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The purpose of this publication is to describe the facilities provided
by the IBM 1800 Time-Sharing Executive (TSX) System, and to
explain the basic concepts and techniques underlying their use. It
is intended as a reference and guide for customer systems personnel
in the implementation of the TSX system.

‘ {

The manual is divided into four selctions. The first section serves as
an overall introduction to the TSX'system. The second and third
sections describe the three main éxecutive programs and discuss
some of the important design consjiderations that bear on the use

of standard TSX components. The final section provides selections
of programming techniques covering a wide spectrum of TSX usage.

The general approach taken is to éxplain each concept as it is
encountered, and, where possible] elucidate that concept by means
of an example. Numerous sample problems are included to acquaint
the programmer with recommended techniques of TSX programming.
A detailed TSX Sample System is specially provided as a tutorial

on all aspects of TSX design, usage and implementation.




PREFACE

This publication describes the facilities provided by
the IBM 1800 Time-Sharing Executive System, and
discusses the concepts and techniques underlying
their use. It is intended as a reference and guide for
customer systems personnel in the implementation of
the TSX system.

The manual is written in four progressive sections
where information in one section is sometimes
necessarily related to information in another section.
These comprise:

® Overview of the IBM 1800 Time-Sharing Executive
System

e Functions of Executive Programs

System Design Considerations
e Programming Techniques

The approach taken is to explain each concept as it
is encountered. In some instances, a subject con-
cept is necessarily included in a section prior to its
definition later on in that section or a subsequent
section. Sample problems are scattered throughout
the text ag illustrative examples designed to clarify
concepts discussed and to familiarize the user with
recommended techniques. They should not be con-
strued as models.

The first section gives a rapid survey of the TSX
system. It defines the executive system, its modes
of operation and system requirements; discusses
some of the basic TSX system concepts employed;
and describes the various components of the system,
and their inter-relationships to the total system.

The second section describes the three main
executive programs (TASK, the System Director, and
the Nonprocess Monitor) in terms of their functions
and capabilities. Numerous examples are included
as demonstration of sound programming practice and
technique, Subjects discussed embrace: Program
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Scheduling, Handling of Interrupts, Use of Interval
Timers, Use of Time-Sharing, Error Alert Control
and Procedures, and Nonprocess Monitor Usage.

The third section discusses some of the important
design considerations bearing on the use of standard
TSX system components such as the System Loader,
IBM Nonprocess System, Temporary Asserabled
Skeleton (TASK), and the System Director. Subjects
discussed include: Assighment of Interrupt Levels
and Restrictions, Level Work Areas, Disk System
Configuration, and the System Skeleton.

The final section incorporates selections of pro-
gramming techniques covering a wide spectrum of
TSX uses. The purpose of this section is to aid the
programmer, acquaint him with recommended
techniques of TSX programming, and to help him to
build on the fundamentals discussed in earlier sec-
tions of this manual. A detailed TSX Sample System
at the end of the section touches on every facet of
TSX design, use and implementation.

For details of TSX system generation procedures,
System Loader assignment cards, TASK and System
Director equate cards, and all Nonprocess Monitor
control cards, the user is referred to IBM 1800
Time-Sharing Executive System, Operating Pro-
cedures, Form C26-3754,

To derive maximum benefit from "Concepts and
Techniques'", the user should have a working knowl-
edge of the following TSX support publications:

IBM 1800 Data Acquisition and Control System,
Functional Characteristics, Form A26-£918

IBM 1800 Assembler Language, Form C26-5882
IBM 1130/1800 Basic FORTRAN IV Language,
Form C26-3715

IBM 1800 Data Acquigition and Control System,
Data Processing Input-Output Units, Form A26-5969

IBM 1130/1800 Plotter Subroutines, Form C26-3755

IBM 1800 Time~Sharing Executive System
Subroutine Library, Form C26-3723

This manual obsoletes and replaces the IBM 1800 Time-Sharing Executive System, Specifications, Form No. C26-5990,
Concurrent with this release, the subroutine portion of the Specifications Manual (C26-5990) is replaced by the IBM
1800 Time-Sharing Executive System, Subroutine Library, Form No., C26-3723.

Specifications contained herein are subject to change from time to time. Any such change will be reported in

subsequent revisions or Technical Newsletters.

Request for copies of IBM publications should be made to your IBM representative or to the IBM branch office

serving your locality.

A form is provided at the back of this publication for comments. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Publications, Department 232, San Jose, California 95114.

© International Business Machines Corporation 1967
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OVERVIEW OF THE IBM 1800 TIME-SHARING EXECUTIVE SYSTEM

INTRODUCTION

With few exceptions, real-time applications are
distinguished from other applications by two chief
characteristics: 1) some process or operation going
on outside the computer system normally has a con-
tinuous need for on-line communication with the sys-
tem, 2) there is a requirement for the computing
system to keep pace with the associated process or
operation. These characteristics of the application
place some unique and stringent requirements on
real-time processing systems for use in the real-
time environment.

Recognizing the formidable programming task
associated with a system of this scope, IBM has
developed the 1800 Time-Sharing Executive System
(TSX) which relieves the user of much of the re-
quired programming effort by freeing him to con-
centrate on the primary task of problem solution.
TSX is a FORTRAN-oriented disk-resident oper-
ating system which permits the user to make opti-
mum use of an IBM 1800 Data Acquisition and Con-
trol System (DACS) for its primary purpose, the
control of processes and similar complex environ-
ments, as well as providing him with an effective
off-line monitor system for data processing and
scientific computation. TSX improves greatly the
versatility of a Data Acquisition and Control Sys-
tem (DACS) computer by making it possible for
background jobs to be processed when the real-
time foreground task relinquishes control of the
processor-controller, It is through time-sharing
that idle computer time is minimized or eliminated.
Programs may be written in FORTRAN and/or
symbolic Assembler language.

Figure 1 introduces the capabilities of TSX in
generalized form,

MINIMUM SYSTEM REQUIREMENTS

To assist users in performing their initial system
generation, a standardized "starter' called System
Generation (SYSGEN) TASK is provided with each
installation which contains the basic elements
necessary for system generation in a form that will
be directly usable by a majority of users. SYSGEN
TASK 1is supplied in assembled object format as
part of the IBM Nonprocess System and consists of
the following:

o Nonprocess Monitor Linkages

o Skeleton Builder Linkages
o Absolute Loader

It is designed to support the following minimum
devices:

e 1IBM 1801 or 1802 Processor-Controller with
a minimum of 8K words of core storage

e 1IBM 2310 Disk Storage Unit with one disk drive
e 1IBM 1442 Card Read Punch

e 1 IBM 1816 Keyboard Printer (that is, printer
portion only) or

e 1IBM 1053 Printer

The user may employ additional I/O devices on his
system, but he must satisfy the above machine con-
figuration requirements to use SYSGEN TASK. For
example, if he substitutes a 1443 Printer for a 1053
Printer or an 1816 Keyboard Printer, a card assem-
bly of the TASK source deck to include this provision
becomes mandatory. As the "starter' system is a
limited version of the Temporary Assembled Skele-
ton (TASK), it will neither buffer 1053 Printer mes-
sages to disk, nor does it contain the trace and dump
utility functions.

Machine Features Supported

In addition to the above, the following optional ma-
chine units and features are supported by the TSX
system:

e Additional core storage (up to a maximum of
32,768 words)

e Additional disk drives for IBM 2310 Disk Storage
Unit -~ up to a maximum of three disk drives

o Additional IBM 1442 Card Read Punch Unit
(up to a maximum of 2)

e Additional IBM 1816 Printer Keyboard (up to a
maximum of 2)

o Additional IBM 1053 Printer Units (up to a total
of eight 1053s and 1816s)

Overview of the IBM 1800 Time-Sharing Executive System 1
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e Additional Data Channels (up to a total of 9)

e Additional Interrupt Levels (up to a maximum of
24)

e Multiplexer Unit (Solid state and Relay)

e Analog-Digital Converter (up to a total of 2)
e Digital-Analog Output
e Digital Input

Printer
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MODES OF OPERATION

The IBM 1800 Time-Sharing Executive System con-
sists essentially of two main parts: (1) a Skeleton
Executive and (2) a Nonprocess Monitor. It is
through the Skeleton Executive that process control
and data acquisition applications are serviced in
the on~line mode, while the Nonprocess Monitor
operates either in the time-shared mode or as an
independent programming system to provide data
processing functions in a standard off-line mode.
Each of these modes is brought into play by an ap-
propriate and corresponding system generation
procedure. The user elects the option of construc-
ting an on-line or off-line system tailored to indi-
vidual requirements.

On-Line Mode

In real-time processing, inputs arrive randomly
from a process being monitored to the processor-
controller. The computer rapidly responds to each
input usually by conveying an output back to the
process. This is in contrast with conventional batch
processing where groups of input data are processed
by passes through the computer. The notion of real-
time usually implies that a processor-controller is
responding to inputs as they occur in the physical
world.

TSX operates in this mode under the control of
the Skeleton Executive. In an on-line environment,
user-written programs may monitor and/or control
a process operation at any time. The machine is
also permitted to be shared by process and non-
process work: that is, batch work may be inter-
leaved with other work. Whenever variable core is
not required for a process program, the Nonpro-
cess Monitor may be brought into service. All
core loads and/or programs executed are accessed
from the system resident disk cartridge.

Off-Line Mode

The off-line TSX system operates in this mode
under the control of the Temporary Assembled
Skeleton (TASK) as a dedicated Nonprocess Moni-
tor System. Typical off-line operations are assem-
blies, compilations, disk utility functions, and the
execution of data processing programs.

An off-line system can be used to test problem
programs before they are permanently stored and
catalogued on the system cartridge, to execute
problem programs that require the full capacity of

available disk drives for data files, or to execute

" problem programs that are used so infrequently that

their on-line storage is not justified. It is also used
to build an on-line disk resident system.

SYSTEM CONCEPT

ROLE OF THE SKELETON EXECUTIVE

The Skeleton Executive constitutes the framework of
an on-line TSX system, and must be resident in
permanent core storage before any continuous and
coordinated real-time processing can take place.
Other portions of the system are brought into core
from disk storage as they are required to perform
specific functions.

The Executive is extremely flexible and can be
assembled at system generation time so that no core
is wasted by selecting any of the numerous options
available. The user may include frequently-called
subroutines, fast response interrupt servicing rou-
tines, and other user-written programs in the skele-
ton to make the most effective use of his control
system.

A typical skeleton executive might consist of the
following parts as shown in Figure 2. The function
of each individual component will now be described.

Skeleton I/0. This is a set of input-output subrou-
tines which provides a rapid and easy method for the
user to reference the various data processing input-
output devices (e.g., card read punch, disk,
printer) for input or output of data. It includes:

o DISKN (Disk Storage Subroutine - performs all
reading from and writing to the IBM 2310 Disk
Storage Unit)

e TYPEN/WRTYN (Printer-Keyboard Subroutine -
transfers data to and from the IBM 1053 and
IBM 1816 Printer-Keyboard)

e PRNTN (Printer Subroutine - handles all print
and carriage control functions relative to the
IBM 1443 Printer

These and other basic system routines make up the
Skeleton I/0 package which corresponds to an iden-
tical set of input-output subroutines used by TASK.
A description of each subroutine will be found else-
where in the TSX Systems Reference Library.

Overview of the IBM 1800 Time-Sharing Executive System 3
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Figure 2. A TSX On-Line System -- Illustrating the
Skeleton Executive

INSKEL COMMON. A uniquely labelled common
area in the skeleton set aside for communications
among the various types of core loads used in the
system. It can be referenced by any process or
nonprocess program under the on-line system.

System Director. This is the nucleus of the Skele-
ton Executive and controls all facets of process
monitoring. I directs the handling of interrupts

in a priority fashion determined by the user; super-
vises the execution of any number of mainline core
loads or programs dictated by the process; ser-
vices all error conditions with a minimum of dis-
turbance to most processes under control; main-
tains the 1800 interval timers; and makes the sys-
tem available to the Nonprocess Monitor.

User-Written Programs. The user has the option
to include as many programs and subroutines as

possible in the skeleton for reasons of frequent
usage, rapid response, and optimum utilization of
disk space. These may take the form of:

e Inferrupt subroutines

e Timer subroutines

e Count subroutines

o Special trace and error subroutines

e IBM-supplied arithmetic, 1/0, and other
subroutines

o Any other user-written subroutines

These are first compiled/assembled in relocatable
format and stored on disk; at skeleton build time,
they are relocated into the Skeleton Executive.

TIME-SHARING

In many industrial installations, the real-time con-
trol system will not utilize all the computer time;
therefore, time will be available to perform back-
ground jobs. Time-sharing techniques can thus be
employed when idle processor-controller time is
available in a given system environment to offer the
user the kind of service he requires. The notion

of time-sharing also implies the sharing of computer
resources, since not only time but primary and
secondary storage as well as most input-cutput
facilities are also shared.

When idle time is available in the IBM 1800 TSX
System, control can be automatically transferred to
an independent Nonprocess Monitor Systera which is
identical to any stack-job monitor system. All
assembling, compiling, simulating, and other sys-
tem activities can now be executed under the control
of the Nonprocess Monitor. Performing such jobs
time-shared has a distinct advantage in that any time
not required for process control functions can be
used for data processing functions. Also, since
process control programs and strategies tend to
change, time-sharing makes it extremely desirable
to be able to modify these programs and strategies
at the on-line installation without taking the computer
off-line, It is through the time-sharing feature that
the utilization of the 1800 system is best optimized.



VERSATILITY IN SYSTEM CONFIGURATION

A modern real-time operating system must be
geared to change and diversity. The TSX system
itself can exist in an almost unlimited variety of
machine configurations: different installations will
typically have different configurations as well as
different applications. Moreover, the configura-
tion at a given installation may frequently change.
If we look at application and configuration of an
operating system, we see that the operating sys-
tem must cope with an unprecedented number of
environments. All of this puts a premium on sys-
tem modularity and flexibility.

TSX gives the user the ability to define his con-
figuration according to his exact needs: he is there-
fore never bound to a fixed system. Furthermore,
after having specified and generated a particular
system, he is still free to move process and/or
nonprocess portions of his system from one disk
storage device to another.

In general, the input-output capability of the IBM
1800 Data Acquisition and Control System can be
backed up. For example, under program control, a
1053 Printer can have its messages automatically
switched to a back-up 1053 Printer; disk storage
drives can be logically switched or removed from
the system; and any device may be removed from
service if it continues to fail. This dual capacity
indicates that an installation may suffer from the
failure of one or more input-output devices, and
remain "on the air' under the most stringent usage
conditions. Hand-in-hand with this back-up capa-
bility, a history of hardware device failures can be
examined at any time for maintenance purposes.

CONCEPT OF A CORE LOAD

In practice, the core storage size of a data acquisi-
tion and control system is not sufficient to contain
(nor does it need contain) all of the instructions re-
quired for the execution of all functions at any one
time. Thus, the entire set of instructions must be
broken down into smaller pieces, and these pieces
be made available for immediate loading. To facili-
tate rapid loading, they should be stored on disk in
executable core image format. .
The technique of program segmentation is em-
ployed in the TSX system where programs are
formed into smaller units called core loads. A
core load is, by definition, an executable program

or portion of a program which performs some user
function. It is not necessarily a program in its en-
tirety because this program may well be too large
to fit into variable core in one piece for execution.
The core load is unique in that it is stored on disk
in core load core image format to facilitate rapid
loading when it is called for execution.

Figure 3 illustrates the four types of core loads
commonly used in TSX, A core load may contain
other subroutines that are not associated with the
main program - that is, subroutines not otherwise
available in core (either included in the skeleton, or
in the form of load-on-call subprograms). A typical
core load may consist of a mainline or interrupt pro-
gram, in-core interrupt subroutines, and all other
required subroutines that are not included with the
Skeleton Executive.

Core loads are important in real-time systems
for the following reasons:

o Real-time linkages are automatically built

o The core-load is permanently built and stored
on disk for rapid execution

o Core loads are called by name

o No compiling/assembling is needed at execution
time.

LOCAL SUBPROGRAMS

TSX provides a facility for loading subroutines at the
time they are called for in the execution of a program.
Such a subroutine is known as a LOCAL (load-on-~
call). All LOCALSs called by the same mainline pro-
gram in a core load use the same area of core stor-
age by overlaying one another as they are called. A
copy of each LOCAL subprogram used with a core
load is kept on disk in core-image format together
with that core load (see Figure 3).

LOCALSs thus allow the user to have, effectively,
a larger program executed in core than would other-
wise be possible if all the subroutines were loaded
into core at the same time. There is no theoretical
limit to the number of LOCALSs which the user wishes
to implement. This means a virtual extension of
variable core. Other advantages of this feature are
(a) the ability to read in subroutines, and (b) the
breakdown of core loads to the subroutine level.
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processing programs during their execution. A key
control program is the System Director which is
loaded into main storage (as part of the resident
Skeleton Executive) and remains there indefinitely
to ensure continuous coordinated operation of the
system. Other parts of the system:are brought into
main storage from secondary storage as they are
required to perform specific functions. Processing
programs consist of language translators and ser-
vice programs that are provided by IBM to assist
the user, as well as problem programs that are
user-written and incorporated as part of the TSX
system. Both IBM and user programs have the
same functional relationship to the control programs.

CONTROL PROGRAMS

There are three control programs within the TSX
system:

Temporary Assembled Skeleton (TASK)
System Director
Nonprocess Director

Temporary Assembled Skeleton (TASK)

TASK is a stand-alone disk oriented monitor pro-
gram from which an on-line or off-line TSX system
is constructed. It performs three distinct functions:

o Supervises the generation of a disk oriented TSX
operating system according to user specifications.

e Supports a full monitor capability so that TSX
can be used as a data processing monitor system.

e Allows the user to load absolute programs into
core for execution, or to store them on disk.

Since real-time process control installation re-
quirements vary from installation to installation, it
follows that each installation must be defined or
tailored to the specific system functional require-
ments and input-output configuration of that installa-
tion. The tailoring function, defined as system
generation, is carried out by TASK which provides
the facilities for the creation and maintenance of a
monitor system composed of IBM and user-written
programs. The user specifies his system through
the medium of equate cards.

Figure 4 illustrates TASK organization in
simplified form.

The System Director

This control program forms the heart of the TSX
system and resides in core storage at all times as
part of the skeleton where all permanent areas are
storage-protected to ensure that they are not inad-
vertently violated or altered.

The System Director directs the handling of proc-
ess and data processing input-output interrupts, pro-
vides timer control over the process, is responsible
for the orderly transfer of control from one core load
to the next, and handles the transfer of control be-
tween the on-line and off-line modes. All process
core loads are in core-image format on disk and
are accessed at disk read speed.

The Director is read from disk only during a cold
start or reload (EAC) operation. Primary entry to
the System Director results from 1) internal and ex-
ternal hardware interrupts, 2) TSX calls from user's
programs, and 3) errors.

SKELETON 1/0

TTASK

TASK PROGRAM

SET

VCORE 7

VARIABLE
CORE

Figure 4. TASK Organization



INSKEL COMMON has already been defined. To
assign a variable to this area, a special FORTRAN
statement, COMMON/INSKEL/, must be used. All
other attributes of the COMMON statement remain
the same. This area must be used for communica-
tions between

o Core loads of a different type
e Interrupt core loads

e Combination core loads (if either is executed as
an interrupt core load)

e® A special core load and the mainline core load
that calls it

e A mainline core load (which called a special
core load) and the core load that restores it

o A skeleton subroutine and any other subroutine
or core load

The normal COMMON area located at the high-
address end of core storage can be referenced only
by mainline or nonprocess core loads. The normal
COMMON statement in a mainline, special, or non-
process core load is used to refer to this area.
This area is saved and restored when special core
loads or time-sharing operations are initiated or
terminated; i. e., communication between nonproc-~
ess core loads is possible.

The third area for COMMON is used only for in-
terprogram communication for programs that form
an interrupt core load or, between combination core
loads when they are executed on the mainline level.
The normal COMMON statement in an interrupt or
combination core load is used to refer to this area.
The highest addressed location of this area must
be assigned by the user at system generation time,
and must be an even number. This assigned loca-
tion is the high-address boundary of the variable
core storage area that is saved when an interrupt
core load is loaded for execution. Thus, it is
necessary to save only the area specified by the
user for interrupt core loads (not the whole variable
area),

MULTI-LEVEL PROGRAMMING
The interrupt structure of the 1800 system consists

of a total of 24 hardware levels with up to 16 inter-
rupt signals per level. These can, of course, be

processed in a true priority sequence. A higher
level interrupt subroutine will always interrupt a
lower level interrupt subroutine, but beyond this,
the Skeleton Executive permits interrupts to be
“recorded" now for later processing.

The interrupt scheme within the Skeleton Execu-
tive also provides a great amount of flexibility and
frees the user from most of the problems of servic-
ing interrupts. Interrupt servicing subroutines may
be assigned in the following ways:

1. An interrupt subroutine which must be executed
immediately under any condition whatsoever can
be made a permanent part of the skeleton. That
is, the subroutine will always be in high-speed
core storage and will be executable in the order
of microseconds.

2. Those subroutines which are associated with a
given mainline program can be assigned in such
a way that they are always read into core stor-
age with that mainline when it is loaded from
disk. The response time of a mainline inter-
rupt routine is almost the same as that of a
skeleton interrupt routine only if the mainline
core load containing the interrupt routine is in
core when the interrupt occurs.

3. TFor low-priority subroutines, a core overlay
technique allows the user to call an interrupt
core load, bring it into core storage, save
what was in core storage, and on completion of
the interrupt process, restore core storage to
its original state. These multiple operations of
sequencing, saving, and replacing of core stor-
age is automatically handled by the Skeleton
Executive. All that is required of the user is to
assign the priority. It should be mentioned that
the priority interrupt sequence can be changed,
at will, under program control.

The interrupt core load response time depends on
the size of the core load and the disk layout. It is
slower than the skeleton or mainline core load inter-
rupts.

SYSTEM COMPONENTS

TSX components can be considered under two separ-

ate group-headings: (1) control programs and (2)
processing programs.

In general, control programs govern the order in
which processing programs are executed, and pro-
vide services that are required in common by the
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processing programs during their execution. A key
control program is the System Director which is
loaded into main storage (as part of the resident
Skeleton Executive) and remains there indefinitely
to ensure continuous coordinated operation of the
system. Other parts of the system are brought into
main storage from secondary storage as they are
required to perform specific functions. Processing
programs consist of language translators and ser-
vice programs that are provided by IBM to assist
the user, as well as problem programs that are
user-written and incorporated as part of the TSX
system. Both IBM and user programs have the
same functional relationship to the control programs.

CONTROL PROGRAMS

There are three control programs within the TSX
system:

Temporary Assembled Skeleton (TASK)
System Director
Nonprocess Director

Temporary Assembled Skeleton (TASK)

TASK is a stand-alone disk oriented monitor pro-
gram from which an on-line or of:f-;-li.ne TSX system
is constructed. It performs three distinct functions:

e Supervises the generation of a disk oriented TSX
operating system according to user specifications.

e Supports a full monitor capability so that TSX
can be used as a data processing monitor system.

e Allows the user to load absolute programs into
core for execution, or to store them on disk.

Since real-time process control installation re-
quirements vary from installation to installation, if
follows that each installation must be defined or
tailored to the specific system functional require-
ments and input-output configuration of that installa-
tion. The tailoring function, defined as system
generation, is carried out by TASK which provides
the facilities for the creation and maintenance of a
monitor system composed of IBM and user-written
programs. The user specifies his system through
the medium of equate cards.

Figure 4 illustrates TASK organization in
simplified form. :

VCORE 7

The System Director

This control program forms the heart of the TSX
system and resides in core storage at all times as
part of the skeleton where all permanent areas are
storage-protected to ensure that they are not inad-
vertently violated or altered.

The System Director directs the handling of proc-
ess and data processing input-output interrugpts, pro-
vides timer control over the process, is responsible
for the orderly transfer of control from one core load
to the next, and handles the transfer of control be-
tween the on-line and off-line modes. All process
core loads are in core-image format on disk and
are accessed at disk read speed.

The Director is read from disk only during a cold
start or reload (EAC) operation. Primary eantry to
the System Director results from 1) internal and ex-
ternal hardware interrupts, 2) TSX calls from user's
programs, and 3) errors.
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Figure 4, TASK Organization



The Nonprocess Supervisor

The Nonprocess Supervisor directs the execution of
all nonprocess core loads which may be either IBM~
supplied as part of the TSX package or user-written.
It normally operates in the time-sharing mode under
the control of the System Director, but it may also be
run as a dedicated off-line monitor system under
TASK.

Its main function is to recognize certain system
control cards and transfer control to the processing
program specified. It also initializes the nonprocess
system whenever a job control card is identified.

PROCESSING PROGRAMS

Proéessing programs consist of service programs
and language translators broken down as follows:

Service Programs

Cold Start Program

System Loader

Core Load Builder

Skeleton Builder

IBM TSX Subroutine Library
Disk Utility Program (DUP)

Language Translators

Agssembler
FORTRAN Compiler
Simulator

Service Programs

Service programs include a group of loaders and
builders which serve as system generation aids, as
well as a disk utility program and a comprehensive
IBM TSX Subroutine Library.

Cold Start Program

This program loads the Skeleton Executive into core,
storage protects it, starts the real-time clock and
calls the user's initial core load for execution. This
operation places the System Director in control of
the on-line system.

System Loader

The primary funictions of the System Loader are to
load the initial IBM TSX system onto the disk, build
an interrupt assignment table from user-supplied

control records, and prepare the disk layout for sys-
tem operation. System assignment cards are used

to inform the System Loader of interrupt level assign-
ment of I/0 devices, interval timers, and process in-
terrupts. The loader makes entries in a directory
called the Location Equivalence Table (LET) for each
component part of the IBM TSX system.

Core Load Builder

The Core Load Builder program combines a user-
written relocatable program together with all refer-
enced subroutines not included in the Skeleton Execu-
tive into an executable core load for storage in the
Core Load Area on disk. Core loads may be of sev-
eral types: process mainline, combination, inter-
rupt, or nonprocess.

All process core loads must be built and stored on
disk prior to execution under control of an on-line
TSX system. Input to the Core Load Builder is sup-
plied by the user in the form of control records which
contain the names of relocatable mainline programs,
interrupts to be recorded, data files used, interrupt
routines included as part of the core load, and LOCAL
(load-on-call) subprograms.

Using the data provided by the System Loader and
the Skeleton Builder, as well as information from pro-
grams and subroutines, the Core Load Builder estab-
lishes all subroutine linkages, hardware interrupt
servicing linkages, and the creation of certain com-
munications areas which are integrated with instruc-
tions to make up a core load.

Skeleton Builder

The Skeleton Builder program obtains its input from
user-assigned control records, programs, subrou-
tines, and information from the System Loader to
construct the System Skeleton in core-image format
which is then stored on disk. The skeleton is read
into core for execution by a cold start operation. The
rebuilding of the skeleton is required whenever rou-
tines are added or deleted, or other modifications
are made. It isthe System Skeleton which constitutes
the Skeleton Executive.

IBM TSX Subroutine Library

This comprises a comprehensive set of reentrant
subroutines as well as a select set of non-reentrant
subroutines designed to aid the user in making ef-
ficient use of the IBM 1800 Data Acquisition and
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Control System.
following:

The library contains the

e Data processing and process input-output sub-
routines

e Conversion subroutines
e Arithmetic and functional subroutines
e FORTRAN input-output subroutines

o Miscellaneous subroutines

Data Processing and Process I/0O Subroutines. Data
processing (printers, punches, etc.) and process
input-output (P I/0) subroutines provide a quick and
straightforward method for the programmer to refer-
ence the various data processing, digital and analog
1/0 devices for input or output of data. All I/O rou-
tines may be called directly from FORTRAN: data
processing I/O subroutines may be called indirectly
by the use of FORTRAN I/0.

Conversion Subroutines., The design and operation of
the numerous input-output devices is such that many
of them impose a unique correspondence between
character representations in the external medium
and the associated bit configurations within the com-
puter. Conversion subroutines convert inputs from
these devices into a form in which the computer can
operate and to prepare computed results for output
on various devices.

Arithmetic and Functional Subroutines. The arith-
metic and functional group of subroutines includes a
selection of twenty-seven basic routines which are
most frequently required because of their general
applicability. The arithmetic library contains both
the routines that are visible to the FORTRAN pro-
grammer, as well as the many routines that are
used by the FORTRAN compiler generated object
code, which may also be used by the Assembler pro-
grammer.

FORTRAN I/O Subroutines. FORTRAN I/O subrou-
tines provide a link between the FORTRAN object
code and the I/0 devices. They support both stand-
ard and extended precision.

10

Miscellaneous Subroutines. The miscellaneous group
provides the user with the ability to perform certain
machine operations using the FORTRAN language.
These include real-time, selective dump, trace, and
overlay routines.

Real-time subroutines are operational control rou-
tines which service the Skeleton Executive in an on-
line environment. Examples are TIMER (specify one
of two hardware interval timers for some periodic
activity), LEVEL (set one of twenty-four levels for
programmed interrupt use), and MASK (inhibit selec-
tivaely one or more levels of interrupt).

Selective dump subroutines allow the user to print
chosen areas of core storage during the execution of
an object program. For example, DUMP will output
on the list printer, in hexadecimal or decimal format,
a certain portion of core storage; DUMPS will print
the status of the 1800 (that is, status indicators,
contents of registers, and work areas).

The user may exercise the option of writing his
own mainline trace interrupt routine which can be
included in a core load to process a trace interrupt.
He might, for example, design such a routine to
monitor a number of conditions. The subroutine
TRPRT is available for use in tracing routines which
print a specified number of characters on the 1053/
1816 Keyboard Printer or 1443 Printer.

The TSX Subroutine Library also contains an over-
lay routine called FLIP which serves to call LOCAL
(load-on-call) subprograms into core storage. All
LOCALs in a given core load are executed from the
same core storage locations; each LOCAL group
overlays the previous group.

In order to permit entry from multiple programs
and interrupt levels before completing computations
from a previous call, the arithmetic and functional
subroutines, and most of the I/O subroutines, are de-
signed to be reentrant. That is, they can be entered
from a different level of machine operation despite
the fact that they may not have completed operation
on a previous level. Non-reentrant versions of the
arithmetic, functional, and conversion subroutines
are also supplied.

Disk Utility Program (DUP)

The Disk Utility Program is a comprehensive group
of generalized utility and maintenance routines de-
signed to aid the user in the day-to-day operation of
the TSX system. By this means, the most frequently
required services of disk and data maintenance can be



performed with a minimum of effort. The TSX DUP
philosophy is to provide as much assistance as pos-
sible to the user. DUP is a component part of the
Nonprocess Monitor.

DUP is called into service by the Nonprocess
Monitor Supervisor (SUP) whenever it recognizes a
DUP monitor control card. It is also automatically
summoned after the successful completion of an
assembly or FORTRAN compilation., DUP functions
can be summarized as follows:

1. It permits the user to store, modify, and refer
to programs and data using the compact and
economical direct-access disk storage facilities
of the system without regard to specific input-
output configurations.

2. It allows the free interchange and use of pro-
grams and data among programmers.

3. It provides a systematic method to identify and
locate programs and data, and systematic
methods to reference data after it is located.

All of these functions can be carried out while the
TSX system is on-line, as well as in the off-line
mode. Examples of DUP facilities include the fol-
lowing:

e Change sequence of execution of core loads

o Replace a core load with another core load

o Create disk files

o Replace an object program already stored on
disk

e Build core loads (in conjunction with the Core
Load Builder)

e Define the disk configuration
e Dump data/program from one medium to another

e Delete a program, core load, or a data file from
the disk

o Pack a file on the disk to eliminate unused areas,
thus minimizing disk storage requirements

e Modify core loads on-line

Language Translators

Language translators assist a programmer by
enabling him to define a problem or an application

in a language form that can be readily learned and
understood. In the TSX system, the user may define
his problem solution or application

In a flexible easy-to-use symbolic language —
Agssembler language, and/or
In a form of mathematical notation — FORTRAN

Assembler

The Assembler program is a one-for-one disk
oriented symbolic type translator which assembles
object programs in machine language from source
programs written in symbolic language. It normally
resides on disk. The assembler accepts control
records and source programs in card form only.
Upon a successful assembly, the object program in
relocatable format is moved to disk where it is
permanently stored, or, alternatively, called for
execution. The Assembler Language is fully
described in the publication IBM 1800 Assembler
Language, Form C26-5882.

FORTRAN Compiler

The FORTRAN Compiler translates programs written
in the FORTRAN language into executable machine
language. The real-time TSX FORTRAN Compiler
permits the user to make the most of the digital and
analog I/0 features using a higher level language,
while at the same time allowing background jobs to
be executed. Since FORTRAN is easily understood
by technical personnel, its availability in the TSX
system reduces significantly the programming effort
required. For a full description of the FORTRAN
language, see IBM 1130/1800 Basic FORTRAN IV
Language, Form C26-3715.

Simulator

The Simulator is designed as a debugging aid which
allows the user to check out or test process and/or
nonprocess programs without disrupting normal TSX
system operation - that is, without taking the system
off line. It functions under the control of the Non~
process Monitor.
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FUNCTIONS OF EXECUTIVE PROGRAMS

This section describes the functions of the three
main executive programs which constitute an IBM
1800 Time-Sharing Executive System, namely,

Temporary Assembled Skeleton (TASK)
System Director
Nonprocess Monitor

and discusses the concepts underlying their use.
Sample programs and coding are interspersed
throughout the text as demonstration of good pro-
gramming practice and technique. Since the
Temporary Assembled Skeleton (TASK) is the first
program with which the user becomes involved in
the creation of an on-line or off-line TSX system, it
is discussed at the outset.

TEMPORARY ASSEMBLED SKELETON (TASK)

It has already been mentioned that TASK (Temporary
Assembled Skeleton) is a builder or "tailor' card
monitor system with strong disk capabilities from
which an off-line or on-line TSX system is construc-
ted. The use of TASK, therefore; constitutes the

intermediate stage in system generation towards
placing a system on-line. In an on-line TSX system,
TASK control ceases at cold start time when the
System Skeleton has been loaded into core storage.
In an off-line TSX system, TASK itself functions in
much the same fashion as a System Skeleton with
permanent time-sharing.

For simplicity, TASK can be considered in two
parts (see Figure 4):

e Skeleton 1/0

o TASK Program Set

Skeleton I/0

The Skeleton I/0 is a collection of input-output and
general supporting subroutines that the TSX system
requires to be in core at all times. It is that por-
tion of a user-configurated TASK which corresponds
exactly to the Skeleton I/0 on an on-line T'SX sys-
tem.

Figure 5 illustrates this correspondence, as well
as the core layout, at two time periods of an on-
line and an off-line system.

T SKELETON 1/O
TASK

SKELETON I/O

TASK PROGRAM
SET

- SYSTEM SYSTEM
#-\/CORE DIRECTOR SKELETON
VARIABLE USER'S PROGRAMS
CORE ¢
VCORE “#
VARIABLE

OFF-LINE SYSTEM

Figure 5, Correspondence between TASK and the System Skeleton
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The I/0 routines used by TASK form the basis of
the Skeleton I/O. These consist of the following:

e DISKN — Disk subroutine as used by TSX Oper-
ating System

e TYPEN/WRTYN — Printer/Keyboard subroutine
as used by TSX Operating System

e PRNTN * Printer subroutine as used by TSX
Operating System

o CARDN — TASK only Card I/0O subroutine

A description of each of the above subroutines
will be found in the TSX Systems Reference library.

Since the TSX system requires that at least one
disk be present on the 1800, DISKN must be in core
at all times. If the user has assigned a 1053 or 1816
to his machine, TYPEN/WRTYN must also reside
permanently in core. Although CARDN is in core
during TASK execution, it does not normally form a
part of the Skeleton I/0. The user must therefore
define whether or not CARDN is to be a component
part of his skeleton by means of the TASK equate
card CDINS. If it is not, CARDN automatically be-
comes a part of the TASK Program set. It is through
the Skeleton I/0 that an off-line system obtains full
monitor capabilities.

TASK Program Set

The TASK Program Set is that integral part of the
Temporary Assembled Skeleton which functions in a
similar manner to the System Director. It consists
of:

o TASK Master Interrupt Control (TMIC)

e TASK Director

e TASK Error Alert Control (TEAC)

e Absolute Loader function

o Load Monitor function
e Skeleton Build function
e TASK Conversion routines

o TASK Utilities

TMIC directs all I/0O interrupts to their corre-
sponding servicing routines and resets all process
interrupts, while TEAC processes errors that have
been found by other parts of TASK, The TASK Direc-
tor initializes TASK and directs the execution of the
Absolute Loader function, Load Monitor function,
and the Skeleton Build function.

The Absolute Loader gives the user a facility to
load absolute assembled programs from cards to
core for execution. It can also be used for the stor-
ing of user-written programs or data on disk. The
use of this function is discussed later in some detail
(see Programming Techniques). The Load Monitor
function serves to initialize the TSX Nonprocess
Monitor for execution. There are two conversion
routines: (1) TASK HOLEB converts hollerith input
to one or two EBCDIC characters per word output,
while (2) TASK EBPRT converts two characters per
word EBCDIC input to two characters per word, sys-
tem, list, or EAC printer code.

A complete utility package comprised of full
trace, check/stop trace, four utility programs, and
a utility monitor can be included within TASK at
assembly time. The user elects this option through
equate cards.

Except in the case of a skeleton builder option, a
TASK disk load, or a cold start, TASK is loaded
with a 4~card TASK high core loader.

For a more complete description of TASK func-
tions and system generation procedures, the user is
referred to the IBM 1800 Time-Sharing Executive
System, Operating Procedures, Form C26-3754.

Other considerations affecting the use of TASK
are discussed under System Design Considerations.

THE SYSTEM DIRECTOR

The System Director is the nucleus of the skeleton
executive of a TSX system, and always resides in
core as part of the skeleton to direct the handling
of interrupts, to load and execute core loads, to
expand usage of interval timers, and to process
errors. Primary entry to the System Director
derives from internal and external hardware inter-
rupts, TSX calls from user's programs and errors.
Its principal component parts comprise the follow-
ing:

Master Interrupt Control (MIC). This is a reentrant
control program which automatically directs all
internal, 1/0, external, and programmed interrupts
to their proper interrupt servicing routines. Con-
trol returns to MIC as long as unserviced interrupts
exist.

Functions of Executive Programs 13



Program Sequence Control (PSC). The Program
Sequence Control Program is responsible for orderly
transfer of control from one user-specified core load
to the next. A core load may also temporarily be
saved on disk pending the processing of another core
load. All PSC functions are restricted to process
mainline core loads.

Time-8haring Control (TSC). This controls the
time-sharing of variable core between process and
nonprocess core loads by a core exchange method.
TSC is entered selectively from the execution of a
CALL SHARE statement or automatically by a CALL
VIAQ statement when the queue is empty.

Interval Timer Control (ITC). ITC services all in-
terrupts involving three machine timers A, B, and
C, nine programmed timers, and a programmed real
time clock. The programmed timers and the real
time clock are based on timer C. Timer C is reset
by the subtraction of a fixed value; accurate timing
is therefore kept, even when the response to the
timer interrupt itself may be delayed. It also ser-
vices the '"mo-response routine' for the 1053/1816
printers in the Skeleton I/O. As an option, it also
services the Operations Monitor during nonprocess
execution. Periodic interrupts are generated from
interval timers rather than from the real time clock.
The programmed timers interrogate the Interrupt
Core Load Table (ICLT), but only skeleton count
routines are entered into. If there is no such routine,
the condition is recorded for later servicing.

Error Alert Control (EAC). The EAC program re-
sides in core at all times, and is called to process
all error conditions whenever an error develops.
EAC

e optionally saves core for future reference

o optionally branches to a user-written error sub-
routine (which may be included with each process
core load) for further error analysis

e prints an error diagnostic message, and

e executes one of four possible error recovery
procedures

Mainline Core Load Queue Table. This is a stack
or pushdown list of names of mainline core loads
(and their respective priorities) that have been
queued (that is, put in line) for future execution.
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Although the Queue Table forms part of the System
Director, the real-time TSX queue-calling state-
ments (e.g., QUEUE, UNQ, QIFON and VIAQ) are
designed as subroutines which may be included in
the skeleton or with the mainline at the user's
discretion. Processing of a mainline is not sus-
pended as a result of queueing a higher priority
mainline,

Level Work Areas. A level work area of 104 words
(in the skeleton) is required for

e each interrupt level used
® process mainlines
e nonprocess core loads, and
e internal errors

A level work area contains interrupt level instruc-
tions, MIC linkages, and work areas. It is used to
allow recursive entry to those programs supplied by
IBM.

Each of the following System Director functions
will now be explained in some detail:
o Program Scheduling
e Handling of Interrupts
o Use of Interval Timers
o Use of Time-Sharing

e Use of the Operations Monitor

e Error Alert Control

PROGRAM SCHEDULING

Control processes may be classified under three
basic headings:

Program or event sequence
Time dependence
Interrupt initiation

In practice, a process may be a combination of
all three categories, but is usually weighted more
heavily towards one. Rarely does a process lend it-
self to only one.



Figure 6 is a simplified version of a process
based totally on program sequence. An example
might be a crude-oil distillation unit in an oil refin-
ery. A scan is made to see what the present status
is, tests and calculations are made to verify the in-
formation, optimization towards a given product mix
is applied, required changes to process variables
are effected, data is recorded, etc. Each event
thus depends on the completion of previous events.

A process based on time is illustrated by Figure
7. This classification could be applied to a process
involving a solitary engine test stand. For example,
a given throttle position and resistance load are
set up. At specified time increments, one or more
variables are recorded, such as manifold pres-
sure, RPM, fuel flow, fuel level, oil temperature,
oil pressure, etc. When all the variables have been
recorded, the throttle position and/or load resistance
are changed and a subsequent timing cycle initiated.
Finally, when all specified combinations of throttle
and load resistance settings have been tested, the
system is initialized for another engine. Each event
in this situation depends on time.

Note that in practice, the servicing of a process
as depicted in Figure 7 is not necessarily sequen-
tial in nature. Also, it is the actual time period
that schedules the servicing of an event. The man-
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Figure 6. Program or Event Sequence

ner in which servicing takes place is not dictated
by the type of program (e.g., mainline, interrupt
routine) which initiated the event.

The third classification is illustrated by Figure 8.
An example might be the input phase of a hospital
information system. With no input information, the
system switches over to the time-sharing mode or
remains idle. When, however, a patient enters
the hospital, certain historical information is
punched into cards. An interrupt is then initiated
by an operator. The interrupt recognition routine
sets up the card read program and the patient data
enters the system -- the system then returns to
time-sharing or to an idle condition. When, later,
a doctor requests medication for a certain patient,
in a specified quantity, at certain time increments
and duration, he sets up the proper information on
a manual entry unit and initiates an interrupt. The
interrupt recognition routine again calls the appro-
priate program which reads in the manual entry,
verifies the information, enters it in the specified
files, and once again returns the system to the
time-sharing mode. In a similar fashion, other
input information such as records and/or schedules
for dietary, patient status, laboratory, surgery,
etc., are entered. Events thus classified are in-
itiated by interrupts.

o
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?_. . .,?

Figure 7, Illustrating Time Dependency
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Figure 8. Interrupt Initiation

It is obvious from the foregoing that if each ap-
plication illustrated were expanded to its complete
operating requirements, it would most likely con-
sist of all three classifications to some degree. For
example, in Figure 6, an inventory log of input and
output material is given every hour. This is re-

1st INTERRUPT
LEVEL

2nd INTERRUPT

LEVEL F———
[\

.

quired to update inventories, product costs, etc.
Also, an interrupt will occur whenever a heating
unit goes out of range. This will immediately
initiate a program to rectify the situation,

Multi-Level Control. A control system must be
able to immediately recognize certain situations of
a physical process. It must also be able to ignore
certain functions until they occur. In practice,

the first requirement is more critical. In either
case, the normal sequence of events will be inter-
rupted until some action is taken, The situation

is further complicated if a second interrupt, more
critical than the first, occurs during the action
phase of the first interrupt. The servicing of the
first interrupt must obviously be suspended while
attention is given to the more critical interrupt.
Such a chain of interrupts may continue through
several iterations as shown in Figure 9. Upon
completion of the required action of each interrupt,
the previously interrupted action must be continued
until the system returns to normal. From this
brief picture of multi~level operations, we see
that program scheduling now becomes more com-
plex, The user must now have the capability to
take immediate action, record the occurrence for
later action, or arrange for action to be taken as
soon as possible, but on a less critical level, To
do this, the user defines what is to be recognized
on each level and sets this up by machine configur-
ations. Later his program sets up when action is
to be taken and at what level.

3rd INTERRUPT U
LEVEL -
)

e 0= HC

Figure 9, Multi-Level Processing

16



Program Scheduling Requirements

In a control system application, the scheduling of
programs to be executed on the normal or mainline
level constitutes the main problem. During certain
phases of a control system, the user will execute
programs in a set sequence. This type of sequence
may be set up by a program condition, an interrupt,
or a given time period. Sequencing or chaining of
programs may or may not be required depending on
the user's specific application.

A direct sequence or chain of programs is re-
quired for two separate situations. The first situ-
ation is a set of programs whose functions must be
in a given order that cannot be interrupted except
for critical conditions. The second derives from a
program that is too large for core size available,
so it must be segmented into several separate
programs. These programs will now overlay each
other, and must therefore be scheduled in a fixed
sequence.

As illustrated in Figure 6, special sequences of
programs may also be required on the mainline level
under certain special conditions. These special
sequences are required under three conditions which
come under normal operation. The first requirement
is a sequence or chain of events that is common to
several different phases of a system. This is logic-
ally equivalent to a subroutine which is called by
several programs: the main difference is that a
chain of programs is now being scheduled instead
of a subroutine. The next requirement occurs when
a situation is bordering a critical point, but is still
within the limits defined by the user. In this event,
the user may want a warning, but has no real need
to be alarmed. The third situation is similar except
that the user is alarmed and cannot therefore proceed
with the present sequence of programs until certain
conditions are met. This is a common situation in
process control where process inputs are not ac-
ceptable and a special scan is set up until valid
variables are obtained. As a result, the normal
calculation, optimization, etc., are delayed but
will be resumed as soon as possible.

The requirements stated thus far are categorized
under program sequence since they have a definite
relationship and order. Three commands are used
to implement sequence control:

1. CALL CHAIN (specify the next program to be
executed)

2. CALL SPECL (terminate the program, save
it on disk, and execute the next
program).

3. CALL BACK (return control to a program
which was partially executed).

Multi-process control, however, presents a new
scheduling problem. Since one control system is
used to control two or more processes, the definite
relationship and order of programs is normally
applicable within each process but not between
processes. However, each process must be able
to schedule its own programs in such a manner
that the control system can handle all schedules.
Also, because each process will normally contain
its own unique program sequences, one type of
scheduling problem does not necessarily eliminate
another. It should also be understood that multi-
level processing does not always dictate unrelated
program scheduling: all possible combinations must
be considered by a given program scheduling situ-
ation. The queueing technique itself will not produce
such a system, but when combined with the priority
technique, the system becomes flexible enough for
any control system's requirements. Four commands
permit this form of control:

1. CALL QUEUE (enter a core load into a waiting

queue)

(remove a core load from a

. waiting queue)

3. CALL VIAQ (call the highest priority core
load waiting in the queue to be
executed next in sequence).

4. CALL QIFON (interrogate recorded interrupts)

2. CALL UNQ

Program Sequence Control (PSC)

The center of the scheduling system is the Program
Sequence Control (PSC) Program which is perman-
ently resident in core in an on-line TSX system
working under control of the System Skeleton. PSC
is a means by which mainline core loads are loaded
to core, and control transferred from one core load
to another, according to user specifications. The
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user sets up his requirements when he uses a chain
or sequence type CALL or a queueing-type CALL
statement. PSC performs the following functions:
e Loads all mainline core loads

e Saves and reloads the special core load

e Initializes the ICL Table for each core load

e Tests for errors in calls to load programs

Chaining or Sequence Technique

Chaining or sequence-type call statements permit the
programmer to control the order in which tasks are
performed, interrupts serviced, and off-line jobs
allowed. This control is important since the various
levels of control are necessarily carried out in se-
quence and the order is critical. For example, an
optimizing routine too large for core storage can be
executed in segmented parts if the programmer has
control over their sequence. Three call sequences
are used in chaining: 1) CALL CHAIN, 2) CALL
SPECL, and 3) CALL BACK. Note that core load
names referenced by the CALL statement must also
be specified in a FORTRAN EXTERNAL statement.
A core load name cannot be the name of a component
subprogram of that core load. Figure 10 illustrates
the use of these call sequences.

Such statements may be freely embedded within
process programs written in FORTRAN or in the
Assembler language. Through the use of these
commands, within programs, the programmer can
control the frequency and order in which the various
levels of control are performed. Even when the
various levels are not performed on a regular basis,
these commands allow control over the sequence.

Of equal importance is the ease by which sequence
is changed as the process control problem changes
with time.

CALL CHAIN --Normal Call

When a given core load is called for execution, the
user sets up the following statement:
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CALL CHAIN (NAME)

where
CHAIN = Entry to PSC
and NAME = Name assigned by user to the next

sequential core load to be executed

This normal call transfers control to PSC,
thereby terminating the current mainline core load
at its last logical statement. PSC then sets up a
disk function to read in the next mainline core
load specified by NAME into variable core, over-
laying the present core load that contained the CALL
CHAIN statement. The new core load thus destroys
the previous core load. Once the core load is in
core, the disk I/0O routine reverts to PSC, which
in turn passes control to the new core load.

CALL SPECL -- Special Call

The second type of core load sequence is similar to
the CALL CHAIN, except that the current core load
and its associated parameters must be saved. This
is set up as follows:

CALL SPECL (NAME)

where
SPECL = Special entry to PSC
and NAME = Name assigned by user to a

special core load to be executed
next

The special call suspends execution of the current
mainline core load and transfers control to PSC
which saves the present variable core area and all
required parameters, such as index registers, ac-
cumulator, extension, return address, and status.
This information is written to the Special Save Area
on disk. Once the save operation is compiete, the
disk I/0 routine returns control to PSC. The opera~
tion proceeds from this point exactly as in a CALL
CHAIN.

Note that only one mainline core load can be
saved. Thus, if a CALL SPECL is used in a core
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Figure 10, Use of Chaining (or Sequence-type) Call Statements

load that was referenced by another CALL SPECL,
the mainline core load saved originally is lost. A
core load called by a CALL SPECL may, however,
chain to other core loads as long as these core loads
do not contain a CALL SPECL (see Figure 10).

CALL BACK -- Return Saved Mainline

In order to return to the saved core load, a third
call statement becomes necessary. This is used

only in conjunction with the special sequence function.

It is set up as follows:
CALL BACK

where

BACK

Special entry to PSC

CALL BACK transfers control to PSC which, in
turn, initiates a disk read operation to load variable
core with the information stored in the Special Save
Area on disk as the result of a CALL SPECL. When
the read operation is complete, the disk I/O routine
returns control to PSC. All saved parameters are
now restored, and the restored core load continues
execution at the saved return address (that is, the
statement following the CALL SPECL statement).

It should be noted that a CALL BACK statement
is required only if the saved core load is to be
restored and continued. The user may well initiate
a new core load as the result of a special core load.
This new core load could then be referenced by a
CALL CHAIN or a CALL SPECL.

A core load is terminated or suspended as the
result of any of the three calls: CALL CHAIN,
CALL SPECL, or CALL BACK. CALL CHAIN and
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CALL BACK are the last logical statements executed
in a core load. However, a CALL SPECL will not
be last logical statement of a core load if a CALL
BACK has been executed to restore the saved core
load, and to continue execution following the CALL
SPECL statement.

Queueing and Priority Techniques

Queueing techniques normally use statistical methods
to control the number of queues. The rule that
governs the input and output order in which waiting
requests are serviced is usually based on an ordered-
queue discipline -- that is, first-come, first-served.
Since we are considering the use of only one queue,

a first-come, first-served control is only valid for

a given priority. Therefore, as several priorities
are, in practice, required by most control system
applications, a priority technique must be enforced.
A priority level is one of the most common ways of
classifying interrupt requests according to their
urgency. Note, however, that the urgency may
change as a function of the condition of the servicing
system. For example, a request may be given a
higher level as waiting-time increases. Priorities
are assigned by the user to programs, processes,
and functions. The queueing and priority control
techniques employed combine to provide a flexible
method completely acceptable for scheduling un-
related core loads. Although the call sequences to
be described are referred to as queueing calls, both
queueing and priority control are implied.

CALL QUEUE -- Insert into Queue

The first of four calls is used to place a core load
entry in the Core Load Queue Table (see System
Design Considerations: System Director), and to
continue with the execution of the present function.
The format of the call is:

CALL QUEUE (NAME, P, E)

where
QUEUE = Name of the subroutine that places
the specified core load in the Queue
Table.
NAME = Name of user-assigned core load

entry to be entered in the Queue
Table (and in FLET).
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e
]

Integer expression, specifying
queue priority of core load NAME.
This may be 1-32767. One (1) is
the highest priority number.
Designated error procedure to be
taken if the queue is full. In each
case, an appropriate error message
is printed (see Table 2: On-line
EAC Errors and Recovery Pro-
cedures). The parameter is user-
assigned as follows:

=
It

E = 0. Ignore this call, and con-
tinue execution as if the
core load had been queued.

E = 1 through 32766. Replace the

lowest priority entry cur-
rently in the queue with the
name and priorify speci-
fied in this call, if the
priority of that current
queue entry is lower (that
is, numerically larger)
than E. If there is no
queue entry with a lower
priority, execute the re-
start core load specified
for this core load.

E =32767. Execute a restart core
load.

In practice, E is always set to zero. The size
of the Queue Table should be redefined by the user
if it becomes saturated. The options listed under E
(above) are provided by the Error Alert Control
(EAC) program (described later).

Figures 11 and 12 illustrate the use of these
functions. In Figure 12, an example is given of a
series of mainlines which, if executed serially with-
out interruption, would not allow queue testing for
an inordinate amount of time. In order to be able to
check the queue in some user-specified time period
to see if any high priority core loads need to be
executed, a program of the priority of the current
executing program is queued; a CALL SPECL is
then made to a core load that exits via a CALL
VIAQ. The VIAQ routine then checks the gueue for
the highest priority program and executes it. When
the executed program is the core load queued by
core load A, a CALL BACK is performed which re-
stores the original calling core load to execution
status. This technique is commonly employed to
break up the execution of a long program.



Entry to core load A via CALL VIAQ
when A is highest priority in queue ,or
CALL CHAIN ( A ), or CALL SPECL ( A )

_ A
CALL QUEUE (P, 30,1)
EALL QUEUE (8, 20,0)
CALL VIAQ
) B

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

Interrupt Routine

J-continued

CA

LL QUEUE (X, 2,0)

O
3>

LL INTEX

TALL UNQ (M, 20)
CALL UNQ R,20)
CALL QUEUE (P, 10,0)

l

CALL VIAQ

At this point, the queue still contains at least
two entries for core load P and one for core
load N.

Figure 11. Use of Queueing Statements

When a CALL QUEUE statement is executed,
control is transferred to the real-time QUEUE
routine which tests for an entry in the Queue Table
with the identical name and priority as that specified
in the user calling statement. If such an entry exists,
a further entry will not be made -- a given core load
and priority cannot, by definition, appear more than
once in the Queue Table. However, the same core
load with varying priorities may appear once for
each unique priority.

If the entry is already in the queue, control is
passed to the next executable instruction following
the CALL QUEUE statement. If this is not the case,
the QUEUE routine tests for a Queue-Table-full
condition, If the table is full, control passes to
EAC which executes the function specified by the E

parameter. If the Queue-Table-full condition test
is not satisfied, the QUEUE routine will place the
core load entry in the Queue Table, and transfer
control to the next instruction following the CALL
QUEUE statement.

CALL QUEUE may be executed in a program
that was initiated by an interrupt or a specified
time interval, or as the result of a program de-
cision. It should never be used as the last logical
statement of a core load since the QUEUE routine
returns control to the instruction immediately fol-
lowing the CALL QUEUE. A CALL ENDTS (see
Use of Time-Sharing) statement i s normally used
in conjunction with CALL QUEUE for time-sharing
systems. The main uses of CALL QUEUE can be
summarized thus:

Functions of Executive Programs
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Problem: Repeated execution of queued core loads
during a given core load.

Solution: (The encircled numbers specify the sequence of operations.)

>

MO

CALL QUEUE (R,2,0)

CALL SPECL (E) @ —

CALL VIAQ

Continue execution of core loads until
o CALL VIAQ is executed and core lood
R is highest priority in the queve.

o o
b

CALL QUEUE (R,4,0)
CALL SPECL (E)

At

)

1

N/ CALL BACK

o

CALL CHAIN (B)

ffa—CG )

(il

Note 1: The CALL SPECL statements cause core load A to be Note 2: Between lines 4 and 5 all core loads of priorities 1 and
saved before transferring to core load E via lines 3 2 will be executed; between lines 9 and 10 all core
and 8. The CALL BACK statement in core load R loads of priorities 1 through 4 will be executed.

causes core load A to be restored before the return
is made via lines 6 or 11,

Figure 12. INustrating a Method of Segmenting Mainlines Based on Scheduling Requirements
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e To queue a core load from any program

e To queue a core load from any hardware opera-
tional level

e To queue a core load when the user is unaware
what is presently in progress on any one machine
level

e To queue a core load when the user is unaware
what machine levels are in progress, and

o To queue a core load that is not related to all
other core loads.

This is a very flexible command since related or
unrelated core loads can be scheduled on the basis
of time, a program decision, an interrupt, and from
any hardware operational level.

CALL UNQ -- Delete from the Queue
The reverse of queueing a core load entry is to
remove such an entry from the Queue Table in the

system. The statement which gives this ability is:

CALL UNQ (NAME, P)

where
UNQ = Name of the subroutine that removes
the specified mainline core load
entry from the Queue Table
NAME = User-assigned name of mainline

core load entry to be removed

P = Priority status of user-assigned
core load NAME, This may be in
the range 1-32767.

Upon execution of a CALL UNQ statement, control
is transferred to the UNQ@ subroutine which searches
the Queue Table for a similar entry of the same name
and priority. If such an entry is detected, it is re-
moved (that is, deleted) from the Queue Table. If
the table does not contain a matching entry, the
Queue Table remains unchanged. In either case,
the UNQ subroutine returns control to the instruction
immediately following the CALL UNQ statement,
Like CALL QUEUE, CALL UNQ may be executed at
any time and from any level of machine operation.
Note that no error parameter is required.

CALL QIFON -- Queue Core Load if Indicator is On

The third queueing-type call is the CALL QIFON
statement.

CALL QIFON (NAME, P, L, I, E)

where
NAME = User-assigned name of a mainline

core load

P = Priority status of each NAME, in
the range 1-32767.

E = Error parameter, as described for
CALL QUEUE

L = Interrupt priority level indicator

I = PISW bit position indicator or

CALL COUNT indicators

In TSX, a unique L and I combination parameter
is set up for each process interrupt, program-
settable interrupt, and program interval timer rou-
tine. The significance of this combination (which is
dependent on the user's machine configuration) is
given below:

L I Reference

0-23 0-15 Process interrupts

0-23 (-)n Programmed interrupts
(see CALL LEVEL)

(-)n 0-31 Subprogram number for

CALL COUNT statements
(see Interval Timers)

Minus (-)n above refers to any minus number.

The CALL QIFON function is required only when
any of the above mentioned interrupts are set up to
be recorded (for delayed servicing). In general,
most interrupts call for immediate action, or as
soon as their appropriate servicing program can be
read from disk to variable core. Some interrupts,
however, must be recognized immediately, but do
not require action until a later time. The function
of delaying servicing is termed "recording': the
interrupt is then said to be ""recorded'". CALL
QIFON thus provides the user with the ability to
interrogate recorded interrupts only when he so
desires. It is the only way a recorded interrupt
can be serviced. Figure 13 illustrates the use of
this function.

The core load entries are queued only if their
respective interrupt record indicators are on. When
an indicator is on, the QIFON routine sets up the
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CALL QIFON (NAME 1,35,6,15,0)

PROCESS CORE LOAD

QIFON ROUTINE

ievel 6
Recorded

P #1 Queve
\ \ YES o NAMET

QUEUE ROUTINE

——
-

with a priority
of 35

T

CALL QIFON (NAME 2,8,0,1,32767)

-—

Queve
NAME 2

with a priority
9l

LTI

CALL QIFON (NAME 3,1,-1,22,32767) |

A

Queve

NAME 3

with a priority
of 1

HHTHTHTHTHT

CALL QIFON (NAME 4,42,6,-1,0)

-

A‘um

Level 6
Recorded

Queve
NAME 4
with a priority
of 42

Figure 13. Use of the CALL QIFON Statement

proper information and then executes a CALL
QUEUE. If the Queue Table is not full, or the
replace error option is utilized, the QUEUE rou-
tine returns control to QIFON which proceeds

with the interrogation of indicators until the QIFON
call is completed. A recorded interrupt indicator
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is automatically turned off (that is, cleared) when-
ever the QIFON routine interrogates a program
indicator. Control is then passed to the next exe-
cutable instruction following the CALL QIF'ON
statement, or as specified for error conditions
under E.



CALL QIFON may be used from any level of
machine operation. It should never be used as the
last logical statement of a core load.

CALL VIAQ -- Execute Highest Priority Core Load
The fourth and last queueing statement is

CALL VIAQ
where

VIAQ = Name of the subroutine that deter-
mines the highest priority core load
entry in the Queue Table.

The CALL VIAQ statement, like CALL CHAIN,
and CALL BACK, is used as the last logical state-
ment of a core load. When executed, control is
transferred to the VIAQ routine which interrogates
the Queue Table. If the table is empty, the process
is considered to be in an idle condition (that is, the
process does not require any action at this time.)
Since variable core is not utilized by process core
loads, control is passed to the Time Sharing Control
(TSC) program for nonprocess work if there is work
to do. The Nonprocess Monitor indicates that it has
batch work to perform by the execution of the Console
Interrupt button, with sense switch 7 on. When the
operator places a job stack in the card hopper, he
turns on sense switch 7 and depresses the Console
Interrupt button. This informs TSC that batch work
is to be performed.

At the end of the job, the // END OF ALL JOBS
card indicates no more batch work is to be performed
until the Console Interrupt button is again depressed.
This feature is provided to reduce the amount of
disk activity, and to give faster response to the
process whenever there is no nonprocess work for
execution.

The time-sharing operation, thus initiated, will
continue for the duration of time specified at system
generation time, or until it is terminated by a CALL
ENDTS statement. Note that a CALL VIAQ is auto-
matically performed when time-sharing terminates.
If, therefore, an interrupt program has previously
placed a name in the queue, the named core load
will then be immediately executed (see also Use of
Time-Sharing). Figure 14 illustrates the use of this
calling statement.

Problem: All programs of a given priority must be
executed before a certain core load.

Solution:

CALL QUEUE (A2, 2, 0)
CALL VIAQ ———
Continue execution of core loads until a CALL VIAQ
is executed and core load A2 is the highest priority in
the queve. All core loads of priority 1 and 2 would
A2 be completed before entering A2,

CALL QUEUE (A3, 4, 0)

CALL VIAQ ——

Continue execution of all core loads of priority 1, 2,
A3 3, and 4 until a CALL VIAQ calls A3.

SO E—

CAL

L CHAIN (A4)

Figure 14. Use of the CALL VIAQ Statement

In normal operations, the queue might not be
empty, in which case the VIAQ routine obtains the
name of the entry with the highest priority. If
several entries have the same (highest) priority,
the first entry of that priority will be selected.

The VIAQ routine then sets up the proper infor-
mation for a CALL CHAIN with the core load name
derived from the Queue Table, and passes control
to PSC to execute the CHAIN function exactly as if a
CALL CHAIN had been executed. Note that a core
load containing a CALL CHAIN statement is destroyed
by the core load it calls; a core load containing a
CALL VIAQ is, therefore, similarly overlaid in
core. The CALL VIAQ and CALL CHAIN commands
are similar except for the method of obtaining the
name of the core load to be called. Both calls, how-
ever, have their own useful unique functions.
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Example of Non-synchronous Periodic Scheduling

The following example illustrates a simple technique
frequently used in a process control environment
whereby core loads can be executed on some periodic

time basis.

This is known as non-synchronous per-

iodic scheduling. The test case is not intended as a

model: it serves only to demonstrate program sched-

uling techniques. The example is given in three easy
steps:

1.

26

The Initial Core Load -~ This is the initial
mainline core load named TEST which is read
into core by a cold start operation. The core
load first unmasks the system because cold
start enters the initial core load in an all-level
masked condition; it then sets a programmed
timer to initiate a continuous cycle of opera-
tions (by calling the count routine #0).

Figure 15 illustrates this core load. The use
of CALL CHAIN to call in another core load
(that is, ALPHA) is also shown.

Mainline Core Load ALPHA -- This is the
ALPHA core load called by the initial core load.
It is a mainline core load which prints out the
time of day (see Figure 16).

Figure 16 also shows the use of CALL VIAQ
to check the queue. If there is nothing in the
queue, the system establishes the time-sharing
mode (that is, the Nonprocess Monitor is
called).

If an // END OF ALL JOBS has just been
executed, the VIAQ routine will wait until an
interrupt occurs to check the queue.

If time-sharing is in progress (that is, the
Nonprocess Monitor is occupied), core is ex-
changed and the Nonprocess Supervisor is read
into core, or alternatively, the interrupted non-
process program is brought into core.

Count Routine PEROD -- This is the count rou-
tine named PEROD which is included in the Sys-
tem Skeleton at system generation time.

It is entered by way of the Interval Timer
Control (ITC) program when the time period
specified in the initial core load TEST, or from
its own call (that is CALL COUNT (0, 1, 5), has
elapsed.

The function of PEROD is to end time-sharing
and to load ALPHA into the queue, so that when
time-sharing is ended and the queue is checked,
ALPHA will print out the time. It also restarts
the timer to repeat this cycle of operation (that
is, it starts the count again).
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Figure 15, Initial Core Load
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Figure 17, Count Routine PEROD

HANDLING OF INTERRUPTS

Interrupt Philosophy

Basically, in all on-line real time control systems,
the processor-controller behaves in very much the
same fashion as a radar system. The real-time com-
puter reacts to input data from a real world environ-
ment and provides input data to correct or control
that environment. For example, a computer system
controlling a chemical process monitors the inputs
from measuring devices and instrumentation on the
operator's control panel. Later, the computer up-
dates the control mechanisms and indicators to main-
tain safe and efficient operation. Emergency condi-
tions are also sensed and appropriate action initiated.
Instrument status sensing, data computation, and re-
action control must occur within a specified interval
of time to prevent disruption of the process. How
well it is able to respond generally determines the
maximum capability of the on-line system. A sig-
nificant component in the responsive ability of any
real time system is the inclusion of a powerful and
flexible multi-priority interrupt program.

Purpose of I/0 Interrupts. There are two main
reasons for I/0O interrupts:

1. To reduce system cost by reducing control cir-
cuitry in I/0 devices

2. To speed up job throughput, which is relatively
slow when compared with internal processing.

Consider a normal computer operation without
interrupts. Since the computer is basically a sequen-
tial machine, it functions sequentially (or serially,
performing one job at a time). In the simple example
below,

INPUT1 - PROCESS1 - OUTPUT1 - INPUT2 -
PROCESS2

when PROCESSI is completed, the user must wait
until OUTPUT1 and INPUT2 are accomplished be-
fore he can begin PROCESS2. This could be extreme-
ly time-consuming.

Since the input device waits idly during PROCESS1
and OUTPUTI time, the question arises: why should
this idle interval of time not be used to read in
INPUT2? This could be obviated with the use of I/O
interrupts. The I/O interrupt is based on the con-
cept of keeping 1/0 devices active, thus, hopefully,
eliminating process delay caused by these devices.
The following sequence of events illustrates the type
of action that might be taken:

1. A mainline program initiates an I/O device
operation.

2. The program proceeds with its processing while
the 1I/0 device is sending (or receiving) infor-
mation.

3. When the I/O device has transferred its infor-
mation, an interrupt signal is sent to the
Process Controller.

4, This interrupts the mainline program.

5. The interruption is serviced; that is, further
data is requested or sent.

6. The mainline resumes processing at the point
of interruption.

7. The cycle repeats itself during the execution
of the program.
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1800 Multi-Interrupt Priority Scheme. In the IBM
1800 Time-Sharing Executive System, the essential
elements of the multi-interrupt priority control
scheme consist of:

e A hardware priority structure
o Core store data areas for each interrupt level

e A Master Interfupt Control Program (MIC) which
recognizes, controls, and directs the servicing
of interrupts

The hardware priority structure provides for 3
fixed and up to 24 additional interrupt levels which
are assignable by the user to I/0, process, or
programmed interrupts, as shown in Figure 18.

The interrupt philosophy can be explained in the
following way. Because of the large number and
widely varying types of interrupt requests, it is oftan

not desirable to cause a branch to a unique address
for each condition. For the same reasons, it is not
desirable to initiate one branch for all interrupt re-
quests and to require the program to determine the
individual requests requiring service. Grouping the
numerous request lines into a number of priority
levels (see Figure 18) accomplishes two aims:

1. It allows all interrupt requests common to a
specific interrupt level to have the privilege of
interrupting immediately, if the only requests
present are of a lower priority level. Converse-
ly, it permits interrupt requests connected to a
higher priority level to temporarily terminate
the servicing on a lower level and to immediate-
ly interrupt to the higher priority level. Service
is returned to the initial request only after all
higher level requests have been serviced.

INTERRUPT PRIORITY | DECIMAL LSw psw @ | MAsK& | PROGRAM VO, TIMER, phoCEss

LeveL(@) | ADDRESS ASSIGN'T | UNMASK | INTERRUPT ASSIGNMENT ALLOWED
Internal 1 8 Yes - No No No
Trace 26 9 No - @ No No
CE 27 1 @ No - No No No
Assigned 0 2 11 Yes 2 Yes Yes Yes
Levels 1 3 12 Yes 3 Yes Yes Yes
2 4 13 Yes 4 Yes Yes Yes
3 5 14 Yes 5 Yes Yes Yes
4 6 15 Yes 6 Yes Yes Yes
BASIC 5 7 16 Yes 7 Yes Yes Yes
6 8 17 Yes 8 Yes Yes Yes
7 9 18 Yes 9 Yes Yes Yes
8 10 19 Yes 10 Yes Yes Yes
9 1 20 Yes 1 Yes Yes Yes
10 12 21 Yes 12 Yes Yes Yes
11 13 22 Yes 13 Yes Yes Yes
[ ) 12 14 23 Yes 14 Yes Yes Yes
SPECIAL 13 15 24 Yes 15 Yes Yes Yes
FEATURE 14 16 25 Yes 16 Yes Yes Yes
GROUP 1 15 17 26 Yes 17 Yes Yes Yes
‘ 16 18 27 Yes 18 Yes Yes Yes
17 19 28 Yes 19 Yes Yes_ Yes
LY 18 20 29 Yes 20 Yes Yes Yes
SPECIAL 19 23 30 Yes 21 Yes Yes Yes
FEATURE 20 22 31 Yes 22 Yes Yes Yes
GROUP 2 21 23 32 Yes 2 Yes Yes Yes
22 24 33 Yes 24 Yes Yes Yes
23 25 34 Yes 25 Yes Yes Yes

@ NOTE: 1 Highest priority
27 Lowest priority
(2) 24 PISW's Basic 1BM 1800.
(3) Marnually masked and unmasked by switch,

(2) Return address in l-counter stored in decimal address 0010, but hardware-generated BS| addresses decimal address 0001,

Figure 18, Priority Interrupt Level Structure and Assignment
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2. Since a unique branch can be defined for each
interrupt priority level, it is possible to com-
bine many requests on a common priority level
and thereby use a common interrupt subroutine
to service many requests.

Each interrupt request line is thus positioned
into a table order of priority; the highest priority
being closest to the output, while the lowest priority
is farthest away. An interrupt request received at
a given level automatically causes the level to shift
from an uninterrupted to an interrupted state. If no
higher priority level is presently being served, the
scheme permits the request line to be activated. At
this time, a unique address associated with this
level is supplied to the system, which transfers

control to a core location determined by this address.

The mainline return address is now preserved and
entry made to the Master Interrupt Control Program
to direct the servicing of this interrupt. At comple-
tion of servicing, control is returned to the point

of departure (see Figure 9).

In this way, every interrupt request is obeyed
immediately, provided no priority request is
presently in execution. The biggest advantage of
this method of priority level control is a near-
optimum priority response. To guarantee minimum
response time to alarm conditions, most process
interrupt servicing routines should be in core at
all times.

Characteristics of Interrupts

Interrupts can be classified into three broad types:
e I/0

e External (that is, process), and

o Programmed

Skeleton-resident interrupts operate on a true
priority basis from the 24 levels available. An
interrupt is, by definition, a hardware feature --
it is the machine hardware, not the Master Interrupt
Control Program which determines what level the
interrupt is on. As far as the problem programmer
is concerned, he has no control over the time of
occurrence of process interrupts. He has, however,
indirect control of their time response through
masking, recording, and the allocation of priority

levels. In general, interrupts are distinguishable
from one another only in the manner in which they
are serviced (see also System Degign Considerationsg).

Priority Assignments. Some important considera-
tions affecting priority assignments can be sum-
marized thus:

o Each of the 24 levels can interrupt the mainline
program.

e Level 0 is the highest priority.

e Higher priority levels can interrupt lower
priority levels. Lower priority levels cannot
interrupt higher levels. This permits fast
access devices to interrupt slower ones.

e Hierarchy of machine operation:

Highest Interrupt level

¢ @ &6 & & VO

V]
w

Process Mainline
Lowest Nonprocess Mainline

e Interrupt levels may be masked by programming

means, Masking inhibits interrupts to the 1800.
The user is thus allowed to inhibit or permit
specified levels of interrupts, and to allow deter-
mination of the status of interrupt levels -- that
is, whether they are inhibited or not -- at any
time. Through selective use of masking, data
channels can be kept in operation for the trans-
mission of data into and out of core storage
while process interrupts are prevented from
occurring., This gives an increased efficiency
of execution of programs.

When a request line is unmasked, the Proces-
sor-Controller is interruptible. Note that
although a level may be masked, the fact that the
interrupt has occurred is not lost. The function
of masking is used to delay recognition of an
interrupt.
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In practice, priorities must be assigned using the
interaction of functions with each other as a primary
basis. See also System Design Considerations:
System Director.

Types of Servicing Subroutines Used

An interrupt servicing subroutine may be

® AnI/0 device subroutine

o An interrupt program included in the skeleton
e An interrupt program included with a mainline
¢ A mainline core load

e An interrupt core load

The different options are provided to permit
flexibility in terms of both core storage and response
time requirements.

1/0 Device Subroutines. An I/O device routine is a
routine that performs the second level of sensing of
a Device Status Word (DSW) or a Process Interrupt
Status Word (PISW). The first level of sensing the
Interrupt Level Status Word (ILSW) is carried out

by MIC. This means that any bit on the ILSW that
requires sensing at the second level may be executed
by an I/0 device routine.

The majority of the I/0 devices in the 1800 have
IBM-supplied device routines (e.g., disk, card/read
punch). Those that require sensing by the user at the
second level include the following:

® RPQ devices

e Special PISW's that the user may wish to sense
himself (e.g., multiple PISW groups per level)

e Any other I/0 device (e.g., System/360 Channel
Adaptor)

These routines are entered with a BSC; they exit
by an indirect branch through word (90)1 ¢+

The appropriate entry reflecting the ILSW will be
assigned by the user on *Assignment control cards
to the System Loader at system generation time.
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Subroutines that are entered from the I/0 device
routine comprise count, timer, and process I/0
subroutines. They perform specific limited tasks
associated with the event that is occurring within
the I/0 device (e.g., elapsed time on a particular
timer). Entry to the subroutine is made by a BSI;
the routine exits to its return statement by a BSC I
through the entry point. These subroutines are
included in the skeleton by *INCLD control cards.

Interrupt Programs included in the Skeleton. The
shortest response time (that is, the minimum time
before an interrupt servicing routine is enfered
after the interrupt has been recognized) is obtained
by placing the routine in core with the System
Skeleton. The interrupt routine is included by
specifying a control card (*INCLD) at skeleton
build time. Like the interrupt core load, the in-
core interrupt routine performs a limited task.
It is masked only for short periods of time by the
system during the execution of certain reentrant
coded routines. This period of time is normally
of the order of 20-30 instructions.

These routines are entered with a BSI; they
exit through a CALL INTEX statement, Some of
the important factors governing their inclusion
in the skeleton area are discussed in detail in
System Design Considerations: System Skeleton.

Interrupt Programs included with a Mainline. Next
in length of response time to skeleton interrupt
routines are in-core routines loaded with the core
image mainlines. These are entered almest as
quickly as skeleton routines provided the rnainline
is in progress when the interrupt occurs, but may
be forced to wait if the mainline is not in core.
This will be the case if a lower level interrupt
routine has been read over the mainline. The
length of delay involved would then be the balance
of the reading of the interrupt routine and the exe-
cution of that routine and the read-back of the main-
line. No immediate exchange to obtain the mainline
is done. If the interrupt that occurs has a program
in the mainline and the interrupt is at a higher or
equal level to the interrupt being processed, the
interrupt core load assigned to this interrupt will
be read directly into core upon completion of the
interrupt core load being serviced.

An interrupt core load is always required before
any servicing of a process interrupt in-core with the




mainline can take place. If an interrupt core load
is not available, the event will be recorded even if an
interrupt servicing route is included with the main-
line. The Master Interrupt Control (MIC) Program
first ascertains if an interrupt core load is available;
if it is, the ICL table is checked to see if the routine
is in the mainline; if it is not available, the event
is recorded. The interrupt routine is always ser-
viced with the same masked status as an interrupt
core load.

Interrupt programs included with a mainline are
always entered by an indirect branch (BSI); they
exit through a CALL INTEX,

Mainline Core Loads. External (that is, process)
interrupts whose occurrences are recorded are
serviced with mainline core loads. The mainline
core load performing the servicing action is identi-
cal to any other mainline core load, except that it

is queued for execution by a CALL QIFON statement.
Since it is a queued core load, it should have a CALL
VIAQ as its last logical statement. It could, of
course, be the first core load of a special series,

in which case it would end with a CALL CHAIN to
obtain the next core load in sequence, but a CALL
VIAQ must ultimately be executed.

Note that the only major difference between an
interrupt core load and a mainline core load used
for the servicing of recorded interrupts is in the
last logical statement used. This must be a CALL
INTEX for an interrupt core load and a CALL VIAQ
for a mainline core load.

If a process interrupt is immediately serviced on
some occasions and recorded on other occasions, it
would require two core loads (one for each function)
which would be identical in all respects except for
their last logical statement. To eliminate this dupli-
cation of core loads, a special combination exit
statement (CALL DPART) is provided (see Exit
Procedures from Interrupt Servicing Routines). An
interrupt or mainline core load which terminates with
a CALL DPART is, by definition, a combination core
load.

The combination core load should not violate re-
strictions placed on either mainline or interrupt
core loads. That is, mainline interrupt subroutines
are not allowed as part of this core load: only state-
ments allowed in both mainline and interrupt pro-
grams are permitted. See also Appendix A, Sum-
mary of TSX Statements.

Interrupt Core Loads. The user may create inter-
rupt core loads which are brought into core over the
mainline when the interrupt occurs. Interrupt core
loads are essentially disk-resident routines where
the response time is not a problem. They are re-
quired for those interrupts that meet either of the
following conditions:

1. The user has specified the interrupt servicing
routine to be out-of-core.

2. The user has specified the interrupt servicing
routine to be in-core as part of a mainline
core load.

When this type of interrupt servicing routine is
executed, the area of core that the routine will
occupy is saved on disk before reading in the inter-
rupt core load. The time for this save operation,
in addition to the time for the disk read operation
needed to get the interrupt core load, causes this
method of interrupt servicing to have the longest
response time. Once an interrupt servicing core
load has begun, it may be interrupted by a higher
level routine, only if the interrupt routine for this
higher level is in the skeleton on a higher level.

The use of interrupt core loads is normally re-
stricted to the performance of a particular task at
a time, or the initiation of a task on a mainline level
which does not take an inordinate amount of time.

A typical example is the queueing of a sequence of
mainline core loads to accomplish the task that
originated an interrupt. The user should remember
that if his problem program is time-consuming, he
will, in the normal course of events, execute this
on the mainline level. The reason for this is that
interrupt core loads cannot, by definition, interrupt
other interrupt core loads. This system restriction
is because of the disk exchange time that would be
required.

Interrupt core loads are built and assigned to a
particular process interrupt bit (PISW) on pro-
grammed interrupt level. The core load then per-
forms the servicing task or sets in motion the task
that will be required when this specific bit is
activated.

Note that this type of interrupt servicing routine
does not contain an Interrupt Status Table (IST).

The reason is that the IST is used for updating the
Interrupt Core Load Table (ICLT), and the ICL table
is only updated from mainline core loads or from
combination core loads when these are executed at
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the mainline level. For the same reason, the
interrupt core load cannot include other routines
within it. Another explanation is that the programs
that might be included in an interrupt core load are
masked off during its execution.

An interrupt core load is not necessarily the
length of variable core: it has a defined length
(see System Design Considerations: Disk System
Configuration). Hence, in contradistinction to
mainline core loads, all of variable core is not
needed because of the limited function performed

speed, therefore, the Interrupt Save Area can be
made smaller.

Note also that interrupt core loads can communi-
cate with mainline core loads (and combination core
loads when these are executed as interrupt core
loads) only through INSKEL COMMON. The inter-
rupt core load itself contains a COMMON which is
located at the end of the Interrupt Save Area.

Figure 19 gives a summary of the types, charac-
teristics, and location of process interrupt servic-

by this type of core load. To increase execution

ing routines.

Type of Routine and Location

Characteristics

Skeleton Interrupt Routine

C ore Storage Location

%
System 7
Sk:lemn?

N

Skeleton Area Variable Area

Permanently in cors.

Normally high priority.

Can immediately interrupt lower priority routines, and
Interrupt Core loads if no Interrupt Core load is
assigned to that level,

Fastest interrupt response.

Must CALL INTEX as last logical statement.

Mainline Interrupt Routine

Core Storage Location

System /
Skﬁ'afon é

Skeleton Area Variable Area

Availoble almost as quickly as Skeleton Interrupt routines, if the mainline
is in-core.

Once execution is started, only interruptable by Skeleton Interrupt Routine
or internal interrupt. -

Can be different with each mainline core load.

Interrupt core load is required.

Must CALL INTEX as last logical statement.

Interrupt Core Load
Core Storage Location

System
Skeleton

Skeleton Area Variable Area

Large core area available.

Once execution is started, only interruptable by Skeleton Interrupt Routine
or internal interrupt.

Mainline or nonprccess program in operation at time of interrupt is saved
before and restcred after Interrupt Core Load operation,

CALL INTEX is last logical statement used. Cannot include interrupt
routines for othor interrupts.

Mainline Core Load

Core Storage Location

System
Skeleton

Skeleton Area Variable Area

Lorge core area available,
Can include interrupt routines.

Queued for execution if record indicator is on when named in QIFON statement.

If mainline core load is always queued, last logical statement should be
CALL VIAQ.

Combination Core Load

Core Storage Location

System
Skeleton

Skeleton Area Variable Area

Cannot violate any rules govemning interrupt and mainline core loads.

Large core area available,

Queved for execution if record indicator is on when named in QIFON
statement.

CALL DPART is last logical statement used.

Figure 19,
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Exit Procedures from Interrupt Servicing Routines

Three forms of exiting are used:
e CALL INTEX
¢ RETURN

e CALL DPART

CALL INTEX -- Interrupt Exit

All interrupt routines serviced on an interrupt level
must return control to MIC through a

CALL INTEX
statement. INTEX is the symbol for INTerrupt
EXit. CALL INTEX must be used as the last logi-
cal Statement in skeleton interrupt routines. It
can also be used in interrupt core loads.

RETURN

Subprograms called by user-written interrupt
servicing routines must use a

RETURN
statement to return to the interrupt routine or may
return control directly to MIC.
CALL DPART -- Departure

CALL DPART causes the level of operation to be
tested for the following conditions:

e If the present level is an interrupt level, a
CALL INTEX is executed.

e Otherwise a CALL VIAQ is executed.

Thus CALL DPART eliminates duplication of

core loads. An interrupt that is sometimes directly

serviced, and sometimes recorded, can now be
serviced with the same core load. This core load
operates from an interrupt level when servicing
is specified; it is queued and operates from the
mainline level when the interrupt is specified as
recorded.

Figure 20 illustrates the use of the two exit
CALL and RETURN Statements.

Master Interrupt Control

Once an interrupt has been detected at the hardware
level, a reentrant control program, the Master
Interrupt Control (MIC) program, takes over the
control and servicing of that interrupt. The inter-
rupt is first recognized by the interrogation of
certain indicators on a level.

The MIC routine is assembled as part of the
System Director at which time it origins out those
tables and coding not used by the system to user
specifications. MIC resides in core at all times
in an on-line TSX system when the computer is
operating under control of the System Skeleton.

It is designed to:

e Save the interrupted registers whenever an
interrupt is processed on the appropriate work
level

e Direct the interrupt to its servicing routine
® Restore the FORTRAN I/0 buffers if required
e Restore the interrupted registers, and

o Return to the point of departure in the inter-
rupted program.

Detailed Action of MIC when an Interrupt Occurs

Consider the train of events that follows when a
process interrupt is generated by an event within
a process control environment, Let us assume
that this interrupt was originally assigned (at
system generation time) by the user on an NB
(System Director) equate card to level zero.
Remember that an interrupt is, by definition, a
hardware feature, and that the user has limited
control over the time of occurrence of process
interrupts, except by masking, recording, and
the allocation of priority levels. Figures 21, 22
and 23 illustrate this action in simplified form.

Entry to MIC.

1. 1In the 1800, an interrupt request is recognized
at the completion of the current instruction
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being executed within a mainline program. When busy, saves Index Registers 1, 2 and 3, and sets

this happens, an indirect branch (BSI) to a fixed- Index Register 3 as a pointer to this work level
word (location 11) in core takes place. This (at entry point + 8). It is through the level work
word contains the start address of a level work area that an interrupt formally enters MIC --
area associated with level 0 (see System Design from now on, all references to the work area
Considerations: System Director). A set of in- and saved information is made through the
structions within this area then sets the level Index Register 3 address.

The sequence of operations (specified by the encircled numbers) can be either
1,2,3,4,5, 6A, 6B, 6C, 8,9,10,0r1,2,3,4,5, 7A, 78,8, 9, 10.

Mainline Core Load

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine,

Interrupt Servicing

Routine
2
- 6 E JOE
% CALL JOE @_ E
RETURN

BILL

-

Subprograms called
by interrupt routine. ’\\

77\
CALL BILL 68\3;

puee RETURN

()
[

O

AL

CALL SAM @-—
'o %

Figure 20, Use of the CALL INTEX, CALL DPART, and RETURN Statements.

-

INTEX

CALL DPART

J

SAM

"
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MIC is the entry point at which all process
(and I/0) interrupts enter the Master Control
Program for processing. The accumulator,
the status word, and the pseudo-accumulator,
are now saved for the particular level of inter-
rupt being processed. The previous (that is,
last) work level address is also saved, and the
new (that is, current) work level address set
up for use by reentrant coded subroutines so
that they are aware of the address of the par-
ticular work level they are required to use at
this particular time. Now that the registers
of the interrupted level have been saved and the
new level (0) address set up, the question of
determining which of 16 possible interrupts is
to be serviced on this level remains. This is
done by sensing the ILSW. If no bits are "on"
in the ILSW, a check is made to see whether

a programmed interrupt has been selected for
this level; if it has been, a transfer is made
to (A) in Figure 22, and the processing pro-
cedure proceeds as for a process interrupt.

If no programmed interrupt is present, an exit
from MIC is made via (B) -- see Figure 23.

If a bit is on, a branch is made via the level
work area to the Interrupt Branch Table within
the mainline core load to determine whether
the interrupt is a process or I/O interrupt.

Each core load (mainline, combination,
interrupt, or nonprocess) must contain an
Interrupt Branch Table which provides the
means of routing each I/0, process, or pro-
grammed interrupt to its appropriate servicing
routine. The table, built in reverse order as
shown in Figure 21, consists of single-word
entries, each of which contains either an entry
address to an I/O device servicing routine for
an I/0 interrupt, or a fixed address within the
Skeleton for a process interrupt. The table is
initially built by the Skeleton Builder and Core
Load Builder to the specifications of the System
Loader. Its size is determined by the number
of bits on all interrupt levels used.

Since we are concerned with a process inter-
rupt (LEVEL BIT 0 = PISW, see Figure 21)
level 0 will contain the entry point PRIE (that is,
the reentry point to MIC). (Note that if an I/O
interrupt were present instead, the I/O servic-
ing routine is entered. The case of an I/0 inter-
rupt occurrence is discussed later).

The PISW derived from the work level is now
sensed. If no bits are on (that is, no event has
taken place within the process control environ-
ment) the exit route (from MIC) is taken via (B).

If a bit is on, it is reset, and the address of
the ICL table associated with this particular
interrupt set up.

Now that the process interrupt is correctly
known, the option of processing must be inter-
rogated and executed -- that is, we must now
determine what type of servicing this particular
process interrupt requires. Various tests are
performed to determine:

e Whether the interrupt is to be recorded

o Whether the interrupt servicing routine is
in core with the skeleton

o Whether the interrupt is to be serviced by
an out-of-core interrupt core load, or

o Whether the interrupt servicing routine is
in core with the mainline

in conjunction with entries made in the ICL
Table (see System Design Considerations: Sys-
tem Director).

The first test ascertains whether this particu-
lar interrupt is to be recorded. If it is, a sub-
routine records the interrupt. If it is not to be
recorded, a check is made to see if the interrupt
servicing routine is included with the skeleton.
If it is, it is serviced by that subroutine. The
next test determines whether an interrupt core
load has been loaded to the disk to service this
interrupt. If it has not, the interrupt is auto-
matically recorded. If it has, all interrupt
levels serviced by out-of-core routines will be
masked. This also prevents a user from un-
masking any level that is asssociated with out-
of-core interrupts.

A test is now made to determine if the inter-
rupt servicing routine is in core with the main-
line program. If it is in core with the mainline,
the mainline itself is in core, and we are not in
an exchange of variable core; the Index Register
is then set to the transfer vector, and the entry
point of the interrupt servicing routine is located
in the Interrupt Status Table. Entry points to
interrupts in core with the mainline are situated
in a table known as the Interrupt Status Table
(IST). The format of the table consists of:

e One word indicating the length of the table
for each level

® One word for interrupts that are in core
with the mainline
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Figure 21. Action of MIC During an Interrupt
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e One word for interrupts which are to be
recorded on a particular level

followed by as many words as are necessary to
contain the start address of interrupts in core
with the mainline. The size of the table is
determined by the user when he defined his
system.

If the interrupt is an out-of-core interrupt,
I/0 must be completed in the mainline area
prior to either exchanging core, or, if we are
in an exchange, prior to reading in the inter-
rupt core load. Once the interrupt core load
is read into core, Index Register 3 is set to
the transfer vector and the interrupt entered
for execution. An exchange means that variable
core has been saved in the Interrupt Save Area
on disk. The area exchanged will be the size of
the largest interrupt program specified by the
user.

YES TEST

FOR RECORD

RECORD
IT

)

E

(SEE FIGURE 23)

MASK ALL !
OUT-OF-CORE
INTERRUPTS

== ———

Figure 22. Action of MIC during an Interrupt (Continued)

————————— -QIN-SKELETON

Note that due to cycle stealing I/0, some
area may be either modified or recorded at the
time the process interrupt occurred. This
means that out-of-core interrupts must always
be assigned to a priority level lower than all
1/0 devices.

Exit from MIC. All process interrupt programs
terminate by a return CALL INTEX statement to
MIC. INTEX is the address to which interrupt
servicing programs return upon completion of their
processing. An exit procedure is now made to
either of two routes dependent on the type of servic-
ing routine just executed. That is, whether the
servicing routine was an in-core-with-Skeleton rou-
tine or an out-of-core servicing routine.

If it is in core with the skeleton, and this is the
last servicing required (no further PISW bits on),
a common exit from MIC is taken via (B) and (C) —-
see Figures 21 and 23. Note that this is also the

INTERRUPT
CORE LOAD
TABLE (ICLT)

IN MAINLINE $= ==

RECORD

START
ADDRESS

SECTOR
ADDRESS

|
EXCHANGE SAVE
NECESSARY CORE
GO TO START
» ADDRESS OF
INTERRUPT
SERVICE
ROUTINE IN
MAINLINE
READ IN
QUT~OF-CORE
INTERRUPT
PROGRAM
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exit point for all I/0 interrupt routines. If addi- If the return originated from the servicing of

tional process interrupts are indicated (that is, an out-of-core interrupt program, all out-of-core
more bits for PISW sensing are on) the exit route interrupt levels are unmasked at this point to allow
proceeds to (A) -- see Figure 22 -- and the pro- other out-of-core interrupts to occur, so that it is
cedure continues in the normal fashion of a process not necessary to carry out an exchange of variable
interrupt recognition. A closed loop is thus main- core for the servicing of that particular interrupt.
tained until all process interrupts have been ser- Because the unmask instruction masked out all

viced, finally exiting through the common exit point levels for one more instruction, the branch out or

(B) for all categories of interrupts. exit can be executed prior to any interrupts occurring.

ALL INTERRUPTS

RESTORE
FORTRAN
1/0 BUFFERS

INTERR

MASK ALL

UPTS

RESTORE
REGISTERS

ALL
INTER

UNMASK

RUPTS

XIO ALL
PROGRAMMED
INTERRUPTS

RETURN TO
INTERRUPTED
PROGRAM

PROCESS INTERRUPT

UNMASK ALL
OUT-OF-CORE
INTERRUPTS

BITS ON

TEST IF
OTHER PISW
BITS ON

TEST FOR
PROGRAMMED MASK ALL
INTERRUPT OUT-OF-CORE

INTERRUPTS

\ READ IN
A MAINLINE

(SEE FIGURE 22)

(SEE FIGURE 21)

UNMASK ALL
OUT-OF-CORE
INTERRUPTS

©

TEST FOR
PROGRAMMED
INTERRUPT

(SEE FIGURE 21)

Figure 23, Exit from MIC After an Interrupt Has Been Serviced
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The unmask will effectively unmask back to the last
CALL MASK level.

A check is now made for the presence of addi-
tional process interrupts (that is, are other PISW
bits on?). If they are indicated, an exit path is taken
via (A) in the normal course of servicing process
interrupts (previously explained). If no further
process interrupts are present, all out-of-core
interrupt levels are masked and variable core re-
stored to its proper status which existed prior to
the interrupt. The system is then unmasked to the
user's status and an exit made via (C) and (B) --
see Figures 21 and 23.

The Case of I/0 Interrupts. When an I/O device
interrupt occurs, a similar procedure to that dis-
cussed in 1), 2), and 3) is adopted. In 3), it was
mentioned that in the case of an I/0 interrupt, the
I/0 servicing routine will be entered through its
entry point in the Interrupt Branch Table (IBT).
Some of the important aspects of the I/O device
routine are discussed elsewhere in this section.
The last instruction in an I/0 device interrupt sub-
routine is an indirect branch BSI I 90) back to MIC.
Before an exit is made through the common exit
point ((B) -- see Figures 21 and 23) for all cate-
gories of interrupts, a check is performed to deter-
mine the presence of a programmed interrupt within
the two groups of possible programmed interrupts --
group 1 (levels 0-13) and group 2 (levels 14-23).
Only the bit associated with a level is tested. If a
programmed interrupt is present, a branch is made
to (A) and processing proceeds as for process inter-
rupts. The I/O device interrupt, otherwise, under-
takes to exit from MIC through the common route (B).
At this point, the FORTRAN I/O buffers are re-
stored to their former state. All interrupt levels
are masked, Index Registers 1, 2, and 3, and the
accumulator, and words 54 and 55 are restored and
the system is unmasked to the user's level. Pro-
grammed interrupts are now turned on (they were
previously turned off) and a return is made to the
interrupted mainline program.

Masking, Servicing, and Recording of Interrupts

An interrupt may occur at any time, but it will not
be recognized by MIC until the level on which it is
assigned is unmasked and of a higher priority than
the current level of machine operation. It is the
1800 hardware, not MIC, that determines which
level the interrupt is on. Interrupt levels are user-
specified at system generation time. The user may

delay any interrupt from being recognized by
masking the level on which that interrupt has been
assigned. For example, it may be to his advantage
to delay the servicing of an interrupt to minimize
core exchanges such as when it is known that a pro-
gram is short and the interrupt can wait. In another
situation, he may desire to prevent interrupts en-
tirely from occurring, such as when a routine can-
not be reentrant and may be called from more than
one level. Once an interrupt has been recognized,
MIC will determine if it is to be (1) serviced im-
mediately or (2) recorded for servicing at a later
time. Servicing an interrupt may be delayed by

the user by simply setting a record option on that
interrupt. The options of recording or servicing
interrupts immediately may be changed from one
mainline core load to another. This designation

is made when the core load is initially built. MIC
also services interrupts (a maximum of 384) in an
optimized sequence within the user's specifications.

Masking of Interrupts

Interrupts can be prevented from occurring by
masking. This is accomplished by using four
real-time subroutines provided in TSX:

e CALL MASK
e CALL UNMK
e CALL SAVMK
e CALL RESMK

Call Mask. CALL MASK can be used to lock out
for some time period those designated interrupt
levels on which the user does not want interrupts
to occur during some time-dependent programs.
This routine gives him the facility to inhibit or
mask out groups of interrupt levels (0-13; 14-23)
or selectively chosen interrupt levels. The
status of levels not designated remain unchanged.
The format of this statement is:

CALL MASK (I, J)

Where I and J are integer expressions which
designate the level(s) to be masked. Bits 0-13
of I refer to levels 0-13. Bits 0-9 of J refer
to levels 14-23. Each one bit specifies a level
to be masked. Both parameters are always
required.
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EXAMPLE 1. In this and following examples, DATA
statements are used in conjunction with the CALL
MASK and CALL UNMK statements to set up desig-
nated levels. See IBM 1130/1800 Basic FORTRAN
IV Language, Form C26-3715.

The problem is to mask levels 5, 7, 11, 12, 21,
22 and 23.

DATA I, J/Z0518, Z01C0/
CALL MASK (I, J)

Call Unmask. CALL UNMK gives the user the abil-
ity to unlock an interrupt level -- that is, it allows
interrupts to be recognized on a level. Thus, he
may, if he wishes, selectively allow or unmask
interrupts, one level at a time. This is a required
routine (and procedure) for the initial core load --
the first core load called into the system by the
Cold Start program. The statement format is

CALL UNMK (I, J)
Where I and J are integer expressions which
designate the levels to be unmasked within

the two groups of levels as for CALL MASK.

EXAMPLE 2. The problem is to unmask levels 1,
29 33 59 12, and 21,

DATA I, J/Z7408, Z0100/
CALL UNMK (I, J)
From Examples 1 and 2 we see that
e Levels1l, 2, 3, 5, 12, and 21 are unmasked,
e Levels 7, 11, 22, and 23 are masked.
e Levels 4, 6, 8, 9, 10, 13-20 are unchanged.
The mask and unmask subroutines maintain a
current record of the interrupt level mask status.
This is necessary since the system sometimes
masks all levels and then restores the status of
these levels according to this record. The user
should always mask and unmask via these routines

to keep this record current.

EXAMPLE 3. The problem is to unmask all levels
(as at cold start time).

CALL UNMK (-1, -1)
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Call Save Mask. CALL SAVMK allows the user to
save the masked condition (that is, the contents of
the current mask words) that existed prior to his
calling for masking. The statement format is:

CALL SAVMK (I, J)

Where I and J are integer variables that will
receive the contents of the retained mask words.

For example, a mainline has just masked cer-
tain levels of interrupts. The user may not be
aware of this condition -- that is, he may not know
which bits are on (masked). So, he executes a
CALL SAVMK to save this condition prior to mask-
ing those levels of interrupt he plans to have masked.
When he is ultimately ready to unmask these levels,
he executes a CALL RESMK which restores or re-
turns the masked register to its original condition.
This acts, effectively, as a mask and unmask rou-
tine and is closely analogous to the saving and re-
storing of registers, etc., during the handling of
an interrupt.

Call Restore Mask. CALL RESMK is used to per-
form a mask and unmask operation to restore the
interrupt mask register to its previously saved
condition. The variables used as parameters are
normally those named in a previous CALL SAVMK
statement. Its format is:

CALL RESMK (I, J)

Where I and J are as for CALL MASK, except
that each one bit specifies a level to be masked;
each zero bit specifies a level to be unmasked.

EXAMPLE 4. The problem is to mask levels 5, 7,
9, 10, and 12; unmask all other levels.

DATA 1, J/Z0568, Z0/
CALL RESMK (I, J)

Restrictions. It is not possible to unmask an out-of-
core interrupt level:

1. while an out-of-core interrupt level specified
on the System Director equate cards ICLL1-2
is being serviced,

2. while a mainline core load is being loaded by
the Program Sequence Control (PSC) program
-- e.g., by CALL CHAIN, CALL BACK,
CALL SPECL.



Servicing of Interrupts

In the servicing of interrupts, the answers to three
vital questions must be known:

1. What caused the interrupt?
2. How fast is its response?
3. How often does it occur?

In practice, the service action taken depends to
a large extent on the frequency of occurrence of an
interrupt, and the time required to service it --
that is, its servicing time span. There are, in
general, four approaches in servicing interrupts:

o The servicing routine may reside in the skeleton.

e It may be located on disk as an interrupt core
load.

o The user has the option to include the servicing
routine as an integral part of a mainline core
load.

o The user has the option to record the interrupt.
That is, he may delay its servicing until it is
cleared by a CALL CLEAR or serviced by a
CALL QIFON.

CALL CLEAR -- Clear Recorded Interrupts

The CALL CLEAR S8tatement is used to ignore or
clear interrupts which have occurred but which
were recorded for later servicing. The statement

format is:

CALL CLEAR (M, L, I, L, I, ... ..)

Where M an integer constant which specifies
the number of parameters to follow.
If M = 0, all indicators specifying
the recorded status are changed to
indicate '"not recorded".

andI = as for CALL QIFON (see Program
Scheduling).

CALL CLEAR can be used in any process
program.

The above four general approaches provide a
variety of ways of handling a specific interrupt.
For example, an INSKEL interrupt routine may
set up a programmed interrupt for a level which

is serviced by an out-of-core interrupt core load.
This core load may, in turn, be made to queue a
mainline core load or a series of mainline core
loads to alter, say, the entire user control strategy.

Consider another example. A mainline core load
may begin a chain of operations by setting up a pro-
grammed interrupt for a specific level. This inter-
rupt may be recorded, or it may be immediately
serviced.

The user will always obtain rapid and immediate
servicing of interrupts if he (1) includes his inter-
rupts as part of the System Skeleton, (2) does not
record these interrupts. Interrupts that reside in
core with the skeleton never require an exchange,
while those that are included with a mainline core
load may require an exchange if a nonprocess pro-
gram is in memory on a time-sharing operation.

If, however, time-sharing is not being used (that is,
the mainline core load is in memory) or another
interrupt serviced by an interrupt core load is in
progress, interrupts in core with the mainline core
load will be serviced almost immediately.

In general, therefore, interrupt servicing rou-
tines should be short in execution time. The reason
for this is that the 1800 hardware locks out lower
priority level interrupts for whatever time that is
involved on that level. That portion of the inter-
rupt routine that is not required for execution at
this priority level should, therefore, be carried
out either at the mainline level or at a lower priority
level.

If mainline core loads are used to service inter-
rupts through the queueing technique, then the user
must ensure that his mainline core loads do not
remain in execution for a period of time that is
unacceptable to him prior to checking the Queue
Table. A mainline core load may be interrupted
by a CALL SPECL in such a core load (see Pro-
gram Scheduling).

Recording of Interrupts

In general, interrupts may be recorded, that is,
deferred service, under any of three different sets
of circumstances:

1. When the user has one or more mainline core
loads that must be executed within a certain
time span.

2. When the user is adjusting or optimizing the
process control and creating conditions which
would cause interrupts to occur, and he elects
to ignore them.
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3. The user may wish to record interrupts for
later servicing, but he prefers to do this
through a CALL QIFON procedure rather than
have them serviced on an interrupt level.

Interrupts to be recorded are entered on a
*RCORD control card (in any order) and assembled
at core load build time. The data set up in the card
is later placed into the Interrupt Core Load Table
from the Interrupt Status table (within each core
load) by PSC.

The action of MIC when an interrupt occurs and
the procedural flow through its servicing has al-
ready been described elsewhere in this section.

Rules Governing the Servicing of Interrupts

1. If an interrupt is serviced by a subroutine lo-
cated in the variable area, it must be at a
lower priority level (higher number) than the
I/O device. This applies to:

Interrupt and combination core loads
Interrupt subroutines included with the
mainline

The exception to this rule is that an interrupt must
be on a level of priority lower than the I/0O device

it intends to use except for the disk and the 1053
typewriter. DISKN and TYPEN are so written that
if either the disk or the typewriter detects that its
call was executed from a level with a higher priority,
it will remain in itself until the servicing operation
is completed. This is achieved by sensing the ap-
propriate Device Status Word (DSW).

2. If a servicing routine does not use any I/0
device, it may be on any level, but the routine
must be in the skeleton -- not in the variable
area of core.

3. Interrupts on levels that are serviced by out-
of-core interrupt core loads are serviced in
the masked mode so that they cannot be inter-
rupted by another interrupt serviced by an out-
of-core routine. Only one level of exchange
is maintained.

USE OF INTERVAL TIMERS
In most industrial control installations, some portion

of the control of the user's system will require re-
sponse in time -~ that is, the user may want to
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schedule his programs periodically or at a specific
time of day. For example, he may wish to print a
shift log on a synchronous basis, say at 8 a.m.,
4:30 p.m., and midnight each day; or he may take
periodic scans of his process instrumentation once
every five minutes; or there may be certain loops
to time out.

An interval timer is, by definition, a clocking
device which cycles a value contained in a full word
of main storage. It thus provides a computer sys-
tem with the ability to read elapsed time in second
or millisecond increments, and to inform the system
when a specified period of time has passed.

A simple cyclic timer serves, in effect, both as
a basic interval counter and clock. In order to
measure an elapsed time interval, a predetermined
total count is loaded into the counter word storage
by program control and a count down to zero is
initiated. As the particular counter reaches zero,
an internal interrupt signal is sent to the system.

Information about elapsed time and local time
is often required by control computer systems to
initiate hourly logs, to time the period between con-
trol actions on the process, for process data
updating, etc. The time of day is required for
printing logs, alarm records, and so on.

Clock interrupts can be used to start a scheduled
computer operation. For example, in the control of
a complex distillation plant process, periodic inter-
rupts have been used to initiate the recalculation of
the reflux ratio required to maintain a desired sepa-
ration in the tower. In this situation, control of a
dependent process quantity is possible through a
periodic reexamination of process conditions re-
quiring extensive computer time.

To accomplish the above, the Interval Timer
Control (ITC) program provides for FORTRAN
language control of three hardware interval timers,
A, B, and C which operate on various user-specified
time bases (see Table 1). Timers A and B are
available to the user, while Timer C is used ex-
clusively by TSX for time-sharing control purposes
and as a real-time clock. Furthermore, Timer C
is expanded into nine additional programmed interval
timers -- thus making available to the user a total
of 11 interval timers. As shown in Figure 24, each
interval timer is assigned a fixed location in core
storage.

ITC also performs three additional functions:

o Resets the Operations Monitor during time-sharing .
o Tests for no response from 1053 printers

o Performs end of time-sharing



Name Core Storage Location

Machine Timers

A 00004
B 00005
C 00006

Programmed Timers

1 00062
2 00065
3 00068
4 00071
5 00074
6 00077
7 00080
8 00083
9 00086
Time=Sharing Clock 00089

Figure 24. Timer Locations in Core Storage

The establishment of the two principal time bases,
the Primary (or Interrupt) Time Base and the Sec-
ondary (or Programmed) Time Base, and their re-
lationships to the system are discussed in the section,
System Design Considerations: System Director.

Each timer is assigned to a wired-in time base
by the user at system generation time, selectable
from the table of available time bases given in
Table 1.

The .125ms time base is available only on a 2usec
machine; the 128ms time base, only on a 4usec
machine. Each timer is assigned a permanent time
base by the user. Note that a different time base can
be selected for each timer, but all three timers (A,
B, and C) must be assigned to the same interrupt
level. In order to schedule programs based on hours,
minutes, or seconds, the wired-in time base for
interval timer C must be an even divisor of one
second (e.g., .5, 1, 2, 4, 8). The servicing of all
interrupts is controlled by ITC.

Hardware Timers A and B

CALL TIMER

In order to use timers A and B, the system pro-
vides a basic call statement:

CALL TIMER (NAME, I, INT)
where

NAME = Name of the user's subprogram
that is executed when the specified
time elapses. Note that NAME
must also appear in a FORTRAN
EXTERNAL statement (see IBM
1130/1800 Basic FORTRAN IV
Language, Form No. C26-3715).

I = An integer expression whose value
must be:

1 for Timer A (word 00004)
2 for Timer B (word 00005)

INT = A user-assigned positive integer
expression which specifies the
number of interval counts before
the user's subprogram is executed.

The subprogram specified in a CALL TIMER
statement must be in core storage when the interrupt
generated by the timer is recognized. The interrupt
occurs when the time specified has elapsed, but it
is only recognized

1. When the level of current operation is lower
than the timer interrupt level, and
2. If the timer level is unmasked.

Table 1. 'Table of Available Timer Time Bases

Core Storage Available Time Bases (In Milliseconds)
Cycle Times
2 usec 250,250 511 | 2 4|8 |16]32)64
4 usec 25 1.5 |1 2 | 4 8 | 16|32 | 64 |128
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At the end of the elapsed time, the timer resets
itself. Note that, when zero time has been reached,
the timer continues to operate -- that is, zero is not
a not-busy condition.

In the section System Design Considerations: Sys-
tem Director, it is pointed out that it is the user's re-
sponsibility to ensure that the mainline program
which requested the timer statement remain in
core until the end of the elapsed specified time --
that is, until the timer times out. He achieves this
either by

1. Including the subprogram in the Skeleton, or
by

2. Masking out all out-of-core interrupt levels,
and forbidding a core load exit until the timer
interrupts.

Unless previously loaded with the System Skele-
ton, the subprogram is automatically loaded with
the calling mainline core load.

In addition, periodic programs (that is, programs
initiated by interval timers) should not, as a rule,
be executed on the timer level: they should make
use of the programmed interrupt technique.

The following examples assume that the timers
specified are called from only one level. If possible,
it is preferable not to share timers among two dif--
ferent programs.

EXAMPLE 1. Assume hardware Timer A is wired
for the .125ms time base.

CALL TIMER (SCAN1, 1, 35)

When this statement is executed, ITC initializes
Timer A (by setting it to -125) and returns control.
to the next executable instruction following the CALL
TIMER statement. When the Primary (or Interrupt)
Time Base (= 35 X .125 = 4, 375ms) elapses, an
interrupt occurs and control passes to the subpro--
gram named SCAN1.

EXAMPLE 2. Assume hardware Timer A is wired
for the 1ms time base.
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If we assume that the Primary Time Base
( = 500ms) for statement 1 in the above coding
has not elapsed, the Timer A interrupt will occur
2ms after execution of statement 2 when subpro-
gram MILL2 will be executed. Subprogram MILS5SH
will never be executed because Timer A was reset
before the 500ms time elapsed. Although this con-
dition can be prevented (see Example 3), its logic
can prove useful under certain practical conditions.

EXAMPLE 3. Assume identical conditions as for
Example 2. This example illustrates the use of the
LD functional subroutine in testing for a timer-busy
condition.

The format of this function is:

LD()
where

I = A user-assigned integer expres-~
sion that specifies a core storage
address. The contents of this
address are moved to the accumu-
lator. This permits a test for
busy, etc., of known locations
outside of the program area.
Timer storage locations are
given in Figure 24.
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Statement 2 tests if Timer A is busy. If it is
busy (that is, negative in core location 00004), a
programmed loop is activated until Timer A is no
longer busy (that is, when subprogram MILS5SH
is executed) at which time statement 3 is processed.

EXAMPLE 4. Another example is given to illustrate
the use of the LD subroutine function for a test for
timer-busy condition.

This test is required if subprogram SUBRT7 is not
in the skeleton and time-sharing is utilized.

In this example, statement 12 tests if Timer A is

busy, and waits until subprogram SUBR7 has been
executed before passing to the CALL VIAQ statement.
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NOTE: The execution of a machine interval timer
busy-test using the LD (I) functional subroutine in
an IF statement may fail to indicate the correct
busy status if (1) the timer interrupt occurs immedi-
ately after the loading of the timer not-busy indi-
cation (a zero), and (2), in servicing the interrupt,
the timer is reinitialized on another level.

Thus, when a timer is shared by different levels,
a solution (see below) would be to follow the first
busy-test by a second busy-test in order to prevent
an interrupt out of the busy-test.
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Notice that-although the not-busy status remains
in the accumulator after the return from the inter-
rupt, it will be initialized for testing in the following
load instruction.

Real-Time Clock

ITC also provides a programmed real-time clock
which keeps time on a 24-hour basis and is updated
each time Timer C decrements to zero (that is, it
is incremented from 00. 000 to 23.999; then returns
to 00.000). The clock accuracy is a function of the
Primary (or Interrupt) Time Base discussed in the
section System Design Considerations: System

CALL SETCL -- Set-up Programmed Real-time
Clock

Note that the clock is set at cold start time (a user
option), but if it is required to be set at any other
time through a user program, the following statement
is provided.
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 CALL SETCL (I)
where

I = A user-assigned integer expression
specifying the time of day setting
desired in hours and thousandths
of hours (e.g., 8 a.m. = 08000;
10.45 a.m. = 10750)

CALL CLOCK -- Read Programmed Real-time Clock

If the user desires to read the clock, say, for time-
recording of his output to the printer, disk, etc., he
does so through a

CALL CLOCK (I)
where
I = A user-assigned integer variable
which indicates the core location
where the readout time is stored.
Note that the clock is also used by the Error Alert

Control (EAC) Program to time-stamp error mes-
sages.

Programmed Timers

The mechanism of programmed timers is covered in
the section System Design Considerations: System
Director.

CALL COUNT

Programmed interval timers are controlled by the
following statement.

CALL COUNT (IN, I, INB)

where

IN = A user-assigned integer constant
or integer variable that specifies
the number (in the range 0-31) of
the program to be executed or
recorded when the specified time
elapses. The number is assigned

at System Skeleton build time.
Program numbers are used in-
stead of names to provide the
record interrupt option,

I = An integer expression, identifying
the number (1-9) of the program-
med timer.

INB = A user-assigned expression that
specifies the number of interval
counts before the called program
is executed. This number is a
function of the Secondary (or Pro-
grammed) Time Base.

An additional programmed timer is used as the
time-sharing control timer for the allocation of time
slicing for non-process operations (see Use of Time
Sharing). —

EXAMPLE 5. The problem is to queue an analog

scan program every five minutes with a priority of 7

if JTEST (a programmed indicator in INSKEL COM-

MON) is set to zero; if it is non-zero, queue the

same program every minute with a priority of 1.
Assume the following:

1. Subroutine 19 is SUBROUTINE A which was in-
cluded in the Skeleton at Skeleton builcl time by
an include card

*INCLD A/2703

thus assigning it as count routine number 19.
2. Primary Time Base = 8ms (Timer C wired

time base) X 125 (user-assigned number) =

1 second

Secondary Time Base = 1 (Primary Time Base)

X 15 (user-assigned number) = 15 seconds

To solve the problem, a CALL COUNT statement
must be given in a mainline core load, thus:
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This designates that subroutine 19 is to be called
in 5 minutes; thereafter, the subroutine calls itself
within the specified time period. Its coding is shown
in Figure 25.

SCAN is the name of a mainline core load that
will be executed at mainline level as the result of
a CALL VIAQ when SCAN is the highest priority
entry in the queue.

In order to effect immediate execution of the scan
routine, the CALL QUEUE statement may be re-
placed by a CALL LEVEL statement to cause an
interrupt on a lower level. This allows the user
the flexibility of executing the SCAN routine either
as an interrupt core load, an INSKEL interrupt
servicing routine, or as a routine included with a
mainline. The advantage is that the timer interrupt
level is not tied up. It also gives the user the ability
to call other I/O devices within the SCAN routine.

If the time-sharing mode is not used, the CALL
ENDTS statement has no effect. If it is used, the
time-sharing clock is set to zero and a return made

to the calling program. See Use of Time-Sharing
for further action.

A further example is given elsewhere in this
section (see Program Scheduling).

Table 2 provides a ready comparison of the
salient features in the usage of interval timers
and programmed timers.

USE OF TIME-SHARING

In many industrial control installations, the user
will have a large amount of time that is not utilized
by the process being controlled. To allow him to
make effective use of this time, the time-sharing
feature of the TSX system gives him the ability to
compile, assemble, and simulate without taking

the system off-line. In this manner, low-priority
jobs are automatically interrupted whenever theneed
arises to execute a higher-priority task. In addition,
the inclusion of this feature gives the user the capa-
bility of modifying the logic of his control strategy.
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Figure 25. Subroutine A for Example 5 -- Queueing an Analog Scan Program
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Table 2, Comparison of Timers

INTERVAL USED WHEN SUBROUTINE CANNOT BE SUBROUTINE 1S EXIT WITH
TIMERS SHORTER TIME CALLED MUST BE A RECORDED EXECUTED ON A RETURN
1&2 BASE IS IN COl INTERRUFT INTERRUPT STATEMENT
SPECIFIED SKELETON OR LEVEL OF
INCLUDED WITH INTERVAL
MAINLINE) WHEN TIMERS
TIMER ELAPSES
PROGRAMMED USED WHEN SUBROUTINE MAY | IF SUBROUTINE MAY BE EXIT WITH
TIMERS LONGER TIME | OR MAY NOT BE |IS NOT IN CORE,} EXECUTED ON A RETURN
BASE IS IN CORE WHEN IT 1S HANDLED INTERRUPT OR CALL
NEEDED TIMER ELAPSES AS A RECORDED LEVEL OR VIAQ
(E.G., HOURS) INTERRUPT MAINLINE LEVEL

Methods of Initiating Time-Sharing

Time-sharing can be initiated in two ways: selec-
table method (CALL SHARE) and automatic method
(CALL VIAQ).

Selectable Method -- CALL SHARE

The user will know at some predetermined point in
his program that he wishes to discontinue being in
the process mode for a specific period of time. He
therefore enters the time-sharing mode by the exe-
cution of a CALL SHARE (that is, he gives up con-
trol to the Nonprocess Monitor via the CALL
SHARE). This statement may be part of the user's
process program intended for those special appli-
cations where time-sharing is desired without the
use of the queueing technique. Its format is as
follows:

CALL SHARE (I)

Where I is an integer expression which specifies the
number of time intervals allowed for the nonprocess
program operation. The basic time interval is
assigned by the user at system generation time (see
System Design Considerations - System Director;
also Use of Interval Timers).

The meaning of the I parameter is clarified by
the following example. '

EXAMPLE 1. Assume that the secondary time base
is 15 seconds (see Use of Interval Timers). Then

48

Time-Sharing Required
Interval Requested Statement

1 minute

5 minutes
30 seconds

1.75 minutes

CALL SHARE (4)
CALL SHARE (20)
CALL SHARE (2)
CALL SHARE (7)

The time-shared operation is terminated when-
ever the time interval specified by the user has
elapsed; it is usually not terminated before. Thus,
if 1 minute of time-sharing is indicated, it is usually
1 minute before control is returned to the next exe-
cutable instruction following the CALL SHARE
statement. The exchange time is not part of the 1
minute specification. This 1 minute is the length
of the time in the share mode. All interrupt time
is alloted against this 1 minute span.

Note that the Nonprocess Monitor will perform
a WAIT operation if there are no off-line jobs for
execution. Also, interrupts will be serviced as
they occur. If an interrupt routine recognizes a
need for the process program to resume operation,
it can terminate the time-sharing mode by executing
the following call:

CALL ENDTS

CALL ENDTS can be used only in an interrupt
routine where it sets the time-sharing clock to
indicate zero time. The first Timer C interrupt
that occurs after control is returned to the non-
process program causes the time-sharing operation



to be terminated; control then reverts to the process
mainline program. Note also that whenever time-
sharing is not in force the CALL ENDTS statement
is ineffective.

Automatic Method -- CALL VIAQ

The second method uses the queueing technique to
load a mainline or combination core load when the
Core Load Queue Table is empty, by executing a
CALL VIAQ (See Program Scheduling).

Note that a CALL VIAQ (when referenced) forces
a CALL SHARE statement for execution when the
queue is empty only if the user has indicated through
the use of the Console Interrupt button, with sense
switch 7 on, that batch work is to be carried out.

As a result, the process core load which is in
progress, or which has just been completed, is
saved on disk and control transferred to the Non-
process Monitor (or the nonprocess core load if one
had been interrupted and stored on disk). The period
of time allocated to time-sharing is specified by the
user in a System Director equate card, TISHA, at
system generation time. The computer remains in
the nonprocess mode for this specified period unless
a CALL ENDTS is executed by an interrupt routine.

At the completion of the specified time, another
CALL VIAQ is automatically forced by the system.
If, in the meantime, a core load has been queued,
it is then executed. If the queue remains unchanged
(that is, nothing has been added to it), another time=
sharing operation will be triggered.

If, at the end of a nonprocess job, the // END OF
ALL JOBS card indicates that there is no further
nonprocess work for execution, the VIAQ routine
will WAIT until either some addition has been made
to the queue or the Console Interrupt (C.I.) button
is again depressed for the commencement of a new
nonprocess job.

This method of entering time-sharing is, in
practice, preferred to CALL SHARE. CALL SHARE
may, however, be desirable in certain special
situations.

Two additional functions performed by the Time-
Sharing Control (TSC) program are CALL LINK
and CALL EXIT when these are referenced from
nonprocess programs.

EXAMPLE 2. (See Program Listing No. 1). In
order to illustrate some of the many TSX usages
without complex FORTRAN/Assembler language
coding, the following example was devised. Note

that in this example, the system and list printers
have been defined as the same device (1443). In
actual practice, the system printer would be a
1053; the list printer, a 1443 or another 1053.

Three analog inputs, A, B, and C, are to be
read at 15-second intervals. After C has been
read, linear interpolation is used between point A
and point B, and between point B and point C. The
values A, B, and C are temperatures: the tempera-
tures between A and B, and B and C are linear.

The point at which temperature A is taken is 25 feet
away from the point where temperature B is taken;
similarly for B and C.

A temperature histogram showing temperature
versus distance is to be printed on the list printer.

A nonprocess program is to be written which
simply lists numbers: this program is to be exe-
cuted in the time-sharing mode.

Timer 2 is used to produce an interrupt every 15
seconds so that one of the three analog inputs may
be read.

The skeleton contains a timer service subroutine
for Timer 2, called SCAN, which calls programmed
interrupt level 7 when 15 seconds have elapsed
(that is, SCAN executes a CALL LEVEL (7)). Timer
2 has a base (TBASE) of 1 millisecond.

The problem was solved under TSX using the in-
skeleton subroutine SCAN and the following five core
loads:

COLDC
WAITC
READC
CALCC
SHOWC

Figure 26 illustrates the general problem logic
flow.

COLDC (referred to at execution time as C/L #1).
This is a mainline core load which is directly
called by the cold start program. Its primary
function is to unmask all interrupt levels, set
timer to 15 seconds, and chain to core load
WAITC.

WAITC (referred to at execution time as C/L #2).
This core load merely calls VIAQ which results
in either a queued program being executed, or
the beginning of time-sharing.

READC (referred to at execution time as C/L #3).
This is the solitary interrupt core load which is
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executed on level 7. The SCAN routine in skele-
ton executes a programmed interrupt to level 7
each time the 15-second interval elapses. The
*STORECI control card for this core load contains
level and bit indicators equal to 2407 -- which
indicates programmed interrupt level 7.

When this core load is executed, an indicator
named ICNT, which is in INSKEL COMMON, is
interrogated. If this indicator is 1, the first
point A is read, timer 2 is reset (for another 15-
second interval), and the core load exits by way
of a CALL INTEX.

If the indicator is 2, the second point B is
read, the timer is reset, and the core load exits.

If the indicator is 3, the third point C is read,
the timer is reset, two core loads CALCC and

. SCAN (INSKEL S/R)
coLD
START,
CALL LEVEL (7)
coLpe (MAINLINE) |
CALL TIMER(SCAN, 2,15000) *
CALL CHAIN(WAITC)
Y I
WAITC (MAINLINE) READC | (INTERRUPT)

CALL VIAQ

TESTS QUEUE AND CALL TIMER(SCAN, 2, 15000)
TIME-SHARES IF CALL QUEUE(CALCC,1,0)
EMPTY CALL QUEUE(SHOWC, 2,0)
CALL ENDTS

CALL INTEX

|

f

_.]
I
I
CALCC | (MAINLINE) *

CALL VIAQ

|

I

I

SHOWC (MAINLINE) |
N

CALL VIAQ

Figure 26, General Problem Logic Flow -- Example 2

SHOWC are queued, time-sharing is terminated,
and the core load exits via a CALL INTEX.

CALCC (referred to at execution time at C/L #4).
CALCC takes the three analog readings, A, B,
and C, which have been stored in INSKEL COM-
MON, interpolates and stores the 51 results
back into INSKEL COMMON.

The core load is executed by a CALL VIAQ.

SHOWC (referred to at execution time as C/L #5).
SHOWC takes the 51 interpolated results from
INSKE L COMMON and outputs a scaled histo-
gram on the list printer. It then calls VIAQ.

NOTE: Each core load prints a message on entry
to and on exit from the core load itself. This
message identifies the core load as C/L 1, C/L 2,
C/L 3, C/L 4, or C/L 5.

This diagnostic message is accomplished by a
CALL-type FORTRAN subroutine which is included
in the skeleton. Its format is as follows:

CALL ENT (1, J)

where ENT is the name of this subroutine.
Either of two messages, depending on the
parameters I and J, will be printed:

A) ENTERED C/L NO. . ...
B) EXITED C/LNO. ....
ENTERED will be printed whenI = 1.
EXITED will be printed whenI = 2,
J is the core load identification number as
follows:

Jd =1 = COLDC
d = 2 = WAITC
d = 3 = READC
d = 4 = CALCC
J = 5 = SHOWC

The on-line results on the list printer (Program
Listing No. 1) also clearly indicate when time-
sharing has taken place.



PROGRAM LISTING NO. 1: EXAMPLE 2

FLET

PACK LABEL
00000

«FINDS 0018 0340
DUMMY 0092 0488
/PRSV 4000 O05AC

/EPDM TFFF
DUMIN 0054
«SKEL 0038

0388
0489
05E0

/EPSV 0780
NONPR O0OFQ
+EPRG 0022

0422 /INSV 2280
048A NP 0098
0618 /CLST 0780

DUP FUNCTION COMPLETED

// J08

// FOR COLDP
*I0CS(1443PRINTER)
*LIST ALL

EXTERNAL SCANyWAITC
COMMON/INSKEL/T1412413,INCNT
CALL UNMK{-=14=1)

CALL ENT(1l,1)

INCNT=1

CALL TIMER (SCAN,2,15000)
CALL ENT(2,1)

CALL CHAIN (WAITC)

END

VARIABLE ALLOCATIONS

11 =FFFF% 12  =FFFE* I3  =FFFD* INCNT=FFFCx
FEATURES SUPPORTED

ONE WORD INTEGERS

10CS

CALLED SUBPROGRAMS

SCAN WAITC UNMK ENT TIMER CHAIN PRNTN EBPRT

INTEGER GONSTANTS

1=0004 2=0005 15000=0006

CORE REQUIREMENTS FOR COLDP

COMMON 0 INSKEL COMMON 4 VARIABLES 4 PROGRAM 40

END OF COMPILATION

coLDP

DUP FUNCTION COMPLETED
// DuP

*STORECIM M coLDC COLDP COLDC
*CCEND

CLBy BUILD COLDC

CORE LOAD MAP

TYPE NAME ARGl ARG2
“CDW TABLE 4002 600C
*1BT TABLE 400E 001D
%F10 TABLE 4028 0010
XETV TABLE 4038 OOOF
*VTV TABLE 404A 001E
#1ST TABLE 4068 " 0036
#PNT TABLE 409E 000C
MAIN COLDP 4081

PNT COLDC 40AO0

PNT COLDC 40A4

CALL UNMK 40D6

CALL ENT 413D

CALL TIMER 415C

PNT WAITC 40A8

LIBF SUBIN 41B2 404A
LIBF COMGO 41EC 404D
LIBF MWRT 43C8 4050
LIBF MIDI 447E 4053
LIBF MCOMP 4455 4056
LIBF IOU  487A 4059
CALL IOFIX 4932

0428
0488
063A

/NPSV 4000
9DUMY O0OEC

«E

00F0

(Note: This is the state of FLET before compilations
begin )

0444 «MESS 0010 0478
048C /SPSV 4000 0578
0488
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CALL BT1BT 4962

CALL SAVE 48CE

LIBF ADRCK 49Cé6 4Q5C
LIBF FLOAT 4418 4Q5F
LIBF IFIX 4A34 4062
LIBF NORM 4AB0 4065
CORE 4ABE 3572

CLBy COLDC LD X0
D 45 CORELOADS NOT FOUND

WAITC
DUP FUNCTION COMPLETED

This Is a genulne TSX warning message. [t indicates
that core load WAITC was not bullt at this stage.

// JOB

// FOR WAITP

*LIST ALL

*10CS (1443PRINTER)

CALL ENT(1s2)
CALL ENT(2,2)
CALL VIAQ
END

FEATURES SUPPORTED
ONE WORD INTEGERS
10Cs

CALLED SUBPROGRAMS
ENT VIAQ PRNTN EBPRT

INTEGER CONSTANTS
1=0000 220001

CORE REQUIREMENTS FOR WAITP
COMMON 0 INSKEL COMMON 0 VARIABLES 0 PROGRAM 12

END OF COMPILATION

WAITP

DUP FUNCTION COMPLETED

// DUP

*STORECIM M WAITC WAITP COLDGC
#*CCEND

CLBy BUILD WAITC

CORE LUAD MAP
TYPE NAME ARGl ARG2

*CDW TABLE 4002 000C
*IBT TABLE 400E 001D
*FI0 TABLE 4028 0010
*ETV TABLE 403B O0OOF
*VTV TABLE 404A 0O0lE
*IST TABLE 4068 0036
*PNT TABLE 409E 0008
MAIN WAITP 40A8
PNT WAITC 40A0
PNT COLDC 40A4
CALL ENT 40CF
CALL VIAQ 4OEE
LIBF SUBIN 414E 404A
LIBF COMGO 4188 404D
LIBF MWRT 4364 4050
LIBF MIOI 441A 4053
LIBF MCOMP 43Fl1 4056
LIBF I0U 4816 4059
CALL IOFIX 48CE
CALL BT1BT 48FE
CALL SAVE 486A
LIBF ADRCK 4962 405C
LIBF FLOAT 49B4 405F
LIBF IFIX 49D0 4062
LIBF NORM 49FC 4065
CORE 4A2A 3506

CLBy WAITC LD XQ
DUP FUNCTION COMPLETED
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// J0oB
// FOR READP
#10CS(1443PRINTER)

*LIST

10

15
20

25
30
70
71
35
40
45

50
100

55

60

ALL

EXTERNAL SCAN,CALCC,SHOWC
COMMON/ INSKEL/IALy1A2yIA3,ICNT
CALL ENT(1,3)

L=ICNT

GO TO (5410915) L

K=76

GO TO 20

K=79

GO TO 20

Kel27

CALL AIP(OsJTEST)

G0 TO (25430)9JTEST

GO 70 20

CALL AIP{(01000,ITEMP,4K)
CALL AIP(O4JTEST)

GO TO (71472)4JTEST
GO TO 70

GO TO (35,40445),L
1A1=1TEMP

GO TO 50

1A2=ITEMP

GO 70 50

IA3=TEMP
WRITE(3,100) ICNT
FORMAT (' ICNT=',13)
ICNT=ICNT+1

CALL TIMER (SCAN,2,15000)
GO TO (55455955960)9ICNT
CALL ENT(243)

CALL INTEX

ICNT=1

CALL QUEUEI(CALCC+1,+0)
CALL QUEUE(SHQOWC,2,0)
CALL ENDTS

CALL ENT(2,3)

CALL INTEX

END

VARIABLE ALLOCATIONS

1Al

=FFFF% ]A2 =aFFFE* [A3 =FFFD* ICNT =FFFC* L =0000 K

STATEMENT ALLOCATIONS

100
35

20
55

25
60

15
50

20033
=0081

10
45

=0029
=0063

=002F
=0067.

=0023
=005D

=0000 5
=0057 40

FEATURES SUPPORTED
ONE WORD INTEGERS

10Cs

CALLED SUBPROGRAMS

SCAN

CALCC SHOWC ENT AIP TIMER INTEX QUEUE

INTEGER CONSTANTS

CORE

COMMON 0

1=0004 3=0005 76=0006 79=0007 127=0008

REQUIREMENTS FOR READP

INSKEL COMMON PROGRAM

4 VARIABLES 4

END OF COMPILATION

READP

DUP FUNCTION COMPLETED
// DUP

*STORECIM 1

READC READP 2407

*CCEND
CLBy BUILD READC
ROC ANINT 0023 LEV.O
CORE LOAD MAP
TYPE NAME ARGl ARG2

=0001

=003D
=0087

ENDTS

0=0009

156

JTEST=0002 ITEMP=0003

30 =003F 70 =0044 71 =004E 72 =Q050

COMGO MWRT MCOMP MICI PRNTN EBPRT
1000=000A 2=000B 15000=000C

READC is an interrupt core load responding to o
programmed Interrupt on level 07,
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*CDW TABLE 4002 000C
=BT TABLE 400E 001D
*FI0 TABLE 4028 0010
*ETV TABLE 403B O0OOF
*VTV TABLE 404A 0021
*PNT TABLE 406C 000C
MAIN READP 408C
PNT READC 406E
CALL ENT 4135
LIBF COMGD 4154 404A
CALL AIP 4146
LIBF MWRT 435C 404D
LIBF MIDOI 4412 4050
LIBF MCOMP 43E9 4053
CALL TIMER 480E
CALL QUEUE 4864
PNT CALCC 4072
PNT  SHOWC 4076
CALL ENDTS 4926
LIBF SUBIN 4930 4056
CALL QZ010 496A
CALL QZERQ 49BE
LIBF AIPTN 49CC 4059
LIBF IOU  4A4E 405C
CALL IOFIX 4BO&
CALL BT1BT 4B36
CALL SAVE 4AA2
LIBF ADRCK 4BSA 4OS5F
LIBF FLOAT 4BEC 4062
LIBF IFIX 4C08 4065
CALL GAGED 4C34
CALL UNGAG 4C45
CALL ANINT 4C54
LIBF NORM 4D90 4068
CORE 4DBE 1242

CLBy READC LD XxQ

D 45 CORELOADS NOT FOUND
CALCC SHOWC
DUP FUNCTION COMPLETED

// J0B

// FOR CALCP

=LIST ALL

*10CS (1443PRINTER)

DIMENSION N(51)
COMMON/ INSKEL/J19J29J39ICNTyN
CALL ENT(144)
WRITE (3+6) J1,J24J3

6 FORMAT (' READINGS'y3110)
Nil)=Jl
N{26)=J2
N{51)=J3
DO 4 1=2,25

4 NUI)=N(1)+((N{26)=N(1,,/25)%(]1-1)
DO 5 1=27,50

5 N({I)=N(51}+({N(26)=N(51))/25)%(51~1)
WRITE (3,7) (N{I)sI=1,451)

7 FORMAT (12110)
CALL ENT(244)
CALL VIAQ
END

VARIABLE ALLOCATIONS
J1  =FFFFx J2  =FFFE® J3  =FFFD* ICNT =FFFC* N  =FFFB* I =0002

STATEMENT ALLOCATIONS
6 =000E 7 =0017 4 =003E 5 =006A

FEATURES SUPPORTED
ONE WORD INTEGERS
10Cs

CALLED SUBPROGRAMS
ENT VIAQ ISTOX MWRT MCOMP MIOIX MIOI susscC PRNTN
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INTEGER CONSTANTS
1=0006 4=0007" 3=0008 2=0009 25=000A 27=0008 50=000C 51=0000

CORE REQUIREMENTS FOR CALCP
COMMON 0 INSKEL COMMON 56 VARIABLES 6 PROGRAM 170

END OF COMPILATION

CALCP

DUP FUNCTION COMPLETED .
// DUP

#STORECIM M CALCC CALCP COLDC

*CCEND

CLBy BUILD CALCC

CORE LOAD MAP
TYPE NAME ARGl ARG2

*COW TABLE 4002 000C
*IBT TABLE 400E 001D
*FI0 TABLE 402B 0010
*ETV TABLE 403B O0O0OF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN CALCP 40CA

PNT CALCC 40AA

PNT COLDC 40AE

CALL ENT 417D

LIBF MWRT 4326 404A
LIBF MIOI 43DC 404D
LIBF MCOMP 43B3 4050
LIBF ISTOX 4708 4053
LIBF SUBSC 47F8 4056
LIBF MIODIX 43E8 4059
CALL VIAQ 4824

LIBF SUBIN 4884 405C
LIBF COMGO 48BE 405F
LIBF I0OU 4910 4062
CALL IOFIX 49C8

CALL BT1BT 49F8

CALL SAVE 4964

LIBF ADRCK 4AS5C 4065
LIBF FLOAT 4AAE 4068
LIBF IFIX 4ACA 406B
LIBF NORM 4AF6 406E
CORE 4B24 34DC

CLBy CALCC LD X@Q
DUP FUNCTION COMPLETED

// JOB

// FOR SHOWP

*]10CS (1443PRINTER)
*LIST ALL

DIMENSION N(51)yM(51),L(120)
COMMON/INSKEL/114124139ICNTyN
CALL ENT(1,5)
DO 2 IK=1,120

2 LUIK)=0
D0 3 I=1,51
MI=N(1)/300

3 M(I)=IABS{MI)
DO & J=1,51
K=M(J)/2

4 WRITE (3,100) Jy(L{

100 FORMAT (I341X,5812)

CALL ENT (245)
CALL VIAQ
END

1)yI=14K)

VARIABLE ALLOCATIONS
Il =FFFF*% 12 =FFFE%* I3 =FFFD* ICNT =FFFC* N =FFFB* M =0032 L =00AA IK =004A8 I =00AC MI =00AD

J =00AE K =00AF
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STATEMENT ALLOCATIONS
100 =00BA 2 =00C7

FEATURES SUPPORTED
ONE WORD INTEGERS
10cs

CALLED SUBPROGRAMS
ENT 1ABS VIAQ

INTEGER CONSTANTS
1=0082 5=00B3

3 =00E9

ISTOX MWRT

120=0084

CDﬁE REQUIREMENTS FOR SHOWP
COMMON 0 INSKEL COMMON 56

END OF COMPILATION

SHOWP

DUP FUNCTION COMPLETED
// oup
*STORECIM M
*CCEND

CLBy BUILD SHOWC

CORE LOAD MAP
TYPE NAME ARGl ARG2

#*CDW TABLE 4002 000C
*]BT TABLE 400E 001D
#F10 TABLE 402B 0010
*ETV TABLE 4038 OO0OF
*VTV TABLE 404A 0027
*[ST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN SHOWP 416F

PNT  SHOWC 40AA

PNT COLDC 40AE

CALL ENT 41FF

LIBF SUBSC 421E 404A
LIBF ISTOX 424A 404D
CALL TABS 426A

LIBF MWRT 440E 4050
LIBF MIOI 44C4 4053
LIBF MIOIX 44D0 4056
LIBF MCOMP 449B 4059
CALL VIAQ 48CO

LIBF S5UBIN 4920 405C
LIBF COMGO 495A 405F
LIBF ADRCK 49AC 4062
LIBF I0U 49FE 4065
CALL IOFIX 4AB&

CALL BT1BT 4AE6

CALL SAVE 4A52

LIBF FLOAT 4B4A 4068
LIBF IFIX 4Bé66 4068
LIBF NORM 4892 406E
CORE 4BCO 3440

CLB,y SHOWC LD XOQ

DUP FUNCTION COMPLETED
*DUMPLET F

FLET

PACK LABEL
00000

«FI10S 001B 03A0 /EPDM 7FFF 03B8
DUMMY 0092 0488 DUMIN 005A 0489
READC 0ODBC 049t CALCC 0B22 04A9
«SKEL 0038 05E0 +EPRG 0022 0618

DUP FUNCTION COMPLETED

56

4

SHOWC SHOWP COLDC

=0109

MCOMP MIOIX

0=0085

VARIABLES

/EPSV 0780
NONPR 0OFO
SHOWC OBBE
/CLST 0780

178

5120086

0422
048A
0482
063A

MIOI SUBSC

300=0087

PROGRAM 128

/INSV 2280
NP 0098
9DUMY 00BC
«E 00FO0

PRNTN EBPRT

0428
0488
04BC
0488

2=0088 3=0089

/NPSV 4000 0444
COLDC 0A8C 048C
/SPSV 4000 0578

+«MESS 0010
WAITC OA28
/PRSV 4000

0478
0495
0SAC



ENTERED C/L
EXITED C/L
ENTERED C/L
EXITED C/L

/7 J08B
// XEQ NPJOB
*CCEND

Cilby BUILD NPJOB

ENTERED C/L
ICNT= 1

EXITED C/L

ENTERED C/L
ICNT= 2

EXITED C/L

CLBy NPJOB LD XQ

= b e s s e e
VO NCUPUNOOD N0 U LW -

20
ENTERED C/L
ICNT= 3
EXITED C/L
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ENTERED C/L
READINGS
9000
10440
11880
13320
14760
EXITED C/L
ENTERED C/L
ENTERED C/L
ICNTs 1
EXITED C/L

(S0 S U
[« FoleReRal
CO000
o o000
[eNoleRolal
OC OO0
[oNeRoloNa)
QO OO0

NN

W

3
3

4

9000
9120
10560
12000
13440
14880

COOOO0OW WU
[eRoleNeNeo]

EFTA
EFTA
EFTA
EFTA

EFTA

EFTA
EFTA

EFTA

[e¥eRoloNe)
cCQCoo
CoQoC

15000

9360
10800
12240
13680

9480
10920
12360
13800

9600
11040
12480
13920

Time-Sharing begins here.

Interrupt core load on level 07 takes precedence over
nonprocess job. Progrommed interrupt level 07
initiated from in-skeleton timer routine colled SCAN.

During time=sharing, o nonprocess job is executed and
prints out a pattern of inoni ing order
of mognitude, os shown. This list of numbers is
interrupted by core loads (mainline process or inter-
rupt process) at a higher level.

Third entry of core load READC calls end time-sharing
Time=sharing terminates the next time timer C interrupts.

Core lood 4 Is executed from the QUEUE,

9720 9840 9960 10080
11160 11280 11400 11520
12600 12720 12840 12960
14040 14160 14280 14400

Core load 5 is executed from the QUEUE,

Core load 5 (SHOWC) prints histogram.

10200
11640
13080
14520

10320
11760
13200
14640
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pt core lood

interry|

printing of the histogrom,
is brought Into core and executed.
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The cycle of events repeats itself.

EFTA
EFTA

3
3

3
54
55
56
58
59
60
61
62
63
64
65
67
68
69
70
71
72
73
74
75
76
77
78

40
EXITED C/L

ENTERED C/L
ICNT=
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USE OF THE OPERATIONS MONITOR

The Operations Monitor is an optional watch-dog type
timer device which warns the user when the proces-
sor-controller is not executing a predicted sequence
of instructions. This may be caused by power fail-
ure, computer hang-up, or computer looping.

The watch-dog timer works on the principle that
a contact closes upon completion of a preset time-
out period. When this occurs, a separately-powered
alarm or indicator (supplied by the user) is brought
into play. The time-out period is settable within the
range 5-30 seconds. Note that the time interval
selected must be greater than the secondary time
base specified by the Interval Timer Control (ITC)
program.

The user may also exercise the option of manual
or automatic reset of the Operations Monitor. This
option is specified in the OPMON equate card at
system generation time (see System Design Consid-
erations: System Director). Automatic resetting
is undertaken by ITC during time-sharing operations.
If the Operations Monitor is used, it is the user's
responsibility to ensure that a reset (XIO) instruc-
tion is executed frequently enough in his program so
as to prevent timeout during normal operation. If
the reset command is not given during the selected
interval, timeout occurs and the alarm circuit is
closed.

The Call Operations Monitor subroutine is used
to reset the monitor. Its format is:

CALL OPMON

Consider the following example. A particular
program (say, a logging program) has been designed
for execution every 15 seconds, and therefore ideally
suited for Operations Monitor reset. If the program
is not, for some reason, executed within this allowed
time span, the Operations Monitor is set, causing an
alarm in the warning device the user has attached to
the Operations Monitor.

ERROR ALERT CONTROL

Error procedures in the IBM 1800 Time-Sharing
Executive System are provided by a program pack-
age called the Error Alert Control (EAC) Program
which is designed to analyze errors that are:

1. Basic to the hardware, and
2. which may result from incorrect use of soft-
ware programs.

Since errors affect all real-time systems, from
the largest to the smallest, the policy adopted
towards all errors is to keep the system on-line if
at all possible, and to minimize operator decisions.

Features of EAC

Error Conditions Serviced

The Error Alert Control program provides error
recovery for the following conditions:

o An input/output error which persists despite
repeated corrective action by an I/O subroutine.

® Occurrence of an internal machine error (e.g.,
invalid operation code, parity, storage protect
violation)

e Other control subroutine error conditions (e.g. ,
QUEUE, FORTRAN I/0)

Error Analysis Provisions

Provision is also made for the following features.

Dump of Core Storage to Disk. An optional dump of
all core storage to disk is provided if this option is
elected through the System Director equate card
DUMP1 at system generation time. If, for example,
DUMP1 is equated to 1, the DUMP routine is included
(at System Director assembly time) with the EAC
program package. This feature is only applicable to
subroutine type errors.

The DUMP routine writes core into the EDP
DUMP AREA on disk. Since permanent core may be
storage protected, and the disk routine must insert
the sector address at the start of each sector to be
written, the dump routine moves blocks of six sec-
tors of permanent core to variable core and copies
it to disk. After all of permanent core has been
copied, that portion of variable core used is re-
stored.

The copied data on disk can now be dumped to an
output device by the DUP *DUMP function.

User Error Subroutine. In a process program, EAC
branches to a user-written error subroutine if this
is included with the mainline core load. This action
is bypassed for internal machine errors, if an

error subroutine is not included and if a nonprocess
program is in core.
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A user-written error subroutine can be optionally
included with each process core load. The purpose
of this subroutine is to allow the user to have con-
trol before EAC overlays the variable area with the
disk portion of EAC. For example, there may be
special data or other information that the user wants
to save. Output, such as special core dumps, mes-
sages, or contact operate functions, can also be
executed. The error subroutine cannot be written
in FORTRAN language.

Before entering the user's error subroutine,
error identification data is placed in words 00115~
00119. These words will contain the following:

Tnput/Output Errors

00115 Error type code

00116 Address of illegal call or
address of the device table

00117 Address of level work area

00118 Address of originating call

Queue Overflow

00115 Error type code

00116 Word count of core load
named in CALL QUEUE

00117 Sector address of core load
named in CALL QUEUE

00118 Priority of core load named
in CALL QUEUE

00119 Error parameter of core

load named in CALL QUEUE

The meaning of on-line EAC error type codes is
given in Table 3. Table 4 contains a description of
all on-line errors serviced by EAC, the format of
each EAC message printout, and corrective action
specifications.

A standard recovery procedure is executed by
EAC according to the type of error (see Table 4).
User options are specified in the same table (see
USER OPTION column). However, under certain
conditions, EAC overrides the user option. The
EAC option is always executed if an error subrou-
tine is not used or the user does not specify an op-
tion. Options can he specified by the user before
returning to EAC by loading the A-register with -10
for 8 (RESTART) or -1 for I & R (CONTINUE).

The last logical statement in the error subroutine
must be a BSC I entry to the error subroutine.

The core load named for the restart option can be
an error analysis core load, or it can be the first of
a new series of core loads. If queueing techniques
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are used, the restart core load can be simply a
CALL VIAQ statement (CALL QUEUE can be exe-
cuted in the restart core load or the error subrou-
tine).

The statements listed below cannot be used in an
error subroutine:

CALL BACK CALL QIFON
CALL CHAIN CALL RESMK
CALL DPART CALL SAVMK
CALL ENDTS CALL SHARE
CALL EXIT CALL SPECL-
CALL INTEX CALL UNMK
CALL LEVEL CALL VIAQ
CALL LINK

CALL MASK

Update Error Counters Mainiained on Disk. For
each I/0 unit on the system, a hardware counter is
maintained on the disk for printout to the Customer
Engineer for maintenance purposes.

Back-up Capability for D. P, I/O Units. The option
of including backup units for the 1053 and the 1816,
as well as the logical removal of the 1443 from
service, can be specified at system generation time.
If backup is not provided, the 1053 printer will be
automatically removed from service when multiple
failures occur without taking the system oiff-line.
Backup for the EAC printer is achieved by defin-
ing multiple EAC printers at TASK assembly time
(if the EAC printer is defined as a 1053). When an
output error occurs, or if the unit is not ready
(that is, interrupt response is not received), EAC
will logically disconnect the unit in error and substi-
tute the backup unit, When backup is initiated be-
cause of a hardware malfunction, the message in
progress on the failing unit is not continued on the
backup device. When the error condition is cor-
rected, the unit can be restored to its original
status by using the C. E. Interrupt routine. See
C. E. Interrupt Routine in the publication [BM 1800
Time-Sharing Executive System, Operating Proce-
dures, Form C26-3754.

EAC Program Breakdown

EAC can be considered in terms of four component
parts; each component functions as a separate sub-
program, the four parts remaining interdependent
insofar as the status information of the error (de-
tected) is shared by all routines concerned. In
addition, EAC sets up a level work area for the use
of reentrant coded programs when it is processing



Table 3. On-Line EAC Error Type Codes

EAC MESSAGE FORMAT

USER ERROR TYPE CODES FOR FORTRAN (CONTINUED)

*INN CL.OCK AC-M PNAME LOCN

* - INDICATES PROCESS CORELOAD IN CORE
BLANK - INDICATES NON-PROCESS CORELOAD IN CORE

GENERAL 1/0
PROCESS I/0
FORTRAN

QUEUE

MASK
MISCELLANEOQUS

XzomMm©~
[ T I

NN - TWO DIGIT NUMBER INDICATING TYPE OF ERROR
CL.OCK - TIME IN THOUSANDTHS OF AN HOUR

AC - AREA CODE FOR THE ASSOCIATED I/O DEVICE
M - MODIFIER IF MORE THAN ONE FOR THAT AREA CODE

PNAME - NAME OF THE PROGRAM IN CORE AT THE TIME OF
THE MESSAGE (NOT NECESSARILY THE ONE WHICH
ORIGINATED THE CALL LEADING TO THE ERROR
CONDITION)

LOCN - LOCATION OF THE CALL

USER ERROR TYPE CODES FOR DP /O

101 PARITY

102 STORAGE PROTECT

103 ILLEGAL CALL

104 NOT READY

105 //BLANK CARD

106 FEED CHECK

107 READ-PUNCH CHECK

108 DATA OVERRUN

109 WRITE SELECT

no NO PRINT RESPONSE

nt DATA ERROR

n2 INVALID MESSAGE ON DISK
13 FILE PROTECT ERROR

114 TAPE ERROR

15 EXCESSIVE TAPE ERRORS

16 END OF TAPE

nz INVALID CALL TO ERROR ROUTINE
18 NO RESPONSE FROM DISK
ne INVALID DISK ADDRESS

USER ERROR TYPE CODES FOR PROCESS 1/0

PO1 PARITY DATA OR COMMAND REJECT
P02 STORAGE PROTECT VIOLATION

P03 ILLEGAL CALL

P04 PARITY CONTROL

P05 OVERLAP CONFLICT

P17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR QUEUING

Q01 ERROR OPTION 1S ZERO - CALL IGNORED
Q02 ERROR OPTION NOT ZERO -

NO LOWER PRIORITY IN QUEUE
Q03 QUEUE ENTRY REPLACED BY NEW CALL QUEUE
Qo4 QUEUE CALL NOT HONORED -

RESTART INITIATED
Q17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR FORTRAN

F90 ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
F91 ILLEGAL INT USED IN A COMPUTED GO TO

F92
F93

F94
F95
F96
F97
F98
F99

F17

F87
F88
F89

MO1
M02
M17

X01
X02
X03
X04
X17

DISK I/O
FILE NOT DEFINED
RECORD TOO LARGE. ZERO OR NEGATIVE

NON-DISK 1/0
INPUT RECORD IS IN ERROR
RANGE OF NUMERICAL VALUES IS IN ERROR

OUTPUT FIELD TOO SMALL TO CONTAIN THE NUMBERS

ILLEGAL UNIT REFERENCE

REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
WORKING STORAGE AREA INSUFFICIENT FOR
DEFINED FILES

INVALID ERROR CODE

UNEDITED I/O

ILLEGAL UNIT REFERENCE

READ LIST EXCEEDS LENGTH OF WRITE LIST
RECORD DOES NOT EXIST FOR READ LIST
ELEMENT

USER ERROR TYPE CODES FOR MASK ROUTINES

ILLEGAL CALL RESMK
ILLEGAL CALL UNMK
INVALID ERROR CODE

USER ERROR TYPE CODES FOR PROGRAM
SEQUENCE CONTROL

ILLEGAL CALL BACK

INTERRUPT LEVEL ERROR

CORELOAD NOT LOADED ON DISK
RESTART CORELOAD NOT LOADED ON DISK
INVALID ERROR CODE
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Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND, OPTION AND COMMENTS
DEC HEX | EAC EXIT

1053/1816 PRINTER/KEYBOARD

00 00 103 S N ILLEGAL CALL
103 CL. OCK PNAME LOCN 1053
USER MUST CORRECT CALL IN PROGRAM
01 01 104 R,S S* 1053 NOT READY
104 CL.OCK AC-M PNAME 1053 NOT READY
CHECK FORMS

03 03 104 R,S R,S 1816 KEYBOARD NOT READY
104 CL.OCK AC-M PNAME 1816 NOT READY
MAKE READY
04 04 102 L N STORAGE PROTECT VIOLATION FROM 1816

102 CL.OCK AC-M PNAME 0000
USER MUST CHECK PROGRAM
05 05 101 S R KEYBOARD PARITY ERROR
101 CL,OCK AC-M PNAME 1816 PARITY
LAST CHARACTER TYPED MAY BE INVALID
06 06 10 | N* PRINTER PARITY ERROR :
101 CL.OCK AC-M PNAME 1053 PARITY
AN ATTEMPT TO PRINT HAS BEEN MADE 2 TIMES
07 07 110 R N* NO PRINT RESPONSE
101 CL.OCK AC-M PNAME NO PRINT RESP
NO OP COMPLETE HAS BEEN RECEIVED
08 08 na2 R N INVALID MESSAGE ON DISK
112 CL,OCK AC-M PNAME
THIS MESSAGE IS NOW LOST

1442 CARD READ-PUNCH

10 0A 103 S N ILLEGAL CALL TO 1442
103 CL.OCK PNAME LOCN 1442
USER MUST CORRECT CALL IN PROGRAM
11 08 LAST CARD
12 0C 101 R S PARITY ERROR
101 CL.OCK AC PNAME 0000 1442 PARITY
NON-PRCCESS RUN OUT, RELOAD UN-READ CARDS
13 oD 102 L N STORAGE PROTECT VIOLATION
102 CL,OCK AC PNAME 0000
USER MUST CHECK PROGRAM
14 OE 106 R S FEED CHECK
106 CL,OCK AC PNAME 1442 NOT READY
NON-PRCCESS RUN OUT, RELOAD UN-READ CARDS
15 OF 108 DATA OVERRUN
108 CL.OCK AC PNAME 0000 1442 NOT READY
NON-PRCCESS RUN OUT, RELOAD UN-READ CARDS
16 10 107 R S READ-PUNCH CHECK
107 CL. OCK AC PNAME 1442 NOT READY
NON-PRCCESS RUN OUT, RELOAD UN-READ CARDS
V7 12 105 S N //BLANK CARD
105 CL.OCK AC PNAME 0000
CONTROL CARD ENCOUNTERED - CHECK DECK
19 13 104 R S 1442 NOT READY
104 CL.OCK AC PNAME 1442 NOT READY
PRESS START ON UNIT

1054/1055 PAPER TAPE READER/PUNCH

20 14 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1054
USER MUST CORRECT CALL IN PROGRAM
21 15 101 S | PUNCH PARITY ERROR
101 CL,OCK AC PNAME 0000 1055 PARITY
LAST CHARACTER OUT MAY BE INVALID
22 16 104 R,S S READER NOT READY
104 CL,OCK AC PNAME 1054 NOT READY
MAKE READY
23 17 104 R,S S PUNCH NOT READY
104 CL.OCK AC PNAME 1055 NOT READY
MAKE READY

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S = RESTART

L - RELOAD

N = NO OPTION - MUST TAKE EAC EXIT

* = INTERNAL BACKUP ATTEMPTED
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Table 4, On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND. OPTION
DEC HEX]| EAC EXIT

ERROR MESSAGE
AND COMMENTS

1054/1055 PAPER TAPE READER/PUNCH (Cont'd)

24 18 101 S |
25 19 102 L N
2310 DISK
30 1E 103 S N
31 1F 104 R S
32 20 [[o2:} S |
33 21 109 S |
34 22 n S |
35 23 102 L N
36 24 101 S N
37 25 ne S N
38 26 n3 S N
39 27 ns S N

1627 PLOTTER

4 29 101 s ]

42 2A 104 R,S s
1443 PRINTER

50 32 103 s N

53 35 10 R,S R,S

54 36 101 s, I

55 37 104 R,S R,S

READER PARITY ERROR

fO1CL.OCK AC PNAME 0000 1054 PARITY
LAST CHARACTER READ IN MAY BE IN ERROR
READER STORAGE PROTECT

102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)

ILLEGAL CALL .
103 CL.OCK PNAME LOCN 2310
USER MUST CORRECT CALLING SEQUENCE
DISK NOT READY
104 CL,OCK AC PNAME 2310 NOT READY
MAKE READY
DATA OVERRUN
108 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
INVALID DATA FROM DISK AFTER 10 TRIES
WRITE SELECT
109 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
STOP DISK AND START AGAIN TO RESET
DATA ERROR
111 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
EXCESSIVE WD CT FOR SECTOR OR MODULO 4 ERROR
STORAGE PROTECT ERROR
102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)
PARITY ERROR
101 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
ERROR PERSISTS AFTER 10 TRIES
INVALID DISK ADDRESS
119 CL,OCK AC PNAME 00
INVALID ADDRESS OR UNEXPECTED HOME BIT ON
FILE PROTECT ERROR
113 CL,OCK AC PNAME 0000
USER TRIED WRITING N A FILE PROTECTED SECTOR
NO RESPONSE
118 CL,OCK AC PNAME 0000 2310 HARDWARE ERROR
DID NOT RECEIVE OR LOST RESPONSE FROM DISK

PARITY ERROR

101 CL,OCK AC PNAME 0000 1627 PARITY
NO ATTEMPT IS MADE TO REPLOT THE POINT
NOT READY

104 CL,OCK AC PNAME 1627 NOT READY
MAKE READY

ILLEGAL CALL

103 CL,OCK PNAME LOCN 1443
USER MUST CORRECT CALL IN PROGRAM
NO PRINT RESPONSE

110 CL.OCK AC PNAME 1443 NOT READY
PUSH START ON THE PRINTER
PARITY ERROR

101 CL.OCK AC PNAME 0000 1443 PARITY
NO ATTEMPT IS MADE TO REPRINT THE LINE
NOT READY

104 CL.OCK AC PNAME 1443 NOT READY
PUSH RESET AFTER CORRECTING PRINTER ERROR THEN

PUSH START

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:
| - CONTINUE AT THE POINT OF INTERRUPT

R = RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

S = RESTART

L - RELOAD

N =~ NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)
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Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND, OPTION
DEC HEX EAC EXIT

ERROR MESSAGE
AND COMMENTS

ANALOG INPUT BASIC

60 3C PO3 S N
61 3D P02 L N
62 3E P04 S N
63 3F POl S N
64 40 PO5 S N
65 41 S N
66-68

P17 S N

DIGITAL INPUT BASIC

70 46 P03 S N
71 47 PO1 S N
72 48 P02 L N
73 49 S N
74-79

P17 S N

DIGITAL AND ANALOG OQUTPUT BASIC

80 50 P03 S N
81 51 PO1 S N
82 52 S N
83-89

P17 S N

2402 MAG TAPE

90 5A 103 S N

N
92 5C 102 L N

ILLEGAL CALL
P03 CL,OCK PNAME LOCN AIN
ILLEGAL CALL SEQUENCE IN PROGRAM
STORAGE PROTECT VIOLATION
P02 CL.OCK AC PNAME 0000 AIN
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED
PARITY CONTROL ERROR
P04 CL.OCK AC PNAME 0000 AIN
PARITY ERROR ON DATA OR CONTROL CYCLE
PARITY DATA ERROR
P01 CL.OCK AC PNAME 0000 AIN
PARITY ERROR DURING TRANSMISSION
OVERLAP CONFLICT
P05 CL.OCK AC PNAME 0000 AIN
RELAY POINTS IN RANDOM READ FUNCTION TOO CLOSE
TOGETHER
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE
P17 CL.OCK PNAME AIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DIN
ILLEGAL CALL SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT
P01 CL.OCK ACPNAME 0000 DIN
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
STORAGE PROTECT ERROR
P02 CL,OCK AC PNAME 0000 DIN
WRITE OPERATION TRIED IN MEMORY PROTECTED LOCN
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE
P17 CL,OCK PNAME DIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DAO
ILLEGAL CALLING SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT
P01 CL.OCK AC PNAME 0000 DAO
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE
P17 CL.OCK PNAME DAO
INVALID ERROR CODE FROM EAC

ILLEGAI. CALL
103 CL.OCK PNAME LOCN 2402
ILLEGAL CALL SEQUENCE IN PROGRAM
NOT USED
STORAGE PROTECT VIOLATION
102 CL,OCK AC PNAME 0000 2402
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:
I - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

S = RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT
* = INTERNAL BACKUP ATTEMPTED

{Continued)



Table 4, On-Line EAC Errors and Recovery Procedures

ERROR MESSAGE
AND COMMENTS

ERROR TYPE | EAC USER
CODE Ccope | sTAND. | opTION
DEC HEX | EAC EXIT
2402 MAG TAPE (Cont'd)
93 5D 113 3 R
94 sE 15 s R
95  5F 14 R S
96-97
98 62 104 R,S s
99 63 né R s
n7
FORTRAN
100 64 F90 s N
101 65 F91 $ N
102 66 F92 S
103 67 F93 S N
104 68 Fo4 s
105 69 F95 3 N
106 6A F96 R
107 6B F97 S N
108 6C F98 s N
109 6D F99 s N
F17
150 96 F87 S N

COMMAND REJECT

113 CL.OCK AC PNAME 0000 2402-COMMAND REJ
ILL MT OPERATION REQUESTED. USER CHECK PROGRAM
EXCESSIVE TAPE ERRORS

115 CL.OCK AC PNAME 0000 2402-EXCESS ERR
TOO MANY FAILS ON THIS REEL. MOUNT NEW REEL
TAPE ERROR

114 CL,OCK AC PNAME 0000 2402-TAPE ERR DSW
DSW- DEVICE STATUS WORD
PARITY ERROR OR OTHER FAIL CONDITION
AFTER 100 READ ATTEMPTS OR 3 WRITE ATTEMPTS
NOT USED
NOT READY

104 CL,OCK AC-M PNAME 2402-NOT READY
MAKE READY
END OF TAPE

116 CL,OCK AC PNAME 0000  2402-END OF TAPE
OPERATION ATTEMPTED PAST END OF TAPE
INVALID ERROR CODE

117 CL.OCK PNAME MAG
INVALID ERROR CODE FROM EAC

ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
SUBSCRIPTED VALUE OUTSIDE LIMITS OF ARRAY
F90 CL.OCK PNAME LOCN ;
ILLEGAL INTEGER VALUE IN COMPUTED GO T

F91 CL.OCK PNAME LOCN

DISK 1/0

FILE NOT DEFINED
F92 CL.OCK PNAME LOCN

FILE REQUESTED NOT DEFINED IN DEFINE FILE
STATEMENT

REQUESTED NO, OF RECORDS TOO LARGE, ZERO, OR
NEGATIVE

F93 CL.OCK PNAME LOCN

NON-DISK 1/0

INPUT RECORD [N ERROR
F94 CL.OCK PNAME LOCN
ILLEGAL CHARACTER IN NUMERIC FIELD
OR ILLEGAL CONVERSION
RANGE OF NUMERICAL VALUES IS IN ERROR
F95 CL.OCK PNAME LOCN
FIXED Og FLOATING PT NUMBER OUTSIDE DEFINED
LIMIT
REQUESTED OUTPUT FIELD TOO SMALL
F96 CL.OCK PNAME LOCN
ILLEGAL UNIT REFERENCE
F97 CL,OCK PNAME LOCN
UNIT NOT DEFINED IN IOU TABLE OR IOCS CONTROL
CARD
REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
F98 CL.OCK PNAME LOCN
RECORD SIZE TOO LARGE
WORKING STORAGE AREA INSUFFICIENT
FOR DEFINE FILES
F99 CL.OCK PNAME LOCN
INVALID ERROR CODE
F17 CL.OCK PNAME FOR
INVALID ERROR CODE FROM EAC

UNFORMATED |/O

ILLEGAL UNIT REFERENCE

F87 CL.OCK PNAME LOCN
UNIT NOT DEFINED IN 10U TABLE, ON'1OCS
CARD, OR FOR UNFORMATED I/O

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:
| - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

S = RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)
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Table 4. On-Line EAC Errors and Recovery Procedures

ERROR
CODE
DEC HEX

TYPE
CODE
EAC

EAC
STAND.
EXIT

USER
OPTION

ERROR MESSAGE
AND COMMENTS

151

152

MISCELLANEQUS

110
m

112

120

120

120

120

130

131

140

FORTRAN (Cont'd)

97

6E

6F

70

78

78

78

78

82

83

8C

F88

F89

X01

X03

X04

xX17

Qo1

Qo2

Q03

Qo4

a7

MO1

MO02

M17

X02

x17

READ LIST EXCEEDS LENGTH OF WRITE LIST
F88 CL, OCK PNAME LOCN
LIST IN READ STATEMENT IS LONGER THAN
LIST IN CORRESPONDING WRITE STATEMENT
RECORD DOES NOT EXIST FOR
READ LIST ELEMENT
F89 CL,OCK PNAME LOCN
LAST PHYSICAL RECORD OF LOGICAL RECORD
HAS BEEN EXHAUSTED

PSC CALL BACK ERROR
X01 CL.OCK PNAME LOCN
CALL BACK TRIED BEFORE CALL SPECIAL
CORELOAD NOT LOADED ON DIsK
X03 CL.OCK PNAME COREN
COREN - CORELOAD NOT LOADED
RESTART CORELOAD NOT LOADED ON DISK
X04 CL., OCK PNAME COREN
COREN - CORELOAD NOT LOADED
INVALID ERROR CODE
X17 CL.OCK PNAME CLB
INVALID ERROR CODE FROM EAC
QUEUE CALL IGNORED
ERROR OPTION ZERO
Q01 CL,OCK WC SA P
WC- 5 DIGIT WORD COUNT
%A - 5 DIGIT SECTOR ADDRESS
P - 5DIGIT PRIORITY
gtLJJEUE CALL NOT HONORED-NO LOWER PRIORITY IN
U
ERR OPTION 1 TO 32766
Q02 CL.OCK WC SA P
QUEUE CALL HONORED-CALL ENTERED IN QUEUE
ERR OPTION 1 TO 32766
Q03 CL.OCK WC SA P
REPLACES WC SA P
QUEUE CALL NOT HONORED-RESTART INITIATED
ERR OPTION 32767
Q04 CL.OCK WC SA P
INVALID ERROR CODE
Q17 CL.OCK  PNAME QUE
INVALID ERROR CODE FROM EAC
CALL RESMK ERROR
MO1 CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM
CALL UNMK ERROR
M02 CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM
INVALID ERROR CODE
M17 CL.OCK PNAME MSK
INVALID ERROR CODE FROM EAC
INTERRUPT LEVEL ERROR
X02 CL.OCK PNAME LOCN
ATTEMPT TO CALL LEVEL UNDEFINED FOR SYSTEM
INVALID ERROR CODE
X17 CL.OCK PNAME LEV
INVALID ERROR CODE FROM EAC

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

| = CONTINUE AT THE POINT OF INTERRUPT
R = RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

5 - RESTART
L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT

* - INTERNAL BACKUP ATTEMPTED
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Table 4. On-Line EAC Errors and Recovery Procedures

INTERNAL ERRORS

CAR CHECK ERROR

996 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RESTART

OP CODE VIOLATION

997 CL,OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RESTART

STORAGE PROTECT VIOLATION

998 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RELOAD

PARITY ERROR

999 CL.OCK PNAME OPTION
SKELETON =~ RELOAD
VARIABLE = RESTART

OPTION WILL BE RELOAD (IF ERROR IS IN
SKELETON), RESTART (VARIABLE CORE - ABORT OF
NONPROCESS JOB, OR USER'S RESTART CORE LOAD
IF PROCESS), OR COLD START (REQUIRED IF EAC

1S UNABLE TO RELOAD SYSTEM)

MULTIPLE ENTRANCE TO EAC
MLPT EAC

AN ERROR HAS OCCURRED WHILE EAC WAS PROCESSING
A PREVIOUS ERROR. MUST GO TO A COLD START.

NORMALLY THIS ERROR INDICATES THAT THE
SYSTEM DISK IS DOWN. THIS ERROR WILL ALSO
OCCUR {F AN ERROR OCCURS IN EAC WHILE EAC
IS ATTEMPTING TO PROCESS A SYSTEM ERROR.,

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I = CONTINUE AT THE POINT OF INTERRUPT

R = RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

L - RELOAD

N = NO OPTION - MUST TAKE EAC EXIT

* = INTERNAL BACKUP ATTEMPTEC

(Continued)
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an error. Note that the user cannot call from his
error subroutines any routine that utilizes more
than 14 words of the subroutine work area (a portion
of the level work area). This area is principally
used for those calls to disk and output printers used
by EAC. It may be increased in size if the user
elects to remove this restriction.

The EAC program is entered whenever an error
occurs or a condition arises that calls for operator
intervention. An error message is then given on the
EAC printer and the program takes one of five pos-
sible exits after proper analysis has determined
which exit may be taken for the error in question.
Where more than one exit pertains to a given error
condition, the user has the option of specifying the
exit desired from his (user) error subroutine.

The four component parts are described below.

EAC In-Core. The in-core component of EAC is an
integral part of the System Director and resides in
core storage at all times. Its main function is to
channel one of the several possible types of errors
to a specific entry such that information relating to
this particular error is passed on correctly to the
analysis section. It also saves the current machine
status so that after an error has been processed,
the exit routine can return the machine back to the
user without loss of information. EAC in-core
also has the ability to dump variable core to disk if
this is specified by the user at System Director
assembly time (see System Design Considerations:
System Director). This program also determines
conditions such as process or nonprocess mode, in-
valid operation code, parity errars, and user error
subroutine availability.

Error Disk Program (EDP). EDP resides perma-
nently on disk, except when it is called to core by
the EAC in-core program. Once EDP is in core,
it takes the error information from the fixed area
and determines what type of error has arisen, the
approximate address at which it occurred, and the
appropriate error processing subroutine; prior to
this, the correct entry addresses for the conversion
and error routines are initialized. When the error
processing routine has completed its task, certain
information such as perform a Cold Start or Re-
start, or this error was not corrected but we are
continuing the process, or this error has been
successfully corrected, ete., are passed to the
Exit component.

68

Error Decision Subroutines. These subroutines re-
side on disk at all times until called to main core

by EDP to process a particular error. After the
error processing has taken place, a decision is made
on the type of recovery procedure required (e.g.,
Continue processing, Restart, Reload). This infor-
mation is then passed to the Exit component of EAC
for execution.

EAC Exit. This is the means by which a branch is
made to the recovery exit prescribed by the Error
Decision Subroutine. Note that there is no normal
exit from EAC.

Action of EAC When an Error Occurs

Consider the train of events that takes place when an
error occurs, as shown in the simplified block dia-
gram, Figure 27. The error may be an Internal
Machine Error, a C.E, Interrupt, or a Miscellaneous
Subroutine Error which may be an error or condition
requiring outside intervention. Depending on the

type of error, one of three possible entries is made
to EAC, as follows:

Internal Errors: EACO00
C.E. Interrupt: EACOL
Miscellaneous Error: EACO02

The explanatory paragraphs that follow are given in
an alphabetic sequence which corresponds exactly to
blocks within Figure 27,

A. An Internal Machine Error may be the result of:
e Parity
e An invalid operation code
e A storage provect violation, or
® A Channel Address Register (CAR) check

When such an eyror occurs, the hardware
generates a BSI indirect to EAC00 through
word 8 where the processing procedure begins.
The return address, the status of the accumula-
tor and its extension, the type of error and
certain registers are now saved, and the ma-
chine put in a fully masked state. For each
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Figure 27, Action of EAC when an Error Occurs
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error level, EAC then sets up a work area
within the Fixed Area. Note that the user's
error routine (if included with his core load)
will be ignored on all internal machine errors
and nonprocess programs. A direct branch

is then made to the variable core procedure (G).
A C.E. Interrupt routine forms part of a TSX
on-line system to allow the user to check and
modify system unit assignments of 1053 output
printers, 1443 printers, and 2310 disk drives,
and to initiate backup procedures if and when
this becomes necessary. This is normally a
Customer Engineer responsibility. When the
C.E. LEVEL INTERRUPT toggle switch, lo-
cated on the C.E. panel, is activated, a C.E.
interrupt occurs, forcing a BSI to that level,
and, after some processing, another BSI is
generated to an entry EACO01 in EAC. Essential
information is saved exactly as for internal
machine errors. A direct branch is then

taken to G.

A Miscellaneous Error which is neither an
internal machine error nor a C. E. interrupt
may be either an error or a condition that re~
quires outside intervention. For example, a
not-ready condition on an I/0O device has arisen.
This condition has been detected by the 1/0
routine, which then sets up an error code and
additional parameters in locations 115 through
119, and finally executes a BSI through location
120 to an entry EACO02 in EAC,

If the dump-core-to-disk option is specified by
the user at System Director assembly time,
permanent core is written to the Error Dump
Area on disk for interrogation at a later date.
Only the latest error is kept since there is only
one Save Area.

A determination is now made if the core load in
error is a process core load.

If it is, a branch is made to the user's error
subroutine, if it has been included in the core
load, to allow him to perform such processing
as he may require for his particular system.
This also permits him to modify some system
options. Upon return from this routine, any
indicator that may have been set is saved. If it
is not a process core load, an exit is made to
the common variable core procedure at G.

At this point, DISKN is called in from the Skele-
ton to write out the last (1920);( words of core,
and to read the Error Disk Program (EDP) into
this area. The EDP program is origined such

that it will always reside in the final (1.920) 10
words of variable core. The very last 6401
words of EDP is the overlay area for the appro-
priate Error Decision Subroutine when called.

H. Upon entering the Error Disk Program, an an-

alysis is made to determine which Error Decis-
ion Subroutine is to be used.

I. For an EACO00 entry, the Level 0 routine is used;
for a C.E. Interrupt entry, the C.E. Interrupt
routine is used. If the entry was made through
EACO02, the routine used will be determined by
the error code stored in location 115 by the rou-
tine which determined the error.

The appropriate Error Decision Subroutine
is now read into the upper (640)yy words of
core; it then builds and prints the error mes-
sage on up to four output printers, as defined at
TASK assembly time, and sets a predetermined
exit indicator or the indicator set by the user's
error subroutine. A return is made to the EDP
program.

J and K. A hardware error check is now carried out.
Assuming that an internal machine error had
occurred, an error record routine is brought in
to increment (that is, update) a counter associa-
ted with that particular piece of hardware. The
record of the hardware error is kept such that
when maintenance is required, the counter is out-
put to inform the Customer Engineer how often
a particular hardware device has failed. Con-
trol is then returned to EAC, and the stage set
for recovery action.

As shown in Figure 27, five types of recovery
action (as prescribed by the appropriate Error
Decision Routine) are possible.

Cold Start

Continue

Reload

Restart, and

Exit through an interrupt level

R

Cold Start. Whenever an error occurs which cannot
be corrected, EAC prints a cold start procedure
message, and comes to a wait state. For example,
consider a machine parity error which has occurred
when one of the 18 bits of information has been lost.
A parity error routine then attempts to clear the
error by successively loading and storing data into
the affected location. If the error persists after re~
peated attempts at recovery, the routine prints the
location of the parity error, and comes to a wait.



Continue. The error is noted, but it is not of such
a nature as to interfere with the program in progress.
For example, the entry to EAC may have been a
C.E. Interrupt or a request to print a message for
outside intervention reflecting a not-ready state, a
non-fatal error, or a printer parity.

The "continue' recovery action implies that the
program proceeds at the point of interruption. Con-
sider an I/0 device which has just completed its
operation -~ an interrupt is generated. This will
transfer control to the I/0 routine which then deter-
mings the correct error condifion, and branches to
EAC. This exit option bypasses the I/0 routine and
returns control to the point in the program at which
the interrupt developed.

Reload. The Reload recovery routine is brought into
core whenever it is suspected that some of the non-
storage protected words in permanent core may have
been destroyed. The routine then saves the tables
necessary for the completion of previous core loads,
having first verified that these tables have not been
destroyed. The Skeleton (from disk) is then read by
sectors into a buffer area, comparing each word to
its corresponding word in core, and overlaying it if
there is a difference.

If a storage protection violation has in fact oc-
curred, this means that a storage protected word
has dropped bits, thus making it different from its
corresponding word on disk. Under these circum-
stances, a cold start must be performed. Upon
completion of the Skeleton reload, various condi-
tions and indicators will be initialized and the rou-
tine exits by way of a CALL CHAIN.

Note that if an error has occurred outside of the
Skeleton Area, the present core load is aborted and
a new core load is read into main core for execution.

The CAR error may be caused by incorrect usage
of the "XIO" instruction or incorrect chaining of
data tables, etc. This is always a reload condition,

Restart. An error has occurred which prohibits the
present core load from continuing. Three types of
"restart'" are used:

1. If the error, such as an illegal call, occurred
in a process core load, the program in pro-
gress is aborted and its restart core load is
called into core for execution.

2. If the error occurred in a nonprocess core
load, the job is aborted by calling in the Non-
process Supervisor.

3. If the error occurred in an interrupt core load,
this core load is aborted, and the restart core
load of the current process core load is called
for execution. This means that the user's re-
start routines must be written in such a way as
to analyze his system and determine what pro-
gram will be called for execution.

Exit through an Interrupt Level. A restart condition
has arisen on a level other than the mainline level.
The level on which the error occurred is terminated
and the Restart procedure taken when the mainline
level is reached.

THE NONPROCESS MONITOR

The Nonprocess Monitor (NPM) is an independent
programming system which is designed to function
in one of two possible modes within a TSX system:

e In the on-line mode, it operates under the control
of the System Director.

o It can also be run in the off-line mode as a dedi-
cated monitor system under TASK control.

The user elects either system (that is, an on-line
or off-line system) at system generation time (see
System Design Considerations).

The NPM serves a three-fold purpose:

1. It permits better computer utilization through
time-sharing.

2. It allows the user to compile, assemble, store,
delete, and modify programs with extreme flexi-
bility. Because the system programs are resi-
dent on disk, only source statements and data
cards are required to be read in.

3. It provides for job stacking at the Card Reader,
which is fast because less card handling is re-
quired. A stacked-job environment permits
automatic and uninterrupted operation.

The primary function of the Nonprocess Monitor
is to provide continuous processor-controller oper-
ation during a sequence of jobs that might otherwise
involve several independent programming systems.
The monitor coordinates the processor-controller
activity by establishing a common communications
area in core storage, which is used by the various
programs that make up the monitor. It also guides
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the transfer of control between monitor programs
and the user's programs. Operation is continuous
and setup time is reduced to a minimum, thereby
effecting a substantial time saving in processor-
controller operation and allowing greater program-
ming flexibility.

Figure 28 illustrates the five distinet but interde~
pendent programs which make up the Nonprocess
Monitor,

NONPROCESS SUPERVISOR (SUP)

The Nonprocess Supervisor directs and controls the
execution -of all nonprocess programs which may be
either IBM-supplied as part of the TSX package
(e.g., FORTRAN Compiler, Assembler, Core Load
Builder, Disk Utility Program and Simulator) or
user-written. It is composed of several separate
but closely-related routines; its two principal com-
ponents are:

o The Skeleton Supervisor, and
e The Monitor Control Record Analyzer

Skeleton Supervisor. This contains the requisite
direction and control logic for the orderly transiticn
of one program to another. The Skeleton Supervisor
is read into core storage whenever monitor system
operation is initially started, and provides the comi~
munications link between monitor programs and user
programs.

Monitor Control Record Analyzer. This component
of the Nonprocess Supervisor reads the monitor
control record, prints its contents on the list and/or
System Printer, and calls the appropriate monitor
program, ,

Analysis of monitor control records extends over
columns 1-5 only, except for the // JOB card. Inval-
id control records result in an error message and
cause an abort. Blank cards are bypassed and not
stacker-selected. The card I/O routine, CARDN, in
the skeleton is used; if CARDN is not included by the
user, the monitor program uses its own card I/0 rou-
tine. The // JOB control record resets the abort in-
dicator and the effective address for the Nonprocess
Working Storage on disk. It can also specify which of
logical disk drives 1 and 2 are expected to be opera-
tional, and, accordingly, checks the labels on their
disk packs when indicated. The //END control record
directs the Nonprocess Supervisor into a wait state.
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Figure 28. The Nonprocess Monitor

Specifically, the Nonprocess Supervisor per-
forms the following functions:

1. Analyzes all monitor control records (e.g.,
// JOB, // ASM, // FOR)

2. Performs JOB initialization

3. Calls and transfers control to the requested
monitor program (e.g., FORTRAN Compiler,
Assembler)

4. Performs PAUS (that is WAIT) and END OF ALL
JOB functions when requested

5. Also analyzes control records for the Core
Load Builder following the // XEQ, *STORECI
and *SIMULCI.

Method of Operation

The Nonprocess Supervisor, including all monitor
programs, must reside on logical disk drive zero
where it occupies 21 sectors (see System Design
Considerations: IBM Nonprocess System). The
first 168 words of the Disk Communications Area
(DCOM) of sector 00000 on this disk (the system disk
pack) contains the Nonprocess Communications Area
which provides the logical linkages between monitor
programs and user programs. This area holds ad-
dress words, error indicators (used by DUP, FOR,
ASM, SUP, etc.), the name of the program or core
load being executed, as well as a loader for the
monitor programs.

DCOM is always brought into core each time a
// JOB control record is read. Certain words are
then initialized to reflect the current status of the
disk as reflected by LET/FLET. Note that recog-
nition of a // JOB control record by the Nonprocess




Supervisor also removes all temporary entries
from LET. Whenever a // END or // XEQ control
card is encountered, DCOM is written back to disk.

Entry to the Nonprocess Supervisor occurs
through a) Console Interrupt, b) a CALL SHARE (or
CALL VIAQ) statement in a process mainline, c)
FORTRAN Compiler, d) Simulator, or e) Disk Utility
Program.

In an on-line T'SX system, process interrupts are
serviced as they occur, the interrupt servicing time
being applied against the time specified by the user
for nonprocess operations. As an example, assume
a process mainline calls for one minute of time-
sharing. This one-minute span is the length of time
in the share mode. If, during this period, ten sec-
onds are used up for process interrupt servicing,
only fifty seconds are actually available for nonproc-
ess work.

If all nonprocess jobs are completed before the
end of the user-specified time, the Nonprocess Sup-
ervisor program performs a WAIT operation for the
remainder of the time allotted. In other words, if
the CALL SHARE statement specified one minute of
time-sharing, control is not returned to the process
program until one minute has elapsed, or alternative-
ly, a CALL ENDTS statement is executed by an inter-
rupt routine (see Use of Time-Sharing).

Figure 29 illustrates, in simplified form, Non-
process Monitor action during time-sharing.

If a nonprocess job is not completed before the
specified time is up, it is saved on the disk. When
the next CALL SHARE statement is executed, oper-
ation of the nonprocess job is resumed at the point
of termination.

When an unfinished job is waiting, the CALL
SHARE statement causes it to be read in and execu-
ted. Otherwise, the Nonprocess Supervisor pro-
gram is read into core and determines, by checking
a program indicator located within the System
Director, if any time-sharing operations are to be
performed., This indicator is turned on by the execu-
tion of a special console interrupt routine, supplied
with the system.

The following example illustrates a typical use of
the Nonprocess Monitor whenever nonprocess jobs
are ready for execution.

1. Operator stacks jobs in Card Reader and starts
Reader.

2. Time-Sharing is typically initiated by an oper-
ator interrupt, with a coded number set up in

Process | Nonprocess Monitor Nonprocess
Program Program
Read-in
Unfinished
Job and
Continue
Execution

CALL
SHARE
M

Unfinished
Job?

Figure 29.

Job
Indicator

ON?,

Perform
Job

Wait until
time has
elapsed

IIustrating Nonprocess Monitor Action during
Time-Sharing

the console switches to indicate a time-sharing
request.

Interrupt routine sets a program indicator to a
process mainline.

Process mainline calls for time-sharing when it
is idle. It specifies the time interval.
Nonprocess programs may be interrupted and
later continued by an external (that is, process)
interrupt or timer interrupt. This will involve
an exchange to the disk save area if the inter-
rupt program is not in core, or if the shared
period has timed out.

Nonprocess jobs are completed in sequence
until no jobs remain (program ends on a WAIT
instruction) or until // END OF ALL JOBS
control record is reached.

During time-sharing, the Skeleton Supervisor
will be in transient core, identifying monitor
control records and initiating monitor pro-
grams.
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DISK UTILITY PROGRAM (DUP)

DUP is a set of routines designed to aid the user in
the day-to-day maintenance of data and programs
on disk packs. That is, it has the capabilities of
storing, deleting, and outputting user's programs
as well as defining system and machine parameters.
It also updates the location equivalence table (LET)
and maintains other communications areas. The
Disk Utility Program is called into operation by a
// DUP monitor control record; it can be used on-
line or off-line.

The // DUP monitor control record must be fol-
lowed by at least one DUP control statement that
selects the desired routine. DUP control statements
are identified by an asterisk in column 1. Columns
2 through 10 contain a symbolic code which identifies
the routine (e.g. *STORE, *DELETE, *SEQCH).
The columns following the coded routine name pro-
vide additional information used by the routine itself.

Like the Nonprocess Supervisor, DUP must re~
side on logical disk drive zero where it occupies
68 sectors. Primary entry to DUP derives from
a) Nonprocess Supervisor, b) FORTRAN Compiler,
¢) Assembler, and d) Core Load Builder.

DUP uses the card I/0 routine, CARDN, if this is
included in the skeleton; otherwise, it uses its own
card I/0O routine. Blank cards are skipped and

stacker-selected when searching for control records.

Non-DUP or non-monitor control records result in
an error message. All DUP control records and
messages are printed on both the System and List
printers.

Essential data for most DUP functions to com-
municate with a disk pack include the following:

o Disk sector addresses
e Numeric label in word 0, sector 0

o Disk Communications Area (DCOM) -- This pro-
vides information on the size and location of
work storage areas, LET for the Relocatable
Program Area and FLET for the Core Load Area.

e Valid entries in LET/FLET

A list of all DUP functions is given in the Sum-
mary of Nonprocess Monitor Control Records. See
also Examples of Nonprocess Monitor Usage.
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FORTRAN COMPILER

The TSX FORTRAN Compiler is a disk-resident ver-
sion of the 1800 card compiler, and occupies 103
sectors on logical disk drive zero. Provision is also
made for the user to easily make use of input-output,
conversion and arithmetic subroutines that are a part
of the TSX subroutine library. The FORTRAN
language is described in IBM 1130/1800 Basic
FORTRAN IV Language, Form C26-3715.

The // FOR monitor control record is used to call
the FORTRAN compiler into operation, and to name
the mainline program. The compiler reads the con-
trol records and source program in card form only.
After a successful compilation, the object program
in relocatable format is moved to the temporary area
on disk, and an entry (name and disk block count) is
made in LET. It can, henceforth, be called for exe-
cution by an // XEQ control record, or it can be
stored permanently in the Relocatable Program Area
by a DUP (*STORE) operation. All FORTRAN pro-
grams are compiled in relocatable format. A list of
FORTRAN control records is given in the summary
at the end of this section.

ASSEMBLER

The Assembler program for the 1800 TSX system is
a disk-resident version of the 1800 card assembler.
It is designed to translate source program statements
written in a symbolic format into a binary format
which may be stored and/or dumped by the Disk
Utility Program (DUP), or executed directly from the
Nonprocess Work Storage on disk. The Assembler
Language is fully described in IBM 1800 Assembler
Language, Form C26-5882.

The Assembler program resides on logical drive
zero and occupies seven cylinders. Entry to it is
obtained via a // ASM monitor control reccrd. The
Assembler accepts control records and source pro-
grams in card form only. Upon a successful assem-
bly, the object program in relocatable format is
moved to the temporary area on disk where it can be
called for execution by a // XEQ control record or
stored permanently in the Relocatable Program Area
by a DUP (*STORE) function. A list of Assembler
control records is given in the summary at the end
of this section.




SIMULATOR PROGRAM

The simulator is designed as a debugging aid which
allows the user to checkout or test process and/or
nonprocess programs without disrupting the normal
operations of the TSX system -- that is, without tak-
ing the system off-line. It functions under the control
of the Nonprocess Monitor.

Each instruction in the object program is analyzed
for a valid operation code and format before its oper-
ation is simulated. In addition, addresses of store
and branch instructions are checked to ensure that
the instruction would not alter anything outside of
the areas of the defined program, COMMON, INSKEL
COMMON, or the level work area, if they are act-
ually executed on-line. Process input values may
be read from cards or derived from a random num-
ber generator. Since System Skeleton routines are
used during simulation, it is mandatory that the
skeleton area be built before simulation of process
core loads can be performed.

Since the primary function of the Simulator is to
detect programming errors in the object project,
several optional debugging features are available to
aid the user., These include Snapshot, Branch Trace
and Dump. Simulated COMMON can be dumped on
cards so that a run can be executed in several dif-
ferent parts. In addition, the branch and arithmetic
trace provided by the FORTRAN Compiler can be
operative in the simulator mode.

Simulation runs for process programs are called
by a DUP control record, *SIMULCI; runs for non-
process programs are called by a // SIM monitor
control record. Details of operating procedures and
stacked-input for a typical simulation run are des-
cribed in IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Subroutines

General Input/Output

Each time the Simulator encounters a user-called
sequence to an I/O subroutine, the location of the
calling sequence and the subroutine name are
printed on the List printer. Each time the Simulator
encounters a subroutine test function (I/0 function
digit = 0), the following occurs: the first time a test
is encountered, a busy return is made; the second
time, a not busy return is made. Succeeding entries
alternately cause busy and not-busy returns.

Listed below are the general input/output subrou-
tines (IBM-supplied) recognized by the Simulator,
and corresponding operations which the Simulator

performs:
SUBROUTINE

CARDN (Simulated card
subroutine)

DISKN (Simulated disk
subroutine)

MAGT (Simulated mag-
netic tape subroutine)

PAPTN (Simulated paper
tape subroutine)

PLOTX (Simulated plotter
subroutine)

PRNTN (Simulated printer
subroutine)

OPERATION

Read a card, feed a card, simulate
punch a card

Read disk, write disk, simulate
disk seek

Simulates all read, write, and
control functions relative to 2401
and 2402 magnetic tape units

Simulate reading paper tape, simu-
late punching paper tape)

Simulate plotter output

Print a line, simulate a carriage
operation

TYPEN or WRYTN (Simulated
printer keyboard subroutine)

Simulates printing on 1816 printer
keyboard or 1053 printer

The Simulator requires that the card reader, disk,
and List printer be physically present on the system.

Process Input/Output

Call sequences which specify input from pulse input
points, digital input points, process contact points,
and analog input, may obtain input from two sources:
cards and a random number generator.

Data cards are used if samples of specific values
are desired; the points can be read in a nonprocess
program and punched into cards to be read by the
Simulator. Any value can be simulated when using
cards, but in order to obtain the desired results, the
input data must be sequenced according to the flow of
the process input subroutines called. In other words,
the card feature requires careful ordering of the
card deck.

A random number generator, within the Simulator
program, produces numbers that fall into a user-
specified range. With this option, the user can em-
ploy a wide variety of input data to check program
operation. A psuedo-process input environment can
also be created through the use of a random number
generator. All input values are printed on the list
printer as they are called.

In the program being simulated, call sequences
that specify output for the contact operate, pulse out-
put, digital output, and digital-to-analog output fea-
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tures are printed when they are encountered. Inpu:
call sequences, error messages, and data are
included in the printed output. This provides a com-
plete chronological record of all that occurred dur-
ing the simulation.

IBM-supplied process input/output subroutines
are functionally simulated; that is, the subroutines’
call parameters are analyzed according to specifica-
tions supplied in the form of control records. The
routine name, calling parameters;, and data are
printed on the List printer. Listed below are the
process input/output subroutines recognized by the
Simulator, and corresponding operations which the
simulator performs. Special-condition returns aro

also simulated.

SUBROUTINE

AIPTN or AIPN (Simulated
analog input point)

AIRN (Simulated analog
input random)

AISQN or AISN (Simulated
analog input sequential)

DAOP (Simulated digital-
analog output)

DICMP (Simulated digital
inputs read compare)

DIEXP (Simulated digital
inputt read expand
function)

DINP (Simulated digital
inputt hardware functions)

OPERATION

Simulates the read of a single
analog point

Simulates reading random analog
input points

Simulates reading sequential
analog data points

Simulates the transfer of digital
or analog information

Simulates the reading in of
digital input values under program
control gnd compares these values
to a table of user-supplied values.
Only the: first compare error is
detected, A single entry to the
special routine is made with
appropriate indication, The
end-of-table interrupt will not
occur if a comparator error
occurs.

Simulates the reading in of a
digital input value and expands
it into 1, 2, 4, 8, or 16 words.

Simulates the reading in of
digital input values

Arithmetic and Conversion Subroutines

Copies of the IBM-supplied arithmetic and conver-
sion subroutines are contained within the Simulator.
It is these copies that are executed when a call to an
arithmetic or conversion subroutine is encountered.
The requested operations are performed in a psuedo-
processing environment maintained under control of
the Simulator.
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General TSX Subroutines

When a call to a TSX control subroutine is recognized
by the Simulator, the subroutine name and its calling
sequence parameters are printed. There are two
categories of subroutines designed for control and
communication with the TSX system: the termination
class and the functional simulate class.

The following subroutines comprise the termina-
tion class, and when encountered, cause the Simula-
tor to execute the close-job procedure:

BACK PAUSE
CHAIN SPECL
DPART STOP
INTEX VIAQ
LINK EXIT

The subroutines listed below comprise the func-
tional simulate class, and when encountered, cause
the Simulator to simulate the function, i.e., they
analyze the call parameters for validity and print
the routine name, the calling parameters, and the
data contained within the subroutine.

CLEAR REMSK
COUNT SAVMK
ENDTS SETCL
LEVEL SHARE
MASK TIMER
OPMON UNMK
QIFON UNQ
QUEUE

User-Written Subroutines

User-written subroutines are simulated in the same
manner as mainline programs.

Common Area

The simulated COMMON area can be dumped on
cards whenever a program being simulated is ter-
minated. The output cards can be used for input
to reload COMMON, thus providing communication
from one core load to another.



Restrictions

Restrictions placed upon the use of the Simulator
program are listed below:

1. Nonprocess work storage must be used if actual
data is to be transferred between disk and core.

2. Link or chain jobs must be simulated by pre-
senting one core load at a time.

3. The Simulator utilizes LIBF and CALL instruc-
tions for special purposes. When analyzing post-
mortem dumps, the contents of LIBF and CALL
locations should be ignored by the user.

4. All I/0 must be performed by Simulator sub-
routines. An execute I/0 (XIO) instruction is
not simulated but will be recorded on the List
printer.

5. A wait (WAIT) instruction will be recorded on

A storage protect setting instruction (STS with
both the F-bit and the 9th bit equal to zero) will
result in a termination.

An attempt to store into a skeleton area other
than the INSKEL COMMON and work level
areas will result in a termination.

Operation codes of 00, 38, 58, 78, and FF are
invalid and will result in a termination.

A subroutine I/0 area parameter pointing to the
skeleton will result in a termination.

SUMMARY OF NONPROCESS MONITOR CONTROL
CARDS

Tables 5-10 give a brief summary of all Nonprocess
Monitor control cards. For details of card prepar-
ation and their functions, see IBM 1800 Time-Sharing
Executive System, Operating Procedures, Form

the list printer. C26-3754.
Table 5. Monitor Control Cards
// JOB Initializes a nonprocess job
// DUP Reads the disk utility program into core for execution
/7 XEQ Reads the user's programs into core for execution
// ASM Reads the Assembler into core for execution
// FOR Reads the FORTRAN compiler into core for execution
// SIM Reads the Simulator program into core allowing a nonprocess program to be simulated
// PAUS Causes the system to WAIT
// END or
// END OF ALL JOBS Signals the Nonprocess Supervisor that all nonprocess work is complete
Table 6. Loader Control Cards
*INCLD Causes a named program to be included in the skeleton or in a mainline core load
*RCORD Records interrupts that occur during the execution of process core loads
*FILES Provides for the designation of disk areas to be used by the FORTRAN program in which the files were defined
*CCEND Indicates that no loader control cards are following and the core load builder can be called
*LOCAL Permits groups or blocks of subprograms to be loaded into core when they are called
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Table 7.

DUP Control Cards

OCORE
NDISK
*DEFINE CONFG
REMOV
PAKDK

*DLABL
*STORE
*STOREDATA
*STORECI
*DUMP
*DUMPDATA
*DUMPLET
*DELET

*DWRAD
*STOREMD

*SEQCH
*SIMULCI
*DICLE

Specify the size of object core

Specify the number of disk drives on the system

Specify the system configuration with respect to disk areas

Allow the user to delete FCRTRAN or the Assembler from the monitor disk
Pack relocatable programs into unused areas identified by *DELET

Labels a disk pack and, if riot system pack, writes addresses

Stores relocatable programs in the Relocatable Program Area (user or temporary) on disk
Stores blocks of data in Core Load (core image) Area on disk

Causes a core load to be built and stored in the Core Load Area on disk -

Dumps programs from the disk to the system 1/O device or list printer

Dumps blocks of data as indicated in *DUMP

Dumps LET and/or FLET on the list printer

Replaces a program name in LET or FLET with the name 9DUMY thus making the program area available to the
store function

Allows the user to write addresses on a specified area of disk

Allows the user to modify existing nonprocess core loads and relocatable programs without previously
deleting them

Used to change the sequence of existing core load linkages for process or nonprocess core loads
Reads the Simulator program into core, allowing a process program to be simulated

Allows the user to modify the interrupt core load table

Table 8. FORTRAN Control Cards

* 10CS (CARD, TYPEWRITER, KEYBOARD, 1443 PRINTER, PAPER TAPE, Delete any not used
MAGNETIC TAPE, DISK, PLOTTER)

** Header information to be printed on each compiler output page

* ONE WORD INTEGERS

* EXTENDED PRECISION
* ARITHMETIC TRACE
* TRANSFER TRACE

* LIST SYMBOL TABLE
* LIST ALL

* PUNCH

LIST SOURCE PROGRAM
LIST SUBPROGRAM NAMES

NONPROCESS PROGRAM

(Store integer variables in one word) This function is automatic in
process programs.

(Store floating point variables and constants in 3 words instead of 2)
(Switch 15 ON to print result of each assignment statement)

(Switch 15 ON to print value of IF or Computed GO TO)

(List source program as it is read in)

(List subprograms called directly by compiled program)

(List symbols, statement numbers, constants)

(List source program, subprogram names, symbol table)

(Identifies this compilation as a nonprocess program)

(Causes DUP to punch an object deck after successful compilation)




Table 9. Assembler Control Cards

*TWO PASS MODE
working storage

*LIST DECK

*LIST DECK E

*PRINT SYMBOL TABLE
*PUNCH SYMBOL TABLE
*SAVE SYMBOL TABLE

*QOVERFLOW SECTORS n

*COMMON n n = length of COMMON in words (decimal)

Read source deck twice; must be specified when *LIST DECK or *LIST DECK E is specified, or when intermediate output fills

*LIST Print a listing on the principal printing device

Punch a list deck on the principal 1/O device (requires *TWO PASS MODE)

Punch only error codes (cc 18-19) into source program list deck (requires *TWO PASS MODE)
Print a listing of the symbol table on the principal printing device

Punch a list deck of the symbol table on the principal 1/O device

Save symbol table on disk as a system symbol table

*SYSTEM SYMBOL TABLE Use system symbol table to initialize symbol table for this assembly

*PUNCH A relocatable binary deck will be punched by DUP following this assembly

n = number of sectors of nonprocess working storage allowed for symbol table overflow

Table 10, Simulator Control Cards

*SAVE COMMON
*LOAD COMMON

*END DATA Terminates Simulator run

*SNAP Displays up to 10 locations following execution of an instruction
*TRACE Traces or displays same information as for *SNAP
*DUMP Dumps simulated core storage

Punches out binary deck of process and variable COMMON
DEFINES and analyzes COMMON from *SAVE COMMON OUTPUT deck

*XI10 Suppresses printing of IOCC words referenced by X1O instruction
*WAIT Suppresses printing of WAIT instructions
*START SIMULATION Signals that all Simulator control cards have been read

EXAMPLES OF NONPROCESS MONITOR USAGE

The prime purpose of this section is to illustrate a
few of the many possible uses of 1800 TSX features,
and to accentuate the many more possibilities based
upon the ability of the user to apply the basic con-
cepts and techniques. Numerous sample programs
and coding examples are presented as demonstration
of good programming practice and technique. These
examples conform strictly to standard TSX coding
conventions.

The JOB

When a programmer is given a problem, he analyzes
that problem and defines a precise problem-solving
procedure: that is, he writes a program or a series
of programs. To the monitor system, executing a
mainline program (and any subroutines and subpro-

grams that it calls) is a job step. A job consists of
executing one or more job steps.

At its simplest, a job consists of one solitary job
step. For example, assembling or compiling a pro-
gram is a job consisting of one job step. Similarly,
executing a FORTRAN mainline program to invert a
matrix is a job consisting of a single job step.

If the problem is complex, one job may consist
of a series of job steps. Such a job may include
multiple assemblies, compilations, disk utility
functions, and executions. A job always begins with
a // JOB control card which is the first statement
in the sequence of control statements that describes
a job.

The JOB Deck

The input to the Nonprocess Monitor may consist of
one or more job decks. Each job deck is preceded
by a // JOB. The processing of each job deck is
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controlled by the Supervisor program as specified in
the monitor control cards. As an example, consider
the following stacked input arrangement (see Figure
30).

The above sequences will compile, store and
execute both program PROG1 and program PROG2
provided that:

1. There are no source program errors, and
2. There is sufficient room in the Nonprocess
Work Storage area.

A source program error will cause the DUP

Store Operation to be bypassed for that program, and
all following // XEQ requests preceding the next

// JOB card will be disregarded. This feature (that
is // XEQ ~- request disregard) can prove very use-
ful when the successful execution of one program de-
pends upon the successful completion of the previots
program. A combination such as this should be con-
sidered as one job. The // XEQ control cards should
not be separated by a // JOB card. Note from Fig-
ure 30 that it would not be necessary to store the two
programs if they were executed on a one-shot basis.

Assembling/Compiling Programs

Programs are of two types: process and nonprocess.
A process program is one that continuously monitors
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Figure 30. Illustrating a JOB
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a control process. All application programs are,
by definition, process programs. A nonprocess
program, on the other hand, is not directly related
to the control process itself. An assembler pro-
gram is an example of a nonprocess program: other
examples include compilers, data reduction, pay-
roll, bookkeeping, simulation of new and existing
programs, and linear programming.

Process and nonprocess programs may be fur-
ther classified as main programs or subroutines.
Subroutines can be subdivided into the following:
LIBF (library functions), CALL, Interrupt, IBM-
supplied, and LOCAL subroutines.

In the off-line or time-sharing mode of operation,
the user may exercise any of four options in assem-
bling/compiling and executing a nonprocess program.
Figure 31 illustrates these approaches in simplified
form. A distinction should be drawn between proc-
ess and nonprocess programs. The initial process
program can only be executed through a cold start
procedure for an on-line TSX system. If the proc-
ess, mainline, or combination core load is already
disk-resident (in the Core Load Area) it is called
by a CALL CHAIN or CALL QUEUE.

EXAMPLE 1, ASSEMBLE AND EXECUTE A NON-
PROCESS PROGRAM FROM THE TEMPORARY
AREA (see Figure 32).

The Assembler is unable to differentiate between
process and nonprocess programs —- these are
treated alike. Following assembly, the object pro-
gram in relocatable format is moved to the tempor-
ary area on disk, and its entry (name, word count,
and sector address) made in LET.

If the user desires to perform only an initial
check on his program, and not execute it, // XEQ
and ¥*CCEND are not required. If he plans to verify
the program logic and results (if any), he will exe-
cute it. The presence of the // XEQ and *CCEND
control cards calls in the Core Load Builder, and a
core load is built and executed. In addition, a list-
ing of source statements as well as the correspond-
ing object program, and a directory of all valid
labels used in the program can be obtained by speci-
fying these options with the appropriate Assembler
control cards. The order in which programs are
assembled is important when the *SAVE SYMBOL
TABLE control card is used in assembling related
programs.

Note that the relocatable program will reside in
the temporary disk area until it is deleted by the
next // JOB card. An *CCEND control card must
always follow an // XEQ card if a relocatable
program is referenced in the // XEQ card.




ASSEMBLE
and/or
COMPILE
Store in Store in
Relocating |e——~— Disk TEMP
Disk Area Area*

Store_in Build Core Build Core Store in
Disk Core  jagl—— Loads oads —®» Disk Core
Image Area *STORECI *STORECH Image Area

EXECUTE ** EXECUTE **x* EXECUTE *** EXECUTE **
// XEQ FX // XEQ // XEQ // XEQ FX
*CCEND *CCEND
Note:
*  This is automatic if the assembly or compila-
tion is successful,
** Execution occurs through a Cold Start, CALL LINK
or // XEQ.
*** Execution can only occur through a // XEQ.
Figure 31. Assemble/Compile and Execute a Nonprocess Core Load
EXAMPLE 2. COMPILE AND STORE A NON-

PROCESS PROGRAM IN THE RELOCATABLE PRO-

GRAM (OR USER) AREA ON DISK (see Figure 33).
Unlike the Assembler, the Fortran Compiler dis-

tinguishes between the two types of programs by the

SAMPLE CODING FORM absence or presence of the *NONPROCESS PROGRAM
1-10 1{-20 21-30 [ 31-40 41-50. control card. In a process program, each integer
|/|j|3|1‘47[-50|l27[e]9|ol||2|3]4|5{6[7|a[9|olllI2]3l4]5:e[7]s[9|o||]2|3[4|5[6|7|e|9|o||2|3]4|5}e|7|s]9|o variable automatically occupies one word of storage.
S APROE L o oo rPooin) o anomprocoss program, however, the *ONE WORD
oSl L ...1:.. .1“,.1.:.LiJ INTEGERS control card forces the compiler to allo-
RIAT a8 Ll e cate one word of storage to each integer variable; in
el il i L the absence of this card, the same allocation (that is,
il i e it et i Lt two words) for real variables is made. In the case of
. URICE PRO c # AR, a large array, this could be prohibitive.
T T All FORTRAN programs are compiled in relocatable
0/ xeg weROL el bl b b b L) format. Following compilation, the relocatable
(a7 - S T IR P BTN AP BT N S| object program is moved to the temporary disk area,
LS NP SIS VT U I DR NS BT B and an entry made in LET. It can now be called for
u £R| DATA| CA execution or loaded to the Relocatable Program (that
U P P N SR ST P ST ST S is, theUser) Area on disk.
IV < W I W BT NI SE T PR S In Example 2, the relocatable program MAIN2 is
RS P VR TR SR ES TS TR A T stored in the Relocatable Program (User) Area. The
T actual storing of the program consists of physically
Figure 32. Assemble and Execute a Nonprocess Program from the moving the program to its destination area (the User

Temporary Area

Area) from the temporary area of Nonprocess Working
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Figure 33. Compile and Store a Nonprocess Program in the
Relocatable Program Area (User Area) on Disk

Storage. When the storing operation is completed,
LET is updated and the communications and fixed
area parameters reset to reflect these changes.

Note that a store from the temporary (TEMP) area
to the permanent Relocatable Program Area causes
TEMP to be packed to reflect that program moved.
An exception exists when the program is the last
entry in TEMP or when there is only one TEMP pro-
gram initially.

EXAMPLE 3. COMPILE AND EXECUTE A NON-
PROCESS PROGRAM FROM THE CORE LOAD
AREA (see Figure 34).

This example illustrates the third and fourth options
which may be taken to assemble/compile and execute a
nonprocess program from the Core Load Area. Note
that subroutines TIMSB, ERROR, and PRINT are com-
piled and stored in the User Area as these subroutines
are frequently referenced by this and other nonprocess
programs. In building process mainline and combina-
tion core loads, it may not be necessary to store these
subroutines. The store core image routine is used to
store a program in core image form (as a core load)
in the core load area and to assign the core load a
name. By making column 9 of the *STORECI control
card non-blank, a map of the locations and names of
subroutines and subprograms loaded with the core
load is obtained. When the nonprocess core load is
correctly built, DUP will search through its program
name table, find the name of the core load just built,
and add its disk address and word count to the table.

In addition, any programs referenced in this core
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load name table are looked up in FLET and their
disk addresses and word counts added to the table.
The core load is then executed from the Core Load
Area. FX in columns 16 and 17 of the // XEQ
monitor control card signifies that the input program
is in core image format and that FLET is to be
searched for this program name.

Deleting and Replacing Relocatable Programs,
Core Loads, and Data Files

The *DELETE function allows the user to delete any
named

Relocatable program

Mainline core load
Combination core load
Interrupt core load
Nonprocess (or link) core load
Data file

from the disk. An entry of a program in I.ET or a
core load/data file in FLET takes the norrnal form

LET: NAME DISK BLOCK
COUNT
FLET: NAME WORD SECTOR
COUNT ACDRESS

where each LET and FLET entry occupies three and
four words of disk space respectively. Whenever a
program or a core load is deleted, its NAME in LET
or FLET is replaced by the symbolic 9DUMY and
henceforth the system is no longer cognizant of this
program or core load. Furthermore, the area on
disk previously occupied by a program or core load
is now available for the storage of other programs,
core loads, or data files. These areas are available,
but only used after all previously available areas have
been used.

A core load may be deleted and, in addition, have
its reference replaced by another core load's word
count and sector address. The replacement core
load must be of the same type. That is, a mainline
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Figure 34. Compile and Execute a Nonprocess Program from the Core Load Area
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core load may be replaced by another mainline core
load, an interrupt core load by an interrupt replace-
ment core load, a combination core load by a re-
placement core load, and a nonprocess core load by
a nonprocess replacement core load. Replacement
of the four types of core loads is governed by cer-
tain rules which are summarized as follows. Note
that the replacement function within an *DELETE
operation does not alter the core load name, but only
its word count and sector address.

Combination and Interrupt Core Loads. In deleting a
combination or interrupt core load, all references to
this core load in the Program Name Table (PNT)
and/or Interrupt Core Load Table (ICLT) must be
replaced by a replacement core load name. Absence
of this specification in the control card invalidates
the deleting function. Furthermore, if an interrupt
core load or combination is used to service multiple
interrupts, all interrupt core load entries in the PN
Tables, Queue Table, and ICL Table are automatically
replaced with a single delete operation by specifying
9999 for the interrupt level and bit positions on the
control card (columns 39-42),

The rule is never to allow a previous serviceable
level and its bit indicator to remain unserviceable.

Mainline and Nonprocess (or Link) Core Loads. In
general, a mainline or nonprocess core load that iz
not currently being called by other core loads does
not require replacement. If, however, it is still
being referenced in the Queue Table, the PNT within
the System Skeleton or some other PNT, deletion

is restricted because it is still necessary to maintain
this core load identity in the system. Note that a
nonprocess core load may be deleted without a re-
placement core load even though it is still refer-
enced. A negative value is then placed in the word
count position of the PNT entry in those core loads
referencing the deleted nonprocess core load. A
nonprocess core load is also referred to as a link.

Data Files. By definition, a data file is an area in
the Core Load Area established by an *STOREDATA
function with a D in column 11. Data files can be
deleted but not replaced. In deleting a data file from
the disk, the user should be aware that the system
does not check to see whether this data file is still
being referenced by currently executing core loads.
This means that if he wishes to delete a data file, he
has to ensure by some programming means that
there is no reference to this file: that is, no reading
from or writing to this file. If there is a reference,
there is a distinct possibility that core loads writing
to or reading from this file might destroy one or

more core loads stored in the same location the
data file was located.

EXAMPLE 4. DELETE A PROCESS MAINLINE,
COMBINATION OR INTERRUPT CORE LOAD FROM
THE CORE LOAD AREA (see Figure 35).

In deleting a process mainline core load, the
user should ensure that this core load is not being
referenced or called by any other core load that may
in turn reference further core loads. If such a sit-
uation exists, up to 14 names of calling core loads
will be listed; if the number of calling core loads
exceeds 14, any excess will not be indicated in the
error message. The solution here is to eradicate
the excess core loads from the Fixed Area, either
by a sequence change or a deletion.

The delete operation is merely one of removing
or eliminating an entry from the FLET table with a
system mnemonic name 9DUMY, indicating an un-
used area on disk. Note that in a fresh (that is,
new) disk pack, the Core Load or Core Image Area
is initially represented in FLET by a 9DUMY
entry thus:

NAME (= 9DUMY)
SECTOR COUNT
SECTOR Address

Subsequent *STORECI operations will move this
entry. A delete simply replaces a core load with a
9DUMY. In practice, a delete is normally followed
by a replacement unless the core load being deleted
is considered ''dead, " thus making its replacement
unnecessary.

Example 4 also demonstrates the use of
*DUMPLET as an effective programming tool. A
dumplet following a delete operation is good program-
ming practice; it shows conclusively that a program
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Figure 35, Delete a Process Mainline, Combination, or Interrupt
Core Load from the Core Load Area



or core load is in fact removed from the FLET
table. For an understanding of LET/FLET tables,
the user is referred to the Systems Reference Li-
brary: IBM 1800 Time-Sharing Executive System,
Operating Procedures, Appendix F, Form C26-3764.

In all three cases, the FLET table is searched for
the core load name to be deleted, and its replace-
ment name. Any references to the old program in
the Program Name Table of all core loads are then
replaced with the word count and sector address of
the replacement core load. The old program name
is finally deleted from the FLET table.

In the case of combination and interrupt core
loads, the interrupt level and PISW bit position indi~
cators are obtained from the card buffer, converted,
and stored in the nonprocess communications area.
The ICL Table is then updated.

Note also that in all cases, except for the deletion
or replacement of nonprocess programs, a check of
the queue in the skeleton is made to see if the pro-
gram to be deleted or replaced is in the queue. If it
is, the queue is updated.

EXAMPLE 5. REPLACING A NONPROCESS CORE
LOAD IN THE CORE LOAD AREA (see Figure 36).
Like process mainline, combination and interrupt
core loads, a nonprocess core load can also be
deleted and replaced by an *DELETE operation (see
Figure 35).

A nonprocess core load can also be replaced by
storing a replacement core load to the Fixed Area, as
illustrated in Figure 36. The user can thus modify
existing nonprocess core loads without previously de-
leting them.

SAMPLE CODING FORM

-10 [ ni-e0 T 21-30 [ 3i-40 [ ai-s0
fealdlslel7leelo[ Tefalalslel7[efolo]i e[3[4ls[e[]e[olo] [2[s[a[sTelelo o]  [2[af6 [e[]elolo]
/l/||JOBIII111I|]1l}J||]|A||Ill|lIIJIllIlLLJlIli_IJII
0/ FOR MAMEZ L0 o Ll b s b iy
9, oCES! ROGRAM | bty by b bl

uIS7 SQuRcE P A Ly

oCS| 3 R 71E, S, CA K

e b b b b b e b g e ol
. PeA T, AM) Lo L]
lllllxlx\.llllllIlllll‘LlllIllI\IlIIIIl\llllllllllll
R N YN %« I B B NS NI N R
bl Eama ol e by e b e e
Nt Qmp..ulmln\||||‘.L|.|H|.|\1|1|1s‘||-‘|||1||.|
i!]é]TOEEMQ £iX &Aa&'g/Vﬁﬁflz..w|l||‘||.|||J11|||
a3ty 2 S IR I W NETES EPRPP EUTITES IPRNNOT EITIVE TS N |
II|I|||I|IIIII|Illllllll]llJ;LllllJJ;LllILLLIIIIIIII

Figure 36. Replacing a Nonprocess Core Load in the Core Load Area

This is achieved by an *STOREMD operation. An
*STOREMD with a Fixed Area destination is exactly
equivalent to an *STORECI of a nonprocess core load
provided that

1. The replaced entry must be in FLET for a
Core Load Area

2. If the function is to modify the Core Load Area,
the existing FLET entry must be for a nonproc-
ess core load.

A search through FLET is first made to see if
the replacement core load name is already an entry.
A further search is then made for a large enough
9DUMY entry to contain the core load. On a find,
the sector count of the 9DUMY is checked against the
required sector count. The check is successfully
terminated by locating a large enough entry on a
specified drive which can also take an additional
FLET entry. A successful find supplies a destina-
tion sector address, and, if previously unknown, the
logical drive. Once it is determined that there is
space to store the core load, the core load Program
Name Table is updated.

Note that the replacement program can either be
in the temporary area (of Nonprocess Working Stor-
age) or in the Relocatable Program (that is, User)
Area on disk. The name assigned to this program
must not be the same as that of the program to be
replaced. In Example 5, NAMEL and NAME2 desig-
nate two different names. NAMEL (which was pre-
viously resident in the Core Load Area) is deleted
from the Fixed Area and its entry in FLET removed.
The replacement core load NAME2 is stored in the
Core Load Area and its name, size in words, and
starting sector address then entered into the FLET
table.

EXAMPLE 6, REPLACE A RELOCATABLE PRO-
GRAM IN THE USER AREA (RELOCATABLE PRO-
GRAM AREA) (see Figure 37).

Figure 37 illustrates a sequence of control cards
that might be used to accomplish this. NAMEL is
the name of the replacement program being stored.
It must be compiled or assembled with the identical
name of the relocatable program being replaced
(that is, also NAME1L), and it must be the prime
entry point. This name must be in the temporary
area of Nonprocess Working Storage.

Note that the control card name for the existing
program to be replaced must have a LET entry of
the same name for a User Area replacement. The
replacement program will not overlay the current
program, but only cause it to be deleted from the
LET table. Thus, the size of a replacement pro-
gram and the number of entry points in a relocatable-
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SAMPLE CODING FORM
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Figure 37. Replace a Relocatable Program ih the Relocatable
Program Area

program are governed only by the standard restric-
tions on any *STORE operation, and not by the size
and nurnber of entry points of the existing program.

Other than the above considerations, an *STORE-
MD with a User Area destination is essentially equiv-
alent to an ordinary *STORE function to the User
Area: the same coding is thus used for storing the
program. This procedure is mainly used for the
modification of existing user-written or IBM-sup-
plied programs.

Changing Core Load Linkages. Through the *SEQCH
function, the user is given a powerful programming
tool to alter the sequence or order of existing core
load linkages for either process or nonprocess core
loads. This means that he can now modify a core
load Program Name Table such that all references
to a core load originally specified will subsequently
reference a replacement core load. Note that no
deletion of core loads takes place as in an *DELETE
with-replacement operation.

This is known as selective replacement, since
the existing referenced core load, the replacement
core load, and all other core loads in which changes
are to be implemented are all specified.

Note also that the replacement and existing core
loads must be type-compatible. That is, a mainline
or combination core load may replace either a main-
line or combination core load, but a nonprocess or
link core load may only be replaced and called by a
link. Process calls may emanate ifrom any type of
core load.
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EXAMPLE 7. CONSIDER THE FOLLOWING
SITUATION, In a typical operation, core loads
ALPHA, BETAL, and DELTA will call or reference
core load NAME1 by a CALL QUEUE statement, thus:

CALL QUEUE (NAMEL, 1, 0)

The user now elects to replace NAMEL1 by
NAME2 such that all further references to NAME1
by ALPHA, BETA1, and DELTA will be changed to
NAME2, NAME] can either be a combination or
mainline core load resident in the Core Load Area;
by definition, NAME2 must either be a combination
or mainline core load -- assume that it is also
stored (by an *STOREC]) in the Core Load Area.
The following sequence of control cards may be
used to effect this change.

SAMPLE CODING FORM

-0 | n-20 | 2i-30 31-40 41-50
\[2I31als]el7efelo]  [2[z]a[s[el el o] fel3[4ls[e]7]8lo]of  [2[3[a]s[efr[elo [l [2[3]als [e] 7]slelo]
o8 ot b b b Lo e Lo e ben
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This will modify the Program Name Table of
each of the core loads ALPHA, BETA1, and DELTA
so that whenever they call NAME1, the call will
refer to NAME2.

At this point in the operation, the user may have
no further use for this sequence change, and may
well delete core load NAME1, thus:

*DELETE M NAME1
In practice, however, he will probably not delete

NAME1 but prefer to return to his original sequence,
thus:

*SEQCH NAME2 NAME1, ALPHA, BETA1, DELTA

Note that because of the type-compatibility be-
tween existing and replacement core loads (mentioned
earlier), a restriction exists in the case of nonproc-
ess core loads. If, for example, NAME1 were a
nonprocess core load, then NAME2, ALPHA,
BETA1, and DELTA must, by definition, be also
nonprocess core loads.

EXAMPLE 7A, AN ALTERNATIVE METHOD (TO

THE *STOREMD FUNCTION) OF ON-LINE RE-



BUILDING OF PROCESS CORE LOADS. Figure 38
illustrates the technique employed, where

e CLA1 is the core load name to be modified;
assume the core load is on disk. RELPR is the
relocatable program which has been modified.

o CLA2 is a temporary core load name used to

achieve proper deletion and replacement of the
new version of CLAIL.

Debugging Core Loads using the Simulator

Several options are available to the user for the de-
bugging of process and nonprocess programs. These
are summarized below:

Nonprocess Programs

1. Using TASK (with TASK EAC) in an off-line
system only.

2, Using the Simulator in an (a) off-line, or
(b) on-line system.

SAMPLE CODING FORM
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Figure 38, On-Line Rebuilding of Process Core Loads

Process Programs

1. Using TASK (with TASK EAC) in an off-line
system only. To do this, the process program
must first be written as a nonprocess program;
when fully tested, it is reconstituted into a
process program for execution (in an on-line
environment).

2. Using the Simulator in either the on-line or
off-line environment.

The advantages of the Simulator as a debugging tool
lie mainly in

1. The powerful diagnostic messages printed by
the Simulator, which allow the user to deter-
mine the logic flow of the program by noting
the subroutines called, and,

2. _in the fact that a process or nonprocess core
load may be fully tested without taking the sys-
tem off-line.

The following examples illustrate the simulation
of assembly language process programs.

EXAMPLE 8 (PROGRAM LISTING NO. 2). This
program is written for the purpose of debugging the
Simulator. If the Simulator erred in the reading of
analog input cards, error messages would be
printed.

Actual simulation is initiated after the core load
build function has been completed. The first thing
done by the Simulator is to read the Simulator con-
trol cards *XIO and *START SIMULATION. Note
that any other Simulator control cards, such as
*¥DUMP, *SNAP, etc., should precede the *START
SIMULATION card: data cards should follow the
*START SIMULATION card. Since no control card
is used to describe the source of analog data, it is
assumed that this data will emanate from card input.

After reading the control cards, the Simulator
will proceed to interpret the instructions in the
user's program, exactly as in execution. The first
instruction being a LIBF AISQN, the Simulator
prints the S50 message, giving the name of the rou-
tine and the absolute address of the LIBF. The S20
message is printed by the Simulator AISQN routine

Functions of Executive Systems 87



and consists of a description of the calling sequence.
Since it is an analog input, a data card is read.
However, due to the fact that column 5 is blank,
the Simulator is not aware of the format of data on
this card and informs the user accordingly with the
S12 message. This is likewise the case with the
next two cards. Note that the Simulator is still in
the process of simulating the first. AISQN call. It
will continue reading cards until it completes this
call. The next card read has a D in column 5, im-
plying digital data input.

However, an absence of the E parameter in
column 72 signifies an end of data and thus the 515
message., Only the number +00123 is read into the
buffer since the word count is 2, one word of which
is the analog address.

Upon completion of the first LIBF, the busy test
is encountered. The Simulator will always take the
busy exit the first time through a busy test. The
second time through, it will exit at the not-busy in-
struction, Thus, if the busy exit ¢ontains an MDX
back to the busy test, the Simulator output will show
two "'goes' through the busy test, one after another,
as in the printout of the two S21 messages.

Next, in sequence, another LIBF AISQN is encoun-
tered. Again, the S50 message identifies the sub~
routine and the absolute address of the LIBF. The
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520 message gives the calling sequence. A card is
read with correct format and an E in column 72.
However, only the numbers 1234 and FF12 are
read, the first blank terminating the data. Since
the word count for AREA2 is four, there is insuf-
ficient data on the cards to fill the buffer. Hence
the S16 message.

Note that an E in column 72 terminates the call
to the subroutine. Therefore, if there had been no
E in the last card read, the Simulator would have
tried to fill the buffer with data from the next card.
The busy test following this is then simulated.

The last call recognized is that to VIAQ, and
this terminates the job. The following S99 message
is a snapshot of the instruction which caused
termination.

Anytime a job is terminated, a snapshct is given
to allow the user to determine why the job was
terminated.

If the user had wished to see the status of regis~
ters at some point of the program, a *SNAP or a
*TRACE card could have been added giving the rela-
tive address (obtained from the assembly) of the
instruction. Note also that the WAIT instruction can
be used as a trace aid since the Simulator automatic-
ally gives a snapshot of registers upon encountering
a WAIT,



PROGRAM LISTING NO. 2 -- EXAMPLE 8

// JoB
/1 %

S /7 ASM

*L1IS

0000
0001
0002
0003
0004
0005
0006
0007
0008
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0015
0017
0019
001A
oolB
001D
001E
0020
co21
0022
0023
0024
0025
0026
0028
0029
0039
0046
0054
00SD
00SE
006D
007C
0085
0086
0088

DB638

TEST CASE DB638 START

oBe3s
T

(=]

01262615
1000
0020
3000
01262615
0000
70FD
cols
4C200017
01262615
1000
0024
3000
01262615
0000
70FD
cole
9073
4C200018B
25241600
14162897
0029
70EF
la)62897
00SE
25241600
0002
1001
0001
0 0000
0 o004
0 1001
0002
0 AAAA
0020
0019
001C
0012
0002
001D
001D
0011
0002
0 AAAA
0000

=]

COO ONOFHONOCOOONOHON
(=] o =

wWwo
O

O OWr WO =
(=] (=]

*THIS TEST CHECKS ABILITY OF THE SIMULATOR TO

* le REJECT DATA CARDS WITH INCORRECT FORMAT
* 2+ SKIP EXCESS DATA CARDS
* 3+ SENSE INSUFFICIENT DATA IS SUPPLIED

*
#*PRINTER MESSAGES UPON SUCCESSFULL TEST SHOULD BE

* S12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
* S15 TOO MUCH DATA, READ CARDS UNTIL E IN COL 72
* S16 INSUFFICIENT DATA TO FILL 1/0 AREA, JOB

* CONTINUED

START LIBF AISQN

DC /1000
DC AREAL
WALT NOT EXECUTED
NEXT LIBF AISQN
DC /0000
MDX NEXT
LD AREA153 CHECK THAT NO MORE
BSC L ERRILsZ THAN 1 DATA CARD WAS
NEXT1 LIBF AISQN USED FOR DATA.
nC /1000
DC AREA2
WALT NOT EXECUTED
NEXT2 LIBF AISQN
DC /0000
MDX NEXT2
LD AREA2D4 CHECK THAT 1/0 AREA
S CONST ABOVE DATA CARDS WAS
BSC L ERR2,Z NOT ZEROED.

CALL VIAQ
ERR1 CALL MESSP

DC ERR1P
MDX NEXT1
ERR2 CALL MESSP
DC ERR2P
CALL VIAQ
AREAl DC 2
oC /1001
BSS 1
DC /0000
AREA2 DC 4
oC /1001
BSS 2
DC /AAAA
ERR1P EBC . NOT SUCCESSFULsy EITHER CARD.
EBC o WITH BAD FORMAT WAS NOT
EBC «RECOGNIZED OR TOO MANY DATA .
EBC «CARDS WERE READ IN,
EBC 88,
ERR2P EBC . NOT SUCCESSFULy 1/0 AREA,
EBC « ZEROED ABOVE AREA FOR WHICH .
EBC «DATA WAS SUPPLIED.
EBC o555,
CONST DC /AAANA
END START

NO ERRCRS IN ABOVE ASSEMBLY.

DUP FUNCTION COMPLETED

// puP
*S TMUL
*CCEND

CLB,

CORE
TYPE

*COW
*I8T
*F10
*ETV
*1ST
*PNT
MAIN
PNT

PNT

CALL
CALL
CORE

CIL ™M

BUlLL DB638

LOAD MAP
NAME ARGl

TABLE 3E82
TABLE 3EBE
TABLE 3EAB
TABLE 3EB8B
TABLE 3FOF
TABLE 3F46
DB638 3F4E
OB638 3Fa8
DB638 3Fa(
VIAQ 3FD6
MESSP 4036

408E

DB

ARG2

000C
001D
0010
0054
0036
0008

3F42

638 DB638 DB638
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CLB,

*X10

DB638 LD XQ

*START SIMULATION

S SO
20
14
12
14
12
14
12
14
15
14
50
21
50
21
50
20
la
16
50
21
S50
21
56
99

LU LVLLLLNHLLLONVLLLOOLLLLBLLLVLLLVLLNnLOL LV

3F4E AISON
CONTROL WORD11000, 10 AREA13F6E+SPECIAL ENTRY 13000
INPUT CARD 1 %Al $11120-11134602561-19825631562
UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
INPUT CARD 1 %Al 12340210FF12FEDC
UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
INPUT CARD 1§ *Al 00001010010001100000011111111111
UNIDENTIFLABLE PROCESS INPUT DATA CARD READ
INPUT CARD ¢ #*AlI D $00123-00010600127-02047
TOO MUCH DATA, READ CARDS UNTIL E IN COL 72
INPUT CARD t *AI H 12340210FF12FEDC
3F52 AISGN
BUSY TEST
3F52 AlSeN
BUSY TEST
3F58 AISGN
CONTROL WORD?11000, 10 AREA13F72,SPECIAL ENTRY 13000
INPUT CARD 1 *Al H 1234FF12 FEDC
INSUFFICIENT DATA TO FILL I/0 AREA
3F5C AISGN
BUSY TEST
3FSC AISGN
BUSY TEST
TSX VIAQ NOT EXECUTED
0015 3F63 3F65 5400 3FD6 0000 0000 0000 0000 0000

NO8 ILLEG LDR CD

*END
/1 *

20

DATA
DB638 END

3F38



EXAMPLE 9 (PROGRAM LISTING NO. 3). The
Simulator control cards are read in and initializing
processes are begun. The three analog input cards
signify card input for data. Note that one or all of
these cards could have specified the random number
generator as an input source. Note also that in a pro-
gram such as this, extreme care must be taken in
setting up the data cards, remembering that an E
parameter in column 72 term