File No. S360-36
Form Y27-7128-0

.

Program Logic

IBM System/360 Operating System
Control Program With MFT

Program Numbers 360S-CI-505,
360S-DM-508

This publication describes the internal logic of the
control program to the extent that it is modified for
MFT. These modifications affect the Jjob management,
task management, and data management routines of the
control program.

The Program Logic Manual is to be wused with the
program assembly listings and is primarily a guide to
those listings. It is intended for personnel involved
in program maintenance and system programmers who are
altering the system design. Program logic information-
is not necessary for the wuse and operation of the
control program; therefore, distribution of this docu-
ment 1s limited to those with the aforementioned
requirements.

Restricted Distribution

Form ¥Y27-7128-0

PREFACE

This publication describes the differ-
ences in internal logic that are introduced
by the expansion of the control program to
include MFT: multiprogramming with a fixed
number of tasks. It is assumed that the
reader of this publication is thoroughly
familiar with the basic operation of the
control program. Only areas of difference
are discussed in detail; however, informa-
tion on sequential scheduling systems in
general is included where necessary to
assist the reader in relating new topics to
known characteristics of the system.

The manual is divided into four major
sections. The first section, the Introduc-
tion, outlines the function and organiza-
tion of the entire control program and
provides references to sources of informa-
tion on various control program elements.
The Theory of Operation section describes
control program flow, with emphasis on job
management operations, which is the aspect
of the control program most significantly
different under MFT. The Program Organiza-
tion section provides detailed descriptions
of added or significantly changed routines.
The Load Modules and Assembly Modules sec-
tion contains a directory to the contents
of the nucleus, the SVC library, and the
link library.

Information in this document is directed
to the customer engineer who maintains and
services IBM System/360 Computing Systems
and who 1is responsible for field main-
tenance and updating of IBM Systemv/360
Operating Systemn. This information may
also be used by the programming systems
maintenance programmer and the development
programmer who will expand the system.

This publication may be used to locate
those areas of the system to be analyzed or

RESTRICTED DISTRIBUTION: This publication is intended
primarily for use by IBM personnel involved in program
design and maintenance. It may not be made available
to others without the approval of local IBM management.

This publication was

Page Revised by TNL Y27-7157

12712767

modified. The information is presented to
enable the reader to relate MFT functions
to the program listings (coding) for those
functions. The comments in the listings
provide information for thorough analysis

and understanding of the coding.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for a
full understanding of the manual.

IBM System/360: Principles of Opera-
tion, Form A22-6821

IBM System/360 Operating System: Con-
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Super-
visor and Data Management Services,
Form C28-66U46

IBM System/360 Operating System:
visor and Data Management Macro

Super-

Instructions, Form C28-6647

IBM System/360 Operating System: Link-
age Editor, Form C28-6538

IBM System/360 Operating System: System

Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554
IBM Systemv/360 Operating System: Intro-

duction to Control Program Logic,
Program Logic Manual, Form Y28-6605

IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic Mahu-
al, Form Y28-6612

IBM Systemv360 Operating System: Job
Management, Program Logic Manual,
Form Y28-6613

prepared for production using an IBM computer to

update the text and to control the page and 1line format. Page impres-

sions for photo-offset printing were obtained from an IBM 1403 Printer

using a special print chain.

A form for reader's comments

appears at the back of this publication.

Address any additional comments concerning the contents of this publica-

tion to: IBM Corporation, Programming Publications,
Neighborhood Road, Kingston, New York 12401

© International Business Machines Corporation 1966

Department

637,

INTRODUCTION o ¢ o o o o o o o o o o &
Functicns of the Control Program with
MET ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o @
Job Management Routines
Task Management Routines
Data Management Routines . . . o o
Organization of the Control Program .
Resident Portion of the Control

Program
Nonresident Portlon of the Control
Program . . .« .« « &« . . . & o . . .
System Environment
Machine TYPeS « « « o o « « o o o &

Minimum Required Configuration . . .

THEORY OF OPERATION . ¢ ¢ &« o o o & «
Program FIOW « ¢« ¢ ¢ o« o ¢ o o o o o« &
Job Management < < . ¢ o o .

Job Scheduler Functions

Communication Task Functions
Communication Task Functions
Job Processing- . .

Entry to Job Management Follow1ng
Initial Program Loading .
Entry to Job Management Following

Step Execution
Control Statement Processing . . .
Step Initiation

Job and Step Termination
Operator-System Communication
Processing . « o« o « o o o « o« « o o

Command Processing . « « « « « « «

WIO/WTOR Macro Instruction

Processing « « « ¢ o ¢ ¢ o o o o

External Interruption Processing .
ENQ/DEQ Processing . . . « .

ENQ/DEQ Control- Blocks e e s e o o

Sequence of Execution for Enqueued

TaSKS ¢ o o o o o o o o o o o o
Load Modules . « ¢ ¢ ¢ ¢ ¢ ¢ o o o o+ .

PROGRAM ORGANIZATION « . .

ooy wm

~

CONTENTS

Job Scheduler Modifications
Partition-Related Scheduler Control
BloCKk & & & ¢ ¢ 4 e e 4 4 e e e e W
Termination . . . « ¢ ¢ o« o « o «
Scheduler Controller

Communication Task « . « « « « o « « «
Communication Task Control Flow . .
Console Interrupt Routine
Communication Task WAIT Routine . .
Communication Task Router
Console Device Processor Routines .
Master Command Processor Routine . .
Master Command Routine
Write-To-Operator Routine
External Interrupt Routine

Supervisor Modifications
WAITR--Single Event
Nucleus Initialization Program . . .

ENQ/DEQ Support: . . « . . « . . .
Enqueue Service Routlne—-IEAQEWQO
Dequeue Service Routine

DADSM Modifications « « « . .
Allocate Routines--Non-Indexed
Sequential Data Sets
Allocate Routines--Indexed
Sequential (ISAM) Data Sets . . .
Extend Routines
Scratch Routine
Release Routine « o« & o+ .

LOAD MODULES AND ASSEMBLY MODULES . .
Load MOAUleS . « o o o o o o o o o « =
Load Modules Contained in the
SYSl1l.Nucleus Data Set . . . « . . .
Load Modules Contained in the
SYS1.SVCLIB Data Set . « « « « « «
Modules Contained in the
SYS1.LINKLIB Data Set . « « « « .
Assembly Modules and Control Sections
Control Sections and Assembly Modules

CHARTS ¢ & ¢ ¢« o o o o o o o o o o o o

INDEX .« & ¢ o o o o o o o o o o o o =

38
54
55

83

Form Y27-7128-0

ILLUSTRATIONS

FIGURES

Figure 1. Storage Allocation for a
Four-Partition System
Figure 2. Divisions of Main Storage
for the Four Partition System.
Figure 3. Example of CPU Control
Flow for a Job Processing Cycle (Sheet
1 of 8) @ v v 6 @ v e e e e e e e e .
Figure 4. Job Management Logic .« .
Figure 5. Attention Interruption
Processing FIow .« ¢ « ¢ « ¢ ¢ o o o &

CHARTS

Chart 01. Job Management
Chart 02. Communication Task Control
Flow e e e o e o s o e & a o & o o
Chart 03. Communication Task
Initialization Routine . . . e e e e
Chart O4. Console and thernal
Interrupt Routines
Chart 05. Master Command EXCP Routine
Chart 06. Write-To-Operator Routine .
Chart 07. Communications Task Wait
Routine ¢ & ¢ ¢ ¢ ¢ ¢ ¢ e o .
Chart 08. Communications Task Router
ROUtINE .« & o o ¢ o o o o o o « o o« =
Chart 09. External Interrupt Processor
ROUtINE o« & o o o o o o o o o o« o o
Chart 10. Communications Task
Processor Routine . . . « ¢« & o & o &
Chart 11. OPEN/CLOSE Routine
Chart 12. Initiator/Terminator Control
FIOW ¢« ¢ ¢ ¢« ¢ o o o o o o o o o o o =
Chart 13. Pre-Termination Routine
(IEFSDO34) v v 4 o o o o o o o a o o
Chart 14. Termination Control Flow . .
Chart 15. Job Termination Routine . .

Page Revised by TNL Y27-7157

. 58

. 60

. 64
. 65

. 67

. 69

12712767

WTO/WTOR Macro Instruction
FIOW o ¢ ¢ ¢ ¢« ¢ o o o « @
External Interruption
Processing Flow
Figure 8. ENQ/DEQ Control Block
Creation and Deletion . . e s e o @
Figure 9.
Figure 10. Queue-manager's Extent
Layout e o o o o o e 8 o e o = o o =
Figure 11. Communication Task Control
Flow « e o e e e e o e o = o o o o o

Figure 6.
Processing
Figure 7.

Chart 16. Shift Count Interrogator
Routine (IEFSDO035)« .
Chart 17. Scheduler Upshift Routlne
(IEFSDO31) . ¢ ¢ ¢ ¢ ¢ e o o o o o o »
Chart 18. Scheduler Downshift Routine
(IEFSD030) . « v ¢ ¢ o o« ¢« o« o« o o « &
Chart 19. Enqueue Service Routine . .
Chart 20. Enqueue Service Routine
(continued) ¢« ¢ ¢« ¢ & & < . .
Chart 21. Enqueue Service Routine
(continued) . .« ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o .

Chart 22. Must Complete Routine . . .
Chart 23. Dequeue Service Routine . .
Chart 24. Dequeue Service Routine
(continued) < ¢« ¢ ¢ & ¢ . .
Chart 25. Decrement SVRB/TASK Switch
Routine . . ¢ o ¢ ¢ ¢ ¢ o« o o ¢ o & .
Chart 26. ENQ/DEQ Validity Check

Routine .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o @
Chart 27. 18K Configuration Load
Module Control Flow « . . .
Chart 28. 44K Configuration Load
Module Control Fiow- e
Chart 29. 100K Configuration Load
Module Control Flow . . . « .« « « < .

-

Control Block Relatlonshlpb.

18

19

20
24

27

29

70

71

72

74

75

77

78

79

80

81

82

82

‘used by the system for the

In a single-task environment main stor-
age is divided into two areas: the fixed or
system area, and the processing program
area. In a multiprogramming environment
with a fixed number of tasks, the process-
ing program area is further divided into
from one to four partitions. Figure 1
shows the division of main storage for a
four-partition system. One task uses each
partition, and all tasks operate concur-
rently.

The system area is used for system
routines that perform control functions
during the execution of a processing pro-
gram, and for control blocks and tables
performance of
those control functions. Each partition is
used for a processing program and its data,
control blocks, and tables.

Option 2 of the control program provides
for +the concurrent execution of up to four
jobs, each in its own fixed partition of
main storage. Each job consists of a
single task. The Option 2 system provides
for task switching between the user tasks
operating in the partitions, and between
those tasks and the communication task
(master scheduler) in the system area.

Jobs are sequentially scheduled in the
Option 2 system. The job scheduling func-
tion is unchanged, except that the capabil-
ity for performing that function in differ-
ent partitions at different times is added.

With the Option 2 system, task dispatch-
ing differs primarily in that task switch-
ing is required, and that certain system
functions such as abnormal termination must

Low High
Address Address

SYSTEM
—_—
™~ AREA] PROBLEM PROGRAM AREA

NUCLEUS

P3 P2 P1 PO
(Lowest Priority (Highest Priority
Partition) Partition)

Figure 1. Storage Allocation for a Four-

Partition System

INTRODUCTION

be carried out 1in such a way that other,
unrelated tasks are not affected.

Job and task management functions are
performed under control program Option 2
through modified or expanded versions of
the corresponding routines described in the
publications IBM System/360 Operating
System: Job Management, Program Logic Manu-
al, and IBM _ System/360 Operating System:
Fixed-Task Supervisor, Program Logic Manu-
al. General information on those modifica-
tions and expansions is provided in this
publication.

FUNCTIONS OF THE CONTROL PROGRAM WITH
OPTION 2

Control program routines are grouped
into three functional areas:

e Jcb Management routines.
e Task Management routines.

e Data Management routines.

JOB MANAGEMENT ROUTINES

Job management routines provide communi-
cation between the user and the operating
system by:

e Analyzing the input Jjob stream and
collecting the information needed to
prepare a job for execution.

e Analyzing operator commands, and trans-
mitting messages from a program to the
operator.

There are four major
routines:

job management

e Master scheduler, referred to for the
Option 2 system as the communication
task, which analyzes commands from the
console and transmits messages to the
operator.

e Reader/interpreter, which reads the
input job stream and constructs control
blocks and tables from information in
the control statements.

e Initiator/terminator, which collects
the information and resources needed to
execute a job step and performs the
operations required to terminate a job
step.

Introduction 5

e Scheduler controller, which governs the
sequence in which operation of the
reader/interpreter and the initiator/
terminator occurs in the system's prob-
lem program partitions; this function
is added for the Option 2 system.

The operation of these routines, to the
extent that operational differences exist,
is described in this publication. Opera-
tions of these routines that are not signi-
ficantly different in either environment
are described in the publication IBM
System/360 Operating System: Job Manage-
ment, Program Logic Manual.

TASK MANAGEMENT ROUTINES

Task management routines monitor and
control the entire operating system, and
are used throughout the operation of both
the control and processing programs.

There are six functions
these routines:

performed by

e Interruption handling
e Task supervision
e Main storage supervision

e Contents
fetch)

supervision (and program

e Overlay supervision
e Time supervision

The task management routines are collec-
tively referred to as the "supervisor." Of
these functions, all are identical for
either environment except for task supervi-
sion, changes to which are discussed in
this publication. A description of all
task management routines is given in the
publication IBM System/360 Operating Sys-
tem: Fixed-Task Supervisor, Program Logic

write required data, but also to 1locate
input data sets and to reserve auxiliary
storage space for output data sets of the
problem programs.

There are five categories of data man-
agement routines:

e Input/output (I/0) supervisor, which
performs I/0O operations and processes
I/0 interruptions.

e Access methods, which communicate with
the I/0 supervisor.

e Catalog management, which maintains the
catalog and locates data sets on auxil-
iary storage.

e Direct-access
(DADSM) , which
storage space.

device space management
allocates auxiliary

e Open/Close/End-of-Volume, which per-
forms required initialization for I/O
operations and handles end-of-volume
conditions.

of these routines, the only category
affected by the selection of control pro-
gram Option 2 is DADSM. All other data
management routines operate identically
with or without Option 2. The differences
in DADSM operation are summarized in the
"Program Organization"™ section of this pub-
lication. The operation of all data man-
agement routines is described in the fol-
lowing publications:

IBM System/360 Operating System:
Input/Qutput Supervisor, Program
Logic Manual; Form Y28-6616

IBM System/360 Operating System: Sequen-—
tial Access Methods, Program Logic
Manual; Form Y28-6604

IBM System/360 Operating System: Basic
Direct Access Method, Program Logic
Manual; Form Y28-6617

IBM System/360 Operating System: Catalog

Manual.

DATA MANAGEMENT ROUTINES

control all
input/output

Data management routines
operations associated with
devices: allocation of space on volumes,
channel scheduling, storing, naming, and
cataloging of data sets, movement of data
between main and auxiliary storage, and
handling of errors that occur during I/0
operations. Data management routines are
used both by problem programs and by con-
trol program routines that require data
movement. Problem programs use data man-
agement routines primarily to read and
write data. The control program uses data
management routines not only to read and

Management, Proqgram Logic Manual;
Form Y28-6606

IBM System/360 Operating System: Direct
Access Device Space Management, Pro-
gram Logic Manual; Form Y28-6607

IBM System/360 Operating System:
Input/Output Support
(OPEN/CLOSE/EOV), Program Logic Manu-
al, Form Y28-6609

ORGANIZATION OF THE CONTROIL PROGRAM

Different portions of the control pro-
gram operate from different areas of main
storage. The fixed (system) area of main
storage 1is the lower portion of main stor-
age; its size is determined by the control
program configuration. The system area

A

C

contains those control program routines
that perform a system function during the
execution of a processing program.

The problem program area is the upper
portion of main storage. It is defined at
system generation as containing from two to
four partitions; the number of partitions
may be reduced and the size of each may be
redefined at nucleus initialization, but is
fixed thereafter until another initial pro-
gram loading (IPL) is performed. Each
partition may be occupied by a processing
program, or by control program routines
that either prepare job steps for execution
(i.e., Jjob management routines), or handle
data for a processing program (i.e., the
access methods).

On auxiliary storage, the control pro-
gram resides in three partitioned data sets
that are created when the operating system
is generated. These data sets are:

e The NUCLEUS partitioned data set
(SYS1.NUCLEUS), which contains the
resident portion of the control program
and the nucleus initialization program.

e The SVCLIB partitioned data set
(SYS1.SVCLIB), which contains the non-
resident svC routines, nonresident

error handling routines, and the access
method routines.

e The LINKLIB partitioned data set
(SYS1.LINKLIB), which contains the
other nonresident control program rou-
tines and the IBM-supplied processing
programs.

Figure 2 shows the main storage areas
into which the routines from each parti-
tioned data set are loaded.

RESIDENT PORTION OF THE CONTROL PROGRAM

The resident portion (nucleus) of the
control program resides in the NUCLEUS
partitioned data set. This portion of the
control program is made up of those rou-
tines, control blocks, and tables that are
brought into main storage at IPL and that
are never overlaid by another part of the
operating system. The nucleus is loaded
into the system area of main storage.

The resident task management routines
are: all of the routines that perform
interruption handling, main storage super-
vision, and time supervision; and some of
the routines that perform task supervision,
contents supervision, and overlay supervi-

sion. These routines are described in this
publication and in the publication IBM
System/360 Operating System: Fixed-Task

Supervisor, Program Logic Manual.

Resident for job management are those
portions of the communication task that
receive commands from the operator. The
communication task 1is described in this
publication.

The resident data management routines
are the input/output supervisor and the
BLDL routines, which are part of the parti-
tioned access method. These routines are
described in the publications IBM
System/360 Operating System: Input/Output

Supervisor, Program Logic Manual and IBM

System/360 Operating System: Sequential

Access Methods, Program Logic Manual.

NONRESIDENT PORTION OF THE CONTROL PROGRAM

The nonresident portion of the control
program is made up of those routines that
are loaded into main storage as they are
needed, and can be overlaid after their
completion. The nonresident routines oper-
ate from the partitions and from two sec-
tions of the system area called transient
areas.

TRANSIENT AREAS: The transient areas are
two blocks of main storage defined in the
nucleus and embedded in the system area.
The first, the SVC transient area, is
reserved for nonresident SVC routines. The
second, the I/0 supervisor transient area,
is wused by nonresident I/0 error handling
routines that are brought in by the I/0
supervisor. Each transient area contains
only one routine at a time. When a nonres-
ident SVC or error handling routine is
required, it 1is read into the appropriate
transient area. All routines read into the
transient areas reside in SYS1.SVCLIB.

PARTITIONS:
a processing program as well as

Each partition may be used for
for the

access method routines and the nonresident
job management routines of the control
program. When the control program needs

main storage to build control blocks or for
a work area, it obtains this space from the
partition in which the processing program
that caused the requirement to arise was
operating.

Access method routines are brought into
each partition from SYS1.SVCLIB. Job man-
agement routines are brought in from
SYS1.LINKLIB. Processing programs are
brought in from either SYS1.LINKLIB, or a
user-specified partitioned data set.

The program area is subdivided as shown
in Figqure 2. Job management routines,
processing programs, and routines brought
into storage via a LINK or XCTL macro-
instruction are 1loaded into the lowest
available portion of a partition. The

Introduction 7

Resident Portion of the Control Program

Non-Resident SVC Routines

JI SYS1.NUCLEUS I

SYS1,SVCLIB

1/O Error Handling Routines
e Lovsunwe]
Access
Method
Non-Resident Routines
Control Program
Routines or
Processing Program
1/O Supervisor
Transient
Area
(Highest
Priority
sve Partition)
. Transient
Area
System Area
——
P3 P2 P1 — PO /
/
Low Address —~ High Address
- /
- /
— /
/
— /
/
- - Partition /
—~ (Typical for each) /
— AL
— N/
” Routines Access
Processing Brought Method
Program In via Available Routines Task
or LINK Main Brought Input/
Job and Storage In via Output
Management | XCTL LOAD Table
Routine Macro- Macro-
Instruction Instruction

Figure

2. Division of Main Storage for the Operating System

Form Y27-7128-0 Page Revised by TNL Y27-7157

highest portion of a partition is occupied
by a table (the task input/output table)
built by a job management routine. This
table is wused by data management routines
and contains information about DD state-
ments. It remains in storage for the whole
job step. Access method routines and rou-
tines brought into storage via a LOAD macro
instruction are placed in the highest
available locations in a partition.

SYSTEM ENVIRONMENT

MACHINE TYPES

The control program with MFT is designed
for use with IBM System/360, Model 30 or
higher. A two-partition system wusing the
18K scheduler (where K is equal to 1024
bytes) will operate in a configuration
having a 64K byte main storage capacity; a
system having more partitions and/or using
the U4K or 100K schedulers requires addi-
tional main storage.

MINIMUM REQUIRED CONFIGURATION

Selection of MFT does not affect the
minimum required configuration.

12712767

Introduction 9

THEORY OF OPERATION

PROGRAM FLOW

The stages of program execution under
the MFT system of the IBM System/360
Operating System are:

0. Loading the nucleus into main storage
(IPL).

1. Reading control statements.
2. Initiating a job step.

3. Executing a job step, and (optionally)
activating a lower-priority partition.

4. Terminating a job step, and (option-
ally) preparing for job scheduling in
a higher-priority partition.

The operating system is given control of
the computer when the control program nuc-
leus 1is loaded. Thereafter, jobs may be
processed without reloading the nucleus.

When the user introduces a job into the
input stream, the initial processing
required to prepare his job for execution
is performed by job management routines.
Control statements for a complete job are
read during stage 1.

Stage 2 1is the processing required to
initiate the execution of a wuser's job
step. Stage 3 occurs when CPU control is
passed to that job step.

Up to this point, only one partition has
been active. During stage 3 the problem
program can cause another partition to
become active; stages 1, 2, and 3 then
proceed in that partition. This process
can be repeated in each partition until all
are active, with job step execution pro-
ceeding concurrently in each partition.

The Control Program with MFT is designed
to operate with single-step, unending jobs
in all partitions except the partition of
lowest priority. In that configuration,
step and job termination normally occur
only in the lowest-priority partition.
When a program enters stage 4, job manage-
ment routines perform termination proce-
dures for the step (and, when applicable,
for the job).

Upon completion of a job, control passes
back to stage 1. If further job step
control statements had been read during
stage 1, control passes to the initiation
of the next job step (stage 2).

The user can, through a system command
(SHIFT), reverse the process through which
successive partitions are made active.
When stage U4 is complete in a partition,
stage 1 will normally proceed in the same

10

partition; however, the user can cause the
partition from which the terminating parti-
tion was originally activated, rather than
the terminating partition itself, to be the
next partition in which stage 1 1is to
proceed.

When termination is complete for all
jobs in the system and there are no further
jobs in the input job stream, the control
program places the CPU in the wait state.
As 1long as the nucleus remains intact in
main storage, the user can introduce new
jobs into the job stream without reloading
the nucleus.

Reading control statements and initiat-
ing a job step are performed by the reader/
interpreter and the initiator/terminator
routines, respectively. Descriptions of
these routines are given in the publication
IBM System/360 Operating System: Job Mana-
gement, Program Logic Manual.

A job step 1is performed by a user-
written program (e.g., a payroll program),
or an IBM-supplied processing program
(e.g., linkage editor, COBOL).

Terminating a job step is performed by
the initiator/terminator and the super-
visor. Terminator functions peculiar to
the MFT system are discussed in the "Job
Management" section of this publication.
Descriptions of these routines applicable
to either environment are given in the
publications IBM System/360 Operating Sys-
tem: Job Management, Program Logic Manual,

and IBM System/360 Operating System:
Fixed-Task Supervisor, Program Logic
Manual.

The routines through which successive
partitions are activated during problem
program execution and relinquish control
after termination are described in the "Job
Management" section of this publication.

Figure 3 describes the overall flow of
CPU control through the job processing
cycle. These paragraphs describe the pro-
cessing performed by various components of
the control program as it loads the nuc-
leus, reads control statements, initiates
the job step, causes processing to pegin or
end in successive partitions, and ter-
minates the Jjob step. Control program
processing performed during the execution
of a job step, including control flow to
the control program, control flow to a
processing program, and input/output con-
trol, is unchanged under the MFT system.
For a discussion of those topics, refer to
the publication IBM System/360 Operating
System: Introduction to Control Program
Logic, Program Logic Manual.

Form Y27-7128-0

Page Revised by TNL Y27-7156

9/20/67

— o e . " S S S — — — —— — — — —— —— S {on. S S, S S " S S S — — {— ——— o, S— T — —— — {——", t (2o, o, e, . . s, e

L U ——

IPL

Load
IPL
Program

IPL

Load
Nucleus

l

Nip

Initialize
Nucleus

l

SUPERVISOR

Bring
Reader/Interpreter
and Part of
Communications
Task
into Current
Partition

START READER

COMMUNICATIONS
TASK

START WRITER

Interpret
Commands

READER/INTERPRETER

Read and Interpret
Control Statements

Build Tables

D_____.

SUPERVISOR

Bring
Initiator/
Terminator
into Partition

To load the nucleus, the operator speci-
fies the device on which the system resi-
dence volume is mounted, and presses the
load button on the console. This action
causes an IPL record to be read and to be
given CPU control. This record reads a
second IPL record which, in turn, reads the
rest of the IPL program into main storage.

The IPL program searches the volume
label to locate the volume table of con-
tents (VTOC) of the system residence vol-
ume. The volume table of contents is then
searched for the SYS1.NUCLEUS. The nucleus

is brought into the system area, and the
nucleus initialization program (NIP) is
brought into the dynamic area. NIP

receives CPU control from the IPL program,
and initializes the nucleus. Nucleus ini-
tialization includes initializing the con-
trol blocks that establish the absolute
location and extent of each partition with-
in the processing program area; communi-
cation between the operator and the system
provides for the redefinition, if desired,
of the partitions to be used. After com-
pleting its processing, NIP causes the
reader/interpreter to be brought into the
highest-priority scheduler-size partition
in the problem program area. (NIP remains
in main storage, but is not re-entered. It
may or may not be overlayed as successive
partitions are established.

When the start reader (START RDR), start
writer (START WTR), -and set date (SET)
commands are issued, the resulting inter-
ruption causes CPU control to be given to
the master command routine. After process-
ing the commands, this communication task
routine passes CPU control to the
reader/interpreter. The reader/interpreter
is described in the publication IBM
System/360 Operating System: Job Manage-

ment, Program Logic Manual. Changes to the

communication task that, in the MFT system,
replaces the master scheduler are described
below.

The reader/interpreter reads the control
statements from the input job stream.
Information from the JOB, EXEC, and DD
statements is used to control the execution
of Jjob steps. This information is used to
construct a job control table (JCT) for the
job being read, a step control table (SCT)
for the job step being read, and a job file
control block (JFCB) and step input/output
table (SIOT) for each data set being used
or created by the job step. Information
from these tables and control blocks is
combined with information in the data con-
trol block (DCB) and data set control block
(DSCB) or label when a data set is opened
during step execution.

e o e s o G — — —— ——— — — — —— — — ——— — — ——————— —— — ———— — — —— —— a— S — — — — — —— — — — — ———— — ——— — e —— a— o]

Figure 3.

Example of CPU Control Flow for a Job Processihg Cycle (Sheet 1 of 4)

Theory of Operation

11

INITIATOR/TERMINATOR

Locate Input Data Sets

Assign Input/Output Devices
to Data Sets

Allocate Auxiliary
Storage Space

Write Tables and
Control Blocks

The reader/interpreter is itself re-
placed by the initiator/terminator routine.

After receiving CPU control, the
initiator/terminator prepares to initiate
the job step that has been read and inter-
preted. Using the data which the
reader/interpreter extracted from the DD
statements, the initiator/terminator:

Locates Input Data Sets: The initiator/
terminator determines the volume containing
a given input data set from the data
definition (DD) statement, or from a search
of the catalog. This search is performed
by a catalog management routine that is
entered from the initiator/terminator. A
description of the routines that maintain
and search the catalog is given in the
publication IBM System/360 Operating Sys-
tem: Catalog Management, Program Logic

Manual.

Assigns I/0 Devices: A job step cannot be

initiated unless there are enough I/0 de-
vices to £ill its needs. The initiator/
terminator determines whether the required
devices are available, and makes specific
assignments. If necessary, messages to the
operator direct the mounting of volumes
(tapes, etc.).

Allocates Auxiliary Storage Space: Direct

SUPERVISOR

Bring
Processing Program
into
Current Partition

access volume space required for output
data sets of a job step is acquired by the
initiator/terminator, which uses DADSM. A
description of the operation of DADSM is
given in the publication IBM System/360
Operating System: Direct Access Space Man-

agement, Program Logic Manual.

Allow
Highest-Priority Ready
Task to Execute

PROCESSING PROGRAM

Issues First

WAITR

|
I
|
|
|
|
|
|
|
|
I
|
|
I
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
!
|
I
I
|
|
|
I
|
|
I
|
|
|
|
I
I
|
|
I
I
|
|
|
|
L

O

The JFCB, which contains information
concerning the data sets to be used during
step execution, 1is written on auxiliary
storage. This data is used when a data set
is opened, and when the job step is termi-
nated (e.g., disposition).

The initiator/terminator causes the
problem program to be executed.

The processing program can be one of the
IBM-supplied processors (e.g., COBOL, link-
age editor), or a user-written program.
The processing program uses control program
services for operations such as loading
other programs and performing I/O opera-
tions.

i . e e s S o . S — ——————— —— —— ———— — —— — — ———— — {— _— t— T—— {—— —— —— — o T— . T S S2_—~ ——n S Soms S oot Ste oo S oot e, S s St e i o s,

Figure 3.

12

Example of CPU Control Flow for a Job Processing Cycle (Sheet 2 of #4)

=N

—— e . o S, ks S it ST S S e . St Gl St i S S ottt S o o S e, i S S o S S W g st

SCHEDULER CONTROLLER

Make Next-Lower-Priority
Partition Available
(Assign Reader/Interpreter)

SUPERVISOR

T

Is
Current
Task in a Wait
Condition

Dispatch
Highest-Priority Ready
Task

PROCESSING PROGRAM

Resume Processing
Until a Wait Condition
is Entered

SUPERVISOR

Task Ready
to Terminate

Set Up for Dump,
if Required

|

Load Initiator/Terminator

Initiation of operations in another par-
tition begins when a WAITR macro instruc-
tion is issued in the processing program.
When a WAITR is encountered, control passes
to the scheduler controller, which is resi-
dent in the nucleus. That routine restruc-
tures the system job queue in such a way
that information related to +the partition
from which the WAITR was issued is saved,
and a new area, to be used in connection
with the partition now to be activated, is
available to the reader/ interpreter. Con-
trol then returns to the supervisor.

After a WAITR has been processed, both
the partition in which the macro instruc-
tion was issued and the next-lower-priority
partition contain tasks that are potential-
ly dispatchable. (The communication task
is always potentially dispatchable, and is
of higher priority than any partition-
related task.) When the supervisor is
re-entered, the task dispatcher dispatches
the ready task of highest priority;
therefore, processing continues in the par-
tition from which the WAITR was issued
until a Wait condition is entered in that
partition. A Wait causes the
next-lower-priority-partition's task to be
dispatched. This causes the reader/ inter-
preter to receive control. The
reader/interpreter proceeds as described
above, exactly as though the new job were
the first to have been read after IPL or
START; however, the reader/interpreter is
now working with a different portion of the
system job queue and in a different segment
of main storage.

When a processing program terminates,
the supervisor receives CPU control. The
supervisor uses the OPEN/CLOSE/EOV routines
to close any open data control blocks.
These routines are described in the publi-
cation IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV), Pro-

gram Logic Manual.

9

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures such as a storage

dump.

i o o o o o — —— —— — —— ————— —— — _— {— —— — — {———— — ———— ———— {— —— {—— — — —— — ——— {— — — — — —— —— ————— ——— o——)

Figure 3.

Example of CPU Control Flow for a Job Processing Cycle (Sheet 3 of #)

Theory of Operation

13

- Form Y27-7128-0

Page Revised by TNL Y27-7156

9/20/67

g

INITIATOR/TERMINATOR

]

Wait for Scheduler

|

User Accounting Routine

f

Dispose of Data Sets
Write Messages

Have Control
Statements for the Next
Job Been Read

No Is SHIFT

o o — — — — — ———— — — — — — — — — T— t— — — ——— —— ——— — — {— —— ——

Command
Wnding

SCHEDULER CONTROLLER

Execute
SHIFT
Command

SUPERVISOR

Bring
Reader/Interpreter
into
Current Partition

9

The supervisor passes control to the
initiator/terminator, which is brought into
the partition in which termination is to
occur. The initiator/terminator determines
whether the scheduler is currently asso-
ciated with the partition; if not, the task
in the terminating partition must WAIT
until the scheduler has been re-associated
with the partition.

When the scheduler is again available,
the initiator/terminator performs the func-
tions required to terminate individual job
steps and complete jobs. ' It executes an
installation accounting routine if one is
provided.

The initiator/terminator releases the
I/70 devices, and disposes of data sets used
and/or created during the job step. (This
requires reading tables prepared during
initiation. Some of these tables are part
of the system job queue. It is for this
reason that termination cannot proceed
until the scheduler has again been asso-
ciated with the terminating partition --
that is, until the portion of the job queue
containing information for the terminating
partition has again become the apparent
"single®” job queue for the system.)

If the control statements for the next
job step were read and interpreted, the
initiator/terminator initiates that step.
If the statements were not read, the
initiator/terminator determines whether a
shift operation is pending. (A shift oper-
ation is pending when a SHIFT command has
been entered by the operator or encountered
in the job stream and has not been fully
effected.) If no shift is outstanding, the
initiator/terminator is replaced with the
reader/interpreter, which starts the
read-initiate-execute-terminate cycle for
the next job. If a shift is outstanding,
the initiator transfers control to the
scheduler controller, which reverses the
previous restructuring of the job gueue so
that the effective job queue is associated
with the next-higher-priority partition.
The scheduler controller then causes the
reader-interpreter to begin the read-
initiate-execute-terminate cycle for the
next higher partition.

e e o — —— — — — — G = — — Gt — — — Gn— S———— — — — — — — ———— — —— ——— —— — ——" — — —— —— — — — — — — — ———— — — — — — — — —— —— o]

Figure 3.

14

Example of CPU Control Flow for a Job Processing Cycle (Sheet 4 of 4)

-

C

JOB MANAGEMENT

Job management (Chart 1) is the first
and last portion of the control program
that a job encounters. Its primary
function is to prepare job steps for execu-
tion and, when they have been executed, to
direct the disposition of data sets created
during execution. Prior to step execution,
job management:

¢ Reads control statements from the input
job stream.

"o Places information contained in the
statements into a series of tables.

e Analyzes input/output (I/0)
ments.

require-

e Assigns I/0 devices.
e Passes control to the job step.

Following step execution,
ment:

job manage-

e Releases main storage space occupied by
the tables.

e Frees I/0 devices assigned to the step.

e Disposes of data sets referred to or
created during execution.

Job management also performs all pro-
cessing required for communication between
the operator and the control program.
Major components of job management are the
job scheduler, which introduces each job
step to System/360, and the communication
task, which handles all operator-system
communication.

JOB SCHEDULER FUNCTIONS

The job scheduler includes three pro-
grams: the reader/interpreter, the
initiator/terminator and the scheduler
controller. The functions of the reader/
interpreter are unchanged from the sequen-
tial scheduling system; for further infor-
mation, refer to the publication IBM
System/360 Operating System: Job Manage-

ment, Program Logic Manual.

After all control statements for a job
have been processed, or when data is
encountered in the input job stream, the
reader/interpreter gives control to the
initiator/terminator. The initiator por-
tion of the initiator/terminator function
is unchanged from the sequential scheduling
system; for further information, refer to

the publication IBM System/360 Operating
System: Job Management, Program Logic Manu-
al.

When the job step has been executed,
control is again given to the initiatox/
terminator which, when the scheduler is
assigned to the partition in which the job
step has executed, performs data set dispo-
sitions and releases I/0 resources. The
shift count is interrogated, at job termi-
nation, to determine if the scheduler is to
be shifted into a higher priority parti-
tion.

COMMUNICATION TASK FUNCTIONS

The routines of the communication task
process the following types of communi-
cation between the operator and the system.

. Opérator commands, whether they are
issued through the console or through
the input job stream.

and write-to-
(WTOR) macro-

e Write-to-operator (WTO)
operator with reply
instructions.

e Interruptions caused when the INTERRUPT
key is pressed.

JOB PROCESSING

Figure 4 shows the major components of
job management and illustrates the general
flow of control.

Control is passed to Jjob management
whenever the supervisor finds that there
are no program request blocks in the
request block queue. This can occur for
two reasons: either the initial program
loading (IPL) procedure has just been com-
pleted or a job step has just been execut-
ed.

Entry to Job Management Following Initial

Program Loading

Following IPL, certain actions must be
taken by the operator before job processing
can Dbegin. Therefore, control passes to
the communication task and a message is
issued to the operator instructing him to
enter commands. These "initialization"
commands include a SET command, a start
writer (START WTR) command, and a start
reader (START RDR) command. When a START
command with a blank operand is issued,
control is passed to the reader/inter-
preter.

Theory of Operation 15

* READ AND

* PROCESS JOB *

* CONTROL *Xeae

* STATEMENTS * -

* * .

sk kok Rk Rk KRRk .
*

READER/ SCHEDULER
INTERPRETER CONTROL
Fokokk A2k KKK ARk ERAKADFR KK KRR K
* *
* ENTRY * * ENTRY *
* * * *
sk kKR Rk ook KK kR kKR
- N
. -
- .
« FROM NI « FROM SUPERVISOR
« (AFTER IPL) « (AFTER STEP EXECUTION)
o
. X
X o¥e
#****Bl**tt****** *****BZ********** 83 *.
t
* .15 SCHEDULER*. YES
*INITIALIZATION *x.-.-....*INITlALIZE MAIN* *o ASSIGN e¥eeeeesscsccccscace
t COMMANDS STORAGE * THIS PARTITIDN .
o o .
*tt**t****t*****t ****************t *e ok .
. * NO .
. . .
. - .
. . .
- . .
. . o
. . X
. sk C 2%k dkk KRRk X kR Co Rk KKK KKK
* * FRNRCTHE XXX RER * DO POST-STEP *
. * OPEN * * * % HOUSEKEEPING, *
eeecscecsscasocs e XKSYSTEM DEVICES * * WAIT * *EXECUTE USER'S *
* * * ACCOUNTING %
* * ook oKk KKk Rk * ROUT INE *
Fok ARk R KRR KKK B N L
- .
. .
. .
. X
. ke
- D4 k.
- ok *e
- ¥ *o
*eLAST STEP OF e¥eeee
. *o JoB o .
. *e ok .
. *e ok .
. * YES .
. . .
. - .
. .
- o ke X .
. E3 ke dkokk ok E 4ok 3ok Rk K .
. .* *a * DO POST-JOB * .
. NO * HOUSEKEEPING, * .
Xeeeessescccsacasts SHIFT PENDING.*X........*ExEcuTE USER'S * .
. ACCOUNTING * .
- “x. o ROUT INE .
- *e ok **x**********x*** .
. * YES .
. . .
- - .
. . .
. . .
. - .
. X .
FokokokkF 30k kKRR Kk .
. * ASGN * .
. * SCHEDULER TO % .
eXessesescescccseek NEXT-HIGHER- ¥ .
. * PRIORITY * .
. % PARTITION * .
. B R L .
. -
. o
.
. .
- .
X -
****tcz********** o
.
-
.
-
.
.
.
.
.
.
.
.
.
.
.
.

€000 000ccscsccscsccccsccscccsccccncscscsXoccccccccse

- dokkk
- * *
- * G2 *
- * *
- *okokk
X
o¥ o
eokdokH 1 % kokok ok kokokokok H2 *o
* * ok *o
* REQUEST * YES o% COMMAND *eo
* AND PROCESS *Xeeeoooooke PENDING ok
* COMMANDS * *o ¥
* * *e ¥k
koo kb kokok ok kokokkk ¥e o¥
- * NO
: .
: :
- X
:
X
LR 23
*
* G2
*
Fkkk
Figure 4. Job Management Logic

16

****'K3**t***t***

ITR, *
*ASGN SCHEDULER *
*TO NEXT-LOWER— ¥*X
%* PRIORITY PTN %

* *
ek ok ok ok okokokok ok okok ok

X
HokokkkJ G dodok ko ok kKR ok

*
*
*
*
*

INITIALIZE
TABLES FOR
STEPs ALLOCATE
1/0 DEVICES

*
*
*
*
*

Fodok okl ok koo ook ok

*
*

Xeoosos o

****K4*********
EXIT TO
PRDCESSING

AM

*
**********#****

*

Entry to Job Management Following Step
Execution

Following step execution, control is
routed to the step termination routine of
the initiator/terminator. If the job had
been completed, control is also passed to
the job termination routine of the
initiator/terminator. Both routines are
described under "Job and Step Termination."

Control Statement Processing

After completion of the processing that
immediately follows IPL, or after termina-
tion of a job or of a step containing data
in the input job stream, control is passed
to the reader/interpreter. The = reader/
interpreter reads and processes control
statements until one of the following con-
ditions is encountered:

e A DD ¥ or DD DATA statement.
e Another JOB statement.
e A null statement.

e An end-of-data set (EOF) on the system
input device.

Meanwhile, if the operator has pressed
the REQUEST key and has entered a request
(REQ) command during execution of the job
step or any of the above processing, the
communication task routines set a command-

pending indicator on during the ensuing
interruption. The indicator is now checked
and, if found to be on, control is passed

to the communication task, which causes a
message to be issued instructing the
operator to enter commands, and then pro-
cesses the commands.

Step Initiation

control next passes to the
initiator/terminator, which examines I/O
device requirements, assigns (allocates)

I/0 devices to the job step, issues mount-
ing instructions, and verifies that volumes
have been mounted on the correct wunits.
Finally, the initiator/terminator passes
control to the job step.

Job and Step Termination

When processing program execution is
completed, the supervisor, finding no pro-
gram request blocks in its request block
queue, passes control to the job management
routines. Entry is first made to the step
termination routine.

Step termination may occur only when the
scheduler is attached to the terminating
partition. If termination cannot occur,

the pre-termination routine issues a
'PARTITION n WAITING TO TERMINATE' message
and waits until the partition gains control
of the scheduler. The step termination
routine performs end-of-step housekeeping
and passes control to the user's accounting
routine, if one was provided. When the
accounting routine has been executed, the
supervisor returns control to the step
termination routine. If the job termina-
tion indicator is on, control is then
passed to the job termination routine; or
to the reader/interpreter if the indicator
is off and no more steps are ready for
initiation; or to the step initiation rou-
tine.

The Jjob termination routine performs
end-of-job housekeeping. It exits to the
user's accounting routine, if one was ' pro-
vided. After the accounting routine is
executed, the supervisor returns control to
the job termination routine which decre-
ments the partition shift count by one if
neither the partition number nor shift
count is already zero. Control is then
passed to the reader/interpreter.

OPERATOR-SYSTEM COMMUNICATION PROCESSING

The routines that handle operator-system
communication are contained in the communi-
cation task. Communication may take one of
two forms: commands, which allow the opera-
tor to change the status of the system or
of a Jjob or job step; and the WTO or WTOR
macro-instructions, which allow processing
programs oOr system components to issue
messages to the operator. The communi-
cation task routines also switch functions
from the primary console device to an
alternate console device when the INTERRUPT
key is pressed.

Command Processing

Commands may be issued by the operator
in two ways: he may insert command state-
ments between job steps in the input job
stream, or he may issue commands through
the console input device. Commands encoun-
tered in the input job stream cause control
to be passed to the communication task,
which processes them. Before entering com-
mands through the console, however, the
operator must press the REQUEST key to
cause an attention interruption. Figure 5
shows the actions taken after the key is
pressed.

WTO/WTOR Macro-Instruction Processing

WTO or ' WTOR macro-
issued, a supervisor
(See Figure 6.)

Whenever the
instruction is
interruption occurs.

Theory of Operation 17

External Interruption Processing

When the operator presses the INTERRUPT
key, an external interruption occurs. The
communication task then switches functions
from the primary to the alternate console
I/0 device. (See Figure 7.)

ENQ/DEQ PROCESSING

The enqueue and dequeue service rou-
tines, through which the ENQ and DEQ macro-
instructions are implemented, provide for
controlled, sequential access to serially
reusable resources such as data sets,
programs, Or work areas in main storage.
The routines service both problem program
ENQ/DEQ requests, and requests from the
system's job management and fixed-task
supervision routines. The primary function
of the enqueue and dequeue service routines
is to test for the availability to the
requesting task of a serially reusable
resource, to enqueue the request if neces-
sary, and to dequeue the request when use
of the resource is complete.

In addition, the service routines permit
system routines to set a system-must-
complete flag before performing a critical
operation, then to remove' (reset) the flag
when the operation has been successfully
completed. This feature is available only
to system routines; use of the system-must-
complete feature in a problem program
causes abnormal termination.

ENQ/DEQ Control Blocks

Resources are identified by the request-
er through a major name, specifying a set
of resources, and a minor name, specifying
a particular resource within that set. An

Supervisor

Obperator Presses
REQUEST Key

Identifies
Type of

Communication Task .
ation Tas Interruption

Requests
Asynchronous
Exit
Processing

Dispatches
the
Request

Issues Message
Requesting a
Command

Wait for
Operator Action

Operator Enters

Returns Control
to point of
Interruption

Processes
Command

Command

Attention Interruption Process-
ing Flow

Figure 5.

18

Supervisor

Program lIssues
Identifies
WTO/WTOR Macro-Instruction Type of
Interruption
Communication Task
Writes Message
(Generates Returns
Reply Queue Entry Control to
if WTOR) Point of
Interruption
A. Message Processing
Supervisor
Operator Presses
Identifies
REQUEST Key Type of
Interruption
Communication Task
Reads
Repl
P Returns
Control to
Point of
Interruption
Processes
Reply

B. Reply Processing

WTO/WTOR Macro-Instruction
Processing Flow

Figure 6.

enqueued request has associated with it
three control blocks: a major queue control
block (QCB), a minor QCB, and a gqueue

element. (See the program listing for the
structure and contents of these control
blocks.}

The major QCB represents the set of

resources specified by the major mname pa-
rameter of the ENQ request. All major QCBs
existing in the system at a given time are
linked together; the head of the major QCB
chain is a control field (IEAQQCBO) within
the enqueue service routine.

Queued on each major QCB are the minor
QCBs corresponding to the minor names of
the specific resources for which requests
have been issued. Queued on each minor QCB
are queue elements representing the tasks
under which the outstanding requests were
issued.

o
N

Supervisor

Operator Presses
INTERRUPT Key

Identifies Type of
Interruption, Posts
to Communication

Task ECB

Communication Task

Switches between
Primary and
Alternate
Console

Returns Control
to point of
Interruption

Figure 7. External Interruption Process-

ing Flow

Note: If the STEP operand is included in
an ENQ or DEQ macro-instruction, the pro-
tection key for the job step is treated as
part of the minor name when the minor QCB
queue is searched. If two requests specify
the same major and minor name and if either
request or both includes the STEP operand,
both requests will be represented by the
same major QCB but different minor QCBs.
However, because the Option 2 system does
not include the ATTACH and DETACH macro-
instructions, the STEP operand has no
effect.

If +the SYSTEM operand is included in an
ENQ or DEQ macro-instruction, the minor
name 1is used as specified. Two requests
specifying the same major and minor name
and SYSTEM will be represented by the same
major QCB and the same minor QCB.

All ENQ/DEQ control blocks are dynami-
cally created and deleted, as ENQ and DEQ
requests are processed and as other system
functions, such as abnormal termination,
are performed. The physical location of
the major and minor QCBs, with respect to
the partition in which the requesting task
was operating, varies depending upon the
circumstances of their creation and dele-
tion. When an ENQ request is serviced, a
GETMAIN is issued to obtain main storage
for a major QCB, a minor QCB, and a queue
element. The queue element 1is always
developed and 1linked to the appropriate
control block; queue elements remain in the
requesting partition from their creation
(on ENQ) until their deletion (normally on
DEQ) . The main storage obtained for the
QCBs may or may not be used at the time
that the queue element is created. Major
and minor QCBs are copied from partition to
partition as required by the sequence in
which queue elements are dequeued. If the
required major and/or minor OQCB already
exist in another partition, the correspond-
ing area(s) in the requesting partition is

reserved for use if it becomes necessary to
copy the QCB(s) into the requesting parti-
tion.

For a summary of typical control block
patterns during ENQ/DEQ, see Figure 8.

Sequence of Execution for Enqueued Tasks

The queue elements enqueued upon any one

minor QCB represent tasks that have
requested access to the corresponding
resource. When control within a task pass-

es to the enqueue service routine, the task
may enter an effective wait until the
request 1is serviced; that is, control is
not returned from the engueue service rou-
tine to the processing program until the
resource has actually been made available
to the task. The time at which a task
proceeds (through re-entry to the calling
routine) 1is determined by the relative
position of shared and exclusive requests
on the queue, and by the status of each, as
described in the following paragraphs.

A queue element may be thought of as
being ready or not-ready, where the condi-
tion ascribed to the queue element is
actually the condition of the associated
task. Then an ENQ specifying several
resources is issued, the wait count in the
SVC request block (SVRB) associated with
the request is set to the number of resour-
ces requested by, but unavailable to, the
task. Whenever the wait count in an SVRB
is non-zero, the routine to which the SVRB
points cannot proceed, although the the
task with which the SVRB is associated may
not be waiting. This condition is summar-
ized by describing the queue element as
not-ready. Conversely, a queue element may
be described as "ready" when the wait count
in the associated SVRB is zero.

If any queue element preceding the first
exclusive request on the queue for a
resource is shared and ready, the task
associated with that queue element pro-
ceeds. Furthermore, the tasks represented
by any subsequent shared and ready requests
on the queue that precede the first exclu-
sive request proceed concurrently. The
first exclusive request, whether ready or
not-ready, and all subsequent requests,
whether exclusive or shared, are not ser-
viced at this time.

If the queue element at the head of the
queue 1is exclusive and ready, the task
associated with that queue element pro-
ceeds. No other task represented on that
queue proceeds until the exclusive request
has been dequeued.

Theory of Operation 19

PARTITION A PARTITION B PARTITION C
Mé‘é(B)R An ENQ is issued in partition A. None of the
required control blocks exist -- therefore, all
MINOR three are created in partition A.
QCB
QEL
0 An ENQ is issued in partition B. A QCB
exists for the specified major name, but not
MAJOR for the minor name. Major QCB space is
QcB reserved in partition B. The minor QCB is
MINOR » created and added to the chain of minor QCBs
QCB for the existing major QCB. The new queuve
QEL element is created.
QCB
QEL
MAJOR Two ENQs are issued in partition C. The
QCB < > MAJOR first request names a new set of resources; a
QCB full set of control blocks is created and the
MINOR ‘ X MINOR major QCB is linked to the existing major
QCB N QCB QCB.
QEL MINOR QEL
QCB
QEL < The second request is for the same resource
ENQJ upon in partition B. Since both a
major and a minor QCB exist, the correspon-
ding space in partition C is reserved; a queue
element is created and added to the minor
QCB's queue element chain.
-————
| MAJOR > MAJOR
QCB g QCB A DEQ is issued in partition A, Because
T e there is a second minor QCB (in partition B)
MINOR = ————3 MINOR chained to the major QCB, the major QCB
QCB QCB QCB X S . .
—_———— " is copied into the reserved space in partition
L _ QEL QEL < QEL B. Since there are no further QELs enqueued

on the minor QCB in partition A, it need not
be copied. The QEL is no longer required.
(QELs are never copied.) After the major
QCB has been copied, the main storage used
for all three control blocks is freed.

A DEQ is issued in partition B. There are
no further minor QCBs in the major QCBs
chain, but there is another QEL linked to
the minor QCB. Therefore, both the major
and the minor QCBs are copied into the
reserved space associated with the remain-
ing QEL. The control blocks in the DEQing
partition are then deleted via FREEMAIN.

Key:

|
| I——|

reserved

deleted

{} head of major

QCB queve (addr
in IEAQQCBO)

4—> |ink pointer

[['3 copy operation

Figure 8. ENQ/DEQ Control Block Creation and Deletion

20

AN

N

If the queue element at the head of the
queue is exclusive and not-ready, no tasks
represented on the queue can proceed.

LOAD MODULES

Most Jjob management routines exist as a
series of load modules that reside on a
permanently resident volume. The only
exceptions are the posting routines of the
communicatidn task, which reside in the
nucleus. The "Load Modules and Assembly
Modules" section contains a 1list of the
routines that make up each job management
load module.

Theory of Operation

21

PROGRAM ORGANIZATION

JOB_SCHEDULER MODIFICATIONS

PARTITION-RELATED SCHEDULER CONTROL BLOCK

The partition-related scheduler control
block (PRSCB) is the only new control block
introduced into the system by Option 2 of
the control program. One PRSCB is created
for each partition at nucleus initializa-

tion. The PRSCBs reside in the nucleus, as
module IEFSD032, and are defined by a
DSECT, module IEFSD033. PRSCBs are con-

tiguous and are arranged by priority order,
beginning with highest priority (Partition
0). A pointer to the PRSCB for a given
partition is contained in the three bytes
immediately preceding the boundary box for
that partition. The content and structure
of the PRSCB are described below.

| |
| SD33ECB |
| |
L 4
r 1
| |
| SD33CTTR |
| |
L J
r 1
| |
I SD33STTR |
| |
L 4
r T T a
| | | |
| SD33QSTT | SD33LNGH| SD33IND |
I | | |
L L L J
Field Bytes Contents

SD33ECB 4 Scheduler-controlling event
control block. This ECB is
posted complete whenever the
scheduler is assigned to the
partition through a WAITR
issued in the next-higher-
priority partition. The
wait flag in this ECB is
turned on when the scheduler
is relinquished, either
through a WAITR in this par-
tition or through processing
of a SHIFT command.

SD33CTTR 4 Current TTR save area. When
a partition relinquishes
scheduler control through a
WAITR, the scheduler down-
shift routine stores in this
field (in TTR form) the next
location in the queue-
manager's extent that would
have been used by the

22

Field Bytes Contents

queue-manager if further
records were to have been
written for the relinquish-
ing partition. The system
job queue variable area
applicable to the next-
lower-priority partition
begins on the next full
track following this loca-

tion.

SD33STTR 4 Fixed-area table save area.
When a partition relinquish-
es scheduler control through
a WAITR, the relinquishing
partition's JCT, SCT, and
LCT are moved from the fixed
area to this save area, fol-
lowing the variable informa-
tion for the relinquishing
partition.

SD33QSTT 2 Starting track location save
area. This area contains
(in TT form) the location of
the track on which the vari-
able area for the partition
begins.

SD33LNGH 1 Offset to PRSCB for active
partition. This byte is
meaningful only in the PRSCB
for Partition 0. Whenever a
scheduler upshift or down-
shift is effected, the
length of one PRSCB (16
bytes) is added to or sub-
tracted from this field in
the Partition 0 PRSCB. This
value, added to the address
of the PRSCB Partition 0,
yields the address of the
PRSCB for the partition to
which the scheduler is cur-
rently assigned.

SD33IND 1 Partition identification;
contains 00 for Partition O,
01 for Partition 1, etc.

TERMINATION
The termination function of the
initiator/terminator (Chart 12) performs

post-step and post-job housekeeping. It is
normally given control following step exe-
cution, but is also given control when a
job management routine encounters an
irrecoverable error while processing a job
step. Termination routines:

N/

e Release space occupied by tables.
e Free I/0 devices.

e Dispose of data sets referred to or

created during execution.
Major components of termination are:

e The pre-termination routine, which de-

termines 1if the scheduler is currently
associated with the terminating parti-
tion.

e The step termination routine, which

performs post-step housekeeping func-
tions.

e The job termination routine, which per-
forms post-job housekeeping functions.

e The shift count interrogator, which
determines whether a shift is to be
performed.

The disposition and unallocation subrou-
tine is used by both the step and job
termination routines. Basically, this sub-
routine handles disposition of data sets
and frees devices allocated to a step. The
disposition and unallocation subroutine is
described in the publication IBM System/360

Operating System: Job Management, Program
Logic Manual.
PRE-TERMINATION ROUTINE: The pre-

termination routine (Chart 13) is new for
the Option 2 system. The routine is
entered from the supervisor when the prob-
lem program has issued its highest-level
return, causing the supervisor's ABEND rou-
tine to be entered; the second load module
of the ABEND routine exits to the job
management GO module.

Working through the communication vector
table, the pre-termination routine obtains
the address of the TCB for the current task
(the task that is attempting to terminate),
obtains from the TCB a pointer to the
related boundary box, and obtains from the
boundary box the address of the partition-
related scheduler control block (PRSCB) for
the partition in which the terminating task
was operating (see Figure 9). The first
fullword of the PRSCB is the scheduler-
controlling ECB for that partition.

The ECB is posted complete if the
terminating partition has never issued a
first WAITR macro-instruction, and has
therefore never relinquished control of the
scheduler, or if the partition has relin-
quished control but has again been assigned
scheduler control +through SHIFT command
processing. If the wait flag is on in the
ECB, the partition has relinquished schedu-

ler control through a WAITR and the schedu-
ler is currently oriented toward some par-
tition of lower priority; termination can
proceed only after the scheduler has been
re-associated with the terminating parti-
tion.

If the wait
scheduler-controlling
terminating partition, the

flag is on in the
ECB for the
pre-termination

routine issues a 'PARTITION n WAITING TO
TERMINATE' message and waits on the ECB.
(The ECB 1is posted complete when a SHIFT

command causes the scheduler upshift rou-
tine to pass control of the scheduler from
the next-lower-priority partition to this
partition.) If the complete flag is on,
the routine bypasses the message, issues a
WAIT on the ECB to decrement the wait
count, and continues processing.

When the wait for scheduler control is
satisfied, the pre-termination routine
examines the completion code in the ECB. A
completion code of 4 indicates that schedu-
ler control was relinquished by, and
returned to, the terminating partition.
Control was originally relinquished through
a WAITR macro-instruction; when the WAITR
was processed, the first-time WAITR switch
for this partition was turned off. If this
is the case, the pre-termination routine
turns the switch back on, in preparation
for the first WAITR macro-instruction in
the mnext job (if any) to be scheduled into
the terminating partition, and resets the
completion code in the ECB to zeros.

If the completion code is not 4, the
terminating partition has never relin-
quished control and its first-time WAITR
switch is, therefore, still on. In this

case, resetting the switch is bypassed.

the
step

When these actions are complete,
pre-termination routine enters the
termination routine through a branch.

STEP TERMINATION ROUTINE: The step termi-
nation routine performs its functions when
a step has been terminated either normally
due to successful completion of execution
or abnormally due to an error condition.
It uses five major routines:

e Step termination control routine.

e Step termination data set driver rou-
tine.

e Job statement condition code routine.

e Disposition and unallocation subrou-

tine.

e User's accounting routine (if included
in the configuration).

Program Organization 23

B BOX

QUEUE-
MANAGER'S
EXTENT

Fixed
Area

Partition=-
Related
Area 0

Partition-
Related
Area 1

COMMUNI -
CATIONS
(Master
Scheduler)
TCB
B BOX
PARTITION
0
TCB
PARTITION
0
PRSCB
PARTITION
1
PRSCB
B BOX
PARTITION
2
PARTITION PRSCB
1
TCB
PARTITION
3
PRSCB
B BOX
PARTITION
2
TCB
B BOX
PARTITION
3
TCB

Figure 9.

24

Control Block Relationships

Partition-
Related
Area 2

Partition-
Related
Area 3

Remainder

(Unused)

Upon successful execution of a step or
abnormal termination of execution, control
is passed from the supervisor to the step
termination control routine. In addition,
when a job management routine encounters an
irrecoverable error, it immediately passes
control to the step termination control

routine.

First, the initiator/terminator task
input/output table (TIOT) and the 1linkage
control table (LCT) are read into main
storage. Next, the cancel ECB is set to
zero in the selected job queue. The job
control table (JCT) and the step control

table (SCT) are then read into main storage
(if they are not in main storage at the
time), and a step status code 1is inserted
into the SCT.

The step data set driver routine is then
entered. It reads the step input/output
table (SIOT) for each data set into main
storage and branches to the disposition and
unallocation subroutine. The loop through
the data set driver routine and the dispo-
sition and unallocation subroutine is then
repeated for each SIOT.

When all data sets have been processed
by the disposition and unallocation subrou-
tine, the updated SCT is returned to auxil-
iary storage. Control is then passed to
the job statement condition code routine,
unless it is known that there are no
further steps for the Jjob (the reader/
interpreter had encountered a JOB or null
statement). In the latter case the job
statement condition code routine is
bypassed.

The job statement condition code routine
processes condition codes specified in the
JOB statement.

If, upon entry into the Jjob statement
condition code routine, it is found that
there were no condition codes specified in
the JOB statement, control is returned to
the step termination routine. Each condi-
tion code in the JCT for the job is in turn
compared with the step completion ¢ode of
the previous step, which appears in its
SCT. Up to eight conditions are checked by
this routine for each step. Any additional
condition codes are ignored. If any of the
condition operators are satisfied by the
codes, the job-failed indicator in the JCT
is updated to indicate that the job failed,
the message subroutine is used to issue a
message to the programmer, and control is
returned to the step termination routine.

Upon return from the job statement con-
dition code routine, or if it had been

bypassed, the step termination routine
exits to the user's accounting routine, if
one is present. On return from the

accounting routine, or if there was none,
the step termination routine passes control
to:)

if the
last

e The 3job termination routine,
current step is known to be the
step of the job.

e The initiator/terminator system control
routine, if additional steps have been
interpreted and are ready to be ini-
tiated.

e The reader/interpreter control routine,
which resumes processing the input job
stream.

JOB TERMINATION ROUTINE:
tion routine (Chart 15)
tions when an entire job

The job termina-
performs its func-
has been executed

and step termination for its last step has
been completed. It coasists of four major
routines:

e Job termination control routine.

e Release job queue routine.

e Disposition and wunallocation subrou-

tine.
e User's accounting routine (if included

in the configuration).

Control is passed to the job termination
control routine from the step termination
routine.

The job termination control routine de-
termines if a passed data set queue exists
and, if so, reads each block into main
storage and tests for unreceived data sets.
(An unreceived data set is a passed data
set to which no reference is made after
PASS is specified.) When an unreceived
data set is found, entry is made to the
disposition and unallocation subroutine.
When all unreceived data sets have been
processed, or if no passed data set queue
exists, the job termination control routine
passes control to the accounting routine,
if there is ome.

When the accounting routine returns, or
if there is no accounting routine, the
completed job's control tables are removed
from the system by the release job queue
routine. This routine releases the auxil-
iary storage space occupied by all control
tables for the job. If the job notifica-
tion switch is on, the message

IEF402I jobname ENDED
is written on the console device. control

is then passed to the shift count interro-
gation routine.

Program Organization 25

SHIFT COUNT INTERROGATION ROUTINE: For the
Option 2 system, the shift count interroga-
tor (Chart 16) is added as the final step
-of the job termination routine. If the
scheduler is not already in partition 0 and
the shift count is not zero, the count is
decremented by one and control is passed to
the scheduler upshift routine. Otherwise
the shift count is zeroed out and control
is passed to the reader/interpreter control
routine.

SCHEDULER CONTROLLER

Acting in conjunction with the
reader/interpreter and the initiator/ter-
minator, the scheduler controller is the
third element of the job scheduler. The
function of the controller is to adjust the
system job queue and monitor the operation
of the reader/interpreter and initiator/
terminator as required for multi-partition
processing.

The system 3job queue is a data set
containing control information produced by
the reader/interpreter and used throughout
job scheduling. The direct access area on
which the data set resides is known as the
queue-manager extent (see Figure 10). This
extent is.defined at system generation time
and 1is initialized at nucleus initializa-
tion.

During initial reader/interpreter opera-

tions -- that is, up until the time when
the first job in the input stream begins
execution and issues a WAITR -- the con-

tents of the queue-manager extent is organ-
ized as for the sequential scheduled sys-
tem. The extent includes a fixed area
(sometimes referred to as the "pre-empted
track area") immediately followed by a
variable area. Within the fixed area are,
among other control fields, three key con-
trol tables: a link control table (LCT), a
job control table (JCT), and a step control
table (SCT). The variable area contains
additional control fields and tables.
(Each record in the variable area is fixed
at 176 bytes; however, the number of
records in the area can vary.)

Major scheduler control components are:

e The downshift routine, which reinitial-
izes the scheduler for operation in the
next-lower-priority partition.

e The upshift routine, which is entered
when the scheduler is to be shifted to
the next-higher-priority partition.

SCHEDULER DOWNSHIFT ROUTINE: The scheduler
downshift routine (Chart 18) is entered as
a result of WAITR issuance in the next-
higher-priority partition. This routine

26

reinitializes the scheduler for operation
in the next-lower-priority partition,
issues the message

PARTITION n STARTED

and exits to the reader/interpreter. The
following paragraphs describe how prepara-
tion for scheduling in the second partition
is performed. (Throughout the following
discussion, ‘'Partition A' refers to the
partition in which the WAITR was issued and
which is relinquishing the scheduler.
'Partition B' refers to the next-lower-
priority partition -- the partition to
which the scheduler is being assigned.)

When the scheduler downshift routine is
entered, the PRSCB for Partition B is
cleared to zeroes, except for the complete
flag in the scheduler-controlling ECB,
which was just set on by the WAITR routine,
and the partition identification byte which
remains constant. The routine then gets
main storage and reads in the LCT, JCT, and
SCT from the queue-manager's extent on
direct access. New job, 1link, and step
control tables are constructed and read
back into the fixed area; the tables that
were read in from the fixed area are then
written into the variable area associated
with Partition A.

The variable area associated with
Partition A now contains the scheduler
information in the same state as when the
scheduler was operating in that partition.
The control information in the standard
portion of the variable area is applicable
only to Partition A and will not be affect-
ed by operation of the scheduler in another
partition. The control information in
those portions of the fixed area that are
always referred to by the scheduler (the
ICT, SCT, and JCT), regardless of what
partition it 1is operating in, has been
saved and the fixed area re-initialized for
further use.

When this operation 1is complete, the
pointers in +the PRSCB for Partition A
indicate (in TTR form) the location of:

SD33QSTT The beginning of Partition A's
variable area.

SD33STTR The beginning of the LCT/SCT/JCT
save area within that variable
area.

SD33CTTR The next available TTR on the
queue-manager's extent; i.e., the
location beyond which the vari-
able area for Partition B, if one
is required, is to be built.

Control is then passed to the reader-
interpreter.

AN
/

\t//

QUEUE-MANAGER'S EXTENT

Fixed Area Variable Area
(Pre-Empted Track Area) (Up to four partitioned-related areas)
e / \\ \
g \
e / N \
\
.~ / \ \
e \
Z / \ \
7 \
P s’ 7 / \\ \
P / N \
7
Y N \
\
e / N \
// / \\ \
.7 / \ \
NWRT | JFCB1 | JFCB2 | JFCB3 | JFCB4 | JFCB5 | JFCB6 | LCT | IWA | JFCB7 | TIOT | JCT | SCT \
* * | % \
The fixed area (described by /
DSECT IEFSDO005) is used for \
scheduling in any partition. / \
% These tables are used for scheduling the active
/ partition, and are saved in the variable area \
/ associated with the active partition when sched- \
/ uler control is relinquished. \
/ PARTITION 0 PARTITION 1 \
(First Variable Area) (Second Variable Area) \
/ N AN
7 e A
JCT SICTs Problem
SMBs JFCBs Program
SCTs VOLUME Tables TIOT LCT SCT JCT
ACTs DSNAME Tables
A
J \] J
~
LTT saved in TTR saved in - TTR saved in
SD33QSTT SD33STTR SD33CTTR
Control data used for sched- Area where fixed area
uling when partition has tables are stored when
scheduler control control is relinquished

Figure 10. Queue-manager's Extent Layout

SCHEDULER UPSHIFT ROUTINE: The scheduler reader/interpreter. This main storage is
upshift routine (Chart 17) is entered from freed, and a GETMAIN is issued to obtain
the shift count interrogator when job the main storage required by the pointer
termination has been completed in a parti- restore routine. Into this main storage is
tion (Partition B, for purposes of read the LCT, SCT, and JCT associated with
discussion) and the scheduler is to be Partition A.
shifted to the next-higher-priority parti-
tion (Partition A) in response to a non- After reading the required control
zero shift count. tables into main storage, the routine
writes them into the queue-manager's fixed
When the scheduler wupshift routine is area and resets the queue-manager's 'active
entered, the 1last of the scheduler's area' pointer (SCATALLY) to the beginning
termination routines has already issued a of Partition A's variable area. The con-
GETMAIN for main storage to be used by the trol information available to the queue

Program Organization 27

manager is now in exactly the same status
as it was when scheduler control was ini-
tially relinquished.

With the scheduler switch complete, the
routine posts the scheduler-controlling ECB
for Partition A and issues a wait on the
ECB for Partition B. This wait is satis-
fied if a subsequent job scheduled into
Partition A issues a WAITR; if the wait is
satisfied, the scheduler downshift routine
is brought into Partition B and executed.

COMMUNICATION TASK

The communication task (Chart 02) pro-
cesses all operator commands and messages
directed to the operator through use of the
WTO and WTOR macro-instructions. It also
performs console switching when the secon-
dary console is to be used in place of the
primary console.

The eight major routines of the communi-
cation task are:

console interrupt routine, which noti-
fies the communication task wait routine
that a console read has been requested.

Communication task wait routine, which
waits for all WTO/WTOR requests and
console interrupts and calls the com-
munication task router routine.

Communication task router routine, which
determines the type of request or inter-
rupt that occurred and passes control to
the appropriate processing routine.

Console device processor routine, which
performs console read and write opera-
tions and error checking.

Master command processor routine, which
processes all commands read from the
console input device except SET, START

RDR, and START WTR.

Master command routine, which analyzes
command verbs adnd routes control to
appropriate command execution routines.

Write-to-operator routine, which manages
WTO buffers and requests console writes
via the communication task wait routine.

External interrupt routine, which
switches to the alternate console device
when an external interruption occurs.

COMMUNICATION TASK CONTROL FLOW

Commands are issued through either the
console I/0 device or the input reader (see

28

Figure 11). Before entering commands
through the console I/O device, the opera-
tor must cause an I/0 interruption. When
he does, control is given to the supervisor
which recognizes the interruption and pass-
es control to the I/0 supervisor. The I/0
supervisor determines that the interruption
is an attention signal and passes control
to the master scheduler console interrupt
routine.

The console interrupt routine resides in
the nucleus. It posts the attention ECB in
the unit control module (UCM) and sets the
attention flag in the UCM list entry cor-
responding to the device from which the
interrupt came. Posting of +the attention
ECB causes the communication task wait
routine to be dispatched.

The communication task wait .routine
waits on all communication ECBs associated
with WTO/WTOR. The wait module issues a
multiple wait macro-instruction on a 1list
of event control blocks contained in the
UCM. When one of the event control blocks
is posted, as by attention or external
interrupts, the wait is satisfied and the
communication task thus becomes ready.
When it becomes the active task, it issues
the SVC 72. This SVC includes the console
communication service routines and the
router.

Because the communication task serves a
number of purposes, the first segment of
SVC 72 is a routine that distinguishes
among these purposes and establishes the
order of response. This routine is called
the router. The primary order of response
is: external interruption, I/O completion,
attention, and WTO(R).

When a posted ECB is found by the
router, the router XCTLs to the specified
processor module.

The console device processor routines
perform reading and writing by using the
EXCP macro-instruction. The processor rou-
tines consist of a routine to service
external interruption and three device-
oriented routines: 1052 operator console
routine, card reader routine, and printer
routine. With each of the three console
I/0 processor routines 1is associated an
OPEN/CLOSE support routine, which provides
Data Management and I/0 Supervisor control
blocks.

The specified processor routine reads
the input message into a buffer area and
calls the master command processor routine
via an SVC.

'
) W

(- Supervisor

Attention
Interruption

1/0 1T

Supervisor IR SR, A

Reader/Interpreter
Control Routine

Attention

Handler [R R

Master

Task Command Routine

—
Communication L e
Wait Routine —

L

Program Fetch

|
(Commands |
: Nucleus Transient SET |
Area START RDR
START WTR]
Master I
Command]
Processor
- Routine l

f
L

Fault Subroutine

|
|
|
f
|
|
|
1
|
1
|
|
(Message Processor) _l

Commands

CANCEL
DISPLAY
MOUNT
REPLY

REQ

SHIFT

~ START (blank)
STOP
UNLOAD
VARY

Figure 11. Communication Task Control Flow

Program Organization 29

The master command processor routine
analyzes the command for validity. Ten
commands (REQ, START (blank), CANCEL,
DISPLAY, MOUNT, STOP, UNLOAD, VARY, SHIFT
and REPLY) are always accepted and process-
ed. All other commands are ignored
(control is returned to the supervisor) if
issued at any time other than in response
to a message issued by the master command
routine. If the command is acceptable, it
is moved from the buffer into which it was
read to a local buffer, and control is
passed to the master command routine.

The master command routine analyzes com-—

mands and routes control to appropriate
command execution routines. If a command
is issued through the input job stream,

control 1is passed directly to the master
command routine by the reader/interpreter.
When all commands have been entered and
processed, control returns to the
reader/interpreter.

The write-to-operator routine moves the
text from the requesting program's area
into a buffer area within the nucleus and
posts the communication ECB for write-to-
operator. If the request was a WTOR, a
message ID is generated and a reply gueue
entry 1is created to allow handling of the
reply by the operator.

The external interrupt routine
the functions performed by the
console device to the alternate console
device. When the operator presses the
INTERRUPT key on the console, an external
interruption occurs and control is given to
the supervisor, which identifies the
interruption and passes control to the
external interrupt routine. The external
interrupt routine then switches consoles
and returns control to the supervisor.
Console functions may later be reassigned
to the primary console device if the opera-
tor causes another external interrupt.

assigns
primary

CONSOLE INTERRUPT ROUTINE

The console attention interrupt routine
(Chart O04) POSTs the communication task
attention ECB to request reading of the
console. The routine is logically part of
I0S. It operates in privileged mode, I/O
interrupt disabled, without destroying the

registers, and without macro access to
supervisor services. Using the pointer to
the UCB found in register 7, the UCB

address is matched to a UCM entry. The
attention flag for the entry is turned on.
A branch entry to POST pointing at the
attention ECB in the UCM, is then taken.
Register 14 is used to return to IOS.

30

COMMUNICATION TASK WAIT ROUTINE

The communication task wait routine
(Chart 07) issues a WAIT to the list of ECB
addresses contained in the Event Indication
List (EIL). The communication task is thus
able to respond to a variety of events
since the POSTing of any one ECB satisfies
the wait. The POST issued in the console
attention interrupt routine satisfies the
wait, and results in the placement of the
TCB on the ready queue. When next dis-

patched, the wait routine issues an SVC 72
which results in: (1) the creation of an
SVRB; and (2) the fetching of the first
segment of the console processor routines
into the system transient area.
COMMUNICATION TASK ROUTER

The router (Chart 08), IEECVCTR, is the

first segment of SVC 72 brought into the
transient area. Since the communication
task serves a number of purposes, and since
service requests may be simultaneously

pending, the router establishes the order
of response. The primary order of treat-
ment is external interrupt, I/0 completion,
attention (console interrupt), and WTO(R).
Multiple attentions are treated in order of
appearance in the UCM. Multiple I/O com-
pletions are treated in order of first wuse
of the device. The router responds to an
attention by building a parameter 1list in
the SVRB extended save area. It consists
of a remote XCTL parameter list, a pointer
to the appropriate UCM entry, and a pointer
to the UCM (contents of CVTCUCB). The
router then passes control to a processor
routine by issuing an XCTL to the remote
parameter list, using the name obtained
from the UCB entry. The flag signifying
the request to be serviced by the processor
routine will be turned off by the processor
routine. Consequently, processor routines
return control to the router with XCTL to
allow it to schedule service for other
requests.

If no requests are pending, the router
exits to the wait routine using the address
in register 14.

In addition to distinguishing the output
request from other requests, the router
selects the particular device to which the
message is to be sent. The router estab-
lishes the output device by interrogating
UCB entry attribute indicators. The
appropriate entry is the first active entry
that supports WTO. As before, the router
builds a remote interface for, and passes
control via XCTL to, a processor routine.

NS

J

CONSOLE DEVICE PROCESSOR ROUTINES

Control flow in a processor routine
(Chart 10) is determined almost exclusively

by the setting of flags in the router-
selected UCM entry. The close flag is
tested first. If this flag is on, any

pending I/0 activity is suspended by
issuing a WAIT. An XCTL is then issued to
an associated OPEN/CLOSE support routine
for release of various control blocks. If
the close flag is off, the busy flag is
tested to determine I/0 status. If there
is outstanding I/O activity, error checking
and buffer disposition occur if the activi-
ty has been POSTed complete. Otherwise,
any attention request is temporarily aban-
doned (so are output requests), and an XCTL
return to the router is taken. If the busy

flag is off, the attention flag is tested,
and if on, the status of the device 1is
examined. If the device has not been

opened, an XCTL to an associated OPEN/CLOSE
support routine is issued for +the purpose
of obtaining core for a DCB and access-
method dependent control blocks, and for
execution of the OPEN macro.

When return is made from the OPEN/CLOSE
support routine, a response to the
attention flag is prepared. A fixed buffer
in the UCB is reserved and an access—-method
dependent interface is constructed. I/0
activity is initiated by issuing EXCP for a
1052, and by issuing a READ for a unit
record device. 1In no case does the process
routine await completion of this activity.
Control is immediately returned to the
router by issuing XCTL.

Control flow within the processor rou-
tine 1is as previously described up to the
point at which the output request flag is
tested. If on, the processor routine
obtains the address of an output buffer
from the UCM. The element is mnot removed
from the queue at this time; this occurs
only on successful completion of I/O. The
reason 1is to preserve a natural method of
having the message retried if an external
interrupt intervenes before the message is
successfully presented to the current
device. Since output buffers are always
selected from the top of the queue, the
initiation of output to an alternate device
would be unaffected by any previous
attempts to present the message to the
primary device.

Having selected a buffer, the processor
routine establishes data management and IOS
control block linkages; and issues EXCP for
a 1052, or WRITE for a printer. Without

awaiting completion of the I/0, the proc-
essor routine returns via XCTL to the
router.

MASTER COMMAND PROCESSOR ROUTINE

The master command processor routine
(Chart 05) processes the CANCEL, DISPIAY,
MOUNT, REPLY, REQ, SHIFT, START (blank),
STOP, UNLOAD, and VARY commands. It

resides on the system residence device and
is brought into the transient area of the
nucleus by the supervisor when an SVC 34
instruction is issued by the communication
task or the master command routine.

If the command is one of the ten pre-
viously mentioned commands, it is processed
by the SVC 34 routine. SET, START RDR, and
START WTR commands are ignored unless they
were issued in response to a message from
the master command routine. If so, control
is passed to the master command routine,
which processes them.

If entry to the master command processor
routine was from the master command rou-
tine, the command is available in a buffer
(placed there by the master command
routine). The command is processed.

The master command processor routine
returns control to the router.

MASTER COMMAND ROUTINE

The master command routine analyzes com-
mand vVverbs and routes control to appropri-
ate command execution routines. It also
issues a message to the operator, informing
him that commands will be accepted from the
console. The master command routine is
brought into main storage and entered when
any of the following occur:

e The reader/interpreter encounters a
command in the input job stream.

e The reader/interpreter is performing
the initialization procedures that fol-
low IPL.

e The reader/interpreter finds the com—
mand pending switch on. (The command
prending switch is +turned on by the
routine that processes the REQ
command.)

e The reader/interpreter encounters an
end-of-data set condition in the input
job stream, indicating the end of a job
step or job. Control is passed to the
master command routine after the job
step has been processed.

Upon entry to the master command rou-
tine, general register 0 is examined. If
it contains zeros, entry was made because
the reader/interpreter encountered a com-
mand in the input job stream. The command
is moved to the master command routine

Program Organization 31

buffer and is written out on the console
output device for the operator's records.
The command verb is then analyzed: if it is
a SET, START RDR, or START WTR command,
control is passed to an appropriate command
execution routine. Otherwise, an SVC 34
instruction is used to pass control to the
master command EXCP routine.

If general register 0 does not contain
zeros upon entry to the master command

routine, the IPL pending, new reader pend-
ing, and new writer pending switches are
checked. If any of these switches are on,

the command pending switch is turned on and
a message is issued requesting the operator
to enter commands. Control is then passed
to the initialization command routine,
which provides certain commands, specified
by the installation during system genera-
tion (SYSGEN), to relieve the operator of
entering initialization commands. Each of
the commands provided is moved to the
master command routine buffer, written on
the console output device for the
operator's records, and executed.

If general register 0 does not contain
zeros and none of the previously-mentioned
pending switches are on, entry to this
routine was made because the reader/inter-
preter found the command pending switch on,
or encountered an end-of-data set condition
in the input job stream. A message is
issued requesting commands from the opera-
tor. After the operator has issued com-
mands and they have been processed, control
is returned to the reader/interpreter.

WRITE-TO-OPERATOR ROUTINE

The write-to-operator routine (Chart 06)

writes operator messages on the console
output device when a WTO or WTOR macro-
instruction is issued. These macro-
instructions may be issued by the system

component programs and processing programs.
Messages and replies are buffered; the
period of time between the message and the
reply is available for processing.
Issuance of either macro-instruction causes
an SVC interruption. When the interruption
is handled, the supervisor has the routine
read into the transient area of the nucleus
and passes control to it.

There are two console gqueues: the buffer
queue and the reply queue. Each WTO and
WTOR results in the addition of a WTO Queue
Element (WQE) to the buffer queue, and each
WTOR results in the addition of a Reply
Queue Element (RPQE) to the reply queue.
WTO and WTOR represent requests to present
a message to the operator. SVC 35 sets up
the user's messages and, if WTOR, inserts
the message identification (ID) which the
operator must use for his reply. The same

32

message ID is placed in the RPQE with other
information to insure passing the reply,
when received, to the proper area. WTO
messages are invariably written out; a WTOR
message may be purged (removed from the
queue) if the issuing task terminates while
the message is on the buffer queue. There-
fore, an RPQE differs from a WQE in that it
contains the address of the issuing task's
TCB. The buffer queue is accessed through
the entry UCMWTOQ in the UCM.

The reply queue contains RPQEs for oper-
ator replies to WTOR. Elements in this
queue, like WTOR elements in the buffer
queue, contain a TCB address to permit
purging.

The extent of both queues is limited by
specifying the number of buffers at system
generation. An attempt to exceed a thres-
hold value will result in an ENQ of the
requesting task.

For a reply (to WTOR), the processor
issues SVC 34 (command processing). The
SVC routine determines that the incoming
command is in fact a reply, processes the
reply, POSTs the user's ECB and branches
back to the processor.

EXTERNAL INTERRUPT ROUTINE

The external interrupt routine (Chart
04) switches to an alternate console device
when the operator presses the INTERRUPT key
on the console. This routine resides in
the nucleus.

SUPERVISOR MODIFICATIONS

WAITR--SINGLE EVENT

For the Option 2 system, the WAIT ser-
vice routine also processes WAITR macro-
instructions issued by a processing program
to cause job management to be initiated in
the next-lower-priority partition. If,
when the routine is entered, the wait count
is negative -- i.e., has been complemented
-- a WAITR has been issued. The routine
determines whether the WAITR is the first
that has been issued by the processing
program. If the WAITR is not the first, or
if the WAITR has been issued in the lowest-
priority partition (from which no down
shift is possible), the WAITR is treated as
a WAIT with the same parameters.

When a first WAITR is encountered and
there is a next-lower-priority partition,
the routine makes the task associated with
that partition dispatchable. When that
task is dispatched, job management routines
are entered to cause a job to be scheduled
into the partition.

AN
R W

When a first WAITR is serviced, a switch
is set so that any subsequent WAITR issued
in the same partition is treated as a WAIT.
This switch is reset only upon termination
of the job.

NUCLEUS INITIALIZATION PROGRAM

The primary change in the operation of
NIP under control program Option 2 is that
the standard partition initialization
functions are repeated for each partition
in the system. For each partition, just as
for the single partition that exists with-
out Option 2, a boundary box, a free area
queue element, a PRB, and the required XCTL
code are established. For a full explana-
tion of the nucleus initialization program,
including partition initialization, refer
to IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic Manual.

ENQ/DEQ SUPPORT

Enqueue Service Routine--IEAQENQO

This routine (see Charts 19 through 22)
is entered through a branch from a system
routine, or from the SVC second-level
interrupt handler in response to an ENQ

(SVC 56). When the routine is entered, the
major and minor QCBs are searched for
existing control blocks representing the

requested resource. If the required major
and/or minor QCB are not found, the routine
takes the action appropriate to the
RET=parameter, as follows:

e RET=TEST -- the routine sets a return
code of 00 (resource is available).

e RET=USE or HAVE —-- the routine ' sets a
return code of 00. The routine issues
a GETMAIN and creates a queue element.
A minor QOCB or a minor and a major QCB
is created if required..

s RET=NONE (or parameter left blank) --
no return code is set by the routine;
control blocks are constructed as for
RET=USE.

When the required action is complete, the
routine branches to the pre-exit subroutine
described below, or begins again with the
queue search if additional requests are to
be processed.

Pre-Exit Subroutine: This subroutine
(TESTEND1 and TESTEND2 in CSECT IGCOu48) is
entered to determine if the calling task
can proceed. The task can always proceed
if the RET=TEST parameter was used. Reg-
ister 15 is set and control is returned to
the task. If the SVRB wait count is not
zero, the registers are saved in the TCB,

the resume PSW is set to the address of the
SMC test, the new PSW is set to zero, and
the routine then branches to the dispatch-
er. The return codes are set and control
is returned to the calling task if the SVRB
wait count is zero and must-complete is not
requested. If must-complete is requested,
the routine proceeds as described below.

If the specified major QCB is found, the
routine searches the major QCB's queue of
minor QCBs for the specified minor name.
If the minor QCB is not found, a return
code 1is set and/or control blocks are
created as explained above. If the minor
OCB is found the queue elements queued on
the minor QCB are searched for another

queue element for the enqueueing task
chained to the same minor QCB. Such a
duplicate queue element indicates that the

task has attempted to enqueue twice on the

same resource without an intervening
dequeue. If a duplicate request is encoun-
tered, the routine causes the task to be
abnormally terminated unless the new
request is an inquiry (RET=HAVE, USE, or
TEST) . If the request 1is an inquiry, a
return code of 08 is set and a subroutine

is entered to determine whether the request
includes a must-complete requirement.

For a non-duplicate request, the routine
determines whether all queue elements
already enqueued on the minor QCB are
"shared" and whether this is also a
"shared"™ request. If both conditions are
true, a queue element is created, the count
field in the TCB (TCBCT) is incremented by
one for each resource enqueued upon, and a
return code is set and/or QCBs are created
as explained above.

If a queue element representing an
"exclusive" request is already enqueued on
the resource, the wait count in the SVRB
associated with the new request is 1incre-
mented by one. This wait count, which will
be decremented by the dequeue service rou-
tine when the exclusive request is satis-
fied, causes the requesting task to wait in
the enqueue routine but does not affect the
dispatchability of the task as a whole.
Asynchronous routines, called by IRBs added
to the TCB's request block chain, can still
operate under the task's control.

The wait count is not incremented if the
RET=USE parameter was included. In that
case, the routine sets the "resource in
use" return code and processes any further
requests or proceeds to the pre-exit sub-
routine.

If must-complete was specified and the
requesting task 1is a system task (rather
than a user task, which would be abnormally
terminated if 'set-must-complete' were
specified), the subroutine sets on the

Program Organization 33

must-complete flag in the queue element and
waits until any preceding requests on the
queue have been dequeued. During this
period the must-complete condition is not
in effect. The flag in the queue element
is set on to indicate that the condition is
to be imposed, but only after use of the
resource has actually begun.

When the queue element containing the
must-complete flag reaches the top of the
resource queue -- that is, when the
resource becomes available to the task that
requested the resource and the must-
complete restriction -- the step or system
must-complete flag is set on in the task's
TCB and all other TCBs in the 'system are
made non-dispatchable. This ensures that
the task that imposed the must-complete
restriction will be the only task operating
until the restriction is 1lifted, through
issuance of a release-must-complete in that
task.

An exception arises if +the system
interrupt request block (SIRB) has been
placed in the RB chain of another task. 1In
that case, the task under which the SIRB is
running is not set non-dispatchable, but a
flag is set on in the exit routine of the
supervisor's exit and transient area han-
dler. The two tasks operate concurrently
until the restriction is 1lifted by the
responsible task (upon DEQ), or the task
under which the SIRB is being serviced
exits. Exit from the SIRB causes the task
for which non-dispatchability was deferred
to be set non-dispatchable.

Dequeue Service Routine

The dequeue service routine (see Charts
23 through 25) is entered through the SVC
second-level interrupt handler in response
to a DEQ (SVC 48), or through a branch from
a system routine. The function of the
dequeue service routine is to remove from
the list of pending requests a request that
has been satisfied, and to cause the next
request (if any) on the 1list to be ser-
viced. 1In addition, the routine resets the
must-complete condition when a reset is
specified by a system task.

After performing initial validity checks
(Chart 26), the routine searches the major
and minor QCB queues for the control blocks
corresponding to the major and minor names
specified by the requester. If the
required QCBs are not found, the action
taken 1is determined by the value of the
RET=parameter:

e If RET=HAVE, the request was condi-
tional. A return code of 08 is set to
indicate that the task in which the DEQ
was issued was never enqueued upon the
resource, and the routine proceeds to

34

check for more parameter 1list entries

to process.

e If RET=NONE or the parameter was omit-
ted, the task in which the DEQ was
issued is abnormally terminated with an
error code of 130.

If the specified major QCB and minor QCB
are found, the gqueue elements enqueued on
the minor QCB are examined to determine
whether a dequeue can be performed, and
whether, if a dequeue cannot be performed,
a return code is to be provided or the
dequeueing task is to be abnormally termi-
nated.

A dequeue can be performed if the queue
element enqueued by the task issuing the
dequeue request is:

e An exclusive request at the head of the
queue, or

e A shared request in any position
preceding the first exclusive request
on the queue.

If either of those two conditions 1is met,
the routine proceeds to dequeue the ele-
ment.

If these conditions are not met, there
are two possibilities: either the queue
element being sought by the dequeueing task
is not in the queue, or it is in the queue
but has never been serviced. If the queue
element is not in the queue, the routine
sets a return code of 08 and continues if
RET=HAVE was specified, or abnormally ter-
minates the dequeueing task. If the ele-
ment is in the queue but has never been
serviced, the routine:

1. sets a return code of 04 and proceeds
to the next item in the parameter list
or

2. abnormally terminates the task

depending on the RET=parameter. The 04
return code in this case indicates that the
request was not at the top of the queue and
is exclusive, or is shared but is preceded
on the queue by an exclusive request.

When a queue element to be dequeued is
found, the count field in the TCB (TCBCT)
is decremented by one and the queue element
is removed from the queue. The TCBCT field
is a record of the number of outstanding
requests associated with the task. The
count is incremented by 1 for each resource
enqueued upon when the task issues an ENQ
and decremented by 1 for each resource
dequeued when a DEQ is issued by the task.
This field is referred to, if the task is

AN

determine when
outstanding requests have been purged.

abnormally terminated, to
all

If there are no more requests remaining
on the minor OQCB's queue after the queue
element is dequeued, the minor QCB itself
is dequeued from the major QCB; similarly,

if no additicnal minor QCBs remain, the
major QCB is removed from the chain of
major QCBs. A FREEMAIN is then issued,

releasing the main storage formerly occu-
pied by the removed control blocks.

The presence of another queue element
after the element removed through the DEQ
means that the resource is now to be made
available to the next enqueued task(s). If
the next queue element represents an exclu-
sive request, the DECSVRB subroutine is
entered (see below) to enable the request-
ing task to receive contrcl. If the next
queue element represents a shared request
and the previous queue element was exclu-
sive, the same function is performed not
only for the task associated with the
shared queue element, but for all subse-
quent shared tasks in the queue as well,
until the end of the queue or an exclusive
request 1is reached. After preparing for
the receipt of control by the necessary
task or tasks, the routine frees the main
storage used for any removed control blocks
and proceeds.

The DECSVRB subroutine (Chart 25) deals
with a queue element that has just become
the first element of the resource queue, or
with a shared queue element not preceded by
an exclusive request and therefore effec-
tively at the top of the queue. The wait
count in the SVRB associated with the queue
element is examined. If the wait count is
already zero (not the normal case), the
subroutine exits. Otherwise, the wait
count is decremented by one. If this does
not reduce the wait count to zero, the
enqueued task is still waiting for other
resources and cannot, therefore, receive
control; the subroutine exits. But if the
wait count in the SVRB does reduce to zero,
the enqueued task now has available to it
all of the resources it requires and can
receive control. A task switch is effected
if the now-ready task is of higher priority
than the task (pointed to by the NEW task
control block address pointer in the com—
munication vector table) last in control.
If the enqueued task is of lower priority,
no task switch occurs. In either case,
however, the zero SVRB wait count makes it
possible for the task to proceed when next
dispatched.

After the FREEMAIN operation for removed
control blocks is complete, the routine
loops back to process any further elements
on the parameter list, or proceeds to reset
must-complete (if required), check for

return codes, and exit. Exit takes one of
two paths: either to the caller (the task
in which the DEQ was issued), or to the
newly ready task (the task in which the ENQ
was originally issued). If the contents of
NEW have Dbeen changed by the dequeue rou-
tine, the dispatcher performs the required
task switch by giving control to the rou-
tine in which the ENQ had been issued.

Major and minor QCB's are moved to the

partition represented by the next QEL when
they reside in the partition that is issu-
ing the DEQ. (See Figure 8.) :
DADSM MODIFICATIONS

To provide volume table of contents
(VTOC) integrity in a multi-task environ-
ment, the DADSM allocate, extend, scratch,
and release routines use the ENQ and DEQ
macro-instructions and the must-complete
options thereof to ensure that no task
other than the task performing a VTOC

update will access the VTOC while the
update is in progress. The manner in which
the ENQ and DEQ macro-instructions are used
is summarized below. For further informa-
tion on those routines, refer to the publi-
cation IBM System/360 Operating System:
Direct-Access Device Space Management, Pro-
gram Logic Manual; Form Y28-6607.

Note: Except where specifically noted, the
resource to which ENQ and DEQ requests
relate is the VTOC for the volume upon
which the DADSM routines are operating.

Allocate Routines—--Non-Indexed Sequential
Data Sets

On entry to the allocate routine, an ENQ
is issued by the duplicate name search
routine. The must-complete condition is
subsequently set in (1) the sub-allocation
routine, or (2) the DSCB creation routine.
A DEQ is issued and the must-complete
condition is reset in the VTOC wupdating
routine.

Allocate Routines--Indexed Sequential
(ISAM) Data Sets

An ENQ is issued by the duplicate name
search routine. The must-complete condi-
tion is set in either (1) the DSCB build
routine, (2) the duplicate format 1 action
routine, or (3) the embedded index routine.
A DEQ 1is issued and the must-complete
condition is reset by the completion of
processing routine.

If additional volumes are to be process-
ed, an ENQ specifying the VTOC for the next
volume is 1issued before the allocate rou-
tines are re-entered for that volume.

Program Organization 35

Extend Routines

An ENQ is issued and the must-complete
condition 1is set by the duplicate name
search routine. The VTOC updating issues a
DEQ and resets the must-complete condition.

Scratch Routine

An ENQ is issued and the must-complete
condition is set by the UCB search routine;
DEQ is issued and the must-complete condi-
tion is reset by the VTOC updating routine.

36

This process is repeated on each pass
through the routine for a multi-volume data
set.

Release Routine

An ENQ is issued and must-complete con-
dition is set by the first module of the
release routine. DEQ is issued and must-
complete condition is reset by the close
routine of I/0 Support, to which the
release routine transfers control when VTOC
updating is complete.

e

N/

Form Y27-7128-0

This section lists job management load
modules and indicates the assembly modules
that are processed by the 1linkage editor
into each load module during system genera-
tion. Included is a separate list that
shows the 1load modules in which each
assembly rodule is contained.

routines for MFT are
packaged in three configurations: 18K,
44K, and 100K (where K is 1024 bytes of
main storage). The numbers represent the
maximum amount of main storage occupied by
job management routines and work areas at
any time. All job management configura-
tions function identically, but differ in
both the number of 1load modules and the
number of assembly modules within each load
module. The configuration chosen at system
generation determines the size of the low-
est priority partition.

Job management

LOAD MODULES

In each configuration, all load modules
are contained in three data sets: SYS1.
NUCLEUS, SYS1.SVCLIB and SYS1.LINKLIB.
These data sets also contain other parts of
the control program. The load modules in
the first two data sets remain the same for
both job management configurations, but the
SYS1.LINKLIB data set contains a different
set of 1load modules for each configuration,
depending on which one was selected at
system generation time. 1In the 18K config-
uration, LINKLIB contains 52 load modules;
in the 44K configuration, it contains 38
load modules; and in the 100K configura-
tion, it contains 36 load modules.

Charts 27, 28, and 29 show the control
flow among 1load modules. The decision to
transfer control (XCTL) to a particular
succeeding load module is made in the
previous 1load module. Each subsequent
module 1loaded in response to an XCTL macro
instruction is read into main storage
directly over the previous load module.
Such load modules are read into the 1low-
numbered end of the partition in which job
scheduling is being performed.

Modules that are brought into storage
with LINK macro instructions and LOAD macro
instructions occupy separate storage areas
within the partition; such modules are
shown on the control-flow charts. Because
storage is used in this manner, the 1load
module 1lists may be used with charts 27,
28, or 29 to determine the approximate
layout of a partition at different times

Page Revised by TNL Y27-7157

12712767

LOAD MODULES AND ASSEMBLY MODULES

during the execution of Jjob management
routines. Other items present in the par-
tition at the same time as the load modules
are not shown on the control flow charts
because, although these items are neces-
sary, control is not passed among them.
They are, generally, the tables and control
blocks, work areas, access methods, buf-
fers, and register save areas.

In the following 1l1load module 1lists,
entry points are shown if a locad module
contains more than one asserbly module. 1I1f
only one assembly module is named, the
entry point is the same as the assembly
module's control section (CSECT) name given
in the Assembly Modules and Control Sec-
tions table in this section.

LOAD MODULES CONTAINED IN THE SYS1.NUCLEUS
DATA SET

The load modules and assembly modules in
the following 1list are contained in the
SYS1.NUCLEUS data set, and are always pres-
ent in the nucleus, or system area of main
storage, regardless of the job management
configuration.

Load Module Name: IEANUCO1

Assembly Modules:

IEEBC1PE External interrupt routine.
IEECIRO1 Console interrupt routine.
IEERSCO1 Master scheduler buffers,
switches, input/output block
(IOB), event control block
(ECB), channel control word
(CCW), and device end block
(DEB). This load module forms
master scheduler resident main
storage in the nucleus area when
the primary or alternate console
(1052) is used.

Master scheduler buffers,
switches, IOB, ECB, CCW, and
DEB. This load module forms
master scheduler resident main
storage in the nucleus area when
the composite console is used.
Unsolicited-interrupt routine.
Table store subroutine work
area.

External Interrupt Routine (MFT)
Console Interrupt rRoutine (MFT)
Communication Task buffers,
switches, input/output blocks
(IOB), event control blocks
(ECB), data extent blocks (DEB),
and data control bliocks (DCB).
This data area is used for

IEERSRO1

IEFDPOST
MCONRESA

IEECVCRX

IEECVCRA
IEECVUCM

Load Modules and Assembly Modules 37

Form Y27-7128-0

operator communication in MFT
systems.

IEECVPRG Operator communication reply
queue purging routine (MFT).
IEECVCTW Communication Task Wait Module.

LOAD MODULES CONTAINED IN THE SYS1.SVCLIB
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.SVCLIB data set, and are called in
response to SVC instructions.

Load Module Name: IGCO0003D
Assembly Modules:

IEEMXCO01 Master command EXCP routine
(Part 1) -- primary/alternate
console.

IEEMXRO1 Master command EXCP routine
(Part 1) -- composite console.

IEENMCPO1 MFT Master Command EXCP routine

(overlay module).

Load Module Name: IEE1203D

Assembly Module:

IEE1203D MFT Master Command Reply Proces-
sor (overlay module).

Load Module Name: IGC0007B

Assembly Module:

IEECVCTR Communication Task Router
module.

Load Module Name: IGC0107B

Assembly Module:

IEECVPMX MFT Communication Task Process
module -- access method EXCP
(1052).

Load Module Name: IGC1107B

Assembly Module:

IEECVPMC MFT Communication Task Process
module -- access method BSAM
(2540).

Load Module Name: IGC2107B
Assembly Module:

IEECVPMP MFT Communication Task Process
module -- access method BSAM
(1443).

38

Page Revised by TNL ¥Y27-7157

12712767

Load Module Name: IGCOIO7B

Assembly Module:

IEECVOCX MFT Console unit initialization
EXCP input/output.

Load Module Name: IGC1IO07B

Assembly Module:

IEECVOCC MFT Console unit initialization
BSAM input.

Load Module Name: IGC2I07B

Assembly Module:

IEECVOCP MFT Console unit initialization
BSAM output.

Load Module Name: IGCXLO7B

Assembly Module:

IEECVCTX MFT Communication Task external
interrupt processor.

Load Module Name: IGCOOO3E
Assembly Modules:

IEEWTCO1 Write-to-operator (WTO) routine
-- primary/alternate console.

IEEWTRO1 Write-to-operator (WTO) routine
-- composite console.

IEECVWTO MFT WTO/WTOR queueing routine.

Load Module Name: IGC0103D
Assembly Module:

IGC0103D Master command EXCP routine
(Part 2), or command processing
routine.

IGC0113D MFT Master Command EXCP routine

(overlay module).

Load Module Name: IGCOQO3F

Assembly Module:

IEEBH1PE Not used in sequential schedul-
ing system.

MODULES CONTAINED IN THE SYS1.LINKLIB DATA
SET

The load modules and assembly modules in
the following lists are contained in the
SYS1.LINKLIB data set. A list is provided
for both of the packaging configurations in
which job management routines are
available.

Form Y27-7128-0

Page Revised by TNL Y27-7157

12712767

18K CONFIGURATION

Load Module Name: IEECVCTI
Entry Point: IEECVCTI
Assembly Modules:

IEECVCTI MFT Communication Task Initiali-
zation routine.
IEEVRFRX MFT CVT, TCB, RB, TIOT, and UCB

look-up module.

Load Module Name: GO

Alias: IEFK1

Alias: IEFSD030
Entry Point: IEFSDO036
Assembly Modules:

IEFSDO036 Rearranges partition boundaries.

IEFSDO034 Pre-termination (exits to
IEFSD011).)

IEFDNSFT Scheduler downshift routine.

IEFQMSSS Table store subroutine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

Load Module Name: IEFSTERM

Alias: IEFYN

Alias: IEFSDO11

Entry Point: IEFSDO11
Assembly 'Modules:

IEFSD011 Entry to job management from
supervisor.

IEFW42SD Passes control to IEFIDUMP (in
IEFIDUMP Load Module) if neces-
sary, or to IEFYNIMP (in this
module).

IEFYNIMP Step termination routine.

IEFYPJB3 Step data set driver routine.

IEFVJINMP Job statement condition code

IEFZGST1 Disposition and unallocation
subroutine.

IEFACTiK Linkage to user's accounting
routine.

IEFACTRT Dummy, to be replaced by user's
accounting routine.

IEFWAD Writes accounting information to

data set SYS1.ACCT.
(The preceding three modules may be re-
placed by IEFACTFK assembly module if no
accounting routine is specified as a system
generation option.)
IEFSD017 Places logical track address
(TTR) of first system message
block (SMB) into job control
table (JCT).
Passes control to IEFYNIMP (in
this load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTERM load
module).
Exit to IEFO8FAK or IEF09FAK
(both in this load module).
Converts record number to logi-
cal track address (TTR).

IEFW22SD

IEFSD002

IEFSD006

IEFSD007
IEFYSSMB

IEFQOMSSS
IEFVJIMSG

IEFYNMSG
IEFYPMSG
IEFZGMSG
IEFZHMSG
IEFIDFAK
IEFZAFAK
IEFO8FAK

IEFO9FAK

Call to table store subroutine.
Message enqueuing routine,
engqueues SMBs.

Table store subroutine.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
ressages.

Unallocation and message writing
routine.

Contains initiator/terminator
messages.

Linkage to IEFIDUMP (in IEFIDUMP
load module).

Linkage to IEFZAJB3 (in IEFJTERM
load module).

Linkage to IEFSD008 (in IEFINTFC
load module).

Linkage to IEFSD009 (in IEFSELCT
load module).

Load Module Name: IEFSELCT

Alias:

Entry Point:

IEFSDO009

IEFSD009

Assembly Modules:

IEFSD006
IEFSD009
IEFSDO9%4
IEFSD095
IEFSD088
IEFSD089
IEFSEPAR
IEFSD059
IEFSGOPT
IEFACTLK

IEFACTRT

IEFWAD

Converts record number to logi-
cal track address (TTR).
Initializes initiator/
terminator.

IBM supplied job separator
routine.

IBM supplied job separator
routine.

IBM supplied job separator
routine.

IBM supplied job separator
routine.

Dummy user separator routine.
Interface to separator routines.
System generation option
indicators.

Linkage to user's accounting
routine.

Dummy, to be replaced by user's
accounting routine.

Writes accounting informztion to
data set SYS1.ACCT.

(The preceding three modules may be re-
placed by IEFACTFK assembly module if no
accounting routine is specified as a system
generation option.)

IEFW21SD
IEFVKIMP

IEFVMLS1

IEFVM2LS
IEFVM3LS

System control routine.

Execute statement condition code
routine.

JFCB housekeeping (H/K) control
routine.

JFCB H/K fetch DCB routine.

JFCB H/K generation data group
(GDG) single routine.

Load Modules and Assembly Modules 39

Form Y27-7128-0

Load Modules
(18K Configuration, Continued)

IEFVMULLS JFCB H/K generation data group
(GDG) all routine.

IEFVM5LS JFCB H/K patterning data set
control block (DSCB) routine.

IEFVM76 Processes passed, non-labeled
tape data sets.

IEFWSTRT Job started and job termination
message routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFWMAS1 Device name table.

IEFVKMSG Contains initiator terminator
messages.

IEFVMLKS Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

ILoad Module Name: IEFALOC1l
Alias: IEFXJ000

Alias: IEFXA

Entry Point: IEFXA
Assembly Modules:

IEFXCSSS Allocation control routine.

IEFXJINP Allocation error recovery
routine.

IEFYSSMB Message enqueuing routine.

IEFQMSSS Table store subroutine.

IEFXAMSG Contains initiator/terminator
messages.

IEFXJIMSG Contains initiator/terminator
messages.

IEFWAFAK Linkage to IEFWAO000 (in IEFALOC2
load module).

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load. module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFALOC2
Alias: IEFWA000

Entry Point: IEFWA000
Assembly Modules:

IEFWAO000 Demand allocation routine.

IEFWSWIN Passes control to decision allo-
cation or automatic volume rec-
ognition (AVR) routine.

IEFX5FAK Linkage to IEFX5000 (in load
module IEFX5000).

IEFX300A Device strikeout routine.

IEFWMSKA Device mask table.

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFXJFAK Linkage to IEFXJIMP (in IEFALOC1
load module).

IEFS15XL Check for duplicate allocation.

IEFSD006 converts record number to logi-
cal track address (TTR).

IEFSGOPT System generation option

indicators.

40

Page Revised by TNL Y27-7157

12712767

Load Modules
(18K Configuration, Continued)

IEFXVFAK Linkage to IEFXV001l (in load

module IEFALOCU4).

Load Module Name: IEFALOC3
Alias: IEFWC000

Entry Point: IEFWC000
Assembly Modules:

IEFWCINMP Task Input/Output Table con-
struction routine.

IEFXHO000 Separation strikeout routine.

IEFWDFAK Linkage to IEFWD00O (in IEFALOCY
module) .

I1EFXJFAK Linkage to IEFXCSSS (in IEFALOC1
module). :

Load Module Name: IEFALOCH

Alias: IEFWDO0O0O

Entry Point: IEFWDO0OO

Assembly Modules:

IEFWD00O0 External action routine.

IEFWDO001 Message directory for external
action routine.

IEFXKIMP Allocation error non-recovery
routine.

IEFYSSMB Message enqueuing routine,
enqueues SMB's.

IEFQMSSS Table store subroutine.

IEFXKMSG Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFXTFAK Linkage to IEFXT000 (in load
module IEFALOCS).

IEFXVO001 Automatic volume recognition.

IEFXVNSL AVR volume serial routine.

IEFXVMSG AVR message routine.

IEFX1FAK Linkage to IEFXJIMP (in load
module IEFALOC1).

IEFX2FAK Linkage to IEFX5000 (in load
module IEFX5000).

IEFX3FAK Linkage to IEFWCIMP (in load
module IEFALOC3).

IEFX300A Device strikeout routine.

IEFS15XL Check for duplicate allocation.

Load Module Name: IEFALOCS

Alias: IEFXTO000

Entry Point: IEFXT000

Assembly Modules:

IEFXKIMP Allocation error non-recovery
routine.

IEFXTDMY Queue overflow routine.

IEFXTOOD Space request routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFXKMSG Contains initiator/terminator
messages.

IEFXTMSG Contains initiator/terminator
messages.

IEFW41SD Exit to IEFO4FAK (in this load
module).

A

Form Y27-7128-0

Load Modules
(18K Configuration, Continued)

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFO4FAK Linkage to IEFSDOO4 (in IEFATACH
lcad module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFWDFAK Linkage to IEFWD0OO (in IEFALOCU
load module).

Load Module Name: IEFX5000

Entry Point: IEFX5000

Assembly Modules:

IEFX5000 Decision allocation routine.

IEFXJFAK Linkage to IEFXJIMP (in IEFALOC1
load module).

IEFXH000 Separation strikeout routine.

IEFX300A Device strikeout routine.

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFS15XL Check for duplicate allocation.

Load Module Name: IEFATACH

Alias: IEFSDOO4

Entry Point: IEFSDOO4

Assembly Modules:

IEFSDOOYL Step initiation routine, with
exit to processing program.
Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Dequeues and writes out system
message blocks (SMBs).

Table store subroutine.

IEFSD006

IEFSDO0O07
IEFSDO010
IEFQMSSS
Load Module Name: IEFCNTRL
Alias: IEFVHAA

Alias: IEFVHCB

Alias: IEFVHF

Alias: IEFVHA

Entry Point: IEFVHA
Assembly Modules:

IEFDAFAK Linkage to IEFVDA (in IEFDD load
module) .

IEFEAFAK Linkage to IEFVEA (in IEFEXEC
load module).

IEFHMFAK Linkage to IEF7KPXX (in IEFCOMMD
load module).

IEFJAFAK Linkage to IEFVJA (in IEFJOB
load module).

IEFKGDUM Linkage to IEF7KGXX (in IEFINTFC
load module).

IEFVFA Interpreter scan routine.
IEFVGMSS Builds interpreter error system
message blocks (SMBs).

IEFVHA Performs input stream or PROCLIB
1/0.

IEFVHAA Sets reader end-of-file (EOF)
conditions.

IEFVHB Generates DD * statement for
data in the input stream.

IEFVHC Checks input for valid
continuation.

IEFVHCB Identifies control statement

verbs and performs procedure

Page Revised by TNL Y27-7157

12712767

Load Modules
(18k Configuration, Continued)

modification.

IEFVHE Job router routine.

IEFVHEB Pre-scan routine.

IEFVHEC Enqueues job request.

IEFVHF Post-processing control routine.

IEFVHGSS DD * error routine.

IEFVHH Sets up tables for queuing and
provides initiator/terminator
interface.

IEFVHL Null statement processing
routine.

IEFVHQ Table store interface routine.

IEFVHRSS Writes operator error messages.

IEFQMSSS Table store subroutine.

IEFVFB Generates SYSIN DD *, if

necessary.

Load Module Name: IEFDD
Alias: IEFVDA
Entry Point: IEFVDA

Assembly Modules:

IEFHFFAK Linkage to IEFVHF (in IEFCNTRL
load module).

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFSD090 Assigns unit for system output
(SYysouT) .

IEFSDO012 DD * statement routine.

IEFVDA DD card scan routine.

IEFVGI Interpreter Dictionary Entry
Routine.

IEFVGK Obtains parameter from internal
table built by IEFVFA.

IEFVGMSS Builds interpreter error system
message blocks (SMBs).

IEFVGS Interpreter Dictionary Search
routine.

IEFVGT Checks validity of control card
parameters.

IEFVHQ Table store interface routine.

"IEFVHRSS Writes operator error messages.

IEFVDDUM Prevents unresolved IEFVDBSD
symbol.

IEFQMSSS Table store subroutine.

Load Module Name: IEFINTFC

Alias: IEFSD00S8

Alias: IEFSDOO1

Alias: IEFKG

Entry Point: IEFSD008

Assembly Modules:

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.
IEEMCSO01 Master command routine.
IEFHCBFK Linkage to IEFVHCB (in IEFCNTRL
load module).
IEFSDO001 Reader/interpreter entry to
IEFO9FAK or to IEF23FAK.
IEFSDO006 Converts record number to logi-
cal track address (TTR).
IEFSDO007 Call to table store subroutine.
IEFSD008 Initiator/terminator to reader/

interpreter interface.

Load Modules and Assembly Modules 41

Form Y27-7128-0

Load Modules
(18K Configuration, Continued)

IEFO9FAK Linkage to IEFSD009 (in IEFSEILCT
load module).

IEF23FAK Linkage to IEFW235D (in IEFJTERM
load module).

IEF7KGXX Interpreter-Initiator Interface
Module.

IEFHAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFQMSSS Table Store Subroutine.

IEFVHQ Table Store Interface routine.

IEFHAAFK Linkage to IEFVHAA (in IEFCNTRL
load module).

IEFVHRSS Writes operator operator error
messages. .

IEECNDUM Prevents unresolved external

reference to IEECNO1l.

Load Module Name: IEFEXEC
Alias: IEFVEA
Entry Point: IEFVEA

Assembly Modules:

IEFHFFAK Linkage to IEFVHF (in IEFCNTRL
load module).

IEFVEA EXEC card scan routine.

IEFVGK Obtains parameter from internal
table built by IEFVFA.

IEFVGMSS Builds interpreter error system
message blocks (SMBs).

IEFVGS Interpreter Dictionary Search
Routine.

IEFVGT Checks validity of control card
parameters.

IEFVHQ Table store interface routine.

IEFVHRSS Writes operator error messages.

IEFVGI Interpreter Dictionary Entry

) Routine.

IEFQMSSS Table Store Subroutine.

Load Module Name: IEFJOB

Alias: IEFVJA

Entry Point: IEFVJA

Assembly Modules:

IEFHFFAK Linkage to IEFHFPAK (in IEFCNTRL
load module).

IEFVGK Obtains keyword from internal
table built by IEFVFA.

IEFVGMSS Builds interpreter error system
message blocks (SMBs).

IEFVGT Checks validity of control card
parameters.

IEFVHQ Table store interface routine.

IEFVHRSS Writes operator error messages.

IEFVJA Job card scan routine.

IEFQMSSS Table Store Subroutine.

Load Module Name: IEFJTERM

Alias: IEFW23SD

Alias: IEFZA

Entry Point: IEFZA

Assembly Modules:

IEFW23SD Initializes for job termination,
exits to IEFZAJB3 (in this load
module).

42

Page Revised by TNL Y27-7157

12712767

Load dModules
(18K Configuration, Continued)

IEFZAJB3 Job termination routine.

IEFWTERM Job ended message routine.

IEFzGJB1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user's accounting
routine.

IEFACTRT Dummy module to be replaced by
user's accounting routine.

IEFWAD Writes accounting information to

data set SYS1.ACCT.
(The preceding three modules may be re-
placed by IEFACTFK assembly module if no
accounting routine is specified as a system
generation option.)

IEFSDO0E Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFZHFAK Call to ZPOQMGR1l subroutine, in
IEFZGJB1 of this load module.

IEFZGMSG Contains initiator terminator
messages.

IEFZHMSG Unallocation and message writing
routine.

IEFW31SD Exit to IEFSDO03 (in this load
module).

IEFSDO003 Passes control to 1EFSD010, then
to IEFO08FAK, (pboth in this load
module) .

IEFSD010 Dequeues and writes out system
message blocks (SMBs).

IEFSDO035 Check for downshift (exit to
IEFSD031). .

IEFO8FAK Linkage to IEFSD008 (in IEFINTFC
load module).

Load Module Name: IEFCOMMD

Alias: IEFVHM

Entry Point: IEFVHM

Assembly Modules:

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.

IEEMCS01 Master command routine.

IEFHAAFK Linkage to IEFVHAA (in IEFCNTRL
load module).

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFVGMSS Builds interpreter error system
message blocks (SMBs).

IEFVHQ Table store interface routine.

IEF7KPXX Command in the input stream
routine.

IEFHAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFVHRSS Writes operator messages.

IEFQMSSS Table store subroutine.

IEECNDUM Prevents unresolved external
reference to IEEICNO1l.

Load Module Name: IEFERROR

Alias: IEFVM6LS

Entry Point: IEFVMSGR

Form Y¥27-7128-0

Load Modules
(18K Configuration, Continued)

Assembly Modules:

IEFVMLS6
IEFYSSMB

IEFQMSSS
IEFVMLS7

IEFYNFAK

Load Mcdule Name:

JFCB housekeeping error message
processing routine.

Message enqueuing routine,
enqueues SMBs.

Table store subroutine.

Contains initiator/terminator
messages

Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFIDUMP

Entry Point:

IEFIDUMP

Assembly Modules:

IEFIDUNP
IEFYSSMB

IEFQMSSS
IEFIDMPM

IEFYNFAK

Load Module Name:

Indicative dump routine.

Message enqueuing routine,
enqueues SMBs.

Table store subroutine.

Contains initiator/terminator
messages

Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFVGM1

Assembly Module:

IEFVGM1

Contains reader/interpreter
messages.

Load Module Name: IEFVGM2

Assembly Module:

IEFVGM2

Contains reader/interpreter
messages.

Load Module Name: IEFVGM3

Assembly Module:

IEFVGM3

Contains reader/interpreter
messages.

Load Module Name: IEFVGMU

Assembly Module:

IEFVGMU,

Contains reader/interpreter
messages.

Load Module Name: IEFVGM5

Assembly Module:

IEFVGMS

Contains reader/interpreter
messages.

Load Module Name: IEFVGM6

Assembly Module:

IEFVGM6

Contains reader/interpreter
messages.

Load Module Name: IEFVGM7

Assembly Module:

IEFVGM7

Contains reader/interpreter
messages.

Load Module Name: IEFVGM8

Assembly Module:

IEFVGMS8

Contains reader/interpreter

messages.

Page Revised by TNL Y27-7157

12712767

Load Modules
(18K Configuration, Continued)

Load Module Name: IEFVGM9

Assembly Module:

IEFVGM9 Contains reader/interpreter
messages.

Load Module Name: IEFVGM10

Assembly Module:

IEFVGM10 Contains reader/interpreter
messages.

Load Module Name: IEFVGHM11

Assembly Module:

IEFVGM11 Contains reader/interpreter
messages.

Load Module Name: IEFVGM12

Assembly Module:

IEFVGM12 Contains reader/interpreter
messages.

Load Module Name: IEFVGM13

Assembly Module:

IEFVGM13 Contains reader/interpreter
messages.

Load Module Name: IEFVGM14

Assembly Module:

IEFVGM14 Contains reader/interpreter
messages.

Ioad Module Name: IEFVGM15

Assembly Module:

IEFVGM15 Contains reader/interpreter
' messages.

Load Module Name: IEFVGM16

Assembly Module:
IEFVGM16 Contains reader/interpreter
messages.

Load Module Name: IEFVGM17

Assembly Module:
IEFVGM17 Contains reader/interpreter
messages.

Load Module Name: IEFVGM18

Assembly Module:
IEFVGM18 Contains reader/interpreter
messages.

Load Module Name: IEFVGM70

Assembly Module:
IEFVGM70 Contains reader/interpreter
messages.

Load Module Name: IEFVGM78

Assembly Module:
IEFVGM78 Contains reader-interpreter
messages.

Load Modules and Assembly Modules

43

—

Form Y27-7128-0

Load Modules
(18K configuration, Continued)

Load Module Name:
Alias: IEFVHN
Entry Point: IEFK1
Assembly Modules:

IEFINITL

IEEILCO1 Automatic command routine.

IEFPRFAK Linkage to IEFPRES load module.

IEFQMSSS Table store subroutine.

IEFSGOPT System generation option
indicators.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFVHQ Table store interface routine.

IEFVHRSS Writes error messages to
operator.

IEFVH1 Interpreter Work Area (IWA)
initialization routine.

IEFVH2 Opens input reader and procedure
libraries.

IEFWSDIP Linkage Control Table (LCT)
initialization routine.

IEF7KIXX Entry to job management from
nucleus initialization program
(NIP).

IEEMCSO01 Master Command routine.

IEFVHN Interpreter termination routine.

IEF7K2XX PCP dependent reader/interpreter
initialization.

IEF7K3XX Reader/interpreter exit routine.

IEEVSMDM Prevents unresolved external
reference to IEEVMSG.

IEEICNO1 Converts SYSOUT writer JFCB

record numbers to TTRs.

Load Module Name:
Assembly Modules:

IEFPRES

IEFPRES Volume attribute initialization
routine.

IEFK1MSG Reader/Interpreter message
routine.

Load Module Name: IEESET

Alias: IEEGESTO

Assembly Module:

IEEGESO1 Master scheduler SET command
routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Modules:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

IEFSGOPT System generation option

indicators.

4y

Page Revised by TNL Y27-7157

12712767

Load Modules
(18K Configuration, Continued)

Load Module Name: IEETIME

Alias: IEEQOTO00

Assembly Module:

IEEQOTO00 Sets time and date.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Module:

IEEGK1GM Fault routine -- issues master

scheduler messages.

Load Module Name:
Alias: IEEIC1PE
Entry Point: IEEIC1PE
Assembly Modules:

IEESTART

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Mocule:

IEEIC3JF Contains preformatted JFCB for

one START command.

Load Module Name: IEESJFCB AN
Alias: IEEIC2NQ ./
Entry Point: IEEIC2NQ

Assembly Modules:
IEEIC2NQ Saves START command JFCBs.
IEFQMSSS Table store subroutine.

Load Module Name: IEFSD031
Entry Point: IEFSD031
Assembly Modules:

IEFSDO031 Scheduler upshift routine

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine

IEFQMSSS Table store subroutine

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFBR1Y4

Assembly Module:

IEFBR14 Branch 14.

Form Y27-7128-0

Page Revised by TNL Y27-7157

12712767

44K CONFIGURATION

Load Module Name: IEECVCTI
Entry Point: IEECVCTI
Assembly Modules:

IEECVCTI MFT Communication Task Initiali-
zation routine.
IEEVRFRX MFT CVT, TCB, RB, TIOT, and UCB

look-up module.

Load Module Name: GO
Alias: IEFK1

Aliass: IEFSDO030
Entry Point: IEFSDO036
Assembly Modules:

IEFSDO036 Rearranges partition boundaries.

IEFSDO34 Pre-termination (exits to
1EFSDO011).

IEFDNSFT Scheduler downshift routine.

IEFQMSSS Table store subroutine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

Load Module Name: IEFSTERM

blias: IEFYN

Alias: IEFSD009

Alias: IEFSDO11

Entry Point: IEFSD011

Assembly Modules:

IEFSDO11 kntry to job management from
supervisor.

IEFW42SD Passes control to IEFIDUMP (in
IEFIDUMP load module) if indica-
tive dump is needed, or to

. IEFYNIMP (in this load module).

IEFYNIMP Step termination routine.

IEFYPJE3 Step data set driver routine.

IEFVJINP JOB statement condition code
routine.

IEFZGST1 Disposition and unallocation
subroutine.

IEFACTIK Linkage to user's accounting
routine.

IEFACTRT Dummy user's accounting routine.

IEFWAD Writes accounting information to

data set SYS1.ACCT.
(The preceding three modules may be re-
placed by IEFACTFK assembly module if no
accounting routine is specified as a system
generation option.)
IEFSD017 Places logical track address
(TTR) of first system message
block (SMB) in job control table
(JcT) .
Passes control to IEFYNIMP (in
this load module), and then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFCNTRL load
module) .
Exit to IEF08FAK or IEFSDO009
(both in this load module).
Initiator/terminator initializa-

IEFW22SD

IEFSD002

IEFSD009

tion of output unit, passes con-
trol to IEFW21SD (in this load
module) .

IEFSDO94 IBM supplied job separator
routine.

IEFSD095 IBM supplied job separator
routine.

IEFSD088 IBM supplied job separator
routine.

IEFSD089 IBM supplied job separator
routine.

IEFSEPAR Dummy user separator routine.

IEFSD059 Interface to separator routines.

IEFSGOPT System generation option
indicators.

IEFW21SD System control routine.

IEFVKIMP FXEC statement condition code
routine.

IEFVMLS1 JFCB housekeeping control
routine.

IEFVM2LS Fetch DCB routine.

IEFVM3LS GDG single routine.

IEFVMULS GDG all routine.

IEFVM5SLS Patterning DSCB routine.

IEFVM76 Processes passed nonlabeled tape
data sets.

IEFWSTRT Job started and job termination
message routine.

IEFWMAS1 Device name table.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEFYSSMB Message engueuing routine,
enqueues SMBs.

IEFUMSSS Table store subroutine.

IEFVJIMSG Contains initiator/terminator
messages.

IEFVKMSG Contains initiator/terminator
messages.

IEFYNMSG Contains initiator/terminator
messages.

IEFYPMSG Contains initiator/terminator
messages.

IEFZGMSG Contains initiator/terminator
messages.

IEFZHMSG Unallocation and message writing
routine.

IEFIDFAK Linkage to IEFIDUMP (in IRFIDUMP
load module).

IEFVMLKS Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFZAFAK Linkage to IEFZAJB3 (in IEFCNTRL
load module).

IEFO8FAK Linkage to IEFSD008 (in IEFCNTRL
load module).

Load Module Name: IEFALOC1

Alias: IEFXA

Entry Point: IEFXA

Load Modules and Assembly Modules 45

Form Y27-7128-0 Page Revised by TNL Y27-7157 12712767

Load Modules
(44K configuration, Continued)

Assembly Modules:

IEFXCSSS
IEFWAQOQO
IEFWSWIN
IEFXJIMP
IEFX300Aa
IEFYSSVMB
IEFQMSSS
IEFXAMSG
IEFXJMSG
IEFYNFAK
IEFX5FAK
IEFWCFAK
IEFS15XL
IEFWMSKA
IEFXV001
IEFXVNSL
IEFXVMSG
IEFWDO00
IEFWDOO01
IEFSDO006
IEFXKIMP
IEFXKMSG
IEFXTFAK

IEFSGOPT

Allocation control routine.
Demand allocation routine.
Passes control to decision allo-
cation or AVK routine.
Allocation error recovery
routine.

Device strikeout routine.
Message enqueuing routine.

Table store routine.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Linkage to IEFYNIMP (in IEFSTERM
load module).

Linkage to IEFX5000 (in IEFALOC2
load module).

Linkage to IEFWC000 (in IEFALOC2
load module).

Check for duplicate allocation.
Device Mask Table.

Automatic Volume Recognition.
AVR volume serial routine.

AVR message routine.

External action routine.

Message directory for external
action routine.

Converts record number to logi-
cal track address (TTR).
Allocation error nonrecovery
routine.

Contains initiator/terminator
messages.

Linkage to IEFXTOOD (in IEFALOC2
load module).

System generation option
indicators.

Load Module Name: IEFALOC2

Alias: IEFX5000

Alias:

IEFWC000

Entry Point: IEFX5000
Assembly Modules:

IEFXH000
IEFXJMSG

IEFYNFAK
IEFYSSMB
IEFQMSSS
IEFXJIMP
IEFX5000
IEFX300A
IEFWCIMP

IEFWD00O
IEFWD0O1

IEFSD006
IEFXTOOD
IEFXTMSG

46

Separation strikeout routine.
Contains initiator/terminator
messages.

Linkage to IEFYNIMP (in IEFSTERM
load module).

Message enqueuing routine.

Table store routine.

Allocation error recovery
routine.

Decision allocation routine.
Device strikeout routine.

Task Input/Output Table (TIOT)
construction routine.

External action routine.

Message directory for external
action routine.

Convert record number to logical
track address (TTR).

Space request routine.

Contains initiator/terminator

Load Modules

(44K Configuration, Continued) @ "
messages.
IEFXTDMY Queue overflow routine.
IEFXKIMP Allocation error non-recovery
routine.
IEFXKMSG Contains initiator/terminator
messages.
IEFWU41SD Exit to step initiation routine.
IEFSDOOY Step initiation routine with
exit to processing program.
IEFSDO07 Call to table store routine.
IEFSDO010 Dequeue and write out system
message blocks (SMBs).
IEFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).
IEFS15XL Check for duplication
allocation.
Load Module Name: IEFCNTRL
Alias: IEFVHA
Alias: IEFVHAA
Alias: TIEFSD008
Alias: IEFKG
Alias: TIEFZA
Entry Point: IEFVHA
Assembly Modules:
IEFSDO035 Check for downshift (exit to
IEFSD031).
IEFVDA DD card scan routine.
IEFVEA EXEC card scan routine. .
IEFVFA Interpreter scan routine. (”
IEFVGI Interpreter Dictionary Entry NS
Routine.
IEFVGK Interpreter Get Parameter
Routine.
IEFVGMSS Builds interpreter error system
message blocks (SMBs).
IEFVGS Interpreter Dictionary Search
Routine.
IEFVGT Interpreter Test and Store
Routine.
IEFVHA Performs input stream or PROCLIB
I/0. |
IEFVHAA Sets reader end-of-file (EOF) ‘
conditions. *
IEFVHB Generates DD * statement for
data in the input stream. ;
IEFVHC Checks input for valid ‘
continuation. i
IEFVHCB Identifies control statement
verbs and performs procedure
modification.
IEFVHE Job router routine.
IEFVHEB Pre-scan routine.
IEFVHEC Enqueues job request.
IEFVHF Post-processing control routine.
IEFVHGSS DD * error routine.
IEFVHH Sets up tables for queuing and
provides initiator/terminator
interface.
IEFVHL Null statement processing
routine. .
IEFSD010 Dequeues and writes out system ‘;
. message blocks (SMBs). -
IEFVHQ Table store interface routine.

Form ¥Y27-7128-0

Load Modules :
(44K Configuration, Continued)

data set, SYS1.ACCT.
(The preceding three modules may be re-
placed by IEFACTFK assembly module if no
accounting routine is specified as a system
generation option.)

Load Module Name: IEFCOMMD
Alias: IEFVHM

Alias: IEEMCREP

Entry Point: IEFVHM

Assembly Modules:
IEEMCSO01 Master Command Routine.
" IEF7KPXX Command in the input stream

routine.

Page Revised by TNL ¥Y27-7157

IEFVHRSS Writes error messages to
. operator.

IEFVJA Job card scan routine. >

IEFW23SD Initializes for job termination
and exits to IEFZAJB3 (in this
load module).

IEFZAJE3 Job termination routine.

IEFWTERM Job ended message routine.

IEFZGJB1 Disposition and unallocation

) subroutine.
IEFYSSMB Message enqueuing routine,
» enqueues SMBs.

TEFZHFAK Call to ZPOQMGR1 subroutine, in
IEFZGIB1 (in IEFJTERM load
module).

IEFW31SD Job termination exit to
IEFSD003.

IEFSD003 Passes control to IEFSD010, and
‘then goes to IEFSD0O0S.

IEFQMSSS Table store subroutine.

IEF7KGXX Output tables for step.

IEFSD008 Initiator/terminator to readexr/
interpreter interface.

IEFSDO01 Reader/interpreter entry to
IEFSD009 or to IEFW23SD.

IEFSDO007 Call to table store subroutine.

IEFSD006 Converts record number to logi-
cal track address (TTR).)

IEFZGMSG Contains initiator/terminator
messages.

IEFZHMSG Unallocation and message writing
routine.

IEFO9FAK Linkage to IEFSD009 (in IEFSELCT
load module).

IEFVDDUM Prevents unresolved IEFVDBSD
symbol.

IEFSD090 Assign unit for system output
(SYsSouT) .

IEFSD012 DD * statement routine.

IEFHMFAK Llnkage to IEF7KPXX (in lEFCOMMD

' load module).

IEEMCRFK Linkage to IEEMCREP (in IEFCCMMD
load module).

IEFVFB Generates SYSIN DD *, if
necessary.

IEFACTIK Linkage to user's accounting
routine.

IEFACTRT Dummy routine to be replaced by
user's accounting routine.

IEFWAD Writes accounting information to

12712767

Load Modules
(44K Configuration, Continued)

IEFVGMSS Builds system messages blocks
(SMBs) .

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFHAAFK Linkage to IEFVHAA (in IEFCNTRL
load module).

IEFHAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFVHRSS Writes error messages to
operator.

. IEEILCDM Prevents unresolved IEEICAN sym-
bol after initialization.

IEFVHQ Table store interface routine.

IEFQMSSS Table store subroutine,

IEEMCREP Links to IEEMCRO01 and returns to
IEF7KGXX (in the IEFCNTRL load
module) .

IEECNDUM Prevents unresolved external
reference to IEEICNO1l.

Load Module Name: IEFERROR

Alias: IEFVM6LS

Entry Point: - IEFVMSGR

Assembly Modules:

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFYSSMB Message engueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVMLS7 Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

: load module).

Load Module Name: IEFIDUMP

Entry Point: IEFIDUMP

Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSMB Message enqueuing- routine,
enqueues SMBs.

IEFQMSSS ° Table store subroutine.

IEFIDMPM Contains 1n1t1ator/term1nator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).
Load Module Name: IEFVGM1
Assembly Module:
IEFVGM1 Contains reader/interpreter
messages.

Load Module Name:

Assembly Module:

IEFVGM2 Contains reader/interpreter
messages.

IEFVGM2

Load Module Name:

Assembly Module:

IEFVGM3 Contains reader/lnterpreter
messages.

IEFVGM3

Load Module Name: IEFVGM4
Assembly Module:
IEFVGM4 Contains reader/interpreter

messages.

load Modules and AssemblyoModules 47

Form Y27-7128-0

Load Modules
(44K Configuration, Continued)

Load Module Name: IEFVGMS

Assembly Module:

IEFVGMS Contains reader/interpreter
messages.

Load Module Name: IEFVGMé6

Assembly Module:

IEFVGM6 Contains reader/interpreter
messages.

Load Module Name: TIEFVGM7

Assembly Module:

IEFVGM7 Contains reader/interpreter
messages.

Load Module Name: IEFVGMS8

Assembly Module:

IEFVGM3 Contains reader/interpreter
messages.

Load Module Name: IEFVGM9

Assembly Module:

IEFVGM9 Contains reader/interpreter
messages.

Load Module Name: IEFVGM10

Assembly Module:

IEFVGM10 Contains reader/interpreter
messages.

Load Module Name: TEFVGM11l

Assembly Module:

IEFVGM11 Contains reader/interpreter
messages.

Load Module Name: IEFVGM12

Assembly Module:

IEFVGM12 Contains reader/interpreter
messages.

Load Module Name: IEFVGM13

Assembly Module:

IEFVGM13 Contains reader/interpreter
messages.

Load Module Name: IEFVGM1A4

Assembly Module:

IEFVGM14 Contains reader/interpreter
messages.

Load Module Name: IEFVGM15

Assembly Module:

IEFVGM15 Contains reader/interpreter
messages.

Load Module Name: IEFVGM16

Assembly Module:

IEFVGM16 Contains reader/interpreter
messages.

Load Module Name: IEFVGM17

Assembly Module:

IEFVGM17 Contains reader/interpreter
messages.

48

Page Revised by TNL Y27-7157

12712767

Load Modules
(44K Configuration, Continued)

Load Module Name: IEFVGM18

Assembly Module:

IEFVGM18

Contains reader/interpreter
messages.

Load Module Name: IEFVGM70

Assembly Module:

IEFVGM70

Contains reader/interpreter
messages.

Load Module Name: IEFVGM78

Assembly Module:

IEFVGM78

Contains reader/interpreter
messages.

Load Module Name: IEFINITL

Alias:

IEFVHN

Entry Point: IEFK1
Assembly Modules:

IEF7K1XX
IEEMCSO01
IEFPRES

IEFK1MSG

IEEILCO1
IEFWSDIP

IEFSDO006
IEFQMSSS
IEFSDO07
IEFVH1
IEFVH2
IEFVHN
IEFVHQ
IEFVHRSS
IEFSGOPT

IEF7K3XX
IEF7K2XX

IEEVSNMDM

IEEICNO1

Entry to job management from
nucleus initialization program
(NIP).

Master command routine.

Volume attribute initialization
routine.

Reader/interpreter message
routine.

Automatic command routine.
Linkage control table (LCT)
initialization.

Converts record number to logi-
cal track address (TTR).

Table store subroutine.

Call to table store subroutine.
Interpreter Work Area (IWA)
initialization routine.

Opens input reader and procedure
library.

Interpreter Termination Routine.
Table store interface routine.
Writes error messages to
operator.

System generation option
indicators.

Reader/interpreter exit routine.
PCP dependent reader/interpreter
initialization.

Prevents unresolved external
symbol for IEEVSMSG.

Converts SYSOUT writer JFCB
record numbers to TTRs.

Load Module Name: IEESET

Alias:

IEEGESTO

Assembly Module:

IEEGES01

Master scheduler SET command
routine.

Load Module Name: IEFJOBQE

Alias:

IEFINTQS

Assembly Module:

IEFINTQA

Initializes SYS1.SYSJOBQE data
set.

™

Form Y27-7128-0

Load Modules
(44K configuration, Continued)

IEFSGOPT System generation option

indication.

Load Module Name: IEETIME
Alias: IEEQOTO0O0

Assembly Module:

IEEQOTO00 Sets time and date.

Load Mcdule Name: IEEFAULT

Alias: I1EEGK1GM

Assembly Module:

IEEGK1GM Fault routine, issues master
scheduler messages.

Load Module Name: IEESTART
Alias: IEEIC1PE

Entry Point: IEEICI1PE
Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for

one START command.

Page Revised by TNL Y27-7157

12712767

Load Modules

(44K Configuration, Continued)

Load Module Name: IEESJFCR

Alias: IEEIC2NQ

Entry Point: IEEIC2NQ

Assembly Modules:

IEEICZNQ Save JFCBs for START commands.
IEFQMSSS Table store subroutine.

Load Module Name: IEFSDO31
Entry Point: IEFSDO31
Assembly Modules:

IEFSDO031 Scheduler upshift routine.
IEFSDO006 Converts recoré number to logi-
cal track address (TTR).
IEFSDO007 Call to table store subroutine.
IEFQNMSSS Table store subroutine.

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFBR1U4
Assembly Module:

IEFBR14 Branch 14.

100K CONFIGURATION

Load Mcdule Name: IEECVCTI

Entry Point: IEECVCTI

Assembly Modules:

IEECVCTI MFT Communication Task Initiali-
zation routine.

IEEVRFRX MFT CVT, TCB, RB, TIOT, and UCB
look—up module.

Load Module Name: GO

Alias: IEFK1
Alias: IEFSD030
Entry Point: IEFSD036

Assembly Modules:

IEFSDO36 Rearranges partition boundaries.

IEFSDO34 Pre-termination (exits to
IEFSDO11).

IEFDNSFT Scheduler downshift routine.

IEFQMSSS Table store subroutine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO0OO07 Call to table store subroutine.

Load Module Name: IEFSDO11

Alias: IEFXA

Alias: IEFSD008

Alias: IEFYN

Alias: IEFVHA

Entry Point: IEFSD011

Assembly Modules:

IEFSDO11 Entry to job management from
supervisor.

IEFWU42SD Passes control to IEFIDUMP if
needed, or tc IEFYNIMP (botn in
this load module).

IEFYNIMP Step termination routine.

IEFYPJB3 Step data set driver routine.

IEFVJINMP JOB statement condition code
routine.

IEFZGST1 Disposition and unallocation
subroutine.

IEFSDO017 Places logical track address of
first system message block (SMB)
into job control table (JCT).

IEFW22SD Passes control to 1EFYNIMP
assembly module, and then to
IEFSD002 or 1IEFZAJB3 (all in
this load module).

IEFSD002 Exit to IEFSD0O08 or to IEFSDO00S
(both in this load module).

IEFSD008 Initiator/terminator to reader/
interpreter interface.

IEFSD012 DD * statement routine.

IEF7KPXX Command in input stream routine.

IEEMCS01 Master command routine.

IEF7KGXX Output tables for step.

Load Modules and Assembly Modules 49

Form Y27-7128-0

Load Modules
(100K Configuration, Continued)

IEFSD001

IEFSD009

IEFW21SD
IEFSD035

IEFSGOPT
IEFXKFAK
IEECNDUM
IEFSDO94
IEFSD095
IEFSD088
IEFSD089
IEFSEPAR
IEFSD059
IEFVFB
IEFSISXL
IEFSD090
IEFVDA
IEFVEA
IEFVFA
IEFVGI
IEFVGK
IEFVGMSS
IEFVGS
IEFVGT
IEFVHA
IEFVHAA
IEFVHB
IEFVHC
IEFVHCB
IEFVHE
IEFVHEB
IEFVHEC
IEFVHF

IEFVHGSS
IEFVHH

IEFVJA
IEFVHL

IEFVHQ

50

Reader/interpreter entry to
IEFSDO09 or to IEFW23SD (both in
this load module).
Initiator/terminator initializa-
tion of output unit.

System control routine.

Check for downshift (exit to
IEFSD0O31).

System generation option
indicators.

Linkage to IEFXK000 (in IEFALERR
load module).

Prevents unresolved external
reference to IEEICNO1.
IBM-supplied separators for
classes A and B.

IBM-supplied separators for
classes A and B.

IBM-supplied separators for
classes A and B.

IBM-supplied separators for
classes A ana B.

Dummy separator routine.
Linkage to separator routines.
Macro capability.

Checks for duplicate allocation.
Assign unit for system output
(SYSouT) .

DD card scan routine.

Exec card scan routine.
Interpreter scan routine.
Interpreter Dictionary Entry
Routine.

Interpreter get parameter
routine.

Builds interpreter error system
message blocks (SMBs).
Interpreter dictionary search
routine.

Interpreter Test and Store
Routine.

Performs input stream or PROCLIB
1/0.

Sets reader end-of-file (EOF)
conditions.

Generates DD * for data in the
input stream.

Checks input for valid
continuation.

Identifies control statement
verbs and performs procedure
modification.

Interpreter Router Routine.
Pre-scan routine.

Enqueues job request.
Post-processing control routine.
DD *# error routine.

Sets up tables for queuing and
provides initiater/terminator
interface.

Job card scan routine.

Null statement processing
routine.

Table store interface routine.

Page Revised by TNL Y27-7157

12712767

Load Modules

(100K Configuration, Continued)

IEFVHRSS
IEFVDDUM
IEFIDFAK
IEFVKIMP
IEFVMLS1

IEFVM2LS
IEFVM3LS

IEFVMULS
IEFVM5LS
IEFXJFAK
IEFWCIMP

IEFWDO00O
IEFWD0OO1

IEFVMLS6
IEFVM76
IEFWSTRT

IEFWMAS1
IEFXCSSS
IEFWAO000
IEFWSWIN

IEFXVO001
IEFXVNSL
IEFXVMSG
IEFX5000
IEFX300A
IEFXHO000
IEFWMSKA
IEFXTOOD
IEFXTDMY
IEFWL41SD
IEFSDOO4

IEFW23SD
IEFZAJB3
IEFWTERM
IEFZGJBI
IEFACTLK

IEFACTRT

IEFWAD

Writes error messages to
operator.

Prevents unresolved IEFVDBSD
symbol.

Linkage to IEFIDUMP (in IEFIDUNMP
load module).

EXEC statement condition code
routine.

JFCE housekeeping (4/K) control
routine.

JFCB H/K fetch DCB routine.
JFCB H/K generation data group
(GDG) single routine.

JFCB H/K generation data group
(GDG) all routine.

JFCB H/K patterning data set
control block (DSCB) routine.
Linkage to IEFXJ000 (in IEFALERR
load module).

Task Input/Output Table (TIOT)
construction routine.

External action routine.
Message directory for external
action routine.

JFCB H/K error message process-
ing routine.

Processes passed, non-labeled
tape data sets.

Job started and job termination
message routine.

Device name table.

Allocation control routine.
Demand allocation routine.
Passes control to decision allo-
cation or AVR routine.
Automatic volume recognition.
AVR volume serial routine.

AVR message routine.

Decision allocation routine.
Device strikeout routine.
Spearation strikeout routine.
Device mask table.

Space request routine.

Queue overflow routine.

Exit to step initiation routine.
Step initiation routine, with
exit to processing program.
Initializes for job termination
and exits to IEFZAJB3 (in this
load module) .

Job termination routine.

Job ended message routine.
Disposition and unallocation
subroutine.

Linkage to user's accounting
routine.

Dummy routine to be replaced by
user's accounting routine.
Writes accounting information to
a data set, SYS1.ACCT.

(The preceeding three modules may be re-
placed by IEFACTFK assembly module if no

accounting routine is specified as a system

generation option.)

A

AN
1‘&/

Form Y27-7128-0

Load Modules
(100K Configuration, Continued)

IEFW31SD Job termination exit to
IEFSDO003.

IEFSD003 Passes control to IEFSD010 and
then goes to IEFSD008 (both in
this load module).

IEFSDO10 Dequeues and writes out system
message blocks (SMBs).

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD0O07 Call to table store subroutine.

IEFQMSSS Table store subroutine.

IEEILCDM Prevents unresolved IEEICAN sym-
bol after initialization (Job
management IFPL).

IEFVJIMSG Contains initiator/terminator
messages.

IEFVKMSG Contains initiator/terminator
messages.

IEFVMLS7 Contains initiator/terminator
messages.

IEFXAMSG Contains initiator/terminator
messages.

IEFXTMSG Contains initiator/terminator
messages.

IEFYNMSG Contains initiator/terminator
messages.

IEFYPMSG Contains initiator/terminator
messages.

IEFZGMSG Contains initiator/terminator
messages.

IEFZEMSG Unallocation and message writing

routine.

Load Module Name: IEFVGM1

Assembly Module:

IEFVGM1

Contains reader/interpreter
messages.

Load Module Name: IEFVGM2

Assembly Module: .

IEFVGM2

Contains reader/interpreter
messages.

Load Module Name: IEFVGM3

Assembly Module:

IEFVGM3

Contains reader/interpreter

messages.

Load Module Name: IEFVGMY

Assenbly Module:

IEFVGMY

Contains reader/interpreter

messages.

Load Module Name: IEFVGM5

Assembly Module:

IEFVGM5

Page Revised by TNL ¥Y27-7157

Contains reader/interpreter
messages.

Load Module Name: IEFVGM6

Assembly Module:

IEFVGM6 Contains reader/interpreter
messages.

12712767

Load Modules
(100K Configuration, Continued)

Load Module Name: IEFVGM7

Assembly Module:

IEFVGM7 Contains reader/interpreter
messages.

Load Nodule Name: IEFVGM8

Assembly Module:

IEFVGNS Contains reader/interpreter
messages.

Load Module Name: IEFVGM9

Assembly Module:

IEFVGMQ Contains reader/interpreterxr
messages.

Load Module Name: IEFVGM10

Assembly Module:

IEFVGM10 Contains readexr/interpreter
messages.

Load Module Name: IEFVGM11

Assembly Module:

IEFVGM11 Contains reader/interpreter
ressages.

Load Module Name: IEFVGM12

Assembly Module:

IEFVGM12 Contains reader/interpreter
nessages.

Load Module Name: IEFVGM13

Assembly Module:

IEFVGM13 Contains reader/interpreter
messages.

Load Module Name: IEFVGM1Y

Assembly Module: ’

IEFVGM1U4 Contains reader/interpreter
messages.

Load Module Name: IEFVGM15

Assembly Module:

IEFVGM15 Contains reader/interpreter
messages.

Load Module Name: IEFVGM16

Assembly Module:

IEFVGM16 Contains reader/interpreter
messages.

Load Module Name: IEFVGM17

Assembly Module:

IEFVGM17 Contains reader/interpreter
messages.

Load Module Name: IEFVGM18
Assembly Module:
IEFVGM18

Contains reader/interpreter
messages.

Load Module Name: IEFVGM70

Assembly Module:

IEFVGM70 Contains reader/interpreter
messages.

Load Modules and Assembly Modules

51

Form Y27-7128-0

Load Modules
(100K Configuration, Continued)

Load Module Name: IEFVGM78
Assembly Module:
IEFVGM78 Contains reader/interpreter

messages.

Load Module Name: IEFINITL
Alias: IEFVHN

Entry Point: IEFK1l
Assembly Modules:

IEF7K1XX Intial entry to job management
from nucleus initialization pro-
gram (NIP).

IEFPRES Volume attribute initialization
routine.

IEFK1MSG Reader/interpreter message
routine.

IEEMCSO01 Master command routine.

IEEILCO1 Automatic command routine.

IEFWSDIP Linkage control table (LCT)
initialization.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDOO07 Call to table store subroutine.

IEFQMSSS Table store subroutine.

IEF7K3XX Input stream end-of-file (EOF)
routine.

IEFVHN Interpreter Termination routine.

IEFVHQ Table store interface routine.

IEFVH1 Interpreter Initialization
routine.

IEFVH2 Opens input stream and procedure
library data set.

IEFSGOPT System generation option
indicators.

IEFHAFAK Linkage to IEFVHA (in IEFSDO11
load module).

IEFVHRSS Writes error messages to the
operator.

IEF7K2XX PCP Reader/Interpreter system
dependent initialization.

IEEVSMDM Prevents unresolved external
reference to IEEVSMSG.

IEEICNO1 To convert record numbers to

TTR's for writers other than
class A.

Load Module Name: IEFIDUMP
Entry Point: IEFIDUMP
Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSNB Message enqueuing routine.

IEFQMSSS Table store subroutine.

IEFIDMPM Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSDO11

load module).

Load Module Name:

Alias: IEFXJ000

Alias: IEFXK000

Entry Point: IEFXJ000

Assembly Modules:

IEFXJIMP Allocation error recovery
routine.

IEFALERR

52

Page Revised by TNL Y27-7157

12712767

Load Modules

(100K Configuration, Continued)

IEFXJMSG
IEFXAFAK
IEFYNFAK

IEFYSSMB
IEFXKIMP

IEFXKMSG

IEFQMSSS

Load Module Name:

Contains initiator/terminator
mnessages.

Linkage to IEFXCSSS (in IEFSCO011
load module).

Linkage to IEFYNIMF (in IEFSDO11
load module).

Message enqueuing routine.
Allocation error non-recovery
routine.

Contains initiator/terminator
messages.

Table store routine.

IEESET

Alias:

IEEGESTO

Assembly Modules:

IEEGESO1

Load Mcdule Name:

Master scheduler SET command
routine.

IEFJOEQE

Alias:

IEFINTQS

Assembly Module:

IEFINTQA

IEFSGOPT

Load Module Name:

Initializes SYS1.S5YSJOBQE data
set.

System generation option
indicators.

IEETIME

Alias:

IEEQOTO00

Load Module Name:

IEEQOTO0O0
Assembly Module: {

Sets time and date in response
to SET command.

IEEFAULT

Alias:

IEEGK1GM

Assembly Modules:

IEEGK1GM

Fault routine, issues master
scheduler messages.

Load Module Name: IEESTART

Alias:

Entry Point:

IEEIC1PE

IEEIC1PE

Assembly Modules:

IEESTART
IEEREADR
IEEWRITR

Load Module Name:

' START command routine.

Start reader routine.
Start writer routine.

IEEJFCB

Alias:

IEEIC3JF

Assembly Module:

IEEIC3JF

Load Module Name:

Contains preformatted JFCB for
one START command.

IEESJFCE

Alias:

IEEIC2NQ
Entry Point:

IEEIC2NQ

Assembly Modules:

IEEIC2ND
IEFQMSSS

Load Module Name:

Save START command JFCB.
Table store subroutine.

IEFSD031

Entry Point:
Assembly Modules:

IEFSDO031

IEFSD031

Scheduler upshift routine.

Form Y27-7128-0 Page Revised

ules

Load Mod

(100K Configuration, Continued)

IEFSDO06

IEFSD007
IEFQMSS

Load Module Name:

Converts record numbers to logi-
cal track address (TTR).

Call to table store subroutine.
Table store subroutine.

IEFPRINT

Alias:
Alias:

SPRINTER
IEFPRT

by TNL Y27-7157 12712767

Load Modules

(100K Configuration, Continued)

Assembly Module:
IEFPRTXX Transfers tape system output
(SYSOUT) to printer or punch.

Load Module Name: IEFBR14
Assembly Module:
IEFBR14 Branch 14.

Load Modules and Assembly Modules

53

Form Y27-7128-0

ASSEMBLY MODULES AND CONTROIL SECTIONS

The following table shows in which load
modules each assembly module is used in the
three configurations of job management.
The first column lists the assembly module
names in alphameric order. Except as indi-
cated, all assembly modules are contained
in load modules in the SYS1.LINKLIB data
set. The second column lists the control
section names that correspond to the

Page Revised by TNL Y27-7157

12712767

assembly module names in the first column.
The next three columns of the table indic-
ate which load modules of each -configura-
tion contain each assembly module. The two
right-hand columns refer to the CHARTS
section. If a control section is shown as
a subroutine blcck, the flowchart number is

listed in the "“Appears As Subr. Block"
column; if the flow within a control sec-
tion is given in a chart, the flowchart

number is listed in the "Flow is Defined"

column.

e Assembly modules and Control Sections (Part 1 of 6)

54

r e I 1
| I | | Load Modules in Which | Chart Number
| | | | Assembly Modules are Used - T 1
| Assembly | | Control [T - { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
—— t - - -1 1 B - 1
| IEEEBC1PE | * | IEEBC1PE | | | | 02 | o4
| IEEBHIPE | Not | IEEBHI1 | IGCOO03F | IGCOO3F | IGCOO3F | | ou |
| |Used | | [| I | 1
IEECIR01	*	IEEBAl] 02	Ou	
I1EECNDUM		IEEICNO1	IEFINTFC	IEFCOMMD	IEFSDO11		
[IEFCOMMD	[
IEECVCTI		IEECVCTI	IEECVCTI	IEECVCTI	IEECVCTI	02,07	03
IEEGES01		IEEGESTO	IEESET	IEESET	IEESET		
IEEGKIGM		IEEGK1GM	IEEFAULT	1EEFAULT	IEEFAULT		I
IEEICNO1		IEEICNO1	IEFINITL	IEFINITL	IEFINITL		
IEEIC2NG		IEEIC2NQ	IEESJFCB	IEESJFCB	IEESJFCB		
IEEIC3JF	**%	IEEIC3JF	IEEJFCB	IEEJFCB	IEEJFCB		
IEEILCDUM		IEEICCAN	IEFINTFC	IEFCOMMD	IEFSDO11		
[IEFCOMMD					
IEEILCO1	#%	IEECCAN	IEFINITL	IEFINITL	IEFINITL		
IEEMCREP		IEEMCREP	IEFCOMMD	IEFCOMMD			I
IEEMCRFK		IEEBB1	IEFCNTRL	IEFCNTRL	I		
IEEMCSO1		IEEBB1	IEFINTFC	IEFCOMMD	IEFSDO11	10	
			IEFCOMMD	IEFINITL	IEFINITL		
	1	IEFINITL		[[
IEEMXCO1	***	IGCO3D	IGC0003D	IGC0003D	IGCO003D	02	05
IEEMXRO1	#***	IGCO3D	IGCO0003D	IGCO003D	IGCO003D	02	05
IEEQOTO0		IEEQOT00	IEETIME	IEETIME	IEETIME		
IEEREADR		IEEICRDR	IEESTART	IEESTART	IEESTART		
IEERSCO01	*	IEEMSLT					
‘IEERSRO1	*	IEEMSLT					
IEESTART		IEEICIPE	IEESTART	IEESTART	IEESTART		
IEEVSMDM		IEEVSMSG	IEFINITL	IEFINITL	IEFINITL		
IEEWRITR		IEECWTR	IEESTART	IEESTART	IEESTART		
IEEWTCO01	***	IGCO3E	IGCO003E	IGCOOO3E	IGCOOO03E		
IEEWTRO1	**%*	IGCO3E	IGC0003E	IGCOO003E	IGCOOO3E		
IEFACTFK	**%%	IEFACTFK	IEFSTERM	IEFSTERM	IEFSD0O11		[
			IEFJTERM	IEFCNTRL			
	[IEFSELCT					
IEFACTLK	###%	IEFACTLK	IEFSTERM	IEFSTERM	IEFSD011		
	i	IEFJTERM	IEFJTERM	[
			IEFSELCT				
IEFACTRT	**#*	IEFACTRT	IEFSTERM	IEFSTERM	IEFSDO11	15	
			IEFJTERM	IEFJTERM		[
			IEFSELCT				I
IEFBR14		IEFBR14	IEFBR14	IEFBR14	IEFBR14		
IEFDAFAK		IEFVDA	IEFCNTRL				
IEFDNSFT		IEFDNSFT	GO	Go	Go		
IEFDPOST	*	IEFDPOST			I I I		
I1EFEAFAK		IEFVA	IEFCNTRL			i	
L 1 i L 4L 41 L 4 ¥
)

f:.;.‘g

e

C

Form Y27-7128-0

e Assembly Modules and Control Sections (Part 2 of 6)

Page Revised by THL Y27-7157 1

2712767

| B T T T I - - T 1
| | | | Load Modules in Which | Chart Numwber
: | | Assembly Modules are Used - - el
| Assembly | | Control t T -— T - { Appears As | Flow is |
| Module Name |Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
t -1 } 1 e t- t .
IEFHMAFK		1EFVHAA	IEFCOMMD	IEFCOMMD		[
			IEFINITL		I		
IEFHAFAK		IEFVHA	IEFINITL	IEFINITL	IEFINITL		
I		IEFINTFC	IEFCOMMD				
I		IEFCOMMD		I			
IEFHCBFK		IEFVHCR	IEFINTFC	I		[
IEFHFFAK		IEFVHF	IEFDD				
			IEFEXEC				
			IEFJOB				
IEFHMFAK		IEFVHM	IEFCNTRL				
IEFIDFRK		IEFIDUMP	IEFSTERM	IEFSTERM	IEFSDO11		
IEFIDMPM		ILFIDMPM	IEFIDUMP	IEFIDUMP	IEFIDUMP]
IEFIDUMP		IEFIDUMP	IEFIDUMP	IEFIDUMP	IEFIDUMP		
IEFINTQA		IEFINTQS	IEFJOBQE	IEFJOBQE	IEFJOBQE		
IEFJAFAK		IEFJA	IEFCNTRL				
IEFKGDUM		IEFKG	IEFCNTRL	i			
IEFR1MSG		IEFKIMSG	IEFPRES	IEFINITL	IEFINITL		
IEFPRES		IEFPRES	ILFPRES	IEFINITL	IEFINITL		
IEFPRFAK		IEFPRES	IEFINITL				
IEFPRTXX		SPRINTER	IEFPRINT	IEFPRINT	IEFPRINT		
IEFCMSSS		IEFQMSSS	GO	Go	Go	17,18 I I	
			IEFSTERM	IEFSTEK	IEFSDO11		
			IEFSELCT	IEFALOC1	IEFIDUMP		
			IEFALOC1	IEEALOC2	IEFALERR		
	I	IEFALOCY4	IEFCNTRL	IEFINITL			
			IEFATACH	IEFCOMMD	IEESJFCB		I
i		IEFINTFC	IEFERROR	IEFSDO031			
			IEFCNTRL	IEFIDUMP			
I		IEFDD	IEFINITL				
I i		IEFEXEC	IEESJFCB				
			IEFJOB	IEFSDO031			
I I	IEFCOMMD		I				
	I	IEFJTERM		I			
I			IEFERROR		[
]		IEFIDUMP		I	I		
I		IEFINITL	I I				
			IEESJFCB	I			
			IEFSDO31	I			
IEFSD0O01		IEFSD001	IEFINTFC	IEFCNTRL	IEFSDO11		
IEFSD002		I1EFSD002	IEFSTERM	IEFSTERM	IEFSD011		
IEFSD003		IEFSD003	IEFJTERM	IEFJTERM	IEFSDO11		[
IEFSDOO4		IEFSDOO4	IEFATACH	IEFALOC2	IEFSDO11		[
IEFsSD006		IEFSD006	GO	Go	Go		
			IEFSTERM	IEFSTERM	IEFSDO11		I
			IEFSELCT	IEFALOC1	IEFINITL		
			IEFALOC2	IEFALOC2	IEFSDO31		
	I	IEFALOCY4	IEFCOMMD	I			
			IEFALOCS	IEFINITL			
			IEFATACH	IEFSDO031			
			IEFINTFC	I			
I I	IEFDD I						
I		IEFCOMMD	[
I !	IEFJTERM		I				
	I	IEFINITL					
	I	IEFSDO31					
IEFSD007		IEFSD007:	GO	GO	GO] 18		
			IEFSTEKM	IEFSTERM	IEFSDO11		
i			IEFATACH	IEFALOC2	IEFINITL		[
			IEFINTFC	IEFCNTRL	IEFSDO31		[
L L 1 L 1 - 1 1 1 J
(Part 2 of 6)

Load Modules and Assembly Modules 54.1

Form Y27-7128-0

Page Revised by TNL Y27-7157

12712767

54.2

Assembly Modules and Control Sections (Part 3 of 6)
r - T T T TTTTTTT YT T T T T T T T T T T T T T T T~ TT T T T T T T 1
|] | | Load Modules in Which | Chart Number |
| | | | Assembly Modulies are Used p———————————y———————
| Assembly | | Control p———— T T { Appears As | Flow is |
| Module Name |Notes|Section Name| 18K | 4yx i 100K | Subr. Block| Defined |
pmmm— - s - + e e R 1
| I | | ILFJTERM | IEFINITL | [I I
| | | | IEFINITL | 1EFSD031 | | | |
| |] | IEFSDO31 | [I | I
| IEFSD008 | | IEFSD008 | IEFINTFC | IEFCNTRL | IEFSDO11 | | |
| IEFSD0O09 | | IEFSD009 | IEFSELCT | IEFSTERM | IEFSDO11 | | [
| IEFSD0O10 | | IEFSD010 | IEFATACH | IEFALOC2 | IEFSDO11 | | |
| | | | IEFJTERM | IEFJTERM | | | |
| IEFsD011 | | IEFSD0O11 | IEFSTERM | IEFSTERM | IEFSD011 | | [
| IEFSDO12 | | IEFSD012 | IEFDD | IEFCNTRL | IEFSDO11 | I |
| IEFSD017 | | IEFSD017 | IEFSTERM | IEFSTERM | IEFSDO11 | | |
| IEFSD031 | | IEFSD031 | IEFSD031 | IEFSD031 | IEFSD031 | | 17
| IEFSDO34 | | IEFSDO34 | GO | co | Go | | 13 |
| IEFSD035 | | IEFSD035 | IEFJTERM | IEFCNTRL | IEFSDO11 | | 16 [
| IEFSD036 | | IEFSD036 | GO | Go | Go | | |
| IEFSGOPT | | I1EFSGOPT | IEFSELCT | IEFALOC1 | IEFSD011 | | |
I | | | IEFALOC2 | IEFINITL | IEFINITL | | |
			IEFINITL	IEFJOBQE	IEFJOBQE		
]	IEFJOBQE	IEFSTERM				
IEFS15XL		IEFV15XL	IEFALOC2	IEFALOC1	IEFSDO11	I	
			IEFALOCY4	IEFALOC2			
			IEFX5000				I
IEFVDA		IEFVDA	IEFDD	IEFCNTRL	IEF5D011		
IEFVDDUM		IEFVDBSD	IEFDD	IEFCNTRL	IEFSDO11		
IEFVEA		IEFVEA	IEFEXEC	IEFCNTKL	IEFSDO11		
IEFVFA		IEFVFA	IEFCNTRL	IEFCNTRL	IEFSD011		
IEFVFB		IEFVFB	IEFCNTRL	IEFCNTRL	1EFSDO11		
IEFVGI I	IEFVGI	IEFDD	IEFCNTRL	IEFSD011			
			IEFEXEC				I
IEFVGK		IEFVGK	IEFDD	IEFCNTRL	IEFSDO11		
	I	IEFEXEC					
			IEFJOB		I I I		
IEFVGMSS		IEFVGM	IEFCNTRL	IEFCNTRL	IEFSDO11		
			IEFDD	IEFCOMED		I	
]			IEFEXEC			I I	
			IEFJOB				
			IEFCOMMD	I			
IEFvVGM1		IEFVGM1	IEFVGM1	IEFVGM1	IEFVGML		
IEFVGHM2		IEFVGM2	IEFVGM2	IEFVGM2	IEFVGM2		
IEFVGM3		IEFVGM3	IEFVGM3	IEFVGM3	IEFVGM3		
IEFVGHMY4		IEFVGMY4	IEFVGM4	IEFVGM4	IEFVGMY4		
IEFVGES		IEFVGMS	IEFVGM5	IEFVGM5	I1EFVGM5	I	
IEFVGM6		IEFVGN6	IEFVGM6	IEFVGM6	IEFVGM6		
IEFVGM?		IEFVGM7	IEFVGM7	IEFVGM7	IEFVGM7		
IEFVGMS		IEFVGMS	IEFVGM8	IEFVGM8	IEFVGMS		
IEFVGMY		IEFVGMY	IEFVGM9	IEFVGMY9	IEFVGM9		
IEFVGM10		IEFVGM10	IEFVGM10	IEFVGM10	IEFVGM1O		
IEFVGM11		IEFVGM11	IEFVGM11	IEFVGM11	IEFVGM11		
IEFVGMi2		IEFVGM12	IEFVGM12	IEFVGM12	IEFVGM12		i
IEFVGM13		IEFVGM13	IEFVGM13	IEFVGM13	IEFVGM13]	
IEFVGM14		IEFVGMl4	IEFVGM14	iEFVGM14	IEFVGM14		
IEFVGM15		IEFVGM15	IEFVGM15	IEFVGM15	IEFVGM15		
IEFVGM16		IEFVGM16	IEFVGM16	IEFVGM16	IEFVGM16		
IEFVGML7		IEFVGN17	IEFVGM17	IEFVGM17	IEFVGM17		
IEFVGM18		IEFVGM18	IEFVGM18	IEFVGM18	IEFVGM1S8		
IEFVGMT0		IEFVGM70	IEFVGM70	IEFVGM70	IEFVGM70		
IEFVGM78		IKFVGM78	IEFVGM78	I1EFVGM78	IEFVGL78		
IEFVGS		IEFVGS	IEFEXEC	IEFCNTRL	IEFSD011		[
I			IEFDD	[[[
IEFVGT		IEFVGT	1EFDD	IEFCNTRL	IEFSD011		
L 4 L L1 L 4 —_———— i 4L 4
(Paxrt 3 of 6)

A ™

e Assembly Modules and Control Sections

Form Y27-7128-0

Page Revised by TNL Y27-7157

(Part 4 of 6)

12712767

T————- S Bt T - B 1
| | | | Load Modules in Wnich | Chart Number
| | | | Assembly Modules are Used - T
| Assembly | | Control - T - T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | LuK | 100K | Subr. Block| Defined |
p-m - B v oo - R T 1
| | | | IEFEXEC | | | | |
| | | | IEFJOB | | | | I
IEFVHA		1EFVHA	IEFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHAA		IEFVHAA	IEFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHB		ILFVHB	IRFCNTRL	IEFCNTKRL	IEFSDO11		
IEFVHC		IEFVHC	IEFCNTRL	IEFCNTRL	IEFSDO11		
LIEFVHCB		IEFVACB	IEFCNIRL	IEFCNTRL	IEFSDO11		
IEFVHE]	IRFVHE	IEFCNTRL	IEFCNTRL	IEFSDO11			
IEFVHEB		IEFVHEB	IFFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHEC		IEFVHEC	IFFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHF		IEFVHF	IEFCNTRL	IEFCNTRL	IEFSD011		
1EFVHGSS		IEFVHG	IEFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHH		IEFVHH	IEFCNTRL	IEFCNTRL	IEFSDO11		
IEFVHL		IEFVHL	IEFCNTRL	IEFCNTRL	IEFSD011		
IEFVHN		IEFVEN	IEFINITL	IEFINITL	IEFINITL		
IEFVHQ		IEFVHO	IEFINTFC	IEFCNTRL	IEFSDO11	} [
			IEFCNTRL	IEFCOMMD	IEFINITL		
			IEFDD	IEFINITL			
			IEFEXEC			I	
			IEFJOB				
I			IEFCOMMD		I		
			IEFINITL				
{ IEFVHRSS	-	ILFVHR	IEFINTFC	IEFCNTRL	IEFSDO11		
			IEFCNTRL	IEFCOMMD	IEFINITL		
			I&FDD	IEFINITL }			
I	I b IEFEXEC						
			IEFJOB			I	
I		IEFCOMMD					
			IEFINITL	!]			
1IEFVH1		IEFVH1	IEFINITL	IEFINITL	IEFINITL		[
IEFVH2		IEFVH2	IEFINITL	IEFINITL	IEFINITL	}	
IEFVJA		IEFVJA	IEFJOB	IEFCNTRL	} IEFSDOl1l		
{ IEFVJIMP		IEFVI	IEFSTERM	IEFSTERM	IEFSD011	i]	
IEFVIMSG		IEFVIMSG	IEFSTERM	IEFSTERM	IEFSDO11l		[
IEFVKIMP		IEFVK	IEFSELCT	IEFSTERM	IEFSDO11l		
IEFVKMSG		IEFVKMSG	IEFSELCT	IEFSTERM	IEFSDO11		
IEFVMLKS5		IEFVM6 } IEFSEICT	IEFSTERM		t		
IEFVMLS1		IEFVM1 } IEFSELCT	IEFSTERM	IEFSDO11			
IEFVMLS6		IEFVM6 { IEFERROR	IEFERROR	IEFSDO11]		
IEFVMLS7		IEFVM?	IEFERROR	IEFERROR	IEFSDO11		
IEFVM2LS		IEFVM2	IEFSELCT	IEFSTERM	IEFSDO11l		
IEFVM3LS		IEFVM3	IEFSELCT	IEFSTERM	IEFSDO11l		
IEFVM4LS		IEFVMH	IEFSELCT	IEFSTERM	IEFSDO11		
IEFVM5SLS		IEFVMS	IEFSELCT	IEFSTERM	IEFSDO11	l	
IEFVM76		IEFVM76	IEFSELCT	IEFSTERM	.IEFSDO11		
IEFWAD		IEFWAD	IEFSTERM	IEFSTERM	IEFSDO011		
]	IEFJTERM	IEFCNTRL				
I			IEFSELCT		I	I	
LEFWAFAR		IEFWA000	IEFALOC1				
IEFWA000		IEFWA7	IEFALOC2	IEFALOC1	IEFSDO11	i	
IEFWCFAK		IEFWCIMP	IEFALOC1	IEFALOC1			
	I	IEFALOC2					
			IEFX5000		!		
IEFWCIMP		IEFWC000	IEFALOC3	IEFALOC2	IEFSDO11l		
		1IEFVC002	IEFALOC3	IEFALOC2	IEFSDO11		
IEFWDFAK		IEFWD0O0OO	IEFALOC3)			
	I	IBFALOCS	I		I		
IEFWD00O		IEFWD0O0O	IEFALOC4	IEFALOC2	IEFSDO11		
IEFWD001		IEFWD001	IEFALOC4	IEFALOC2	IEFSDO11		
L — § I 1 1 4 pr— L L J
)

(Part 4 of 6

Load Modules and Assembly Modules 54.3

Form Y27-7128-0

Pace Revised by TNL Y27-7157

e Assembly Modules and Control Sections (Part 5 of 6)

12712767

r———- I T T - T T T T T T T T T T T T T 1
| |] | Load Modules in Which | Chart Number
| | | | Assembly Modules are Used | T——————— 4
| Assembly | | Control - -7 { Appears As | Flow is |
| Module Name |Notes|Section Name| 18K | LbyK | 100K | Subr. Block| Defined |
e ———t e — e } t - 1
IEFWMAS1	#*%	DEVNAMET	IEFSELCT	IEFSTERM	IEFSD011		
IEFWMSKA	**	DEVMASKT	IEFALOC2	IEFALOCLl	IEFSD011		
IEFWSDIP		IEFWSDIP	IEFINITL	IEFINITL	IEFINITL		
IEFWSTRT		IEFWSTRT	IEFSELCT	IEFSTERM	IEFSDO11		
IEFWSWIN		IEFSWIT	IEFALOC2	IEFALOC1	IEFSDO11		
IEFWTERM		IEFWTERM	IEFJTERM	IEFCNTRL	IEFSDO11		
IEFW21SD		IEFW21SD	IEFSELCT	IEFSTERM	IEFSDO11		
IEFW22SD		IEFW22SD	IEFSTERM	IEFSTEkM	IEFSDO11		
IEFW23sD		IEFW23SD	IEFJTERM	IEFCNTRL	IEFSDO11		
IEFW31SD		IEFW31SD	IEFJTERM	IEFJTERM	1EFSDO011		
IEFW41SD		EFW41SD	IEFALOC5	IEFALOC2	IEFSDO11		
1EFW42SD		IEFW42SD	IEFSTERM	IEFSTERM	IEFSDO11		
IEFXAFAK		IEFXA	IEFSELCT	IEFSTERM	IEFALERR	i	
IEFXAMSG		IEFXAMSG	IEFALOC1	IEFALOC1	IEFSDO11		
IEFXCSsS		IEFXA	IEFALOC1	IEFALOC1	IEFSDO11		
IEFXHO00		IEFXHO000	IEFALOC3	IEFALOC2	IEFSDO11		
	[IEFX5000				a	
IEFXJFAK		IRFXJO0O	IEFALOC2		IEFSDO11		[
I			IEFALOC3				I
l			IEFX5000	[
IEFXJIMP		IEFXJ000	IEFALOC1	IEFALOC2	IEFALERR		
IEFXJMSG		IEFXJMSG	IEFALOC1	IEFALOC2	IEFALERR		
IEFXKFAK		IEFXK000			IEFSD011		
IEFXKIMP		IEFXK000	IEFALOCY4	IEFALOC1	IEFALERR		
[IEFALOCS	IEFALOC2				
IEFXKMSG		IEFXKMSG	IEFALOC4	IEFALOC1	IEFALERR		
			1EFALOC5	IEFALOC2			
IEFXTFAK		IEFXT000	IEFALOCH		I		
IEFXTDMY		IEFXTDMY	IEFALOCS	IEFALOC2	IEFSDO11		
IEFXTMSG		IEFXTMSG	IEFALOCS	IEFALOC2	IEFSDO11		
IEFXTOOD		IEFXT000	IEFALOCS	IEFALOC2	IEFSDO11		
IEFXVMSG		IEFXVMSG	IEFALOCY4	IEFALOC1	IEFSDO11		
IEFXVNSL		IEFXVNSL	IEFALOC4	IEFALOC1	IEFSDO11		I
IEFXvV001		IEFXV001	IEFALOCY4	IEFALOC1	IEFSDO11		
IEFXVFAK		IEFXV001	IEFALOC2				
IEFX1FAK		IEFXJ000	IEFALOC4			i	
I1EFX2FAK		IEFX5000	IEFALOCH				
IEFX3FAK		IEFWC000	IEFALOCH4				
IEFxX300A		IEFX3000	IEFALOCY4	IEFALOC1	IEFSDO11		
			IEFALOC2	IEFALOC2			
			IEFX5000	[I		
IEFX5FAK		IEFX5000	IEFALOC2	I			
IEFX5000		IEFX5000	IEFX5000	IEFALOC2	IEFSDO11		
IEFYNFAK		IEFYN { IEFSELCT	IEFALOC1	IEFSDO11			
			IEFALOC1	IEFALOC2	IEFIDUMP		
			IEFALOCY4	IEFERROR	IEFALERR		
			IEFALOCS	IEFIDUMP			
			IEFERROR	[[
I			IEFIDUMP		I I		
IEFYNIMP		IEFYN	IEFSTERM	IEFSTERM	IEFSDO011		[
I1IEFYNMSG		IEFYNMSG	IEFSTERM	IEFSTERM	IEFSDO11		
IEFYPJB3		IEFYP	IEFSTERM	IEFSTERM	IEFSD011		
IEFYPMSG		IEFYPMSG	IEFSTERM	IEFSTERM	IEFSDO11		
IEFYSSMB		IEFYS	IEFSTERM	IEFSTERM	IEFSDO11		I
			IEFSELCT	IEFALOC1	IEFIDUMP		
			IEFALOC1	IEFALOC2	IEFALERR		
			IEFALOCY4	IEFERROR			
			IEFALOC5	IEFIDUMP			
			IEFJTERM	IEFCNTRL	i		
L i 4 L 1 4 L 4 J
(Part 5 of 6)

54.4

Form ¥Y27-7128-0 Page Revised by TNL Y27-7157 12712767

e Assembly Modules and Control Sections (Part 6 of 6)

C——————————- T~ e T - T -1
| | | | Load Modules in Which | Chart Number

| | | | Assembly Modules are Used - T 4
| Assembly | | Control - e o { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | 100K | Supbr. Block| Defined |
b ¥ $-——- —— s o R 1
[IEFERROR					
	[IEFIDUMP	[l			
IEFZAFAK		IEFZA	IEFSTERM	IEFSTERM			
IEFZAJR3		IEFZA	IEFJTERM	IEFCNTRL	IEFSDO11	14	15

{ IEFZGJB1l | | IEFZGJ | IEFJTERM | IEFCNTRL | IEFSDO11 | 15 | |
| IEFZGMSG | | IEFZGMSG | IEFSTERM | IEFSTERM | IEFSDO11 | | |
| | | | IEFJTERM | IEFCNTRL | | | |
| IEFZGST1 | | IEFZG | IKFSTERM | IEFSTELRM | IEFSDO11 | | [
IEFZHFAK		IEFZPOQM	IEFJTERM	IEFCNTRL			
IEFZHMSG		IEFZH	IEFSTERM	IEFSTERM	IEFSDO11		
			IEFJTERM	IEFCNTRL			
IEFO4FAK		IEFSDOO4	IEFALOCS				
IEFO8FAK		IEFSD00§	IEFJTERM	IEFSTERM			
			IEFSTERM	I I			
IEFO9FAK		IEFSD009	IEFSTERM	IEFCNTRL			I
!			IEFINTFC			I I	
IEF23FAR		IEFW23SD	IEFINTFC				
IEF7KGXX		IEFKG	IEFINTFC	IEFCNTRL	IEFSDO11		
IEF7KPXX		IEFKP	IEFCOMMD	IEFCOMMD	IEFSDO11		
IEF7K1XX		IEFK1	IEFINITL	IEFINITL	IEFINITL		
IEF7K2XX		IEFK2	IEFINITL	IEFINITL	IEFINITL		
IEF7K3XX		IEFK3	IEFINITL	IEFINITL	IEFINITL		
IGC0103D	#*#*	IGC0103D	IGC0103D	IGC0103D	IGCO0103D		

| IGCO0203D | #** | IGC0203D | IGC0203D | IGC0203D | IGC0203D | |
____________ 1 1__ i 1 i L 1 4
|Notes: *Assembly modules in SYS1.NUCLEUS data set.

| **Modules are assembled during system generation.

| ***¥Assembly modules in SYS1.SVCLIB data set.

| **** JEFACTFK may replace both IEFACTLK and IEFACTRT during system generation. |
L e e e 4

Load Modules and Assembly Modules 54.5

Form Y27-7128-0 Page Revised by TNL Y27-7157 12712767

CONTROL SECTIONS AND ASSEMBLY MODULES

The following list provides a cross-reference between job management control section
(CSECT) names, which appear in alphameric order, and the corresponding assembly module
names. Control section names are also listed in the preceding assembly module to load
module cross reference table.

CSECT NAME ASSEMBLY MODULE NAME CSCECT NAME ASSEMBLY MODULE NAME
DEVMASKT IEFWMSKA IEFSDO31 IEFSDO031
DEVNAMET IEFWMAS1 IEFSDO34 IEFSDO34
IEEBA1 IEECIRO1 IEFSDO035 IEFSDO035
IEEEB1 IEEMCRO1 IEFSD036 IEFSD036
IEEBB1 IEEMCRFK IEFSD059 IEFSD059
IEEBC1PE IEEBC1PE IEFSD088 IEFSD083
IEEBH1 IEEBH1PE IEFSD089 IEFSD089
IEEGESTO IEEGESO1 IEFSDO090 IEFSD090
IEEGK1GM IEEGK1GM IEFSDO94 IEFSDO94
IEEICCAN IEEILCDM IEFSD095 IEF3D095
IEEICCAN IEEILCO1 IEFSEPAR IEFSEPAR
IEEICNO1 IEECNDUM IEFSGOPT IEFSGOPT
IEEICNO1 IEEICNO1 IEFS15XL IEFV15XL
IEEICRDR IEEREADR IEFVDA IEFDAFAK
IEEICWTR IEEWRITR IEFVDA IEFVDA
IEEIC1PE IEESTART IEFVDBSD IEFVDDUM
IEEIC2NQ IEEIC2NQ IEFVEA IEFEAFAK
IEEIC3JF IEEIC3JF IEFVEA IEFVEA
IEEMCREP IEENMCREP IEFVFA IEFVFA
IEEMSLT IEEKRSCO1 IEFVGI IEFVGI
IEEMSLT IEERSRO1 IEFVGK IEFVGK
IEEQOTO00 IEEQOTO00 IEFVGM IEFVGMSS
IEEVSMSG IEEVSMDM IEFVGM1 IEFVGM1
IEFACTIK IEFACTFK IEFVGM10 IEFVGM10
IEFACTIK IEFACTLK IEFVGM11 IEFVGM11
IEFACTRT IEFACTRT IEFVGM12 IEFVGM12
IEFBR14 IEFBR14 IEFVGM13 IEFVGM13
IEFDNSFT IEFDNSFT IEFVGM14 IEFVGM14
IEFDPOST IEFDPOST IEFVGM15 IEFVGM15
IEFIDMPM IEFIDMPM IEFVGMl16 IEFVGM16
IEFIDUNMP IEFIDFAK IEFVGM17 IEFVGM17
IEFIDUMP IEFIDUMP IEFVGM18 IEFVGM18
IEFINTQS IEFINTQA IEFVGM2 IEFVGM2
IEFKG IEFKGDUM IEFVGM3 IEFVGM3
IEFKG IEF7KGXX IEFVGMY IEFVGMY
IEFKP IEF7KPXX IEFVGMS IEFVGM5
IEFK1 IEF7K1XX IEFVGM6 IEFVGM6
IEFK1MSG IEFK1MSG IEFVGM7 IEFVGM7
IEFK2 IEFTRK2XX IEFVGM70 IEFVGM70
IEFK3 IEF7K3XX IEFVGMT78 IEFVGM78
IEFPRES IEFPRES IEFVGMS IEFVGNMNS
IEFPRES IEFPRFAK IEFVGM9 IEFVGMY
IEFQMSSS IEFQMSSS IEFVGS IEFVGS
IEFSD001 IEFSDO0O01 IEFVGT IEFVGT
IEFSD002 IEFSD002 IEFVHA IEFHAFAK
IEFSD003 IEFSD003 IEFVHA IEFVHA
IEFSDOO4 IEFSDOOY IEFVHAA IEFHAAFK
IEFSDO04 IEFO4FAK IEFVHAA IEFVHAA
IEFsSD006 IEFSD006 IEFVHB IEFVHB
IEFSD007 IEFSDO07 IEFVHC IEFVHC
IEFSD008 IEFSD008 IEFVHCB IEFHCBFK
IEFSD008 IEFO8FAK IEFVHCB IEFVHCB
IEFSDO009 IEFSD009 IEFVHE IEFVHE
IEFSD009 IEFO9FAK IEFVHEB IEFVHEB
IEFSD010 IEFSDO010 IEFVHEC IEFVHEC
IEFSDO11 IEFSDO11 IEFVHF IEFHFFAK
IEFSD012 IEFSD012 IEFVHF IEFVHF
IEFSD013 IEFSD013 IEFVHG IEFVHGSS
IEFSD017 IEFSD017 | IEFVHH IEFVHH

54.6

Form Y27-7128-0 Page Revised by TNL Y27-7157 12712767

CSCECT NAME ASSEMBLY MODULE NAME CSCECT NAME ASSEMBLY MODULE NAME
. IEFVHL IEFVHL IEFW42SD IEFW42SD
‘: IEFVHM IEFdMFAK IEFXANSG IEFXAMSG
IEFVHM IEF7KPXX IEFXA IEFXAFAK
IEFVHN IEFVHN IEFXA IEFXCSSS
IEFVHQ IEFVHQ IEFXHOO0O IEFXH000
IEFVHR IEFVHRSS IEFXJIMSG 1EFXJINMSG
IEFVH1 IEFVH1 IEFXJ000 IEFXJFAK
IEFVH2 IEFVH2 IEFXJ000 IEFXJIMP
IEFVJA IEFVJA IEFXJ000 IEFX1FAK
IEFVJIMSG IEFVJIMSG IEFXKMSG IEFXKMSG
IEFVJ IEFVJIMP IEFXK000 IEFXKIMP
IEFVKMSG IEFVKMSG IEFXTDMY IEFXTDMY
IEFVK IEFVKIMP IEFXTMSG IEFXTMSG
IEFVM1 IEFVMLS1 IEFXT000 IEFXTO0OD
IEFVM2 IEFVM2LS IEFXTO000 IEFXTFAK
IEFVM3 IEFVM3LS IEFXVMSG IEFXVMSG
IEFVM4 IEFVMULS IEFXVNSL IEFXVNSL
IEFVM5 IEFVMSLS IEFXVO001 IEFXVFAK
IEFVM6 IEFVMLKS IEFXV001 IEFXV001
IEFVM6 IEFVMLS6 IEFX3000 IEFX300A
IEFVM76 IEFVM76 IEFX5000 IEFX2FAK
IEFVM7 IEFVMLS7 IEFX5000 IEFX5000
IEFWAD IEFWAD IEFYN IEFYNIMP
IEFWA000 IEFWAFAK IEFYN IEFYNFAK
IEFWA7 IEFWAO000 IEFYNMSG IEFYNMSG
IEFWCO000 IEFWCFAK IEFYPMSG IEFYPMSG
IEFWC000 IEFWCIMP IEFYP IEFYPJB3
IEFWC002 IEFWCIMP IEFYS IEFYSSMB
IEFWDOO0O IEFWDFAK IEFZA IEFZAFAK
IEFWDOOO IEFWDOO0O IEFZA IEFZAJB3
IEFWD0OO01 IEFWD0O01 IEFZGMSG IEFZGMSG
IEFWSDIP IEFWSDIP IEFZG IEFZGJB1
’ IEFWSTRT IEFWSTRT IEFZG IEFZGST1
(j IEFWSWIT IEFWSWIN IEFZH IEFZHMSG
IEFWTERM IEFWTERM IEFZPOQOM IEFZHFAK
IEFW21SD IEFW21SD I6C0103D IGC0103D
IEFW22SD IEFW22SD IGC0203D IG6C0203D
IEFW23SD IEFW23SD IGCO3D IEEMXCO1
IEFW23SD IEF23FAK IGCO3E IEEWTCO1
IEFW315D IEFW31SD SPRINTER IEFPRTXX

IEFW415D IEFW41SD

Load Modules and Assembly Modules 54.7

€

Chart 01. Job Management

B2

* *
CONSOLE DEVICE
* *

* 3 kK

* SYSTEM
INPUT DEVICE
*

ok kok Kk kK kKK Fhkkkk Rk kkkk

. *kkk .

- * * o

. * C3 *eXe

. * * o

- XA -

X X
ok kC2¥kkkkkkkkkk Rk RCI hkkkkkkkkk
* 02A1% * *
cecccc® READER/ *

* *o
* COMMUNICATION *
TASK *

*
L2 T T e e R R

* INTERPRETER *
* *
Hkk Rk Rk Rk kR kR

-

Xe oo as

*okk Ak kD3 ko kkokkokk HAR R RDE Kk kR kR kK
* 12A3%

kK e R R — =k * SYSTEM *
* INITATOR/ *eoeeeeeeX OUTPUT DEVICE
* TERMINATOR * * *

* *
R ERRRRRRRRk Rk EEE S LSS L L LS
.

Xe oo e

ERERREIHERRRNRX RN EERERKELGEERR R RRENR
*

* * JoB
JOB STEP *eeoecceeX STEP OQUTPUT
* * DEVICE

*
*
* *
*
*

*
Aokodokok ok R ok Rk R koK Rk EE LR]
.

CHARTS

Charts

55

Chart 02. Communication

*kkKALRERKKKKEK

*

* ENTRY *
* *
ook dkdkokok ok ok ok kok Kk

AFTER IPI

Xe oo o

R tebd-] Sttt s 2 2
*IEECVCTI 03A2%
Ko e o e Hm e K
* COMMUNICATION *
* TASK *
*INITIALIZATION *
Aok kR ok ok ok koK

EEK)

.
X
FHWHC] RN NN
* EXIT *

*
Fokok ook kokk ok ok k ok kK

FROM SUPERVISOR
(N

EE LSl -FE2 S L L LS 2]

*
* ENTRY ¥eoeo
* *

NN NN

FROM
READER/ INTERPRETER

TO COMMUNICATIONS
TASK WAIT ROUTINE

¥k kD1 kkkkkkkkk
* *
* ENTRY *
* *
Aok ok ok ok ok ok ok kokok k

SUPERVISOR

Xe oo oo

*kkRREL R kR kR kkkkk
*IEEBA1 04A1%¥
i i o
* CONSOLE *
* INTERRUPT *
* ROUT INE

kKRR RAR KKK

Xeooo o0

*ERRF 1 kkokkk kK
* EXIT *
* *

koo ok ko Kok Kok R Rk

TO
SUPERVISOR

*kk KRGl Rk kkkkkkk
*
* ENTRY *

HERERREEREERRRN
.

FROM
SUPERVISOR

Xe oo oo

*kkkkHL kkkkok kR
*1EEBCIPE 04A3%

e K K K kX
* EXTERNAL *
* INTERRUPT *

* ROUT INE *
e R e T T
-

X
*okkkJ 1 kkkokkokkkk
*
* EXIT *
*
ek ok ok ok ok kokkok ok

T0
SUPERVISOR

56

FROM INPUT/0UTPUT

Task Control Flow

HRHEAT RN NN NN
* *
* ENTRY *
* *

kR Rk kR kK

FROM
SUPERVISOR

Xeoosoee

Fokokk kB3 dokokkkokkkkk
*IEEBB1 *
Hm o W e W Ko W N N

Xk STER *
COMMAND ROUTINE
*

* (SEE NOTE)
Fokdkokkokokokok kokokokk ok kk
.

Xes e o0

R e ES EE L L 2

*

* EXIT *
*

Fkokkk Rk kR kK

TO SUPERVISOR OR
READER/INTERPRETER

AL NN KRN R
* *
* ENTRY *
*

Aok kR Kok Rk kK

FROM
SUPERVISOR

Xeossse e

HEERASHERR

* *
* ENTRY *
ook ko kk Rk Rk k

FROM
SUPERVISOR

Xe oo o

1GCO03D 05A1
o e W K Y e o N K
* COMMAND *
* PROCESSOR *

* *
ok kok kkokkokkok kkokkk
-

Xeooss o

*KKKRCE ko kF kK kkk
*

* EXIT *

*

Fdokkokk Rk Rk kR kkk

TO SUPERVISOR

NOTE THE MASTER COMMAND ROUTINE
IS UNCHANGED FROM THAT OF THE
SEQUENTIAL SCHEDULING SYSTEMe
FOR _FLOWCHART SEE JOB MANAGE-

MENT PLM, FORM Z28-6613

xR 3 kR ok
*I1GCO3D 05A1%
ek kK k—k—k—k—
* COMMAND
* PROCESSOR :

*
ek kokokok Kok R kR ok koK kK

X ¥

Ak KE 4 dokok kKR kK
* *
* ENTRY *
*

e e et

-

R

kR kF G ¥k kKb kokkk
*IEECVCTW 07A2%

* TASK WAIT

* ROUT INE *
st I e 2 e e
X
-

.

X

Sk ko ¥k Kok koK ok
*1GC0113D 06A1%
Hm W N N N N R R

* WRITE-TO- *
* OPERATOR *
* ROUTI *
Aok Rk Rk Rk kK
.
.
.
-
.
X
Hkkk CSkkkkkkkkk
*
* EXIT *
*
Fokkokkkkkokkkokkk®

TO SUPERVISOR

FROM COMMUNICATIONS TASK
INITIALIZATION AFTER IPL
OR FROM SUPERVISOR

FHHHRF SHEXHHHER]
* *
* EXIT *
*

Aok ok kR Rk ok kR ¥k

TO
SUPERVISOR

*k

*IEECVCTR 08A3%
* N

[EECVCTX 09A3
*

e s B o e vy
*ROUTER ROUTINE *eeceececeeeXk EXTERNAL *
* * * INTERRUPT *
* * * PROCESSOR *
Aok ROk koK Rk R ok kokok ok ook ok ok ok ok Rk ok Kk

X . X

. .

. .« .

- o o

. o« e

. o« o

X - -
FkkkkHG kk Rk kK k¥ - -
*IEECVPM 10A2% . .
o e e e ke - -

*Xeooe -

* PROCESSOR * -
* ROUT INE * .
ko ko ok ROk ok ok Rk ok Rk ok -

- -

. B

. .

. .

.

X
ARk ok kS 4ok kok kR ok
*IEECVOC 11A3% .

o KKk Kk
*
* OPEN/CLOSE *

* ROUT INE *
ok ok dokokok ok ok ok kok Rk ok

¥eeeesccccccsccccccoss

Chart 03. Communication Task Initialization Routine

IEECVCTI
*ERKA2RK KKK K KKK
* *
* ENTER *
* *
RkkE Rk R KR RERK

Xe oo 000

FRRAKB 2N KRk

PLACI *
*POINTER TO UCM *
* N *
* COMMUNICATION *
* VECTOR TABLE *
Rk R KR KKK KRR KK

Xe oo

Rk Rk C 2%k kkk kKRR A
*IEEVRFRX *
ek km kK= — K — kK

THE UNIT

CONTROL MODULE
(UCM) CONTAINS
DATA NECESSARY
TO COMMUNICATION
TASK OPERATION

ok kkC3 ¥ kkkkkkk kXK
* MARK UCB AS
* PRIMARY OR

% CONV DEV NMS *ceceaaeeeXk ALTERNATE

*IN UCM ENTRIES *
* TO UCB ADDR *
kR Rk Rk Rk kR kkk

*
*
*
* ACCORDING TO *
* uCi F *
*

e T I T T e 2

-
X
HRRHEDEEEIRXRERS
* BUILD *

* EVENT *
INDICATION LIST
* (EIL) *

* *
Fkkkok Rk kR Rk kR Kk

Xeoseo o0

ERERE2HRRXHFRNN®

*
* RETURN *
*

*
RE L LR E S LS Y

THE EIL IS

PART OF THE

UCM AND CONTAINS
POINTERS

CB'S + UCB'Se
THE ECB POINTERS
FORM THE LIST
WAITED ON BY
IEECVCTW

Charts

57

Chart 04.

C
1
R

IEEB

*

ONSOLE

NTERRUPT

OUT INE

Al

kKAl RKkRkRKRkX
ENTRY

Aeokodok dkokokok ok kokokok ok

Xeoooee

XRBLREERXER
*

Console

*

* POST *
* COMMUNICATION *
* TASK *

e o e ke o ok ok ok okok

Xe oo oo

FokkokkC1kkokkdokkkokk
* *

*

FLAG DEVICE

*

* ENTRY IN UNIT *
*CONTROL MODULE *

* *
HERERE RN ENNRNE

*

58

Xe o oo 00

kKD Fkkkkokk kK
EXIT

*

*
koo ok ook ok ook K

and External Interrupt Routines

EXTERNAL
INTERRUPT
ROUTINE

IEEBC1PE
AT RN N
* *
* ENTRY *
* *
kkkkkkkkkkkkkkK

Xeoosee

*RBI3 Rk Ak kkk

* *
* POST *
* COMMUNICATION *
* TASK *

*
*ERkRRRRRKX

Xeoee e

FEXKCI FRRRRK KKK
* *
* EXIT *

Ik Rk kkkdkokkkk

™,

W«

Chart 05. Master Command EXCP Routine

s 16C03D
HEEEAL RN RN AR
*
= * ENTRY *
Fhkkkkkk Rk Rk
« FROM
+ SUPERVISOR
.
X
o¥eo
B1 *e *hkKkRkKB2RRRRKKK
¥ *o * * LR E 2]
¥ *e. YES * TURN ON * *
*e REQ COMMAND o*ecoeseeeXkCOMMAND PENDING*eeoeX¥* F1
*o ok * SWITCH *
*o ¥ K
*e o¥ *kRREERREEERKE
* NO
.
- -
.
X
o¥ae
(=8 *.
ok *e
¥ *e YES
*o SET COMMAND o«
- *o ¥
*o ok
*e o¥
* NO
.
-
.
X
o¥e oo
D1 *e D2 *eo
ok *a ok *o
ok *e YES o¥ START *e NO
*eSTART COMMANDe *eoe (BLANK) e¥Xeeoocscsce
*o ¥ #*o COMMAND <%
*e ¥ *eo ¥
*o o¥ *a o¥
* NO * YES
. .
. -
. -
- .
. -
X X
FRRNIE] KRN NN N HEERREDEEXRE XN
* XCTL TO * *
* COl * * TURN OF *
* PROCESSING * *COMMAND PENDING*eeeeceeee Xk
* ROUT INE * * SWITCH *
* (I6C0113D) * * *
Aok ok dokok ok Rk ok kR Kok Aok ok koK koK Rk
* kK .
* .
* Fl *eXe
-~ * -
*kkk -

X
FRERELEREHERR R
*
* EXIT *
dokdokk Rk ok Rk Rk kK

TO SUPERVISOR

*

*
*
*

.
x
X0 o 00000000t sess e

E3 *o

¥ .
«* IS MASTER *. NO
COMMAND RTN INe*eoooX
*e STORAGE <%
. ¥
*e o¥
YES

D™

X
FKF 3ok ook
* *
* POST *
MASTER *o
SCHEDULER ECB
* *
sokkkkokkkokokk

EE LT
* *

* F1 %
* *

*kkk

Charts

59

Chart 06. Write-To-Operator Routine

1GCO003E
HHHIA] NN RN
*
* ENTRY *
okdkok dokok ok ok ok kR kK
.
-
B
« FROM
« SUPERVISOR
.
X
e¥e ke
B1 *eo B2 *o HekokkkB 3 ok ok koK kokk
ok *ENQ *
‘- YES k—k—k—WA Th—k—k—%
o WTOR X. OUEUE LKM!T ekeoeoeoee Xk UNTIL REPLY *
*e REACHED o% * QUEUE ELEMENT *
* ¥ * AVAILABLE *
ok Aok ok ok ok ok ok Rk kR ok ok kK
* * NO .
- . .
. - .
. . -
. eXeeoeesecscsccccccvecccccccs
. .
.
. *t**tcz*****#**t*
* SETUI Py + LINK *
. *IN REPLY QUEUE *
. tELEMENT ASSIGN *
. * REPLY ID
- ********‘*#******
- -
- .
- B
- .
- X
. o¥ o
- DZ *e
. *e
. NO *o
-Xoooo-....ononoo-*-ENQ REQUIRED ok
. *o -*
. *o ok
. *o o¥
. * YES
. .
. .
- .
. .
. -
- X
o HEERRE2HERHE RN
- *DEQ *
. o R e e e R
- scsccsce¥k CANCEL *
* PREVIOUS ENQ *
* QUi *
. Fedokokkok Rk okokok Rk R kRokk
.
.
.
.
.
X
e¥eo
F1 *eo FkRRKF 2%k ko dkokokkk
¥ *, *ENQ *
¥ *e YES e e o e e e e =
o QUEUE LIMIT e¥eoe X WAIT UNTIL *
*e REACHED <% * QUEUE ELEMENT *
*e ¥ * AVAILABLE *
*e o¥ F R e
* NO -
. .
. -
- .
.
X
Hokok Kok G L dkk Kok kKR Kk
* *
* GETs SETUP, + ¥
* LINK IN WTO *
* QUEUE ELEMENT *
* *
ok ok ok ook ok ok ok ROk kR kK
-
.
.
-
X
ke
H1 *o *****HZ**********
.* *e *DEQ
e YES t-—*—*—*—*—t—#—t
.ENQ REQUIRED e¥eaoe X* *
PREV!OUS ENQ *
. . REQUEST *
*e o¥k *********t#t*****
* NO
. .
- .
. .
eXeoeoeescceccveccscsccccccce
t****JZ****#*****
*o YES
.*-...-...Xt REPLV ID lNTD *
- o ¥
*eo ¥k
*a o¥ *********i***l***
-
HEEERK L HERERRER NN ERKDHERERER
* * * P Fkok kK3 kkkkkkkkk
* MOVE WTO MSG WTO/WTOR * * *
*INTD NTD QUEUE *-....-..X* REQUEST FOR *eeeooeeeXk RETURN *
ELE *CDMMUNICAT(DN* *
* TASK okokkok R Rk Rk kkk ok
*******t**t**#*#t t**‘t!t**&#

60

Chart 07. Communications Task Wait Routine

IEECVCTW*
AR A 2K AR K
* *
* ENTER *
* *
Aok ARk Kok Rk
.
.
.
« FROM
« SUPERVISOR
.
X
Hokokokok B 2 ok ok ok ok
*IEECVCTI 03A2% 1. EXTERNAL
A i o A e K INTERRUPT
* L INK *
#TO INITs COMM. * 2. ATTENTION
* INTERRUPT
ok Kok Rk ok ok kR Rk
- 3. WTO-WTOR
. REQUEST .
.
. 4. WTL REQUEST
. (NOT SUPPORTED)
.
X Se 10 COMPLETION
HRC2RNHHARN
*

* WAIT FOR *
EVENT
* COMPLETION *
* *
Aok e ok ok ok ok ok

ee o XXk *

Xe e

*kD 24Kk kkk kK
* *

seessssess s

* svC72 *
« +¥PROCESS POSTED *

* EVENT *
* *
IR

* IEECVCTW NEVER TERMINATES

Charts 61

Chart 08. Communications Task Router Routine

IEECVCTR
" ™,
*kkKkAZ R REE KKKk ;
* * i
* ENTRY * A %
*
kokokok o okokdok Kk KoKk X
.
.
« FROM
« SUPERVISOR
.
X
oo
B3 *.
ok *e kKB4 Aok kKK Rk
o* *e YES * XC
.EXTERNAL ECB e¥eceseeesX TO IEECVCTX *
*eo POST ¥ * *
*e ¥ Fkkkkkkkkkkkkkk
*e ok
* NO
.
.
e -
.
X
e¥e
- ook kR Cakok kokokokkokdkk
«*ANY 1/0%. * * HREECSERERERAR
«*COMPLETION *. YES *SET UP POINTERS* *#XCTL _TO IEECVPM*

%o ECB POSTED e*eecsececeX* FOR PROCESSOR ¥eeecoseeeXk PROCESSOR *

- - * MODULE IN XSA * * MODULE *
*e ok * * sk Rk Rk kKR -
*o o¥ Fedokok ok ok ok ok kK
* NO
-
-
-
.
X
ok
D3 *o
ok *e
¥ *o
*« ATTENTION ECBe .
*e POSTED %
*, ¥
*e ok
*
.
-
.
.
X
e ke .
E3 *o Aok KE G Rk kR kR ok
o¥* *o * LOCATE *
ok wTO * CURRENTLY *
*e ECB POSTED X% ACTIVE WTO/R *
- . DEVICE *
*eo ok * *
e ¥ I IR
* NO
.
.
.
X £ N
oo
W 2NN NN F3 *e kR RF 4 kR KRRk kkkk \ ;
* * * *) W

-
*

* SET * NO o% wTL « YES * SET *
*RETURN CODE OF *Xeeeeseeo*e ECB POSTED e¥eesoeeeeX¥RETURN CODE OF *
* XtQ0* * *o ¥ * X*04" *

* * *o ok * *
Aok ok ok ok kR R kR Rk *e o¥ Fokkkkkk ok kokkkkk
B * .

.

. .

. -

. -

- .

. -

X X
RN G 2NN NN NR FkkkGE ok kk K kKKK
* RETURN * * RETURN *
* TO IEECVCTW * * TO IEECVCTW %
* *
kAR Rk R Rk X FkkkkkkkokkkkkEkR

62

Chart 09. External Interrupt Processor Routine

ok Kk C 2kok ko ook
* *

* TURN *
* ON CLOSE FLAG *Xeeeee
* *

* *
EE T
.

Xe s o

ok okkkD2%kkkkkkkkkk
* *
* *
*ADJUST UCM AND *
* uce *

* *
A koK ok kK Kok ok R Rk kK

Xeosso o

Aok R E 2%k Kk kkokk
* XCTL TO *
PROCESS MOD. TO#
* C *

% ek ok ke o kok kK dkokokok

IEECVCTX
HRREATENN KRR N
* ENTRY :
Aok ok ok ok kR K Kok ok

Xeesse 0

eokok ok ok B 3 % kK ok kK
*

INITIALIZE
POINTERS

Nk
EE R X

ook kR kR Rk Rk Rk Rk

*
.
YES <% DEVICE
eea¥*s ACTIVE AND
*o OPEN
*

HEAERETHRREXHEXRR
*

*
* REINITIALIZE
* UCM POINTERS

*
ek kokok ok ook Rk ok ok ok

EET X

eXeo
.

X
FHARKF 3R kKRR kK
* FLIP *
* DEVICE *
ACTIVE/INACTIVE
* FLAG *

* *
L S S e E

G3 *e
ok *a

.
.
.
-
-
.
-
-
-
-
.
-
-
-

¥
*e LAST DEVICE
*eo ok

Fk kxR KHI ¥k kKRR KK
* *
* *
*CLEAR EXTERNAL *
* ECB *

* *
Fokok ok kR kdkokkkkkkkk

X
ok B3Rk kkkokkkk
* *
* RETURN *
* *
40k o e ok ok ok ok Kok ok

Charts

63

Chart 10. Communications Task Processor Routine

Rk kD 1 kKRR
*IEECVOC 11A3%
o s e K
*

* OPEN/CLOSE *
* ROUT INE *
3 e e o e e e ok e ok e ol kol ok ek

IEECVPM
*kkkA2kK kR Rk Kk
* *
* ENTRY *
* *
ke o e e ok e ok ke kok Kok koK

*Xe o000

B2 *eo
o *o

YES o% *o
*Xeoeoooseee*e CLOSE REQUESTo*

- .
* o ¥
*eo ok

NO

*Xo o 00 ¥

c2 *o
ok ¥

ok e NO
*e BUSY FLAG e*eee
%o o

.
*o

*kkkD 1 kkkkkkkkk ok *e
* NO % 1/0 *o
* RETURN *Xeo eeee*¥e COMPLETE ECB <%
* . -
L e e *, ¥
*e ok
* YES
-
.
.
.
.
X
kR E 2 4ok ok kKoK
* *
* CLEAR *
* 1/0 COMPLETE *
* ECB *
* *
P e T 2
.
.
.
.
X
o¥a
HkokdokF 1 %k okkdkdkokkkkok F2 *eo
*IEEBB1 ok *e
Rt e e et St e YES o% *o
* COMMAND *Xeoeoooooke INPUT ok
*PROCESSOR (SVC *eo ok
* 3 * - ¥
Aok ok Kok ok ok ok okok ok *eo o¥
. * NO
- .
. .
. .
. .
. .
X X
*kkkkG 1 RKkK kKKK Kk FkkkEKG2¥ K kKK kKK
* * * *
* * * *
* RELEASE INPUT * *RELEASE QUTPUT *
* BUFFER * * BUFFER *
* * * *
ook ok ok dokokok ok ko ok Kok ok ek ok odok ok ok ok ok kR koK

-
-
-
.

dokkokH 1 kR kR kK
*[EECVOC 11A3%
e s o K e =
*

* OPEN/CLOSE *

* ROUTINE *
Fedokkokdkk kR okkk Rk ok

64

-

eXeseooosose

eececcccccccecccccccccsseXe

¥ o
H2 *e

o¥
YES o% oP

*a

EN *eo
*¥Xooeosoeeke NECESSARY %
o o

eecne

.

sssssesssene

-
-
-
-
-
o
.
.
-

.
.
-
.
-
-
.

-
.
.
.
.
-
-

.
-
.
.
.
.
-

k%
*

o¥ *o *
*e ATTENTION oXeeeeXk B4 *

*e REQUEST o%
* *

- o
*e ok
* NO
.
.

X
kKK

Ex22

*
Fkkk

*kkk

* %%
o
o

*

ERNR

Xe oo

EXXXXBG
*

* OBTAIN
* INPUT BUFFER
*

*

LE R X

BS *

OBTAIN
OUTPUT BUFFER

EE R X X
3 9% % Kk A

4xkkk

INITIALIZE
INPUT CHANNEL
PROGRAM

R K

3Rk

Sk dokokkkkk
* *
* INITIALIZE *
*QUTPUT CHANNEL *
* PROGRAM *
*

Xeso oo

e kdeok ok D 4 %ok ok k ook ok
*
*
* SET BUSY FLAG
*

*
ok ook kok dokok ok kR

Xe oo s

HEHEL Kk kkkkk
* *
*
* EXCP
*

* *
e e ok ok % ok ok Ok

X
Aok ok F 4otk ok ok kokokok
*
* RETURN
*

etk ok dok ok ok ok ok ko

Xeeseossscscscccsccccsccccce

*
*

*
*
*
*
*

*
*

Chart 11. OPEN/CLOSE Routine

HERRRETHEREREIERR
* *

* ADJUST UCM *
TO REFLECT OPEN
* STATUS *

*
Aok e e ook ok oKk ok ok dek ok ok ok

Xe oo 000

WRHHE RN RN
* XCTL *
* TO PROCESS *
* MODULE *
Fokdokokk ok kR Rk ok ok

IEECVOC
HHREATHREE N XN NN
*
* ENTRY *
Aok koo ok ok ok ok Kok K

.

-

.

X

e¥ae
B3 *o ERd-DEES S LS
¥ *e *
o CLOSE * *
*eOPEN OR CLOSEe*eee X* CLOSE DCB *
*o . * *
*o ¥ * *
*e * kR RRk Rk Rk

* OPEN -

- -

o -

. -

- -

. -

X X
FokkkRCIdk ko kk HEEEKCHF R Rk E R RRRK
* * * *
* INITIALIZE * * *
*DCBs UCM, ETC, * * ADJUST UCM *
* FOR OPEN * * *
* * * *
Ak o ok ok ok Aok ok ko Kok Aok ok ok ok ok ok ok ok kokok ok

. .

- .

- .

. -

- .

X .

*RDI kK kKKK X
* * FEEEDG R KKK Rk kkK
* * * XCTL TO *
* OPENJ * * EXTERNAL *
* * * SSOR *
* * ok ok ok ok ok ok kR
*kkkkkkkkkk

.

B

-

-

o

X

Charts

65

Chart 12. Initiator/Terminator Control Flow

kKK AF Rk KRk KRKK
* *
* ENTRY *
* *
ek e ek ok ko ok ok Kok ok

“FROM READER/
.« INTERPRETER

.

PO

ERRERBIRERRE RS HX
* *
Fm e ke
* *
* *

e ke ok ook ok ok ok ok ok ok ok ok

* INITIATOR *
CONTROL

Xe oo e

HkERRCIkkkkkkkkkk
* *
dm ok m kKK
*ALLOCATION AND *
* SETUP *

LR e T s e
-

Xe oo e

FekkkkD3I3 Ak Kk kkokkk
*

LRt S S D O I S
* *
STEP INITIATION
* *
Aok dkokok ok ko ok ok ok ok ko koK

Xeoo e

Hkok K E 3 Rk dokokkdokk
* EXIT *
* *

Aok kR kR kR kkk

TO PROCESSING
PROGRAM

*H kR Jkkokkokokkkk
* *
* ENTRY *

*
ookokok ok ok ok kok Kok ok

.
«FROM

« SUPERVI

SOR
«OR AN INIT/TERM
I

«ROUTINE
.
o

X
HERERGIREHREREH AR
* 13A1%
Ak e kK
* *
* TERMINATOR *
* *

Aok 3k o e e ok koK ok ok ok ok

Xses0 00

HHIRHIER IR NRH®

* *

* EXIT *

*

sk koo ok koo K
TO READER/

INTERPRETER OR
INITIATOR CONTROL

66

e

¢

AN

N

Chart 13. Pre-Termination Routine (IZFSDO34)

dkkkA LRk kRk Rk
* *
* ENTRY *
* *
ok ok o ok koK ok ok kok ok

.

FROM ABEND WHEN PROB PROG
1SSUES HIGHEST-LEVEL RETURN

Xeoeo oo

HEMERB] RN R NR
* ACCESS *
* PTN'S PRSCB *
*THROUGH PNTRIN *
* CURRENT TCB'S :
*

BBOX
Aok ok ok ko R Rk koK R kK

.
.
.
.
X
oXe
Cc1 *eo ARk kR C 2%k Rk Rk kkk
o% POST %o * *
«¥FLAG ON (IS*e NO * ISSUE MSG--~ %
*¢eSCHDLR ASGND e¥eecceeesaXk PARTITION *
eTO PTN B)e * WAITING TO *
*eo ¥ * TERMINATE *
e ok P At 2
* YES .
. .
. .
- .
. .
. .
. X
X ek Akok D 2%k K dkk Kk kkk
kD1 kkkkkkkkk * *

* WAIT ON PTN'S * * ISSUE WAIT *
*SCHDLR—CONTROL *Xeeeeoesee* TO DECREMENT *
* * * WAIT COUNT *

e 3 3 ok o ok ok ok kok kok ok k- *
. FokkkkokkkRR kKR kEK

: SATISFIED BY POST_IN
o IEFSD031 CHART 17
.
.

X

kR RKE L kKKK KK

* SET *

* FIRST-TIME *
*WAITR SWITCH ON¥%
* IF COMPLETION*
* CODE IS 4 *
dokokokokok kR kR kK

-

Xeooo 00

K EF 1 Rkkkkkkkk
* *
* EXIT *
* *

ddok kR Rk kR Rk

TO TERMINATOR'S STEP TERM-
INATION ROUTINE (IEFSDO11)

PROBLEM PROGRAM HAS COMPLETED
PROCESSING, JOB IS ATTEMPTING
TO TERMINATE IN THIS PARTITION

Charts

67

Chart 14. Termination Control Flow

Ak kKAT ke KRk Kk kK
* *
* ENTRY *

*

ek ok ok okkok K

-

ROM SUPERVISOR OR
N INIT/TERM ROUTINE

-
.
-

X
Aok kB 3 ke ddkokok ok koK
*[EFSDO11
H— k= k=%~ %k—%NO MORE STEPS
.o cee

* STE .o
* TERMINATION *TO B
E *

NN IR

TO READER/
INTERPRETER OR
SYSTEM CONTROL
ROUTINE

* OUTIN .
Aok ok ok ook b kokdkokok ok ok .
- .

- .

. -

- -

. .

- -

. .

X .

*kkkC 33 Rk kKA K .
.

* EXIT * -
* .
.

.

.

-

IR RDI IR X R

*

* ENTRY *
* *
Aok ok ok ok Aok ok K

.
-
.
.
.
.
-
.

SFROM READER/
L INTERPRETER
:
:
.

X
Hedk KE 3 Aok kokokdk ko ko
*IEFZA 15A1%
Fm e Hm H e W K K N
* Jos *X oo
* TERMINATION *

.
.
.
.
.
-
.
.

* uTI *
ek ok dokokok ok dokok ok ok ok ok

sese e

Ak AORF 3 ok o o ok ok ok ke ok
* *
* EXIT *

Fokokodkeodok ok ok kokk ok ok ok

TO_READER/
INTERPRETER

68

Chart 15. Job Termination Routine

1IEFZA
Aok kA L kkkokkkkkk
*
* ENTRY *
EEEE RS L S 2 22
.FROM READER/ INTERPRETER
«CONTROL ROUTINE OR
«STEP TERMINATION ROUTINE
.
ZAA100 X
*%B1kkkkokkk

A
* DISP/UNALOC *
* WORK AREA *
ek ok ok gk ok ok ok ok

Xk
*a
*.

*

**** .
*

* D1 *.Xo

.
2AA300 X
ERERND] ***i***ﬁ**
*IEFZA
e o *
*
* PDQ DIR BLOCK :
* *

ek ok o ok ok ok ok ok ok Kk k

ses e

ZAA3150 X
FRRRKE L Rkk Rk kR
*IEFZA *
o e ok K — k=K
L READ *
PDQ ENTRY BLOCK
*
R 22222 22222222 223

kK .

* * o

* Fl %eXe

* * .
*kEkE X
ZAA320 ok
F

*eo
¥ *a ****
¥ *. NO *
e PDQ ENTRY --...X* B4 *
*e BLOCK %
*e ¥k ****
*eo ok
* YES
o
.
.
o
X
o ke
Gl *eo
.* *eo ****

NO
.PDQ DIR BLDCK-*..--X* o1 *
*

Tk, ox FETTY
*e ok
* YES
*xX" .
* Hl %*oXe
* * o
*kkE .
ZAAS20 X
FokkokkH 1Rk dokk Rk
*1EFZG
——*—*—*—*—*—*-*

*
* TERMINATE SRT *
* *

*****tt******t***
.
.
.
.
.
.
ZAA600 X IEFACTLK okao
EENFE TR 2 230 J2 *e ****¥J3***#******
* ok *eo *IEFACT T
* «*IS THERE A *. YES * —*—*—*—*—*—*—*
* FREEMAIN e e X¥USER'S ACCOUNTex* USER'S *
* *e ROUTINE o% * ACCOUNTING %
* * *o ¥ * ROUTINE *
ok kkokkokkok *e ok deteokookok ok kok ok ok okok ok ok
* NO .
. -
. -
X X
Aok kK R KK
*16 * *16 *
* Al% * Alx%
* * * %
* *

TO READER/INTERPRETER
CONTROL ROUTINE AT

IEFS0008 IEFS0008

TO READERZINTERPRETER
CONTROL ROUTINE AT

Aok

XN

¥ *o
o% IS DATA *e YES

. .
*, o
¥
* NO
.
.
-
.
.
ZAA4QO X
ko C4 ok ok dok ok ok k.
* *

* SET UP *
*LCT PARAMETERS *
* *

* *
Ly e T T

*e DEVI . .
*e ok -

* YES .

. .

.

. .

. .

X .

XAk EEEGEE R KKK -
* * -
* TURN * .
*ON DeAe SWITCH * .
* * .
* * .
ke e o bk ok ok ok ok ke koK -
. .

. .
eXeossssccese

ZAA420
*****FA**********
*1EFZG
A A ek — e ke k= —*

* PERFORM DISP %
*

* UNALLOCATION %
ok ok koK ok ok ko ok ok

.
**** .
*

* G4 *.X.

ZAA330 X
R I X GL KRR NKR N
*

* INCREMENT
* DATA SET
* POINTER
*

EEEX X

Aok dokokokokok ok Rk kokok Xk
.

X
Aok Nk
*
* F1 *

RN

*
*
eSET RECEIVED e%eeeeX¥ G4 X

*

XX

¥ koK
*

*

Charts

69

Chart 16. Shift Count Interrogator Routine (IEFSD035)

kKAl kkkkkkkkk
* *
* ENTRY *
* *
e 3 e e ke e ok e ok o ke Kok ok ok

JOB IN PARTITION TO WHICH SCHEDULER
ASSIGNED HAS COMPLETED TERMINATION.

FROM IEFACTLK IF NO USER'S

.
.

e ACCOUNTING ROUT
e OTHERWISE, FROM

HERARBLERRRERHRX AR

*ACCESS CURRENT *

* PRSCB THROUGH *

*Me Se RESIDENT *

* CONTROL DATA %
RE

* A *
sk ok ok ok Kok ok kK

%X oo 00

ek
C1 *e
o¥ 1s *q
o% SCHEDULER *e YES
*e ALREADY IN
ePARTITION
*eo 0 ¥
Xy o¥
* NO

¥k *e

o IS *e YE

*e SHIFT COUNT e*eaeces
*q ERO ok

.
-
.
-
-
.
B
-
-
-
.

*e ok
* NO

Xe o oo

FdokkKE 1 Fokokok kokkokkk
* *

* DECREMENT *
*SHIFT COUNT BY *
* 1 *

* *
e o e e e e ok ok ok ok sk kokok ok ok

R

X
ok kF 1k kokokkokkok ok
*
* EXIT *
* *
e ok e ok o ok ok koK ok

TO SCHEDULER UP
ROUTINE CHART

70

INE—-
IEFACTRT

ook ok k C 2%k ok Kk
* * Aok k ke C 3 ke koo ok ok K
* *

ZERO OUT *
e¥eeeoeoseeXk ANY REMAINING *oecooeeeeX¥® EXIT *
X

* SHIFT COUNT *
* * FAEEEEEEEEEREEERK
e e

TO READER/INTERPRETER
CONTROL ROUTINE (IEFSD008)

SHIFT
17

Is

Chart 17. Scheduler Upshift Routine (IEFSD031)

Hdok kA LRk kR Rk
*
* ENTRY *

L 2
.

Xeosoosee

ol S b
*FREEMAIN
t—*—*—*-*—*—*—*—*
*FREE CORE GOT— *
*TEN BY TERMINA-%
* TION ROUTINES *
HREERXEEREEERXERR
.

X
tx:**clx**t******
*GETMAIN
n-*-*-;-*-é-*-*-*
* GET CORE *
FOR USE_BY THIS
* ROUT INE *
FokkkkiokkkkokkkkkkEk

-

Xo o000

t****ol*********t
*IEFSDOO

—1-—*-*—1 *-*—
*READ PTN A LCT *
*SCTy + JCT FROMX
*Q-MGR VAR AREA *
Hokk ok kkkkkk kR kkkk

.

Xe oo

*****El*****t****
*IEFQMSSS
-—*-t—*-*—t-*—
* WRITE PTN A *
* LCT/SCT/JCT *
*INTO FIXED AREA¥
sk kR Rk kR kK

***w*slai;««*i*«*
*FREEMAIN

——*v*-*—*-*-#—*
* FREE GOTTEN %
* CORE (EXCEPT *
* JCT) *
Fdokdok ok Kok ROk kR ok

.

X oo 0

Rk G kkkkkkkkkk
* E: *

*POINTER TO PTN *

*WITH SCHEDULER *

* CONTROL *

* (SD33LNGH) *

B
-

Xe oo oo

FokokkkH] kokk kR kkkkk
* MAKE FORMER %
*PTN B VARIABLE *
* AREA AVAIL TO *
* Q—-MGR FOR RE- *
* ASSIGNMENT *
Fodokkkokokokdkok Rk Rkkkk
-

Xe o oo

8*8**J1****t***#*
POST

* SCHEDULER- *

CONTROLL ING ECB

FOR PARTITION A

*t***t****t******
-

Xeososse

koK] kkokkkkkkk
* WAIT ON PTN %

* B'S SCHEDULER *o.-

* CTL ECB
*****t*********

FROM SHIFT COUNT
INTERROGATOR (IEFSD035)

Rk K 2%k kxR kokk
*

X*
*

EXIT
FkkkkkkkkkkkkkEk

*
*

PARTITION B —= RELINQUISHING SCHEDULER CONTROL
(JOB HAS TERMINATED, SHIFT COUNT
WAS NON-ZERO)

PARTITION A —— NEXT-HIGHER-PRIORITY PAR-
TITION (RECEIVING SCHDLR CONTROL)

TO IEFSD030 CHART 18 WHEN
SCHEDULER AGAIN RELEASED
PARTITION B THROUGH WAITR
IN PARTITION A.

Charts

71

Chart 18. Scheduler Downshift Routine (IEFSD030)

A 2NN NN PARTITION A —-— ISSUED WAITR

* * PARTITION B —= NEXT LOWER-
* ENTRY * PRIORITY PARTITION 4
* * -
e ootk ook ok ok Kk ok ok
.
.
.
e FROM IEFSDO03S
e CHART 16
B
o
X
Ackdedeok B 2% ¥ kodokokokkokk **#**BQ*******#**
* * *EFQMSSS
* * —#—*—*—* ***—*—t
* INITIALIZE * ceaXX RE IN *
* * *PARTITION A SCT*
* * AND JCT
Ak e ek o ok koK R ok Kok ***********#*****

Xe oo

Aok ok ok C 2% %ok ok ok ok ok
* ER *

* OUT PTN B'S %
* PRSCB EXCEPT *
*POST FLAG + ID %

* *
e e ok o ok ok ok ko ok ok ok ok
.

#**##DZ*#‘*#*****
*GETMAIN

‘—*—*—*—*—*-*—*—t
* GET 488 BYTES *
* FOR THIS RTN_ %
(INCLe SCT/JCT)
A e ok ok ook ok ok ok ok

Xe o e

I DI NN NN R
*lEFSDOO? *
o e e e e e S e e K

* READ IN LCT %
* USED_ FOR *
* PARTITION A *
ok Aok ok ok ok ok o ok Kk

-

-

.

-

.

X
‘*#**FZ******#*‘*
*GETMAIN

Ao o e = *-l-*—*-*

* GET CORE FOR *

*LCT TO BE USED *

* FOR PTN B *

LR R R 2 ey e e
.

Xe o oo

Aokok ok G 2 %0k ook ok ok ok
*BUILD NEW LCT,s *
* SAVE LENGTH, %
* SRT, + TCB *
* PTR-s ZERO *
* REMA INDER *
Aok ook ok ok ok ok odok K ok Kok

Xeso e

Akl H2 %k kokk ko
*IEFSDO0O7 *
Ao Ao e e A e e
*WRITE PTN BLCT *
* INTO Q-MGRS *
* FIXED AREA *
ek e ok ok oK oKk ok ok Rk K

Xe s s

*#***JZ*#*#*#*#**
*I1EFSDO

——***—*—*—t—#—
*VRITE PTN A LCT#

A
* VARIABLE AREA *
Aotk ok ok ok ok ok Rokok ok

Xeoose

AN DI
*IEFSD006 *
A i B e o B e S A
* GET

TTR FOR JCT AND
* SCT *
Aesfe Aok ok ok ok ok kok

72

6.8 8 0.0 0000000060068 0000080800050 0 0606063008000 0068000606000060000000 8000008066006 0600600000000000000s0000000000000s0s0s00s00s0s0000s000

¥eeeeveccscccccccccsccsccccsccscsne

WK CL N TN
: TURN ON FLuszt
* PAR?ITION A'S**
*******ig*****

Xe oo

Aedokok ok DA Aok ek e ok ok ok
*

* PREPARE

* TO WRITE JCT
* AND SCT
*

kR K

I H R
.

Xeos e

Aok ok K E G ok e ok ok Ok Kk
* *
* SAVE POINTERS *
TO Q-MGR EXT INx
* PTN A'S PRSCB *

* *
Aok ok o e ok ok ok ok ok kR ok

*****F4tt*******t
*IEFQMSSS

A e e R *—*‘*—*—*
WRITE PTN B JCT#
* AND SCT INTO *
* FIXED AREA *
e g e e o e ek o e ok oKk ok

Xeeo o

i****GA***l******
*FREEMAIN

e e e *—*—*—*
* FREE 304 OF %
488 BYTES (SAVE
*

CT F / *
e g e o ook ook ok okok kokokok

.
.
.

X
IR H A KNI IHN N

* ISSUE *
* 'PARTITION B *
* STARTED' *
* MESSAGE *
* *
e o o e e o ok o o ok ok Kok o ok

.

-

.

.

.

X
WS4 RHRRN
* *
* XCTL *
*
ek ok ok koK ok ok ok ok ok

TO READER/INTERPRETER
(IEFSD008)

™~

Chart 19. Enqueue Service Routine

1GC0S6
RN AL NN N
* ENTRY :
o ol oo ook b oK ok ok ok ok

FROM SVC FLIH

EXe oo 00

o *e
ok *e N
*eVALID REQUEST e *e
*a

[s]

oo e X¥ ABEND

*eo ¥ ok o e o ek ok ok Rk Ok koK ok

Xe s e ee

Aokl C1okokok koo okkk

*FINDMAJ *

A o e o e e e

e X ¥ FIND QcCB *

. *MATCHING MAJOR *
M

* N, *
- ootk dokokok ok ok Rk ok koK Xk
*

* » .
*19 * .
* Blx% .
Fokkok ok .
X
oo
D1 *o D2 *eo
- - ok *e
ok MAJOR *e NO ek EXAMINE %o
a QCB FOUND e¥eeeeeeeeX¥eRET PARAMETERe*a o
- o *4 o*
*eo -k
*a ok
*
.
.
.
.
.
-
.
.
.
.
.
.
.
X
A AR HOKF ok kR ok ok Kk
*FINDMIN *
Hem e e R R S e e
* FIND QCB *
*MATCHING MINOR *
* NAME X *
L T R T Y
.
X
e¥e ok o
Gl *eo G2 *eo
- *e % .
¥ MINOR *o NO o% EXAMINE *o
*eo QCB FOUND o+*eeeceeeeaX¥eRET PARAMETERs *e o
*e ok *ao ok
*e .k *o ¥
%o ok *eo ok
* YES *
.
.
.
X

ER 22T SEZ ST LSS
*FINDQEL *
e o i e e K
* FIND *
* QEL MATCHING %
* MASK *
sk ok kR Kok KKK K

ok ok B 2% ok ok ok ok kK
* *

KN C TR NN N

* %

TAVAILABLE®
* RETURN CODE *

* *
e e e ook o ok Rk koK K K ok kK

*
.
.
.

ok ok D 3 4k ko ko ok ok ok
* *

USE»s * SET
eeeee XX *AVAILABLE*
HAVE * RETURN CODE

* %%

*
LR T e e T

NONE

DO I P A R A T N S R R S RS AT ST ST S

*MINOR QCBs AND
*
Fdckokok Rk Rk kR Rk Rk

Aok ok F Jadokkok ok okok kK

* *
TEST * SET *
eeoee X¥ *AVAILABLE"' *eoe

* RETURN CODE *

* *

e e o e o o ok o o ok o ok ok ok ok

ER RIS L L 2
* *

USE,s * SET

eeeee XXk TAVAILABLE"*

HAVE * RETURN CODE
*

k¥

Atk ok ok ok ok R ok ok Rk

Xees o

R R
* GET *
NONE * STORAGE AND %
e X% CREATE MINOR *eee
* GCB AND QEL *

D I A A A A N I I I A Y

* *
0ok ke e e ok o o ok ook ok ok ok ok ok

-
-
.
.
-
.
-
-
-
-
-
-
-
-
.
.
.
.
.
-
-
.
-
-
.
.
.
-
.
.
.
.
.
.
.
.
.
.
-
.
-
-
o
.

Charts

73

Chart 20. Enqueue Service Routine (continued)

* 3% %
. * N #
xXe e % MO#
. * ¥
* 4

Bl .
* *

. .
e% DUPLICATE %o YES .
*e REQUEST BY e¥ecocscseXke

oo
B2 *e kR EEBI Rk Rk FE kKKK
* *

ok *e
* INQUIRY %o YES #*

TESTSMC ke
B4

o *o
«% MUST = %o NO

SET *
(RET EQ HAVEse*eeooooeeX*08 RETURN CODE *eeeeeeceeX¥e COMPLETE e¥eose
*

#eTHIS TASKe %o USEs OR ¥ * *eREQUESTED & % -
*e ok «TEST) ek * * *e ok .
%o ok Ko ok e e] %o oF .
* NO * NO * YES .
. - . .
. . - .
. - - .
. . . .
. . X .
. X ek .
- HRC2HERENER ca *eo -
- * - *e - -
. * * NO +*SUPERVISOR ¥ .
. * ABEND *Xe secece eeeake ROUT INE ok -
- * * *REQUESTING«* -
. * * - . ¥ -
- Aok ek kK ok *eo o¥ -
. * YES .
. . .
. . . -
. . .
. . .
X . .
e¥e ke .
D1 *eo D2 *e EE S L VEE SR EE LS 2] ER L E DT LR LS Ed -
* - o® *o * * * T * o
o ¥ AL *e NO ¥ RET *e YES * SET * *MUST — COMPLETE* X
*¥eQEL'S SHARED e*ececececsseX¥e PARAM "USE' e*oecececeeX¥'IN USE' RETURNX * FLAG (STEP OR *eccecces
- - X *o . * CODE * *SYSTEM) IN QEL * X
*eo % . *e ok * Fokdokk
*e oF . o o¥ *% *% *21 %
* YES . * NO * Bl¥
- . . * *
- - - *
. . .
. - .
X . .
oke . X
E1l *eo . Aekokokk E 2%k ok dkok k dkokokk
o ¥ *eo . *UPSVRB *
«*¥*SHARED® OR%*e EXCL o H— W W W N — N W N
%o 'EXCLUSIVE' o%ecececee * INCREMENT *

. REQUEST o% #SVRB WAIT COUNT
*e o *] *
*e ok e ok e ke o e ok ok Rk ok

* SHRD .

. .

. .

. .
eXeoeesocssccacsccscnscensce

FokkdokF 2%k kkdkokkokokk
*

SET *
"AVAILABLE®' %,
* RETURN CODE %

* *
e o e e ok o ok ko kok ok ok

XXe o osesessosss s

*
[3]
-

-
-
-
-
-
-
.
-
-
-
*e - Hedkokokok G 2 %k dkok dokkokok
*e - * *
o¥ EXAMINE %o e USE, * SET
*oRET PARAMETERe*ecooeeeeX¥k "AVAILABLE"*
*o o¥ « HAVE # RETURN CODE
*e ¥k -
*e ok -
* -
-
-
-
-
-
-
-
-
-

* K

*
e e e o ok ok ok ook ko ok Kok

Xe s o0

a2 R P
* *
NONE * GET *

eseeeX® STORAGE AND *eeesescecessaccceX
CREATE QEL

* *
ek o o o 3k ok e ke e ek kR ok

% (DM XD S 08 0006060000600 000 0008000006000 000000000000000000000000000

74

Chart 21. Enqueue Service Routine

Aok ok
*21 *
* Blx
* *
*
TESTEND1 .
TESTEND2 X
ke
B1 *e
- *eo
¥ MOR *e YES
%*e ELEMENTS TO e*eeee
%o PROCESS o¥% .
*e ¥ X
* NO *REHR
- *19 *
. * Clx
. * %
- *
X
e ¥ke
C1 *eo
X *e
ok ET *e YES
#*ePARAM EQ TESTe*ceeeeeccceccccccscccsccsccscccncanse
*e - ¥
*e ¥
*o o
* NO
.
.
.
X

ER LS RS S L]
* ACCE *

TOP PARAMETER *
ON LIST, USE *
FOR REMAINING *

*H %

* TESTS *
e e o e e oK ok K R KK

.
-
.
X
okae EXITWAIT
El *o K E 2K KT HK
¥ *eo * *
¥ SVRB *e NO * SAVE *
*e WAIT COUNT e¥eoseeeeeXk REGISTERS IN *eeeoe
*ao ZERO -k * TCB *
. . * *
*eo ok et e o e A o e ok o o ok ok Kok
* YES
.
.
-
X

OPRSMC o¥o
F1 *e

«%* QEL *o

¥ *e NO
*eMUST—COMPLETEe*eeeocececcccacccccccccscncnacene

*eFLAGS ON o%
*o ok

*o o ¥
YES

¥Xe o0 s x

G1 *o

-¥
. SYSTEM *o YES
*eMUST COMPLETEe*eoeese
* ¥

.
*o ¥
*e o¥
NO

Xe soessssnne

Xe o000 x

SETCOMP
ek ko H 2%k ok ok ok okok ok
* *

Ak AR H L Aok ok ke ok
* *

* SET ON *STEP * *SET ON 'SYSTEM *
*MUST COMPLETE' * *MUST COMPLETE' *
* FLAG IN TCB * * FLAG IN TCB %
* * * *
e s ke ok o bt e e ke ok ook ok ok e e e o o o e e e ook ok ok ok
.
- -
- .
. -
. B
. X
. et e ok o J 2 % ok e o dokok ok
. *SETRSMC 22B1%
- Ao e e K e e S e o R
. * SET TCB *
. *DISPATCHABILITY*
. * AS REQUIRED *
. Ao e ke ok ok ok ook ok ok koK
- -
. -
B B
@evecccccscccacssnccccc e Xe

MCRET X
K2 KK
*

* DEFER
* ASYNCHRONOUS
* EXITS

LR 2

*
e 2 o ok ok o e ok ok ok ok ok ok kK

.

cees e e sttt et sttt ess s

(continued)

et o RE 3 ke ok ok ok ok ok K
* *

*SET RESUME PSW *

eeeX* TO SMC ADDR. *
*

D R R R R R I I R R R N R N I T TN A AP S S S S P

NEW TO GPR1S5 *

* *
e ook ok b gk ko ok ok

PO

ok kF 3 ok okok ok Kk ok
* EXIT *

e 2 e e e e o b e e e ok kK

TO DISPATCHER

EXIT

Xk CHECK
*AND SET RETURN *
C S

ook e A K 3 ke o e o ok ek ok
*MCRET2 21A4%
R ot ot
*

* o] *
stk ok Aok kR kK

MCRET2

.
X

A ok A G ok ok e ok ok ok

*

% SCAN RETURN

% k3%

*
*PARAMETER LIST
*

e 0 e oo ok ook o ok ok ook

.
.
.
X
ke
B4 *ao
o ¥ *e
- ¥ ALL *e YES
#eRETURN CODES e¥eeceecccccccccccce
*o. ZERO ¥ -
*e o ¥ .
*o ok -
* N -
. .
X X

KK C LK KR
* SET *

*

* GPR15 TO * *
* ADDRESS OF * *
*PARAMETCR LIST * *
* *
e e e e e bk oot o ok koK kK

.

- .

eXeooeececescccccccccccccon
X

EI RS TR ST T

* *

* RETURN *

A o ok ok ok okok e kok ¥

W COW KR KKK
*

SET *
GPR15 TO ZERO *
*

* *
e o ok o ok o ok o ok K
.

Charts

75

Chart 22. Must Complete Routine

L2 L 2
*22 %
* Bl
* %
*

.
IEAGSMC X

Rk EBLlEk xR Rdkk kKK
* *

* SET uP *
* BASE REGISTER *
* *

* *
HEEEAREENERRENRRNR

c1 *e
ok *o sk C2k ok dokok KKK
+* STEP MUST *. YES * * .
*e COMP. e¥eoeeeeeeXk RETURN *
*oREQUESTED * * *
- . kR kKK kR
*o o%
* NO
.
.
. «
.
.
SETRSMC X
kkkRD 1 Rk Rk KKK
* *
* GET_FIRST *
* PARTITION TCB *
* ADDRESS *
* *
Fokokkok koK Rk R Aok K
o¥e
El *e dokkokkE 2%k kR ok Kk
ok . * SET *
% SET MUST %< NO * TCcB *
e COMP. e¥eesseeeeX* DISPATCHABLE *
.REQUESTED * *
. ok * *
*e oX kR kR kR ok KRRk
* YES .
. -
. .
. -
- .
. .
X X
RN] W NN NN R R 2 S 2222
* * * *
* SET TCB * * GET *
* - *ee X*NEXT PARTITION * AN
* DISPATCHABLE * * TCcB *
* * * * /
sokokokok ok Rk KR KKK KK ddokdokk kR KRk Rk Kk \t_)f

HkRREGI Nk kkk ok kk
*

.
*e YES * GET
e¥eeeeceees X¥REQUESTING TCB
* ADDRESS

KK

ok

*
3 o ok ke ook ok ok ok ok koK
.

MEEEE

* * HeodokokokH 3 3k koo ok ok ok Xk
:SET REQUESTING
: DISPA}CHABLE
:*********#******

X T

Xeess e

Ak J 3 dokokok ok ok ok ok ok
* *
* RETURN *
* *

LR R T T

76

Chart 23. Dequeue Service Routine

RN NN NN

* *
* ENTRY *
. Aok koo ok K KOk Rk ok ok

#Xe o000
.

CHKLIST .
B1

*ao
-* to

NO
-VALID REOUEST *........xt

*. ¥
B
* YES
e .
*23 * .
* Cl *eXeo
* .
- bt o
PARMLOOP X
Aok KK C L KAk koK
*FINDMAJ

*

Hem ke K K K

* *

* LOCATE MAJOR *

* *

» kAR KRR R KKK KK

kXeo o000

D1 *o
*

o .
ok MAJOR *e NO
- QCB FOUND

eo .
*o o¥
* YES
-
.
.
X

HHNRE LR RR RN
*FINDMIN *
e e e o o e s — ok
* *
* LOCATE MINOR *
* acse *

b e e ok Ok o ok ok e ok oK ok

%EXe o 000

F1 *e
* *o

.
.k INOR *e NO

*o QCB FOUND o%e
*eo ok

Xe oo oo

Ackok G 1 Aok ok ok ook koK ok
* *

* GET TOP QEL %
*IN MINOR QCB'S *
*

QUEUVE *
* *
ko kol ok ok ok Kok ok R

.

.

.

X

o ¥e

*-

DEQ'ING *. NO

*e QEL ¥

FROM SVC FLIH

e¥oosase

****BZ*****#***
ABEND *
*

.
-
.
-
-
.
o *HER
- * *
* F2 %
* *
. ok kk
- .
. .
. X
«+DQERR1 ok
. F2 . Aok kF 3 ko kokokokok ok
- ¥ *o * *
X *e YES

.k
eX¥e RET = HAVE
.
* o ok
*e ok

* *
eeee X¥SET RETURN CODE*
* 08 *

* *
A e e e e e o ok ok e ok ok ok ok

Xe oo oo ¥
.

*t**GZ********* *
*ABEND WITH CODE#
* 13

**************t

cacee

QELLIST oke DQERR2
H, .
ok IS *o .k *e
o ¥ ¥ *e EXCL «% END OF *e NO
-TASK ENQ THIS. *--.o-‘aoX*-EXCLUSIVE OR e¥*eeeeooeeXky QEL QUEUE 9¥eeccceceX¥ka
X *e¢ SHARED .k X *e¢ REACHED o%
. - ok - *o ¥
. *eo ok . *e o%
. * SHRD EEE L] * YES
. . * . .
. . .
- - X
. . ddokk
- X * *
- * * F2 *
. * * dodok ok JSaok kR kR Rk
. LT * *
. * *
. X*¥SET RETURN CODE*
. *o REACHED o% * * * 04 *
. *e . Fodok ok * *
. o ok LSRR S ST T
. * NO .
. . . .
. . . .
. . . X
. - - EEE LS
- X . *24 *
«QELNEXT ok ke . * Fa4x
. K3 X * %
. A o¥ IS *e ****KA********* *
« NO .*(NEXT) OEL *e YES ¥ QEL *o EXCL
eseek*se ENQ'D BY .*.......oX*.EXCLUSlVE OR ekeooe *ABEND WITH CDDE*
*e DEQ'ING o¥% *o ARE . 3
oTASK o *. .* o *t********#****
*a ok
* * SHRD R 22
. * *
. * H3 %
* *
Aok Aok ok
*24 *
* Al%
* %
*

Charts

77

Chart

TOPQEL oke
Al

REM

D A N A A W A A A A S A S A A A

78

R L 22
*24 *
* Al%
* %

¥ *eo
ok *e YES *
*e¢ RET = HAVE o¥ececeseeX¥
. ok
*o o¥
e oM
NO

X
Fokkok kB 1 kKK ok KRRk
+*DECTCB *
O o e e o
* DECREMENT *
:TCB COUNT FIELD:

Fekkokkokkkokokkkkkkkk

Xes oo

*dkkkClkkkkkkkkkk
* *

COMPLEMENT
CURRENT QEL
ADDRIF SHARED

*
e o e o e o ok ol ok ok ok ok ok ko

* k¥
* % k%

Xe oo

OVE
ok Aok kDL koK Kk kkkkk
*DQELEMENT *
e A Ko e K e e e K
*REMOVE ELEMENT *
* FROM MINOR *

* QCB'S QUEUE *
e e e e e o o o ol ok ok ok ko ok ok
.

-

.

.

.

X
oko
El *o

ok *eo
¥ MORE *e NO MORE
*e QEL*S ON e¥eeeeeceeXk REMOVE MINOR *eeesceceeX*e MINOR QCB'S e*eeeeseeeeXk FREEMAIN FROM *
* CB8 FROM * X

*e QUEUE %
* *

- -
*eo ok
* YES
.
.
.
-
X
ke
F1 *eo

ok IS NEXT E
eQEL EXCLUSIVE..
eOR SHAREDe

* *

. *e
¥ *e Y
*e RI
*, SHA
. ok

*eo o¥k
NO

¥k

escceeeX

Xe oo e e x

sokkkkH 1ok k ok ok kR k
*DECSVRB 25A1%
o e e i e K K
* DECREMENT #*
* SVRB/TASK *

* SWITC *
ko ok o ko ok ok ok ok ok ok ok ok ok

.
*eo

o

*eo
*o

- .
*e ¥
*o ok
*

ES

WAS
EMOVED QEL e*eecceccccesccccccscsccccsocccscccecscsccccccccccsncsccncanaX
RE

e¥eesesc000000000000cccrcraccccsescsscosncsesccaccscsccccssX

-
NEXT
%e QEL SHARED e%eeccccccccccccccsscccsccsccccccccsssccccscsscscsocccccsccnne
*

24. Dequeue Service Routine (continued)

Aol e A 20 o ok Kk

* *

SET RETURN
CODE 00

* (AVAILABLE)

*
E T e e 22)
-

LE XX 3

- .
eXeoeeececccscccccccscccnnse

PROCMIN o ¥e
WK DK H AN E3 *eo
*DQMINOR * . *e
A S e e e e e e e e o® *eo YES

*eON QUEUE o%

*o

* MAJOR'S QUEUE *

stk Rk ok kR KRR *e ok
* NO
-
.
.
.
PLUSQEL X
Aok F 2k kR Rk kR ok ORF 3ok kb ok ok
*DECSVRB 25A1% *DQELEMNT
s e Ao — e e e A e A e — ek k— K

DECREMENT
SVRB/TASK
* SWITCH

eeseX

* % %

* REMOVE *
*MAJOR QCB FROM *
* QUEUE *

.
.
sececccscccccssceccccccccsccoscascssccsaceX

-
.
-
.
-
-
-
.
-
-
o
.
-
-
-
-
.

.
B
-
-
-
.
.
-
-
.
.
.
-
-
.
-
o

.
-
-
-
-
-
-
-

.
-
.
-
.

*okdkkdk

NXTINPUT

X
FkxkKES FkkokkkkkEk
*FREEUP *
L e rd

o K e e e e e X
* RESET *
* MUST—-COMPLETE *
* *
ok dokk ok kokkkkkk

Xeso e

HHEERHL K E XX RERR AR
*MCRET2 21A4%
A e — K — ke Kk
* CHECK *
* FOR _RETURN *
* *
004 e ek ok ok ok ok K okok ok

J4&
¥
« *DOES EW' %
*e TCB POINTER
eEQe 'OLD'e
.

*e o¥

X
Aot kI 4 ok gk ook ko
* *

* %k

* *
Fdkkkokokdokkkkkokokkkk

Aok koK koK ok dokokokokk ok
-
Aok -
*24 * .
* F4 *aXeo
.
* X X
NXTINPT1 oke
F4 -
¥ -
ok MORE *e YES
o INPUT ENTRIESe%,
. ¥ .
* o . ¥ -
*eo o¥ X
* NO Aok
. *23 *
. * D1x%
- * *
. *
.
X
koo ok G4k ok ok ok kokok
*RMCOMP 22B1%

LOAD * *
EXIT PSW INTO ¥eceooecseeX¥k
RB *

HEEEYSHRRE RN K

ek ook Rk ok kok &

Fok kR KS¥kkdkokokdkk ¥

ootk e ok ek o ok kok

™
Ny

Chart 25. Decrement SVRB/TASK Switch Routine

DECSVRB
HoRRERAL KRR Rk Rk kR
* *

* GET *
POINTER TO SVRB
* *

* *
Fhkdokdokkok R kkokkok k¥

-

HXe o

o¥e

B1 *o

ok *e
¥ IS SVRB_ *e. YES

*e WAIT COUNT eXeooe
o

*e ZER
q o
*e o¥
N

¥

Xo o000 %

Rk RCL ARk Rk Rk kRE
* *
* *
*DECREMENT WAIT *
* COUNT *

* *
T

*Xe o000

ok
D1 *e
¥ *

*o YESX

R N N N N N AT S ST A T T AT ST AT Y

o ¥ SVRB
*eSTILL WAITINGe*eeoe
*a

.
*a ok
*e o¥

.
.
.
-
X

o ¥eo

El *eo
«%¥TASK'S *e

% PRIORITY *o NO
%*e HIGHER THAN o¥e0e

*e *NEW' TCBex*
*o ¥
*e o¥%

* YES

Xe oo

* ok kkF 1 Rk okkkk
* SET *NEW*' %
* TCB POINTER *
*TO ADDR OF TCB *
* ENQUELLED ON *
* RESOURCE *
Aok Kok kK kR Kk Kk

.

.
oXe

.
.
X
KRG LR KRR R
*
* EXIT *
*
HREEEERERXRRERE

TO CALLING ROUTINE

R N R A N S S AT A S ST S S S S ST A S AP SY

RMCOMP o ¥e
A3 *o
¥ *o

¥ *ae

*eRMC REQUESTED %

- o¥
*e ¥

*o o¥

* YES

*
-
.
.
X

LR JecE S e L2 2]
* TURN

*
* OFF *
* SYSTEM—MUST— *
* COMPLETE FLAG*
* IN TCB *
ok ok ok ook ok kR ok ok ok

.

Xe oo e

Aok kD3 ok kK ko ok ok ok
*SETRSMC 22D1%
A e o o e A e e
* SET TCB'S *
* DISPATCHABLE *

*
dkdok ok kk ok Rk kR Rk Rk

.

Xeos s

AARAREIRARI NN
* *
RESET *
SIRB EXIT *eo
SWITCH *

A

*
Fok ok kR ok Rk Rk kkk

Xesssenvesces

Fdokdok Co okt

* *

* TURN OFF *

* STEP-MUST *

* COMPLETE FLAG*
C *

* IN TCB
ko kK ROk ok ok ok

.
.
.
.
.
.
X

ALLOWAX
HRHKKELHHHREHRRHR
*

* ALLOW
eeX* ASYNCHRONOUS
* EXITS

EEE X2

*
0k o ok ok ok ok ok koK Kk ok
.

Xeoos 0

e s
* *
* EXIT *

ook kR Aok ok koK

TO CALLING ROUTINE

Charts

79

Chart 26. ENQ/DEQ Validity Check Routine

FkRRA L dkkodkokkokkokk

* *
* ENTRY *
* *
L
.
.
.
.
.
X
CHKLIST oke
B1 *e
o* *o LRS- PE R e S
ok *eo YES * *
%e¢ SYSTEM TASK e*eeeeeceeXk EXIT *
. * *

*
Fokokokok ok ok kR k Rk kK
TO CALLING ROUTINE

.* *- ****CZ****#****
YES
#.MUST/COMPLETE.*........X*AEEND WITH CODE*
*e REGUESTED- X
¥ *t******‘****t*
*. ¥
*
.
.
.
X
e ¥eo
D1 *o
e% PARAM %o * Aok D2k kk kK

*
o..X’ABEND WITH CUDE*

*#***ttt*****t*
.
.
-
X
CHKFRNT o¥g INVALID
*.
kR RE2kk Rk Rk kk

MAJOR AND *e NO
...x*. MINOR NAMES e*eeeeeeeeX¥ABEND WITH CODEX*
*a IN PRTN o% X = = 43 *

. - . - e e ok e e ok ok ook ko
. *e o¥ .
- * XKk
- - * *
- * E2 *
. - * *
. . *kkk
. X
- e¥e
- F1 *o
- edokokF 2%k koo ok ok ok ok
- ok NOR *. NO
- *e NAME LENGTH o*o--oo--.X*ABEND WITH CODE*
- *e LID ¥ *
- *q ¥ PRPPrrPr T
- *e ok
- *
- B
- -
. X
. eke
. G1 *e
. o
. ok ALL
- REQUESTS
. *eo CHECKED .
. *ao ok -
- *e ok .
- * NO .
- . .
- - .
- . X
. X oko
- dedkodok ok H 1 kokok ok okokok ok ok H2 *e
- * * ¥ PARAM *e
- * GET * ¥
eeee¥NEXT PARAMETER * *.EXTENDS PAST
* * %o CALLING o*
* * *«PRTN o%
Fkokkkdkokk Rk Rok kR R Rk o ok
* NO
.
B
.
.
.
X
Aokokk J 2%k ¥k ok okkk
*
* EXIT *
*
koo ok dok ok ok ok ok ok

TO CALLING ROUTINE

80

NOTE: VALUE OF X
IN ABEND CODE IS
0 IF ERROR

ON ENQ
8 IF ERROR
ON DEQ

AT

S

Form ¥Y27-7128-0

Page Revised by TNL Y27-7157

e Chart 27. 18K Configuration Load Module Control Flow

NOTE 2
*tt**cl**‘*#*****

dedokok A 2%k dokok Kk kK
* *
*ENTRY FROM NIP *
A ok ok kK koK ok ook
«XCTL

MEEEE

t#***BZ#t**t*****
*IEFINITL
-*‘t XK *

InNT *Xeooeooe XK
*

RDR/
*[NIT!ALXZATION *
*

U *Xeosee
****t***t'*'***t* -
e XCTL -

- seee

. XCTL

X
*****CZ'****#****

*LOAD AND *IEFCNTRL
— Km K hm km K=K =K X e e oo oo o Xhk—k— * * *— * L ot 2 *
*DELETE

tMESSAGE MODUL ES¥*
* *

HAK AR KKK KKK ERREER N o @

Hokok ok kD 1 %ok 3 %ok ok Kok
*IEFJOB *
Fo et K e e e X
*

* JOB ROUTINE *
* *

Aok ok Ok ok Rk okoloR Rk kK

Aok £ 1 kot dokokokkok
*IEFEXEC

Hm e S o e K K K K
* *
*¥EXECUTE ROUTINEX
*x *

Aok ko dokok ok okok Kok ok

*##*tFl***ttttt**
*1EFDD
-x—-*—*-x x—*—
DD SCAN ROUTINE
*

t**t*******tt*t**

FRREEG] kkkdokokokokok Xk
*IEFCOMMD *
-t—-*—x—*-*—* t
CUMMAND ROUTlNE

****#***x****#t**

*Xooe

XeeoeoX

*XeoooX

XCTL
eeX

oo Xe

R

P A R Y R R R

-
X

Xeeooo

NOTE1

NOTE2

* /IN
*CCINTRDL RDUTI FE#
* *

Aot ok ok ook ook ok ok ok ok

Aok ok ok F 2%k ok ok R ok ko k

*1EEMCRO1 *

Kk k- —k—%k LINK
escccce

* *X
* COMMUNICATION * LINK
* T

Aok ok B3k ok ok ok o ok ok
*

*IEFPRES

e e e — e K —
VOLUME *
MOUNT ING *

* ROUT INE *
Aok ok ook Aok kR koo R ok

XCTL

INTERFACE
ROUT INE *
Aotk ok o ok ok ok ook ok ok
.

*
*
*
* INT/IN]T
*
*
*

.
«XCTL

e

seecsccen

*X.o..-.-X

ceecccce

*ER KRB KRRk Kk Rk K
*IEF IDUMP *
et et St S S Bt B
* *
INDICATIVE DUMPX
* ROUTIN *
Aok kR AR KRR R K

secsscsccen

*****C4*****ﬁt***

*IEFJTERM

otk S Tt Bt B *
JoB

* TERMIN?TION :

*t*******tt*tt*t*

XCTL

X . .
ARk kD4 F kKR kR kK
*IEFSELCT *
Ko o o Kk
* SYSTEM *
CONTROL ROUTINE
* *

e ok oK kKK ROk Kok kK K

AR XAFI xRk Xk kXR%XXL0OAD AND *ltt*FA##*****t**

*IEESTART

* DELETE

*1EEJFCB

t—*—t-* t * ek *X...-..-x*—* =k e Kk kK t

ST
*COMMAND RUUTINE*LINK
*o

oo XX

* JFCB'S FOR
* START COMMAND %
* TIN *

U
Fokok ok ok ookdokkokokok Rk

xtGA*t*t***

« e X*¥IEESJFCB

o K k— kK t
*INTERFACE WITH *
* TABLE STORE *
SUBROUTINE *
Aok ok ook kR ok kK

*****H4*****t***#
*IEFJOBQE
t — -k *—# *—*—* *

#“***t******

*****JA******#***
*IEFATACH
Lt St Bt *—* -k *

cecsae .o
t#***t****t#z*tt*x... . x***t*#*x:x**xt** .
X - - - «XCTL .
. - . . «IF .
- - - . « ERROR -
. - .« e - .
. . PR . .
. . - . X -
. . o e REIRRGIRERckddokk ¥k .
- . . oo XXIEEFAULT -
. . D e e e e e
. . .o * *
. - SVC % FAULT ROUTINE *
- - EXIT * -
. . FokokoRk ok oAk ROk ok .
. . «XCTL .
. . «ERROR .
. - . .
. . : .
. . .
. . *t***Hs*ttx*xtt** LINK.
- - *IEESET oo
. . # *- *—x * Hm ke tLlNK
. secsssccscssne . Qui
. LINK *CDMMAND ROUTINE* (AT IPL)*INITIALIZATIDN *
. * UT INE
. ****i*x***#**t***
. «XCTL
. .
. .
. .
. .
- X
. otk ook J 3 80k ok okok ok R ok
- SVC *IEETIME
. EXIT #—k—k—k—k—k—k—k—¥
eecceccsscsessssssscsssna¥ *

THE ASSEMBLY MODULE
IS INCLUDED IN LOAD
IEFINITL, IEFINTFC, AND
EFCOMMD »

THE MESSAGE MODULES CAN

*SUPERVISOR TIMEX
* ROUT INE
dokk koK kKRR kKoK ok Rk

IEEMCRO1
MODULES

BE
LOADED AND DELETED BY ANY ONE OF
THE FOLLOWING MODULES IEFCNTRLs

IEFJOB, IEFEXEC,
IEFCOMMD «

IEFDD,

AND

* STE *Xeooooosok
* lNlTIATlDN *
ROUT INE

t*t**#*******t#tt

«XCTL

-

.

.

X
*****KQ*'*****!**

PROCESSING
PROGRAM *

* % % # %

*
ko ok gokkok kR Rk kR

XeoooooaXk

tRETURN
* o

12/12/767

ok RAS KRR K ko kK
* ENTRY *
FRUM SUPERVISORX
ko ok KOk ok ok Rk ok
«XCTL

XCTL ****tBs**t*xttt*t
eeee X¥IEF STER
XCTL * R e e it it «

ecccsceek TEP

. XCTL * TERMINATION %
ok UTINE *

PR PR A

X

. .
. . .
. .
XCTL

tt*oxcs*t*tt#*x*x
EFERROR

* Hok— k= ke k— *

* JFCB *

* HUUSEKEEPING %
*ZRRUR ROUTINES *
ARk ok ok Aok o FoRR KRRk

R

«XCTL

xt*t*DS**ttx*tx**
*IEFALOCL
XCTL
ALLOCATION
CUNTROL ROUTINE

XCTL *
o o o XK g ok gk ko R ko koK
«XCTL
X
tttEs*txt**:*
*IEFALOC2
ok — Kk *
* DEMAND *
% ALLOCATION *
* ROUTINE
*%k ttttt*ttt*tt;*t
.xCTL

*****Fstttwtt*tt*

*1EF X5000
ok kKK — *
* DeECISION *
* ALLOCATION *
* ROUTINE
ok ok Ok Kok Ok Rk kK
e XCTL
.
-
X

*tt**GS*#xt*ttt**
e e X*¥IEFALOC3

.
.

*Xeoeo

R

REEE

ek k- *XCTL
¥oeXe

—t —k—k—k— * k= *xCTL

10
* CUNSTRUCTIGN *
ROUTI NE *
*ttt**tttt**:**t*
L

PO

#tt**ﬂs*t***ti***
*IEFALOCS

Kk —k—k—k— K=Kk t
*

EXTERNAL ACTION
* RGUTIN *
ok kR R kR Rk RER

«XCTL

.

X
x*tx*ds*t****#**t
*[EFALOCS

*o

XCTL*—%—%— * k- kK *XCTL

ACE
REQUEST ROUTINE
* *

ek ok ok ok ok ok ook ook

A EKSREEREREXEK

-Xt TO SUPERVISOR *

ABEND

#*t***t**#*****

¥ooee

Charts

81

Form Y27-7128-0

Page Revised by TNL ¥Y27-7157

® Chart 28. 44K Configuration Load Module Control Flow
Fkkk A2 ¥k kkkkkkk
* ENTRY FROM *
* NIP *
* *
Fedok ok ok kokkkokokkkk
:
:
:
:
:
:
X XCTL
*t***&z**l***t*** t****BB*******t** t****B4*********t
*IEFINITL *IEFPRES * IEF IDUMP
Lt S et S *—*-*—*XCTL EEE S B S S S Tt S * E L B Bt B Bt St Bt T t
* RDR/ZINT *¥XeoeooeoeX¥k VOLUME *
*INITIALIZATION * * MOUNT ING * *INDICATIVE DUMP*
AND EOF ROUTINE * ROUT INE * * RO NE *
3 o e ke ke s ok o ke ol ok ook ok Fkokkkk Rk R kTR R Rk e ook e ok ook okok ok ok ook
«XCTL
:
N
X
*t***cl*t****ttt* *t***cz*tx**#**t*

*LOAD AND *IEFCNTRL
~#--*-*—* —%—%—%DELETE Kk — k= *-*

*Xoooeo - X% RDR/INT *¥Xeeoe
MESSAGE MODULES(NOTE *
* *

) % AND JOB
* TERMINATE *

Fedokok ok R Rk ok ok kR Rk Aok ok okok ok RokoRok Rk kR ok
X «XCTL
. -
B .
B -
- .
. .
X
- FkkkkD2¥ Rk kok ¥k k%

. *EFCOMMD
«LOAD AND DELETE *-*—*—*-*—*—x—*—*
ecceccccsecsae

(NOTE é) *CGMMAND ROUTINE*
* *

A ob R ok kRokdok kR kokk

LINK
HAKKKF 2Kk kKKK ¥ Xo o 0o ee XHKIKKFEIokkdkkkdkkkk
*LINK *IEESTART *LOAD
t

ST
*CDMMAND RDUTINE*LINK

* *L1
Fedok ok ook R Rok ko Rk K X o ****x******xt****

X . XCTL
. . -IF
- . «ERROR
. - .

. .

. X
. - *****GB**********
. . o X*XIEEFAULT
. . . L L S S B o *
- . eSVC * *
. - «EXIT* FAULT ROUTINE *
. e eeseek* *
. . sokokookokok ok k dok ok ok ok
- . X
- - eXCTL
. . oIF
- - «ERROR
. . etk ok okH 3 %k k ok ok kkL T NK.
- . *IEESET *X o oo
. . ok e — K k=K
- eescece XX

SET *
COMMAND ROUT INE L
*;

X o
ek ook e Kok K o Aok K oK oK (AT

.
. .
. .
. .
- .
. X
Aok J 3 % kokokok kokok ok ok
SVC *IEETIME
. EXIT* = e o e e R R #

seeccecccccscsccncck

SUPERVISDR TIME
ROUT INE
t#*#ttt#*#*

NOTE 1 IEEMCRO1 IS NOT A LOAD MODULE. IT IS A CSECT THAT IS
LINK EDITED INTO MODULES IEFINITL AND IEFCOMMD.

NOTE 2 YHE MESSAGE MODULES CAN
LOADED AND DEL
BY IEFCNTRL AND
1EFCOMMD .

82

e = * * Lt S *DELETE

*****DQ**********

*INTERFACE WITH *
* TABLE STORE *
eeeX¥* SUBROUTINE *
. e ook ok okok ok ok ok ok kok R okok

t****Hb**********
*IEFJOBQE
— K * * k- *

.
-

QuI
INK *!NlTIALllATlON l
soeee XXk ROUT INE

IPL)******#**********

¥eoe

ceccee

12712767

FokF R AS*kdok Kk kK
* ENTRY FRCM *
* SUPERVISUOR *

* *
Ak kR ok ok ok K okok ¥k

XCTL ****tcs***##*****
eeeee XXIEFSTERM

XCTL k—k—k—k—dk— k= k= *
o X% INTERFACE AND *
L o*x P *

S
o X% TERMINATION %
g ook Rk ok ook kokok ¥okok
e XCTL

.
.
.

X
****xos**********

* IEFERROR *IEFALOCL
Histoaliosh *-*—t-t—*—*—x—*—*
* FCB Keoooe * FIRST *
* HOUSEKEEPING * * LOAD OF *
*ERROR ROUTINES * * ALLOCATIUN *
Aok ROk ROk R Y & R KRk ook ok doR ROROR R K K KR ROk
«XCTL
.
X
% ~tF<****t***t*
*IEFALOUC2
ke —k— Kk — K — kK *
* SECOND
* LOAD OF *
* ALLOCATION *
otk ok ook oK Kok R
«XCTL
.
X
*****Fo:#t*****#* ko kK F S kokok ok Rk ok
AND *IEEJFCB * *
B B T S * * PROCESSING *
XeosseeeX*x JFCB'S FOR * * PROGRAM *
* START COMMAND * * *
¥Xeoooe ROUT INE * *
- t**t*******x***** stk okl koK ok Kok Kok ok
. « RETURN
. «0OR
- « ABEND
. .
. tt***c4********** X
e« X*IEESJUFCB HERKGS F ok ok ok kK
B ot S Ot * * EXIT TO

*
* SUPERVI SUR *

A e o b o ok ok ok ok ok ok ok

s

Form Y27-7128-0

Chart 29.
NOTE 2
t*cl***#***

NOTE

NOTE

-‘-t——*-*

*
* R/I MESSAGES
*
e ek o o o o ok K ok ok KR K

*DELETE
*

1 THE ASSEMBLY MODULE
IEEMCSO1 1S INCLUDED
IN LOAD MODUL!
IEFINITL,

2 THE MESSAGE MODUkES
CAN BE LOADED AND
DELETED BY lEFSDOll.

——*LUAD AND Kk —k— kK= k=% X

DULES
AND IEFSDO1l1le

Aok A A2 %k ok Aok dok Kk
*

*ENTRY FROM NIP *
* *

EEE S EE L LS]
e XCTL

Xe oo e

kA KRB 2k kKR kKKK
*TEFINITL *
e o o e e

/1 *

R T

* R .
*INITIALIZATION * .
AND EOF ROUTINEX -
kR kR Rk F Rk kkkkk -
« XCTL -
. .
- -
B -
o XCTL o
X Xeoseo o
HERERC2R kK ER X kR EXCTL -
*IEFSDO11 *Xe o .

X* R/1 AND *X
* INITIATOR/ *
* TERMINATOR *
Aok dokok R ok Rk ok ok ok ok

.

.

.

-

-

B

X
REFEED2R KR KK R R KKK
* *
* *
* PROCESSING *
* PROGRAM *
* *
Fk kR kR kR Rk kkk

« RETURN

OR

« ABEND

.

-

-

-

HARRE2 X kK kK okkkok

* E) *

: TO SUPERVISOR *
*
cokok ok o ok ok oK K Kok

eree Xk

Page Added by TNL Y27-7157

100K Configuration Load Module Control Flow

****A3******#¥‘
Y

o.-o*FRDM SUPERV!SOR*
* *

HkkkE Rk Rk R kR k

Xk EBIkkkkkkkkkk
*TEFIDUMP *
L St S B B St B 2 3

Xk *

thDlCAT lVE DUMP*
ROUT

**************t**

#CS**##!*****
*1EFALER!

A A e t-*
ALLOCATION *
* ERROR ROUTINE *

*
EEE TR s S ES E 222]

NOTE 1
HEREEGI kR kR R KKK KNK
*IEEMCSO1
* A e e =k L INK

KKK GOk KRk KRRk
*IEESTART

eescane

*
* COMMUNICAT ION *L INK
* TASK

*o
HEEREKKREEREREE KRN o

esesccsscssscaXk
*

#*#*#t##t****
«XCTL
-
.
.
-

X
FRAK KK Sk kKK E kR
*1EETIME
e o o 1

o¥ *
SUPERVISOR TIMEX
* ROUTINE *
EEE S EE 2SS S22 222 2]

12712767

t'#"***##*#‘**. .o
X . . N
. . . oIF .
. . .o «ERROR .
M . .= N .
.
. . . i .
. . . .
. - .o *t*t*ﬂ4*#tt**¥tl* .
. . cessoX¥IEEFAULT .
. . LRt Sk St St B 2 *—*—* .
- eescesak *
- - sSvC * FAULT ROUTINE *
- . EXI * * -
- - Rk Rk Rk Rk -
. . .
. . <IF .
M . <ERROR .
. . . .
. . .
. M : M
. .
. . *#***JA***#******L[NK.
. . cesee
- - L INK * Lt Bt St Bl St Bt B *LINK
. . Heeesasas
.
.
.
.
.
.
.
.
.
.
.

oo X¥

*t**#GS#***tt#*#*
*1EE JFCB

Lt S *—*—t *—%—%LOAD AND *—¥—k—k—K—k—k— *—*
*Xeoooooe Xk

*CDMMAND ROUTINE*DELETE
* NK

JFCB'S FOR *
* START COMMAND *

* ROUTINE *
EEE S EL S22 S22 223

1***¥H5****t#¥**t
*IEESJFCB

o Xk—K—k—k— =k #

*INTERFACE WITH *
* TABLE STORE *

SUB—~ROUTINE *
RS2 ELE 22222222

‘****JS***‘**#***
*1EF JOBQE
*—' *-‘ ‘—* K-k *

*(AT IPL) *INITIALIZATION *
* ROUTI NE

NI
ARERRERRRR R KRR RK

Charts

82.1

AN,
y |

1\“0/‘

C

PRINTED IN U.S.A.

File Number

Re: Form No. Y27-7128-0
This Newsletter No.
Date September 20,

Previous Newsletter Nos.

IBM SYSTEM/360 OPERATING SYSTEM; CONTROL PROGRAM WITH MFT
Program Logic Manual

This Technical Newsletter amends the publication IBM System/360
Operating System: Control Program With Option 2; Program Logic
Manual, Form Y27-7128-0, to include information related to pro-
viding the capability of running jobs in partitions smaller than
the size of the scheduler selected for the system.

The attached replacement pages (cover-2, 11-14, 37-48) should
be substituted for the corresponding pages in the publication.
Corrections and additions to the text are indicated by vertical
bars to the left of the change.

Please file this cover letter at the back of the publication. It
provides a means of determining that all changes have been
received and incorporated into the publication.

RESTRICTED DISTRIBUTION

IBM Corporation, Programming Publications, Depr. 637, Neighborhood Road, Kingston, N.Y. 12401

Y27-7156

Y27-7156 (Y27-7128-0) Page 1 of 1

N

A

File Number S360-36

Re: Form No. Y27-7128-0
O This Newsletter No. ¥27-7158
Date November 15, 1967

Previous Newsletter Nos. Y27-7156

IBM SYSTEM/360 OPERATING SYSTEM
CONTROL PROGRAM WITH MFT
PROGRAM LOGIC MANUAL

This Technical Newsletter amends the publication IBM System/360
Operating System: Control Program With MFT; Program Logic Manual,
Form Y27-7128-0, to include information on the use of the 100K
scheduler.

The attached replacement pages (37-54,5) should be substituted for
pages 37-54 in the publication. Corrections and additions to the
text are indicated by a vertical bar to the left of the change.

Please file this cover letter at the back of the publication. Cover
letters provide a quick reference to changes, and a means of
checking receipt of all amendments.

Restricted Distribution

IBM Corporation, Programming Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401

PRINTED IN U.S.A. Y27-7158 (Y27—7128—0 Page 1 of 1

e
w

-

IBM Technical Newsletter File Number $360-36

(“’“ Re: Form No. Y27-7128-0
| This Newsletter No. Y27-7157
Date December 12, 1967

Previous Newsletter Nos. Y27-7156
Y27-7158

IBM SYSTEM/360 OPERATING SYSTEM
CONTROL PROGRAM WITH MFT
PROGRAM LOGIC MANUAL

This Technical Newsletter corresponds to Release 14 of the Operating
System. The replacement pages and added page amend the publication
IBM System/360 Operating System; Control Program With MFT, Program
Logic Manual, Form Y27-7128-0 relative to the repackaging of the job
scheduler. The attached replacement pages (Cover, Preface, Con-
tents, Illustrations, 9-10, 37-54.7, and 81-82) should be inserted
into the manual in place of the existing pages. Page 82.1 (Chart
29) should be added to the manual.

In addition, on page 32, the first sentence following the heading
"WAITR--Single Event" should be changed by replacing the words
"Option 2" with "MFT."

- Corrections and additions to the text are indicated by a vertical

("‘ bar to the left of the change or a bullet (¢) to the left of figure
or chart captions.

Please file this cover letter at the back of the publication. Cover

letters provide a quick reference to changes and a means of checking
receipt of all amendments.

Restricted Distribution

C

IBM Corporation, Programming Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401

PRINTED IN U.S.A. Y27-7157 (Y¥27-7128-0) Page 1 of 1

C

Where more than one page reference is
given, the first page number indicates the
major reference.

ABEND .cccececescccsccscccccsacncascnsacnnncea 23
Abnormal termination e.ccccescceccccccsca. 13
Access MethodS .c.cecececccccacacaacaccanae 6
Assembly modulesS ...cccccecccscccaccacasas 37

BLDL routine ..ccccceceasscecccscacscccccncas 1
BOoUNdary DOX eceeeecececscncccaccaaaes 22,33

CANCEL command ecceccececscascsscaseseas 30,31
Catalog managementccecececccccasss 6,12
Command ProCeSSing ceeceeecececceecccccecas 17
Commands
CANCEL 2ccccccccccsccccacsscasccascs 30,31
DISPLAY ecceccecaccncaccaccccesnass 30,31
MOUNT eeeeeeceeccccocacanccsnceasasas 30,31
OpPErator «.cccececcecccecasnccncaccnass 15
REPLY cccceccccacacaascsaasasassaass 30,31
REQUEST (REQ) ccecceassaassesasass 17,30,31
SET eccecccccccccassassesss 15,11,28,31,32
SHIFT .v.ececccsaasessaasss 10,14,22,23,30,31
START (blank) ..cceccecececcccecascaass 30,31
START RDR cececcceeeecsssssas 15,11,28,31,32
START WTR ceceeceasceessas 15,11,28,31,32
STOP wveeecececacecccennaaceseenaess 30,31
UNLOAD eececcececcccacccanancseanss 30,31
VARY 2eeecececcceccanccacnnavenaass 30,31
Communication task ...ceee... 11,7,15,17,28
Router routine ..ccececcecccsccccecsaas 28,30
WAIT YOUtiNe .cccecececaccaccacccaancas 28
Configuration, Option 2 .cecccececcacceces 9
Console device processor
routine ceeccecccscacscsccncsssas 28
Console interrupt routinecccec... 28
Contents suUpervision ...ceccecececececcceces 6
Control blocks
attention ECB ..ccceccccaccaccaaass 28,30
communication ECB .cccecccccsccccccaacs 28
Data Control Block (DCB) cecececceaccess 12
Data Set Control Block
(DSCE) ccceecccecccscccaccconcacascnas 12
DEQ cceccecccsccscsccscaccaascscnncacass 18,19
ECB ccccecccecccccccccscacsccccasosncsnsnce 23
ENQ cccecececccccccacancsansasassasasnsaa 18,19
Job File Control Block
(JFCB) ccccecccccccscccancnscscnccnacas 12
Major Queue Control BloCK ..eaece... 18,19
Minor Queue Control BlocK .ccceee... 18,19
Partition Related Scheduler
Control Block (PRSCB) .ccccaceceess 22,26
Program Request Block (PRB) .ccecceeca. 15
Queue element cc.cccccecccccssccccass 18,19
Scheduler controlling ECB .ccceee.. 22,26
SVC request block (SVRB) 19,30
Task Control BloCk c.cccececccccccecss 30
Control Program
Nonresident portion ..ccecececcecceeces 7
Organization eccccececececccccaccccccncas 6
Resident portion .c.ceeecceccecececcccces 7

INDEX

Control statements

DD ccececccccccccacccscccsccsscscnnccacce 17

DD * civeeececcncccceancccascscscananas 17

End-of-data set (EOF) .cceccecccceceas 17
EXEC ccceacccscccanncssscccscscscccccsansces 11
JOB .ccceccscsecscncccaccsccancscnssnas 11
NULL eceeeceaccaanccccccaccaacassananaa 17
PrOCESSINg ccceccccceccccnccccncccnncs 17
Count
£i€1d TCB cevececececcccaacenanaaas 33,30
SHIFT .cececcccccacccccsssccsnssesse 15,17

DADSM cececcecccccascscccacsccca-sesses 60,12
Data control bloCK ecececececcecccccances 12
Data management ccccececcccccccccsccccccce /
Data management routines ..ccccececcececceec. 6,7
Data set control block cceccececcececccecacs 12
DCB caccecsccccccccacccase cececscescsssees 12
DD 4tecccccccccccsccaancscccsncccssse 12,13,17
DECSVRB SUDroutine .ccccecececcececececcceccecescs 35
DEQ macro-instruction 18,19,34,35,36
Dequeue service routine ...c.ceececeec... 18,35
Direct-access device space

MANAGEMENL cccececccccscesccccccnccnnsansa O
DISPLAY cOMMANA cececcenccssccsssacsss 30,31
Disposition and unallocation

SUDroutine .cc.ceceececcecccccccccccances 23
DSCB ccecccecccasccacccscccsccncasscsccsncacs 12

ECB ceccecasncscscccacsccccccccccscscssss 28,30
EIL cvccecccccacccacacacsnscssccccaccsacaas 30
End-of-data set .c.ccececccecccccnnccaccees 17
ENQ macro-instruction 18,19,34,36
Enqueue service routine ...ccccecc.... 18,33
EOF ceccccccccsccscaccscscncsacscscncssansnssas 17
Event Indication List (EIL) .ccccececesee 30
Exclusive request ..ccecececcccecccccseas 19
EXEC ccacccccccsacscaccncecsascasoassccccas 12
External interrupt routine 28,32

Free area queue elementc.cccccea.. 33

I/0 SUPEIViSOY ecececccccccccccscccccecscs 0,7
I/0 supervisor transient area ccccececcecececes 7
Initial Program Loading (IPL) ..cccceeees 7
Initialization, NUClEUS .ccececccccacccccas 7
Initiator/terminator 5,10,12,14,
15,17,22,25
INTERRUPT K€Y <cccecsceceseso 15,17,18,30,32
Interruption
attention c.cccceccccccccccccccccnccass 17
external .c.cccccecccecacccccncsccccncas 18
handling .ccceeccecccccccccccacacscacss 6,7
SUPEIVISOY ceeeccceccccccnccancaccsscae 17
IPL ceceecceccocccccaacesass 1,10,11,13,15,31

Job Control Table (JCT) ceceeceeasss 25,26,27
Job File Control Block (JFCB) 11,12
Job management ...cceccececcecccccccccces 95,15
Job sCchedUleY ..cccecaccccsaccscsaccaaasnass 15
Job statement condition code

YOULINE cececcccccccccscccccacncncces 23,25

Index 83

Job termination ..cccececececccsccccccas 17,25
Job termination control
YOULINE ceeececcscccccssascancnnsaae 23,25

LINK Macro-Instruction .cececcecececcccceceecs 7
Link Control Table (ILCT) <ceceeee.. 23,25,26
LINKLIB partioned data set ..ceceeece.. 7,37
LOAD Macro-Instruction .cececcececsccccesss 9
Load MOAULES cececcccccccccccsnnccase 21,37

Macro-Instructions
DEQ cccececscaccncsccscansacs 18,19,34-36
ENQ cceveeacnscacecccasancessss 18,19,34,36

LINK cececececccacacsscacccacccccncncans /

LOAD cecececccccccacacsascacsscacanncans 9

WAIT weeeeecccccnccancancaaeesaes 13,14,30

WAITR ccececcaccscccceeass 13,22,23,26,32

WTO eeeeeecccccaccecncncansacasasases 17,28

WTOR cececeeccccaccccccncncaccasess 17,28

XCTL ccccecccecscscsccacccnscscnssceanccsacs /
Main storage sSupervision ececeecececeecee. 6,7
Major queue control blockcceeceece.. 18
Management, CataloOg ccecccececccccccceces 6,12
Management, JOb cccccccceccccacccccass 5,15
Master command processor

TOULINE ceececcccsscacaccncacccasnsas 28,30
Master command routine 11,28,30
Master scheduler

(communication task) ..ccccceeceee. 5,11,17
Minimum required configuration ..cccececce. 9
Minor queue control block ...cccc.... 18,19
MOUNT command seececececccccscescescess 30,31
Must-complete .cccecececcccccccess 18,33-36

NIP cuccccaccccccacscnccnanacccccanas 7,11,33
NUCleUS <ceeecccessseas 7,11,13,21,22,26,33
Nucleus Initialization Program . 7,11,33
NUCLEUS partitioned data set .c.ececece.. 7,37
NULL ccccecacsccsacacsacacccscccnacccscsce 17

OPEN/CLOSE/EOV e cecececceccccccansecaes 6,13
Operator commandS eccececececscceccscccccss 15
Operator-system communication

PrOCESSINg ececeecececccccccaccccccccneeas 17
Ooverlay sSuUpervision ..ceceecececececececes 5,7

Partition-Related Scheduler

Control DlOCK ecccecceccsccccancanea 22,26
Partitioned data sets

SYS1.LINKLIB ccccccacccccascaacassas /1,37

SYS1.NUCLEUS .cccsacccccacasccacasse 7,37

SYS1.SVCLIB cccceccaacaccccccncccsaas 7,37
Pre-termination routine ...cceceees.. 23,37
Processing

COMMANA ccecceaasccccccncsccncccncancas 17

operator-system

communication .cccccececcccccccccacease 17

Program fetch ..ccccececccecccccecaccceses 6
Program request blocks (PRB) 15,33
PRSCB ctccccecccccascccscscsccsccncannace 22,26

OCB cccccceascccnsaccnssnssseaes 18,19,33-36
MAJOY cecacecccscccccacasaass 18,19,33-36
MiNOY ceccecccccccaccccracacas 18,19,33-36
queue element e..._cecceceece... 18,19,33-36

Queue
elementcccecececacccccsasss 18,19,33-36

84

System JOD cececccceccacsaccaccases 13,14
Queue-manager's extent ...cecececceccass 22,26

Reader/Interperter 5,10,11-15, 25,26,
30,31
Release job queue routine .cceeceeceeceee. 25
Release-must-complete cececcecccccccceseas 3l
REPLY command eeececcececeecccacsscecsesss 30,31
Reply queue element (RPQOE) .ccececececsces 32
Reply quUeUe €Nty ecccececececsccecssccssss 30
REQ comMand ecceccecececccccecesss 17,30,31
REQUEST K€Y cceccccccccccccccscccccncccs 17
Resident routines
BLDL ccccceccsccecsacccscscscccscccncsassse /
communication task ccecececcccceccccccacas 7
contents SUPErvVisSion cecccececececccceaces 7
CONtroOl ProOgram eceeceeccescceccecccocass 6,7
data management ..cccecececceccceccccnaacas 7
input/output SUPErViSOY cceeecccscecees 7
interruption handling c.ccececececaccecaes 7
main storage SUpPErvision .c.cecececcececcce 7
overlay SUpPErvision .c.ceecececececcceces 7
task Management ececeeccecceccccceccccceccce 7
task SUPErvVisSion .c.ecccceccccccccccceas 7
time Supervision .ceecccececcecccccccccnes 7
RET= parameter (ENQ/DEQ
MACYOS) ceeeescccccacscscsccacsscsceass 33,34
RPQE (Reply Queue Element) ..ceceecececees 32

Scheduler ...cccceccccccsesss 9,13,23,26,37
Scheduler controller ..c.ccc.... 13,14,15,26
Scheduler controlling ECB eccecececcecccess 22
Scheduler downshift routine ..c.ccececc.. 26
Scheduler, JOD ccccececccacecccccccnccsas 15
Scheduler upshift routine cccceccecece. 26,27
Scheduler, 18K cccccccccccoceccecss 37,7,38
Scheduler, UUK cccceccccccccccccececs 37,7,U3
SCT ceeacccccsacescccccaccccsas 11,22,25,26
SET command «.ccecececeecccecsesss 15,28,31,32
Shared request ceeecececeecccccccccccacceasas 19
SHIFT command ..ee.eeeeee.... 10,14,22,30,31
SHIFT COUNt ccceccccoccscncsceacaaceas 15,17
Shift count interrogation
TOULINE ceccececcccccccaccnccncanscaannse 26
Shift count interrogatorccececececeeaee 23
SIOT eeveeeceasaccncaccccaancannncaas 11,25
SIRB (System Interrupt Request
BlOCK) cccecccccceccocscccancacscnanscanses 34
SMC (Set-Must-Complete) ec.ccecececcecceeccecss 33
START cOmMMANd .cccecceccscecccscccccscccsss 13
START (blank) command ..cccccececescess 30,31
START RDR command «..<e<..... 11,15,28,31,32
START WIR command «.ece..... 11,15,28,31,32
Step Control Table ..cccceeec... 11,22,25,26
Step initiation ececceccecceccccccecccccaas 17
Step Input/Output Table .ccecececeee. 11,25
STEP operand (of ENQ/DEQ) ecceceeccececess 19
Step termination .esceccecccccccceccccacas 17
Step termination control
TOULINE cccecccccesccccacccccsaccncccae 23
Step termination data set
driver routine ccecccececcececcceccccccncs 23
Step termination routine ..c.eceeece.. 17,23
STOP cOMMANd «sceccceccccccacccaaaasss 30,31
SUPErviSOr ccecececceccecess 6,7,13,14,15,17,23
Input/OUtput ceeceececccecccccccccceeas 6,7,28

SVC cecsccceccaccaccaccacscnccscacccnsccans 7

P

h

Supervisor request block

(SVRB) cveeececccccccccncccenceess 7,19,30,34
SVC transient area ..ccesseese.e. 7,19,30,34
SVCLIB partitioned data set 7,37
System

AYECA ceeeeccccccnccccscccsccccaccncanses D

interrupt request block .cccecececcc.. 34

JOb QUEUE seeeceecacaccacaceacasas 13,14,22
SYSTEM operand (of ENQ/DEQ) .cececceee. 19
System-must-completeccececc.... 18,33
SYS1.LINKLIB cccceeccecccccccccccacnoces 7,37
SYS1.NUCLEUS ..cccececccnccnccacancncss 1,37
SYS1.SVCLIB ccccccccceccccaccancncasces 1,37

Tables
Job control (JCT) .ceceece.... 11,25,26,27
Link control (LCT) ...cce.... 11,22,25,26
Step control (SCT) 11,22,25,26
Step Input/Output (SIOT)c.c... 11,25
Task Input/Output (TIOT) ...ccecee.. 9,25
Volume table of contents
(VTOC) c.ceccescccsasaansnenssssass 11,35
Task
dispatCching eceecececececccaceccccacancecans D
input/output table (TIOT)ccc... 9,25
MANAGEMENt ceecececccecsccoceccscccscanascee O
SUPErvisSion ceceeeccccccceceseccacaas 6,7
SWitChing ececececececcececcnccacacanaes 5
TCB ecceaccccncossscncccncssscassasssce 22,30
TCBCT (TCB count field) ..cccceeeec... 33,34
Termination e.ceccececccccsscssssas 10,17,25
abnormal ...ccccececsccccscscccssccasee 13

JOD cseecescsacasasaccccacaacananss 17,25

StEPD ececececcccccceccccncssccnnancanas 17
TerminatoY ..ccececccecacccsccncsccccsssecs 10
Time SUPErViSiONn ceceeecececcccccccncceaces 6,7
Transient area

Input/Output SUPEXViSOYr ececcececcceceecs 7

SVC cieecccccecncnccncccncscnnccncasocsccae 1

Unit Control Block (UCB) 28,30,31
Unit Control Module (UCM) 28,30,31
UNLOAD command ccceccecccccccccscssccssess 30,31

VARY command .c.cceccescccccacscecccssss 30,31
Volume table of contents

(VTOC) eveeeceeneacccccanaccacannass 11,35
VTOC integrity ecceeececcececccccesecasss 11,35

WAIT macro-instruction ...c.ec..... 13,14,30
WAIT service routine .c.ccecececececsccccaeases 32
WAITR macro-instruction 13,22,23,26,32
WOE (WTO queue element) ..ccececececccees 32
Write-to-operator ec..ccccecececccecccceaacss 15
Write-to-operator with reply .cccceeeece. 15
Write-to-operator routine 28,30,32
WTO macro-instruction ..cececcececececceses 28
WTOR macro-instructioncecceceee.. 17,28

XCTL macro-instruction .c.ceccececcecceascecaces 7

18K Scheduler ...eccceccccccccsssss 37,7,38
U4K Scheduler ..ccecccecacoccccanss 37,7,U3

Index 85

Y27-7128-0

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

4

€™
)

s

“y*s'Q UT pajuTId

0-8CLL-LTCA

READER'S COMMENTS

IBM System/360 Operating System; Control Program With Option 2
Program Numbers 360S-CI-505, 360S-DM-508

¥27-7128-0

Your comments will help us to produce better publications for your use. Please check or
fill in the items below and add explanations and other comments in the space provided.

Which of the following terms best describes your job?

X Programmer X Systems Analyst
X Manager X Engineer

H Operator I Mathematician

X Instructor I Student/Trainee

Does your installation subscribe to the SRL Revision Se
llow did you use this publication?

As an introduction

As a reference manual

As a text (student)

As a text (instructor)

For another purpose (explain)

| =0 = = = g ={

I Customer Engineer
I Systems Engineer
X Sales Representative

X Other (explain)

rvice?

I No

Did you find the material easy to read and understand?
Did you find the material organized for convenient use?
Specific Criticisms (explain below)

Clarifications on pages

Additions on pages

Deletions on pages

Errors on pages

Explanations and Other Comments

I Yes

I Yes

X No (explain below)

I No (explain below)

No postage necessary if mailed in U.S.A.

Y27-7128-0

FIRST CLASS
PERMIT NO. 116
KINGSTON, N. Y.

Fote® . _ _ . Fow
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.
POSTAGE WILL BE PAID BY
IBM CORPORATION
NEIGHBORHOOD ROAD
KINGSTON, N. Y. 12401
ATTN: PROGRAMMING PUBLICATIONS
DEPARTMENT 637
“folto ________ - T T T T T T T T T T T Teoln

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
_[International]

*¥*s*n Ul pajuTad

0-8CLL-LZK

(S

