

Color Display Terminal Models 2A, 2B, 3A, and 3B Maintenance Analysis Procedures (MAPs)

Color Display Terminal
Models 2A, 2B, 3A, and 3B
Maintenance Analysis
Procedures (MAPs)

PAGE 1 OF 2

ENTRY POINTS

FROM	ENTER	THIS	MAP
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUNBER	NUNBER
0100	BB	2	010
0200	BB	2	010
0300	BB	2	010
0400	BB	2	010
0500	BB	2	010
0600	BB	2	010
0700	BB	2	010
0800	A	1	01
0800	BB	2	010
0900	BB	2	010
1000	BB	2	010

001
(ENTRY POINT A)

DANGER

When the power ON/OFF switch is ON Π, the following are connected directly to the mainline power:-
-The front panel fuse switch,

- The degauss coil,
-Parts of the power supply card and
-The twisted-pair connection from P3 pins 8 and 9 (on the power supply card) to the analog card (P7).
- Be careful when measuring voltages in these areas.
- Switch power OFF if and remove the power cord from the mainline power socket before such actions as:-
-disassembling,
-inspecting for failures,
-making resistance measurements, etc.
-Start here to isolate any failure on the IBM 3279 display station.
- Before exchanging any FRU take note of the comments in MIM section 2.3.
- Ensure that the 3279 is correctly connected to a working Control Unit with correct color setup code.
-Start problem determination at the General Failure Index (MIM section 2.2). If the problem is described in the GFI, perform the associated actions.
-If the problem is not described, continue with this MAP.

Is the problem repaired by using the GFI? Y N

002
Does the power supply fail when the 3279 is in use or being serviced? (Lamp 1 changes from ON to OFF - it may flash a few times.) $\mathbf{Y} \mathbf{N}$

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
2	005	0100	A
2	013	0100	A
2	008	0200	FF
2	007	0700	A
2	006	1000	A

GENERAL LOGIC PROBE.
To use the General Logic Probe (P.N. 453212), set the switches as follows:TECHNOLOGY. . .MULTI
LATCH..........NONE
GATE REF..... GND
Power up the probe by connecting:-
Black wire to any D08 pin (ground) \&
Red wire to any D03 pin (+5 V).
Test by probing on D08 \& D03 pins.
OSCILLOSCOPE.
If using an oscilloscope in place of a G.L.P., interpret the indicators as follows:-
The GREEN light ON represents a voltage of less than +1 V .
The RED light $O N$ represents a voltage of greater than $+2 V$.
Both lights $O N$ indicates a waveform pulsing beyond both these limits.

010
(ENTRY POINT BB)
Return here after attempting a repair.

- Switch power OFF ol.
- Reinstall any parts removed.
- Replug any connectors.
- Remove any jumpers used in the MAPS.
- Correct any adjustments as necessary.
- Verify correct operation.

Is all correct?
Y N
011
Is this the first time through this step of the HAPS?
N
012
-Use the ERROR LOG and the ERROR CODE - to - FRU list (MIM section 2.6.2 and MIM section 2.6 .6) or the General Failure Index (MIM section 2.2) to aid you in your action plan.
Some examples are:

1. -Sinap the suspected FRU from another machine.
2. -Request assistance through your normal support channels.
3. -Check voltages for correct level (and ripple if possible).
4. -Check connections to control unit, ground loops, and bad AC ground connections.
5. -Check supply voltage for sudden changes. Check that the line voltage matches the machine voltage label and the power supply card part number is correct.
6. -The MAPS do not point to failures in the logic connector strips. If the MAPS call for a card exchange and this does not correct the problem, suspect associated strip or top card connectors or cables.

013
GO TO MAP 0100, ENTRY POINT A.
014
-Check all ground connections have been replaced correctly, see Figure 6-5.
-Replace all covers and bezel.

- Replace MIM in document tray and close rear gate.
- Replace any MIM supplement used, in the keyboard tray.
- Verify correct operation.
- End of call.

PAGE 1 OF 9

ENTRY POINTS

FROM	ENTER THIS MAP		
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0000	A	1	001
0200	BB	5	046

001
(ENTRY POINT A)

DANGER

When the power ON/OFF switch is ON 门, the
following are connected directly to the mainline power:-
-The front panel fuse switch,

- The degauss coil,
-Parts of the power supply card and
- The twisted-pair connection from P3 pins 8 and 9 (on the power supply card) to the analog card (P7).
- Be careful when measuring voltages in these areas.
- Switch power OFF lol and remove the power
cord from the mainline power socket
before such actions as:-
- disassembling,
-inspecting for failures,
-making resistance measurements, etc.
(Step 001 continues)


```
005
-Return cursor under C of CK field. (If
    misconverged, use the green cursor.)
-Press keys â (insert) J K L
Field should become jkCK
The symbols X吴> should appear in the
operator information area.
Are ALL actions correct?
Y N
006
GO TO PAGE 7, STEP 091,
ENTRY POINT CC.
0 0 7
-Press the RESET key.
Is the convergence good?
Take the Y path if you don't know.
Y N
    0 0 8
    GO TO MAP 0600, ENTRY POINT A.
009
The brightness should change smoothly as
the control is turned from minimum to
maximum.
can the brightness be changed as expected
by the brightness control?
(Ignore problems affecting BLUE only)
Y N
010
GO TO MAP 0300, ENTRY POINT A.
0 1 1
-If a selector pen is NOT installed take
the Y path now.
- Set the brightness control to center
position.
-Press the light pen tip (do not point it
at the screen).
White bars appear through all characters
in lines 2 and 3}\mathrm{ of the test pattern.
The blue characters become BRIGHTER but
the red and green do not change.
-Set the brightness control back to an
    acceptable level.
-Press the pen against the white ?SEL PEN
field in line 2.
The field changes to >SEL PEN.
-Press the pen against the blue >SEL PEN
    field in line 3.
The field changes to ?SEL PEN.
- If X-f appears in the indicator row,
press RESET key and retry.
Did all occur as expected?
Y N
012
GO TO MAP 0800, ENTRY POINT DD.
```

013
-If an MSR/MHS is NOT installed, take the Y path now.

- Move the cursor to the first position of the 5th row.
-Use the MSR/MHS to read the test card.
The green lamp on the MSR/MHS should light
and the cursor move. (The characters read
from the card may or may not display.)
$X-f$ will appear in the indicator row.
Did all occur as expected?
Y N

014

GO TO MAP 0800, ENTRY POINT EE.
015

- If ECS or PS (feature cards E2 and F2) are NOT installed, take the Y path now.
- Hold down the ALT key, press the CLEAR key, release both.
- Press keys / 8 ENTER

The pattern shown in Figure 2-6 (ONLINE
TEST 8) should display.
Is the pattern correct?
Y N

```
016
```

GO TO MAP 0800, ENTRY POINT CC.

017

- Set the TEST/NORMAL switch to TEST.
- Press all the keys in turn (except CONTROL).
The characters shown in Figure 2-3 (TEST
MODE 2) should appear. Note the 4 keys which give double characters.
Are all keys correct?
Y N

018

GO TO MAP 0700, ENTRY POINT A.

019

- Set the TEST/NORMAL switch to NORMAL.
- Press any alphanumeric key four or five times.
Does the clicker sound each time a key is pressed?
Y N
020
GO TO MAP 0700, ENTRY POINT A.
021
- Set the TEST/NORMAL switch to NORMAL.
- Hold down the ALT key, press the TEST
key, release both.
- Press keys / 7 ENTER

A yellow (or red on green) pattern ($- \pm- \pm-$) should appear at the center of the screen.
Does this occur?
Y N

```
022
GO TO MAP 0600, ENTRY POINT A.
```

1_{023}

- Press space bar 26 times, until 13 patterns display together in white.
-Look for any misconvergence. Do not mistake misconvergence for bad focus or bad color balance (impure white).
Is the convergence good?
$Y \mathrm{~N}$

024

GO TO MAP 0600, ENTRY POINT A.
025

- Set the brightness control fully clockwise.
Is the display as bright as you would
expect?
Y N
026
GO TO MAP 0300, ENTRY POINT BB.
027
(ENTRY POINT DD)
- Check color purity as follows:
- Set the TEST/NORMAL switch to TEST.
- Press keys CONTROL 0 I (red characters).
- Jumper D2Y02 to D2Y08 (reverse video). Do not leave this jumper connected for more than 20 seconds.
Is the red color good over ALL the screen?
$Y \mathrm{~N}$

028

- Go to MIM section 5.3 .2 to adjust the color purity. If this corrects the problem,
GO TO MAP 0000 , ENTRY POINT BB.
If you cannot correct the problem,
GO TO MAP 0300, ENTRY POINT BB.
029
- Check the color balance as follows:
- Remove the jumper D2Y02 to D2Y08.
- Jumper C2W09 to C2W28 (color bars).
- Jumper C2G06 to C2D08 (force characters).
- Set the TEST/NORMAL switch to NORMAL.

The three primary colors (red, green, blue) should be equally bright and the secondary colors distinct, at both high and low settings of the front panel BRIGHTNESS control.
Is all correct?
Y N
030

- Go to MIM section 5.3.6 to correct the color balance. If this corrects the problem,
GO TO MAP 0000 , ENTRY POINT BB.
If you cannot correct the problem,
GO TO MAP 0300, ENTRY POINT CC.
031
- Look at the focus in this test pattern.
- Look at both the center of the screen and the corners.
Is the focus good?
$Y \mathrm{~N}$

PAGE 4 0F 9
0 3 2
-Go to MIM section 5.3.4 to adjust the
image focus.
 - Switch power OFF lof.
 - If you cannot correct the problem, see
Figure 4-7 and Figure 6-7 to check the
continuity of the FOCUS connection
through P26. If the problem remains,
exchange the analog card then the video
card then the CRT.
GO TO MAP 0000, ENTRY POINT BB.
0 3 3
-Remove the jumper C2W09 to C2W28.
- Jumper C2W07 to C2W28. (force white).
-Hold down the ALT key, press the TEST
key, release both.
The screen will be full of white
characters.
-Check convergence carefully all over the
screen.
Is the convergence good?
Y N
034
GO TO MAP 0600, ENTRY POINT A.
0 3 5
-Fit the alignment mask to the screen.
Is the image SIZE and SHAPE correct?
Y N
0 3 6
-Remove jumpers.
-Go to MIM section 5.3.5 to adjust the
raster controls correctly (See also
Figure 1-4).
-If this corrects the problem,
GO TO MAP 0000, ENTRY POINT BB.
 - If you cannot correct the problem,
GO TO MAP 0400, ENTRY POINT DD.
0 3 7
\bulletEngage Intensity Override. (Turn the
brightness knob fully counterclockwise.)
-Look for a skip gap above and below the
separator line. It should be 1-3 mm
(0.05-0.1 inches) wide. See Figure 2-1.
Is the skip good?
Y N
038
GO TO MAP 0400, ENTRY POINT DD.
0 3 9
-Remove jumpers.
- Set the TEST/NORMAL switch to TEST.
\bulletEngage Intensity Override. (Turn the
brightness knob fully counterclockwise.)
Does the image appear as shown in Figure
2-1?
YN
040
GO TO MAP 0300, ENTRY POINT A.

```

041
- Release Intensity Override.
- Test the operation of the \(0000 / 00\) switch as follows:
- Set the TEST/NORMAL switch to NORMAL.
- Hold down the ALT key, press the TEST
key, release both.
- Press keys/ ENTER

ONLINE TEST 0 pattern (Figure 2-4) will
display.
- Set the 0000/00 switch to 00 .

The color of the pattern should change so
that all characters become green except
the characters on line 2 which will be
white. The separator line and characters in the OIA remain blue.
Does this occur?
Y N
042
GO TO MAP 0500, ENTRY POINT A.
043
- Set the 0000/00 switch back to 0000. Check that the \(A, a / A\) switch is set to \(A, a\)
\(\bullet\) Move the cursor down a few lines and press the 'Q' key.
A character ' \(q\) ' should appear.
- Set the \(A, a / A\) switch to \(A\).

The ' \(q\) ' will become ' \(Q\) ' .
Does this occur?
Y N
044
- Switch power OFF 0 .
- See Figure 6-8 to check for an open or short circuit in the wiring to the A,a/A switch.
- Check the switch. Exchange any failing FRU.
- If no failure is found, exchange logic card D2.
GO TO MAP 0000 , ENTRY POINT BB.
045
GO TO MAP 0800, ENTRY POINT FF.
\[
\text { PAGE } 5 \text { OF } 9
\]

\section*{046}
(ENTRY POINT BE)
-Observe the TEST MODE 1 pattern:
(If the image is missing or too poor to answer the question, take the \(Y\) path.) Do the focus, and purity adjustments look good?
Y N

\section*{047}
- Make any necessary adjustments to the controls (see Figure 1-4).
You may use MIM section 5.3.4 (Focus) or
MIM section 5.3.2 (Purity) to make the adjustment.
If this corrects the problem,
GO TO MAP 0000 , ENTRY POINT BB.
If the problem is still present,
GO TO PAGE 3, STEP 027,
ENTRY POINT DD.

\section*{048}
-Observe the TEST MODE 1 pattern:
(If the image is missing or too poor to answer the question, take the \(Y\) path.) Do the raster adjustments look good?
If the TEST MODE 1 pattern is visible but the width or height is wrong or the corners of the pattern are not square (for example) take the N path.
```

Y N
049
-Make any necessary adjustments to the
controls (see Figure 1-4).
You may use MIM section 5.3.5 to make
the adjustment.
If this corrects the problem,
GO TO MAP 0000, ENTRY POINT BB.
If the problem is still present,
GO TO PAGE 3, STEP 027,
ENTRY POINT DD.
0 5 0
Is lamp 1 (power good) ON ?
Y N
0 5 1
GO TO MAP 0200, ENTRY POINT A.
0 5 2
-If this display contains no feature
cards, (E2, F2, G2, G4) take the Y path
now.
-Switch power OFF l0 and remove any feature
cards.
-Replace the C5-D5(-E5) top card
connector, if moved. See Figure 1-6.
-Observe TEST MODE 1 pattern again (step
001).
Is test still bad?
Y N
053
GO TO MAP 0800, ENTRY POINT A.

```

GO TO MAP 0800, ENTRY POINT A.

```

H J K L
5 5 5 5
PAGE }70
9

```


091
(ENTRY POINT CC)
-Observe the TEST 0 pattern at high and low settings of the BRIGHTNESS control on the front panel.
- Take the \(Y\) path if the image is missing or too poor to answer the question.
- Do not mistake a missing color(s) or a continuous raster for poor color balance.
Do the raster, focus, purity and color
balance adjustments look good?
Y \(N\)
092
- Make any necessary adjustments to the CE controls (see Figure 1-4).
You may use MIM section 5.3.5 (Raster) or MIM section 5.3.4 (Focus) or MIM
section 5.3.2 (Purity) or MIM section
5.3.6 (Color balance) to make the adjustment.
If this corrects the problem,
GO TO MAP 0000 , ENTRY POINT BB.
If the problem is still present,
GO TO PAGE 3, STEP 027,
ENTRY POINT DD.
093
- If this display contains no feature cards, (E2, F2, G2, G4) take the \(Y\) path now.
- Switch power OFF l0 and remove any feature cards.
- Replace the C5-D5(-E5) top card
connector, if moved. See Figure 1-6.
- Switch power ON II
- Repeat preceding test (step 003 or 005).

Is test still bad?
Y N
094
GO TO MAP 0800, ENTRY POINT A.
095
- Set the TEST/NORMAL switch to TEST.
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.) The image on the screen may not be very bright.
Around some of the edges the three rasters should not be aligned and the 3 primary colors (Red, Green, Blue) should be visible in some areas around the edge. See Figure 2-1.
Does the image look similar to this?
Y N
096
GO TO MAP 0300, ENTRY POINT A.

04 FEB8 1

\section*{097}
－Release Intensity Override．（Turn
Brightness knob fully clockwise and then back if too bright．）
－Press the keys with the following legends shown in Figure 2－3：
\[
B \subset I J K L K Q(p p ? x)
\]

Note－On most keyboards the legends ＇pp＇，＇？＇，＇x＇and＇）＇are on the keys marked＇ALT＇，＇ENTER＇，＇TEST＇and＇â＇．
The cursor should move as each character is entered．
Is all as expected？
\(Y \mathrm{~N}\)
098
GO TO MAP 0700，ENTRY POINT A．
099
－Press these keys in sequence： CONTROL C CONTROL B B 0 I
－Press these keys in sequence： CONTROL \(C\)
－Press these keys in sequence：
CONTROL B B 0 Q
Does the entire display become RED then GREEN then BLUE？
Y N
100
－Set the TEST／NORMAL switch to NORMAL and back to TEST
－Connect a jumper from C2U11 to C2U08．
A solid red raster should cover the characters on the screen．
－Remove the jumper．
－Now connect the jumper from C2S12 to C2U08．A solid blue raster should cover the characters on the screen． －Remove the jumper．
Did you see both the red and blue rasters？
Y N
101
GO TO MAP 0300，ENTRY POINT A．
102
－Set the TEST／NORMAL switch to NORMAL．
－Hold down the ALT key，press the TEST key，release both．
－Press keys／ENTER
The pattern shown in Figure 2－4 should display．
（ONLINE TEST 0．）
Is the problem with this test pattern that it does not display in the correct colors or there is a color missing？ Y N

\section*{103}
－Exchange logic card D2 then C2．
GO TO MAP 0000，ENTRY POINT BB．
104
GO TO MAP 0500，ENTRY POINT A．
```

105

- Set the TEST/NORMAL switch to NORMAL.
Is there a (0) or 固 symbol in the indicator
row?
YN
106
Does the display show a green separator
line and a green cursor in the top
left-hand corner and NOTHING else?
Y N
107
Does an error code appear on the
screen or is there an entry in the
error log for this display? (See MIM
section 2.6.2 on how to read the error
log.)
(Take N path if you don't know.)
Y N
108
DOes the display remain in TEST MODE
even when the TEST/NORMAL switch is
sat to NORMAL?
Y N
109
- Exchange logic card C2 then D2.
GO TO MAP 0000, ENTRY POINT BB.
110
- Switch power OFF l0.
- See Figure 6-8 to verify and repair
wiring and connections to the
TEST/NORMAL switch.
GO TO MAP 0000, ENTRY POINT BB.
111
-Use the 'Error Code-to-FRU' list (MIM
section 2.6.6) to isolate the failing
FRU.
GO TO MAP 0000, ENTRY POINT BB.
112
GO TO MAP 0900, ENTRY POINT BB.
1 1 3
The screen should appear:-
(A) White cursor at top left.
(B) Blue separator line near the bottom.
(C) Any symbols in the indicator row
should be blue.
-Ignore any other image on the screen.
Are (A), (B) \& (C) correct?
Y N
114
- Attempt to enter the convergence
routine. (See MIM section 5.3.3.)
Do the symbols X吴簐? appear in the
indicator row?
Y N
115
 - Exchange logic card C2 then D2.
GO TO MAP 0000, ENTRY POINT BB.

```
    04FEB81
```

 PAGE }90
 9
    ```
    116
    - Exchange logic card B2 then C2 then D2.
    GO TO MAP 0000 , ENTRY POINT BB.
117
- Hold down the ALT key, press the TEST
    key, release both.
Does the word 'TEST' appear in the
indicator row?
Y N
    118
    -Hold down the ALT key, press the ALT
    CURSOR key, release both.
    Does the reverse cursor appear?
    Y N
        119
        Does the normal flashing cursor
        appear?
            N
                120
                GO TO MAP 0700, ENTRY POINT CC.
            121
            GO TO MAP 0700, ENTRY POINT EE.
    122
    GO TO MAP 0700, ENTRY POINT A.
123
-Press the '/' key.
Does a "/' symbol appear on the screen (in
the top left hand corner)?
\(Y \mathrm{~N}\)
    124
    GO TO MAP 0700, ENTRY POINT EE.
125
- Press the ENTER key.
(ONLINE TEST O).
The pattern shown in Figure 2-4 should
display.
Are the colored fields displayed in the
correct colors?
Ignore any other differences.
\(Y \mathrm{~N}\)
    126
    GO TO MAP 0500, ENTRY POINT A.
127
- Exchange logic card C2 then D2.
GO TO MAP 0000 , ENTRY POINT BB.

ENTRY POINTS
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0000 & FF & 6 & 065 \\
0100 & A & 1 & 001 \\
0400 & CC & 6 & 060
\end{tabular}

001
(ENTRY POINT A)

\section*{DANGER}

When the power ON/OFF'switch is ON (1) the following are connected directly to the mainline power:-
-The front panel fuse \& switch,
- The degauss coil,
-Parts of the power supply card and
- The twisted-pair connection from P3 pins 8 and 9 (on the power supply card) to the analog card (P7).
- Be careful when measuring voltages in these areas.
- Switch power OFF 0 l and remove the power cord from the mainline power socket
before such actions as:-
-disassembling,
-inspecting for failures,
-making resistance measurements, etc.
- Switch power OFF 时.
- Verify that the power cord is plugged in to an active outlet.
- Reseat the A2 and A3 logic gate cables and verify that the problem is still present.
- Siwitch power OFF l0
- Wait 10 seconds.
- Switch power ON 问 and look CAREFULLY at
lamp 1.
Does lamp 1 (POWER GOOD) flash at least once and then go OFF?
Y N

\section*{002}
- Connect a meter to +8.5 V on the logic board. ( \(0 \mathrm{~V}=\mathrm{B} 2 \mathrm{D} 08\), \(+8.5 \mathrm{~V}=\mathrm{B} 2 \mathrm{~B} 11\) ). - Switch power OFF 0 and wait at least 30 seconds.
- Switch power ON 11.

Did the voltage puise once or several times (approximately once a second) and then fall to zero? The voltage pulse may be very small. Switch the meter down a range if necessary.
Y \(N\)
003
Is the voltage constant between 7.6 and 9.4 Volts? Y N

EXIT POINTS
\begin{tabular}{lc|ll}
\hline EXIT & THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 5 & 058 & 0100 & BB
\end{tabular}

PAGE \(20 F 7\)

\section*{04}

Remove the power cord from the mainline power socket.
- Remove the bezel.
- With the power switch in the \(O N\) 同 position, measure the continuity from the power supply edge connector (P3) to the power cord.
Pins 11 and 14 (test points) of P3 should be connected one to each power cord pin.
See Figure 1-2 and Figure 6-15.
Are both connections good?
\(Y \mathrm{~N}\)

\section*{005}
- Switch power OFF 0 .
- Check the main fuse (F1).

Has the fuse failed?
Y \(N\)
006
- See Figure 6-15 to check the continuity of the ON/OFF switch, fuse and fuseholder and the connecting cables.
- Exchange the failing FRU.

GO TO MAP 0000 , ENTRY POINT BB.
007
- Exchange the fuse and test operation.
- Switch OFF and wait 1 minute.
- Switch ON and wait 10 minutes.

Did the fuse fail again?
Y N
008
GO TO MAP 0000 , ENTRY POINT BB.
009
- Switch power OFF 0 and remove the power cord from the mainline power socket.
- Remove power supply card.
- Exchange the main fuse (F1) again.
- Switch power ON 同 WITHOUT reinstalling the power supply card.
Did the fuse fail?
Y N
010
- Switch power OFF 10 and remove the power cord from the mainline power socket.
- Exchange the power supply card. GO TO MAP 0000, ENTRY POINT BB.

011
-Remove the power cord from the mainline power socket.
-See Figure 6-15 to verify the
insulation of the input power wiring. GO TO MAP 0000, ENTRY POINT BB.

C \(E\)
MAP 0200-2
1

12
- Switch power OFF 0 and remove the power cord from the mainline power socket.
- Remove the power supply card.
-Check the fuse (F2) on the power supply card.
NOTE: If necessary, remove the plastic cover to inspect the fuse. Replace the cover.
Is the fuse good?
Y \(N\)
013
- Do NOT repair or exchange the fuse.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.
014
- Leave the power supply card out.
- See Figure 1-2 and Figure 3-1. Check the continuity of the LOPT sense
winding to the analog card as follows:
- Measure resistance between locations 8 and 9 on the power supply card edge connector SOCKET (P3).
Is the resistance ohms?
Y N
015
- See Figure 4-7. Check that P7 (LOPT sense) is plugged-in.
- If the resistance is still not 0 , verify the continuity of the cable from P3 to P7 and repair.
- If no problem is found, exchange the analog card.
GO TO MAP 0000, ENTRY POINT BB.
016
- Verify the seating of the power supply card in the card edge connector.
- If no problem found, exchange the power supply card.
- Ensure that it matches the machine voltage label and the mainline ac voltage.
GO TO MAP 0000 , ENTRY POINT BB.
017
- Connect the meter to +5 V on the logic board.
( \(0 \mathrm{~V}=\mathrm{B} 2 \mathrm{D} 08,+5 \mathrm{~V}=\) B2D03).
Does the meter indicate +4.5 to +5.5
volts?
Y N
018
- Switch power OFF 10 .
- Disconnect the logic gate A3 cable.
- Switch power ON I.

Does the mater now indicate +4.5 to +5.5
volts?
\(Y \mathrm{~N}\)
019
- Switch power OFF 10 and remove the power cord from the mainline power socket.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.

PAGE 3 OF 7

020
- Switch power OFF 101 .
- Unseat the analog card.
- See Figure 6-8 and Figure 3-1
-Check the \(+5 v\) cable from the logic
A3 connector to the analog card P4-34 for continuity and short circuit to ground.
- If no problem is found exchange the analog card.
GO TO MAP 0000 , ENTRY POINT BB.
021
- See Figure 6-8 and Figure 3-1 and the table below to check the supplies to the analog card and the LED Indicators.
\begin{tabular}{|ll|l|c|c|}
\hline VOLTAGE. & \multicolumn{2}{|c|}{ LOGIC } & ANALOG CARD P4 \\
& TOL. & GATE & Wire & TP \\
\hline+5 Vdc & \(0.5 V\) & B2J03 & 34 & 37 \\
-5 Vdc & \(0.5 V\) & B2G06 & 29 & 5 \\
\(+8.5 V d c c\) & \(0.9 V\) & B2G11 & 35 & 36 \\
0 V & \(\cdots\). & B2J08 & 30 & 10 \\
\hline
\end{tabular}
- Switch power OFF 10
- Check continuity:-

Analog P4-10 to LED P12-6.
Analog P4-34 to LED P12-7.
Did you find a problem?
Y N

\section*{022}
- Exchange the analog card (then the power supply card)
GO TO MAP 0000 , ENTRY POINT BB.
023
- Trace and repair wiring if possible or exchange any failing FRU.
GO TO MAP ODOO, ENTRY POINT BB.
024
GO TO STEP 025,
ENTRY POINT BB.
025
(ENTRY POINT BB)
- Switch power OFF 10\(]\) and connect a meter to +5 V on the logic board.
( \(0 \mathrm{~V}=\mathrm{B} 2 \mathrm{D} 08,+5 \mathrm{~V}=\mathrm{B} 2 \mathrm{D} 03\) ).
There now follows a sequence of FRU
disconnecting and reconnecting to find which FRU is overloading the power supply.

CAUTION
When investigating with \(\mathrm{FRU}_{5}\)
disconnected:-
- Do NOT switch power ON for more than 5 minutes.
- Do NOT leave the 3279 unattended with power ON.

Remember POWER should not be switched back ON until 10 seconds after POWER OFF.
(Step 025 continues)
(Step 025 continued)
- Disconnect the keyboard.
- Switch power ON M.
is the \(+5 v\) supply now present (between
+4.5 V and +5.5 V )?
Y N
026
- Leave the keyboard disconnected.
- Switch power OFF 10 .
-Disconnect the video card plugs P14 and P16. See Figure 1-4.
- Switch power ON 11.

Is the +5 V supply now present?
Y N
027
- Switch power OFF lod.
-Reconnect the video card connectors P14 and P16.
- Disconnect amplifier card plug P18.

See Figure 1-4.
- Switch power ON 月.

Is the +5 V supply now present?
Y N
028
- Switch power OFF 0 .
- Reconnect amplifier card connector P18.
- Disconnect amplifier card
connectors P17A and P17B.
- Switch power ON П.

Is the +5 V supply now present? Y N

029
- Switch power OFF 0 .
- Reconnect amplifier card
connectors P17A and P17B.
- Disconnect the logic gate A3 cable.
- Switch power ON 1 I.

Is the +5 V supply now present? Y \(N\)

04 FEB81
555544
H JKLMN
MAP 0200-3
PAGE 40 OF 7
- Switch power OFF 101.
- Reconnect the logic gate A3 cable.
- Disconnect the logic gate A2 cable.
- Connect a meter to power supply connector P3-1 (+12V). See Figure 1-2.
-Use the potentiometer mounting plate as ground.
- Switch power ON M.

Does the \(+12 v\) supply pulse once or
several times and then fall to zero?
Y N
031
Is the +12 V supply constant between +10 and +15 volts?
Y N

\section*{032}
- Switch power OFF 10 and remove the power cord from the mainline power socket.
- Exchange the power supply card. GO TO MAP 0000, ENTRY POINT BB.

033
There may be a short circuit in a logic card.
- Switch power OFF 10 .
- Reconnect the A2 logic gate connector.
- Remove the logic cards one at a time in the following order, each time testing the +12V;
Feature cards G4, G2, F2, E2
Base cards C2, D2
Convergence logic card B2
- If the problem disappears, exchange the last card removed.
Has the problem gone?
Y N

\section*{034}

GO TO PAGE 6, STEP 060 , ENTRY POINT CC.
035
GO TO MAP 0000 , ENTRY POINT BB.

\section*{036}
- Switch power OFF 100.
- Reconnect the logic gate A2 connector.
-Unseat the analog card from its edge connector (P4).
- Switch power ON \(\quad\).

Doas the +12 V supply (at P3-1) still
pulse once or several times and then fall
to zero?
\(Y \mathrm{~N}\)
037
- Switch power OFF lod.
- Disconnect P5 from the analog card. ( Figure 4-7)
- Reseat the analog card.
- Switch power ON \(\quad\).

Does the +12 V supply at p3-1 now pulse once or several times and then fall to zero?
Y N
```

M P Q R
3
MAP 0200-4

```
```

 38
    ```
    38
            - Switch power OFF l0).
            - Switch power OFF l0).
            \bulletExchange the video card.
            \bulletExchange the video card.
            GO TO MAP 0000, ENTRY POINT BB.
            GO TO MAP 0000, ENTRY POINT BB.
        039
        039
        - See Figure 1-2.
        - See Figure 1-2.
        -Meter the +103v supply to the analog
        -Meter the +103v supply to the analog
        card at test points P3-39 and 40.
        card at test points P3-39 and 40.
        Does it pulse when power is switched
        Does it pulse when power is switched
        ON?
        ON?
        Y N
        Y N
            040
            040
            - Switch power OFF lO.
            - Switch power OFF lO.
            -See Figure 3-1.
            -See Figure 3-1.
            - Meter the 103V wiring for short
            - Meter the 103V wiring for short
                circuits.
                circuits.
            - Repair or exchange any failing FRU.
            - Repair or exchange any failing FRU.
            -If no problem found, exchange the
            -If no problem found, exchange the
                power supply card.
                power supply card.
            041
            041
            - Switch power OFF 0.
            - Switch power OFF 0.
            - Exchange the analog card.
            - Exchange the analog card.
            GO TO MAP 0000, ENTRY POINT BB.
            GO TO MAP 0000, ENTRY POINT BB.
    042
    042
    -Switch power OFF IO} and remove the power
    -Switch power OFF IO} and remove the power
        cord from the mainline power socket.
        cord from the mainline power socket.
    - Exchange the power supply card
    - Exchange the power supply card
    GO TO MAP 0000, ENTRY POINT BB.
    GO TO MAP 0000, ENTRY POINT BB.
043
043
(ENTRY POINT EE)
(ENTRY POINT EE)
-Switch power OFF O.
-Switch power OFF O.
-Reconnect the logic gate A3 cable.
-Reconnect the logic gate A3 cable.
-Unseat the analog card from its edge
-Unseat the analog card from its edge
    connector P4.
    connector P4.
-Switch power ON II.
-Switch power ON II.
-See Figure 1-2 and Figure 3-2 and use a
-See Figure 1-2 and Figure 3-2 and use a
    logic probe to trace these signals:
    logic probe to trace these signals:
HORIZ RETRACE: D2J13-B2G13
HORIZ RETRACE: D2J13-B2G13
HORIZ SYNC: B2J13-A3D13-Analog card P4-1
HORIZ SYNC: B2J13-A3D13-Analog card P4-1
                            to Analog card P4-2 (TP).
                            to Analog card P4-2 (TP).
VERT RETRACE: D2G08-C2G07-B2G08
VERT RETRACE: D2G08-C2G07-B2G08
VERT SYNC: C2G12-A3D12-Analog card P4-28
VERT SYNC: C2G12-A3D12-Analog card P4-28
    to Analog card P4-3 (TP).
    to Analog card P4-3 (TP).
Do BOTH probe lamps light at ALL the above
Do BOTH probe lamps light at ALL the above
points?
points?
Y N
Y N
    044
    044
- Switch power OFF 0.
- Switch power OFF 0.
-Check cables and connectors for
-Check cables and connectors for
        continuity or short circuits to ground.
        continuity or short circuits to ground.
    - Repair or exchange any failing FRU.
    - Repair or exchange any failing FRU.
    GO TO MAP 0000, ENTRY POINT BB.
    GO TO MAP 0000, ENTRY POINT BB.
```

 |
    ```
```

 |
    ```
\(K\) L S 334

POWER MAP
PAGE \(50 F\) 7

045
- Switch power OFF lol.
- Reconnect the logic gate A3 cable.
- Remove the EHT cable from the LOPT on
the analog card. See MIM section 4.5.4 para6. The free end of the EHT cable is safe - let it remain in the bottom of the box.
- Reinstall the analog card.
- Switch power ON 11 .

Is the +5 V supply now present?
Y N
046
There is probably a short circuit on
the analog card.
- Switch power OFF 10.
- First disconnect both the audible alarm connector P8 and the bezel lamps card connector P12. See Figure 1-2.
- Switch power ON \(\cap\) and test.
- Switch power OFF of if the problem remains, and exchange the analog card.
GO TO MAP 0000 , ENTRY POINT BB.
047
- Switch power OFF 10\(]\) and remove the power cord from the mainline power socket.
- Exchange the bleed assembly. (See MIM section 4.8.4.)
- If the problem is still present, exchange the CRT.
GO TO MAP 0000 , ENTRY POINT BB.
048
- Switch power OFF 10.
- Exchange the amplifier card.
- See MIM Chapter 5 to make adjustments.

GO TO MAP 0000 , ENTRY POINT BB.
049
- Switch power OFF lol.
- Reconnect the amplifier card connector P18.
Does this display have a selector pen installed?
Y \(N\)
050
GO TO STEP 052,
ENTRY POINT DD.
051
- Remove the selector pen logic card G4.
- Switch power ON II.

Is the +5 V supply now present? \(Y \mathrm{~N}\)

H J T U
MAP 0200-5
33

\section*{\(\left.\right|_{052}\)}
-Reinstall the selector pen card.
(ENTRY POINT DD)
- Remove the convergence logic card B2.
- Switch power ON II.

Is the +5 V supply now present? Y N

053
There seems to be a short circuit in the wiring of the the +12 V and \(-12 V\) supplies to the selector pen card. The problem may be present even if there is no selector pen installed.
- Switch power OFF 0 and see Figure 6-16. Repair any problem. GO TO MAP 0000, ENTRY POINT BB.
```

054

```
- Exchange logic card B2. GO TO MAP 0000 , ENTRY POINT BB.

055
- Exchange logic card G4.

GO TO MAP 0000 , ENTRY POINT BB.

\section*{056}
- Switch power OFF 10 .
- Exchange the video card. If the problem remains, verify the connections to the video card shown in Figure 6-7.
- Repair any problem.

GO TO MAP 0000, ENTRY POINT BB.
057
Can the TEST MODE 1 pattern now be displayed?
Y N

\section*{058}
- There is a slight overload on the power supply - the analog card is probably
failing. Leave the keyboard disconnected and
GO TO MAP 0100, ENTRY POINT BB.
059
- Switch power OFF ld.
- Meter the keyboard cable for short circuits (Figure 6-12) and repair as necessary.
- If no problem, exchange the keyboard logic card.
Another possible failure is a slight
overload on the power supply; removing a FRU has lowered the current within tolerance. See MIM section 3.1.
GO TO MAP 0000 , ENTRY POINT BB.
```

0 6 0
(ENTRY POINT CC)
-Switch power OFF IO and remove the power
cord from the mainline power socket.
-Reinstall any disconnected FRUs.
-Remove the analog card.
-Disconnect the deflection coils
(Connector P6, near the center of the
analog card with 4 colored wires) - see
Figure 4-7.

- Inspect the plug and connector for loose
and dirty contacts and broken wires.
-Repair any damage.
Did you find the problem?
Y N
0 6 1
The horizontal scan coil is connected to
the RED and BLUE wires.
The vertical scan coil is connected to
the YELLOW and GREEN (or BLACK) wires.
The resistance of each coil should be
less than 2 ohms.
-Measure the resistance of the 2 scan
coils.
Do both coils seem good?
Y N
062
- Exchange the CRT.
GO TO MAP 0000, ENTRY POINT BB.
063
 - Exchange the analog card.
-If the problem remains, exchange the
power supply card.
GO TO MAP 0OOO, ENTRY POINT BB.
0 6 4
GO TO MAP 0000, ENTRY POINT BB.

```

065
(ENTRY POINT FF)
- Start here to isolate problems causing the power supply to stop (i.e. lamp 1 changing from ON to OFF - with or without flashing).
- Wait one minute.
- Look at lamp 1 carefully.
- Switch power ON II.

Does lamp 1 flash?
Y N

\section*{066}
is lamp 1 ON?
Y N
067
GO TO PAGE 1, STEP 001 ,
ENTRY POINT A.
068
If, during more testing,
lamp 1 changes to OFF again:-
- Switch power OFF 10 .
- Wait one minute.
- Switch power ON I.
- If lamp 1 lights, continue MAP from where you stopped.
- If lamp 1 remains off, GO TO STEP 001, ENTRY POINT A.
- Probe pins P4-2 \& 3 (horizontal \& vertical sync Test Points on analog card).
Do both lamps light on both pins?
Y N

\section*{069}

GO TO PAGE 4, STEP 043,
ENTRY POINT EE.
070
- Switch power OFF Iof and remove the power cord from the mainline power socket.
- Reinstall any disconnected FRUs.
- Remove the analog card.
- Disconnect the deflection coils
(Connector P6, near the center of the analog card with 4 colored wires) - see Figure 4-7.
- Inspect the plug and connector for loose and dirty contacts and broken wires.
- Repair any damage.

Did you find the problem?


777
v W \(x\)
04 FEB8 1
MAP 0200-6

\section*{POWER MAP}

666
PAGE 7 OF 7

071
The horizontal scan coil is connected to the RED and BLUE wires.
The vertical scan coil is connected to the YELLOW and GREEN (or BLACK) wires. The resistance of each coil should be less than 2 ohms. - Measure the resistance of the 2 scan coils.
Do both coils seem good?
Y N
072
\(\bullet\) Exchange the CRT
GO TO MAP 0000, ENTRY POINT BB.

\section*{073}
- See MIM section 3.1 GO TO MAP OOOO, ENTRY POINT BB.
074
GO TO MAP 0000 , ENTRY POINT BB.
075
GO TO PAGE 1, STEP 001 ,
ENTRY POINT A.

PAGE 1 OF 4

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & \multicolumn{1}{l}{ STEP } \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0100 & A & 1 & 001 \\
0100 & BB & 4 & 036 \\
0100 & CC & 2 & 008 \\
0400 & A & 1 & 001
\end{tabular}

001
(ENTRY POINT A)
- Set the TEST/NORMAL switch to TEST.
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.)
You should see all 3 colors (red, green
and blue) in some areas around the edge of
the screen - as in Figure 2-1.
can you see all the 3 colored rasters ?
\(\mathbf{Y} \mathbf{N}\)
002
Are only one or two colored rasters visible? (No characters.)
Y N
003
The following symptoms in Intensity Override should not prevent the
display from operating normally:
(a) Only 2 of the 3 rasters visible and some dim characters just visible.
(b) The rasters do not appear and any characters remain in view. Have you got either of these problems? Y N

004
- Release Intensity Override.

GO TO PAGE 4, STEP 036,
ENTRY POINT BB.
005
- If symptom (a) is present, exchange the video card.
- For symptom (b), probe the VIDEO FORCE signal on the video card (Test
Point GT, Figure 6-9).
The signal should normally be UP and should go DOWN when Intensity Override is engaged. Does this occur?
Y N
006
- Switch power OFF
- See Figure 6-7 to trace the VIDEO FORCE signal.
- See Figure 6-7 to verify the continuity of the connections to the Intensity Override switch on the brightness potentiometer.
- If you find no problem, exchange the analog card.
GO TO MAP 0000 , ENTRY POINT BB.

EXIT POINTS
\begin{tabular}{ll|ll}
\hline EXIT & THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 2 & 017 & 0800 & DD
\end{tabular}


\section*{(ENTRY POINT CC)}
- See Figure 6-7 and Figure 6-9.
- Meter the 3 video card grid test points shown below. Use the -150 V dc meter range. Use a ground braid or the brightness potentiometer plate as ground. -With the brightness control set to MINIMUM, the voltages on the test points should be between -50 V dc and -80 V de.
- With the control set to MAXIMUM, the test point voltages should be between -20 V dc and -60 V dc.
```

GREEN GRID Test Point = GG
BLUE GRID Test Point = BG
RED GRID Test Point = RG

```


A D E
MAP 0300-2
1
\(\left.\right|_{015}\)
Is the blue grid voltage constant (and between -10 V and -20 V dcj as the brightness contral is turned?
Y N
```

016
GO TO STEP 010,
ENTRY POINT DD.

```
017

GO TO MAP 0800, ENTRY POINT DD.
018
- Switch power OFF 0 .
- Exchange the video card.
- If the problem remains exchange the CRT.
GO TO MAP 0000 , ENTRY POINT BB.
019
- Release Intensity Override.

Turn up the brightness.
Is the problem that ALi 3 rasters are
permanently on (as if Intensity override
is always activel?
Y \(N\)
020
Is the problem that ONE RASTER is
permanently on?
(that is, there is a solid RED, GREEN, or BLUE raster which may be dim or bright). Some characters may be just visible.
\(Y \mathrm{~N}\)
021
- Set the TEST/NORMAL switch to TEST.
- Look at the normal cursor - it should
be WHITE - that is, made up of RED
and BLUE and GREEN.
Is the problem that ONE of the 3
primary colors is never displayed on the screen?
Y N
022
GO TO PAGE 4, STEP 036,
ENTRY POINT BB.
023
- Ground the suspect video signal for a few seconds, where it comes on to the video card.
GREEN = Test Point GI
RED \(=\) Test Point RI
BLUE \(=\) Test Point BI
See Figure 6-9.
Does a full raster appear in the correct color?
Y N
024
- Switch power OFF 101 .
- Exchange the video card.
- If the problem remains, exchange the CRT.
GO TO MAP 0000, ENTRY POINT BB.

04 FEB81
333
FGH
MAP 0300-2
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
025 \\
- Switch \\
- Check below. locati
\end{tabular} & \begin{tabular}{l}
power \\
the co See ns.
\end{tabular} & OFF tinuity gure \(1-4\) & of the conn for plug \\
\hline \begin{tabular}{l}
VIDEO \\
SIGNAL
\end{tabular} & LOGIC & Through & VIDEO CARD Wire ITP. \\
\hline Green
Red
Blue & \[
\begin{aligned}
& \text { C2S11 } \\
& \text { C2U11 } \\
& \text { C2S12 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { A5D11 } \\
& \text { A5D112 } \\
& \text { A5D13 }
\end{aligned}
\] & P14-5
P14-7
P14-9
RI
BI \\
\hline
\end{tabular}
- Repair any problem found or exchange logic card E2 then the video card. GO TO MAP OOOO, ENTRY POINT BB.
026
- Switch power OFF lod.
- Remove the P14 connector from the video card. See Figure 1-4.
- Switch power ON \(\quad\) II.
- Set the TEST/NORMAL switch to NORMAL
-Use a LOGIC PROBE to look at the 3 video signals on the logic board.
GREEN \(=\) A5D11
RED = A5D12
BLUE \(=\) A5D13
Are any of them DOWN all the time?
Y N
027
- Verify the +5 V supply to the video card. (See Figure 6-7.) If no problem found, Switch power OFF 0 and exchange the video card.
GO TO MAP 0000 , ENTRY POINT BB.
028
- Switch power OFF 0 .
- Measure the resistance to ground of the suspect signal.
Is it 10 ohms or less?
\(Y \mathrm{~N}\)
029
- Exchange logic card C2.
GO TO MAP 0000, ENTRY POINT BB.
030
There appears to be a short to ground.
- Disconnect logic card C2.
Has the short disappeared?
Y N
```


031

```
- Look for a failure in the wiring between the video card and the logic board or on the logic board. See Figure 6-7 and Figure 3-1.
GO TO MAP 0000, ENTRY POINT BB.
032
- Exchange logic card C2.
GO TO MAP 0000, ENTRY POINT BB.
```

- Switch power OFF 0.
- Reseat the video card on the CRT.
- Switch power ON 1 I.
- See Figure 6-9 to check that the following supplies are present on the card.

Are the voltages correct?
Y N

034

- See Figure 1-4 and Figure 6-7 to check bad voltages and cable connections.
- Exchange the failing FRU.

GO TO MAP 0000 , ENTRY POINT BB.
035

- Switch power OFF 10 .
- See Figure 6-7 to verify the continuity of the VIDEO FORCE signal.
- See Figure 6-7 to verify the continuity of the connections to the Intensity Override switch on the brightness potentiometer.
- If you find no problem, exchange the video card.
GO TO MAP OOOO, ENTRY POINT BB.

PAGE 4 OF 4

036
(ENTRY POINT BE)

- (Do not use Intensity Override.)
- You may have:
a) screen too DIM or BRIGHT
b) brightness not variable
c) Limited brightness or brightness does not change smoothly when control turned from minimum to maximum
d) screen BLANK

Were you sent here for any of the above problems?
Y N

037

You may have a color balance or purity problem.

- Go to the adjust instructions (MIM Chapter 5).
- If necessary adjust the purity controls (MIM section 5.3.2) to make the color the same all over the screen.
- If necessary adjust the color balance cont ols (MIM section 5.3.6) to make whit:.
Are the purity and color balance
correct?
Y N
038
Is it a purity problem?
Y N
039
GO TO PAGE 2, STEP 008 , ENTRY POINT CC.

040

- Switch power OFF 10.
- See Figure 1-2 and Figure 6-15 to verify the degauss coil and its plug (P27).
The degauss coil should measure 15 20 ohms.
- Verify the continuity of the purity
coils from amplifier card P19 - see Figure 3-2 and Figure 1-4.
Each coil should measure between 130
and 170 ohms.
Are all coils good?
$Y \mathrm{~N}$
041
- Exchange the failing coil assembly. - If the problem remains, exchange the CRT. GO TO MAP 0000 , ENTRY POINT BB.

042
-Check the amplifier card fuse and exchange if necessary.

- If the problem remains, exchange the amplifier card then the CRT. GO TO MAP 0000 , ENTRY POINT BB.

043
GO TO MAP 0000 , ENTRY POINT BB.

- Meter -150V ($\pm 20 \mathrm{~V}$) supply, from the analog card ($\mathrm{P}_{4}-43$). Use the potentiometer mounting plate as ground. - If voltage is bad, switch power OFF and exchange the analog card.
- Switch power OFF 10 .
- See Figure 6-7 for the connections to the brightness potentiometer and the Intensity Override switch.
- Check continuity of the wiring from these controls to the analog and amplifier cards. Repair or exchange as necessary. - Reseat the analog card.
-Reseat P15 on video card - see Figure 1-4
- If no problem found, exchange the analog card (then the amplifier card, then the video card).
GO TO MAP OOOO, ENTRY POINT BB.

ENTRY POINTS

FROM	ENTER THIS MAP		
MAP NUMBER	ENTRY POINT	PAGE NUMBER	STEP NUMBER
$\begin{aligned} & 0100 \\ & 0100 \\ & 0100 \end{aligned}$	$\begin{aligned} & A \\ & C C \\ & D D \end{aligned}$	1 5 5	001 056 068

001

(ENTRY POINT A)

DANGER

When the power ON/OFF switch is ON 问, the following are connected directly to the mainline power:-
-The front panel fuse \& switch, -The degauss coil,
-Parts of the power supply card and
-The twisted-pair connection from P3 pins 8 and 9 (on the power supply card) to the analog card (P7).

- Be careful when measuring voltages in these areas.
- Switch power OFF \mathbb{C} and remove the power cord from the mainline power socket before such actions as:-
-disassembling,
-inspecting for failures,
-making resistance measurements, etc.
\bullet Release Intensity Override. (If
engaged.)
- Switch power OFF lod.
- Reseat the A2, A3 \& A5 logic gate connectors.
- See Figure 6-5. Check the continuity of frame ground (potentiometer mounting plate on bezel) to P3-4 and P4 pins 14, 24 and 30.
- Repair if necessary.
- Switch power ON П.
- Measure the voltages shown in the table opposite using the brightness potentiometer plate as ground.
Was ALL correct?
$\mathbf{Y} \mathrm{N}$
002
- Switch power OFF lol.
- Check continuity of A2D08 to the frame ground.
- Repair if necessary. See Figure 6-? and Figure 3-1.
- Switch power ON 同.
- Measure the voltages shown in the table opposite using the brightness
potentiometer plate as ground.
was ALL correct?
$\boldsymbol{Y} \mathrm{N}$

003

Was any voltage less than 1.0 V dc? $\stackrel{N}{N}$


```
    0 2 2
    * Turn HEIGHT control fully
    counterclockwise. See Figure 1-4.
    Is lamp 2 Iighted?
    Y N
    023
```



```
    - Exchange the analog card.
    -If this corrects the problem,
    GO TO MAP OOOO, ENTRY POINT BB.
    -If the problem remains,
    GO TO STEP 037,
    ENTRY POINT EE.
    0 2 4
    - See MIM section 5.3.5 to make necessary
        adjustments to raster.
    - Switch power OFF 皆 and exchange the
        analog card if raster can not be
        correctly adjusted.
    GO TO MAP 0000, ENTRY POINT BB.
    02
    -See Figure 1-2 and the table below to
        check the output voltages at the analog
        card socket P4.
    -Use the brightness potentiometer mounting
    plate as meter ground.
```

ANALOG CARD SOCKET (P4) PIN NO.	VOLTAGES AND TOLERANCES
31	+12 Vde $\pm 1.5 \mathrm{~V}$
$50(T P)$	$+6.3 \mathrm{Vdc} \pm 0.8 \mathrm{~V}$
43	-150 Vdc $\pm 20 \mathrm{~V}$
$48(T P)$	+70 Vde +10 V
	-5 V

Are they all correct?
Y N

```
026
Is pin 43 between -70 and -170 volts?
Y N
    027
    GO TO STEP 037,
    ENTRY POINT EE.
```

028
Is pin 50 voltage wrong?
Y N
029
- Switch power OFF lod.
- Exchange the analog card.
GO TO MAP 0000, ENTRY POINT BB.

030
NOTE: The filament voltage (P4-50) can rise to 12 V de or more if there is a broken connection to the filament or if the filament has an open circuit.

- Measure the voltage between analog card P4-31 (12 Vdc) and P4-47 (return).
Is there more than 8 volc?
Y N

031

- Switch power OFF ld.
- Exchange the analog card.

GO TO MAP 0000 , ENTRY POINT BB.
032
There may be an open circuit in the 6.3
V supply or return to the CRT filament.

- Switch power OFF ©
- Use Figure 6-7 to check continuity.
- See Figure 4-7 for filament resistance.
- Isolate to one of:
a) Wiring or connectors
b) CRT filament
c) Video card
d) Analog card

GO TO MAP 0000 , ENTRY POINT BB.
033

- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.) Is there any image on the screen?
Y N
034
Release Intensity Override.
Is the CRT filament lighted?
$\mathbf{Y} \mathbf{N}$
035
- Switch power OFF lol.
- See Figure 6-7 to measure voltages
and resistances to isolate the
failure.
- Exchange the failing FRU.

GO TO MAP 0000, ENTRY POINT BB.
036

- Turn HEIGHT control fully
counterclockwise.
Is problem solved?
$Y \mathrm{~N}$
037
(EMTRY POINT EE)
- Switch power OFF 0 and remove the power cord from the mainline power socket.
- Remove the analog card.
- Disconnect the deflection coils
(Connector P6, near the center of the analog card with 4 colored wires) see Figure 4-7.
- Inspect P6 for loose and dirty contacts and broken wires.
- Repair any damage.

Did you find the problem?

04 FEB81
4444
L M N P

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0100	A	1	001
0400	BB	2	010
1000	A	1	001

001
(ENTRY POINT A)
-Check the operation of the base color switch as follows. Probe B2J06.
When switch is set to 0000 this pin should be DOWN.
When switch is set to 00 this pin should be UP.
Is ali correct?
Y N

002

- See Figure 6-8 to check switch wiring and repair.
GO TO MAP OOOO, ENTRY POINT BB.
003
- Check operation of the 2 color control
signals as follows:
- Set NORMAL/TEST switch to TEST.

B2S08 should be UP.
B2U06 should be UP.
Are they correct?
Y N
004

- Exchange logic card B2 then C2 then D2.

GO TO MAP 0000, ENTRY POINT BB.
005

- Set NORMAL/TEST switch to NORMAL.

B2508 should be DOWN.
B2U06 should be DOWN.
Are they correct?
Y N
006

- Exchange logic card B2 then C2 then D2. GO TO MAP 0000 , ENTRY POINT BB.
007
Enter convergence routine as follows:
- Hold down the ALT key, press the TEST key, release both.
\bullet Press keys / 7 ENTER.
B2S08 should be DOWN.
B2U06 should be UP.
Are they correct?
$\mathbf{Y} \mathrm{N}$
008
- Exchange logic card B2 then C2 then D2. GO TO MAP 0000, ENTRY POINT BB.

009

- Exchange logic card C2 then D2 then C2. GO TO MAP 0000, ENTRY POINT BB.

EXIT POINTS

EXIT	THIS	MAP	TO
PAGE	STEP	MAP	
NUMBER	NUMBER	ENTRY	
1	002	0000	BB

LOGIC MAP
PAGE 2 OF 2

010
(ENTRY POINT BB)

- See Figure 1-2 and Figure 3-2 and use a logic probe to trace the VERTICAL SYNC. signal.

LOGIC board C2G12 (source)
LOGIC board A3D12
ANALOG card PIN 28
ANALOG card P4-3 (test point)
At all of the above points BOTH probe
lamps should light.
Do they?
Y N
011
Is the signal at C2G12?
Y N

012

- Exchange logic card C2. GO TO MAP 0000 , ENTRY POINT BB.

013

- Switch power OFF 10.
- Check continuity and repair.

GO TO MAP 0000 , ENTRY POINT BB.
014

- See Figure 1-2 and Figure 3-2 and use a logic probe to trace the HORIZONTAL SYNC signal.

LOGIC board D2J13 (source)
LOGIC board B2J13 (retimed)
LOGIC board A3D13
ANALOG card P4-1
ANALOG card P4-2 (test point)
At all of the above points BOTH probe
lamps should light.
Do they?
Y N
015
(ENTRY POINT CC)

- Probe D2J13 on the logic board. BOTH probe lamps should light. Do they?
Y N
016
-Use a logic probe on :
C2D10 (DOT 8)
C2B08 (DOT 5)
C2D05 (DOT 1)
C2B04 (DOT 0)
Do BOTH lamps light each time?
Y N
017
- Exchange logic card C2 then D2.

GO TO MAP 0000 , ENTRY POINT BB.
018

- Exchange logic card D2 then B2.

GO TO MAP 0000 , ENTRY POINT BB.

A B
MAP 0500-2

019

- Use a logic probe on :

C2D10 (DOT 8)
C2B08 (DOT 5)
C2D05 (DOT 1)
C2B04 (DOT 0)
Do BOTH lamps light each time?
Y N
020

- Exchange logic card C2 then D2.

GO TO MAP 0000 , ENTRY POINT BB.
021

- Use a logic probe on B2M08 (FEATURE CLOCK).
Do BOTH lamps light?
$Y \mathrm{~N}$

022

- Exchange logic card C2 then D2.

GO TO MAP 0000, ENTRY POINT BB.
023

- Exchange logic card B2, (then C2, then inspect B2G13 connection).
GO TO MAP 0000 , ENTRY POINT BB.
024
- Switch power OFF 0 .
- Reseat the analog card.
- Switch power ON 同 and test.

Has the problem gone?
$Y \mathrm{~N}$
025

- Switch power OFF lol.
- Exchange the analog card.
- Make any necessary adjustments.

GO TO MAP 0000, ENTRY POINT BB.
026
GO TO MAP 0000 , ENTRY POINT BB.

PAGE 1 OF 5

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0100	A	1	001
0800	A	1	001
0800	EE	1	009

001
If the BATTERY or some circuits on the convergence logic card B2 are failing, an error code 55 or 228 will appear on the screen when the 3279 is switched on. (The 3279 may have to be switched off for some hours before an error is generated.) The error code will be resettable (RESET key) and the operator could converge the screen using ONLINE TEST 7.
The battery is marked with its date (mmyy - month and year) and would be suspect if more than 3 years old.
Some other failures will cause error codes 55, 56, 228, or 229 to appear but will NOT be resettable.

(ENTRY POINT A)

- Connect the 3279 to a control unit and ready it.
Do any of these error codes appear at any time: 55,56, 228, or 229?
$Y \mathrm{~N}$
002
- Enter the convergence routine (see MIM section 5.3.3) and attempt to converge EACH of the 13 positions.
could you do so?
Y N

003

Did the convergence pattern appear in the correct colors?
$Y \mathrm{~N}$

004

- Exchange logic card B2 (then D2). GO TO MAP 0000, ENTRY POINT BB.

005
The convergence patterns should have moved smoothly when you pressed the cursor keys in step 002.
Was there ANY movement?
Y N
006
GO TO STEP 009 ,
ENTRY POINT EE.
007
Was the movement always smooth? Y N

Copyright IBM Corp 1981
5
ABCD

Are the correct voltages present? Y N

010
Is the voltage only wrong at test point 'K'?
Y N
011

- Probe the power supply card edge connector (P3) pins as shown in the table below.

Power Supply Card				
$\begin{array}{c}\text { P3 } \\ \text { Connector }\end{array}$	VOLTAGES AND			
1	TOLERANCES	$]$	12 Vdc $\pm 1.5 \mathrm{~V}$	
:---:	:---:			
3	-12 Vde $\pm 1.5 \mathrm{~V}$			
Use P3-2 as meter ref.				

Are the correct voltages present?
Y N
012
If only the -12 V supply was lost the fuse on the amplifier card may have failed.

- Switch power OFF 10 .
- Exchange the fuse if necessary.
- Switch power ON II.
- If the fuse fails again cor if it was good), switch power OFF and remove the power cord from the mainline power socket and exchange the power supply.
GO TO MAP 0000 , ENTRY POINT BB.

${ }^{1}$

- Meter 12 V LOPT supply:
+ Meter lead - A5D02
- Meter lead - A5B02

Is the voltage between 10 and 14 volts?
Y N

016
 - Switch power OFF 0 .

\bullet Use Figure 6-16 to check the 12 V LOPT
back to the analog card.

- Isolate to one of:
a) Cables or connectors
b) Amplifier card
c) Analog card

GO TO MAP 0000 , ENTRY POINT BB.
017
Set the TEST/NORMAL switch to NORMAL.

- Set the A, a/A switch to A.
- Hold down the ALT key, press the TEST key, release both. (This is to ensure the screen is clear).
- Jumper C2G06 to C2D08. Most locations on the screen will contain an 'A' character.
- Jumper C2W07 to C2W28. The characters should become white. If the convergence is bad they will be many-colored.
Is the convergence good (or nearly good)
near the center of the screen but gets
worse toward the edges and corners?
$Y \mathrm{~N}$
018
- Verify that the convergence coil assembly is correctly located on the CRT. See Figure 4-8.
- Attempt to improve the convergence at the center of the screen by adjusting the three static convergence thumbwheels and the blue lateral (STATIC BLAT) potentiometer. See Figure 1-4 and MIM section 5.3.1.
Is the convergence now nearly good at the center of the screen, getting worse toward the edges?
Y N

```
| |
    (ENTRY POINT BB)
    - Remove the jumpers.
    -Use a logic probe to probe B2G08.
        (Vertical Retrace).
        DO BOTH probe lamps light?
        Y N
        0 2 0
        - Exchange logic card D2.
        GO TO MAP 0000, ENTRY POINT BB.
    021
    - Switch power OFF l0.
    - Exchange logic card B2, (then the
        amplifier card, then logic card D2).
        GO TO MAP 0000, ENTRY POINT BB.
    022
    GO TO STEP 023,
    ENTRY POINT FF.
0 2 3
(ENTRY POINT FF)
-Remove the jumpers.
- Use a logic probe to probe B2G08
    (Vertical Retrace).
DO BOTH probe lamps light?
Y N
    024
    - Exchange logic card D2.
    GO TO MAP 0000, ENTRY POINT BB.
025
Enter the convergence routine as follows:
-Hold down the ALT key, press the TEST
    key, release both..
-Press keys / }7\mathrm{ ENTER.
-Press the SPACE BAR ten (10) times.
            NOTE: The next few steps check the
            convergence circuits.
-Press the UP cursor key and hold for
    about 10 seconds.
-Now press and hold the DOWN cursor key.
-Check that the GREEN pattern moves
    diagonally down (y) 3-10 mm (0.1-0.4
    inches).
Did the GREEN pattern move as expected?
Y N
026 the GREEN pattern show ANY movement?
Y N
027
GO TO PAGE 3, STEP 035,
ENTRY POINT DD.
028
GO TO PAGE 4, STEP 050,
ENTRY POINT CC.
```


$\begin{array}{llll}A & T & U \\ 1 & 4 & 4\end{array} \quad$ CONVERGENCE MAP
$\left\lvert\, \begin{aligned} & \text { PAGE } 50 F \\ & 053 \\ & \text { - Set the TEST/NORMAL switch to TEST }\end{aligned}\right.$ and back to NORMAL.
is the convergence worse than you left
it?
$Y \mathrm{~N}$
054
It may be an intermittent problem.

- See if the convergence coil
assembly is loose.
-Look for loose cables and connectors and reseat the convergence amplifier card and logic card B2.
GO TO MAP 0000, ENTRY POINT BB.
055
- Exchange logic card B2 (then D2 then C2)
GO TO MAP 0000 , ENTRY POINT BB.
056
- Exchange logic card B2 (then D2 then C2.)
GO TO MAP 0000 , ENTRY POINT BB.
057
Is the error code resettable?
Y N
058
- Exchange logic card B2 (then D2 then C2).
GO TO MAP 0000 , ENTRY POINT BB.
059
- Switch power OFF 10.
-Check the connections to the battery.
- Disconnect the A3 logic gate connector.
- Probe the free end of the A3 connector to measure the battery voltage:
+ meter lead to pin D07
- meter lead to pin B07.

A new battery will measure 4.1 V .
Is it less than 3.5 V ?
Y N
060

- Reconnect the A3 connector.
- Measure the voltage on B2B08.

This voltage should be 0.5 V to 1.0 V
less than the battery voltage.
Is it correct?
Y N
061

- Measure the voltage on B2J09.

This should be the same as the battery
voltage.
Is it correct?
Y N
062
There is a connection failure.
-Check:
B2J09. A3D07..P20-4.. Battery/red
B2J08..A3B07..P20-1..Battery/black

- Exchange the failing FRU.

GO TO MAP 0000 , ENTRY POINT BB.

063

- Exchange logic card B2.

GO TO MAP 0000, ENTRY POINT BB.
064
The battery seems good.

- Exchange logic card B2.
- Set up Dynamic convergence; See MIM
section 5.3.3.
GO TO MAP 0000, ENTRY POINT BB.
065
- Check for correct voltage at the following points:-
B2J09. .A3D07..P20-4. .Battery/red
B2J08..A3B07..P20-1.. Battery/black
- If the problem is still present get the customer to exchange the battery.
- If the problem remains when the customer installs a new battery, exchange logic card B2.
GO TO MAP 0000 , ENTRY POINT BB.

PAGE 1 OF 4

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUNBER
0000	A	1	001
0100	A	1	001
0100	BB	1	002
0100	CC	1	006
0100	EE	2	019
0800	A	1	001
0900	A	1	001
1000	EE	2	019

001
(ENTRY POINT A)

- Switch power OFF lod.
- Reconnect the keyboard if it is disconnected.
Keys binding, broken or worn are
mechanical failures.
Is this a mechanical failure or clicker problem?
Y N

002

(ENTRY POINT BB)

- Switch power OFF 0 .
- Remove the keyboard top cover. See MIM section 4.11.2
- Disconnect and reseat the internal keyboard connector, (See Figure 6-11.) the keyboard cable connector and the keyboard cable connector on the logic gate. (D5).
- Switch power ON 1 .
- See Figure 6-11 and Figure 6-12 and Table 7.1 (column 2) and check the voltages at the internal keyboard cable connector.

Table 7.1		
Voltage.	Internal Keyboard Tolerance. Connector	Logic Gate.
OV meter ref	D08	D5D08
+5 Vdc $\pm 0.5 \mathrm{~V}$	D03	D5D03
$+8.5 \mathrm{Vdc} \pm 0.9 \mathrm{~V}$	B11	D5B11
$-5 \mathrm{Vdc} \pm 0.5 \mathrm{~V}$	B06	D5B06

Are all voltages correct?
$Y \mathrm{~N}$

003

- Disconnect the keyboard cable connector from the logic gate (D5).
- See Figure 6-11 and Figure 6-12.
- Check the voltages shown in Tabie 7.1 (column 3) on the logic gate.
Are all the voltages correct?
Y N

Copyright IBM Corp 1981

Table 7.2		
ID bit	Logic Gate	Keyboard internal connector
0	D5B05	D04
1	D5B07	D05
2	D5B10	D09
3	D5D12	D10

Are the ID bits correct?
Y N

009

- Probe the internal keyboard connector. See Table 7.2 (column 3) and record the results. Bits which are jumpered should be DOWN. Bits which are not jumpered should be UP.

```
Are the ID bits correct?
```

Y N

010

- Switch power OFF 0 . - Exchange the keyboard logic card. GO TO MAP 0000 , ENTRY POINT BB.

04FEB81
2
E
MAP 0700-1

011

- Switch power OFF 0 .
- See Figure 6-11 and Figure 6-12 and Table 7.2 to check connections and isolate to a failing cable or connector.
GO TO MAP 0000 , ENTRY POINT BB.
012
- Probe internal keyboard connector pin D07 (POR).
The UP lamp on the probe should be on.
The DOWN lamp should flash when the
TEST/NORMAL switch is operated.
Is all correct?
$Y \mathrm{~N}$
013
-Probe D5B09 (POR).
- Repeat the last test.

Is all correct?
Y N
014

- Switch power OFF 0
-See Figure 6-12 and trace the connections from keyboard pin D07 to D5B09.
- Isolate to a failing cable or
connector.
GO TO MAP 0000, ENTRY POINT BB.
015
- Exchange logic card D2.

GO TO MAP 0000, ENTRY POINT BB.

016

-Probe D5D10 (DATA AVAILABLE).

- Press each keyboard key. The signal should pulse DOWN once as each key is pressed. Ignore any characters displayed on the screen.
Did any key fail this test?
Y N
017
- Probe internal keyboard connector pin DO2 (KEYBOARD ACKNOWLEDGE).
-Press ANY keyboard key. The signal should pulse DOWN as the key is pressed. Ignore any characters displayed on the screen.
Was a down pulse seen?
Y N
018
- Switch power OFF lol.
- See Figure 6-11 and Figure 6-12 and check continuity from internal keyboard connector pin D02 to logic gate D5D05.
- Repair or exchange as necessary.
- If the continuity is good, exchange logic card C2.
GO TO MAP 0000 , ENTRY POINT BB.

019
(ENTRY POINT EE)

- Probe D5D07 (MAKE /BREAK).
- Press the following keys - ALT, SHIFT
(right and left) and SHIFT LOCK.
(These keys are identified with the
following legends in Figure 2-3 (TEST MODE
2): mm nn oo pp).

The signal should pulse UP as each of
these keys is RELEASED.
Did these keys pass this test?
$Y \mathrm{~N}$
020
-Probe on the internal keyboard connector pin B12 (MAKE/BREAK). - Press the following keys - ALT, SHIFT (right and left) and SHIFT LOCK.
(These keys are identified with the following legends in Figure $2-3$ (TEST MODE 2): mm nn 00 pp).
The signal should pulse UP as each of these keys is RELEASED.
Did the keys pass this test?
Y N
021

- Exchange the keyboard logic card.

GO TO MAP 0000, ENTRY POINT BB.
022

- See Figure 6-12 and trace the connections from internal keyboard connector pin B12 to D5D07.
- Isolate to a failing cable or connector.
GO TO MAP OOOO, ENTRY POINT BB.
023
-Probe the logic gate pins shown in Table 7. 3 Column 3.
- Press the Q key (see Figure 2-3) each time. Each pin should pulse UP as the Q key is pressed.

Table 7.3	
Keyboard Scan bit	Connector
0	Bogic
Gate	

Did each pin pulse up?
Y N
024
-Probe the internal keyboard connector pins shown in Table 7.3 Column 2

- Press the Q key each time. The signal should pulse UP each time the Q key is pressed.
Did each pin pulse up?

04FEB81
333
J K L
MAP 0700-2

G J K L 2222

Table 7.4		
Scan Keyb	ard Connector	Logic Gate
3	B08	D5D11
4	B09	D5B12
5	B10	D5D13
6	B13	D5B13

$\underset{Y}{\mathrm{D}} \mathrm{N} \mathbf{N}$ each pin pulse up?

028

- Probe the internal keyboard connector pins shown in Table 7.4 Column 2.
- Press the P key each time. Each pin should pulse UP as the P key is pressed.
Did each pin pulse up?
Y N

029

- Switch power OFF 0.
- Exchange the keyboard logic card,
then the keyboard cable (there may be a short circuit between two lines in the cable or to ground). GO TO MAP 0000, ENTRY POINT BB.

030

- See Figure 6-12 and Table 7.4 to trace the connections and isolate to a failing cable or connector.
GO TO MAP 0000 , ENTRY POINT BB.
031
- Switch power OFF lol
- Exchange logic card D2 then the
keyboard logic card.
GO TO MAP 0000 , ENTRY POINT BB.

Did only one key fail the last test?
Y

A M N
MAP 0700-3
1
\int_{033}

- Switch power OFF ${ }_{0}$.
- See Figure 6-12 and verify the continuity of,
DATA AVAILABLE (D5D10 to keyboard internal connector B07)
KEYBOARD ACKNOWLEDGE (D5D05 to keyboard internal connector D02) - Repair any problem found.

Was any problem found?
$Y \mathrm{~N}$

034

- Exchange the keyboard logic card, then logic card D2, then the keyboard base card.
GO TO MAP 0000, ENTRY POINT BB.
035
GO TO MAP 0000, ENTRY POINT BB.
036
- Switch power OFF 10 .
- Exchange the key module for the failing
key.
GO TO MAP 0000 , ENTRY POINT BB.
037
Clicker may be permanently enabled or
disabled or not sounding correctly.
Is this a clicker failure?
Y N
038
(ENTRY POINT DD)
- See MIM section 4.11 and check keyboard logic card and base card for failures. Are there any visible failures?
Y N

039

- Clean base card with isopropyl alcohol and assemble.

040

- Exchange any failing module and assemble.
GO TO MAP 0000 , ENTRY POINT BB.
041
- See MIM section 4.11.4 and Figure 6-11 and check that the assembly is tight.
Is the clicker assembly tight?
Y N

042

- Tighten the assembly and exchange the fastening spring if necessary.
GO TO MAP 0000, ENTRY POINT BB.

PAGE 1 OF 8

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMIBER	NUMBER
0100	A	1	001
0100	CC	1	002
0100	DD	4	031
0100	EE	7	077
0100	FF	3	015
0300	DD	4	031
0900	A	1	001
0900	GG	3	025

001

(ENTRY POINT A)
If you know which feature is causing the problem go to the entry point shown in the table below:

FEATURE or FUNCTION	ENTRY POINT
AUDIBLE ALARM	FF -page 3
SECURITY KEYLOCK	GG -page 3
MRC, MSR Or MHS	EE -page 7
SELECTOR PEN	DD -page 4
ECS Or PS	CC -page 1
KEYBOARD	MAP 0700
CONVERGENCE	MAP 0600
VIDEO OUTPUT RPQ	MAP 1000

If there is a machine check (X nnn) error code displayed on the screen or in the error log for this display go to the entry point in the table below:
(See MIM section 2.6.2 on how to read the error log)

ERROR CODE	ENTRY POINT
44, 61 or 222	DD -page 4
43, 45, 60 or 224	EE -page 7
41, 42, 210 or 212	MAP 0700 A
223, 225,	CC -page 1
226, 227 or 234	CC -page 1
55, 56, 228 or 229	MAP 0600 A
Any other error code	MAP 0900 A

\bullet Reinstall cards E2 and F2 (ECS \& PS) if removed.
If the ECS feature is NOT installed take the Y path now.

- Repeat the failing test, if known, (or use ONLINE TEST 8.)
Is the test good?

(ENTRY POINT CC)
Are both ECS and PS features (E2 and F2 cards) installed on this machine?

Copyright IBM Corp 1981
322
A B C

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
2	003	0000	BB
5	050	0600	EE

CAUTION

Switch power OFF before exchanging logic cards.

The PS modules are easily damaged by static electricity.
-Do NOT touch the pins.

- Do NOT put the module down except in the packing supplied or on to a conducting pad.
$====================$

Replace " n " below with number $0-8$
- Set the TEST/NORMAL switch to TEST and back to NORMAL.
- Hold down the ALT key, press TEST, and release both.
The word TEST appears in the OIA.
-Press keys / "n" ENTER
One of patterns shown in the MIM section 2.6 should display.
- Now set the switches on the ECS logic card for "NO PS INSTALLED' (see Figure 6-14).
- Reinstall the ECS card (E2) and its top card connectors.
- Run ONLINE TEST 8 (see this MAP page 1.)

Each PS symbol should display as a green
${ }^{1}$.
See MIM Figure 2-6 for correct display.
Is the test pattern OK?.
Y N

005

- Exchange logic card E2 (ECS) then D2 then C2.
GO TO MAP 0000 , ENTRY POINT BB.
006
- Set the switches on the ECS card (E2) to their original settings. (See step 004 above)
- Check these settings and the PS card jumper with MIM Figure 6-14.
- Check that the Control Unit has the correct features and microcode.
- Reinstall the F2 logic card (PS) and its top card connectors.
- Repeat ONLINE TEST 8.

Is the problem present?
$Y \mathbf{N}$
007
GO TO MAP 0000 , ENTRY POINT BB.
008
Are both PS2 and p54 features installec on
this machine? (There will be five pluggable modules on the F2 card if both features present).
$Y \mathrm{~N}$

009

- Exchange logic card F2 (PS) then E2 then D2.
GO TO MAP 0000 , ENTRY POINT BB.
D
MAP 0800-2
\int_{10}
It could be a PS card or a PS pluggable module failure.
- If the failing font is known, use Figure 6-14 to isolate the failing module.
- Otherwise order a new F2 logic card for the PS2 feature, and five new pluggable modules as well.
- Fit the new modules to the new card.
- Remove the jumper on the card if it is present.
- Temporarily install the new F2 card and its top card connectors.
Has the problem gone?
Y N
011
- Exchange logic card E2 then D2 then $C 2$. GO TO MAP 0000 , ENTRY POINT BB.

012

- Verify the old PS card as follows.
- Remove the pluggable modules from the old PS card.
- Remove the new PS card from the machine and move the five new modules to the old card.
- Now install the old PS card.
- Repeat the preceding test.

Is the problem present?
Y N
013
One or more of the old PS modules was failing.

- Remove the new modules from the old card (now in the machine), and replace with the old modules one at a time, to locate the failure. Test after each change.
- Run TEST 8 to verify correct operation. See MIM section 2.6.5 and Figure 2-6. GO TO MAP 0000 , ENTRY POINT BB.

014
The PS logic is failing (not one of the pluggable modules).

- Remove the PS card from the machine (that is, the failing card with the good modules installed).
- Plug the old modules to the new PS card and install.
- Run TEST 8 to verify correct operation. See MIM section 2.6.5 and Figure 2-6.
- Return any unused good parts to stock.

GO TO MAP 0000 , ENTRY POINT BB.

015

(ENTRY POINT FF)

Test the operation of the audible alarm as follows:

- Turn the alarm volume control fully clockwise.
- Set up the ONLINE TEST 0 pattern, see page 1.
The alarm should sound once when the test pattern shows.
If the alarm does NOT sound:
- Switch power OFF $@$.
- Reseat the AS logic gate connector.
-Try ONLINE TEST 0 again.
Does the alarm sound?
Y N

016

-Probe D2J05.
Is the UP lamp on?
$Y \mathrm{~N}$
017

- Disconnect P8 from audible alarm, see

Figure 1-2. (Should be accessible
from front of box).

- Probe D2J05.

Is the UP lamp on?
Y N
018

- Switch power OFF lol.
- Meter the wiring for a short circuit to ground.
- If less than 100 ohms, repair the wiring.
- If not, exchange logic card D2.

GO TO MAP 0000, ENTRY POINT BB.
019

- Switch power OFF 10 .
- Exchange the alarm FRU.

GO TO MAP 0000 , ENTRY POINT BB.

020

- Repeat set up the ONLINE TEST 0 pattern

Does the DOWN lamp pulse on?
Y N
021

- Disconnect P8 (Figure 1-2).
- Repeat set up the ONLINE TEST 0
pattern.
Does the doun lamp pulse on?
Y N

022

- Exchange logic card D2. GO TO MAP OOOO, ENTRY POINT BB. 023
- Switch power OFF 10 .
- Exchange the alarm FRU

GO TO MAP 0000, ENTRY POINT BB.

024

- Switch power OFF id and remove the power cord from the mainline power socket.
- Verify continuity of the connections in the table below.

ALARM CONNECTOR	Through	LOGIC GATE
P8-1 P8-3 P8-4	A3D02	A2D03 (5 5 (dc)

- Also check continuity from the alarm potentiometer to pins A1 and A3 on the alarm card (Figure 6-8).
- Verify the potentiometer
- Repair or exchange any fail FRU.
- If no failure found, exchange he Alarm FRU.
GO TO MAP 0000 , ENTRY POINT BB.
025
The audible alarm is operating correctly.

(ENTRY POINT GG)

If the Security Keylock is NOT installed, take the Y path now.

Test the operation of the Security Keylock as follows:

- Set the TEST/NORMAL switch to NORMAL.
- Check that the security key is turned fully clockwise.
- Now turn the key fully counterclockwise. The symbol Xon should appear in the operator information area and the screen above the separator line should become blank except for the cursor.
- Turn the key fully clockwise.

The Xon symbol should disappear and the display should return.
Did all occur as expected?
Y N

026

- Turn the security key fully clockwise. - Use a logic probe to check the following pins:

D2G03 should be UP - Keylock D2J04 should be DOWN-Keylock installed

Are they correct?
Y N
027

- Switch power OFF lol.
-Check the switch and its associated wiring.
- See Figure 6-8.
- Exchange the failing FRU.
-GO TO MAP 0000 , ENTRY POINT BB.

04 FEB81
44
G H

L
MAP 0800-4

- Meter TP 'J' on the amplifier card. See Figure 6-10.
-Check using table below.
- Use brightness potentiometer mounting plate as meter ground.

PEN TIP.	EXPECTED VOLTAGE.	
RELEASED	0	$V \mathrm{Vdc}-0.2$
PRESSED	1.0	Vdc -1.5

Are the voltages correct?
Y N
034

- Meter the light pen switch voltages. The table below shows the expected voltages.

$\begin{aligned} & \text { PEN } \\ & \text { TIP } \end{aligned}$	YELLOW G5B12	WHITE G5D11
RELEASED PRESSED	$\begin{array}{r} 1.8 \quad \begin{array}{l} V d c \\ 0 \\ V d c \end{array} \end{array}$	$\begin{array}{r} 0 \mathrm{Vdc} \\ 2.2 \mathrm{Vdc} \end{array}$

Are the voltages correct?
Y N
035

- Open up the selector pen.
- Verify the continuity of the 3 connections to the light pen switch.
See Figure 6-13.
(1) SNITCH n/o (yellow) G5B12
(2) SHITCH n/c (white) G5DII
(3) SWITCH common G5D08
(coaxial cable shield)
- Verify correct operation of the switch.
NOTE: the separate ground connector on
the selector pen cable is only
connected to a cable shield.
- Isolate to wiring or selector pen.

If no problem found, exchange
selector pen logic card G4.
GO TO MAP 0000, ENTRY POINT BB.

036

- Switch power OFF 0 .
- Check continuity of blue bright-up signal from TP 'J' on the amplifier card to P18-3 through to C2U02. See Figure 6-7.
-Check for short to ground.
Is connection good?
\mathbf{Y}^{N}
037
\bullet Repair or exchange failing FRU. GO TO MAP 0000 , ENTRY POINT BB.

038

Switch power ON 円.

- Set up the ONLINE TEST 0 pattern. Are blue characters always bright (not controlled by the brightness controll? $\mathbf{Y} \mathrm{N}$

555
M N P
04FEB81

M N P	FEATURE HAP			
4	4	4	PAGE $\quad 5$ OF	8

```
    0 3 9
```



```
    -Disconnect wire 3 from P18 on the
    amplifier card.
    -Switch power ON |.
    -Wait until the image appears.
    - Set the TEST/NORMAL switeh to TEST
        and back to NORMAL.
    -Hold down the ALT key, press the TEST
    key, release both.
    -Press keys/ ENTER
    -Decrease the brightness.
    Are the blue characters now always
    bright?
    Y N
        0 4 0
    - Switch power OFF lof.
    - Exchange the amplifier card.
    GO TO MAP 0000, ENTRY POINT BB.
    041
    -Probe C2S05 and press the selector
        pen tip. The DOWN light should come
        on and remain on as long as the tip
        is pressed.
    Does this occur?
    Y N
        0 4 2
        - Exchange logic card G4 (then the
    selector pen).
        GO TO MAP 0000, ENTRY POINT BB.
    043
    \bullet Exchange logic card C2.
    GO TO MAP OOOO, ENTRY POINT BB.
0 4 4
-Meter the voltage at TP 'J' on the
    amplifier card. Press and release the
    selector pen tip.
Is the voltage aIways between 1.0 V dc
and 1.5 V de?
Y N
    045
    - Switch power OFF O.
    - Exchange the amplifier card.
    GO TO MAP 0000, ENTRY POINT BB.
045
- Exchange logic card C2.
GO TO MAP 0OOO, ENTRY POINT BB.
047
(ENTRY POINT HH)
```

Do the blue characters change in
brightness as the brightness control is
turned?
$\left.\right|^{\mathbf{Y}}$
$K Q R$
4

048

- Probe video card TP 'BG' (Blue Grid). See Figure 6-9.
- Turn the brightness control from minimum to maximum.
The voltage measured should change
(approximately) from -70 V dc to -20 V dc.

Daes this occur?
Y N

049

- Meter the amplifier card test point 'K'.
Expect +12 V ($\pm 1.5 \mathrm{Vdc}$).
Is the voltage good?
Y N

050

GO TO MAP 0600, ENTRY POINT EE.

051

- Switch power OFF lol.
- Check the continuity of the Blue Grid supply: P17B-1 to P15-3 to TP 'BG' to P13-12.
- Check for short to ground. See Figure 6-7.
- Isolate to one of:
(a) Wiring
(b) Video card
(c) Amplifier card.

GO TO MAP 0000, ENTRY POINT BB.
052

- Switch power OFF lof.
- Exchange the video card then the CRT.

GO TO MAP OOOO, ENTRY POINT BB.
053

- Switch power OFF ld.
- Exchange the amplifier card.

GO TO MAP 0000 , ENTRY POINT BB.
054

- Press the light pen tip (do NOT point it at the screen).
White bars appear through all characters
on lines 2 and 3 of the test pattern.
- Set the brightness control to an acceptable level.
-Press the pen against the white ?SEL PEN field in line 2.
The field changes to $>5 E L$ PEN.
-Press the pen against the blue >SEL PEN field in line 3.
The field changes to ?SEL PEN.
- If X-f appears in the indicator row, press RESET and retry.
Did all occur as expected?

76
5 T
04FEB81
MAP 0800-5

NOTE: The light pen tip for Model 2 is P / N 2570128 (large lens) and for Model 3 1742655.

- See Figure 6-13 throughout these tests.
- Switch power OFF 6 .
- Disconnect the selector pen logic gate connector G5.
- Switch power ON П.
- Meter the following pins: G5D10 (+12 V)
and G5B08 (-12 V). Use G5D08 as GND.
Are the voltages present?
Y \mathbf{N}
056
- See Figure 6-10.
- Meter the amplifier card test points M $(+12 \vee \mathrm{de})$ and $\mathrm{N}(-12 \vee \mathrm{de})$.
Are both voltages present?
Y N
057
- Switch power OFF 0 .
- There must be a convergence problem.

See Figure 1-2 and Figure 6-16 to check wiring.
GO TO MAP 0000 , ENTRY POINT BB.

058

- Switch power OFF led.
- Reseat the logic gate A5 connector and P18 on the amplifier card and check the $+12 \forall$ and $-12 \forall$ wiring. (See Figure 6-16)
Has the problem gone?
Y N

059

One (or both) of the fused resistors on the amplifier card has failed. This will have been caused by an overload or short circuit on the $+/-12$ \checkmark supplies to the amplifier card.

CAUTION
Do not insert a new amplifier card until the cause of the overload has been repaired.

- Switch power OFF ld.
- Look for a short circuit in the +12 V and $-12 V$ wiring from the amplifier card to the selector pen card. (See Figure 6-16.)
- Repair any problem found. If there is no wiring problem, exchange the selector pen logic card (G4). - Exchange the amplifier card. GO TO MAP 0000, ENTRY POINT BB.

060
GO TO MAP 0000 , ENTRY POINT BB.

$\left.\right|_{061}$

- Reinstall the selector pen and card (G4) if removed.
Have you seen any of the following error codes on the screen or in the error leg for the display: 44, 61 or 222 ? (See MIM section 2.6.2)
Y N

062

- Probe C2S05 and press the selector pen tip. The DOWN light should come on and remain on as long as the pen tip is pressed.
Does this occur?
Y N
063
- Use your probe to verify the conditions shown in the table below.

PIN ON LOGIC GATE	SEL. PEN SWITCH			
PRESSED	RELEASED			
G5B12 Yellow G5DI1 White	DOWN	-		
G5D				DOWN

Are they correct?
Y N

064

- Exchange the selector pen then
logic card G4.
gO TO MAP 0000 , ENTRY POINT BB.
065
- Exchange the selector pen logic card G4 (then C2 then D2).
GO TO MAP 0000 , ENTRY POINT BB.

066

- Enter Test 0 - Hold down the ALT key, press the TEST key, release both.
-Probe C2S05 and use the pen to select each of the 4 pen-detectable fields in the test pattern.
- Each time, press and hold the pen against the screen at the correct position. The DOWN light will come on and remain on until the field is sensed. (The white bars should also disappear.)
NOTE: If $X-f$ appears in the indicator row, press RESET and retry. The red SEL PEN field and the blue \&SEL PEN field will normally cause $X-f$ to appear. were all 4 of the fields sensed correctly?

777
V W X

04FEB81
MAP 0800-6

067 -Probe the back of the selector connector (G5) and check voltag in the table below.		
$\begin{aligned} & \text { PIN ON } \\ & \text { LOGIC GATE } \end{aligned}$	VOLTAGES AND TOLERANCES	
G5D10 G5D13 (red) G5B08 Glack)	+12 -6.2 -12	$\mathrm{Vdc} \pm 1.5 \mathrm{~V}$ $\forall \mathrm{dc} \pm 0.6 \mathrm{~V}$ $\mathrm{Vdc} \pm 1.5 \mathrm{~V}$
Use G5D08 as ground		

Are they correct?
Y N
068
Is only the $-6.2 \forall$ wrong?
Y N
069

- Use Figure 6-16 to trace the +12 and -12 Volt supplies to the selector pen card (G4).
-Isolate to cables, connectors or amplifier card.
GO TO MAP 0000 , ENTRY POINT BB.
070
- Exchange logic card G4 (then C2
then D2).
GO TO MAP 0000 , ENTRY POINT BB.
071
-Set the TEST/NORMAL switeh to NORMAL and enter TEST 0 .
- Probe G5D12 (selector pen signal).

It should be UP.

- Set brightness control to maximum.

The DOWN light should also light when
the pen is pointed at any characters
on the screen.
Does this occur?
Y N
072

- Switch power OFF lod.
- Check the selector pen lens is
clean and exchange or clean if
necessary. If no problem found,
exchange the selector pen then
logic card G4.
GO TO MAP 0000 , ENTRY POINT BB.
073
- Exchange the selector pen logic card G4.
GO TO MAP 0000, ENTRY POINT BB.
074
- Exchange logic card D2 (then G4 then C2).
GO TO MAP 0000, ENTRY POINT BB.
075
- Exchange logic card G4 (then D2 then C2).

GO TO MAP 0000, ENTRY POINT BB.
$\left.\right|_{076}$
The Selector Pen appears to be working
correctly.
GO TO MAP 0000 , ENTRY POINT BB.
077
(ENTRY POINT EE)

If the MHS or MSR feature is NOT
installed, take the Y path now.

- If logic card G2 (MRC) was removed
earlier, Switch power OFF 0 and reinstall
it.
Test the operation of the MHS/MSR as
follows:
 - Run ONLINE TEST 0 (see page 1).
 - Move the cursor to the first position in
the fifth line lline below the test
pattern).
 - Read the MSR test card.
The cursor should move, the green light
turn $O N$ and $X-f$ show in the OIA.
If the red (reader) light turns ON, press
RESET and retry.
Did all occur as expected?
Y N
078
Has the customer used the PDG and the
Customar Replacement Procedures Manual
(shipped with the MSR/HHS unit)?
$Y \mathrm{~N}$
079
 - Do the tests recommended in the
Customer Replacement Procedures
Manual (Form No GA24-3663).
Did you find the problem?
Y N
080
- Switch power 0FF ld .
- See Figure 6-13. Verify all the
connections in the cable from logic
gate G3 to the MSR/MHS connector.
Also verify the ground connection.
is there a problem?
Y N
081
- Exchange logic card G2 then D2.
GO TO MAP 0000 , ENTRY POINT BB.
082
 - Repair or exchange the cable.
Verify correct operation.
GO TO MAP 0000 , ENTRY POINT BB.
083
GO TO MAP 0000 , ENTRY POINT BB.

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0100	BB	1	007
0800	A	1	001

001

(ENTRY POINT A)
Does the indicator row on the screen display any error indicator other than an error code?
$Y \begin{aligned} & \mathrm{N} \\ & 002\end{aligned}$
Does the indicator row, on the screen, display an error code?
Y N
003
Is the TEST/NORMAL switch in the NORMAL position?
$Y \mathrm{~N}$
004

- Put switeh in NORMAL position. GO TO MAP 0000, ENTRY POINT A. 005 Is the security keylock turned fully clockwise? (Use the Y path if there is no security keylock feature). $Y \mathrm{~N}$

006
Turn the switch clockwise. GO TO MAP 0000 , ENTRY POINT BB.

007

(ENTRY POINT BB)
Are other displays connected to the same Control Unit operating normally? Y N

008

- See the Control Unit MIM to isolate the failure.

009

-Use the ERROR LOG to determine if this terminal has had errors that cause the Control Unit to disable the terminal. (See MIM section 2.6.2) Does the error log contain any of the error codes given in MIM section 2.6.6 ? Take the N path if you don't know. $\left.\right|^{Y}{ }^{N}$

Copyright IBM Corp 1981

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
1	004	0000	A
3	040	0700	A
3	038	0800	A
4	053	0800	GG

PAGE 3 OF 4

028

- Verify coaxial cable connectors, cable and seating of C2 card.
- If errors remain, exchange C2 card.
GO TO MAP 0000 , ENTRY POINT BB. 029
- If the feature causing error is identified exchange that card.
- If the feature is not identified or this terminal does not have features, exchange C2 card.
Is the problem still present?
Y N
030
GO TO MAP 0000 , ENTRY POINT BB. 031
- Exchange D2 card.

GO TO MAP 0000 , ENTRY POINT BB.
032

- Exchange logic cards D2 then C2. GO TO MAP 0000 , ENTRY POINT BB.

033
The Switch Control Unit is failing. GO TO MAP 0000 , ENTRY POINT BB.

034

- Exchange logic cards C2 then D2. GO TO MAP 0000 , ENTRY POINT BB.

35

GO TO PAGE 2, STEP 026,
ENTRY POINT CC.

11
036
Is error code other than $41,42,210$ or 212 ?
Y N
037

- Remove any feature cards present.
(E2, F2, G2, G4)
Is problem still present?
Y N
038
GO TO MAP 0800, ENTRY POINT A.
039
- Disconnect keyboard cable from terminal.
Is problem still present?
$Y \mathrm{~N}$
040
GO TO MAP 0700, ENTRY POINT A.
041
- Exchange logic card C2 then D2.
- Reconnect keyboard cable to terminal.

GO TO MAP 0000 , ENTRY POINT BB.
042
GO TO PAGE 2, STEP 022,
ENTRY POINT DD.
043
Is the symbol Xon present in the operator Information Area?
$Y \mathrm{~N}$
044
Does either $X-f$ or X 옻? appear in the operator Information Area when you
attempt to enter the convergence
routine? (Online Test 7)
Y N
045

- Go to MIM Appendix A to find the meaning of the symbol(s) displayed and to take action.
GO TO MAP 0000 , ENTRY POINT BB.
046
Does X-f appear?
Y N
047
- X只\#? appears... Reseat logic card B2.

Has the problem gone?
Y N
048

- Exchange logic card B2.

Has the problem gone now?
Y N
049

- Exchange logic card C2 then D2. - Reinstall the original B2 logic card.
GO TO MAP 0000 , ENTRY POINT BB.

04FEB81
4444
L M N P
MAP 0900-3

L M N P SYSTEM INDICATED FAILURE
|50
-Go to MIM section 5.3.5 to set up
convergence.
GO TO MAP 0000, ENTRY POINT BB.
051
GO TO MAP 0000, ENTRY POINT BB.
052
Another operator on the same Control
Unit is probably using the convergence
routine.
-Press RESET and wait a few minutes
before repeating.
0 5 3
GO TO MAP 0800, ENTRY POINT GG.

```

PAGE 1 OF 5

ENTRY POINTS
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & \multicolumn{1}{l}{ STEP } \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0000 & A & 1 & 001 \\
0200 & BB & 3 & 026
\end{tabular}

\section*{001}
(ENTRY POINT A)
- Switch power OFF lod.
- Wait at least 10 seconds.
- Switch power ON II.
- If the fault appears on the 3279 display as well as the attached video devices, return to the General Failure Index to detern.ine the correct MAP entry point.
- Ask the customer to detach any attached video devices.
- Note the settings of the VIDEO CONTROL and SYNC POLARITY switches (on the rear panel).
- Set the VIDEO CONTROL switch to NORMAL or ENHANCE.
-Check that the 3279 is connected to a control unit.
- Set the TESTINORMAL switch to NORMAL.
- Set the 00/0000 switch to 0000
- Turn the BRIGHTNESS knob fully clockwise.
- Wait at least 1 minute or until an image appears on the 3279 screen.
- Turn the BRIGHTNESS knob until the screen brightness is acceptable.
- Hold down the ALT key, press the TEST key, release both.
Does 'TEST' appear in the Operator
Information Area (OIA)?
\({ }_{Y} \mathrm{~N}\)
002
Is the seperator line visible? Y N

003
Is the video control switch set to TEST?
Y N
004
- Check that the wiring of the VIDEO CONTROL switch is not reversed. - See Figure 6-13.

Is wiring OK?
\(Y \mathrm{~N}\)
005
-Wire the switch correctly.
GO TO PAGE 5, STEP 057, ENTRY POINT FF.

\section*{006}
- Exchange logic card C2.

Has the problem gone?
\(\mathbf{Y} \mathbf{N}\)

ABCDE

EXIT POINTS
\begin{tabular}{cc|cc}
\hline EXIT THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 5 & 057 & 0000 & BB \\
2 & 014 & 0500 & A \\
2 & 012 & 0700 & EE
\end{tabular}
```

A B C D E
11111
VIDEO QUTPUT RPQ MAP
PAGE 2 OF 5
M
07
- Inspect the cable in position C4.
-Inspect the VIDEO CONTROL switch.
\bullet Exchange any failing FRU.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
008
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
0 0 9
- Set the VIDEO CONTROL switch to
NORMAL or ENHANCE.
GO TO PAGE 1, STEP 001,
ENTRY POINT A.
0 1 0
-Verify that the control unit is
connected and working.
-Go to the General Failure Index (MIM
section 2.2).
0 1 1
-Press the '/" key.
Does a "/" appear on the screen?
YN
012
GO TO MAP 0700, ENTRY POINT EE.
0 1 3
-Press ENTER .
The pattern shown in Figure 2-4 (Online
Test 0) should display.
Are the COLORS correct? (Ignore any other
differences.)
YN
014
GO TO MAP 0500, ENTRY POINT A.
0 1 5
-Observe the SIGNAL TEST lamp located on
the rear panel.
Is it off?
YN
0 ! 6
Lamp is on.
GO TO PAGE 3, STEP 026,
ENTRY POINT BB.
0 1 7
-Set the VIDEO CONTROL switch to TEST.

- Observe the SIGNAL TEST lamp.
Is it on?
YN
018
GO TO PAGE 3, STEP 026,
ENTRY POINT BB.

```

MAP 1000-2

\section*{\(\left.\right|_{019}\)}
- Compare the picture on the 3279 screen with Figure 2-4.
Video signals normally sent to the monitor are now displayed on the 3279 screen.
-Check the image for missing or wrong colors.
Are the colors oK?
Y N

\section*{020}
- Exchange logic card C2. GO TO PAGE 5, STEP 057, ENTRY POINT FF.

021
- Check the image for distortion.

Is the image OK?
\(Y \mathrm{~N}\)
022
- Set the VIDEO CONTROL switch to NORMAL. Is the image OK?
Y N
023
- Return to the General Failure Index to determine correct MAP entry point.

\section*{024}
- Exchange logic card C2.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
025
GO TO PAGE 4, STEP 039,
ENTRY POINT CC.

\section*{026}
(ENTRY POINT BB)
- Switch power OFF lo.
- Remove cable connector in position C4.
- Remove logic card C2.
- Measure resistance between C4D05 and C4D08, and between C4D04 and C4D08.
Are both open-circuit?
Y N

\section*{027}
- Use delete tool (PN 452626) to delete connections on card side of the board at C4D04.
- Also delete wiring at C4D05.
-Reinstall logic card C2 and top-card connectors.
- Reinstall connector in position C4. GO TO PAGE 5, STEP 057, ENTRY POINT FF.

028
- Reinstall logic card C2 and top-card connectors.
- Switch power ON 1 I.
- Set meter to 6 Vdc range.
- Measure voltage between C4D05(+) and C4D08(-)
Does meter indicate between 2.6 and 3.2 Vdc?
Y N

\section*{029}
- Exchange logic card C2.
- Reinstall connector in location \(C 4\). GO TO PAGE 5, STEP 057, ENTRY POINT FF.

630
- Switch power OFF lod
- Reinstall connector in location C4.
- Disconnect SYNC TEST lamp at connector \(j 34\) (behind rear panel).
- Measure voltage between pin 1 (t) and pin 4 (-).
(NOTE: blank plug is at pin 2.)
- Switch power ON II.
- Set VIDEO CONTROL switch to TEST.

Does meter indicate between 2.0 and 3.0
vdc?
Y N
031
- Switch power OFF tol.
- Reinstall connector J34.
- Remove the cable connector from position C4.
- Check the wiring between connector C4 and the video output RPQ switches and indicator.
(See Figure 6-13 ).
Is the wiring OK?
Y N
032
- Repair/exchange cable.
- Reinstall connector in position \(C 4\).

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

G H
MAP 1000-3

\section*{033}
- Exchange logic card C2.
- Reinstall connector in position C4. - Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
034
- Set the VIDEO CONTROL switch to NORMAL.

Does meter indicate less than 0.5 Vdc?
Y N
035
- Check the VIDEO CONTROL switch and wiring to connector C4.
Are switch and wiring OK?
Y N
036
- Repair/exchange failing FRU.
-Reinstall connector J34.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
037
- Exchange logic card C2.
- Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
038
- Check connector J34/P34 is not damaged.
- Inspect/exchange the cable in position C4.
- If the cable is OK, exchange SIGNAL TEST lamp assembly.
- Reinstall connector 134.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

\section*{VIDED OUTPUT RPQ MAP}

PAGE 4 OF 5

\section*{039}
(ENTRY POINT CC)
- Check the video signals as follows:
- Set the TEST/NORMAL switch to TEST (green characters fill the screen).
- Jumper D2Y02 to D2Y08 (on C4/D4 top-card connector) to force reverse video.
-Set meter to 6 Vdc range and negative lead to any D08.
-Use pointed probe on positive lead to probe the inner contact of each BNC video socket in turn.
- Green video should be 1.1 to 1.4 Vdc .
- Red and blue video should be less than 0.5 Vdc .
- Press CONTROL 0 B (alpha keys) - see

Figure 2-3. The test pattern turns blue.
-Check again:
\(\bullet\) Blue video should now be 1.1 to 1.4 vdc.
\(\bullet\) Red and green video should be less than 0.5 Vdc .
-Press CONTROL C
- Press CONTROL 0 I (alpha keys) - see

Figure 2-3. The test pattern turns red.
-Check again:
- Red video should now be 1.1 to 1.4 Vdc .
- Green and blue video should be less than 0.5 Vde .

Are all voltages correct?
\(Y \mathrm{~N}\)

\section*{040}
- Remove cable in position C4.
- Use meter to check video signals at pins C4B05(red), C4B06(green) and C4B07(blue).
- Follow the same procedure as in the previous step.
Are all voltages now correct?
Y N
041
- Remove jumper D2Y02 to D2Y08.
- Reinstall cable in position C4.
- Exchange logic card c2.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

\section*{042}
- Remove jumper D2Y02 to D2Y08.
- Inspect cable removed from C4 for breaks or shorts in the 3 coaxial video cables.
- Exchange any failing FRU.
-Reinstall cable in position \(C 4\).
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
043
- Remove jumper D2Y02 to D2Y08.
- Set SYNC POLARITY switch to '+'.
- Measure voltage at SYNC output socket (black).
Is the voltage between 1.5 Vdc and 2.0
Vde?


MAP 1000-4
```

|
-Without removing the connector from
position C4, measure the voltage at
C4B04.
Is the voltage between 1.5 Vdc and 2.0
Vdc?
Y N
045
-Remove the cable from position C4.
-Measure resistance between B02 and
D08 on the free end of the cable.
With the SYNC POLARITY switch set to
'+', resistance should be about 0
ohms.
With the SYNC POLARITY switch set to
'-', meter should indicate an open
circuit
Is all correct?
Y N
046
-Inspect the cable assembly in
position C4 and the SYNC POLARITY
switch.
- Exchange any failing FRU.
- Reinstall cable in position C4.
\bulletExchange any failing FRU.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
047
- Exchange logic card C2.
-Reinstall cable in position C4.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
048
-Inspect/exchange the cable in position
C4
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
049
-Set SYNC POLARITY switch to '-''.
-Measure voltage at SYNC output socket.
Is the voltage between 0 Vdc and 0.4 Vdc?
Y N
050
-Inspect wiring of SYNC POLARITY switch.
(See Figure 6-13)
- Repair or Exchange any failing FRU.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
0 5 1
(ENTRY POINT EE)
-Remove cable from position C4.

- Set the TEST/NORMAL switch to NORMAL and
back to TEST.
-Press CONTROL O B (Alpha keys, see Figure
2-3).
Does the character pattern turn blue?
YN

$*$

International Business Machines Corporation
Field Engineering Division
360 Hamilton Avenue, White Plains, N.Y. 10601

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U.S.A. 10601

