File No. S360-25 os
Order No. GC28-6817-2

Systems Reference Library

IBM System/360 Operating System
FORTRAN IV (G and H) Programmer's Guide

Program Numbers 3605-F0-500
360S-F0-520

This publication explains how to use the IBM System/
360 Operating System to compile, linkage edit, and
execute programs written in the IBM System/360 FORTRAN
IV language. In addition, it contains information on
program optimization, p.ocessing efficiency, extended
error handling, and Assembler language subroutine link-
age conventions. A section on programming factors of
special interest to users of the IBM System/360 Models
91 and 195 is also included.

This publication is directed primarily to program-
mers familiar with the FORTRAN IV language. Previous
knowledge of the IBM System/360 Operating System is not
required.

page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Third Edition (June 1970)

This is a major revision of, and makes obsolete, Order No. GC28-6817-1
and Technical Newsletter GN28-0590.

A new section has been added describing the linkage editor overlay faci-
lity. The section headed "FORTRAN Job Processing®™ has been expanded to
include information on the loader, the use of dedicated work files, and
partitioned data set processing. Explanations of new parameters added
to the EXEC statement are included. The system diagnostic appendix has
been updated; Appendix I has been revised to include programming factors
for users of the IBM System/360 Model 195. In addition, minor correc-
tions have been made throughout the publication.

The specifications contained in this publication, as amended by
Technical Newsletter GN28-0591, dated December 30, 1970, correspond to
Release 20 of the IBM System/360 Operating System.

A11 changes to the text, and small changes to illustrations, are indi-
cated by a vertical line to the left of the change; changed or added
illustrations are denoted by the symbol e to the left of the caption.

Changes are periodically made to the specifications herein. Before
using this publication in connection with the operation of IBM systems,
consult the latest SRL Newsletter, Order No. GN20-0360, for the edi-
tions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM Branch Office serving your locality.

Address comments concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas, New
York, New York 10020.

© Copyright International Business Machines Corporation 1966, 1967, 1970

This publication is directed to program-
mers using either the IBM System/360
FORTRAN IV (G) or FORTRAN IV (H) compiler.
It explains how to compile, linkage edit,
and execute programs under control of the
IBM Systemv/360 Operating System. The
FORTRAN IV language is described in the
publication IBM System/360 FORTRAN IV Lan-
guage, Form GC28-6515, which is a corequi-
site to this publication.

Most of the information contained in
this guide is common to both the FORTRAN IV
(G) and FORTRAN IV (H) compilers. Where
differences exist, they are clearly marked.

Paragraphs or sections applicable to the
(G) compiler, but not the (H), are desig-
nated throughout this publication by the
symbol :

Conversely, paragraphs or sections appli-
cable to the (H) compiler, but not the (G),
are designated by the symbol:

The programmer®s guide is designed to
provide programmers with information at
three levels of complexity.

1. Programmers who will use the cataloged
procedures as provided by IBM should
read the "Introduction™ and "Job Con-
trol Language" sections to understand
the job control statements, the
"FORTRAN Job Processing"™ section to
understand the use of cataloged proce-
dures, the "Programming Considera-
tions" section to be able to use the
FORTRAN language correctly and effi-
ciently, and the "System Output" sec-
tion to understand the listings, maps,
and messages generated by the compil-
er, the linkage editor, and a load
module.

2. Programmers who, in addition, are con=-
cerned with creating and retrieving
data sets, optimizing the use of 1/0
devices, or temporarily modifying IBM-
supplied cataloged procedures should
read the entire programmer®s guide.

3’

PREFACE

Programmers who are concerned with
making extensive use of the operating
system facilities, such as writing
their own cataloged procedures, modi-
fying the FORTRAN library, or calcu-
lating region sizes for operating in
an MVT environment, should also read
the entire programmer's guide in con-
junction with the following publica-
tions, as required:

IBM System/360 Operating System:
Job Control Language Reference,
Form GC28-6704

IBM System/360 Operating System:
Job Control Language User's Guide,
Form GC28-6703

IBM System/360 Operating System:
Concepts and Facilities, Form
GC28~-6535

IBM System/360 Operating System:
System Programmer's Guide, Forn
GC28-6550

IBM System/360 Operating System:
Supervisor and Data Management Ser-
vices, Form GC28-66u46

IBM System/360 Operating System:
Supervisor and Data Management
Macro Instructions, Form GC28-66U47

IBM System/360 Operating System:
Utilities, Form GC28-6586

IBM System/360: FORTRAN IV
Library: Mathematical and Service
Subprograms, Form GC28-6818

IBM System/360 Operating System:
Linkage Editor and Loadexr, Form
GC28-6538

IBM System/360 Operating System:
System Generation, Form GC28-6554

IBM System/360 Operating System:
Operator's Guide, Form GC28-65u40

IBM System/360 Operating System:
Messages and Codes, Form GC28-6608

IBM System/360 Operating System:
Programmer ‘s Guide to Debugging,
Form GC28-6670

IBM System/360 Operating System:
Storage Estimates, Form GC28-6551

This publication contains appendixes

that provide the programmer with the fol-
lowing information:

Descriptions and explanations of com-
piler invocation from a problem
programe

Examples of job processing.

Descriptions and explanatiocns for the
preparation of subprograms written in
assembler language for use with a main
program written in FORTRAN.

Descriptions of the diagnostic messages
produced during compilation and load
module execution.

A list of American National Standard
carriage control characters.

e A list of input/output unit types.

* A description of the FORTRAN IV (H)
optimization features.

e A description of the FORTRAN IV (G)
debug facilitye.

e A discussion of FORTRAN programming
considerations for the user of the IBM
System/360 Models 91 and 195.

For easier reading, the titles of publi-
cations referred to in this publication are
abbreviated. For example, references to
the publication IBM System/360 Operating
System: Linkage Editor and Loader are
abbreviated to Linkage Editor and Loader
publication.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

INTRODUCTION o« « « e o o « o o o
Job and Job Step Relatlonshlp .
FORTRAN Processing and Cataloged
ProcedUresS « « « o « s o o o o o
Data Sets o« ¢ ¢ o o o o

Data Set Organization .
Data Set Labels
Data Set Cataloging . .

JOB CONTROL LANGUAGE o« o« o o .
Job Management . . .+ . . .
Coding Job Control Statements .

Name Field . . .
Operation Field
Operand Field .
comments Field « o« o © o o o o
Continuing Control Statements
Notation for Defining Control
Statements
JOB Statement . . . -
Name Field . « « e o o
Operand Field . . « « o « &«
Job Accounting Information
Programmer's Name . . . -
Control Statement, Allocatlon,
Termination MeSSages « ¢ « o o o
Conditions for Terminating a Job
Assigning Job Priority (PRTY) .
Requesting a Message Class
(MSGCLASS) « o o o o o s o o o »
Specifying Main Storage
Requirements for a Job (REGION)
Setting a Job Time Limit (TIME)
Emc StateInent - L] L] L] L] L] L] L] L]

e o s o -
® e o e o o
. o . -

s o & 3 & @
e 5 ¢ 6 2 & s 8

¢« & o 5 o & o o

e ¢ ¢ o s o

n

s & 8 O 5 0 0 0 @

Name Field . ¢ ¢ «o o ¢ o o o o o =

Operand Field o« ¢ o ¢ o ¢ ¢ o o o o
Positional Parameter o o
Keyword Parameters o« o o« « o o o o

Specifying Main Storage
Requirements for a Job Step
(REGION) 2 o o « o o o o o o o =
Establishing a Dispatching Prlorlty
(DPRTY) . . - . . .
Data Definition (DD) Statement o o
Name Field « o« e e o o o o o o o @

Blank Name Field ¢« o & « o « &
Operand Field e © ® e e o o e
Retrieving Previously Created Data
Sets L] L] L] e L] L] - L] L] - . - L] L] -
Delimiter Statement . . o « o o « o &
Comment Statement « « o« ¢ o o ¢ o o o

FORTRAN JOB PROCESSING « .
Using Cataloged Procedures
Complle e e o e o
Compile and Llnkage Edlt .
Linkage Edit and Execute .
Compile, Linkage Edit, and
Compile and Load « « o o «
Ccompiler Processing « « o« o
Compiler Name . . « «
Compiler ddnames « « o« «
Compiler Device Classes . .
Compiler Data Set Assumptions

e o o

s o & o [Tje s & s o
E

¢ 4« 8 o« D s s s o
Q

o0 s 6 s 3

s o &

¢ 6 o o o & ¢ o e o o ¢ o

20

20
21
21
23
23

24

CONTENTS
Compiler OptionS e« s o o o o e o o o U1
H ONLY OPT={0|1]2} . . « « « « - . LU
H ONLY SIZE=nnnnK U4
Multiple Compilation W1th1n a Job
SteP « o o o « = s « o & s & = « = o U4
Linkage Editor ProcessSing o« o« « « « « o« U5
Linkage Editor Names . » » » « « « o U5
Linkage Editor Input and Output . . 45
Linkage Editor ddnames and Device
ClaSSES o o o o« o o« o o o v o o« o o« U6
Additional Input « « ¢« o ¢ « =« « « & U47
Linkage Editor Priority =« « « « « o U8
Other Linkage Editor Control
Statements . « . . e« o o o o o U8
Options for Llnkage Edltor
Processing « « o« o« « o = « « « « » o U9
Load Module Execution . « « « o o « « o 49
Execution ddnames . ¢« « « o o o+ o o 49
Reference Numbers for Data Sets
Specified in DEFINE FILE Statements 50
Retrieving Data Sets Written with
Varying FORTRAN Sequence Numbers . . 50
Partitioned Data Set Processing . . 52
REWIND and BACKSPACE Statements . . 53
Error Message Data Set « ¢« « « o « o« 5U
Execution Device Classes « . « « - . 54
DCB Parameter “ « o s s s s e e e e 5U
Loader ProcessSing . « « « o « o o o o « 54
Loader Name . . . e s o o = s 54
Loader Input and Output « o - . 54
Loader ddnames and Device Classe . 5S4
Loader Priority e« « o o « o o o o« o 55
Options for Loader Processing . . . 55
MAP or NOMAP . . . e« o o o o o o 55
CALL or NOCALL or NCAL e o = e o s « 55
LET Or NOLET ¢ « o o ¢ « o o« o o o o 55
SIZE=SiZ€ . . « « o =« o » =« « « « - 55
EP=name « e e« o o ®» o e o o = o 56
PRINT or NOPRINT e s o o s = e o o « 56
Programming Example o« « « « « o = - 56
Dedicated Work Data SetsS o « « « « ¢ ¢ « 56
CREATING DATA SETS « « o ¢« o o ¢« s« o o o« 58
Use of DD Statements for Direct-Access
Data SetS ¢ o « o o e s« ¢ s o« s« « « « o« 60
Data Set Name€ . o v« o o« o o o o « o « - b0
Specifying Input/Output Devices 60
Specifying Volumes « + ¢ ¢« ¢ « 61
Specifying Space on Direct-Access
Volumes .« ¢ o o o o o o o o o « o o o« » 62
Label Information « « « ¢« ¢ « ¢ ¢ ¢« « o 63
Disposition of a Data Set . . . « « . . 64
Writing a Unit Record Data Set on an
Intermediate Device . . ¢« « ¢« = « « « o 64
DCB Parameter o« « e o« o o = o o o = . 64
Referring to Previously Specified DCB
Information . . . « ¢« ¢ ¢« ¢« ¢ &« . . . 65
Density and Conversion « « « « « s« « o 65
Number of Buffers for Sequential
Data Sets . « e« o o s o o o o s o 65
Chained Schedullng e« o o o s e s s » o b6
Record FOImat « « o « o o o« o« o« o o o 66

Page of GC28-6817-2, Revised 12/30/70,

Record Length, Buffer Length, and
Block Length e« o o - - « e e
FORTRAN Records and Loglcal Records
FORMAT CONtrOl « o ¢ ¢ o o o « « o o
Unformatted Control
BACKSPACE Operations « « « « o o o
Spanning Considerations
DCB Assumptions for Load Module
Execution . ¢ « o ¢ ¢ o 2 o « o «

G ONLY CATALOGED PROCEDURES . & o « &
Complle « o o o« o o o @ « o o o o
Compile and Linkage Edit
Linkage Edit and Execute«
Compile, Linkage Edit, and Execute
Compile and Load « o « « o« o o o

User and Modified Cataloged Procedures

Overriding Cataloged Procedures . . .
Overriding Parameters in the EXEC
Statement . . . e e o o =
Overriding and Addlng DD Statements

H ONLY CATALOGED PROCEDURES . o« o e
Compile .+ ¢ ¢ o« o o o o o o o »
Linkage Edit o ¢ o o o ¢ o o o o &«
Execute ¢ o e o & o e & e e o e
ToAd o ¢ o o o o o o o o 2 o o o =

User and Modified Cataloged Procedures

Overriding Cataloged Procedures . . .
Overriding Parameters in the EXEC
Statement e o o o «
Overriding and Addlnq DD Statements

PROGRAMMING CONSIDERATIONS o« « o o o o
Storage Locations and Bytes . . - .
Minimum System Requirements for the
FORTRAN IV (G) and (H) Compilers « « «
Boundary Adjustment of Variables
in COMMON Blocks and EQUIVALENCE
GIOUPS o o « = o = o o = o o o o =
Indicators and Sense Lights <. . .
Cconditional Branching . « « « « &
Arithmetic IF Statement . « « « o
Use of STOP n Statement . .« « o .
Register 15 as a Condition Code

Register a . - - -
Use of Embedded Blanks in FORTRAN
Programs . . « e e o o o o o e @

Use of DUMP and PDUMP e o o @ o @
Use of ERR Parameter in READ
Statement . ¢ ¢ 2 s e o e & & = @
Arithmetic Statement Functions . « « «
G ONLY Use of ASSIGN Statement . .
G ONLY DO Loop Optimization . « «
H ONLY Support of AND, OR, and
COMPL o« o o« ¢ @ ¢ o o o o o @« o @
Data Initialization Statement .
Object Time Input/Output EfflClency
Data Definition Considerations . .
Direct-Access Programming
Direct—-Access Programming
Considerations -« . o« o « o « © » o
G ONLY Compiler Restrictions .
H ONLY Compiler Restrictions .

Library Considerations . . « « o« o o o
DD Statement Considerations
Channel Optimization « « « o o ¢ «

I/0 Device Optimization

by TNL: GN28-0591

88
89
89
89

89

Direct-Access Space Optimization

SYSTEM OUTPUT . « o o o o o o o o
Compiler Output . « « « « o »
Source Listing « « « « .« &
Storage Map <« « « « o o @

H ONLY Label Map « « « « =«
Object Module Listing .« .
Object Module Card Deck . .

H ONLY Cross Reference Listing

H ONLY
Source Module Diagnostics . .
Linkage Editor Output . « « « o
Module Map « o« « =« - o o o o @
Cross-Reference List « « o o &«
Load Module Output « « o« o =« « «
Error Code Diagnostics and
Traceback without Extended
Handling Message Facility . .
Program Interrupt Messages . .
BABEND DUMD o o « o o o o o o o
Operator Messages . « « « o o
Loader Output . « o « ¢ o « » o«

LINKAGE EDITOR OVERLAY FEATURE . .
Designing a Program for Overlay .
Segments ¢« o« ¢ o o o o o o s e o
Paths - - - - - - L] L] - L] L] - -
Communication Between Segments .
Inclusive References . « « o« o
Exclusive References
Ooverlay ProcessSing « « 2 o o o o o
COMMON AY€AS ¢ « o o 5 o o o o @

Construction of the Overlay Program
Linkage Editor Control Statements

The OVERLAY Statement
The INSERT Statement « « « o« »
The INCLUDE Statement
The ENTRY Statement o« o « « e
Processing Options . + « « o « =«

EXTENDED ERROR HANDLING FACILITY .
Functional Characteristics « « «
Subprogram for the Extended Error
Handling Facility =« « « « o

Accessing and Altering the Optlon

Table Dynamically . . « « o .
User-Supplied Error Handling . . .
User-Supplied Exit Routine . .
Option Table Considerations . .
Option Table Default Values .
How To Create or Alter an Option
Table e o 0 s e & - o
Errors in Use of Facility .« « o
Programming Example . . « « .
Considerations for the Library
Without Extended Error Handling
FAacility o o o o o o o o o o o o

APPENDIX A: INVOKING THE FORTRAN
COMPILER « 2 ¢ « 2 2 2 0 o o 2 o @

APPENDIX B:
Example 1 . ¢ o ¢ ¢ ¢ o o o
Example 2 < o ¢ « ¢ o ¢ o o @
Example 3 . o o« o« ¢ o o « o

Structured Source Listing

Error

.

. 98

.100
«100
.100
.100
.102
»102
«103
.108
«108
.109
«109
.109
<110
-111

«111
.112
<112
«112
.113

.114
<114
.114
.115
-117
<117
.118
.118
.118
.119
«119
120
120
.121
<121
«122

.123
«123

.124

.124
«125
.126
<127
.127

<127
.128
.128

.128

.139

EXAMPLES OF JOB PROCESSING 140

. 140
<141
<142

Page of GC28-6817-2,

APPENDIX C: ASSEMBLER LANGUAGE
SUBPROGRAMS . @« o« ¢ o o
Subroutine References . .

Argument List o« « « ¢ o o

.« e e

o o

Save Area .« s o o
Calling Sequence
Coding the Assembler Language
Subprogram « o« o o + o & o c 8 o
Coding a lowest Level Assembler
Language 5Subprogram . . . o
Higher Level Assembler Language
Subprogram « ¢ ¢ ¢ o o o o o o
In-Line Argument List . « « .
Sharing Data in COMMON

<146
146
«1U6
<146
<146

. 148
. »148
-~ -148

« «150
« «150

Retrieving Arguments From the Argument

List e o & o @

RETURN 1 1n an Assembler Language

SUbProgram . « o o« o o o o o »
Object-Time Representation of
FORTRAN Variables . « ¢ o
INTEGER Type . .
REA.L Type * L] L]
COMPLEX Type€ .
LOGICAL Type o .

« » o
5 & & »
o 8 & &

APPENDIX D: SYSTEM DIAGNOSTICS °
FORTRAN IV (G) Compiler Dlagnostlc
MessaQGSoo.o.o--ooooo
Error/Warning Messages . « « «
Status MesSsages o e« ¢ ¢ o o o
Informative Messages « « o o
FORTRAN IV (H) Compiler Diagnostlc
MessageS.oonacoocco.-
Informative Messages . . « « o
Error/Warning Messages « o o« o
Load Module Execution Diagnostic
Messages.....a-.....
Program Interrupt Messages
Execution Error Messages .
Operator Messages . . « o

s 8
s & 9 8

APPENDIX E: EXTENDED AMERICAN
NATIONAL STANDARD CARRIAGE CONTROL
CHARACTERS ¢ ¢ o o o o o o o o o

« «150
s <151

«151
152
«153
.153
«154

e o157

«157
.157
163
«165

«165
165
- .166

184,14
184.14
184.17
« +186

« «187

APPENDIX F: UNIT TYPES
APPENDIX G: FORTRAN IV
FACILITY ¢ « o o o
DEBUG Statement
TRACE o o« o o
SUBTRACE . . .
INIT o o o o @
SUBCHK &« o s «
DISPLAY Statement . .
Special Considerations

e e
. e
e o
-

APPENDIX H: FORTRAN IV
OPTIMIZATION FACILITIES
Program Optimization .

Revised 12/30/70,

(G)

(H)

*® ¢ ¢ 06 o & s o

by TNL:

Programming Considerations

the Optimizer . &

Definition of a Loop .

Movement of Code Into

Initialization of a Loop .
Common Expression Elimination .
Induction Variable Optimization

Register Allocation
COMMON Blocks . .

EQUIVALENCE Statements .

Multidimensional Arrays

Program Structure

Logical IF Statements

Branching . . . -
Name Assignment .

APPENDIX I: CONSIDERATIONS

91 AND 195 . « « « & &

FOR

$ 8 & B

Using

e e =

.
¢ & ¢ 8 0
.

MODELS

Program Interruption Exit Routine
Boundary Adjustment Routines (Model

910nly)......

Floating-point Operations

Exponent Overflow
Exponent Underflow

INDEX o« o o o o o

.

GN28-0591

.188

«189
.189
.189
.189
.189
.189
.189
.190

<191
.191

+191
.192

.193
«193
.193
«194
.194
.194
-194
<195
«195
.196
.196

.197
«197

«197
.197
197
«197

.199

Page of GC28-6817-2, Revised 12/30/70,

=
L..J

T
IS

<gUREb

rigure 1. Rocket Firing Job . .
Figure 2. Job Control Statement
Formats @ @ @ o6 & e @ o & & o e @
#igqure 3. JOB Statement - e
Figure U4, Sample JOB Statements
Figure 5. EXEC Statement « o @
tiqure 6. Sample EXEC Statements
#igure 7. Compiler, Linkage
rditor, and Loader Options « o
t'igure 8. Data Definition
Statement e @ @ & ¢ e e o & e o o
Figure 9. DD Statement « « o o
rigure 10. Examples of DD
statements for Unit Record Devices
Figqure 11. Retrieving Previously
Created Data Sets o+ ¢« e ¢ o o o o
Figqure 12. Delimiter Statement .
rigure 13, Comment Statement . .
Figure 14. Invoking the Cataloged
Procedure FORTGC or FORTHC . « «
rigure 15. Compiling a Single
Source Module <« « « o o« o o o o o
rigure 16, Compiling Several
source Modules e« e s s s s o
Figure 17. Invoking the Cataloged
Procedure FORTGCL or FORTHCL « o
Ffigure 18. Invoking the Cataloged
Procedure FORTGLG or FORTHLG o o
Figure 19. Linkage Edit and
mxecute « @ ® ® @ & e e o e e o o
#¥igure 20. Linkage Edit and
Execute Object Modules in a
Cataloged Data Set . o « o o o o
Figqure 21. Invoking the Cataloged
Procedure FORTGCLG or FORTHCLG o
figure 22. Single Compile,
Linkage Edit, and Execute . « o« «
Fiqure 23. Batched Compile,
Linkage Edit, and Execute . « «
Figure 23.1. Invoking the
Cataloged Procedure FORTGCLD or
FORTHCLD o« « » o o e« o o o o o o @
Figure 23.2. Single Compile and
102d « o o @ 5 @ o o o o o o @« o
Figure 23.3. Batched Compile and
TOAd o o o o » o o« o o o o o o o @
Figqure 24. Compiler Options o .
Figure 25. Multiple Compilation
Within a Job Step . . “« o @ -
Figure 26. Linkage Edltor Input
and Output a e o o “« o o o @
Figure 27. Linkage Editor Example
—— {H) Compiler . « ¢ o o » o o
"igure 28, Tape Output for
Several Data Sets Using Same Data
Set Reference Number e« o o o @ @
Figure 29. Loader Example « o o
¥igure 30, Examples of DD

Statements » e o o o o o ® e e e
Figure 31. DD Parameters for
Creating Data Sets « o a o o o o

29
31

32
33
35
36
37
37
38
38
38

38

39

39

39

39

39

uo

40
42

4y

46

48

51

56

58

59

by TNL: GN28-0591

Figure 32. FORTRAN Record (FORMAT
Control) Fixed-lLength
Specification . . .

Figure 33. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE . .
Figure 34. FORTRAN Record (FORMAT
Control) Variable-Length
Specification .« « « o o« o o
Figure 35, FORTRAN Record (FORMAT
Control) With variable-Length -
Specification and the FORTRAN
Record Length Less Than (LRECL-4)
Figure 36. FORTRAN Record (FORMAT
Control) With Undefined
Specification and the FORTRAN
Record Length Less Than BLKSIZE .
Figure 37. Fixed-Length Blocked
Records Written Under FORMAT
control e e e & e ® e © e e e o e
Figure 38. Variable-Length
Blocked Records Written Under
FORMAT Control e e o o e o o & e
Figure 39, Format of a Block
Descriptor Word (BDW) . . o o o =«
Figure 40. Format of a Segment
Descriptor Word (SDW)
Figure 40.1. Unblocked Records
Written Without FORMAT Control . .
Figure 40.2. Unblocked Segmented
Records Written Without FORMAT
CONtrOl o o « o o ¢« o © o o o o o
Figure 40.3. Blocked Records
Written Without FORMAT Control . .
Figure 40.4. Blocked Segmented
Records Written Without FORMAT
CONtYOl < ¢ o o o o o o o o o o @
Figure 41. Logical Record (No
FORMAT Control) for Direct Access
Figure 42. Compile Cataloged
Procedure (FORTGC) “ o = = ® o @
Figure 43, Compile and Linkage
Edit Cataloged Procedure (FORTGCL)
Figure 44, Linkage Edit and
Execute Cataloged Procedure

(FORTGLG) - L] L] - - L] - . L] - - -
Figure 45. Compile, Linkage Edit,
and Execute Cataloged Procedure
(FORTGCLG) e & & e o ¢ e o o o @
Figure 46. Compile and Load
Cataloged Procedure (FORTGCLD) . .
Figqure U47. Compile Cataloged
Procedure (FORTHC) e« ¢« s o o o @
Figure 48. Compile and Linkage
Edit cataloged Procedure (FORTHCL)
Figure 49, Linkage Edit and
Execute Cataloged Procedure
(FORTHLG) &« o o e o o ¢ o s o o o
Figure 50. Compile, Linkage Edit,
and Execute Cataloged Procedure
(FORTHCLG) « ¢« o « o o « o o o o o

68

€8

68

68

68

69

69

70

70

70

70

70

70
71
75

76

76

78
78
82

83

84

85

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Figure 51. Compile and Load
Cataloged Procedure (FORTHCLD) . .
Figure 52, Record Chaining . . «
Figure 53. Writing a
Direct-Access Data Set for the
First Time e s e o o s o s s o @
Figure 54. DD Statement
Parameters for Optimization . . .
Figure 55. Source Module Listing

Figure 56. Sample FORTRAN IV
Program e e e o6 ® e o o o e e o o
Figure 57. Storage Map —-- (G)
Compiler........-....
Figure 58, Storage Map -- (H)
Compiler e ¢ o o o o

Figure 59. Label Map -- (H)
Compiler ®« & o o e 6 e e e e e o
Figure 60. Object Module Listing
-- (G) cCompiler (Part 1 of 2)
Figure 61. Object Module Listing
-— (H) Compiler (Part 1 of 2) . .

Figure 62. Object Module Deck
Structure -- (G) Compiler . . « «
Figure 63. Object Module Deck
Structure -- (H) Compiler . ¢« « e
Figure 64. Compiler Cross
Reference Listing -- (H) Compiler
Figure 65. Structured Source
Listing ~-- (H) Compiler o « « o «
Figure 66. Load Module Map --

(G) Compiler e o o o e o o o @
Figure 67. Load Module Map --

(H) Compiler e ®© e e o e o © o e
Figure 68. Linkage Editor Cross
Reference List -- (G) Compiler o
Figure 69. Linkage Editor Cross
Reference List -- (H) Compiler . .
Figure 70. Sample Traceback for
Execution-Time EXrors . « o« « « o
Figure 71, Storage Map Produced
bytheLoader ® ® ¢ e o e o a e o
Figure 72. A FORTRAN Program
Consisting of Three Program Units
Figure 73. Time/Storage Map of a
Three Segment Overlay Structure .
Figure 74, Overlay Tree Structure
of Three Program UnitsS « o« « o « o
Figure 75. The Paths in the
Overlay Tree in Figure 74 . . o
Figure 76. Overlay Tree Structure
Having Six Segments e ® e e o e o

85

.100
«101
«101
«102
«103
<104
«106
«108
.108
108
«110
«110
«110
.111
«111
<112
<113
<114
«.114
«115
«115

«115

Figure 77. Paths Implied by Tree
Structure in Figure 76 e - o « . <116
Figure 78. Time/Storage Map of Six
Segment Structure117
Figure 79. Communicatior Between
Overlay Segments « « « o o « « « « o118
Figure 80. Overlay Program Before
Automatic Promotion of Common Areas 119
Figure 81. Overlay Program After
Automatic Promotion of Common Areas 119
Figure 82. Option Table Preface .129
Figure 83. Option Table Entry . «130
Figure 84. Example of Assembler
Language Macro Definition Used To
Generate Option Table137
Figure 85. Sample Program Using
Extended Error Handling Facility . .138
Figure 86, Input/Output Flow for
Example 1 . . o &2 ¢ ¢ ¢ o « « = » <140
Figure 87. Job Control Statements

for Example 1 « « « « « . 140
Figure 88. Job Control Statements

for Example 2 . . ¢« o ¢ & o « - - 1H2
Figure 89. Block Diagram for

Example 3 . . ¢ ¢ « ¢ o o o «» « - 2143
Figure 90. Job Control Statements

for Example 3 . . o ¢ ¢ o o « = » 144
Figure 91, FORTRAN Coding for

Example 3 . . ¢ ¢ o o o = « o = o o185
Figure 92, Save Area Layout and

Word Contents e o o s e o s = - 1847
Figure 93. Linkage Conventions

for Lowest Level Subprogram148
Figure 94, Linkage Conventions

for Higher Level Subprogram149
Figure 95. In-Line Argument List .150
Figure 96. Assembler Subprogram
Example .« ¢« o ¢« ¢ o o o » o « =« = 2152
Figure 97. Format of Diagnostic
Messages e o o s o o = e« = e o o 2157
Figure 98. Format of Diagnostic
Messages “ e o o o o = o = = = - <166
Figure 99, Compile-Time Program
Interrupt Message « « - . .168
Figure 100. Program Interrupt

Message Format Without Extended

Error Message Facility « o « o 184.15
Figure 101. Summary of Error and
Traceback . o o« o « « » « = - « 184,40
Figure 102. Example of Traceback

MaP &« o o o o o « o o o o o - o 184,040

Page of GC28-6817-2, Revised 12/30/70,

TABLES

Table 1. Cataloged

Procedure-Names and Functions . . .
Table 2. Job Control Statements .
Table 3. Compiler ddnames . « « «
Table U4, Device Class Names . «
Table 5., Correspondence Between

compiler ddnames and Device Classes
Table 6. DCB Assumptions for the
(G} Compiler Data SetS o« o « o « « @

Table 7. DCB Assumptions for the
{H) Compiler Data SetsS « « « « o o« «
Table 8. Linkage Editor ddnames .
Table 9. Correspondence Between

Linkage Editor ddnames and Device -
ClassSes o o ¢ o o o 6 a 8 « o o o o
Load Module ddnames « « «

Table 10.
Table 11. Loader ddnames . « « o »
Table 12. Correspondence Between

Loader ddnames and Device Classes .
Table 13. Data Set References . « .
Table L. DEN ValuesS o« o o o « o o

by TNL: GN28-0591

12

40
41

41
42
42
46
47
55
55

62
65

Table 15. Specifications Made by
the FORTRAN Programmer for Record
Types and Blocking « « o o« o o o «
Table 16. BLKSIZE Ranges: Device
Considerations . « « « o o = « o &
Table 17. Load Module DCB
Parameter Default Values . - « o« .

Table 18. Storage Allocation . .
Table 19. Additional Built-In
Functions -- (H) Compiler
Table 20. Option Table Default

ValuU€sS o o o o « o » o o s o o «
Table 21. Corrective Action After
Error OCCUrre€nce « « o« o« o s o o o
Table 22. Corrective Action After
Mathematical Subroutines Error

Occurrence (Part 1 of 3) . « « o« &
Table 23. Corrective Action After
Program Interrupt Occurrence . . .
Table 24, Linkage Registers . « «
Table 25. Dimension and Subscript
Format ¢« o o o o o o o « o o o o o
Table 26. Constant Expressions .

. 67
. 72

. 13
. 88

. 92
.131

.132

«133

.136
- 147

.151
.193

Page of GC28-6817-2,

The IBM System/360 Operating System con-
sists of a control program and processing
programs. The control program supervises
execution of all processing programs, such
as the FORTRAN compiler, and all problem
programs, such as a FORTRAN programe
Therefore, to execute a FORTRAN program,
the programmer must first communicate with
the operating system. The medium of con-
munication between the programmer and the
operating system is the job control
language.

The programmer uses job control state-
ments to define two units of work -- the
job and the job step -- to the operating
system and to define the files (data sets)
used in these jobs and job steps. He
defines a job to the operating system by
using a JOB statement; a job step by using
an EXEC statement; and a data set by using
a DD statement.

JOB AND JOB STEP RELATIONSHIP

To the operating system, a job consists
of executing one or more job steps. In the
simplest case, a job consists of one job
step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

In more complex cases, one job may con-
sist of a series of job steps. For
example, a programmer is given a tape con-
taining raw data from a rocket firing: he
must transform this raw data into a series
of graphs and reports. Three steps may be
defined:

1. Compare the raw data to projected data
and eliminate errors which arise
because of intermittent errors in
gauges and transmission facilities,

2. Use the redefined data and a set of
parameters as input to a set of equa-
tions, which develop values for the
production of graphs and reports.

3. Use the values to plot the graphs and
print the reports.

Figure 1 illustrates the rocket firing
job with three job steps.

In the previous example, each step could
be defined as a separate job with one job
step in each job. However, designating
related job steps as one job is more effi-

Revised 12/30/70, by TNL: GN28-0591

INTRODUCTION

cient: processing time is decreased
because only one job is defined, and inter-
dependence of job steps may be stated.

(The interdependence of jobs cannot be
stated.)

Raw
Data

Projected o Job Step 1:
Data Refine Data ~

y .
Parameters —*p JObl Sfe\;; 2I: A//
evelop Values .

Job Step 3: -

Generate "

Graphs and
Reports

Refined
Data

Figure 1. Rocket Firing Job

FORTRAN PROCESSING AND CATALOGED PROCEDURES

When a programmer writes a FORTRAN pro-
gram, the objective is to obtain a problem
solution. However, before the program can
provide this solution, the program itself
must undergo processing. The source pro-
gram (source module) is compiled to give an
object module; and the object module is
linkage edited to give a load moaule.? This
load module is then executed to give the
desired problem solution.

If each of the three steps involved in
processing a FORTRAN module is a job step
in the same job, a set of job control
statements that consists of one EXEC state-
ment and one or more DD statements is

1As an alternative, the object module may
be edited and then automatically executed
by the loader, another IBM-supplied pro-
gram. Details on the use of the loader
can be found in the section "Loader
Processing. "

Introduction 11

Page of GC28-6817-2, Revised 12/30/70,

required for each step. Because writing
these job control statements can be time-
consuming work for the programmer, IBM sup-
plies cataloged procedures to aid in the
processing of FORTRAN modules. A cataloged
procedure consists of a procedure step or a
series of procedure steps. Each step con-
tains the necessary set of job control
statements to compile or to linkage edit or
t0 execute a FORTRAN module. (Note: A JOB

statement cannot be cataloged.)

For each compiler, IBM provides five
cataloged procedures. The procedures and
their uses are shown in Table 1.

Any of the cataloged procedures can be
invoked by an EXEC statement in the input
stream. In addition, each of the proce-
dures can be temporarily modified by this
EXEC statement and any DD statements in the
input stream; this temporary modification
is called overriding.

Table 1. Cataloged Procedure-Names and
Functions
r 1
| Procedure-Name |
‘‘‘‘‘‘‘‘‘‘ L S St il
| FORTRAN G|FORTRAN H| Function |
— $omm 4]
b + e — 1
| FORTGC | FORTHC |compile |
p=mommoo—- ——— rmmmm oo 1
| FORTGCL |FORTHCL |compile and linkage |
| | | edit |
e —— fommmmm- oo {
| FORTGLG |FORTHLG |linkage edit and |
| | | execute |
T 1
| FORTGCLG |FORTHCLG |compile, linkage |
i | | edit, and execute |
e — —— fommmm oo 1

| FORTGCLD |FORTHCLD |compile and load |
L 1 —_

DATA SETS

For FORTRAN processing, a programmer
uses DD statements to define the particular
data set(s) required for a compile, linkage
edit, or execute step. In the operating
system, a data set is a named, organized
collection of one or more records that are
logically related. For example, a data set
may be a source module, a library of mathe-
matical functions, or the data processed by
a load module.

Data Set Organization

A data set in FORTRAN may be one of
three types: sequential, partitioned or
direct-access.

12

by TNL: GN28-0591

A sequential data set is one in which
records are accessed solely on the basis of
their successive physical positions. A
sequential data set may reside on cards,
tape, or disk. The compiler, linkage edi-
tor, and load modules process sequential
data sets. The compiler uses the gueued
sequential access method (QSAM) for such
processing, and load modules use the basic
sequential access method (BSAM) for object
time I/0 operations. (For additional
information on access methods, see the
Supervisor and Data Management Services
publication, Order No. GC28-66Uu6.)

A partitioned data set (PDS) is composed
of named, independent grxoups of sequential
data and resides on a direct-access volume.
A directory index resides in the PDS and
directs the operating system tc any group
of sequential data. Each group of sequen-
tial data is called a member. Partitioned
data sets are used for storage of any type
of sequentially organized data. In partic-
ular, they are used for storage of source
and load modules (each module is a member).
In fact, a load module can be executed only
if it is a member of a partitioned data
set. A PDS of load modules is created by
either the linkage editor or a utility pro-
gram. A PDS is accessible to the linkage
editor; however, only individual members of
a PDS are accessible to the compiler. Mem-
bers of a PDS are accessible to a FORTRAN
load module; however, concurrent processing
of two or more members of the same PDS is
not supported. Sequential processing of
two or more members is permitted if ome
member is closed before the other is pro-
cessed. See the discussion "Partitioned
Data Set Processing" for details on acces-
sing partitioned data sets.

The FORTRAN library is a cataloged PDS
that contains the library subprograms in
the form of load modules. SYS1.FORTLIB is
the name given to this PDS.

To process a member of a partitioned
data set, the programmer must use the DD
statement to provide information about the
data set and the member. The programmer
must specify (in the DSNAME parameter) both
the name of the data set and of the member,
and must indicate (in the LABEL parameter)
if the member is to be created or retri-
eved. However, if the programmer requests
the FORTRAN compiler to process a parti-
tioned data set (for example, to compile a
source deck stored as a member of a parti-
tioned data set) no LABEL information need
be specified.

Note that the processing of a parti-
tioned data set is limited to READ or WRITE
operations only. The programmer is not
permitted both to READ and WRITE the same
data set in a single programe.

A direct-access data set contains rec-
ords that are read or written by specifying
the position of the record within the data
set. When the position of the record is
indicated in a FIND, READ, or WRITE state-
ment, the operating system goes directly to
that position in the data set and either
retrieves, reads, or writes the record.

For example, with a sequential data set, if
the 100th record is read or written, all
records preceding the 100th record (records
1 through 99) must be transmitted before
the 100th record can be transmitted. With
a direct-access data set the 100th record
can be transmitted directly by indicating
in the I/O statement that the 100th record
is to be transmitted. However, in a
direct-access data set, records can be
transmitted by FORTRAN direct-access I/0
statements only; they cannot be transmitted
by FORTRAN sequential I/0 statements. Rec-
ords in a direct-access data set can be
transmitted sequentially by using the asso-
ciated variable in direct-access I/0
statements,

A direct-access data set must reside on
a direct-access volume. Direct-access data
sets are processed by FORTRAN load modules;
the compiler and linkage editor cannot
process direct-access data sets. Load
modules process data sets of this type with
the basic direct-access method (BDAM).

Data Set Labels

Data sets that reside on direct-access
volumes have standard labels only; data
sets that reside on magnetic tape volumes
can have standard labels or no labels.
Information, such as a data set identifier,
volume sequence number, record format,
density, etc., is stored in the data set
labels. The information required in a DD
statement used to retrieve a labeled data
set is substantially less than in one used
to retrieve an unlabeled data set.

Data Set Cataloging

To relieve the programmer of the burden
of remembering the volume on which a
particular data set resides, the operating
system provides a cataloging facility.
When a data set is cataloged, the serial
number of its volume is associated in the
catalog with the data set name. A pro-
grammer can refer to this data set without
specifying its physical location. Any data
set residing on a direct-access or magnetic
tape volume can be cataloged.

Sequential, partitioned, and direct-
access data sets can be cataloged; however,
an individual member of a PDS cannot be
cataloged because a member is not a data
set.

Introduction 13

JOB_CONTROL LANGUAGE

The FORTRAN programmer uses the job con-
trol statements shown in Table 2 in compil-
ing, linkage editing, and executing
Programs.

JOB_MANAGEMENT

Job control statements are processed by
a group of operating system routines known
collectively as job management. Job man-
agement routines interpret control state-
ments, control the flow of jobs, and issue
messages to both the operator and the pro-

grammer, Job management has two major com-
ponents: a job scheduler and a master
scheduler.
Table 2. Job Control Statements
) T 1
| statement | Function |
[l I J
r k) h)
| JOB | Indicates the beginning of a |
|new job and describes that job|
[] d
T 1
EXEC |Indicates a job step and de- |
|scribes that job step; indi- |
| cates the cataloged procedure |
|or load module to be executed |
L 4
T a
DD |Describes data sets, and con- |
|trols device and volume |
| assignment |
1]
i

delimiter iSeparates data sets in the in-
|put stream from control state-|
|ments; it appears after each |
|data set in the input stream
4

T
|Contains miscellaneous

|
4
1
I
|

[s i —— " — —— —— —— —— - —— — — ———

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the installation selects during system
generation. Schedulers are available at
two levels -- the sequential scheduler and
the priority scheduler.

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) use sequential schedulers.

Priority schedulers are used by systems
that provide multiprogramming with a fixed
number of tasks (MFT) or multiprogramming
with a variable number of tasks (MVT).
Priority schedulers process complete jobs
according to their relative priority within
job classes. Priority schedulers can
accept input data from more than one input
stream.

CODING_JOB_CONTROL STATEMENTS

Except for the comment statement, con-
trol statements contain two identifying
characters (// or /#%) in card columns 1 and
2. The comment statement is identified by
the initial characters //* in card columns
1, 2, and 3. Control statements may con-
tain four fields -- name, operation,
operand, and comments (see Figure 2).

NAME FIEILD

comment The name field contains between one and
| remarks, annotations, etc., eight alphameric characters, the first of
|written by the programmer; it | which must be alphabetic. The name field
|can appear before oxr after any| begins in card column 3 and is followed by
|control statement. | one or more blanks to separate it from the
L 4 operation field. The name field is used:
r L) 1
| FORMAT | APPLICABLE CONTROL STATEMENTS |
L 1 4
L] A
| //Name Operation Operand [Comment] | JOB, EXEC, DD |
| I |
|77 Operation Operand [Comment] | EXEC,DD
| | |
|7* [Commentl] | delimiter 1
| | |
| 77#* [Comment] | comment]
L 1 3

2. Job Control Statement Formats

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to refer to information con-
tained in the named statement.

3. To relate DD statements to I/0 state-
ments in the load module.

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

or, if the statement is a delimiter or com-
ment statement, the operation field is
blank. The operation code is preceded and
followed by one or more blanks.

OPERAND FIELD

The operand field contains the parame-
ters that provide required and optional
information to the operating system.
Parameters are separated by commas, and the
operand field is ended by placing one or
more blanks after the last parameter.

There are two types of parameters, posi-
tional and keyword.

Positional Parameters: Positional parame-
ters are placed first in the operand field
and must appear in the specified order. If
a positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma.

Keyword Parameters: Keyword parameters
follow positional parameters in the operand
fields (If no positional parameters
appear, a keyword parameter can appear
first in the operand field; mo leading
comma is required.) Keyword parameters may
appear in any order. If a keyword parame-
ter is omitted, a comma is not required to
indicate the omission.

Subparameters: Subparameters are either
positional or keyword and are noted as such
in the definition of control statements.

Positional subparameters appear first in
a parameter and must appear in the speci-
fied order. If a positional subparameter
is omitted and other positional subparame-
ters follow, the omission must be indicated
by a comma.

Keyword subparameters follow positional
subparameters in a parameter., (If no posi-
tional subparameters appear, a keyword sub-
parameter can appear first in the parame-
ter; no leading comma is required.) Key-
word subparameters may appear in any order.
If a keyword subparameter is omitted, a
comma is not required to indicate the
onmission.

COMMENTS FIELD

The comments field can contain any
information considered helpful by the pro-
grammer. Comments, except for those on a
comment statement, must be separated from
the operand field (or the * in a delimeter
statement) by at least one blank; they may
appear in the remaining columns up to and
including column 71.

continuing Control Statements

Except for the comment statement, which
is contained in columns 1 through 80, con-
trol statements are contained in columns 1
through 71 of cards or card images. If the
total length of a statement exceeds 71
columns, or if parameters are to be placed
on separate cards, operating system con-
tinuation conventions must be followed. To
continue an operand field:

1. Interrupt the field after a complete
parameter or subparameter (including
the comma that follows it) at or
before column 71.

2. Include comments, if desired, by fol-
lowing the interrupted field with at
least one blank.

3. Optionally, code any nonblank charac-
ter in column 72. If a character is
not coded in column 72, the job
scheduler treats the next statement as
a continuation statement if the con-
ventions outlined in points 4 and 5
are followed.

4, Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Note: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control programe.

Job Control Language 15

Comments can be continued onto addition-

al cards after the operand has been com-

pleted.

1.

To continue a comments field:

Interrupt the comment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

4, Continue the comments field beginning
in any column after column 3.

Note: The comment statement cannot be
continued.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used in this publication to

define control statements is described in
the following paragraphs.

1.

16

The set of symbols listed below are
used to define control statements, but
are never written in an actual
statement.

a. hyphen -
b. or |
¢. underscore
d. Dbraces

e, brackets
f. ellipsis -
ge. superscript 1

S
e

The special uses of these symbols are
explained in paragraphs 4-10.

Uppercase letters and words, numbers,
and the set of symbols listed below
are written in an actual control
statement exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the defini-
tion of a control statement.)

a. apostrophe '
b. asterisk *
Ce. comma

d. equal sign

=

e, parentheses)
f. period .
ge. slash /

Lowercase letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is substi-
tuted in the actual statement.

5.

8.

Example: If name appears in a state-
ment definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example: If member-name appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

Stacked items or items separated from
each other by the "or" symbol repre-
sent alternatives. Only one such
alternative should be selected.

Example: The two representations
A
B and A|Bj|C
C

have the same meaning and indicate
that either A or B or C should be
selected.

An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations
A
B and A|B|C
C

have the same meaning and indicate
that either A or B or C should be
selected; however, if B is selected,
it need not be written, because it is
the default option.

Braces group related items, such as
alternatives.
Example: ALPHA=({A|B|C},D)

indicates that a choice should be made
among the items enclosed within the
braces., If A is selected, the result
is ALPHA=(A,D). If C is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

Brackets also group related items;
however, everything within the brack-
ets is optional and may be omitted.
Example: ALPHA=({A|B|C],D)
indicates that a choice can be made
among the items enclosed within the

brackets or that the items within the
brackets can be omitted. If B is

selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

9. An ellipsis indicates that the preced-
ing item or group of items can be
repeated more than once in succession.

Example: ALPHA(,BETAl...
indicates that ALPHA can appear alone
or can be followed by ,BETA optionally

repeated any number of times in
succession.

10. A superscript refers to a description
in a footnote.

Example: SNEW\1
) orp
MODS
. SHR

indicates that additional information
concerning the grouped items is con-
tained in footnote number 1.

11. Blanks are used to improve the reada-
bility of control statement defini-
tions. Unless otherwise noted, blanks
have no meaning in a statement
definition.

JOB STATEMENT

The JOB statement (Figure 3) is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following
information:

1. Name of the job.

2. Accounting information relative to the
job.

3. Programmer's name,

4, Whether the job control statements are
printed for the programmer.

5. Conditions for terminating the execu~
tion of the job.

6. A job priority assignment.

7. Output class for priority scheduler
messages.

8. Specification of main storage require-
ments for a job.

9. ©Specification of the maximum amount of
time to be allotted for a job.

Examples of the JOB statement are shown
in Figure 4.

NAME FIELD

The "jobname"™ must always be specified;
it identifies the job to the operating sys-
tem. No two jobs being handled concurrent-
ly by a priority scheduler should have the
same "jobname".

OPERAND FIELD

Job Accounting Information

The first positional parameter can con-
tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by the installation and inserted in
the operating system when it is generated.
The format of the accounting information is
specified by the installation.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce-
dure for the input reader. (Information on
the cataloged procedure for the input read-
er and on how to write an accounting rou-
tine may be found in the System Program-
mer's Guide, Form GC28-6550.) Otherwise,
the account number is optional.

Programmer 's Name

The "programmer name" is the second
positional parameter. If no job accounting
information is supplied, its absence must
be indicated by a comma preceding the pro-
grammer's name. If neither job accounting
information nor programmer's name is
present, commas need not be used to indi-
cate their absence.

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Job Control Language 17

1 1 1 i
| Name | Operation|Operand |
L 1 1 d
r T T 1
		Positional Parameters
//jobname	JOB	{([account-number] [,accounting-information])® 2 2]
		I
		[, programmer-namel] 4 S 6
l	Keyword Parameters	
		(MSGLEVEL=(x,y)17
		I
		[COND=((code, operator) [, (code,operator)l...®)?]
§		[PRTY=nnl}10
i		
		[MSGCLASS=x]1°
I		
!		[REGION=()nnnnnK [,value;K]))12
]		valueoK
!		
I		
i L L 4		
r ot		
1If the information specified ("account-number" and/or "accounting-information”) con-		
tains blanks, or any special characters other than hyphens, it must be delimited by		
apostrophes instead of parentheses.		
2If only "account-number" is specified, the delimiting parentheses may be omitted.		
3The maximum number of characters allowed between the delimiting parentheses or apos-		
trophes is 142.		
{ “If "programmer-name" contains blanks, or any special characters other than periods,		
it must be enclosed within apostrophes.		
SWhen an apostrophe is contained within "programmer-name", the apostrophe must be		
shown as two consecutive apostrophes.		
The maximum number of characters allowed for "programmer-name" is 20.		
7The symbol x represents a job control language message code and may be specified as		
0, 1, or 2; y represents a job scheduler allocation message code and may be speci-		
fied as 0 or 1.		
8The maximum number of repetitions allowed is 7.		
°If only one test is specified, the outer pair of parentheses may be omitted.		
toThis parameter is used with priority schedulers only. The sequential scheduler		
ignores it.		
j11This parameter is used with MVT priority schedulers only.		
i (]		
eFigure 3. JOB Statement		
Sample Coding Form		
-0 ; 11-20 [21-30	31-40 [41-50	51— 60
112]3[a[s[e[7]8]ol0/ 112[3]4]6]6[718[9]0] 1 [2[3]a[5]6[7[8I0]0(1]2]3[4]5]6[7[8[[0]i [2[3]4]5]6[78[o[0[1[2[3[4]5[6[7[8[8][0] 1[2[3]4]5]6[7]8[9[0] 1]2[3]4[5]6[7[8[S[0		
,_LJ_EXIQMR'P! IJ'I r g I 1411 !) B I	§ I T !	S T 'S 11 1.1l ! S U l Jod AL 4 I . l I T - !] I T l Lol % R S l § U T T
/l/lplkpplglnl”l	</lol°l I([‘Llllsl,tslllql ’l‘lléllll)l"l\Jd4 .131’,1117-1"‘1 ’l ’iclo!NIDlgl (1"1 ’lLlTl) 1 ’!qsIGILIEI VIELLI 'l } L1 1 1 I	T
#A_ﬁxlﬁﬂPl’l‘!lzllllllll!lllllllll!lllllllll,!lllllil	llll	llllll!l

//PROGZ, JOB 1887F-215C0ND=(7>LT) I PRTY=108>REGCION =108 K bl

T 1|1||||||1|llllll|

Figure 4. Sample Job Statements

18

Control Statement, Allocation, and
Termination Messages

The MSGLEVEL parameter indicates the
type of messages the programmer wishes to
receive from the control program.

MSGLEVEL=(x,y)
The letter x represents a job control
language message code. The value of x
may be 0, 1, or 2. When x=0, only the
JOB statement, control statement
errors, and diagnostics appear on SYS~-
OUT. When x=1, input statements,
cataloged procedure statements, and
symbolic substitutions of parameters
appear. When x=2, only input state-
ments appeare.

The letter y represents an allocation
message code, The value of y may be 0
or 1. When y=0, no allocation or ter-
mination messages appear, if the pro-
gram completes execution. In the
event of an abnormal termination, only
termination messages appear. When
y=1, allocation, termination, and
recovery messages all appear,

If MSGLEVEL is omitted, the default
values assigned are those established
at system generation time for PCP or
from the reader procedure in a multi-
programming environment.

Conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of that
job step. This generated code is tested
against the conditions stated in control
statements.

The COND parameter of the JOB statement
specifies conditions under which a job is
terminated. Up to eight different tests,
each consisting of a code and an operator,
may be specified to the right of thé equal
sign. The code may be any number between 0
and 4095. The operator indicates the
mathematical relationship between the code
placed in the JOB statement and the codes
issued by completed job steps. If the
relationship is true, the job is ter-
minated. The six operators and their mean-
ings are:

Operator Meaning

GT greater than

GE greater than or equal to
EQ equal to

NE not equal to

LT less than

LE less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement
contains:

COND=(7,LT)
the job is terminated.

If more than one condition is indicated
in the COND parameter and any condition is
satisfied, the job is terminated.

For the FORT step of both the FORTGCLG
and FORTHCLG cataloged procedures, the com-
pilers issue one of the following error
codes:

0 - No errors or warnings detected.

4 - Possible errors (warnings) detected,
execution should be successful.

8 - Errors detected, execution may fail.
Compilation continues but the lin-
kage editor job step is not executed
unless the programmer has increased
the error code acceptable to the
linkage editor. (The discussion
"Ccondition for Bypassing a Job Step"
later in this section describes the
method for specifying the acceptable
error code.)

““““ 1
|

—————— 4 If the LOAD option has
been specified, an object module
will be supplied.

“““ 1
|

------ 4 If the error is found in
an executable statement, the state-
ment is replaced by a call to the
IBERH routine (IHCIBERH). If the
resulting load module is executed,
IBERH is called and execution is
terminated.

““““““ 1
|

------ 4 Severe errors detected,
execution is impossible.

16 - Terminal errors detected, compiler
terminated abnormally.

Job Control Language 19

Page of GC28-6817-2, Revised 12/30/70,

Assigning Job Priority (PRTY)
{Used with Priority Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), the parameter
PRTY=nn must be coded in the operand field
of the JOB statement. The "nn" is to be
replaced with a decimal number from 0
through 13 (the highest priority that can
be assigned is 13).

Whenever possible, avoid using priority
13. This is used by the system to expedite
processing of jobs in which certain errors
were diagnosed. It is also intended for
other special uses by future features of
systems with priority schedulers.

If the PRTY parameter is omitted, the |
default job priority is assumed.

Requesting a Message Class (MSGCLASS)
{(Used with Priority Schedulers Only)

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit.

The MSGCLASS=x parameter allows the mes-
sages issued by the priority scheduler to
be routed to an output class other than the
normal message class, A. The "x" is to be
replaced with an alphabetic or numeric
character. An output writer, assigned to
process this class, transfers the data to a
specific device.

If the MSGCLASS parameter is omitted,
the job scheduler messages are routed to
the standard output class, A.

specifying Main_Storage Requirements for a
Job (REGION)

(Systems with MVT Only)

The REGION parameter is used to specify:

» The maximum amount of main storage to
be allocated to the job. This figure
must include the size of those com-
ponents that are required by the user's
program and that are not resident in
main storage.

*» The amount of main storage to be allo-
cated to the job, and in which storage
hierarchy or hierarchies the space is
to be allocated. This request should
be made only if main storage hierarchy
support is specified during system
generation.

To request the maximum amount of main
storage required by the job, REGION=nnnnnK

20

by TNL: GN28-0591

is coded in the operand field of the JOB
statement. The term nnnnn is replaced with
the number of contiguous 1024-byte areas to
be allocated to the job, e.g., REGION=52K.
This number can range from one to five
digits, but cannot exceed 16383. It should
be specified as an even number. (If an odd
number is specified, the system treats it
as the next highest even number.,)

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce-
dure) is assumed.

Note: If different region sizes are to be
specified for each step in the job code,
the REGION parameter must be specified in
the EXEC statement associated with each
step, as described in the section "EXEC
Statement."

Main storage hierarchy support provides
for storage hierarchies 0 and 1. If IBM
2361 Core Storage, Model 1 or 2, is present
in the system, processor storage is
referred to as hierarchy 0 and 2361 Core
Storage is referred to as hierarchy 1. If
2361 Core Storage is not present but main
storage hierarchy support was specified
during system generation, a 2-part region
is established in processor storage when a
region is defined to exist in two hierar-
chies. The two parts are not necessarily
contiguous.

When main storage hierarchy support is
included in the system, the REGION parame-
ter can be used to request both the maximum
amount of storage to be allocated to the
job and the hierarchy or hierarchies in
which the storage is to be allocated.

To specify a region size and the hierar-
chy desired, REGION=(value K,value;K) is
coded in the operand field of the JOB
statement. The term "value " is replaced
with the number of contiguous 1024-byte
areas to be allocated to the job in hierar-
chy 0; the term "value;" is replaced with
the number of contiguous 1024-byte areas to
be allocated in hierarchy 1, e.g., REGION=
(60K, 200K). When processor storage
includes hierarchies 0 and 1, the combined
values of value and value; cannot exceed
16383. If 2361 Core Storage is present,
value cannot exceed 16383, and value, can-
not exceed 1024, if using a single Model 1,
or 2048, if using a single Model 2. Each
value specified should be an even number.
(If an odd number is specified, the system
treats it as the next highest even number.)

In systems with main storage hierarchy
support, either subparameter can be omitted
to request storage in only one hierarchy.

If storage is requested only in hierarchy
1, a comma must be coded to indicate the
absence of the first subparameter, e.g.,
REGION=(,52K). If storage is requested
only in hierarchy 0, the parentheses need
not be coded, e.g., REGION=70K.

If the REGION parameter is omitted, or
if a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce-
dure) is assumed. When the default region
size is assumed, storage is always allo-
cated in hierarchy 0.

Notes:

e If different region sizes are to be
specified for each step in the job,
code the REGION parameter in the EXEC
statement associated with each step, as
described in the section "EXEC
Statement."

e If main storage hierarchy support is
not included and regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

e For information on storage requirements
to be considered when specifying a
region size, see the Storage Estimates
publication.

Setting a Job Time Limit (TIME)

(Used by Priority Schedulers Only)

To limit the computing time used by a
single job, a maximum time for its comple-

tion can be assigned. Such an assignment
is useful in a multiprogramming environment
where more than one job has access to the
computing system.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439, The number of seconds cannot
exceed 59. If the job is not completed in
the assigned time, it is terminated. If
the job execution time is expected to
exceed 1439 minutes (24 hours), TIME=1440
can be coded to eliminate job timing. If
the TIME parameter is omitted, the default
job time limit (as established in the cata-
loged procedure for the reader/interpreter)
is assumed.

EXEC STATEMENT

The EXEC statement (Figure 5) indicates
the beginning of a job step and describes
that job step. The statement can contain
the following information:

1. Name of job step or procedure step.

2. Name of the cataloged procedure or
load module tn be executed.

3. Compiler and/or linkage editor options
passed to the job step.

4. Accounting information relative to
this job step.

5. Conditions for bypassing the execution
of this job step.

6. A time limit for the job step or an
entire cataloged procedure.

7. Specification of main storage require-

ments for a job step or an entire
cataloged procedure.

Job Control Language 21

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Name

T
Ooperation|Operand
1

|
b
|
|
!
!
!
;
I
f
|
!
i
i
|
{
!
i
I
!
|
!
i
|
|
!
!
]

-

!
|
|
|
l
i
i
i
|
|
a
i
|
{
_a
a
|
i
i

/7 {stepnamel * | EXEC

1

Positional Parameter
\PROC=cataloged-procedure—name ,

cataloged-procedure-name
- PGM=program-name
/PGM=*.stepname.ddname

PGM=%, stepname.procstep.ddname
o Keyword Parameters
JPARM \
|PARM. procstep2(=(optionl[,optionl...)3 “ S

T

|

|

|

[

|

|

|

|

|

|

b

|| jacer .

| lACCT,procstep3}=(accounting—information)3 6 7}
[

|| JCOND 1 .
|| lcOND.procstep2f =((code,operatorl(, stepnamel.procstepl])
[
|
|
|
[
|
|
[
|
|
L

) [, (code,operator(,stepnamel.procstepll)]...®)?
JTIME \ 10 11
1TIME.procstepzj=(minutes,seconds)

T
|
+
!
|
|
|
|
[
|
|
|
1
I
|
|
I
|
I
| L.
|

|

I .

| REGION

| [{REGION.procstepz}=(%nnnnnK g [,valueLK]{] i0 12
| valueoK

!

| JDPRTY }

| |DPRTY. procstep?f=(value 1[,value 2})|13

1

*1f information from this control statement is referred to in a later job step,
"stepname" is required.

21f this format is selected, it may be repeated in the EXEC statement, once for each
step in the cataloged procedure.

31f the information specified contains blanks, parentheses, or equal signs, either
the keyword subparameter must be enclosed by apostrophes or the entire PARM field
must be delimited by apostrophes instead of parentheses.

“If only one option is specified and it does not contain any blanks, parentheses, or
equal signs, the delimiting parentheses may be omitted.

5The maximum number of characters allowed between delimiting parentheses is 100. If
the option list is enclosed in apostrophes, however, the parameter must be coded on
one card.

61f "accounting-information™ does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 142,

8The maximum number of repetitions allowed is 7.

°If only one test is specified, the outer pair of parentheses may be omitted.

OThis parameter is used with priority schedulers only. Sequential schedulers ignore
ite

}]21If only minutes are given, the parentheses need not be used. If only seconds are

!‘l.

22

given, the parentheses must be used and a comma must precede the seconds.

2If only value,K is given, the parentheses need not be used. If only value,K is
given, the parentheses must be used and a comma must precede value;K.

31If only value 1 is given, the parentheses need not be used. If only value 2 is
given, the parentheses must be used and a comma must precede value 2,

)

{
]

it s, s s s s i . . S o —— — — — — — — ———— — s st i s ot . s sy S P S, e S . S o S i A e, S — o S o — o s, o i e

Example 1 of Figure 6 shows EXEC state- temporary library created to store a pro-

ments used to execute programs. The pro- gram from a previous job step of the same
gram names used are the (G) and (H) compil- job.

er names. Example 2 in Figure 6 shows, for

each compiler, an EXEC statement used to Specifying a Cataloged Procedure:

execute a cataloged procedure.
PROC=cataloged-procedure-name
zcataloged-procedure—name
NAME FIELD indicate that a cataloged procedure is
invoked. The "cataloged procedure-
name®™ is the name of the cataloged

The "stepname®™ is the name of the job procedure. For example,
step or procedure step. It is required
when information from this job step is // EXEC PROC=FORTHC
referred to in a later job step. No two or
steps in the same job should have the same // EXEC FORTHC

"stepname, "
indicates that the FORTRAN IV (H) cat-
aloged procedure FORTHC is to be
executed.
OPERAND FIELD
Specifying a Program in a Library:

PGM=program-name
Positional Parameter indicates that a program is executed.
The "program name" is the member name
of a load module in the system library

The first parameter of an EXEC statement (SYS1,LINKLIB) or private library.
must specify either the name of the cata- For example,
loged procedure or program to be executed.
Each program (load module) to be executed // EXEC PGM=IEWL
must be a member of a library (PDS). The
library can be the system library indicates that the load module IEWL is
(SYS1.LINKLIB), a private library, or a executed, (A load module in a private

Sample Coding Form

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
t[2]3]4]516[7I81ol0] 1T2[3]4[51617[8[olo]l 112]3]4[56]7I8]o[o] 1]2[3[4]5[67]8[9]o[1[2[3]4]516]7]8I0 1T2[3[4[5]6[7[8]9]0] [2]3[45]e]7[8]9lo] 1 [2]3]4[5|6]78[9]0)

.. Example, FORTRA (6. COMPILIER \ .\ |\ vl vl fawa b
//_ EXEC PeM=LEYFORTACCT =(89.6:9427).91CONDai(\ 5.t 1),y TIME 1200 5REGLONSIAGK .\ | . . . | 1

L .Exln.mpl_m L . FORTRAN. T |(H). LOMPLLIER S Ll
1/ EXEC, PeMsTEKAAGSIACCT=(.29.6)3 44 1) 1200MD)m(, ToLT) I TIMES2GA2RECTONSAREK | 1 1 ooy

Example & . FORTRAM LT (&) COMPILIER « | ool in byl i,
//STEPY EXEL FORTELLGS: « | | oot f o b b aa ot f &l
/0 I |P|AR(MO!Ea&“m&&MﬂLAIHA$LM, P A W LML.,J,LJJ,LL_J,,l._xl-_L,l‘LLJ_u_q
0 PARMLKERSXREF S| L el b il L
ocidiiinlis, CONDLKEDS T T2 ST €L FORTY > 1 v v | uwwabuvioqon i loaas | iuii]

7] COND. 3021 Tp LT:s STEP ¥ia kKEDD L T2 IT s STIEL S0 FORT IS 11 1 |1 5 I
/! EGQLM&LIAIIIJIlLILIIIIIIlllllllllllllllllll

llllll11l!ll||||lll

| |
AAJEﬂqu&pZJJEMHEAWLIZ¢GmL£pnanam..;‘...|....;.H.|....i.1..|“|.;....|...
/.1STEPY EXEC FORTHCL F I R S W S B P T PSR A

| Jooitiiiiy . IPARM.|FORT.S DECK A LINECNTA8 By MARSIDN EDTTS 5\ | o liors s liis,y
Dl PARMGUKEDSKRERS | Ll L s L bl Bl
Iy CONDLLKED AT T STEPEORTI S Lo el bbbl
//m.....\...‘mwwrmmmmmmm.um;ﬁuL“A
Moo NeeTldRiA L | et !

e Figure 6. Sample EXEC Statements

Job Control Language 23

library is executed by concatenating
that private library with the system
library through the use of a JOBLIB DD
statement., See the discussion con-
cerning JOBLIB under "Data Definition
(DD) Statement®™ in this section.)

Specifying a Program Described in a Pre-
vious Job Step:

PGM=#%, stepname. ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previous job step.
* indicates the current job; "step-
name" is the name of a previous step
within the current job; and "ddname"”
is the name of a DD statement within
that previous job step. (The "step-
name" cannot refer to a job step in
another job.) The program referred to
must be a member of a PDS. For
example, in the following statements,
statement STEPS5 indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4., Consequently, the load module
ARCTAN in the PDS MATH is executed.

The

//MCLX JOB ,JOHNSMITH, COND=(7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH(ARCTAN)

//STEP5 EXEC PGM=%*,STEP4.SYSLMOD

Specifying a Program Described in a Cata-
loged Procedure:

PGM=#, stepname. procstep.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previously executed
step of a cataloged procedure. ‘The *
indicates the current job; "stepname"
is the name of the job step that
invoked the cataloged procedure;
"procstep®" is the name of a step
within the procedure; "ddname" is the
name of a DD statement within the pro-
cedure step. (The "stepname®™ cannot
refer to a job step in another job.)
For example, consider a cataloged pro-
cedure FORT,

24

//COMPIL EXEC PGM=IEKAAQ0
//SYSPUNCH DD UNIT=SYSCP
//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=LINKINP

EXEC PGM=IEWL
DSNAME=RESULT (ANS)

//LKED
//SYSLMOD DD

Furthermore, assume the following
statements are placed in the input

stream.

//7XLIV JOB ,SMITH, COND=(7,LT)
//51 EXEC PROC=FORT

/782 EXEC PGM=*.Sl.LKED.SXSLMOD

//FT03F001 DD
//FT01¥001 DD

UNIT=PRINTER
UNIT=INPUT

Statement S2 indicates that the name
of the program is taken from the DD
statement SYSILMOD. The statement is
located in the procedure step LKED of
the cataloged procedure FORT, which
was invoked by statement Sl1. Conse-
quently, the load module ANS in the
PDS RESULT is executed.

Keyword Parameters

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

Options for the Compiler and Linkage
Editor:

The PARM parameter is used to pass
options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)

PARM
passes options to the compiler or
linkage editor, when either is invoked
by the PGM parameter in an EXEC state-.
ment, or to the first step in a cata-
loged procedure.

PARM. procstep
passes options to a compiler or link-
age editor step within the named cata-
loged procedure step.

The formats for compiler options and
those linkage editor options most appli-
cable to the FORTRAN programmer are shown
in Figure 7.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Note: If a subparameter expression in the COND

list of the PARM parameter contains special states conditions for bypassing the
characters, either of two methods may be execution of a program or an entire
used to delimit the expression: cataloged procedure.

1. Enclose the entire subparameter list

in apostrophes. For example: COND. procstep
states conditions for bypassing the
PARM = 'LIST,MAP, NAME=MYMAIN, DECK" execution of a specific cataloged pro-

cedure step "procstep”,
2. Enclose the subparameter expression in
apostrophes and the entire subparamet-

er list in parentheses. Thus, the The subparameters for the COND parameter
above example can be coded as: are of the form:
PARM = (LIST,MAP, 'NAME=MYMAIN', DECK) (code,operator [, stepnamel)
Since a list enclosed in apostrophes cannot
be continued onto another control state- The subparameters "code"™ and "operator"
ment, the second method should be used when are the same as the cocde and operator
the PARM parameter must be interrupted. described for the COND parameter in the JOB

statement. The subparameter "stepname"
Detailed information concerning compiler identifies the previous job step that
and linkage editor options is given in the issued the code. For example, the COND
section "FORTRAN Job Processing." parameter

COND=((5,LT, FORT), (5, LT, LKED))
Ccondition for Bypassing a Job Step:

This COND parameter (unlike the one in indicates that the step in which the COND
the JOB statement) determines if the job parameter appears is bypassed if 5 is less
step defined by the EXEC statement is than the code returned by either of the
bypassed. steps FORT or LKED.

r e 1
|Compiler Options: FORTRAN IV (G) and FORTRAN IV (H)
| |
I {PARM } ' {LIST 1 { SOURCE } |
| PARM. procstep) = NOLIST S [, NAME=xxxXxXX] [, LINECNT=xx] + NOSOURCE 1
| |
| « DECK ¢ MAP } {,ngg } {,BCD {,ID ' 2 !
| , NODECK/ |, NOMAP ,NOLOADf |, EBCDIC , NOID |
| !
|Compiler Options: FORTRAN IV (H) only {
I %
| {PARM \ ,EDIT ,XREF | ' 2 |
| | \PARM.procstepf = ' [OPT={0}112}1 [, SIZE=nnnnk] « NOEDIT « NOXREF !
] |
{Linkage Editor: !
! !
| {PARM MAP !
| PARM.procstepf = (|XREF [,LET} [,NCAL] [,LIST])%]
| |
| Loader: i
| 1
| {PARM } MAP +CALL } ¢ LET ¢ SIZE=100K l
| PARM.procstepf = (| NOMAP ¢ NOCALL ¢ NOLET ¢+ SI1ZE=size |
' 5
| {, EP=name] {,PRINT } 12 i
| NOPRINT/S) i
t 1
|*The subparameters (options) are keyword subparameters. i
|21f any keyword subparameter contains blanks, parentheses, or equal signs, either the |
| keyword subparameter must be enclosed by apostrophes or the entire PARM field must be |
| delimited by apostrophes instead of parentheses. {
! ———

e Figure 7. Compiler, Linkage Editor, and Loader Options

Job Control Language 25

Lf a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code, operator{, stepname. procstepl)
If "stepname™ is not given, "code" is
compared with all codes issued by previous

job steps.

Accounting Information:

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou-
tines for this job step.

ACCT.procstep
is used to pass accounting information
for a step within a cataloged
procedure.

If both the JOB and EXEC statements con-
tain accounting information, the installa-
tion accounting routines decide how the
accounting information shall be used for
the job step.

Setting Job Step Time Limits (TIME):
(Used with MVT Priority Schedulers Only)

To limit the computing time used by a
single job step or cataloged procedure, a
maximum time for its completion can be
assigned. If the job step is not completed
in this time, the entire job is terminated.
Assignment of such a time limit is particu-
larly useful in a multiprogramming environ-
ment where more than one job has access to
the computing system.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439 (24 hours); the number of
seconds cannot exceed 59. (If the job step
execution time is expected to exceed 1439
minutes, TIME=1440 can be coded to elimi-
nate job step timing.)

If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed.

TIME
is used to assign a time limit for a
job step or for an entire cataloged
procedure. For a cataloged procedure,
this parameter overrides all TIME
parameters that may have been speci-
fied in the procedure.

TIME.procstep

is used to assign a time limit for a
single step of a cataloged procedure.

26

This parameter overrides, for the
named step, any TIME parameter which
is present. One parameter of this
form can be written for each step in
the procedure.

Specifying Main Storage Requirements for a
Job Step (REGION)
(Systems with MVT Only)

The REGION parameter is used to specify:

¢ The maximum amount of main storage to
be allocated to the job step. This
figure must include the size of those
components that are required by the
user's program and that are not resi-
dent in main storage.

e The amount of main storage to be allo-
cated to the job, step and in which
storage hierarchy or hierarchies the
space is to be allocated. This request
should be made only if main storage
hierarchy support 1s specified during
system generation.

To request the maximum amount of main
storage required by the job step, REGION=
nnnnnkK is coded in the operand field of the
JOB statement. The term nnnnn is replaced
with the number of contiguous 1024-byte
areas to be allocated to the job, e.g.,
REGION=52K. This number can range from one
to five digits, but cannot exceed 16383.

It should be specified as an even number.
(If an odd number is specified, the system
treats it as the next highest even number.)

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce-
dure) is assumed.

Notes:

e If the REGION parameter has been speci-
fied on the JOB statement, REGION para-
meters on the job's EXEC statements are
ignored.

¢ When the job step uses a cataloged pro-
cedure, a region size can be requested
for a single procedure step by includ-
ing, as part of the REGION parameter,
the procedure step name, i.e., REGION,
procstep. This specification overrides
the REGION parameter in the named pro-
cedure step, if one is present. As
many parameters of this form can be
coded as there are steps in the cata-
loged procedure.

¢ To request a single region size for an
entire cataloged procedure, code the
REGION parameter without a procedure

step name. This specification over-
rides all REGION parameters in the pro-
cedure, if any are present.

Main storage hierarchy support provides
for storage hierarchies 0 and 1. YXIf IBM
2361 Core Storage, Model 1 or 2, is present
in the system, processor storage is
referred to as hierarchy 0 and 2361 Core
Storage is referred to as hierarchy 1. If
2361 Core Storage is not present but main
storage hierarchy support was specified
during system generation, a 2-part region
is established in processor storage when a
region is defined to exist in two hierar-
chies. The two parts are not necessarily
contiguous.

When main storage hierarchy support is
included in the system, the REGION paramet-
er can be used to request both the maximum
amount of storage to be allocated to the
job step and the hierarchy or hierarchies
in which the storage is to be allocated.

To specify a region size and the hierar-
chy desired, REGION=(value K, value,K) is
coded in the operand field of the JOB
statement. The term "value " is replaced
with the number of contiguous 1024-byte
areas to be allocated to the job step in
hierarchy 0; the term "value,® is replaced
with the number of contiguous 1024-byte
areas to be allocated in hierarchy 1, e.g.,
REGION= (60K, 200K). When processor storage
includes hierarchies 0 and 1, the combined
values of value and value, cannot exceed
16383. If 2361 Core Storage is present,
value cannot exceed 16383, and value; can-
not exceed 1024, if using a single Model 1,
or 2048, if using a single Model 2. Each
value specified should be an even number.
(If an odd number is specified, the system
treats it as the next highest even number.)

In systems with main storage hierarchy
support, either subparameter can be omitted
to request storage in only one hierarchy.
If storage is requested only in hierarchy
1, a comma must be coded to indicate the
absence of the first subparameter, €.ge.,
REGION=(,52K). If storage is requested
only in hierarchy 0, the parentheses need
not be coded, e.g., REGION=70K.

If the REGION parameter is omitted, or
if a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce-
dure) is assumed. When the default region
size is assumed, storage is always allo-
cated in hierarchy 0.

Notes:

e If the REGION parameter has been speci-
fied on the JOB statement, REGION para-

meters on the job's EXEC statements are
ignored.

o If main storage hierarchy support is
not included and regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

* When the job step uses a cataloged pro-
cedure, a region size can be requested
for a single procedure step by includ-
ing, as part of the REGION parameter,
the procedure step name, i.e., REGION.
procstep. This specification overrides
the REGION parameter in the named pro-
cedure step, if one is present. As
many parameters of this form can be
coded as there are steps in the cata-
loged procedure.

® To request a single region size for an
entire cataloged procedure, code the
REGION parameter without a procedure
step name. This specification over-
rides all REGION parameters in the pro-
cedure, if any are present.

e For information on storage requirements
to be considered when specifying a
region size, see the Storage Estimates
publication.

Establishing a Dispatching Priority
(DPRTY)
(Systems with MVT only)

The DPRTY parameter specifies the dis-
patching priority of a job step's tasks.
The dispatching priority determines the
order in which a job step's tasks will use
main storage and CPU resources. Unless the
DPRTY parameter is coded, each job step is
assigned the same dispatching priority as
the job.

To assign a dispatching priority to a
job step, the keyword parameter:

DPRTY = (value 1, value 2)

is coded in the operand field of the EXEC
statement. The terms value 1 and value 2
may each be assigned a number from 0
through 15. The higher the number, the
higher the dispatching priority will be.
(Whenever possible, assigning a number of
15 to value 1 should be avoided since this
number is used for certain system tasks.)
The number assigned to value 1 is converted
by the system to determine an internal
priority. The number assigned to value 2

Job Control Language 27

Page of GC28-6817-2, Revised 12/30/70, by TNL:

is added to the internal priority to form
the dispatching priority. If a number is
not assigned to value 1, a default value of
zero is assumed; for value 2 a default
value of 11 is assumed.

DPRTY
is used to assign a dispatching
priority for a job step or for an
entire cataloged procedure. For a
cataloged procedure, this specifica-
tion overrides all DPRTY parameters
that may have been specified in the
procedure.

DPRTY. procstep
is used to assign a dispatching
priority to a single procedure step in
a cataloged procedure. This parameter
overrides, for the named step, any
DPRTY parameter which is present. One
parameter of this form can be written

for each step in the cataloged
procedure.
Note: A detailed discussion of dispatching

priorities can be found in the Concepts and
Facilities publication listed in the
Preface.

DATA_DEFINITION_(DD) STATEMENT

The DD statement (Figure 8) describes
data sets. The DD statement can contain
the following information:

1. Name of the data set to be processed.

28

GN28-0591

2.

Type and number of I/O devices for the
data set,

3. Volume(s) on which the data set
resides.

4. Amount and type of space allocated on
a direct access volume.

5. Label information for the data set.

6. Disposition of the data set after
execution of the job step.

7. Allocation of data sets with regard to
channel optimization.

8. Whether a particular data set may be
used only for input or only for
output.

NAME FIELD
ddname
is used:
1. To identify data sets defined by

this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the pro-
grammer in his source module.

3. To identify this DD statement to

other control statements in the
input stream.

=]
5
3
®

L}
Operation|Operand*
}

1

T
|Positional Parameter

|

I * “
|| puMMY

|| pAaTA

ddname 2
//\procstep.ddnane

JOBLIB3

STEPLIB

SYSABEND

. SYSUDUMP

=}
o

Keyword ParametersS ©

DDNAME=ddname
dsname
dsname (element)
*, ddname
{DSNAME}= *,stepname.ddname
DSN *, stepname. procstep. ddname
&name
éname (element) J

[UNIT=(subparameter-1list)]
[DCB=(subparameter-list)]

VOLUME
=(subparameter-list)
| (VoL

[SPACE=(subparameter-list)
SPLIT=(subparameter-1list)
| SUBALLOC=(subparameter-1list)

{LABEL=(subparameter-1list)]

DISP=(subparameter-list)

SYSOUT=A

SYSOUT=B
L?YSOUT=(x[,program—name][,form—number])’ 8

e — s . o . e . e o e — i S i, . o . S e S S S S e Sl i S s it W s, S e S, S, S W
. oo S e — . S it S s, P s T e S st S o, et s o S e, e o, S o o e s .

o e ————————————— e e

| (SEP=(subparameter-1list)]
L

|*A DD statement with a blank operand field can be used to override parameters speci-

| £fied in cataloged procedures. (See "Overriding and Adding DD Statements" in the sec-
| tion "cCataloged Procedures".)

|2The name field is blank when concatenating data sets. (Note the exception for the

| use of JOBLIB.)

|3The JOBLIB statement precedes any EXEC statements in the job. (See the discussion

| concerning JOBLIB under "Name Field" in this section.)

|“If either the * or DATA the positional parameter is specified, no keyword parameters
| other than DCB=BLKSIZE and DCB=BUFNO can be specified.

|8If “"subparameter-list" consists of only one subparameter and no leading comma (indi-
| cating the omission of a positional subparameter) is required, the delimiting paren-
| theses may be omitted.

|¢1f "subparameter-list"™ is omitted, the entire parameter must be omitted.

|?7This form of the parameter is used only with priority schedulers.

|8If "program-name" and "form-number" are omitted, the delimiting parentheses can be

| omitted. If only the form number is given, the parentheses must be used and two com-
| mas must precede the form number.
L

Figure 8, Data Definition Statement

Job Control Language 2

e e s e e e e s e . o e e et . e s D s . S s A S — a——— r—— t——— — 7— — ———— — — ——— o——— aS— _— f— — — — — — —— — — ——— st ool s

9

The "ddname" format is given in "FORTRAN
Job Processing."

procstep.ddname
is used to override DD statements in
cataloged procedures, The step in the
cataloged procedure is identified by
"procstep”. The "ddname" identifies
either:

1. A DD statement in the cataloged
prcocedure that is to be modified
by the DD statement in the input
stream, or

2. A DD statement that is to be added
to the DD statements in the proce-
dure step.

JOBLIB and STEPLIBE
are used to concatenate a private
library with the system library, SY¥Sil.
LINKLIB; that is, the operating system
library and the data sets specified in
the JOBLIB or STEPLIB DD statement are
temporarily combined to form one
library. Use of JOBLIB results in
concatenation for the duration of a
-job; use of STEPLIB, for the duration
of a job step.

The JOBLIB DD statement must appear
immediately after the JOB statement of
the job to which it pertains, and its
operand field, at a minimum, must con-
tain the DSNAME and DISP parameters.
The DISP parameter must be coded eith-
er DISP=(NEW,PASS) or DISP=(OLD,PASS)
or DISP=(SHR,PASS) so that the library
remains available throughout the job.
(see the discussion of the DISP param—-
eter under "Operand Field."

The STEPLIB DD statement may appear in
any position among the DD statements
for the step. The data set defined
should be OLD. If the private library
is not cataloged and is to be referred
to in a later step (or steps),
DISP=(OLD, PASS) or DISP=(SHR,PASS)
should be coded; a later step may then
refer to it by coding
LDCSNAME=*,stepname. STEPLIB, DISP=(OLD,
PASS) on the STEPLIB DD statement for
the later step.

For additional information on the use
of JOBLIB and STEPLIB DD statements,
see the Job Control Langquaqge Reference
publication, Form GC28-6704,

SYSABEND and SYSUDUMP
are special DD names used to define a
data set on which a system abnormal
termination dump can be written. The
dump is provided for job steps subject
to abnormal termination.

30

The dump provided when the SYSABEND DD
statement is used includes the system
nucleus, the problem program storage
area, and a trace table, if the trace
table option was requested at system
generation. The SYSUDUMP DD statement
provides a dump of only the problem
program area.

A full discussion of SYSABEND and SYS-
UDUMP DD statements, with an example
of use, appears in the Job Control
Lanquage Reference publication, Form
GC28-6704.

BLANK NAME FIELD

If the name field is blank, the data set
defined by the DD statement is concatenated
with the data set defined in the preceding
DD statement. In effect, these two data
sets are combined into one data set.
(Private libraries, i.e., partitioned data
sets, may also be concatenated with the 1li-
brary specified in the JOBLIB DD statement.
Therefore, several libraries can be concat-
enated with the system library. Individual
members of a partitioned data set, however,
cannot be concatenated.)

Note: Handling of data sets whose records
are of different lengths and/or different

formats is a function of the program being
executed, Data sets designated for conca-
tenation may not be in the input stream.

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement have been divided into
seven functions., Parameters are used to:

e Specify data in the input stream.

e Specify unit record data sets.

e Retrieve a previously created and cata-
loged data set.

e Retrieve a data set created in a pre-
vious job step in the current job and
passed to the current job step.

e Retrieve a data set created but not
cataloged in a previous job.

¢ Create data sets that reside on magnet-
ic tape or direct access volumes.

e Optimize I/O operations,

T
stat

See

P
ment
ate
in J
cuss
and

Spec

he following text describes the DD
ement parameters that apply to:

Processing unit record data sets.

Retrieving data sets created in pre-
vious job steps.

Retrieving data sets created and cata-
loged in previous jobs.

Figure 9 for applicable parameters.

arameters shown in Figure 8 and not
joned in this section are used to cre-
data sets and optimize I/0 operations
ob steps. These parameters are dis-

ed in the sections "Creating Data Sets"
"Programming Considerations."”

ifying Data in the Input Stream:

*

DATA

UNIT

indicates that a data set (e.g., a
source module or data) immediately
follows this DD statement in the input
stream (see Figure 10). If the EXEC
statement for the job step invokes a
cataloged procedure, a data set may be
placed in the input stream for each
procedure step. If the EXEC statement
specifies execution of a program, only
one data set may be placed in the
input stream. The DD * statement must
be the last DD statement for the pro-
cedure step or program. The end of
the data set must be indicated by a
delimiter statement. The data itself
cannot contain job control statements
(neither the comment statement nor any
statements with // or /* in columns 1
or 2). Note, too, that if * is speci-
fied, no keyword parameters other than
DCB=BLKSIZE or DCB=BUFNO may be
specified.

also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
* parameter, except that // may appear
in the first and second positions of a
record.

Parameter:

UNIT

=(namel, {n|P}1])
specifies the name and number of I/0
devices for a data set (see Figure
10). When the system is generated,
the "name" is assigned by the operat-
ing system or the installation and
represents a device address, a device
type, or a device class. (See the
System Generation publication.} The
programmer can use only the assigned

*Figure

{;ATA}1

dsname

dsname(element)

*,ddname

*, stepname,ddname

*, stepname. procstep. ddname
&name

&name (element)

=}
12}
2

{DSNAME}:

UNIT=(namel, {n|P}2]1)3

DCB=({MODE=E}
MODE=C

j,STACK=1})
\, STACK=2

SYSOUT=A
SYSOUT=B
SYSOUT=(x [, program-name]

[, form-numberl)4 S

SHR
OLD
NEW
MOD

, DELETES
+ KEEP
,PASS

, CATLG
UNCATLG

. DELETE
, KEEP
, CATLG
UNCATLG

DISP=(

LABEL=(subparameter-list) @

VOLUME |
; =(subparameter-list)®

e,

VOL

)7

—— T ot s S o . G . st il S P G — —— T— — " —— — —— V— —_— {— — —— ———— s "}

be specified.

2If neither "n" nor "P" is specified,
is assumed.

| miting parentheses may be omitted.

with priority schedulers.

| be omitted.

| ¢The assumption for the second subpara
| meter is discussed in "Specifying the
| Disposition of a Data Set" in this

| section.

| 7The subparameters are positional.
|2See the section "Creating Data Sets."
L

11f * is specified, no keyword parameters
other than DCB=BLKSIZE or DCB=BUFNO may

|2If only "name" is specified, the deli-
|{“This form of the parameter is used only

8If "program-name® and "form-number" are
omitted, the delimiting parentheses can

1

e e e e S — T —— —— —————— — ——] S—— — — —— — ———— —— {—— U— —— —— — — — {— —— — —— — {—o—{o———— ot s 5}

9. DD Statement

names in his DD statements. For

example,
UNIT=190, UNIT=2311, UNIT=TAPE

where 190 is a device address, 231

1 is

a device type, and TAPE is a device

class.
n|p

specifies the number of devices al
cated to the data set. If a numbe

Job Control Language

lo-
r

31

"n" is specified, the operating system
assigns that number of devices to the

data set. "P" is used with cataloged

data sets when the required number of

volumes is unknown. The control pro-

gram assigns a device for each volume

required by the data set.

Sample Coding Form

-0 | 11-20 | 21-30 3-40 |
1]2]3]a[5[6[7[8[9[0]1 2]3[4[5]6[7[8[9]0 i [2[3]4[5]6]7]8[9l0 1 [23[4]5[6]7[8l9]0
L JEX'QM[Q! 11;1 m/ﬂtan TR AR e Lo)
//ﬁngRLNﬂJDD SYSO0UT=AsDCB=PRTSP=2

Lo

lllIllLii;JLlllllJA!lllllll,lLkllllllllll

JJlﬁxlg_méﬁlJle_‘LQGr é)lllllfllullJnnx

,/L!LSLngj_PJQLNICIHl IDIDI IUINIIl.r'I=ISIYISICIPL,IDICIBI=J§:TIAIQK|=I2 1

T
L,l.._.LJ’llll!lll||AllA|l|1LL]lAI‘IIII|IIll

. Example| 3:. Card Keader |1.. ..

1/ SYSIN DD,

ol e e v v g e Ly
T 1

ad e o Lo v b e b L

Figure 10. Examples of DD Statements for

Unit Record Devices

DCB Parameter:

MODE=E} ,STACK=1}
DCB=(|\MODE=Cf 1, STACK=2f)

specify options for the card read
punch. The MODE subparameter indi-
cates whether the card is transmitted
in column binary or EBCDIC mode; C
specifies column binary, and E speci-
fies EBCDIC.

The STACK subparameter indicates
stacker selection for the card read
punch.

Routing a Data Set To An Output Stream
(SYSoUT) : With the SYSOUT parameter, out-
put data sets can be routed to a system
output stream and handled much the same as
system messages.

S5YSOUT=A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB param-
eter has any meaning when SYSOUT=A is

used. This form of the SYSOUT param-
eter may be specified for printer data
sets.

SYSOuUT=B

can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

32

SYsouT=(x[, program-namel [, form-number])
is used with priority schedulers.
When priority schedulers are used, a
data set is normally written on an
intermediate direct access device dur-
ing program execution and later routed
through an output stream to a system
output device. The "x" is to be
replaced by an alphabetic or numeric
character that specifies the system
output class to be used. Output writ-
ers route data from the output classes
to system output devices. The DD
statement for this data set can also
include a unit specification that
describes the intermediate direct
access device and an estimate of the
space required. If these parameters
are omitted, the job scheduler pro-
vides default values as the job is
read and processed.

If there is a special installation
program to handle output operations,
its "program-name" should be speci-
fied. "Program—name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a 4-digit "form-
number"™ should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

Retrieving Previously Created Data Sets

If a data set is created with standard
labels and cataloged in a previous job, all
information for the data set, such as rec-
ord format, density, volume sequence num-
ber, device type, etc., is stored in the
catalog and labels. This information need
not be repeated in the DD statement used to
retrieve the data set; only the name
(DSNAME) and disposition (DISP) is
required.

If a data set was created in a previous
job step in the current job and its dispo-
sition was specified as PASS, all the
information in the previous DD statement is
available to the control program, and is
accessible by referring to the previous DD
statement by name. To retrieve the data
set, a pointer to a data set created in a
previous job step is specified by the
DSNAME parameter. The disposition (DISP)
of the data set is also specified, along
with the UNIT parameter if more than one
unit is to be allocated.

If a data set is created with standard
labels in a previous job but not cataloged,
information for the data set, such as rec-
ord format, density, volume sequence num-
ber, etc., is stored in the labels; the
device type information is not stored. To
retrieve the data set, the name (DSNAME),
disposition (DISP), volume serial number
(VOLUME), and device (UNIT) must be
specified.

If a data set is created with no labels
and cataloged, device type information is
stored in the catalog. To retrieve the
data set, the name (DSNAME), disposition
(DISP), volume serial number (VOLUME), and
the LABEL and DCB parameters must be
specified.

Examples of the use of DD statements to
retrieve previously created data sets are
shown in Figure 11.

IDENTIFYING A CREATED DATA SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the cur-
rent or a previous job step.

specifying a Cataloged Data Set by Name:

DSNAME=dsname
the name of the data set is indicated
by "dsname." If the data set was pre-
viously created and cataloged, the
control program uses the catalog to
find the data set and instructs the
operator to mount the required

Specifying a Generation Data Group or PDS:

DSNAME=dsname(element)

indicates either a generation data set
contained in a generation data group,
or a member of a partitioned data set.
The name of the generation data group
or partitioned data set is indicated
by "dsname"; if "element™ is either 0
or a signed integer, a generation data
set is indicated. For example,

DSNAME=FIRING(-2)

indicates the thirdmost recent member
of the generation data group FIRING.
(See the Data Management publication
for the complete description of
generation data sets.) If "element”™
is a name, a member of a partitioned
data set is indicated.

Note: Members of a partitioned data
set may be read as input to a FORTRAN
object program or created as output
from a FORTRAN object program, but
only if the member name and either
LABEL=(,,,IN) or LABEL=(,,,0UT) are
specified in an associated DD
statement.

Referring to a Data Set in the Current Job
Step:

DSNAME=#%, ddname
indicates a data set that is defined
previously in a DD statement in this
job step. The * indicates the current
job. The name of the data set is
copied from the DSNAME parameter in

volumes, the DD statement named "ddname".

Sample Coding Form

1-10 T 11-20 [21-30 [31-40 I 41-50 1 81— 60 T 61-70 [71-80
112[3[4[5]6[7[813l0[1 [2]3]a[5]6]7[8I]0 1 12]3[4]5 6l 8Io[0 1 [2[3[al6]6l7[8[olol 1 [2][3]4]5]6[718[ol0] i [2[3]a]56[718[]o] 1 [2[3]4a[5[6[7I8[a(o] 1 [2[3]4]5[6[7]8]9]0

| Example L: Ketrieving a Catiploged Data Sedl o | ool il
/lIlFlTl¢|9lFl¢L¢I1,I ID4D| lDlSlNlAME%=IMAITJH|,lDLI ISIP_!=I(IOIL1DI,IPIAISIS!)I 11 lJ Ll ! B N W S JJ_I 14 ! L1t IJ N I S . !LJ_I A 1 J VIS . §
llllIlIll!IlIlIlllI!lllllilll'LIlILLLlll!llllJlJIIIJIIllllIl_IﬁllllllLll“LllllilILl

- , | E

M@i&t&qﬁm@m&i&mﬁam&m&m&mﬂm
//FTlmFamiLn e} 1 | ADSNAlME * ISTEPLH FT¢7\F¢\¢111’|DII1slpl=l(1M10p’lkElgPI)l N N S T T B O | le Lo | ns‘.tB’D

i l i 4 1 1 ! 11 1) l 11 b) ! S T | l J I T N | ! | T l) W S l I T 1 l L4l 1 N B l Ll 11 ! N O 1 J L1 1 1' i I T | L 1.1 14

1/11" 2 & K @/ A0 2 f w1 20 A 1. O .

/l FTlfi 0”1[L PIDI | Ds A!MElgtMTLH:,IDxIJ81PI IO‘LL D) UNIjr 18¢I,VOLUKME SEJlizlin l daa ol | AR ISR

B N B | IJ[L.l Ll dead Ll#l'l J l b l#[l Lol Llll i ILA Ll , U O 1 l i W S T | , Loodnd L.]Ll ‘Jl L L.l lJll Lol I Ll lll derdnde,
Figure 11. Retrieving Previously Created Data Sets

Job control Language 33

race of GC28-6817-2,

Referring to a Data Set in a Previous Job

DSNAME=%_,stepname, ddname
indicates a data set that is defined
in a DD statement in a previous job
step in this job., The * indicates the
current job, and "stepname® is the
name of a previous job step. The name
of the data set is copied from the
DSNAME parameter in the DD statement
named "ddname". For example, in the
following control statements the DD
statement FTO8F001 in job step 352
indicates that the data set name
{TIME) is copied from the DD statement
FTO9F001 in -job step Si.

//LAUNCH JOB

//JOBLIB DD DSNAME=FIRING, DISP=(OLD, PASS)
/751 EXEC PGM=ROCKET

//FT01F001 DD DSNAME=RATES(+1),DISP=0OLD
//FT03F001 DD DSNAME=TIME, DISP=(OLD, PASS)
/752 EXEC PGM=DISTANCE

//FT03F001 DD DSNAME=#%,S1.FT09F001, X
o4 DISP=OLD

//FT05F001 DD *

»

Referring to a Data Set in a Cataloged

DSNAME=%.stepname, procstep.ddname
indicates a data set that is defined
‘n a cataloged procedure invoked by a
previous job step in this job. The *
indicates the current job; "stepname"
s the name of a previous job step
that invoked the cataloged procedure;
“orocstep" is the name of a step in
the cataloged procedure. The name of
the data set is copied from the DSNAME
rarameter in the DD statement named
“ddname” .

SNAME=&name
assigns a name to a temporary data
=et. The control program assigns the
data set a unique name which exists
<only until the end of the current job.
The data set is accessible in subse-
quent job steps by specifying "é&name".
This option is useful in passing an
cbject module from a compiler job step
to a linkage editor job step.

DSNAME=&name (element)
assigns a name to a member of a tem-
porary PDS. The name is assigned in
the same manner as for the DSNAME=
{name option. The "&name(element)"
option is useful in storing load

Revised 12/30/70, by TNL:

GN28-0591

modules that will be executed in a
later job step in the current job.

SPECIFYING THE DISPOSITION OF A DATA SET:

The DISP parameter is specified for both
previously created data sets and data sets

being created in this job step. It con-
tains three subparameters.
SHRl . DELETE +DELETE
NEW(| ,KEEP + KEEP
DISP=(OLDS , PASS ,CATLG |)
mMoDp) | , CATLG , UNCATLG |
UNCATLG_

The first subparameter indicates the
status of the data set at the beginning of
or during the job step.

SHR
indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not
prevent simultaneous use of the data
set as input to another job. This
parameter has meaning only in a multi-
programming environment for existing
data sets. If it is omitted in a mul-
tiprogramming environment, the data
set is considered unusable by any
other concurrently operating job. If
it is coded in other than a multipro-
gramming environment, the system
assumes that the disposition of the
data set is OLD.

NEW
indicates that the data set is created
in this step. NEW is discussed in
more detail in the section "Creating
Data Sets."

OLD
indicates that the data set was
created by a previous job or job step.

MOD
indicates that the data set was
created in a previous job or job step,
and that additional records are to be
added to it. Before the first input/
output operation for the data set
occurs, the data set is automatically
positioned after the last record in
the data set. If MOD is specified and
no volume information (e.g., Vvolume
serial number) is available for the
data set, the system assumes the data
set does not yet exist and creates the
data set for the -job step. (Volume
information is considered available if
it is coded in the DD statement,
passed with the data set from a pre-
vious step, or contained in the
catalog.)

The second subparameter indicates the
disposition of the data set at normal job
step termination.

DELETE
causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

KEEP

insures that the data set is kept
intact until a DELETE parameter is
specified in a subsequent job or job
step. KEEP is used to retain uncata-
loged data sets for processing in
future jobs. KEEP does not imply
PASS.

PASS
indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses
the data set. When a data set is in
PASS status, the volume(s) on which it
is mounted is retained. If demounting
is necessary, the control program
issues a message to mount the vol-
ume (s) when needed. PASS is used to
pass data sets among job steps in the
same job.

If a data set on an unlabeled tape is
being passed, the volume serial number
must be specified in the VOLUME=SER=
parameter of the DD statement that
passed the data set.

Note: The PASS status of the private
library specified in a JOBLIB DD statement
always remains in effect for the duration
of a job.

CATLG
causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subse-
quent jobs or job steps by name (CATLG
implies KEEP),

UNCATLG
causes references to the data set to
be removed from the catalog at the end
of the job step.

If the second subparameter is not speci-
fied, no action is taken to alter the sta-
tus of the data set. If the data set was
created in this job, it is deleted at the
end of the current job step. If the data
set existed before this job, it exists
after the end of the job.

The third subparameter indicates the
disposition of the data set if the job step
terminates abnormally. This is the condi-
tional disposition of the data set.
Explanations for DELETE, KEEP, CATLG, and
UNCATLG are the same as those for normal
termination.

Notes:

e If a conditional disposition is not
specified and the job step abnormally
terminates, the requested disposition
(the second subparameter of the DISP
keyword) is performed.

e Data sets that were passed but not
received by subsequent steps because of
abnormal termination will assume the
conditional disposition specified the
last time they were passed. If a con-
ditional disposition was not specified
then, all data sets that were new when
initially passed are deleted. 2All
other data sets are kept.

e A conditional disposition other than
DELETE for a temporary data set is
invalid, and the system assumes DELETE.

Effect of DISP Parameter at End of FORTRAN
Job: In a FORTRAN job that is terminated
by a STOP or CALL EXIT statement all data
sets that were used by the job will be
closed. The closing operation will posi-
tion the volume in accordance with the DISP
parameter, as follows:

DISP_Parameter Positioning Action

PASS Forward space to end
of data set
DELETE Rewind

KEEP, CATLG, UNCATLG Rewind and unload

DELIMITER STATEMENT

The delimiter statement (see Figure 12)
is used to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input
stream,

F T L]
| Name | |
F 1-
|L/* i |

1]

Figure 12, Delimiter Statement

Job Control Language 35

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

COMMENT STATEMENT

The comment statement (see Figure 13) is
used to enter any information considered
helpful by the programmer. It can be
inserted before or after any control state-
ment that follows the JOB statement. Com-
ments can be coded in columns 4 through 80.
The comments cannot be continued onto
another statement. (If the comment state-

36

ment appears on a system output listing, it
can be identified by the appearance of *%*%
in columns 1 through 3.)

b e b e o

Figure 13. Comment Statement

The comment statement contains a slash
in column 1, a slash in column 2, and an
asterisk in column 3. The rest of the card
can contain comments.

To process a FORTRAN source module from
compilation through execution, three steps
are required: to compile the source module
to obtain an object module, to linkage edit
the object module to obtain a load module,?
and to execute the load module. For each
of these three steps, job control state-
ments are required to indicate the program
or procedure to be executed, to specify
options for the compiler and linkage edi-
tor, to specify conditions for termination
of processing, and to define the data sets
used during processing. Because writing
these job control statements can be time-
consuming work for the programmer, IBM sup-
plies, for each compiler, four cataloged
procedures to aid in the processing of FOR-
TRAN modules. The use of cataloged proce-
dures minimizes the number of job control
statements that must be supplied by the
programmer.

USING CATALOGED PROCEDURES

When a programmer uses cataloged proce-
dures, he must supply the following job
control statementse.

1. A JOB statement.

2. An EXEC statement that indicates the
cataloged procedure to be executed.

3. A procstep.SYSIN DD statement that
specifies the location of the source
module(s) or the object module(s) to
the control program. (Note: If the
source module(s) and/or object mod-
ule(s) are placed in the input stream,
a delimiter statement is required at
the end of each data set.)

In addition, a GO.SYSIN DD statement
can be used to define data in the input
stream for load module execution. (A de-
limiter statement is required at the end of
the data.)

The job control statements needed to
invoke the procedures, and deck structures
used with the procedures are described in
the following text.

" —— o

1As an alternative, the object module may
be edited and then automatically executed
by the loader, another IBM-supplied pro-
gram. Details on the use of the loader
can be found in the Linkage Editor and
Loader publication.

FORTRAN JOB PROCESSING

COMPILE

The FORTRAN IV (G) cataloged procedure
for compilation is FORTGC; the FORTRAN IV
(H), FORTHC.2 These cataloged procedures
consist of the control statements shown in
Figures 42 and 47, respectively.

Figures 14, 15, and 16 show control
statements that can be used, as programming
needs dictate, to invoke for either compil-
er the cataloged procedure for compilation.
For both compilers, control statements and
control statement fields are identical,
except for the procedure-name specified on
the EXEC statement: FORTGC is specified
for the (G) compiler; FORTHC, for the (H)
compiler, In the control statement
sequences shown, the SYSIN data set con-
taining the source module is defined as
data in the input stream for the compiler.
Note that a delimiter statement follows the
FORTRAN source module.

//3jobname JOB

// EXEC FORTGC or FORTHC

//FORT.SYSIN DD *

r 1

| FORTRAN Source Module |
L.

/*

Figure 14. Invoking the Cataloged Proce-

dure FORTGC or FORTHC

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 15.

//JOBSC JOB 00, FORTRANPROG, MSGLEVEL=1
//EXECC EXEC PROC=FORTGC or PROC=FORTHC
//FORT. SYSIN DD *

[T T T T T T e e 1
| FORTRAN Source Module |
L -1
/*

Figure 15, Compiling a Single Source

Module

Batched Compile: A sample deck structure
to batch compile is shown in Figure 16.

2For FORTRAN IV (H), if the EDIT option is
specified, a SYSUT1 data set must be
defined as a work data set for the compil-
er; if the compiler XREF option is speci-
fied, a SYSUT2 data set must be defined as
a work data set.

FORTRAN Job Processing 37

//JOBBC JOB 00, FORTRANPROG, MSGLEVEL=1
//EXECC EXEC PROC=FORTGC or PROC=FORTHC
//FORT.SYSIN DD *

f 1
| First FORTRAN Source Module |
L J

.

Last FORTRAN Source Module

r—
b e

/*
Figure 16, Compiling Several Source
Modules

When several source modules are entered
in the SYSIN data set for one job step, the
compiler recognizes the FORTRAN END state-
ment., If the next card is a delimiter
statement, control returns to the control
program at the end of the compilation. If
the next card is a FORTRAN statement, con-
trol remains with the FORTRAN compiler.

COMPILE AND LINKAGE EDIT

For FORTRAN IV (G), the cataloged proce-
dure to compile FORTRAN source modules and
linkage edit the resulting object modules
is FORTGCL; for FORTRAN IV (H), FORTHCL.
These cataloged procedures consist of the
control statements shown in Figures 43 and
48, respectively.

Figure 17 shows control statements that
can be used to invoke FORTGCL or FORTHCL,
The control statements are identical for
both compilers, except for the procedure-
name specified on the EXEC statement:
FORTGCL is specified for the (G) compiler;
FORTHCL, for the (H) compiler.

//3jobname JOB

control statements shown in Figures 44 and
49, respectively.

Figure 18 shows control statements that
can be used to invoke FORTGLG or FORTHLG,
The control statements are identical for
both compilers, except for the procedure
name specified on the EXEC statement:
FORTGLG is specified for the (G) compiler;
FORTHLG, for the (H) compiler.

//jobname JOB
// EXEC FORTGLG or FORTHLG
//LKED.SYSIN DD *

r
| FORTRAN Object Module

L

/%

b e ol

Invoking the Cataloged Proce-
dure FORTGLG or FORTHLG

Figure 18.

A sample deck structure to linkage edit
and execute, as one load module, several
object modules entered in the input stream
is shown in Figure 19.

The object module decks were created by
the DECK compiler option. The linkage edi-
tor recognizes the end of one module and
the beginning of another, and resolves
references between themn.

//JOBBLG JOB 00, FORTPROG, MSGLEVEL=1
//EXECLG EXEC PROC=FORTGLG or PROC=FORTHILG
//LKED. SYSIN DD *

r -1
| First FORTRAN Object Module]

r 1
/7 EXEC FORTGCL or FORTHCL | Last FORTRAN Object Module |
//FORT.SYSIN DD * L 1
r k] /*
| FORTRAN Source Module | //GO.SYSIN DD *
L 4 r 1
Ve I Data |
L J
Figure 17. Invoking the Cataloged Proce- /¥
dure FORTGCL or FORTHCL
Figure 19. Linkage Edit and Execute

LINKAGE EDIT AND EXECUTE

For FORTRAN IV (G), the cataloged proce-
dure to linkage edit FORTRAN object modules
and execute the resulting load module is
FORTGLG; for FORTRAN IV (H), FORTHLG.

These cataloged procedures consist of the

38

A sample deck structure is shown in
Figure 20 to linkage edit and execute, as
one load module, object modules that are
members of the cataloged sequential data
set, OBJMODS, which resides on a tape
volume. In addition, a data set in the
input stream is processed using the SYSIN
data set.

Page of GC28-6817-2,

//JOBBLG JOB 00, FORTPROG,MSGLEVEL=1
//EXECLG EXEC FORTGLG or FORTHLG
//LKED.SYSIN DD DSNAME=0BJMODS, DISP=0LD
//G0.SYSIN DD #*

T 1
| Data |
B e e e e e e e e e e e e e o e e e e o o e e i e o e e e e e e . e o s e N
Ve

Figure 20. Linkage Edit and Execute Object

Modules in a Cataloged Data Set

COMPILE, LINKAGE EDIT, AND EXECUTE

The FORTRAN IV (G) cataloged procedure
FORTGCLG and the FORTRAN IV (H) cataloged
procedure FORTHCLG each pass a source
through three procedure steps -- compile,
linkage edit, and go (execute). These cat-
aloged procedures consist of the control
statements shown in Figures 45 and 50,
respectively.

Figures 21, 22, and 23 show control
statements used to invoke FORTGCLG or
FORTHCLG. For both compilers, control
statements and control statement fields are
identical, except for the procedure name
specified on the EXEC statement: FORTGCLG
is specified for the (G) compiler;
FORTHCLG, for the (H).

//jobname JOB
// EXEC PROC=FORTGCLG or PROC=FORTHCLG
//FORT. SYSIN DD *

1
| FORTRAN Source Module |
i

Figure 21. Invoking the Cataloged Proce-

dure FORTGCLG or FORTHCLG

Single Compile, Linkage Edit, and Execute:

Figure 22 shows a sample deck structure to

compile, linkage edit, and execute a single
source module.

//JOBSCLG JOB 00, FORTPROG, MSGLEVEL=1
//EXECC EXEC FORTGCLG or FORTHCLG
//FORT.SYSIN DD *

Revised 12/30/70, by TNL: GN28-0591

Batched Compile, Linkage Edit, and Execute:
Figure 23 shows a sample deck structure to
batch compile, linkage edit, and execute a
FORTRAN main program and its subprograms.
The source modules are placed in the input
stream along with a data set that is read
using the SYSIN data set.

//JOBBCLG JOB 00, FORTPROG,MSGLEVEL=1
//EXECCLG EXEC FORTGCLG or FORTHCLG
//FORT. SYSIN DD *

e e e e e 3
r -1
| Last FORTRAN Source Module |
O O i
/%

//GQ0. SYSIN DD *
o — ——————

. - -

| Data |
L - 3
/%

Figure 23. Batched Compile, Linkage Edit,

and Execute

COMPILE AND LOAD

The FORTRAN IV (G) cataloged procedure
FORTGCLD and the FORTRAN IV (H) cataloged
procedure FORTHCLD compile FORTRAN source
modules and load the resulting object
modules, The load step combines the func-
tion of the linkage editor with execution
of the edited module.

Figure 23.1 shows control statements
that can be used to invoke FORTGCLD or
FORTHCLD.

//7jobname JOB

//EXECLD EXEC PROC=FORTGCLD
or PROC=FORTHCLD

//FORT.SYSIN DD *

i 1 i et 1
| FORTRAN Source Module | | FORTRAN Source Module
L 3 L ——— -— ——d
/* /*
//GO.SYSIN DD *
r -9 Figure 23.1. Invoking the Cataloged Proce-
i Data | dure FORTGCLD or FORTHCLD
L ———— J
/*

Single Compile and Load: Figure 23.2 shows
Figure 22. Single Compile, Linkage Edit, control statements that can be used to com-

and Execute

pile and load a single source module.

FORTRAN Job Processing 39

Page of GC28-6817-2, Revised 12/30/70,

//jobname JOB 00, 'SOURCE A',MSGLEVEL=1
//EXECA EXEC FORTGCLD or FORTHCLD
//FORT,SYSIN DD #*

| FORTRAN Source Module |
L e e o A o e i i e i o e e e s e 1
/¥

//G0O.SYSIN DD *

1
| Data |
1 _ 1
/*

Figure 23.2. Single Compile and Load

Batched Compile and Load: Figure 23.3
shows control statements that can be used
to batch compile and load a FORTRAN main
program and its subprograms. The source
modules are placed in the input stream
along with a data set that is read using
the SYSIN data set.

//jobname JOB 00, *SOURCE B',MSGLEVEL=1
//EXECB EXEC PROC=FORTGCLD or PROC=FORTHCLD
//FORT.SYSIN DD *

r 1
| First FORTRAN Source Module]
U —_ J
r 1
| Last FORTRAN Source Module |
Lo _—— —d
/%

//GO.SYSIN DD *

bttt - - I
| Data |
L J
/%

Figure 23.3. Batched Compile and Load

COMPILER PROCESSING

The names for DD statements (ddnames)
relate I/0 statements in the compiler with
data sets used by the compiler. These
ddnames must be used for the compiler.

When the system is generated, names for 1I/0
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the FORTRAN IV (G)
compiler is IEYFORT; for the FORTRAN IV (H)

40

by TNL: GN28-0591

compiler, IEKAA0O. If either compiler is
to be executed without using the supplied
cataloged procedures, an EXEC statement of
the following form must be used:

// EXEC PGM=IEYFORT or // EXEC PGM=IEKAAO0O

(For more information on procedures and
options in invoking IEYFORT or IEKAAO0O,
"Appendix A: Invoking the FORTRAN
Compiler.")

see

Compiler ddnames

The compiler can use seven data sets.
To establish communication between the com-
piler and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require-

ment. Table 3 lists the ddnames, func-
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, two
of these data sets are necessary -- SYSIN
and SYSPRINT, along with the direct access
volume(s) that contains the operating sys-
tem. However, with these two data sets,
only the source listing is generated by the
compiler. If an object module is to be
punched and/or written on a direct-access
or magnetic tape volume, a SYSLIN and/or
SYSPUNCH DD statement must be supplied.t

For the DD statements SYSIN, SYSABEND,
SYSUDUMP, or SYSPRINT, an intermediate
storage device may be specified instead of
the card reader or printer. The intermedi-
ate storage device can be magnetic tape or
a direct-access device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was written on interme-
diate storage by a previous job or job
step. If an intermediate device is speci-
fied for SYSPRINT, the map, listing, and
error/warning messages are written on
intermediate storage; a new job or job step
can print the contents of the data set.
When the SYSPRINT data set is written on
intermediate storage, carriage control
characters are placed in the records.

iFor FORTRAN IV (H), if a structured source
listing is to be generated, a SYSUT1 DD
statement must be supplied. If a cross
reference listing is to be generated by
the compiler, a SYSUT2 DD statement must
be supplied.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Table 3. Compiler ddnames

|2*These must not be the same card punches.
L

r ¥ T k|
{ddname |[Function |Device Requirements |
F - L 1
| FORTRAN IV (G) and FORTRAN IV (H) |
} L) L {
SYSIN	reading the	ecard reader
	source	eintermediate
	program	storage
F 4 4 4		
SYSPRINT	writing	eprinter
	the storage	eintermediate
	map,	storage
	listing,	
	label map,	
jand		
	messages	
b = t {		
SYSPUNCH	punching	ecard punch?
{the object	edirect access	
	module deck	emagnetic tape
------------- } 1		
SYSLIN	output data}edirect access	
	set for the	emagnetic tape
1	object	ecard punch#*
{module,		
	used as	
}	input to	
	the linkage	
	editor	
% 4L L 1		
FORTRAN IV (H) Only		
k T T 1		
sYsuTl	work data	edirect access i
	set for the	emagnetic tape
	structured	
	source	
	listing	
'r 1 1 {		
SYSUT2	[work data	edirect access
	set for the	emagnetic tape
	compiler	
{cross		
	reference	
{listing		
ey 1 1

SYSABEND	writing the	eprinter
or jdump for an	eintermediate	
SYSUDUMP	abnormal	storage
	termination	
—_— L L {

|

J

Compiler Device Classes

Names for input/output device classes
used for compilation are also specified by
the operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 4.

The data sets used by the compiler must
be assigned to the device classes listed in
Table 5.

Compiler Data Set Assumptions

Standard assumptions are made for the
DCB parameter of the data sets used by the
FORTRAN IV (G) and (H) compilers. Table 6
contains the values set for the logical
record length, record format, and blocksize

FORTRAN Job Processing 40.1

for the FORTRAN IV (G) compiler. Table 7
contains the values set for the logical
record length, record format, and blocksize
for the FORTRAN IV (H) compiler. Of the
values in these two tables, only the values
for blocksize may be overridden with a DD
statement.

In addition, the programmer may specify
the number of buffers to be used for the
compiler data sets. If this information is
missing, the queued sequential access
method (QSAM) default is used. This
default is three buffers for an IBM 2540
card read punch and two buffers for all
other devices.

Table 4. Device Class Names

T T 1
|Class Name|Class Functions|Device Type i
1

Compiler Options

Options may be passed to the FORTRAN IV
(G) or (H) compiler through the PARM par-
ameter in the EXEC statement (see Figure
24),

The following information may be speci-
fied for both compilers:

1. Whether a listing of an object module
is printed.

2. The name assigned to the program.

3. The number of lines per page for the
source listing.

4, Whether the source module is coded in

4
| SYSSQ |writing, smagnetic tapej| Binary Coded Decimal (BCD) or Extended
| |reading, and |edirect access| Binary Coded Decimal Interchange Code
{ | backspacing | | (EBCDIC).

| | (sequential) | |

———————————— + 4 5. Whether a list of the source state-

| sYspa |writing, | edirect access| ments, with their associated internal
| |reading, | | statement numbers, is printed.

| jbackspacing, | |

| |and updating | | 6. Whether an object module is punched.

| |records in | |

| |place (direct) | | 7. Whether a storage map of variable

[+ - 4 - 4 names used in the source mdoule is

| sYscp |punching cards |ecard punch | printed.

1 1 1 d

r T L}]

|A | SYSOUT output |eprinter | 8. Whether the compiler writes the object
| | | emagnetic tapej| module on external storage for input

b + + 9 to the linkage editor.

|B | SYSOUT card |ecard punch |

| |image output | smagnetic tape| 9. Whether traceback information is to be
L L L 4 inserted into the source module.
Table 5. Correspondence Between Compiler ddnames and Device Classes

| T - T -
| ddname | Possible Device Classes (H) | Possible Device Classes (G) |
L [l -— 1 - - _._..‘
r T)

SYSIN	S¥ssQ, or the input stream device	SYSSQ, or the input stream device
	(specified by DD * or DD DATA),	(specified by DD * or DD DATA),
	or a device specified as the	or a device specified as the
	card reader	card reader
e — T o= - -		
SYSPRINT	A,SYSSQ	A,sYssQ I
t L 1 4		
r T T hi		
SYSPUNCH	B, SYSCP%,SYSSQ, SYSDA	B,SYSCP

[

r — -- S R -
| SYSLIN SYSSQ, SYSDA, SYSCP# | SYssQ,SYSDA |
1] J
1) 1] a
| SYSUT1 | s¥YssgQ | |
L 4 —— 4 e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e e e _‘
r T T

| SYsuT2 | s¥ssQ | i

1 4

—————————— - T)
| SYSABEND | A,SYSSQ |

| or | | |
| SYSUDUMP | | |
l' A e e e e e e e e e e e e e e et e e e e e e e e it 4 — e e e e e ot ot e e S 2. o e e e e e e o et et e e ,‘
| tSYSPUNCH and SYSLIN must not be assigned to the same card punch. |
L 3

FORTRAN Job Processing 41

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Table 6. DCB Assumptions for the (G) Com- Table 7. DCB Assumptions for the (H) Com-
piler Data Sets piler Data Sets

r r T 1 v T 1

| ddname | LRECL | RECFM | BLKSIZE | | ddname | LRECL | RECFM | BLKSIZE |

1 B I, 1 4 .‘ L 4 1 4 —
r T T T | 3 T T T

| SYSIN | 80 | FB | 80 { | SYSIN | 80 | FB | 80 |

i L } R 3 8 } 4 4 |

r T T 1 h T T T T 1

| SYSPRINT | 120 | FBSA | 120 | | SYSPRINT | 137 | VBA | 14112 |

o 1 1 1 1 F 1 1 O i

| SYSLIN | 80 | FBS [80 i | sysLin | 80 | FB | 802 |

|8 1 4 4 4 Il 4

r T T 1) T 1

| SYSPUNCH 80 | FBSA | 80 | SYSPUNCH | 80 | FB 801 |

% e L 1 1 e 1

|Note: The values specified for LRECL and| | sysuri | 105 | FB | 10502 |

| RECFM cannot be changed by the FORTRAN | 2 4 $ + 4

| programmexr. The value for BLKSIZE may bej| | sSYsuT2 |1024-40962| FB |1024-40962 |

| changed. | b L 1 1 i

| |*This value may be increased by overrid- |

| For fixed—-length records (F), S indicates| | ing the present value, either through a |

| standard blocks, with no truncated blocks| | DCB BLKSIZE parameter in the associated |

|or unfilled tracks within the data set. | | DD statement or through the DSCB block- |

L 4 | size information for a preallocated data|

| set -~ if the overriding value is a mul-}

The following information may be speci- | tiple of LRECL. |

fied for the (H) compiler only: |2This value is fixed by the compiler and |

| may not be overridden. If BLKSIZE is |

1. Whether a storage map of labels used | provided either through a DCB parameter |

in the source module is printed. | in the DD statement or through a DSCB |

| for a preallocated data set, it is |

2. The type of optimization, if any, | ignored. |

desired by the programmer. |3The value is within this range, and the |

| actual value is calculated during execu-|

3. Whether a structured source listing is | tion. The size of one of the tables |

written. | used by the compiler (the address con- |

| stant table) is compared with the track-|

4. Whether a cross reference listing is | size of the device specified by SysuT2, |

printed. | and the LRECL and BLKSIZE fields are |

| equated to the smaller value. |

Compiler options in the PARM parameter L 4

need not be coded in any specific oxrder.

FORTRAN IV

Compiler Options: FORTRAN IV (H) ONLY

yPARM {
)PARM procstepg =

I
i
|
|
|
I
|
|
|
[
I
|
!
|

(G) and FORTRAN

Compiler Options:
* \LIST

PARM procstep(= NOLIST [, NAME=xxxxXxX]
, DECK ,MAP . LOAD
¢ NODECK + NOMAP ¢

ID
NOLOAD% %,EBCDIC% %,NOID

*[oPT={0|1]2}] [,SIZE=nnnnk] i

Iv (/!

¢+ SOURCE
[, LINECNT=xx] + NOSOURCE

+BCD & 1 23

,EDIT s;,XREF

1 2 3
NOEDIT ,NOXREF$

|*1f the information specified contains blanks, parentheses, or equal signs, either the
| subparameter must be enclosed by apostrophes or the entire PARM field must be deli-

| mited by apostrophes instead of parentheses.

|2If only one option is specified and it does not contain any blanks, parentheses or

-| equal signs, the delimiting parentheses or apostrophes may be omitted.

| 2The maximum number of characters allowed between delimiting parentheses is 100. If

| the option list is enclosed in apostrophes, however, the PARM parameter must be coded

| on one card.
b -

L e e e S VUL S ——

Figure 24, Compiler Options

42

LIST or NOLIST

The LIST option indicates that the
object module listing is written in the
data set specified by the SYSPRINT DD card.
(The statements in the object module list~-
ing are in a pseudo assembler language for-
mat.) The NOLIST option indicates that no
object module listing is written. A
description of the object module listing is
given in the section "System Output.”

NAME=XXXXXX

The NAME option specifies the name
(xxxxxx) assigned to a module (main program
only) by the programmer. If NAME is not
specified or the main program is not the
first module in a compilation, the compiler
assumes the name MAIN for the main program.
The name of a subprogram is always the name
specified in the SUBROUTINE or FUNCTION
statement.

The name appears in the source listing,
map, and object module listing. (See "Mul-
tiple Compilation Within a Job Step" in
this section for additional considerations
concerning the NAME option.)

LINECNT=xx

The LINECNT option specifies the maximum
number of lines (xx) per page for a source
listing. The specified number (xx) may be
any in the range 01 to 99. If LINECNT is
not specified, a default of 50 lines per
page is provided. (The LINECNT option is
effective only at compile time.)

SOURCE _or NOSQURCE

The SOURCE option specifies that the
source listing is written in the data set
specified by the SYSPRINT DD statement.
The NOSOURCE option indicates that no
source listing is written. A description
of the source listing is given in the sec-
tion "System Output."

DECK_or NODECK

The DECK option specifies that an object
module card deck is punched as specified by
the SYSPUNCH DD statement. The object
module deck can be used as input to the
linkage editor in a subsequent job. NODECK
specifies that no object module deck is
punched. A description of the deck is
given in the section "System Output."”

The MAP option specifies that a table of
names is written in the data set specified
by the SYSPRINT DD statement. The type and
location of each name is listed. Included
in the table of names for FORTRAN IV (H) is

a table of labels appearing in the input
stream. A description of the table is
given in the section "System Output.®" The
NOMAP option specifies that the table of
names is not written,

LOAD or NOLOAD

The LOAD option indicates that the
object module is written in the data set
specified by the SYSLIN DD statement. This
option must be used if the cataloged proce-
dure to compile and linkage edit, or to
compile, linkage edit, and execute is used;
i.e., the object module is used as input to
the linkage editor in the current job. The
NOLOAD option indicates that the object
module is not written on external storage.
This option can only be used if the cata-
loged procedure to compile is used.

BCD _or EBCDIC

The BCD option indicates that the source
module is written in Binary Coded Decimal;
EBCDIC indicates Extended Binary Coded
Decimal Interchange Code. To intermix BCD
and EBCDIC in the source module, BCD should
be specified.

Notes:

1, If the EBCDIC option is selected,
statement numbers passed as arguments
must be coded as

én

However, if the BCD option is
selected, statement numbers passed as
arguments must be coded as

$n

and the $ must not be used as an
alphabetic character in the source
module.

(The n represents the statement
nunmber.)

2. The compiler does not support BCD
characters either in literal data or
as print control characters. Such
characters are treated as EBCDIC. For
example, a BCD + used as a carriage
control character will not cause
printing to continue on the same line.
Programs keypunched in BCD, therefore,
should be carefully screened if errors
relating to literal data and print
control characters are to be avoided.

ID or NOID
The ID option specifies that internal

statement numbers (ISN) are to be generated
foxr statements that call subroutine or con-

FORTRAN Job Processing 43

Page of GC28-6817-2, Revised 12/30/70,

tain external function references. Calls
to IBCOM are not affected. An additional
four bytes are required for each linkage.

The ISN is used by the traceback in the
event of an error in the called subprogram.
See the discussion on "Load Module Output”
in the section on "System Output."

r
|H ONLY | _OPT={0]1]2}
L 1

The OPT=0 option indicates that the com-
piler uses no optimizing techniques in pro-
ducing an object module. The OPT=1 option
indicates that the compiler treats each
source module as a single program loop and
optimizes the loop with regard to register
allocation and branching. The OPT=2 option
indicates that the compiler treats each
source module as a collection of program
loops and optimizes each loop with regard
to register allocation, branching, common
expression elimination, and replacement of
redundant computations. The options OPT=1
and OPT=2 are described in more detail in
the section "Appendix H: FORTRAN IV (H)
Optimization Facilities."

T h]
|H ONLY|SIZE=nnnnK
L

In normal instances, the amount of main
storage allocated for the compile step
depends on the region size in an MVT
environment, the partition size in an MFT
environment, or the machine size in a PCP
environment, The compiler uses all avail-
able main storage except for 3K bytes (1K=
1024 bytes) which are left for non-resident
system routines.

In certain instances, however, a pro-
grammer may wish to limit the amount of
main storage used by the compiler. An
example would be when the FORTRAN H compil-
er is executed as the original task in a
multitasking environment. Unless the
amount of main storage used by the compiler
is limited, no subtasks could be created
since no more storage would be available in
the regione.

The programmer may request the amount of
main storage to be allocated for the com-

by

by TNL:

GN28-0591

piler by specifying SIZE=nnnnK in the
operand field of the EXEC statement. The
term nnnn represents the amount of main
storage available for compilation. This is
approximately equal to the work area and
the size of the compiler code. The value
of nnnn can range from 115 to 9999.

During compilation, if the unused avail-
able work area is more than 10K bytes, the
compiler prints the informational message,
nnnnkK BYTES OF CORE NOT USED. This message
indicates how much smaller the specified
SIZE value could be. (If the SIZE paramet-
er is not specified, this message indicates
how much smaller the region size could be).

The size of the region or partition in
which the compiler is running must be at
least 10K bytes larger than the specified
SIZE value. If the SIZE parameter is spec-—
ified incorrectly, the compiler diagnostic
message IEK410I (INVALID SIZE PARAMETER) 1is
produced and the SIZE parameter is ignored.

______ 1
| __EDIT or NOEDIT

------ 1
The EDIT option specifies that a struc-
tured source listing is written in the data
set specified by the SYSPRINT DD statement.
This listing indicates the loop structure
and the logical continuity of the source
program. If this option is used, OPT=2
must be specified and a DD statement with
the name SYSUT1 must be supplieds The fol-
lowing is a typical DD statement for a uti-
lity data set:
//8YSUT1 DD DSNAME=§UT1, UNIT=SYSSQ,
SPACE=(TRK, (40))

§UT1
specifies a temporary data set.

UNIT=SYSSQ
specifies that the data set is to
reside in a sequential device class.

SPACE=(TRK, (40))
specifies that if the data set is
assigned to a direct access device, 40
tracks are to be allocated to the data
set.

The NOEDIT option specifies that no
structured source listing is written. A
description of the structured source list-
ing is given in the section "System
Ooutput. "

Page of GC28-

The XREF option specifies that a cross
reference listing of variables and labels
is written in the data set specified by the
SYSPRINT DD statement. This listing indi-
cates the internal statement number of
every statement in which a variable or
label is used. If this option is speci-
fied, a DD statement with the name SYSUT2
must be supplied. The NOXREF option speci-
fies that no cross reference listing is
written. A description of the compiler
cross reference listing is given in the
section "System Output."

Note: The default compiler options shown
in this publication are standard IBM
defaults; however, during system genera-
tion, an installation can choose its own
set of default options.

Multiple Compilation Within a Job Step

Several compilations may be performed
within one job step. The compiler recog-
nizes the FORTRAN END statement in a source
module, compiles the program, and deter-
mines if another source module follows the
END statement. If there is another source
module, another compilation is initiated
(see Figure 25).

6817~2, Revised 12/30/70, by TNL: GN28-0591

| //STEP1 EXEC FORTGC or FORTHC
|//FORT.SYSIN DD *
1 READ (8,10)A,B,C

!
I
| .
' L

| END
| SUBROUTINE CALC
| .

] .

[END
j/*

L

Multiple Compilation Within a
Job Step

Figure 25.

Only one EXEC statement may be used to
initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step.

In a multiple compilation, only the
first program (if it is a main program) is
given the name specified in the NAME
option; all subsequent main programs are
given the name MAIN., If the first program
is a subprogram, the name specified in the
NAME option is not used. If the NAME
option is not specified, all main programs

FORTRAN Job Processing 44,1

in a multiple compilation are given the
name MAIN. For example, in the multiple
compilation,

//MULCOM JOB
// EXEC FORTGC or
FORTHC, PARM. FORT="* NAME=IOR"
//FORT.SYSIN DD *
READ(1,10) ALP, BETA
END
SUBROUTINE INVERT(A,B)

END
READ(5) P, Q, R

END
/%

the first main program is given the name

IOR; the third program is given the name

MAIN., The second program is assigned the
name INVERT.

When a multiple compilation is per-
formed, the SYSLIN data set contains all
the object modules, because only one SYSLIN
DD statement may be supplied for compiler
output. If tape or direct-access output is
specified for the compiler, the object
modules are written sequentially on the
volume:

] h 1
| Object Module 1 | Object Module 2 | es.
L iy J

LINKAGE EDITOR_PROCESSING

The linkage editor processes FORTRAN
object modules, resolves any references to
subprograms, and prepares a load module for
execution.?* To communicate with the linkage
editor, the programmer supplies an EXEC
statement and DD statements that define all
required data sets; he may also supply
linkage editor control statements.

1Another IBM-supplied program, the loader,

combines -- into one job step -- the func-
tions of the linkage editor with execution
of the edited module. Details on the use

of the loader can be found in the Linkage

Editor_and Loader publication.

Linkage Editor Names

Five linkage editor programs are avail-
able with the operating system. The pro-
gram names for these linkage editors and
the minimum storage in which they are
designed to operate are:

PCP _and MFT MVT-System

IEWLE150 15K 24K
IEWLE180 18K 26K
IEWLF440 44K 54K
IEWLF880 88K 96K
IEWLF128 128K 136K

(Where K=1024 Bytes)

All facilities described for the linkage
editor in this publication are available
with all five linkage editors, except that
blocking of primary input/output is avail-
able only with the higher level linkage
editors: IEWLF440, IEWLF880, and IEWLF128,

For simpler programming, the linkage
editors have been assigned the alias pro-
gram name IEWL. If the programmer speci-
fies the parameter

PGM=IEWL

in the EXEC statement, the highest level
linkage editor provided in the installa-
tion's operating system is executed. If he
wants to execute a specific linkage editor,
he must specify the specific program name
of that linkage editor.

Linkage Editor Input and Output

There are two types of input to the
linkage editor: primary and secondary.

Primary input is a sequential data set
that contains object modules and linkage
editor control statements, (A member of a
PDS cannot be the primary input.) Any
external references among object modules in
the primary input are resolved by the link-
age editor as the primary input is proc-
essed. Furthermore, the primary input can
contain references to the secondary input.
These references are linkage editor control
statements and/or external references in
the FORTRAN modules.

Secondary input resolves the references
and is separated into two types: automatic
call library and additional input specified
by the programmer. The automatic call
library should always be the FORTRAN
library (SYSl.FORTLIB), which is the PDS
that contains the FORTRAN library subpro-

FORTRAN Job Processing 45

grams. Through the use of DD statements
the automatic call library can be concate-
nated with other partitioned data sets.
Three types of additional input may be
specified by the programmer:

e An object module used as the main pro-
gram in the load module being con-
structed. This object module, which
can be accompanied by linkage editor
control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input
data set must be a linkage editor
INCLUDE control statement that tells
the linkage editor to insert the main
program.

e An object module or a load module used
to resolve external references made in
another module. The object module,
which can be accompanied by linkage
editor control statements, is a sequen-
tial data set or is a member of a PDS.
The load module, which is a member of a
PDS, cannot be accompanied by linkage
editor control statements. An INCLUDE
statement that defines the data set
must be given.

¢ A module used to resolve external

references made in another module. The
load module or object module, which can
be accompanied by linkage editor con-
trol statements, is a member of PDS. A
linkage editor LIBRARY control state-
ment that defines the data set to the
linkage editor must be given,

In addition, the secondary input can con-
tain external references and linkage editor
control statements. The automatic call
library and any of the three types of addi-
tional input may be used to resolve
references in the secondary input.

Table 8. Linkage Editor ddnames

The load module created by the linkage
editor is always placed in a PDS. Error
messages and optional diagnostic messages
are written on intermediate storage or a
printer. 1In addition, a work data set is
required by the linkage editor to do its
processing. Figure 26 shows the I/0 flow
in linkage editor processing.

Linkage Editor ddnames and Device Classes

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific
ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 8.

SYSUT 1
SYSLIB Work SYSLMOD
N Data Set
Automatic Output
Call — Module
Library Library
SYSLIN
Primary R Linkage
Input Editor

Additional Diagnostic

Libraries Data Set

SYSPRINT

Figure 26. Linkage Editor Input and Output

) W T)
{ ddname | Function | Device Requirements |
1 3 4 4
¥ T T a
|SYSLIN |primary input data, normally the output of |edirect access |
| |the compiler | smagnetic tape

| i |ecard reader |
[N L] i 4
[3 Kl T]
1SYSLIB jautomatic call library (SYSl.FORTLIB) |*direct access |
1 4 3 J
Ly hl T 4
| SYSUT1 {work data set |edirect access |
1 3 4 4
¥ - H H 1
| SYSPRINT | diagnostic messages | *printer |
i | |*intermediate storage device|
i 1 4 4
V v T]
| SYSLMOD |output data set for the load module |edirect access

i < ———— i _,__‘
i T T

juser-specified|additional libraries and object modules | edirect access |
{ { | smagnetic tape]
A i L J

46

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets. The
ddname for the DD statement that retrieves
any additional libraries is written in
INCLUDE and LIBRARY statements and is not
fixed by the linkage editor.

The device classes used by the compiler
(see Table 4) must also be used with the
linkage editor. The data sets used by
linkage editor may be assigned to the
device classes listed in Table 9.

Table 9. Correspondence Between Linkage
Editor ddnames and Device
Classes
13 L] . . 1
{ ddname |Possible Device Classes |
L 1 4
T T 1
| SYSLIN | s¥SssQ, SYsDA,or the input |
| |stream device (specified |
| |by DD * or DD DATA), or aj
| |device specified as the |
| |card reader |
5 t 1
|SYSLIB | SYsDA |
[[4
L) [} 1
| SYSUT1 | SYsSDAa |
b 4 — |
| SYSLMOD | SYspa |
L L
v Ll
| SYSPRINT |7, 8YSSQ
'L' 1
|
L

)
user-specified|SYSDA, SYSSQ |
L

Additional Input

The INCLUDE and LIBRARY statements are
used to specify additional secondary input
to the linkage editor. Modules neither
specified by INCLUDE or LIBRARY statements
nor contained in the primary input are
retrieved from the automatic call library.

INCLUDE Statement:

T
peration|Operand
i

=R IKe]

T
NCLUDE |ddname{(member-name

| [,member-namel...)]

| [, ddname [(member-name
| [,member-namel...)ll...
L

o ———— —— a—— oy
b o e e . s e el

The INCLUDE statement is used to include
either members of additional libraries or a
sequential data set. The "ddname" speci-
fies a DD statement that defines either a
library containing object modules and con-
trol statements or just load modules, or

defines a sequential data set containing
object modules and control statements. The
"member name"™ is not used when a sequential
data set is specified.

The linkage editor inserts the object
module or load module in the output load
module when the INCLUDE statement is
encountered.

LIBRARY Statement:

T
peration|Operand
[

O
T
LIBRARY |ddname(member-name
| (,member-namel...)
| (,ddnane(member-name
| {(,member-namel...)Jl...
1

e
R T g

The LIBRARY statement is used to include
members of additional libraries. The
"ddname" must be the name of a DD statement
that specifies a library that contains
either object modules and linkage editor
control statements, or just load modules.
The "member name" is an external reference
that is unresolved after primary input
processing is complete.

The LIBRARY statement differs from the
INCLUDE statement: external references
specified in the LIBRARY statement are not

resolved until all other processing, except

references reserved for the automatic call
library, is completed by the linkage edi-
tor. (INCLUDE statements resolve external
references when the INCLUDE statement is
encountered.)

Example: Two subprograms, SUB1 and SUB2,
and a main program, MAIN, are compiled by
separate job steps. 1In addition to the
FORTRAN library, a private library, MYLIB,
is used to resolve external references to
the symbols X, Y, and Z. Each of the
object modules is placed in a sequential
data set by the compiler, and passed to the
linkage editor job step.

Figure 27 shows the control statements
for this job. (Cataloged procedures are
not used.) In this job, an additional
library, MYLIB, is specified by the LIBRARY
statement and the ADDLIB DD statement,

SUB1 and SUB2 are included in the load
module by the INCLUDE statements and the DD
statements DD1 and DD2. The linkage editor
input stream, SYSLIN, is two concatenated
data sets: the first data set is the
sequential data set &§GOFILE which contains
the main program; the second data set is
the two INCLUDE statements and the LIBRARY
statement, After linkage editor execution,
the load module is placed in the PDS
PROGLIB and given the name CALC.

FORTRAN Job Processing 47

//3J0BX JOB
//STEP1 EXEC

//SYSLIN DD
//SYSIN DD *

Source module for MAIN
Ve
//STEP2 EXEC

-

r

|

|

|

|

|

|

|

|

|

|

|

|

|

| //SYSLIN DD
| //SYSIN DD *

| Source module for SUB1
| /%

| //STEP3 EXEC

I -
l L]
|

| //SYSLIN DD

i //SYSIN DD *

| source module for SUB2
| /*

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

L

//STEPU EXEC PGM=IEWL

//SYSLIB DD
//SYSLMOD DD
//ADDLIB DD

//DD1 DD
//DD2 DD
//SYSLIN DD
/77 DD *

INCLUDE DD1
INCLUDE DD2

PGM=IEKAAOO, PARM=" NAME=MAIN, LOAD'
DSNAME=§GOFILE, DISP=(, PASS) , UNIT=SYSSQ
PGM=IEKAA00, PARM=" NAME=SUB1, LOAD"
DSNAME=§SUBPROG1 , DISP=(, PASS) , UNIT=SYSSQ
PGM=IEKAA00, PARM="' NAME=SUB2, LOAD"

DSNAME=§SUBPROG2,DISP=(,PASS) , UNIT=SYSSQ

DSNAME=SYS1.FORTLIB, DISP=OLD
DSNAME=PROGLIB (CALC) , UNIT=SYSDA
DSNAME=MYLIB,DISP=0LD
DSNAME=#, STEP2, SYSLIN,DISP=OLD
DSNAME=#*,STEP3.SYSLIN,DISP=0LD
DSNAME=%, STEP1. SYSLIN,DISP=0LD

-

o s s s . S . S s st — . — —— — ———— . S —. - qrp——" 7 o — —— (" S S ", S s — — T — g S — . S m—

LIBRARY ADDLIB(X,Y,2)
/*
Figure 27. Linkage Editor Example -- (H) Compiler
Note: This example shows the use of the Other Linkage Editor Control Statements

FORTRAN IV (H) compiler (program name
IEKAAQ00). An example showing the use of
the (G) compiler would be identical except
for program name; PGM=IEYFORT would be
coded, where appropriate, instead of
PGM=IEKAA00,

Linkage Editor Priority

If modules with the same name appear in
a single data set, only the module encoun-
tered first is inserted in the output load
module.

48

In addition to the LIBRARY and INCLUDE
statements, other control statements are
available for use with the linkage editor.
These statements enable the user to: spec-
ify different names for load modules
(ALIAS), replace modules within a load
module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements (OVERLAY and
INSERT) enable the programmer to overlay
load modules. For a detailed description
of these control statements, see the Link-
age Editor and Loader publication, Form
GC28-6538.

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement., The options that are
most applicable to the FORTRAN programmer
are:

PARM MAP
PARM. procstep|{ =(|XREF| [,LET) [,NCAL]
[,LIST])
MAP or XREF

The MAP option informs the linkage edi-
tor to produce a map of the load module;
this map indicates the relative location
and length of main programs and subpro-
grams. If XREF is specified, a map of the
load module is produced and a cross
reference list indicating all external
references in each main program and subpro-
gram is generated. The map or map and
cross reference list are written in the
data set specified by the SYSFRINT DD
statement. If neither option is specified,
the system generation option for the proce-
dure for the linkage editor is put into
effect. Descriptions of the map and cross
reference listing are given in "System
Output."™

LET

The LET option informs the linkage edi-
tor to mark the load module executable even
though error conditions, which could cause
execution to fail, have been detected.

NCAL

The NCAL option informs the linkage edi-
tor that the libraries specified in the
SYSLIB DD statement or specified in LIBRARY
statements are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
libraries are not inserted in the load
module; however, the load module is marked
executable.

LIST

The LIST option indicates that linkage
editor control statements are listed in
card-image format in the diagnostic output
data set specified by the SYSPRINT DD
statement.

Other options can also be specified for
the linkage editor. For a detailed de-
scription of all linkage editor options,
see the Linkage Editor and Loader publica-
tion, Form GC28-6538.

LOAD_ MODULE EXECUTION

When "PGM=program name®™ is used to in-
dicate the execution of a load module, the
module must be in either the system library
(SYS1.LINKLIB) or a private library. When
the module is in a private library, a JOB-
LIB DD statement must be supplied to in-
dicate the name of the private library.

For example, assume that the load modules
CALC and ALGBRA in the library MATH and the
load module MATRIX in the library MATRICES
are executed in the following job:

//JOBN JOB 00, FORTPROG

//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNAME=MATRICES,DISP=(OLD,PASS)
//STEP1 EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGBRA

The JOBLIB DD statement concatenates the
private library MATH with the system
library. The private library MATRICES is
concatenated with the system library, by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN load
module must be defined by DD statements.
The correspondence between a data set
reference number and a DD statement is made
by a ddname.

The ddname format that must be used for
load module execution is

FTxxFyyy

where xx is the data set reference number,
and yyy is a FORTRAN sequence number.

Data Set Reference Number (xx): When the

system is generated, the upper limit for
data set reference numbers is specified by
the installation; it must not exceed 99.
This upper limit does not correspond to the
number of input/output devices.

FORTRAN Job Processing 49

If an installation specifies an upper
limit of 99 for its data set reference num-
bers, the ddnames and data set reference
numbers correspond as shown in Table 10.
Note that 0 is not a valid data set
reference number.

FORTRAN Sequence Number (yyy): The FORTRAN
sequence number is used to refer to sepa-
rate data sets that are read or written
using the same data set reference number.
For the first data set, the sequence number
is 001; for the second 002; etc. This
sequence number is incremented when (1) an
END FILE statement is executed and a subse-
quent WRITE is issued with the same data
set reference number or (2) the “END=" exit
is taken following a READ and a subsequent
READ or WRITE is issued with the same data
set reference number.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, WRITE sequence occurs. IXf the FOR-
TRAN statements in the following example
are executed, DD statements with the
ddnames indicated by the arrows must be
supplied for the corresponding WRITE
statements.

Statements ddnames
15 FORMAT(3F10.3,17)

10 FORMAT(3F10.3)

DO 20 1I=1,J0

20 WRITE(17,10)2,B,C ——————ome—mm > FT17r001

END FILE 17
Do 30 I=1,N

-

30 WRITE(17,15)X,Y,Z,K ———m———— > FT17F002
END FILE 17
DO 40 I=1,M,2

40 WRITE(17,10)A,B,C ——m—m—mmmmeme > FT17F003

END FILE 17

1f the preceding instructions are used
to write a tape, the output tape (unla-
beled) has the appearance shown in Figure
28. The tapemarks are written by execution
of the ENDFILE statements. Successful
execution of ENDFILE always includes writ-
ing an end-of-data indicator.

50

Reference Numbers for Data Sets Specified
in DEFINE FILE Statements

The characteristics of any data set to
be used during a direct-access input/output
operation must be described by a DEFINE
FILE statement.

The data set reference number specified
in any DEFINE FILE statement may refer to
only one data set. In other words, the
method described previously concerning
references to separate data sets that are
read or written using the same data set
reference number is prohibited. For
example, the statement

DEFINE FILE 2(50,100,L,12)

establishes a data set reference number of
02. All subsequent input/output statements
must refer to only one data set with the DD
name of FT02F001. (For a more detailed
explanation of the DEFINE FILE statement,
refer to the FORTRAN [V Language publica-
tion, Form GC28-6515.)

Retrieving Data Sets Written With Varying
FORTRAN Sequence Numbers

To retrieve the data sets shown in
Figure 28, the data set sequence number in
the LABEL parameter must be supplied in the
DD statement. The LABEL parameter is de-
scribed in detail in the section "Creating
Data Sets."

s,NL (
LABEL=([data—set-sequence-number]),§L)
, BLP

The "data set sequence number®" indicates
the position of the data set on a sequen-
tial volume. (This sequence number is
cataloged.) For the first data set on the
volume, the data set sequence number is 1;
for the second, it is 2; etc.

Table 10. Load Module ddnames
T 1
Data Set Reference Numbers | ddnames |
4 4
T a
| 1 | FTOlFyyy |
| 2 | FTO2Fyyy |
I . { - I
| . | . [
I . | . |
| 13 | FT13Fyyy |
| . ! - |
| . | . |
| . ! . |
| 99 | FT99Fyyy |
| I ———— L J

If one of the data sets shown in Figure
28 is read in the same job step in which it
is written, an END FILE statement must be
issued after the last WRITE instruction.
If the data set is to be read by the same
data set reference number, DD statement
FT17F004 is used to read the data set. The
execution of a READ statement following an
END FILE increments the FORTRAN sequence
number by 1. For example, the following DD
statements are used to write the three
data sets shown in Figure 28 and then read
the second data set:

the information necessary to retrieve the
data sets is the DSNAME, the LABEL, and the
DISP parameters. For example, if data set
reference number 10 is used to retrieve
data set N1, the following DD statement is
required.

//FT10F001 DD DSNAME=N1,DISP=OLD, X
/7 LABEL=(, NL)

If the data set is not cataloged and
then retrieved in a later job, the VOLUME,
UNIT, and LABEL information is needed to
retrieve the data set. When the data set
is created, the programmer must assign a

//FT17F001 DD UNIT=TAPE,LABEL=(,NL), X specific volume to it.
/7 DISP=(, PASS)
//FT17F002 DD UNIT=TAPE,LABEL=(2,NL), X Assume the data sets shown in Figure 28
/7 VOLUME=REF=#,FT17F001 were assigned the volume identified by the
//FT17F003 DD UNIT=TAPE, LABEL=(3,NL), X volume serial number A11111 when the data
7/ VOLUME=REF=%, FT17F001 sets were created. If the second data set
//FT17F004 DD VOLUME=REF=#*,FT17F001, X written on the volume is retrieved by data
/7 DISP=0OLD, LABEL=(2,NL), X set reference number 10 in a later job, the
7/ DSNAME=#%_,FT17F002, UNIT=TAPE following DD statement is needed.
The VOLUME parameter indicates that the //FT10F001 DD VOLUME=SER=A11111,DISP=0LD, X
data set resides on the same volume as the Vs LABEL=(2, NL) , UNIT=SYSSQ
data set defined by DD statement FT17F001.
DD statement FT17F004 refers to the data
set defined by DD statement FT17F002.

END Exit: Data sets written using the same

If the data set is read by a different data setr reference number can be retrieved

data set reference number, for example, in the same job or job step by using a
data set reference numbar 18; then, the DD facility provided in the FORTRAN language
statement FT17F004 is replaced by the -~ the "END=" exit in a READ statement.
statement. After the last data set is written and the

END FILE is executed, a REWIND may be
//FT18F001 DD VOLUME=REF=#%.FT17F002, X issued. A subsequent READ using the same
/7 DISP=OLD, LABEL= (2, NL) data set reference number resets the FOR-

TRAN sequence number to 001. When the last

If the data sets shown in Figure 28 are record of a data set has been read, an

cataloged for later reading, and if the additional READ causes the END exit to be
following DD statements are used to write taken. On the next READ, the sequence
the data sets, number is incremented by 1. The data sets

shown in Figure 28 can be read by using the
//FT17F001 DD DSNAME=N1,LABEL=(1,NL), X following sequence of statements.
V4 DISP=(,CATLG) , UNIT=TAPE, X
// VOLUME=SER=163K
//FT17F002 DD DSNAME=N2, LABEL=(2,NL), X Note: The DD statements used to create the
/7 DISP=(, CATLG) , VOLUME=REF=%,FT17F001 data sets also suffice for retrieving the
//FT17F003 DD DSNAME=N3,LABEL=(3,NL), X data sets. No additional DD statements are
7/ DIsSP=(,CATLG) , VOLUME=REF=%,FT17F002 required.

tapemark tapemark tapemark
records I recorxds records
e e e I | —— " emt—
T

r T T R L} L1 L} T 0 T |
[ByByC|lA,ByClace |[AgByCl [XeYyZyK|X¢YgZyKlaao|XoYyZ,K| |A,ByCluas|A,B,C
L i L i | L i L4 AL L

T
| leae

S NV

R e

Written using DD
statement FT17F001

P2 e e i m— S — — —— =

Written using DD
statement FT17F002

TN ———

Written using DD
statement FT17F003

s o e o e e . e s e i

Figure 28.

Tape Output for Several Data Sets Using Same Data Set Reference Number

FORTRAN Job Processing 51

REWIND 17

100 READ(17,10,END=200)A,B,C ---->FT17F001

GO TO 100

200 READ(17,15,END=300)X,Y,%,K---->FT17F002

GO TO 200

300 READ(17,10, END=350)A,B,C ---->FT17F003

O 300

@Q
(@]
o s e o o

350 REWIND 17

concatenation: The data sets shown in
Figure 28 can be concatenated and read as a
single data set. The information necessary
(assume cataloged data sets) to retrieve
the data sets is the DSNAME, LABEL, and
DISP parameters. For example, if data set
reference number 16 is used to retrieve the
data sets, the following DD statements are
required.

//FT16F001 DD DSNAME=N1,DISP=0OLD, X
7/ LABEL=(, NL)

Vo4 DD DSNAME=N2, DISP=0LD, X
V4 LABEL=(2,NL)

/7 DD DSNAME=N3,DISP=0LD, X
7/ LABEL=(3, NL)

The ERR option the FORTRAN READ state-
ment may be used to give control to the
problem program if an uncorrectable I/0
error occurs on a magnetic tape or direct-
access device, This parameter is not ef-
fective for data sets on unit record
devices,

Note: Concatenation of data sets with
unlike attributes is not supported. Parti-
tioned data sets with like attributes may
be concatenated for input only. Concatena-
tion of two or more members of the same PDS
is not supported.

52

Partitioned Data Set Processing

FORTRAN load modules may access two or
more members of the same partitioned data
set (PDS); however, only sequential proces-
sing is permitted. The PDS must be closed
for one member before attempting to read or
write another member.

PDS Processing Using "END=" Option: One
method of sequentially processing two or
more members of the same PDS is by using
the "END=" option in a FORTRAN sequential
READ statement. When the "END=" option is
executed and a subsequent READ or WRITE
statement is issued with the same data set
reference number, the FORTRAN sequence
number is incremented by one. This allows
another member of the PDS referenced by the
same data set reference number to be
processed.,

The following FORTRAN program illus-
trates how this method is put into effect:

INTEGER #*4 X(20),Y(20)

10 READ (2,1,END=98) X
1 FORMAT (20A4)
GO TO 10
98 READ (2,1,END=99) Y
GO TO 98
99 WRITE (6,2) X,Y
STOP
END

Execution of statement 10 results in the
processing of the first PDS member which is
referenced by the FORTRAN seguence number
001. If this member has the name MEMBERI1
and resides in the cataloged partitioned
data set named PDS, the DD statement that
must be supplied is:

//FT02F001 DD DSN=PDS(MEMBER1),
LABEL(,,,IN) ,DISP=OLD

When the "END=" option is exeucted in sta-
tement 10 and the next READ statement, sta-
tement 98, is encountered, the FORTRAN
sequence number becomes 002, This closes
the PDS for the first member. Another
member may then be processed. If its name
is MEMBER5, the DD statement that must be
supplied is:

//FT02F002 DD DSN=PDS(MEMBERS),
LABEL=(,, ,IN) ,DISP=OLD

Note: For PDS processing, the "END="
option specification is the only method of
incrementing the FORTRAN sequence number.,
The END FILE statement methods described
earlier in the section "FORTRAN Sequence
Number" cannot be implemented since END
FILE statements cannot be used for parti-
tioned data sets.

PDS_Processing Using REWIND: A second
method of processing two or more members of
the same PDS is the use of the REWIND
statement in the FORTRAN program. This
statement should be of the form:

REWIND a

where a is an unsigned integer constant or
variable representing a data set reference
number. Execution of the REWIND statement
closes the data set represented by the
integer a. Any subsequent READ or WRITE
statement opens the data set again.

The following example illustrates the
use of the REWIND statement for the reading
of two members of the same PDS:

INTEGER *4 X(20),Y(20)
READ (2,1) X

REWIND 2

READ (3,1) Y

WRITE (6,2) X,Y

1 FORMAT (20A4)

2 FORMAT (' ', 20A4)
STOP
END

Execution of the first READ statement
results in the processing of the first PDS
member which is referenced by the FORTRAN
sequence number 001. If the member has the
name MEMBER1 and resides in the cataloged
partitioned data set named PDS, the DD
statement that must be supplied is:

//FT02F001 DD DSN=PDS(MEMBER1),
LABEL=(,, ,IN),DISP=0LD

When the REWIND statement is executed, the
PDS is closed for MEMBERl1. The next READ
statement reopens the data set for another
PDS member. If the next member name is
MEMBER5, the DD statement that must be sup-
plied is:

//FT03F001 DD DSN=PDS(MEMBER5),
LABEL=(,,, IN), DISP=OLD

The following example illustrates the use
of the REWIND statement for the writing of
two PDS members:

INTEGER #*U4 X(20)
DO 3 I=1,20

3 X(I)=I
WRITE (2,1)X

1 FORMAT (' ', 20AY4)
REWIND 2
WRITE (3,1)X
STOP
END

Here, the use of the REWIND statement for
the data set reference number 2 closes the
PDS. It is reopened for the next member by
the reference to data set reference

number 3. The DD statements that must be
supplied are the same as those in the pre-
vious example; however, LABEL=(,,,O0OUT) must
be specified to indicate output processing.

REWIND and BACKSPACE Statements

The REWIND and BACKSPACE statements
force execution of positioning operations
by the control program.

A REWIND statement instructs the control
program to position the volume on the
device so that the next record read or
written is the first record transmitted for
that data set reference number on that
volume, irrespective of data set sequence
numbers. The space acquired dynamically
for I/0 buffers for a data set is released
as part of the REWIND operation. For this
reason, a program that uses many data sets
may conserve main storage by issuing REWIND
statements after processing is completed.
Since a REWIND statement closes the data
set, any subsequent READ or WRITE statement
opens the data set again. For a data set
where DISP=MOD was specified, the READ or
WRITE statement causes positioning at the
end of the data set before the statement is
executed.

The BACKSPACE statement causes a
backward skip of one logical record for
each BACKSPACE issued. The records may be
blocked or unblocked and of any valid type
(F,U,V). Note that the default selection
for FORTRAN data sets is U-type (undefined)
records which can not be blocked. If a
BACKSPACE statement requests backward move-
ment past the load point or first record of
the data set, that request is ignored.
Since BACKSPACE is not supported across
reels of a multi~reel data set on tape, a
BACKSPACE request made under such condi-
tions is treated as an attempt to move
backward past the load point. The user is
not made aware of input/output errors that
have occurred during a BACKSPACE operation
until he issues his next READ or WRITE
request.

Notes:

1. REWIND, BACKSPACE or END FILE state-
ments specified for data sets defined
in direct-access statements are
ignored.

2. BACKSPACE statements should not be
directed to the data set defined as
SYSIN.

3. At end-of-file, if the programmer

wishes to access the file, he should
issue at least two BACKSPACE state-

FORTRAN Job Processing 53

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

ments. The first statement causes his
file to be positioned before the tape-
mark; the second positions the file at
the beginning of the last logical
record.

Error Message Data Set

When the system is generated, the
installation assigns a data set reference
number so that execution error messages and
information for traceback, DUMPs, and
PDUMPs can be written on a data set. This
data set is automatically opened at library
initialization time. The programmer must
define a data set, using a DD statement
with the ddname for that data set reference
number. This data set should be defined
using the SYSOUT=A parameter. If the error
message data set is on tape, the DD state-
ment should contain DCB parameters for
BLKSIZE=133 and RECFM=UA. (The System

GC28-6554, explains the method of assigning
the data set reference number. See the
description of the OBJERR parameter in the
section on the FORTLIB macro instruction.)

Execution Device Classes

For load module execution, the program-
mer can use the same names assigned to
device classes used by the compiler (shown
in Table 4), However, additional names for
specific devices and device classes can be
assigned by the installation. The program-
mer can choose which device to use for his
data sets, and can specify the name of the
device or class of devices in the UNIT
parameter of the DD statement.

DCB_Parameter

The DCB parameter may be specified for
data sets when a load module is executed.
For information concerning the DCB parame-
ter, see the section "Creating Data Sets."

LOADER_PROCESSING

The loader combines into one job step
the functions of the linkage editor with

54

execution of the edited module. It pro-
cesses FORTRAN object or load modules,
resolves any references to subprograms,
loads the module, and executes the loaded
module. The loader does not produce load
modules for program libraries. For
detailed information on the loader, see the
Linkage Editor and lLoader publication.

Loader Name

The program name for the loader is
IEWLDRGO. An alias program name, LOADER,
has been assigned to the loader for simpler
programming. If the loader is executed as
a job step, the parameter PGM=LOADER or
PGM=IEWLDRGO is used in the EXEC statement
of that job step.

Loader Input and Output

The primary input to the loader is in
the form of object modules ands/or load
modules. While processing an input module,
the loader finds any references to subpro-
grams in the input module and resolves
them.

The output of the loader consists of
error and diagnostic messages and an
optional storage map of the loaded program.
The output is written on either an interme-
diate storage device or a printer. The
loader does not require intermediate work
data sets.

Loader ddnames and Device Classes

The programmer communicates data set
information to the loader through DD state-
ments identified by specific ddnames.
(These ddnames can be changed during system
generation.) The ddnames, functions, and
requirements for data sets are shown in
Table 11. Only the SYSLIN DD statement is
required; the other two are optional. In
addition, any DD statements required for
execution of the loaded program must be
included in the job step. (These DD state-
ments are described in the section "Load
Module Execution".)

|storage map. | storage device
i

}
user- |Data required
specified|for execution
|of the loaded
| program.
1

any device

eTable 11. Loader ddnames
r T T a
| | | Device |
| ddname | Function |Requirements |
i 1 4 4
| T L] 1
SYSLIN	Primary input	direct access
	data, normally	magnetic tape
	the output of	card reader
	the compiler.	
t { t 1		
SYSLIB	Automatic call	direct access
	library	
	(8¥S1,FORTLIB)	
L 1 4 J		
r K} . . T .		
SYSLOUT	Diagnostic	printer
	messages and	intermediate
[d		
[3 i		
l		
L J

S —

The device classes used by the compiler
(see Table 3) must also be used with the
loader. The daira sets used by the loader
may be assigned to the device classes
listed in Table 12.

eTable 12, Correspondence Between Loader

ddnames and Device Classes

r T

| ddname | Possible Device Classes

L L

L |}

| SYSLIN | S¥ssQ, SYSDA, or the input

| |stream device (specified by DD
| |* or DD DATA), or a device spe-
[|cified as the card reader.

1 1

r T

| SYSLIB | SYSba

L I

1]

|

b

)

1
SYSPRINT |A, SYSSQ
1

+
|user- | SYSDA, SYSSQ
|specified|
L L

R A FAPES U S S —— Sp——

Loader Priority

If modules with the same name appear in
the input to the loader, the loader accepts
only the first module which appears.

Options for Loader Processing

The loader and loaded program options
are specified in the PARM field of the EXEC
statement as follows:

PARM = (\mapP , CALL
PARM.procstep NOMAP , NOCALL
, LET , SIZE=100K|
, NOLET ,s12E=sizeg

[,EP=name];,PRINT)

. NOPRINT

MAP or NOMAP

The MAP option informs the loader to
produce a map of the loaded program; this
map lists external names and their absolute
storage addresses on the data set specified
by the SYSLOUT DD statement. (If the
SYSL.OUT DD statement is not used in the
input deck, this option is ignored.) The
NOMAP option specifies that the map of the
loaded program is not to be written.

CALL or NOCALL_ or NCAL

The CALL option specifies that an auto-
matic search of the data set specified on
the SYSLIB DD statement is to be made. (If
the SYSLIB DD statement is not in the input
deck, this option is ignored.) The NOCALL
or NCAL option specifies that an automatic
search of the SYSLIB data set is not to be
made.

LET or NOLET

The LET option informs the loader to try
to execute the object program even though a
severity 2 error condition is found. (A
severity 2 error condition is one that
could make execution of the loaded program
impossible.) The NOLET option informs the
loader not to try to execute the loaded
program when a severity 2 error condition
is found.

SIZE=size

The SIZE option specifies the size, in
bytes, of dynamic main storage that can be
used by the loader. The size of the pro-
gram to be loaded must be included in this
figure.

FORTRAN Job Processing 55

EP=name

The EP option specifies the external
name to be assigned as the entry point of
the loaded program.

PRINT or NOPRINT

The PRINT option informs the loader to
produce diagnostic messages on the SYSLOUT
data set. The NOFRINT option informs the
loader not to produce diagnostic messages
on the SYSLOUT data set; SYSLOUT will not
be opened.

Note: The default options are: NOMAP,
CALL, NOLET, SIZE=100XK, and PRINT. Other
default options, however, can be specified
with the LOADER macro instruction during
system generation.

The following are examples of the EXEC
statement specified for loader processing:

//LOAD EXEC PGM=LOADER

//LOAD EXEC PGM=IEWLDRGO,PARM=(MAP, X
7/ *EP=FIRST")

//LOAD EXEC PGM=IEWLDRGO,PARM=(MAP,LET)
//LOAD EXEC PGM=LOADER,PARM=NOPRINT

Programming Example

Figure 29 shows the control statements
used in a job invoking the loader. Two
subprograms, SUB1 and SUB2, and a main pro-
gram, MAIN, are compiled in separate job
steps. In addition to the FORTRAN library,
a private library, MYLIB, is used to
resolve external references. Each of the
object modules is placed in a sequential
data set by the compiler and passed to the
loader stepe.

It should be noted that cataloged proce-
dures are not used in this job. The pri-
vate library, MYLIB, is concatenated with
the SYSLIB DD statement. SUB1 and SUB2 are
included in the program to be loaded by
concatenating them with the SYSLIN DD
statement., The loaded program requires the
FT01F001 and FT10F001 DD statements for
execution.

56

r
|77JOBX JOB

| //STEP1 EXEC PGM=IEKAAO00, X
|77 PARM="NAME=MAIN, LOAD"

DSNAME=§GOFILE,

|//FT01F001 DD
| //FT10F001 DD
| 7*
L

DSNAME=PARAMS, DISP=0LD
SYSOUT=A

|
|
|
|
|
|
|//SYSLIN DD X|
\77 DISP=(,PASS), X|
(V4 UNIT=SYSSQ |
| 7//SYSIN DD * |
| Source Module for MAIN |
|/ |
|//STEP2 EXEC PGM=IEKAAO0O, X|
V77 PARM="*NAME=SUB1, LOAD" |
| . |
| ; |
|77/SYSLIN DD DSNAME=§ SUBPROG1, X|
177 DISP=(,PASS), X|
|77 UNIT=SYSSQ
|//SYSIN DD * |
| Source Module for SUB1 |
| 7+ |
|/7/STEP3 EXEC PGM=IEKAAOO, X|
177 PARM="'NAME=SUB2, LOAD" |
| .]
| ; |
| 7/SYSLIN DD DSNAME=§ SUBPROG2, X|
177 DISP=(,PASS), X|
|77 UNIT=SYSSQ |
| //SYSIN DD * |
| Source Module for SUB2 |
|7+ |
|7/STEP4 EXEC PGM=LOADER |
| //SYSLOUT DD SYSOUT=A |
|7/SYSLIB DD DSNAME=SYS1,FORTLIB, X|
(V24 DISP=OLD |
\77 DD DSNAME=MYLIB, DISP=OLD |
| 7/SYSLIN DD DSNAME=#*, STEP1. SYSLIN, X|
V4 DISP=0LD |
|77 DD DSNAME=#%,STEP2, SYSLIN, X]|
V77 DISP=0OLD |
|77 DD DSNAME=*, STEP3. SYSLIN, X|
|77 DISP=OLD |
I
|
|
J

eFigure 29. Loader Example

DEDICATED WORK DATA SETS

Under MVT, installations can provide
preallocated or dedicated work data sets.
If an installation has provided these data
sets, the programmer can use them as an
alternative to creating his work data sets.
Use of dedicated work data sets is more
efficient than creating work data sets by
specifying a disposition of NEW,DELETE on
the work data set DD statement.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

The system allocates these data sets at
start initiator time (when input/output
device requirements for a job step are ana-
lyzed by the system). The number of data
sets to be allocated is based on the number
of work data set DD statements in a cata-
loged procedure known as the initiator pro-
cedure. The initiator procedure is supp-
lied by IBM, and can be modified or rewrit-
ten by the installation.

To use a dedicated work data set,
DSNAME=§ éname or DSNAME=&name must be coded
on a DD statement along with all other
parameters used to define a new data set
(see Figure 31), Every DD statement in a
job with a "name" identical to a ddname on
a DD statement in the initiator procedure
is assigned the corresponding dedicated
data set. If the system cannot assign this
dedicated data set, it uses the parameters
coded on the DD statement to create a tem-
porary data set.

Note:
files.

This facility does not support tape

The following rules apply to the parame-
ters of DD statements associated with dedi-
cated work data sets:

1. DSNAME -- The temporary name from the
initiator procedure replaces that spe-
cified in the DD statement.

2. DISP -- The disposition specification
cannot cause deletion of a dedicated
work data set. Disposition will
appear to allocation as OLD,KEEP or
OLD,PASS, only.

3. UNIT -- Specification of UNIT=AFF=
DDNAME and DEFER on DD statements are
ignored if they apply to dedicated
work data sets.

4, VOLUME -- Volume information on the DD
statement is overridden by the volume
information in the initiator proce-
dure. A specification of REF=%,
stepname, ddname is not valid since the
initiator procedure may contain only
one step.

S. EXPDT/RETPD ~-- Expiration date or
retention is ignored if it is speci-
fied on the DD statement.

6. SUBALLOC=stepname.ddname must not be
specified since the initiator may con-
tain only one job step. A specifica-
tion of RLSE will be ignored. All
other space parameters are allowed.

Note: The units, primary space, secondary
space, and directory quantities on the DD
statement are compared with those in the
dedicated data set. The data set will be
assigned as long as it is equal to or
greater than the parameter specified.

7. DCB -- Information specified in the
DCB parameter overrides the DCB speci-
fication in the initiator procedure.

For detailed information on
pre—-allocated or dedicated data sets, see
the chapter "System Reader, Initiator and
Writer Cataloged Procedures" in the System
Programmer's Guide publication.

FORTRAN Job Processing 57

CREATING DATA SETS

Data sets are created by specifying VOLUME - volume on which the data set

parameters in the DD statement or by using resides

a data set utility program. This section

discusses the use of the DD statement to

create data sets. (The Utilities publica- LABEL - 1label specification

tion, Order No. GC28-6586, discusses data
set utility programs.) No consideration is

given to optimizing I/0 operations; this DISP - the disposition of the data set
information is given in the section "Pro- after the completion of the job
gram Optimization." step

To create data sets, the DSNAME, UNIT,

VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB SYSOUT - ultimate device for unit record
parameters are of special significance (see data sets
Figure 31). These parameters specify:
DCB - tape density, record format,
DSNAME - name of the data set record length
UNIT - class and number of devices Examples of DD statements used to create
used for the data set data sets are shown in Figure 30.

Sample Coding Form

I~ 60
]ﬂuiJ[nquu]uq5stﬂ£uau4Meﬂ59J ﬂ34,LLLLLilJJJJJnmﬂ£uﬂu45s7apohmppws Uﬂgl234ﬂJﬂJJO

| Exampl e, Lz Creatipng a Caleloged Data el .| .. . |. QJ_LQ_,_,_;_LMJ_LW‘_L_M_._
//FT31FO81 DD, DSNAME=MATRIX>D1SP=(NEW>CATLG) \LABEL=(2S

ke

2SLSEXPOT=67831)9 , 4. . . 1. ...
RN IDA,CILASS-»VOILUME (PRIVATERETAIN»SER=AA6S ‘)pl,l.,,,,,:ll“,““
Iooiiio) oo, SPACEE(308(190108)5,CC n{TIGaRpUIND)i,...h...;....l.,“;3”.1.“.
//...1.,,‘!,...10.0.8. I(RECFM =VB ,L,RECL 604>BLKSIZE= 121@)“,1,,,,ll,,,.,l,qu“l““
caadas b e T s fae e b b b e b peen Lo o
| Exiomple| 2t Creating a Dota |Get Lo SN BT BT ST NN R
//FTBF@O1, DD_DSNAME=ETEMPUNIT=(TA P?&féf{?? sDISP= (NEW) PlAlS,SI);)1! L i L I 1 : L
[l1l.... VOLUME=(sRETAIN31+99SER= (77‘7 88,999144}1,),),),,;HH,[2
/J/,,,h,,,i“,,,DC,B,,(D,E,NHZ,)RECFM 1BLKSIZE= 25¢1¢).,1;,,..|,..;Ir.mll i
....|...A!.,..i..AL4....|.".;,..‘1J‘..;...‘|‘..,;....x‘.|.;lA..1 P I E
| Exemple 3 Qpecifylng o SYSOUT. Data Seli folr. the| Complider |\ |\ .|, L
//SYSPRINT, DD, SYSOUT=AsDCB=(BLKSIZE=144>DEN=2, TRTCH=C) | | .. lbd e J,JJJ
lll'kLJll!llllIlllJ;llllllxljlillAlAllllllllllllllAllllllllllllllllll!lllllljjl
_mez.bq_ﬁlm_mmw et That. |9, Kedt. Fut] Not. Cataloged | . . n
//FT31F001, DD_DSNAME=CHE Isﬁfs(,xs Pl),,,U‘NIT-pqﬁl T T ,LL“
1/ DCB=(DEN= 27TRTCH =ETRECFM= =U>BLKSIZE=1000)2 , |, . .\, . 2. .1....
7. VOI-=SER-A6¢5

‘l....I.A..l....l.L,.l.,..I...¢J....l...ll....l:--;

Figure 30. Examples of DD Statements

58

6S

s398 e3ed burizeaad

*1€ 2anbTa

s398 ejeq buriesad I0J siojowered ad

dsname
$DSNAMEL _'dsname(element) (
10SN f) &name
| &name (element) \
l DUMMY ‘
DDNAME=ddname

UNIT=(name[, {n|P}1])>
LSER=(volume-serial-number[, volume-serial-number]...)3

. ‘dsname
VOLUME==([PRIVATE][,RETAIN][,volume—sequence-number][,vo]ume-count] ,REF= ‘* ddname ')*
voL ' ?*.stepname.ddname

*.stepname.procstep.ddname)

SPACE=()CYL (primary-quantity[,secondary-quantity][directory-quantity])[,RLSE] ’ZE;G 5[ROUND]s) 7
average-record-]ength$ ’ ’ ’CONTIG ’

BLP([,IN] LEXPDT=yyddd
LABEL=([data-set-sequence- number]) | [,PASSWORD] | ,0UT] [,RETPD=xXxx |)
»SL

SYSOUT=A
SYSOUT=B
SYSOUT=(X[,program-name][,form-no.])

,DELETE |® |,DELETE

\NEW ,KEEP LKEEP
DISP=(|,pass L,CATLG |)7
MOD | |,cATLG LUNCATLG
SHR T uncaTLg
dsname ‘0) \
e] ‘E(10 {FIUJ[AEMI[TI[,BLKSIZE=xxxxx]
DCB=(< teonane. ddnane ,DEN—,Z\ L TRTCH=.C ,BUFN0={2} [,0PTCD=C]|,RECFM=< FB[AIM][T],LRECL=xxxx,BLKSIZE=xXxXxXx {
[* . s tepname . procs tep.ddname 3 - V[SI[BJ[AIMI[T],LRECL=xxxxXxx,BLKSIZE= XXXXX)T

»BLKSIZE=xxxx12

If neither "n" nor "P" is specified, 1 is assumed.

2If only "name" is specified, the delimiting parentheses may be omitted.

3If only one "volume-serial-number" is specified, the delimiting parentheses may be omitted.

4SER and REF are keyword subparameters; the remaining subparameters are positional subparameters.
SThe assumption made when this subparameter is omitted is discussed with the SPACE parameter.
6ROUND can be specified only if "average-record-length" is specified for the first subparameter.
7A11 subparameters are positional subparameters.

B8EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters.
sThe assumption made when this subparameter is omitted is discussed in "Job Control Language."
10BUFNO is the only DCB subparameter that should be specified for direct access data sets.

11The first subparameter is positional; all other subparameters are keyword subparameters.

12This form is used only with compiler and linkage editor blocked input and output.

USE OF DD STATEMENTS FOR _DIRECT-ACCESS DATA
SETS

Data sets that are referred to in
FORTRAN direct-access input/output state-
ments must first be defined in the DEFINE
FILE statement. However, the DD statement
may be used in conjunction with the DEFINE
FILE statement for designating other char-
acteristics of the data set.

If the user chooses to exercise this
option, caution must be taken in specifying
the parameters in the DD statement (Figure
31). The DUMMY parameter may not be used
with FORTRAN defined direct-access data
sets because of a conflict in specifica-
tions. The remaining parameters of the DD
statement must confoxrm to the specifica-
tions in the DEFINE FILE statement. The
DEN and TRTCH subparameters of the DCB
parameter apply only to data sets residing
on magnetic tape volumes; consequently,
their use with FORTRAN defined direct-~
access data sets may also produce a
conflict.

The following statements illustrate the
possible conflicts that may arise between
the DEFINE FILE and DD statements.

DEFINE FILE 2(50,100,E,I2)

//FT02F001 DD DSNAME=BOOL, DISP=(NEW, CATLG)1

V24 LABEL=(, SL) , UNIT=SYSDA, 2
Vo4 VOLUME= (PRIVATE, RETAIN), 3
/77 SPACE=(100, (50, 30), , CONTIG), 4
/77 DCB=(DEN=1, RECFM=F , BLKSIZE=100)

The SPACE parameter must be included for
all direct-access data sets, but it must
also conform to the DEFINE FILE statement;
the record length in both statements must
be the same. In the DCB parameter, the
subparameter DEN applies only to data sets
residing on magnetic tape volumes. If the
DUMMY parameter is specified in a DD state-
ment for a direct-access data set, the con-
flict arises because the disposition of a
direct-access data set is always checked
and a dummy data set has no disposition.

Note: The name field of the DD statement
must contain FTxxF001, where xx is the data
set reference number specified in the
DEFINE FILE statement.

DATA_SET NAME

The DSNAME parameter specifies the name
of the data set. Only four forms of the
DSNAME parameter are used to create data
sets.

60

DSNAME=dsname

DSNAME=dsname (element)
specify names for data sets that are
created for permanent use.

Note: Members of a partitioned data-
set may be read as input to a FORTRAN
object program or created as output
from a FORTRAN object program, but
only if the member name and either
LABEL = (,,,IN) or LABEL = (,,,O0UT)
are specified in an associated DD
statement.

DSNAME=&name (
DSNAME= éname (element)|
specify data sets that are temporarily
created for the execution of a single
job or job step.

DUMMY
is specified in the DD statement to
inhibit I/0 operations specified for
the data set, A WRITE statement is
recognized, but no data is trans-
mitted. (When the programmer speci-
fies DUMMY in a DD statement used to
override a cataloged procedure, all
parameters in the cataloged DD state-
ment are overridden.)

Note: A DUMMY data set should only be
read if the "END= " option is speci-
fied in the FORTRAN READ statement.

If the option is not specified, a read
causes an end of data set condition,
and termination of execution of the
load module.

DDNAME=ddname
indicates a DUMMY data set that will
assume the characteristics specified
in a following DD statement "“"ddname”.
The DD statement identified by
"ddname™ then loses its identity; that
is, it cannot be referred to by an
*,4e.ddname parameter. The statement
in which the DDNAME parameter appears
may be referenced by subsequent
*,...ddname parameters. If a subse-
quent statement identified by "ddname"
does not appear, the data set defined
by the DD statement containing the
DDNAME parameter is assumed to be an
unused statement, The DDNAME parame-
ter can be used five times in any
given job step or procedure step, but
no two uses can refer to the same
"ddname". The DDNAME parameter is
used mainly for cataloged procedures.

SPECIFYING INPUT/QUTPUT DEVICES

The name and number of input/output
devices are specified in the UNIT
parameter,

UNIT=(namel, {n|P}])

name
is given to the input/output device
when the system is generated.

n|p
specifies the number of devices allo-
cated to the data set. If a number
"n" is specified, the operating system
assigns that number of devices to the
data set. "P" is used with cataloged
data sets when the required number of
volumes is unknown. The control pro-
gram assigns a device for each volume
required by the data set.

Note: See Appendix F for a list of input/
output unit types.

SPECIFYING VOLUMES

The programmer indicates the volumes
used for the data set in the VOLUME
parameter.

VOLUME=([PRIVATE] [,RETAIN]
[, volume-sequence-number]

[, volume-count]
:SER=(volume—serial—number]
[,volume-serial-numberl...)

dsname
s REF=)%, ddname)

*, stepname.ddname

*, stepname,procstep.ddname

identifies the volume(s) assigned to
the data set.

PRIVATE
indicates that the assigned volume is
to contain only the data set defined
by this DD statement. PRIVATE is
overridden when the DD statement for a
data set requests the use of the pri-
vate volume with the SER or REF sub-
parameter. The volume is demounted
after its last use in the job step,
unless RETAIN is specified,

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside on the volume.
If the data set requires more than one
volume, only the last volume is

retained; the other volumes are
demounted when the end of volume is
reached. If each job step issues a
RETAIN for the volume, the retained
status lapses when execution of the
job is completed.

volume-sequence-number

is a 1- to 4-digit decimal number that
specifies the sequence number of the
first volume of the data set that is
read or written. The volume sequence
number is meaningful only if the data
set is cataloged and volumes lower in
sequence are omitted.

volume-count
specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used, this
subparameter is required for every
nmulti-volume output data set.

SER
specifies one or more serial numbers
for the volumes required by the data
sets, A volume serial number consists
of one to six alphameric characters.
If it contains less than six charac-
ters, the serial number is left-
adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is
assumed to be cataloged and serial
numbers are retrieved from the cata-
log, or inherited from passed data
sets in a previous step. A volume
serial number is not required for new
output data sets.

REF
indicates that the data set is to
occupy the same volume(s) as the data
set identified by "dsname",
"*,ddname", "*,stepname.ddname®, or
*, stepname.procstep. ddname. Table 13
shows the data set references.

When the data set resides on a tape
volume and REF is specified, the data set
is placed on the same volume, behind the
data set referred to by this subparameter.
If this subparameter is used, the UNIT
parameter, if specified, is ignored.

If SER or REF is not specified, the con-
trol program allocates any non-private
volume that is available.

Creating Data Sets 61

Table 13. Data Set References
Option i Refers to
REF=dsname ia data set named
!“dsname"
REF=#%,ddname ia data set indicat-

|ed by DD statement
| "ddname® in the

| current job step

4

¢
REF=#,stepname.ddname |a data set indicat-
t

|ed by DD statemen
| "ddname™ in the
|previous job step

| "stepname”
4
T

[o e s o e . Sy . M G — . — — C— ——— . o— N i

REF=%,stepname.

|a data set indicat-
procstep.ddname|ed by DD statement

| "ddname™ in the

| procedure step

| "procstep® invoked

|in the previous job
|step “stepname"

L

b s e e s . i, retrs. ellith crasn, et e, o v i e e, e s cnlis, —— e e, e 2

SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES

The programmer indicates the amount of
space for a data set in the SPACE
parameter,

TRK
SPACE= ({CYL

average-record-length
s (Primary-quantity
[,secondary-quantity]l
(,directory-quantityl)
MXIG

’
{,RLSE] |,ALX {, ROUND])
« CONTIG

The SPACE parameter specifies:

1.

2.
3.

u.

TRK
CYL

62

Units of measurement in which space is
allocated.

Amount of space allocated.
Whether unused space can be released.

In what format space is allocated.

average—record—length}

specifies the units of measurement in
which storage is assigned. The units
may be tracks (TRK), cylinders (cYL),
or records (average record length in
bytes expressed as a decimal number
less than or equal to 65,535).

(primary-quantity [, secondary-quantity]
[directory-quantityl)

RLSE

MXIG
ALX

specifies the amount of space allo-
cated for the data set. The "primary
quantity"® indicates the number of
records, tracks, or cylinders to be
allocated when the job step begins.
The "secondary quantity® indicates how
much space is to be allocated each
time previously allocated space is
exhausted. (Note: The maximum number
of times secondary allocation will be
made is 15.)

For example, by specifying:
SPACE=(120, (400,100))

space is reserved for 400 records; the
average record length is 120 charac-
ters. Each time space is exhausted,
space for 100 additional records is
allocated.

The "directory quantity®™ is used only
in writing a PDS; it specifies the
nunber of 256-byte blocks to reserve
for the PDS directory.

By specifying:
SPACE=(CYL, (20,2, 5))

20 cylinders are allocated to the data
set. When previously allocated space
is exhausted, two additional cylinders
are allocated. Furthermore, space is
reserved for five 256-byte blocks in
the directory of a PDS.

Note: When the FORTRAN programmer
uses a direct-access data set, he must
allocate space on the direct-access
volume in two places: the DEFINE FILE
statement in the source module and a
DD statement at load module execution.
He must also make certain that the DD
statement SPACE parametexr contains an
adequate SPACE allocation, based on
the value specified in the DEFINE FILE
statement.

indicates that all unused external
storage assigned to a data set is to
be released when the data set is
closed in a job step.

Note: The RLSE subparameter is
ignored for any file for which END
FILE is specified, or for which a
BACKSPACE statement is issued.

CONTIJ

specify the format of the space allo-

cated to the data set, as requested in
the "primary quantity”.

MXIG
requests the largest single block of
contiguous storage that is greater
than or equal to the space requested
in the "primary quantity"®.

ALX

requests all available storage on the
volume as long as there is at least as
much space as specified in the "pri-
mary quantity®. The operating system
must be able to allocate at least the
amount specified as the "primary gquan-
tity" by using, at most, five noncon-
tiguous areas of storage.

CONTIG
requests that the space indicated in
the "primary quantity"™ be contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled,
the operating system attempts to
assign contiguous space. If there is
not enough contiguous space, up to
five noncontiguous areas are
allocated.

ROUND
indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

Note: If a data set might be written on a
direct access volume, the SPACE parameter
must be specified in the DD statement.

LABEL INFORMATION

The label parameter (LABEL) is used to
specify the type and contents of a data set
label.

'NL
LABEL= ([data~-set-sequence-number] <, SL }
, BLP
,OU , EXPDT=yyddd
[, PASSWORD] [,INT][;RETPD=xxxx])

data-set-sequence-number
is a 4-digit number that identifies
the relative location of the data set
with respect to the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is identi-
fied by data set sequence number 3.)
If the data set sequence number is not
specified, the operating system
assumes 1.

NL
SL
BLP

specifies data set label information.
SL indicates standard labels. NL
indicates no labels (applicable only
to data sets residing on a tape
volume)., PBLP indicates that label
processing should be bypassed.

The feature that allows bypassing of
label processing is a system genera-
tion option (OPTIONS=BYLABEL)., If
this option has not been specified and
BLP is coded, the system assumes NL.

PASSWORD
is used to secure a data set from
unauthorized access. The operating
system assigns security protection to
the data set. Subsequently, whenever
the data set is retrieved, the opera-
tor must respond to a message by issu-
ing the correct password. Detailed
information on the use of the PASSWORD
subparameter can be found in the Job
Control Language and the Data Manage-
ment and Supervisor Services publica-
tions. Note that prudence should be
exercised in specifying this option;
indiscriminate use of PASSWORD can
result in operation inefficiencies.

ouT
IN

The subparameters IN, OUT are used to
control data sets that are to be processed
as input or output only. Thus a form of

read/write protection is offered by these
parameters.

For input data sets, the IN subparameter
allows:

e Access to members of a partitioned data
set (for read purposes only).

¢ A means of avoiding operator interven-
tion when reading a data set that is
protected by either a high expiration
date or by the absence of the write
ring (file-protected tape).

For cutput data sets, the OUT subparam-
eter allows a member of a partitioned data
set. to be creatn~d.

IN

specifies that the data set is to be
processed for input only. IN will be
recognized only if the first input/
output operation specifying the data
set is a READ. If the first operation
is not READ, the IN subparameter has
no effect and both READ/WRITE opera-
tions are allowed. When the first
operation is a READ, any subsequent

Creating Data Sets 63

WRITE issued to the data set will be
treated as an error, and the job will
be terminated. Additionally, the
specification of IN permits the read-
ing of a password-protected data set
(if the correct password is supplied)
and avoids the need of operator inter-
vention when reading a data set pro-
tected by either a high expiration
date or the absence of a write-ring.

ouT
specifies that the data set defined by
the DD statement is to be processed
for output only. OUT will be recog-
nized only if the first input/output
operation specifying the data set is a
WRITE. If the first operation is not
WRITE, the OUT subparameter has no
effect and both READ/WRITE operations
are allowed. However, the creation of
a member of a partitioned data set is
not allowed when the first operation
is READ, even though the OUT subparam-
eter was specified. When the first
operation is a WRITE, any subsequent
READ issued to the data set will be
treated as an error, and the job will
be terminated. OUT must be specified
to create a member of a partitioned
data set.

[‘EXPDT=yyddd]

RETPD=XXXX
specifies how long the data set shall
exist, The expiration date, EXPDT=
yyddd, indicates the year (yy) and the
day (d4dd) the data set can be deleted.
The period of retention, RETPD=xXxX,
indicates the period of time, in days,
that the data set is to be retained.
If neither is specified, the retention
period is assumed to be zero.

DISPOSITION OF A DATA SET

The disposition of a data set is speci-
fied by the DISP parameter; see "Data
Definition (DD) Statement". The same
options are used for both creating data
sets and retrieving previously created data
sets. When a data set is created, the sub-
parameters used are NEW, MOD, KEEP, PASS,
and CATLG.

WRITING A UNIT RECORD DATA SET ON AN
INTERMEDIATE DEVICE

With the SYSOUT parameter, output data
sets can be routed to a system output
stream and handled much the same as system
messagese.

64

SYSOUT=A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB param-
eter has any meaning when SYSOUT=A is

used. This form of the SYSOUT parame-
ter may be specified for printer data
sets.

SYSOUT=B

can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

SYSOUT=(x[,program-namel [,form-number])
indicates that the data set is normal-
ly written on an intermediate direct
access device during program execu-
tion, and later routed through an out-
put stream to a system output device.
The "x" is to be replaced by an alpha-
betic or numeric character that speci-
fies the system output class to be
used. Output writers route data from
the output classes to system output
devices. The DD statement for this
data set can also include a unit
specification that describes the
intermediate direct access device and
an estimate of the space required. If
these parameters are omitted, the job
scheduler provides default values as
the job is read and processed.

If there is a special installation
program to handle output operations,
its "program-name" should be speci-
fied. "Program-name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a four-digit "form
number®™ should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

Note: If the DEN subparameter is explicit-
ly specified for SYSOUT data sets, only
DEN=2 is allowed in the DCB parameter. In
addition, TRTCH=C must be specified in the
DCB parameter, when the SYSOUT data set (1)
is written on 7-track tape and (2) is com-
posed of variable-length records or con-
tains binary information.

DCB_PARAMETER

For load module execution, the FORTRAN
programmer may specify record formats and

record lengths for sequentially organized
data sets that reside on magnetic tape or
direct access volumes, The DCB information
is placed in the labels for these data
setse.

dsname
DCB=(| *. ddname
*, stepname. ddname
*, stepname, procstep.ddname

(,DEN={0]|1]2]|3}1 [, TRTCH={C|E|T|ET}]
{,BUFNO={1]2}1[,OPTCD=C]

s{F|U}[A|M][T][,BLKSIZE=xxxx] l
. RECFM=)JFB[A|M] [T], LRECL=xxxX, BLKSIZE=XXXX,
VIs][B] (A|M] [T], LRECL=XXXX,

BLKSIZE=XXXX

¢ BLKSTZE=XXXX

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMAT ION

The first subparameter

dsname

*,ddname

*, stepname. ddname

*, stepname. procstep.ddname

is used to copy DCB information from the
data set label of a cataloged data set or
from a preceding DD statement. The copied
information is used for processing the data
set defined by the DD statement in which
the subparameter appears. Any subparame-
ters that follow this subparameter override
any copied DCB subparameters.

dsname
indicates that the DCB subparameters
of a cataloged data set "dsname" are
copied. The data set indicated by
"dsname" must be currently mounted and
it must reside on a direct access
volume.

*, ddname
indicates that the DCB subparameters
in a preceding DD statement "ddname"
in the current job step are copied.

*, stepname.ddname
indicates that the DCB subparameters
in a DD statement "ddname" that occurs
in a previous job step "stepname" in
the current job are copied.

*, stepname. procstep.ddname
indicates that the DCB subparameters
in the DD statement "ddname" are
copied from a previous step "procstep®
in a cataloged procedure. The proce-

DENSITY:

dure was invoked by the EXEC statement
"stepname™ in the current job.

DENSITY AND CONVERSION

The second subparameter indicates the
density and conversion for data sets resid-
ing on magnetic tape volumes.

Density is specified for data
sets residing on any magnetic tape volume.

DEN={0]|1]2]3}
indicates the density used to write a
data set (see Table 14),

Table 14. DEN Values

| |Tape Recording Density (bits/inch) |
| DEN } i
|Va1ue| Model 2400 |
| b T -
| | 7-Track | 9-Track |
L <+ 1 4
r L] T 1
| 0 | 200 | - |
N 556 [- |
I 2 | 800 | 800 |
I 3 | - | 1600 i
L A L i |

If DEN is not specified, 800 bits per inch

is assumed.

CONVERSION: Conversion is used only for
data sets residing on 7-track tape volumes.

TRTCH={C|E|T|ET}
indicates which conversion type is
used:

C - data conversion feature is
used

E - even parity is used

T - translation from BCD to EBCDIC
is required

even parity is used and trans-

lation from BCD to EBCDIC is
required,

NUMBER OF BUFFERS FOR SEQUENTIAL DATA SETS

The number of buffers required to read
or write any data set is specified by
BUFNO=x

where x=1 or 2

Creating Data Sets 65

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

CHAINED SCHEDULING

Chained scheduling may be requested by
specifying OPTCD=C as a DCB subparameter in
the DD statement. Although chained sched-
uling is not used for direct-access I/0
itself, it does produce faster formatting
of direct-access data sets. Note that when
chained scheduling is specified, the system
makes use of about 2K additional bytes of
main storage to provide the feature.

RECORD FORMAT

Formatted Control Unformatted Control

RECFM=VI[B] [A|M] [T] (S

{?ECFM:U[AIM][T][S]
RECFM=FIB] [A|M] [T) (s

] RECFM=VS [B] [A|M] [T]
]
]

The characters U, V, F, B, and S
represent

U - undefined records (records that do
not conform to either the fixed-
length or variable-length format)

V - variable-length records {(records
whose length can vary throughout the
data set)

F - fixed-length records (records whose
length is constant throughout the
data set)

B - blocked records

S - for fixed-length records, the
records are written as standard
blocks, i.e., no truncated blocks or
unfilled tracks within the data set,
with the exception of the last block
or tracke.

S - for variable-length records, a
record may span more than one block.

The character A indicates the use of the
extended American National Standard car-
riage control characters (see Appendix E);
the character M indicates the use of
machine code control characters.

Note: If A is not specified (or assumed),
a carriage control character is treated as
data and written. Single spacing is
provided.

The character T specifies the use of the
track overflow feature, Use of this fea-
ture results in more efficient utilization
of track capacity and allows records to be
written when the specified block size
exceeds track size. RECFM subparameter
specifications, and the type of processing
each is associated with, follow:

RECFM=UT
Formatted Sequential I/O

66

RECFM=VT
Formatted Sequential I/0

RECFM=VST
Unformatted Sequential I/O

RECFM=FT
Direct Access I/0 or Formatted Sequen-
tial I/0

Note that backspacing is not allowed when
track overflow is specified. Therefore, a
FORTRAN program using the track overflow
feature may not contain the BACKSPACE
statement.

RECORD LENGTH, BUFFER LENGTH, AND BLOCK
LENGTH

For blocked records used by the compiler
or linkage editor, the length of a block is
specified by the buffer length which is
specified by

BLKSIZE=XXXX

where xxxx is a multiple of the record
length.

The record length (LRECL) is permanently
specified by the compiler or linkage
editor.

The SYSPRINT data set of the (G)
compiler has a record length of 120 bytes
(including the carriage control byte); the
SYSPRINT data set of the (H) Compiler has a
record length of 137 bytes. The SYSIN,
SYSPUNCH, and SYSLIN data sets have a
record length of 80 bytes.

For unblocked records used by the com-
piler or linkage editor, the programmer
should set BLKSIZE equal to record length
except for the FORTRAN IV (H) SYSPRINT data
set, which has a record length of 141
bytes o

For unblocked fixed-length records or
undefined records used during load module
execution, the record length and the buffer
length are specified by

BLKSIZE=XXXX

For unblocked variable-length records,
the record length is specified by

LRECL=XXXX
buffer length is specified by

BLKSIZE=XXXX

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

¢ Table 15. Specifications Made by the FORTRAN Programmer for Record Types and Blocking

v T L] b T T 1
| |Blocked or| | RECFM | |
| Step | Unblocked Record Type | sSpecification | Record Length | Buffer Length |
L . [4 (] 4 |
| 3 T ¥ T 1 hj
|Compiler or|Unblocked |Fixed-Length |not specified |not specified* |BLKSIZE=record |
| Linkage | | |length |
|Editor b + } i
| |Blocked Fixed-Length |not specified? |not specified® |BLKSIZE=xxXxx |
k- 1 1 1 1
{ . | Fixed-Length | RECFM=F2 BLKSIZE=xxxx2 | |
| | + i |
| |Unblocked |Variable-Length |RECFM=V LRECL=xXXX | |
| | 3 1 + -4 i
| | |variable-Length |RECFM=VS | LRECL=XXXX | |
I | | Spanned I | | |
l | ! , + + i [
| Load Module| [Undeflned | RECFM=U | BLKSIZE=XXXX | BLKSIZE=XXXX |
| Execution } 1 } q |
| | Fixed-Length | RECFM=FB | | |
| | + 4 LRECL=XXXX | |
| | Blocked | Variable-Length |RECFM=VB |] !
	I + 1				
		variable-Length	RECFM=VSB		
		Spanned			
	t t L + 1				
		Undefined	Blocked undefined records are not permitted		
L L A A _..{
v

|*Permanently specified by the compiler and cannot be altered (see "DCB Assumptions |
| for Load Module Execution®). |
|2Not specified for direct-access data sets. {
L J

For blocked variable-length or fixed-
length records used by load modules, the
record length is specified by

LRECL=XXXX

block length and buffer length are speci-
fied by

BLKSIZE=XxXXX
Undefined records cannot be blocked.
Table 15 is a summary of the specifica-

tions made by the programmer for record
types and blocking in FORTRAN processing.

FORTRAN Records and Logical Records

In FORTRAN, records for sequential data
sets are defined by specifications in FOR-
MAT statements and by READ/WRITE lists. A
record defined by a specification in a FOR-
MAT statement is a FORTRAN record (see the
FORTRAN IV _Langqguage publication, Order No.
GC28-6515). A record defined by a READ/
WRITE l1list is a logical record. Within
each category, there are three types of
records: fixed-length, variable-length,
and undefined. 1In addition, fixed-length
and variable-length records can be blocked.

For unformatted READ and WRITE state-
ments the logical record, as defined by the
I/0 list, is placed into physical records
and, if required, the logical record is
spanned over physical records. When span-
ning occurs, FORTRAN library routines do
not split-write an item over the span even
though there is enough room in the buffer
to accomodate part of the item. However,
FORTRAN does provide the ability to read
items split across segments.

FORMAT CONTROL

The following discussion provides infor-
mation on records written under control of
a FORMAT statement.

UNBLOCKED RECORDS: For fixed-length and
undefined records, the record length and
buffer length are specified in the BLKSIZE
subparameter. For variable-length records,
the record length is specified in the LRECL
subparameter; the buffer length in the
BLKSIZE subparameter. The information
coded in a FORMAT statement indicates the
FORTRAN record length (in bytes).

Fixed-Length Records: For unblocked fixed-
length records written under FORMAT con-
trol, the FORTRAN record length must not
exceed BLKSIZE (see Figure 32).

Creating Data Sets 67

Example: Assume BLKSIZE=44
10 FORMAT(F10.5,16,2F12.5,'SUMS')
WRITE(20,10)AB, NA, AC,AD

————— = — —

BLKSIZE — — — — — — — —]
| |
~— — —— — — —— FORTRAN Record — — — — — — — —
! !

[44 Byies of Data]

FORTRAN Record (FORMAT Control)
Fixed-Length Specification

Figure 32.

If the FORTRAN record length is less
than BLKSIZE, the record is padded with
blanks tc fill the remainder of the buffer
(see Figure 33). The entire buffer is
written,

Example: Assume BLKSIZE=56

5 FORMAT(F10.5,16,F12.5,TOTAL")
WRITE (15, 5)BC, NB, BD

BLKSIZE

r‘ - = = e |

|
1-—* - - =— — —=-—— ‘Aritten Record — — — — — — — —-I
— — — FORTRAN Record ~ — — |
l | |
' 33 Bytes of Data 1 23 Bytes of Blanks l
Figure 33, FORTRAN Record (FORMAT Control)

Fixed-Length Specification and
FORTRAN Record Length Less Than
BLKSIZE

Variable-Length Records: For unblocked
variable-length records written under FOR-
MAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length; and BLKSIZE as four greater than
LRECL. These extra eight bytes are
required for the 4-byte block descriptor
word (BDW) and the U4-byte segment descrip-
tor word (SDW), as shown in Figure 34, The
BDW (see Figure 39) contains the length of
the block; the SDW (see Figure 40) contains
the length of the record segment, i.e., the
data length plus four bytes for the SDW.

68

e = = — BLKSIZE — == — — — — = — — — —— 4

| |
| [T T o e mRECL—— o — e ——
: l [~ — — — — — — —FORTRAN Record — — — — — — —|
1 |
BDW|SDW Data

Figure 34, FORTRAN Record (FORMAT Control)

Variable-Length Specification

If the data 1length is less than
(LRECL-4), the unused portion of the buffer
is not written (see Figure 35),

wr e e — o —BLKSIZE — o o e e — g

[
}__ — — — — Written Record — — — — — m ;
! |
| T T T T RML—ﬁw—«-—~——ﬁ
|
{ : r ——— FORTRAN Record — — — !
I I | |
____________ X
Iﬂ\N}SDWl Data Not Written j

FORTRAN Record (FORMAT Control)
With Vvariable-Length
Specification and the FORTRAN
Record Length Less Than
(LRECL-4)

Figure 35,

Undefined Records: For undefined records
written under FORMAT control, BLKSIZE is
specified as the maximum FORTRAN record
length. If the FORTRAN record length is
less than BLKSIZE, the unused portion of
the buffer is not written (see Figure 36).

e - T /= BLKSIZE — — — _—“"“_"”—i
| |
f=— -—— — FORTRAN Record — — — — — |
| | |
| ! |
________ i
Data Not Written H
________ 4

Figure 36. FORTRAN Record (FORMAT Control)

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED RECORDS: For all blocked records,
the record length is specified in the LRECL
subparameter; the block length and buffer
length in the BLKSIZE subparameter.

Fixed-Length Records: For blocked fixed-
length records written under FORMAT con-
trol, LRECL is specified as maximum poss-
ible FORTRAN record length, and BLKSIZE
must be an integral multiple of LRECL. If
the FORTRAN record length is less than
LRECL, the rightmost portion of the record
is padded with blanks (see Figure 37).

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Example: Assume BLKSIZE=48 and LRECL=24

10 FORMAT(I2,F4.1,F8.4,F10.5)
20 FORMAT (I3, F9.4)

WRITE(13,10)N,B,Q, S

WRITE(13,20)K,Z

T T T T BLKSIZE — —— — — — — — —— 7
e —Written Block — —— — — — — !
| a
:— ————— RECL — — — — — - LRECL — — —— jl
| FORTRAN |
= — — FORTRAN Record — ————+—" 3 g = |
I | |

12 12 Bytes

24 Data Bytes Data Bytes of
Blanks

Figure 37. Fixed-Length Blocked Records
Written Under FORMAT Ccntrol

Variable-Length Records: For blocked
variable-length records written under FOR-
MAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be 4 plus an
integral multiple of LRECL, The four addi-
tional bytes allocated with BLKSIZE are
required for the block descriptor word
(BDW) that contains the block length. The
four additional bytes allocated with LRECL
are used for the segment descriptor word
(SDW) that contains the record length
indication.

If a WRITE is executed and the amount of
space remaining in the present buffer is
less than LRECL, only the filled portion of
this buffer is written (see Figure 38); the
new data goes into the next buffer. Howev-
er, if the space remaining in a buffer is
greater than LRECL, the buffer is not writ-
ten, but held for the next WRITE (see
Figure 38). If another WRITE is not
executed before the job step is terminated,
then the filled portion of the buffer is
written.

If LRECL is omitted, its default value
is set almost equal to the value of
BILKSIZE. This results in having only one
record written in any block.

Example: Assume BLKSIZE=28 and LRECL=12
30 FORMAT(I3,F5.2)
40 FORMAT(Fu.1)
50 FORMAT(F7.3)
WRITE(12,30)M,2
WRITE(12,40)V
WRITE(12,50)Y

I-_-‘_‘—_ - — = Written Block — — — — — — — 1 |

|

} T T T REL— oo LRECL — = — — I
l i

| | —— —FORTRAN Record ——q --TORTRAN [

| | | | | Record |

1 | | |

4 4 Bytes |
BDW{SDW 8 Data Bytes SDW Data Not |

——-FORTRAN Record— -4
| |

This space of 13 bytes
BDV‘A SDW 7 Data Bytes Ready for next WRITE .
(space > LRECL)
Figure 38. Variable-Length Blocked Records

Written Under FORMAT Control

UNFORMATTED CONTROL

Only variable-length records can be
written without format control, i.e., the
RECFM subparameter must be VS. (If nothing
is specified, VS is assumed.)

Records written with no FORMAT control
have the following properties:

¢ The length of the logical record is
controlled by the type and number of
variables in the input/output list of
its associated READ or WRITE statement.

o A logical record can be physically
recorded on an external medium as one
or more record segments. Not all seg-
ments of a logical record must fit into
the same physical record (block).

» Two quantities control the manner in
which records are placed on an external
medium: the block size (as specified
by the BLKSIZE parameter), and the log-
ical record (as defined by the length
of the I/0 list). BLKSIZE is specified
as part of the DCB parameter of the
data definition (DD) statement. If not
specified, FORTRAN provides default
values.

Each block begins with a 4-byte block
descriptor word (BDW); each segment begins
with a U-byte segment descriptor word
(SDW). The SDWs and BDWs are provided by
the system. Each buffer begins with a
4-byte block descriptor word (BDW). The
SDWs and BDWs are provided by the system.

Creating Data Sets 69

pPage of GC28-6817-2, Revised 12/30/70,

BACKSPACE Operations

Unblocked Records: For all unblocked rec-
ords written with or without FORMAT con-
trol, the volume is positioned so that the
last logical record read or written is
transmitted nexte.

Blocked Records: Block