINK, LOAD, and XCTL macro instructions. If the
hierarchy parameter is omitted, requested storage, if available, is
obtained from processor storage.

In uSing Main Storage Hierarchy support on a Model 50, use caution in
directing programs containing CCWs for direct access devices to be
loaded into hierarchy 1. (Under MFT, this includes readers and
writers.) If this is disregarded, overrun will occur which will degrade
the performance or result in an unrecoverable I/O error.

If IBM 2361 Core Storage is not included in an MFT system generated
with storage hierarchies, requests for storage within hierarchy 1 are
obtained from hierarchy O. If IBM 2361 Core Storage is not included in
an MVT system generated with storage hierarchies, the hierarchy
structure is contained wholly within processor storage. Example 28
shows two GETMAIN requests for hierarchy O. Example 29 shows a request
for hierarchy 1. R~quirements for writing macro instructions with the
hierarchy parameter are described in the Supervisor and Data Management
Macro Instructions manual.

88 Supervisor Services

CHECKPOINT AND RESTART

When you sUDmit a job for execution, you expect it to be executed
quickly and efficiently. But if a job ste~ terminates abnormally, you
may have to submit the job again. You then lose valuable computer time
and must wait longer for your results.

The operating system provides special facilities to reduce the
effects of abnormal termination. When a job step terminates abnormally,
you can restart it, either from the beginning or from a checkpoint
within the job step itself. You can request that the restart
automatically follow abnormal termination, or you can request restart
later by submitting a new job.

When you submit a new job, you actually resubmit the original job
with certain changes indicating where restart is to occur. If
necessary, you can make more extensive changes, such as corrections to
data that will be 'processed after restart. At times, you may wish to
make such changes and then restart a job step that has terminated
normally but has produced incorrect results.

When you restart a job step, the step mayor may not be completed
successfully. You can expect successful completion if abnormal
termination was the result of a chance error, such as a pari,ty error,
because such an error should not recur after restart. If abnormal
termination resulted from an error in data or job control statements,
you can expect successful completion if you correct the error and
request restart by submitting a new job. Obviously, you cannot expect
successful completion if the cause of abnormal termination was an error
in the logic of your program.

TYPES OF RESTART: You can request two basic types of restart:

• Step restart, which is a restart from the beginning of a job step •

• Checkpoint restart, which is a restart from a checkpoint within a
job step. A job step can include any number of checkpoints. Each
checkpoint is established by a CHKPT macro instruction.

You can request that either type of restart automatically follow
abnormal termination. You can also request either type by submitting a
new job.

AUTOMATIC RESTART: You request automatic step restart through job
control statements; you request automatic checkpoint resta'rt through the
CHKPT macro instruction.

If you request automatic step restart, the job step will be restarted
f~om the beginning if it terminates abnormally without issuing a CHKPT
macro instruction. If the step terminates after issuing a CHKPT macro
instruction, it will be restarted from the most recent checkpoint,
unless automatic checkpoint restart is suppressed.

You can suppress automatic checkpoint restart through either a job
control statement or the CHKPT macro instruction. If you do so, and you
request automatic step restart, the job step will be restarted from the
beginning in the event of abnormal termination. However, automatic step
restart is also suppressed if abnormal termination occurs after restart
from a checkpoint within the same step.

Checkpoint and Restart 89

Automatic step or checkpoint restart is possible only when the
abnormal completion code is one of a set of codes specified at system
generation. (In a system with MFT or MVT, this set may include the code
that represents a system failure requiring a system restart.) All
automatic restarts must be authorized ty the operator.

DEFERRED RESTART: Restart is deferred when you do not request automatic
restart or when automatic restart is not allowed or is not successful.
You request deferred restart by submitting a new job.

With deferred restart, you can consider the cause of abnormal
termination, decide whether restart is likely to be successful, and make
any necessary changes in data and job control statements. You can also
decide whether to restart the job step from the beginning or from a
checkpoint, and can choose a checkpoint other than the most recent one.
In some cases, you may have the option of restarting the job step on an
alternate computing system.

ESTABLISHING CHECKPOINTS

To establish a checkpoint, you use the CHKPT macro instruction. This
macro instruction records the information necessary to restart the job
step; it records this information in a .checkpoint data set.

Checkpoint data sets are a special topic discussed later. The
following discussion concerns the use of the CHKPT macro instruction,
and the selection of checkpoints. You must te careful in selecting
checkpoints, because their placement is important to successful restart.

In selecting a checkpoint, consider the following restrictions:

• When the checkpoint is established, the jot step must comprise a
single task. The job step task must be your only task when the job
step is restarted.

• A checkpoint cannot be established by an exit routine that returns
control to the control program. This type of routine is specified
by the ATTACH, SPIE, and STIMER macro instructions, and by the EXLST
and SYNAD operands of the DCB macro instruction. (There is one
ex'ception, a special EXLST routine that is discussed later.)

• If a STIMER or WTOR macro instruction has teen i~sued, a checkpoint
cannot be established before the time interval is completed or the
operator's reply is received. After a restart, no timer
interruption or operator reply could be expected.

• In a system with MVT and the rollout/rollin option, a checkpoint
cannot be established when the job step has been allocated storage
from outside its region.

In selecting a checkpoint, you must also consider the handling of
data sets and serially reusable resources. First, however, it may help
to consider how the CHKPT Racro instruction is u~ed to establish
checkpoints.

Example 31 shows a CHKPT reacro instruction and a DCB macro
instruction for the checkpoint data set. The CHKP'I macro instruction
records information in the checkpoint data set and requests automatic
restart if the job step .later terminates atnormally. When the step is
restarted, execution resumes with the instruction that follows the CHKPT
macro instruction.

90 Supervisor Services

r--------~----------------------------------~----------------------,
I I
I CHKPT CHKPTDCB I
I I
I CHKPTDCB DCB DSORG=PS,MACRF=(W),RECFM=U,BLKSIZE=32760, C I
I DDNAME=CHKPTDD I L __ J

Example 31. Establishing a Checkpoint

When automatic restart is not possible, you can request a deferred
restart by submitting a new job. The JOB statement for the new job
refers to the checkpoint by an identification that (in Example 30) is
generated by the control program and printed in a message to the
operator.

After being restarted, the job step may again terminate abnormally.
If it does, it may be automatically restarted from the same checkpoint,
subject to operator authorization. To ensure that the job step is not
restarted twice from the same checkpoint, you can code the sequence
shown in Example 32.

The instruction that follows the checkpoint tests the return code
zegister to determine whether control has been returned as the result of
a restart. If the return code is four, a restart has just occurred, and
a second CHKPT macro instruction is executed. This macro instruction
has a CANCEL operand, which cancels the request of the previous macro
instruction for an automatic restart. If the job step terminates
abnormally after issuing CHKPT CANCEL, automatic restart can occur only
at a later checkpoint. Because the step was restarted from a
checkpoint, automatic restart cannot occur.

Restart from a checkpoint invalidates the results of certain macro
instructions. One of these is the EXTRACT macro instruction which is
used to obtain information from the task control block. This
information is subject to change when the task is terminated and the job
step is restarted. If the information is needed after restart, it
should be updated by reissuing the EXTRACT macro instruction as shown in
Example 33.

r--,
I I
I CHKPT CHKPTDCB Establish checkpoint I
I CH 15,=H'4' Restart in progress? I
I BNE NRESTART NO, branch to NRESTART I
I CHKPT CANCEL Yes, cancel restart request I
I NRESTART I L _______ ~ __ J

Example 32. Canceling a Request for Automatic Restart

r--,
I I
I EXTRACT ANSADDR,FIELDS=(ALL) Obtain TCB information I
I I
I CHKPT CHKPTDCB Establish checkpoint I
I CH 15,=H'4' Restart in progress? I
I BNE NRESTART No, branch to NRESTART I
I EXTRACT ANSADDR,FIELDS=(ALL) Yes, obtain new information I
I NRESTART I L __ J

Example 33. Obtaining Updated TCB Information After Restart

Checkpoint and Restart 91

Restart also invalidates the results of the ENQ and SETPRT macro
instructions. The ENQ macro instruction, to be discussed in the next
topic, is used to request control of serially reusable resources.

The SETPRT macro instruction is used in data management to load the
Universal Character set CUCS) buffer for a printer with the UCS feature
and to load the forms control buffer (FCB) for a printer without a
carriage control tape. The FCB and the carriage control tape both
control paper movement in the printer. The contents of the buffers are
not saved when a checkpoint is taken. To reload the buffers upon
restart, you must reissue the SETPRT macro instruction in the same
manner as the EXTRACT macro instruction.

CHECKPOINTS AND SERIALLY REUSABLE RESOURCES

When a job step terminates, it loses control of serially reusable
resources. If the step is restarted, it must request all of the
resources that it requires to continue processing.

Example 34 shows a program that requests a serially reusable resource
before establishing a checkpoint. After the checkpoint, it
conditionally requests the same resource. If the job step still has
control of the resource, the control program ignores the request. It

. fills the request if the job step has terminated abnormally, has lost
control of the resource, and has been restarted from the checkpoint.

SHARED DIRECT ACCESS STORAGE DEVICE

At some installations, a direct access storage device is shared by
two or more independent computing systems. This device is a serially
reusable resource; if it is being used when a checkpoint is taken, it
must be requested after a restart from the checkpoint. This resource is
requested not by the ENQ macro instruction, but by a special macro
instruction (RESERVE) described in the System programmer's Guide.

OTHER SERIALLY REUSABLE RESOURCES

There are some resources that you request implicitly by issuing data
management macro instructions. These resources may be records that you
are processing, or tracks on a direct access device. Since you cannot
conditionally request control of these resources after a restart, you
should not establish checkpoints while you have control of these
resources •

• If you use the basic direct access method (BDAM), do not take a
checkpoint before releasing a record that has been read with
exclusive control. When you add a record to a data set, do not take
a checkpoint before checking for completion of the write operation
if the record format is variable-length or undefined.

r-------------------------~----,
I I
I ENQ CQADDR,RADDR) I
I I
I CHKPT CHKPTDCB I
I ENQ CQADDR,RADDR),RET=HAVE I
I I
I DEQ CQADDR,RADDR) I
I I L ______________________________ J

Example 34. Requesting a Resource After Restart

92 'Supervisor Services

• If you use
not take a
operation.
checkpoint
completion

the basic indexed sequential access method (BISAM),
checkpoint before waiting for completion of a write
If you read a record for update, do not take a

before writing the updated record and waiting for
of the write operation.

do

• If you use the queued indexed sequential access method (QISAM),
issue an ESETL macro instruction before taking a checkpoint if you
have previously issued a SETL macro instruction. You can issue
another SETL macro instruction after the checkpoint.

CHECKPOINTS AND DATA MANAGEMENT

Data management is one of the most important considerations in
selecting checkpoints, and is discussed in detail in the publication
Data Management Services. The following discussion should be
understandable if you h~ve a basic knowledge of data management concepts
and facilities.

DISPOSITION OF DATA SETS

At the end of a job step, data sets are disposed of according to your
specifications in DD control statements. If a job step terminates
abnormally, you should keep or catalog data sets that you may need for a
deferred restart.

When you catalog a ·data set, you enable the operating system to
retrieve the data set by name alone. You therefore do not have to
provide volume and device-type information when you request deferred
restart. Providing such information could require you to write new DD
statemen ts.

If you request automatic restart, the system keeps data sets for you,
except when the restart is not actually performed. The kept data sets
include "temporary" data sets and others that normally would be deleted.
Data sets are deleted only if created by a job step that is to be
restarted from the beginning.

Guidelines for specifying data set disposition appear in the topic
"Using the Restart Facilities" in the Job Control Language Reference
manual.

POSITIONING OF DATA SETS

If you take a checkpoint while processing a data set, you may
continue processing for some time before abnormal termination. On
restart, you must be able to resume processing at the correct location
in the data set.

When the control program restarts a job step, it automatically
repositions data sets on magnetic tape and direct access devices. It
does not reposition data sets o~ unit record equipment; such data sets
must be repoSitioned manually or by your program.

Unit Record Data Sets: Unit record output can be either punched cards
or printed pages. Input can only be punched cards.

To reposition an output data set, you simply discard data punched or
printed after a checkpoint. This data is recreated when the job step is
restarted. Note that when pagination is important, you should take a
checkpoint only after printing the last line on a page.

Checkpoint and Restart 93

To reposition an input data set, you include a repositioning routine
as part of your program. Such a routine should first determine whether
repositioning is necessary, since the data set may have been transcribed
onto a magnetic tape or direct access volume. If the data set has been
transcribed, it is repositioned automatically by the control program;
otherwise, it must be repositioned by your routine.

If you provide a repositioning routine, your program might operate as
follows:

• The program saves the first record read from the data set and keeps
a count of the total number of records read before each checkpoint.

• After a restart, the repositioning routine reads a record from the
data set and compares it with the first record read before abnormal
termination.

• If the records are identical, the data set has been positioned to
the beginning. The routine repositions it by reading (without
otherwise processing) the number of records read before the
checkpoint.

• If the records differ, no repositioning is necessary. The data set
presumably' has been transcribed onto a magnetic tape or direct
access volume, and has been repositioned by the control program.

Tape and Direct Access Data Sets: When the control program repositions
a tape or direct access data set, it ensures that the correct volume is
mounted. During an automatic restart, it may ask the operator to
demount the current volume of a multivolume data set, and to replace it
with an earlier volume. However, if the data set is physically
sequential, you can ensure that it can be repositioned without chan~ing
volumes simply by taking a checkpoint each time a new volume is mounted·.
To do so, you provide a routine for taking a checkpoint, and specify its
address in the data control block exit list. The control program gives
control to this routine at the appropriate time. The requirements for
writing an end-of-volume routine are described in ·Processing Program
Description," Section II, Part 1.

Positioning becomes especially important when you modify a physically
sequential or partitioned data set (and specify DISP=MOD in the DD
statement). In each case, you must take a checkpoint immediately after
opening the data set, before writing any records. If you do not, errors
will occur if:

• You take a checkpoint before opening the data set.

• You open the data set and begin writing records.

• The job step terminates and is restarted from the checkpoint.

• You reopen the data set after restart.

If you are using BISAM to add records to an ISAM data set, you must
anticipate duplicate record indications following a restart. These ,
duplicate record indications can occur when you attempt to add records
that were already added before the restart. On the other hand, if you
are using QISAM to add records to an ISAM data set, or if you are
creating the data set, all records added after the checkpoint will be
lost after the restart.

If you are modifying a sequential or partitioned data set, the data
set will be positioned incorrectly when you reopen it after restart.
Because of the parameter DISP=MOD, the data set is positioned to the
end; that is, the data set is positioned after records that were added

94 Supervisor Services

prior to abnormal termination. Thus, records added after restart will
duplicate those added before restart.

When you open a data set before taking a checkpoint, the data set is
repositioned during a checkpoint restart. Also, when you specify
DISP=MOD for a data set on a direct access device, the data set is
repositioned (when opened) after an automatic step restart.

SYSIN and SYSOUT Data Sets: System input (SYSIN) data sets are data
sets that you include with your job control statements in the system
input stream. System output (SYSOUT) data sets are data sets that you
route to a printer or card punch through the system output stream. By
routing data sets through the input and output streams, you avoid having
to request unit record devices for exclusive use by your job step.

A SYSIN or SYSOUT data set mayor may not be on a unit record device
at the time it is processed by your program. In a system with MFT or
MVT, a SYSIN data set is always on a direct access device, while a
SYSOUT data set may be on a unit record device, magnetic tape unit, or
direct access device. Transcription from one type of device to another
(such as card-to-tape transcription for SYSIN data sets) is handled by
the operator or the operating system.

When a job step is restarted, the repositioning of a SYSIN or SYSOUT
data set depends on the type_ of device that is actually used by your
program. If the device is a unit record device, you must reposition the
data set yourself just as you do any other unit record data set. If the
device is a magnetic tape unit or direct access device, the data set is
repositioned automatically.

A SYSOUT data set has the implied status DISP=MOD. Therefore, a
checkpoint should be taken immediately after a SYSOUT data set is
opened. For automatic step restart, the implied status DISP=MOD means
that SYSOUT data sets on magnetic tape are not repositioned in the same
way as SYSOUT data sets on direct access devices. SYSOUT data sets on
tape are positioned to the end; SYSOUT data sets on direct access
devices are positioned to the beginning.

For deferred checkpoint restart, note that:

• If a SYSIN data set was read completely before the checkpoint, you
need not include the data set when you request restart from the
checkpoint. If only part of the data set was read, you must include
the complete data set so that it can be properly repositioned.

• If the checkpoint was taken while a SYSIN or SYSOUT data set was
being processed, the type of device used directly by your program
must be the same for restart as for original execution. The
blocking factor (number of records per block> must also be the same.

PRESERVATION OF' DATA SETS

The control program repositions data sets but does not preserve their
contents. After taking a checkpoint, you must ensure that the data set
contents are not changed in a manner that would make successful restart
impossible.

If you read records from a data set, update them, and write them back
to their original locations, it may be useless to take a checkpoint
before completing this processing. If you take a checkpoint earlier,
restart will produce invalid results if you update a record before
abnormal termination, update it again after restart, and actually change
the record in both cases. For example, su~pose the purpose of the
update is to switch the positions of two fields in each record. If you

Checkpoint and Restart 95

update a record twice, you return the fields to their original
positions, and the results are invalid. In a different application, an
update might simply place a value in a record field, regardless of the
field's original contents. In this case, you could restart the step at
a checkpoint taken before or during the update procedure, because an
updated record would not be changed if updated again after restart.

Partitioned Data Sets: When you process a partitioned data set, you
must be careful to preserve the contents of the directory. The
directory consists of entries that point to each member of the data set.

When you add a member to a partitioned set, you also add an entry to
the directory. If you add only one member, you can use the STOW macro
instruction to create the entry, or you can specify the member name in
the DD statement; in the latter case, the control program creates the
directory entry when you close the data set or when the job step
terminates. If you add more than ~ne «ember, you must use the STOW
macro instruction to create an entry for each member.

When you add one or more members to a partitioned data set, you must
take a checkpoint immediately after opening the data set. After taking
the checkpoint, you can write the new member and add its entry to the
directory. Then, if the step is restarted from the checkpoint, the data
set is repositioned; the new member and its directory entry are deleted,
and are recreated after restart.

If you do not take a checkpoint after opening the data set, various
errors may occur. As an example, assume that:

• You take a checkpoint before opening a partitioned data set.

• You open the data set and begin writing a new member.

• The step terminates abnormally; the control program creates a
directory entry for the new member, using the member name specified
in the DD statement •

• The step is automatically restarted from the checkpoint; the data
set is not open, and therefore it is not repositioned.

• You reopen the data set after restart; the control program positions
the data set after the member that was just created.

• You write the member again and close the data set; the control
program tries to create a directory entry, again using the member
name specified in the DD statement.

The attempt to create a directory entry after restart is unsuccessful,
because the member name already appears in the entry that was created
before abnormal termination. The step again terminates abnormally, and
the member created after restart is deleted.

Note that when a partitioned data set is repOSitioned after restart
from a checkpoint, the control program ,deletes all members that have
been added to the data set since the checkpoint was taken. You
therefore should not request a deferred checkpoint restart if it would
delete members that have been added by other jobs.

To update a member of a partitioned data set, you can either write
updated records back to their original locations, or rewrite the entire
member (in updated form) as a new member of the data set. In the latter
case, you update the directory entry to point to the rewritten member.

If you take a checkpoint before rewriting a member, you must also
take one immediately after updating the directory. You must do so

96 Supervisor Services

because the control program will delete the updated directory entry if
it repositions the data set for restart from the earlier checkpoint.
Since no entry then points to the original member, execution after
restart will be unsuccessful.

Data Sets on Direct Access Devices: For every data set on a direct
access device, there is a standard data set la~el called a data set
control block (DSCB). The DSCB is part of the volume table of contents
(VTOC>; it defines the location and extent of the data set on a
particular volume.

If you take a checkpoint while processing a data set on a direct
access device, the job step can be restarted from the checkpoint only if
the DSCB has not been changed since the checkpoint was taken, or if the
only changes result from:

• Secondary allocation. In the DD statement, you can request that
additional space be allocated to the data set when the space
currently available ~s exhausted. If space is allocated after a
checkpoint is taken, this space is indicated in the DSCBi on restart
from the checkpoint, the space is released and the DSCB is changed
accordingly.

• Release of unused space. In the DC statement, you can 'request that
unused space be released at the end of the job step. If space is
released, the DSCB may indicate a reduced extent for the data set
when checkpoint restart is deferredi no space is allocated to
replace that which was released. Note that space is not released
when step termination is followed by automatic restart~

If the DSCB is changed by moving the data set to a new location on the
same volume, or by moving the data set to a new volume, the job step
cannot be restarted from the checkpoint unless:

• Restart is deferred.

• The data set is replaced by a dummy data set.
discussion of "Dummy Data Sets" below.)

(Refer to the

If a data set occupies more than one volume, there is a DSCB for the
data set on each volume. If the data set is processed sequentially,
only one volume is being processed when the checkpoint is taken; if the
DSCB for this volume has not been changed, the job step can be restarted
from the checkpoint even though there may be changes in the DSCBs for
the data set on other volumes.

When end-of-volume is reached in writing a data set, secondary
allocation may cause the data set to be continued on another volume. If
the allocation occurs after a checkpoint, the volume used for
continuation will not be mounted on restart from the checkpoint. The
control program therefore cannot release the allocated space, even
though it no longer recognizes this space asa part of the data set.

To release space on a volume that is not ffiounted on restart, you
should use a utility program to delete the extension of the data set on
the volume. If you do not release the space before the job step is
restarted, the step will be abnormally terminated if the data set is
again extended to the same volume. Note that if the data set
organization is physically sequential, you can provide an end-of-volume
exit routine to ensure that a checkpoint is taken each time the data set
is extended to a new volume.

Work Data Sets: Many programs use "work" data sets, which are
alternately written and read, rewritten and reread. If you use a work
data set, you should take a checkpoint each time you have finished

Checkpoint and Restart 97

reading the data set, before rewriting it. Then, if the job step is
restarted, you will not need to read records that you have destroyed by
rewriting the data set. If you use the data set many times, you can
reduce the frequency of checkpoints by using two data sets, as shown in
Example 35. If you use two data sets on separate volumes, you can
assign both to one device through the UNIT parameter in the associated
DD control statements.

Dummy Data sets: When you request deferred checkpoint restart, you can
sometimes use dummy data sets to replace data sets that were used during
the origin~l execution of your program. For example, your program may
have taken a checkpoint while processing a data set; it may have
finished processing the data set prior to abnormal termination, or the
data set may have been deleted. If there is no need to process the data
set after restart, you can replace it with a dummy data set, provided
that:

• The data set is sequentially organized and is processed by the basic
or the queued sequential access method (BSAM or QSAM).,

• The job step is not restarted from a checkpoint that is within the
data set's end-of-volume exit routine.

Of course, the data set must not be the checkpoint data set that is
being used to restart the job step.

After restart, an input request for a dummy data set results in an
immediate end-of-data-set condition. An output request is processed
normally, except that no data is actually written.

You define a dummy data set by means of a DD statement containing the
parameter DUMMY or DSNAME=NULLFILE. The name of the DD statement must
be the same as that of the DD statement for' the data set being replaced.

PRE-ALLOCATED DATA SETS,: In systems with MVT, direct access space for
temporary data sets can be pre-allocated to save time. However, you
cannot use this facility with checkpoint/restart. Checkpoints and
automatic restarts are suppre~sed for any job step that uses a
pre-allocated temporary data set.

Pre-allocated data sets are discussed in detail in the chapter
·System Reader, Initiator and Writer Cataloged Procedures· in the
publication System Programmer's Guide.

r---------------------------T----------------------------------, I Using One Data Set (A) I Using Two Data Sets (Ai and A2) I
~---------------------------+-------.--------------------------~
I Open A I Open Ai I
I Write and read back A I Write and read back Ai I
I Checkpoint I Close Ai and open 1\2 I
I Rewrite and read back A I Write and read tack 1\2 I
I CheckFoint I Checkpoint I
I Rewrite and read back A I Rewrite and read back 1\2 I
I Checkpoint I Close A2 and open Ai I
I Rewrite and read back A I Rewrite and read back Ai I
I Close A I Close Ai I L _______________ = ___________ ~ __________________________________ J

Example 35. Checkpoints for processing Work Data Sets

98 Supervisor Services

CHECKPOINT DATA SETS

When you establish a checkpoint, the control program creates an entry
in a checkpoint data set. The entry contains the information necessary
to restart the job step from the checkpoint.

DEFINING A CHECKPOINT DATA SET

To define a checkpoint data set, you use the DCB macro instruction.
This macro instruction creates a data control block, which describes the
data set to the control program. The data control block contains
information that you specify in the DCB macro instruction or in a DD job
control statement.

The DCB macro instruction must specify the data set organization and
the type of instruction that the control program will use to write
entries in the data set. Other information, such as block size and
record format, can be specified either in the DCBmacro instruction or
in the DD statement. Some information is optional and some required;
the following examples provide all of the required information that can
be coded in the macro instruction:

D1 DCB DSORG=PS,MACRF=(W),RECFM=U,BLKSIZE=32760,CDNAME=CHECKDD1

D2 DCB DSORG=PO,MACRF=(W),RECFM=U,BLKSIZE=600,DDNAME=CHECKDD2

A checkpoint data set must be physically sequential (DSORG=PS) or
partitioned (DSORG=PO), and must be processed using the WRITE macro
instruction (MACRF=(W». The record format must be undefined (RECFM=U).
The block size must be at least 600 bytes (BLKSIZE=600), but not greater
than 32,760 bytes for magnetic tape, and not greater than the track
length for direct access. You can omit block size information if you
allow the control program to open the data set (as discussed in the next
topic); in this case, the control program determines the maximum block
size for the device being used, and places it in the data control block.

The data control block must refer to a DD statement (DDNAME=CHECKDD1,
for example) for such additional information as the data set name and
the type of labels used for magnetic tape. (A tape can have standard
labels, nonstandard latels, or no labels.)

For seven-track tape, you must specify the tape recording technique
(TRTCH=C, data conversion with odd parity). If you specify it in the
DCB macro instruction, you must also specify device dependency
(DEVD=TA). For direct access, you must not specify key length unless
you specify a length of zero (KEYLEN=O).

As an optional service, you can request chained scheduling of
input/output operations (OPTCD=C and NCP=2 channel programs). With
direct access, you can request validity checking for write operations,
with or without chained scheduling (OPTCD=WC or OPTCD=W). with direct
access and normal scheduling, you can request use of track overflow
(RECFM=UT).

USING A CHECKPOINT DATA SET

Before any data set can be used, it must te opened ty issuing the
OPEN macro instruction. When you use a checkpoint data set, you can
open it yourself or allow the control program to open it for you. If
the data set is not open when you issue the CHKPT macro instruction, the
control program opens it, writes a checkpoint entry, and then closes the
data set before returning control to your program.

Checkpoint and Restart 99

If you open the checkpoint data set yourself, you need not close it
until after taking the last checkpoint for the job step. If you take
many checkpoints; you will save a considerable amount of time if you
allow the data set to remain open. You will also save all of the
checkpoint entries and thus be able to request a deferred restart from
any of the checkpoints.

If the control program opens the data set, the data set is positioned
for each checkfoint according to your specifications in the DD
statement. If you specify DISP=MOD, the data set is positioned to the
end and each entry is written after that for the previous checkpoint.
If you specify anything else, the data set is positioned to the
beginning and each entry is written over the previous entry.

By allowing the control program to write over a previous entry, you
can save space in external storage. You should not allow it to write
over the most recent entry, however, because the job step might be
terminated while the new entry was being written. To save the most
recent entry, you can use two checkpoint data sets in alternation; the
new entry is then written in one data set while the previous entry is
saved in the other.

Example 36 shows a way of alternating data sets when all checkpoints
are taken by one CHKPT macro instruction. The data sets are opened by
the control program, and are identified by two DD statements, CHECKDD1
and CHECKDD2. The data control block initially refers to CHECKDD2, but
is changed before the first checkpoint to refer to CHECKDD1. Before the
second checkpoint, it is changed to refer to CHECKDD2i before the third
checkpoint, it is again changed to refer to CHECKDD1, and so forth. In
this .way, one data control block can be used for two data sets that are
not open at the same time. (The DCBD macro instruction, used in Example
36, is described in the section "Modifying the Data Control Block," of
Data Management Services.)

With direct access, a checkpoint data set must be written entirely on
one volume. Also, it must be written entirely in the space originally
allocated to the data set. When the available space cannot contain a
complete checkpoint entry, an attempt to take a checkpoint results in
abnormal termination, unless you have requested secondary space
allocation in the DD statement. If you have requested secondary
allocation, abnormal termination does not occur, even though the space
cannot be used. Control is returned to your program with an error
indication in register 15.

With magnetic tape, a checkpoint data set can be written on more than
one volume. If end-of-volume is reached in writing an entry, the entire

r---~-----------------,

DCBD
CSECT

LA
USING
XC
XC
XC
CHKPT

DSORG=PS

2,CHECKDCB
lHADCB,2
DCBDDNAM(8),DDHOLD
DDHOLD(8),DCBDDNAM
DCBDDNAM(8) ,DDHOLD
CHECKDCB

DDHOLD DC C'CHECKDD1'

Define IHADCB (dummy section
that defines DCBDDNAM)

Establish CHECKDCB as base
address for IHADCB

Exchange ddname in CHECKDCB
for ddname in DDHOLD

Open, checkpoint, close

CHECKDCB DCB DSORG=PS,MACRF=(W),DDNAME=CHECKDD2 ___ J

Example 36. Alternating Use of Checkpoint Data Sets

100 Supervisor Services'

entry is written on the next volume. The volume that contains the
complete entry is indicated in the message that identifies the
checkpoint.

Note that you must use a checkpoint data set only for taking
checkpoints. If you use a data set for any other purpose, you cannot
use it as a checkpoint data set.

RESTARTING A JOB STEP

If you request an automatic restart, the control program uses the
most recent entry in the checkpoint data set (or the most recent valid
entry if an uncorrectatle error occurred in writing the most recent
entry). If you request a deferred restart, you must specify the
appropriate checkpoint entry when you submit the job for restart.

DEFERRED RESTART

To identify the checkpoint data set, you include an appropriate DD
statement after the JOB statement, or after the //JOBIIB DD statement if
you define a job library. The name of the statement must be SYSCHK.

In the JOB statement, you specify the name of the job step to be
restarted and the checkpoint at which restart is to occur. You specify
the checkpoint by an identification that was printed on the operator's
console when the checkpoint was taken.

CHECKPOINT IDENTIFICATION

The control program assigns the identification for each checkpoint,
unless you assign it yourself when you issue the CHKPT macro
instruction. Example 37 shows a macro instruction that assigns the
identification "ENDOFDATAONINPUT". The identification is 16 characters
in length -- the maximum length allowed for a physically sequential data
set. For a partitioned data set, the identification is used as a member
name and, therefore, cannot exceed eight characters.

If you assign checkpoint id~ntifications, you should not assign the
same identification to two or more checkpoints. If you do, you will be
able to restart the job step from only one of the checkpoints if you
save the entries in the same checkpoint data set. In the case of a
physically sequential data set, you can restart the step only from the
earliest checkpoint, because the control program will find its entry
first when it searches the data set. In the case of a partitioned data
set, you can restart the step only from the latest checkpoint, because
its entry is a member of the data set and replaces any previous entry
with the same identification (member name).

When the control program assigns identifications, the identification
for each checkpoint is unique. The identification is eight bytes in
length, and consists of the letter C followed by a seven-digit decimal

r--,
I I
I CHKPT CHECKDCB,CHECRID3,16 I
I I
I CHECKID3 DC C'ENDOFDATAONINPUT' I
I CHECKDCB DCB DSORG=PS,MACRF=(W),DDNAME=CHKDD I L ___ ~J

Example 37. Assigning a Checkpoint Identification

Checkpoint and Restart 101

r---1
I I
I CHKPT CHKDCB,ID,'S' Take checkpoint I
I LTR 15,15 Checkpoint taken? I
I BNZ PHASE2 No, branch to PHASE2 I
I PUT STEPLOG,MESSAGE Yes, print checkpoint ID I
I PHASE2 I
I I
I MESSAGE DC H'45,O' Record length, etc. I
I DC C'SUCCESSFUL CHKPT AT PHASE2. 10=' I
I 10 DS CL8 I
I STEPLOG DCB OSORG=PS,MACRF=(PM),RECFM=V,BLKSIZE=128, C I
I LRECL=124,DDNAME=LOGDD I
I CHKDCB DCB DSORG=PS,MACRF= (W) ,RECFM=1,BLKS:J;:ZE=32760, C I
I DDNAME=CHKDD I l ___ J

Example 38. Recording a Checkpoint Identification Assigned by the
Control Program

number. The number is the total number of checkpoints taken by the job,
including the current checkpoint, checkpoints taken earlier in the job
step, and checkpoints taken by any previous job steps.

The control program identifies each checkpoint in a message to the
operator; on request, it also makes the identification available to your
program. In Example 38, the CHKPT macro instruction requests the
control program to supply an identification and place it in the
eight-byte field named ID. When the checkpoint is successfully taken,
the program prints the identification as part of a message to the
programmer.

RESTART ON AN ALTERNATE SYSTEM

You can request deferred restart on a
which your job was originally executed.
must have facilities adequate to process
checkpoint restart, it must be identical
original system.

system other than the one on
Of course, the alternate system
your job, and, in the case of
in certain respects to the

• The type of operating system (MFT or MVT) must be the same for both
systems. Also, the release level rrust be the same.

• The nucleus of the alternate systerr must be identical to that of the
original system.

• The main storage area available to your job step must be the same in
both systems.

• If your job step uses data management access methods, the resident
routines for these access methods must have the same main storage
locations in both systems. In systems with MVT, these routines are
located in the link pack area. If your job step uses other modules
in the link pack area, these modules must also have the same
locations in both systems.

• If your job step uses main storage hierarchy 1, the boundary between
hierarchies 0 and 1 must be the sane in both systems.

FURTHER INFORMATION ON RESTART

For further information on restart, refer to the topic, nUsing the
Restart Facilitiesn in the Job Control Language Reference manual.

102 Supervisor Services

TIME SHARING OPTION (TSO) SERVICES

The operating system with the time sharing option (TSO) provides
certain services in addition to the ones discussed above.

SPECIFYING AN ATTENTION EXIT ROUTINE

Use the STAX macro instruction to specify the address of an attention
exit routine to gain control when the terminal user strikes the
attention key or when the terminal user specifies simulated attention.
The details about what you should do in an attention exit routine and
how you can use it appear in the Time Sharing Option Guide to Writing a
Terminal Monitoring Program or a Command Processor.

MANIPULATING TASK PROCESSING

Use the STATUS macro instruction to specify that a task is or is not
to be dispatched by the system.

When you issue the STATUS macro instruction with the START or STOP
operand, the system determines whether the specified subtask of the
current task_or all subtasks of the current task are to be modified.
When you specify START, the stop/start count in the subtask TCB(s) is
decreased and the nondispatchability flags are cleared. When you
specify STOP, the stop/start count in the subtask TCB(s) is increased
and the nondispatchability flags are set. The nondispatchability flags
are set for a task only if the task has no system routine being executed
for it. If a system routine is being executed for the task, the task is
made nondispatchable when it no longer has a system routine being
executed for it.

Time Sharing Option (TSO) Services' 103

INDEX

Indexes to Systems Reference Library
publications are consolidated in IBM
System/360 Operating System: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

ABEND macro instruction 66-77
abnormal condition handling 66-78
completion code 68
interception

by STAE 69-73
by STAI 73

obtaining a dump 74
STEP operand 68

Abnormal condition 66-77
attempting error recovery from 69-73
control program abnormal termination
routine 66

detection 66
handling 66-78

by ABEND 67
Abnormal termination

from DEQ 48,49
from ENQ 48,49
from program interruption 70
interception 69-73
of subtask 73
of task 69-73
restart after 88
routine 67

Additional entry paints 41,42
Allocation

(see main storage management)
ATTACH macro instruction

creating subpools 81
ECB operand 28,39,68
ETXR operand 28,29,39,68
STAI operand 73
STAI retry routine 73
SZERO operand 81
under MFT with subtasking 36-37
under MVT 37
warning for using task control

block 39,40

Base register
initial 3
permanent 7

BINTVL 51
BLDL macro instruction

example 22
required for DE operand 21
using with LINK macro instruction 27
using with LOAD macro instruction 28

104 Supervisor Services

Blocking, with checkpoint restart 93,94
Branching tatle

example 15
use when passing control with return 15

CALL macro instruction
passing control using 13,14
results of expansion 14

calling program, defined 3
calling sequence identifier 42
CANCEL cORmand, use at atnormal
termination 69,70

canceling the current STAE
request 69-71

CANCEL operand
in CHKPT 91
in TTIMER 51
(see also timing services)

CHAP macro instruction 35-37
Characteristics, load module 9
Checkpoint and restart 89-102

data sets using 93-98
direct access 94-97
disposition 93
dummy 97
partitioned 96-97
preallocated 98
preserving contents of 95-9S
SYSIN 95
SYSOUT 95

restarting a job step 101-102
(see also checkpoints, restart)

Checkpoint data sets 98-100
alternating use 100
closing 99
defining 99
examples using 98,99,100,101
o{;ening 99
positioning 94,100
s{;ace considerations 100
using 99-100

Checkpoint DD statement
examples 100
for deferred restart 100
requirement 99

Checkpoints
assigning identification of 101,102
by CHKPT macro instruction 90,91
data management and 93
establishing 90-98
restriction with STIMER and WTOR 90
suppressed with preallocated data
sets 98

with serially reusable resources 92-93
(see also checkpoint and restart,
checkpoints, restart)

CHKPT macro instruction 90-91
CANCEL operand 91

requesting identification of
checkpoints 91

restriction with
rollout/rollin 90
STIMER and WTOR 90

return codes 91
selecting checkpoints 90-91

CLASS parameter of JOB statement with
MFI' 36

Command scheduler communications parameter
list address 49

Completion code
in task control block 49
specified in ABEND 69
(see also return code)

COND parameter
EXEC statement 17,67
JOB statement 17,67

Conditional requests
from DEQ 46
from ENQ 46
from GETMAIN 78-79

Configurations of the operating system 2
Core image dump 74-75
Core storage (IBM 2361 core storage)

(see main storage hierarchy support)

DCB macro instruction, defining checkpoint
data sets 99

DCB operand for ATTACH, LINK, LOAD, and
XCTL 19,21

DE operand of ATTACH, LINK and
XCTL 19,23,86-87

DELETE macro instruction 28,87
DEQ macro instruction

proper use 46-48
using the list and execute forms 85-86

DESC operand 53
Descriptor codes (with MCS) 53

causing an * in the message 53
Designing programs, requirements for 3-32
DETACH macro instruction 39,68
DINTVL 51
Dispatching priority 34-37

available in task control block 49
computing 34
defined 34
of partitions 37
(see also priority)

Dispatching priority, initial 34,35
changing, using CHAP macro
instruction 35

DPRTY parameter of EXEC statement 34,35
specifying 34,35

Disposing of the message to the operator
(with MCS) 53,56

DaM macro instruction 56
DPMOD operand 35
DSCB 96
DSNAME operand of DD statement 98
Dummy data sets

defining 98
use with checkpoint and restart 98

DUMMY operand of DD statement 98

Dump 74-75
AEEND 74
core image 75
data set 74
indicative 75
requirements 74-75
SNAP 74

CUMP operand of ABEND 74
DXR macro instruction 62,63
Cynamic structure 9,10

ECB
(see event control block)

ECB operand of ATTACH 27-28,39
effect on task termination 68

Element type (E) explicit request for main
storage 77

End-of-task exit routine 49
(see also ETXR operand of ATTACH)

ENQ macro instruction
control program processing of 44-45
controlling load module use 29
exclusive control 43-44
proper use 45-48
requesting control of a resource 43-44
restriction on qname 43
shared control 43-44
testing for simultaneous resource
use 43

Entry point identifier
defined 42
specified in SAVE macro
instruction 5,42

used by the dump program 42
Entry points

added via IDENTIFY macro instruction 41
restrictions for additional 41

EP operand 19,20,21
EPLOC operand 19,20,21
ESETL macro instruction with

checkFoints 93
ETXR operand of ATTACH

and on task termination 68
use in MFT without subtasking 28,30
use in MVT, MFT with subtasking 39,68

Event control block
creation 40
diagram 40
reusing 40
use with ATTACH 40
use with POST 40
use with WAIT 40

EXEC statement, PARM field 8-9
Execute form of macro instructions 84
Execution, selection of job steps for 77
Explicit requests

for main storage 77-82
for resource 43-44

Extended-precision floating-point
simulator 62-66

EXTRACT rracro instruction
deterrr.ining current dispatching
priority 34,48,49

Index 105

determining initial dispatching
priority 34,48,49

determining limit priority 34
requires an answer area 48,49
used to obtain information from the task
control block 49

using FIELDS=ALL 49
warning for using task control block 39
with checkpoint restart 91
with problem program communication 75-76

FIELDS operand
(see EXTRACT)

Flag, save area 16,17
FREEMAIN macro instruction

releasing subpools 83
restriction regarding subpool 0 81
returning control of main storage 77,83

GETMAIN macro instruction
creating subpools 53,54
explicit request for main storage

example 79
producing reenterable code 78
types 78

specifying length of main storage
GSPL operand of ATTACH 33,82
GSPV operand of ATTACH 33,82

Hard copy log 54-55

77-83

78

HIARCHY operand of ATTACH, DCB, GETMAIN,
GETPOOL, LINK, LOAD, and XCTL 88

Hierarchies, main storage 88
examples using

hierarchy 0 79
hierarchy 1 86

IDENTIFY macro instruction
adding entry points 41
restrictions on use 41

Identify option 41
Implicit requests for main storage 83-87

ATTACH 80,83
LINK 80,83
LOAD 80,83
OPEN 83
XCTL 80,83

Imprecise interruptions 59-61
Indicative dump (MFT) 75
Instruction length code (ILC) '59,60
Interlock situation 47-48
Interruptions 57-61

imprecise 59-61
precise 59-61
(see also program interruption
processing)

Interval timing 51-52

Job class 77
Job library 18-19,26

106 Supervisor Services

Job pack area 19-26,77
Job priority

effect on execution 78
specifying 34-35

Job step termination 69

library
defined 18
job 18-19
link 18-26,85
private 18
step 18-21

Limit priority 34,49
(see also priority)

Link library 18-26,83
LINK macro instruction 24-25

difference from CALL macro
instruction 24

implicit request for main storage 80,83
responsibility count with 25
similarity to CALL macro instruction 24
use to pass control with return 25
use with BLDL 25
use with the job library 25
use with the link library 25
use with a private library 25

Link pack area (MVT)
contents 19,87
placing modules in 84
searching 42

Linkage conventions 3-8
Linkage registers 8

entry point register 8
parameter registers . 8
return address register 8
save area register 6,8

list forro of macro instruction 85
List type (L) explicit request for main
storage 78

LOAD macro instruction 23-24
load module

log

attributes 23
characteristics 9
copy

finding a usable 19-23
using an existing 22-23

execution
parallel 10
serial 10

management 83-87
nonreusable 23

temporarily 87
reenterable 23,84
serially reusable 23
structures 9-10
(see also dynamic structure; overlay
structure, planned: simple structure)

hard copy 54-55
system 56
WTL 56

IPMOD operand 35
(see also priority)

Machine-check handler 84
Main storage

blocks
assignment 78,80-81
size 80-81

control 80-83
efficient use of 78-88
example of assignment 81
fragmentation 86-87
hierarchies 88
management 77-88

(see also GETMAIN; FREEMAIN; subpool)
release 87-88

warning for CLOSE 88
requests

conditional 78-79
control program 77
explicit, via GETMAIN 77,78,79
implicit, via LINK 77,83
unconditional 78-79

reuse 87-88
Main storage hierarchy support 88

hierarchies 88
overrun 88
use with Model 50 88

~aster console operator answering any
WTOR 54

Message deletion 56
Message identifier 53
Message output class, specified by MSGCLASS

parameter 54
Messages to the operator 52-54

(see also writing to the operator)
Messages to the programmer 54
Model 65 interruptions 59-61
Model 67 interruptions 59-61
Model 75 interruptions 59-61
Model 85 interruptions 59-61
Model 91 interruptions 59-61

decimal simulation 62
Model 195 interruptions 59-61
MSGCLASS parameter of the JOB statement 54
Multiple console support (MCS)

(see descriptor codes; hard copy log:
message deletion; routing codes; system
log)

New line control character restriction with
WTO 53

Nonreenterable load modules 86-87
Nonreusable load module 23,28

Obtaining information from the task control
block 48-49

Old program status word (OPSW) 59
Originating task, defined 32
OV operand of STAE 70
Overlap of task execution 32
Overlay a STAE request 70
Overlay structure, planned

advantages 83-84,87
defined 9,10
passing control in a 18

Overrun, with main storage hierarchy
support 88

Pack areas
(see job pack area; link pack area)

Parallel execution of a jobstep,
defined 32

Parameter list
from list form 11
from PARM field 11
handling of 12
inline 13"",14
with CALL 14
with LINK 26
with XCTL 31

Parameters
(see parameter list; linkage registers)

PARM field 8-9
Partitions (MFT) 78
Passing control

in a dynamic structure 25-32
in a planned overlay structure 18
in a simple structure 10-15

with return 12-15
without return 11-12

loading the module 17-32
with return 11-14
without return 10-11

(see also ATTACH; LINK; XCTL)
PICA (program interruption control
area) 57-58

PIE (program interruption element) 57-58
Planned overlay structure

(see overlay structure, planned)
POINT macro instruction, in a reenterable

load module 85
POST macro instruction 40
Precise interruptions 59-61
Priority

assigning 34-35
changing 35
dispatching 34-35
initial dispatching 34
limit 49
of partitions 37
subtask 34-35
task 33-34

Private library
defined 18
searching 18-22,25

Program exceptions 56
(see also program interruption
processing)

Program interruption control area
(PICA) 57-58

Program interruption element (PIE) 57-58
Program interruption processing 56-61

inprecise interruptions 59-61
precise interruptions 59-61
standard control program exit
routine 57

user exit routine 57-61
for imprecise interruptions 61
register contents when control
gained 58-59

Index 107

Program management 3-31
Program management services 41-75

(see also abnormal conditions;
additional entry points; calling
sequence identifiers; deleting
messages; dump; entry point identifier;
obtaining information from the task
control block; processing program
interruptions; serially reusable
resources; timing services; writing to
the hard copy log; writing to the
operator; writing to the system log)

Protection
of main storage 80
of serially reusable resources 42-45

QEDIT macro instruction 76
Qname operand of ENQ

restriction 43

Read-only load module
(see reenterable load module)

REAL parameter of STIMER 51,52
Reducing main storage required for a job
step

Reenterable load modules 28,84-86
MFT with subtasking 23
MVT 23

Reenterable macro instructions 84-86
Refreshable load module 84
Regions (MVT)

controlling 77
extending by rollout/rollin 77
specifying size on EXEC statement 77
specifying size on JOB statement 77

Register type (R) explicit request for main
storage 78

Registers
(see base register; linkage registers;
reenterable macro instructions)

Releasing main storage 87-88
(see also DEQ; FREEMAIN)

Reply
(see WTOR)

RESERVE macro instruction 92
Resident reenterable module area 19,23
Resource

conditionally requesting, via ENQ 46
control 42-49
duplicate request for, defined 45
releasing control of with DEQ 45-47
request for, causing interlock 47-48
serially reusable 42-43
unconditionally requesting, via ENQ 46

Responsibility count
ensuring that the proper one is

lowered 30-31
lowering it via the control

program 30-31
lowering it via DELETE 31
w~th release of main storage 86

Restart
alternate system 102

108 Supervisor Services

automatic 89-90,101
canceling 91

avoiding, from same checkpoint 91
checkpoint 90
deferred 90,95,101

job statement for 101
duplicate record indications

following
effect on ENQ
effect on EXTRACT 91-92
effect on SETPRT 92
job step 90,101-102
requesting a resource after 92
step 90,101-102
suppressed with preallocated data
sets 98

RET operand
RET=CHNG 46
RET=HAVE 46,85
RET=TEST 46
RET=USE 46

Return code
and ATTACH 32
and COND operand 17
exarrple of use 15
from BLDL 21
from STAE 71
in ECB 40
requirements 14
with branching table 15
with checkpoint restart 91
WITH ENQ 46
with GETMAIN 79
with IDENTIFY 41

Return of control
of CPU 15-17,24-31

(see also RETURN)
of n:ain storage

(see FREEMAIN)
of resource

(see DEQ)
RETURN macro instruction

examples 17
with simple structure load module 16-17

Returning control in a dynamic
structure 29

responsibility count 30-31
using a branch instruction 29
using RETURN macro instruction 28
using the control program 29-30
when ATTACH was used 28
when LINK was used 28
without using the control program 29

Returning control in a simple
structure 15-17

Reusability 22-23
Rname operand of ENQ 43
Rollout/rollin 76
Routing codes (with MCS) 53
Routing the message to the operator (with

MCS) 52-54

Save area
chaining 7,74

description 4-5
flag 16,17
format 5
provision 4
register 6,8
trace 6

SAVE macro instruction 5-6
Saving registers 4-7

providing a save area 6-7
save area chaining 7,74
save area format 5

Searching for a usable copy of the load
module 19-24

effect of DE operand on 21-22
effect of EP operand on 19-21
effect of EPLOC operand on 19-21
order of search 19-23
use of BLDL with DE 21

Sequence identifier calling 42
Serial execution of a load module 10-29
Serially reusable load module 24,28-29

restriction on using LINK macro
instruction 24-25

using ENQ macro instruction 27
Serially reusable resource 42-43
SETL macro instruction with checkpoints 93
Shared control

(see ENQ)
Sharing direct access storage devices with

checkpoint and restart 93
SHSPL operand of ATTACH 33,82,83

(see also main storage management)
SHSPY operand of ATTACH 33,82,83

(see also main storage management)
Simple structure 9-17

defined 9-10
passing control with return 12-15
passing control without return 11-12
returning control 15-17
returning control to the control

program 17
Simulator, extended-precision
floating-point 62-66

SNAP macro instruction 74-75
SPIE macro instruction

description 57
example 58
program interruption control area

(PICA) 57-58
program interruption element (PIE) 60

STAE exit routine 69-73
conditions when not executed 71
register contents when control
received 72-73

restriction on use of STAE and
ATTACH 69

return codes 73
work area (figure) 72

STAE macro instruction
canceling current STAE 70
example 70
exit routine 69-73
intercepting abnormal termination 69-73
OV operand 70
overriding ABEND 67

register contents after execution 70-71
XCTL operand 70

STAE retry routine 73
STAI operand of ATTACH 73
STAI retry routine 73
STATUS macro instruction 103
STAX macro instruction 103
STEP operand

of ABEND 67
of ENQ 43

STIMER macro instruction 49-52,90
example 52
establishing a time interval for a
task 51-52

specifying how to decrement the
interval 51

STOW macro instruction with checkpoint and
restart 96

Structure, load module
(see dynamic structure; load module;
overlay structure, planned; simple
structure)

Subpool
creation 82
exclusive use 81-82
handling

by ATTACH 82
by GETMAIN 82
MFT with subtasking 80
MFT without subtasking 80
under MVT 80-83

in task communication
ownership 82-83

restriction on transfer 82-83
sharing 82-83

SubpoolO 80,81,82
Subpool 240 80
Subpool 255 80
Subtasking

MFT systems with 36-37
MFT systems without 36

Subtasks
communication among 39-40
creating 33
defined 33
hierarchy 39
priority 34-35
termination 39-40

SYSABEND DD statement
if omitted 75
providing 74,75

SYSIN data set 95
SYSOUT da ta set 95
System log

alternate data set defined 56
data sets 56
defined 56
primary data set defined 56
using, via WTL macro instruction 56

System message blocks (SMBs) 54
SYSTEM operand of ENQ 43
SYSUDUMP DD statement

if omitted 75
providing 74

SZERO operand of ATTACH 82

Index 109

Task
communication among 39-40
creation 32-37
hierarchy 38-39
management 38-40
priority 32-37

. signaling task termination 39-40
termination 39-40

Task control block (TCB)
address 33
completion code in 39,69
obtaining information from 48-49
removal from system 39
subtask 39
warning for using with CHAP, ~XTRACT,

DETACH 39
Task input/output table (TIOT) address

in task control block 49
TASK parameter of STIMER 51
TCB

(see task control block)
TIME macro instruction 49-50

BIN operand 50
TU operand 50

Time sharing option (TSO) services 103
Time slicing 35-37

effect on. using ATTACH and CHAP 37
MFT with subtasking 36-37
MFT without subtasking 36
MVT 37

Time stamping for the hard copy log 55-56
Timing services

date and time of day 49,50
interval option 49
interval timing 51-52

example of interval timing 52
time option 49

TOD 50,51
Trace, save area 6
Trace table 75
TSO

(see time sharing option (TSO) services)
TTIMER macro instruction

canceling time remaining in a time
interval 51-52

testing time remaining in a time
interval 51

TUINTVL 51

UNPK instruction
example 50
use with time option 50

Use count
(see responsibility count)

110 Supervisor Services

Variable type (V) explicit request for main
storage 77-78

VL operand
(see CALLi LINK)

WAIT condition
effect of 40
from ATTACH, LINK, XCTL 23
from ENQ 44-48
from STIMER 5i
from WAIT 40

WAIT macro instruction 40
WAIT parameter of STIMER 51
Writing to the hard copy log 54-56
Writing to the operator 52-56

using WTO macro instruction 52-56
using WTOR macro instruction 52-56

Writing to the programmer 54
writing to the system log 55-56
WTL macro instruction 56
WTO ~acro instruction 52-56

DESC operand 53
example 53
ROUTCDE operand 53
used to write to the hard copy

log 54-55
used to write to the programmer

WTOR macro instruction 52-56
example 54
used to write to the hard copy

log 54-55
used to write to the programmer 54
with abnormal termination 68
with checkpoint restart 90

XCTL macro instruction 29
and directory entries 29
and responsibility count 29-30
EP, EPLOC, DE operands 19
implied request for storage 80,83,87
issued by interruption handling
routine 57

MFT without subtasking 23
not using with branch 29
passing control without return 29-31
protecting against unusable copy 29
similarity to LINK 29-30
with main storage hierarchy support 88

XCTL operand of STAE 70-71

2361 Core storage
hierarchies 88
Models 1 and 2 88
specifying, in GETMAIN (example) 86

GC28-6646-5

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation'
821 United Nations Plaza, New York, New York 10017
[International]

c
CJ

CJ
s::
'tI
(Ii .,
< ...
u.
C
t-

fj
(I
:-

I­
I
I
I
I
I
I
I
I
I
I
I
I
I

READER'S COMMENT FORM

IBM System/360 Operating System
Supervisor Services

GC28-6646-5

Please check or fill in the items below, adding explanations and other comments
in the space provided.

Which of the following terms best describes your job?

n Programmer n Systems Analyst n Customer Engineer
n Manager n Engineer n Systems Engineer
n Operator n Mathematician n Sales Representative
n Instructor n Student/Trainee n Other (explain)

Does your installation subscribe to the SRL Revision Service? n Yes n No

How did you use this publication?

n As an introduction
n As a reference manual
n As a text (student)
n As a text (instructor)
n For another purpose (explain)

Did you find the material easy to read and understand? n Yes n No (explain below)

Did you find the material organized for convenient use? n Yes n No (expla-in below)

Specific criticisms (explain below)

Clarifications on pages __ __

Additions on pages

Deletions on pages __ __

Errors on pages __ _

Explanations and other comments:

: Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

I

FOLD

FOLD

GC28-6646-5

YOUR COMMENTS PLEASE • • •

This manual is one of a series which serves as reference sources
for systems analysts, programmers and operators of IBM sys­
tems. Your answers to the questions on the back of this form,
together with your comments, will help us produce better publi­
cations for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material.
All comments and suggestions become the property of IBM.

Please note: Requests for copies, of publications and for assis­
tance in utilizing your IBM system should be directed to your IBM
representative or to the IBM sales office serving your locality.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON. N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS

DEPARTMENT 636

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.tOSOt
[USA Only]

IBM World Trade Corporation
82t United Nations Plaza, New York, New York tOOt7
[International]

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

FOLD

FOLD

C
tI

tI
I:

It:
CiI
11
<:
I-'
C/l
o
11

U
CD
I'i
<:
()
CD
C/l

