
Systems Reference Library

IBM 1800 Time-Sharing ,Executive System
Concepts and Technique!:i

'l
!

File Number 1800-36
Form C26-3703-0

The purpose of this publication is ;to describe the facilities provided
by the IBM 1800 Time-Sharing Ex~cutive (TSX) System, and to
explain the basic concepts and tecpniques underlying their use. It
is intended as a reference and guide for customer systems personnel
in the implementation of the TSX ~ystem.

i
The manual is divided into four se~ctions. The first section serves as
an overall introduction to the TSX·system. The second and third
sections describe the three main ~xecutive programs and discuss
some of the important design cons;iderations that bear on the use
of standard TSX components. ThJ- final section provides selections
of programming techniques cOVerirg a wide spectrum of TSX usage.

i
The general approach taken is to explain each concept as it is
encountered, and, where possiblel elucidate that concept by means
of an example. Numerous sample problems are included to acquaint
the programmer with recommended techniques of TSX programming.
A detailed TSX Sample System is specially provided as a tutorial
on all aspects of TSX design, usage and implementation.

PREFACE

This publication describes the facilities provided by
the IBM 1800 Time-Sharing Executive System, and
discussles the concepts and techniques underlying
their use. It is intended as a reference and guide for
customer systems personnel in the implementation of
the TSX system.

The manual is written in four progressive sections
where information in one section is sometimes
necessarily related to information in another section.
These c:omprise:

• Overview of the IBM 1800 Time-Sharing Executive
System

• Functions of Executive Programs

• System Design Considerations

• Prog;ramming Techniques

The approach taken is to explain each concept as it
is encountered. In some instances, a subject con­
cept is necessarily included in a section prior to its
definition later on in that section or a subsequent
section., Sample problems are scattered throughout
the text as illustrative examples designed to clarify
concepts discussed and to familiarize the user with
recommended techniques. They should not be con­
strued as models.

The first section gives a rapid survey of the TSX
system. It defines the executive system, its modes
of operation and system requirements; discusses
some of the basic TSX system concepts employed;
and deseribes the various components of the system,
and their inter-relationships to the total system.

The second section describes the three main
executive programs (TASK, the System Director, and
the Nonprocess Monitor) in terms of their functions
and capabilities. Numerous examples are included
as demonstration of sound programming practice and
technique. Subjects discussed embrace: Program

First Edition

Scheduling, Handling of Interrupts, Use of Interval
Timers, Use of Time~Sharing, Error Alert Control
and Procedures, and Nonprocess Monitor "['sage.

The third section discusses some of the important
design considerations bearing on the use of standard
TSX system components such as the System Loader,
IBM Nonprocess System, Temporary Assembled
Skeleton (TASK), and the System Director. Subjects
discussed include: Assignment of Interrupt Levels
and Restrictions, Level Work Areas, Disk System
Configuration, and the System Skeleton.

The final section incorporates selections of pro­
gramming techniques covering a wide spectrum of
TSX uses. The purpose of this section is to aid the
programmer, acquaint him with recommended
techniques of TSX programming, and to help him to
build on the fundamentals discussed in earHer sec­
tions of this manual. A detailed TSX Sample System
at the end of the section touches on every facet of
TSX design, use and implementation.

For details of TSX system generation procedures,
System Loader assignment cards, TASK and System
Director equate cards, and all Nonprocess Monitor
control cards, the user is referred to IBM 1800
Time-Sharing Executive System, Operating Pro­
cedures, Form C26-3754.

To derive maximum benefit from "Concepts and
Techniques", the user should have a working knowl­
edge of the following TSX support pUblications:

IBM 1800 Data Acquisition and Control System,
Functional Characteristics, Form A26-Ei918

IBM 1800 Assembler Language, Form C26-5882

IBM 1130/1800 Basic FORTRAN IV Language,
Form C26-3715

IBM 1800 Data Acquisition and Control System,
Data Processing Input-Output Units, Form A26-5969

IBM 1130/1800 Plotter Subroutines, Form C26-3755

IBM 1800 Time-Sharing Executive System
Subroutine Library, Form C26-3723

This manu.al obsoletes and replaces the IBM 1800 Time-Sharing Executive System, Specifications, Form No. C26-5990.
Concurrent with this release, the subroutine portion of the Specifications Manual (C26-5990) is replaced by the IBM
1800 TimE~-Sharing Executive System, Subroutine Library, Form No. C26-3723.

Specifications contained herein are subject to change from time to time. Any such change will be reported in
subsequent revisions or Technical Newsletters.

Request for copies of IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form is provided at the back of this publication for comments. If the form has been removed, comments may

be addresst~d to IBM Corporation, Programming Publications, Department 232, San Jose, California 95114.

© International Business Machines Corporation 1967

OVERVIEW OF 1HE IBM 1800 TIME-SHARING EXECUTIVE

SYSTEM •••••••••••••••••••••••••••••••••

Introduction •
Minimum System Requirements ••••••••••••••••••

Modes of Operation ••••••••••••••••••••••••••

System Concept. •
Role of the Skeleton Executive •••••••••••••••••••

Time-Sharing ••••••••••••••••••••••••••••••
Versatility in System Configuration ••••••••••••••••

Concept of a Core Load ••••••••••••••••••••••••

Local Subprograms •••••••••••••••••••••••••••

Reentrant Coding •••••••••••••••••••••••••••

Common Areas •••••••••••••••••••••••••••••
Multi-Level Programming ••••••••••••••••••••••

System Components •

Control Programs •
Processing Programs ••••••••••••••••••••••••••

3

3
3
4

5
5
5
6

6

7

7
8
9

FUNCTIONS OF EXECUTIVE PROGRAMS. • • • • • • • • • • • •• 12
Temporary Assembled Skeleton (TASK). • • • • • • • • • • • • • •• 12
The System Director. •• 13

Program Scheduling •••• •• 14

Handling of Interrupts ••••••••••••• '.' • • • • • • • • •• 27
Use of Interval Timers •••••••••••••••••••••••• 42
Use of the Operations Monitor. • • • • • • • • • • • • • • • • • •• 59

Error Alert Control •• 59

The Nonprocess Monitor •••••••••.•••••••••••••••• 71
Nonprocess Supervisor (SUP) •• 72
Disk Utility Program (DUP) ••••••••••••••••••••• 74

FOR TRAN Compiler. •• 74

Assembler •••••••••••••••••••••••••••••••• 74

Simulator Program •• 75
Summary of Nonprocess Monitor Control Cards. • • • • • • •• 77

Examples of Nonprocess Monitor Usage • • • • • • • • • • • • •• 79

SYSTEM DESIGN CONSIDERA TIONS ••••••••••••••••• 115
Temporary Assembled Skeleton (TASK) ••••••••••••••• 117

Task Equate Cards •• 117
Buffering of Messages to Disk •••••• • • • • • • • • • • • • •• 119
Calculating Task Core Size ••••••••••••••••••••• 120

The IBM Nonprocess System •• 121
System Loader Operation 123
Function of the *Assignment Cards ••••••••••••••••• 126

The *DEDIT Control Card •••••••••••••••••••••• 127
Summary of Assignment Card Restrictions •••••••••••• 128
Sector Break Records for Absolute Programs ••••••••••• 128

System Director. • 130
Size of System Director • 131

Definition of Functions Required·. • • • • • • • • • • • • • • • • • 133
Allocation of Internal and External Interrupt Levels • • • • • • 134
Number of Call Count Subroutines Required by User' ••••• 147

Disk System Configuration •••••••••••••••••••••••• 147
Disk Organization. • 148

iii

CONTENTS

The DEFINE CONFG Operation. • • • • • • • • • • • • • • • •• 151

Disk Cartridge Initialization. • • • • • • • • • • • • • • • • • •• 157

Summary of Disk Storage Requirements and

Assignment Restrictions ••••••••••••••••••.•• 159

System Skeleton •• 161

Constitution of the System Skeleton. • • • • • • • • • • • • •• 161
Skeleton Core Size. •• 164

Calculating Skeleton Core Size. • • • • • • • • • • • • • • • •• 172
Use of *INCLD Control Cards. • • • • • • • • • • • • • • • • •• 173

Summary of the Skeleton Build Process. • • • • • • • • • • •• 173

PROGRAMMING TECHNIQUES. • • • • • • • • • • • • • • • • • •• 181
Writing Assembler Language Subroutines. • • • • • • • • • • • •• 181

LIBF Subroutines •• •• 182
Input/Output Subroutines. •• 182

Programming Subroutines Using Reentrant Coding. • • • • • •• 185

Need for Reentrant Coding •••••••••••••••••••• 185
Concept of Level Work Areas' • • • • • • • • • • • • • • • • •• 185

Mechanism for Reentrant Control •••••••••••••••• 185
Masking Out the Interrupts •• 186
Programming Notes ••••••••••••••••••••••••• 187

Writing User-Programs for Execution Under the TASK
Absolute Loader •••••••••••••••••••••••••••• 187
Program/Data Format •••••••••••••••••••••••• 187

Absolute Loader Operation •• 188

Basic Concepts of Data Acquisition and Process Control
Systems (DACS) ••••••••••••••••••••••••••• 191

Introduction •• 191

Data Acquisition Systems ••••••••••••••••••••• 193

Operator Guide/ Supervisory Control • • • • • • • • • • • • • •• 194
Direct Digital Control •••••••••••••••••••••••• 195

TSX Sample System ••••••••••••••••••••••••••• 195

System Design •••••••••••••••••••••••••••• 196
Periodic Program Scheduler • • • • • • • • • • • • • • • • • • •• 197
Sample System Error Design •••••••••••••••••••• 197

Closed Loop Control •• 199
Operator Guide Control ••••••••••••••••••••••• 200

System Design for Optimum Time-Sharing •••••••••• 200

Process Operator's Console • 200

System Documentation •• 203
Description of Sample System Flowchart • • • • • • • • • • • • 203

Coding Techniques ••••••••••••••••••••••••• 203

System Generation •••••••••••••••••••••••••• 206

On-Line Output from the Sample System ••••••••••• 208

APPENDIX A. TSX SYSTEM COMPOSITION AND

CAPABILITIES • 291

APPENDIX B. SUMMARY OF TSX CALL STATEMENTS ••• 292

APPENDIX C. ASSEMBLER LANGUAGE TSX CALLS •••••• 294

APPENDIX D. CONTENTS OF 1HE FIXED AREA OF CORE· • 297

INDEX ••••••••••••••••••••••••••••••••••• 300

ILLUSTRA TIONS

Figure~

1. IBM 1800 Time-Sharing Executive System •••••••••

2. A TSX On-Line System -- Illustrating the Skeleton
Exe:cutive ••••••••••••••••••••••••••••••

3. Four Types of Core: Loads Commonly Used in TSX ••••
4. TASK Organization ••••••••••••••••••••••••

5. Correspondence between TASK and the System Skeleton.
6. Program or Event Sequence •••••••••••••••••••
7. Illustrating Time Dependency •••••••••••••••••
8. Interrupt Initiation ••••••••••••••••••••••• ,'
9. Multi-Level Processing ••••••••• • i • •••••••••• '.

10. USE~ of Chaining (or Sequence-Type) Call Statements ••
11. Use of Queueing Statements ••••••••••••••••••
12. Illustrating a Method of Segmenting Mainlines Based on

Scheduling Requirements ••••••••••••••••••••
13 • Use of the CALL QIFON Statement ••••••••••••••

14. Use of the CALL VlAQ Statement •••••••••••••••

15. Initial Core Load ••••••••••••••••••••••••••
16. Mainline Core Load ALPHA •••••••••••••••••••
17. COlUDt Routine PEROD •••••••••••••••••••••••
18. Priority Interrupt Level Structure and Assignment
19. Summary of Characteristics of Process ,Interrupt

2

4

6

8
12
15
16
16
16
19
21

22

~~5

26
Z6

Servicing Routines. •• 32
20. Use of the CALL INTEX, CALL DPART, and RETURN

Sta,tements •••••••••••••••••••••••••••••
21. Action of MIC DW'ing an Interrupt ••••••••••••••
22. Action of MIC DW'ing an Interrupt ••••••••••••••
23. Exilt from MIC After an Interrupt has been Serviced •••

34
36
37
38

24. Timer Locations in Core Storage. • • • • • • • • • • • • • •• 43
25. Subroutine A for Example 5 - - Queueing an Analog

Scan Program ••••••••••••••••••••••••••• 47
26. General Problem Logic Flow - - Example 2 • • • • • • • •• SO

27. Action of EAC when an Error Occurs ••••••••••••• 69
28. The Nonprocess Monitor •• 12
29. Illustrating Nonprocess Monitor Action During

Time-Sharing. •• 73
30. Illustrating a JOB. • • • • • • • • • • • • • • • .0 • • • • • • • •• ·~O

31. Assemble/Compile and Execute a Nonprocess
Core Load •• 81

32. Assemble and Execute a Nonprocess Program from
the Temporary Area. •• 81

33. Compile and Store a Nonprocess Program in the
Re:locatable Program Area (User Area) on Disk •••••• 82

34. Compile and Execute a Nonprocess Program from the
Core Load Area •••••••••••••••••••• 83

35. Delete a Process Mainline, Combination, or
Interrupt Core Loa.d from the Core Load Area ••••••• 84

36. Re~placing a Nonprocess Core Load in the Core Load

Area ••••••••••••••••••••••••••••••••• 85
37. Replace a Relocatable Program in the Relocatable

Program Area. •• 86

iv

38.
39.
40.

41.
42.
43.
44.
45.

46.
47.
48.

49.
50.
51.
52.

On-Line Rebuilding of Process Core Loads ••••••••• 87
Reserving a File Area in the Core Load Area • • • • • • •• 97
Illustrating Various Card Arrangements in Dumping
a Program/Data to Nonprocess Working Storage,
Punched Cards, and the List Printer· • • • • • • • • • • • •• 98
Reloading Core Loads to User Sequence • • • • • • • • • •• 99
Dumping a Relocatable Program from the User Area. •• 100
Moving a Data File within the Core Load Area. • • • • •• 100
Reloading a Program to Nonprocess Working Storage 100
Showing the Relationship of Local Groups or Blocks
to Associated Core Load within the Core Load Area
on Disk •••••••••••••••••••• " • • • • • • • • • •• 101

Illustrating the Implementation of LOCALs • • • • • • • •• 102

Repacking User Area on Disk Drive 1 •••••• ~ • • • • •• 107

Repacking the Relocatable Subroutine Area

Following a Removal of Various Portions of the TSX
Subroutine Library. •• 108
Reproduction of Cards •••••••••••••••••••••• 109
Dump LET/FLET of Disk Drives 0, 1 and 2 • • • • • • • •• 109
LET Entries ••••••••••••••••••••••••••••• 109
FLET Entries. • 109

53. Cold Start for an On-Line System •••••••••• 110

54. Relationship of Physical Disk Drive Units to
Logical Number •••••••••••••••••••••

55. Cold Start for an Off-Line System ••••••••••

110

111
56.
57.

Preparing a GUARD or Dummy Interrupt Core Load ••• 112

Illustrating Logic of Console Interrupt ••••••• '..... 113
58. Illustrating Perpetual Time-Shared Nonprocess

Monitor Operation •••••••••••••••••• "..... 114
59. System Generation Overview ••••••••••••. ' • • • •• 116
60. TASK Source Deck and TASK Equate Cards ••• " • • • •• 117

61. A Set of TASK Equate Cards for the TSX Sample
System (see Programming Techniques) •••••• " • • • •• 117

62. The IBM Nonprocess System ••••••••••••• " • • • •• 121
63. Sequence of Control Cards at System Load Time • • • •• 124
64 • Disk Drive 0 after a System Load Operation .."..... 124
65. System Director Source Deck and EQUA TE Cards • • • •• 131
66. Example of a Set of System Director Equate Cards •••• 132
67. Mainline Core Load Queue Table· •••••••• " ••••• 132

68. Example of Interrupt Level Status Word AssignmEmt. • •• 136
69. Layout of a Level Work Area ••••••••••••
70. Interrupt Core Load Table ••••••••••••••
71. Disk Storage Unit Conversion Factors •••••••

72. Disk Layout of a Single Disk Drive TSX System
73. Overview of the DEFINE CONFG Operation

(Disk Drive 0) •••••••••••••••••••••

138

144
148
149

152
74. Illustrating Direction of Disk Configuration. • • 153
75. Establishment of System Areas at High Address Elld

of a Disk. •• 153
76. Establishment of Message Buffer Area at System

Load Time ••••••••••••••••••••••••••••• 153

77. Illustrating Redefinition of the Message Buffer Area. • •• 153

78. Disk Layout of Disk Drive Zero for Example 1 ••••••• 154

79. Definition of a Three -Drive TSX On-Line System
for Example 2. •• 156

80. Definition of a Three-Drive TSX Off-Line System
for Example 3 •••••••••••••.•••••••••••••• 157

81. Constitution of the System Skeleton ••••••••••••• 161

82. A Partial Dump following a Skeleton Build to

Illustrate the Program Name Table and the Executive
Transfer Vector •••••••••••••••••••••••••• 163

83. On-Line (Time-Sharing) System. • • • • • • • • • • • • • •• 164

Tables

1 • Table of Available Timer Time Bases • • • • • • • • • • •• 43

2 • Comparison of Timers •••••••••••••••••••••• 48
3. On-Line EAC Error Type Codes •••••••••••••••• 61
4. On-Line EAC Errors and Recovery Procedures ••••••• 62

5. Monitor Control Cards •••••••••••••••••••••• 77

6 • Loader Control Cards •• 77

7. DUP Control Cards. •• 78
8. FORTRAN Control Cards. • • • • • • • • • • • • • • • • • • •• 79

Program Listings

1. • .••...••.•.••••••....••••••••••••••••
2.
3 •••••••••••••••••••••••••••••••••••••••
4.
5 •••••••••••••••••••••••••••••••••••••••

51
89

92

104

168

v

84. On-Line (Non Time-Sharing) System. • • • • • • • • • • •• 165
85. Off-Line System •• 165

86. Illustrating Relationship of DP I/O Devices to

Associated Function and Conversion Subroutines 166
87. Layout of the System Skeleton as it would appear at

Skeleton Build Time in NPWS and the Skeleton Area •• 174
88. Core Map for Initial and Rebuilt Skeleton ••••••••• 178

89. IBM 1800 Data Acquisition and Control System •••••• 193

90. TSX Sample System Schematic Diagram •••••••••• 196
91. 1800 Computer Process Simulator • • • • • • • • • • • • • •• 201

92. TSX Sample System Flow Chart • • • • • • • • • • • • • • •• 204

9. Assembler Control Cards • • • • • • • • • • • • • • • • • • • .• 79

10. Simulator Control Cards •• 79

11. Fixed Section of a Level Work Area. • • • • • • • • • • • .• 139

12. TSX Reentrant Subroutine Work Level Requil'ements • .• 140

13. Comparison of TDWA, DWRAD, and DLABL features .• 159

14. TSX Sample System Table of Variables • • • • • • • • • •• 205

15. Disk File Organization ••••••••••••.•••••••.• 205

16. Log Description ••••••••••••••••••••••••.• 206
17. Program Data Sheets •• 210

6 •••••••••••••••••••••••••••••••••••••••
7.
8 •••••••••••••••••••••••••••••••••••••••

9 •••••••••••••••••••••••••••••••••••••••
10.

170

183

189
221

280

OVERVIEW OF THE IBM 1800 TIME-SHARING EXECUTIVE SYSTEM

INTRODUCTION

With few exceptions, real-time applications are
distinguished from other applications by two chief
characteristics: 1) some process or operation going
on outside the computer system normally has a con­
tinuous need for on-line communication with the sys­
tem, 2) there is a requirement for the computing
system to keep pace with the associated process or
operation. These characteristics of the application
place some unique and stringent requirements on
real-time processing systems for use in the real­
time environment.

Recognizing the formidable programming task
associated with a system of this scope, IBM has
developed the 1800 Time-Sharing Executive System
(TSX) which relieves the user of much of the re­
quired programming effort by freeing him to con­
centrate on the primary task of problem solution.
TSX is a FORTRAN-oriented disk-resident oper­
ating system which permits the user to make opti­
mum use of an IBM 1800 Data Acquisition and Con­
trol System (DACS) for its primary purpose, the
control of processes and similar complex environ­
ments, as well as providing him with an effective
off-line monitor system for data processing and
scientific computation. TSX improves greatly the
versatility of a Data AcqUisition and Control Sys­
tem (DACS) computer by making it possible for
background jobs to be processed when the real­
time foreground task relinquishes control of the
processor-controller. It is through time-sharing
that idle computer time is minimized or eliminated.
Programs may be written in FORTRAN and/or
symbolic Assembler language.

Figure 1 introduces the capabilities of TSX in
generalized form.

MINIMUM SYSTEM REQillREMENTS

To assist users in performing their initial system
generation, a standardized "starter" called System
Generation (SYSGEN) TASK is provided with each
installation which contains the basic elements
necessary for system generation in a form that will
be directly usable by a majority of users. SYSGEN
TASK is supplied in assembled object format as
part of the IBM Nonprocess System and consists of
the following:

• Nonprocess Monitor Linkages

• Skeleton Builder Linkages

• Absolute Loader

It is designed to support the following minimum
devices:

• 1 IBM 1801 or 1802 Processor-Controller with
a minimum of 8K words of core storage

• 1 IBM 2310 Disk storage Unit with one disk drive

• 1 IBM 1442 Card Read Punch

• 1 mM 1816 Keyboard Printer (that is, printer
portion only) or

• 1 IBM 1053 Printer

The user may employ additional I/O devices on his
system, but he must satisfy the above machine con­
figuration requirements to use SYSGEN TASK. For
example, if he substitutes a 1443 Printer for a 1053
Printer or an 1816 Keyboard Printer, a card assem­
bly of the TASK source deck to include this proviSion
becomes mandatory. As the "starter" system is a
limited version of the Temporary Assembled Skele­
ton (TASK), it will neither buffer 1053 Printer mes­
sages to disk, nor does it contain the trace and dump
utility functions.

Machine Features Supported

In addition to the above, the following optional ma­
chine units and features are supported by the TSX
system:

• Additional core storage (up to a maximum of
32,768 words)

• Additional disk drives for IBM 2310 Disk storage
Unit -- up to a maximum of three disk drives

• Additional mM 1442 Card Read Punch Unit
(up to a maximum of 2)

• Additional mM 1816 Printer Keyboard (up to a
maximum of 2)

• Additional mM 1053 Printer Units (up to a total
of eight 1053s and 1816s)

Overview of the IBlv1 1800 Time-Sharing Executive System

NONPROCESS
MONITOR

SupervisE!s Execution
of Nonpl"ocess Pro-
grams. h includes:

• Nonprocess
Supervisor

• Disk Utilities
• Fortran Compiler - .-
• Assembler
• Simulat'or

~----l ___ _
= • I

I USER"S •

NONPROCESS ~I""""----"'''''''I
PROGRAMS I

J
I __ .-:._---_

System
Director

Supervises Execution of Process
Programs. It includes:

Time-Sharing Control
Program ~;equence Control
Master Interrupt Control
Interval Timer Control
Error Alert Control

Arithmetic, Input/Output
and Conversion

SUBROUTINE LIBRARY

- -

~~~e- ~ '@> / == 
~Con~le T~ DiS_k __ =/ f;fJ 
Paper Tape! 

"""s::;;;;;Iii;~=?1 X-Y PlotttJr 

"p~~ 

Card Magnetic Tape Printer 

---,- IBM Programs ----... User-Written Programs 

Figure 1. IBM 1800 Time-Sharing Executive System 

• Additional Data Channels (up to a total of 9) • Comparator 

r------., 
I I 
I I 
I I 
I USER'S I 
I PROCESS I 
I PROGRAMS I 
I I 
I I L ______ ..J 

Process, Input/Output 

Customer Process Devices 

• Additional Interrupt Levels (up to a maximum of • IBM 1443 Printer Unit 
24) 

• IBM 2401-2402 Magnetic Tape Units (maximum of 
• Multiplexer Unit (Solid state and Relay) 2) 

• Analog-Digital Converter (up to a total of 2) • IBM 1627 Plotter Unit 

• Digital-Analog Output • IBM 1054 Paper Tape Reader 

• Digital Input • IBM 1055 Paper Tape Punch 

2 



MODES OF OPERATION 

The IBM 1800 Time-Sharing Executive System con­
sists essentially of two main parts: (1) a Skeleton 
Executive and (2) a Nonprocess Monitor. It is 
through the Skeleton Executive that process control 
and data acquisition applications are serviced in 
the on-line mode, while the Nonprocess Monitor 
operates either in the time-shared mode or as an 
independent programming system to provide data 
processing functions in a standard off-line mode. 
Each of these modes is brought into play by an ap­
propriate and corresponding system generation 
procedure. The user elects the option of construc­
ting an on-line or off-line system tailored to indi­
vidual requirements. 

On-Line Mode 

In real-time processing, inputs arrive randomly 
from a process being monitored to the processor­
controller. The computer rapidly responds to each 
input usually by conveying an output back to the 
process. This is in contrast with conventional batch 
processing where groups of input data are processed 
by passes through the computer. The notion of real­
time usually implies that a processor-controller is 
responding to inputs as they occur in the physical 
world. 

TSX operates in this mode under the control of 
the Skeleton Executive. In an on-line environment, 
user-written programs may monitor and/or control 
a process operation at any time. The machine is 
also permitted to be shared by process and non­
process work: that is, batch work may be inter­
leaved with other work. Whenever variable core is 
not required for a process program, the Nonpro­
cess Monitor may be brought into service. All 
core loads and/or programs executed are accessed 
from the system resident disk cartridge. 

Off-Line Mode 

The off-line TSX system operates in this mode 
under the control of the Temporary Assembled 
Skeleton (TASK) as a dedicated Nonprocess Moni­
tor System. Typical off-line operations are assem­
blies, compilations, disk utility functions, and the 
execution of data processing programs. 

An off-line system can be used to test problem 
program s before they are permanently stored and 
catalogued on the system cartridge, to execute 
problem program s that require the full capacity of 

available disk drives for data files, or to execute 
problem programs that are used so infrequently that 
their on-line storage is not justified. It is also used 
to build an on-line disk resident system. 

SYSTEM CONCEPT 

ROLE OF THE SKELETON EXECUTIVE 

The Skeleton Executive constitutes the framework of 
an on-line TSX system, and must be resident in 
permanent core storage before any continuous and 
coordinated real-time processing can take place. 
Other portions of the system are brought into core 
from disk storage as they are required to perform 
specific functions. 

The Executive is extremely flexible and can be 
assembled at system generation time so that no core 
is wasted by selecting any of the numerous options 
available. The user may include frequently-called 
subroutines, fast response interrupt servicing rou­
tines, and other user-written programs in the skele­
ton to make the most effective use of his control 
system. 

A typical skeleton executive might consist of the 
following parts as shown in Figure 2. The function 
of each individual component will now be described. 

Skeleton I/O. This is a set of input-output subrou­
tines which provides a rapid and easy method for the 
user to reference the various data processing input­
output devices (e. g., card read punch, disk, 
printer) for input or output of data. It includes: 

• DISKN (Di sk Storage Subroutine - perform s all 
reading from and writing to the IBM 2310 Disk 
Storage Unit) 

• TYPEN/WRTYN (Printer-Keyboard Subroutine -
transfers data to and from the IBM 1053 and 
IBM 1816 Printer-Keyboard) 

• PRNTN (Printer Subroutine - handles all print 
and carriage control functions relative to the 
IBM 1443 Printer 

These and other basic system routines make up the 
Skeleton I/O package which corresponds to an iden­
tical set of input-output subroutines used by TASK. 
A description of each subroutine will be found else­
where in the TSX Systems Reference Library. 

Overview of the IBM 1800 Time-Sharing Executive System 3 



LOW CORlE 

SKELETON I/O 

INSKEL COMMON 

SYSTEM DIRECTOR 

USER AND TSX SUBROUTINES 

VARIABLE 

CORE 

HIGH CORE 

Figure 2. A TSX On-Line System -- Illustrating the 
Skeleton Executive 

SKELETON 
EXECUTIVE 

INSKEL COMMON. A uniquely labelled common 
area in the skeleton set aside for communications 
among the various types of core loads used in the 
system. It can be referenced by any process or 
nonprocess program under the on-line system. 

System Director. This is the nucleus of the Skele­
ton Executive and controls all facets of process 
monitoring. It directs the handling of interrupts 
in a priority fashion determined by the user; super-­
vises the execution of any number of mainline core 
loads or programs dictated by the process; ser­
vices all error conditions with a minimum of dis­
turbance to most processes under control; main­
tains the 1800 interval timers; and makes the sys­
tem available to the Nonprocess Monitor. 

User-Written Programs. The user has the option 
to include as many programs and subroutines as 

4 

possible in the skeleton for reasons of frequent 
usage, rapid response, and optimum utilization of 
disk space. These may take the form of: 

• Interrupt subroutines 

• Timer subroutines 

• Count subroutines 

• Special trace and error subroutines 

• mM-supplied arithmetic, I/O, and other 
subroutines 

• Any other user-written subroutines 

These are first compiled/assembled in relocatable 
format and stored on disk; at skeleton build time, 
they are relocated into the Skeleton Executive. 

TIME-SHARING 

In many industrial installations, the real-time con­
trol system will not utilize all the computer time; 
therefore, time will be available to perform back­
ground jobs. Time-sharing techniques can thus be 
employed when idle processor-controller time is 
available in a given system environment to offer the 
user the kind of service he requires. The: notion 
of time-sharing also implies the sharing of computer 
resources, since not only time but primary and 
secondary storage as well as most input-output 
facilities are also shared. 

When idle time is available in the mM 1800 TSX 
System, control can be automatically transferred to 
an independent Nonprocess Monitor System which is 
identical to any stack-job monitor system., All 
assembling, compiling, simulating, and other sys­
tem activities can now be executed under the control 
of the Nonprocess Monitor. Performing fiuch jobs 
time-shared has a distinct advantage in that any time 
not required for process control functions can be 
used for data processing functions. Also, since 
process control program s and strategies tend to 
change, time-sharing makes it extremely desirable 
to be able to modify these programs and strategies 
at the on-line installation without taking the computer 
off-line. It is through the time-sharing feature that 
the utilization of the 1800 system is best optimized. 



VERSATILITY IN SYSTEM CONFIGURATION 

A modern real-time operating system must be 
geared to change and diversity. The TSX system 
itself can exist in an almost unlimited variety of 
machine configurations: different installations will 
typically have different configurations as well as 
different applications. Moreover, the configura­
tion at a given installation may frequently change. 
If we look at application and configuration of an 
operating system, we see that the operating sys­
tem must cope with an unprecedented number of 
environments. All of this puts a premium on sys­
tem modularity and flexibility. 

TSX gives the user the ability to define his con­
figuration according to his exact needs: he is there­
fore never bound to a fixed system. Furthermore, 
after having specified and generated a particular 
system, he is still free to move process and/or 
nonprocess portions of his system from one disk 
storage device to another. 

In general, the input-output capability of the IBM 
1800 Data Acquisition and Control System can be 
backed up. For example, under program control, a 
1053 Printer can have its messages automatically 
switched to a back-up 1053 Printer; disk storage 
drives can be logically switched or removed from 
the system; and any device may be removed from 
service if it continues to fail. This dual capacity 
indicates that an installation may suffer from the 
failure of one or more input-output devices, and 
remain "on the air" under the most stringent usage 
conditions. Hand-in-hand with this back-up capa­
bility, a history of hardware device failures can be 
examined at any time for maintenance purposes. 

CONCEPT OF A CORE LOAD 

In practice, the core storage size of a data acquisi­
tion and control system is not sufficient to contain 
(nor does it need contain) all of the instructions re­
quired for the execution of all functions at anyone 
time. Thus, the entire set of instructions must be 
broken down into smaller pieces, and these pieces 
be made available for immediate loading. To facili­
tate rapid loading, they should be stored on disk in 
executable core image format. 

The technique of program segmentation is em­
ployed in the TSX system where program s are 
formed into smaller units called core loads. A 
core load is, by definition, an executable program 

or portion of a program which performs some user 
function. It is not necessarily a program in its en­
tirety because this program may well be too large 
to fit into variable core in one piece for execution. 
The core load is unique in that it is stored on disk 
in core load core image format to facilitate rapid 
loading when it is called for execution. 

Figure 3 illustrates the four types of core loads 
commonly used in TSX. A core load may contain 
other subroutines that are not associated with the 
main program - that is, subroutines not otherwise 
available in core (either included in the skeleton, or 
in the form of load-on-call subprogram s). A typical 
core load may consist of a mainline or interrupt pro­
gram, in-core interrupt subroutines, and all other 
required subroutines that are not included with the 
Skeleton Executive. 

Core loads are important in real-time systems 
for the following reasons: 

• Real-time linkages are automatically built 

• The core-load is permanently built and stored 
on disk for rapid execution 

• Core loads are called by name 

• No compiling/assembling is needed at execution 
time. 

LOCAL SUBPROGRAMS 

TSX provides a facility for loading subroutines at the 
time they are called for in the execution of a program. 
Such a subroutine is known as a LOCAL (load-on­
call). All LOCALs called by the same mainline pro­
gram in a core load use the same area of core stor­
age by overlaying one another as they are called. A 
copy of each LOCAL subprogram used with a core 
load is kept on disk in core-image format together 
with that core load (see Figure 3). 

LOCALs thus allow the user to have, effectively, 
a larger program executed in core than would other­
wise be possible if all the subroutines were loaded 
into core at the same time. There is no theoretical 
limit to the number of LOCALs which the user wishes 
to implement. This means a virtual extension of 
variable core. Other advantages of this feature are 
(a) the ability to read in subroutines, and (b) the 
breakdown of core loads to the subroutine level. 

Overview of the IBM 1800 Time-Sharing Executive System 5 



processing programs during their ~xecution. A key 
control program is the System Director which is 
loaded into main storage (as part of the resident 
Skeleton Executive) and remains there indefinitely 
to ensure continuous coordinated operation of the 
system. Other parts of the system: are brought into 
main storage from secondary storage as they are 
required to perform specific functions. Processing 
programs consist of language translators and ser­
vice programs that are provided by mM to assist 
the user, as well as problem programs that are 
user-written and incorporated as part of the TSX 
system. Both mM and user programs have the 
same functional relationship to the control programs. 

CONTROL PROGRAMS 

There are three control programs within the TSX 
system: 

Temporary Assembled Skeleton (TASK) 
System Director 
Nonprocess Director 

Temporary Assembled Skeleton (TASK) 

TASK is a stand-alone disk oriented monitor pro­
gram from which an on-line or off-line TSX system 
is constructed. It performs three distinct functions: 

• Supervises the generation of a disk oriented TSX 
operating system according to user specifications. 

• Supports a full monitor capability so that TSX 
can be used as a data processing monitor system. 

• Allows the user to load absolute program s into 
core for execution, or to store them on disk. 

Since real-time process control installation re­
quirements vary from installation to installation, it 
follows that each installation must be defined or 
tailored to the specific system ftmctional require­
ments and input-output configuration of that installa­
tion. The tailoring function, defined as system 
generation, is carried out by TASK which provides 
the facilities for the creation and main.tenance of a 
monitor system composed of mM and user-written 
programs. The user specifies his system through 
the medium of equate cards. 

:F'igure 4 illustrates TASK organization in 
simplified form. 

8 

The System Director 

This control program forms the heart of the TSX 
system and resides in core storage at all times as 
part of the skeleton where all permanent areas are 
storage-protected to ensure that they are not: inad­
vertently violated or altered. 

The System Director directs the handling of proc­
ess and data processing input-output interrupts, pro­
vides timer control over the process, is responsible 
for the orderly transfer of control from one core load 
to the next, and handles the transfer of control be­
tween the on-line and off-line modes. All process 
core loads are in core-image format on disk and 
are accessed at disk read speed. 

The Director is read from disk only during a cold 
start or reload (EAC) operation. Primary entry to 
the System Director results from 1) internal and ex­
ternal hardware interrupts, 2) TSX calls from user's 
programs, and 3) errors. 

SKELETON I/O 

TASK PROGRAM 

SET 

VCORE~--------------------~ 

VARIABLE 

CORE 

Figure 4. T ASK Organization 

TASK 



INSKEL COMMON has already been defined. To 
assign a variable to this area, a special FORTRAN 
statement, COMMON/INSKEL/, must be used. All 
other attributes of the COMMON statement remain 
the same. This area must be used for communica­
tions between 

• Core loads of a different type 

• Interrupt core loads 

• Combination core loads (if either is executed as 
an interrupt core load) 

• A special core load and the mainline core load 
that calls it 

• A mainline core load (which called a special 
core load) and the core load that restores it 

• A skeleton subroutine and any other subroutine 
or core load 

The normal COMMON area located at the high­
address end of core storage can be referenced only 
by mainline or nonprocess core loads. The normal 
COMMON statement in a mainline, special, or non­
process core load is used to refer to this area. 
This area is saved and restored when special core 
loads or time-sharing operations are initiated or 
terminated; i. e., communication between nonproc­
ess core loads is possible. 

The third area for COMMON is used only for in­
terprogram communication for program s that form 
an interrupt core load or, between combination core 
loads when they are executed on the mainline level. 
The normal COMMON statement in an interrupt or 
combination core load is used to refer to this area. 
The highest addressed location of this area must 
be assigned by the user at system generation time, 
and must be an even number. This assigned loca­
tion is the high-address boundary of the variable 
core storage area that is saved when an interrupt 
core load is loaded for execution. Thus, it is 
necessary to save only the area specified by the 
user for interrupt core loads (not the whole variable 
area). 

MULTI-LEVEL PROGRAMMING 

The interrupt structure of the 1800 system consists 
of a total of 24 hardware levels with up to 16 inter­
rupt signals per level. These can, of course, be 

processed in a true priority sequence. A higher 
level interrupt subroutine will always interrupt a 
lower level interrupt subroutine, but beyond this, 
the Skeleton Executive permits interrupts to be 
l'recorded" now for later processing. 

The interrupt scheme within the Skeleton Execu­
tive also provides a great amount of flexibility and 
frees the user from most of the problems of servic­
ing interrupts. Interrupt servicing subroutines may 
be aSSigned in the following ways: 

1. An interrupt subroutine which must be executed 
immediately under any condition whatsoever can 
be made a permanent part of the skeleton. That 
is, the subroutine will always be in high-speed 
core storage and will be executable in the order 
of microseconds. 

2. Those subroutines which are associated with a 
given mainline program can be assigned in such 
a way that they are always read into core stor­
age with that mainline when it is loaded from 
disk. The response time of a mainline inter­
rupt routine is almost the same as that of a 
skeleton interrupt routine only if the mainline 
core load containing the interrupt routine is in 
core when the interrupt occurs. 

3. For low-priority subroutines, a core overlay 
technique allows the user to call an interrupt 
core load, bring it into core storage, save 
what was in core storage, and on completion of 
the interrupt process, restore core storage to 
its original state. These multiple operations of 
sequencing, saving, and replacing of core stor­
age is automatically handled by the Skeleton 
Executive. All that is required of the user is to 
assign the priority. It should be mentioned that 
the priority interrupt sequence can be changed, 
at will, under program control. 

The interrupt core load response time depends on 
the size of the core load and the disk layout. It is 
slower than the skeleton or mainline core load inter­
rupts. 

SYSTEM COMPONENTS 

TSX components can be considered under two separ­
ate group-headings: (1) control programs and (2) 
processing program s. 

In general, control programs govern the order in 
which processing programs are executed, and pro­
vide services that are required in common by the 

Overview of the IB'M 1800 Time-Sharing Executive System 7 



processing programs during their execution. A key 
control program is the System Director which is 
loaded into main storage (as part of the resident 
Skeleton Executive) and remains there indefinitely 
to ensurc3 continuous coordinated operation of the 
system. Other parts of the system are brought into 
main storage from secondary storage as they are 
required to perform specific f'lUlctions. Processing 
programs consist of language translators and ser­
vice programs that are provided by:IBM to assist 
the user, as well as problem progr~ms that are 
user-written and incorporated as part of the TSX 
system. Both IBM and user programs have the 
same functional relationship to th(~ pontrol programs. 

CONTROL PROGRAMS 

There are three control program s within the TSX 
system: 

Temporary Assembled Skeleton (TASK) 
Systom Director 
Nonprocess Director 

Temporary Assembled Skeleton (TASK) 

TASK is a stand-alone disk oriented monitor pro­
gram from which an on-line or off..1.line TSX system 
is constructed. It performs three distinct f'lUlctions: 

• Supervises the generation of a disk oriented TSX 
operating system according to user specifications. 

• Supports a full monitor capability so that TSX 
can be used as a data processing monitor system. 

• Allows the user to load absolute programs into 
core for execution, or to store them on disk. 

Since real-time process control installation re­
qUirements vary from installation to installation, it 
follows that each installation must be defined or 
tailored to the specific system functional require­
ments and input-output configuration of that installa­
tion. The tailoring f'lUlction, defined as system 
generation, is carried out by TASK which provides 
the facilities for the creation and maintenance of a 
monitor system composed of IBM and user-written 
programs. The user specifies his system through 
the medium of equate cards. 

Figure 4 illustrates TASK organization in 
simplified form. 

8 

The System Director 

This control program forms the heart of the 'rSX 
system and resides in core storage at all times as 
part of the skeleton where all permanent areas are 
storage-protected to ensure that they are not inad­
vertently violated or altered. 

The System Director directs the handling of proc­
ess and data processing input-output interrupts, pro­
vides timer control over the process, is responsible 
for the orderly transfer of control from one eore load 
to the next, and handles the transfer of control be­
tween the on-line and off-line modes. All process 
core loads are in core-image format on disk and 
are accessed at disk read speed. 

The Director is read from disk only durin.g a cold 
start or reload (EAC) operation. Primary entry to 
the System Director results from 1) internal and ex­
ternal hardware interrupts, 2) TSX calls from user's 
programs, and 3) errors. 

SKELETON I/O 

T AS K PROGRAM 

SET 

VCORE~--------------------~ 

VARIABLE 

CORE 

Figure 4. T ASK Organization 

TASK 



The Nonprocess Supervisor 

The Nonprocess Supervisor directs the execution of 
all nonprocess core loads which may be either IBM­
supplied as part of the TSX package or user-written. 
It normally operates in the time-sharing mode under 
the control of the System Director, but it may also be 
run as a dedicated off-line monitor system under 
TASK. 

Its main function is to recognize certain system 
control cards and transfer control to the processing 
program specified. It also initializes the nonprocess 
system whenever a job control card is identified. 

PROCESSING PROGRAMS 

Processing programs consist of service programs 
and language translators broken down as follows: 

Service Program s 

Cold Start Program 
System Loader 
Core Load Builder 
Skeleton Builder 
mM TSX Subroutine Library 
Disk Utility Program (DUP) 

Language Translators 

Assembler 
FORTRAN Compiler 
Simulator 

Service Program s 

Service programs include a group of loaders and 
builders which serve as system generation aids, as 
well as a disk utility program and a comprehensive 
IBM TSX Subroutine Library. 

Cold Start Program 

This program loads the Skeleton Executive into core, 
storage protects it, starts the real-time clock and 
calls the user's initial core'load for execution. This 
operation places the System Director in control of 
the on-line system. 

System Loader 

The primary fUJ1ctions of the System Loader are to 
load the initial mM TSX system onto the disk, build 
an interrupt assignment table from user-supplied 

control records, and prepare the disk layout for sys­
tem operation. System assignment cards are used 
to inform the System Loader of interrupt level assign­
ment of I/O devices, interval timers, and process in­
terrupts. The loader makes entries in a directory 
called the Location Equivalence Table (LET) for each 
component part of the mM TSX system. 

Core Load Builder 

The Core Load Builder program combines a user­
written relocatable program together with all refer­
enced subroutines not included in the Skeleton Execu­
tive into an executable core load for storage in the 
Core Load Area on disk. Core loads may be of sev­
eral types: process mainline, combination, inter­
rupt, or nonprocess. 

All process core loads must be built and stored on 
disk prior to execution under control of an on-line 
TSX system. Input to the Core Load Builder is sup­
plied by the user in the form of control records which 
contain the names of relocatable mainline programs, 
interrupts to be recorded, data files used, interrupt 
routines included as part of the core load, and LOCAL 
(load-on-call) subprograms. 

Using the data provided by the System Loader and 
the Skeleton Builder, as well as information from pro­
grams and subroutines, the Core Load Builder estab­
lishes all subroutine linkages, hardware interrupt 
servicing linkages, and the creation of certain com­
munications areas which are integrated with instruc­
tions to make up a core load. 

Skeleton Builder 

The Skeleton Builder program obtains its input from 
user-assigned control records, programs, subrou­
tines, and information from the System Loader to 
construct the System Skeleton in core-image format 
which is then stored on disk. The skeleton is read 
into core for execution by a cold start operation. The 
rebuilding of the skeleton is required whenever rou­
tines are added or deleted, or other modifications 
are made. It is the System Skeleton which constitutes 
the Skeleton Executive. 

mM TSX Subroutine Library 

This comprises a comprehensive set of reentrant 
subroutines as well as a select set of non-reentrant 
subroutines designed to aid the user in making ef­
ficient use of the mM 1800 Data Acquisition and 

Overview of the IBM 1800 Time-Sharing Executive System 9 



Control System. The library contains the 
following: 

• Data processing and process input-output sub­
routines 

• Conversion subroutines 

• Arithmetic and functional subroutines 

• FORTRAN input-output subroutines 

• Miscellaneous subroutines 

Data Processing and Process I/O Subroutines. Data 
processing (printers, punches, etc.) and process 
input-output (P I/O) subroutines provide a quick and 
straightforward method for the programmer to refer­
ence the various data processing, digital and analog 
I/O dev'ices for input or output of data. All I/O rou­
tines may be called directly from FORTRAN: data 
processing I/O subroutines may be called indirectly 
by the use of FORTRAN I/O. 

Conversion Subroutines. The design and operation of 
the numerous input-output devices is such that many 
of them impose a unique correspondence between 
character representations in the external medium 
and the associated bit configurations within the com­
puter. Conversion subroutines convert inputs from 
these devices into a form in which the computer can 
operate and to prepare computed results for output 
on various devices. 

Arithmetic and Functional Subroutines. The arith­
metic and functional group of subroutines includes a 
selection of twenty-seven basic routines which are 
most frequently required because of their general 
applicability. The arithmetic library contains both 
ilie routines that are visible to the FORTRAN pro­
grammer, as well as the many routines that are 
used by the FORTRAN compiler generated object 
code, which may also be used by the Assembler pro­
grammer. 

FORTRAN I/O Subroutines. FORTRAN I/O subrou­
tines provide a link between the FORTRAN object 
code and the I/O devices. They support boili stand,­
ard and extended preCision. 

10 

Miscellaneous Subroutines. The miscellaneous group 
provides the user with the ability to perform certain 
machine operations using the FORTRAN lan!~age. 
These include real-time, selective dump, trace, and 
overlay routines. 

Real-time subroutines are operational control rou­
tines which service the Skeleton Executive in an on­
line environment. Examples are TIMER (specify one 
of two hardware interval timers for some periodic 
activity), LEVEL (set one of twenty-four levels for 
programmed interrupt use), and MASK (inhibit selec­
tively one or more levels of interrupt). 

Selective dump subroutines allow the user to print 
chosen areas of core storage during ilie exeeution of 
an object program. For example, DUMP will output 
on the list printer, in hexadecimal or decimal format, 
a certain portion of core storage; DUMPS will print 
th e status of the 1800 (that is, status indicators, 
contents of registers, and work areas). 

The user may exercise the option of writing his 
own mainline trace interrupt routine which ean be 
included in a core load to process a trace interrupt. 
He might, for example, design such a routine to 
monitor anum ber of conditions. The subroutine 
TRPRT is available for use in tracing routines which 
print a specified number of characters on the 1053/ 
1816 Keyboard Printer or 1443 Printer. 

The TSX Subroutine Library also contains an over­
lay routine called FLIP which serves to call LOCAL 
(load-on-call) subprograms into core storag;e. All 
LOCALs in a given core load are executed from the 
same core storage locations; each LOCAL group 
overlays the previous group. 

In order to permit entry from multiple programs 
and interrupt levels before completing computations 
from a previous call, the arithmetic and functional 
subroutines, and most of the I/O subroutines, are de­
signed to be reentrant. That is, they can be entered 
from a different level of machine operation despite 
the fact that they may not have completed operation 
on a previous level. Non-reentrant versions of the 
arithmetic, functional, and conversion subroutines 
are also supplied. 

Disk Utility Program (DUP) 

The Disk Utility Program is a comprehensive group 
of generalized utility and maintenance routines de­
signed to aid the user in the day-to-day operation of 
the TSX system. By this means, the most frequently 
required services of disk and data maintenance can be 



performed with a minimum of effort. The TSX DUP 
philosophy is to provide as much assistance as pos­
sible to the user. DUP is a component part of the 
Nonprocess Monitor. 

DUP is called into service by the Nonprocess 
Monitor Supervisor (SUP) whenever it recognizes a 
DUP monitor control card. It is also automatically 
summoned after the successful completion of an 
assembly or FORTRAN compilation. DUP functions 
can be summarized as follows: 

1. It permits the user to store, modify, and refer 
to programs and data using the compact and 
economical direct-access disk storage facilities 
of the system without regard to specific input­
output configurations. 

2. It allows the free interchange and use of pro­
grams and data among programmers. 

3. It provides a systematic method to identify and 
locate programs and data, and systematic 
methods to reference data after it is located. 

All of these functions can be carried out while the 
TSX system is on-line, as well as in the off-line 
mode. Examples of DUP facilities include the fol­
lowing: 

• Change sequence of execution of core loads 

• Replace a core load with another core load 

• Create disk files 

• Replace an object program already stored on 
disk 

• Build core loads (in conjunction with the Core 
Load Builder) 

• Define the disk configuration 

• Dump data/program from one medium to another 

• Delete a program, core load, or a data file from 
the disk 

• Pack a file on the disk to eliminate unused areas, 
thus minimizing disk storage requirements 

• Modify core loads on-line 

Language Translators 

Language translators assist a programmer by 
enabling him to define a problem or an application 
in a language form that can be readily learned and 
understood. In the TSX system, the user may define 
his problem solution or application 

In a flexible easy-to-use symbolic language­
Assembler language, and/or 
In a form of mathematical notation - FORTRAN 

Assembler 

The Assem bIer program is a one-for-one disk 
oriented symbolic type translator which assembles 
object programs in machine language from source 
programs written in symbolic language. It normally 
resides on disk. The assembler accepts control 
records and source programs in card form only. 
Upon a successful assembly, the object program in 
relocatable format is moved to disk where it is 
permanently stored, or, alternatively, called for 
execution. The Assem bIer Language is fully 
described in the publication IBM 1800 Assembler 
Language, Form C26-5882. 

FORTRAN Compiler 

The FORTRAN Compiler translates programs written 
in the FORTRAN language into executable machine 
language. The real-time TSX FORTRAN Compiler 
permits the user to make the most of the digital and 
analog I/O features using a higher level language, 
while at the same time allowing background jobs to 
be executed. Since FORTRAN is easily understood 
by technical personnel, its availability in the TSX 
system reduces significantly the programming effort 
required. For a full description of the FORTRAN 
language, see IBM 1130/1800 Basic FORTRAN IV 
Language, Form C26-3715. ~ 

Simulator 

The Simulator is designed as a debugging aid which 
allows the user to check out or test process and/or 
nonprocess program s without disrupting normal TSX 
system operation - that is, without taking the system 
off line. It functions under the control of the Non­
process Monitor. 

Overview of the IRtvl 1800 Time-Sharing Executive System 11 



FUNCTIONS OF EXECUTIVE PROGRAMS 

This s(3ction describes the functions of the three 
main executive programs which constitute an mM 
1800 Time-Sharing Executive System, namely, 

Temporary Assembled Skeleton (TASK) 
System Itirector 
Nonprocess Monitor 

and discusses the concepts underlying their use. 
Samplo programs and coding are interspersed 
throughout the text as demonstration of good pro­
gramming practice and technique. Since the 
Temporary Assembled Skeleton (TASK) is the first 
program with which the user becomes involved in 
the crE~ation of an on-line or off-line TSX system, it 
is discussed at the outset. 

TEMPORARY ASSEMBLED SKELETON (TASK) 

It has already been mentioned that TASK (Temporary 
Assembled Skeleton) is a builder or "tailor" card 
monitor system with strong disk capabilities from 
which an off-line or on-line TSX system is construc­
ted. ''I'he use of TASK, therefore, constitutes the 

t _. 
TASK 

SKElETON I/O 

TASK PROGRAM 
SET 1 ~--------------------~~VCORE 

SKElETON I/O 

SYSTEM 
DIRECTOR 

intermediate stage in system generation towards 
placing a system on-line. In an on-line TSX system, 
T ASK control ceases at cold start time when the 
System Skeleton has been loaded into core storage. 
In an off-line TSX system, TASK itself fWlctions in 
much the same fashion as a System Skeleton with 
permanent time- sharing. 

For simplicity, TASK can be considered in two 
parts (see Figure 4): 

• Skeleton I/O 

• TASK Program Set 

Skeleton I/O 

The Skeleton I/O is a collection of input-output and 
general supporting subroutines that the TUX system 
requires to be in core at all times. It is ,i;hat por­
tion of a user-configurated TASK which corresponds 
exactly to the Skeleton I/O on an on-line 'rSX sys­
tem. 

Figure 5 illustrates this correspondenee, as well 
as the core layout, at two time periods of an on­
line and an off-line system. 

1 
SYSTEM 

SKElETON 

VARIABLE 

CORE 

USIER'S PROGRAMS 

VCORE -
VARIABLE 

CORE 

OFF-LINE SYSTEM OI'-l-LiNE SYSTEM 

Figure S. Correspondence between TASK and the System Skeleton 

12 



The I/O routines used by TASK form the basis of 
the Skeleton I/O. These consist of the following: 

• DISKN - Disk subroutine as used by TSX Oper­
ating System 

• TYPEN/WRTYN- Printer/Keyboard subroutine 
as used by TSX Operating System 

• PRNTN ..... Printer subroutine as used by TSX 
Operating System 

• CARDN - TASK only Card I/O subroutine 

A description of each of the above subroutines 
will be found in the TSX Systems Reference library. 

Since the TSX system requires that at least one 
disk be present on the 1800, DISKN must be in core 
at all times. If the user has assigned a 1053 or 1816 
to his machine, TYPEN/WRTYN must also reside 
permanently in core. Although CARDN is in core 
during TASK execution, it does not normally form a 
part of the Skeleton I/O. The user must therefore 
define whether or not CARDN is to be a component 
part of his skeleton by means of the TASK equate 
card CDINS. If it is not, CARDN automatically be­
comes a part of the TASK Program set. It is through 
the Skeleton I/O that an off-line system obtains full 
monitor capabilities. 

TASK Program Set 

The TASK Program Set is that integral part of the 
Temporary Assembled Skeleton which functions in a 
similar manner to the System Director. It consists 
of: 

• TASK Master Interrupt Control (TMIC) 

• TASK Director 

• TASK Error Alert Control (TEA C) 

• Absolute Loader function 

• Load Monitor function 

• Skeleton Build function 

• TASK Conversion routines 

• TASK Utilities 

TMIC directs all I/O interrupts to their corre­
sponding servicing routines and resets all process 
interrupts, while TEAC processes errors that have 
been found by other parts of TASK. The TASK Direc­
tor initializes TASK and directs the execution of the 
Absolute Loader function, Load Monitor function, 
and the Skeleton Build function. 

The Absolute Loader gives the user a facility to 
load absolute assembled programs from cards to 
core for execution. It can also be used for the stor­
ing of user-written program s or data on disk. The 
use of this function is discussed later in some detail 
(see Programming Techniques). The Load Monitor 
function serves to initialize the TSX Nonprocess 
Monitor for execution. There are two conversion 
routines: (1) TASK HOLEB converts hollerith input 
to one or two EBCDIC characters per word output, 
while (2) TASK EBPRT converts two characters per 
word EBCDIC input to two characters per word, sys­
tem, list, or EAC printer code. 

A complete utility package comprised of full 
trace, check/stop trace, four utility programs, and 
a utility monitor can be included within TASK at 
assembly time. The user elects this option through 
equate cards. 

Except in the case of a skeleton builder option, a 
TASK disk load, or a cold start, TASK is loaded 
with a 4-card TASK high core loader. 

For a more complete description of TASK func­
tions and system generation procedures, the user is 
referred to the IBM 1800 Time-Sharing Executive 
System, Operating Procedures, Form C26-3754. 

Other considerations affecting the use of TASK 
are discussed under System Design Considerations. 

THE SYSTEM DffiECTOR 

The System Director is the nucleus of the skeleton 
executive of a TSX system, and always resides in 
core as part of the skeleton to direct the handling 
of interrupts, to load and execute core loads, to 
expand usage of interval timers, and to process 
errors. Primary entry to the System Director 
derives from internal and external hardware inter­
rupts, TSX calls from user's programs and errors. 
Its principal component parts comprise the follow­
ing: 

Master Interrupt Control (MIC). This is a reentrant 
control program which automatically directs all 
internal, I/O, external, and programmed interrupts 
to their proper interrupt servicing routines. Con­
trol returns to MIC as long as unserviced interrupts 
exist. 

Functions of Executive Programs 13 



Program Sequence Control (PSC). The Program 
Sequence Control Program is responsible for orderly 
transfer of control from one user-specified core load 
to the next. A core load may also temporarily be 
saved on disk pending the processing of another core 
load. All PSC functions are restricted to process 
mainline core loads. 

Time-Sharing Control (TSC). This controls the 
time-sharing of variable core between process and 
nonprocess core loads by a core exchange method. 
TSC is entered selectively from the execution of a 
CALL SHARE statement or automatically by a CALL 
VIAQ statement when the queue is empty. 

Interval Timer Control (ITC). ITC services all in·· 
terrupts involving three machine timers A, B, and 
C, nine programmed timers, and a programmed rnal 
time clock. The programmed timers and the real 
time clock are based on timer C. Timer C is reset 
by the subtraction of a fixed value; accurate timing 
is therefore kept, even when the response to the 
timer interrupt itself may be delayed. It also 8er-' 
vices the "no-response routine" for the 1053/1816 
printers in the Skeleton I/O. As an option, it also 
services the Operations Monitor during nonprocess 
execution. Periodic interrupts are generated from 
interval timers rather than from the real time clock. 
The programmed timers interrogate the Interrupt 
Core Load Table (ICLT), but only skeleton count 
routines are entered into. If there is no such roubne, 
the condition is recorded for later servicing. 

Error Alert Control (EAC). The EAC program re·· 
sides in core at all times, and is called to process 
all error conditions whenever an error develops. 
EAC 

• optionally saves core for future reference 

• opti,onally branches to a user-written error sub-· 
routine (which may be included with each process 
core load) for further error analysis 

• prints an error diagnostic message, and 

• executes one of four possible error recovery 
procedures 

Mainline Core Load Queue Table. This is a stack 
or pushdown list of names of mainline core loads 
(and their respective priorities) that have been 
queued (that is, put in line) for future execution. 

14 

Although the Queue Table forms part of the System 
Director, the real-time TSX queue-callin{; state­
ments (e. g., QUEUE, UNQ, QIFON and v1AQ) are 
designed as subroutines which may be included in 
the skeleton or with the mainline at the user's 
discretion. Processing of a mainline is not sus­
pended as a result of queueing a hi.gher priority 
mainline. 

Level Work Areas. A level work area of 104 words 
(in the skeleton) is required for 

• each interrupt level used 

• process mainlines 

• nonprocess core loads, and 

• internal error s 

A level work area contains interrupt level instruc­
tions, MIC linkages, and work areas. It :ls used to 
allow recursive entry to those programs supplied by 
ffiM. 

Each of the following System Director Junctions 
will now be explained in some detail: 

• Program Scheduling 

• Handling of Interrupts 

• Use of Interval Timers 

• Use of Time-Sharing 

• Use of the Operations Monitor 

• Error Alert Control 

PROGRAM SCHEDULING 

Control processes may be classified under three 
basic headings: 

Program or event sequence 
Time dependence 
Interrupt initiation 

In practice, a process may be a combination of 
all three categories, but is usually weighted more 
heavily towards one. Rarely does a prOCHSS lend it­
self to only one. 



Figure 6 is a simplified version of a process 
based totally on program sequence. An example 
might be a crude-oil distillation unit in an oil refin­
ery. A scan is made to see what the present status 
is, tests and calculations are made to verify the in­
formation, optimization towards a given product mix 
is applied, required changes to process variables 
are effected, data is recorded, etc. Each event 
thus depends on the completion of previous events. 

A process based on time is illustrated by Figure 
7. This classification could be applied to a process 
in vol ving a solitary engine test stand. For example, 
a given throttle position and resistance load are 
set up. At specified time increments, one or more 
variables are recorded, such as manifold pres-
sure, RPM, fuel flow, fuel level, oil temperature, 
oil pressure, etc. When all the variables have been 
recorded, the throttle position and/or load resistance 
are changed and a subsequent timing cycle initiated. 
Finally, when all specified com binations of throttle 
and load resistance settings have been tested, the 
system is initialized for another engine. Each event 
in this situation depends on time. 

Note that in practice, the servicing of a process 
as depicted in Figure 7 is not necessarily sequen­
tial in nature. Also, it is the actual time period 
that schedules the servicing of an event. The man-

Figure 6. Program or Event Sequence 

neT in which servicing takes place is not dictated 
by the type of program (e. g., mainline, interrupt 
routine) which initiated the event. 

The third classification is illustrated by Figure 8. 
An example might be the input phase of a hospital 
information system. With no input information, the 
system switches over to the time-sharing mode or 
remains idle. When, however, a patient enters 
the hospital, certain historical information is 
punched into cards. An interrupt is then initiated 
by an operator. The interrupt recognition routine 
sets up the card read program and the patient data 
enters the system -- the system then returns to 
time.-sharing or to an idle condition. When, later, 
a doctor requests medication for a certain patient, 
in a specified quantity, at certain time increments 
and duration, he sets up the proper information on 
a manual entry unit and initiates an interrupt. The 
interrupt recognition routine again calls the appro­
priate program which reads in the manual entry, 
verifies the information, enters it in the specified 
files, and once again returns the system to the 
time-sharing mode. In a similar fashion, other 
input information such as records and/or schedules 
for dietary, patient status, laboratory, surgery, 
etc., are entered. Events thus classified are in­
itiated by interrupts. 

• 
• 
• 

Figure 7. Illustrating Time Dependency 

Functions of Executive Programs 15 



INTERRUPT 
RECOGNITION 

ROUTINE 

Figure 8. Interrupt Initiation 

It is obvious from the foregoing that if each ap­
plication illustrated were expanded to its complete 
operatin.g requirements, it would most likely con­
sist of aU three classifications to some degree. For 
example, in Figure 6, an inventory log of input and 
output material is given every hour. This is re-

1st INTERRUPT 
LEVEL 

2nd INTERRUPT 
LEVEL 

3rd INTERRUPT 
LEVEL 

quired to update inventories, product costs, etc. 
Al so, an interrupt will occur whenever a heating 
Wlit goes out of range. This will immediately 
initiate a program to rectify the situation. 

Multi-Level Control. A control system must be 
able to immediately recognize certain situa1tions of 
a physical process. It must also be able to ignore 
certain functions until they occur. In practice, 
the first requirement is more critical. In oither 
case, the normal sequence of events will be! inter­
rupted until some action is taken. The situation 
is further complicated if a second interrupt, more 
critical than the first, occurs during the action 
phase of the first interrupt. The servicing of the 
first interrupt must obviously be suspended while 
attention is given to the more critical inter:rupt. 
Such a chain of interrupts may continue through 
several iterations as shown in Figure 9. Upon 
completion of the required action of each interrupt, 
the previously interrupted action must be continued 
until the system returns to normal. From this 
brief picture of multi-level operations, we see 
that program scheduling now becomes more com­
plex. The user must now have the capability to 
take immediate action, record the occurrence for 
later action, or arrange for action to be taken as 
soon as pOSSible, but on a less critica11evel. To 
do this, the user defines what is to be recognized 
on each level and sets this up by machine configur­
ations. Later his program sets up when action is 
to be taken and at what level. 

MAINLINE I {,\1 ______ ~ 
LEVEL ~ 

~--------------------,------------~ 

Figure 9.. Multi-Level Processing 

16 



Program Scheduling Requirements 

In a control system application, the scheduling of 
programs to be executed on the normal or mainline 
level constitutes the main problem. During certain 
phases of a control system, the user will execute 
programs in a set sequence. This type of sequence 
may be set up by a program condition, an interrupt, 
or a given time period. Sequencing or chaining of 
programs mayor may not be required depending on 
the user's specific application. 

A direct sequence or chain of programs is re .... 
quired for two separate situations. The first situ­
ation is a set of programs whose functions must be 
in a given order that cannot be interrupted except 
for critical conditions. The second derives from a 
program that is too large for core size available, 
so it must be segmented into several separate 
programs. These programs will now overlay each 
other, and must therefore be scheduled in a fixed 
sequence. 

As illustrated in Figure 6, special sequences of 
programs may also be required on the mainline level 
under certain special conditions. These special 
sequences are required under three conditions which 
come under normal operation. The first requirement 
is a sequence or chain of events that is common to 
several different phases of a system. This is logic­
ally equivalent to a subroutine which is called by 
several programs: the main difference is that a 
chain of programs is now being scheduled instead 
of a subroutine. The next requirement occurs when 
a situation is bordering a critical point, but is still 
within the limits defined by the user. In this event, 
the user may want a warning, but has no real need 
to be alarmed. The third situation is similar except 
that the user is alarmed and cannot therefore proceed 
with the present sequence of programs until certain 
conditions are met. This is a common situation in 
process control where process inputs are not ac­
ceptable and a special scan is set up until valid 
variables are obtained. As a result, the normal 
calculation, optimization, etc., are delayed but 
will be resumed as soon as possible. 

The requirements stated thus far are categorized 
under program sequence since they have a definite 
relationship and order. Three commands are used 
to implement sequence control: 

1. CALL CHAIN (specify the next program to be 
executed) 

2. CALL SPECL (terminate the program, save 
it on disk, and execute the next 
program). 

3. CALL BACK (return control to a program 
which was partially executed). 

Multi-process control, however, presents a new 
scheduling problem. Since one control system is 
used to control two or more processes, the definite 
relationship and order of programs is normally 
applicable within each process but not between 
processes. However, each process must be able 
to schedule its own programs ill such a manner 
that the control system can handle all schedules. 
Also, because each process will normally contain 
its own unique program sequences, one type of 
scheduling problem does not necessarily eliminate 
another. It should also be understood that multi­
level processing does not always dictate unrelated 
program scheduling: all possible combinations must 
be considered by a given program scheduling situ­
ation. The queueing technique itself will not produce 
such a system, but when combined with the priority 
technique, the system becomes flexible enough for 
any control system's reqUirements. Four commands 
permit this form of control: 

1. CALL QUEUE (enter a core load into a waiting 
queue) 

2. CALL UNQ (remove a core load from a 
waiting queue) 

3. CALL VIAQ (call the highest priority core 
load waiting in the queue to be 
executed next in sequence). 

4. CALL QIFON (interrogate recorded interrupts) 

Program Sequence Control (PSC) 

The center of the scheduling system is the Program 
Sequence Control (PSC) Program which is perman­
ently resident in core in an on-line TSX system 
working under control of the System Skeleton. PSC 
is a means by which mainline core loads are loaded 
to core, and control transferred from one core load 
to another, according to user specifications. The 

Functions of Executive Programs 17 



user sets up his requirements when he uses a chain 
or sequence type CALL or a queueing-type CALL 
statement. PSC performs the following functions: 

• Loads all mainline core loads 

• Saves and reloads the special core load 

• Initializes the ICL Table for each core load 

• Tests for errors in calls to load programs 

Chaining or Sequence Technique 

Chaining or sequence-type call statements permit the 
programmer to control the order in which tasks are 
perfornled, interrupts serviced, and off-line jobs 
allowed. This control is important since the various 
levels of control are necessarily carried out in se­
quence and the order is critical. For example, an 
optimizing routine too large for core storage can be 
executed in segInented parts if the programmer has 
control over their sequence. Three call sequences 
are used in chaining: 1) CALL CHAIN, 2) CALL 
SPECL, and 3) CALL BACK. Note that core load 
names referenced by the CALL statement must also 
be specified in a FORTRAN EXTERNAL statement. 
A core load name cannot be the name of a component 
subprogram. of that core load. Figure 10 illustrates 
the use of these call sequences. 

Such statements may be freely embedded within 
process programs written in FORTRAN or in the 
Assembler language. Through the use of these 
commands, within programs, the programmer can 
control the frequency and order in which the various 
levels of control are performed. Even when the 
various levels are not performed on a regular basis, 
these commands allow control over the sequence. 
Of equal importance is the ease by which sequence 
is changed as the process control problem changes 
with time. 

CALL CHAIN --Normal Call 

When a given core load is called for execution, the 
user sets up the following statement: 

18 

CALL CHAIN (NAME) 

where 

CHAIN Entry to PSC 
and NAME = Name assigned by user to the next 

sequential core load to be executed 

This normal call transfers control to PSC, 
thereby terminating the current mainline core load 
at its last logical statement. PSC then sets up a 
disk function to read in the next mainline core 
load specified by NAME into variable core'l over­
laying the present core load that contained the CALL 
CHAIN statement. The new core load thus destroys 
the previous core load. Once the core load is in 
core, the disk I/O routine reverts to PSC, which 
in turn passes control to the new core load. 

CALL SPECL -- Special Call 

The second type of core load sequence is similar to 
the CALL CHAIN, except that the current core load 
and its associated parameters must be saved. This 
is set up as follows: 

CALL SPECL (NAME) 

where 

SPECL Special entry to PSC 
and NAME = Name assigned by user to a 

special core load to be executed 
next 

The special call suspends execution of the current 
mainline core load and transfers control to PSC 
which saves the present variable core area and all 
required parameters, such as index registers, ac­
cumulator, extension, return address, and status. 
This information is written to the Special Save Area 
on disk. Once the save operation is complete, the 
disk I/O routine returns control to PSC. The opera­
tion proceeds from this point exactly as in a CALL 
CHAIN. 

Note that only one mainline core load can be 
saved. Thus, if a CALL SPECL is used in a core 



l Core Load A 

CALL SPECL (D) 

~Special Call 

" 
, 

Core Load 0 CALL CHAIN (8) 
At- Return to Saved 

No<""'1 Mainline 

::B~CK) 
Call 

Core Load B ) 

CALL CHAIN (X) 

CALL CHAIN (C) Nonna I --z-.'" 

NO<""'i Call Core Load X 
Call Core Load C 

CALL S~ECL (F) 

~speCla, CALL BACK 

CALL CHAIN (E) 1\' 
Normal M 

Call ~ 
Core Load E 

CALL SPECL (F) 

- Core Load F 

CALL CHAIN (A) r-z-Return to Saved 
Mainline 

Figure 10. Use of Chaining (or Sequence-type) Call Statements 

load that was referenced by another CALL SPE CL, 
the mainline core load saved originally is lost. A 
core load called by a CALL SPE CL may, however, 
chain to other core loads as long as these core loads 
do not contain a CALL SPECL (see Figure 10). 

CALL BACK -- Return Saved Mainline 

In order to return to the saved core load, a third 
call statement becomes necessary. This is used 
only in conjunction with the special sequence function. 
It is set up as follows: 

CALL BACK 

where 

BACK Special entry to PSC 

CALL BACK 

CALL BACK transfers control to PSC which, in 
turn, initiates a disk read operation to load variable 
core with the information stored in the Special Save 
Area on disk as the result of a CALL SPECL. When 
the read operation is complete, the disk I/O routine 
returns control to PSC. All saved parameters are 
now restored, and the restored core load continues 
execution at the saved return address (that is, the 
statement follOwing the CALL SPECL statement). 

It should be noted that a CALL BACK statement 
is required only if the saved core load is to be 
restored and continued. The user may well initiate 
a new core load as the result of a special core load. 
This new core load could then be referenced by a 
CALL CHAIN or a CALL SPECL. 

A core load is terminated or suspended as the 
result of any of the three calls: CALL CHAIN, 
CALL SPECL, or CALL BACK. CALL CHAIN and 

Functions of Executive Programs 19 



CALL BACK are the last logical statements executed 
in a core load. However, a CALL SPECL willllot 
be last logical statement of a core load if a CALL 
BACK has been executed to restore the saved core 
load, and to continue execution following the CALL 
SPE CL statement. 

Queueing and Priority Techniques 

Queueing techniques normally use statistical methods 
to control the number of queues. The rule that 
governs the input and output order in which waiting 
requests are serviced is usually based on an ordered­
queue discipline -- that is, first-come, first-served. 
Since we are considering the use of only one queue, 
a first--come, first-served control is only valid for 
a given priority. Therefore, as several priorities 
are, in practice, required by most control system 
applications, a priority technique must be enforced. 
A priority level is one of the most common ways of 
classifying interrupt requests according to their 
urgency. Note, however, that the urgency may 
change as a function of the condition of the servicing 
system. For example, a request may be given a 
higher level as waiting-time increases. Priorities 
are assigned by the user to programs, processes, 
and functions. The queueing and priority control 
techniques employed combine to provide a flexible 
method completely acceptable for scheduling un­
related core loads. Although the call sequences to 
be described are referred to as queueing calls, both 
queueing and priority control are implied. 

CALL QUEUE -- Insert into Queue 

The first of four calls is used to place a core load 
entry in the Core Load Queue Table (see System 
Design Considerations: System Direc!£!:), and to 
continue with the execution of the present function. 
The format of the call is: 

where 

QUEUE 

NAME 

20 

CALL QUEUE (NAME, P, E) 

Name of the subroutine that places 
the specified core load in the Queue 
Table. 
Name of user-assigned core load 
entry to be entered in the Queue 
Table (and in FLET). 

P 

E 

Integer expression, specifying 
queue priority of core load NAME. 
This may be 1-32767. One (1) is 
the highest priority number. 
Designated error procedure to be 
taken if the queue is full. In each 
case, an appropriate error message 
is printed (see Table 2: On-line 
EAC Errors and Recovery Pro­
cedures). The parameter is user­
assigned as follows: 

E = O. Ignore this call, and con­
tinue execution as if the 
core load had been queued. 

E 1 through 32766. Replace the 
lowest priority entry cur­
rently in the queue with the 
name and priority speci­
fied in this call, if the 
priority of that cmrrent 
queue entry is lower (that 
is, numerically larger) 
than E. If there is no 
queue entry with a lower 
priority, execut4:~ the re­
start core load Elpecified 
for this core load. 

E = 32767. Execute a restart core 
load. 

In practice, E is always set to zero. The size 
of the Queue Table should be redefined by the user 
if it becomes saturated. The options listed under E 
(above) are provided by the Error Alert Control 
(EAC) program (described later). 

Figures 11 and 12 illustrate the use of these 
functions. In Figure 12, an example is given of a 
series of mainlines which, if executed serially with­
out interruption, would not allow queue teBting for 
an inordinate amount of time. In order to be able to 
check the queue in some user-specified tbne period 
to see if any high priority core loads need to be 
executed, a program of the priority of the current 
executing program is queued; a CALL SPECL is 
then made to a core load that exits via a CALL 
VIAQ. The VIAQ routine then checks the queue for 
the highest priority program and executes it. When 
the executed program is the core load queued by 
core load A, a CALL BACK is performed which re­
stores the original calling core load to execution 
status. This technique is commonly employed to 
break up the execution of a long program. 



Entry to core load A via CALL VIAQ 
when A is highest priority in queue ,or 
CALL CHAIN ( A), or CALL SPECL ( A ) 

CALL QUEUE (P, 30,1) 

CALL QUEUE (8,20,0) 

CALL VIAQ 

A 

8 

CALL QUEUE (J, 10,0) 

CALL QUEUE (M, 20,0) 

Occurrence of Process Interrupt 
causes transfer of control to the 
interrupt servicing routine. 

ALV 

~ ____ ~ ______________________ ~JI ____________________________ ~"I~~~ _____________ I_n_te_rr~up~t_R~o_ut~in~e 
J - continued ~ 

CALL QUEUE (N, 20,0) 

CALL VIAQ 

CALL UNQ (M,20) 
CAll UNQ (R 20) 
CAll QUEU~ (p, 10,0) 

= CAll VIAQ 

At this point, the queue still contains at least 
two entries for core load P and one for core 
load N. 

Figure 11.. Use of Queueing Statements 

X 

When a CALL QUEUE statement is executed, 
control is transferred to the real-time QUEUE 
routine which tests for an entry in the Queue Table 
with the identical name and priority as that specified 
in the user calling statement. If such an entry exists, 
a further entry will not be made -- a given core load 
and priority cannot, by definition, appear more than 
once in the Queue Table. However, the same core 
load with varying priorities may appear once for 
each unique priority. 

If the entry is already in the queue, control is 
passed to the next executable instruction following 
the CALL QUEUE statement. If this is not the case, 
the QUEUE routine tests for a Queue-Table-full 
condition. If the table is full, control passes to 
EAC which executes the function specified by the E 

CALL QUEUE (X, 2,0) 

CALL INTEX 

parameter. If the Queue-Table-full condition test 
is not satisfied, the QUEUE routine will place the 
core load entry in the Queue Table, and transfer 
control to the next instruction following the CALL 
QUEUE statement. 

CALL QUEUE may be executed in a program 
that was initiated by an interrupt or a specified 
time interval, or as the result of a program de­
cision. It should never be used as the last logical 
statement of a core load since the QUEUE routine 
returns control to the instruction immediately fol­
lowing the CALL QUEUE. A CALL ENDTS (see 
Use of Time-Sharing) statement is normally used 
in conjunction with CALL QUEUE for time-sharing 
systems. The main uses of CALL QUEUE can be 
summarized thus: 

Functions of Executive Programs 21 



Problem: Repeated execution of queued core loads 
during a given core load. 

Solution: (The encircled numbers specify the sequence of operations.) 

CALL CHAIN (B) 

B 1- I 
Note 1: The CALL SPECL statements cause core load A to be 

saved before transferring to core load E via lines 3 
and 8. The CALL BACK statement in core load R 
causes core load A to be restored before the return 
is made via lines 6 or 11. 

CALL VIAQ 

Continue execution of core loads until 
a CALL VIAQ is executed and core load 
R is highest priority in the queue. 

R 

CALL BACK 

Note 2: Between lines 4 and 5 all core loads of priorities 1 and 
2 w ill be executed; between lines 9 and lOa II core 
loads of priorities 1 through 4 will be executed. 

Figure 12.. Illustrating a Method of Segmenting Mainlines Based ,m Scheduling Requirements 

22 



• To queue a core load from any program 

• To queue a core load from any hardware opera­
tional level 

• To queue a core load when the user is unaware 
what is presently in progress on anyone machine 
level 

• To queue a core load when the user is unaware 
what machine levels are in progress, and 

• To queue a core load that is not related to all 
other core loads. 

This is a very flexible command since related or 
unrelated core loads can be scheduled on the basis 
of time, a program decision, an interrupt, and from 
any hardware operational level. 

CALL UNQ -- Delete from the Queue 

The reverse of queueing a core load entry is to 
remove such an entry from the Queue Table in the 
system. The statement which gives this ability is: 

CALL UNQ (NAME, P) 

where 

UNQ Name of the subroutine that removes 

NAME 

P 

the specified mainline core load 
entry from the Queue Table 
User-assigned name of mainlin8 
core load entry to be removed 
Priority status of user-assigned 
core load NAME. This may be in 
the range 1-32767. 

Upon execution of a CALL UNQ statement, control 
is transferred to the UNQ subroutine which searches 
the Queue Table for a similar entry of the same name 
and priority. If such an entry is detected, it is re­
moved (that is, deleted) from the Queue Table. If 
the table does not contain a matching entry, the 
Queue Table remains unchanged. In either case, 
the UNQ subroutine returns control to the instruction 
immediately following the CALL UNQ statement. 
Like CALL QUEUE, CALL UNQ may be executed at 
any time and from any level of machine operation. 
Note that no error parameter is required. 

CALL QIFON -- Queue Core Load if Indicator is On 

The third queueing-type call is the CALL QIFON 
statement. 

CALL QIFON (NAME, P, L, I, E) 

where 

NAME 

P 

E 

L 
I 

User-assigned name of a mainline 
core load 
Priority status of each NAME, in 
the range 1-32767. 
Error parameter, as described for 
CALL QUEUE 
Interrupt priority level indicator 
PISW bit position indicator or 
CALL COUNT indicators 

In TSX, a unique L and I combination parameter 
is set up for each process interrupt, program·­
settable interrupt, and program interval timer rou­
tine. The significance of this combination (which is 
dependent on the user's machine configuration) is 
given below: 

L I Reference 

0-23 0-15 Proces s interrupts 
0-23 (-)n Programmed interrupts 

(see CALL LEVEL) 
(-)n 0-31 Subprogram number for 

CALL COUNT statements 
(see Interval Timers) 

Minus (-)n above refers to any minus number. 

The CALL QIFON function is required only when 
any of the above mentioned interrupts are set up to 
be recorded (for delayed servicing). In general, 
most interrupts call for immediate action, or as 
soon as their appropriate servicing program can be 
read from disk to variable core. Some interrupts, 
however, must be recognized immediately, but do 
not require action until a later time. The function 
of delaying servicing is termed "recording": the 
interrupt is then said to be "recorded". CALL 
QIFON thus provides the user with the ability to 
interrogate recorded interrupts only when he so 
desires. It is the only way a recorded interrupt 
can be serviced. Figure 13 illustrates the use of 
this function. 

The core load entries are queued only if their 
respective interrupt record indicators are on. When 
an indicator is on, the QIFON routine sets up the 

Functions of Executive Programs 23 



PROCESS CORE LOAD QIFON ROUTINE 

CALL QIFON (NAME 1,35,6, 15,O) ____ t--____ """ 

CALL QIFON (NAME 2,8,0,1,32767) ----1-----1-<: 

CALL QIFON (NAME 3, 1, -1,22, 32767) __ -+-__ --I~ 

II 

I 
CALL GIIFON (NAME 4,42,6,-1,0) _____ , ___ .... <: 

II 
Figure 13.. Use of the CAlJ.. QlFON Statement 

proper information and then executes a CALL 
QUEUE. If the Queue Table is not full, or the 
replace error option is utilized, the QUEUE rou­
tine returns control to QIFON which proceeds 
with the interrogation of indicators until the QIFON 
call is completed. A recorded interrupt indicator 

24 

QUEUE ROUTINE 

ueue 
NAME 1 

with 0 priority 
f 

Queue 
NAME 2 

with 0 priority 

ueue 
NAME 3 

with 0 priority 
of 1 

Ouel.'e 
NAME 4 

with 0 priority 

is automatically turned off (that is, cleared) when­
ever the QIFON routine interrogates a program 
indicator. Control is then passed to the noxt exe­
cutable instruction following the CALL QIPON 
statement, or as speCified for error conditions 
under E. 



CALL QIFON may be used from any level of 
machine operation. It should never be used as the 
last logical statement of a core load. 

CALL VIAQ -- Execute Highest Priority Core Load 

The fourth and last queueing statement is 

where 

VIAQ 

CALL VIAQ 

Name of the subroutine that deter­
mines the highest priority core load 
entry in the Queue Table. 

The CALL VIAQ statement, like CALL CHAIN, 
and CALL BACK, is used as the last logical state­
ment of a core load. When executed, control is 
transferred to the VIAQ routine which interrogates 
the Queue Table. If the table is empty, the process 
is considered to be in an idle condition (that is, the 
process does not require any action at this time.) 
Since variable core is not utilized by process core 
loads, control is passed to the Time Sharing Control 
(TSC) program for nonprocess work if there is work 
to do. The Nonprocess Monitor indicates that it has 
batch work to perform by the execution of the Console 
Interrupt button, with sense switch 7 on. When the 
operator places a job stack in the card hopper, he 
turns on sense switch 7 and depresses the Console 
Interrupt button. This informs TSC that batch work 
is to be performed. 

At the end of the job, the / / END OF ALL JOBS 
card indicates no more batch work is to be performed 
until the Console Interrupt button is again depressed. 
This feature is provided to reduce the amount of 
disk activity, and to give faster response to the 
process whenever there is no nonprocess work for 
execution. 

The time-sharing operation, thus initiated, will 
continue for the duration of time specified at system 
generation time, or until it is terminated by a CALL 
ENDTS statement. Note that a CALL VIAQ is auto­
matically performed when time-sharing terminates. 
If, therefore, an interrupt program has previously 
placed a name in the queue, the named core load 
will then be immediately executed (see also Use of 
Time-Sharing). Figure 14 illustrates the use of this 
calling statement. 

Problem: All programs of a given priority must be 
executed before a certain core load. 

Solution: 

A 

A2 

Ir 

CALL QUEUE (A2, 2, 0) 
CALL VIAQ 

I 

Continue execution of core loads until a CALL VIAQ 
is executed and core load A2 is the highest priority in 
the queue. All core loads of priority 1 and 2 would 
be completed before entering A2. 

CALL QUEUE (A3, 4, 0) 
CALL VIAQ 

.. 

Continue execution of all core loads of priority 1, 2, 
A3 3, and 4 until a CALL VIAQ calls A3. 

= ~ 

. 

CALL CHAIN (A4) 

Figure 14. Use of the CAl..L VlAQ Statement 

In normal operations, the queue might not be 
empty, in which case the VIAQ routine obtains the 
name of the entry with the highest priority. If 
several entries have the same (highest) priority, 
the first entry of that priority will be selected. 

The VIAQ routine then sets up the proper infor­
mation for a CALL CHAIN with the core load name 
derived from the Queue Table, and passes control 
to PSC to execute the CHAIN function exactly as if a 
CALL CHAIN had been executed. Note that a core 
load containing a CALL CHAIN statement is destroyed 
by the core load it calls; a core load containing a 
CALL VIAQ is, therefore, similarly overlaid in 
core. The CALL VIAQ and CALL CHAIN commands 
are similar except for the method of obtaining the 
name of the core load to be called. Both calls, how­
ever, have their own useful unique functions. 

Functions of Executive Programs 2S 



Example of Non-synchronous Periodic Scheduling 

The following example illustrates a simple technique 
frequently used in a process control environment 
whereby core loads can be executed on some periodic 
time basis. This is lmown as non-syp.chronous per­
iodic scheduling. The test case is not intended as a 
model: it serves only to demonstrate program sched­
uling techniques. The example is given in three easy 
steps: 

1. The Initial Core Load -- This is the initial 
mainline core load named TEST which is read 
in.to core by a cold start operation. The core 
load first unmasks the system because cold 
start enters the initial core load in an all-level 
masked condition; it then sets a programmed 
timer to initiate a continuous cycle of opera­
tions (by calling the count routin.e #0). 

2. 

Figure 15 illustrates this core load. The lLse 
of CALL CHAIN to call in another core load 
(that is, ALPHA) is also shown. 
Mainline Core Load ALPHA -- This is the 
ALPHA core load called by the initial core load. 
It is a mainline core load which prints out the 
time of day (see Figure 16). 

Figure 16 also shows the use of CALL VIA'Q 
to check the queue. If there is nothing in the 
queue, the system establishes the time-sharing 
mode (that is, the Nonprocess Monitor is 
called). 

If an / / END OF ALL JOBS has just been 
executed, the VIAQ routine will wait until an 
interrupt occurs to check the queue. 

If time-sharing is in progress (that is, the 
Nonprocess Monitor is occupied), core is ex­
changed and the Nonprocess Supervisor is read 
into core, or alternatively, the interrupted non­
process program is brought into core. 

3. Count Routine PEROD -- This is the count rou­
tine named PEROD which is included in the Sys­
tem Skeleton at system generation time. 

26 

It is entered by way of the Interval Timer 
Control (ITC) program when the time period 
specified in the initial core load TEST, or from 
its own call (that is CALL COUNT (0, 1, 5), has 
ellapsed. 

The function of PEROD is to end time-sharing 
and to load ALPHA into the queue, so that wh.~n 
time-sharing is ended and the queue is checked, 
ALPHA will print out the time. It also restarts 
the timer to repeat this cycle of operation (that 
is, it starts the count again). 

SAMPLE CODING FORM 

~LL~~~~LLLLLLLLLL~LL~~~~~~~ I" 1 1 I 1 1 III 

1 1 I 1 II 1 I 

~~~~UL~~~~LLLL~LL~~~~~J~.1 1 II' I III1 I 

f--L--LLL.L.=1!...I::CL:.=.LL:=-L.:L:LL..L.L...L...L....L.L-'--'--'-'--'-..LJ..J.--LLLJJ_LLL1~

I! I I!! 1.1, I I I! I I I I I

f--L--LWL-.LJ=~=.J..U:~=..J...L-L--'--l--LL--LL..L.L--'--L.L.L.L.J-.LL.J--LL..LJ.~~

1-l-'-LJ:~--=:.:=L!...Ui~c..t:.!L'-'-'-'--'=-'=-='--'=::J.:...:C::L..IL-'-'-_L.iJJ __ LL..J.hl 1 1 1 1 1 1

~LLLL~~~~~~~~~~.L.L~~~.LL.J-LLLJJIJIJIJIJI-U~UU

I! I I

I! , I

I I I I

I! I J

J.!-l!-~='--'--LL.LLLL-'--'---'--'--.L..L....J.....J-~...L...L.....L-L--'--'--'--'---L..LJ..J..LLLJ .. JIJIJIJIJI-UI....JI....JILILJ

~~~~LL~~~~~~.LL...L...L....L.L~-'--'-~I..LJ..~ .. ~I~I~I~I~I~I~I~ILIU 

III'III~' I I I I 

Figure 15. Initial Core Load 

SAMPLE CODING FORM 

1_L.Ll~ I I 1 I I I I I 

L.LLLuJ--1. 1 I 1 I I I I I 

L.J_iJ~. 1 1 1 I I I 1 1 

- 1 1 I I I 1 1 I I 1 I 1 I 1 I 

LLd--LLLJ. I I I I I I I I 

- 1 1 I 1 I I 1 1 I I I I 1 I 1 

1 I 1 I I 1 1 1 I I I I I I I 1 

f--L--LLLLL:..LLLLLLL.LLJ...J....."'--'--'--'_-"-1 -1.-1 -1.-1 -,-I -1-1 ..1.-1 --,-I ..1.-1 ...... 1 -,---,I I ! I I I , ! L ! I , I I , , I I 

f--L-JLLl.....J...l!~~.LL.LLLLJLLI.....LJJI....lIJI--'-I--'-1 --'-1--'-1 -'--I ·-,--1 .L...JI u __ J~. I I I 1 1 I I I 1 1 

~LLLLI!..!L==L::.IL=:J<:.IC:L:..L-'-'_-"-I-'--I-'-I-'-I-"-I-'-I--'-I-'-I-'-I-'---'1 II I I" ,1.1,1 II 1,I,, 

1 1,1'''I I II1I I, "1.1" I 1 I, 1 I 1 

~LLLL~~~~LLLLLL~_.L.L...L...L....L.L~-'--'-~I..LJ..l~. I, I 1 1 I I 1 1 1 I 

~LLLL~L!.l!:~LL.LL.LL~.L.L.L.L-'---'-..L.L~-'--'-~..LJ..J..l....LLJ. I I 1 I 1 I, 1 I I I 

~LLLL~~~~~~~~...L-L-'-'---'---'---'--'---'---'-~~~~. I I I 1 1 I I 1 I 1 I 

~LLLL~~~~~~~~-'--'---'--"---'---'---'---'---'--'-~..LJ..J..LLLJ. I 1 I I I I 1 I I I I 

IME.I\I,,F,~ •. 21), I I I I I I ! I I 

~LLLLCL.~L.L.L.L.LL~L.L~LI-"-I-"-I-"-I-,-I-"-I-I-I--'-I"""'-1.-I~I, . I I I I I I I I 1 I I 

~LLLL~~~~~LLLL~LI~I~I~I~I~I~I-'-I-'-I~I-"--II LJJ~. I I II I I,,· I I 

!! "I! I !! II I I I I,! , \ I,! , I I, I I I I 
I! I! I, I I! II I I I II I' l 1,1 I I I, I I J I 

~LLLLCLCLL.LL.LLLLL-'--'--~LI~I-'-I-'-I~I~I-'-I--'-I~I-,-I-1.--I LI I I I I I I I I I 1 I I I'1' I 

p::.L'.J:::==CL.J::LL.LLLLL~..L!i::.L:.L.LL..L:...!:::r::L:LL..LS,T,AiRr, 1 I I 1 I I I I I I 1 1 I 

~~~LLLLL.LLLLL.LL~-'-·_LI-'-I-'-I-'-I~I-'-I~I--'-I--'-I--,-1-1.--1 LI I I I I I I I I 1 II I I! I I I 

I I I I II I
Figure 16. Mainline Core Load ALPlfA

SAMPLE CODING FORM

Figure 17. Count Routine PEROD

HANDLING OF INTERRUPTS

Interrupt Philosophy

Basically, in all on-line real time control systems,
the processor-controller behaves in very much the
same fashion as a radar system. The real-time com­
puter reacts to input data from a real world environ­
ment and provides input data to correct or control
that environment. For example, a computer system
controlling a chemical process monitors the inputs
from measuring devices and instrumentation on the
operator's control panel. Later, the computer up­
dates the control mechanisms and indicators to main­
tain safe and efficient operation. Emergency condi­
tions are also sensed and appropriate action initiated.
Instrument status sensing, data computation, and re­
action control must occur within a specified interval
of time to prevent disruption of the process. How
well it is able to respond generally determines the
maximum capability of the on-line system. A Sig­
nificant component in the responsive ability of any
real time system is the inclusion of a powerful and
flexible multi-priority interrupt program.

Purpose of I/O Interru ts. There are two main
reasons for I 0 interrupts:

1. To reduce system cost by reducing control cir­
cuitry in I/O devices

2. To speed up job throughput, which is relatively
slow when compared with internal processing.

Consider a normal computer operation without
interrupts. Since the computer is basically a sequen­
tial machine, it functions sequentially (or serially,
performing one job at a time). In the simple example
below,

INPUTl - PROCESSl - OUTPUTl - INPUT2-
PROCESS2

when PROCESSl is completed, the user must wait
until OUTPUTl and INPUT2 are accomplished be­
fore he can begin PROCESS2. This could be extreme­
ly time-consuming.

Since the input device waits idly during PROCESSl
and OUTPUTl time, the question arises: why should
this idle interval of time not be used to read in
INPUT2? This could be obviated with the use of I/O
interrupts. The I/O interrupt is based on the con­
cept of keeping I/O devices active, thus, hopefully,
eliminating process delay caused by these devices.
The following sequence of events illustrates the type
of action that might be taken:

1. A mainline program initiates an I/O device
operation.

2. The program proceeds with its processing while
the I/O device is sending (or receiving) infor­
mation.

3. When the I/O device has transferred its infor­
mation, an interrupt signal is sent to the
Process Controller.

4. This interrupts the mainline program.
5. The interruption is serviced; that is, further

data is requested or sent.
6. The mainline resumes processing at the point

of interruption.
7. The cycle repeats itself during the execution

of the program.

Functions of Executive Programs 27

1800 Multi-Interrupt Priority Scheme. In the IBM
1800 Time-Sharing Executive System, the essential
elements of the multi -interrupt priority control
scheme consist of:

• A hardware priority structure

• Core store data areas for each interrupt level

• A Master Interrupt Control Program (MIe) which
recognizes, controls, and directs the servicing
of interrupts

The hardware priority structure provides for 3
fixed and up to 24 additional interrupt levels which
are assignable by the user to I/O, process, or
programmed interrupts, as shown in Figure 18.

The interrupt philosophy can be explained in the
following way. Because of the large num her and
widely varying types of interrupt requests, it is ofb9n

PRIORITV DECIMAL INTERRUPT ILSW
LEVEL CD ADDRESS

~~
Internal 1 8 Ves
Trace 26 9 No
CE 27 1(9 No
Assigned 0 2 II Ves
Levels 1 3 12 Ves

2 4 13 Ves
3 5 14 Ves

BASIC
4 6 15 Ves
5 7 16 Ves
6 8 17 Ves
7 9 18 Ves
8 10 19 Ves
9 11 20 Ves
10 12 21 Ve~

, r II 13 22 Ves
A 12 14 23 Ves

SPECIAL 13 15 24 Ves
FEATURE 14 16 25 Ves
GROUP I 15 17 26 Ves

+ 16 18 27 Ves
17 19 28 Ves

S~CIAL 18 20 29 Ves
19 21 30 Ves

FEATURE 20 22 31 Ves
GROUP 2 21 23 32 Ves

1 22 24 33 Ves
23 25 34 Ves

CD NOTE: 1 Highest priority
27 Lowest priority

3 Manually masked and unmasked by switch.

not desirable to cause a branch to a unique address
for each condition. For the same reasons, it is not
desirable to initiate one branch for all interrupt re­
quests and to require the program to determine the
individual requests requiring service. Grouping the
numerous request lines into a number of priority
levels (see Figure 18) accomplishes two aims:

1. It allows all interrupt requests common to a
specific interrupt level to have the privilege of
interrupting immediately, if the only requests
present are of a lower priority level. Converse­
ly, it permits interrupt requests connected to a
higher priority level to temporarily t€lrminate
the servicing on a lower level and to immediate­
ly interrupt to the higher priority level. Service
is returned to the initial request only after all
higher level requests have been servieed.

PISW <Z> MASK & PROGRAM
I/O, TIMER, PROCESS

INTERRUPT:
ASSIGN'T UNMASK INTERRUPT ASSIGNMENT ALLOWED

- No No No
- G) No No
- No No No
2 Ves Ves Ves
3 Ves Ves Ves
4 Ves Ves Ves
5 Ves Ves Ves
6 Ves Ves Ves
7 Ves Ves Ves
8 Ves Ves Ves
9 Ves Ves Ves
10 Ves Ves Ves
11 Ves Ves Ves
12 Ves Ves Ves
13 Ves Ves Ves
14 Ves Ves Ves
15 Ves Ves Ves
16 Ves Ves Ves
17 Ves Ves Ves
18 Ves Ves Ves
19 Ves Ves Ves
20 Ves Ves Ves
21 Ves Ves Ves
22 Ves Ves Ves
23 Ves Ves Ves
24 Ves Ves Ves
25 Ves Ves Ves

§ 2<1· PISW's Basic IBM 1800.

4 RE~turn address in I-counter stored in decimal address 0010, but hardware-generated BSI addresses decimal address 0001.

Figure 18. Priority Interrupt Level Structure and Assignment

28

2. Since a unique branch can be defined for each
interrupt priority level, it is possible to com­
bine many requests on a common priority level
and thereby use a common interrupt subroutine
to service many requests.

Each interrupt request line is thus positioned
into a table order of priority; the highest priority
being closest to the output, while the lowest priority
is farthest away. An interrupt request received at
a given level automatically causes the level to shift
from an uninterrupted to an interrupted state. If no
higher priority level is presently being served, the
scheme permits the request line to be activated. At
this time, a unique address associated with this
level is supplied to the system, which transfers
control to a core location determined by this address.
The mainline return address is now preserved and
entry made to the Master Interrupt Control Program
to direct the servicing of this interrupt. At comple­
tion of servicing, control is returned to the point
of departure (see Figure 9).

In this way, every interrupt request is obeyed
immediately, provided no priority request is
presently in execution. The biggest advantage of
this method of priority level control is a near­
optimum priority response. To guarantee minimum
response time to alarm conditions, most process
interrupt servicing routines should he in core at
all times.

Characteristics of Interrupts

Interrupts can be classified into three broad types:

• I/O

• External (that is, process), and

• Programmed

Skeleton -resident interrupts operate on a true
priority basis from the 24 levels available. An
interrupt is, by definition, a hardware feature --
it is the machine hardware, not the Master Interrupt
Control Program which determines what level the
interrupt is on. As far as the problem programmer
is concerned, he has no control over the time of
occurrence of process interrupts. He has, however,
indirect control of their time response through
masking, recording, and the allocation of priority

levels. In general, interrupts are distinguishable
from one another only in the manner in which they
are serviced (see also System Design Consi(:leratio~).

Priority Assignments. Some important considera­
tions affecting priority assignments can be sum­
marized thus:

• Each of the 24 levels can interrupt the mainline
program.

• Level 0 is the highest priority.

• Higher priority levels can interrupt lower
priority levels. Lower priority levels cannot
interrupt higher levels. This permits fast
access devices to interrupt slower ones.

• Hierarchy of machine operation:

Highest Interrupt level

Proces s Mainline
Lowest N onproces s Mainline

o
1
2

•
•
•
•
•

23

• Interrupt levels may be masked by programming
means. Masking inhibits interrupts to the 1800.
The user is thus allowed to inhibit or permit
specified levels of interrupts, and to allow deter­
mination of the status of interrupt levels -- that
is, whether they are inhibited or not -- at any
time. Through selective use of masking, data
channels can be kept in operation for the trans­
mission of data into and out of core storage
while process interrupts are prevented from
occurring. This gives an increased efficiency
of execution of program s.

When a request line is 'lUlmasked, the Proces­
sor-Controller is interruptible. Note that
although a level may be masked, the fact that the
interrupt has occurred is not lost. The f'lUlction
of masking is used to delay recognition of an
interrupt.

Functions of Executive Programs 29

In practice, priorities must be assigned using the
interaction of functions with each other as a primary
basis. See also System Design Considerations:
System Director.

Types of Servicing Subroutines Used

An interrupt servicing subroutine may be

• An I/O device subroutine

• An interrupt program included in the skeleton

• An interrupt program included with a mainline

• A mainline core load

• An interrupt core load

The different options are provided to permit
flexibility in terms of both core storage and response
time requirements.

I/O Device Subroutines. An I/O device routine is a
routine that performs the second level of sensing of
a Device Status Word (DSW) or a Process Interrupt
Status W'ord (PISW). The first level of sensing the
Interrupt Level Status Word (ILSW) is carried out
by MIC. This means that any bit on the ILSW that
requires sensing at the second level may be executed
by an I/O device routine.

The majority of the I/O devices in the 1800 have
IBM-supplied device routines (e. g., disk, card/read
punch). Those that require sensing by the user at the
second level include the following:

• RP~! devices

• Spedal PISW's that the user may wish to sense
himself (e. g., multiple PISW groups per level)

• Any other I/O device (e. g., System/360 Channel
Adaptor)

These routines are entered with a BSC; they exit
by an indirect branch through word (90)10.

The appropriate entry reflecting the ILSW will be
assigned by the user on *Assignment control cards
to the System Loader at system generation time.

30

Subroutines that are entered from the I/O device
routine comprise count, timer, and process I/O
subroutines. They perform specific limited tasks
associated with the event that is occurring within
the I/O device (e. g., elapsed time on a particular
timer). Entry to the subroutine is made by a BSI;
the routine exits to its return statement by a BSC I
through the entry point. These subroutineB are
included in the skeleton by *INCLD control cards.

Interrupt Programs included in the Skeleton. The
shortest response time (that is, the minimum time
before an interrupt servicing routine is entered
after the interrupt has been recognized) is obtained
by placing the routine in core with the System
Skeleton. The interrupt routine is included by
specifying a control card (*INCLD) at skeleton
build time. Like the interrupt core load, the in­
core interrupt routine performs a limited task.
It is masked only for short periods of time by the
system during the execution of certain reentrant
coded routines. This period of time is normally
of the order of 20-30 instructions.

These routines are entered with a BSI; they
exit through a CA LL INTEX statement. Some of
the important factors governing their inclusion
in the skeleton area are discussed in detail in
System Design Considerations:' System Skeleton.

Interrupt Programs included with a Mainline. Next
in length of response time to skeleton interrupt
routines are in-core routines loaded with the core
image mainlines. These are entered almost as
quickly as skeleton routines provided the mainline
is in progress when the interrupt occurs, but may
be forced to wait if the mainline is not in core.
This will be the case if a lower level interrupt
routine has been read over the mainline. The
length of delay involved would then be the balance
of the reading of the interrupt routine and the exe­
cution of that routine and the read -back of the main­
line. No immediate exchange to obtain the mainline
is done. If the interrupt that occurs has a program
in the mainline and the interrupt is at a higher or
equal level to the interrupt being processed, the
interrupt core load assigned to this interrupt will
be read directly into core upon completion of the
interrupt core load being serviced.

An interrupt core load is always required before
any servicing of a process interrupt in-co:re with the

mainline can take place. If an interrupt core load
is not available, the event will be recorded even if an
interrupt servicing route is included with the main­
line. The Master Interrupt Control (MIC) Program
first ascertains if an interrupt core load is available;
if it is, the ICL table is checked to see if the routine
is in the mainline; if it is not available, the event
is recorded. The interrupt routine is always ser­
viced with the same masked status as an interrupt
core load.

Interrupt programs included with a mainline are
always entered by an indirect branch (BSI); they
exit through a CALL INTEX.

Mainline Core Loads. External (that is, process)
interrupts whose occurrences are recorded are
serviced with mainline core loads. The mainline
core load performing the servicing action is identi­
cal to any other mainline core load, except that it
is queued for execution by a CALL QIFON statement.
Since it is a queued core load, it should have a CALL
VIAQ as its last logical statement. It could, of
course, be the first core load of a special series,
in which case it would end with a CALL CHAIN to
obtain the next core load in sequence, but a CALL
VIAQ must ultimately be executed.

Note that the only major difference between an
interrupt core load and a mainline core load used
for the servicing of recorded interrupts is in the
last logical statement used. This must be a CALL
INTEX for an interrupt core load and a CALL VIAQ
for a mainline core load.

If a process interrupt is immediately serviced on
some occasions and recorded on other occasions, it
would require two core loads (one for each function)
which would be identical in all respects except for
their last logical statement. To eliminate this dupli­
cation of core loads, a special combination exit
statement (CALL DPART) is provided (see Exit
Procedures from Interrupt Servicing Routines). An
interrupt or mainline core load which terminates with
a CALL DPART is, by definition, a combination core
load.

The combination core load should not violate re­
strictions placed on either mainline or interrupt
core loads. That is, mainline interrupt subroutines
are not allowed as part of this core load: only state­
ments allowed in both mainline and interrupt pro­
grams are permitted. See also Appendix A, Sum­
mary of TSX Statements.

Interrupt Core Loads. The user may create inter­
rupt core loads which are brought into core over the
mainline when the interrupt occurs. Interrupt core
loads are essentially disk-resident routines where
the response time is not a problem. They are re­
quired for those interrupts that meet either of the
following conditions:

1. The user has specified the interrupt servicing
routine to be out-of-core.

2. The user has specified the interrupt serviCing
routine to be in-core as part of a mainline
core load.

When this type of interrupt servicing routine is
executed, the area of core that the routine will
occupy is saved on disk before reading in the inter­
rupt core load. The time for this save operation,
in addition to the time for the disk read operation
needed to get the interrupt core load, causes this
method of interrupt servicing to have the longest
response time. Once an interrupt servicing core
load has begun, it may be interrupted by a higher
level routine, only if the interrupt routine for this
higher level is in the skeleton on a higher level.

The use of interrupt core loads is normally re­
stricted to the performance of a particular task at
a time, or the initiation of a task on a mainline level
which does not take an inordinate amount of time.
A typical example is the queueing of a sequence of
mainline core loads to accomplish the task that
originated an interrupt. The user should remember
that if his problem program is time-consuming, he
will, in the normal course of events, execute this
on the mainline level. The reason for this is that
interrupt core loads cannot, by definition, interrupt
other interrupt core loads. This system restriction
is because of the disk exchange time that would be
required.

Interrupt core loads are built and assigned to a
particular process interrupt bit (PISW) on pro­
grammed interrupt level. The core load then per­
forms the servicing task or sets in motion the task
that will be required when this specific bit is
activated.

Note that this type of interrupt servicing routine
does not contain an Interrupt Status Table (1ST).
The reason is that the 1ST is used for updating the
Interrupt Core Load Table (ICLT), and the ICL table
is only updated from mainline core loads or from
combination core loads when these are executed at

Functions of Executive Programs 31

the mainline level. For the same reason, the
interrupt core load cannot include other routines
within it. Another explanation is that the programs
that might be included in an interrupt core load are
masked off during its execution.

speed, therefore, the Interrupt Save Area can be
made smaller.

Note also that interrupt core loads can communi­
cate with mainline core loads (and combination core
loads when these are executed as interrupt core
loads) only through INSKE L COMMON. The inter­
rupt core load itself contains a COMMON which is
located at the end of the Interrupt Save Arlea.

An i.nterrupt core load is not necessarily the
length of variable core: it has a defined length
(see ~'stem Design Considerations: Disk System
Configuration). Hence, in contradistinction to
mainline core loads, all of variable core is not
needed because of the limited function performed
by this type of core load. To increase execution

Figure 19 gives a summary of the types, charac­
teristics, and location of process interrupt servic­
ing routines.

Type of Routine and Location

Skeleton Interrupt Routine

C ore Storage Location

Skeleton Area Variable Area

Mainline Interrupt Routine

Core Storage Location

System
Skeleton

Skeleton Area Variable Area

Interrupt Core Load

Core Storage Location

Skeleton Area Variable Area

Malnl ine Core Load

Core Storage Location

Skeleton Area Variable Area

Combination Core Load

Core Storage Location

Skeleton Area Variable Area

Permanently in core.
Normally high priority.

Characteristics

Can immediately interrupt lower priority routines, and
Interrupt Core loads if no Interrupt Core load is
assi gned to that level.
Fastest interrupt re'ponse.
Must CALL INTEX as last logical statement.

Available almost Q, quickly as Skeleton Interrupt routines, if the mainline
is in-core.

Once execution is started, only interruptable by Skeleton Interrupt Routine
or internal interrupt.

Can be different with each mainline core load.
Interrupt core load is requi red •
Must CALL INTEX as last logical statement.

Large core area aV:lilab Ie.
Once execution is started, only interruptable by Skeleton Interrupt Routine

or internal intelTupt.
Mainline or nanpre,cess program in operation at time of interrupt is saved

before and reste,red after I nterrupt Core Lood operati on.
CALL INTEX is last logical statement used. Cannot include interrupt

routines for othur interrupts.

Large core area aVili lable.
Can include interrupt routines.
Queued for execution if record indicator is on when named in Q1FON statement.
If mainline core 10ild Is always queued, last logical statement should be

CALL VIAQ.

Cannot violate an)' rules governing interrupt and mainline core loads.
Large core area available.
Queued for execution if record indicator is on when named In QIFON

statement.
CALL DPART is last logical statement used.

. __________________ L-___ ~

Figure 19. Summary of Characteristics of Process Interrupt Servic:i.ng Routines

32

Exit Procedures from Interrupt Servicing Routines

Three forms of exiting are used:

• CALL INTEX

• RETURN

• CALL DPART

CALL INTEX -- Interrupt Exit

All interrupt routines serviced on an interrupt level
must return control to MIC through a

CALL INTEX

statement. INTEX is the symbol for INTerrupt
EXit. CALL INTEX must be used as the last logi­
cal Statement in skeleton interrupt routines. It
can also be used in interrupt core loads.

RETURN

Subprograms called by user-written interrupt
servicing routines must use a

RETURN

statement to return to the interrupt routine or may
return control directly to MIC.

CALL DPART -- Departure

CALL DPART causes the level of operation to be
tested for the following conditions:

• If the present level is an interrupt level, a
CALL INTEX is executed.

• Otherwise a CALL VIAQ is executed.

Thus CALL DPART eliminates duplication of
core loads. An interrupt that is sometimes directly
serviced, and sometimes recorded, can now be
serviced with the same core load. This core load
operates from an interrupt level when servicing
is specified; it is queued and operates from the
mainline level when the interrupt is specified as
recorded.

Figure 20 illustrates the use of the two exit
CALL and RETURN Statements.

Master Interrupt Control

Once an interrupt has been detected at the hardware
level, a reentrant control program, the Master
Interrupt Control (MIC) program, takes over the
control and servicing of that interrupt. The inter­
rupt is first recognized by the interrogation of
certain indicators on a level.

The MIC routine is assembled as part of the
System Director at which time it origins out those
tables and coding not used by the system to user
specifications. MIC resides in core at all times
in an on-line TSX system when the computer is
operating under control of the System Skeleton.
It is designed to:

• Save the interrupted registers whenever an
interrupt is processed on the appropriate work
level

• Direct the interrupt to its servicing routine

• Restore the FORTRAN I/O buffers if required

• Restore the interrupted registers, and

• Return to the point of departure in the inter­
rupted program.

Detailed Action of MIC when an Interrupt Occurs

Consider the train of events that follows when a
process interrupt is generated by an event within
a process oontrol environment. Let us assume
that this interrupt was originally assigned (at
system generation time) by the user on an NB
(System Director) equate card to level zero.
Remember that an interrupt is, by definition, a
hardware feature, and that the user has limited
oontrol over the time of occurrence of process
interrupts, except by masking, recording, and
the allocation of priority levels. Figures 21, 22
and 23 illustrate this action in Simplified form.

Entry to MIC.

1. In the 1800, an interrupt request is recognized
at the completion of the current instruction

Functions of Executive Programs 33

being executed within a mainline program. When
this happens, an indirect branch (BSI) to a fixed-·
word (location 11) in core takes place. This
word contains the start address of a level work
area. associated with level 0 (see System Design
Considerations: System Director). A set of in­
structions within this area then sets the level

The sequence of operations (specified by the encircled numbers) can be either
1, 2, 3, 4, 5, 6A, 6B, 6C, 8, 9, 10, or 1, 2, 3, 4, 5, 7A, 7B, 8, 9, 10.

Mainline Core Load

I
Occurrence of Process Interrupt
causes transfer of cantrol to the
interrupt servicing routine.

1~

busy, saves Index Registers 1, 2 and 3, and sets
Index Register 3 as a pointer to this work level
(at entry point + 8). It is through the level work
area that an interrupt formally enters MIC -­
from now on, all references to the work area
and saved information is made through the
Index Regi ster 3 addre s s.

JOE
CALLJOE------------~------~

r
CALL BILL--------t---C

BILL

CALL INTEX

SAM
CALL SAM

J
Figure 20. Use of the CAll. INTEX, CALL DPART, and RETURN Statements.

34

2. MIC is the entry point at which all process
(and I/O) interrupts enter the Master Control
Program for processing. The accumulator,
the status word, and the pseudo-accumulator,
are now saved for the particular level of inter­
rupt being processed. The previous (that is,
last) work level address is also saved, and the
new (that is, current) work level address set
up for use by reentrant coded subroutines so
that they are aware of the address of the par­
ticular work level they are required to use at
this particular time. N ow that the registers
of the interrupted level have been saved and the
new level (0) address set up, the question of
determining which of 16 possible interrupts is
to be serviced on this level remains. This is
done by sensing the ILSW. If no bits are "on"
in the ILSW, a check is made to see whether
a programmed interrupt has been selected for
this level; if it has been, a transfer is made
to (A) in Figure 22, and the processing pro­
cedure proceeds as for a process interrupt.
If no programmed interrupt is present, an exit
from MIC is made via (B) -- see Figure 23.

3. If a bit is on, a branch is made via the level
work area to the Interrupt Branch Table within
the mainline core load to determine whether
the interrupt is a process or I/O interrupt.

Each core load (mainline, combination,
interrupt, or nonprocess) must contain an
Interrupt Branch Table which provides the
means of routing each I/O, process, or pro­
grammed interrupt to its appropriate servicing
routine. The table, built in reverse order as
shown in Figure 21, consists of single-word
entries, each of which contains either an entry
address to an I/O device servicing routine for
an I/O interrupt, or a fixed address within the
Skeleton for a process interrupt. The table is
initially built by the Skeleton Builder and Core
Load Builder to the specifications of the System
Loader. Its size is determined by the number
of bits on all interrupt levels used.

Since we are concerned with a process inter­
rupt (LEVEL BIT 0 = PISW, see Figure 21)
level 0 will contain the entry point PRIE (that is,
the reentry point to MIC). (Note that if an I/O
interrupt were present instead, the I/O servic­
ing routine is entered. The case of an I/O inter­
rupt occurrence is discussed later).

4. The PISW derived from the work level is now
sensed. If no bits are on (that is, no event has
taken place within the process control environ­
ment) the exit route (from MIC) is taken via (B).

If a bit is on, it is reset, and the address of
the ICL table associated with this particular
interrupt set up.

5. Now that the process interrupt is correctly
known, the option of processing must be inter­
rogated and executed -- that is, we must now
determine what type of servicing this particular
process interrupt requires. Various tests are
performed to determine:

• Whether the interrupt is to be recorded

• Whether the interrupt servicing routine is
in core with the skeleton

• Whether the interrupt is to be serviced by
an out-of-core interrupt core load, or

• Whether the interrupt serviCing routine is
in core with the mainline

in conjunction with entries made in the ICL
Table (see System Design Considerations: Sys­
tem Director).

The first test ascertains whether this particu­
lar interrupt is to be recorded. If it is, a sub­
routine records the interrupt. If it is not to be
recorded, a check is made to see if the interrupt
servicing routine is included with the skeleton.
If it is, it is serviced by that subroutine. The
next test determines whether an interrupt core
load has been loaded to the disk to service this
interrupt. If it has not, the interrupt is auto­
matically recorded. If it has, all interrupt
levels serviced by out-of-core routines will be
masked. This also prevents a user from Wl­

masking any level that is asssociated with out­
of-core interrupts.

A test is now made to determine if the inter­
rupt servicing routine is in core with the main­
line program. If it is in core with the mainline,
the mainline itself is in core, and we are not in
an exchange of variable core; the Index Register
is then set to the transfer vector, and the entry
point of the interrupt servicing routine is located
in the Interrupt Status Table. Entry points to
interrupts in core with the mainline are situated
in a table known as the Interrupt Status Table
(IST). The format of the table consists of:

• One word indicating the length of the table
for each level

• One word for interrupts that are in core
wi th the mainline

Functions of Executive Programs 35

MAINLINE PRIORITY
PROGRAM INTERRUPT

LEVELS

12

2 13

3 14
4 15

• • • • • • • •

• • • • •

(SEE FIGURE 23)

Figure 21. Action of MIC During an Interrupt

36

LEVEL WOR K AREAS

YI:S

(SEE FIGURE 2~~)

PROCESS INTERRUPT
ENTRY POINT

PRIE XIO PISW

INTERRUPT
BRANCH TABLE

• • • • • •
• • •

LEV3BITO

LEV2BITl

LEV2BIT0

LEVIBITO

LEVOBITl

LEVOBITO

I/O ROUTINES
ENTRY POINT

-_._-
• • -_._-
• • • -_._-

BSC I 90

C

• •
• • • •
• • •

1442

1053

PISW

1443

DISK

PISW

• One word for interrupts which are to be
recorded on a particular level

followed by as many words as are necessary to
contain the start address of interrupts in core
with the mainline. The size of the table is
determined by the user when he defined his
system.

If the interrupt is an out-of-core interrupt,
I/O must be completed in the mainline area
prior to either exchanging core, or, if we are
in an exchange, prior to reading in the inter­
rupt core load. Once the interrupt core load
is read into core, Index Register 3 is set to
the transfer vector and the interrupt entered
for execution. An exchange means that variable
core has been saved in the Interrupt Save Area
on disk. The area exchanged will be the size of
the largest interrupt program specified by the
user.

I
I
I
I
I

Note that due to cycle stealing I/O, some
area may be either modified or recorded at the
time the process interrupt occurred. This
means that out-of-core interrupts must always
be assigned to a priority level lower than all
I/O devices.

Exit from MIC. All process interrupt programs
terminate by a return CALL INTEX statement to
MIC. INTEX is the address to which interrupt
servicing programs return upon completion of their
processing. An exit procedure is now made to
either of two routes dependent on the type of servic­
ing routine just executed. That is, whether the
servicing routine was an in-core-with-Skeleton rou­
tine or an out-of-core servicing routine.

If it is in core with the skeleton, and this is the
last servicing required (no further PISW bits on),
a common exit from MIC is taken via (B) and (C) -­
see Figures 21 and 23. Note that this is also the

INTERRUPT
CORE LOAD
TABLE (lCLT)

-4~ IN-SKELETON

IN MAINLINE ~

RECORD
IT

YES
1 r------ -u RECORD

(SEE FIGURE 23)

__ +_1
I r----

NO I 1 - _____ + ____ I
I
I

>-Y.;..;E;;.;;.S I __ SERVICE
IT

Figure 22. Action of MIC during an Interrupt (Continued)

-4~ RECORDED

-4
.WORD COUNT!

START
--4 ADDRESS
I SECTOR I ADDRESS I
I
I - -

SAVE
CORE

GO TO START
ADDRESS OF
INTERRUPT
SERVICE
ROUTINE IN
MAINLINE

Functions of Executive Programs 37

exit pOint for all I/O interrupt routines. If addi­
tional process interrupts are indicated (that is,
more bits for PISW sensing are on) the exit route
proceeds to (A) -- see Figure 22 -- and the pro­
cedure continues in the normal fashion of a process
interrupt recognition. A closed loop is thus main­
tained until all process interrupts have been ser­
viced, finally exiting through the common exit point
(B) for all categories of interrupts.

All INTERRUPTS

RESTORE
fORTRAN
I/O BUffERS

MASK All
INTERRUPTS

UNMASK
All
INTERRUPTS

1
XIO ALL
PROGRAMMED
INTERRUPTS

I
RETURN TO
INTERRUPTED
PROGRAM

PROCESS INTERRUPT

TEST FOR
PROGRAMMED
INTERRUPT

(SEE FIGURE 21)

YES

A

(SEE FIGURE 22)

Figure 23. Exit from MIC After an Interrupt Has Been Serviced

38

If the return originated from the servicing of
an out-of-core interrupt program, all out-of-core
interrupt levels are unmasked at this point to allow
other out-of-core interrupts to occur, so that it is
not necessary to carry out an exchange of variable
core for the servicing of that particular interrupt.
Because the unmask instruction masked out all
levels for one more instruction, the branch out or
exit can be executed prior to any interrupts occurring.

UNMASK All
OUT-Of-CORE
INTERRUPTS

MASK All
OUT-Of-CORE
INTERRUPTS

READ IN
MAINLINE

UNMASK All
OUT-Of-CORE
INTERRUPTS

TEST fOR
PROGRAMMED
INTERRUPT

(SEE FIGURE 21)

The unmask will effectively unmask back to the last
CALL MASK level.

A check is now made for the presence of addi­
tional process interrupts (that is, are other PISW
bits on ?). If they are indicated, an exit path is taken
via (A) in the normal course of servicing process
interrupts (previously explained). If no further
process interrupts are present, all out-of-core
interrupt levels are masked and variable core re­
stored to its proper status which existed prior to
the interrupt. The system is then unmasked to the
user's status and an exit made- via (C) and (B)
see Figures 21 and 23.

The Case of I/O Interrupts. When an I/O device
interrupt occurs, a similar procedure to that dis­
cussed in 1), 2), and 3) is adopted. In 3), it was
mentioned that in the case of an I/O interrupt, the
I/O servicing routine will be entered through its
entry point in the Interrupt Branch Table (IBT).
Some of the important aspects of the I/O device
routine are discussed elsewhere in this section.
The last instruction in an I/O device interrupt sub­
routine is an indirect branch BSI I 90) back to MIC.
Before an exit is made through the common exit
point «B) -- see Figures 21 and 23) for all cate­
gories of interrupts, a check is performed to deter­
mine the presence of a programmed interrupt within
the two groups of possible programmed interrupts -­
group 1 (levels 0-13) and group 2 (levels 14-23).
Only the bit associated with a level is tested. If a
programmed interrupt is present, a branch is made
to (A) and processing proceeds as for process inter­
rupts. The I/O device interrupt, otherwise, under­
takes to exit from MIC through the common route (B).

At this point, the FORTRAN I/O buffers are re­
stored to their former state. All interrupt levels
are masked, Index Registers 1, 2, and 3, and the
accumulator, and words 54 and 55 are restored and
the system is unmasked to the user's level. Pro­
grammed interrupts are now turned on (they were
previously turned off) and a return is made to the
interrupted mainline program.

Masking, Servicing, and Recording of Interrupts

An interrupt may occur at any time, but it will not
be recognized by MIC until the level on which it is
assigned is unmasked and of a higher priority than
the current level of machine operation. It is the
1800 hardware, not MIC, that determines which
level the interrupt is on. Interrupt levels are user­
specified at system generation time. The user may

delay any interrupt from being recognized by
masking the level on which that interrupt has been
assigned. For example, it may be to his advantage
to delay the servicing of an interrupt to minimize
core exchanges such as when it is known that a pro­
gram is short and the interrupt can wait. In another
situation, he may desire to prevent interrupts en­
tirely from occurring, such as when a routine can­
not be reentrant and may be called from more than
one level. Once an interrupt has been recognized,
MIC will determine if it is to be (1) serviced im­
mediately or (2) recorded for servicing at a later
time. Servicing an interrupt may be delayed by
the user by simply setting a record option on that
interrupt. The options of recording or servicing
interrupts immediately may be changed from one
mainline core load to another. This designation
is made when the core load is initially built. MIC
also services interrupts (a maximum of 384) in an
optimized sequence within the user's specifications.

Masking of Interrupts

Interrupts can be prevented from occurring by
masking. This is accomplished by using four
real-time subroutines provided in TSX:

• CALL MASK

• CALL UNMK

• CALL SAVMK

• CALL RESMK

Call Mask. CALL MASK can be used to lock out
for some time period those designated interrupt
levels on which the user does not want interrupts
to occur during some time-dependent programs.
This routine gives him the facility to inhibit or
mask out groups of interrupt levels (0-13; 14-23)
or selectively chosen interrupt levels. The
status of levels not designated remain unchanged.
The format of this statement is:

CALL MASK (I, J)

Where I and J are integer expressions which
designate the level(s) to be masked. Bits 0-13
of I refer to levels 0-13. Bits 0-9 of J refer
to levels 14-23. Each one bit specifies a level
to be masked. Both parameters are always
required.

Functions of Executive Programs 39

EXAMPLE 1. In this and following examples, DATA
statements are used in conjunction with the CALL
MASK and CALL UNMK statements to set up desig­
nated levels. See IBM 1130/1800 Basic FORTRAN
IV Language, Form C26-3715.

The problem is to mask levels 5, 7, 11, 12, 21,
22 and 23.

DATA I, J/Z0518, ZOlCO/

CALL MASK (I, J)

Call Unmask. CALL UNMK gives the user the abil··­
ity to unlock an interrupt level -- that is, it allows
interrupts to be recognized on a level. Thus, he
may, if he wishes, selectively allow or unmask
interrupts, one level at a time. This is a required
routine (and procedure) for the initial core load -­
the first core load called into the system by the
Cold Start program. The statement format is

CALL UNMK (I, J)

Where I and J are integer expressions which
designate the levels to be unmasked within
the two groups of levels as for CALL MASK.

EXAMPLE 2. The problem is to unmask levels 1,
2, 3, 5, 12, and 21.

DATA I, J/Z7408, Z0100/

CALL UNMK (I, J)

From Examples 1 and 2 we see that

• Levels 1, 2, 3, 5, 12, and 21 are unmasked,

• Levels 7, 11, 22, and 23 are masked.

• Levels 4, 6, 8, 9, 10, 13-20 are unchanged.

The mask and unmask subroutines maintain a
current record of the interrupt level mask status.
This is necessary since the system sometimes
masks all levels and then restores the status of
these levels according to this record. The user
should always mask and unmask via these routines
to keep this record current.

EXAMPLE 3. The problem is to unmask all levels
(as at cold start time).

CALL UNMK (-1, -1)

40

Call Save Mask. CALL SA VMK allows the user to
save the masked condition (that is, the contents of
the current mask words) that existed prior to his
calling for masking. The statement format is:

CALL SAVMK (I, J)

Where I and J are integer variables that will
receive the contents of the retained mask words.

For example, a mainline has just mask,ed cer­
tain levels of interrupts. The user may not be
aware of this condition -- that is, he may not know
which bits are on (masked). So, he executes a
CALL SA VMK to save this condition prior to mask­
ing those levels of interrupt he plans to have masked.
When he is ultimately ready to unmask these levels,
he executes a CALL RESMK which restores or re­
turns the masked register to its original condition.
This acts, effectively, as a mask and unmask rou­
tine and is closely analogous to the saving and re­
storing of registers, etc., during the handling of
an interrupt.

Call Restore Mask. CALL RESMK is used to per­
form a mask and unmask operation to restore the
interrupt mask register to its previously saved
condition. The variables used as paramet'ers are
normally those named in a previous CALL SA VMK
statement. Its format is:

CALL RESMK (I, J)

Where I and J are as for CALL MASK, except
that each one bit specifies a level to be masked;
each zero bit specifies a level to be unmasked.

EXAMPLE 4. The problem is to mask levels 5, 7,
9, 10, and 12; unmask all other levels.

DATA I, J/Z0568, ZO/

CALL RESMK (I, J)

Restrictions. It is not possible to unmask an out-of­
core interrupt level:

1. while an out-of-core interrupt level s:pecified
on the System Director equate cards IGLLl-2
is being serviced,

2. while a mainline core load is being loaded by
the Program Sequence Control (PSC) program
-- e. g., by CALL CHAIN, CALL BACK,
CALL SPECL.

Servicing of Interrupts

In the servicing of interrupts, the answers to three
vital questions must be known:

1. What caused the interrupt?
2. How fast is its response?
3. How often does it occur?

In practice, the service action taken depends to
a large extent on the frequency of occurrence of an
interrupt, and the time required to service it -­
that is, its servicing time span. There are, in
general, four approaches in servicing interrupts:

• The servicing routine may reside in the skeleton.

• It may be located on disk as an interrupt core
load.

• The user has the option to include the servicing
routine as an integral part of a mainline core
load.

• The user has the option to record the interrupt.
That is, he may delay its servicing until it is
cleared by a CALL CLEAR or serviced by a
CALL QIFON.

CALL CLEAR -- Clear Recorded Interrupts

The CALL CLEAR Statement is used to ignore or
clear interrupts which have occurred but which
were recorded for later servicing. The statement
format is:

CALL CLEAR (M, L, I, L, I,)

Where M = an integer constant which specifies
the number of parameters to follow.
If M = 0, all indicators specifying
the recorded status are changed to
indicate "not recorded".

and I as for CALL QIFON (see Program
Scheduling) .

CALL CLEAR can be used in any process
program.

The above four general approaches provide a
variety of ways of handling a specific interrupt.
For example, an INSKEL interrupt routine may
set up a programmed interrupt for a level which

is serviced by an out-of-core interrupt core load.
This core load may, in turn, be made to queue a
mainline core load or a series of mainline core
loads to alter, say, the entire user control strategy.

Consider another example. A mainline core load
may begin a chain of operations by setting up a pro­
grammed interrupt for a specific level. This inter­
rupt may be recorded, or it may be immediately
serviced.

The user will always obtain rapid and immediate
servicing of interrupts if he (1) includes his inter­
rupts as part of the System Skeleton, (2) does not
record these interrupts. Interrupts that reside in
core with the skeleton never require an exchange,
while those that are included with a mainline core
load may require an exchange if a nonprocess pro­
gram is in memory On a time-sharing operation.
If, however, time-sharing is not being used (that is,
the mainline core load is in memory) or another
interrupt serviced by an interrupt core load is in
progress, interrupts in core with the mainline core
load will be serviced almost immediately.

In general, therefore, interrupt servicing rou­
tines should be short in execution time. The reason
for this is that the 1800 hardware locks out lower
priority level interrupts for whatever time that is
involved on that level. That portion of the inter­
rupt routine that is not required for execution at
this priority level sho~lld, therefore, be carried
out either at the mainline level or at a lower priority
level.

If mainline core loads are used to service inter­
rupts through the queueing technique, then the user
must ensure that his mainline core loads do not
remain in execution for a period of time that is
unacceptable to him prior to checking the Queue
Table. A mainline core load may be interrupted
by a CALL SPECL in such a core load (see Pro­
gram Scheduling).

Recording of Interrupts

In general, interrupts may be recorded, that is,
deferred service, under any of three different sets
of circumstances:

1. When the user has one or more mainline core
loads that must be executed within a certain
time span.

2. When the user is adjusting or optimizing the
process control and creating conditions which
would cause interrupts to occur, and he elects
to ignore them.

Functions of Executive Programs 41

3. The user may wish to record interrupts for
later servicing, but he prefers to do this
through a CALL QIFON procedure rather than
have them serviced on an interrupt level.

Interrupts to be recorded are entered on a
*RCORD control card (in any order) and assembled
at core load build time. The data set up in the card
is later placed into the Interrupt Core Load Table
from the Interrupt Status table (within each core
load) by PSC.

The action of MIC when an interrupt occurs and
the procedural flow through its servicing has al­
ready been described elsewhere in this section.

Rules Governing the Servicing of Interrupts

1. If an interrupt is serviced by a subroutine lo­
cated in the variable area, it must be at a
lower priority level (higher number) than the
I/O device. This applies to:

Interrupt and combination core loads
Interrupt subroutines included with the
mainline

The exception to this rule is that an interrupt must
be on a level of priority lower than the I/O device
it intends to use except for the disk and the 1053
typewriter. DISKN and TYPEN are so written that
if either the disk or the typewriter detects that its
call was executed from a level with a higher priority,
it will remain in itself until the servicing operation
is completed. This is achieved by sensing the ap­
propriate Device Status Word (DSW).

2. If a servicing routine does not use any I/O
device, it may be on any level, but the routine
must be in the skeleton -- not in the variable
area of core.

3. Interrupts on levels that are serviced by out­
of-core interrupt core loads are serviced in
the masked mode so that they cannot be inter­
rupted by another interrupt serviced by an out­
of-core routine. Only one level of exchange
is maintained.

USE OF INTERVAL TIMERS

In most industrial control installations, some portion
of the control of the user's system will require re­
sponse in time -- that is, the user may want to

42

schedule his programs periodically or at a specific
time of day. For example, he may wish to print a
shift log on a synchronous basis, say at 8 :l. m. ,
4:30 p. m., and midnight each day; or he may take
periodic scans of his process instrumentation once
every five minutes; or there may be certain loops
to time out.

An interval timer is, by definition, a clocking
device which cycles a value contained in a full word
of main storage. It thus provides a computer sys­
tem with the ability to read elapsed time in second
or millisecond increments, and to inform the system
when a specified period of time has passed.

A simple cyclic timer serves, in effect, both as
a basic interval counter and clock. In order to
measure an elapsed time interval, a predetermined
total count is loaded into the counter word storage
by program control and a count down to zero is
initiated. As the particular counter reach,es zero,
an internal interrupt signal is sent to the system.

Information about elapsed time and local time
is often required by control computer systems to
initiate hourly logs, to time the period between con­
trol actions on the process, for process data
updating, etc. The time of day is required for
printing logs, alarm records, and so on.

Clock interrupts can be used to start a scheduled
computer operation. For example, in the control of
a complex distillation plant process, periodic inter­
rupts have been used to initiate the recalculation of
the reflux ratio required to maintain a desired sepa­
ration in the tower. In this situation, control of a
dependent process quantity is possible through a
periodic reexamination of process conditions re­
quiring extensive computer time.

To accomplish the above, the Interval Timer
Control (ITC) program provides for FOR THAN
language control of three hardware interval timers,
A, B, and C which operate on various useJC'-specified
time bases (see Table 1). Timers A and Bare
available to the user, while Timer C is used ex­
clUSively by TSX for time-sharing control purposes
and as a real-time clock. Furthermore, Timer C
is expanded into nine additional programmed interval
timers -- thus making available to the user a total
of 11 interval timers. As shown in Figure 24, each
interval timer is assigned a fixed location in core
storage.

ITC also performs three additional functions:

• Resets the Operations Monitor during bme-sharing .

• Tests for no response from 1053 printers

• Performs end of time-sharing

Name Core Storage Location

Machine Timers

A 00004

B 00005

C 00006

Programmed Timers

1 00062

2 00065

3 00068

4 00071

5 00074

6 00077

7 00080

8 00083

9 00086

Time-Shoring Clock 00089

Figure 24. Timer Locations in COre Storage

The establishment of the two principal time bases,
the Primary (or Interrupt) Time Base and the Sec­
ondary (or Programmed) Time Base, and their re­
lationships to the system are discussed in the section,
System Design Considerations: System Director.

Each timer is assigned to a wired-in time base
by the user at system generation time, selectable
from the table of available time bases given in
Table 1.

The • 125ms time base is available only on a 2usec
machine; the 128ms time base, only on a 4usec
machine. Each timer is assigned a permanent time
base by the user. Note that a different time base can
be selected for each timer, but all three timers (A,
B, and C) must be assigned to the same interrupt
level. In order to schedule programs based on hours,
minutes, or seconds, the wired -in time base for
interval timer C must be an even divisor of one
second (e. g., .5, 1, 2, 4, 8). The servicing of all
interrupts is controlled by ITC.

Hardware Timers A and B

CALL TIMER

In order to use timers A and B, the system pro­
vides a basic call statement:

where

NAME

I

INT

CALL TIMER (NAME, I, INT)

Name of the user's subprogram
that is executed when the specified
time elapses. Note that NAME
must also appear in a FORTRAN
EXTERNAL statement (see IBM
1130/1800 Basic FORTRAN IV
Language, Form No. C26-3715).
An integer expression whose value
must be:

1 for Timer A (word 00004)
2 for Timer B (word 00005)

A user-assigned positive integer
expression which specifies the
number of interval counts before
the user's subprogram is executed.

The subprogram specified in a CALL TIMER
statement must be in core storage when the interrupt
generated by the timer is recognized. The interrupt
occurs when the time specified has elapsed, but it
is only recognized

1. When the level of current operation is lower
than the timer interrupt level, and

2. If the timer level is unmasked.

Table 1. Table of Available Timer Time Bases

Core Storage
Cycle Times

2 ~sec

4 ~sec

Available Time Bases {In Milliseconds}

,25

64

128

FUnctions of Executive Programs 43

At the end of the elapsed time, the timer resets
itself. Note that, when zero time has been reached,
the tinler continues to operate -- that is, zero is not
a not-busy condition.

In the section System Design Considerations: ~':§..­

tern Director. it is pointed out that it is the user's re­
sponsibility to ensure that the mainline program
which requested the timer statement remain in
core until the end of the elapsed specified time --
that is, until the timer times out. He achieves this
either by

1. Including the subprogram in the Skeleton, or
by

2. Masking out all out-of-core interrupt levels,
and forbidding a core load exit until the timer
interrupts.

Unless previously loaded with the System Skele­
ton, the subprogram is automatically loaded with
the calling mainline core load.

In addition, periodic programs (that is, programs
initiated by interval timers) should not, as a rule,
be executed on the timer level: they should make
use of the programmed interrupt technique.

The following examples assume that the timers
specified are called from only one level. If possible,
it is preferable not to share timers among two dif···
ferent programs.

EXAMPLE 1. Assume hardware Timer A is wired
for the . 125ms time base.

CALL TIMER (SCAN1, 1, 35)

When this statement is executed, ITC initializes
Timer A (by setting it to -125) and returns control
to the next executable instruction following the CALL
TIMER statement. When the Primary (or Interrupt)
Time Base (= 35 X . 125 = 4.37 5ms) elapses, an
interrupt occurs and control passes to the subpro·,
gram named SCANl.

EXAMPLE 2. Assume hardware Timer A is wired
for the 1ms time base.

44

SAMPLE C()OING FORM

I I I ! I
! J I I I

~.....L...L-L.L...L.l......L.L~.L.LL..L.JLJ......J~-'--'--L.J....L..J.....J....LJ....L_LLL.LLL.l.. 1 ! ! ! 1 1 II! 1 !
~.....L...L-L.L...L.l......L.L~.L.LL..L.JLJ......J~-'--'--L.J....L..J......L.LJ....L_L...I.-.L~.~ 1 1 1 1 1 I

II II I

'-'-''-'--L~-'-'-'''''''''''''~''-'-'-'-'I.....L...J'-'---''-''-'!''''''...L.I...L.' ...L.' ...L.' .L..! .L.-i..! I, _L...I.-~.I I ! 1 ! 1 II! 1 I

If we assume that the Primary Time Base
(= 500ms) for statement 1 in the above coding
has not elapsed, the Timer A interrupt will occur
2ms after execution of statement 2 when :mbpro­
gram MILL2 will be executed. Subprogram MIL5H
will never be executed because Timer A was reset
before the 500ms time elapsed. Although this con­
dition can be prevented (see Example 3), its logic
can prove useful under certain practical eonditions.

EXAMPLE 3. Assume identical conditions as for
Example 2. This example illustrates the use of the
LD functional subroutine in testing for a timer-busy
condition.

The format of this function is:

where

I

LD(I)

A user-assigned integer expres­
sivn that specifies a core storage
address. The contents of this
address are moved to the accumu­
lator. This permits a test for
busy, etc., of known locations
outside of the program area.
Timer storage locations are
given in Figure 24.

SAMPLE CODING FORM

Statement 2 tests if Timer A is busy. ·If it is
busy (that is, negative in core location 00004), a
programmed loop is activated until Timer A is no
longer busy (that is, when subprogram MIL5H
is executed) at which time statement 3 is processed.

EXAMPLE 4. Another example is given to illustrate
the use of the LD subroutine function for a test for
timer-busy condition.

This test is required if subprogram SUBR7 is not
in the skeleton and time-sharing is utilized.

In this example, statement 12 tests if Timer A is
busy, and waits until subprogram SUBR7 has been
executed before passing to the CALL VIAQ statement.

SAMPLE CODING FORM

NOTE: The execution of a machine interval timer
busy-test using the LD (I) functional subroutine in
an IF statement may fail to indicate the correct
busy status if (1) the timer interrupt occurs immedi­
ately after the loading of the timer not-busy indi­
cation (a zero), and (2), in servicing the interrupt,
the timer is reinitialized on another level.

Thus, when a timer is shared by different levels,
a solution (see below) would be to follow the first
busy-test by a second busy-test in order to prevent
an interrupt out of the busy-test.

SAMPLE CODING FORM

Notice that·although the not-busy status remains
in the accumulator after the return from the inter­
rupt, it will be initialized for testing in the following
load instruction.

Real-Time Clock

ITC also provides a programmed real-time clock
which keeps time on a 24-hour basis and is updated
each time Timer C decrements to zero (that is, it
is incremented from 00.000 to 23.999; then returns
to 00.000). The clock accuracy is a function of the
Primary (or Interrupt) Time Base discussed in the
section System Design Considerations: System
Director

CALL SETCL -- Set-up Programmed Real-time
Clock

Note that the clock is set at cold start time (a user
option), but if it is required to be set at any other
time through a user program, the following statement
is provided.

Functions of Executive Programs 45

where

I

CALL SE TCL (1)

A user-assigned integer expression
specifying the time of day setting
desired in hours and thousandths
of hours (e. g., 8 a. m. = 08000;
10.45 a. m. = 10750)

CALL CLOCK -- Read Programmed Real-tilne Cloek

If the user desires to read the clock, say, for time··
recording of his output to the printer, disk, etc., he
does so through a

where

I

CALL CLOCK (I)

A user-assigned integer variable
which indicates the core location
where the readout time is stored.

Note that the clock is also used by the Error Alert
Control (EAC) Program to time-stamp error mes­
sages.

Programmed Timers

The mechanism of programmed timers is covered i:il
the section System Design Considerations: System
Director.

CALL COUNT

Programmed interval timers are controlled by the
followin.g statement.

where

IN

46

CALL COUNT (IN, I, INB)

A user-assigned integer constant
or integer variable that specifies
the number (in the range 0-31) of
the program to be executed or
recorded when the specified time
elapses. The number is assigned

I

INB

at System Skeleton build time.
Program numbers are uBed in­
stead of names to provide the
record interrupt option.
An integer expression, identifying
the number (1-9) of the program­
med timer.
A user-assigned expression that
specifies the number of interval
counts before the called program
is executed. This number is a
function of the Secondary (or Pro­
grammed) Time Base.

An additional programmed timer is used as the
time-sharing control timer for the allocation of time
slicing for non-process operations (see Use of Time
Sharing).

EXAMPLE 5. The problem is to queue an analog
scan program every five minutes with a priority of 7
if JTEST (a programmed indicator in INSKEL COM­
MON) is set to zero; if it is non-zero, queue the
same program every minute with a priority of 1.

Assume the following:

1. Subroutine 19 is SUBROUTINE A which was in­
cluded in the Skeleton at Skeleton build time by
an include card

*INCLD A/2703

thus assigning it as count routine number 19.
2. Primary Time Base = 8ms (Timer C wired

time base) X 125 (user-assigned number) =
1 second
Secondary Time Base = 1 (Primary Time Base)
X 15 (user-assigned number) = 15 seconds

To solve the problem, a CALL COUNT statement
must be given in a mainline core load, thuB:

SAMPLE CO[IING FORM

1",,1,",1

This designates that subroutine 19 is to be called
in 5 minutes; thereafter, the subroutine calls itself
within the specified time period. Its coding is shown
in Figure 25.

SCAN is the name of a mainline core load that
will be executed at mainline level as the result of
a CALL VIAQ when SCAN is the highest priority
entry in the queue.

In order to effect immediate execution of the scan
routine, the CALL QUEUE statement may be re­
placed by a CALL LEVEL statement to cause an
interrupt on a lower level. This allows the user
the flexibility of executing the SCAN routine either
as an interrupt core load, an INSKEL interrupt
servicing routine, or as a routine included with a
mainline. The advantage is that the timer interrupt
level is not tied up. It also gives the user the ability
to call other I/O devices within the SCAN routine.

If the time-sharing mode is not used, the CALL
ENDTS statement has no effect. If it is used, the
time-sharing clock is set to zero and a return made

SAMPLE CODING FORM

Figure 25. Subroutine A for Example 5 -- Queueing an Analog Scan :Program

to the calling program. See Use of Time-S!J.~:r:.i!.!K
for further action.

A further example is given elsewhere in this
section (see Program Scheduling).

Table 2 provides a ready comparison of the
salient features in the usage of interval timers
and programmed timers.

USE OF TIME-SHARING

In many industrial control installations, the user
will have a large amount of time that is not utilized
by the process being controlled. To allow him to
make effective use of this time, the time-sharing
feature of the TSX system gives him the ability to
compile, assemble, and simulate without taking
the system off-line. In this manner, low-priority
jobs are automatically interrupted whenever the need
arises to execute a higher-priority task. In addition,
the inclusion of this feature gives the user the capa­
bility of modifying the logic of his control strategy.

Functions of Executive Programs 47

Table 2. Comparison of Timers

INTERVAL USED WHEN SUBROUTINE CANN BE
TIMERS SHORTER TIME CALLED MUST BE A REC

OT
ORD
RRUF

ED
1 & 2 BASE IS IN corrrlfi\r INTE 'T

SPECIFIED SKELETON OR
INCLUDED WITH

MAINLINE) WHEN
TIMER ELAPSES

PROGRMv\MED USED WHEN SUBROUTINE MAY
TIMERS LONGER TIME OR MAY NOT BE

BASE IS IN CORE WHEN
NEEDED TIMER ELAPSES

(E.G., HOURS)

Methods of Initiating Time-Sharing

IF SUB ROUl
IS NOT I NC

AND
COR
RRUP

IT IS H
AS A RE

INTE

Time-sharing can be initiated in two ways: selec­
table method (CALL SHARE) and automatic method
(CALL VIAQ).

Selectable Method -- CALL SHARE

The user will know at some predetermined point in
his program that he wishes to discontinue being i.n
the process mode for a specific period of time. He
therefore enters the time-sharing mode by the exe­
cution of a CALL SHARE (that is, he gives up con­
trol to the Nonprocess Monitor via the CALL
SHARE). This statement may be part of the user's
process program intended for those special appli­
cations where time-sharing is desired without the
use of the queueing technique. Its format is as
follows:

CALL SHARE (1)

"INE
ORE,
LED
DED
T

Where I is an integer expression which specifies the
number of time intervals allowed for the nonproceS8
program operation. The basic time interval is
assigned by the user at system generation time (see
System Design Considerations - System Director;
also Use of Interval Timers).

The meaning of the I parameter is clarified by
the following example.

EXAMPLE 1. Assume that the secondary time base
is 15 seconds (see Use of Interval Timers). Then

48

SUBROUTINE IS EXIT WITH
EXECUTED ON A RETURN

INTERRUPT STATEMENT
LEVEL OF
INTERVAL

TIMERS

MAY BE EXIT WITH
EXECUTED ON A RETURN

INTERRUPT OR CALL
LEVEL OR VIAQ

MAINLINE LEVEL

Time-Sharing Required
Interval Requested Statement

1 minute CALL SHARE (4)
5 minutes CALL SHARE (20)

30 seconds CALL SHARE (2)
1. 75 minutes CALL SHARE (7)

The time-shared operation is terminated when­
ever the time interval specified by the user has
elapsed; it is usually not terminated befor,e. Thus,
if 1 minute of time-sharing is indicated, it is usually
1 minute before control is returned to the next exe­
cutable instruction following the CALL SHARE
statement. The exchange time is not part IDf the 1
minute specification. This 1 minute is the length
of the time in the share mode. All interrupt time
is alloted against this 1 minute span.

Note that the Nonprocess Monitor will perform
a WAIT operation if there are no off-line jobs for
execution. Also, interrupts will be servic,ed as
they occur. If an interrupt routine recogni.zes a
need for the process program to resume operation,
it can terminate the time-sharing mode by executing
the following call:

CALL ENDTS

CALL ENDTS can be used only in an interrupt
routine where it sets the time-sharing clock to
indicate zero time. The first Timer C interrupt
that occurs after control is returned to the non­
process program causes the time-sharing operation

to be terminated; control then reverts to the process
mainline program. Note also that whenever time­
sharing is not in force the CALL ENDTS statement
is ineffective.

Automatic Method -- CALL VIAQ

The second method uses the queueing technique to
load a mainline or combination core load when the
Core Load Queue Table is empty, by executing a
CALL VIAQ (See Program Scheduling).

Note that a CALL VIAQ (when referenced) forces
a CALL SHARE statement for execution when the
queue is empty only if the user has indicated through
the use of the Console Interrupt button, with sense
switch 7 on, that batch work is to be carried out.
As a result, the process core load which is in
progress, or which has just been completed, is
saved on disk and control transferred to the Non­
process Monitor (or the nonprocess core load if one
had been interrupted and stored on disk). The period
of time allocated to time-sharing is specified by the
user in a System Director equate card, TISHA, at
system generation time. The computer remains in
the nonprocess mode for this specified period unless
a CALL ENDTS is executed by an interrupt routine.

At the completion of the specified time, another
CALL VIAQ is automatically forced by the system.
If, in the meantime, a core load has been queued,
it is then executed. If the queue remains unchanged
(that is, nothing has been added to it), another time­
sharing operation will be triggered.

If, at the end of a nonprocess job, the I I END OF
ALL JOBS card indicates that there is no further
nonprocess work for execution, the VIAQ routine
will WAIT until either some addition has been made
to the queue or the Console Interrupt (C. I.) button
is again depressed for the commencement of a new
nonprocess job.

This method of entering time-sharing is, in
practice, preferred to CALL SHARE. CALL SHARE
may, however, be desirable in certain special
situations.

Two additional functions performed by the Time­
Sharing Control (TSC) program are CALL LINK
and CALL EXIT when these are referenced from
nonprocess programs.

EXAMPLE 2. (See Program Listing No.1). In
order to illustrate some of the many TSX usages
without complex FORTRAN I Assembler language
coding, the following example was devised. Note

that in this example, the system and list printers
have been defined as the same device (1443). In
actual practice, the system printer would be a
1053; the list printer, a 1443 or another 1053.

Three analog inputs, A, B, and C, are to be
read at 15-second intervals. After C has been
read, linear interpolation is used between point A
and point B, and between point B and point C. The
values A, B, and C are temperatures: the tempera­
tures between A and B, and B and C are linear.
The point at which temperature A is taken is 25 feet
away from the point where temperature B is taken;
Similarly for B and C.

A temperature histogram showing temperature
versus distance is to be printed on the list printer.

A nonprocess program is to be written which
simply lists numbers: this program is to be exe­
cuted in the time-sharing mode.

Timer 2 is used to produce an interrupt every 15
seconds so that one of the three analog inputs may
be read.

The skeleton contains a timer service subroutine
for Timer 2, called SCAN, which calls programmed
interrupt level 7 when 15 seconds have elapsed
(that is, SCAN executes a CALL LEVE L (7». Timer
2 has a base (TBASE) of 1 millisecond.

The problem was solved under TSX using the in­
skeleton subroutine SCAN and the following five core
loads:

COLDC
WAITC
READC
CALCC
SHOWC

Figure 26 illustrates the general problem logic
flow.

COLDC (referred to at execution time as C/L #1).
This is a mainline core load which is directly
called by the cold start program. Its primary
function is to unmask all interrupt levels, set
timer to 15 seconds, and chain to core load
WAITC.

WAITC (referred to at execution time as C/L #2).
This core load merely calls VIAQ which results
in either a queued program being executed, or
the beginning of time-sharing.

READC (referred to at execution time as C/L #3).
This is the solitary interrupt core load which is

Functions of Executive Programs 49

executed on level 7. The SCAN routine in skele­
ton executes a programmed interrupt to level 7
each time the 15-second interval elapses. The
*STORECI control card for this core load contains
level and bit indicators equal to 2407 -- which
indicates programmed interrupt level 7.

When this core load is executed, an indicator
named ICNT, which is in INSKEL COMMON, is
interrogated. If this indicator is 1, the first
point A is read, timer 2 is reset (for another 15-
second interval), and the core load exits by way
of a CALL INTEX.

If the indicator is 2, the second point B is
read:. the timer is reset, and the core load exits.

If the indicator is 3, the third point C is read,
the tilmer is reset, two core loads CALCC and

SCAN (lNSKEL SIR)

CALL LEVEL (7)

COLDC (MAINLINE)
I
I

CALL TIMER(SCAN,2, 15000)

CALL CH~"N(WA,_IT_C..;..) __ ,

WAITe] (MAINLINE)

[~ESTS QUEU~AND
TIMEo-SHARES IF
EMPTY

CALL VIAoQ

t
I
I

READC I (INTERRUPT)

CALL TlMER(SCAN,2, 15000)
CALL QUEUE(CALCC, 1 ,0)
CALL QUEUE(SHOWC,2,0) ~ 01
CALL ENDTS
CALL INJEX

I

t I

(MAINLI] !
L-_____ I

CALCC

CALL VIAQ

I
ISHOW_C ___ (_MA_I, NLlN}E)j

CALL VIAO

Figure 26.. General Problem Logic Flow - Example 2

50

SHOWC are queued, time-sharing is terminated,
and the core load exits via a CALL INTEX.

CALCC (referred to at execution time at C/L #4).
CALCC takes the three analog readings, A, B,
and C, which have been stored in INSKEL COM­
MON, interpolates and stores the 51 results
back into INSKE L COMMON.

The core load is executed by a CALL VIAQ.

SHOWC (referred to at execution time as C/L #5).
SHOWC takes the 51 interpolated results from
INSKEL COMMON and outputs a scaled histo­
gram on the list printer. It then calls VIAQ.

NOTE: Each core load prints a message on entry
to and on exit from the core load itself. This
message identifies the core load as C/L 1, C/L 2,
C/L 3, C/L 4, or C/L 5.

This diagnostic message is accomplished by a
CALL-type FORTRAN subroutine which is included
in the skeleton. Its format is as follows:

CALL ENT (I, J)

where ENT is the name of this subroutilile.
Either of two messages, depending on the
parameters I and J, will be printed:

A) ENTERED C/L NO.
B) EXITED C/L NO. .

ENTERED will be printed when I = 1.
EXITED will be printed when I = 2.

J is the core load identification number as
follows:

J

J

J

J

J

1

2

3

4

5

COLDC

WAITC

READC

CALCC

SHOWC

The on-line results on the list printer (Program
Listing No.1) also clearly indicate when time­
sharing has taken place.

PROGRAM LISTING NO.1: EXAMPLE 2

Fl.ET

PACK LABEL
00000

.FIOS 001B 03AO
DUMMY 0092 0488
IPRSV 4000 05AC

IEPDM 7FFF
DUMIN 005A
.SKEL 0038

DUP FUNCTION COMPLETED

II JOB
II FOR COLDP
*IOCSI1443PRINTER)
*LI ST ALL

03BI:I
0489
05EO

EXTERNAL SCAN,WAITC
COMMON/INSKEL/I1,I2,13,INCNT
CALL UNMKI-1,-1)
CALL ENTI1,1)
INCNT=l
CALL TIMER ISCAN,2,15000)
CALL ENTI 2,1)
CALL CHAIN IWAITC)
END

VARIABLE ALLOCATIONS

IEPSV 0780
NONPR OOFO
.EPRG 0022

11 =FFFF* 12 =FFFE* 13 =FFFD* INCNT=FFFC*

FEATURES SUPPORTED
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS

0422
048A
0618

(Note: This Is the state of FLET before compilations
begin)

IINSV 2280
NP 0098
ICLST 0780

0428
048B
063A

INPSV 4000
90UMY OOEC
.E OOFO

0444
048C
0488

.t<IESS 0010
ISPSV 4000

0478
0578

SCAN WAITC UNMK ENT TIMER CHAIN PRNTN EBPRT

INTEGER CONSTANTS
1=0004 2=0005 15000=0006

CORE REQUIREMENTS FOR COLDP
COMMON 0 INSKEL COMMON

END OF COMPILATION

COLDP
DUP FUNCTION COMPLETED
II DUP

4 VARIABLES

*STORECIM M COLDC COLDP COLDC
*CCEND

CLB, BUILD COLDC

CORE LOAD MAP
TYPE NAME ARGl ARG2

*CDW TABLE 4002 600c
*18T TABLE 400E 0010
*F ID TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A OOlE
*IST TABLE 406B . 0036
*PNT TABLE 409E OOOC
MAIN COLOP 40B1
PNT COLOC 40AO
PNT COLOC 40A4
CALL UNMK 4006
CALL ENT 4130
CALL TIMER 415C
PNT WAITC 40A8
LIBF SUBIN 41B2 404A
LIBF COMGO 41EC 4040
LIBF MWRT 43C8 4050
LIBF MIDI 447E 4053
LIBF MCOMP 4455 4056
LIBF IOU 487A 4059
CALL IOFIX 4932

4 PROGRAM 40

Functions of Executive Programs 51

CALL BTlBT 4962
CALL SIIVE 48CE
LIBF ADRCK 49C6 4Q5C
LIBF FLOAT 4A18 405F
LI BF IFIX 4A34 4062
LIBF NORM 4A60 4065
CORE 4A8E 3572

CLB, COLDC LD XQ

o 45 CORE LOADS NOT FOUND
WAITC
DUP FUNCTION COMPLETED

II JOB
II FOR WAITP
':'LIST ALL
*IOCS 11443PRINTER)

CALL ENTII,2)
CALL ENTIZ,Z)
CALL VIAQ
END

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
ENT VIAQ PRNTN

INTEGER CONSTANTS
1=0000 Z=0001

EBPRT

CORE REQUIREMENTS FOR WAITP
COMMON 0 INSKEL COMMON

END OF COMPILATION

WAITP
DUP FUNCTION COMPLETED
II DUP

o VARIABLES

*STORECIM M WAITC WAITP COLDe
~'CCEND

CLB, BUILD WAITC

CORE LOAD MAP
TYPE NAME ARGI ARGZ

'~COW TABLE 4002 OOOC
'nBT TABLE 400E 0010
':'F 10 TABLE 40ZB 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A OOIE
~<I S T TABLE 4068 0036
*PNT TABLE 409E 0008
MAIN WAITP 40A8
PNT WAITC 40AO
PNT COLDC 40A4
CALL ENT 40CF
CALL VIAQ 40EE
LIBF SUBIN 414E 404A
LIBF COMGO 4188 4040
LIBF MWRT 4364 4050
LIBF MIDI 441A 4053
LIBF MCOMP 43F1 4056
LIBF IOU 4816 4059
CALL IOFIX 48CE
CALL BTlBT 48FE
CALL SAVE 486A
LIBF ADRCK 496Z 405C
LIBF FLOAT 4984 405F
LIBF IF IX 4900 406Z
LIBF NORM 49FC 4065
CORE 4AZA 3506

CLB, WA ITC LD XQ

DUP FUNCTION COMPLETED

52

o PROGRAM

This I. a genuine TSX warning mellage. It Indlc:ate.
that c:ore load WAITe waa not built at this stage.

12

II JOB
II FUR READP
*IOCSI1443PRINTER)
*LlST ALL

EXTERNAL SCAN,CALcc,SHOWC
COMMON/INSKEL/IA1,IA2,IA3,ICNT
CALL ENTl1,3)
L=ICNT
GO TO (~,10,15),L

5 K'=76
GO TO 20

10 K=79
GO TO 20

15 K .. 127
20 CALL AIP(O,JTEST)

GU TO 12~,30),JTEST
25 GU TO 20
30 CALL AIPI01000,ITEMP,K)
70 CALL AIPIO,JTEST)

GO TO 171,72),JTEST
71 GO TO 70
72 GO TO 135,40,45),L
35 I Al .. ITEMP

GO TO 50
40 IA2=ITEMP

GO TO 50
45 I A3= I TEt<IP
50 WRITEI3,100) ICNT

100 FORMAT I' ICNT=',13)
ICNT=ICNT+l
CALL TIMeR ISCAN,2,15000)
GO TO 155,55,55,60),ICNT

55 CALL ENT(2,3)
CALL INTEX

60 ICNT= 1
CALL QUEUEICALCC,l,O)
CALL QUEUEISHOWC,2,0)
CALL ENDTS
CALL ENTI2,3)
CALL INTEX
END

VARIABLE ALLOCATIUNS
IAl -FFFF* IA2 -FFFE* IA3 -FFFD* ICNT -FFFC* L

STATEMENT ALLOCATIONS
100 =OOOD 5 .0023 10 =0029 15
35 =0057 40 '0050 45 -0063 50

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS

=002F 20
=0067, 55

=0000 K

-0033 25
"0081 60

SCAN CALCC SHOWC ENT AlP TIMER INTEX QUEUE

INTEGER CONSTANTS
1=0004 3=0005 76=0006 79."0007 127 .. 0008

CORE REOUIREMENTS FOR READP
COMMON 0 INSKEL COMMON 4 VARIABLES 4 PROGRAM

END OF COMPILATION

READP
DUP FUNC T ION COMPLETED
II DUP
*STORI:CIM READC READP 2407
*CCEND

CL6, BUILD READC

ROC ANINT 0023 LEV.O

CORE LOAD MAP
TVPE NAME ARGl ARG2

-0001 JTEST-0002 ITEMP .. OO03

=0030 30
·0087

ENDTS COMGO

=003F 70

MWRT

=0044 71

MCOMP MIDI

=004E 72

PRNTN

0-0009 1000=000A 2=0006 15000=000C

156

READe Is an Interrupt core load responding to a
programmed Interrupt on level 07,.

=0050

EBPRT

Functions of Executive Programs 53

*cow TABLE 4002 OOOC
*IBT TABLE 400E 0010
*FIO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 0021
*PNT TABLI:: 406C OOOC
MAIN REAoP 408C
PNT REAoC 406E
CALL ENT 4135
L1BF COMGO 4154 404A
CALL AlP 41A6
L1BF MWRT 435C 4040
L1BF MID! 4412 4050
L1BF MCOMP 43E9 4053
CALL TIMER 480E
CALL QUEUE 4864
PNT CALCC 4072
PNT SHOWC 4076
CALL ENoTS 4926
L1BF SU8IN 4930 4056
CALL OZ010 496A
CALL "ZERQ 49BE
L1BF AIPTN 49CC 4059
L1BF IOU 4A4E 405C
CALL IOFIX 4806
CALL BTl8T 4B36
CALL SAVI:: 4AA2
L1BF AoRCK 4B9A 405F
L1BF FLOAT 4BEC 4062
LIBF IFIX 4C08 4065
CALL GAGED 4C3It
CALL UNGAG 4C45
CALL ANINT 4C54
LIBF NORM 4090 4068
CORE 4DBE 1242

CL8, READe LD XQ

o 45 CORELOADS NOT FOUND
CALCC SHOWC
DUP FUNCTION COMPLETED

II JOB
II FOR CALCP
*LIST ALL
*IOCS 11443PRINTER)

DIMENSION N1511
COMMON/INSKEL/J1,J2,J3,ICNT,N
CALL ENTl1,4)
WRITE (3,6) J1,J2,J3

6 FORMAT II READINGSI,3IIOI
N(1)-Jl
N(26)-J2
NI511-J3
DO 4 1-2,25

4 N(I)=NI1)+IINI26)-NI1,112S)*II-ll
00 5 1=27,50

5 NIIl=N(51)+IINI261-NI511)/251*151-Il
WRITE 13,71 INIII,I-1,Sl)

7 FORMAT (12110)
CALL ENTl2,41
CALL VIAQ
END

VARIABLE ALLOCATIONS
Jl =FFFF* J2 -FFFE* J3 -FFFD* ICNT -FFFC* N

STATEMENT ALLOCATIONS
6 -DOOE 7 =0017 4

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
ENT VIAQ ISTOX

54

MWRT

"003E 5 "'006A

MCOMP MIOIXMIOI

=0002

SUBSC PRNTN EBPRT

INTEGER CONSTANTS
1=0006 4=0007 3=0008 2 .. 0009

CORE REQUIREMENTS FOR CALCP
COMMON 0 INSKEL COMMON 56 VARIABLES

END OF COMPILATION

CALCP
DUP FUNCTION COMPLETED
II DUP
*STORECIM M CALCC CALCP COLDC
*CCEND

CLB, BUILD CALCC

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 4002 OOOC
*IBT TABLE 400E 001D
*FIO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN CALCP 40CA
PNT CALCC 40AA
PNT COLDC 40AE
CALL ENT 417D
LIBF MWRT 4326 404A
LIBF MIGI 43DC 404D
LI BF MCOMP 43B3 4050
LI BF ISTOX 47D8 4053
LIBF SUBSC 47F8 4056
LIBF MIOIX 43E8 4059
CALL VIAQ 4824
LIBF SUBIN 4884 405C
LIBF COMGO 48BE 405F
LIBF IOU 4910 4062
CALL IOFIX 49C8
CALL BTlBT 49F8
CALL SAVE 4964
LIBF ADRCK 4A5C 4065
LIBF FLOAT 4AAE 4068
LIBF IFIX 4ACA 406B
LIBF NORM 4AF6 406E
CORE 4B24 34DC

CLB, CALCC LD XQ

nup FUNCTION COMPLETED

II JOB
II FOR SHOWP
*IOCS 11443PRINTER)
*LI ST ALL

DIMENSION N(51),MI51),LI120)
COMMON/INSKEL/11,I2,13,ICNT,N
CALL ENTll,5)
DO 2 IK=1,120

2 LlIK)=O
DO 3 1=1,51
MI=NII)/300

3 MI I)=IABSIMII
DO 4 J=1,51
K=M 1 J II 2

4 WRITE 13,1001 J,ILII),1=1,K)
100 FORMAT 1I3,lX,58I2)

CALL ENT 12,5)
CALL VIAQ
END

VARIABLE ALLOCATIONS
11 =FFFF* 12 =FFFE* 13
J =OOAE K =OOAF

=FFFD* ICNT =FFFC* N

25=000A 27=0008 50=OOOC 51=0000

6 PROGRAM 170

=FFFB* M =0032 =OOAA IK =OOAB =OOAC MI =OOAD

Functions of Executive Programs 55

STATEMENT ALLOCATIONS
100 "OOBA 2 =00C7 3 =00E9 4 .. 0109

FEATURES SUPPORTED
ONE WORD INTEGERS
IDes

CALLED SUBPROGRAMS
ENT lABS VIAQ ISTOX MWRT MCOMP MIOIX MIDI SUBSC PRNTN EBPRT

INTEGER CONSTANTS
1=:00B2 5-00B3 120 .. 00B4 0-00B5 51 2 OOB6 300=00B7 2=00B8 3=00B9

CORE REOUIREMENTS FOR SHOWP
COMMON 0 I NSKEL COMMON 56 VARIABLES 178 PROGRAM 128

END Of: COMPILATION

SHOWP
DUP FUNCTION COMPLETED
II DUP
*STORECIM M SHOWC SHOWP COLDC
*CCEND

CLB, 13UI LD SHOWC

CORE LOAD MAP
TYPE NAME ARGl ARG2

*CDW HBLE 4002 OOOC
*16T TABLE 400E 0010
*FIO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN SHOWP 416F
PNT SHOWC 40AA
PNT COLDC 40AE
CALL I:NT 41FF
LIBF SUBSC 421E 404A
L1BF [STOX 424A 4040
CALL lABS 426A
L1BF MWRT 440E 4050
LIBF MIOI 44C4 4053
LIBF MIOIX 4400 4056
LIBF MCOMP 449B 4059
CALL VIAQ 48CO
LIBF SUBIN 4920 405C
LIBF COMGO 495A 405F
LIBF ADRCK 49AC 4062
LIBF :IOU 49FE 4065
CALL IOFIX 4AB6
CALL 6TlBT 4AE6
CALL SAVE 4A52
LIBF FLOAT 4B4A 4068
LIBF [FIX 4B66 406B
LIBF NORM 4692 406E
CORE 4BCO 3440

ClB, SHOWC LD XO

DUP FUNCTION COMPLETED
*OUMPlET F

FlET

PACK LABEL
00000

.FIOS OOlB 03AO IEPDM 7FFF 03BB IEPSV 0780 0422 IINSV 2280 0428 INPSV 4000 0444 .MESS 0010 0478
DUMMY 0092 0488 DUMIN 005A 0489 NONPR OOFO 048A NP 0098 0488 COL DC OA8C 048C WAITC OA28 0495
READC ODSC 049E CALCC OB22 04A9 SHOWC OBBE 0462 9DUMY OOBC 04BC ISPSV 4000 0578 IPRSV 400(J 05AC
.SKEL 0038 05EO .EPRG 0022 0618 ICLST 0780 06.~A .E OOFO 0488

DUP FUNCTION COMPLETED

56

ENTERED C/l 1 EFTA
EXITED C/l 1 EFTA
ENTERED C/l 2 EFTA
EXITED C/l 2 EFTA

II JOB
I I XEf~ NPJOB
*CCEND

ClB, BUilD NPJUB

ENTERED GIL
ICNT: 1

EX !TED C/l
ENTERED C/l

ICNT: 2

3
3

EX !TED C/l 3
ClB, NPJOB lD XQ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ENTERED GIL 3
ICNT= 3

EX !TED C/l 3
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

E"!TERED C/l 4
READINGS 9000

9000 9120
10440 10560
11880 12000
13320 13440
14760 14880

EX !TEO C/l 4
ENTERED C/l 5
ENTERED C/l 3

ICNT: 1
EX !TEO C/l 3

1 000 0 000 0
2 000 0 000 0
3 000 0 000 0
4 000 0 000 0
5 o 0 0 0 000 0

EFTA

EFTA
EFTA

Ef'TA

EFTA

EFTA

EFTA
12000

9240
10680
12120
13560
15000

EFTA
EFTA
EFTA

EFTA
0 000 0
0 000 0
0 000 Q
0 000 0
0 000 0

Interrupt core load on level 07 take. precedence over
nonprocell tob. Programmed Interrupt level 07
Initiated 'rom In-skeleton timer routine called SCAN.

During time-sharing, a non~ocell tob I. execUted and
prints out a pattern of num rs In an Increasing order
of mognltude, 01 shown. Thl. n.t of numbers I.
interrupted by core load. (mainline process or Inter-
rupt procell) at a higher level.

Third ent~ of core load READC call. end time-sharing
Tlme-ahar ng terminate. the next time timer C Interrupts.

15000
Core load" Is executed 'rom the QUEUE.

9360 9480 9600 9720 9840 9960 10080 10200 10320
10800 10920 11040 11160 11280 11400 11520 11640 11760
12240 12360 12480 12600 12720 12840 12960 13080 13200
13680 13800 13920 14040 14160 14280 14400 14520 14640

Core load 5 Is executed from the QUEUE.

0 0 Core load 5 (SHOWC) prints hl.togrc:m.
0 0
0 0
0 0
0 0

Functions of Executive Programs 57

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 o· 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0
27 0
28 0
29 0
30
31 0
32 0
33 0
34 0
35 0
36 o 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0

ENTERED C/l 3 EFTA Durin~ the printing of the histogram, interrupt core load rCNT= 2 READ is brought into core and executed.
EX I TED C/l 3 EFTA

37 000 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0
38 (J 0 0 0 000 0 0 000 0 (l 0 0 0 0 0 0 0 0
39 000 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0
40 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0
41 000 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0
42 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0
43 o 000 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0
44 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0
45 000 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0
46 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
47 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
48 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
49 000 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
50 o 0 0 0 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
51 o 000 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0

EXITED C/l 5 EFTA
·40
·41
42
43
44
45
46
·47
48
49
50
51
52

ENTERED C/l 3 EFTA
ICNT= 3

EXITED C/l 3 EFTA
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77 Th. cycle of events repeats Itself.
78

58

USE OF THE OPERATIONS MONITOR

The Operations Monitor is an optional watch-dog type
timer device which warns the user when the proces­
sor-controller is not executing a predicted sequence
of instructions. This may be caused by power fail­
ure, computer hang-up, or computer looping.

The watch-dog timer works on the principle that
a contact closes upon completion of a preset time­
out period. When this occurs, a separately-powered
alarm or indicator (supplied by the user) is brought
into play. The time-out period is settable within the
range 5-30 seconds. Note that the time interval
selected must be greater than the secondary time
base specified by the Interval Timer Control (ITC)
program.

The user may also exercise the option of manual
or automatic reset of the Operations Monitor. This
option is specified in the OPMON equate card at
system generation time (see System Design Consid­
erations: System Director). Automatic resetting
is undertaken by ITC during time-sharing operations.
If the Operations Monitor is used, it is the user's
responsibility to ensure that a reset (XIO) instruc­
tion is executed frequently enough in hi s program so
as to prevent timeout during normal operation. If
the reset command is not given during the selected
interval, timeout occurs and the alarm circuit is
closed.

The Call Operations Monitor subroutine is used
to reset the monitor. Its format is:

CALL OPMON

Consider the following example. A particular
program (say, a logging program) has been designed
for execution every 15 seconds, and therefore ideally
suited for Operations Monitor reset. If the program
is not, for some reason, executed within this allowed
time span, the Operations Monitor is set, causing an
alarm in the warning de'vice the user has attached to
the Operations Monitor.

ERROR ALERT CONTROL

Error procedures in the IBM 1800 Time-Sharing
Executive System are provided by a program pack­
age called the Error Alert Control (EAC) Program
which is designed to analyze errors that are:

L Basic to the hardware, and
2. which may result from incorrect use of soft­

ware programs.

Since errors affect all real-time systems, from
the largest to the smallest, the policy adopted
towards all errors is to keep the system on-line if
at all possible, and to minimize operator decisions.

Features of EAC

Error Conditions Serviced

The Error Alert Control program provides error
recovery for the following conditions:

• An input/output error which persists despite
repeated corrective action by an I/O subroutine.

• Occurrence of an internal machine error (e. g. ,
invalid operation code, parity, storage protect
Violation)

• Other control subroutine error conditions (e. g. ,
QUEUE, FORTRAN I/O)

Error Analysis Provisions

Provision is also made for the following features.

Dump of Core storage to Disk. An optional dump of
all core storage to disk is proVided if this option is
elected through the System Director equate card
DUMPI at system generation time. If, for example,
DUMPI is equated to 1, the DUMP routine is included
(at System Director assembly time) with the EAC
program package. This feature is only applicable to
subroutine type errors.

The DUMP routine writes core into the EDP
DUMP AREA on disk. Since permanent core may be
storage protected, and the disk routine must insert
the sector address at the start of each sector to be
written, the dump routine moves blocks of six sec­
tors of permanent core to variable core and copies
it to disk. After all of permanent core has been
copied, that portion of variable core used is re­
stored.

The copied data on disk can now be dumped to an
output device by the DUP *DUMP function.

User Error Subroutine. In a process program, EAC
branches to a user-written error subroutine if this
is included with the mainline core load. This action
is bypassed for internal machine errors, if an
error subroutine is not included and if a nonprocess
program is in core.

Functions of Executive Programs 59

A user-written error subroutine can be optionally
included with each process core load. The purpose
of this subroutine is to allow the user to have con­
trol before EAC overlays the variable area with the
disk portion of EAC. For example, there may be
special data or other information that the user wants
to save. Output, such as special core dumps, mes·­
sages, or contact operate functions, can also be
executed. The error subroutine cannot be written
in FORTRAN language.

Before entering the user f s error subroutine,
error identification data is placed in words 00115-
00119. These words will contain the following:

Input/Output Error~

00115
00116

00117
00118

Que,ue OVerflow

00115
00116

00117

00118

00119

Error type code
Address of illegal call or
address of the device table
Address of level work area
Address of originating call

Error type code
Word count of core load
named in CALL QUEUE
Sector address of core load
named in CALL QUEUE
Priority of core load named
in CALL QUEUE
Error parameter of core
load named in CALL QUEU]~

T'he meaning of on-line EAC error type codes is
given in Table 3. Table 4 contains a description of
all on-line errors serviced by EAC, the format of
each EAC message printout, and corrective action
specifications.

A standard recovery procedure is executed by
EAC according to the type of error (see Table 4).
User options are specified in the same table (see
USER OPTION column). However, under certai.n
conditions, EAC overrides the user option. The
EAC option is always executed if an error subrou­
tine is not used or the user does not specify an op­
tion. Options can be specified by the user before
returning to EAC by loading the A-register with -10
for S (HESTART) or -1 for 1& R (CONTINUE).

The last logical statement in the error subroutine
must be;} a BSC I entry to the error subroutine.

The core load named for the restart option can be
an error analysis core load, or it can be the first of
a new series of core loads. If queueing techniques

60

are used, the restart core load can be sim'ply a
CALL VIAQ statement (CALL QUEUE can be exe­
cuted in the restart core load or the err or subrou­
tine).

The statements listed below CalUlot be used in an
error subroutine:

CALL BACK
CALL CHAIN
CALL DPART
CALL ENDTS
CALL EXIT
CALLINTEX
CALL LEVEL
CALL LINK
CALL MASK

CALL QIFON
CALL RESMK
CALL SAVMK
CALL SHARE
CALL SPECL,
CALL UNMK
CALL VIAQ

Update Error Counters Maintained on Disk. For
each I/O unit on the system, a hardware counter is
maintained on the disk for printout to the Customer
Engineer for maintenance purposes.

Back-up Capability for D. P. I/O Units. The option
of including backup units for the 1053 and 1he 1816,
as well as the logical removal of the 1443 from
service, can be specified at system generation time.
If backup is not provided, the 1053 printer will be
automatically removed from service when multiple
failures occur without taking the system ojEf-line.

Backup for the EAC printer is achieved by defin­
ing multiple EAC printers at TASK assembly time
(if the EAC printer is defined as a 1053). When an
output error occurs, or if the unit is not ready
(that is, interrupt response is not received), EAC
will logically disconnect the unit in error :md substi­
tute the backup unit. When backup is initiated be­
cause of a hardware malfunction, the message in
progress on the failing unit is not continued on the
backup device. When the error condition is cor­
rected, the unit can be restored to its ori~,inal
status by using the C. E. Interrupt routillE~ See
C. E. Interrupt Routine in the publication}BM 1800
Time-Sharing Executive System, Operatin.g Proce­
dures, Form C26-3754.

EAC Program Breakdown

EAC can be considered in terms of four component
parts; each component functions as a separate sub­
program, the four parts remaining interdopendent
insofar as the status information of the error (de­
tected) is shared by all routines concerned. In
addition, EAC sets up a level work area for the use
of reentrant coded programs when it is processing

Table 3. On-Line EAC Error Type Codes

EAC MESSAGE FORMAT

*INN CL.OCK AC-M PNAME LOCN

* - INDICATES PROCESS CORELOAD IN CORE
BLANK - INDICATES NON-PROCESS CORELOAD IN CORE

I - GENERAL I/O
P - PROCESS I/O
F - FORTRAN
Q - QUEUE
M - MASK
X - MISCELLANEOUS

NN - TWO DIGIT NUMBER INDICATING TYPE OF ERROR

CL.OCK - TIME IN THOUSANDTHS OF AN HOUR

AC - AREA CODE FOR THE ASSOCIATED I/O DEVICE
M - MODIF IER IF MORE THAN ONE FOR THAT AREA CODE

PNAME - NAME OF THE PROGRAM IN CORE AT THE TIME OF
THE MESSAGE (NOT NECESSARILY THE ONE WHICH
ORIGINATED THE CALL LEADING TO THE ERROR
CONDITION)

LOCN - LOCATION OF THE CALL

USER ERROR TYPE CODES FOR DP I/O

101 PARITY
102 STORAGE PROTECT
103 ILLEGAL CALL
104 NOT READY
105 / /BLANK CARD
106 FEED CHECK
107 READ-PUNCH CHECK
108 DATA OVERRUN
109 WRITE SELECT
110 NO PRINT RESPONSE
III DATA ERROR
112 INVALID MESSAGE ON DISK
113 FILE PROTECT ERROR
114 TAPE ERROR
115 EXCESSIVE TAPE ERRORS
116 END OF TAPE
117 INVALID CALL TO ERROR ROUTINE
118 NO RESPONSE FROM DISK
119 INVALID DISK ADDRESS

USER ERROR TYPE CODES FOR PROCESS I/o

POI PARITY DATA OR COMMAND REJECT
P02 STORAGE PROTECT VIOLATION
P03 ILLEGAL CALL
P04 PARITY CONTROL
POS OVERLAP CONFLICT
P17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR QUEUING

QOl ERROR OPTION IS ZERO - CALL IGNORED
Q02 ERROR OPTION NOT ZERO -

NO LOWER PRIORITY IN QUEUE
Q03 QUEUE ENTRY REPLACED BY NEW CALL QUEUE
Q04 QUEUE CALL NOT HONORED -

RESTART INITIATED
Q17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR FORTRAN

F90 ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
F91 ILLEGAL INT USED IN A COMPUTED GO TO

USER ERROR TYPE CODES FOR FORTRAN (CONTINUED)

DISK I/O
F92 FILE NOT DEFINED
F93 RECORD TOO LARGE. ZERO OR NEGATIVE

NON-DISK I/O
F94 INPUT RECORD IS IN ERROR
F9S RANGE OF NUMERICAL VALUES IS IN ERROR
F96 OUTPUT FIELD TOO SMALL TO CONTAIN THE NUMBERS
F97 ILLEGAL UNIT REFERENCE
F98 REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
F99 WORKING STORAGE AREA INSUFFICIENT FOR

DEFINED FILES
F17 INVALID ERROR CODE

F87
F88
F89

MOl
M02
M17

XOI
X02
X03
X04
X17

UNEDITED I/o

ILLEGAL UNIT REFERENCE
READ LIST EXCEEDS LENGTH OF WRITE LIST
RECORD DOES NOT EXIST FOR READ LIST
ELEMENT

USER ERROR TYPE CODES FOR MASK ROUTINES

ILLEGAL CALL RESMK
ILLEGAL CALL UNMK
INVALID ERROR CODE

USER ERROR TYPE CODES FOR PROGRAM
SEQUENCE CONTROL

ILLEGAL CALL BACK
INTERRUPT LEVEL ERROR
CORELOAD NOT LOADED ON DISK
RESTART CORELOAD NOT LOADED ON DISK
INVALID ERROR CODE

Functions of Executive Programs 61

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS

DEC HEX EAC EXIT

1053/1816 PRINTER/KEYBOARD

00 00 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1053

USER MUST CORRECT CALL IN PROGRAM
01 01 104 R,S S* 1053 NOT READY

104 CL.OCK AC-M PNAME 1053 NOT READY
CHECK FORMS

0:3 03 104 R,S R,S 1816 KEYB·OARD NOT READY
104 CL.OCK AC-M PNAME 1816 NOT READY

MAKE READY
O,~ 04 102 L N STORAGE PROTECT VIOLATION FROM 1816

102 CL.OCK AC-M PNAME 0000
USER MUST CHECK PROGRAM

05 05 101 S R KEYBOARD PARITY ERROR
101 CL.OCK AC-M PNAME 1816 PARITY

LAST CHARACTER TYPED MAYBE INVALID
Ob 06 101 I N* PRINTER P.t..RITY ERROR

101 CL.OCK AC-M PNAME 1053 PARITY
AN ATTEMPT TO PRINT HAS BEEN MADE 2 TIMES

07 07 110 R N* NO PRINT RESPONSE
101 CL.OCK AC-M PNAME NO PRINT RESP

NO OP COMPLETE HAS BEEN RECEIVED
013 08 112 R N INVALID MESSAGE ON DISK

112 CL.OCK AC-M PNAME
THIS MESSAGE IS NOW LOST

1442 CARD READ-PUNCH

10 OA 103 S N ILLEGAL CALL TO 1442
103 CL.OCK PNAME LOCN 1442

USER MUST CORRECT CALL IN PROGRAM
1'1 OB LAST CARD
1:1 OC 101 R S PARITY ERROR

101 CL.OCK AC PNAME 0000 1442 PARITY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS

1:1 OD 102 L N STORAGE PROTECT VIOLATION
102 CL.OCK AC PNAME 0000

USER MUST CHECK PROGRAM
1·~ OE 106 R S FEED CHECK

106 CL.OCK AC PNAME 1442 NOT READY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS

15 OF 108 DATA OVERRUN
108 CL.OCK AC PNAME 0000 1442 NOT READY

NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
16 10 107 R S READ-PUNCH CHECK

107 CL.OCK AC PNAME 1442 NOT READY

1;7 11 105 S N
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
/ /BLAN K CARD

105 CL.OCK AC PNAME 0000
CONTROL CARD ENCOUNTERED - CHECK DECK

19 13 104 R S 1442 NOT READY
104 CL.OCK AC PNAME 1442 NOT READY

PRESS START ON UNIT

1054/1055 PAPER TAPE READER/PUNCH

20 14 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1054

USER MUST CORRECT CALL IN PROGRAM
21 15 101 S I PUNCH PARITY ERROR

101 CL.OCK AC PNAME 0000 1055 PARITY
LAST CHARACTER OUT MAY BE INVALID

22 16 104 R,S S READER NOT READY
104 CL.OCK AC PNAME 1054 NOT READY

MAKE READY
2~1 17 104 R,S S PUNCH NOT READY

104 CL.OCK AC PNAME 1055 NOT READY
MAKE READY

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

62

L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

Table 4. On-Line EAe Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND. OPTION

DEC HEX EAC EXIT

1054/1055 PAPER TAPE READER/PUNCH (Cont'd)

24 18 101 S I

25 19 102 L N

2310 DISK

30 IE 103 S N

31 IF 104 R S

32 20 108 S I

33 21 109 S I

34 22 111 S I

35 23 102 L N

36 24 101 S I

37 25 119 S N

38 26 113 S N

39 27 118 S N

1627 PLOTTER

41 29 101 S I

42 2A 104 R,S S

1443 PRINTER

50 32 103 S N

53 35 110 R,S R,S

54 36 101 S,I I

55 37 104 R,S R,S

LEGEND FOR EAC STANDARD EXIT AND USER OPTION;

I - CONTINUE AT THE POINT OF INTERRUPT

ERROR MESSAGE
AND COMMENTS

READER PARITY ERROR
101 CL.OCK AC PNAME 0000 1054 PARITY

LAST CHARACTER READ IN MAY BE IN ERROR
READER STORAGE PROTECT

102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)

ILLEGAL CALL
103 CL.OCK PNAME LOCN 2310

USER MUST CORRECT CALLING SEQUENCE
DISK NOT READY

104 CL.OCK AC PNAME 2310 NOT READY
MAKE READY
DATA OVERRUN

108 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
INVALID DATA FROM DISK AFTER 10 TRIES
WRITE SELECT

109 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
STOP DISK AND START AGAIN TO RESET
DATA ERROR

III CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
EXCESSIVE WD CT FOR SECTOR OR MODULO 4 ERROR
STORAGE PROTECT ERROR

102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)
PARITY ERROR

101 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
ERROR PERSISTS AFTER 10 TRIES
INVALID DISK ADDRESS

119 CL.OCK AC PNAME 0000
INVALID ADDRESS OR UNEXPECTED HOME BIT ON
FILE PROTECT ERROR

113 Cl.OCK AC PNAME 0000
USER TRIED WRITING IN A FILE PROTECTED SECTOR
NO RESPONSE

118 CL.OCK AC PNAME 0000 2310 HARDWARE ERROR
DID NOT RECEIVE OR LOST RESPONSE FROM DISK

PARITY ERROR
101 Cl.OCK AC PNAME 0000 1627 PARITY

NO ATTEMPT IS MADE TO REPLOT THE POINT
NOT READY

104 Cl.OCK AC PNAME 1627 NOT READY
MAKE READY

ILLEGAL CALL
103 Cl.OCK PNAME LOCN 1443

USER MUST CORRECT CALL IN PROGRAM
NO PRINT RESPONSE

110 CL.OCK AC PNAME 1443 NOT READY
PUSH START ON THE PRINTER
PARITY ERROR

101 CL.OCK AC PNAME 0000 1443 PARITY
NO ATTEMPT IS MADE TO REPRINT THE LINE
NOT READY

104 Cl.OCK AC PNAME 1443 NOT READY
PUSH RESET AFTER CORRECTING PRINTER ERROR THEN

PUSH START

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
.. - INTERNAL BACKUP ATTEMPTED

(Continued)

Functions of Executive Programs 63

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND. OPTION

DEC HEX EAC EXIT

ANALOG INPUT BASIC

60 3C P03 S N

61 3D P02 L N

62 3E ?04 S N

63 3F POl S N

64 40 P05 S N

65 41 S N

66-68
P17 S N

DIGITAL IINPUT BASIC

70 46 P03 N

71 47 POl S N

72 48 P02 N

73 49 S N

74-79
P17 S N

DIGITAL AND ANALOG OUTPUT BASIC

80 50 P03 N

81 51 POl N

82 52 S N

83-89
P17 S N

2402 MAG TAPE -----
90 5A 103 S N

91
92 5C 102 L N

._-------
LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT

ERROR MESSAGE
AND COMMENTS

ILLEGAL CALL
P03 CL.OCK PNAME LOCN AIN

ILLEGAL CALL SEQUENCE IN PROGRAM
STORAGE PROTECT VIOLATION

P02 CL.OCK AC PNAME 0000 AIN
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED
PARITY .:ONTROL ERROR

P04 CL.OCK AC PNAME 0000 AIN
PARITY ERROR ON DATA OR CONTROL CYCLE
PARITY IDATA ERROR

POI CL.OCK AC PNAME 0000 AIN
PARITY ERROR DURING TRANSMISSION
OVERLAP CONFLICT

P05 CL. OC K AC PNAME 0000 AIN
RELAY POINTS IN RANDOM READ FUNCTION TOO CLOSE
TOGETHER
INTERMWIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

Pl7 CL.OCK PNAME AIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DIN

ILLEGAL CALL SEQUENCE IN PROGRAM
PARITY iERROR OR COMMAND REJECT

POI CL.OCK ACPNAME 0000 DIN
DATA TRANSMITTED I NCORRECTL Y OR ILL. REQUEST
STORAGE PROTECT ERROR

P02 CL.OCK AC PNAME 0000 DIN
WRITE OPERATION TRIED IN MEMORY PROTECTED LOCN
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME DIN
INVALIP ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DAO

ILLEGAL CALLING SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT

POl CL.OCK AC PNAME 0000 DAO
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME DAO
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
103 CL.OCK PNAME LOCN 2402

ILLEGAL CALL SEQUENCE IN PROGRAM
NOT USED
STORAGE PROTECT VIOLATION

102 CL.OCK AC PNAME 0000 2402
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED

R - RETURN TO tHE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

64

(Continued)

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR
CODE

DEC HEX

TYPE
CODE
EAC

EAC
STAND.
EXIT

USER
OPTION

ERROR MESSAGE
AND COMMENTS

2402 MAG TAPE (Cont'd)

93 5D

94 5E

95 5F

96-97
98 62

99 63

FORTRAN

100 64

101 65

102 66

103 67

104 68

105 69

106 6A

107 6B

108 6C

109 6D

150 96

1T3

115

114

104

116

117

F90

F91

F92

F93

F94

F95

F96

F97

F98

F99

F17

F87

R,S

R

S

COMMAND REJECT
113 CL.OCK AC PNAME 0000 2402-COMMAND REJ

ILL MT OPERATION REQUESTED. USER CHECK PROGRAM
EXCESSIVE TAPE ERRORS

115 CL.OCK AC PNAME 0000 2402-EXCESS ERR
TOO MANY FAILS ON THIS REEL. MOUNT NEW REEL
TAPE ERROR

114 CL.OCK AC PNAME 0000 2402-TAPE ERR DSW
DSW- DEVICE STATUS WORD
PARITY ERROR OR OTHER FAIL CONDITION
AFTER 100 READ ATTEMPTS OR 3 WRITE ATTEMPTS
NOT USED
NOT READY

104 CL.OCK AC-M PNAME 2402-NOT READY
MAKE READY
END OF TAPE

116 CL.OCK AC PNAME 0000 2402-END OF TAPE
OPERATION ATTEMPTED PAST END OF TAPE
INVALID ERROR CODE

117 CL.OCK PNAME MAG
INVALID ERROR CODE FROM EAC

N ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
SUBSCRIPTED VALUE OUTSIDE LIMITS OF ARRAY
F90 CL.OCK PNAME LOCN ,

N ILLEGAL INTEGER VALUE IN COMPUTED GO TO
F91 CL.OCK PNAME LOCN

DISK 1/0
N FILE NOT DEFINED

F92 CL.OCK PNAME LOCN
FILE REOUESTED NOT DEFINED IN DEFINE FILE

STATEMENT
N REQUESTED NO. OF RECORDS TOO LARGE, ZERO, OR

NEGATIVE
F93 CL.OCK PNAME LOCN

NON-DISK 1/0
N INPUT RECORD IN ERROR

F94 CL.OCK PNAME LOCN
ILLEGAL CHARACTER IN NUMERIC FIELD

OR ILLEGAL CONVERSION
N RANGE OF NUMERICAL VALUES IS IN ERROR

F95 CL.OCK PNAME LOCN
FIXED OR FLOATING PT NUMBER OUTSIDE DEFINED

LIMITS
N REQUESTED OUTPUT FIELD TOO SMALL

F96 CL.OCK PNAME LOCN
N ILLEGAL UNIT REFERENCE

F97 CL.OCK PNAME LOCN
UNIT NOT DEFINED IN IOU TABLE OR 10CS CONTROL

CARD
N REQUESTED RECORD EXCEEDS ALLOCATED BUFFER

F98 CL.OCK PNAME LOCN
RECORD SIZE TOO LARGE

N WORKING STORAGE AREA INSUFFICIENT
FOR DEFINE FILES

F99 CL.OCK PNAME LOCN
INVALID ERROR CODE

F17 CL.OCK PNAME FOR
INVALID ERROR CODE FROM EAC

UNFORMATED I/O
N ILLEGAL UNIT REFERENCE

F87 CL.OCK PNAME LOCN
UNIT NOT DEFINED IN IOU TABLE, ONIOCS
CARD, OR FOR UNFORMATED I/O

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)

Functions of Executive Programs 65

Table 4. On-Line EAC ErroTS and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS

DEC HEX EAC EXIT

FORTRAN (Cont'd)

lSI 97 F88 S N READ LIST EXCEEDS LENGTH OF WRITE LIST
F88 CL.OCK PNAME LOCN

LIST IN READ STATEMENT IS LONGER THAN
LIST IN CORRESPONDING WRITE STATEMENT

152 98 F89 S N RECORD DOES NOT EXIST FOR
READ lISlr ELEMENT

F89 CL.OCK PNAME LOCN
LAST PHYSICAL RECORD OF LOGICAL RECORD
HAS BEE"I EXHAUSTED

MISCELLANEOUS

110 6E XOI S N PSC CALL BACK ERROR
XOI CL.OCK PNAME LOCN

CALL BACK TRIED BEFORE CALL SPECIAL
111 6F X03 S N CORELO)"D NOT LOADED ON DISK

X03 CL.OCK PNAME COREN
COREN - CORELOAD NOT LOADED

112 70 X04 L N RESTART CORELOAD NOT LOADED ON DISK
X04 CL.OCK PNAME COREN

COREN - CORELOAD NOT LOADED
XI7 INVALID ERROR CODE

XI7 CL.OCK PNAME CLB
INVALID ERROR CODE FROM EAC

120 78 QOI S N QUEUE CALL IGNORED
ERROR OPTION ZERO

QOl CL.OCK WC SA P
WC- 5 DIGIT WORD CO.UNT
SA - 5 DIGIT SECTOR ADDRESS
p - 5 DIGIT PRIORITY

120 78 Q02 QUEUE CALL NOT HONORED-NO LOWER PRIORITY IN
QUEUE
ERR OPTION 1 TO 32766

Q02 Cl.OCK WC SA P
1!20 78 Q03 QUEUE CALL HONORED-CALL ENTERED IN QUEUE

ERR OPTION I TO 32766
003 CL.OCK WC SA P

REPLACES WC SA P
1120 78 004 QUEUE CALL NOT HONORED-RESTART INITIATED

ERR OPTION 32767
004 Cl.OCK WC SA P

QI7 INVALID ERROR CODE
Q17 CL.OCK PNAME QUE

INVALID ERROR CODE FROM EAC
130 82 MOl S N CALL RESMK ERROR

MOl CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE I"i AN OUT OF CORE INTERRUPT PROGRAM

'131 83 M02 S N CALL UNMK ERROR
M02 CL.OCK PNAME LOCN

ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE If'.! AN OUT OF CORE INTERRUPT PROGRAM

MI7 INVALID ERROR CODE
M17 CL.OCK PNAME MSK

INVALID ERROR CODE FROM EAC
140 8C X02 S N INTERRUPT LEVEL ERROR

X02 C'i •• OCK PNAME LOCN
ATTEMPT TO CALL LEVEL UNDEFINED FOR SYSTEM

XI7 INVALID ERROR CODE
XI7 CL.OCK PNAME LEV

INVALID ERROR CODE FROM EAC

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

66

L - RELOAD
iN - NO OPTION - MUST TAKE EAC EXIT
t _ INTERNAL BACKUP ATTEMPTED

(Continued)

Table 4. On-Line RAe Errors and Recovery Procedures

INTERNAL ERRORS

CAR CHECK ERROR
996 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

OP CODE VIOLATION
997 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

STORAGE PROTECT VIOLATION
998 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RELOAD

PARITY ERROR
999 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

OPTION WILL BE RELOAD (IF ERROR IS IN
SKELETON), RESTART (VARIABLE CORE - ABORT OF
NONPROCESS JOB, OR USER'S RESTART CORE LOAD
IF PROCESS), OR COLD START (REQUIRED IF EAC
IS UNABLE TO RELOAD SYSTEM)

MULTIPLE ENTRANCE TO EAC
MLPT EAC

AN ERROR HAS OCCURRED WHILE EAC WAS PROCESSING
A PREVIOUS ERROR. MUST GO TO A COLD START.

NORMALLY THIS ERROR INDICATES THAT THE
SYSTEM DISK IS DOWN. THIS ERROR WILL ALSO
OCCUR IF AN ERROR OCCURS IN EAC WHILE EAC
IS ATTEMPTING TO PROCESS A SYSTEM ERROR.

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)

Functions of Executive Programs 67

an error. Note that the user cannot call from his
error subroutines any routine that utilizes more
than 14 words of the subroutine wprk area (a portion
of the level work area). This area is principally
used for those calls to disk and output printers used
by EAC. It may be increased in size if the user
elects to remove this restriction.

The EAC program is entered whenever an error
occurs or a condition arises that calls for operator
intervention. An error message is then given on the
EAC printer and the program takes one of five pos­
sible exits after proper analysis has determined
which ,exit may be taken for the error in question.
Where more than one exit pertains to a given error
condition, the user has the option of specifying the
exit desired from his (user) error subroutine.

The four component parts are described below.

EAC In-Core. The in-core component of EAC is am
integral part of the System Director and resides ITt
core storage at all times. Its main function is to
channel one of the several possible types of error8
to a specific entry such that information relating to
this particular error is passed on correctly to the
analysis section. It also saves the current machine
status so that after an error has been processed,
the exit routine can return the machine back to the
user without loss of information. EAC in-core
also has the ability to dump variable core to disk if
this is specified by the user at System Director
assembly time (see System Design Considerations::.
System Director). This program also determines
conditions such as process or nonprocess mode, ia­
valid operation code, parity errors, and user error
subroutine availability.

Error Disk Program (EDP). EDP resides perma-­
nently on disk, except when it is called to core by
the EAC in-core program. Once EDP is in core,
it takes the error information from the fixed area
and determines what type of error has arisen, the
approximate address at which it occurred, and the
appropriate error processing subroutine; prior to
this, the correct entry addresses for the conversion
and error routines are initialized. When the error
processing routine has completed its task, certain
information such as perform a Cold Start or Re­
start, or this error was not corrected but we are
continuing the process, or this error has been
successfully corrected, etc., are passed to the
Exit component.

68

Error Decision Subroutines. These subroutines re­
side on disk at all times until called to main core
by EDP to process a particular error. After the
error processing has taken place, a decision is made
on the type of recovery procedure required (e. g.,
Continue processing, Restart, Reload). This infor­
mation is then passed to the Exit component of EAC
for execution.

EAC Exit. This is the means by which a branch is
made to the recovery exit prescribed by thl3 Error
Decision Subroutine. Note that there is no normal
exit from EAC.

Action of EAC When an Error Occurs

Consider the train of events that takes plac:e when an
error occurs, as shown in the simplified block dia­
gram, Figure 27. The error may be an Internal
Machine Error, a C. E. Interrupt, or a Miscellaneous
Subroutine Error which may be an error OJ(' condition
requiring outside intervention. Depending on the
type of error, one of three possible entries is made
to EAC, as follows:

Internal Errors:
C. E. Interrupt:
Miscellaneous Error:

EACOO
EAC01
EAC02

The explanatory paragraphs that follow are given in
an alphabetic sequence which corresponds exactly to
blocks within Figure 27.

A. An Internal Machine Error may be the result of:

• Parity

• An invalid operation code

• A storage protect VIolation, or

• A Channel Address Register (CAR) check

When such an e1'ror occurs, the hardware
generates a BSI indirect to EACOO through
word 8 where the processing procedure begins.
The return address, the status of the accumula­
tor and its extension, the type of error and
certain registers are now saved, and the ma­
chine put in a fully masked state. Fo:r each

A

INTERNAL
ERRORS

WRITE TO DISK
LAST 1800 WORDS
OF CORE. READ
IN ERROR DISK
PROGRAM

COLD START

B

C. E.
INTERRUPT

NO

C

o

EAC CALL
ENTRY

DUMP CORE
TO DISK

BRANCH TO
USER ERROR
ROUTINE

PRINT OUT 1-----------..... ERROR MESSAGE

BRING IN ERROR
RECORD ROUTINE
TO INCREMENT
COUNTER FOR
THAT SPECIFIC
DEVICE

CONTINUE RELOAD

Figure 27. Action of EAe when an Error Occurs

RESTART EXIT THROUGH
INTERRUPT LEVEL

Functions of Executive Programs 69

error level, EAC then sets up a work area
wIthin the Fixed Area. Note that the user's
error routine (if included with hi.s core load)
will be ignored on all internal machine errors
and nonprocess programs. .A.. direct branch
is then made to the variable core procedure (G).

B. A C. E. Interrupt routine forms part of a TSX
on-line system to allow the user to check and
modify system tlllit assignments of 1053 output
printers, 1448 printers, and 2310 disk drives,
and to initiate backup procedures if and when
this becomes necessary. This is normally a
Customer Engineer responsibility. When the
C" E. LEVEL INTERRUPT toggle switch, lo­
cated on the C. E. panel, is activated, a C. E.
interrupt occurs, forcing a BSI to that level,
and, after some processing, another BSI is
generated to an entry EAC01 in EAC. EssenUal
information is saved exactly as for internal
machine errors. A direct branch is then
taken to G.

C. A Miscellaneous Error which is neither an
internal machine error nor a C. E. interrupt
may be either an error or a condition that re­
quires outside intervention. For example, a
not-ready condition on an I/O device has arisen.
This condition has been detected by the I/O
routine, which then sets up an error code and
additional parameters in locations 115 through
119, and finally executes a BSI through location
UW to an entry EAC02 in EA~.

D. If the dump-core-to-disk option is specified by
the user at System Director assembly time,
permanent core is written to the Error Dump
Area on disk for interrogation at a later date.
Only the latest error is kept since there is only
one Save Area.

E. A determination is now made if the core load in
error is a process core load.

F. If it is, a branch is made to the user's error
subroutine, if it has been inoluded in the core
load, to allow him to perform such processing
as he may require for his particular system.
This also permits him to modify some system
options. Upon return from this routine, any
indicator that may have been set is saved. If it
is not a process core load, an exit is made to
the common variable core procedure at G.

G. At this point, DISKN is called in from the Skele­
ton to write out the last (1920) 10 words of core,
and to read the Error Disk Program (EDP) into
this area. The EDP program is origined such

70

that it will always reside in the final (1920) 10
words of variable core. The very last 64010
words of EDP is the overlay area for the appro­
priate Error Decision Subroutine when called.

H. Upon entering the Error Disk Program, an an­
alysis is made to determine which Error Decis­
ion Subroutine is to be used.

1. For an EACOO entry, the Level 0 routine is used;
for a C. E. Interrupt entry, the C. E. Interrupt
routine is used. If the entry was made through
EAC02, the routine used will be determined by
the error code stored in location 115 by the rou­
tine which determined the error.

The appropriate Error Decision Subroutine
is now read into the upper (640)10 words of
core; it then builds and prints the error mes­
sage on up to four output printers, as defined at
TASK assembly time, and sets a predetermined
exit indicator or the indicator set by the user's
error subroutine. A return is made to the EDP
program.

J and K. A hardware error check is now carried out.
Assuming that an internal machine error had
occurred, an error record routine is brought in
to increment (that is, update) a cmmter associa­
ted with that particular piece of hardware. The
record of the hardware error is kept such that
when maintenance is required, the cotmter is out­
put to inform the Customer Engineer how often
a particular hardware device has failed. Con­
trol is then returned to EAC, and the stage set
for recovery action.

As shown in Figure 27, five types of recovery
action (as prescribed by the appropriate Error
Decision Routine) are possible.

1. Cold start
2. Continue
3. Reload
4. Restart, and
5. Exit through an interrupt level

Cold start. Whenever an error occurs which cannot
be corrected, EAC prints a cold start proeedure
message, and comes to a wait state. For example,
consider a machine parity error which has: occurred
when one of the 18 bits of information has been lost.
A parity error routine then attempts to clear the
error by successively loading and storing data into
the affected location. If the error persistB after re­
peated attempts at recovery, the routine prints the
location of the parity error, and comes to a wait.

Continue. The error is noted, but it is not of such
a nature as to interfere with the program in progress.
For example, the entry to EAC may have been a
C. E. Interrupt or a request to print a message for
outside intervention reflecting a not-ready state, a
non-fatal error, or a printer parity.

The "continue" recovery action implies that the
program proceeds at the point of interruption. Con­
sider an I/O device which has just completed its
operation -- an interrupt is generated. This will
transfer control to the I/O routine which then deter­
min~s the correct error condition, and branches to
EAC. This exit option bypasses the I/O routine and
returns control to the point in the program at which
the interrupt developed.

Reload. The Reload recovery routine is brought into
core whenever it is suspected that some of the non­
storage protected words in permanent core may have
been destroyed. The routine then saves the tables
necessary for the completion of previous core loads,
having first verified that these tables have not been
destroyed. The Skeleton (from disk) is then read by
sectors into a buffer area, comparing each word to
its corresponding word in core, and overlaying it if
there is a difference.

If a storage protection violation has in fact oc­
curred, this means that a storage protected word
has dropped bits, thus making it different from its
corresponding word on disk. Under these circum­
stances, a cold start must be performed. Upon
completion of the Skeleton reload, various condi­
tions and indicators will be initialized and the rou­
tine exits by way of a CALL CHAIN.

Note that if an error has occurred outside of the
Skeleton Area, the present core load is aborted and
a new core load is read into main core for execution.

The CAR error may be caused by incorrect usage
of the "XIO" instruction or incorrect chaining of
data tables, etc. This is always a reload condition.

Restart. An error has occurred which prohibits the
present core load from continuing. Three types of
"restart" are used:

1. If the error, such as an illegal call, occurred
in a process core load, the program in pro­
gress is aborted and its restart core load is
called into core for execution.

2. If the error occurred in a nonprocess core
load, the job is aborted by calling in the Non­
process Supervisor.

3. If the error occurred in an interrupt core load,
this core load is aborted, and the restart core
load of the current process core load is called
for execution. This means that the user's re­
start routines must be written in such a way as
to analyze his system and determine what pro­
gram will be called for execution.

Exit through an Interrupt Level. A restart condition
has arisen on a level other than the mainline level.
The level on which the error occurred is terminated
and the Restart procedure taken when the mainline
level is reached.

THE NONPROCESS MONITOR

The Nonprocess Monitor (NPM) is an independent
programming system which is designed to function
in one of two possible modes within a TSX system:

• In the on-line mode, it operates under the control
of the System Director.

• It can also be run in the off-line mode as a dedi­
cated monitor system under TASK control.

The user elects either system (that is, an on-line
or off-line system) at system generation time (see
System Design Considerations).

The NPM serves a three-fold purpose:

1. It permits better computer utilization through
time- sharing.

2. It allows the user to compile, assemble, store,
delete, and modify programs with extreme flexi­
bility. Because the system program s are resi­
dent on disk, only source statements and data
cards are required to be read in.

3. It provides for job stacking at the Card Reader,
which is fast because less card handling is re­
quired. A stacked-job environment permits
automatic and uninterrupted operation.

The primary function of the Nonprocess Monitor
is to provide continuous processor-controller oper­
ation during a sequence of jobs that might otherwise
involve several independent programming systems.
The monitor coordinates the processor-controller
activity by establishing a common communications
area in core storage, which is used by the various
programs that make up the monitor. It also guides

Functions~ of Executive Programs 71

the transfer of control between mQnitor programs
and the userrs programs. Operation is continuous
and setup time is reduced to a minimum, thereby
effecting a substantial time saving in processor­
controller operation and allowing greater program-·
ming flexibility.

Figure 28 illustrates the five distinct but interdo­
pendent programs which make up the Nonprocess
Monitor.

NONPROCESS SUPERVISOR (SUP)

The Nonprocess Supervisor directs and controls th'e
execution ,of all nonprocess program s which may bo
either mM - supplied as part of the TSX package
(e. g., FORTRAN Compiler, Assembler, Core Load
Builder, Disk Utility Program and Simulator) or
user-written. It is composed of several separate
but closely-related routines; its two principal com­
ponents are:

• The Skeleton Supervisor, and

• The Monitor Control Record Analyzer

Skeleton Supervisor. This contains the requisite
direction and control logic for the orderly transition
of one program to another. The Skeleton Supervisor
is read into core storage whenever monitor system
operation is initially started, and provides the com­
munications link between monitor programs and user
programs.

Monitor Control Record Analyzer. This component
of the Nonprocess Supervisor reads the monitor
control record, prints its contents on the list and/or
System Printer, and calls the appropriate monitor
program.

Analysis of monitor control records extends OVEJr
columns 1-5 only, except for the // JOB card. Inval­
id control records result in an er~or message and
cause an abort. Blank cards are bypassed and not
stacker-selected. The card I/O routine, CARDN, in
the skeleton is used; if CARDN is not included by the
user, the monitor program uses its own card I/O rou­
tine. The / / JOB control record resets the abort in­
dicator and the effective address for the Nonprocess
Working Storage on disk. It can also specify which of
logical disk drives 1 and 2 are expected to be opera­
tional, and, accordingly, checks the labels on their
disk packs when indicated. The /1 END control record
directs the Nonprocess Supervisor into a wait state:.

72

Disk
Utility
Program

r------ - - Time-Sharing
Control Program

(TSC)
Nonprocess
Supervisor

Assembler
Program

FORTRAN
Compiler

Figure 28. The Nonprocess Monitor

Specifically, the Nonprocess Supervisor per­
forms the following functions:

1. Analyzes all monitor control records (e. g. ,
// JOB, // ASM, // FOR)

2. Performs JOB initialization
3. Calls and transfers control to the requested

monitor program (e. g., FORTRAN Compiler,
Assembler)

4. Performs PAUS (that is WAIT) and END OF ALL
JOB functions when requested

5. Also analyzes control records for the Core
Load Builder following the / / XEQ, *STORECI
and *SIMULCI.

Method of Operation

The Nonprocess Supervisor, including all monitor
programs, must reside on logical disk drive zero
where it occupies 21 sectors (see System Design
Considerations: ruM Nonprocess System)!. The
first 168 words of the Disk Communications Area
(DCOM) of sector 00000 on this disk (the system disk
pack) contains the Nonprocess Communications Area
which provides the logical linkages betwel~n monitor
programs and user programs. This area holds ad­
dress words, error indicators (used by DUP, FOR,
ASM, SUP, etc.), the name of the program or core
load being executed, as well as a loader for the
monitor programs.

DCOM is always brought into core each time a
/ / JOB control record is read. Certain words are
then initialized to reflect the current statlls of the
disk as reflected by LET /FLET. Note that recog­
nition of a 1/ JOB control record by the Nonprocess

Supervisor also removes all temporary entries
from LET. Whenever a / / END or / / XEQ control
card is encountered, DCOM is written back to disk.

Entry to the Nonprocess Supervisor occurs
through a) Console Interrupt, b) a CALL SHARE (or
CALL VIAQ) statement in a process mainline, c)
FORTRAN Compiler, d) Simulator, or e) Disk Utility
Program.

In an on-line TSX System, process interrupts are
serviced as they occur, the interrupt servicing time
being applied against the time specified by the user
for nonprocess operations. As an example, assume
a process mainline calls for one minute of time­
sharing. This one-minute span is the length of time
in the share mode. If, during this period, ten sec­
onds are used up for process interrupt servicing,
only fifty seconds are actually available for nonproc­
ess work.

If all nonprocess jobs are completed before the
end of the user-specified time, the Nonprocess Sup­
ervisor program performs a WAIT operation for the
remainder of the time allotted. In other words, if
the CALL SHARE statement specified one minute of
time-sharing, control is not returned to the process
program until one minute has elapsed, or alternative­
ly, a CALL ENDTS statement is executed by an inter­
rupt routine (see Use of Time-Sharing).

Figure 29 illustrates, in simplified form, Non­
process Monitor action during time-sharing.

If a nonprocess job is not completed before the
specified time is up, it is saved on the disk. When
the next CALL SHARE statement is executed, oper­
ation of the nonprocess job is resumed at the point
of termination.

When an unfinished job is waiting, the CALL
SHARE statement causes it to be read in and execu­
ted. Otherwise, the Nonprocess Supervisor pro­
gram is read into core and determines, by checking
a program indicator located within the System
Director, if any time-sharing operations are to be
performed. This indicator is turned on by the execu­
tion of a special console interrupt routine, supplied
with the system.

The following example illustrates a typical use of
the Nonprocess Monitor whenever nonprocess jobs
are ready for execution.

1. Operator stacks jobs in Card Reader and starts
Reader.

2. Time-Sharing is typically initiated by an oper­
ator interrupt, with a coded num ber set up in

Process I Nonprocess Monitor
Program

r--------, I
Nonprocess
Program

CALL
SHARE

(I)

Read-in
Unfinished
Job and
Continue
Execution

Wait until
time has
elapsed

Perform
Job

Figure 29. Illustrating Nonprocess Monitor Action during
Time-Sharing

the console switches to indicate a time- sharing
reque13t .

3. Interrupt routine sets a program indicator to a
process mainline.

4. Process mainline calls for time-sharing when it
is idle. It specifies the time interval.

5. Nonprocess programs may be interrupted and
later continued by an external (that is, process)
interrupt or timer interrupt. This will involve
an exchange to the disk save area if the inter­
rupt program is not in core, or if the shared
period has timed out.

6. Nonprocess jobs are completed in sequence
until no jobs remain (program ends on a WAIT
instruction) or until / / END OF ALL JOBS
control record is reached.

7. During time-sharing, the Skeleton Supervisor
will be in transient core, identifying monitor
control records and initiating monitor pro­
grams.

Functions of Executive Programs 73

DISK UTILITY PROGRAM (DUP)

DUP is a set of routines designed to aid the user in
the day-to-day maintenance of data and programs
on disk packs. That is, it has the capabilities of
storing, deleting, and outputting user's programs
as well as defining system and machine parameters.
It also updates the location equivalence table (LET)
and maintains other communications areas. The
Disk Utility Program is called into operation by a
/ / DUP monitor control record; it can be used on-·
line or off-line.

The / / DUP monitor control record must be fol·­
lowed by at least one DUP control statement that
selects the desired routine. DUP control statements
are idEmtified by an asterisk in column 1. Columns
2 through 10 contain a symbolic code which identifies
the routine (e.g. *STORE, *DELETE, *SEQCH).
The columns following the coded routine name pro-..
vide additional information used by the routine itself.

Like the Nonprocess Supervisor, DUP must re­
side on logical disk drive zero where it occupies
68 sectors. Primary entry to DUP derives from
a) Nonprocess Supervisor, b) FORTRAN Compiler.,
c) Assembler, and d) Core Load Builder.

DUP uses the card I/O routine~ CARDN, if this is
included in the skeleton; otherwise, it uses its own
card I/O routine. Blank cards are skipped and
stacker-selected when searching for control records.
Non-DUP or non-monitor control records result in
an error message. All DUP control records and
messages are printed on both the System and List
printers.

Essential data for most DUP functions to com­
municate with a disk pack include the following:

• Disk sector addresses

• Ntnneric label in word 0, sector 0

• Disk Communications Area (DCOM) -- This pro­
vides information on the size and location of
work storage areas, LET for the Relocatable
Program Area and FLET for the Core Load Area.

• Vali.d entries in LET /FLET

A list of all DUP functions is given in the Sum­
mary of Nonprocess Monitor Control Records. See
also Examples of Nonprocess Monitor Usage.

74

FORTRAN COMPILER

The TSX FORTRAN Compiler is a disk-resident ver­
sion of the 1800 card compiler, and oCCUpic3S 103
sectors on logical disk drive zero. Provision is also
made for the user to easily make use of input-output,
conversion and arithmetic subroutines that are a part
of the TSX subroutine library. The FORTRAN
language is described in mM 1130/1800 Basic
FORTRAN IV Language, Form C26-3715.

The / / FOR monitor control record is used to call
the FORTRAN compiler into operation, and to name
the mainline program. The compiler reads the con­
trol records and source program in card form only.
After a successful compilation, the object program
in relocatable format is moved to the temporary area
on disk, and an entry (name and disk block count) is
made in LET. It can, henceforth, be called for exe­
cution by an / / XEQ control record, or it can be
stored permanently in the Relocatable Prog;ram Area
by a DUP (*STORE) operation. All FORTRAN pro­
grams are compiled in relocatable format. A list of
FORTRAN control records is given in the Elummary
at the end of this section.

ASSEMBLER

The Assembler program for the 1800 TSX system is
a disk-resident version of the 1800 card assembler.
It is designed to translate source program statements
written in a symbolic format into a binary format
which may be stored and/or dumped by the Disk
Utility Program (DUP) , or executed directly from the
Nonprocess Work Storage on disk. The Assembler
Language is fully described in mM 1800 AEisembler
Language, Form C26-5882.

The Assem bIer program resides on logical drive
zero and occupies seven cylinders. Entry to it is
obtained via a / / ASM monitor control record. The
Assembler accepts control records and source pro­
grams in card form only. Upon a successful assem­
bly, the object program in relocatable format is
moved to the temporary area on disk wher~ it can be
called for execution by a / / XEQ control record or
stored permanently in the Relocatable Program Area
by a DUP (*STORE) function. A list of Assembler
control records is given in the summary at the end
of this section.

SIMULATOR PROGRAM

The simulator is designed as a debugging aid which
allows the user to checkout or test process and/or
nonprocess programs without disrupting the normal
operations of the TSX system -- that is, without tak­
ing the system off-line. It functions under the control
of the Nonprocess Monitor.

Each instruction in the object program is analyzed
for a valid operation code and format before its oper­
ation is simulated. In addition, addresses of store
and branch instructions are checked to ensure that
the instruction would not alter anything outside of
the areas of the defined program, COMMON, INSKEL
COMMON, or the level work area, if they are act­
ually executed on-line. Process input values may
be read from cards or derived from a random num­
ber generator. Since System Skeleton routines are
used during simulation, it is mandatory that the
skeleton area be built before simulation of process
core loads can be performed.

Since the primary function of the Simulator is to
detect programming errors in the object project,
several optional debugging features are available to
aid the user. These include Snapshot, Branch Trace
and Dump. Simulated COMMON can be dumped on
cards so that a run can be executed in several dif­
ferent parts. In addition, the branch and arithmetic
trace provided by the FORTRAN Compiler can be
operative in the simulator mode.

Simulation runs for process programs are called
by a DUP control record, *SIMULCI; runs for non­
process programs are called by a / / SIM monitor
control record. Details of operating procedures and
stacked-input for a typical simulation run are des­
cribed in IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Subroutines

General Input/Output

Each time the Simulator encounters a user-called
sequence to an I/O subroutine, the location of the
calling sequence and the subroutine name are
printed on the List printer. Each time the Simulator
encounters a subroutine test function (I/O function
digit = 0), the following occurs: the first time a test
is encountered, a busy return is made; the second
time, a not busy return is made. Succeeding entries
alternately cause busy and not-busy returns.

Listed below are the general input/output subrou­
tines (IBM-supplied) recognized by the Simulator,
and corresponding operations which the Simulator
performs:

SUBROUTINE

CARDN (Simulated card
subl\?utine)

DISKN (Simulated disk
subroutine)

MAGT (Simulated mag­
netic tape subroutine)

PAPTN (Simulated paper
tape subroutine)

OPERATION

Read-a card, feed a card, simulate
punch a card

Read disk, write disk, simulate
disk seek

Simulates all read, write, and
control functions relative to 2401
and 2402 magnetic tape units

Simulate reading paper tape, simu­
late punching paper tape)

PLOTX (Simulated plotter Simulate plotter output
subroutine)

PRNTN (Simulated printer Print a line, simulate a carriage
subroutine) operation

TYPEN or WRYTN (Simulated Simulates printing on 1816 printer
printer keyboard subroutine) keyboard or 1053 printer

The Simulator requires that the card reader, disk,
and List printer be phYSically present on the system.

Process Input/Output

Call sequences which specify input from pulse input
points, digital input points, process contact points,
and analog input, may obtain input from two sources:
cards and a random number generator.

Data cards are used if samples of specific values
are desired; the points can be read in a nonprocess
program and punched into cards to be read by the
Simulator. Any value can be simulated when using
cards, but in order to obtain the desired results, the
input data must be sequenced according to the flow of
the process input subroutines called. In other words,
the card feature requires careful ordering of the
card deck.

A random number generator, within the Simulator
program, produces numbers that fall into a user­
specified range. With this option, the user can em­
ploy a wide variety of input data to check program
operation. A psuedo-process input environment can
also be created through the use of a random number
generator. All input values are printed on the list
printer as they are called.

In the program being simulated, call sequences
that specify output for the contact operate, pulse out­
put, digital output, and digital-to-analog output fea-

Functions of Executive Programs 75

tures are printed when they are encountered. Input
call sequences, error messages, and data are
included in the printed output. This provides a com­
plete chronological record of all that occurred duro.
ing the simulation.

ffiM-supplied process input/output subroutines
are functionally simulated; that :is, the subroutines'
call parameters are analyzed according to specifica­
tions supplied in the form of control records. The
routine name, calling parameters, and data are
printed on the List printer. Listed below are the
process input/output subroutines recognized by the
Simulator, and corresponding operations which the
simulator performs. Special-condition returns aro
also simulated.

SUBROUTINE.

AIPTN or AIPN (Simulated
analog input point)

AIRN (Simulated analog
input random)

AISQN or AISN (Simulated
analog input sequential)

DAOP (Simulated digital­
analog output)

DICMP (Simulated digital
inpuu read compare)

DIEXP (Simulated digital
inpuu read expand
function)

DINP (Simulated digital
inputt hardware functions)

OPERATION

Simulates the read of a single
analog point

Simulates reading random analog
input points

Simulates reading sequential
analog data points

Simulates the transfer of digital
or analog information

Simulates the reading in of
digital input values under progj~am
control and compares these values
to a table of user-supplied vallles.
Only the first compare error is
detecte<i A single entry to the
special routine is made with
appropriate indication. The
end-of-table interrupt will not
occur if a comparator error
occurs.

Simulates the reading in of a
digital input value and expands
it into I, 2, 4, 8, or 16 words.

Simulates the reading in of
digital input values

Arithmetic and Conversion Subroutines

Copies of the IBM-supplied arithmetic and conver­
sion subroutines are contained within the Simulator.
It is these copies that are executed when a call to an
arithmetic or conversion subroutine is encountered.
The requested operations are performed in a psuedo­
proceSSing environment maintained under control of
the Simulator.

76

General TSX Subroutines

When a call to a TSX control subroutine iEI recognized
by the Simulator, the subroutine name and its calling
sequence parameters are printed. There are two
categories of subroutines designed for control and
communication with the TSX system: the termination
class and the functional simulate class.

The following subroutines comprise thEI termina­
tion class, and when encountered, cause the Simula­
tor to execute the close-job procedure:

BACK
CHAIN
DPART
INTEX
LINK

PAUSE
SPECL
STOP
VIAQ
EXIT

The subroutines listed below comprise the func­
tional simUlate class, and when encountered, cause
the Simulator to simulate the function, i. El., they
analyze the c,all parameters for validity al!ld print
the routine name, the calling parameters, and the
data contained within the subroutine.

CLEAR REMSK
COUNT SAVMK
ENDTS SETCL
LEVEL SHARE
MASK TIMER
OPMON UNMK
QIFON UNQ
QUEUE

User-Written Subroutines

User-written subroutines are simulated in the same
manner as mainline programs.

Common Area

The simulated COMMON area can be dumped on
cards whenever a program being simulated is ter­
minated. The output cards can be used for input
to reload COMMON, thus providing communication
from one core load to another.

Restrictions

Restrictions placed upon the use of the Simulator
program are listed below:

1. Nonprocess work storage must be used if actual
data is to be transferred between disk and core.

2. Link or chain jobs must be simulated by pre­
senting one core load at a time.

3. The Simulator utilizes LIBF and CALL instruc­
tions for special purposes. When analyzing post­
mortem dumps, the contents of LIBF and CALL
locations should be ignored by the user.

4. All I/O must be performed by Simulator sub­
routines. An execute I/O (XIO) instruction is
not simulated but will be recorded on the List
printer.

5. A wait (WAIT) instruction will be recorded on
the list printer.

Table 5. Monitor Control Cards

II JOB

II DUP

IIXEQ

II ASM

II FOR

Initializes a nonprocess job

Reads the disk uti I ity program into core for execution

Reads the user's programs into core for execution

Reads the Assembler into cqre for execution

Reads the FORTRAN compiler into core for execution

6. A storage protect setting instruction (STS with
both the F-bit and the 9th bit equal to zero) will
result in a termination.

7. An attempt to store into a skeleton area other
than the INSKEL COMMON and work level
areas will result in a termination.

8. Operation codes of 00, 38, 58, 78, and FF are
invalid and will result in a termination.

9. A subroutine I/O area parameter pointing to the
skeleton will result in a termination.

SUMMARY OF NONPROCESS MONITOR CONTROL
CARDS

Tables 5-10 give a brief summary of all Nonprocess
Monitor control cards. For details of card prepar­
ation and their functions, see IBM 1800 Time-Sharing
Executive System, Operating Procedures, Form
C26-3754.

II SIM Reads the Simulator program into core allowing a nonprocess program to be simulated

II PAUS

II END or

Causes the system to WAIT

II END OF ALL JOBS Signals the Nonprocess Supervisor that all nonprocess work is complete

Table 6. Loader Control Cards

*INCLD

*RCORD

*FILES

*CCEND

*LOCAL

Causes a named program to be included in the skeleton or in a mainline core load

Records interrupts that occur during the execution of process core loads

Provides for the designation of disk areas to be used by the FORTRAN program In which the files were defined

Indicates that no loader control cords are following and the core load builder can be called

Permits groups or blocks of subprograms to be loaded into core when they are called

Functions of Executive Programs 77

Table 7. DUP Control Cards

'kDEFINE

{

OCORE

NDISK

CONFG

REMOV

PAKDK

*DLABL

*STORE

*STOREDATA

*STOIRECI

"'DUMP

"'DUMPDATA

*DUMPLET

*DELET

"'DWRAD

*STOREMD

"'SEQCH

*SIMULCI

*DICI.E

Table 8. FORTRAN Control Cards

Specify the size of object core

Specify the number of disk drives on the system

Specify the system configumtion with respect to disk areas

Allow the user to de lete FORTRAN or the Assembler from the monitor disk

Pack relocatable programs into unused areas identified by *DELET

Labels a disk pack and, if riot system pack, writes addresses

Stores relocatable programs in the Relocatable Program Area (user or temporary) on disk

Stores blocks of data in Core Load (core Image) Area on disk

Causes a core load to be built and stored in the Core Load Area on disk

Dumps programs from the dil;k to the system I/O device or list printer

Dumps blocks of data as Indicated in *DUMP

Dumps LET and/or FlET on I'he list printer

Replaces a program nome in LET or FlET with the name 9DUMY thus making the program area available to the
store function

Allows the user to write addresses on a specified area of disk

Allows the user to modify e:<isting nonprocess core loads and relocatable programs without previously
de Jeti ng them

Used to change the sequence of existing core load linkages for process or nonprocess core loads

Reads the Simulator program into core, allowing a process program to be simulated

Allows the user to modify the interrupt core load table

~--'--~~---,--

78

* 10CS (CARD, TYPEWRITER, KEYBOARD, 1443 PRINTER, PAPER TAPE,
MAGNETIC TAPE, DISK, PLOTTER)

** Header information to be printed on each compiler output page

* ONE WORD INTEGERS

* EXTENDED PRECISION

* ARITHMETIC TRACE

,.. TRANSFER TRACE

,.. LIST SOURCE PROGRAM

* LIST SUBPROGRAM NAMES

,.. LIST SYMBOL TABLE

,.. LIST ALL

* NONPROCESS PROGRAM

* PUtKH

De lete any not used

(Store integer variables in one word) This function is automatic in
process programs.

(Store floating point variables and constants in 3 words instead of :!)

(Switch 15 ON to print result of each assignment statement)

(Switch 15 ON to print value of IF or Computed GO TO)

(list source program as it is read in)

(list subprograms called directly by compiled program)

(list symbols, statement numbers, constants)

(list source program, subprogram names, symbol table)

(Identifies this compilation as a nonprocess program)

(Causes DUP to punch an object deck after successful compilation)

Table 9. Assembler Control Cards

*TWO PASS MODE Read source deck twice; must be specified when *LlST DECK or *LlST DECK E is specified, or when intermediate output fills
working storage

*LlST Print a listing on the principal printing device

*LlST DECK

*LlST DECK E

Punch a list deck on the principal I/O device (requires *TWO PASS MODE)

*PRINT SYMBOL TABLE

*PUNCH SYMBOL TABLE

*SAVE SYMBOL TABLE

*SYSTEM SYMBOL TABLE

Punch only error codes (cc 18-19) into source program list deck (requires *TWO PASS MODE)

Print a listing of the symbol table on the principal printing device

Punch a list deck of the symbol table on the principal I/O device

Save symbol table on disk as a system symbol table

Use system symbol table to initialize symbol table for this assembly

*PUNCH A relocatable binary deck will be punched byDUP following this assembly

*OVERFLOW SECTORS n n = number of sectors of nonprocess working storage allowed for symbol table overflow

*COMMON n n = length of COMMON in words (decimal)

Table 10. Simulator Control Cards

*SNAP Displays up to 10 locations following execution of an instruction

*TRACE

*DUMP

Traces or displays same information as for *SNAP

Dumps simulated core storage

*SAVE COMMON

*LOAD COMMON

PlJnches out binary deck of process and variable COMMON

DEFINES and analyzes COMMON from *SAVE COMMON OUTPUT deck

*XIO

*WAIT

Suppresses printing of 10CC words referenced by XIO instruction

Suppresses printing of WAIT instructions

*START SIMULATION

*END DATA

Signals that all Simulator control cards have been read

Terminates Simulator run

EXAMPLES OF NONPROCESS MONITOR USAGE

The prime purpose of this section is to illustrate a
few of the many possible uses of 1800 TSX features,
and to accentuate the many more possibilities based
upon the ability of the user to apply the basic con­
cepts and techniques. Numerous sample program s
and coding examples are presented as demonstration
of good programming practice and technique. These
examples conform strictly to standard TSX coding
conventions.

The JOB

When a programmer is given a problem, he analyzes
that problem and defines a precise problem-solving
procedure: that is, he writes a program or a series
of programs. To the monitor system, executing a
mainline program (and any subroutines and subpro-

grams that it calls) is a job step. A job consists of
executing one or more job steps.

At its Simplest, a job consists of one solitary job
step. For example, assembling or compiling a pro­
gram is a job consisting of one job step. Similarly,
executing a FORTRAN mainline program to invert a
matrix is a job consisting of a single job step.

If the problem is complex, one job may consist
of a series of job steps. Such a job may include
multiple assemblies, compilations, disk utility
functions, and executions. A job always begins with
a / / JOB control card which is the first statement
in the sequence of control statements that describes
a job.

The JOB Deck

The input to the Nonprocess Monitor may consist of
one or more job decks. Each job deck is preceded
by a / / JOB. The processing of each job deck is

Functions of Executive Programs 79

controlled by the Supervisor program as specified .in
the monitor control cards. As an· example, consider
the following stacked input arrangement (see Figure
30).

The above sequences will compile, store and
execute both program PROG1 and program PROG2
provided that:

1. There are no source program errors, and
2. There is sufficient room in the Nonprocess

Work Storage area.

A source program error will cause the DUP
Store Operation to be bypassed for that program, and
all following / / XEQ requests preceding the next
/ / JOB card will be disregarded. This feature (that
is / / XEQ -- request disregard) can prove very use­
ful when the successful execution of one program de­
pends upon the successful completion of the previons
program. A combination such as this should be con­
sidered as one job. The / / XEQ control cards should
not be separated by a / / JOB card. Note from Fig-­
ure 30 that it would not be necessary to store the two
programs if they were executed ori a one-shot basis.

Assembling/Compiling Programs

Programs are of two types: process and nonprocess.
A process program is one that continuously monitors

SAMPLE CODING FORM

t.LL...L.LLi, I I I I I I I I II I I I I I I I I ~I I I I I 1,..J...LJ..lu..uJ
.~'S,aU&IC£j ,P&OIGRIAIAt ,P,ROO1J I I I lL.u....L1 I I I I I L_LL.L~LLL.~J

.~",I",,~, I 111111,1 II ~I""I L.L.L.L.h...L..L-tJ
/ 1~~..L.L.LJ.l.i..1..1 I I I I I I I I I I I I, I I I I I I I I I I I 1l..u..uJ

T~~..L.L..L..J~"IR&061I""I"III,II, ""I,,~
/ /~ IP81d6,Z I I~ I I II I I I I_Ll~J.J ... L..L.L.J-' I I I I I I I d...l....L.uJ
.~",I""I""I""I""~I"",,,,~..L.J..J
~5Io,U&,Ej ,P~OG8.AMI ,P8,9JSZ,l1 I I ~I, I I I I I 11l..L.L..L.J..J

,,,111111'11,1,,1,1,11,11111111,1 L....L...J......h..L..L.J..J

~~~~~~~~~~~~~~~~~I~I~I I~..L.J..J 

.-'-"-1....J......L.....L...LL....L...J......l_LL.L ~ 
R&d6.l, I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I kLLl 

~~~~~~.~~~~~L' ~I ~I 1.~uJ 

~W=~.~==~~LL~~L.....L...L~~~~J~~~~~l~~.L~
............ L.....L....J ,~h..LL1J

, ! I I ! f I I I I I I I I I L-Ll
I I I I", I I!, I II I.L...LJ

Figure 30. Illustrating a JOB

80

a control process. All application progra.ms are,
by definition, process programs. A nonprocess
program, on the other hand, is not directly related
to the control process itself. An assembler pro­
gram is an example of a nonprocess program: other
examples include compilers, data reduction, pay­
roll, bookkeeping, simulation of new and 'existing
programs, and linear programming.

Process and nonprocess program s may be fur­
ther classified as main programs or subroutines.
Subroutines can be subdivided into the following:
LIBF (library functions), CALL, Interrupt, IBM­
supplied, and LOCAL subroutines.

In the off-line or time-sharing mode of operation,
the user may exercise any of four options in assem­
bling/ compiling and executing a nonproceBS program.
Figure 31 illustrates these approaches in simplified
form. A distinction should be drawn between proc­
ess and nonprocess programs. The initial process
program can only be executed through a cold start
procedure for an on-line TSX system. If the proc­
ess, mainline, or combination core load i.s already
disk-resident (in the Core Load Area) it is called
by a CALL CHAIN or CALL QUEUE.

EXAMPLE 1. ASSEMBLE AND EXECUTE A NON­
PROCESS PROGRAM FROM THE TEMPORARY
AREA (see Figure 32).

The Assembler is unable to differentiate between
process and nonprocess program s -- these are
treated alike. Following assembly, the object pro­
gram in relocatable format is moved to the tempor­
ary area on disk, and its entry (name, word count,
and sector address) made in LET.

If the user desires to p~rform only an initial
check on his program, and not execute it, / / XEQ
and *CCEND are not required. If he plarts to verify
the program logic and results (if any), he will exe­
cute it. The presence of the / / XEQ and *CCEND
control cards calls in the Core Load Builder, and a
core load is built and executed. In addition, a list­
ing of source statements as well as the correspond­
ing object program, and a directory of all valid
labels used in the program can be obtained by speci­
fying these options with the appropriate Assembler
control cards. The order in which programs are
assembled is important when the *SAVE SYMBOL
TABLE control card is used in assemblin.g related
programs.

Note that the relocatable program will reside in
the temporary disk area until it is deleted by the
next / / JOB card. An *CCEND control card must
always follow an / / XEQ card if a relocatable
program is referenced in the / / XEQ card.

Store in -Relocating -Disk Area

, ,
Store in Build Core

Disk Core - Loads -Image Area *STORECI

" " EXECUTE ** EXECUTE ***
II XEQ FX II XEQ

*CCEND

Note:

This is automatic if the assembly or compila­
tion is successful.

ASSEMBLE
andlor

COMPILE

"
Store in

Disk TEMP
Area*

" Build Core
Loads

*STORECI

"
EXECUlE ***

II XEQ
*CCEND

Execution occurs through a Cold Start, CALL LINK
or II XEQ.

*** Execution can only occur through a II XEQ.

-...

Figure 31. Assemble/Compile and Execute a Nonprocess Core Load

SAMPLE CODING FORM

Figure 32. Assemble and Execute a Nonprocess Program from the
Temporary Area

Store In
Disk Core

Image Area

,.
EXECUTE **
II XEQ FX

EXAMPLE 2. COMPILE AND STORE A NON­
PROCESS PROGRAM IN THE RE LOCA TABLE PRO­
GRAM (OR USER) AREA ON DISK (see Figure 33).

Unlike the Assembler, the Fortran Compiler p,is­
tinguishes between the two types of programs by the
absence or presence of the *NONPROCESS PROGRAM
control card. In a process program, each integer
variable automatically occupies one word of storage.
In a nonprocess program, however, the *ONE WORD
INTEGERS control card forces the compiler to allo­
cate one word of storage to each integer variable; in
the absence of this card, the same allocation (that is,
two words) for real variables is made. In the case of
a large array, this could be prohibitive.

All FORTRAN programs are compiled in relocatable
format. Following compilation, the relocatable
object program is moved to the temporary disk area,
and an entry made in LET. It can now be called for
execution or loaded to the Relocatable Program (that
is, the User) Area on disk.

In Example 2, the relocatable program MAIN2 is
stored in the Relocatable Program (User) Area. The
actual storing of the program consists of physically
moving the program to its destination area (the User
Area) from the temporary area of Nonprocess Working

Functions of Executive Programs 81

SAMPLE CODING FORM

II ._~~~..L-L I I I I I I I I I ,1LLL.L.LL . ..Ll.LL~-LLLJ~.LLL~J. .LL-1J

_M~LLL..LLLLLLL1L.LJ.....L.L.L.LLL~....L..LLL..Ll..LL1....L..LJ..-Ll.J. .l-LL

MQ~OIC.£S~~AM I I I I...LL_...L.-LL~LL...L_Lt-l....L..LJ...J.l.l J....L.L

Ii~~_li.~~!fiULLLllL.L...L.Lll--'-..LLL1-LL~--LLL-Ll_1 .l...1--'-_

_ ~~lZ;¥...#"pI£""~.LL_1...Ll-'_...L..L.I~LLl...LLd~__'_l_1.lLL

_~L..LLLLLl__'_~1 I I I I I I I ~Ll..lJJ_-"-L~--LL-'--Ll.J...L.LL
._.Lci.~~~GI.EVI~ M~~.Ll~.--'-Ll-LlJ..LL..L

._dLLLJ_J.l-L.l.LLLI I I I I I I I L_..J...-'-'-_~LL.l--'---'--L-I--LLL-Ll...L..L.LL
I 1._.M'L.1....L...1.-~..l.h, I I I I I I I ~-'-'_~LL.l-LLcJL..L...1~...L-L...i--'-..
:5!~L..L.L_LLLL.l._1hl I I lMA,IM2I ! 1--'--'~Lll--'-"--LJ.-'-'--.l--Ll...1.-L--'---'-­
._.LLL.--'-L-,-L...L.LL..l._~' I I I I I I 1~-'-L~LL.l--'---'--LJ.--'---.L.l--Ll...L-L...i--'-..

Figure 33. Compile and Store a Nonprocess Program in the
Relocatable Program Area (User Area) on Disk

Storage. When the storing operation is completc3d,
LET is updated and the communications and fixed
area parameters reset to reflect these changes.

Note that a store from the temporary (TEMP) area
to the permanent Relocatable Program Area causes
TEMP to be packed to reflect that program moved.
An exception exists when the program is the last
entry in TEMP or when there is only one TEMP pro­
gram ini tiaUy .

EXAMPLE 3. COMPILE AND EXECUTE A NON­
PROCESS PROGRAM FROM THE CORE LOAD
AREA (see Figure 34).

This: example illustrates the third and fourth opt:i.ons
which may be taken to assemble/compile and execute a
nonproeess program from the Core Load Area. Note
that subroutines TIMSB, ERROR, and PRINT are com­
piled and stored in the User Area ~s these subroutines
are frequently referenced by this and other nonprocess
programs. In building process mainline and combina­
tion core loads, it may not be necessary to store these
subroutines. The store core image routine is used to
store a program in core image for;m (as a core load)
in the core load area and to assign the core load a
name. By making column 9 of the*STORECI control
card non-blank, a map of the locations and names of
subroutines and subprograms loaded with the core
load is obtained. When the nonprocess core load is
correctly built, DUP will search through its program
name table, find the name of the core load just built,
and add. its disk address and word count to the table.
In addition, any programs referenced in this core

82

load name table are looked up in FLET and their
disk addresses and word counts added to the table.
The core load is then executed from the Core Load
Area. FX in columns 16 and 17 of the / / XEQ
monitor control card signifies that the input program
is in core image format and that FLET is to be
searched for this program name.

Deleting and Replacing Relocatable Programs,
Core Loads, and Data Files

The *DELETE function allows the user to delete any
named

Relocatable program
Mainline core load
Com bination core load
Interrupt core load
Nonprocess (or link) core load
Data file

from the disk. An entry of a program in LET or a
core load/data file in FLET takes the normal form

LET: I~ _______ N_A_M_E ________ ~I_D_I~~~~~~~_~_~

FLET: L ______ N_A_M_E ___ -'-......;;..;W;;...O;;...R...;..D~"__S....;;E,..;;.C..;..TO.;;.;R;...;;.__J _ COUNT ADDRESS

where each LET and FLET entry occupies three and
four words of disk space respectively. Whenever a
program or a core load is deleted, its NAME in LET
or FLET is replaced by the symbolic 9DUMY and
henceforth the system is no longer cognizant of this
program or core load. Furthermore, the area on
disk previously occupied by a program or core load
is now available for the storage of other programs,
core loads, or data files. These areas are available,
but only used after all previously available areas have
been used.

A core load may be deleted and, in addition, have
its reference replaced by another core load's word
count and sector address. The replacement core
load must be of the same type. That is, a mainline

SAMPLE CODING FORM

Figure 34. Compile and Execute a Nonprocess Program from the Core Load Area

Functions of Executive Programs 83

core load may be replaced by another mainline coro
load, an interrupt core load by an interrupt replace­
ment core load, a combination core load by a re­
placement core load, and a nonprocess core load by
a nonprocess replacement core load. Replacement
of the four types of core loads is governed by cer­
tain rulles which are summarized as follows. Note
that thE~ replacement function within an *DELETE
operation does not alter the core load name, but only
its word count and sector address.

Combination and Interrupt Core Loads. In deleting a
combination or interrupt core load, all references to
this core load in the Program Name Table (PNT)
and/or Interrupt Core Load Table (ICLT) must be
replaced by a replacement core load name. Absen<ce
of this specification in the control card invalidates
the deleting function. Furthermore, if an interrupt
core load or combination is used to service multiple
interrupts, all interrupt core load entries in the PN
Tables, Queue Table, and ICL Table are automatieally
replaced with a single delete operation by specifying
9999 for the interrupt level and bit positions on the
control card (columns 39-42).

The rule is never to allow a previous serviceable
level and its bit indicator to remain unserviceable.

Mainline and Nonprocess (or Link) Core Loads. In
general, a mainline or nonprocess core load that i:3
not currently being called by other core loads does
not require replacement. If, however, it is still
being referenced in the Queue Table, the PNT within
the System Skeleton or some other PNT, deletion
is restricted because it is still necessary to maintain
this core load identity in the system. Note that a
nonprocess core load may be deleted without a re­
placement core load even though it is still refer­
enced. A negative value is then placed in the word
count position of the PNT entry in those core loads
referencing the deleted nonprocess core load. A
nonprocess core load is also referred to as a link.

Data F'iles. By definition, a data file is an area in
the Core Load Area established by an *STOREDA T'A
function with a D in column 11. Data files can be
deleted but not replaced. In deleting a data file from
the disk, the user should be aware that the system
does not check to see whether this data file is still
being referenced by currently executing core loads.
This means that if he wishes to delete a data file, he
has to ensure by some programming means that
there is no reference to this file: that is, no readjng
from or writing to this file. If there is a reference,
there is a distinct possibility that core loads writing
to or reading from this file might destroy one or

84

more core loads stored in the same location the
data file was located.

EXAMPLE 4. DELETE A PROCESS MAINLINE,
COMBINATION OR INTERRUPT CORE LOAD FROM
THE CORE LOAD AREA (see Figure 35).

In. deleting a process mainline core load, the
user should ensure that this core load is not being
referenced or called by any other core load that may
in tum reference further core loads. If such a sit­
uation exists, up to 14 names of calling core loads
will be listed; if the number of calling core loads
exceeds 14, any excess will not be indicated in the
error message. The solution here is to eradicate
the excess core loads from the Fixed Area, either
by a sequence change or a deletion.

The delete operation is merely one of removing
or eliminating an entry from the FLET table with a
system mnemonic name 9DUMY, indicating an un­
used area on disk. Note that in a fresh (that is,
new) disk pack, the Core Load or Core Image Area
is initially represented in FLET by a 9DUMY
entry thus:

NAME (= 9DUMY)
SECTOR COUNT
SECTOR Address

Subsequent *STORECI operations will move this
entry. A delete simply replaces a core load with a
9DUMY. In practice, a delete is normally followed
by a replacement unless the core load being deleted
is considered "dead, " thus making its replacement
unnecessary.

Example 4 also demonstrates the use of
*DUMPLET as an effective programming tool. A
dumplet following a delete operation is good program­
ming practice; it shows conclusively that a program

SAMPLE CODING FORM

~~~LLLLUU~~~~LLUU~~~~LLL!I' 1" I I I" I' I 

~~~~LUUU~~~~LLUU~~~~~I' I", I I" I I I 

~~~~~Uu~~~~LLUU~~.-U~1 I 1 , I I , 1 I I I I 1 

~==.LJ.....JL.l!IL...L.:.L...L...L.LL.Jw....J=~:L.l!:~2L!if._1 ' I I I I I~~~ 
~~~WL~UU~~~~LLWWw....J~~~I~I~.LILLI!III •• IIII •• 1 I 
~~::l!t:~~UU~~~...I!.:.C~~~~1~'~' ..LI LI LL' I Igftnl.l, I , I , , , , 1

~~~:LL.L..ItlUU.J.l.~~~LLL.l..J~~~._LLI.J_...L...L1 I I I I , I I , , I I I 
I , I 1 I I I,SIg1, , I I I , I I I 

~~~~~UU~~~~~~w....J~~.~~' I I I I I I I~ 

'" I, I I I I" I I I, , I ,I

Figure 35. Delete a Process Mainline, Combination, or Interrupt
Core Load from the Core Load Area

or core load is in fact removed from the FLET
table. For an understanding of LET/FLET tables,
the user is referred to the Systems Reference Li­
brary: IBM 1800 Time-Sharing Executive System,
Operating Procedures, Appendix F, Form C26-3764.

In all three cases, the FLET table is searched for
the core load name to be deleted, and its replace­
ment name. Any references to the old program in
the Program Name Table of all core loads are then
replaced with the word count and sector address of
the replacement core load. The old program name
is finally deleted from the FLET table.

In the case of com bination and interrupt core
loads, the interrupt level and PISW bit position indi­
cators are obtained from the card buffer, converted,
and stored in the nonprocess communications area.
The ICL Table is then updated.

Note also that in all cases, except for the deletion
or replacement of nonprocess programs, a check of
the queue in the skeleton is made to see if the pro­
gram to be deleted or replaced is in the queue. If it
is, the queue is updated.

EXAMPLE 5. REPLACING A NONPROCESS CORE
LOAD IN THE CORE LOAD AREA (see Figure 36).
Like process mainline, combination and interrupt
core loads, a nonprocess core load can also be
deleted and replaced by an *DE LE TE operation (see
Figure 35).

A nonprocess core load can also be replaced by
storing a replacement core load to the Fixed Area, as
illustrated in Figure 36. The user can thus modify
existing nonprocess core loads without previously de­
leting them.

SAMPLE CODING FORM

Figure 36. Replacing a Nonprocess Core Load in the Core Load Area

This is achieved by an *STOREMD operation. An
*STOREMD with a Fixed Area destination is exactly
equivalent to an *STORECI of a nonprocess core load
provided that

1. The replaced entry must be in FLET for a
Core Load Area

2. If the function is to modify the Core Load Area,
the existing FLET entry must be for a nonproc­
ess core load.

A search through FLET is first made to see if
the replacement core load name is already an entry.
A further search is then made for a large enough
9DUMY entry to contain the core load. On a find,
the sector count of the 9DUMY is checked against the
required sector count. The check is successfully
terminated by locating a large enough entry on a
specified drive which can also take an additional
FLET entry. A successful find supplies a destina­
tion sector address, and, if previously unknown, the
logical drive. Once it is determined that there is
space to store the core load, the core load Program
Name Table is updated.

Note that the replacement program can either be
in the temporary area (of Nonprocess Working Stor­
age) or in the Relocatable Program (that is, User)
Area pn disk. The name assigned to this program
must not be the same as that of the program to be
replaced. In Example 5, NAME1 and NAME2 desig­
nate two different names. NAME1 (which was pre­
viously resident in the Core Load Area) is deleted
from the Fixed Area and its entry in FLET removed.
The replacement core load NAME2 is stored in the
Core Load Area and its name, size in words, and
starting sector address then entered into the FLET
table.

EXAMPLE 6. REPLACE A RELOCATABLE PRO­
GRAM IN THE USER AREA (RELOCATABLE PRO­
GRAM AREA) (see Figure 37).

Figure 37 illustrates a sequence of control cards
that might be used to accomplish this. NAME1 is
the name of the replacement program being stored.
It must be compiled or assembled with the identical
name of the relocatable program being replaced
(that is, also NAME1), and it must be the prime
entry point. This name must be in the temporary
area of Nonprocess Working Storage.

Note that the control card name for the existing
program to be replaced must have a LET entry of
the same name for a User Area replacement. The
replacement program will not overlay the current
program, but only cause it to be deleted from the
LET table. Thus, the size of a replacement pro­
gram and the number of entry points in a relocatable-

Functions of Executive Programs 85

SAMPLE CODING FORM

~-L.J..~-'-L.L.L..l-L.L.LL, , , , I , , , , I J_U_J.....L, , , , I , , ..LlJ....LLLL.l.LL Ll.J

,(,KoElBL tAiCfflfiM 7j IP&~.M...JL..J&L .A1V.d ,CA,~,4S, ku..L...1. L..J
f-'-'-~~~-L.L.LI , I ! I I I , I I I , LL.L.L.L.J..LLLLL-L-L-l...l.LLLLL.L.L...LJ

p!-l--'-=:L.l.-'~-L.L.L I , I , I I , , , , I ..!......l--.L.L.l, I , I I , , , , 1....lLL..1.~.uJ
p=!"-="=~'=-.L...L..J.-L.L.LI I I I I INME;lI.J.....1....w.J-L.l...1....L..~~....l . ..LL..1.h.uJ

o , , , I I I I I LLL, , I , , , , I _LL_LL_J.L..LL.LI I , , I I uL.J..L.uJ
f-'-'-...J....L...L..J-I~...l....L.LLLL, I I, , I , 1.J.....1~-L.l...1....L..LLL-L-L-l....L . .l....l....J..h.L.L..l.J

. _t.h~ , , I I , I , I I , , , , I .J.....1~_.L..L..L.L1 , , , , I 1...L.L.J..l.u..~

Figure 37. Replace a Relocatable Program in the Relocatable
Program Area

program are governed only by the standard restric··
tions on any *STORE operation, and not by the size
and number of entry points of the existing program.

Other than the above considerations, an *STORE­
MD with a User Area destination is essentially equiv­
alent to an ordinary *STORE function to the User
Area: the same coding is thus used for storing the
program. 'This procedure is mainly used for the
modification of existing user-written or mM-sup­
plied programs.

Changing Core Load Linkages. Through the *SEQCH
function, the user is given a powerful programming
tool to alter the sequence or order of existing core
load linkages for either process or nonprocess core
loads. This means that he can now modify a core
load Program Name Table such that all references
to a core load originally specified will subsequently
reference a replacement core load. Note that no
deletion of core loads takes place as in an *DELETE
with - replacem ent operation.

This is known as selective replacement, since
the existing referenced core load, the replacement
core load, and all other core loads in which changes
are to be implemented are all specified.

Note also that the replacement and existing core
loads must be type-compatible. That is, a mainline
or combination core load may replace either a main­
line or com bination core load, but a nonprocess or
link core load may only be replaced and called by a
link. Process calls may emanate from any type of
core load.

86

EXAMPLE 7. CONSIDER THE FOLLOWING
SITUATION. In a typical operation, core lloads
ALPHA, BETA!, and DELTA will call or :reference
core load NAME! by a CALL QUEUE statement, thus:

CALL QUEUE (NAME!, !, 0)

The user now elects to replace NAME! by
NAME2 such that all further references to NAME!
by ALPHA, BETA!, and DELTA will be changed to
NAME2. NAME! can either be a combination or
mainline core load resident in the Core Load Area;
by definition, NAME2 must either be a combination
or mainline core load -- assume that it is also
stored (by an *STORE CI) in the Core Load Are a .
The following sequence of control cards may be
used to effect this change.

SAMPLE CODING FORM

This will modify the Program Name Table of
each of the core loads ALPHA, BETA!, and DELTA
so that whenever they call NAME!, the can will
refer to NAME2.

At this point in the operation, the user may have
no further use for this sequence change, and may
well delete core load NAME!, thus:

*DELETE M NAMI~!

In practice, however, he will probably not delete
NAME! but prefer to return to his original sequence,
thus:

*SEQCH NAME2 NAME!, ALPHA, BETA!, DELTA

Note that because of the type-compatibility be­
tween existing and replacement core loads (mentioned
earlier), a restriction exists in the case of nonproc­
ess core loads. If, for example, NAME! were a
nonprocess core load, then NAME2, ALPHA,
BETA!, and DELTA must, by definition, be also
nonprocess core loads.

EXAMPLE 7A. AN ALTERNATIVE METHOD (TO
THE *STOREMD FUNCTION) OF ON-LINE RE-

BUILDING OF PROCESS CORE LOADS. Figure 38
illustrates the technique employed, where

• CLAI is the core load name to be modified;
assume the core load is on disk. RELPR is the
relocatable program which has been modified.

• CLA2 is a temporary core load name used to
achieve proper deletion and replacement of the
new version of CLA1.

Debugging Core Loads using the Simulator

Several options are available to the user for the de­
bugging of process and nonprocess programs. These
are summarized below:

Nonprocess Programs

1. Using TASK (with TASK EAC) in an off-line
system only.

2. Using the Simulator in an (a) off-line, or
(b) on-line system.

SAMPLE CODING FORM

Figure 38. On-Line Rebuilding of Process Core Loads

Process Programs

1. Using TASK (with TASK EAC) in an off-line
system only. To do this, the process program
must first be written as a nonprocess program;
when fully tested, it is reconstituted into a
process program for execution (in an on-line
environment) .

2. Using the Simulator in either the on-line or
off-line environment.

The advantages of the Simulator as a debugging tool
lie mainly in

1. The powerful diagnostic messages printed by
the Simulator, which allow the user to deter­
mine the logic flow of the program by noting
the subroutines called, and,

2. in the fact that a process or nonprocess core
load may be fully tested without taking the sys­
tem off-line.

The following examples illustrate the simulation
of assembly language process programs.

EXAMPLE 8 (PROGRAM LISTING NO.2). This
program is written for the purpose of debugging the
Simulator. If the Simulator erred in the reading of
analog input cards, error messages would be
printed.

Actual simulation is initiated after the core load
build function has been completed. The first thing
done by the Simulator is to read the Simulator con­
trol cards *XIO and *START SIMULATION. Note
that any other Simulator control cards, such as
*DUMP, *SNAP, etc., should precede the *ST AR T
SIMULA TION card: data cards should follow the
*START SIMULATION card. Since no control card
is used to describe the source of analog data, it is
assumed that this data will emanate from card input.

After reading the control cards, the Simulator
will proceed to interpret the instructions in the
user's program, exactly as in execution. The first
instruction being a LmF AISQN, the Simulator
prints the S50 message, giving the name of the rou­
tine and the absolute address of the LmF. The S20
message is printed by the Simulator AISQN routine

Functions of Executive Systems 87

and consists of a description of tile calling sequenco.
Since it is an analog input, a data card is read.
However, due to tile fact tilat column 5 is blank,
tile Simulator is not aware of tile format of data on
this card and informs the user accordingly with the
S12 message. This is likewise the case witil the
next two cards. Note tilat the Simulator is still in
the process of simulating the first AIs:tN call. It
will continue reading cards until it completes this
call. The next card read has a D in column 5, im­
plying digital data input.

However, an absence of tile E parameter in
column 72 signifies an end of data and tilus the S15
message. Only tile number +00123 is read into tile
buffer since the word count is 2, one word of which
is the analog address.

Upon completion of tile first LIBF, tile busy test
is encountered. The Simulator will always take tile
busy exit the first time through a busy test. The
second time through, it will exit at the not-busy in-·
struction. Thus, if the busy exit contains an MDX
back to the busy test, the Simulator output will shmv
two "goes" through the busy test, one after another}
as in the printout of the two S21 messages.

Next, in sequence, another LIBF AISQN is encoun­
tered. Again, the S50 message identifies the sub­
routine and the absolute address of the LmF. The

88

S20 message gives the calling sequence. A card is
read witil correct format and an E :in colmnn 72.
However, only the numbers 1234 and FFl!~ are
read, the first blank terminating the data. Since
the word count for AREA2 is four, there is insuf­
ficient data on the cards to fill the buffer. Hence
the S16 message.

Note that an E in column 72 terminates the call
to the subroutine. Therefore, if there had been no
E in the last card read, the Simulator would have
tried to fill tile buffer with data from the next card.
The busy test following this is then simulated.

The last call recognized is that to VIA<;~, and
this terminates the job. The following S9B message
is a snapshot of the instruction which caused
termination.

Anytime a job is terminated, a snapshot is given
to allow the user to determine why the job was
terminated.

If the user had wished to see the status of regis­
ters at some point of the program, a *SNAP or a
*TRACE card could have been added giving the rela­
tive address (obtained from the assembly) of the
instruction. Note also tilat the WAIT instruction can
be used as a trace aid since the Simulator automatic­
ally gives a snapshot of registers upon eneountering
a WAIT.

PROGRAM LISTING NO. 2 -- EXAMPLE 8

II JOB
II * TEST CASE DB638 START
II ASM DB638

*LIST

0000 20 01262615
0001 0 1000
0002 1 0020
0003 0 3000
0004 20 01262615
0005 0
0006 0
0007 0
0008 01
OOOA 20
OOOB 0
oooC 1
0000 0
OOOE 20
OOOF 0
0010 0
0011 0
0012 0
0013 01
0015 30
0017 30
0019 1
OOlA 0
oOlB 30
0010 1
001E 30
0020 0
0021 0
0022
0023 0
0024 0
0025 0
0026
0028 0
0029
0039
0046
0054
0050
005E
0060
007C
0085
0086 0
0088

0000
70FO
C01B
4C200017
01262615
1000
0024
3000
01262615
0000
70FO
C016
9073
4C20001B
25241600
14162897
0029
70EF
14162897
005E
25241600
0002
1001
0001
0000
0004
1001
0002
AAAA
0020
0019
oOlC
0012
0002
0010
0010
0011
0002
AAAA
0000

*THIS TEST CHECKS ABILITY OF THE SIMULATOR TO
* 1. REJECT DATA CARDS WITH INCORRECT FORMAT
* 2. SKIP EXCESS DATA CARDS
* 3. SENSE INSUFFICIENT DATA IS SUPPLIED

* *PRINTER MESSAGES UPON SUCCESSFULL TEST SHOULD BE
* S12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
* S15 TOO MUCH DATA, READ CARDS UNTIL E IN COL 72
* S16 lNSUF~IcrENT DATA TO FILL 110 AREA, JOB
* CONTINUED
STAR T LI BFA I S QN

DC 11000
DC AREAL
WAIT

NExT LIBF
DC
MDX
LD
BSC

NExTl LIBF
DC
DC
WAIT

NEXT2 LIBF
DC
MDX
LD
S
BSC L
CALL

ERR1 CALL
DC
MDX

ERR2 CALL
DC
CALL

AREAL DC
DC
BSS
DC

AREA2 DC
DC
BSS
DC

ERR1p EBC
EBC
EBC
EBC
EBC

ERR2P EBC
EBC
EBC
EBC

CONST DC
END

ArSQN
10000
NEXT
AREAlf>3
ERR1.Z
AISQN
11000
AREA2

AISON
10000
NEXT2
AREA21>4
CONS T
ERR2.Z
VIAe
MESSP
ERR1P
NEXTl
MESSP
ERR2P
VIAQ
2
11001
1
10000
4
11001
2
IAAAA

NOT EXECUTED

CHECK THAT NO MORE
THAN 1 DATA CARD WAS
USED FOR DATA.

NOT EXECUTED

CHECK THAT 110 AREA
ABOVE DATA CARDS WAS
NOT ZEROED.

• NOT SUCCESSFUL, EITHER CARD.
• WITH BAD FORMAT WAS NOT.
.RECoGNIZED OR TOO MANY DATA.
.CARDS WERE READ IN.
.$5.

NOT SUCCESSFUL, 110 AREA.
• ZEROED ABOVE AREA FOR WHICH.
.DATA WAS SUPPLIED.

IAAAA
START

NO ERRORS IN ABOVE ASSEMBLY.
OB638
OUP FUNCTION COMPLETED
II OUP
*SIMULCIL M DB638 DB638 DB638
*CCENO

CLB. BUILl> OB638

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0054
*IST TABLE 3FOF 0036
*PNT TABLE 3F46 0008
MAIN OB638 3F4E
PNT OB638 3F48
PNT OB638 3F4C
CALL VIAQ 3F06
CALL MESSP 4036
CORE 40BE 3F42

Functions of Executive Programs 89

CLB. DB638 LD XQ

.XIO
*START SIMULATION
S SO 3F4E AISQN
S 20 CONTROL WOROIIOOO. 10.AREAI3F6E.SPECIAL ENTRY 13000
S 14 INPUT CARD I .AI ~1rI20-1r134~02561-19825~31562
S 12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
S 14 INPUT CARD I *AI 12340210FF12FEDC
S 12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
S 14 INPUT CARD I .AI 00001010010001100000011111111111
S 12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
S 14 INPUT CARD I *AI D ~00123-00010~00127-02047
S 1S TOO MUCH DATA. READ CARDS UNTIL E IN COL 72
S 14 INPUT CARD I .AI H 12340210FF12FEDC
S SO 3F52 AISQN
S 21 BUSY TEST
S 50 3F52 AISQN
S 21 BUSY TEST
S SO 3FS8 AISQN
S 20 CONTROL WORDII000. 10 AREAI3F72.SPECIAL ENTRY 13000
S 14 INPUT CARD I .AI H 1234FF12 FEDC
S 16 INSUFFICIENT DATA TO FILL I/O AREA
S SO 3FSC AISQN
S 21 BUSY TEST
S 50 3FSC AISQN
S 21 BUSY TEST
S S6 TSX VIAQ NOT EXECUTED
S 99 0015 3F63 3F65 5400 3FD6 0000 0000 0000 0000 0000 3F3B

N08 ILLEG LOR CD
.END DATA
// .

90

OB638 END

E

E

EXAMPLE 9 (PROGRAM LISTING NO.3). The
Simulator control cards are read in and initializing
processes are begun. The three analog input cards
signify card input for data. Note that one or all of
these cards could have specified the random number
generator as an input source. Note also that in a pro­
gram such as this, extreme care must be taken in
setting up the data cards, remembering that an E
parameter in column 72 terminates any attempt to
fill an analog buffer.

The 856 m.essage reflects the call in the FORTRAN
program. Note that the parameters are also printed.
If either of these parameters had been improper, a
message would be printed accordingly.

The next block of four PRNTN calls refer to the
WRITE (M, 10) statement. A FORTRAN call to
output or input, generally, translates to several
calls to the I/O subroutine, including busy tests,
actual I/O, and special functions as in the carriage
control shown here. The line after S33 gives the
message which the user would see if the program
were executed.

The three CARDN calls listed next are the result
of the FORTRAN statement 20 READ (N, 30). The
card image in hexadecimal is printed and the busy
tests performed.

Next, in sequence, are four print calls: the re­
sult of the FORTRAN statement 35 WRITE (M, 40).
Again, the line after S33 gives the users actual
printout.

Note that the FORTRAN statement at 30+1 is an
IF statement. The Simulation output gives no indica­
tion of this because no major subroutines are called;
that is, the Simulator does not show when some
arithmetic function or subroutine is called. However,
all instructions of this statement have been simulated.

The first DAOP call in the Simulator output is the
result of the FORTRAN CALL DAC statement.

Again, a rundown of the calling sequence is given in
S20. The 810 message describes the type of output,
that is, random, sequential, etc. The four words
of analog output are given just ahead of the next
S50 message. The DAOP busy tests are a result
of the second DAC call.

Next, in sequence, is a series of analog input
calls, each one reading some point from cards.
These are a direct result of the analog input calls
in the FORTRAN program.

Again, there are four calls to the PRNTN routine:
the result of WRITE (M, 65).

~t this point, the IF following statement 65 and
the IF at statement 90 force a return to statement
20 and a second "go" through the loop is simulated.
The message "GOT THIS FAR" is printed out a
second time, and for a third time, statement 20 is
executed and a card is read. At this point, the IF
at 30+1 forces a transfer to statement 120.

The CALL QUEUE, CALL SHARE, and CALL
VlAQ are then simulated by the S56 messages. Note
that in the case of CALL QUEUE, the name of the
called program TC152 is also printed out. A snap­
shot of the terminating instruction is then printed.

Since the user included a *DUMP control card,
the program is dumped. The addresses are abso­
lute. The address in statement S98 gives the abso­
lute address of the first word of the user's pro­
gram. The XXXX at the end of the dump refers to
undefined core.

A dump of the transfer vector may be obtained by
using a negative number as the lower limit.

One method of tracing through a FORTRAN pro­
gram is by strategic PAUSE (I) statements. When
the Simulator encounters such a statement, it will
print out the S56 PAUSE message together with the
appropriate parameter. Thus, some idea of pro­
gram flow may be obtained.

Functions of Executive Programs 91

PROGRAM LISTING NO. 3 -- EXAMPLE 9

I I JOB A
II * SIMULATOR TEST CASE 152
II FOR rC152
*LIST AI.L
*IOCS(1443 PRINTER
*ONE WORD INTEGERS
.* SIMULATOR TEST CASE 152

E:KTERNAL TC 152
DIMENSION NOUTA(10).IN1(9).IN2(10).101(10)
CALL UNMK(-l.-l)
t:KI.T=O
N = 2
M = 3
HOL = 20
WRITE CM.I0)

10 FORMATC24HIINTERLEAVED AIP.AIS.AJR)
20 R=ADCN.30) (NOUTA(I).l m 1.4).IN1(1).IN2(1),IXIT
30 FORMAT(6I6.Il)

IPCIXIT) 120,35.120
35 WRITE CM,40) (NOUTA(I).I=1.4).IN1(1),INZ(1)
40 FORMAT C1H.617)

CALL OAC (01101.NOUTAC1).NOUTA(5»
50 CALL DAe (O,J)

GOTO (SO.60),J
60 CALL AlP (OlooO,JP.IN1(1»

CALL AIS (02001,101(1).ID1(3).INZ(1»
CALL AIR (02001.101(1).101(Z).INZ(1).INZ(1),OC
CALL AIS (02001.I01C1).I01(3).INZ(1))
CALL AIR (02001.ID1(1).I01C2).IN2(1),JNZ(1),OC
CALL AlP (01000.JP.IN1(1»
WRITE (14.65)

65 FORMATC13H GOT THIS FAR)
IF CIABS(I01(1)-NOUTA(3»-ITQl) 90.90.70

70 WRITE (M.80) 101(1)
80 FORMAT (lOH 101(1) • ,17/17H OUT OF TOLERANCEa
90 IF (IABS(NOUTA(l)-JP)-ITOL) ZO,ZO .100

100 WRITE 04.110) JP
110 FORMAT (6H JP • .17/17H OUT Of TOLERANCE)

GO TO 20
120 CALL QUEUECTC15Z.1.5)

CALL SHARE (300)
CALL VIAQ

130 GO TO 130
END

VARIABLE ALLOCATIONS
NOUTA=OOOD IN1 -0016 IN2 =0020 101 .002A IXIT #002B N
JP ='0031

STATEMENT ALLOCATIONS

00000000
00000010
00000030

00000050

00000060
00000070
00000080
00000090
00000100

00000130
00000140
00000150
00000160
00000170

00000200

00000Z50
00000260
00000Z70
00000280
00000290
00000300
00000310
000003Z0

00000330

.002C M 1110020 IT OL 111002 E ::002F J

10 =:0040 30 -005B 40 =005F 65 -0064 80 ;#0060 110 IIIOOBO 20
70 =OlBB 90 =01C3 100 =0102 120 =010A 130 ~01E5

#0083 35 .0006 50 =0106 60

FEATURES SUPPORTED
ONE WORD INTEG~RS
10CS

CALLED SUBPROGRAMS
TC152 UNMK OAC
14101 SUBSC PRNTN

INTEGER CONSTANTS

AlP
E8PRT

AIS AIR

1=0042 0=0043 2 .. 0044 3=0045
300::004C

CORE REQUIREMENTS FOR TC152
COMMON 0 INSKEL COMMON 0' VARIABLES

END OF COMPILATION

TC152
DUP FUNCTION COMPlE TED
II DUP
_DELET M TC152
TC152
025 NAME NOT IN L/F
*SIMULCIL M TC152 TC152 TC152
-INCLD1RACE/2800
.CCEND

CLB. BUILD TC152

CORE LOAD MAP
TYPE NAME ARG1 ARG2

92

lABS QUEUE SHARE VJAQ COMGO MREO MWRT MCOMP

20!¥0046 4.0047 1l0U0048 1000.0049 2001=004A

66 PROGRAM 422

=0030

=0110

MIOIX

5=0048

*CDW TABLE 3E82
UBT TABLE 3E8E
*FIO TABLE 3EAB
*ETV TABLE 3EBB
*VTV TABLE 3FOF
UST TABLE 3F15
*PNT TABLE 3F4C
MAIN TC152 3FE9
PNT TC152 3F4E
PNT TC152 3F52
CALL UNMK 4140
CALL AlP 418A
CALL AIR 41B8
CALL QUEUE 42CA
PNT TC152 3F56
CALL VIAQ 438C
LIBF AIPTN 43EC
LIBF AlRN 446E
CORE 4544

CLB. TC152 LD XQ

*AIP C
*AIR C
*AIS C
*XIO
*DUMP 0000 7FFF
*START SIMULATION

OOOC
0010
0010
0<>"54
0006
0036
OOOC

3FOF
3F12
3ABC

S 56 TSX UNMK NOT EXECUTED
DC FFFF
DC FFFF

S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS 13100
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD. 12110
INTERLEAVED AIP.AIS.AIR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD .INPUT. WORD COUNT I
0000 0000 0000 0000 1000 2000
~OOO 0000 0000 1000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
S 50 292C CARON
~ 21-0 BUSY TEST
S 50 292C CARON
S 21-0 BUSY TES T
S 50 293A PRNTN

80
0000
0200
0000
0000

0000
2000
0000
0000

S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS 13000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD' 12110

10 0 20 1 4096 4097
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 1A48 DAOP

0000
0010
0000
0000

0000
0080
0000
0000

0000
0000
0000
0000

2000
0000
0000
0000

0000
0200
0000
0000

S 20 CONTROL WORDI1010 .1/0 AREA ADDRESS. 3F61 ,SPECIAL RETURN ADDRESS! 3F11
S 10 WRITE OUTPUT - - - - - RANDOM ADDRESSING

WORD COUNTI/0004
0001 0014 0000 OOOA
S 50 1A48 DAOP
S 21 BUSY TEST
S 50 1A48 DAOP
S 21 BUSY TEST
S 50 lA48 AIPTN
S 20 CONTROL WORDI1000 .AREA 13F89 .MULTIPLEXER ADDRESS 1 0201

0000
2000
0000
0000

0000
0010
0000
0000

S 14 INPUT CARD I *AI 0 &00010 E
S 50 1A48 AISQN
S 20 CONTROL WORD12000. 10 AREA.3F80.SPECIAL ENTRY 10000
S 14 INPUT CARD • *AI 0 &00020 E
S 50 1A48 AIRNN

0000
0040
0000
0000

S 20 CONTROL WORDl1000 .10 AREA ADDRESSI3F81,MULTIPLEXER TABLE ADDRESSI 3F78,RELAY ADDRIOOOO
S 14 INPUT CARD I *AI 0 &00020 E
S 50 1A48 AISQN
S 20 CONTROL WORD.2000. 10 AREA.3F80.SPECIAL ENTRY 10000
S 14 INPUT CARD • *AI D &00020 E
S 50 1A48 AIRNN
S 20 CONTROL WORD'1000 .10 AREA ADDRESS'3F81,MULTIPLEXER TABLE ADDRESS! 3F78,RELAY ADDRIOOOO
S 14 INPUT CARD • *AI 0 &00020 E
S 50 1A48 AIPTN
S 20 CONTROL WORDl1000 .AREA 13F89 .MUL TJPLEXERADDR!;SS I 0201
S 14 INPUT CARD I *Al D &00010 E

0800
0000
0000
0000

2000
9000
6000
0'000

0000
0000
0000
0000

0000
0000
0000
0000

Functions of Executive Programs 93

S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3000
S 50 293C PRNTN
S 33-0 LIST PRNTR 0UTPT CONTROL WORD I /2110
GOT THIS, FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD INPUT, WORD COUNT I
0000 0000 0000 0000 1000 2000
0000 0000 0000 1000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
S 50 292C CARON
S 21-0 BUSY TEST
S 50 292C CARON
S 21-0 BUSY TES T
S 50 293A PRNTN

80
0000
0200
0000
0000

0000
2000
0000
0000

S 34-0 LIST PRNTR CAI~RIAGE CONTROL WORD IS /3000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I /2110

10 0 20 1 4096 4097
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST

50 2940 PRNTN
21-0 LIST PRINTER BUSY TEST
50 1A48 DAOP

0000
0010
0000
0000

0000
0080
0000
0000

0000
0000
0000
0000

2000
0000
0000
0000

0000
0200
0000
0000

S
S
S
S
S

20 CONTROL WORDrloto ,I/O AREA ADDRESSI 3F61 ,SPECIAL RETURN ADDRESSI 3Fl1
10 WRITE OUTPUT - - - - - RANDOM ADDRESSING

WORD COUNTr/0004
0001 0014 0000 OOOA
S 50 lA48 DAOP
S 21 BUSY TEST
S 50 lA48 DAOP
S 21 BUSY TEST
S 50 lA48 AIPTN
S 20 CONTROL WOROllooo ,AREA 13F89 ,MULTIPLEXER ADDRESS I 0201
S 14 INPUT CARD I *AI 0 &00010
S 50 lA4S AISQN
S 20 CONTROL WOR012000, 10 AREAI3F80,SPECIAL ENTRY IOOOO
S 14 INPUT CARD 1 *AI 0 &00020
S 50 lA48 AIRNN

0000
2000
0000
0000

0000
0010
0000
0000

E

0000
0040
0000
0000

S 20 CONTROL WOROII000 ,10 AREA ADDRESSI3F81,MULTIPLEXER TABLE ADDRESS! 3F78,RELAY ADDRIOOOO
S 14 INPUT CARD I *AI 0 &00020 E
S 50 lA48 AISQN
S 20 CONTROL WORDr2000, 10 AREAI3F80,SPECIAL ENTRY 10000
S 14 INPUT CARD I *AI 0 &00020
S 50 lA48 AIRNN

E

S 20 CONTROL WOROIIOOO ,10 AREA ADDRESSI3F81,MUL TIPLEXER TABLE ADDRESSI 3F78,RELAY ADDRIOOOO
S 14 INPUT CARD I *AI 0 &00020 E
S 50 lA48 AIPTN
S 20 CONTROL wORorlo00 ,AREA 13F89 ,MULTIPLEXER ADDRESS
S 14 INPUT CARD I *AI 0 &00010
S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I /2110
GOT THIS FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD INPUT, WORD COUNT I
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
S 50 292C CARON
S 21-0 BUSY TES T
S 50 292C CARON
S 21-0 BUSY TEST
S 56 TSX QUEUE NOT EXECUTED

CALL TC152
DC 0001
DC 0005

S 56 TSX SHARE NOT EXECUTED
DC 012C

S 56 TSX VIAQ NOT EXECUTED

0000

80
0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0201

0000
0000
0000
0000

0000
0000
0000
0000

S 99 01E3 4138 4130 5400 438C 0001 0000 0000 0000 2803 3F3B
S 98 DUMP OF SIMULATED CORE 3F56

94

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0800
0000
0000
0000

0000
1000
0000
0000

2000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

00(10
0000
OOCIO
0000

0000
0000
0000
0000

0000
0000
0000
0000

3F50 FFF2 0000 FFFF 0000 0000 0000 0000 0000
3F60 0000 0004 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3F70 TO 3F7F CONTAI NS 0000
3F80 0002 0001 0028 0001 0002 0003 0014 0005 0002 0018 FFFD 0000 0000 0000 0000 0000
3F90 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0002 0003 0014 0004
3FAO 0440 03E8 0701 0005 012C 5018 F1C9 05E3 C509 03C5 C1E5 C5C4 40C1 C907 6BC1 C9E2
3FBO 6BC1 C909 BOOO 2006 9006 2001 B003 5001 6B40 2007 9006 B004 5000 40C7 06E3 40E3
3FCO C8C9 E240 C6C1 0940 B008 500A 40C9 C4F1 40Fl 5040 7E40 2007 7000 5011 4006 E4E3
3FOO 4006 C640 E306 03C5 09C1 05C3 C540 B012 5006 4001 0740 7E40 20e7 7000 5011 4006
3FEO E4E3 4006 C640 E306 03C5 09C1 05C3 C540 BOLO 1010 9400 3F9A 0400 3F58 1010 9400
3FFO 3F9A 0400 3F5A 5400 4140 3F58 3F5A C400 3F9B 0400 3F83 C400 3F9C 0400 3F84 C400
4000 3F90 0400 3F85 C400 3F9E 0400 3F86 5392 3F85 3FA5 5395 53AA 3F84 3FB3 C400 3F9A
4010 0400 3F87 53A1 3F8A FFFF 3F87 8001 539E 3F65 7401 3F87 C400 3F87 9400 3F9F 4C08
4020 4012 6500 0000 539E 3F6E 539E 3F78 539B 3F83 5395 C400 3F83 4C20 4132 5392 3F85
4030 3FB7 C400 3F9A 0400 3F87 53A1 3F8A FFFF 3F87 8001 539E 3F65 7401 3F87 C400 3F87
4040 9400 3F9F 4C08 4035 6500 0000 539E 3F6E 539E 3F78 5395 6500 0000 7500 3F65 7000
4050 6000 40SC 6500 FFFC 7500 3F65 7000 6000 4050 5480 3E36 3FAO 3F65 3F61 5480 3E36
4060 3F9B 3F88 6580 3F88 53A4 0002 405E 4068 6500 0000 7500 3F6E 7000 6000 4073 5400
4070 418A 3FA1 3F89 3F6E 6500 0000 7500 3F82 7000 6000 408C 6500 FFFE 7500 3F82 7000
4080 6000 4080 6500 0000 7500 3F78 7000 6000 408E 5480 3E35 3FA2 3F82 3F80 3F78 6500
4090 0000 7500 3F82 7000 6000 40AE 6500 FFFF 7500 3F82 7000 6000 40AF 6500 0000 7500
40AO 3F78 7000 6000 40Bo 6500 0000 7500 3F78 7000 6000 40lH 5400 4188 3HZ 3F82 3F81
40BO 3F78 3F78 3F9B 6500 0000 7500 3F82 7000 6000 40CB 6500 FFFE 7500 3F82 7000 6000
40CO 40CC 6500 0000 7500 3F78 7000 6000 40CO 5480 3E35 3FA2 3F82 3F80 3F78 6500 0000
4000 7500 3F82 7000 60 00 40EO 6500 FFFF 7500 3F82 7000 6000 40EE 6500 0000 7500 3F78
40EO 7000 6000 40EF 6500 0000 7500 3F78 7000 6000 40FO 5400 41B8 3FA2 3F82 3F81 3F7B
40FO 3F78 3F9B 6500 0000 7500 3F6E 7000 6000 40FO 5400 418A 3FA1 3F89 3F6E 5392 3F85
4100 3FBC 5395 6500 0000 C500 3F82 6500 FFFE 9500 3F65 0400 3F58 5480 3E34 3F58 9400
4110 3F86 4C08 411B 5392 3F85 3FC5 6500 0000 539E 3F82 5395 6500 0000 C500 3F65 9400
4120 3F89 0400 3F58 5480 3E34 3F58 9400 3F86 4C08 400B 5392 3FB5 3F08 539B 3F89 5395
4130 4COO 400B 5400 42CA 5400 3F56 3F9A 3FA3 5480 3E3E 3FA4 5400 438C 4COO 4130 0000
4140 0000 OCOO 0032 ocoo 0034 6934 6A35 6100 6680 4140 C132 F6BO 0000 0039 C134 F680
4150 0001 00,36 C164 4C18 416B C680 0000 E16C 0173 C680 0001 E160 E973 4C18 4168 C027
4160 E96C 0025 C025 E960 0023 CODA 0174 C021 0173 4480 0078 C12E E01A 012E C16E E017
4170 016E C130 E015 0130 C16F E012 o16F 7402 4140 6500 0000 6600 0000 OCOO 002E OCOO
4180 0030 ocoo OOAO ocoo 00A2 4C80 4140 0000 0000 0083 40FB 4480 009A CB24 5480 3E2B
4190 4820 7019 C330 EOI0 901F 4818 700E 6680 0036 C200 033E C201 033F 7402 0036 C80E
41A0 0840 COOE 0342 4FOO 003A C009 033E C008 033F 4FOO 003A C007 5480 3E2A 0000 4480
4180 009B FOOO 5304 003C 3000 0000 5307 003C 40EC 4480 009A C8FA 5480 3E2B 0400 0037
41Co 0342 9052 0343 CHO E058 9054 4C18 426A C342 4808 7032 7401 0036 6680 0036 C200
4100 0340 8042 0341 C400 0037 1001 8400 0036 0400 0036 6580 0036 C330 E039 0400 0036
41EO C330 E03A 0330 C340 7400 0036 8020 033E C100 0344 7400 0036 8027 033F 91FF 4830
41FO 700A C2FF 9200 4808 7006 E828 0345 7400 0036 7006 7032 6EOO 0036 COB9 5480 3E2A
4200 C200 0680 0000 C100 0580 0000 C345 9000 0780 0041 74FF 0037 7015 C340 0680 FFFF
4210 C344 0580 FFFF 702F 0001 0002 OFFF 0020 1000 3000 4000 5000 FF1F FOOO cooo 0000
4220 4480 009B 7202 C200 0680 FFFO 80EO 0341 7102 C100 0580 FFFO 70C1 C343 4818 7042
4230 C342 4820 7044 C400 0037 900E 4820 70C8 C200 0680 0000 ClOO 0580 0000 C345 9004
4240 E005 0780 0041 C330 E005 4818 7007 C101 0342 C006 0343 C005 0344 7002 C80l OB42
4250 C330 EOC6 4820 702C 1010 0341 7102 6000 0036 1010 0340 C330 EOCO 90BC 4810 7006
4260 C330 EOB4 E8B5 0330 4FOO 003A C330 EOAE E8BO 70F9 C8B5 OB3E C330 EOA8 E8AC 0330
4270 4FOO 003A C345 EOA2 0680 0000 70CC 1804 0342 C3ft5 9099 0680 0000 74FF 0037 70A2
4280 C330 4804 7011 6780 0067 5307 0000 70FO C03B 6680 42C4 6780 0068 0341 C102 020A
4290 C103 020B 7102 70C2 67Bo 0067 5307 0001 70FO C02B 6680 42C5 70EE 0000 1010 1082
42AO oooc 1081 4804 700B 1010 lOBO 0007 4400 0000 42AO 42AE 4C80 4290 0000 0000 C019
4280 OOFC 70F2 0000 1010 1082 OOOC 1081 4804 7000 1010 1080 0007 4400 0000 42C2 42C3
42CO 4C80 42B2 0000 0000 4290 42B2 C002 OOFA 70FO 0003 0000 4480 009A 7401 0036 C400
4200 0036 807A 033A C780 003A 0342 C480 0036 0330 CF80 0030 4C08 42FE oB3E 6680 007A
42EO C400 007A A068 1090 8400 0079 0400 0037 0341 1810 0343 6580 0037 C100 4C18 4302
42FO B33F 7015 7014 407C CI00 B33F 7057 7056 C780 0042 7lFE BI00 7060 706C 7403 0036
4300 4480 009B 6000 0037 C400 0037 0343 7lFO 72FF 70E3 4065 C343 4C18 4377 C780 0043
4310 4C20 434E C343 9039 0343 C341 9036 0341 C343 0400 0037 6680 0037 OCOO 002E OCOO
4320 0030 6EOO 0037 C341 9400 0037 4C08 4353 7203 C780 0042 B200 70F4 70F3 4041 B200
4330 7010 701C C780 0043 4C20 434E C343 0400 0037 6103 C200 0480 0037 1810 0200 7201
4340 7401 0037 71FF 70F6 72FO 6EOO 0037 C400 0037 0343 7002 0003 0001 0002 OCOO 002E
4350 OCOO 0030 708B 401C C780 0043 4C20 434E C343 0400 0037 C780 0042 0480 0037 7401
4360 0037 CHE 0480 0037 7401 0037 C33F 0480 0037 7094 OCOO 002E OCOO 0030 7102 7097
4370 0000 ocoo 0032 ocoo 0034 4C80 4370 6100 C780 0042 0176 CB3E 0974 COOO 0173 C33A
4380 80CB 0343 C780 0043 0343 C780 0043 0177 4480 0078 700E 0078 0000 65BO 0079 7101
4390 6680 007A CI00 0054 4C18 43C9 4047 6951 CI00 004E 7102 CI00 0040 7lFE 4038 72FF
43AO 7001 700B 7103 C100 4C18 439F C041 4036 BI00 70EC 1000 402B 70F2 4030 6680 43E9
43BO C200 9036 4C20 4380 7202 C200 9033 4C20 4380 C200 002C 1810 0200 72FF C200 0026
43CO 1810 0200 72FF 0200 4012 4480 006A 0000 43E6 7103 72FF 70C6 C400 0029 4COB 4305
4300 00F6 5480 3E3E 43C7 70B8 3000 70B6 0000 OCOO 002E OCOO 0030 4C80 4307 0000 OCOO
43EO 0032 ocoo 0034 4C80 430E 0000 0000 0000 0000 0000 0000 0000 0000 4480 OOAC 5480
43FO 3E29 7400 4402 700A C02C 1008 4C10 43FB C480 4422 7001 C026 0005 0058 C480 0037
4400 617F 6600 0000 4804 721E 1804 0346 1804 0347 1804 4C20 4415 C204 4C20 4411 7401
4410 0037 7401 0037 5480 3E28 1801 4C04 445B 617F 09B3 09B5 C204 4C08 4424 09AF 09Bl
4420 70F7 5480 3E44 FFFO C201 E113 0201 1010 0219 C346 100F 1808 8201 0201 C347 100E
4430 180B 8201 0201 7401 0037 C480 0037 020B 7401 0037 C480 0037 0200 C680 0000 1003
4440 4C28 4444 CI05 7001 1010 8106 020A El06 0204 ClB8 o21C C1E9 0217 7401 0037 C480
4450 0037 0213 OAOO C20B 4480 0062 0000 o21A COCA 0214 70B6 OA14 C204 4C18 4464 C2lA
4460 4C08 4464 74FF 0007 7000 1010 020A 020C 0211 0204 020F 0219 o2lA 70A3 0000 4480
4470 OOAC 5480 3E29 7400 4485 700B C021 1008 4C10 4470 C480 4499 7001 C01B 0006 0400
4480 4529 617F C480 0037 6600 0000 4804 72lE 1804 034C 1804 0340 1804 4C20 449A C204
4490 4C20 4494 7401 0037 7401 0037 5480 3E28 5480 3E44 01B7 1010 o34E o34F C03E 6580
44AO 0036 7lFB 703C 4080 44A9 44AB 44AA 44AE 44Ao 4520 o34F o34E 7001 o34F 617F 09B3
44Bo 09B5 C204 4C08 44B7 09Bl 09Bl 70F7 C34F 0219 7401 0037 C4BO 0037 0001 6500 0000

Functions of Executive Programs 95

44CO 6918 CloO 1001 4C02 44C8 4C28 44E5 1020 1001 1802 0001 1500 0000 1101 CLOD F580
4400 0000 4C20 440F ClOO 800A 0004 9005 4C18 44E8 6500 0000 10E5 0000 0001 0020 613C
44=:0 6680 0037 4C80 0012 8000 1001 1802 0100 611F C480 0037 D206 C207 E 113 E8EF 0207
44FO C34C 100F 1808 8207 0207 C340 100E 1809 8207 0207 7401 0037 C480 0037 0208 1401
4500 0037 C480 0037 0213 7401 0037 C480 0037 021B C1B8 02lC ClEY 0217 C34E 4C04 451F
4510 C680 0018 4C20 4519 613C 6680 0037 4C80 0072 7401 0037 C4RO 0037 [J212 020~ OA06
4520 oAoa COOA 0214 COB9 0204 0211 C206 4480 0062 0000 021A 7013 FFFO OA14 C204 4C1.8
4530 4536 C21A 4C08 4536 74FF 0001 1000 1010 020A 020C 0211 0204 020F 0219 021A 4COO
4540 4494 0000 0000 0000 XXXX XXXX . XXXX XXXX XXXX XXXX XXXX XXXX xxxx XXXX XXXX XXXX

4550 TO BF4F CONTAINS xxx X
BF50 xxxx xxxx xxxx xxxx XXXX XXXX XXXX XXXX

N04 RE"DY READER

96

Data, Manipulation

EXAMPLE 10. RESERVING A FILE AREA IN THE
CORE LOAD AREA. The only method of reserving
a file area in the Core Load Area on disk is through
an *STOREDATA function. Depending on the intent
and purpose of the user at the time this function is
performed, two options are open to him:

1. He may wish to reserve (that is, set aside) a
file area in the Core Load Area for future
use. The source input may be data from cards
(D in column 11 and RD in columns 13-14) which
is stored directly to its destination area (FX in
columns 17-18), or it may be information in the
Nonprocess Working Storage (D in column 11
and FX in columns 17-18) which is physically
moved to a data block that starts at the begin­
ning of the next available sector in the Core
Load Area. Note that in both cases, the input
may be valid or invalid information.

For example, if the data cards contain zeros
throughout, a new file area will be established.

2. He may elect to move or transport a data block
of true or valid information from the start of
Nonprocess Work storage into the Core Load
Area.

To reserve a data file, therefore, implies that there
is movement of information or data which may be
valid or invalid. Note that the *STOREDATA func­
tion transfers this information to disk without any
change of format.

To accomplish this, certain parameters must be
known to DUP and the Core Load Builder. These
are:

• Type of source input

• Logical drive number

• Destination area

• Name of data file

• Sector count and/or word count

Figure 39 gives the sequence of control cards that
might be used in a typical situation, where the source
input is data cards.

A data file, FILEl, one sector long, is reserved
in the Core Load Area, and given a FLET entry.
Since this is a data FLET entry, the control card
sector count, or the sector equivalent of the word
count, is contained in the entry.

The DEFINE FILE statement (see IBM 1130/1800
Basic FORTRAN IV Language, Form C26-3715)
specifies to the FORTRAN Compiler the size and
quantity of disk data records within a file (or files)
that will be used for processing with a particular
program and its associated programs; in this exam­
ple, one data block of 320 words is used. Since we
are storing data to be used by a FORTRAN program
from cards, the associated *FILES control record
must contain the identical name (that is, FILEl) of
the data block established by the *STOREDAT A
function. Note that it is from the *FILES card that
the Core Load Builder obtains the necessary data
(name, file number and drive code) to construct the
DEFINE FILE TABLE within a core load. This is a
three-word table which equates program defined file
numbers to symbolic disk data files specified on the
*FILES card.

We have seen that in moving data from the Non­
process Working Storage to the Core Load Area, the
direction of movement is from the start of Non­
process Working Storage on the disk drive specified.

SAMPLE CODING FORM

f--L-''--'-1.--'----C:.J!:!l':=''''-1!:!~'--'-1.--L...l.--'--'-..LL.LL..L..L..LL..J_L_l__'__L_'___L__L.L_'_l_L1_L'_1 L--L_~.~

~LLl'--'-1.!oJ!!lj"'---L.LL.L.LLLl-'--J'-'--'--'--'--'-'-.LL-LL.LL..JL.Ll--'--'-..LL-'-L-'-'---'--'--1 L LLLlJ

P-:-L...L::l.::L.l.--'-I---L...L..LL.L.LLLl-'--J'-'--'--'--'--'-'--'-'--LL.LL..JL.Ll__'__L--LL-'--'--LL..L.LI . .LLL ~

f'-L'-'--'==--'-'--'-'--'--'--'--'-'--'-'-'--''-'--'--'--'--'-'--'---'--'-'-LL..J'-'--'--'--'--'--'--'--'--'-'--L..L..L.LL.LL.!

~,--,-,~--,-,--,-,--,--,--,--,-,--,-,-,--,~--,-,-~-,---,-~~~--,-,--,--,--,-,--,--,--,--,-I~~

Figure 39. Reserving a File Area in the Core Load Area

Functions of Executive Programs 97

However, in the case of data files referenced by
FORTRAN I/O in Nonprocess Working Storage, the
direction of movement starts from the end of Non­
process Working storage, and therefore the move­
ment of data through the *STOREDAT A ftUlction does
not actually move a data file established by the exe-'
cution of a FORTRAN-written program.

EXAMPLE 11. DUMPING A PROGRAM OR DATA
FILE F.ROM THE CORE LOAD AREA. A program
or a block of data in the Core Load Area may be

1. moved to the Nonprocess Working Storage,
2. punched into cards, or
3. printed on the List Printer.

Figure 40 illustrates these three cases.
The primary difference between the two dump

ftUlctions, *DUMP and *DUMPDAT A, lies in the
handlinl~ of relocatable programs. *DUMP convert:'3
relocatable programs from disk system format
either to card system format when dumping to cards,
or to printer format when the List Printer is sel­
ected as the I/O media. *DUMPDATA performs no
conversion and outputs a relocatable program as data
identical to its original format.

Prog;rams and/or data in the Core Load Area aro
assumed to be in disk core image format. The narrJ,e
of the program or data file must always be given.

Note that when dtunping from the Core Load Area
to punched cards, an *CCEND control card is punch­
ed out as the last card in the output deck. This card
also contains the word and sector count needed in a
*STORE~DATA operation. (Note also that, although
the *STOREDATA function requires that these counts
be contained in the control card, the punched-out
*CCEND card may be used in a subsequent store of
the dumped core load.) PN specifies the Card PtUlch
as the principal system output device, while PR
specifies the List Printer.

In the same fashion, it is also possible to dump a
mainline, combination, or interrupt core load to
Nonprocess Working Storage or to any available I/O
media.

EXAMPLE 12. LOADING A PROGRAM OR DATA
BACK INTO THE CORE LOAD AREA. One of the
features of the Disk Utility Program (DUP) is the
ability to load (that is, store) a previously built core
load, which has been dtunped to cards by the
*DUMPDA TA function, back to the Core Load Area.
One significant use of this ability is the reordering
(that is" rearrangement) of the position of core loads
within the Core Load Area.

98

Consider the following example. Core loads
ALPHA, BETA1, DELTA, and GAMMA reside in
this order- sequence in the Core Load Area. It is
desired, for chaining purposes, to use them at on­
line time in some other arrangement: say, GAMMA,
BETA1, ALPHA, and DELTA. The four c:ore loads
are first dtunped to cards by a series of *DUMP­
DATA operations, and then deleted from the Core
Load Area. A reload of the new sequence of core
loads is now performed in the order desirod. The
result is a greater efficiency in the usage of the
disk by the reduction of disk seek time.

Figure 41 illustrates a possible card deck ar­
rangement for this situation.

EXAMPLE 13. DUMPING A PROGRAM F.ROM THE
RELOCATABLE PROGRAM (OR USER) AHEA. A
dump of a user-written or IBM program may be made
from the User Area to any of the following I/O media:

1. Nonprocess Working Storage (NPWS)
2. Punched cards
3. List Printer

SAMPLE CODING FORM

I, I! '" I

" , ! I
I I I I I

" I , I
I I , I I

Figure 40. Illustrating Various Card Anangements in Dumping a
Program/Data to Nonprocess Working Storage, Punched
Cards, and the List Printer

SAMPLE CODING FORM

Figure 41. Reloading Core Loads to User Sequence

Since the source specified is the User Area, a
LET search is performed. In dumping a program to
NPWS, a check is made to see if there is sufficient
space in the designated area; if so, a physical move
operation takes place. As mentioned earlier (see
Example 11) the *DUMP function converts relocatable
programs from disk system format to a format of the
I/O media selected. (Note that the print format to

list printer is identical for both *DUMPDATA and
*DUMP).

Figure 42 gives a typical sequence of control
cards used.

Note that a relocatable program may also be
dumped from the Temporary Area to any I/O media.

A relocatable program dumped from the User
Area to punched cards may be later reloaded, if de­
sired, to the User Area by an *STORE function.

EXAMPLE 14. MOVING A DATA FILE (OR FILES)
WITHIN THE CORE LOAD AREA. This is equivalent
to dumping a data file (or files) from one disk to
another -- that is, the copying of process data.

Figure 43 illustrates one possibility.

EXAMPLE 15. LOAD A PROGRAM/DATA BACK
INTO THE NONPROCESS WORKING STORAGE (see
Figure 44). A reloading operation implies that the
program or data to be reloaded is the product of an
*DUMP or *DUMPDATA function. That is, they
must be in binary format (54 words per card).

Data card input decks have seventy-two columns
of data, and a seven-column sequence number. Se­
quence columns 78-80 are assumed to be numeric
(the first be.ing 001) as punched during a *DUMP­
DATA function. In the reload operation, the card
deck is read and stored, and a check made for con­
secutive sequence, modulo 1000. A sequence break
is interpreted as a potential end of the deck. If the
card generating the break is a *CCEND card, the
*STOREDATA proceeds to store the card data
directly into its destination area.

Implementation of LOCALs

An introduction to the term "LOCALs" has already
been made in the introductory section: Overview
of the IBM 1800 Time-Sharing Executive System. A
local is classified in TSX as a subprogram or sub­
routine that is associated with a given core load, but
not initially loaded with that core load. When a
call for a local is encountered during the execution
of the core load, the local is read in from the disk,
overlaying the area between the end of the core load
and the beginning of COMMON, unless the local is
already in core. Control is then passed to the local
routine.

Locals may be employed as individual subpro­
grams or groups of SUbprograms. In the latter case,
whenever a call for a given local is encountered,
the entire group of which it is a mem her is loaded.
Subsequent calls for other locals within the same
group may then be made without necessitating

Functions of Executive Programs 99

SAMPLE CODING FORM

I I 1....LU..l..u..
I I I I I Il.u..

I I I I I L...L..L.l.ll..L

I I I I 1 I I I I I I I I 1 I I I I~

1 I I I I I I I I I I I I....L..LL~
I I I I 1 I I I I I I I I 1 I I I Ik, I I I I I I

Figure 42. Dumping a Relocatable Program from the User Area

---~
SAMPLE CODING FORM

~~~LL~LLLL~I II I I I I I~~,_LIL,LI~~ 

~;:r,u~~~~4!1 ,W,SIO, IgA,rNI I I I I I I I I I I I 

T~~~~41 !D.AITjA.L! I I 1-L.L.U.J-LLd..l...~L._L L..L.L.LL.L.LLLLL.L..L.L..L.L..L.L..L.L..L..l-.L..l-.L..LJ....LJ....I...L-L.j 

1 II II I I I I II I I I I I " 1 II I I ~ LL...L.I...LJLL...L.I...LJLL.Ll...L.J..l-.Ll...Ll..l-.L.L..Ll..l-.L.L..Ll-.y 

I I I I 1 I I I I I I I I I I I I 1 I I I I LLUL..L.Ll...LJ..l-.Ll...L.J-LL..L..Ll..l-.L.L.L.L..l-.L.L..Ll..l-.L.LLJ.-.y 

I I I I I I I 1·1 I I I I Ll.L.LLL ..w..LlLL"--L1 J..1.L1 ..ll..ll-LJ..I J..I..Ll..l-.L.L..LlI...lI....L.L.L..Ll....L1 L' .L.L1...l1_1.L.L1 LJ.-Ll 

Figure 43.. Moving a Data File within the Core Load Area 

-------------------------------------------.----------------------------~ 

~~IIII,IIIIII 
,., I I Ig,V1AI IC",~gs. 

1I'1 II I 

II I 

I I 1 I I 

s,qulltlc€, 

I I 1 I I 

I I I I I 

SAMPLE CODING FORM 

! I I I I 1 I I I I 

I//vAU,T!l1 I I I 

I I I I I I I I I I 

I I I I I I I I I I I 1..l....L.L 

1 L.L.J...L..t1 I I I 1..L.l-l 

1 ~I I I I I..LL.J. 

Figure 44. Reloading a ProgTam to Nonprocess Working Storage 

100 

I 1 I I I I 

I 



reloading from disk. Since all local· groups occupy 
the same area in core, a call for a local in another 
group will involve a load from disk of the new group, 
overlaying the first group. At this point, another 
call to a local in the first group will require reload­
ing that group from disk. Local groups or blocks are 
important for the following reasons: (1) specification 
requirements, (2) disk space utilization, and (3) disk 
efficiency. The area of core used is directly propor­
tional to the size of the largest block. Data is passed 
to or from a local through its parameters, COMMON, 
or working storage. 

The only difference between a local and a normally 
called subroutine is that a localized subroutine is not 
assembled as part of a core load. After the associa­
ted mainline program and all of its in-core subpro­
grams (and their in-core subprograms) are relocated, 
each local subprogram block is converted to core 
image format and stored, sectorized, immediately 
following the core image core load, as shown in the 
schematic diagram below (Figure 45). See also 
Figure 3. 

One advantage of the local feature is that logical 
subroutines can now be broken off from a large pro­
gram. This means a virtual extension of core. 
There is no theoretical limit to the number of local­
ized subprogram s that can be implemented: the user 
can specify any number of locals within a group as 
long as the sum total of all assembled relocatable 
programs does not exceed the size of the Local Sub­
routine Area. 

Communications Linkages 

At object time, locals are located between the end 
of the main core load and COMMON. Linkage to and 
from locals is accomplished via a loader called 
FLIP (a miscellaneous subroutine within the TSX 
Subroutine Library) as follows. 

CALLS. A call to a local consists of a BSI L X, 
where X is the location of a six-word entry in the 
Local Parameter Table (LPT) which is built by the 

..... ------CORE LOAD AREA -------I~~ 

CORE 
LOAD 

A 

DATA 
FILE 

B 

CORE 
LOAD 

C 

CORE 
LOAD 

D 

Figure 45. Showing the Relationship of Local Groups or Blocks to 
Associated Core Load within the Core Load Area on Disk 

Core Load Builder as part of each core load in 
which locals are specified. The table provides the 
linkage between the core load and the localized sub­
programs via the FLIP relocatable subroutine. 
There is one entry in the LPT for each entry point in 
the specified local subroutines. Each LPT entry 
has the following format: 

~ CONTENTS MEANING 

X DC 0 A linkage word 

X+1 BSI L Long BSI to FLIP routine 
X+2 FLIP 

X+3 WC 

X+4 SA 

X+5 EP 

Word count of the local 
group with which this routine 
is loaded 

Sector address of the first 
sector for the local group. 
This address is relative to 
the first local sector 
for the core load 

Absolute address of the 
entry point when the local 
group is loaded 

The word at X is used for the return linkage; 
X+1 and X+2 are executed to link to the FLIP routine 
which uses the word count and sector address at 
X+3 and X+4 to load the proper local group from 
disk, if required. The necessity for loading is 
based upon a comparison of the WC and SA words 
with those of the local group currently in core. The 
word at X+5 is the entry point of the specific local 
called, and control is passed to that point by the 
FLIP routine via a BSI I X+5 after the requisite local 
is loaded. Thus, the called local can return in 
normal fashion, and will actually return to FLIP 
which completes the return linkage by a BSI I X. 

b.ill.E§.. A LIBF to a local consists of a short BSI to 
an entry in the Variable Transfer Vector (VTV) 
associated with each core load. The VTV logic 
then executes a BSI L Ywhere Y is the first word 
of a LPT block, similar to that just described. The 
only difference between the two tables is that a LPT 
block for a LIBF function will contain a BSI L 
FLIP+2 instead of a BSI L FLIP. The alternate 
entry point allows the FLIP routine to make CALL 
and LIBF requests appear identical for return pur­
poses. For a LIBF request, FLIP moves the first 
word of the VTV entry, set by the short BSI of the 
LIBF request, to the first word of the LPT block 
used for entry to FLIP. 

FUnctions of Executive Programs 101 



Restrictions on the Use of LOCALs 

Certain rules apply with respect to the constitution of 
locals, calling locals, and to calls made by locals. 
These are summarized below under legal and illegal 
uses. 

Legal Uses 

A ma.inline can call a local. Note that a mainline 
(which can be a process, interrupt, combination, 
or nonprocess core load) can, by definition, in­
clude any subroutines loaded with the core load. 
Although routines in the main core load can call 
locals, all such calls must be completed (that is, 
corresponding returns to the calling routine 
made) before any call on a local in a second local 
group can be made. 

A local can call a mainline. 

A local can call a skeleton subroutine. 

A local can call a local provided both locals are 
contained in the same local group. 

nlegal Uses 

A local cannot call another local in a different 
local group. 

Due to the transient nature of local routines, 
I/O routines cannot be designated as locals. 

Conversion routines (e.g., HOLL, EBPA, PRT) 
cannot be designated as locals. 

Interrupt servicing subroutines cannot be desig­
nated as locals. 

In-skeleton subroutines cannot be used as locals. 

Other Considerations 

One other restriction in specifying subroutines as 
locals is that if a subroutine has more than one entry, 
i. e., EDBR, EDBRX, EDIV, and EDIVX, and more: 
than one entry point is called, then all entry points 
must be indicated on the *LOCAL control card. 

The user should also beware of hidden locals. If, 
for example, A, B, and C are subroutines, and A 
calls B:I and B calls C, A and C should not be made 
locals because C would be hidden from the relocatable 
loader when A was prepared for loading, and on exe­
cution, local C would destroy local A. To overcome 
this problem, A and B, or Band C, or A, B, and C 
could be named as locals. 

If the Local Subroutine Area includes a device I/O 
buffer area, no local should exit to a non-blocked 

102 

(that is, non-local) subprogram until it has tested 
for a device routine not-busy status. 

EXAMPLE 16. In certain application situations, por­
tions of a problem program may not lend themselves 
to segmentation into individual core loads. In order 
to overcome this difficulty, by being able to contain 
such a program in the available machine core size, 
the local concept is immensely useful. The imple­
mentation of the load-an-call facility means that 
subroutines within the main body of a prog:ram can 
be called into core on demand. 

The following example has been devised to illus­
trate this type of situation. It should not be construed 
as a model. 

Assume a 32K system with a 16K skeleton. If all 
of FORTRAN I/O were used for all devices called by 
the nonprocess program, NCATE, core si:~e limita­
tions require that FORTRAN I/O be 10cali2;ed (see 
Figure 46). Since all FORTRAN I/O taken together 

SKELETON 

VCORE= 14000 ... 
DIMENSION 

MAINLINE 
>-

ARITH. & FUNC. SIRS 

IOFIX,IOU,SAVE,MAGT 
16164 

LOCALS >' 

16890 

COMMON 

17FFF 

Figure 46. Illustrating the Implementation of LOCALs 

MAINLINE 
& 

SUBROUTINES 

UFIO,MFIO, 
MDFIO, & 
MDFND 



would comprise approximately 3500 words, by local­
izing them, the largest local block will be only ap­
proximately 1600 words, and thus small enough to be 
accommodated within the 1830 words available. 

Note that subroutines common to FORTRAN I/O 
(that is, called by FORTRAN I/O and not by the 
mainline) are automatically included in the mainline 
such that they may be shared. MAGT, being included 

in the mainline, can be referenced by either MFIO 
or UFIO. 

Program Listing No. 4 also indicates the order of 
control cards acceptable to the Core Load Builder. 
For nonprocess programs, these must all be placed 
between the * STORE CI (or / / XEQ) control card and 
a *CCEND control card. Only the *RCORD control 
is not allowed. 

Functions of Executive Programs 103 



PROGRAM LISTING NO.4: EXAMPLE 16 

/I JOB 
II DUP 
*STOREDATAD wso FXO FILE2 2 
DUP FUNCTION COMPLETED 

II JOB 
II FOR NeATE 
*LI ST ALL 
*NONPROCESS PROGRAM 
*IOCSICARD,1443 PRINTER,DISK,TAPE) 
*ONE WORD INTEGERS 
C 
C NONPROCESS MAINLINE--FORTRAN 110 IS LOCALIZED 
C --1/0 SEGMENTATION IS ALWAYS DESIRABLE 
C 
C 
C LARGE DIMENSION IMPLIES SIMULATION OF EXTRA CODE 
C FOUND IN LARGE PROGRAM 
C 

C 

C 

C 

DIMENSION SPACE(2000),ROOMI500) 
COMMON ARRAY(2000),POINTI997),A,B,C 

DEFINE FILE 11320,1,U,IFIL1) 
DEFINE FILE 21320,l,U,IFIL2) 

CAU INOUTllI 

C DO HIGHLY SOPHISTICATED PROGRAMMING 
C 

SPACE(1) = A*B/C+A**B*ATANIC)-B**2 
ROOMll) = ABS(A)*ALOGIB)*EXP(C*A)/IA*cnS(C)*TANH(B» 

C 
C USIER-WRITTEN NON 110 DUMMY PROCESSING ROUTINES 
C WHICH MLGHT BE LOCALIZED 
C 
C CALL COMPT 
C CALL SURCH 
C CALL SORT 
C CALL CAMPH 
C 

C 
CALL INOUT(2) 

CALL EX IT 
END 

VARIABLE ALLOCATIONS 
ARRAY(RC)=FFFE-F060 POINT(RC)=F05E-ER96 A(RC)=E894 

ROOM(R )=1392-0FAC IFILl(I )=139E IFIl21I J=139F 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD INTEGERS 

CALLED SIJBPROGRAMS 
INOUT FATAN FABS FALOG FEXP FCOS FTANH 
FDVR FAXI 

INTEGER CONSTANTS 
1= 13A2 2=13A3 

CORE REQUIREMENTS FOR NCATE 

FAXB 

COMMON 6000 INSKF.L COMMON 0 VARIABLES 5026 PROGRAM 

END OF COMPILATION 

NCATE 
DUP FUNCTION COMPLETED 
/1 FOR 
*NONPROCESS PROGRAM 
*ONE WORD INTEGERS 
*LI ST ALL 
C 
C DO NOTHING I/O STATEMENTS FOR ILLUSTRATIVE PURPOSES ONLY 
C 

SUBROUTINE INOUTII) 
COMMON ARRAY(2000),POINTI997).A,B,C 

C 
GO TO I 1,2) , I 

104 

B(RC)=E892 C(RC)=ER90 SPACE(R )=OFAA-OOOC 

FADI) FMPY FDIV FLI) FSTO FSTOX FSBR 

A8 



C 

C 

c 

READ 12,3) A, B, C 
FHI[l12'1I 
RETURN 

READI2'l) ARRAY 
WRITEIl'l) ARRAY 
READIS) A,B,C 
~IR I TE (6) A, B, C 
END FILE 6 
BACKSPACE S 
REWH"D 6 
RETURN 

3 FORMATI3FIO.3) 
END 

VARIABLE ALLOCATIONS 
ARRAYIRC)=FFFE-F060 POINTIRC)=F05F-FA9A 

STATEMENT ALLOCATIONS 
3 =0004 1 =0012 2 =0021 

FEATURES SUPPORTEn 
WlNPROCESS 
ONF WORD INTEGERS 

CALLED SUBPROGRAMS 
eOMGO IJREO lH~RT 

~1f)AF MDFNO 

INTEGE~ CONSTANTS 
2=0000 1=0001 

lICOMP MRFD 

5=0002 

A(RC)=F894 

MCOMP BCKSP 

6=0003 

CORE REQlIIREMENTS FOR HIOlJT 
COMMON 6000 INSKEL COMMON o VARIABLES o PROGRAM 

END OF COMPILATION 

INOLJT 
DUP FUNCTION COMPLETEr) 
*STORECIL NCATE NCATE 
*FILES(2,FILE2,0) 
*LOCALIMOFIO,MOAF,MDAI,MDCOM,MnF,MDI,MOFX,MOIX.MORFO.MDWRT,~DFNO) 

*LOCAL(MFIO,MREO,MWRT,MCOMP,MIOAF,MIOAI,MInF,MIOI,MIOFX.MInIX) 
*LOCAL (UF IO,lJREO, UWRT, tlroI ,UIOF, lJJ OA I, lIlOAF, II lOFX .lJInt X .1IC()MP) 

i *CCEND 

CLB, BUILD NCATE 

CORE LOAD MAP 
TYPE NMIE ARGl ARG2 

*CDW TABLE 4002 OOOC 
*IST TABLE 400E 0023 
*FIO TARLE 4031 0010 
*ETV TAI'lLE 4041 oooe 
~~VTV TABLE 4040 OOAE 
*PNT TABLE 40FC 0004 
)~LPT TARLF 4100 OORA 
*OFT TABLE 41BA OOOC 
MAIN NCATE 555E 
PNT NCATE 40FE 
CALL FLIP 55B4 
LOCL MDFIO 4100 4040 
LOCL MDAF 4106 4050 
LOCL MDAI 410C 4053 
LOCL MDCOM 4112 4056 
LOCL MOF 4118 4059 
LOCL MOl 411E 405C 
LOCL MDFX 4124 405F 
LOCL MOIX 412A 4062 
LnCL MORED 4130 4065 
LOCL MDI.1RT 4136 4068 
LOCL MDHID 413C 406B 
LOCL MFID 4142 406F 
LOCL MREf) 4148 4071 
LOCL MWRT 414E 4074 
LOCL MCOMP 41S4 4077 
LOCL MInAF 41SA 407A 
LOCL MIDAI 4160 407D 
LOCL MIOF 4166 40RO 
LOCL MIDI 416C 40R3 
LOCL MIOFX 4172 4086 
LOCL MIDIX 4178 40R9 
LOCL UFIO 417E 408C 

B(RC)=FAQ2 C(RC)"'FA90 

FOF RFWNn SlIS I~.I tllDF 

74 

Functions of Executive Programs 105 



LOCL lIHFD 41fl4 40Rf 
LOCL IHiRT 41RA 40Q2 
LOCL lIIOI 4190 4095 
lOCL UIOF 4196 409A 
lOCL UlnAI 419C 409E1 
LOCl UlnAF 41A2 4091' 
LOCL UIOFX 41AR 40Al 
lOCL UIllIX 41A!' 40~.4 

lOCL UCOMP 41R4 40",7 
CALL INOUT 5615 
LI BF FLO 56RC 40AA 
LIflF F~lPY 5605 40",0 
LIflF FDI\! 5717 40flO 
LIBF FSTO 56A2 40R3 
CALL FAXB 5781 
CAll FtlTAN 57C2 
LI BF FAOD 5HAC 40Fl6 
LIBF FAXI 59 OF 4089 
LI AF FSBR 586C 408C 
LI FlF FSH1X 565A 40AF 
CALL FtI.RS 594E 
CALL FAlOr; 596A 
CAll FEXP 59FE 
CAll FCnS 5A7A 
CAll FTANH 5BOE 
lIBF FDVR 575D 40C2 
LI RF A[)RCK 5662 40C5 
CAll BT2BT 5BC6 
CALL SAV!' 5BE 2 
CAll IOFIX 5C46 
LI BF IOU 5C76 40G8 
CALL BTIRT 5CCE 
LIBF FLOAT 5032 40CB 
lIBF IFIX 5D4E 40C!' 
LIBF MAr,T 507A 40rn 
LIBF SURIN 5F98 4004 
LIBF COMGO 5F02 4007 
LIFlF EOF 6050 400A 
LI BF BCKSP 6064 4000 
LIBF RE',JNO 6024 40EO 
lIBF FARC 60BO 40E3 
CAll FTNTR 60E4 
CALL FTRTN 60FE 
CAll FLN 597A 
LI BF F/>'IPYX 56DO 401'6 
CAll FXPN 5AOE 
1I BF XMDS 610E 40E9 
LIRF FA.DDX 5886 40EC 
LIAF FSlJRX 587Fl 40EF 
LIBF FOIVX 5712 40F2 
LIHF FLOX 56B7 40F5 
LIRF ~lnR ~1 6136 40FR 
CORE 6164 072C 
cor·I~1 6890 1770 

ClB, NCATE lO XO 

DUP FUNCTION COMPLETED 

106 



General utility Functions 

EXAMPLE 17. PACKING THE USER (RELOCATABLE 
PROGRAM) AREA. It has been mentioned that during 
a delete operation, the LET table is searched for the 
name of the program to be deleted and that entry re­
placed by a 9DUMY. The space (that is, area) pre­
viously occupied by the deleted program remains 
unused until an *DEFINE PAKDK operation has been 
performed: it then becomes available for the storage 
of other programs (through the *STORE function). 
The user is therefore advised to repack relocatable 
programs for optimum disk utilization at convenient 
intervals. 

When repacking is performed, the user should 
ensure that a current record of disk storage exists 
as a safeguard against any errors which might occur 
while packing is in progress. The amount of time 
invol ved in this operation is directly proportional to 
the quantity of data moved. The sequence of control 
cards for a typical packing operation is given in Fig­
ure 47. Note that the *DE FINE P AKDK function 
serves only to pack relocatable programs on disk. 

Figure 48 illustrates how various portions of the 
TSX subroutine library can be deleted or removed 
from the disk if they are not needed for a given user 
system. The Relocatable Subroutine Area is then 
packed to conserve disk space. 

EXAMPLE 18. HOW TO REPRODUCE CARDS. 
When the input to the *STOREDAT A function is in 
card form, this function requires the card deck to be 
sequenced, modulo 1000. Any form of input may 
exist from columns 1-72, as no conversion takes 
place. 

SAMPLE CODING FORM 

Figure 47. Repacking User Area on Disk Drive 1 

This may be used to reproduce source decks 
prior to assem bly (e. g., the TASK source deck). 

EXAMPLE 19. DUMPING A LET/FLET TABLE. 
The *DUMPLET function is used to dump to the List 
Printer the contents of the LET or FLET or both 
tables for one or all drives specified during a partic­
ular job. The control card sequence for a LET / 
FLET dump is shOWl in Figure 50. 

The format of a LET /FLET entry is summarized 
in Figures 51 and 52. A detailed explanation of the 
contents of both tables is given in the IBM 1800-
Time-Sharing Executive System, Operating Proce­
dures, Form C26-3754. 

EXAMPLE 20. HOW TO CALL FOR A PROCESS 
CORE LOAD EXTERNALLY. Once an on-line TSX 
system has been built, the question remains of in­
itializing or starting system operation. This is only 
possible through a cold start procedure -- Figure 
53 illustrates a typical sequence of control cards for 
a three-drive system. 

The cold start program is supplied with the IBM 
System and is normally resident on disk. It is read 
into high-addressed core storage by a two-card 
bootstrap (COLD START LOADER CARDS 1 and 2), 
and control passed to its first executable instruction. 
The Skeleton is then loaded to core storage, and 
certain mask registers in the Fixed Area are set to 
/FFFF thus forcing the Skeleton I/O routines to op­
erate in a masked mode. Note that it is the user's 
responsibility to unmask his system, according to 
his configuration determined at system generation 
time, through his initial (that is, first) process core 
load. 

The third control card in the sequence, the COLD 
START name card, specifies 

1. Whether or not storage protection is required 
(lor 0 in column 14). 

2. Whether or not a request is made for the man­
ual entry of the time of day (lor 0 in Column 16) 

3. The logical assignments of physical disk drives 
on the system. 

4. The name of the initial process core load. 

If the storage protection option is elected, the 
Skeleton I/O, the System Director, the Executive 
Branch Table, and certain words in the Fixed Area 
are protected against any user violation. When the 

Functions of Executive Programs 107 



// .Joe 

// * 
// * 
// * 
// * 
// * 
// * 
// * 
// * 
// * 
// OUP 
*OELET 
// * 
// * 
// OUP 
*OELET 
*OELET 
*OELET 
// * 
// * 
// DUP 
*DELET 
"DELET 
'·DELET 
'·DELET 
// * 
// * 
F/ DuP 
~'DELET 

·OELET 
*DELET 
*OELET 
*DELET 
~DELET 

iI'DELET 
·OELET 
*DELET 
*DELET 
*OELET 
·DELfT 
·DELET 
*OELET 
*DELET 
·DELET 
// * 
"'/ * 
,,'I' 'II 

1'/ DuP 
*DELET 
*DELET 
*DELET 
*DELET 
*DELET 
*DELET 
*DELET 
*DELET 
*DELET 
*DELfT 
*OELET 
·DELET 
*DELET 
*DELET 
*DELET 
*DELfT 
*DELET 
*OELET 
*DELET 
1"1' • 
/.1' * 
/.t OUP 
*[)ELET 
*bELET 
*:)ELET 
*"ELET 
*1)ELET 
*!)ELET 
*!)ELET 
*1)ELET 
*[)ELET 
*C)ELET 
*I)ELET 
*!>ELET 
*[)ELET 
*[)ELET 
*[)ELET 
*UEL.ET 
*ClELET 
*[)ELET 
*[)ELET 
*t)E'LET 
/.' .JOB 

THE FOLLOWING SET OF TSX MONITOR CONTROL CAROS IS USEO 
TO OELETE VARIOUS PARTS OF THE TSX SUBROUTINE LIBI=~ARY IF THEY 
ARE NOT NEEDED FOR A GIVEN USER-CONFIGURATED SYSTe:M 

THE FIRST DELfT ELIMINATES CARON IF THE USER HAS ASSEMBLED 
TASK WITH CARON INCLUDED--NOTE THAT FOR OFF-LINE SYSTEMS CARON 
SHOULD BE INCLUDED IN TASK SINCE THIS SAVES EXECU1"ION TIME 
CORE I.E. COINS EQUATED TO I 

CARON 
IF THE USER DOES NOT HAVE MAGNETIC TAPE ON HIS S,"STEM THE 
FOLLOWiNG DELETS APPLY 

MAGT 
REWND 
UFIO 

IF THE USER DOES NOT HAVE PAPER TAPE ON HIS SYSTE~1 
THE FOLLOWING DELETS APPLY 

PAPTN 
PAPEB 
PAPHL 
PAPPA 

IF THE USER DOES NOT HAVE A PLOTTER ON HIS SYSTEM THE 
FOLLOWING DELETS APPLY 

FCHAR 
SCALF 
FGRID 
FPLOT 
ECHAR 
SCALE 
EGRID 
EPLOT 
POINT 
FCHRX 
FRULE 
ECHRX 
ERULE 
XYPLT 
PLOTI 
PLOTX 

IF THE USER IS BUILOING AN OFF-LINE SYSTEM THE FOLLOWING 
DELETS APPLY--NOTE. DO NOT ASSEMBLE ANO STORE THE SYSTEM 
DIRECTOR 

CL-EAR 
CLOCI( 
COUNT 
DPART 
ENOTS 
LEVEL 
MASK 
OPMON 
QIFON 
QUEUE 
RESMK 
SAVMK 
SETCL­
TIMER 
UNMK 
UNQ 
VIAQ 
CONI-IX 
TRPRT 

IF THE USER HAS NO PROCESS I/O ON HIS SYSTEM THE I"OLL-OWING 
DELETS APPLY 

AIPTN 
AISQN 
AIRN 
ANINT 
DINP 
OIEXT 
OICMP 
OAOP 
lOPE 
XSAVE 
GAGEO 
AlP 
AIS 
AIR 
es 
esc 
esx 
DAC 
QZERQ 
OZOIO 

/,' * THE SUI!IROUTINE AREA WILL NOW BE PACKED TO CONSERVE 0151( SPACe: 
/,.' DUP 
*[IEFINE: PAKOK 0 
/;r .JOB 
/;' END OF EXTRA SUBROUTINE DEL!TS 

Figure 4,8. Repacking the Relocatable Subroutine Area Following a Removal of Various Portions of the TSX Subroutine Library 

108 



SAMPLE CODING FORM 

Figure 49. Reproduction of Cards 

SAMPLE CODING FORM 

Figure 50. Dump LET /FLET of Disk Drives 0, 1 and 2 

.TEMP YYYY L STARTING DISK BLOCK ADDRESS 
OF • TEMP MUST BE A CYLINDER 
BOUNDARY--

'--__ THE NEXT DISK BLOCK ADDRESS TO BE USED FOR 
STORING RELOCATABLE PROGRAMS 

WILL BE THE SAME AS • TEMP'S IF NOTHING IS 
tiN .TEMP 

~ L STARTING DISK BLOCK ADDRESS NPWS IS 
'-----ALWAyS AT LEAST A SECTOR BOUNDARY 

a...-______ DISK BLOCK ADDRESS OF (END OF NPWS+l) 
IS ALWAYS AT LEAST A SECTOR BOUNDARY 

NAME XXXX Y Y Y Y 

[

t:ARTING DISK BLOCK ADDRESS OF "'OGRAM 
OR AREA SPECIFIED 

DISK BLOCK COUNT OF PROGRAM 

PROGRAM OR TABLE NAME 

Figure 51. LET Entries 

1 = COMBINATION C.L.h 
0= INteRRUPT C.L. • + r--DISK DRIVE CODE 0,1,2 

NAME 

Y 
Program 
Name 

.E 

xxx x 

Ir-1£ SECTOR ADDRESS 

? STARTING SECTOR ADDRESS 
FOR THIS ENTRY 

...---- WORD COUNT FOR/ENTRIES OR CORE LOADS 

L.....---SECTOR COUNT FOR (') ENTRIES,DATA FILES 
OR 9DUMY 

xxxx 

STARTING SECTOR ADDRESS OF 

CORE IMAGE AREA 

'--___ T,OTAL NUMBER OF SECTORS USED FOR CORE 

IMAGE PROGRAMS AND DATA FILES 

Figure 52. FLET Entries 

Functions of Executive Programs 109 



Figure 53. Cold Start for an On-Line System 

clock option is selected, the user manually enters 
the time of day :in decimal hours and minutes 
(switches 0-7 and 8-15 respectively): when CONSOLE 
START is depressed, this is converted into hexadeci­
mal hours and thousands of hours (see also System 
Design Considerations: System Director). ----

The assignment of physical disk drive units in a 
multi-disk system is based on a logical soheme to 
give maximum flexibility, as shown in Figure 54. 

Note that the physical arrangement of the disk 
drive units (up to three) in a 2310 Disk Storage Unit 
is fixed in the sequence: disk drive 2, disk drive 0, 
and disk drive 1. Columns 18, 20, and 22 on the 
COLD START name card always designate a logical 
number sequence: 0, 1, and 2 :in that order. These 
columns are used at cold start time to establish a 
relationship between a physical disk drive (either :~, 
0, or 1) and its equivalent logical reference. For 
example, a 1 punched :in column 18 means that a pro­
gram that references logical 0 will refer to the 
physical drive (disk drive 1) which was assigned at 

PHYSICAL DISK 
DRIVE UNIT 

ARRANGEMENT 
IN 2310 DISK 

STORAGE UNIT 

ASSIGNMENT 
OF 

PHYSICAL 
DISK 

DRIVE UNITS 

--
COLD START NAME CARD 

COL. IS COL. 20 COL. 22 
(LOGICAL (LOGICAL (LOGICAL 

NO. 0) NO.1) NO.2) 

0 1 2 

1 0 2 

2 1 0 

2 0 1 

1 2 0 

0 2 1 --
Figure 54. Relationship of Physical Disk Drive Units to Logical Number 

110 

cold start time to that logical number (0). In Fig­
ure 53, physical disk drives 0, 1, and 2 have been 
assigned to logical 0, 1, and 2 respectively. One of 
the advantages of this flexibility in assigning physical 
disk drives in a multi-disk system is backup capabil­
ity. 

EXAMPLE 21. HOW TO INITIATE A NONPROCESS 
MONITOR OPERATION. In an on-line system: 

• CALL SHARE from a mainline program only, or 

• CALL VIAQ (when the queue is empty). This 
forces a CALL SHARE. 

CALL SHARE is deliberately used when time­
shar:ing is desired at specific times and for specific 
durations. The amount of time is specified by the I 
parameter, and is variable depending upon the length 
of time the user wishes to be away from his process 
on the mainline level. This time is set in the pro­
grammed timer run under Timer C. Time-sharing 
is terminated when the timer returns to z,ero or is, 
alternatively, set to zero by a CALL ENI)TS state­
ment (see also System DeSign Considerations: 
Sy stem Director). 

A CALL VIA Q when the Queue Table is empty 
forces a CALL SHARE statement: the time used in 
the CALL SHARE is the value set by TISHA (see 
System Design Considerations: System Director; 
also Use of Time-Sharing). 

In an off-line system, Nonprocess Monitor oper­
ation may be initiated by 

1. A COLD START TASK procedure, or 
2. Loading a TASK object deck to core with a 

four-card High Core TASK Loader. 

The COLD START TASK procedure is identical to 
the on-line COLD START PROCEDURE (see Example 
20), except that the TASK operating systom is now 



read into core storage (instead of the System Skele­
ton) . A typical sequence of control cards is shown 
below (Figure 55). 

An alternative method of starting an off-line sys­
tem is to load a TASK object deck (previously assem­
bled to user specification) to core-storage with a 
four-card bootstrap loader (High Core TASK Loader). 
The procedure is summarized below (see also IBM 
1800 Time-Sharing Executive System, Operating 
Procedures, Form C26-3754). 

• Clear core. The 16 data switches may be set off, 
or to some predetermined value. Depress 
CLEAR CORE and START buttons simultaneously. 

• Depress STOP button 

• Reset registers to zero. Depress RESET button. 

• Ready Card Reader. Depress PROGRAM LOAD 
on. reader. 

• Set Sense Switch 7 up. Depress CONSOLE 
INTERRUPT. 

• Depress START button (on response to sense 
switches). 

EXAMPLE 22. HOW TO TERMINATE A NONPROC­
ESS MONITOR OPERATION (OFF-LINE SYSTEM 
UNDER TASK CONTROL). Two methods are pos­
sible: 

1. Set Sense Switch 7 up 
Depress CONSOLE INTERRUPT 

This immediately aborts the current job being proc­
essed, and proceeds to next stacked job. 

SAMPLE CODING FORM 

Figure 55. Cold Start for an Off-Line System 

2. Whenever the Card Reader is empty, the Non­
process Supervisor will indicate this situation 
by printing the following message: 

N04 READER READY 

Place next stacked job deck on hopper. 
Ready reader. Depress START. 

EXAMPLE 23. PREPARING A GUARD (DUMMY) 
INTERRUPT CORE LOAD. If an interrupt occurs on 
a level designated as "out-of-core" and there is no 
interrupt or combination core load associated with it, 
the interrupt will be recorded automatically. To pre­
vent this, it is good practice to provide a guard or 
dummy interrupt core load to service all interrupts or 
all assigned out-of-core interrupt levels until each 
interrupt has its final interrupt core load built and 
stored on disk. The substitute core load should give 
some indication (such as a message) that the interrup1 
has occurred. 

In the example (Figure 56), levels 8, 9, 10, and 
11 were defined as "out-of-core" interrupt levels by 
the System Director equate cards ICLLI and ICLL2. 
The relocatable main program is identified by 
GUARD located in the temporary portion of LET. 
Its entry address is 5. The interrupt core load 
is also identified by GUARD but is in FLET. The 
DICLE statement specifies that GUARD is entered 
in the ICL Table for each bit position on each level 
assigned. When the named program is later de­
leted and replaced by another program, all of the 
ICLT entries will be replaced. 

EXAMPLE 24. USE OF THE CONSOLE INTER­
RUPT. The Console Interrupt is used by the system 
and may also be· used by the user. 

The system uses the Console Interrupt with sense 
switch 7 on either to abort a nonprocess job or to 

Functions ()f Executive Programs 111 



._-----------------------_._--------------....., 
SAMPLE CODING FORM 

~~L.L.l.J.LLL I I I I I I I I I I I 'u-L.Ll...LLLL-L..Ll_LLLLlLL I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

.II':iQk.P~.tP .. L...LLL.Ll1 I I I I I I I I I I I 1-L.Ll...LL.u....LL1.L...LLJ...hl..LL~ I I I I I I I I I I I I I I I I II I I I II I 

.l!I~...L...L...J..l.Ll, I I I I I I I I I I I LL...l.....L..LLLL~_LL.LJ .. J~....L LLl.u.....L...l-LLL~, I I I I I I I I I I I I I I I 

OL~~~L~..4Z1~41 I II I I I 1...1.....1........l......L1...LLL..LJ .. J.J...L...J.....Lh.LLl....L-L.IL...L..l.L, I I II I I I II I I I II I I I I, I 

L~(d,)JI'~, I I II I I I I I I I I L ... L..LLLI I I I I 11....L.l.....L.L....J...L.J..l..J_l....l..I II I I I II I I I II I I I I, I I I II I 

.~~.J"~~RIti,P,r, SlE,&V.z;q~l4ly, ,ay I I~~f~ lo,c,c,u&Iil£,o/,}1 I I I I I, I I I I I I 

.l.Ll.£.Ab41~~ I I I I I I I I ...L.J.......L.-L.Ll...L1 I I I I I l...L..l....LlLL L...L...LL.~L.J......Ll..JL...J.....JL...J.....J......I....J.......I....J.......I....J.....l.....J....l......l.....l.....L....L...J.......L...J...-'--I 

.L.L...iM!U...L...L...L...J..L..LL I I I I I I I 1...L..L..L...cJ...J.......L...L.u..~...Jl...L...L~L...L...LL..LL.LJ......Ll..JL...J.....JL...J.....J......I....J.......I....J.......I....J.....l.....J....l......l.....l.....L....L...J.......L...J...-'--I 
T&..~~....L...L...lL.Ll1 I t;uA&Pi ,,1I ... ~~J I I I I I L...L...l......l.L...L~ . ...LI.....!...J.....l.....L....L....J.....LL...L...L...L...L..I....L..L.L..L.LJ....L.LL.LLy 

C C~~J.....L...L...l....1......L..., I I I I I I 1...i.....J..........L......LJ. .. LlL.L1_1J.....L.L..Ll..L l......Ll...J....J..... I I I I I I I I I I I I I I I I I I I I I I I I 

Ifl4~~~~ilI21),3)191(I¢.J,.L>,.2J~~",,4~12!1.!JI, II I II I II II III II IIIII I 

.~~J.....L...L...l~1 I 1'1 I I I II I I I I-L.Ll...LLLL~...Jl...L...LLl......l..LJ......J......LL...LL.LL...J...L1 I I I, I I I II I I I II I 

Ll..J...Ll.....~J.....L...L...l....1......L...1 I I I I I I I I I I I I I I I I I I I ~....L.J......l.L u...h..u.. .Ll....L.L..L.L.LL..LL.L.....L...LLL.....L......L.....L......Ll..J!......I.....I......I......J......L....I 

Figure 56. Preparing a GUARD or Dummy Interrupt Core Load 

commence Nonprocess Monitor action. This oper­
ation is required after a / / JOB, / / END OF ALL 
JOBS combination. 

A block diagram of the generalized logic flow is 
given in Figure 57. 

The user may have an interrupt program executed 
on a chosen level by depressing the Console Inter­
rupt button with sense switch 7 off. The level is 
assigned by the user on the equate card CONTA at 
TASK assembly time. 

The servicing routine or core load is written by 
the user and handled in the same way as a program­
med interrupt servicing routine, with appropriate 
LLBB designations. It is through the programmed 
interrupt servicing routine that the Console sensei 
data switches are interrogated and which, in turn, 
direct this routine to the course of action desired. 

One of the functions the servicing routine or core 
load mllst perform is to queue up a mainline core 

112 

load which will notify the Customer Enginoer when 
he can depress the C. E. Interrupt button for the re­
moval or addition of I/O devices from the system; 
and also to print out error counters where: hardware 
malfunctions have been recorded. 

EXAMPLE 25. PREPARING A MAINLIm: CORE 
LOAD TO PERMIT PROLONGED EXECUTION OF 
THE NONPROCESS MONITOR FOR THE DEBUG­
GING OF PROCESS PROGRAMS. The exa.mple il­
lustrates the use of the CALL SHARE statement 
which will continue to provide time for Nonprocess 
Monitor operation when the increment I for time­
sharing has expired and the mainline core load is 
reentered. 

This mainline core load will be specifiod in the 
COLD START procedure when only nonprocess work 
is to be accomplished. 



SET 
PROGRAM 
INTERRUPT 

NO 

SET 

SENSE SWITCH 7 

DEPRESS 
CONSOLE 
INTERRUPT 
BUnON 

I 

vt 
I 

CONSOLE 
INTERRUPT 

SERVICING SIR 
IN SKELETON I/O 

, 

IS S!SW7 
ON? 

EXIT 
VIA I/O RETURN 

Figure 57. Illustrating Logic of Console Interrupt 

YE~ 

-

ABORT 
NONPROCESS 

JOB 

Functions of Executive Programs 113 



-----------------------------
SAMPLE CODING FORM 

I I 1 I 

w,otl.r,110& 1,...~~..JS~.2LjP6 MOUI5ts, I I I I 

1 I -LLJ.-L_LLLL.LLLLu.iJ J..LLJ...tl..L .LLLLu~ . ....lI-LL.L...LJ-L.L.L...LJ-LLI -,-I .....L.JL..L...L...L.....lI.....lI __ L...LI-'--i 

I I I 1 I I I I.....L......u..LL . .LLJ.J LL....L....Ll1 LL...Ll_LLLLI .....l1....J1L..L...L...L-L....JL..L...L...L.....l....JL..L..J....1 ...1...1 -'-''--'--'--'--'-'_-'--'--'--1 

I I I L-LL.d_LLLLL1.LLJJ1_L . .Ltl.J....LL.L1_L...! . ....JIL..L.' ..l.1....l.1.....l.....L...L..l.....J......l.....LL..l.....J.....JI.......L1 .L....l.-'-L.....LI ..L..1...L.....l1 . ..JIL....-'--'--;' 

._~~L.LLL I I I I I , I 1-L..l.....J~LlLLL1.J..1..J......L-Ll.LJ......LL1-L....l . ....JIL.L1 ..l.1....l.'.....l.....LL..l.I....J.....J.....L.L.L...LJ.....L.L....l.....J.....JL.....L..L...L...L....JLL..!..-i I 

,_.LLl,1;=,3.217iw, 7i LLu I I L.....L....u~_~LLLJ JJ_LLL1..L .L.LL~~....LJ....J.... . ....l.I....L....J.....L....J.....L....J.....L....J.-1....J-'-'-'-L....L_LL.y 

_LLL~L~~ll" I-I.!,) I I L-L.J.......J~LLLLLJJ..LLJ...tl..L .LLlJ_LJ~i.LJ.....Ll-'-'-'-'-'-'-'-L....L-.L....L...l......L-'--'--'--'-. ....JL.....II-'-I 

_ill~~~,(,IJ I I I , I , ,_l....L....L...LLlL..J.......L....J LL...L...u...-'-LLL1-L....l.....L.L1....l.. . .L....J.....Jl1..J....1 ........................ -'-'--'--'--'-'--'-'-'-'-....1.1,-'1-11-11-/ 

_LLl...,G,a ,ria ,l, ...t..l..L1 I I I ' I , I ' ,.....i....JL....l....J_LLLLJJ LLLL1...L LLL.LLLLLl . ....lI_ILLI ..L..' ....l.1.....l1.......L.L.L...LJ-LL.L.....lI.....lI-'--'--'--'-'I __ ,-I..L...L I, 
,....L.L....l~lLLL...t..l..L1 , , I , ~J..L_L.LLlLLJ.....J.J....l.....Li~...L .L...l.....l.....Lu.....l...~.J....LJ.....Ll-L-'-1 ..L...l.......L..L....J.......I'......lI-'-L..LL-L....L...L . ..!.-L-'--t 

_LL~J.1'.S,£~7j ,&LIA,Ilof'.t IC\A~D.s, ~~~lL~~-Ll.....L Li....L.Lu I I I I I I , 1....LlL.....LI..l.....L.L....L....L....L.....LJ.........1I._LLLLLLL 

II.~ " ,1" '...L1...u 1" I ,1" I ,~LlL.L.L.lJ..LLJ...-L1...LL~ . ....J.'....J.I......lI....J.I....J.I....J.,....J.,....J.I....l.I....J.I.....J.1....l.1....l.....J.....l.....J.....l......J.....l......J.....l.....J....L1...L1....L.L-'--t 

~~~I I I I wAMP~~Q~&_l_dl....l..i~.L LLJ.J.LJ....JL,LL....1....LL...l.L . ..J....1 -'--'--'-'-....L....L.....L-L....L.....L-'-'-I1 ....... 1.-I1.......J1-'-I 

I I ~,l_LLL~L.LLd....LL.L...u......L L~~..L..LL..J....l . .J....1 .J....J........LI....LIL....L....L.L....L.J.......L.....l....l'.....J.IJ.....J.....Jly

L.....L..L.J......l....JL....J......L1 L.....l....J....~_~LLLlJJ.i-L...u......LLLLG_LL~.J...LU_LL! II II
L.....L..l......l....l.....JL.....LL' L.....l....J....~_LlLLLlJ...li....JLLlJ.. Ll-Ll-L....lJIL....J.....1 ...1..1-,-,-,1_1,--,-1 -,-1-'-1-'1--1-,--,-1-'-1......0.....,'--'--'--'--'-'-'-...1..1-,-1LLl

Figure 58. Illustrating Perpetual Time-Shared Nonprocess Monitor Operation

114

In industrial control systems, individual user in­
stallation requirements may vary from installation
to installation either in the hardware itself or in
dissimilarities inherent in the application. These
differences may take the form of:

• Different processes

• Special process I/O hardware

• Different input-output configurations

• Different core storage sizes

• Response time

• Throughput

• Priority considerations

This means that each installation must be defined
or tailored to the specific system function require­
ments and input-output-configuration of that instal­
lation. The tailoring function is defined as system
generation which provides the facilities for the
creation and maintenance of a monitored system
composed of IBM and user-written programs and
subroutines. The end product of system genera­
tion is a disk-resident operating system which is
custom built to provide an efficient Executive Sys­
tem for a specific machine environment.

In the IBM 1800 Time-Sharing Executive System,
the builder or "tailor" is a stand-alone monitor
program called the Temporary Assembled Skeleton
(TASK). TASK permits a system to be constructed
on one or more disk cartridges from absolute and
relocatable program decks which contain the exe­
cutable phases and the relocatable programs the
installation elects to include in its system. Further­
more, the installation may modify the IBM -supplied
configuration, delete functions not required by the
installation and add installation -created functions
and programs. The modular design and availability
of many features and attachable units make possible
numerous IBM 1800 configurations tailored to indi­
vidual application requirements.

SYSTEM DESIGN CONSIDERATIONS

System Generation

As noted above, System Genera.tion is the process
of preparing a specially-tailored operating system
to match the machine configuration and operating
system options selected by the user. In general,
two types of systems may be generated:

1. An on-line system,
2. An off-line system.

On-line System

An on-line system is one that responds continuously
to the demands of the real-time world. For ex­
ample, in industrial process control systems, a
number of rapidly changing variables must be moni­
tored, analyzed, and controlled at all times to
produce an optimum result. A TSX on-line system
implies a real-time operating system in which user­
written programs continuously monitor and control
a process operation under the command of an execu­
tive program (the System Director). The executive
provides a means of supervising the use of input­
output data and communications channels, evaluating
and interpreting data, transmitting and storing in­
formation and programs, detecting and correcting
errors, and interlacing time-sharing functions.
It also controls the system I s response to various
optional requests, giving priority to emergency
demands and postponing low-priority requests that
may require considerable time to perform. Emer­
gency actions can be scheduled at frequent intervals.
This immediate response is secured through the
medium of a powerful and flexible priority interrupt
system.

In the on-line mode, the executive also permits
the system to be time -shared (when free time is
available) by the controlled process and unrelated
nonprocess functions. This means that nonprocess
programs may be assembled, compiled, simulated,
and debugged without interfering with the on-line
process. It is the rule rather than the exception
that process control programs are subject to change,
and it is a definite advantage to be able to implement
changes at the installation without taking the system
off-line.

System Design Considerations 115

Off-line System

An off-line system is completely unrelated to the
real-time world, its main purpose being the
handling; of sequential job operations under the
control of a monitor system. A TSX off-line system,
by definition, constitutes a stack*·job nonprocess
monitor system which functions under the direction
of TASK. In this mode, nonprocess operations such
as asseJnblies, compilations, disk utility operations,
and execution of user-written programs may be
performed.

Since TASK core size is considerably less tha.n
System Skeleton core size, core storage require­
ments are less demanding for the off-line system.
Also, as the various disk save areas are not now
required, disk space is conserved. For those
users who do not plan to utilize time-sharing, a
nonprocess monitor system working lUlder TASK
gives the ability to build coreloads for an on-line
system. It is from a non-process monitor system
that an on-line system is ultimately constructed.

STAGE 1

Summary of System Generation Proceduresl

The process of generating an on-line or off-line
TSX system can be accomplished in two stages, as
illustrated in Figure 59.

In stage 1, the "starter" system (SYSGEN TASK)
initiates the system generation process and directs
the disk write address function, loading of the IBM
Nonprocess System, TASK and System Director
assembly, and definition of the disk system con­
figuration. This set of procedures is common to
both types of systems.

In stage 2, the user exercises the option, de­
pending on his application requirements, of build­
ing an on-line or off-line system cartridge,

This method of generating a completely new
executive system makes use of standard system
components such as TASK, the System Loader, the
IBM Nonprocess System, the System Director, etc.
Some of the important concepts and considerations
involved in using these components will now be
covered in some detail.

1. LOAD SYSGEN TASK AND DISK-WRITE SECTOR ADDRESS PROGRAM
TO CORE

2. WRITE SECTOR ADDRESSES

3. LOAD IBM NONPROCESS SYSTEM TO DISK

4. ASSEMBLE USER-CONFIGURATED TASK AND PUNCH TASK BINARY
OBJECT DECK

ON-LINE SYSTEM

5. ASSEMBLE USER-CONFIGURArED SYSTEM DIRECTOR AND LOAD
TO DISK

6. DEFINE DISK CONFIGURATION

OFF-LINE SYSTEM

7. ASSEMBLE/COMPILE SKELETON ROUTINES AND STORE
TO DISK

7. LOAD TASK TO DISK IN SKELETON AREA

8. BUILD SYSTEM SKELETON
8. COLD START TASK

9. BUILD PROCESS CORE LOADS

10. COLD START INITIAL MAINLINE CORE LOAD

Figure 59. System Generation Overview

116

For details of step-by-step system generation
operational procedures, the user is referred to the
System Reference Library, IBM 1800 Time-Sharing
Executive System, Operational Procedures, Form
C26-3754.

TEMPORARY ASSEMBLED SKELETON (TASK)

TASK EQUATE CARDS

Before TASK can be used to tailor a TSX system,
like the System Director, TASK itself has to be
assembled from a source deck. To do this, two
groups (Groups 1 and 2) of equate cards must be
physically placed in the TASK source deck to
define the particular system. The relationship
of the equate cards to the source deck is illustrated
in Figure 60.

The size of the assembled TASK is directly pro­
portional to the number of TASK functions the user
elects to include in his system. For example, if

II JOB

Blank Cards
(2-3 inches)

TASK Source Deck

TASK Group 1
EQUATE Cards

ABS

II END OF ALL JOBS

END STPOO

Figure 60. TASK Source Deck and TASK Equate Cards

he decides to include the complete TASK utility
package which will assist him to debug his pro­
grams prior to a skeleton build, he equates TRORG
to 1. If he decides to include CARDN in the Skele­
ton I/O, he equates CDINS to 1. If he decides to
make use of the 1053/1816 backup capability, he
equates the BD1-BD8 cards accordingly to identify
the backup printer(s) assigned.

Like the System Director, TASK can be assem­
bled with extreme flexibility so that no core is
wasted by selecting any of the numerous options
available. Furthermore, portions of the package
can be deleted. The user thus elects a configura­
tion that best matches the functions required. This
is illustrated by the example given in Figure 61

*IBM 1800 TSX SAMPLE SYSTEM TASK EQUATE CARDS
CORSZ EQu 32 OB~ECT SIZ~ IS 32K
COMSZ EQU 01000 INSKEL COMMON SIZE IS 1000 ~6RDS
DORGI EQU NOT A ONE-DRIVE SYSTEM
DORG2 EQU 0 THIS IS A TWO-DRIVE SYSTEM
PRILO EQU 01 INTERRUPT LEVEL OF DRiVE ZERO 15 01
PRILl EQU 02 INTERRUPT LEVEL OF DRivE ONE IS 02
PRIL2 EQU 00 THERE IS NO DRIVE TWO
TORG EQU SYSTEM HAS 1816 KEYBOARD
TORGI EQU MORE THAN ONE 1053/1816 GROuP I
TORG2 EQU MORE THAN TWO 1053/1816 GROUP 2
TORG3 EQU 0 SYSTEM HAS THREE 1053/1816 GROuP I
TORG4 EQu ONE 1816 KEYBOARD GROuP I
TORG5 EQU 0 NO 1816/1053 GROUP 2
TORG6 EQU OTHER THAN ONE 1053/1816 GROUP 2
TORG7 EQU OTHER THAN TWO 1053/1816 GROUP 2
TORG8 EQU 1 OTHER THAN THREE 1053/1816 GROuP 2
TORG9 EQU 0 NO 1816 KEyBOARD GROuP 2
TORGN EQU SYSTEM HAS 1816/1053 PRINTERS
BZI EQU 090 MESS UNIT SIZE FOR 1053-1 GROUP I
BZ2 EQU 090 MESS UNIT SIZE FOR 1053-2 GROuP I
BZ3 EQU
BZ4 EQU
BZ5 EQU
BZ6 EQU
BZ7 EQU
BZ8 EQU
NOCYL EQU
NUMBE EQU
NOBUF EQU
TYPLI EQU
TYPL2 EQU
INTKY EQU
PORG EQU
LVPR1 EQU
LORGI EQU
SORGI EQU
SLORG EQu
ECPTt EQU
ECPT2 EQU
ECPT3 EQU
CRDNO EQU
CDINS EQU
ORLPI EQU
ORLP2 EQU
PTSKP EQU
NULEV EQU
MKLEV EQU
CONTA EQU
PRICS EQU
TRORG EQU
TAOI EQU
TA02 EQU
TA03 EQU
ONLIN EQU
BDTI EQU
BDT2 EQU
BDT3 Eo'U
BDT4 EQU
BDT5 EQU
BDT6 EQU

090
090
090
090
090
090
20
16

04
00
15
1
05
1

1
o
07
o
o

1
16

14
o
1

DT2
DT3
DTI
DTI
DTI
DTl

MESS UNIT SIZE FOR 1053-3 GROuP I
MESS UNIT SIZE FOR 1053-4 GROuP 1
MESS UNIT SIZE FOR 1053-1 GROuP 2
MESS UNIT SIZE FOR 1053-2 GROUP 2
MESS UNIT SIZE FOR 1053-3 GROuP 2
MESS UNIT SIZE FOR 1053-4 GROuP 2
20 CYLINDERS FOR MESS BUFF
16 NONPROCESS MESS BUFF SECTORs
DISK MESSAGE BuFFERING
1053/1816 GROUP liNT LEVEL 04
1053/1816 GROUP 2 INT LEVEL 00
USER KYBD REQ RTN INT LEvEL I~
1443 PRINTER ON SYSTEM
1443 PRINTER INTERRUPT LEVEL 05
LIST PRINTER Is 1443
SYSTEM PRINTER IS 1443
CARD INEFFECTIVE SEE LORGI/SORGI
EAC PRINTER IS A 1053
EAC COMBINATION EQUATE VALUE Is 7
EAC PRINTER IS A 1053 GROUP 1
ONE 1442 ON SYSTEM
CARDN IS IN SKELETON I/O
OVERLAP ON ANALOG I/P BASIC
OVERLAP ON ANALOG I/P EXPANDER
LOOPS UNTIL READY IN NONPROCESS MODE
15 INT LEVELS IN SYSTEM
15 OR MORE INT LEVELS
LEVEL OF USER CONSOLE INT RTN IS 14
STANDARD PRECISION IS USED
TASK UTILITY PACKAGE INCLUDED
FULL TRACE INCLUDED
CHECK STOP TRACE INCLUDED
DISK DUMP INCLUDED
ALL TASK FUNCTIONS ARE USED
1053-2 GROUP I BACK-UP UNIT
1053-3 GROUP I BACK-UP UNIT
1053-1 GROUP I BACK-UP UNIT
1053-1 GROUP BACK-UP UNIT
1053-1 GROUP BACK-UP UNIT
1053-1 GROUP 1 BACK-uP UNIT

Figure 61. A Set of TASK Equate Cards for the TSX Sample System
(see Programming Techniques)

System Design Considerations 117

which depicts a set of TASK equate cards chosen
for the TSX Sample System described in Program­
ming Techniques. The significance of each of the
60 cards is clearly denoted. The majority of these
cards are self-explanatory; a few, however, call
for some explanation. These include the following:

• NOBUF

• BZ1-·8

• NOCYL

• NUMBE

• INTKY

• CONTA

• ECPT2

• CDINS

• PRIeS

• ONLIN

• COMSZ

NOBUF.:. This label indicates whether or not the
buffering of messages to disk is required. It should
be equated to zero if the user

1. Has a 16K - 32K system where very few
messages on all typewriters are printed

2. System is restricted in skeleton core space.

NOBUF should be equated to 1 if the user has a
16K - 32K system, and has adequate core space
(about 300 words) for the buffering feature in TYPEN.

BZ1-8 (Message Unit Size). If the user has adequate
core space, makes efficient use of disk space, or if
he plans to print long messages, the message unit
size should be large. If, however, core space is
restricted, but there is suffiCient disk space for a
number of sectors for the buffering of messages,
the message unit size should be small -- that is,
of the order of 20 - 40 words.

In general, increasing the buffer size results in
a more efficient use of disk space and a corresponding
less effective utilization of core storage (see Buffel::"
ing of Messages to Disk).

118

NOCYL. This should be basically equal to the
largest possible message capacity in disk cylin­
ders at any point in time.

For example, assume that all messages for a
specific system are each less than 40 words long,
and that the message unit size for all 1053 printers
is 40 words. Then, if in any 10 minute period, the
user calls for 80 messages to be printed, NOCYL
should be equated to 10. That is, an 80-sector
buffer is reserved. Note that 8 words of core
storage are reserved for every increment of NOCYL
(see Buffering of Messages to Disk).

NUMBE. This specifies what percentage of disk
message buffer can be in use by a nonprocess pro­
gram in any given moment of time. It can never
exceed NOCYL X 8.

INTKY. This specifies the interrupt level on which
the user will service the 1816 device as the result
of a keyboard request interrupt. If the user plans
to use an out-of-core interrupt servicing program
for this purpose, INTKY must be equated to an
interrupt level lower in priority than all other 1/0
interrupt levels.

CONTA. The user must specify the level to be
program-interrupted for the servicing of the Con­
sole Interrupt.

The interrupt servicing routine would then inter­
rogate the sensei data switches to determine the
course of action required by the interrupt.

One of the uses of this routine is to queue up a
mainline core load that will enable the Customer
Engineer to utilize the C. E. Interrupt facility.
(See INTKY; also Examples of NonprocesB Monitor
Usage -- Example 24.)

ECPT2. If two 1053 Printers form part of the user's
valid system, he should always define (at least) these
two printers as EAC printers for backup purposes.

CDINS. For off-line systems, this should always be
equated to 1. Note that this saves about 300 words
of variable core. For on-line systems, this should
be zero unless the user plans to include in the skele­
ton a subroutine which calls the 1442 card reader.

PRICS. The user must anticipate what type of arith­
metic precision is required in his process programs.
He should remember that once this is defined, sub­
routines used by process programs are assembled
with this same preCision.

ON LIN . If the user plans to operate (only) an off­
line disk monitor system, this should be equated
to zero. This gives the user 600 more words of
variable core.

COMSZ. This equate card specifies the size of
INSKEL COMMON. In an off-line system, this
card has no effect since INSKEL COMMON is
only present in an on-line system.

BUFFERING OF MESSAGES TO DISK

Efficient I/O handling is the most important single
factor in the effective utilization of processor time.
Input-output devices, being slow compared to the
internal speed of the processor, must be program­
med to overlap their operation with mainline compu­
tations whenever possible to

1. Greatly increase efficiency of I/O operations
2. Provide more throughput of data.

Consider the following situation. The incore
1053 Printer buffer (whose size is determined by
the TASK equate cards BZl-8) contained within the
D. P. I/O subroutine TYPEN is full, and the printer
is in the process of writing a message. If disk
buffering were provided, the next message called
would be temporarily stored on diskf and later re­
turned to core when the current message is com­
pleted. This means that the processor-controller
is not locked up and waiting for the input-output
operation to be completed, and is thus able to con­
tinue with its processing.

The significance of disk buffering is that queueing
of output messages or information can now be easily
accomplished without putting excessive loads on core
size or disk access capabilities of the system.

Without disk buffering, the system becomes
printer-limited, and might deteriorate into a 15
character per second system.

We thus see that the buffering of messages to
disk is important for two reasons:

1. It maximizes processor time. That is, it
allows computing to continue after a call to
the printer is given.

2. It frees the user from having to optimize his
message requests, thus permitting more
effective use of the device.

The interrelationship between disk message buf­
fering and total skeleton core requirements can be
shown by the following example.

Without buffering: Assume four 1053 Printers

With buffering:

Minimum message unit size
= 81 words

Total core = 324 words

Assume four 1053 Printers

Minimum message unit size
= 20 words

Add additional portion of
TYPEN = 300 words

Total core = 380 words

It is seen, in this example, that the user obtains
all the advantages of buffering at the small sacrifice
of 56 words.

Message Unit Size

The user must define the message unit size for the
1053 Printer(s) attached to his 1800 TSX System at
TASK assembly time. Theprinters may belong to
Group 1 or Group 2 on the condition that the maximum
number of 1053 Printers used does not exceed 8.

Message unit size is defined as somewhat larger
than the average size of the message or information
to be printed out. This may be within the range of
20-319 words which is dictated by the minimum and
maximum core sizes that may be speCified for a
message buffer. In practice, an optimum size may
fall between 40 and 80 words (80 to 160 characters).

Definition of the message unit size is also depen­
dent on whether messages to the 1053 Printer are to
be buffered.

If non-buffering is employed, the message must
never be greater than that defined for a message
unit. If the user plans to print out long messages
or a large number of messages; has adequate core
storage, and makes efficient use of disk space, the
message unit size should be large. Assuming
FORTRAN compilation is planned, the message unit
size should be at least 81 words (162 characters).

If buffering is preferred (because the user is
pressed for core storage, but has enough disk space
for a number of sectors for the buffering of mes­
sages), the size of a message can be any length;
that is, greater than -the size of the message unit.
The message unit size can now be defined as small
as 20 words (40 characters).

In general, a large buffer size results in a more
efficient use of disk space and a corresponding less
effective utilization of core storage.

System Design Considerations 119

Determination of Disk Buffer Size

The following guide rules may be used for deter­
mining the size of the disk buffer:

Rule 1. For random message requests, if the
user plans to print out less than 10,000
characters per hour on a single 1053
Printer, the device utilization will be less
than 20%. A large percentage of applica­
tions falls into this category. In this situ­
ation, for a single 1053 Printer, the user
will almost never require more than three
disk message buffer spaces.

Rule 2. If the user plans to print out a large number
of messages in a small interval of time
(e. g., data logging at 50 messages), he
will require a large number of disk messag1e
spaces. The length of the log determines
how big the disk buffer shall be.

The following example illustrates a representative
calculation. Assume:

1. A 10 message-unit log at the end of every 15
minutes.

2. An average of 50 operational information mes­
sage units per hour.

3. An average of 10 alarm message units per hour.
4. Message unit size for 1053 Printer (1. e., BZ1)

= 50 words.
5. Average length of messages = 30 words.

To handle a 10 message-unit log will probably
require 9 sectors; that is, assuming that all 10 mes·'·
sages are called to be typed at the same instant of
time. The reason for the 9 is because 1 message is
moved directly to the output area, the remaining 9
being bu.ffered on disk.

Let u.s further assume that the remaining 60 mes·­
sage units are randomly distributed across the hour
(that is, 10 in one 10 minute period, and perhaps none
in the nE3xt 10 minute period, etc.).

is

Then,
Number of characters typed = 60 x 30 x 2

60 x 30 x 2
Time to type these characteps=

15 x 60

4 minutes

The utilization of the 1053 Printer during the hour

--±.. = 6.67%
60

120

Therefore, the number of sectors required
for the messages sent at random is 3 (From Rule 1).

And the number of sectors required for the log
is 9 (From Rule 2). Total number of sectors re­
quired is 9 + 3 = 12 sectors.

Now, assuming more than one typewriter is used,
sum the number of sectors needed for each addi­
tional 1053 printer (computed as above). L1et the
total overall number of sectors = X.

x + 7
Then NOCYL = complete cylinders

8
(ignore remainder)

In this example, NOCYL = 12 ; 7 -= ~~ com-

plete cylinders. If three extra 1053 printers were
included to handle random message requests, then
from Rule 2, six additional sectors will be required.

12 + 6 + 7
NOCYL now becomes 8 = 3 com-

plete cylinders.

The user may also use the above guide rules to
compute nonprocess disk buffering. Assuming a
random message distribution pattern, each 1053
printer will require three sectors. Unless he has
excessive disk storage, nonprocess disk require­
ments should be kept to a bare minimum.

CALCULATING TASK CORE SIZE

1. For an off-line system, the size of TASK is
calculated as follows:

TASK FIXED AREA
+ Disk device tables
+ DISKN
+ 1053 device tables
+ 1816 device tables
+ TYPEN
+ 1053-1443 Timing ResponsEl Routine
+ 1443 device table
+ PRNTN
+ Constants, work areas, etc.
+ CARDN (always included)
+ TASK Program Set

Where

T ASK Program Set = 1690 + 8 X N + 653 X ONLIN

+ 200 X TRORG
+ 221 X T A01 X TRORG
+ 358 X T A02 X TRORG

+ 162 X TA03 X TRORG
+ 20 X MKLEV
+ 110 X DORG1

THE IBM NONPROCESS SYSTEM

TRORG, ONUN, TAOl-3, DORG1, and MKLEV
are TASK equate cards.

The IBM Nonprocess System is a nonprocess system
deck which constitutes the major portion of the TSX
system. It is composed of control programs and a
complete package of IBM relocatable subroutines
necessary for the proper execution of the TSX sys­
tern. A breakdown and brief description of each of

The remaining parameters have already been
given in the calculati~n for Skeleton I/O: see
System Design Considerations: System Director.

Once the system is built, the starting address
of variable core is found at word 66 hexadecimal
(102 decimal) of the Fixed Area. The label of
this location is $VCOR. For an on-line system,
the start address of variable core is equal to
VCORE.

its component parts in the order in which it is sup­
plied and loaded to disk follows below (see Figure 62).

*DEDIT CONTROL
CARD FILLED IN

Cold Start Cards. The on-line or off-line system is
brought into operation by three cold start cards (two
Cold Start and one Name Card) which initiate the
Cold Start program. A cold start requires that a

OTHER UTILITIES

BY USER~~~=~~~~_,

COLD START CARDS

DISK

RESIDENT

PROGRAMS

Figure 62. The IBM Nonprocess System

NOTE: DISK RESIDENT
PROGRAMS COMPRISE THE
FOLLOWING:

LET
DCOM

BOOTSTRAP LOADER
NONPROCESS SUPERVISOR
CORE LOAD BUILDER
COLD START PROGRAM
DISK UTILITIES
ASSEMBLER
FORTRAN COMPILER
SIMULATOR
ERROR PROGRAMS
IBM TSXSUBROUTINE LIBRARY

System Design Considerations 121

minimum of one core load be resident in the core
load area on disk for execution. The name of the
initial core load as well as the logical assignments
of the physical disk drives are obtained from the
Name Card.

System Generation (SYSGEN) TASK and Loader
Cards. SYSGEN TASK is the "starter" system
which contains the basic minimum components for
initial system generation. It is loaded to memory
by a four-card TASK High Core Loader.

System Loader. The System Loader performs
three essential functions at system generation
time: It 1) loads the IBM Nonprocess System to
disk drive zero and file-protects this disk drive
from sector 0 to the start of Nonprocess Work
Storage, 2) builds the Assignment (AT) and Input­
Output Unit (lOUT) Tables and stores them on disk
and 3) edits the disk and the Disk Communications
Area with a standard layout as a base for TSX non­
process programs. It is also used for reload pur­
poses and to make partial modification, if any, to
the TSX system.

Disk LET /FLET Tables. LET (Location Equivalence
Table) serves as a disk map for system programs,
subroutines, and relocatable programs. It contain:,
the name of each function and its size (that is, disk
block count, where 1 disk block = 20 words). Each
entry point in a subroutine has an entry in the LET
table. As the user stores his own relocatable pro­
grams on the disk, entries for these programs are
also made in LET.

FLET (Fixed Location Equivalence Table) is a
map of core loads and data stored in the Process
Core Image Storage (or Core Load) Area, and the
Save Areas on disk.

Disk Communications Area (DCOM). DCOM is used
by all nonprocess system programs and is stored on
logical disk drive zero at sector 00000. It is essen­
tially a disk communications map of vital informaUon
needed by nonprocess system programs. Some
words within DCOM are used by process programs
such as Cold Start.

This area is brought into core each time a / / JOB
is read; certain words are then initialized to reflect
the current status of the disk as depicted by the LET /
FLET tables. Whenever a / / END or / / XEQ card
is encountered, DCOM is written back to disk.

Bootstrap for Nonprocess Supervisor. This is a
relocatable program that can be located anywhere in

122

core for anyone system. When VCORE (the start
address of variable core) is established, its entry
point in variable core is fixed. The bootstrap
serves as a linkage between the System Dh'ector
or TASK, and the Nonprocess Supervisor. It is
updated during system generation by TASK, the
System Loader, and the Skeleton Builder program.
It always resides on sectors 1 and 2 of log:ical disk
drive zero.

Nonprocess Supervisor (SUP). This program directs
all nonprocess monitor operations. It decodes the
monitor control records in the stacked input for non­
process jobs, and calls the appropriate monitor
program (Assembler, FORTRAN Compiler, Simu­
lator, etc.) to perform the desired operatton. The
supervisor provides continuous processor·-controller
operation during a sequence of jobs that might other­
wise involve several independent programming sys­
tems. It also supervises the transfer of control
between monitor and user programs.

Core Load Builder (CLB). This program constructs
mainline nonprocess and interrupt core loads from
user-written programs. Using data contained in
control records and in the program itself, the Core
Load Builder combines the mainline program, re­
quired subroutines, generated work area tables and
transfer vectors into an executable core load.

Cold Start Program (CLST). This program initiates
the TSX system into operation. In an on-lline sys­
tem, it loads the System Skeleton to core and trans­
fers control to the System Director. In a:11 off-line
system, TASK is loaded to core, and cont.rol trans­
ferred to the first executable instruction within
TASK.

Disk Utility Program (DUP). DUP is a set of rou­
tines designed to aid the user in performing the
functions of disk maintenance. That is, it has the
capabilities of storing, deleting, and outputting user
programs, defining system and machine parameters,
and also of maintaining communications areas. DUP
also automatically updates the LET /FLET tables to
reflect all changes to the disk. It is called into
memory by the Nonprocess Supervisor.

Assembler (ASM). The Assembler is a disk-oriented
symbolic assembly program that translates programs
written in symbolic language into machine language.
Basically, it is a one-for-one type assernbly pro­
gram. Provision is also included for the user to
easily make use of input-output, conversion, and

arithmetic subroutines that form a part of the sub­
routine library.

FORTRAN Compiler (FOR). This is a disk-oriented
program that translates programs written in the
FORTRAN language into machine language, and
automatically provides for the calling of the appro­
priate arithmetic, functional, conversion, and input­
output subroutines.

Simulator (SIM). The Simulator provides the user
with the means for testing and debugging programs
without disruption to the on-line process.

Error Programs. This is a collection of error
subroutines called by the TSX Error Alert Control
(EAC) program. EAC is executed when an internal
or TSX detected error occurs.

Subroutine Library. The Subroutine Library is a
package of IBM TSX and user-written subroutines
resident in the relocatable subroutine area of disk.
IBM TSX subroutines include: Real-time subrou­
tines, Arithmetic and Functional subroutines, Con­
version subroutines, FORTRAN I/O subroutines,
and DP I/O subroutines.

Skeleton· Builder. The Skeleton Builder uses tables
constructed by the System Loader, user-assigned
control records, and user-specified programs and
subroutines to build the System Skeleton. The Sys­
tem Skeleton constitutes that portion of the system
that remains in core during the execution of a TSX
on-line system.

Stand-alone Utilities. These are optional utility
routines which can only be loaded and executed under
the control of TASK (in an off-line TSX system).
The five utilities are: TASK Card to Disk, TASK
Disk to Card, TASK Disk Patch, TASK Disk Dupli­
cation, and TASK Disk Loader.

System Director. This is the nucleus of the System
Skeleton. It maintains control over the on-line
process application by servicing all interrupts,
handling error conditions, providing timer control
over the process, and process program sequencing.
The System Director is supplied as a source deck.

TASK. TASK is a "builder" operating system which
controls the system generation process, and provides
for the definition of the TSX system according to user
specifications. It is supplied in source format.

Note that control programs are supplied assem­
bled in absolute format; subroutines, in relocatable
format. The System Director and TASK are the
only exceptions: they are supplied as source decks.

In its original form, the IBM Nonprocess System
does not contain those parameters which define and
differentiate a system currently under construction
from another, and is therefore unsatisfactory for
direct use by a customer installation. Variability
of interconnection of input-output devices is, how­
ever, permitted at the hardware level, and it is
these variations which need to be communicated to
the I/O subroutines if correct and intended operation
is to be realized.

This communication is accomplished through the
medium of the System Loader which accepts as in­
put a statement of the system configuration (including
the correlation between external device and inter­
rupt identification, and internal hardware-sensed
codes) and the IBM Nonprocess System master deck.
To ready the IBM Nonprocess System for system
loading, data from assignment cards is integrated
into the master deck.

SYSTEM LOADER OPERATION

The System Loader assumes at system load time
that only one disk drive (logical disk drive 0) is
present on the system. After the IBM Nonprocess
System is loaded, the user has the option of reloca­
ting certain disk areas (such as the Core Load Area,
Process Work Storage, etc.) to an auxiliary disk
drive or drives. This and other aspects of disk
organization are discussed in System Design Con­
siderations: Disk System Configuration.

Three essential functions are accomplished
during a system load operation. These are:

• Loading the IBM Nonprocess System, including
the subroutine library, to disk

• Building various TSX operating tables

• Editing the disk layout

Loading the IBM Nonprocess System

A typical sequence in which the input programs
are loaded by the System Loader is given in Fig­
ure 63.

System Design Considerations 123

CCM:3t1,m //SYSTEM
*ASS I GNM

9 11 13 15 17

L 0 A 0 E R

E N T

}

Assignment
Cards

* C C E N 0 A S S I G N M E N T

* L 0 0 S K L E T

* L 0 0 S K 0 C 0 M

* L D 0 S K S U P

* L D 0 S K C L B

* L D 0 S K / C L S T

* L D 0 S K 0 U P

* L D 0 S K A S M

* L D 0 S K F 0 R

* L D 0 S K S I M

* L D 0 S K E P R G

* C C E N 0 S Y S T E M

* L D D S K S B R T

/ / .' s Y D I R

* C C E N 0 S B R T

* D E D I T K C Y L

Figure 63.. Sequence of Control Cards at System Load Time

:Each program in the IBM Nonprocess System is
preceded by an *LDDSK Control card which is read
and analyzed by the System Loader. As a single
sector at a time of a program is accepted, the ap­
propriate sector address to which it is written on
disk is determined by the first two words following
a sector break record. A sector break record is a
header record which serves two purposes:

• Enables the System Loader to establish a new
disk sector either at a relative or absolute
sector address

• Indicates if the phase of a program being read
in involves either a principal I/O device or a
principal print device, and, if any, which one.

:Each phase within a program contains one sector
break record. For example, since the FORTRAN
Compiler is made up of 27 phases, it has 27 sector
break cards. Sector break records are supplied
in binary format (see IBM 1800 Time-Sharing Execu­
tive System, Ope.rating Procedures, Form C26-
3754. A separate discussion of sector break records
is given at the conclusion of this section).

124

As each program is loaded to disk, an entry in
the respective LET /FLET tables is updated accord­
ingly. Note that the relocatable subroutine library
may include user-written subroutines provided they
are assembled/compiled by the TSX Assembler/
FORTRAN Compiler. During the System Load
stage, an error program within the System Loader
ensures proper handling of error situations. Fig­
ure 64 reflects the layout of the IBM Nonprocess
System on logical disk drive 0 after a system load
operation.

Building the TSX Operating Tables

After the assignment cards have been read, two
tables are built: 1) the ASSignment Table, 2) the
I/O Unit Table.

The input to the table-building phase are the
assignment cards which are prepared by the user
and merged with the IBM Nonprocess System.

DCOM

MBT-AT

SKSUB

CLB

DUP

ASM

FOR

SIM

LET/FLET

IBM SUBROUTINE
LIBRARY

NONPROCESS
'" w WORK

STORAGE

MESSAGE BUFFER

ERROR PROGRAMS

CLST

-"
I"

FILE
PROTECTED

LET
ENTRIES

-- - 1 FLET

FILE ENTR IES

___ P~Oj~E~ __ j
Figure 64. Disk Drive 0 after a System Load Operation

The Assignment Table (AT) serves to inform the
Skeleton Builder (at Skeleton build time) which
I/O device or PISW is assigned to a specific ILSW
bit on a specific interrupt level. A 16-bit (lAC)
code entry is furnished for each ILSW bit, which
the Skeleton Builder later replaces by a branch ad­
dress to transform it into the Master Branch Table
(MBT). The (AT) table is stored on disk in reverse
sequence; that is, level zero in highest location,
etc. The number of AT entries and I/O interrupts
are counted during the table build process and stored
in sector 1 of logical drive zero.

The I/O Unit Table is constructed from the logi­
cal unit number (LUN) and/or its associated inter­
rupt assignment code (lAC). The table is 44 words
in length and is built in descending sequence; a
maximum of 19 entries is allowed. The IOU Table
is stored in the last 87 words of sector 2.

Editing the Disk Layout

The disk editing phase is entered after all absolute
(or core image) and relocatable programs have been
stored on disk, and the *DEDIT control card has
been read.

The editing function initiates the disk and disk
communications area with a standard layout as a
base for TSX nonprocess programs. It uses LET /
FLET and DCOM as communications areas.

In order to fix the boundaries of the various disk
areas, certain information is required:

• Size of core of the Object Machine. This should
be specified on the *DEDIT control card; other­
wise, the source core size is construed as object
core size.

• Size of Message Buffer. Note that the only area
definition made by the user before the IBM Non­
process System is loaded is the length of the
message buffer. This must be specified on the
*DEDIT control card and should correspond to
NOCYL (TASK equate card) at TASK assembly
time. The calculation of message buffer size
is discussed at some length in the section System
Design Considerations: TASK.

• Size of IBM Nonprocess System areas. These
are made known to the System Loader after the
system is loaded to disk.

Note that the boundaries of the following areas:

Nonprocess Save Area
Process Save Area
Special Save Area

depend on the estimated size of the System Skele­
ton (see System Design Considerations: Disk Sys­
tem Configuration).

LET /FLET Entries. Fixed entries, derived from
control cards, exist in LET for the following:

Disk Communications Area (DCOM)
Master Branch Table/Assignment Table (MBT / AT)
Skeleton Subroutine Map (SK-SUB)
Nonprocess Supervisor (SUP)
Core Load Builder (CLB)
Disk Utility Program (DUP)
Assembler (ASM)
FORTRAN Compiler (FOR)
Simulator (SIM)

An entry for each subroutine is made while it
is being loaded.

FLET entries, .on the other hand, are made
from computed and assumed sizes for the following:

Cold Start
Error Programs
Message Buffer

After these FLET entries have been made, the
. E entry of LET is updated to reflect the boundaries
of the Nonprocess Work Storage for the remaining
disk space available.

DCOM Entries. The first sector address of each
of the following areas are entered in DCOM:

Nonprocess Supervisor (SUP)
Disk Utility Program (DUP)
Assembler (ASM)
FORTRAN Compiler (FOR)
Simulator (SIM)
Location and Fixed Location Equivalence

Tables (LET/FLET)
Nonprocess Work Storage (NPWS)

System Design Considerations 125

FUNCTION OF THE * ASSIGNMENT CARDS

The assignment card serves to assign the various
I/O devices and machine functions to a particular
interrupt level and bit. Assignments are in the
form of interrupt assignment codes (lAC) which are
fixed for each device, and logical unit numbers
(LUN) which are selected by the user for linkage
to user-written FORTRAN programs.

Through the assignment card, the user

1. Assigns lAC codes to the various interrupt
levels and ILSW bits (within the level used
on the system).

2. Assigns LUN numbers as they are used in
user-written FORTRAN programs, to certain
data processing input-output (DP I/O) devices
by equating them to corresponding lAC codes.

Interrupt assignment codes uniquely define all
process interrupts, I/O devices, console interrupts,
and interval timers. They are fixed and may not be
changed by the user. Their values range from 00
through 63.

Logical unit numbers on the other hand are used
to identilfy DP I/O devices in user-written FORTRAN
programs, and are specified by the user at system
load time. The LUN's are entered into the I/O
Unit Table to permit communication of FORTRAN
programs with FORTRAN I/O at object time. Once
fixed, they cannot be changed without repeating the
Assignment Table building phase of the System
Loader and Skeleton rebuild under certain conditions,
as well as the recompilation of every user-written
FORTRAN program utilizing DP I/o devices
affected.

A maximum of 19 different L UN's is possible on
a TSX system with a full complement of I/O devices.
LUN values range from 01 through 44. Note that
no LUN may be assigned to more than one particular
device. In a minimum (8K) TSX system, it is ad­
visable, for purposes of space conservation, to use
the lowest LUN numbers first, since the System
Loader will build a table providing space for all
LUN's up to the largest number assigned. Keeping
LUN numbers small, therefore, conserves core
storage. The reader should refer to IBM 1800
Time-Sharing Executive System, Operating Pro­
cedure~ Form C26-3754 for details of assignment
card formats and operational procedures.

Examples of the Use of LUN Numbers/lAC Codes.

Consider the following assignment cards:

126

EXAMPLE 1.

"'131 1"'161 IrDI11 /14111 ,1f61 2 1, 13 17 1/1¢111, 1(D1 5 h 131:51, 1~181

Level 3 contains 6 ILSW bits. lAC 01 repre­
sents an 1816/1053 printer which has a Lill'iJ" of 41
assigned to it, while lAC 02, representing a 1442
card/read punch, has the same LUN as its lAC;
that is, it requires no L UN entry. The cornbination
37/01 represents another printer to which a LUN of
01 is assigned by the user; lAC 05 represents a
1627 plotter unit with the same LUN number as its
lAC code (that is, 05). lAC 33 represents a process
interrupt. lAC 08 represents a 2310 disk drive
which has no assignable L UN number.

EXAMPLE 2.

The 1816 keyboard on group 2 has a Lill'iJ" of 1
while the second magnetiC tape drive has a L W of 9.

EXAMPLE 3.

I ISYS TEMLOADER
*ASSIGNMENT
00 02 33,00
01 04 33,04,08,09
02 02 33,14
03 05 33,01,36,37,38
04 03 33,34,35
05 05 33,10,16,11,12
06 02 33,06/03
07 02 33,02
08 03 33,32,05/07
09 01 33
10 01 33
11 01 33
*CCEND ASSIGNMENT

DE V ICE LEV

PISW 00
TIMERS 00
PISW 01
DISK-1 01
DISK-2 01
DISK-3 01
PISW 02
MAGT-1 02
PISW 03
TYP1G1 03
TYP2G1 03
TYP3G1 03
TYP4G1 03
PISW 04
COMP-1 04
COMP-2 04
PISW 05
ADC-1 05
ADC-2 05
DINP 05
DAOP 05
PISW 06
PRNT-1 06
PISW 07
CARD-1 07
PISW 08
CON SOL 08
PLOT-1 08
PISW 09
PISW 10
PISW 11

BIT

00
01
00
01
02
03
00
01
00
01
02
03
04
00
01
02
00
01
02
03
04
00
01
00
01
00
01
02
00
00
00

lAC LUN

33
00
33
04
08
09
33
14 14
33
01 01
36 36
37 37
38 38
33
34
35
33
10
16
11
12
33
06 03
33
02 02
33
32
05 07
33
33
33

YOU DEFINED 000018 liD DEVICES
AND A TOTAL OF 000031 ILSW BITS

This illustrates an example of user assignment
of I/O devices and process interrupts to 12 levels
of interrupts defined in a sample machine configu­
ration given in System Design Considerations: Sys­
tem Director.

Note that only two I/O devices have been assigned
LUN numbers:

1627 Plotter (lAC
1443 Printer (lAC

05)
06)

07
03

The remaining devices use their lAC codes (a
user option) as LUN's. Note also that process
interrupts and certain DP I/O devices have no
assignable LUN's. The map correlates each
process interrupt or device with its level, bit,
lAC code, and LUN (if any).

Note that IAC/LUN groups may contain either
the lAC code alone or a combination of the lAC
code and the LUN as assigned by the user to that
lAC (and separated by a slash). When the LUN
number is omitted, it means that either no LUN
is defined (that is, not assignable) or that the Sys­
tem Loader considers the L UN to be identical to
the lAC code. The user has the option of assigning
the value of the corresponding lAC code to the LUN
for a particular device.

Devices with no Interrupt-entry on any Level

The 1816 Keyboard units on printer groups 1 and 2
and the second Magnetic Tape drive have no separate
defined interrupts, their interrupts being the same
as that of the first 1816/1053 printer and first mag­
netic tape drive respectively. However, a LUN has
to be assigned to them whenever they are used in
connection with FORTRAN programs. In these
three special cases, a dummy interrupt level number
99 is defined, followed by a standard format entry
for bit count and lAC code. The dummy level 99
can be omitted should all three possible devices have
a LUN identical to their lAC code.

THE *DEDIT CONTROL CARD

The *DEDIT Control card starts the disk editing
phase: that is, it starts the function of editing the
layout of the disk during which time the System
Loader uses LET/FLET and DCOM as communi­
cations areas. Some of the activities carried out

during this phase include (see Editing the Disk
Layout):

1. Initialization of the FLET area on disk
2. Calculation of the source core size
3. Entry of the object core size into the disk

communications area (DCOM)
4. Entry of message buffer size in cylinders

into DCOM
5. File protection of the IBM Nonprocess System

Parameters

Two important parameters must be specified by
the user:

1. Size of core of the obj ect machine
2. Size of message buffer size

The calculation of the core size of the source
machine (that is, the machine on which the IBM
Nonprocess System is loaded) is achieved by
TASK and the result is stored in the Fixed Area
in core. The System Loader then places this result
in DCOM. The user may exercise the option to de­
fine a different core size for the object machine
(that is, the machine on which the TSX system is
executed). This will also be stored in DCOM. If
the object core size is not specified on the *DEDIT
card, the source core size will serve as object
core size.

As noted earlier, the only area definition made
by the user before the IBM Nonprocess System is
loaded is the definition of the length of the disk
message buffer. This is specified in cylinders in
the *DEDIT card and must equal NOCYL (TASK
equate card). The calculation of the size of the
message buffer is discussed in detail in System
Design Considerations: TASK.

An example of the use of the *DEDIT card is
given below:

*DEDIT 16K 011CYL

THE SOURCE CORE-SIZE IS 016384
THE OBJECT CORE-SIZE IS 016384

The *DEDIT control card is the last card recog­
nized by the System Loader.

System Design Considerations 127

Reentering the Disk Edit Phase

The disk editing function permits a reentry by the
user after the IBM N onprocess System is loaded
and control returned to SYSTEM TASK. This may
be needed for:

1. Rebuilding the FLET table.
2. Changing the Message Buffer Size.
3. Changing Object Core Size.
4. Changing the assignment of LUN numbers, such

as, for example, if an error was made in the
user-assignment of an lAC or a LUN.

SUMMARY OF ASSIGNMENT CARD RESTRICTIONS

Assignment designation is governed by the following
rules:

1. A separate assignment card is used for each
interrupt level. Assignment cards may be
in any order of interrupt level number.

2. The number of IAC/LUN codes specified per
level must be equal to the number of interrupt
level status word (ILSW) bits used.

3. Only the lAC code 33 (for process interrupts)
may be used more than once. In the case of
LUN numbers, the same LUN cannot be assigned
to more than one device, nor can a device have
more than one LUN assigned to it.

4. For lAC codes 42, 43, and 44, a dummy inter­
rupt level entry of 99 must be specified. These
refer to the 1816 keyboards on printer groups
1 and 2 and the second magnetic tape drive.

5. For RPQ devices, lAC codes 20 - 31 and 45 -
6~~ may be used. In any TSX system, lAC
codes 00, 02, 04, and 32 must be used; 01 or
O() must also be used.

6. If more than one group of process interrupts
are assigned to a particular level, the second
group must be treated as an RPQ device, given
an RPQ lAC code and a user-written ISS sub­
routine to accommodate this device. The sub­
routine will indicate to the System Loader whi.ch
lAC code it responds to; it will have to be co:re­
resident at all times.

SECTOR BREAK RECORDS FOR ABSOLUTE
PROGRAMS

Absolute programs are generated by an absolute 1800
assembly and are loaded by the System loader, one

128

record at a time (taking into account all data breaks
and origin changes), to disk in true Core-Image
Format. That is, each program resides on disk
in exactly the same format in which it will reside
in core storage. Core-Image Format is also
called Data Format because a program thus stored
on disk can be transferred to core by a single call
(to DISKN) without any data manipulation. All IBM
system programs (e. g., Assembler, FORTRAN
Compiler, Simulator) are stored in this format.

However, it is from a header or sector break
record that the absolute loader portion of the Sys­
tem Loader determines the sector addres:s at which
succeeding data is to be stored. The sector within
which the data is to be stored is first read into
core, one word of data at a time, until that sector
in core is completed. When full, the 320··word
sector buffer is written to disk and the next sector
break record is read to locate the next sector to
be written.

Four types of Sector Break Records are used by
the System Loader:

Type 1
Type 2
Type 9
Type E

Note that Type F cards are "trailer" or "trans­
fer" cards which occur at the end of a binary deck.
The format of each card is in the IBM 1800 Time­
Sharing Executive System, Operating Procedures,
Form C26-3754.

From each type of sector break record, the
System Loader interprets the sector address as
follows:

Type 1: As an absolute address.
Type 2: As a displacement from the last sector

loaded.
Type 9: As a displacement from the last abso­

lutely defined sector address (that is,
defined by a Type 1 sector break record

Type E is a special sector break record type
used only by the Simulator subroutine package. It
is treated by the System Loader like a Type 1, ex­
cept that it causes data to be streamed to the disk
contiguously, ignoring data breaks brought about
by BSS' S; or by an ORG to the same location as
the data card immediately following the Type E
record.

The Type 1 sector break record is generated by
an ABS statement in an absolute assembly; Type 9

or Type E records must be inserted manually in
the object deck by the user. Type 2 sector break
records are generated during 1) assembly of
mainline-type programs without an ABS statement,
and 2) FORTRAN compilation of mainline pro­
grams.

The sector address on disk to which the System
Loader begins writing the program is defined in the
second word of the program following the ABS and
first ORG statements. The first word may contain
any value; no word count is required. An example
is given below:

The first DC is at location /0538, the second
at /0539. The System Loader will start to load at
sector /0100. The first word of the sector is at
/053A -- the content of /0538 is not loaded to disk
since it does not constitute an integral part of the
program. If this program was later called from
the disk, the word count and sector address would
be specified by the AREA (portion) of the disk call
required at /0538 for proper execution.

If the first two words of the program are followed
by another ORG statement, as shown below, the
program will be placed in a location on disk reflec­
ting a displacement from the address defined by the
first ORG.

SAMPLE CODING FORM

II'II"'II"·"I""I'I"I",,I~

The program will be loaded starting at position
15 of sector /0100, leaving positions 0 through 14
at whatever value they previously had on disk. The
displacement D could have any value -- thus skip­
ping over several sectors.

Note, however, that D cannot have a negative
value. This is a necessary requirement of the TSX
system which is designed such that it is impossible
to inadvertently destroy a program residing on pre­
ceding sectors by back-origining. Thus, the lowest
origin in the program is required to be immediately
after the ABS statement. As shown below, this
constitutes, in no way, a system limitation. Note
that normal back origins, as they occur in every
program, are perfectly legal.

I I I" I I I, LLLL1

System Design Considerations 129

The program will be correctly located on disk
reflecting exactly the layout in core.

The following example illustrates an ERROR
STOP (System Loader error message - L05)
situation.

, , dlal6,3,8, I, , , I II I ~.LLl.u. I I I I I I ili.LJ.-LJ

~_LL.L.L~I II I , JltpJJh~, l.J....L.J. I I I I I I I, I , , I I I __ LLL_LLL.LLLl_L.

~~L~~LLLI I I , I I I I I Ik .. LLJ..-LU...J..J __ LJ..-LLLLLLL

... ~~u .. i..LL.LL1 I I I I I, I I I I, I~ I , 1 I I I I I I I I I i
'...w...J...J.J .. tMB', 1 I I , ,/I(>If.J...£...1 I I I I IT,IM§, llis, 1#'017; IA,ll£.IO,It!£,&.L...L..LJ.J

... ~, II I I I I '..L....LL..I I I , I II 1..L.J.....Lu.~ , I 1 , 11 . .L..L .. LL.L..i

.. ~~~II' III I I II 1~....L..L.1..u~..l....t...L....LLL...

This is clearly illegal because whatever program
that was residing on sector /OOFF would be de­
stroyed.

The final example below illustrates Type E sector
break record fWlCtioning:

SAMPLE CODING FORM

ill I I I ,A,8IS, I I I I I I I I I , I I IL~J

I I I I I I pIR,~ I I ~~aLl.J...LL..L~ .. LLLJ

1 I I I I i PIC I I II I , 101 1....L..J.-LL.L.L.L..i..Ll......L,J

L...L...L...L..L...L...L..L. . .LLL..!.-..L.L.I ..L..I ..J....I ..J....I ..L..1 ..J::P:.J..:IC~I ..J....I ..J....i..J....' ~bfi~LL.LLL1.L.!.....L'-'
.J...-'-.......... .J...-'--'--'-~ I...J...I...L..I...J..., ...J...I·-'-I I-'-I I ~_Lu .. l.LL.J....LlL..L..L_

I ! ! , I ! ,., , I, ! I ! I I! ! I I I I LLlLL.LL.
_L_L' , I I ! I I I .. 1-1-1-) !, I , ! ! ,., I I I ~ ! ! , I I I I I I I I ! tJ

.~.LL~..L.....L....L.....L..~~I...L.., , ,...L..I~,O~8~&=, I ,~38I I I I I I I LLLJ
.. Lu , I I , I I I I I I I I" I 1 PIC, , i I I I ,¢J I , I , 1 I I .~L.L...L~

.L.LL.LL.L..~J __ LLLt.l.LL.L1 "" 1 ,qc, , 1 I ~~.LLL..LL.L...L ~

130

... ~~.L.J...i.LL.L1 I, , I, I , '·1 , I,~...J._.L~~~

.LL~L.L.J....L .. LL.L..I I , , I , I , ,', , I , , I I I , I , I I , I I , 1 LL.LLl

J __ L...L.~L~.J....L..L.I I , I I , I , 1'1 , I , I I Ii, I I ~.~L.L...L..J

If this sequence is preceded by a Type 1 or
Type 9 sector break record, the data up to the
second ORG would not appear on disk, but would be
overlaid by the second sequence. If, howev€lr, the
sequence is preceded by a Type E card, all the
data would appear on disk, and the data following
the second ORG statement would immediately follow
the first with no sector break being forced.

SYSTEM DffiECTOR

When the IBM Nonprocess System is loaded, aSSign­
ment cards supply the System Loader with data which
relate to the interrupt level allocation of I/o units,
process interrupts, interval timers, etc. That is,
they provide a statement of the system and interrupt
configurations.

At System Director assembly time, the System
Director must also be tailored to meet the exact
requirements set by the user. These requirements
include:

1. Definition of the size of the System Dir,ector
2. Definition of functions required
3. The allocation of internal and external inter­

rupt levels
4. The number of CALL Count routines to be

included by the user

Since the System Director must be assembled and
stored on disk before the TSX System Skeleton can
be built, some means must be employed to make the
System Director aware of these requirements. To
achieve this, a set of System Director EQUATE
cards (provided pre-punched by IBM) is prepared
by the user and physically placed in the System
Director source deck. The resulting integrated
deck is then assembled under the control of an off­
line nonprocess monitor. Figure 65 depicts the
physical relationship of the EQUATE cards to the
System Director Source Deck.

Figure 66 illustrates an example of a complete
set of System Director EQUATE cards. In terms
of definition requirements, the set can be broken
down into convenient subsets as follows:

/ / (II END OF ALL JOBS

F-------_..' ~ _.L..(/_I_JO_B ___ --......
Blank Cords ,-

(2 inches) ·STORE SYDIR

/ ,.. IIDUP
'------- (rL---

EN
-

D
----- ~

(

(

/ /~~ f--------..;V (
System Director
SOURCE Deck

·PRINT SYMBOL TABLE

('PUNCH I---

(*SYSTEM SYMBOL TABLE

(*LlST

(*OVERFLOW SECTORS 32

(II ASM SYDIR

(II JOB

END*

;-1-----1 f-'

(
System Director
EQUATE Cords

ABS

(*SAVE SYMBOL TABLE

('LIST

{II ASM SDEQU

II JOB

Figure 65.. System Director Source Deck and EQUATE Cards

a) Size of System Director

b) Functions required
(Interval Timet Control,
Time-Sharing, Opera­
tions Monitor, and
Error Alert Control
(EAC) DUMP)

c) Allocation of internal
and external interrupt
levels

VCORE, NUQUE;
also a function of b),
c), and d)

ITCUS, TBASE,
CBASE, TIMEl-2,
TISHA; TIMES;
OPMOI and DUMP1

NULEV, USEOO-23,
NBOO-23, NILOO-23,
NLWSl-2, and
ICLLl-2

d) Number of CALL Count NITPl-2
routines required by user

SIZE OF SYSTEM DffiECTOR

Since the System Director is a component part of the
System Skeleton, it must be core-resident at all
times in an on-line system in order to respond to
the real-time world. Its required core size will,
however, vary according to the user's machine con­
figuration, process requirements, and other options.

For example, if the user specifies when the sys­
tem is assembled that time-sharing is to be used,
the Time-Sharing Control (TSC) program will be
included in core. If he has no use for time-sharing,
TSC may be eliminated.

Similarly, if the user specifies that interval
timers are not used, the Interval Timer Control
(ITC) program as well as TSC may be eliminated.
It is a rule, however, that ITC must be in core if
time-sharing is utilized. The Program Sequence
Control (PSC), Error Alert Control (EAC), and
Master Interrupt Control (MIC) programs must
always be used, but each is variable in size accord­
ing to the number of interrupt levels elected.

In addition, a work area is associated with each
interrupt level; for example, if the user elects 12
levels of interrupts, 12 work areas are required;
if he elects 24 levels, the System Director will re­
quire 24 work areas. Three other additional work
areas are included: one each for Error, Mainline,
and Nonprocess.

System Design Considerations 131

NULEV EOU
USEOO EOU
USEOI EOU
USE02 EOU
USE03 EOU
USE04 EOU
USE05 EOU
USE06 EOl!
USE07 EOU
USE08 EOU
USE09 EOU
USEIO EOU
USEII EOU
USEI2 EOL!
USEI3 EOU
USEI4 EOl!
USEI5 EOU
USEI6 EOU
USEI7 EOU
USEl8 EOU
USEI9 EOU
USE20 EOU
USE21 EOU
USE22 EOU
USE23 EOU
NBOO EOU
NBOI EOU
NB02 EQl!
NB03 EOU
NB04 EOU
NBOS EOU
NB06 EOU
NB07 EOl!
NB08 EOU
NB09 EQU
NB10 EOU
NBII EOU
NB12 EQU
NBI3 EQl!
NBI4 EOU
NBI5 EOU
NBI6 EOU
NBI7 EQU
NBI8 EQU
NBI9 EOU
NB20 EOU
NB21 EQU
NB22 EOU
NB23 EOU
NILOO EOU
NILOI EOU
NIL02 EQU
NIL03 EOU
NIL04 EOL)
NIL05 EQl)
NIL06 EQl)
NIL07 EOU
NIL08 EQl)
NIL09 EOt)
NILlO EQU
NILll EOlJ
NILl2 EQl)
NILl3 EQt)
NILl4 EOU
NILI5 EOU
NIL 16 EOlJ
NILI7 EOU
NILl8 EOU
NILI9 EOU
NIL20 EQU
NIL21 EOU
NIL22 EQU
NIL23 EOU
NLWSI EOU
NLWS2 EQU
NITPI EOU
NITP2 EQU
ICLLI EQU
lCLL2 EQU
1 TCUS EQIJ
TBASE EQIJ
CBASE EOIJ
TIMEI EOIJ
TIME2 EQIJ
VCORE EQIJ
NUQUE EQIJ
DUMPl EOIJ
OPMOI EQU
TISHA EQU
TIMES EQU

12

o
o
o
o
o
o
o
o
o
o
o
o
2
4

2

3
5
S
2
2
3

o
o
o
o
o
o
a
o
o
a
o
o
1
5
9
13

5
9
13
I
16
16
16
o
o
o
o
o
o
o
o
o
o
o
a
12
o
16
8
/007F
/FFFF
I
-500

/0000
/07DO
10000
50
I

I
32767
I

NUMBER OF LEVELS USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USFD
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED

O-NOT USED
9-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT uSED
O-NOT USED
O-NOT USED
a-NOT USED
a-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED

I-LEVEL USED O-NOT USED
I-LEVEL USED O-NOT USED
I-LEVEL USED O-NOT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
l+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT = USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT z USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
l+HIGHEST ILSW BIT USED
I+HIGHEST ILSW SIT USED
I+HIGHEST ILSW BIT = USED
I+HIGHEST PISw BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW 8IT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT c USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT = USED
I+H1GHEST PISW BIT USED

SYD0006'J
SYDa0070
SYD00081J
SYD00091J
SYDOOIO'::l
SYDOOllO
SYDOOl20
SYD00130
SYDOOl40
SYDOOI5'J
SYDOOl60
SYDOOl70
SYDOOl80
SYD00190
SYD00200
SYD00210
SYD00220
SYD00230
SYD00240
SYD00250
SYD00260
SYD00270
SYD002BO
SYD00290
SYD00300
SYD00310
SYD00320
SYD00330
SYD0034()
SYD00350
SYD0036C
SYD00370
SYD003S0
SYD00390
SYD00400
SYD00410
SYD00420
SYD00430
SYDC0440
SYD00450
SYD00460
SYD00470
SYD004S0
SYD00490
SYD00500
SYD00510
SYD005?O
SYD00530
SY:::>00540
SYDOC550
SYD00560
SYD:>0570
SYD00580
SYDOC590
SYDD0600
SYD00610
SYD00620
SYD00630
SYDD0640
SYD00650
SYD00660
SYD00670
SYD00680
SYD00690
SYD007CO
SYD007l0
SYD00720
SYD00730
SYD00740
SYD007=O
SYD007cO
SYD0077'0

I+HIGHEST PISW BIT USED SYD007BO
NO. PROG. INT. GROUP 0-13 SYD00790
NO. PROG. INT. GROUP 14-23 SYD00800
NO. COUNT SUBRS. GROUP I SYD00810
NO. COUNT SUBRS. GROUP 2
INT. CORE LOAD LEVEL MASK
INT. CORELOAD LEVEL MASK

SYD008c'O
SYDOOS:'O
SYDCOB~·O

I-ITC USED O-NOT USED SYD008~0

CLOCK BASE.~ILSEC*TBAS= SYD00860
COUNT BASE=MILS*TBASE*CBASESYD00870
TIMER C MILS*TSASE SYDOOS8C
TIMER C MILS*TBASE SYD00890
ADDR. 1ST WORD VARIABLE CORSYD009CO
NUMBER OF QUEUE ENTRIES SYD00910
I-EAC DUMP uSED O-NOT USED SYD00920
I-ITC RESETS O-USER RESETS SYC00930
TIME-SHARING PERIOD SYD00940
I-TSC USED O-TSC NOT USED SYD009~0

Figure 66,. Example of a Set of System Director Equate Cards

132

ENTRY 1 {

PRIORITY

WORD COUNT

SECTOR ADDRESS

PRIORITY

WORD COUNT

SECTOR ADDRESS
} ENTRY 2

(U r'.J

Figure 67. Mainline Core Load Queue Table

Mainline Core Load Queue Table

Resident within MIC is a Queue Table made up of
three-word entries used for the stacking of main­
line core loads requested for execution, as shown
in Figure 67.

Each time the QUEUE routine is called, an entry
is made in the queue if there is not a like entry of
equal priority and sector address already in the
queue. Entries are removed from the Queue Table
by the subroutines UNQ and VIAQ (see Prolgram
Scheduling) .

The size of this table -- that is, its maximum
number of entries -- is specified by the user on
the NUQUE equate card. It should be large enough
so that the Queue Table shall not overflow lmder
normal operating conditions.

VCORE determines the starting address, which
must always be even, of the variable core area.
The appropriate value of VCORE can be arrived at
by calculating the size of the System Director,
Skeleton I/O and the user-written subroutines.

Calculating System Director Core Size

As discussed above, core size is a function of
several parameters which are in turn determined
by the number of features the user elects to include
in his TSX system. The computation of this value
in 16-bit words can be simplified by using I~ertain
equate card entries as multiplication factors as
shown below, where System Director Core Size
is given as a summation of the following (these
figures may change with modifications and versions
of the system):

1116

+ 220

+ 95

+ 109

+ 3

+ 2

+ 2

+ 2

+ 2

+ 2

+ 334

+ 66
+ 6

+ 8

(constant for MIC, PSC, and EAC and
their work areas)
(if ITC is included: that is, when
ITCUS = 1)
(if EAC dump is required: that is, when
DUMP1 = 1)
multiplied by the number of interrupt
levels (that is 109 x NULEV)
multiplied by the number of Queue
entries (that is, 3 x NUQUE)
multiplied by the number of process
interrupts (that is, 2 x sum of NILOO
through NIL23)
multiplied by the number of programmed
interrupts on levels 0 through 13 (that
is, 2 x NILSW1)
multiplied by the number of programmed
interrupts on levels 14 through 23 (that
is, 2 x NILSW2)
multiplied by the number of count sub­
routines 0-15 (that is, 2 x NIPT1)
multiplied by the number of count sub­
routines 16-31 (that is 2 x NIPT2)
(if TSC is included: that is, when
TIMES = 1)
(if more than 14 levels are used)
(if more than 14 levels are used and
ITC is included)
(if more than 14 levels and TSC is
included)

From the configuration set out in Figures 66
and 68, a typical calculation is deduced below.

System Director Core Size 1116
+ 220
+ 95

(109 x 12) + 1308
(50 x 3) + 150
(2 x 57) + 114
(2 x 12) + 24
(2 x 0) + 0
(2 x 16) + 32
(2 x 8) + 16
TSC + 334

3409 words

DEFINITION OF FUNCTIONS REQUIRED

Interval Timer Control

When the ITCUS label is equated to 1, the ITC pro­
gram is included within the System Director and

serves to set up user-specified times and correct
linkages to the user's subprograms. Once this is
done, ITC will control the timers until one or more
specified intervals have elapsed, at which point
control is transferred to a user's subprogram.

Specifications for any timer may be set or
changed in relation to the timer base at any time
during an on-line process operation by the calling
sequence.

lt was mentioned in Functions of Executive
Programs: The System Director, that a program­
med real-time clock, a time-sharing control timer,
and nine programmed interval timers are controlled
(that is, updated) by the third machine interval timer
C. It is, however, the user's responsibility at
assembly time to establish:

1. A primary time base (TBASE) for the real­
time clock; that is, how often the clock should
be updated.

2. A secondary time base (CBASE) for the pro­
grammed timers and time-sharing control
timer.

Primary Time Base

This is that interval of time used to update the real­
tIme clock, and is called the Interrupt Time Base.
lt is the product of the wired-in hardware time base
and a number chosen by the user (TBASE) at assem­
bly time, expressed as follows:

INTERRUPT TIME BASE = (WillED-IN HARD­
WARE TIME BASE) X (USED-ASSIGNED
NUMBER)

For example, if the machine interval timer C is
wired for a four millisecond time base and the real­
time clock is to be updated every two seconds, the
user-assigned number can be calculated to be 500.
TBASE is thus equated to minus (-) 500. A negative
number is used because the interval timer is incre­
mented in the positive direction, causing an inter­
rupt when zero is reached. The primary time base
for the real-time clock in this example (that is,
how often it is to be updated) is thus two seconds.

To enable ITC to keep track of elapsed time
since the last or previous interrupt occurred, a
double-word TIME1 and TIME2 is equated to the
hexadecimal equivalent of the interrupt time base.
This value is added to the real-time clock each time
an interval timer C interrupt occurs.

System Design Considerations 133

In the above example, TIMEI and TIME2 are
equated to /0000 and /07DO. The label TIMEI
is always /0000 unless the calculated interrupt time
base exceeds 65,535 milliseconds.

Secondary Time Base

The programmed timer base for the nine pro­
grammed timers and time-sharing control timer
is a user-assigned multiple of the interrupt time
base established for the real-time clock, and ex­
pressed as follows:

PROGRAMMED TIMER BASE = (INTERRUPT
TIME BASE) X (USER-ASSIGNED NUMBER)

For example, if the interrupt time base is fixed
at two seconds, and the user wants the programmed
timers to operate at 30-second intervals, the label
CBASE is equated to 15.

This hase is used specifically for the nine pro­
grammed timers and the time-sharing control timer,
and is the smallest interval of time that can be
specified for the programmed timers or for time­
sharing operations.

Time -Sharing

The TIMES label specifies at assembly time whether
or not time-sharing is to be used.

It was: noted in the preceding section that the pro­
grammed timer base is the smallest interval of time
that can be specified for programmed timing or
time-sharing operations. When time-sharing is
used, a user-assigned multiple of the programmed
timer base is established.

For example, if the programmed timer base is
fixed at ao seconds and the user desires time-sharing
operations of two minutes I duration whenever the
queue is empty, the label TISHA is equated to 4.
Thus, the time-shared operation is terminated
whenever the time interval specified (in this case
two minutes) has elapsed. TISHA is identical to
the parameter I in the requesting CALL SHARE
statement in the mainline program. If the user
wishes to remain in time-sharing until some core
load name is put into the queue by an interrupt
program. which uses CALL ENDTS, then TISHA may
be specified for the longest possible numerical value,
that is, :32767. The reason for this is to keep the
time-sharing function from exchanging core unneces­
sarily at frequent intervals to check the Queue Table
when no entries have been put in the queue. This is
the recommended procedure.

134

Operations Monitor

The user may select an option in ITC to reset the
Operations Monitor (a hardware feature) du;dng
nonprocess operations. He does this by equating
the OPMOI card to 1 or 0: a 1 indicates that the
monitor is to be reset by ITC; a 0 indicateEI that
the monitor is to be reset by user program control.
It should be noted that the Nonprocess Monitor does
not incorporate the Operations Monitor reset instruc­
tion. ITC will only execute the reset if time-sharing
is in progress.

Error Alert Control (EAC) Dump

The label DUMPI gives the user the option of in­
cluding the dump routine (dump core to disk) for
subsequent user error analysis. The functions of
EAC are explained in another section of thiEI manual
(see Functions of Executive Programs: The System
Director).

ALLOCATION OF INTERNAL AND EXTERNAL
INTERRUPT LEVELS

Interrupts can be generated by events which originate
in the plant or the environment that is being: con­
trolled, or by conditions internal to the cOlnputer
hardware itself. These may be classified as exter­
nal (or process) interrupts and internal interrupts.

Internal interrupts may be caused by an error
condition being detected, an input/output operation
being completed, an interval timer interrupt, a
computer operator setting a switch, etc.

External or process interrupts may be caused
by the closing of an electrical contact, a rise in
temperature above a set limit, etc.

Since the number of internal and external inter­
rupts required by a particular system is decided
by the user, the System Director must be provided
with a labelled assignment of each interrupt used.

Interrupt Level s

A level of interrupt represents a degree of removal
from the normal computer mode. The multi­
interrupt feature of the IBM 1800 Data Acquisition
and Control System is composed of a maximum of
24 levels, each level containing 16 request positions,
thus making available 384 interrupt lines to signal
the computer to halt the program being exeeuted and
branch to unique hardware memory locations.

The number of interrupt levels (NULEV) planned
by a user is assigned contiguously to the 24 available
levels, starting from zero to 23. If, for example,
16 interrupt levels are elected by the user, levels
0-15 are used. The numerical value to which the
label NULEV is equated is always 1 plus the highest
numbered interrupt level used.

Priority assignments are necessary in order
that an order of precedence (that is, a level) can
be established among the several interrupt con­
ditions. In configurating a multi-interrupt system,
the user should remember that certain I/O devices
such as the disk, magnetic tape, and timers re­
quire high response capabilities. Other I/O devices
such as the list printer, typewriter, and card-reader
do not demand such a critical response.

In general, process interrupts (PISW's) are
assigned lower priority levels than data processing
and process I/O devices, except for process inter­
rupts that do not require I/O and demand immediate
response or initiate extended operations at lower
levels through the programmed interrupt feature.
The reason process interrupts are assigned lower
priorities than I/O devices is that user-written sub­
routines for the servicing of these process interrupts
can then utilize all I/O devices. I/O devices must
receive an operations complete interrupt, which
cannot occur if it is located on a lower priority
level than the level from which the I/O device is
called. Exceptions to this rule are the disk and the
1053 Printer where the I/O routine is so written
that it will remain within itself until the operation
is complete. These exceptions were allowed due
to EAC requirements, but should not, in general, be
considered as acceptable practice.

The amount of computer time required to service
a particular interrupt can influence its priority
assignment. If, for example, its servicing is rela­
tively short, an interrupt may be accorded higher
priority than one which entails more elaborate
servicing procedures.

Those basic I/O devices that demand fast response
include the disk, magnetic tape, and timers. Be­
cause the 1053 Printer uses the disk when it buffers
messages, the analog interrupts should be at a higher
level than the assignment of the 1053 Printers due to
a possible loss of comparator interrupts. It should
be pointed out that although fast response is not
normally required by the 1053 Printer, this device
should be assigned to a high enough interrupt level

to allow it to run continuously at a maximum rate.
Thus, typewriter messages will be serviced without
overloading the mes sage buffer.

It is recommended that the Analog Input Com­
parator feature be assigned to a higher priority
level than the Analog Input. The remaining I/O
devices do not possess any special characteristics
for assignment at a high level, except that they
must be at a level higher than the highest level
from which they are called, and at a higher level
than any assigned interrupt core load (see equate
card ICLL1, Figure 66).

Figure 68 (in conjunction with Figure 66) illus­
trates how a multi-interrupt system configuration
might look in the IBM 1800 Data Acquisition and
Control System for a typical process control appli­
cation. The example serves to convey some of the
principles noted above: it should not be taken as a
model.

The machine configuration chosen for this
example includes:

1 IBM 1802 Processor - Controller
16K words of core storage

1 IBM 2310 Disk Storage Unit with three
disk drives

1 IBM 2401 Magnetic Tape Unit
4 IBM 1053 Printer Units
1 IBM 1443 Printer Unit
1 IBM 1442 Card Read Punch Unit
1 IBM 1627 Plotter Unit
1 Analog Input Basic with Comparator
1 Analog. Input Extended with Comparator
1 Digital Input
1 Digital and Analog Output

12 Interrupt levels

Other considerations are:

57 Process Interrupts (spread over 12 levels)
24 Count Servicing Subroutines
12 Programmed Interrupts
3 Timers
Queue Table size = 50

A group of process interrupts is assigned to
each of 12 levels, 0-11. Note that process inter­
rupts are normally factory wired to terminals in

System Design Considerations 135

INTERRUPT LEVEL STATUS WORD

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o PISW TIMERS
1 A,B,C

PISW 2310/ 2310/ 2310/
2 1 2 3 I

2
PISW 2401

3

3
PISW

AIBC AlEC
4

4
PISW AlB AlE 01 DAO

5

5
PISW 1053/ 1053/ 1053/ 1053/

6 1 2 3 4

6 PISW 1443
7

7 PISW 1442
8

8
PISW C.1. 1627

9

9 PISW
10

10 PISW
11

11
PISW

12

INTERRUPT 12
LEVEL

13

14

15

16

NOTE
17 1. Interval Timers must be on a higher interrupt leve I

than the 2310, 1816/1053, 1442 and 1443 devices.

18
2. The 1816/10535 must be on a lower interrupt level

than the 23105.

19

20

21

22

23

Figure 68. Example of Intenupt Level Status Word Assignment

136

groups of 4 to corresponding bit positions of one or
more PISW's. In this example, only 1 process
interrupt is utilized on each of the levels 0-8, and
16 process interrupts on each of levels 9-11, giving
a total of 57 process interrupts.

The three timers A, B, and C are assigned to
the highest interrupt level (level 0) in order to
give them high response. They are thus placed to
interrupt any event or device in progress. With the
timers at this level, the timer servicing routines
should not be calling any I/O device, but should
make use of the programmed interrupt or queueing
a mainline technique for servicing requirements.
The reason for this is that it is not possible to call
an I/O device from a level of higher priority than
the I/O device being called (as already explained).
In addition, it is not desirable to remain on the
timer level for a period of time long enough to
cause the system to miss a timed-out interval of
higher priority than the one being processed.

Disk drives are assigned the next highest level
(level 1) in order that the sector-gap can be made;
that is, the disks can then operate at their maximum
speed without incurring the penalty of a full revolu­
tion of disk time (40 ms.). The magnetic tape unit
is placed at the next level (level 2) also for the same
ability to service it at full capacity.

The Analog Input Basic with Comparator (AIBC)
and Analog Input Extended with Comparator (AlE C)
are recommended to be assigned a higher level
(level 3) than their corresponding Analog Input Basic
(AlB) and Analog Input Extended (AlE) devices
(level 4). They must always be assigned to a higher
level than the 1053 Printers.

The 1053 Printers are placed on level 5 because
they are continually active, but do not require
much execution time. Thus, assigning them above
the process interrupts give these devices the ability
to print while user's core loads are in execution.

The remaining devices present no real demand
problems, and are assigned to lower levels as shown
in Figure 68.

Summary of Interrupt Assignment Restrictions

For proper operation of the TSX system, the follow­
ing interrupt assignment restrictions must be
observed:

1. All I/O device interrupts must be assigned
to a higher priority interrupt level than external
interrupts, unless the external interrupt is
serviced by a skeleton interrupt routine.

2. If external interrupts and I/O devices are both
assigned to the same level, the external inter­
rupts must be serviced by skeleton interrupt
routines.

3. A skeleton interrupt routine cannot use an I/O
device whose interrupt is assigned to the same
or a lower priority level, except for the disk,
1053 Printer, and 1443 Printer; however, the
1053 test function cannot be used.

4. ILSW bits must be assigned contiguously, be­
ginning with position O.

Interrupts Per Level

It has been noted that a level of interrupt repre­
sents an order of precedence or priority, and that
each level contains a total of 16 request positions.

When one or more lines are connected to anyone
priority level, it is necessary by programming
means to identify the specific condition which caused
that interrupt level to request service. To do this,
a 16-bit word called the Interrupt Level Status Word
(ILSW) is used. The programmer does not specify
the ILSW in his instructions; this specification is
fixed. That is, one ILSW is hardware assigned to
each of 24 interrupt levels. Through the ILSW,
the operational status or condition of an I/O device
or process is revealed to the executive system.

The choice of interrupting I/O devices and/or
process conditions on a specific interrupt level is
specified by the user on the NBOO-23 equate cards.
If, for example, one process interrupt and four I/O
devices are assigned contiguously (starting from
bit zero) to level 10, the user equates NB10 to 5.
The NB label is always equated to a numerical value
equal to the rightmost bit (on the ILSW) plus 1 for
a level. If no devices or process interrupts are
assigned to a level, the label is equated to zero.
Note that the NBOO-23 equate cards must reflect
exactly the number of bits on the System Loader
assignment cards. Also, those levels that use
programmed interrupts only do not contain ILSW
bits; the NB cards for these levels are, therefore,
equated to zero.

Level Work Areas

Whenever an interrupt caused by an I/O, a process
interrupt, or a programmed interrupt occurs, an
indirect branch takes place to a fixed word in core.
This word contains the address of a communications
area known as a Level Work Area. There is one

System Design Considerations 137

work area per level of interrupt specified by the
user, and only those levels configurated by the user
will be assembled and will be available when the
System Skeleton is built. In addition, three addition·­
al work areas are always assigned to the system:
one each for Nonprocess Core Loads (if time-sharing
is used)" Mainline (that is, Process) Core Loads,
and Errors (Trace and C. I. Interrupt). If time­
sharing is not used, the Nonprocess work area is
origined out at System Director assembly time.

Briefly, the level work area serves as a means
of communications whenever the computer transfers
control from one level of interrupt to another. The
address of the interrupted level is then saved and
the address of the work area for the current level
set up. When the level in progress has completed
its processing, the address of the interrupted level
is restored. This method of coding automatically
saves all reentrant coded subroutine work
areas.

Figure 69 illustrates the layout of a level work
area which i.s 104 words in length, but this may be
increased or decreased by the user (at System
Director assembly time), depending on the functionB
related to each level of interrupt. Note that for
proper testing of errors and time-sharing, the MIC
work area portion should not be deleted.

~ <
~v ~ 4 ,~~~

I
I
I
I
I
I
I

r
I
I
I
I
I

MIC WORK AREA

O~',,?" ~ _\c.,~ o~ «..... 0: - « <Q

I~II"--
I : I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

I I I I I
40 57

I
I
I
I
I I

1-.- FIXED SECTION .. ~

Figure 69. Layout of a Level Work Axea

138

Work levels are divided into two major sections:
a fixed section and an overlay section. Each word
in the fixed section is assigned to one specific pro­
gram and may be core protected. The manner in
which it is assigned is shown in Table II.

Words in the overlay section may be assigned
to several different programs providing these pro­
grams do not call one another. This section cannot
be core protected.

The overlay section begins with the 58th word of
a level work area (see Table 12). If this section is
used, the user is advised to reference this "start"
position with a label, thus eliminating extensive
program modification in the event the fixed section
has increased or decreased. If a modification is
required, the first word of the overlay section (the
58th word) will always be an even core location to
facilitate double load and store instruction~l, etc.
Also, programs using the overlay section Elhould
always commence at the beginning, except those
programs that are called by a program alr1eady
using this area. For example, DP I/O programs
use the first 25 words of the overlay section; there­
fore any program that requires storage locations in
this section and also calls a DP I/O routine cannot
use the first 25 words. The later program. will thus
start at the 26th or 27th word of the section.

SUBROUTINE WORK AREA

OVERLAY SECTION

I
I
I
I
I
I
I

I
99

I
I
I
I
I

---1

Table 1l. Fixed Section of a Level Work Area

WORD
POSITION

-4

-3

-2

-I

o

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

PROTECTION
STATUS

N

N

N

N

Y

Y

Y

Y

Y

Y

N

Y

N

Y

Y

Y

Y

N

N

N

N

N

N

N

N

CONTENTS

Save interrupt exit

Not used

Busy indicator address for UFIO: indicates
that unformatted I/O buffer has been saved
to disk and must'be restored by MIC.

UFIO restore indicator; non-zero if a
restore is needed.

Address of word 5 of the ICL T entry for this
level.

Address of word I (in-core-with-skeleton
indicator word) of the ICLT entry for this
level.

Address of word 2 (in-core-with-mainline
indicator word) of the ICLT entry for this
level.

Address of word 3 (record indicator word) of
the ICL T entry for this level.

Address of word 4 (recorded indicator word)
of the ICL T entry for this level.

Address of word 0 of this level work area

Status save location

Level number

Entry point to interrupt level coding

STX sets this level busy

STX saves XR3

Sets XR3 to work level

Saves XR2

Saves XRI

BSC long to MIC

BSC long indirect to interrupt via the
Master Branch Table.

MF 10 restore indicator; non-zero if a
restore is needed

Busy indicator address for MFIO; also first
word of PISW 10CC.

Second word of PISW 10CC. This is a
standard PISW set-up by TSX for this level.
If the user wishes to sense a PISW other than
the standard for this level, Word 21 would
have to be modified by him. See SYSTEM
DESIGN CONSIDERATIONS, SYSTEM
DIRECTOR: PISW Assignment Restrictions.

Save location for XRI

Save location for XR2

Save location for XR3

Level busy indicator. Positive, if the level
is busy; zero if not.

Save location for PISW sense

WORD PROTECTION
POSITION STATUS CONTENTS

27 N Save location for the address of the work level
in use at the time the interrupt occurred; i.e.,
word 68 16 of the Fixed Area in core.

28 N Save location for the A-register.

29 N Save location for the Q-register

30 N Save !ocation for WK4, word 36 16 of the Fixed
Area rn core.

31 N Save !ocation for WK5, word 3716 of the Fixed
Area I n core.

32 N CARDN indicator. If zero, detection of a II
card causes an error.

33 N Save location for MDF 10 sector address on a
save operation

34 N Busy indicator address for MDFIO

35 N File protect indicator; this must be set non-zero
prior to every write to a fi Ie-protected area.

36 N First word of ICLT (in-core skeleton address)

37 N Second word of ICL T (in-core main I ine address)

38 N Thi rd word of IC L T (RECORD address)

39 N Fourth word of ICL T (RECORDED address)

40 N Fifth word of ICLT (first entry).
Words 36-40 constitute the work area used by
MIC. This area is loaded with addresses from th~
ICL T entry for this level to inform the ALLGO
routine how to handle the interrupt andlor where
to find the servicing routine or core load.

41-43 N Save locations for FORTRAN FAC (floating
accumulator)

44-49 N Locations used by QZSAV/QZEXT to save and
restore:

A-register
Q-register
XRI
XR2
Carry and Overflow indicators
XR3

50-54 N Locations used by TVSAV /TVEXT to save and
restore:

A-register
Q-register
XRI
XR2
Carry and Overflow indicators

55 N FORTRAN functional error indicator

56 N FORTRAN divide check indicator

57 N FORTRAN overflow indicator

System Design Considerations 139

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

~ TVSAV

• SUBROUTINES NOT REENTRANT -. r ,r FIXED OVERLAY

FADD, FADDX, FSBR, FSBRX, FSUB, FSUBX X X 41-43, 52 58, 59, 64-66

FALOG, FlN X X 41-43, 55 68, 69, 72

FATAN, FATN X X 41-43 68, 69, 70-71, 72-73, 74

FAVL, FABS X 41-43

FAXB, FAXBX X 41-43, 46, 48, 49, 55 73-79

FAXI, FAXIX X 42, 52, 55 67, 70-72

FDIV, FDIVX, FDVR, FDVRX X 41-43, 52, 56 58, 59, 64-66

FEXP, FXPN X 41-43 60-63

FLD, FLDX, FSTO, FSTOX X 41-43, 52 58, 89, 90

FMPY, FMPYX X 41-44, 52 58, 59, 64, 65

FSIN, FSINE, FCOS, FCOSN X X 41-43, 55 68, 69

FSQRT, FSQR X 41-43, 57 72

FTANH, FTNH X 41-43, 46, 48, 49 68-73

FTRTN, FTNTR X 80-84

EADD, EADDX, ESBR, ESBRX, ESUB, ESUBX X X 41-43, 52 58, 65-67

EALOG, ELN X X

EATAN, EATN X X

EAVL, EABS X
I

EAXB, EAXBX X

EAXI, EAXIX X 42, 52, 55 69, 72, 96, 97, 99

EDIV, EDIVX, EDVR, EDVRX X ! 41-43, 52, 56 76-80, 85

EEXP, EXPN X X 41-43

ELD, ELDX, ESTO, ESTOX X X 41-43 83-84

EMPY, EMPYX X 41-43, 52 64-66

ESIN, ESINE, ECOS, ECOSN X X NONE

ESQRT, ESQR X NONE

ETANH, ETNH X NONE

ETRTN, ETNTR X 52 92-97

,...-"
ADRCK X 7

COMGG, COMGI X 59-63

DATSW X NONE

DVCHK X 56

ESIGI'-I (EXTENDED PRECISION) X 41-43 70-75

FSIGN (STANDARD PRECISION) X 41-43 70-75

FCTST X 55

IOU X 59-63 ..

ISIGN X NONE

ISTOX X 50, 52

LDFAC, STFAC, SBFAC, DVFAC X 42

MDFIO, MDAF, MDAI, MDCOM, MDF, MDFX,
MDI, MDIX, MDRED, MDWRT 41-43 70-92

MDFND X 72-75, 77

MFIO" MRED, MWRT, MCOMP, MIOAF,
MIOIX, MIOAI, MIOI, MIOFX, MIOF 19-20, 41-43, 55

MGOTO, MFIF, MIIF, MEIF X X 70-72, 74-78

MIAR, MIARX, MFAR, MFARX, MEAR, MEARX X 70, 71, 74-85, 89
OVERF X 57

PAUSE X NONE

SAVE, IOFIX X - 1, 7, 11, 19, 33, 34 70-73, 88, 93, 97

SLlTE, sLin X NONE

SSWTC X NONE

STOP X NONE

140

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

_i TVSAV

+ SUBROUTINES NOT REENTRANT -=--t ,.
"

FIXED OVERLAY

SUBIN X 58-83

SUBSC X NONE

TSTOP X NONE

TSTRT X NONE

TTEST, TSET X NONE

UFIO, UFIOX, UIOIX, UCOMP, UIOI,
UIOF, UIOAI, UIOAF X -I, -2, 55

TRACE (TRPNT) NONE

FARC X 41-43, 57

FBTD, FDTB X 41-43 58-89

FLOAT X 41-43, 50, 52, 53 59-62

FIXI, FIXIX X X 50-52, 55

lABS X NONE

lAND NONE

IEOR NONE

IFIX X X 41, 42, 50, 55

lOR NONE

LD NONE

NORM X 41-43 58

SNR X 42, 43

XDD X 42, 43, 50-54 66-75

XMD X 42, 43, 50, 51 58-65

XMDS X 42-44 58-59

XSQR X 44, 48 58, 59

DMPHX, DMP, DMPDC X NONE

DMPS, DMPST X 41-43

DPART X 7

ENDTS X NONE

LEVEL X NONE

MASK X NONE

OPMON NONE

QIFON X X 44-49 66, 67, 69-75, 77-84, 86-94

QUEUE X X 58, 61-63, 65-67

RESMK X NONE

SAVMK X NONE

SETCL X NONE

TIMER X NONE

UNMK X NONE

UNQ X X 58, 61-63, 66, 67

VIAQ X X NONE

COUNT X NONE

CLOCK X NONE

CLEAR X X 58, 61-67

CONHX X NONE

TRPRT X NONE

FLIP X 7

(Continued)

System Design Considerations 141

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

! TVSAV

+ SUBROUTINES NOT REENTRANT -. FIXED OVERLAY , ,
...---'

CARDN X X 32

PAPTN X 50-54

MAGT X NONE

PLOTX X X 65

REWIND/BC KSP/EOF X -2 66-68, 71-73, 75, 79, 85, 89

DAOP X X 70-75

AIPTN, AIPN X X 70, 71

AISQN, AISN X X 70-72, 74

AIRN X X 76-78

DIEXP X X 70-73

DICMP IS REENTRANT

DINP X X 50 70-72, 74, 75

ANINT, COMP1, AINTl, COMP2, AINT2 X NONE

AlP X 58, 61-66

AIS X 58, 61-71

AIR X 58, 61-69

CO, DO, PO, DAC X 58, 61-65

CS, VX, PI, DI X 58, 61-65

CSC, VSC, PIC, DIC IS REENTRANT

CSX, VSX, PIX, DIX X 58, 62-65

lOPE, OUSLY, ETS X 7

XSAVE, XEXIT, XLOAD X 7

GAGED, UNGAG X 54

QZERQ X NONE

QZ010 X 58-66

BTlBT X X NONE

BT2BT X NONE

.--"
BINDC X 50 61, 62

DCBIN X 50, 55 61

BINHX X 50 61

HXBIN X 50, 55 61

HOLEB X 55 61-65

HOLPR X 55 61-66

EBPRT X 55 61-66

PAPEB X 55 58-67

PAPHL X 55 58-66

PAPPR X 55 58-66

EBPA X NONE

PRT X NONE

FCHAR: X NONE

SCALF X NONE

FGRID X NONE

FPLOT X

I
NONE

ECHAR X NONE

SCALE X NONE

EGRID X NONE

EPLOT X NONE

POINT X NONE

FCHRX, FCHRI, WCHRI X NONE

FRULE. FMOVE, FINC X NONE

ECHRX, ECHRI, VCHRI X NONE

(Continued)

142

Table 12. TSX Reentrant Subrout:ine Work Level Requirements

MASKED
A-REG.
QZSAV

~ TVSAV

• SUBROUTINES NOT REENTRANT-y

ERULE, EMOVE, EINC X

XYPLT X

PLOTl, PLOTS X

SKELETON I/O

DISKN X

PRNTN X

TYPE N/WR TYN X

Table 12 illustrates the work level requirements
of TSX reentrant subroutines. These may depend
on various modification levels of the TSX system.
If absolute information is required, the current
listings should be referred to.

r

X

The five status columns (NOT REENTRANT,
TVSAV, QZSAV, A-REG, and.MASKED) indicate
whether each subroutine is reentrant, and if it is,
what modes of reentry are used. For example, FADD
(Floating-point ADD) is reentrant since the first
column is blank; it uses TVSA V, but note that it
also masks all levels at one or more points within
the subroutine.

Some subroutines are reentrant, but do not use
any words in the level work area. ENDTS is such
an example. VIAQ is not reentrant; it does, how­
ever, mask all levels to prevent the Queue Table
from being modified by QUEUE, QIFON, and UNQ
during several instructions.

Level work areas are defined by the USE labels
USEOO-23), the number of work areas being deter­
mined by NULEV. If a USE label is equated to 1,
a work level is included on that level; if zero, no
work level is included. For example, if NULEV
= 7, USEOO-06 are all equated to 1; the remaining
USE cards being equated to zero.

See also: Programming Subroutines Using
Reentrant Coding.

Process Interrupts Per Level

Like the ILSW, the Process Interrupt Status Word
(PISW) is a 16-bit word associated with the use of
process interrupts. Process interrupts are phys­
ically terminated on 16-position terminal blocks
within the 1800 system. The PISW indicators are
turned on or off by contact closures or voltage
shifts in the process. A total of 24 PISWs are
allowed in the system for normal usage. To provide
the maximum number of interrupt levels for process

r FIXED

NONE

NONE

NONE

35 58-69

70-80

70-80

OVERLAY

]
]

(Concluded)

interrupts, one PISW could be assigned to each
ILSW. For multiple groups per level, see PISW
Assignment Restrictions.

The System Director must also be aware of the
number of process interrupt bits on each of the 24
hardware levels. This information is provided by
the user on the NILOO-23 equate cards. If, for
example, one process interrupt is assigned to inter­
rupt level 10, the bit configuration for the PISW
for that level could be bits 0 to 15. For example,
if bits 0 to 7 are assigned, the NILI0 label will be
equated to 8. The NIL label will always be equated
to a numerical value equal to the rightmost PISW
process bit position used plus one. If no process
interrupts are assigned to a level, the label will be
-equated to zero.

With this information, an interrupt core load table
(ICLT) is built which contains an entry for each
interrupt level assigned by the user plus two entries
for programmed interrupts and two entries for
count routines. The user specifies how many
process interrupts he has on a particular level and
only those words that are necessary to contain his
configuration are entered in the table.

Figure 70 illustrates a partial ICL table, for
one level, say level seven.

IN SKE LE TON represents the PISW bits of the
PISW associated with the level this entry serves. If
a subroutine is loaded as part of the skeleton to serve
a process interrupt, a bit is set up in this word which
corresponds to the bit on the PISW. For example, if
the user has a process interrupt on level 0, and this
PISW is wired such that when the interrupt occurs
the zero bit comes on, a bit is put into the correspond­
ing zero bit of the IN SKELETON word of the level
zero ICLT entry.

The start address of the servicing routine is then
loaded into START ADDRESS.

IN MAINLINE CORE LOAD and RECORD are set
up each time a mainline core load is read into core.
The former word specifies that the interrupt servicing

System Design Considerations 143

FOR J ".
BIT 0 1

FOR J,
BIT 15 l

'-

,.,

IN SKELETON

IN MAINLINE CORE LOAD

RECORD

RECORDED

START ADDRESS/WORD COUNT

SECTOR ADDRESS

START ADDRESS/WORD COUNT

SECTOR ADDRESS

Figure 70. Interrupt Core 10 ad Table

rJ

routine is in with the core load. RECORD means
that the interrupt is not to be serviced, but only
an indication that it has occurred is to be set.

RECORDED is used whenever an interrupt has
been speCified to be recorded during the processing:
of core loads. In such an event, if the interrupt
occurs, the corresponding bit is set on by MIC and
the interrupt turned off. These indicators are reset
by the CALL QIFON and CALL CLEAR subroutines
when called by the user.

The first four words of the ICL table are fixed,
two additional words being required for each bit of
the PISW used (see Figure 70). ICL table size is
dictated by the NIL equate cards. In the example
given (see Figure 66), 57 process interrupts were
used; this required 258 words. If the maximum
possible number of process interrupts (384) were
utilized, 768 plus 4 (multiplied by the number of
levels used) words of storage would be required.

If the interrupt routine were not in the skeleton,
ST ART ADDRESS would contain the word count of
the routine on disk to service the interrupt. SEC­
TOR ADDRESS would then contain the sector address
of this out-of-core interrupt core load.

It should be noted that a programmed interrupt
does not make use of a PISW bit for operational
indication. The indicator which specifies that a
programmed interrupt has occurred is set-up by
the user's routine in core when he does a Call
Level (see Programmed Interrupts).

144

PISW Assignment Restrictions

PISW (Process Interrupt Status Word) groups can be
assigned to interrupt levels either as a single group
per level or in multiple groups per level. For
proper operation of the TSX system, the foUowing
rtdes and restrictions must be observed.

One Group Per Level

Normal usage of process interrupts requires that
only one group of process interrupts be assigned to
each interrupt level. Process interrupts assigned
in this way can each be serviced with separate inter­
rupt routines. The servicing routines muslt reside
in the skeleton area only if their associated inter­
rupt level is equal to or higher than any I/O device
interrupt level.

When only one PISW is connected to a level, the
correlation of the interrupt level number to the
PISW group number is as follows:

Interrupt PISW Second Word of IOCC
Level Group for PISW Sensing

0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05

• • •
• • •
• • •

22 23 /5F18
23 24 /5F19

Note that MIC performs the ILSW and PISW
sensing, and transfers control to the proper inter­
rupt servicing routine.

Multiple Groups Per Level

In special cases, such as (1) when fast response is
desired, and (2) when each bit does not require a
unique program to service it (such as when all the
on-bits in a group might represent a particular code),
it is desirable to have more than one PISW group
assigned to an interrupt level; however, the follow­
ing restrictions must be observed by the UEier's rou­
tine. The interrupt servicing (ISS) subroutine must:

1. Reside within the skeleton area
2. Sense all PISWs assigned to the level

3. Upon completion, exit to MIC via the I/O
exit (that is, BSI I 90).

When assigned in this way, there is .no correla­
tion restriction between the interrupt level number
and the PISW group number.

Combination PISW Assignments

It is also possible to combine the two assignment
methods and have some interrupt levels with only
one PISW each, and other levels with more than one
PISW. The same rules and restrictions for each
type outlined above still apply. For example, to
have two groups of four PISWs each assigned to
interrupt levels 4 and 5, one valid combination is:

Interrupt PISW Second Word of 10CC
Level Group for PISW Sensing

0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05
4 One or more User-Sensed

groups of PISWs
5 One or more User-Sensed

groups of PISW s
6 7 /5F08
7 8 /5F09

• • •
• • •
• • •

17 18 /5F13
18
19 Not assignable;

• usage assumed on

• levels 4 and 5

•
23

Any combination can be used for the PISW assign­
ments on levels 4 and 5.

Note that the user is not restricted in assigning
multiple PISWs only to those levels which are not
sensed by MIC: they can be assigned to any level.
For example, if level 7 has the standard sense for
a group of assigned PISWs, the user could include
on that level another group of PISWs which he de­
sires to sense himself. User-written interrupt ser­
vicing routines must be coded as an I/O ISS sub­
routine.

For further information on the assignnient of
process interrupts whose 10CCs are to be sensed
by user-written subroutines, refer to the following:
System Design Considerations: The IBM Nonprocess
System; Programming Techniques - Writing Assem­
bler Language Subroutines; IBM 1800 Assembler
Language, (Form C26-5882).

Programmed Interrupts

CALL LEVEL -- Programmed Interrupt

External interrupt level s can also be programmed.
Programmed interrupts are initiated by the CALL
LEVEL statement, and follow the same basic rules
which pertain to process interrupts. The format
of this statement is as follows:

CALL LEVEL (L)

where

L is an integer constant 0-23 that specifies
the interrupt level desired

There can only be one programmed interrupt
routine per assignable interrupt level. The use of
the servicing routine may, however, be expanded
by setting a numeric value (integer) in Inskel COM­
MON prior to a CALL LEVEL (L). The LEVEL
subroutine can then interrogate this value introduced
by the calling program. In this way, as many sub­
routines per level as are desired can be provided.
CALL LEVEL, which can be used only in process
mainlines or interrupt programs, causes a pseudo
ILSW bit to be set in the programmed interrupt
IOCC (locations 16010 and 16210)in the Fixed Area.
The 10CC bits are interrogated by MIC when an
interrupt occurs on a speCific level. MIC always
reactivates those levels that have been specified
within the CALL statement, and which have not been
serviced.

The programmed interrupt is recognized immedi­
ately when called from a lower level. When the
servicing routine finally exits to MIC, program
operation at the calling level is resumed with the
statement following the CALL LEVEL statement.

A programmed interrupt called from a higher
level is recognized after the calling program is
completed, and after any intervening interrupts are
serviced. If a level is called and any ILSW bit is
on when this level is recognized, the programmed
interrupt is recognized after the first ILSW "on"
bit is serviced.

System Design Considerations 145

The equate card NLSWI is used to specify the
lowest priority level number (within the group 0-13)
plus 1 assigned to a programmed interrupt. Simi­
larly, NLSW2 applies to the group 14-23. This
determines the number of programmed interrupts
available to the user.

In the example given in Figure 66, the number 12
punched in columns 35-36 means that programmed
interrupt space in the ICL table has been allocated
for levels 0-11 (12 levels). NLSW2 is equated to O.

Consider a further example. Ten (10) program­
med interrupts are required on levels 14-23; none
on levels 0-13. NLSWI is equated to 0 and NLSW2
is equated to 10.

Note that there can only be one programmed
interrupt routine per interrupt level. The user need
not initially have programs on disk corresponding
to all levels of programmed interrupt stated. These
may be loaded later.

Out-of-Core Interrupt Levels

The user has also to determine those levels on which
interrupts will be serviced by out-of-core interrupt
core loads. Other interrupts on levels that are
serviced by out-of-core interrupt core loads are
masked so that they cannot interrupt another inter­
rupt being serviced by a corresponding out-of-core
routine. Interrupts serviced by in-core routines
are not masked. Only one level of exchange is
maintained.

Interrupts that are in the skeleto;n should not be
on the same or lower level as out-of-core inter­
rupts, unless those interrupts can be masked for
the period of time required to service the out-of­
core interrupts.

The best practice for servicing interrupts is to
group those interrupts that are serviced by in­
skeleton routines on higher priority levels than
interrupts which are serviced by interrupt core
loads. This is not, however, a restriction on the
system: in-skeleton routines may be intermixed
with interrupt core loads as long as the skeleton
routines can be masked for the period of time re­
quired to service the interrupt core loads.

The user specifies those interrupt levels he has
elected to be masked for the servicing of interrupt
core loads on two equate cards: ICLLl, ICLL2.
He may elect a single interrupt level or consecu­
tively numbered interrupt levels within the two
groups of interrupt levels, 0-13 and 14-23. Two
examples illustrate how the ICLLI-2 cards are used.

146

In the first example, assume

NULEV = 12
Three interrupt core load interrupt
levels are required (9, 10, and 11).

The equated representation is shown bel'Dw:

HEX EQUIV

INT lEVEL

IClLl

HEX EQUIV

INT lEVEL

ICll2

o o 7

Note that this corresponds to the machine con­
figuration given in Figure 66.

In the second example, assume

NULEV = 24
Interrupt core load interrupt levels
7, 8, 9 and 19, 20 are required.

The example assumes that levels 10-18, 21-23
contain in-skeleton routines whose servicing can be
delayed until the interrupt core loads have been
serviced. Furthermore, if interrupt core loads on
levels 7 -9 are infrequently used, the normal servic­
ing of in-skeleton interrupts (levels 10-18) would
not be inhibited during the servicing of inte rrupt
core loads on levels 19, 20.

As shown below, to obtain this, IeLLl is equated
to /01C3; ICLL2 to /063F.

HEX EQUIV

INT lEVEL
ICll1

HEX EQUIV

INT lEVEL

ICll2

o

o

C ~.

6 3

NUMBER OF CALL COUNT SUBROUTINES
REQmRED BY USER

Call Count subroutines are user-written servicing
routines which are assigned by *INCLD control cards
to be included in the skeleton area when the skeleton
is initially built. Their function is to service TSX
CALL COUNT statements.

Examples of the use of count routines are:

1. Scanning variables at periodic intervals
2. Initiating control adjustments at appropriate

times
3. Constructing a log

Count servicing may also be achieved by not in­
cluding a subroutine. In such cases, the event is
only recorded during the normal processing of core
loads, and later serviced by a CALL QIFON or
CALL CLEAR statement in the mainline program.

In practice, count subroutines should have short
execution times and are normally only used to set
an indicator, such as the setting of a programmed
interrupt to some lower priority level, or queueing a
mainline core load. For example, if a count rou­
tine is used to run a scan, the scan should be run
from a lower priority level. This means that the
count subroutine then sets a programmed interrupt:
the scan routine itself could be in the skeleton, in the
mainline or on the disk since programmed interrupts
have the same capabilities as process interrupts.
If a log is required, the log core load should be
queued from the count subroutine. This means that
the count subroutine calls QUEUE specifying a main­
line core load. The log core load would then be exe­
cuted in sequence according to the priority assigned
to it. If time-sharing is used, a CALL ENDTS
statement should be included within the count routine
immediately following the CALL QUE UE.

The number of count routines planned by the user
is punched in the NITP1 and NITP2 System Director
equate cards. For example, if the user elects to
use a total of 12 (Skeleton-included and recorded)
count routines in his system, NITP1 and NITP2 are
equated to 12 and 00, respectively. See also example
in Figure 66.

During System Director assembly time, an allo­
cation of two words per entry is set up in the Inter­
rupt Core Load Table for the start address of each
count routine, as illustrated in Figure 70.

If a count routine is included in the skeleton area,
the Skeleton Builder, at skeleton build time, places
its start address in the ICL table. On the other hand,

if a routine is not included in the skeleton area,
the numbered count only will be recorded during
the normal processing of core loads. That is, a
corresponding bit is "set on" by ITC in the ICL
table and the servicing timer for that event is
turned off. This means that the user may want to
"wait" on one of the count indicators to "come on"
(recorded) prior to servicing an event. This indi­
cator is later reset by the CALL QIFON or CALL
CLEAR statement when requested by the user.

The size of the ICL table is determined at
assembly time from data given in the equate cards.
Its entries are inserted by the Skeleton Builder and
DUP. A maximum of 32 count routines is allowed.

DISK SYSTEM CONFIGURATION

Magnetic tape oriented systems are of value when
applied to pure data acquisition tasks where very
large storage requirements exist. It has been
found, however, where control is involved, that
core storage must be supplemented by a rotating
memory such as a disk file to operate an efficient
monitor program. The data transfer rate of 32K
words to and from each disk, the shorter seek time
and higher reliability of a disk file make it ideally
suited for process control and data acquisition
purposes.

In the IBM 1800 Time-Sharing Executive System,
the software design concept is based on the use of
a key unit -- a Single, high-capacity disk storage
unit (the IBM 2310 Disk Storage Unit) as a program­
ming systems residence device.

Conceptually, the disk is treated in much the
fashion as a reel of magnetic tape, and organized
in a sequential manner. Anyone segment of the
disk is quickly available by moving the access
mechanism directly to the starting point of a block
of information, and serially transferring data. This
approach also permits the user to easily store and/
or retrieve blocks of data such as core loads, pro­
grams, matrices, and tables. The ability to read
and write data on the same device allows the user
to modify resident programs without the necessity
of a second storage unit, such as in magnetic tape
systems.

The disk cartridge is designed to permit rapjd
interchange of disks under conditions which afford
adequate protection of recording surfaces. The
cartridge design also ensures precision control of
disk rotation at high speeds past the recording heads.

System Design Considerations 147

Up to three disk drives are available with the
1800 system. Typical disk uses include the fol­
lowing:

1. The disk file is well suited for the storage of
executi.ve programs, subroutine libraries,
diagnostic routines, etc., as well as the imple­
mentation of the 1800 FORTRAN language.

2. As a storage device for recording raw data,
the disk file is extremely inexpensive, and
obviates the need for the more costly magnetic
tape drives.

3. As a device for storing edited or corrected data,
the removable disks can be transferred for
permanent storage or for use on another 1800
machine for off-line computations.

4. It can be included to allow additional working
storage for customer programs, or it can be
used as a "spare file" for greater reliability
and maintenance flexibility.

Furthermore, the disk cartridge allows each USl3r
at a system installation to "customize" standard
programming packages, and to in<~lude his own sub-­
routines and programs according to his particular
needs. Tailoring resident-device. characteristics
to match the performance of the processor-controller
makes it possible to balance the system for optimu.:m
perforlnance.

DISK ORGANIZATION

The 2315 Disk Cartridge is organized into 200 cyl­
inders (plus three spare cylinders) of two tracks
each: one track per disk surface. For ease of
block handling, each track is further divided into
four sectors, each sector having a fixed length of
320 sixteen-bit words. The sector is defined as
the basic addressable unit of disk storage for readi!!&..
and writing.

Information is written on or read from the disk
by a pair of magnetic read/write heads, one head for
each surface of the disk. The three spare cylinders
ensure that the stated capacities are maintained fm~
the life of the cartridge.

Figure 71 illustrates the relationships between
bits, data words, disk blocks, sectors, tracks, and
cylinders for a disk storage unit.

148

~] B Word Disk Block Sector Track Cylinder Disk

Bits 16 320 5,112 20,480 40,960 8,192,000

Data Words 20 320* 1,280 2,560 512,000

Disk Block 16 64 128 25,600

Sectors 4 8 1,600

Tracks 2 400

Cylinders 200

*These follow the first actual word of each sector, which is used for the oddres;,

Figure 71. Disk Storage Unit Conversion Factors

Sector Numbering and File Protection

In the interest of providing disk features permitting
versatile and orderly control of disk operations,
two important conventions have been adopted which
govern sector-numbering and file protecUon. Suc­
cessful use of the disk subroutine, DISKN,. can be
expected only if user programs are built within the
framework of these conventions.

The primary concern of the conventionB is the
safety of data recorded on the disk. To tbis end,
the file protection scheme plays a major role,
but only in a manner that is dependent upon the
sector-numbering technique. The latter contributes
to data safety by allowing the disk subroutine to
verify the correct pOSitioning of the access arm
before it actually performs a write operation. This
verification requires that sector identifica~tion be
pre-recorded on each sector, and that subsequent
writing to the disk be accomplished in a manner that
preserves the existing identification. DISKN has
been written to comply with these requirem.ents.

Sector Numbering

Each disk sector is assigned a logical address
from 0, 1, ...•.... 1599 corresponding to the
sector's position in ascending sequence of cylin­
der and sector numbers from cylinder zero (outer­
most), sector zero through cylinder 199 (inner­
most), sector 7. Since the disk cartridge is
divided into 1600 sectors, DISKN can now address
anyone of these sectors.

This sector address is recorded by a standard
TASK utility program (TDWA) in the sector's first
word, and occupies the rightmost eleven bit posi­
tions. Of these eleven positions, the three low­
order positions serve to identify the sector (0-7)
within each cylinder. Utilization of this first word
for identification purposes diminishes the per sector
availability of data words to 320; transmission of
full sectors of data is therefore performed in units
of this amount.

File Protection

File protection is provided to guard against the
inadvertent destruction of previously recorded data.
This control can be achieved by having the normal
writing functions uniformly test the file-protected
status of cylinders they are about to write.

File protection is implemented in the TSX system
by defining any cylinder as being file protected or
not file protected. The DUP *DWRAD function is
used to designate file protection. If a cylinder is
file-protected, the sector address on that cylinder
will contain a one-bit in bit position zero of the
sector address word.

Disk Layout

The two hundred cylinders of a disk cartridge for
a single disk-drive TSX system are divided into
two major logical sections for system operation:
a nonprocess portion and a process portion as shown
in Figure 72. The nonprocess portion, known as
the IBM Systems Area, is used to store the integral
component parts of the IBM Nonprocess System as
discussed under System Design Considerations: The
IBM Nonprocess System.

Areas of disk storage contained within the process
portion will now be explained in some detail. These
areas are, in general, automatically assigned by the
system, but they vary in size depending upon the
disk system configuration and customer definition.
As will be shown later, some of these areas can
be modified, removed, or relocated to another
storage device.

User Area. The User Area is so called because it
is used to store user-written as well as IBM­
furnished subroutines. It is variable in length and
is file-protected. It is divided into two component
areas:

1. Relocatable Subroutine Area -- an area where
all relocatable IBM and user-written subrou­
tines are stored (not shown in Figure 72).

2. Relocatable Program Area -- an area where
all user-written nonprocess relocatable pro­
grams are stored as a result of a DUP *STORE
control record function. This is a user-defined
area -- that is, its boundary increases or de­
creases Nonprocess Work Storage as programs
are deleted or added respectively. The number
of sectors required for a program to be stored
is subtracted from the Nonprocess Work Stor­
age if they are both assigned to the same disk
cartridge. When a program is deleted (by an

T IBM
FILE SYSTEMS

PROTECTED
AREA

,. RELOCATABLE PROGRAM AREA ----------n
NONPROCESS WORK

STORAGE

ERROR DUMP AREA

ERROR SAVE AREA

NON-
PROTECTED NONPROCESS SAVE AREA

AREA
MESSAGE BUFFER

PROCESS WORK STORAGE

FORTRAN I/O SAVE AREA

" INTERRUPT SAVE AREA

jl
CORE LOAD

AREA

SPECIAL SAVE AREA

FILE PROCESS SAVE AREA
PROTECTED

~
SKELETON AREA

ERROR PROGRAMS

COLD START

Figure 72. Disk Layout of a Single Disk Drive
TSX System

T
NONPROCESS

PORTION

" h

PROCESS
PORTION

,r

System Design Considerations 149

*DELETE function), a separat;e DUP *DEFINE
PAKDK operation must be performed to repack
the area. The reason for this is that the relo­
catable program has not been overlaid and
packed -- the area it occupied is thus not avail-­
able for program storage. The *DE FINE
PAKDK operation will cause this area to be
incorporated into Nonprocess Work Storage.

The packing operation could be executed
each time an *DELETE function specified a
nonprocess program, but since this operation
need not be performed unless a shortage of
nonprocess area develops, and since the pack­
ing takes some time, it is only carried out at
periodic intervals when the *DE FINE PAKDK
control record is processed. The user should,
however, assure himself that he has a satis­
factory audit trail in the event some informa­
tion is lost during the running of the disk packing
operation.

Note that the area available for user programs
can be expanded by using the *DEFINE REMOV
function to remove the Simulator, Assembler, or
FORTRAN Compiler. As an example, if all three
programs are removed, the nonprocess system will
be reduced to about 11 cylinders. A Relocatable
Program Area can be assigned to each of up to
three drives.

Nonprocess Work Storage (NPWS). This area is
always adjacent to the Relocatable Program Area,
and is used for temporary storage during the exe­
cution of nonprocess programs. It is used exten­
Sively during the operation of the Nonprocess Moni­
tor. For example, it is used by the Assembler
during the assembly of a program and to store the
successfully assembled program in relocatable
format. In a FORTRAN nonprocess program, the
DE FINE FILE statement can refer to this area.
The Nonprocess Work Storage is variable in length,
and increases or decreases as programs are added
to or deleted from the RelocatableProgram Area.
A NPWS area can be assigned to each of up to three
disk drives.

Error Dump Area (EDPM). When a machine error
occurs, the TSX Error Alert Control (EAC) pro­
gram optionally writes all of core to this area on
disk. The number of sectors used is directly
proportional to object core size: a 32K object core
requires 103 sectors, 16K requires 52 sectors, and

150

8K requires 26 sectors. This is a user option
specified at system generation time.

Error Save Area (EPSV). This area is uSl9d when
EAC is executed to save the portion of variable core
used by the error detection program. An Error
Save Area of six sectors is always automalCically
allocated when the E parameter (see The DEFINE
CONFG Operation) is specified. Only one such
area is required.

Nonprocess Save Area (NPSV). An area 0]11 disk
used to save a partially completed nonprocess
(time-shared) program that must be saved when
time-sharing is terminated. A NPSV equal to
variable core is always automatically assigned to
the disk. No such area is required if time-sharing
is inoperative.

Message Buffer (MESS). An area used to buffer
1053 messages when a WRITE to a 1053 occurs
while the 1053 is busy. Its length is established
at TASK assembly time (see System Desigll Con­
siderations: TASK).

Process Work Storage (PRWS). Area used for
temporary data storage during the execution of
process programs. It is user-defined and can be
specified on each of up to three disks, but only one
such area can be specified in anyone *DEFINE
CONFG control record.

FORTRAN I/O Save Area (FIOS). Area used to
save the FORTRAN I/O buffer area when a. higher
level interrupt uses FORTRAN I/O. The u.ser
specifies the number of interrupt levels that use
FORTRAN I/O -- the system then reserves two
sectors for each interrupt level plus two additional
sectors if time-sharing is operative.

Interrupt Save Area (INSV). An area of disk used
to save a user-specified variable area of core when
an out-of-core interrupt occurs. This is user­
defined and must be equal in length to the largest
interrupt core load used. The area should also be
large enough to include the amount of COMMON
used for communications between the mainline and
the subprograms in the interrupt core load.

Core Load Area. An area of disk set aside for
the storage of core loads as a result of a DUP
*STORECIoperation. Data files are also stored

here. The *FILES control record can refer to
data files located in this area.

All programs and data files stored in the Core
Load Area are assigned fixed disk locations. This'
permits the disk location of a process program to
be kept with the calling program, and results in
faster access to the program. A Core Load Area
can be assigned to each disk.

Special Save Area (SPSV). An area of disk used to
save the variable area of core when a CALL SPE CL
is executed and time-sharing is inoperative. When
time-sharing is specified, this area is not required
unless time-sharing is entered from a core load
that was entered with a CALL SPECL.

Process Save Area (PRSV). Area used to store the
variable area of core when a CALL SHARE or a
CALL VIAQ (with an empty queue) is entered.

Skeleton Area (SKEL). Used to store a core image
copy of the TSX System Skeleton. See System
Design Considerations: System Skeleton.

Error Programs (EDP). This area is always re­
quired, and is used t.:> store the disk portion of the
TSX error analysis program. This program is
executed when a machine error occurs.

Cold Start (CLST). This area holds the TSX Cold
Start program -- which is the program that starts
the TSX system into operation by loading the System
Skeleton to core and transferring control to the
System Director.

THE DEFINE CONFG OPERATION

At an appropriate stage in system generation, the
establishment of the user's disk configuration and
changes to that configuration are performed using
the CONFG code in an *DEFINE operation. The
definition or redefinition of some of the parameters
consists of changing a stored value on disk.

In some cases, however, the results of the defi­
nition are interrelated with the user's routines, and,
as a result, the Skeleton Builder must be executed
after these definitions are made. This is most
notably the case when the size of the System Skele­
ton is changed to accommodate additional programs
or data areas.

Since this operation establishes the lengths of
several related disk areas, and since the user may
perform the redefinition several times before a
final determination of the contents of the System
Skeleton area is made, the DEFINE operation is
designed to establish all of these areas using a
small number of configuration control records.

*DE FINE CONFG Control Card

Figure 73 gives an overview of the DEFINE CONFG
operation for a single drive system. The *DEFINE
CONFG control card is used when the user's vari­
able areas are established on disk. Several types
of definitions may be necessary depending upon
the information punched in the card.

The control card contains a field of consecutive
columns which are punched with a string of one or
two character codes that have special meaning in the
CONFG routine. These characters are each fol­
lowed by a disk drive code to specify the drive(s)
where the areas are to be established.

The areas are normally taken from the highest
numbered sectors of Nonprocess Work Storage, and
in the same sequence as specified for that drive in
the string the user punched in the CONFG card (ex­
cept for M on a one-drive system).

Other fields in the card permit the user to speci­
fy lengths for areas that are not fixed by the system.
These include the length estimated for the System
Skeleton in core, the interrupt area utilized for
out-of-core interrupts, the core load area on disk,
the process work storage on disk, and the FORTRAN
I/O save area on disk.

The user must execute the DEFINE CONFG oper­
ation before he builds his skeleton. If areas estab­
lished by this definition turn out to be incorrect due
to miscalculation of user requirements, he will prob­
ably have to re-define them, and if LSKEL is too
small and cannot be increased, rebuild his skeleton
since this will not be known until Skeleton build time.

Each CONFG control card can define up to 11
user-assigned disk areas. In practice, two or
three control cards should be necessary to define
even the most complex systems.

In referring to Figure 73, we note that the user
may employ up to nine different alpha characters
in any flexible order to specify a maximum of 11
user-assigned areas, each area being related to its
specific disk drive. Since we are primarily con-

System Design Considerations 151

ce!ned with a one-disk system, disk drive zero
will be indicated.

Consider the general case of an *DE FINE
CONFG control card with all nine possible alpha
character codes punched in the first field, as
shown in Figure 73.

*DEFINE
CONFG

XO MO 10 FO PO NO D EO LSKEL

!

In executing the *DEFINE CONFG operation,
the define routine first establishes the legality
of the control card, then scans the field starting
at column 15, and interprets each alpha character
in turn from left to right. Simultaneously, it
establishes areas on the system disk drive

LlNSV LlCP LPWS FS

1 1 1 \
LENGTH OF LENGTH OF LENGTH OF LENGTH OF NUMBER OF

FORTRAN I/o SKELETON
IN WORDS

!

,r , r , r r

-
..

.-""

-'"

..
--'" --. ..

Figure 73. Overview of the DEFINE CONFG Operation (Disk Drive 0)

152

INTERRUPT CORE LOAD PROCESS
SAVE AREA AREA IN WORK STO RAGE INTERRUPT
IN WORDS CYLINDERS IN CYLIND ERS LEVELS

DCOM
MBT-AT

SKELETON SUBROUTINE MAP
NONPROCESS SUPERVISOR

DISK UTILITY PROGRAM

ASSEMBLER

FORTRAN COMPILER

SIMULATOR

LET-FLET

SUBROUTINE LIBRARY

NONPROCESS
WORK

STORAGE

ERROR SAVE AREA

ERROR DUMP AREA

NONPROCESS SAVE AREA

PROCESS WORK STORAGE

FORTRAN I/O SAVE AREA

INTERRUPT SAVE AREA

MESSAGE BUFFER

CORE LOAD AREA

SPECIAL SAVE AREA

PROCESS SAVE AREA

SKELETON

ERROR PROGRAMS

COLD START

FILE
P~:OTECTED

FILE
PROTECTED

specified in the exact sequence of parameters
punched in the card.

The disk is configurated from its highest ad­
dress upwards, and definition of user-assigned
areas proceeds step-by-step vertically until the
scanning of the parameter columns is terminated
by a blank (see Figure 74).

In initial system generation, that is, when a
new disk system is first created, certain system
areas are always established at the high address
end of disk by specifying the S parameter in column
15. These areas constitute a basic set of programs
and disk areas that are required by the system, and
are file-protected at all times. They are shown
below (Figure 75) in their correct sequence of
allocation.

Each of these programs and areas except the
Core Load Area must be defined for only one
drive in the system.

Note that the Special Save Area is included within
the specification of the S parameter, only if S is
immediately followed by an X in column 16.

At this point, a word of explanation is given on
the establishment of the Message Buffer Area
(MESS). This buffer (together with the Error Pro­
grams and the Cold Start Program) is always de­
fined at the time the IBM Nonprocess System object
deck is loaded to disk by the System Loader (which
computes the MESS length from data punched in the
*DEDIT and TASK equate card, NOCYL). Its proper
location at the high end of disk at the end of the
loading operation is shown in Figure 76.

At DEFINE CONFG time, the location of MESS
is redefined, that is, it is bodily moved to a dif­
ferent location on the disk. For example, if the F
parameter immediately follows SXO in the control
card, MESS will be reflected as in Figure 77.

DISK

DRIVE

ZERO

HIGHEST
DISK ADDRESS - - -'----------'-

DIRECTION
OF DISK
CONFIGURATION

Figure 74. Illustrating Direction of Disk Configuration

(-.I

CORE LOAD AREA

SPECIAL SAVE

PROCESS SAVE

SKELETON

ERROR PROGRAMS

COLD START

FILE
PROTECTED

_____ 1
Figure 75. Establishment of System Areas at High Address

End of a Disk

MESSAGE BUFFER

ERROR PROGRAMS

COLD START

Figure 76. Establishment of Message Buffer Area at System
Load Time

FORTRAN I/O SAVE

MESSAGE BUFFER

CORE LOAD AREA

SPECIAL SAVE

PROCESS SAVE

SKELETON

ERROR PROGRAMS

COLD START

FILE
PROTECTED

Figure 77. Illustrating }Redefinition of the Message Buffer Area

System Design. Considerations 153

The Message Buffer Area always precedes the
Core Load Area on a one-drive system. Note,
however, that if MESS is not required, that is, no
provision is made for it in the *DEDIT control card,
M should not be specified in the *DE FINE CONFG
control card, and no redefinition of this area takes
place.

Exa~ples of Disk Configurations

The following examples illustrate typical disk con­
figuration operations.

EXAMPLE 1. Define a single drive disk system
such that logical disk drive zero shall contain the
following areas:

• Core Load Area: 30 cylinders

• Proeess Work Storage: 6 cylinders

• FORTRAN I/O Save Area: 4 sectors

• Interrupt Save Area: 2000 words

• Skeleton Area: 16, 000 words

• Message Buffer: 6 cylinders

• Error Dump Area

.' Error Save Area

• Nonprocess Save Area

A 32K system is assumed.
It is the user's responsibility to specify the

lengths of the first six areas required: the DEFINE
CONFG function automatically computes and allo­
cates the remaining three areas. Since a 32K
machine is used, an Error Dump Area equal to
object core size (32K) and a Nonprocess Save Area

154

equal to variable core (16K) are assigned to the
disk. An Error Save Area of six sectors il3 always
automatically allocated when the E parameter is
specified.

The control card sequence for this operation is:

SAMPLE CODING FORM

J.!..ll-l....l:!J!!.I!!L.L..J..-'lL!>LL...L.l....L.Lu.J--L.J.-L.L-L.LJL.L.l-L.L--'--L.LLL.L.1-'--1~LLL.W. I I I I I ! ! I I

1!-I!-l~~~r..:cc.LJ::.J=::L...LL.L.L~--'--L...L.LJJ-L.-'-'-'--L.L..l._ili~~~
LLJ....l..J.....LL..L.LJL.L.L...L.l....L.LLLl--L.J.-L.L-L.LJL.L.l.....L.L--'--L-'--'---'L.L.1-'--1 I I , I II I _LLLJ...L.L..L.L..l

Figure 78 reflects the disk layout for disk drive zero
on completion of this function.

IBM SYSTEM I-- filE PROTECTED

NONPROCESS
WOR K STORAGE

PROCESS
WORK STORAGE

NONPROCESS SAVE

FOR I/O SAVE

ERROR SAVE

ERROR DUMP

INTERRUPT SAVE

MESSAGE BUFFER

CORE LOAD
AREA

SPEC IAL SAVE

PROCESS SAVE FILE PROTECTED

SKELETON

ERROR PROGRAMS

COLD START

Figure 78. Disk Layout of Disk Drive Zero for Exampll~ 1

EXAMPLE 2. Define a three-drive TSX on-line
system as follows:

Drive Zero

Drive 1

Drive 2

Label this disk cartridge: 13579
Core Load Area = 30 cylinders
Process Work Storage = 5 cylinders
FORTRAN I/O Save Area = 24 sectors
Skeleton Area = 16384 words
Nonprocess Save Area

Label this disk cartridge: 12345
Establish a LET/FLET area of 2 cyl­
inders
Core Load Area = 100 cylinders
Process Work Storage = 10 cylinders
Message Buffer = 6 cylinders

Label this cartridge: 09876
Establish a LET/FLET area of 1 cylinder
Core Load Area = 125 cylinders
Interrupt Save Area = 2048 words
Error Dump Area
Error Save Area

A 32K system is assumed.
As this is a multi-drive system, the total num­

ber of disk drives available to the system must be
defined. Remember that the System Loader
assumes at system load time that only one disk
drive (logical disk drive zero) is present on the
system; DCOM thus indicates only one disk drive.
The *DEFINE NDISK is therefore a redefinition of
the system: this must always be performed before
the skeleton is built.

Disk cartridges, other than that on logical drive
zero, which are intended for system usage are then
initialized by the DUP *DLABL function. Since
disk drives 1 and 2 have not previously been identi­
fied as system drives, they are cleared (including
file-protect bits), disk addresses are written, a
LET/FLET area is established as specified, and a
label written on each disk cartridge. In the case
of disk drive 2, a one-cylinder LET/FLET area
is defined by default. Logical drive zero is re­
labelled with 13759.

A separate *DE FINE CONFG control card must
be used for each disk cartridge if it is to contain a
Core Load Area and/or Process Work Storage.
Note that S is only used to specify a basic set of
system programs/areas, which includes the Core
Load Area, for the system drive (logical drive
zero). The parameter C, indicating a Core Load
Area, is only used for auxiliary disk drives (drives
1 and 2).

As pointed out in Example 1, it is the user's
responsibility to specify the lengths of the following:

Core Load Area
Process Work Storage
FORTRAN I/O Save Area
Interrupt Save Area
Skeleton Area
Message Buffer for 1053 Printer

The *DEFINE CONFG function automatically
computes and allocates disk storage for:

Error Dump Area
Error Save Area
Nonprocess Save Area
Nonprocess Working Storage

In our example, since a 32K machine is implied,
an Error Dump Area equal to object core size (32K) ,
and a Nonprocess Save Area equal to variable core
(16K) are allocated. An Error Save Area of six sec­
tors is automatically set aside whenever E is speci­
fied. Note that Message Buffer Size is determined by
the TASK equate card NOCYL at TASK assembly time.

Figure 79 reflects the layout of the three disks
following configuration.

The control record sequence for this multiple
operation is given below:

SAMPLE CODING FORM

1!LL~:U!I~~~~-..LLLLLLLJ.~-L.LLLLLLL-LLl...LL~--1_.LLh, .. .LLLlj._L.L i I ~ .LI.1 j

Lu....LLl--l--1-J--Ll....JL.L.L.!....U..LLJ-..LLLLL.L.L.l--'-.Ll...LLL..LL.LLL..L.Ll--L-L'--'-L...--L..LLLLl. J. L ~L-.LL . .l.. j J L..J 1 I

System Design Considerations 155

U:T/FLET

IBM SYSTEM

NONPROCESS

WORK
NONPROCESS

STORAGE
WORK

STORAGE

_.
PI<.OCESS

PROCESS WOR K STORAGE
WORK

f---.
STORAGE

NONPROCESS SAVE AREA

f---.

FORTRAN I/O SAVE AREA
MESSAGE BUFFER

f---.
CORE LOAD AREA

SPECIAL SAVE AREA

PROCESS SAVE AREA CORE

LOAD SKELETON
f---.

ERROR PROGRAMS AREA

COLD START

DISK DRIVE 0 DISK DRIVE 1

Figure 79. Definition of a Three-Drive TSX On-Line System for Example 2

EXAMPLE 3. Define a three-drive TSX off-line
system as follows:

12.!:iYe Zero

Drive 1

Drive 2 -----

Core Load Area = 50 cylinders
T ASK Skeleton Area = 8000 words
Message Buffer Area = say 6 cylinders
Process Save Area

Label this disk pack: 12635
Establish a LET /FLET area of 2 cylinders
Core Load Area = 50 cylinders

Label this disk pack: 23764
Establish a LET/FLET area of 5 cylindors
Core Load Area = 50 cylinders

A 16K system is assumed.
The number of disk drives available to the off­

line system is first defined, as in Example 2. Disk
drives 1 and 2 are then initialized, and LET/FLET
areas established (see Figure 80). Since each disk
cartridge is to contain a Core Load Area, a separ­
ate control card is used to define each cartridge.
Note that the skeleton area on logical drive zero is
configu:rated to hold the TASK monitor system.

156

: 2 CYLS

i
10

CYLS

1

i
100

CYLS

~

LET/FLET

NONPROCESS

WORK

STORAGE

ERROR SAVE

ERROR DUMP

INTERRUPT SAVE

CORE

LOAD

AREA

DISK DRIVE 2

t 1 CYL

i
125

CYLS

!
-1 = FILE I?ROTECTED AREA

Figure 80 reflects the disk layouts of the off-line
system.

The control record sequence is given below:

SAMPLE COOING FORM

f'-'!J.-'=LL..I.-"-,--L.Ll....J....LLLJ....LL.L.L..J-L.l.-.L.L.JC-II-L..L1 !-' U' '--'-' -,--I .L' 'LJ.I--'I~J. ... LL.L.U_LLb. I , , I , , , , I , , , , I

FI==~CL<"'-"''''''''''=:L.LJL.LJ....l....L....,L....l,....L,-'--1 J!<,~""'a=G,~<T.I¢"--, 'LL' ~_L-...lJ.J.-L..LhL~
f.'-L'-L~:l:LJ.-'-'--LLJ...J.....ICLJ....J.-L.J!'IL.L.J-L.l.-.L.L.JL....LL-'--'-L .J'-1.' -,--I .L' 'U'-1.' --,-I .L!.' , , , I , , , , I '.-L.LL I ' , , , 1 , , , , I

J!..l!l~.D...J.--'--'--LLJ....l....LL.LJ....l....L.L.LJ-L.l.-l....Ll , , I , , , , I , , , , I , , ~-L--'-.J.J....t . ..LL.Ll, , , , I , , , , I
~~=~r.u:::"""O'=..J....LLl.l....L.LLl........... " I, , , ,I" , , I, ,~..lL.-'-~.LJ.J....J.....L..L.J....l

--I LET!FLET

IBM
SYSTEM

NONPROCESS

WORK

STORAGE

NONPROCESS

WORK

STORAGE

CORE

LOAD

AREA
I NTERR UPT SAVE

MESSAGE BUFFER

CORE LOAD AREA

PROCESS SAVE

TASK

ERROR PROGRAMS

COLD START

DISK DRIVE 0 DISK DRIVE 1

-i INDICATES FILE PROTECTED AREA

Figure BO. Definition of II. Three-Drive TSX Off-Line System for Example 3

DISK CARTRIDGE INITIALIZATION

There are three programs within TSX concerned with
disk cartridge initialization.

• TASK DISK WRITE ADDRESS (TDWA, a TASK
utility program)

• DWRAD (aDUP function)

• DLABL (a DUP function)

A comparison of their features is given in Table
13 at the end of this section.

Use of TDWA

A disk cartridge cannot, by definition, be used for
proceSSing functions unless it is first initialized by
TDWA. Thus, whenever a disk cartridge is initially
supplied, or is to be re-initialized, TDWA must be
used. This operation is carried out in the off-line
mode under TASK control (e. g., at system genera­
tion time).

~ 5 CYL

1
150
CYL

LET/FLET

NONPROCESS

WORK

STORAGE

CORE LOAD

AREA

DISK DRIVE 2

~5 CYL

t
50

CYL

l

TDWA performs two basic functions: it (1) checks
the ability of the disk to record and reproduce infor­
mation, and (2) writes addresses on the disk, flags
defective cylinders, zeroes all storage words, and
records the first sector of each defective cylinder on
sector zero of the disk cartridge which is file­
protected. TDWA does not label the disk cartridge.

A practical example of the initialization of a two
disk-drive system is given in Programming Techni­
ques: TSX Sample System. For TASK DISK WRITE
ADDRESS system procedures, see IBM 1800 Time­
Sharing Executive System, Operating Procedures,
Form C26-3754.

Use ofDWRAD

DWRAD allows the user to perform in an on-line or
off-line mode the following functions:

• Rewrite sector addresses in any specified
cylinderized area on any disk cartridge

• Retain or save the contents of the sectors
indicated, if desired, for analysis purposes

System Design Consideratious 157

• Zero from one to 199 cylinders as specified
(except cylinder zero)

• Enforce file protect or file unprotect on the
entire area specified

DWRAD does not label the disk cartridge.
As disk sector addresses may be inadvertently

modified or destroyed during the execution of user
program.s, such as in the transfer of data to core
by a READ command, or by hardware failures,
DWRAD provides the user with the ability to rewrite
sector addresses of specified areas without recourse
to a re-initialization process by TbWA. Whenever
addresses in a certain area are destroyed, data can­
not be retained or preserved in these sectors; the
area m.ust be readdressed and the. data zeroed.

The file protect/file unprotect feature is useful
in those situations where the user desires to en­
force or remove file protection from a specified
disk file or systems area. He might, for example:,
require to remove file protection from a certain
portion of the Core Load Area for Assembler
WRITE operations, and later restore file protection
to that area.

The following examples depict typical operatiom3.

EXAMPLE 4. Two cylinders beginning at sector 408
and ending at sector 417 are to be file protected.
Assum.e that the disk cartridge is on disk drive zero.
Information on these cylinders is not to be changed.

SAMPLE CODING FORM

/ / ~L.L.L1LLLlJ_Lu I I, I , 1 I , 1 1 , '--L .. l.~LLLI , III 1 1..Lu..~

w.~~~_LL..Ll 1 1 I ,41~8, I ,4Il2t..-LLl...LtL.L.l..J I I 1 I I 1-LLL..Lu..~
I I [~lo,F, JA,l-Il., r1tO~S, I I I I I I I I I I I '-.L_LLl..LL.~~..Lu...J.....Ll

L ~~L.L.L..Ll..LL1 I I" I I 1~L...L.l....L.LLL .. .L.D_.Ll.....L.L..L.....L.J.....Ll
~~, 1 I ,I,, I I I, I 111 .. LLL.LLLLL..L.lL~ . .J......L.Lk~

EXAMPLE 5. Two cylinders as specified in Exarrl­
pIe 4 are to be file unprotected. Clear all sectors.
Assmne that disk cartridge is on disk drive zero.

158

SAMPLE CODING FORM

...L.l...l....l....l....l...L...L..l-'I.....J.I~Ullllllllll

~~~~~~~~~~~.~~~~~I I~~.I I I I I I I I I I 
~..t=L..:.J~L..I....J:=L...<:J..::..c.J......'-'---'--'--'-LL.l.....L...I.....'L.L.l..~~J-.J.....L.LJJ~ 
F=~~==~~~~~~~_~~~~~I I~~.I II I I I' III 

~~~~~~~~~~~.~~~~~I I~~ 1 1 I I I I I I I I 

11111111111111111

Note that file protection (or the removal of file
protection) will only be effective if the disk drive
indicated (in column 11) is defined to be on the sys­
tem. That is, it is specified on the / / JOB control
card.

EXAMPLE 6. Zero cylinders 2710 to 3210 with
file protection removed. Assume that disk cartridge
is on drive 2.

SAMPLE COIDING FORM

~L..L...J'--'---'---'----'---'----'-L....J.~--,----,--,----,-,--,~~~--,----,--,----,--,--,-... I 1 I, I I,_I, I I I II 1 I I I

P--JL..LJ....:L..l--=-.LJ:...:L:-i-'------'----'---'----'---'--'--'----'-'-'---'--'---'--'--'----'---'--'--'-----'-----'-�_L..L~.1 I I , I I 1 I I I I

~L..L...J~---'----'---'----'-'---'-~~~-'--'--'--'~-'---'-~-'--'--'---'-----'-----'-,~I~I.~.I I I I I I I I I I I
L....l...JL..LJ--'-'---'----'-----'-'-'------'----'---'----'---'--'--'--'--'-'---'--'---'--'--'----'---'--'--'--".....J._L..LLu .. .L.l I I I I I I I I I I ,

Use of DLABL

Disk cartridges on disk drives other than logical
drive zero, and intended for system usage, must be
initialized by means of the DUP *DLABL function.

DLABL serves three purposes:

• Places a label on the cartridge

• Establishes a LET /FLET table

• If certain conditions are met, it also writes
addresses on an entire disk

DLABL places a numeric label, as specified by
the user on the *DLABL control card, in word zero
of sector zero on the disk cartridge. To prevent
users from inadvertently destroying the system, only
the label is written when the disk drive specified is
drive zero, and when the drive is a system drive.
All other data on these cartridges, including defec­
tive cylinder addresses in sector zero, remain un­
changed.

For all other disk cartridges, DLABL assumes
an unlabelled, pre-addressed disk cartridge. It then
clears the cartridge, including the file-protected
areas, but not including the defective cylinder ad­
dresses in sector zero of cylinder zero; writes a
new label, if specified, in word one, sector zero of
the disk, and establishes a file-protected LET/FLET
area (LET in sector one, FLET in the last sector of
the LET /FLET cylinder area). Note that unless the
disk cartridge operated on is located on logical
drive zero, or a system drive specified on the
/ / JOB card, DLABL will erase all data as it
writes addresses, and always establish one file­
protected cylinder.

The size of the LET /FLET area is determined
either by user specification on the DLABL control
card, or, if unspecified,. automatically made to be
eight sectors.

Each DUP *DLABL function must be run as a
separate job; that is, each *DLABL control card
should be preceded by a / / JOB, / / DUP card com­
bination, and should be followed by the next / / JOB
card. It can be performed in either the on-line or
off-line mode.

For typical DLABL operations, see Examples
2 and 3; also, Programming Techniques: TSX
Sample System.

Table 13. Comparison of TDWA, DWRAD, and DLABL Features

FEATURES TDWA DLABL DWRAD

ON SYSTEM OFF SYSTEM

CARTRIDGE YES NO NO NO TEST

ON-LINE
OR OFF-LINE BOTH BOTH BOTH

OFF-LINE

CLEARS YES

CARTRIDGE YES NO YES (BY SPEC.
CYLS.)

FILE PROT.! FILE PROT. FILE BOTH
CYL. ZERO NO (BY SPEC. FILE-UN PROT. ONLY UN PROTECTS CYLS.)

WRITES YES
SECTOR YES NO NO (BY SPEC.

ADDRESSES CYLS.)

WRITES NO YES YES NO LABEL

EST ABLI SHES
LET/FLET NO NO YES NO

AREA

SUMMARY OF DISK STORAGE REQUIREMENTS
AND ASSIGNMENT RESTRICTIONS

1. Disk areas that are fixed and equal for all sys­
tems, regardless of core size. These are il­
lustrated below. Note that these areas con­
stitute a basic nonprocess system.

DCOM

MBT-AT

SK SUB
} 1 CYLINDER

.SUP 11 SECTORS

.CLB 9 SECTORS

.DUP 64 SECTORS

.ASM 40 SECTORS

.FOR 104 SECTORS

.SIM 100 SECTORS

LET -FLET 1 CYLINDER

/EPSV 6 SECTORS

.EDP 30 SECTORS

/CLST 6 SECTORS

2. Disk areas that are not dependent upon core
size, but which may vary in disk storage
requirements

Relocatable Program Area. This will expand
or contract in size as relocatable programs are
added to or deleted from the system.

Nonprocess Work Storage. NPWS will increase
or decrease as relocatable programs and sub­
routines. are added to or deleted from the
system.

System Design Considerations 159

Message Buffer Area. The size of the Messal.ge
Buffer Area is computed by the user and speci­
ned during system generation. The factors
which determine its size are discussed in System
!;Iesign Considerations: TASK.

~:ore Load Area. The size of the Core Load
Area is specified by the user at DEFINE CONFG
time.

System Skeleton Area. This is a copy of the
skeleton area of core; its size is determined
by the formula:

Skeleton Size = Total Core Size Minus Size
of Variable Core

FORTRAN I/O Save Area. The number of
sectors required for this area is determined by
th.e number of interrupt levels which use
FORTRAN I/O. See Disk Organization.

3. Disk areas where storage requirements depend
upon the· size of variable core. These include:

II Nonprocess Save Area

• Interrupt Save Area

• Special Save Area

II Process Save Area

4. Disk areas that must be assigned to logical
disk drive 0:

DCOM
MBT-AT
SK-SUB
SUP
CLB
DUP
ASM
FOR
SIM
IBM Subroutine Library

5. Disk areas that must be assigned to one disk
drive, but need not be assigned to logical disk
drive zero:

160

EPSV
CLST
INSV
ERPG
PRSV
SKEL

6. Disk areas that may be assigned to one disk
drive, but need not be assigned to logical disk
drive zero:

EPDM
NPSV
MESS
FIOS
SPSV

7. Disk areas that will be assigned to the same
disk drive, but need not be assigned to logical
disk drive zero:

PRSV
SKEL
ERPG
CLST

8. Disk areas that can be assigned to m.ore than
one disk drive:

Relocatable Program Area
NPWS
PRWS
Core Load Area

9. Disk areas that must be assigned to levery disk
drive:

LET/FLET

10. Disk File Protection
(a) Certain areas of the disk are fih:l-protected.

This means that the user cannot write into
any of these areas at object time, although
he can update file-protected files by using
FOR TRAN I/O only. System programs
can, however, write into file-protected
areas.

These areas include the follmving:

DCOM
MBT-AT
SK-SUB
SUP
CLB
DUP
ASM
FOR
LET/FLET
IBM Subroutine Library
Relocatable Program Area
Core Load Area
SPSV
PRSV
SKEL
EDP
CLST

(b) User-written programs are stored in the
file-protected areas on disk. Programs
are written into (that is, added to the sys­
tem) file-protected areas by the DUP
*STORE, *STOREMD, *STORECI, and
*STOREDA TA operations.

(c) File-protected areas are fixed in size and
cannot be altered by the user.

SYSTEM SKELETON

In an on-line TSX system, a nucleus of supervisory
programs and their associated work areas and tables
must be permanently core-resident to obtain effic­
ient and continuous operation. At the center of this
nucleus is the System Director which provides the
essential communications between core loads and
interrupt servicing routines. This framework of
programs is referred to as the System Skeleton.

TASK is used in conj unction with the Skeleton
Builder program to construct the in-core skeleton
as required for TSX system operation within the
limits prescribed by the user. The size and content
of the skeleton is dependent on the size of the object
machine, the size of user's process programs, and
the size of process core loads which the user may
plan to move in and out of core during system oper­
ation. The skeleton can be considered as the per­
manent part of all executable core loads.

For on-line processing to take place, the System
Skeleton must be loaded to core memory; this is
accomplished initially by the system cold start pro­
gram.

CONSTITUTION OF THE SYSTEM SKELETON

Figure 81 illustrates the various component parts
that make up the System Skeleton. Each of these
parts and its function are explained below.

Fixed Area. This is effectively a systems commun­
ications area containing information used by all TSX
system programs. It is initially assembled as part
of TASK. At skeleton build time, various values in
this area are initialized by the Skeleton Builder from
System Director input. A disk image of the Fixed'
Area can be obtained by a disk dump of the first
sector of the Skeleton. See Appendix C: Contents
of the Fixed Area of Core.

FIXED AREA

SKELETON I/O

SKELETON COMMON

ICL TABLE
~---- ------

SYSTEM DIRECTOR

INTERRUPT SUBROUTINES

OTHER
USER

SUBROUTINES

PATCH AREA

PROGRAM NAME TABLE

EXECUTIVE TRANSFER VECTOR

EXECUTIVE BRANCH TABLE

SKELETON INTERRUPT BRANCH TABLE

Fi~ 8%. Constitution of the System Skeleton

Skeleton I/O. An identical set of input-output routines
to that used by TASK forms the baSiS of Skeleton I/O.
This permits the user to perform various disk,
printer, and card utility functions (see System De­
sign Considerations: TASK).

Skeleton Common. The maximum size of the Skele­
ton Common area for an object machine is defined
and fixed by the user at TASK assembly time through
the equate card COMSZ. COMSZ may be zero or any
positive decimal value that will not cause the skeleton

System Design Considerations 161

size to exceed the start address of variable core
(that is, VCORE). TASK will determine the start
address and word COWlt of this common area and
store them in words 156 and 157 in the Fixed Area.
INSKE L COMMON is the only conlmon area that is
permanently core-resident. It provides commWlica'­
tions between various core load types, and those sub­
routines included in the skeleton. When INSKEL COM­
MON is referenced in a FORTRAN program, listed
variables are assigned addresses in Skeleton Common.
All other attributes of the COMMON, as used in the
FORTRAN language, are retained.

System Director. This forms the operating center of
the TSX system. It has the responsibility of direct-­
ing interrupt servicing, loading of user core loads,
supervising time-sharing, and servicing of interval
timers and error conditions. When the system is
operating Wlder control of the System Director, con­
trol is passed to it by TSX calls, interrupts, and
error conditions. The System Director is that por-­
tion of TSX, other than the Skeleton I/O, which :must
be in core at all times in order to respond to a real­
time environment. A detailed discussion of its fWle­
tions is given in another section of this manual.

User Subroutines. The user has the option of includ­
ing frequently called subroutines and high priority
interrllpt routines in the skeleton. These may include:

• Skeleton subroutines

• Interrupt subroutines

• Programmed Interrupt subroutines

• Count subroutines

• User-written trace and error subroutines

• Timer subroutines

162

These programs must have previously bElen com­
piled/ assembled by the user and stored in relocatable
format in the Relocatable Program Area on disk.

In addition, if FORTRAN I/O is utilized, then those
conversion routines (e. g., HOLEB, EBPR'I') neces­
sary for its proper use must also be included in the
skeleton by having them specified on *INCLD control
cards. A detailed examination of some of the impor­
tant considerations governing the inclusion of sub­
routines in the skeleton is made later in this section.

Patch Area. This is the portion of core storage that
remains between the end of the subroutine area and
the Skeleton Program Name Table (PNT) which is
allowed (not explicitly defined) for the modification
of IBM and user programs within the skeleton. Its
size is determined by user requirements, but should,
in practice, be at least 100 words in length to allow
for future IBM modifications.

Program Name Table. This is the part of the skele­
ton table area that maps (name, word COWlt, and sec­
tor address) all core loads referenced to F'rogram
Sequence Control (PSC) by calls made by in-skeleton
subroutines. The symbolic name (SYDIR) in trunca­
ted EBCDIC code for the System Director forms the
first entry in this table. See Figure 82.

Executive Transfer Vector (ETV). The Executive
Transfer Vector serves as a linkage between LIBF­
type calls of a core load and correspondin~~ routines
in the skeleton. It is originally constructed by TASK;
for each LIBF routine put into Skeleton I/O by TASK,
an entry is made into the ETV. At skeleton build
time, the Skeleton Builder inserts an entry into the
E TV for each entry point of each LIBF routine placed
in the skeleton, by extending the size of the original
ETV to reflect the entries for the included subroutines.

30BO
30CO
3000
30EO
3DFO
3EOO
3E10
3E20
3E30
3E40
3E50
3E60
3F70

3E80
3E90
3EAO
3EBO
3ECO
3EDO
3EEO
3EFO
3FOO
3FIO

0000
OAEO
OA26
4480
3E59
28B6
44FlO
3E49
2C98
2305
2E3C
4COO
0000

0280
3E5E
3E5E
0000

0000 122AO
13B1 2220
1382 2364
0063 24A4
25E2 4480
4480 3E53
3E4E 0000
lA61 4480
28C8 28C8
IFFI IFA9
2046 2CFA
04F1 4COO
OOOB 4COO

duOl 4026
3E5E 3E5E
3E6C 3E6A
4386 0000

4480
3F5A
0000

4259 0024 0000 220C 1572
91A3 OAEO l3BA ?A14 5480
5544 OB7A 13CC 1 0000 4480
4480 3E50 2600 4480 3E5C
3E58 2507 4480 31:57 250E
lA61 4480 3E52 lA61 4480
4480 3E40 2AFA 4480 3E4C
3E48 0000 4480 3E47 1.3010
28C8 2C21 2BCA 2BBC 2B60
2009 lE90 lF63 108e 2D46
2C34 2781 2f326 2A8A 2A7D
2000 4COO 04F4 4COO OFOA
2FAA 4COO 304C 4COO 313A

COW

OO~ 0010 0010 0051
3E5E 3E5E 3E7E 0018
3E68 3E5E 3E64 3E62
0000 0000 7004 4383
OOBA 0000 0063
25EO 4480 25E2
4480 3E54 4480
3E4F

OC2E 139C 1358 7C75 OD5E 13A6 1358 ' 7080
~ OADC 13C3 0764 1105 116A 138E 0314 9563 SKELETON PNT

00B8 0000 4480 00B9 0000 4480 OOBA 0000
25AE 4480 3E5B 2502 4480 3E5A 25EO 4480
4480 3E56 25E4 4480 3E55 0000 4480 3E54 ~ SKELETON ETV
3E51 29F7 4480 3E50 0000 4480 3E4F 0000
0000 4480 3E4B 0000 4480 3E4A 0000 4480
300~ 2FFO 2860 2B60 2B60 2EB6 2E 9C 2CEC
2B52 29lC 28C8 2896 288C 27CA 27n 270C ~ SKELETON EBT
2EC4 2BOO 2B05 2ABF 2E68 2A78 2AOO 2A5F
2A64 2A4A 29E6 28EE 28A8 2740 J 4COO 1DEF
4COO 0724 4COO 0727 4COO 072A 4COO OC80 4- SKIBT
0000 0003 4COO 0000 0000 0014 4COO 304F --

CORE LOAD STARTS HERE

FORTRAN I/O

134A 0010 0000 3E5E
3E76 3E74 3E72 OOOl)

4 0
0000 4480 00B8 0000

2600 25AE 4480
4480 4480 3(=56 CORE LOAD ETV
3E52 3E51 29F7
2AFA 0000 4480
4480 00 0000
0000 0000 0000

Figure 82. A Partial Dump Following a Skeleton Build to illustrate the Program Name Table and the Executive Transfer VectDr

Each entry in the ETV is three words long, cor­
responding to the format of the VTV table associated
with each core load. When the skeleton build process
is completed, word 3 will contain the address of the
corresponding entry in the Executive Branch Table
(EBT).

The Executive Transfer Vector is, in reality, a
copy or duplicate of the ETV in all core loads, and
is effective only during disk-to-core transfers.

Figure 82 is given to provide a better insight of
the Program Name Table (PNT) and the Executive
Transfer Vector (ETV). It is a partial dump snap­
shot of the skeleton built for the 1800 TSX-Sample
System (see Programming Techniques), and should
be studied in conjunction with the Skeleton Core Map.

Each entry in the PNT is fou,r words in length.
Since the System Director is the first (and constitutes
the minimum) entry in a PNT, let us examine this
entry. From the dump we see

22AOl =
4259

0024

0000

Name (SYDill) of System Director
in truncated EBCDIC form

Number of words in PNT (hexadecimal
value)
Not used

Consider another entry, SCAN2. The dump
shows

220CI
1572

OC2E
139C

Name (SCAN2) of this core load
in truncated EBCDIC form

Core load word count
Disk drive and sector address where
core load resides

In turning to the ETV, we see that each entry is
three words long. Consider the entry DISKN. From
the dump we see

0000
4480
00B8

Entry point to the subroutine ETV entry
BSI indirect branch
Address where subroutine branches
through

Figure 82 also illustrates the Core Load Data
Words (CDW) , the Core Load IBT, the Core Load
ETV, and the FORTRAN I/O table.

System Design Considerations 163

Executive Branch Table (EBT). A map of all LIBF'
and call subroutines in the user subroutine and Sys­
tem Director areas of the skeleton. Each entry is
one word long. The EBT is employed as a transfer
vector:: an indirect branch through the EBT is used
to enter the referenced subroutine.

Skeleton Interrupt Branch Table (SKIBT). A map of
all interrupt servicing subroutines in the skeleton.
It is used in conjunction with the Master Branch
Table (core load header words in sectors 1 and 2 on
disk) to guide the interrupt to its proper routine in
the skeleton. Each entry consists of a two-word
BSC instruction.

The table is built during skeleton build time by
entries put into the MBT. Word 2 of each entry is
filled by a word from the correspqnding MBT entry,
while the location of the SKIBT entry itself replaces
the MBT entry.

SKELETON CORE SIZE

The length of the skeleton in words is defined by th.s
user at DEFINE CONFG time, and given by the param­
eter LSKEL (see System Design Considerations: Disk
System Configuration). LSKEL must be an even value
and is equal to the address of the first word in variable
core (VCORE).

In general, skeleton size is estimated by the user
after making allowances for the System Director,
Skeleton I/O, Skeleton Common, user-written sub­
routines, and the PATCH area. Skeleton Common
and the PATCH area dimensions are determined by
exact user requirements. Som.e of the important fac­
tors influencing skeleton size will now be considered.

Core Storage

The amount of core storage available determines the
number of features which can be included in a TSX
system (see System Design Considerations: Systen!,.
Directo..!'.). For example, is the system an off-line
or an on -line system? Is time-sharing required? Is
the Interval Timer Control feature used?

As a rule, in an on-line system using time-sharing,
variable core must be a minimum of 3692 words. For
example, in an 8K system, the maximum skeleton size
would then be 4500 words (see Figure 83).

If the time-sharing feature is not required in an on­
line system, the in-core skeleton may occupy all of
core less 2500 words. This 2500-word restriction is
necessary because of space requirements for the Cold
Start and Error programs at the high end of core

164

storage (see Figure 84). Under this system, non­
process work would have to be accomplished off-line
under TASK control (see Figure 85).

The maximum size of the skeleton is always dic­
tated by the balance of core storage above the skele­
ton: 3692 words minimum for NonprocesB Monitor
use, or for non time-sharing users, a minimum of
2500 words minimum for the Cold Start and Error
programs.

It should be noted that too small a skeleton may
demand frequent disk exchanges requiring: excessive
time, while too large a skeleton may reduce the var­
iable space available for core loads and thus cause
over-segmentation.

Figures 83, 84, and 85 summarize these rules
for the on-line system (with time-sharing), on-line
system (non-time-sharing) and the off-linle system.

Inclusion of Subroutines in the Skeleton

The user may elect to include interrupt and other
subroutines permanently in the skeleton for more
rapid system response. The criteria governing these
inclusions and the advantages gained thereby are dis­
cussed below.

t VCORE

I (/F1FO)

VARIABLE
CORE

(3692 WORDS)
MINIMUM

1

SKELETON I/O

SYSTEM
SKELETON

USED BY: CORE
LOADS, ASM, FOR,
SIM, CLB

r-.------------

SUP
DUP
FOR
ASM
SIM
CLB

Figure 83. On-Line (Time-Sharing) System

f
eoRE

2500
WORDS

MINIMUM
VARIABLE

CORE

+

SYSTEM

SKELETON

USED BY:

CORE LOADS

Figure 84. On-Line (Non Time-Sharing) System

Response Time. The shortest response time (that is,
the minimum time before an interrupt servicing rou­
tine is entered after a process or program interrupt
is recognized) is obtained by placing the servicing
routine in core with the skeleton. The main advantage
of having as many routines as possible permanently
resident in the skeleton is faster response time.

Commonly-used Subroutines. Subroutines which are
commonly enough referenced in core loads warrant in­
clusion in the skeleton. The advantages derived are:

1. Better utilization of disk user area and core load
area. Every subroutine that is included in the
skeleton is commonly shared by the several core
loads referencing that subroutine. This means
that each core load no longer contains the called
subroutine, thus reducing core load length, and
hence disk space.

2. Since the length of individual core loads has been
shortened, less disk time is required to load the
core load.

SKELETON I/O

TASK

VCORE ~--------------------~

USED BY:

CORE LOADS
ASM
FOR
SIM
CLB

(/F1FO) 1--- --- -----

VARIABLE
CORE

(3692 WORDS)
(MINIMUM)

j
SUP
DUP
FOR
ASM
CLB
SK. BLDR
SYS. LOADER
SIM
TASK UTILITIES

Figure 85. Off-Line System

3. The effect of having a larger skeleton produces
a disk space advantage. A larger Core Load
Area is now possible because save areas, that
is Special Save (SPSV), Process Save (PRSV)
and Nonprocess Save (NPSV) can be smaller. Of
necessity, the Interrupt Save (INSV) Area (as
defined by the DEFINE CONFG parameter (UNS)
can be no longer than the above-mentioned save
areas. It can now be smaller. Furthermore,
the user can now delete those subroutines that
are included in the skeleton from the user area.
This extra space on disk thus gained may be
utilized for other purposes such as work areas
and relocatable programs.

Subroutines Specified in the· CALL TIMER Statement.
Timer servicing subroutines should, as a rule, al­
ways be included in the skeleton. These subroutines
can perform some execution, but it is preferred, if
any I/O device is required, that they Simply set a
programmed interrupt (by a CALL LEVEL (1) or
queue a mainline core load and return control to ITC.

System Design Considerations 165

Consider for example where a mainline calls a tim(~r
as follows:

EXTERN AL SUB1
CALL TIMER (SUB1, 1, INCRE)

The user is responsible to ensure that the mainline
that requested the CALL TIMER statement remain in
core lUltil the end of the elapsed specified time (that
is, until the timer times out). One way of achieving
this is for him to mask out all out-of-core interrupt
levels and not change core loads until the timer inter­
rupts. He thereby ensures that the core load con­
taining the subroutine SUB1 remains in core.

If, however, he does not wish to remain in a
masked state, a second approach is to have previolLsly
included SUB1 in the skeleton. In this way, he does
not incur the penalty of waiting for th~ timer to inter­
rupt, and also gains the advantage of not tying up var­
iable core.

Count Subroutines. The Count subroutine is sirnply
another method of servicing an event. Unlike timer
interrupts, count interrupts may run off a different
time base, and utilize larger time intervals. If the
user plans to use the CALL COUNT statement, he
should remember that for immediate servicing of em
event, it is preferred that he set up these routines as
part of his skeleton. If he does not, the event can be
recorded and subsequently serviced by a CALL QIFON.

I/O Devices and their Associated Conversion Subrou­
tines Required for FORTRAN DP I/O. On an on-line
TSX system, the normal DP I/O utility functions are
carried out by a package of skeleton I/O routines
which also forms the basis of input-output operations
in TASK. That is, the same set of I/O routines exist
in TASK and the System Skeleton.' Since the TSX Sys­
tem is a disk operating system, DISKN will be in core
(that is, in the skeleton) at all times. If a 1053 print­
er or a 1816 keyboard/printer has been specified in the
assign:ment stage, TYPEN/WRTYN must also be per­
manently in core. Similarly, if a 1443 printer has
been assigned, PRNTN must be resident in the skele­
ton I/O area. These routines are automatically in­
cluded in the System Skeleton at skeleton build time.

Although CARDN is always resident in core during
TASK execution, this routine is an optional part of the
Skeleton I/O, depending on user requirements. The
user nlUst, however, define at TASK assembly time
(by equating CDINS to 1 or 0) whether or not CARDN
is to be in the skeleton. If it is not included, it will
be loaded as a part of those core loads which address
the card reader. Note that in this event, the non-

166

process components (such as the Assembler,
FORTRAN Compiler, etc.) use their own card I/O
routine.

If the user intends to do FORTRAN DP I/O from
the skeleton, he should ens ure that the conversion
subroutine associated with any DP I/O device used by
skeleton subroutines be included in the sk,sleton. He
does this by means of an *INCLD control ,card at
skeleton build time which loads the appOinted con­
version routine from the IBM Subroutine Library.

Figure 86 shows the relationship between each
DP I/O device and its associated pair of function and
conversion subroutines. For example, the 1442 card/
read punch unit is associated with CARDN (its func­
tion routine) and HOLEB (its conversion routine).
Note that there is no conversion routine for the 2401
magnetic tape drive: the conversion is by-passed.
Conversion routines should be consistent with the
precision required (that is, whether standard or ex­
tended)as specified in the TASK equate card PRICS.

Inclusion of Explicit and Implicit Subroutines. In the
compilation of a FORTRAN problem progr'am, the
compiler-generated machine language coding includes
a large number of branch instructions whlch transfer
control to subroutines during execution of that pro­
gram. It is, in fact, the subroutines that perform the
majority of operations in any given problems. These
subroutines can be classified into two distinct types:
explicit, and implicit.

Explicit subroutines are those subrouUnes that
are clearly formulated or externally visible in a main
program. Implicit subroutines, on the other hand,
are those subroutines which are involved in the solu­
tion of a problem program, but not externally revealed.

ASSOCIATED DP I/O
SUBROUTINES DEVICE

TYPEN 1053/1816 Keyboard Printer
EBPRT

CARDN 1442 Card/Read Punch
HOLEB

PRNTN 1443 Printer
EBPRT

PAPTN 1054/1055 Paper Tape Reader &
PAPEB Punch

MAGT 2401 Magnetic Tape Unit

TYPEN 1816 Keyboard Unit
HOLEB

PLOTX 1627 Plotter Unit
ECHRI or
FCHRI

Figure 86. Illustrating Relationship of DP I/O Device:s
to Associated Function and Conversion Subroutines

If the user plans to include FORTRAN subroutines
in the Skeleton, he should make adequate core space
allowance both for explicitly named and implicitly
called subroutines. The explicitly named user­
written subroutine is included in the Skeleton by
specifying its name in an *INCLD control card at
skeleton build time, while any implicitly referenced
subroutines will be automatically loaded at the same
time.

The following two examples examine skeleton core
requirements for typical situations involving explicit
and implicit subroutines.

EXAMPLE 1 - FORTRAN CASE. Consider a main
program which is required:

1. To set up variables of a 10 by 10 matrix and
2. To call a user-written subroutine MSQRT which

is to compute the square root of each element
in the array.

Program Listing No. 5 shows the compilation
run, from which it can be seen that if the user
intends to include the subroutine MSQR T in the
skeleton, he should make appropriate skeleton
space allowances for the following:

(Explicit) MSQRT = (program + variable)
72 words

(Implicit) FSQRT 86 words

FSTOX 102 words

SUBSC 44 words

SUBIN 36 words

340 words

System Design Considerations 167

PROGRAM LISTING NO.5: EXAMPLE 1 -- FORTRAN CASE

/1 JOB
II FUR MATRX
*NONPROCESS PROGRAM
':'L I ST ALL
C SAMPLE MAIN PROGRAM TU CALL A IVlATRIX SQUARE ROOT SiJBROUTINE

DIMENSION VALUEI10,10)
N = 10
SUM = 0.0
DO 5 I=1,N
DO 5 J=1,N
SUM = SUM + 1.0
VALUE(I,J) = SUI"I
CALL MSQRT(VALUE,N)
CALL EXIT
END

VARIABLE ALLOCATIONS
VALUE(R)=00C6-0000 SUlv1(R)=00C8 N(I l=OOCA I (I)=OOCC

STATEMENT ALLOCATIONS
5 =OOFO

FEATURES SUPPORTED
NONPROCESS

CALLED SUBPROGRAMS
MSQRT FADD FLO FSTO FSTOX SUBSC

REAL CONSTANTS
.OOOOOOE 00=0002 .100000E 01=0004

INTEGER CONSTANTS
10=0006 1=0007

CORE REQUIREMENTS FOR MATRX
COMMON 0 INSKEL COMMON

END OF COMPILATION

r~ATRX

DUP FUNCTION COMPLETED
I I FOR t-1S(.)RT
':'LIST ALL
*NONPROCESS PROGRAM

SUBROUTINE MSQRT(A,N)

. 0 VAR I ABLES

C USER WRITTEN MATRIX SQUARE RunT SUBROUTINE
DIMENSION A(lO,lO)
DO 1 I=l,N
DO 1 J=1,N
A(I,J) = SQRT(A(I,J»
RETURN
END

VARIABLE ALLOCATIONS
III)=0000 J(I)=0002

STATEMENT ALLOCATIONS
1 =001A

FEATURES SUPPORTED
NONPRUCESS

CALLED SUBPROGRAMS
FSQRT FSTOX SUBSC

INTEGER CONSTANTS
1=0006

SUBIN

CORE REQUIREMENTS FOR MSQRT
COMMON 0 INSKEL COMMON

END OF COMPILATION

MS(JRT
DUP FUNCTION COMPLETED
*STORE MSQRT
MSQRT
DUP FUNCTION COMPLETED
*STORECIL MATRX MATRX
'~CCEND

168

o VARIABLES

66

6 PROGRAM 66

J(I)=OOCE

CLB, BUILD JviATRX

CORE LOAD MAP
TYPE NAME ARG 1 ARG2

*CDW TABLE 4002 OOOC
'n BT T tlBL E 400E 0023
':'F 10 TABLE 4031 0010
':'ETV TABLE 4041 OOOC
':'VTV TABLE 404D 0021
':'PNT TABLE 406E 0004
MAIN MATRX 414C
PNT MATRX 4070
LI BF FLO 41EA 4040
LI BF FSTO 4100 4050
LI BF FADD 421E 4053
LIBF SUBSC 429C 4056
LI BF FSTOX 4186 4059
CALL MSeJRT 4200
LI BF FARC 4310 405C
LI BF SUBIN 4344 405F
CALL FSORT 4386
LIBF FJviPY 4309 4062
LI BF FLOX 41E5 4065
LI BF FOIVX 4416 4068
LI BF FADDX 4218 406B
CALL FTNTR 441:10
CALL FTRTN 449A
CORE 44AA 3B56

CLB, MATRX LD XQ

DUP FUNCTION COMPLETED
1/ XEC.J fVIATRX FX

II JOB
II END OF ALL JOBS

If other core loads are going to use the same
subroutines, he may also include some of the
implicit subroutines referenced by the main pro­
gram MA TRX. This will increase his skeleton
size by 362 words as shown below.

(Implicit) F ADD

FLD

FSTO

158 words

102 words

102 words

362 words

EXAMPLE 2 -- ASSEMBLER CASE. Consider a
main program which is required:

To call a user-written subroutine QUAD to
sol ve a quadratic equation

2
AX +BX+C=O

using the positive square root, and assuming
the quantity under the square root sign is
greater than zero.

From Program Listing No.6, it can be seen that
if the user intends to include QUAD in the skeleton,
adequate space allowances should be made for the
following:

(Explicit) QUAD = (program + variables)
82 words

FLD 102 words

FMPY 65 words

FSTO 102 words

FSUB 158 words

FSQR 86 words

FADD 158 words

FDIV 106 words

(Implicit) FARC 52 words

FSTOX= 102 words

FLDX = 102 words

FDIVX = 106 words

FADDX= 158 words

FTNTR= 40 words

FTRTN= --iQ. words

1459 words

System Design Considerations_ 169

PROGRAM LISTING NO.6: EXAMPLE 2 -- ASSEMBLER CASE

II JOB
II ASM

*LI ST

18901100
0000

0012
0000
0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
0010

00 00000000
00 00000000
00 00000000
00 00000000
00 00000000
00 00000000
00 40000083
00 40000082

0012 0
0013 OJ.
0015 0
0016 01
0018 0
0019 01
001B 01
0010 0
OOIE 01
0020 0
0021 01
0023 0 l
0025 0
0026 0 l
0028 0

0002

0000
C4800012
D8FA
CC800010
D8E7
74010012
C4800012
D8F2
CC800010
D8E 1
74010012
C4800012
D8EA
CC800010
D8DB

0029 20 064C4000
002A 1 OOOE
002B 20 06517AOO
002C 1 0000
0020 20 068A3580
002E 1 0001:!

002F 20 064C4000
0030 1 0000
0031 20 06517AOO
0032 1 0004
0033 20 06517AOO
0034 1 OOOC
0035 20 068A3580
0036 1 OOOA
0037 20 064C4000
0038 1 0002
0039 20 06517AOO
003A 1 0002
003B 20 068A4080
003C 1 OOOA
0030 30 06898640
003F 20 06044100
0040 1 0000

0041 20 06109940
0042 1 0008

0043 20 068A3580
0044 1 0006
0045 01 74010012
0047 01 C4800012
0049 0 DOC6
004A 0 C8BB
0048 01 DC800010
0040 01 74010012
004F 01 4C800012
0052

*

A
B
C
X
TEMP 1
TElv,P 2
FOUR
TWO
TEI"lP

* (JUAD

ENT
BSS
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ass

DC
LD
STD
LDD
STD
MDX
LD
STD
LDD
STD
~lDX

LD
STD
LDD
STD

LI BF
DC
LI BF
DC
LI BF
DC

LI BF
DC
LI SF
DC
LI BF
DC
LI BF
DC
LI BF
DC
LI BF
DC
LI BF
DC
CALL
LI BF
DC

LI BF
DC

LI BF
DC
MDX
LD
STO
LDD
STD
J'lIDX
BSC
END

L
I

NO ERRORS IN ABOVE ASSEMBLY.
QUAD
DUP FUNCTION COMPLETED
II ASIV] f'iIAIN

*LI ST

170

SAMPLE SUBRUUTINE TO SHUW THE USE OF
I~PLICIT ANU EXPLICIT SUbRUUTINE
CALLS

THIS SUBROUTINE SOLV~S A QUADRATIC
EQUAT I Dill

A*IX**2) + B*X + C = 0
USING THE POSITIVE SQUARE ROOT. AND
ASSUMING THE QUANTITY UNDER THE
SQUARE ROOT SIGN IS GREATER THAN ZERO

QUAD
o
0.0
0.0
0.0
0.0
0.0
0.0
4.0
2.0
2

o
QUAD
TEIY1P
TEMP
A
QUAD,l
QUAD
TEMP
TEMP
B
QUAD,1
QUAD
TEMP
TE~lP

C

FLD
TWO
FMPY
A
FSTO
TEMPI

FLD
A
FMPY
C
Fl'iPY
FUUR
FSTO
TEMP2
FLO
B
FI'IPY
B
FSUB
TEMP2
FSQR
FADD
A

FDIV
TEMPI

FSTO
X
QUAD,l
(..lUAD
TEMP
X
TEMP
QUAD,l
QUAD

ARG A WILL BE STORED HERE
ARG B WILL BE STORED HERE
ARG C WILL BE STORED HERE
RESULT WILL BE STORED HERE

SET UP ARGUMENTS A.B.C

VALUES C[ME FRUM MAIN PROG

TU CALCULATE DIVISOR 2*A
LOAO 2.0 INTO FAC

MULTIPLY 2.0 BY A TO GET
2.0*A
STURE DIVISUR TEMPORARILY

Tu CALCULATE DIVIDEND = A +
SQUARE ROOT OF B**2 -4*A*C
LUAD A INTO FAC TO CALCU­
LATE 4*A>:,C

STORE 4*~*C TEMPORARlLY

LOAD 8 INTO FAC TU CALCU­
LATE 8**~ = B*B

HAVE B*8 IN FAC. NOW TO
SUBTRACT 4~'A*C

TAKE SQ.~T.OF B*B-4*A*C
ADD A TO SQUARE ROUT. GET
A+SQ.RT<8*B - 4*A*C)
T U 0 I V IDE 0 I VIDE I'll 0 BY 2 * A

TU STORE RESULT IN X

* MAIN PRUGRAM TO CALL SUBRflUTINE QUAD
0000 0000 BSS E 0
0000 00 40000081 AA DEC 1.0
0002 00 60000082 BB DEC 3.0
0004 00 40000082 CC DEC 2.0
0006 00 00000000 XX DEC 0.0 TO BE FILLED IN BY SUBR
0008 30 18901100 START CALL QUAD
OOOA 1 0000 DC AA
OOOB 1 0002 DC BB
OOOC 1 0004 DC CC
0000 1 0006 DC XX
OOOE 0 3000 WAIT
OOOF 30 059C98CO EXIT
0012 0008 END START

NO ERRORS IN ABOVE ASSEMBLY.
MAIN
DUP FUNCTION COMPLETED
II XEQ MAIN L
*CCEND

CLB, BUILD MAIN

CORE LOAD MAP
TYPE NAME ARG 1 ARG2

*CDW TABLE 4002 OOOC
*IBT TABLE 400E 0023
*FIO TABLE 4031 0010
*ETV TABLE 4041 OOOC
*VTV TABLE 4040 0021
*PNT TABLE 406E 0004
MAIN MAIN 407A
PNT MAIN 4070
CALL QUAD 4096
LIBF FLO 413A 4040
LIBF FMPY 4153 4050
LIBF FSTO 4120 4053
LIBF FSUB 41A4 4056
CALL FSQR 4246
LIBF FADD 41BO 4059
LIBF FDIV 4289 405C
LI BF FARC 42EE 405F
LIBF FSTOX 4006 4062
LIBF FLDX 4135 4065
LIBF FDIVX 4284 4068
LIBF FADDX 41AA 406B
CALL FTNTR 4322
CALL FTRTN 433C
CORE 434C 3CB4

CLB, MAIN LD XQ

II JOB
II END OF ALL JOBS

System Design Considerations 171

CALCULATING SKELETON CORE SIZE

Skeleton Core Size can be arrived at by computing the value of the start address of variable core (VCOHE), an
even number. VCORE is equal to a summation of:

172

SKELETON + INSKEL + SYST]~M

I/O COMMON DffiECTOR
+

USER'S
PROGRAMS

+ SKELETON + PATCH
TABLES AREA

The manner in which the SYSTEM DffiECTOR is calculated has already been discussed (see System
Design Considerations: System Director). INSKEL COMMON, the PATCH AREA, and the USER'S
PROGRAMS are defined by the user.

SKELETON I/O = Fixed Area = 200 words
+Disk Device Tables = 66 words per drive
+DISKN = 900 + (12 + (9~mORG2» X DORG1 + 12 X MKLEV
+ 1053 Device Tables 14 + message unit size (add 1 if the message unit size is odd)

per 1053 and 1816
+ 1816 Device Tables 14 words per keyboard
+ TYPEN = 256 + (3XN) + (341 + (8XNOCYL» X NOBUF + (20 + (2XTORG»

X(l-NOBUF) + (418 + (8X(M-1») X TORG + 16XMKLEV
where N = nUDlber of 1053/1816s
and M = number of 1816s

+ 1053/1443 Timing Respons.e Routine = 2 + (78XTORGN) + 22XPORG
+ 1443 Device Table = 14 words
+ PRNTN = 323 words + 16XMKLEV
+ Constants & Work Areas =: 200 + 42XECPT1 + 27 (1-ECPT1)

where ECPT1 = 0 or 1 if EAC printer
is a 1053 or 1443 respectively

+ CARDN (if included) = 328 words + 23XCRDNO + 10XMKLEV

Note that NOBUF, TORG, TORGN, MKLEV, PORG, NOCYL, and ECPT1 are TASK equate cards.

SKELETON TABLES = Program Name Table :': 4 + 4 X the number of called mainline and combination
core loads from the skeleton.

+ Executive Transfer Vector = 3 X the number of LIBF functions in the skeleton.
+ Executive Branch Table = 1 word per entry for each entry point for LIBF and

CALL Subroutines contained in the skeleton (excepting
Skeleton I/O).

+ Skeleton Interrupt Branch Table = 2 X the number of bits in all labels (that is,
ILSW words) NBOO-23.

USE OF *INCLD CONTROL CARDS

Before the System Skeleton can be built, it is a
condition that user-written subroutines and pro­
grams intended for inclusion in the skeleton must
be assembled and/or compiled and stored on disk
in relocatable format. These are assigned to the
skeleton area by *INCLD control cards at skeleton
build time. The various types of subroutines that
are suitable candidates for inclusion have already
been mentioned elsewhere in this section.

Subroutines planned for tracing and/or error
options may also be included in the skeleton, but
it should be noted that they are not, as such, auto­
matically functional, because these routines can
only be entered through linkages provided in the
individual core loads. In order to use them, there­
fore, their names must appear in appropriate
*INCLD cards which must be present when building
those core loads where tracing or error options
are desired. Furthermore, in the case of error
subroutines, the entry is made only if the core
load is a process mainline, combination or interrupt
core load. If any nonprocess core load or monitor
function is in progress, the error routine will not
be included.

The following example is given to illustrate the
general use of *INCLD control cards in a typical
skeleton build operation. The sequence of control
cards is shown below:

SAMPLE CODING FORM

Five types of subroutines are considered:

• EBPRT and HOLEB are IBM Library Conversion
Subroutines. JOHNB is a special user-written
arithmetic subroutine.

• 10402/0402 serves as an interrupt servicing
subroutine for a process interrupt assigned
to level 04, bit 02.

• PGI05/2405 and PGI15/2501 are interrupt
servicing routines which service programmed
interrupts on levels 5 and 15 respectively.

• CNT04/2604 and CNT17/2701 are user-written
count routines #4 and #17 respectively.

• TRAC2, EROR1 and EROR2 are special user­
written trace and error subroutines. Note that
at core load build time, these three subroutines
must be named by *INCLD cards in those core
loads selected for the trace and/or error options
in order to establish their linkages in the skele­
ton. (If this is not done, no tracing or error
checking takes place.)

The flexibility in system usage and design
(in permitting a core load to be traced by a
special user-written trace routine other than
the trace routine normally included in the skele­
ton) is a definite advantage as it is simpler to
modify a core load than to modify the skeleton.

SUMMARY OF THE SKELETON BUILD PROCESS

Before the System Skeleton can be built, several
prerequisite conditions must have been met. These
include:

• The IBM N onprocess System has been loaded.

• User-written subroutines required for residence
in the skeleton have been assembled/compiled
and stored on disk in relocatable format.

• The System Director has been assembled and
stored on disk in relocatable format.

• Disk file configuration has been defined.

• An Operating TASK (that is a user-configurated
T ASK) has been assembled and punched into
cards.

Briefly, the skeleton build function can be
broken down (in simplified form) into three sepa­
rate steps:

1. TASK Initialization
2. Relocation of component parts
3. Building the Skeleton Tables

Figure 87 illustrates the skeleton build opera­
tion as each sector of the skeleton is constructed
and relocated to the Skeleton Area on disk.

System Design Considerations 173

NONPROCESS

WORKING

STORAGE

_J

FIXED AREA

SKELETON I/O

INSKEL COMMON

SYSTEM

DIRECTOR

INTERRUPT &
OTHER

SUBROUTINES

PATCH AREA

PROGRAM NAME
TABLE

EXECUTIVE TRANSFER
VECTOR

EXECUTIVE BRANCH
TABLE

SKELETON INTERRUPT
BRANCH TABLE

SKELETON

AREA

r T

FILE
PROTECTED

Figure 87. layout of the System Skeleton as it would appear at Skeleton Build Time in NPWS and the Skeleton Area

174

TASK Initialization. T ASK begins the skeleton
build function by initializing certain communications
areas which reside in sectors 1 - 4 on disk. These
areas include:

• Master Communications Words (MCW)

• Master Branch Table (MBT)

• Skeleton FORTRAN I/O Table (SFIO)

• Executive Transfer Vector (ETV)

• Skeleton Subroutine Name Table (SKSUB)

This step determines the amount of core storage
available between the high addressed end of TASK
and the first word of the Skeleton Builder: the
available core storage is cleared and subsequently
allocated to the various loading tables. The Skele­
ton Subroutine Table (SKSUB) is then read from
disk into its allocated area in core. The Control
Record Entry Table (CRENT), which was con­
structed by the Skeleton Build Supervisor phase
(SKA) , is read, one entry at a time. These are
analyzed and inserted into the appropriate tables.

Rel<Jcation of TSX Component Parts. The main
function of the skeleton build operation is the con­
struction in core-image format in the Nonprocess
Working Storage on disk of the permanent part of
all core loads and to establish their linkages to
the System Director and various other IBM and
user-written programs. As each sector of the
skeleton is built it is written to the Nonprocess
Working Storage. The disk image of the completed
skeleton is finally physically moved to the Skeleton
Area of the process portion of disk and file pro­
tected.

The Skeleton I/O is first written to a predefined
area in the Nonprocess Working Storage on the
temporary disk drive for later reference by the
Skeleton Builder.

The length and initial address of Skeleton Com­
mon are now obtained from the Master Communi­
cations Area, and the desired size of the Common
Area in the skeleton image cleared and reserved.
The upper boundary of this area is later set to
correspond with the starting address of the Sys­
tem Director.

It was noted in System Design Considerations:
System Director that the System Director was

assembled and stored on disk prior to a skeleton
build. At this same time, space was allocated for
an Interrupt Core Load Table (ICLT), its size being
determined by user-specified NIL equate cards.
Using the System Director as the main program,
the Skeleton Builder constructs the skeleton in much
the same fashion that the Core Load Builder builds
a core load. Certain words in the ICL table (the
first header word and the first and second entry
words) associated with bits corresponding to those
interrupt subroutines resident in the skeleton are
now filled in. Later on, DUP makes the required
entries into the ICL table whenever it stores an
interrupt core load on disk.

User-written and other subroutines are now in­
cluded in the skeleton image on disk following the
System Director.

The Patch area constitutes that portion of core
image that remains between the end of the subrou­
tine area and the Skeleton Program Name Table.

Building the Skeleton Tables. During the final stage
of the skeleton build process, the four tables shown
in Figure 81 are modified and/or built from data
provided in the Master Communications Area and
user-specified *INCLD control cards. Note that
the tables are built and used by the Skeleton Builder
during the construction of the skeleton core load.
All of the loading tables are assembled in a descend­
ing chain; that is, the first entry occupies higher
core locations than the second, the second higher
than the third, and so on. The details and function
of each table are given elsewhere in this section
(see Constitution of the System Skeleton).

For detailed step-by-step operational procedures
of the skeleton build process, the user should refer
to the IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Rebuilding the System Skeleton

While relocatable programs can be deleted and re­
placed on-line by the Nonprocess Monitor, it is
not possible to modify any features of the System
Skeleton on-line. Changes in the skeleton area
(including skeleton interrupt routines) will thus
require an off-line Skeleton rebuild.

The TSX Skeleton may be rebuilt at any time
by following the detailed procedures speCified
for an initial Skeleton build in the IBM 1800 Time­
Sharing Executive System, Operating Procedures,
Form C26-3754.

System Design Considerations 175

Sinoe INSKEL COMMON is not open-ended,
the user may face the difficulty of adding to it
once it is defined. It is recommended that an
extra area should be reserved in INSKE L COM-­
MON to allow for programming contingencies.
See Core Load Rebuild Conditions.

The Executive Branch Table (EBT) and the
Skeleton Interrupt Branch Table (SKIBT) have
already been described. These tables are pro­
vided to allow the user to rebuild the System
Skeleton if he were modifying subroutines, changing
the log;ic flow or adding patches to the System Di­
rector and TASK such that addresses in core loads
will still reference a fixed address in variable core.
An ability to shift the entry points of subroutines
within the Skeleton is thus available without the
necessity of rebuilding the referencing core loads.

If, however, the entry points within these tables
no longer pointed to the same subroutine, all core
loads must be rebuilt.

Core Load Rebuild Conditions

When the Skeleton is initially built, the entry points
to the in-core-with-skeleton interrupt routines are
placed in the ICL Table, and all other table entrieB
are cleared.

When this skeleton is later rebuilt, the in-core-­
with-skeleton entry points are substituted into the
proper areas; the word count and sector address
of out--of-core interrupt routines are then recovered
from the old skeleton and placed in their respec­
tive table locations, provided that there is not al­
ready an entry point there.

In a skeleton rebuild, it may not be necessary to
rebuild those core loads built tmder the previous
(old) Skeleton if the following conditions are met:

1. No previously included CALL or LIBF type
subroutines may be removed from the Skele­
ton. An in -core interrupt (ICI) or a count
subroutine may be substituted, provided it
has the same number of entry points and
oecupies the same relative position within
the Skeleton as the deleted subroutine. Any
core loads referencing the deleted subroutine
must be rebuilt.

2. No additional LIBF or ISS subroutine (disk
format types 3, 5, and 6) may be included in
the new Skeleton. In-core interrupt (ICI) and
CALL (type 4) subroutines may be added pro­
vided the patch area is large enough to contain
the additions.

176

3. The number of entry points for included sub­
routines may not be modified between in­
clusions.

4. If TASK or the System Director is reaBsembled,
the number of interrupt levels used, the length
of INSKEL COMMON, and the length of the
Skeleton should not be altered.

Note that a change in the size of INSKEL
COMMON implies a reassembly of TASK.
Also, if the location of INSKE L COMMON
changes, all core loads using INSKEL COM­
MON must be rebuilt. If, for example, Skele­
ton I/O changed in size, an adjustment in IN­
SKEL COMMON size equal to the chanl~e in
the Skeleton I/O could eliminate the necessity
for rebuilding all core loads that use D~SKEL
COMMON.

5. If there is to be any variation in the number
or order of *INCLD control cards, new *INCLD
control cards must be prepared using the pre­
vious core map. They must specify (in order
of occurrence in the previous map) all ICI,
CALL, and LIBF names beginning with the
first map entry following

PNT SYDIR

An alternative is to use the original *Il~CLD
control cards in their original order. Addi­
tional ICI and CALL subroutines may be speci­
fied on following *INCLD contrs>l cardB.

6. Following the rebuild process, a comparison
of the previous Skeleton and new Skeleton core
maps must show Identical entry pOints (that
is, ARG2 -- see Figure 88) for those LIBF
and CALL map entries common to both skele­
tons.

Example of Initial Skeleton Build and Skeleton Re­
build

Figure 88 illustrates the general sequence of control
cards, the Skeleton Core map, and the Interrupt
Core Load (ICLT) map for a typical skeleton build/
rebuild situation. A separate interpretation of these
maps is given at the end of this section.

In the initial skeleton:

• INTOl/OOOO is an interrupt servicing routine for
a process interrupt assigned to level 00, bit 00.

• INT02/2405 is an interrupt servicing routine
which services a programmed interrupt on
level 05.

• INT03/2500 services a programmed interrupt
on level 14.

• SUBOl is a special user-written arithmetic
subroutine.

• INT04/2600 is a user-written count routine
#00.

• MASK and EBPRT are IBM Library Subroutines.

The four K13 level 1 Skeleton Builder error
messages, following the ICL Table Map, are warn­
ings to the user that core load names PML01,
PML02, CCL01, and CCL02 referenced by calls
in routines (e. g., CHAIN, SPECL, QUEUE) con­
tained in the initial skeleton have not yet been
built, and, therefore, are not entered in FLET (see
IBM 1800 Time-Sharing Executive System, Opera­
ting Procedures, Form C26-3754).

In the rebuilt skeleton:

• No major modifications are implemented.
Neither the Skeleton I/O nor INSKEL COMMON
are altered.

• Four implicit routines (and those explicit rou­
tines referenced by these routines) are added.
These are:

1. SUB02 -- a user-written arithmetic routine.
2. INT05/2701 -- a user-written count rou­

tine #17.

3. DPART and UN:MK are IBM Library Sub­
routines.

4. These additions constitute entries to the
ICL Table.

Note that SUB02 and INT05/2701 cannot refer­
ence or call any LIBF function subroutines as this
violates the conditions stated (see Core Load Re­
build Conditions).

The user should be aware that in rebuilding a
skeleton, the control cards must be in exact order­
correspondence with the previous skeleton so that
routines will be loaded in the same order-sequence
and entry points in the transfer vector remain
valid.

Interpretation of the Skeleton Core Map and the
Interrupt Core Load Table (ICLT) Map

Skeleton Core Map

The Skeleton Builder aiways prints a map of the
assembled skeleton formatted as follows:

SKEL CORE
TYPE NAME

MAP (Page Heading)
ARGl ARG2 (Column Heading)

Type indicates the map entry type (e. g., LIBF,
CALL, PNT). Up to five alphameric characters
are allowed under NAME to describe a subroutine,
control program, etc. (e. g., DISKN, SYDffi).

System Design Considerations 177

Control Reclords For Initial Ske leton Bui Id Control Records For Skeleton Rebuild

//JOB I X //JOB I X
//XEQ SKBLD / /XEGI SKBLD
*1 NCLDINTOI /0000, MASK; ,E BPRT ,INT02/2405 *INCLDINTOl/OOOO,MASK,EBPRT, INT02/2405
* I NC LD SU BO I, IN T03/2500, I NT04/2600. *INCLDSUBOI,INT03/2500,INT04/2600
·CCEND *INCLDSUB02, DPART ,INT05/270I,UNMK

*CCEND

Skeleton CClre Map Rebuilt Skeleton Core Map

SKEL CORE MAP SKEL CORE MAP
TYPE NAME ARGI ARG2 TYPE NAME ARGI ARG2

L1BF DISKN 021B 3EBB L1BF DISKN 021B 3EBB
L1BF TYPEN 0582 3EBE L1BF TYPEN 0582 3EBE
L1BF WRTYN 0582 3EBE L1BF WRTYN 0582 3EBE
L1BF PRNTN OA07 3ECI L1BF PRNTN OA07 3ECI
L1BF CARDN OC71 3EC4 L1BF CARDN OC71 3EC4
CALL EXIT IC9F 00B6 CALL EXIT IC9F 00B6
CALL LINK ICAI OOSE CALL LINK ICAI 008E
INSK OD04 lOCI INS~: ODD4 lOCI
PNT SYDIR 10(2 3E26 PNT SYDIR IOC2 3E22
ICI INTOI IF80 ICI INTOI IF80
ICI INT02 IF91 1005 ICI INT02 IF91 1005
ICI INT03 IF9E 1100 ICI INT03 IF9E 1100
ICI INT04 1FAF 1200 ICI INT04 1FAF 1200
CALL MASK 1FBA 3E44 ICI INT05 IFBD 1301
L1BF EBPRT 1FDC 3EC7 CALL MASK 1FCE 3E44
CALL SUBOI 207D 3E43 L1BF EBPRT 1FFO 3EC7
CALL OUTTR 19DA 3E42 CALL SUBOI 2091 3E43
CALL CHAIN 1BA7 3E41 CALL OUTTR 19DA 3E42
CALL INTEX 1AE1 3E40 CALL CHAIN 1BA7 3E41
CALL SHARE lC4F 3E3F CALL. INTEX 1AEI 3E40
CALL SPECL lBEC 3E3E CALL SHARE lC4f 3E3F
CALL BACK](03 3E3D CALL SPECL lBEC 3E3E
CALL EACLK lED4 3E3C CALL BACK lC03 3E3D
CALL QUEUE 2084 3E3B CAL~ EACLK 1ED4 3E3C
PNT PMLOI 3E2A CAL':. QUEUE 2098 3E3B
CALL UNQ 2146 3E3A CAL':. UNQ 215A 3E3A
PNT PML02 3E2E CAL PRT 21AO 3E39
PNT CCLOI 3E32 CALL SUB02 21EB 3E38
PNT CCL02 3E36 CALL DPART 21F4 3E37
CALL PRT 218C 3E39 CALL UNMK 2202 3E36
PTCH 2106 3E23 PNT PML01 3E26

PNT PML02 3E2A
PNT CCLOI 3E2E
PNT CCL02 3E32

ICL TABLE MAP CALL QIFON 224C 3E35
LLBB WC/EP SA ICLT CALL VIAQ 22E6 3E34

PTCH 2345 3E1F
0000 1F80 llCC
1005 1 F91 1296 ICL TABLE MAP
1100 1F9E 12AC LLBEi WC/EP SA ICLT
1200 1FAF 12B4

0000 1F80 11CC
K13 PML01 LEV. 1 0501 017A 04C6 11FA

OA02 017A 04C8 1230
K13 PML02 LEV. 1 1005 1F91 1296

1100 lF9E 12AC
K13 CCLOI LEV. 1 1200 lFAF 12B4

1301 1FBD 12DA
K13 CCl.02 LEV. 1

SKB, SYDIR LD XQ
SK6, SYDIR LD NX

Figure 88. Core Map for Initial aDd Rebuilt Skeleton

178

ARGI and ARG2 may contain either a four-digit
hexadecimal number or a blank field.

Program Name Table (PNT).

PNT NNNNN XXXX YYYY

The word count and disk address of the core load
named NNNNN which is referenced within the
skeleton are assigned to locations YYYY and
YYYY+l of the skeleton PN Table. The first PNT
entry is always the System Director where NNNNN
= SYDm and XXXX is the initial core location of
the ICL Table pointer block which is identified in
the System Director listing by the symbolic name
-- COMA. The XXXX field is blank for all re­
maining PNT entries.

In-core-with-Skeleton Interrupt (ICI).

ICI NNNNN XXXX LLBB

The entry point to the in-core-with-Skeleton inter­
rupt servicing routine named NNNNN is at absolute
location XXXX. LLBB designate the interrupt level
and bit position within the ILSW for that associated
level.

If LL is less than the number of interrupt levels
(K) defined for the system, NNNNN is assigned to
s~rvice the process interrupt on PISW bit position
BB of level LL.

If LL = K or LL = K+l, NNNNN is assigned to
service a programmed interrupt on level BB or
BB+14 respectively. Note that BB is now used as
a level deSignation.

If LL = K+2 or LL = K+3, NNNNN has been
designated as count subroutine BB or BB+16 re­
spectively. Note that BB is now used as a count
subroutine number in the range 0-31.

For an ICI assigned to level 0 on PISW bit posi­
tion 0, ARG2 will be printed as a blank field.

Library Function Subroutines (LIBF).

LIBF NNNNN XXXX YYYY

The LIBF-type subroutine entry point named
NNNNN is at absolute location XXXX of the skele­
ton. The corresponding three-word transfer vec­
tor entry point will be at location YYYY in variable
core.

CALL-type Subroutines (CALL).

CALL NNNNN XXXX YYYY

The CALL-type subroutine entry point named
NNNNN is at absolute location XXXX of the skele­
ton. The indirect entry point is at location YYYY
of the Skeleton Executive Branch Table (EBT).

INSKE L COMMON (INSK).

INSK xxx:x YYYY

The low core storage boundary of INSKEL COM­
MON is at absolute location XXXX of the skeleton.
The high boundary is at location YYYY.

Patch Area (PTCH).

PTCH XXXX YYYY

The patch area (that is, unused core locations)
extends from the absolute location, XXXX, of the
skeleton through location YYYY.

COMMON (COMM).

COMM XXXX YYYY

If any included subroutines contain references to
COMMON, allocation is made between absolute
locations XXXX and YYYY, using the standard
method. It should be noted that these locations
are in variable core; allowances must therefore
be made in all core loads for overlapping results.

Interrupt Core Load Table (ICLT) Map

The ICL Table map is printed to reveal any inter­
rupt assignments made in the skeleton ICLT. Its
format is as follows:

ICL TABLE
LLBB

MAP
WC/EP SA ICLT (Column

Heading)

The interrupt level and bit assignment are indi­
cated by a four-digit hexadecimal number under
LLBB. The two high-order digits contain the level;
the two low-order digits represent the bit assignment.

System Design Considerations 179

If the entry is an in-core-with-Skeleton routine,
the WC/EP column will contain the hexadecimal en­
try point to this routine. The SA field will be blank.
The ICL Table absolute core location in which the
entry point is placed is indicated in the ICLT column.

When rebuilding the skeleton with the SAVE
ICL TABLE option, word counts and sector

180

addresses of any interrupt core loads are :re­
tained from the old ICLT. Their interrupt
assignments are indicated in the LLBB column.
The WC/EP and SA columns will contain their
word counts and disk addresses. The corres­
ponding ICLT absolute core location is in the
ICLT column.

To broaden the scope of this manual, and to facilitate
its use by individuals of divergent backgrounds and
experience, selected material emphasizing recom­
mended practice and technique in the implementation
of the IBM 1800 Time Sharing Executive System are
presented in this section. This material directly
supplements the concepts discussed so far in the
text.

A separate chapter (Basic Concepts of Data
Acquisition and Process Control System s) is included
for a two-fold purpose: (1) as an introduction to the
TSX Sample System, and (2) to acquaint the inexper­
ienced reader with the field of data acquisition and
process control systems. It is not intended as an
exhaustive study, and the reader is referred to
further sources of information on this vast subject.
The more experienced reader may prefer to scan
this portion of the section as refresher material, or
to skip it entirely.

The final chapter, TSX Sample System, is a com­
prehensive step-by-step example of a working TSX
on-line system which touches on every aspect of TSX
system concepts, design, and usage.

WRITING ASSEMBLER LANGUAGE SUBROUTINES

This chapter provides guidance to the user in the
assembly and specification of user-written subrou­
tines included either as additions or modifications to
the TSX system. User-written assembler language
subroutines must follow the writing specifications
outlined below.

The subroutine source statements shown in the
following examples 'should be preceded and followed
by the following control cards for the assembly
process.

II JOB
II ASM
*LIST
*PRINT SYMBOL TABLE

PROGRAMMING TECHNIQUES

Subroutine Source Deck

II DUP
*STORE

Call Subroutines

NAME

A subroutine that is called by a CALL statement is
linked to via a long BSI instruction. For example, a
FORTRAN source statement

CALL SUB (I, J, K, 101)

or an Assembler language calling sequence

CALL
DC
DC
DC
DC

SUB
ADDRI
ADDRJ
ADDRK
ADCON

appears in core at execution time as

BSI
DC
DC
DC
DC

L SUB
ADDRI
ADDRJ
ADDRK
AD CON

where ADDRI, ADDRJ, and ADDRK are the core
addresses at which the variables I, J, and K are
stored, and ADCON is the core address where the
constant, 101, is stored.

Note that most subroutines entered by an
Assembler language calling sequence expect the
constants themselves to appear in the calling se­
quence rather than the address of the constants.
Therefore, not all subroutines entered by a CALL
can be called from a FORTRAN program.

The following example illustrates how to define
the entry point, save the contents of the registers,
get the parameters, and return to the calling pro­
gram.

Programming Techniques 181

Operalion

"
1I,i).JV,,,

E,N.T,
D,C
5[,!;

i S,T,)(
ST,X, 2
S,Tl< 3

,D,l' II
L,D, II
ST,O,
£.D,-,-_ ~1
5T£)
L,O, III
ST,."
1'1,/),:(, t
~r.)(IZ

,D,X, IJ
-'--

LIBF SUBROUTINES

The source statements for subroutines that are
called by a LIBF statement must be preceded by a
LIBR statement.

At execution time, the LIBF call appears as a
BSI in&truction indexed by XR3 and with a displace·­
ment that reflects the transfer vector entry for the
subroutine being called. XR3 contains the address
of the transfer vector. The transfer vector entry
contains a long BSI instruction to the subroutine
entry point.

The following example illustrates a LmF sub­
routine and shows how to define the entry point,
save the machine status, get the address of the
parameter list, and return to the calling program.

182

Operation

~-
)(/u, p,x,

~,OJ),
~,:s,~, I

T.EMP. :,S,.;, E
e~ ~,c,

.N.D, '!I""""'....L.J..~.J...J....J.---"--L.i....L.H

INPUT /OUTPUT SUBROUTINES

The procedures for writing input/output subroutines
are similar to those for CALL or LmF subroutines,
except that an ISS statement is used to defil1Le the en­
try of the call section of the routine; also, the inter­
rupt entry points must be defined.

The basic identification for the interrupt entry por­
tion is the IAC code. There is a unique IAC code for
each ILSW bit that is turned on by an I/O interrupt.
At system generation time, the user defines the IAC
codes and their corresponding ILSW bit. The same
IAC code must be used when writing an I/O subroutine.

As stated previously, an ISS statement i8 used
to define the call entry point (only one call E,ntry
point is permitted) _ If the subroutine is to be called
by a LIBF statement, the ISS statement must be
preceded by a LIBR statement. The LmR state­
ment is omitted if the subroutine is to be called by
using a CALL statement (the CALL statement
method must be used if the subroutine is to be called
from a FORTRAN program). Following the ISS
statement, there must be a pair of DC statements
for each interrupt entry point. The first DC state­
ment must define the IAC code for that entry, and the
second DC must define the address of the in.terrupt
entry point. This is followed by an ORG *-X where
X is the number of DC statements.

The following is an example of how a typical ISS
subroutine is written.

PROGRAM LISTING NO.7: SAMPLE CARD I/O ROUTINE

0000

0000 0
0001 1
0002 0
0003 1
0004

03059100

0002
003C
0011
003F

0000 0 0000
0001 00 448000AC

0003
0005
0007
0008
0009
OOOA
OOOB
0000
OOOE
OOOF 0
0010 0
0011 0

00 65800037
01 6600005A
o C100
o 4804
o 7208
o 180C
01 4C200012
o C204
o 4818

7101
7101
7025

0012
0014
0016
0017
0019
001B
001D
001E 0
00lF 0

00 OC000032
00 OC000034
o C204
01 4C1800lF
00 OC00002E
00 OC000030
o 1000

70F3
OA04

HONG SAMPLE CARD I/O ROUTINE CRDm 000
*** CRD00010 * SAMPLE CARD I/O ROUTINE * CRD00020
*** CRD00030 * * CRD00040 * THIS SUBROUTINE IS A SAMPLE OF THE TSX I/O * CRD00050
t. ROUTINES. IT IS CALLED VIA LIBF. THE CALLING * CRD00060
* SEQUENCE IS' * CRD00070
* * CRD00080
* LIBF CARD * CRD00090
* DC /XOOY CONTROL PARAMETER * CRDOOlOO
* DC AREA I/O AREA ADDR * CRD00110
* * CRD00120
* CONTROL PARAMETER IS COMPRISED OF 4 HEX DIGITS * CRD00130
* OF WHICH QNLY X AND Y ARE USED. * CRD00140
* * CRD00150 * X EQUAL 0 TEST FUNCTION-DO NOT * CRD00160
* INCLUDE AREA PARA * CRD00170
* X EQUAL 1 READ FUNCTION * CRD00180
* X EQUAL 2 PUNCH FUNCTION * CRD0019Q
* * CRD00200
* Y EQUAL 0 USE FIRST 1442 * CRD002l0
* Y EQUAL 1 USE SECOND 1442 * CRD00220
* * CRD00230
* * CRD00240 * EXTERNAL REFERENCES TO FIXED AREA OF CORE * CRD00250
* * CR000260
* WORD FUNCTION * CRD00270
* * CRD00280
* 7 GENERAL I/O BUSY INDICATOR * CRD00290
* 46 USER MASK 10CC LEVELS 0-13 * CRD00300
* 48 USER MASK IOCC LEVELS 14-23 * CRD00310
* 50 MASK ALL Iacc LEVELS 0-13 * CRD00320
* 52 MASK ALL IOCC LEVELS 14-23 * CRD00330
* 55 LOCATION WHERE TVSAV PUTS RET ADDR * CRD00340
* 90 I/O SUBROUTINE ENTRY TO MIC * CRD00350
* 172 ENTRY POINT TO TVSAV * CRD00360
* 173 ENTRY POINT TO TVEXT * CRDOd370
* * CRD00380
* NOTE THAT ON A PUNCH FUNCTION IT IS ASSUMED * CRD00390
* THAT THE USER HAS THE END BIT SET IN THE * CRD00400
* LAST WORD TO BE PUNCHED. * CRD00410
* * CRD00420
*** CRD00430 * CRD00440

*
* *

*
*
* CARD

*
*
*
*

*
* CONTN

READY

LIBR SIGNIFIES THIS IS A LIBF CRD00450
ISS 2 CARD 2 IS THE NO. OF INT CRD00460

DC
DC
DC
DC
ORG

2
INTl
17
INT2

ENTRY POINTS CRD00470
AND CARD IS LIBF CRD00480
ENTRY POINT CRD00490

1442-1 lAC CODE CRD00500
1442-1 INT ENTRY POINT CRD00510
1442-2 lAC CODE CRD00520
1442-2 INT ENTRY POINT CRD00530
CAUSES OVERLAY OF LD INFO CRD00540

CRD00550
CALL SECTION OF SUBROUTINE CRD00560

CRD00570
CRD00580
CRD00590
CRD00600
CRD00610
CRD00620
CRD00630
CRD00640
CRD00650
CRD00660
CRD00670
CRD00680
CRD00690
CRD00700
CRD00710
CRD00720
CRlJ00730
CRD00740
CR000750
CRD00760
CRD00770
CRD00780
CRD00790
CRD00800
CRDOOBI0
CRD00820
CRD00830
CRD00840
CRDOOS50
CR000860

DC
BSI

LOX
LOX
LD
BSC
MDX
SRA
BSC
LD
BSC
MDX
MDX
MDX

o
172

Il 55
L2 COl
Xl 0

E
2 C02-COl

12
L CONTN,Z
X2 BUSY

+-
1
1
OUT

FUNCTION IS NOW A
X 10 L 50
X 10 L 52
LD X2 BUSY
BSC L READY,+­
XIO L 46
XIO L 48
NOP
MDX CONTN
XIO X2 SENSE

LIBF ENTRY POINT
CALL TVSAV TO SAVE MACH­
INE REGISTERS A~O STATUS.
ALSO SETS WORD 55 TO POINT
TO FIRST PARAMETER--RETURN
ADDRESS.
XR1#LIBF PARAMETERS
XR2#1442-1 DEVICE TABLE
DETERMINE 1~42 TO BE USED
SKIP IF FIRST 1442
INCREMENT TO POINT TO CD2
IS THE FUNCTION A TEST
BRANCH IF 'NOT A TEST
GET BUSY INDICATOR
SKIP IF ON
INCREMENT RET AOOR TO SKIP
TWO WORDS ON RET TO USER
BRANCH TO SET UP EXIT

READ OR PUNCH
MASK LEVELS 0-13
MASK LEVELS 14-23
GET BUSY INDICATOR
BRANCH IF IT IS TURNEQ
UNMASK TO USER MASK i6
ALLOW CARD OP-COMPLETE

OFF

SEE IF ROUTINE STILL BuSY
LOQP UNTIL 1442 IS IN A

Programming Techniques 183

0020 01 4C040011-'
0022 0 COOO
0023 0 D204

0024 0 C100
0025 0 180C
0026 01 ·4C040030

0028 0 C101
0029 0 0202
002A 0 OA02
OU2B 00 '14010007
002l) 0 1000
002c 0 nOl
002F 0 7007

0030 0
0031 0
0032 0
0033 00
003~ 0
0036 0

CI01
D200
OAOO
74010007
1000
7101

0037 0 7101
003tl 00 6E000037

003A 00 448000AD

003C 01 6600005A
0031: 0 -(002

003F 01 66000062

0041 0 OA06
0042 0 1002
0043 01 4C100051
0045 0 3000
0()46 0 OA04
004-(01 4C040046
0049 0 C200
004A 01 4C18004E
004C 0 OAOO
0040 0 7001
0041: 0 OA02
004F 00 4C80005A
0051 0 1010
0052 0 D200
0053 0 D202
0054 0 0204
005~ 00 (4FF0007
OOj-(0 1000
0058 00 4C80005A

005A 0000

OO~A 0 0000
0058 0 1600
005C 0 0000
oost) 0 1500
005E: 0 0000
OO~F 0 1700
006U 0 0000
OU61 0 1701
0062 UOOO
0062 0 0000
0063 0 8EOO
0064 0 0000
006:> 0 81)00
0066 0 0000
006-(0 8FOO
0068 0 0000
0069 0 8F01

0000
0002
0004
0004
0006
006A

184

*

* PUNCH

READ

~,

OUT

INT!

* INT2

*

READX

KEDOP

DONE

*

*
~,

* COl

CD2

* toe

KD
PH
BUSY
SENSE
SENSR

SSC
LD
STo

R'EADY, E

* X2 BUSY

LD Xl 0
SRA 12
BSC L READ,E
FUNCTION IS PUNCH
LD Xl 1
STo X2 PH
XIo X2 PH
1'1DX L 7,1
I~UP

MUX
MDX OUT
FUNCTION IS A READ
LD Xl 1
STO X2 RD
XI,o X2 RD
MDX L 7,1
NOP
MDX 1 1
SETUP TO RETURN TO
MDX 1 1
STX L2 55

BSI 173

RE: AU Y CO~ID IT ION
TURN BUSY I~DICATOR ON
TO INDICATE DEVICE BEING
USED
GET FUNCTIo~ PARAMETER
TEST FOR REtD OR PUNCH
BRANCH IF FUNCTION IS READ

GET SECOND PARAMETER
PUT AREA PARA IN PH IOCC
START PUNCH1NG A CARD
INCREMENT GEN I/O BUSY IND

INCREMENT RET ADDR
GO TO EXIT

G5T SECOND PARAMETER
PUT AREA ADOR IN RD IOCC
START READING A CARD
INCREMENT GEN I/O BUSY IND

INCREMENT RET ADDR
USER
INCREMENT RET ADDR
55 NOW CONTAINS THE RETURN
ADDRESS TO USER
RETURN TO USER VIA TVEXT

CKOOOb70
CRD00880
CRD00890
CRD00900
CRD00910
CR000920
CRD00930
CRD00940
CRD00950
CRD00960
CRD00970
CRD00980
CRD00990
CRD01000
CRD01010
CRD01020
CRD01030
CRDOI040
CROOI050
CRD01060
CRDOI070
CRDOI080
CRD01090
CRDOII00

INTERRUPT SECTION OF SUBROUTINE

CRD01110
CRD01120
CRD01l30
CRD01140
CRD01l50
CRD01160
CRD01170
CRD01l80
CRD01l90
CRDOl?OO
CRD01210
CRD01i?20
CRD01230
CRD01240

LOX
I"lDX

LDX

XIO
SLA
BSC
WA IT
XID
bSC
LD
BSC
XIO
MDX
XIO
Hse
SLA
STO
STO
STo
MDX
NOP
BSC

L2 COl
*+2

L2 C02

X2 SENSR
2
DONE,-

X2 SENSE
L READX,E
X2 RD
L REDOP,+­
X2 RD

t~+ 1
X2 PH
I 9U

16
X2 RD
X2 PH
X2 BUSY
L 7,-1

90

XR2#1442-1. THIS IS
INTeRRUPT ENTRY POINT FOR
1442-1
XR2#1442-2. THIS IS
INTERRUPT ENTRY POINT FOR
1442-2
SENSE DSW WITH RESET
TEST FOR E RWR
HRANCH IF NO ERROR
WAIiFOR USER TO RELOAD CD
LOOP UNT IL 1442 I S If\! A
READY CoNDI rlON
TEST FOR LAST FUN A RD
HRANCH IF NOT READ
REDO READ
EXIT TO MIC
REDO PUNCH
RETURN TO MIC
CL~AR ALL I~DICATORS
CLEAR READ lOCC
CLEAR PUNCH IOCC
CLEAR BUSY INDICATOR
DECREMENT GEN I/O BUSY IND

RETURN TO MIC

CRD01250
CR001260
CRD01270
CRD01280
CRD01290
CRD01300
CRD01310
CRD01320
CRD01330
CRD01340
CRD01350
CRD01360
CRD01370
CRD01380
CRD01390
CR001400

DEVICE TAHLES FUR 1442-1 AND 1442-2

CRD01410
CRD01420
CRD01430
CR001440
CRD01450
CRD01460

NOTE THAT THE NO. IN COLUNM 71 IS THE
DISPLACEMENT OF THAT HoRD FROM THE START
OF THE DEVICE TABLE
BSS E 0 DEVICE TABLE MUST BeGIN ON

AN EVEN ADDR BECAUSE OF
IDCC.

CRD01470
CRD01480
CRD01490
CRD01500

DC
De
DC
DC
L)C
DC
DC
DC
tlSS
DC
DC
DC
LlC
DC
DC
DC
DC

o
/1600
o
/1500
o
/1700
o
/1701
o
o
/8EOO
o
/81)00
o
18FOO
o
/8FOl

DEVICE TABLE FOR 1442-1
READ IOce

PUNCH IOCC
tlUSY INDICAfOR
SENSE IDCC

SENSE/RESET LOCC

DEVICE TABLE FOR 1442-2
READ IOce

PUNCH IOCC
BUSY INDICATOR
SENSE IDCC

SENSE/RESET IOCC

DEVICE TA~LE EQUATE~

cQU
eQU
EQU
EQU
EGlU
END

o
2
4
4
6

READ Ioec
PUNCH IDCC
BUSY INDICATOR
SENSE IDCC
SENSE/RESET IOCC

o CRD01510
1 CRD01520
2 CRD01530
3 CRD01540
4 CRD01550
5 CRD01560
6 CRO,01570
7 CRD01580

CKD01590
o CRD01600
1 CRD01610
2 CRD01620
3 CRD01630
4 CRD01640
5 CRD01650
6 CRD01660
7 CRD01670

CRD01680
CRD01690
CRD01700
CRD01710
CRD01720
CRD01730
CRD01740
CRD0175J
CRD01760

PROGRAMMING SUBROUTINES USING
REENTRANT CODING

NEED FOR REENTRANT CODING

One of the basic problems that arise~ in mUlti-level
programming is requirement of the same subroutine
by different levels of operation.

For example, the computer is servicing a main­
line program which is executing a square-root sub­
routine when an external interrupt occurs. The
hardware interrupt will automatically branch to an
address which will allow servicing of the interrupt.

The program that services the interrupt may also
require use of a square-root subroutine. If a method
of reentrant coding were not used, the identical
square-root subroutine would have to be in core
storage twice (once for each program that called it);
otherwise, the intermediate results which are needed
when the computer returns to complete the mainline
program would be destroyed by the interrupt program.

CONCEPT OF LEVEL WORK AREAS

To allow one subroutine to be entered at any time and
from any interrupt level, without loss of intermediate
results, a method of reentrant coding using level
work areas is used.

Reentrant coding is defined as coding which
allows a program to be entered and executed from
different levels without destroying the intermediate
results.

The mM 1800 TSX System provides features which
facilitate the coding of reentrant subroutines.

Each interrupt level specified by the user is pro­
vided with a level work area of 104 locations, which
are reserved for the exclusive use of programs
operating on that priority level.

The first 62 of these locations are reserved for
specific routines (l\1IC, QZSAV, etc.) while the re­
maining 42 locations are available. to allow other
subroutines (arithmetic, functional, etc.), to main­
tain their ability to reenter.

The start address of the level work area for any
priority level always appears in location LWA (fixed
location 10410 = 6816), If an index register is loaded
with the contents of this location, and all references
to temporary storage locations are indexed, 42
temporary storage locations are made available to
the subroutine for each level it may be operating on.

If the subroutine is reentered, different effective
addresses are generated for each such indexed
operand, and the reentry problem is solved.

The following sequence of instructions illustrates
how the contents of the A-register are saved in
TEMP in the level work area and later restored by
the instruction at LOAD:

Operation Opero"ds & Remar~,

"
IL,W-A, e,Q,U f""'U<J.L.-'-+--+"'=-++++f::1.--=,O~4-~~~~-----.L---.L~~ __ L __ ..L_J L __ ~ L __ J.J I I J J I I I, • I' t

r-'=.==..L-+-I"'"==++t--t-fSt~....L-...l~--L-.L-L_..l_-1. __ L __ 1-. J J L __ "- 1 L 1_ ILL ---.l I I 1 _J I I I I I I I I I I J TI!!,M,p /!,Q,U

1..0,)(,
STR.E STO

LOAD 1..0

ShOUld the subroutine be interrupted and re­
entered, there will be no storage conflicts, since
the contents of LWA changes with each interrupt
level. Hence, the instructions at STRE and LOAD
reference different effective addresses for each
interrupt level.

MECHANISM FOR REENTRANT CONTROL

For each interrupt serviced, MIC (Master Interrupt
Control program) saves and subsequently restores
the contents of the A- and Q-registers, index regis­
ters, machine status, and locations WK4 (5410 = 3616)
and WK5 (5510 = 3716), l\1IC also sets LWA to the
correct level work area address for each interrupt
level.

Since locations WK4 and WK5 are saved by MlC,
for each interrupt level, these locations may also be
used for temporary storage by reentrant subroutines,
e. g., loading and storing of index registers. Fur­
thermore, these locations are also used for other
purposes, as explained below.

Protecting Entry and Return Addresses

The first location of a callable subroutine is set by a
BSI instruction. As with all fixed locations upon re­
entry, this location may be changed and the return
address may be lost. The TSX System supplies two
pairs of subroutines which provide a method of
protecting the return address. They also perform
several additional functions useful for subroutines.

Programming Techniques 185

Subroutines Referenced by a CALL Instruction

-----r-r-r.,.-,---------.---------------- --------
Operundl & Remark,

~=--'+-+~!"-'--+_++_+__I"1=5=4~J..J-L-~~.L.J-L~LJ-...l-L~....L.J.......:J..-1..-L...L..--L-l.

,~---+---I-+---f!."--"5""'5""---'--.L.,----'-,----'-!---'-!---'-! -'-' -'-' -'--' -'--' '---" I._...L~.~._J~~
~~L~~'~~I~~~.~~I' I' I! I I 1~~_~~_~~

+--t-"'~=--'--t--f__H_t!1J=-.~-'-----'--'-L----' ' ,c,N,T,It,y, ~MLI,..L_.L~UT,I,~
+---I"'=~-'--t--F'-II-HIi='Q,:~~~-"-----,-"---,---, , ,c,A,l-,L, ,mLAZ,5,A,V, , , ,-----'--'----'----'-----'-----

---L.......L.......~...l...._..L......L.....L.......LJ-.L~!IIIIII.-J_.~J.

I 1t¥,b!!~~L.L_---'---'---~~Jf~~!!..r.d..L"I,gJ._L_1
___ L.L_J._~.....L......L-L!! I!!, 1.....J.... I ,! I , L_l.. __ L.. ... L L--L-l-...1. J.. L.--L

The QZSAV subroutine saves the contents of in­
dex registers 1, 2, and 3, the A- and Q-registers
and machine status and places the return address in
location WK4 (5410 = 3616), In addition, index

registers 1 and 3 are set to the first location of the
level work area, and index register 2 is set to
12710 = 7F16·

The QZEXT subroutine restores the index regis­
ters, machine status, and A- and Q-registers and
returns control to the calling routine via a BSC I WK4.
The address set in WK4 by QZSAV must, therefore,
be incremented by 1 for every parameter following
the CALL.

Subroutines Referenced by a LIBF Instruction

For subroutines referenced by a LmF (I-word BSI)
instruction through the transfer vector:

Oplrotlon

L¥~~,~
r--.,+-!~---!!.j.-I-~~". so " '" ..

=-+-+-+---+-I*-I1Ll~L-.J---1.......L~~L...L....1___L_L..J. _ ___.L_L._L...J....L..I.._L.._1_L...l.._.L.. LJ..

r~,7

5,U,iJ,R,T

--'----'--'---L

~L

e:ctL.u
€~Q.,iLL 1t~.........L~ __ LLL .L_--.L........L. . .J._L ... L-.l_..l.....-L..i .-L. __ L..---.L.......L.--*-.L......L......L.-L....1._L.L!

~

Q..(~,-,--

B-L~L.L...
-L..L+-+_+f_++c~~~=:: __ :::~=~--~~~~:r:~~y~ ~T;Q~::-l-~i:~:,.~R&~"7;;~~ ~:

I __ .r1Y~~__,__,__&_,_~~f.--'---_Lr,Q'_LZiYL5J~NL.L.L L--'--'-'---'-_'_ L.l

" I , , , , ! ! , '---Li....LJ. __ .L._L_L...J_J_L .. L J 1 J .1 .J L I __ J1 _ L-.i L L ~

..LtJ

--'.!,--'--
8--'.5 I

·'--'---'-+++-++-~J---L....L--L-L-...l.........L-1...-.L......L...J._L--'._-..L..l....-.L.L ...L.-L 1.....1---'-- L-L---L....L..J_L Li

i -L~_L~-L.....l..-.L-L----.l.........LJ_..l...........1_ 1_ -.l L.l L L l _1.L •• L_L_L L J

'-=---'-------t-t~+-+--_ILTil",E,X T, ! , , , ,~____,_~/.J----'---L6~M,._ l.~u.,~.J9JY,"'.dL'L~.L L J

----'--'---'-- LL' , J ! I, !, ' C..-L.....L-L._LJ __ LJ __ Li..-..L ___ LJ __ -'-_i L __ LJ..._l_J __ LL.l.'

The TVSAV subroutine saves the contents of
index registers 1 and 2, the A- and Q-registers, and
machine status and places the return address in
WK5 (5510 = 3716), In addition, index registers 1
and 3 are set to the first location of the level work
area, and index register 2 is set to 12710 = 7F 16'

The TVEXT subroutine restores the contents of
index registers 1 and 2, A- and Q-registers, and
machine status. Index register 3 is set to the
transfer vector location, and control is returned to
the calling routine via a BSC I WK5. The address
set in WK5 by TVSA V must, therefore, be incre­
mented by 1 for every parameter following the LIBF.

186

Other Considerations

It should be tUlderstood that the use of QZSAV or
TVSA V does not obviate careful logic control. If
parameters follow the call to the subroutine, it is
the responsibility of the subroutine to obtain these
parameters and to adjust WK4 or WK5.

If subroutines are ne sted, that is, one subroutine
calls another, care must be exercised to save and
restore the storage locations used by QZSA V and
TVSAV across the nested call, as well as th,e return
address in WK4 or WK5. Furthermore, nested sub­
routines must be planned so that the same locations
in the level work area are not used by more than one
subroutine.

Note that TVSAV, TVEXT, QZSAV, and I~ZEXT
are referenced by indirect BSI instructions and not
by CALL statements. The call to TVSA V or Q ZSA V
must be the first instruction executed in (and im­
mediately following) the entry location, as illustrated.

MASKING OUT THE INTERRUPTS

Another method of providing reentrant coding is to
prevent the interrupts from being recognized.

In Assembler language, it is possible to use the
XIO command with the IOCC-masking wordn pro­
vided by the TSX system. To mask all interrupt
levels completely, the following instructions may be
executed:

Label Operation F T Operands & Remark,

21 25 21 35 65

i!!':[4i~5.L':lK~1.~-I!E::£·,Q~-U~-+-H--l""5~,9),---,--,------,---,- "IL,O,C,A,T,I,o,N.S, .O,~.~
/tf 5 K 2 E_Q_U 52 , , .M,AS,K, .I,O,C,C, .W,O,R,D,S, , ' , , ,
~~~TT~~~~~~~~~~'~I~'~'~' ~, ~, '~~.' '" "!! I 

f-----'-J.----L-'--+--+'IX""'.I~:"O~,~LH_~~J.-",:S~K'-"!J."'-L-.L, , ' , M,A,S,K, IA,L,L, ,/1N..T,c,R,&f./,P,T, , , 
f-----'-J.----L-'--+---¥I)('--'-',I"--"O><y~LH__FM"-"l~S'--'-'-'K~-, , , , IL,e,V,E,L.,s, , , , • L , I ' • 

L-L-J.----L--'-.L-L-L-L-J.--LJL1--L.L.-'-----'-------'--'------'---'-_, , , , , ' , ' , • , , , , I '- ' , , I , ' , , I 

To restore the interrupt mask status, the following 
instructions may be executed: 

Label Operation 

" " 
fiS/(,3 £.Q,U 
M,5K+ ~Q_tJ 

F T 

" 
~'-" 
~,B 

Operands & Remark. 

, , 1l-,O,C,A,73.L.Qc~_LQ,F, ,l/,II/,M,A,S,K, , 
, , .I,O,C,C., IW:O,R,D,s. I ' , , , ' , , , , 

I I I I I! !J--L~.~~ 

X,I,O, L lM.S,K..3, 
XIO L ~,S,K.4 

, , J?,c,S,T,01~h-1LL':!;T~~ 
1---'---'---'---'-+--P-"~-+-----1~j--f!l~>L7L-'---'--'---'--LJL..lS!"5.tLTJ!:'''''l!.T..£UA...t.----'---'-----'_~I~ 
L-L--'--'---'-.L-L.J.-L-J.--LJl--L--'--'--'-----'------'---'----'---'--'---'--LJL--'---'-----'---'-.L._-'---'---'-----'---'-----'_'--'-----'----'~ 

This particular method of reentrant coding is ef­
fective and permissible, but is, in general:, tUldesir­
able. If interrupts are prevented from being recog­
nized as may occur, the philosophy of the IBM 1800 



interrupt system is defeated. However, for short 
sequences of instructions, the method of masking out 
the interrupts may be the fastest means of obtaining 
reentrant coding. 

PROGRAMMING NOTES 

The following examples illustrate the different ap­
proaches that may be used to write reentrant subrou­
tines, and to explain the need for WK4 and WK5 
(words 54 and 55 of the Fixed Area in core storage). 
These words are saved by MIC in the same maIUler 
that the accumulator and certain index registers are 
preserved during the handling of an interrupt. 

Both examples depict a method of storing what is 
contained at the effective address reached by an 
index register plus its displacement, loading that 
value into another index register, and be reentrant. 

Label Operation F T Operands & Remarks 

I*: ,N,O,N R € c,N rlR AW T. C.A 5 E: 

C 0,N,S,7 iE",Q,l/ I I , I , I' , I , , ! I, , ! , , , ! ! , I 

! I , I, , , , I , , ( , I ! , , , I, ! ! , , , ! , ! I 

! I I I, I ! , I , J I! , ! I , , , , ! ! I , ! I ! J I 

L D It If'" O,N,S,T, I ' , , , I ' , , , I I ' , , I ' , , I • , , , , I 

5 T 0 ~.+ 1., , , , , , , , I ' , I I , , , , ' I , , I ' I , I ' , I 

LDX LZ 1Jf.-*, , , , , , ' I , , , , I ' , , , I I ' , , I , , , , I 

~, R c cW TR A.N 7 A Pip.R.OA,C H IP,J. 

CONS,T E. ,),1./ 
/U,S K.l IF. ;W 
M,S,K,2 E, ),l/ 
~,S K,3 £ LJ 
M,51(4 £ ,;),LJ 

5.3 
5.0 
5.2 
14,~ 

14.8 

[ ! I ! , , , I , [ It' I I I ! t I ! I '--..L-..L-L.J. 

x IO L 'M,s K 1. ,J,f,A 5 K ALL I N.T£",R~.(/ P'T: 

570 iltE-,+l 

X,I,O L ~ 5 K3 LJN,M A,sK, 1r;0, ,lJ,S,E",R,S., "I 

COIiS,7 £;0,0. 15 . .3 

L D 1. C 0#5,7, , , , , , , , , , , , , , , I I ' , , , , , ' , , ., 

5 ToO L 5.4, . I. 0 CAT 10 No o,c, ,WK.4, '--..L-..L-L.J. 

LDX lr2 54 

WRITING USER-PROGRAMS FOR EXECUTION 
UNDER THE TASK ABSOLUTE LOADER 

The TASK Absolute Loader can be used to load pro­
gram s from cards to core for execution under TASK 
or for the storing on disk of user-written programs 

or data. The TSX system must be in the off-line 
(nonprocess) mode. To call the absolute loader, load 
or restart TASK and set sense switch 0 on. 

PROGRAM/DATA FORMAT 

The User programs and data must be assembled ab­
solute and origined above the last address of TASK. 
The object deck must be of the relocatable format 
type, i. e., compressor output, not core image. The 
execution address on the end-of-program card must 
be the address of the first user instruction if the 
program is to be executed, and must be the address 
of the program word count if the program is to be 
stored on disk. No LIBFs or CALLs are allowed in 
the program, but any TASK subroutine (DISKN, 
TYPEN, etc.) can be called as defined in TASK I/O 
Subroutines. The TASK object program set is an 
example of program s designed to run under the 
absolute loader. 

NOTE: When executing user-written absolute pro­
grams under TASK, it is best to use an off-line 
cartridge, or a cartridge that does not contain the 
TSX system, so that TSX system areas which are not 
file protected are not destroyed. For example, 
TASK uses sectors 05CO and up for buffering of 1053 
messages. The upper limit of this area was estab­
lished by the user at TASK assembly time. 

The source deck format for executable program s 
is 

START 

ABS 
ORG 
LD 

User's 
Program 

ABC is a core 
ABC address above the 

last TASK address 
(see NOTE below) 

END START 

The source deck format for data or program s 
stored on disk is 

ABS 
ORG ABC 

ABC is a core 
address above the 
last TASK address 
(see NOTE below) 

Programming Techniques 187 



START 

A 

DC 
DC 

User's 
Program/ 
Data 

EQU 
END 

A-START-2 
SECAD SECAD is the 

first sector ad­
dress where the 
program is to 
be stored. 

* 
START 

NOTE: To insure that the program. is always above 
the end of TASK, let ABC be greater than or equal 
to /Fl FO. The highest address of the program must 
be less than or equal to /FFFF. 

It is the user's responsibility to recall the data 
or program from the disk. 

ABSOLUTE LOADER OPERATION 

'When TASK has been reloaded or restarted, the 
following message is printed. 

TASK 1800 TSX 
SEN SW 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 
SEN SW 2 ON FOR SKELETON BUILDER 

1. Set Sense switch 0 on. 
2. Place the program to be loaded in the card read 

punch hopper. A stacked input is allowable. 
3. Press reader START. 
4. The user now has the option of selecting manual 

or automatic mode before pressing Console 
START. 

188 

Manual Mode 

If data switch 15 is off, the absolute loader operates 
in the manual mode. After the program has been 
loaded to core, the following message is printed. 

DATA SW 0 ON LD DISK OFF EXECUTE 

Set data switch 0 off and press console STAHT to 
execute the program just loaded. Set data switch 0 
on and press Console START to write the program 
or data to disk. If the program or data is written 
to disk, the absolute loader starts reading the next 
program in the card reader into core after perform­
ing the disk write function. 

Automatic Mode 

If data switch 15 is on, the absolute loader operates 
in the automatic mode. After loading the uBer's 
program, the absolute loader executes it unless the 
control card illustrated below has been plac:ed in 
front of the user's program. The format of the con­
trol card is: 

column 1 = 8 
column 2 = + 
column 4 = 9 
column 13 = 1 
all other columns = blank 

The user can assemble this control card in his object 
deck by placing the two source cards shown below 
right after the ABS card in his source deck. 

ORG 
DC 

40 
1 

If the program is loaded in automatic mode and the 
control card has been included, the program will be 
stored on disk and the next program in the reader 
will be loaded. 

The following (Program Listing No.8) is an 
example of the loading and execution of an absolute 
80-80 program using the TASK Absolute Loader. 
Note that the program is assigned for the u.pper 4K 
of core. The ABS card is used to indicate that this 
is an absolute assembly. The start addref:is is pres­
ent in the END statement. 



PROGRAM LISTING NO.8: TASK ABSOLUTE PROGRAM FOR DOING AN 80-80 LIST OF CARDS ON THE 
LIST PRINTER 

II JOB 
II ASM LI ST 

';'L I ST 
';'PUNCH 
'~PRINT SYtvlBOL TABLE 

ABS 
*************************************************** 
):~ ):c 

>:' TASK ABSOLUTE PROGRAM FOR DOING AN 80-80 * 
,~ LIST OF CARDS ON THE LIST ~~ 

>~ PRImER. ~, 

)~ ~, 

*************************************************** 
0000 ORG I FHa PLACE IN UPPER 4K 
007D LSTPT EOU 125 LIST PRINTER ENTRY POINT 
003D CARDN E(,llJ 61 CARDN ENTRY POINT 
003A HOLER E(')U 58 HOLES ENTRY POINT 
0038 EBPRT EOU 59 ESPRT EIHRY POINT 
00A6 $LORG EQU 166 LIST PT DEVICE TYPE IND 
0020 CIND E(,)lJ 32 CD IND ON INT LEV I.JK AREA 
0068 $ TV\'JK EGlU 104 I ~IT LEV WK AREA LOC ADORES 

':' 
FIFO 00 67800068 START LOX I3 s TVI4K TELL CARDN NOT TO CHECK 
FIF2 () COOO LD ',' FOR II CARDS 
FIF3 0 D320 STO X3 CIND 
FIF4 00 C40000A6 LD L $LORG WHAT DEVICE IS LIST PRINTR 
FIF6 00 4C08FIFB BSC L LOOP,+ BRANCH IF 1053 
FIFfl 00 44800070 8SI I LSTPT SKIP TO CHANNEL 
F IF·A 0 3100 DC /3100 
FHB 00 44800030 LOOP SSI CARDN READ A CARD 
FIFO 0 1000 DC /1000 
FIFE 0 F291 DC IAREA 
FIFF 0 0000 DC 0 
F200 00 44800030 SS! CARON LOOP BUSY 
1"202 0 DOOO DC 0 
F203 0 70FC MDX ';'-4 
F204 00 4480003A BSI HOLEB CONVERT TO EBC CODE 
F206 0 0000 DC 0 
F207 0 F292 DC IAREA+l 
F208 0 F292 DC IAREA+1 
F209 0 0050 DC 80 
F20A 00 C40000/16 LD L $LORG 
F20C 00 4C20F24F SSC L P1443,Z BRANCH IF 1443 
F20E 00 44800070 PI053 BSI I LSTPT LOOP BUSY 
F210 0 0000 DC 0 
F211 0 70FC MDX ';'-4 
F212 00 44800070 SSI LSTPT RETURN CARRIER 
F214 0 1000 DC 12000 
F215 0 F28F DC RETUR 
F216 0 0000 DC 0 
F217 0 6114 LOX 1 20 SET UP TO SUPRESS TRAILING 
F21fl 0 69 L>7 STX 1 OAREA SET UP WDCT 
F219 00 C500F2A5 LP1 LD Ll IAREA+20 BLANKS--TEST FOR BLANK 
F211J 0 F043 EOR H't040 
F21C 00 4C20F22A BSC L NZl,Z BRANCH IF NOT BLANK 
F2lE 0 71FF HDX 1 -1 DECREHENT 14DCT 
F21F 0 70F9 HDX LP1 TEST NEXT CHARACTER 
F220 0 6954 ST X OAREA+21 SET UP ZERO WDCT 
F221 0 6114 LOX 1 20 TEST FIRST HALF OF CARD 
F222 00 C500F291 LP2 LD Ll IAREA TEST FOR BLANK 
F224 0 F03A EOR H4040 
F225 00 4C20F22C BSC L NZ2,l BRANCH NOT BLANK 
F227 0 71FF HDX 1 -1 
F228 0 70F9 i'IOX LP2 TEST "-JEXT CHARACTER 
F2<'9 0 70Dl HDX LOOP ALL OF CARD IS BLANK 
F22A 0 694A ~IZ I STX OAREA+21 
F22B 0 7001 MDX ';'+1 
F22C 0 6933 NZ2 STX 1 OAREA 
F22D 00 44800038 BSI I ERPRT SET UP FIRST HALF OF I~E SS 
F22F 0 0001 DC 1 TO BE PRINTED 
F230 0 F292 DC IAREA+I 
F231 0 F261 DC OAREA+1 
F232 0 0028 DC 40 
F233 00 44800070 RSI LSTPT LOOP BUSY 
F235 0 0000 DC 0 
F236 0 70FC I'-'1DX ';'-4 
F237 00 44800070 BSI LSTPT PRINT FIRST HALF OF CARD 
F239 0 ?OOO DC 12000 
F23A 0 F260 DC OAREA 
F23B 0 0000 DC 0 

F23C 0 C038 LD OAREA+21 TEST SFCOI'ID HALF FOR BLANK 
F23D 00 4C08FIFB BSC LOOP,+ BRANCH IF BLANK 
F23F 00 4480003B ~SI EBPRT SET UP SECOi~D HALF OF CARD 
F241 0 0001 DC I TO BE PRINTED 
F242 0 F2A6 DC IAREA+21 
fC243 0 F276 DC OAREA+22 
F244 0 0028 DC 40 

Programming Techniques 189 



F245 00 44800070 t-lSI LSTPT LeJOP I:lUSY 
F247 0 0000 DC 0 
F24B 0 70FC r~DX *-4 
F249 00 44800070 BSI LSTPT PRINT SECmm OF CARD 
F24B a 2000 DC /2000 
F24C 0 F275 DC OAREA+21 
F24D 0 0000 DC 0 
F24E 0 70AC MDX LOOP GO READ r,E <T CARD 
F24F 00 44800070 P1443 BSI LSTPT LOOP P,UFFE;~ BUSY 
F251 0 0010 DC /0010 
F252 0 70FC MDX *-4 
F253 00 4480003B BSI EBPRT SET UP CARD TO BE PR INTED 
F255 0 0001 DC 1 
F256 0 F292 DC IAREA+1 
F257 0 F266 DC OAREA+6 
F258 0 0050 DC 80 
F259 00 44800070 BSI LSTPT PRINT THE CARD 
F25B 0 2100 DC /2l00 
F25C 0 F260 DC OAREA 
F250 0 0000 DC 0 
F25[ 0 709C MDX LOOP GO READ I~EXT CARD 

;:t 

* TABLE AREA 

* F25F 0 4040 H4040 DC /4040 ESC BLANK 
F260 0 0020 OAREA DC 45 OUTPUT BUFFER 
F261 0 0000 DC 0 
F262 0 0000 DC 0 
F263 0 0000 DC () 

F264 0 0000 DC 0 
F265 0 0000 DC 0 
F266 OOOF BSS 15 
F275 a 0014 DC 20 
F276 0019 BSS 25 
F28F 0 0001 KETUR DC 1 RETURN CAf'.R I E R MESSAGE 
F290 0 8121 DC /8121 
F291 0 0050 IAREA DC 80 INPUT BUFfER 
F292 0050 BSS 80 
F2E2 FIFO END START 

• 
• SYMBOL TABLE 
• 

CARON 0030 GINO 0020 EBPRT 0036 HOLEB 003A H4040 F25F 
IAREA F291 LOOP FlFB LP1 F219 L P2 1'222 LSTPT 0070 
NZl F22A NZ2 F22C OAREA F260 P1053 F20E P1443 F24F 
RETUR F28F $LORG 00A6 $TVWK 0068 START I'lFO 

NO ERRORS IN ABOVE ASSEMBL Y. 
LI ST 
DUP FUNCTION COMPLETED 

190 



BASIC CONCEPTS OF DATA ACQUISITION AND 
PROCESS CONTROL SYSTEMS (DACS) 

INTRODUCTION 

Data Acquisition and Process Control Systems are by 
definition real-time systems. In real-time process­
ing, inputs may arrive randomly from the process 
being monitored to the computer which rapidly re­
sponds to each input, usually by transmitting an out­
put back to the process. This is in contrast to con­
ventional batch processing where groups of inputs 
are processed by passes through the computer. The 
notion of real-time usually implies that a computer 
is responding to inputs as they occur in the physical 
world. 

The principal functions of a real-time data acqui­
sition and process control computer system are: 
data scanning, data logging, process calculations, 
process outputs, input-output control, operator­
machine communication, and specialized system 
monitoring. Each of these functions is implemented 
by one or more programs permanently stored in core 
or in secondary storage. 

In general, data logging/data acquisition applica­
tions are basically monitor system s where the data 
signal traffic is toward the computer process I/O. 
Control systems (supervisory, operator-guide, or 
direct digital control), on the other hand, are char­
acterized by a two-way signal flow across the 
process/computer interface. For the most part, 
data acquisition implies that the process operates in 
its normal manner without being affected by the com­
puter, whereas computer control systems imply that 
the process is directly controlled by actions and 
commands of the computer. 

Implementation of data acquisition and process 
control systems in real-time requires certain proc­
ess I/O hardware which significantly affects software 
requirements. Most important of these are the 
analog input and output hardware which require relay 
and possibly solid-state multiplexing devices together 
with a multi-level priority interrupt system. 

Analog Process I/O 

By the very nature of processes, many internal proc­
ess signals are analog -- that is, continuous func­
tions with respect to time. Many instruments have 
been developed to pick-off various signals of interest 
and to modify them (that is, amplify, filter, linearize, 
etc.) in order to provide data or control signals. 

Analog-to-digital converters (ADC) are used to con­
vert the resultant analog signals for computer entry. 
The ADC and amplifiers in a DACS may also operate 
directly on the output of a signal transducer. 

Transducers have been designed around physical 
laws to convert one form of energy to another. 
Transducers used with data acquisition and process 
control systems usually convert the various phYSical 
quantities to be measured to their voltage analogs. 
For example, transducers are available to convert 
pressure to voltage and temperature to voltage. The 
quality of the transducer is determined by the ac­
curacy, repeatability, linearity, and proportional 
range of the parameter to voltage conversion" In 
almost every process, temperature is one of the 
variables of interest, and in many cases, thermo­
couples are used to measure temperature. Strain 
gauges may be used to measure pressure, deforma­
tion, and loading. Thus, depending upon the size and 
package, one could use a strain gauge to measure 
direct blood pressure or to measure stresses set up 
in a missile structural member when the missile 
engine is ignited. Similarly, a thermocouple could 
be used to measure a blast furnace process temper­
ature or air temperature. 

To convert the transducer-produced voltage to 
digital values, an analog-to-digital converter (ADC) 
is used. Since an ADC can operate at a high rate 
compared to the rate of change of the individual sig­
nal voltages and because ADC units are relatively 
expensive, it is customary to time-share the ADC 
among a number of input voltages through an analog 
multiplexer. 

An analog multiplexer is a device which switches 
the various analog inputs to the ADC. Most multi­
plexers can be programmed for sequential scan 
where each input channel is in turn scanned and con­
nected for conversion to the ADC. Random scan 
sequences can also be programmed. Random scan­
ning, as the name implies, permits any arbitrary 
sequence of input channels to be scanned and con­
nected in turn to the ADC. 

In summary, the signal flow in the analog proc­
ess I/O can be explained as follows. Multiple par­
ameters are continuously converted to voltages by 
appropriate transducers and signal conditioning 
electronics. The resultant voltages form inputs to 
a multiplexer. Under command of the processor­
controller, multiplex switches are closed to allow 
an analog input signal to be amplified (in most cases) 
by a time-shared amplifier. The ADC connected to 
the amplifier output does the actual voltage to digital 
conversion, with the resultant digital value being 
inputted to the computer. In this manner, the signals 

Programming TecJmiques 191 



of interest in the process are sampled, measured 
and entered into the computer for additional process­
ing. 

Data flow from the computer to the process fol­
lows a converse procedure. Digital data is entered 
into multiple registers by the computer. Each regis­
ter is connected to a digital-to-analog converter 
(DAC). A DAC is basically a digitally-controlled 
voltage or current source whose output is the voltage 
analog of the digital value. The analog outputs in 
turn control various set-points and other control 
points in the system. In some systems, a single 
DAC is connected to analog memory devices via an 
analog multiplexer. In this way, a single DAC can 
be used to provide many output signals. 

By using digital-to-analog converters and analog·­
to-digital converters, a digital computer can be 
made to communicate with process signals and con­
trol eqUipment. It should be noted that the digital 
process I/O and the analog process I/O are all under 
program control. 

Digital Process I/0. 

In addition to the analog parameters which must be 
monitored and controlled, there are other process 
signals which are binary in nature. Thus, for exam­
ple, relays can be open or closed, a voltage level 
mayor may not be present, or a parameter may be 
represented as a sequence of pulses. The computer 
must be able to accept this data which is essentially 
binary in form. Similarly, the computer must be 
capable of producing binary outputs to control devices 
such as relays. The subsystem in a DACS, which 
handles these types of signals, is generally referred 
to as di.gital process I/O. 

Two of the process I/O functions provided on the 
IBM 1800 Data Acquisition and Control System are 
contact sense and voltage sense. The output of the 
contact sense circuit signifies when a contact closure 
has occurred on the input. The output of the voltage 
sense circuit indicates when an input signal has ex-· 
ceeded a preset level. The output of each circuit is 
connected to a single bit in a register. The processor­
controller can scan these registers at rates from 
100, 000 up to 500, 000 words (groups) per second. 

Closely allied with these digital input features is 
process interrupt. Process interrupt is a vital fea­
ture for real-time control because the computer is 
basically a sequential machine. When a significant 
process event such as an alarm occurs, as indicatod 
by a relay closure or voltage level, a signal is trans­
mitted to the computer as an interrupt requiring a 
special subroutine to take appropriate action. 

192 

Interrupts are usually assigned in order of priority, 
so that if two occur at once, the more important is 
serviced first by the computer. In essenCE~, proc­
ess interrupt is merely a special form of voltage/ 
contact sense. The feature of customer-aBsignable 
multi-priority interrupts clearly differentiates a 
process control computer from the normal data proc­
essing system. 

Pulse inputs form another category of digital in­
puts. A typical process source is the turbine flow 
meter which generates pulses at varying rates from 
a few pulses per second up to several thoul3and 
pulses per second. Electronic counters are used to 
accumUlate the pulses; the response to an interrupt 
signal on counter overflow or a periodic scanning of 
the counter register then accomplishes transfer of 
the accumulated count data into the computer. High 
speed pulse counters and scalers for mega(~ycle rates 
are also adaptable for high-speed data acqUisition 
applications. 

Similarly, some control devices in a typical proc­
ess environment require input data in the form of 
pUlses. Several types of output are available, one 
form being pulse output. The primary purpose of 
this output is to provide for pulse trains to operate 
such devices as latches, set point indicators, and 
other stepping motor devices. 

One form of output which is oppOSite to the con­
tact sense feature is Electronic Contact Operate 
(ECO). Many of the required control and display 
operations in a typical process application involve 
binary action; that is, a piece of equipment is turned 
on or off, or a valve is open or shut completely. 
This capability is provided by ECO. 

To increase the versatility of the data acquisition 
and process control system, an output feature is pro­
vided whereby a digital word can be transferred to an 
external piece of equipment. The register output 
feature provides this capability on the 18010. Exam­
ples of its use might include transfer of data to 
another computer or to a display device. 

Process-input-data flow to the computer is illus­
trated in Figure 89, as accomplished on an IBM 
1800 Data Acquisition and Control System, together 
with corresponding process output features. Digital 
data may be read in under direct program control, 
as the program executes read-in instructions, or ad­
ditional channel controls can be employed to sequence 
data to previously assigned areas of core storage 
without disrupting normal program operation. This 
is known as cycle-steal. When data is ready for 
entry, a cycle-steal operation is initiated by the 
channel control circuitry. One memory cycle of 
computer operation is used to read-in the data word 
directly to the assigned core storage location. 



PROCESSOR­
CONTROLLER 

ANALOG 
INPUT 

POINTS 

PROCESS I/O 

DIGITAL INPUT POINTS 
r---____ ~------~A,~--~----____ ~\ 

CONSOLE 
ENTRY & 
DISPLAY 

P-C 

IN 
BUS 

OUT 
'----r-----' BU S 

y 

VOLTAGE/ 
CONTACT 

SENSE 

PULSE 
COUN­

TER 

DIGITAL AND ANALOG 
OUTPUT POINTS 

Figure 89. IBM 1800 Data Acquisition and Control System 

DATA ACQUISITION SYSTEMS 

Data acquisition/data logging systems are generally 
the simplest form of DACS. When used in a data 
acquisition role, the computer controls the real-time 
collection of data from the process. Many data 
acquisition systems operate on analog signals record­
ed on magnetic tape rather than in real-time. How­
ever, the problems involved in both situations are 
similar, except of course, in real-time only one op­
portunity to capture the data exists. To overcome 
this, an analog recording is sometimes made simul­
taneously for backup. 

In data acquisition/data logging applications, the 
data flows from the process to the computer system 
(or analog magnetic tape). A minimum number of 
signals flow from the computer to the process. 
Therefore, the computer will normally have mini­
mum control over the process. The data signals 
from the process are connected to the process input 
computer circuits and/or to the analog tape recorder. 
Thus, the data acquisition system monitors and 
records what goes on in the process without affecting 
the process functions in any manner. 

When the analog tape is played back, the signals 
appear to the DACS computer exactly as real-time 
signals and can be handled by the computer in the 
same manner. By playing back the analog tape 
several times, a more selective retrieval of data is 
possible. If a DACS malfunction occurs in real­
time, the data can still be retrieved by replaying 
the backup analog tape. 

There are many reasons and applications for 
computer-assisted data acquisition. The following 
list is given to denote the almost universal applica­
bility of data acquisition: 

1. Record keeping: Many applications and indus­
tries must keep expensive records of processes. 
For example, airlines are required by law to 
record aircraft flight performance. 

2. Telemetry is basically data acquisition and 
data logging from a remote or inaccessible 
process. 

3. Data editing and data reduction applications in­
vol ve processing large quantities of data which 
in many cases are redundant or non-Significant. 
The computer program is called upon to reduce 
this data to manageable proportions. 

Programming Techniques 193 



4. MallY processes have been designed on an empir­
ical basis. Data logging and data acquisition is 
used to collect sufficient data to more fully under­
stand the process. This data can be for process 
optimization and for model building. 

5. By continuously monitoring parameters within a 
process, alarm conditions can be detected. 
Each value is continuously compared against 
preset conditions. Whenever a parameter is not 
within limits or the status does not check as 
expected, an appropriate alert can be given. 

6. By carrying the limit violation check procedure! 
further, trend predictions can be made. Thus, 
whE~n rate of change of parameters exceeds 
prescribed limits, remedial action can be taken. 

7. Important application areas are quality control 
and industrial testing. By using computer-aided 
test stands, it is possible to do 100% testing on 
production line components and produce printed 
records of the test results. For many military 
specification components, 100% testing is 
mandatory. Furthermore, the statistical data 
accumulated is necessary for various quality 
control work and product assurance. Computer­
assisted testing makes the procedure econom­
ically practical. The degree of confidence that 
a c:ustomer has in a product is enhanced when he 
can obtain a printed record of the product's 
acceptance test results. 

OPERATOR GUIDE/SUPERVISORY CONTROL 

Almost all Operator Guide/Supervisory Control (00/ 
SC) systems embody data acquisition principles. In 
order to control a process, one must first measure 
and monitor it. The data acquisition feature is the 
monitor portion of OG/SC. Thus, data acquisition 
is the first step to control. 'When starting a control 
project, one must obtain sufficient data about the 
process through a planned data acquisition system. 
The data acquisition finally becomes the process I/O 
of the control system. OG/SC systems are charac·­
terized by a two-way data flow between the process 
and the computer. The computer monitors the proc­
ess and based upon these measurements determines 
what control is necessary to make the system func·­
tion in accordance with the program. To a first ap­
prOXimation, the difference between Operator Guid,e 
Control and Supervisory Control is one of how the 
computer interfaces with the process. Operator 
Gui.de Control usually implies the presence of a 
human operator who receives instructions from the 
control processor on an output display device, such 

194 

as a typewriter. The operator makes adjustments 
and sets controls on set-pOint controllers based upon 
the control processor originated instructions. 
Supervisory control situations allow for di:rect con­
trol of the process by the computer via hardware 
electrical connection to the set-point controllers. 
The computer can make adjustments and Sl9tS con­
trol without operator intervention. Both categories 
rely upon direct computer data acquisition. 

Most conventional processes rely upon :analog 
controllers to hold various process variables within 
set points. Processes are usually made u;p of a 
number of cascaded operations with each step con­
trolled by an analog controller. To adjust or opti­
mize the process for particular modes of operation, 
each controller is set through its set-point control. 
The set-point may be reset during the proeess to 
compensate for various process perturbations. 

When a computer controls the process, various 
modes of control are feasible. For example, in 
start-up control, the computer will first issue in­
structions to set the controllers to various set­
points depending upon the process. The computer 
continually monitors the set-points on the controllers 
and the various controlled variables. Subsequent 
steps in the starting sequence are not permitted to 
commence until all values are within the'ir pre­
scribed tolerances. This type of control assures a 
reliable repeatable checkout and start-up procedure. 
Full documentation of all controls and variables are 
an implied by-product. Furthermore, by extending 
this concept, a standard operating procedure for the 
process is feasible. 

Process optimization generally require1s a mathe­
matical model which has been defined on the basis of 
theory and/or data obtained using data logging tech­
niques, etc. Successful optimization results in 
maximizing or minimizing parameters de(~med im­
portant by management. 

An attractive feature of the OO/SC type of com­
puter control is that the process equipment is least 
disturbed. The only effect on the analog controllers 
is that they must be provided with remote set-point 
capability. Reversion to manual control is easily 
accomplished because the analog controllers are 
still in place. This provides an important backup 
capability for keeping the process running during a 
computer shutdown. In addition, the minor changes 
to the process instrumentation is an economic ad­
vantage. 

Computer control can thus be installed in most 
existing processes without the necessity for building 
from the ground up. 



DffiECT DIGITAL CONTROL 

Direct Digital Control (DDC) is another advanced 
form of computer process control. In this mode of 
operation, the process will probably not run without 
the computer. The computer controls the process 
directly without the intervention of analog control­
lers. Computer-generated signals are used to con­
trol the process directly. 

A DDC application generally requires re-instru­
mentation on existing processes. The proponents of 
DDC have advanced many arguments for this method 
of control. The marriage of the process to the com­
puter provides many potential control techniques, 
not otherwise available, because of the tight control 
that is feasible. 

A major advantage of DDC is the ease in which a 
parameter may be instrumented and controlled. A 
minor hardware addition in the process coupled with 
another program loop is all that is needed to control 
an additional variable. On the other hand, to add an 
analog controller is a major construction task com­
pared with its DDC equivalent. To a large extent, 
the number of process loops that can be controlled 
is limited only by processor-controller and process 
I/O capabilities. 

Analog controllers may be manually adjusted for 
best control for any given set of plant operating con­
ditions. If these conditions change, analog controllers 
must be manually readjusted to retain optimum con­
trol. Readjustment is so time-consuming that it is 
usually impractical. In DDC, to change a critical 
time constant or to add a derivative function entails 
the addition of a few punched cards rather than 
major hardware. The effective characteristics of 
a controller are thus changed by inserting new cards 
into the deck. The flexibility and ease with which 
DDC can be altered is not possible with analog con­
trollers. 

Further Reading 

For the benefit of inexperienced readers, the follow­
ing IBM publications are recommended for further 
reading: 

Principles of Data Acquisition Systems, 
Form E20-0090 

Programming for Computer Control of a Cement 
Kiln, Form Z20-1753 

High-Speed Data Acquisition in Low Energy Physics, 
Form E20-0171 

The IBM 1800 Data Acquisition and Control System 
for Gas Turbine Engine Testing - Developmental, 
Form H20-0121 

The mM 1800 Data Acquisition and Control System 
for Gas Turbine Engine Testing - Production, 
Form H20-0123 

Computer Control of the Continuous Hot-Dip 
Galvanizing Process, Form E20-0178 

1800 Traffic Control System - Application 
Description, Form H20-0212 

1800 Process Supervisory Program (PROSPRO/ 
1800) - Application Description, Form H20-0261 

TSX SAMPLE SYSTEM 

The TSX Sample System was conceived and developed 
for two primary reasons. First, it demonstrates in 
a step-by-step fashion how to generate a TSX system 
from start to finish. Second, it illustrates some of 
the ways in which TSX can be used to actually control 
a process. The sample system is a working operat­
ing system which has proven itself in continuous 
service. For practical purposes, and in the inter­
est of simplicity, an mM 1800 Data AcquiSition and 
Control System is linked to a Process Simulator to 
reproduce an actual continuous process which close­
ly approximates a paper machine used in the manu­
facture of paper of diverse grades. 

The general objectives of the system are to give 
better quality and quantity control. Its design basis 
included four specific criteria: 

1. Provide periodic logs of all impQrtant variables 
within the system. 

2. Establish closed-loop control over eight proc­
ess variables. 

3. Incorporate process operator control over 
forty process variables. 

4. Display up-to-the minute management informa­
tion about the process. 

The sample system demonstrates how a number of 
functions may be achieved by using TSX, with rela­
tively little effort on the user's part. The features 
of special significance in this example are 

• the scheduling of periodic, semi-periodic, 
synchronous and asynchronous program s 

• closed-loop control 

Programming Techniques 195 



• process job scheduling 

• error recovery procedures 

• system design to achieve maximum utilization. of 
the time-sharing mode 

SYSTEM DESIGN 

The first thing that must be done in designing a con-· 
trol system is the definition of the process to be con­
trolled; the second is the definition of the hardware 
(that is, the computer and its associated instrumen-" 
tation); and thirdly, the design of the programming 
software. In this example, the process is referred to 
in terms of a paper machine, but those readers who 
are familiar with the paper industry will immecli.ateLy 
realize that a paper manufacturing system in its full 
detail is quite complex, and for this reason, many of 
the paper machine control functions normally encoun­
tered are intentionally omitted. Among these are the 
handling of paper breaks and the use of instruments 
for on-line measurements of consistency, basis 
weight, and moisture content. 

The paper process is designed to manufacture 
small amounts of paper of high quality grades. Orders 
arrive at the plant for varying quantities of paper of 
different paper grades. For example, orders may 
differ with respect to dimension, basis weight, 

Process 
Operators 
Console 

Setpoint 
Stations 

Operator 
Guide 

'Y 
Process 

Figure 90. TSX Sample System Schematic Diagram 

196 

IBM 
1800 
DACS 

strength properties, color, chemical additives, etc. 
The machine must be able under continuous operation 
to switch from one grade of paper (when the order 
quantity for that paper has been completed) to the 
next grade of paper. This means that grade change 
must be made as quickly and efficiently as possible 
to avoid undue and costly waste. Also, during the 
manufacture of a given grade of paper, very tight 
control over the process is necessary to ensure qual­
ity that is consistent with past orders for th.is paper. 
The control variables must be kept at setpoint, and 
any undue variation in other variables within the sys­
tem must be recognized and the operator informed. 

Input to the system must be provided for the up­
dating of job files on the disk so that the computer 
knows continually what grades of paper are to be man­
ufactured and in what sequence. Data on grade and 
quantity of paper arrives from the order department 
on data cards (see Figure 90). These cards are read 
and placed in files, on the disk, by the nonprocess 
time-shared portion of the operating system; the proc­
ess portion then goes through this i.nformation sequen­
tially. 

Provision must be made for a process operator, 
through the medium of a console, to be able to ob­
tain and/or update information about the entire proc­
ess system at any time. This may include the 
changing of a setpoint on a setpoint station or to have 
instantly all available information on a given vari­
able, such as its current value, its high and low lim­
its, and conversion factors. The process operator 



must also be able to modify the roo-time of a par­
ticular grade of paper, and to change the sequence of 
process jobs that reside on the disk .. 

The 1800 hardware configuration for this system 
consists of the following: 

• A two-microsecond 1801 Processor-Controller, 
with 32,768 words of core storage 

• A 2310 Disk Storage unit, with two disk drives 

• A 1443 Printer 

• A 1442 Card Read/Punch Unit 

• Three 1053 Printers 

The 1443 Printer and 1442 Card Read/Punch, 
along with one of the disk drives are used for non­
process work. This means that the card reader, the 
printer, and one disk drive constitute a basic stand­
alone monitor system, while the process portion 
consists of the remaining disk drive, three 1053s, 
and process I/O. 

PERIODIC PROGRAM SCHEDULER 

Certain periodic functions must be handled within the 
system. First, every 20 seconds the closed-loop 
control program must be entered for a scan of the 
setpoint stations to see if they are on setpoint and, 
if they are not, to set up for the return of the set­
point positioners to their correct operating points. 
Second, every two minutes a scan of all operator 
gUide points must be performed for limit checking, 
and any out-of-limit violations printed so that the 
process operator may bring these operating points 
within limits. Third, every quarter hour on the 
hour, a log of all variables within the system must 
be printed. Fourth, every hour, on the hour, a 
summary log of the previous hour's production must 
be printed for the attention of the process operator, 
the supervisor, and the foreman. Fifth, at the end 
of every shift (12:15 a. m., 8:15 a. m., and 
4:15 p. m.) a shift-in log is printed which repre­
sents a summary of the past shift's production. 
Sixth, every Monday morning at 8:30, a weekly sum­
mary log is printed for close scrutiny by the super­
visor and his foreman. 

The first two of these functions are called periodic 
asynchronous functions because, while they are per­
iodic in nature (that is, they occur every 20 seconds 
and every 2 minutes, respectively), they do not have 
to be in synchronization with real-time. The other 

functions are periodic synchronous since they are 
periodic and must be in synchronization with real­
time, i. e., every hour, on the hour. To schedule 
the programs properly, a scheduler CALL COUNT 
subroutine is written in FORTRAN. The time-base 
method is used to determine when a periodic, 
synchronous program is next executed. In this way, 
a time is recorded for a given program that is 
chosen for execution. When the real-time clock is 
greater or equal to the time base specified, that 
program is scheduled for execution, i. e., it is 
queued, an end-time-sharing command is given, and 
the base-time is incremented by the period of the 
program. 

SAMPLE SYSTEM ERROR DESIGN 

Error procedures constitute one of the most impor­
tant parts of any system. In the sample system, 
error procedures can be broken down into two 
phases, (1) checkpoint operation and, (2) system 
operation with certain I/O devices down or off-line. 

Checkpoint Operation 

The basic philosophy of checkpoint operation is that 
all system data needed by the computer to control 
the process must be stored in a location where it will 
not be destroyed. Thus, if normal operating data is 
destroyed, the data last saved can be retrieved and 
utilized. In the sample system, this is handled by 
having, on disk, two files that are used to record 
the process variables and certain conversion factors. 
One of these files is a static file, the other being 
dynamic in nature. Whenever a variable is modi­
fied in the system, one of the two files is updated 
with the new information. For example, if the oper­
ator at the process operator's console changes the 
setpoint of one of the setpoint stations, this informa­
tion is recorded both in INSKEL COMMON (working 
data) and in a file on disk. If, at a later date, 
something should happen that would cause either a 
reload or a restart of the system, all operational 
data, such as setpoint values, limits on operator 
guide points, conversion factors, switches, can be 
read from disk to reinitialize INSKEL COMMON to 
the most updated valid values. 

FILEl, the static file, contains all conversion 
factors used in the system. This file is normally 
read into core at cold start time to update INSKEL 
COMMON with the necessary matrices containing 
conversion factors for setpoint and operator guide 
analog inputs. The only time INSKEL COMMON 

Programming Techniques 197 



and FILE1 are modified is when the calibration pro­
grams, which run in a time-sharing mode, are exe­
cuted. At that time, the conversion factors of se­
lected points are updated in INSKEL COMMON and 
the values are updated in FILEl. 

The second file in the system for checkpoint op­
eration, the dynamic file, is labelled FILE3 and con­
tains all of the dynamic variables within the system. 
These comprise the job number, the day, the time 
when the present grade of paper is completed, the 
setpoint for all of the closed loops, and the limits for 
all points under operator guide control. This file 
is updated whenever one of the dynamic variables is 
modified, such as at the start of a new grade of paper 
or the entry of data into the system from the process 
operator's console. 

The system contains both a restart core load and a 
reload core load. The restart core load is refer­
enced by all but the C. E, interrupt mainline. When­
ever EAC initiates a restart, this core load is broU!,ht 
into core storage. The system then reads the static­
and dynamic files from disk to initialize INSKEL 
COMMON, makes sure that both the scheduler and 
the end-·of-grade call count subroutines are function­
ing correctly, and checks to see if an end-of-grade 
has occurred during the restart procedure. If so, it 
calls CHAIN to the mainline core load, GRADE. 
Otherwise, it calls VIAQ, and the system has re­
started properly. 

The reload core load is similar to the cold start 
core load, except there is a decision point within the 
core load to determine whether a reload or a cold 
start condition has occurred. Normally, sense switch 
6 is turned on at cold start time. The cold start co re 
load interrogates sense switch 6, and if the switch is 
on, the program goes through its normal cold start 
procedure. If sense switch 6 is off, the cold start 
routine assumes a reload has occurred and reads 
both static and dynamic files, starts the scheduler 
rWUling again, and perform s other functions that are 
similar in scope to those that occur in the restart 
core load. The normal cold start procedure, there­
fore, is to set sense switch 6 on and, when the sys­
tem is up and running, turn that switch off, so that 
if a reload occurs, the system recovers correctly. 

I/O Error Procedures 

The system is designed so that it can function with 
only onle of the two disk drives in operation. Thus, 
with a hardware failure on either disk drive, the 
system is able to run at full capacity on the process. 
This requires a two-disk system in which all process-

198 

oriented functions, such as cold start, the resident 
skeleton, system save areas, and all of the process 
core loads, are on logical drive 1, and all nonproc­
ess functions, such as DUP, FORTRAN Compiler, 
Assembler, are on logical drive zero. Cold start 
is to logical drive 1; since all of the process is 
recorded on logical drive 1, there should never be 
a need to reference logical drive zero, unless time­
sharing occurs. 

In order to guarantee that the system does not 
initiate time-sharing unless an operator is present 
to specifically instruct it to do so, the cold start core 
load (COLDS) sets the CALL VIAQ time-sharing 
period to zero. This means that logical drive zero 
will be referenced only if the console interrupt but­
ton is depressed with sense switch 7 on. A cold 
start to logical drive 1 may, therefore, be per­
formed without any fear of not having logical drive 
zero operational. Thus, if one of the two physical 
drives goes down, the process is still under control 
without any impairment to efficiency. When the drive 
is serViced, it can be restored on-line with the C. E. 
interrupt routine and time-sharing started. This 
allows for the C. E. to work on the drive while the 
system is still controlling the process. The system 
must also continue to operate if any two of the three 
1053 Printers are down. This is achieved by setting 
the backup pattern for the 1053 Printers in cyclic 
order, such that 

1053 Printer No.2 backs-up 1053 Printer No. 1 
1053 Printer No. 3 backs-up 1053 Printer No. 2 
1053 Printer No. 1 backs-up 1053 Printer No. 3 

This means that if one 1053 Printer goes down, it 
is backed -up, and if either of the other two printers 
goes down, the third printer backs-up the :first two, 
so that as long as one 1053 Printer is operational, 
the system is still running. 

Of the two other data processing I/O devices on 
the system, the 1443 Printer is used only on the 
time-sharing side of the system. If it therefore 
goes down, it will not affect the process side; in this 
event, there will be no printout of new job data 
loaded to the disk. The 1442 Card Read Punch is 
used by the process only at cold start time; if the 
system is up and running when the 1442 device goes 
down, the system is still able to control the process. 
The process can thus still be controlled by the 1800 
hardware if, in the worst case, at cold Stl3lrt time, 
one of the two disk drives, two of the three 1053s, 
and the 1443 are all down. 



To summarize, all that is needed for a cold start 
is a 1442 Card Read Punch, a 1053 Printer, and a 
2310 Disk storage Unit with two disk drives. After 
the system is placed on-line and becomes operation­
al, only one 1053 Printer and one disk drive are re­
quired. The way the system is designed, it functions 
even if the final 1053 goes down, but with one re­
striction: no operator messages are printed. Closed­
loop control is still in force, and the user is still 
able to enter information through the process oper­
ator's console, but he is not able to obtain informa­
tion on the grade of paper being produced, and any 
out-of-limit violation that may occur. 

The EAC printer for the system is defined as all 
three 1053s. This ensures that if an error condition 
does arise, the operator on at least one of the three 
1053 printer stations is informed of the problem. To 
enable use of the C. E. interrupt routines (that form 
part of TSX) to place a disk drive, a 1443 Printer, 
and a 1053 Printer on-line or off-line, a C. E. core 
load is provided. This core load is called whenever 
it is necessary to use the C. E. interrupt routine. A 
special C. E. core load is needed within the system 
because the C. E. interrupt cannot be masked. This 
means that when the C. E. interrupt button is depres­
sed, no matter what the masked status of the 1800 is, 
the interrupt will occur. It also signifies that the 
C. E. routine has no choice but to assume that the 
whole system is masked at the time of the interrupt, 
and it therefore returns the machine in this status. 
The interrupt mainline core load must therefore 
unmask back to the desired configuration at the time 
of the C. E. interrupt. In order to assure that this 
occurs, a special core load is called into core before 
the C. E. interrupt button is depressed. The core 
load types out a message indicating that the operator 
can now press the C. E. interrupt button; it then 
performs a pause. The C. E. interrupt causes the 
mainline program to drop through the pause. At this 
moment, the machine is masked back to the user's 
defined condition and a CALL VIAQ is performed. 

Since the system has been designed for error re­
covery, restarts and reloads can be performed with­
out loss of process control. While the system is on­
line, the C. E. is able to carry out both preventive 
and corrective maintenance on the 1443 Printer and 
on two of the 1053 Printers. Once these devices be­
come serviceable, they are restored to on-line duty 
by use of the TSX C. E. interrupt routine, and the 
system continues operation in the normal mode. The 
C. E. Aux storage routines are also used while the 
system is on-line. 

CLOSED LOOP CONTROL 

It is desired to have the sample system perform 
closed loop control on eight setpoint stations. The 
scan requirement demands that these eight stations 
be interrogated every 20 seconds to ensure they are 
operating at the right setpoint value. A decision is 
now made whether the closed loop control program 
is to be a core load or an INSKEL interrupt subrou­
tine. If the closed loop control program is to be a 
core load, it would require core exchanges every 
20 seconds in order for it to operate as specified. 
This would be very inefficient in that the large num­
ber of core exchanges would cut down the useful 
amount of processor-controller time. Also, time­
sharing periods would be of such small magnitudes 
that a nonprocess job would take a great amount of 
time to execute. For these reasons, the closed loop 
control program is written in FORTRAN as an 
INSKEL CALL LEVEL interrupt subroutine; that is, 
it resides in permanent core. 

The setpoint station couples the 1800 hardware to 
an analog control loop; the station receives infor­
mation from the computer in the form of a pulse 
train, and transmits information back to the com­
puter in the form of an electrical signal so that this 
may be read by analog input. This signal indicates 
the position of the setpoint. The output from the 
setpoint station to the process can be used to oper­
ate a pneumatic control valve directly or through a 
pneumatic relay. The setpoint station has a scale 
range of 0 to 100, divided into 2, 000 increments. 
One pulse output to the setpoint station drives the 
setpoint positioner one increment. The pulses must 
be spaced at least 15 milliseconds apart in order to 
drive the positioner at an effective rate. The sample 
system is programmed to anticipate setpoint posi­
tioner drift. Thus, the control loop more closely 
resembles direct digital control (DDC) than normal 
setpoint station operation. 

The closed loop control program is divided into 
two sections. The scan section scans all eight 
setpoint stations and computes the number of pulses 
needed for each one; the output section outputs the 
pulses. A CALL LEVEL (10) command is given to 
enter the program and, depending on a switch set­
ting, one of the two sections is executed. Every 20 
seconds the scheduler sets up an entry into the scan 
section. Once the scan section has completed its 
task, it initiates the output section. 

The switch for the program is now set so that 
future entries will enter the output section of the 

Programming Techniques 199 



closed loop program before another 20-second per­
iod has elapsed. This is necessary because the pro­
gram must not stay on the interrupt level of the 
closed loop control program during the output of the 
pulse chain needed to move the setpoint station, which 
would tie up the system too long. For example, if 
200 increments are put out to the setpoint station, 
the necessary loop would take 3 seconds for execu­
tion. Therefore, once the output section has output·­
ted a pulse to the setpoint station, it calls for timer 
B to set up reentry to itself in 15 milliseconds. It 
then exits from the interrupt level so that computa­
tion or execution on the mainline level can continue. 
Fifteen milliseconds later, the timer runs out and 
the subroutine associated with the timer executes 
Call LEVEL back to the closed loop control prograrn. 
At this point, if another pulse is needed for any of 
the setpoint stations, it is outputted and a Call 
TIMER is again given. If all of the desired pulses 
have been given, no Call TIMER is made and the 
program exits. The closed loop control program will 
not be entered again until 20 seconds have elapsed 
from the last entry to the scan section. 

This method of control provides background and 
foreground operations with the TSX system, i. e., 
multi-programming. The closed loop control pro­
gram constitutes the foreground job, and the program 
resident in variable core, the background job. 

OPERATOR GUIDE CONTROL 

One of the system design criteria is to incorporate 
operator guide control over forty process variables. 
At the start of a grade, the operator is informed of 
the limits on the 40 variables he is responsible for 
controlling. Every two minutes these variables are 
scanned, and if an out-of-limit condition occurs on 
any of the variables, this information is printed for 
the operator. Also, the operator has the ability to 
perform a two-minute scan on demand so that he can 
quickly scan all pOints, when desired. At the samE: 
time, the operator can call for total information on 
anyone point under control, i. e., its present valUE', 
its high and low limits, and conversion factors. The 
operator also has the option of changing the limits 
of a point or taking a point off operator guide control. 
To take a point off-line, he sets to their maximum 
and minimum values, all of the limits checked by the 
two-minute scan. In this manner, he is continuously 
informed of any erroneous out-of-limit condition. 

200 

SYSTEM DESIGN FOR OPTIMUM TIME-SHARING 

Another desirable system requirement is to make 
optimum use of the nonprocess mode of opBration on 
a time-shared basis. Among the activities that the 
user may wish to implement in a time-shared mode 
are instrument calibration, updating of process job 
files on disk, accounting, payroll, etc. As it is 
assumed that the user is going to make very heavy 
use of the time-shared mode, a 1443 Printer is in­
cluded in the system. The system and list printers 
for the Nonprocess Monitor are both definod as the 
1443 Printer so that all normal nonproceSB output 
would be on that printer. With the design of the 
system such that only one disk is required for proc­
ess work, logical drive zero can be switched among 
different nonprocess monitor disk cartridges. This 
allows each department within the company to have 
its own nonprocess monitor disk cartridge, with its 
own set of programs. When a department job is 
ready for processing, and computer time ts avail­
able, all that is required to be done is to place the 
disk cartridge on disk drive zero and execute. With 
the 1442/1443 combination, the nonprocesl3 user 
appears to have a small independent computer for 
his own, i. e., a computer with a card read punch, a 
printer, and one disk. A data processing computer 
is thus combined with a strictly control systems com­
puter in one machine and under one operating sys­
tem. In fact, if the user desired, he could well set 
up a closed shop, stack-job environment where non­
process jobs submitted by the various departments 
within the company are run while the computer is 
controlling or monitoring the process. 

PROCESS OPERATOR'S CONSOLE 

One of the basic requirements of any proc43ss con­
trol system is a simple and efficient method to input 
data from a process operator. The operator must 
also be able to interrogate the process, with relative 
ease, to obtain any information required. There is 
no single standard approach to this problem, since 
the nature of the information needed by anyone in­
dustry and, in fact, any plant within an industry, 
varies greatly. In the sample system, a portion of 
the 1800 Computer Process Simulator is used for 
the operator's console (see Figure 91). Also, one 
of the 1053s works in conjunction with the console. 
This means that the process operator has the console, 



CD Setpoint Station Movement Indicators 

Q) Digital Data Display (nixi tubes) 

@ Setpoint Stations for Loops 7 & 8 

@ Function Buttons 

Figure 91. 1800 Computer Process Simulator 

® Digital Input Switches 

@ Operator Data Entry Dials 

CV Analog Inputs Under Operator Guide 
(8 of the 40 points) 

Programming Techniques 201 



along with a 1053, at his work station. standard 
process I/O is used to operate the process oper­
ator's console; analog input is used to enter infor­
mation from the operator's data entry dials; process 
interrupts are used as function buttons; digital input 
is used to define whether a certain closed loop is 
under control; digital output is used to indicate the 
direction of movement of a setpoint positioner when 
it goes through a control movement; and pul se output 
is used to count the number of increments given to 
all setpoint stations at any time. 

In normal practice the process plant operator has at 
definite need to enter digital data inte the system. 
This may take the form of a new set of limits for an 
operator guide point, a new value for a setpoint 
station, or a new time for a particular grade of paper 
to have its production terminated. In order to ac­
complish this on the sample system, sixteen data 
entry dials are provided. Each data entry dial con-· 
sists of a linear potentiometer connected to an analog 
input point. To obtain fine adjustment, a vernier 
scale is incorporated with each potentiometer. A 
major dial is graduated in scale from 0 to 10, whilH 
a minor dial (the short scale of the vernier) gives 
increments of subdivisions of each division recorded. 
Each data dial enters one digital number into the 
system. The process operator sets the potentiom­
eter at one of the major divisions, i. e., 1, 2, ... 9, 
and that digital integer is entered into the system. 
The digital integer entered is translated by the po­
tentiometer to give out an analog value between 0 and 
-32, 000. This analog value is then converted by the 
data entry dial read routine to a floating point num ber 
between O. 0 and 9. 9; this number is finally trans­
formed and truncated to an integer value that lies 
within the range of 0 through 9. The data entry diaJl. 
routine then transmits to the calling program a 16-
element linear matrix containing the digital values 
for all 16 data entry dials. The calling routine can 
combine these integer values to produce the desired 
digit-coded information. 

Function Buttons 

Each function button is connected to one process in-· 
terrupt. The operator depresses a function button 
depending upon the function required fr om the con­
sole. .An example might be an operator call for de-· 
mand scan of operator guide points; all that is re­
quired of the operator is to depress the proper 

202 

button. This causes a process interrupt; the two 
minute normal scan program is then loaded to core 
and executed. Some of the process operator's con­
sole program s are also executed via the data entry 
dials. The operator sets the required data entry 
dials, and pushes the associated function button. 
The proper program is loaded; it interrogates the 
data dials; and then performs the operation requested. 

Digital Input Switches 

These 16 switches are cOlUlected to one di!~ital input 
word. In the sample system, eight of thef:e switches 
are used to define whether a given closed--loop is 
on-line or off-line. Before the system outputs a 
pulse to a setpoint station or scans the closed-loop 
control point, it first executes a read-and--expand 
function on this digital input word. It then interro­
gates each bit read to determine whether that loop is 
on-line or off-line. If the loop is off-line, no con­
trol function is performed. 

Digital Data Di splay 

The data output side of the process operator's con­
sole is divided into three sections. The first section 
is a set of nixi tubes for displaying digital data. These 
are used as a counter of the number of puLses given 
to the setpoint stations. The counter is manually 
reset from the operator's console. In a normal oper­
ating system, there is very little need for such a de­
vice, but it was found desirable to have it for experi­
mental purposes on this system. 

Setpoint station Movement Indicators 

This section consists of 16 lights, two for each set­
point station. One of the pair of lights per loop in­
dicates whether the setpoint positioner is moving up, 
while the other light indicates the setpoint positioner 
is moving down. The lights are operated by digital 
output. 

mM 1053 Printer 

This is used for outputting data, such as periodic 
logs, that the user requests. The procesB operator's 
console is simple to use and provides an efficient 
solution for man/machine interface problems on the 
system. 



SYSTEM DOCUMENTATION 

One of the most important and the most often neglec­
ted aspects of control systems is proper system 
documentation. The following paragraphs explain 
the need for this vital part of planning and installa­
tion. 

Aid in System Debugging 

A control system application is not solely a conglom­
eration of multiple programs working independently 
of one another. It is, rather, one big program that 
has been highly segmented. In order to insure cor­
rect communications between all program segments, 
a condensed picture of the system is needed, to show 
the interconnections between all program segments, 
their interactions, what common variables they ref­
erence, and how these programs are sequentially or 
randomly executed. 

Basic System Documentation Needed 

Documentation that can be maintained is the key to 
understanding and success of the system. The first 
supporting procedural device is an overall system 
flow chart that illustrates the basic interactions be­
tween programs (see Figure 92). The second is the 
maintenance of a list of all tables and variables that 
are referenced by more than one program (see 
Tables 14 and 15). Information is required to show 
what programs reference these system variables and 
which programs modify them. The third item is a 
specification sheet describing each log in the system 
(see Table 16). The fourth item is a specification 
sheet on each program, that briefly tells what the 
program does, what variables are referenced, what 
files are referenced, what programs call this pro­
gram, what other programs this program calls, and 
any other information that has to do with the integra­
tion of this program into the system (see Table 17). 

DESCRIPTION OF SAMPLE SYSTEM FLOWCHART 

The sample system flowchart (see Figure 92) illus­
trates overall system operation and points out se­
quential, random, and time-based operations in a 
single flowchart. The flowchart is concerned only 
with the relationship between various programs with­
in the system, not with the happenings within a pro­
gram. It describes how programs are initiated and 
how they exit. Note that some program blocks are 

self-contained; that is, they neither cause another 
program to be initiated nor are they initiated by 
another program. They are triggered only by a 
random event, such as a process interrupt, and, 
once executed, perform only an exit. On the sample 
system flowchart, both chaining and queueing from 
one program to another are represented in the 
same manner because they constitute, basically, 
the same function. The main difference between 
them is that a CALL QUEUE may allow other pro­
grams to "sneak in" between the sequential execu­
tion of the calling program and the called program. 
Note also that two programs, SCHED and TCONT, 
call themselves with a time delay and thus insure 
that they are periodically execu ted. The TCONT 
program may have its chain of execution broken by 
the program TEBRT. This means that TCONT is 
periodic only for a certain duration of time and that 
the operator may control that duration of time if he 
so desires (see Table 17: Program Data Sheets). 

CODING TECHNIQUES 

The sample system depicts the employment of 
several coding techniques which may be of value to 
the user. Three techniques are discussed in this 
section. The first two are examples of good pro­
gramming coding practice and should help to elim­
inate the type of system problems a user may 
encounter atTSX system installation time. The 
third coding technique illustrates how one of the 
functions on analog input can be used to advantage. 

Use of INSKEL COMMON 

INSKEL COMMON is one of the principal means by 
which coreloads and subroutines within the system 
can communicate with one another. This unique 
labelled common area is mapped each time a new 
core load is built. This means that problems can 
arise if two different core loads have INSKE L 
COMMON mapped differently. In order to avoid 
such conflicts in its use, all core loads must map 
INSKEL COMMON in the same manner. Also, for 
good coding practice, they should use the same vari­
able names for every variable in INSKEL COMMON. 
The only way to insure this common usage is for the 
user to keypunch only one COMMON card which may 
subsequently be duplicated and inserted into each 
core load source deck. If at some later time a 
change is made to INSKEL COMMON, the new 
COMMON card may be keypunched, copies made, 
and all old COMMON cards in source decks re­
placed. In this way, the user ensures that INSKE L 
COMMON is defined identically for all core loads. 

Programming Techniques 203 



r"-"-"--"-"-" 
• P 

.L 

c::J 6& 

~ 0----0; 

7 
ConHn"e Exeeu,:) 

Program on 
Mainline Level 

Figure 92. TSX Sample System Flow Chart 

204 

LEGEND 

- - -- - CALI. COUNT 

_._._.- CALI. TIMER 

-"-"- CALI. LEVEL 

CALI. QUEUE OR CALL CHAIN 

o Proem, INTERRUPT 

o : Con",le INTERRUPT 

~ : CALl.VIAQ 

~ : CALIINTEX 

CV CALI. DPART 

---e--- CAll COUNT TO SELF 



Table 14. TSX Sample System Table of Variables 

System 
Variable Used by Function 

SWO SCHED, SOUT, RSTAR, COlDP, GRADE Close loop Control Stop 

SWI SCHED, COLDP Update day-of-week switch 

SW2 SCHED Output Monday morning log switch 

SW3 SCHED, ENDGD, RSTAR, COLDP, GRADE, MGRTP, CPJSP Process Control Stop Switch 

SW4 SCHED, lEVIO, SOUT lEVIO program section switch 

SW5 SCHED, COlDP SCAN2 Execution switch 

DAY SCHED, RSTAR, COLDP, GRADE, SCAN2, lOGI5, lOG60, SHIFT, Day of week 
COGlP, CClSP, MGRTP, CPJSP, AlMON 

JOBN RSTAR, COlDP, GRADE, MGRTP, CPJSP, SPECl Next process job 

VALUE lEVIO lEVIO Data input area 

RANGE COlDN, RSTAR, COlDP, GRADE, lOGI5, TREND, CClSP, AlMON, Range of analog input values for setpoint stations 
SPEC l, SCAlB, RCAlB 

lOW COlDN, RSTAR, COlDP, GRADE, lOGI5, TREND, CClSP, AI:V10N, low analog input values of setpoint stations 
SPEC l, SCAlB, RCA lB 

SETPT lEVI 0, RSTAR, C OlDP, GRADE, CClSP, AlMON, SPECl Operating points for setpoint stations 

COUMT lEVIO Number of pulses to be given to setpoint stations 

OFFlN lEVIO Off-line indicator for setpoint stations 

AHl RSTAR, COlDP, GRADE, LIMIT, COGlP, SPECl High limits for op-guide points 

All RSTAR, COlDP, GRADE, LIMIT, COGlP, SPECl low limits for op-guide points 

A COLDN, RSTAR, COlDP, lOGI5, TREND, AlMON, SPECl, SCAlB, RCAlB Conversion factor A for op-guide points 

B COlDN, RSTAR, COLDP, lOGI5, TREND, AlMON, SPECl, SCAlB, RCAlB Conversion factor B for op-guide points 

IBASE SCHED, COLDP Base time for lOGI5 

IBASZ SCHED, COlDP Base time for lOG60 

IBAZZ SCHED, COlDP Base time for SHIFT 

G CONVR, COLDN, COlDP, CMIPT Conversion factor G for data entry dials 

H CONVR, COlDN, COLDP, CMIPT Conversion factor H for data entry dials 

IENDT RSTAR, COlDP, GRADE, MGRTP, CPJSP Grade termination time 

IPERD STRND, TCONT TREND execution period 

ITCNT TCONT, TABRT, STRND Number of times TREND is to be executed 

IPONT TREND, STRND Point or loop for TREND to log 

Table 15. Disk File Organization 

FILE RECORD VARIABLES REFERENCING PROGRAMS 

1 1 RANGE, LOW, A, B COLON, RSTAR, COLDP, SPECL, 
SCALB, RCALB 

1 2 G, H COLON, COLDP 

2 1-100 I, ITIME, SETPT, GRADE, SPECL, CMIPT 
AHL, ALL 

3 1 JOBN, DAY, IENDT RSTAR, COLDP, GRADE, MGRTP, 
SW3 CPJSP 

3 2 SETPT RSTAR, COLDP, GRADE, CCLSP 

3 3 AHL, ALL RSTAR, COLDP, GRADE, COGLP 

Programming Techniques 205 



Table 16. Log Description 

NAME TYPE INFORMATION RECIPIENTS 

SCANZ Pe riodi c/ Asynchronous Out of Limit Condition~ Procf:ss Operator 
(2 minute period) on operotor guide points 

LOG15 Periodic/Synchronous Present value of all Proc~ss Operator, Foreman 
(15 minute period on analog input points 
the quarter hour) 

LOG60 Peri odi c/Synchronous Summary of lost hour's Process Operator, Foreman, Supervisor 
(1 hour period on the production 
hour) 

SHIFT Peri odi c/Synchronous Summary of lost sh ift 's Process Operator, Foreman, Supervisor 
(8 hour period at 0:15, production 
8:15, and 16,15) 

WEEK Pe ri odi c/Synchronous Summary of lost week's Foreman, Supervisor 
(every week at 8:30 production 
Monday morning) 

Use of FORTRAN Files 

FOR THAN files form the second means of communi­
cations among programs in TSX. The use of 
FORTRAN files, when compared to INSKEL COMMON, 
introduces an added complication. Not only are the 
files mapped at core load build time according to the 
number of records and the size of a record, but, in 
addition, each time they are read or written, the 
definition of the file contents takes place. At read/ 
write time, the relative locations of variables within 
the record are mapped. In order, therefore, to in­
sure proper communications between all programs 
that use FORTRAN files, the user must insure that 
all defined file cards, asterisk file cards, and readl 
write statements to files and records are the same. 
This may be accomplished by punching only one card 
for eaeh of the above file reference statements and 
duplicating this card where needed in source pro­
grams. In this way, the user insures that the vari­
able list is the same for each record within the sys­
tem. 

Use of Analog Input Read-and-Expand Function 

The read-and-expand function for the AISQN subrou­
tine is the most versatile of all of the analog input 
calls. With this call the user is able to handle each 
analog input point as it comes in, and to simultan­
eously insure that the rate of input of analog input 
points is a maximum. The read-and-transfer func­
tion operates as follows: after one analog input point 
has been read into core, and conversion has been 
started on the next sequential point, the analog input 
subroutine transfers control to a user's subroutine, 
which can manipulate this point in any desired way 

206 

while the next analog input point is being eonverted. 
The value just read can be transformed into engi­
neering units, checked for out-of-limit conditions, 
and used in setting-up a control function. 

All of these manipulations can be performed 
within the user's subroutine. This allows the sys­
tem to achieve maximum overlap of data input and 
computation. In the sample system, the read-and­
transfer function is used only in the SCAN2 program; 
it could also have been effectively used in the LEVI0 
program and, in fact, wherever analog input is 
used. 

SYSTE M GENERATION 

The entire system generation procedure for the 
sample system can be viewed on a step-by-step 
basis from the system and list printer output list­
ings (see Program Listings No'. 9: System Gener­
ation). These cover the initial writing of addresses 
on the disk cartridges, to the calibration of instru­
ments (before a cold start is performed). Two items 
are excluded from the listings: the assembly of 
TASK and the assembly of the System Director. 
These two source decks have already been assem­
bled and are in available object format. 

Step 1. The first step in generating the system is 
the writing of addresses on the disk. Step 1, in the 
listing, shows the initialization of disks on disk 
drives 0 and 1. Note that at the time addresses 
were written on drive 0, there were no defective 
cylinders. When addresses were written on drive 1, 
three cylinders proved defective. The operator 
message states that logical cylinders 10013 are de­
fective, indicating that there are three consecutive 



defective cylinders. Logical cylinder /0012 is oper­
ational, but there is a three-cylinder gap before log­
ical cylinder /0013 is reached. Except for one re­
striction on its use, this disk is acceptable for TSX 
system operation. The restriction (given by an error 
message) is that a skeleton must not be built using 
this storage device; that is, the disk cartridge can­
not be used for logical drive zero for an on-line sys­
tem. 

Step 2. The IBM Nonprocess System is loaded to the 
disk via the System Loader. The first item printed 
out is the Assignment Table, which lists all hardware 
devices defined for this configuration, the interrupt 
level of each device, and the bit position within the 
Interrupt Level Status Word (ILSW) where the inter­
rupt bit for each device is located. After the Assign­
ment Table is built, absolute programs are loaded 
to disk. These are followed by IBM -supplied sub­
routines. 

The final item in the system load operation is the _ 
*DEDIT function which instructs the system to re­
serve 20 disk cylinders for the buffering of mes­
sages and that the object machine will contain 32K 
words of core storage. 

Steps 3 through 8. These steps are concerned with 
the organization of the disks for this particular in­
stallation. Step 3 defines the sample system as a 
two-drive system; drives 0 and 1 are then labelled. 
Steps 6 and 7 define the configuration of these two 
drives. A differentiation is now made between the 
process and nonprocess drives. All control programs 
and components associated with the process, such as 
the skeleton and EAC, are located on logical drive 1 
while all nonprocess functions such as the FORTRAN 
Compiler and the Assembler are located on logical 
drive O. This is the initial stage in the organization 
of the sample system. Step 8 reserves disk space 
for data files used by the system; the values that 
will be stored in the files are not defined at this 
time. 

Step 9. In step 9, the System Director, in object 
format, is stored from cards to a relocatable area 
on logical drive 1. 

Steps 10 through 23. These steps set out the compil­
ation and assembly of all system subroutines. These 
include INSKE L interrupt subroutines, COUNT sub­
routines, a solitary TIMER subroutine, and normal­
ly-called subroutines. As these are compiled or 
assembled, they are stored on disk in relocatable 
format so that they will be readily available at skele­
ton build time. Step 23 is a checkpoint along the 

system generation route; the *DUMPLET verifies 
that all subroutines necessary for the creation of 
the skeleton are properly stored on disk. 

Step 24. The actual System Skeleton building phase 
is now carried out. TASK is reloaded to core from 
cards for the first time since the commencement 
of system generation. Note that the / / JOB card 
for the skeleton build function contains an "A" in 
column 15, which defines a two-drive system; this 
card must be identical to the / / JOB card which 
precedes the final / / END OF ALL JOBS. 

At the commencement of skeleton build, a KOC 
error message is printed, signifying that the ANINT 
subroutine (an I/O subroutine) has missed an inter­
rupt branch table entry. The error message states 
that lAC code /0023 is missing from the Master 
Interrupt Branch Table. Since this EAC code con­
cerns the comparator feature on the Analog Input 
Expander, and there is no comparator on the sample 
system, the error code can be ignored. After the 
skeleton map is printed, a series of K13 error 
messages is printed, indicating that certain named 
programs have not yet been builL Since these pro­
grams cannot be built until the skeleton itself has 
been built, these errors can be ignored. Note that 
a K13 error would be significant if an operator per­
formed a skeleton rebuild and obtained a K13 error 
message for a program that should have been on 
disk. Once the skeleton is built, it is time to com­
pile and build the mainline core loads. 

Steps 25 through 45. All system process core loads 
are now built and stored in core image format on 
disk. At this point in time, TASK is still resident 
in core controlling the Nonprocess Monitor. Step 30 
is of special interest; three dummy core loads are 
provided in the system to be referenced on a DUP 
*DELETE card, when it is desired to modify any of 
the core loads in the system. For example, if core 
load GRADE contains an error, and it is desirable 
to recompile GRADE and restore it on disk, the first 
thing that must be carried out before this can be done 
is to delete the old version of GRADE. If, however, 
the system is on-line at the time GRADE is deleted, 
a core load must be available on disk which can be 
loaded and executed when the core load name GRADE 
is called after its deletion, but before storage of 
its replacement. Since a straight delete of GRADE 
is not possible, it is preferable to replace GRADE 
with a dummy core load until such time as its new 
version becomes resident on disk. 

Between steps 44 and 45, TASK is eliminated from 
core, and system operation is initiated by a cold 
start which specifies COLDN as the initial core 
load. The function of COLDN is to provide perpetual 

Programming Techniques 207 



time-sharing so that the Nonprocess Monitor may bo 
used to execute user-written nonprocess core loads 
during system generation. It is necessary to exe­
cute these nonprocess core loads during system gen­
eration because there are certain data areas that 
must be initialized prior to a process cold start. 
There are also four nonprocess core loads that will 
be executed in the time-shared mode, at a later 
time, that affect process operation. 

Step 45 is concerned with the compilation and 
execution of a one-time-only core load, named 
SPECL, which is used to place initial values in the 
process. 

Steps 4H through 51. Once the job file is initialized} 
step 46 compiles and stores the first of the calibra­
tion core loads. As soon as this core load is stored 
on disk, it is executed at step 47 to obtain initial 
calibration factors for closed loops 7 and 8. Steps 
48 through 51 cover the calibration of other analog 
input points in the system. 

Steps 52 through 54. At step 52, the program which 
will be used to update the job files on disk, as new 
grades of paper are placed in the process job sched­
ule, is compiled and stored. It is executed at step 
53 to ensure that it functions correctly. Step 54 is 
the final step in the system generation procedure; al'1 
*DUMPLET is performed on both drives to ensure 
that all core loads and data areas are correctly de­
fined on disk. At this point, the sample system is 
ready to be placed on-line to control the paper 
machine. 

ON-LINE OUTPUT FROM THE SAMPLE SYSTEM 

Samples of output listings obtained during on-line 
continuous operation of the sample system are given 
at the end of this section (see Program Listing No. 
10: On-Line Process Output). The specimen list­
ings illustrate process operator, supervisor, and 
time-shared output. 

Output 1. This is generated at cold start time on the 
process operator's 1053 Printer. ]t reveals the cold 
start procedure and continues with a typical sam_pIe 
output over the next few hours of processing on the 
same printer. Note that at cold start time, a proc­
ess job sequence number of zero is supplied to the 
system; the sample system went, therefore, into a 
production stop state. Two minutes later, the first 
process job number is entered into the system from 
the process operator's console. When the process 

208 

operator receives a signal that the paper -machine 
is ready to go on-line with this grade of paper, he 
depresses the abort-grade button which initiates 
the production of grade 12345; this grade had been 
entered into the queue sequence a minute earlier. 
At the start of grade 12345, the production time is 
printed as one hour and 29 minutes; the start time 
is recorded as 8: 03 a. m., Friday. At this stage, 
the high and low limits for all operator guide points 
as well as set point values for the set point stations 
are printed. At 8:05 a. m., the operator at the 
process operator's console changes the set point 
value for loop 7 to a value of 50. Note that the 
normal scan of the operator guide points is. execu­
ted every two minutes. At 8: 15 a. m., the first 
quarter hour log is printed. As can be seen from 
the listing, closed loop 7 is now on set point value. 
It should be noted that the set point range for ac­
ceptable values is within plus or minus one of the 
actual set point value. Following the 8:15 a. m. 
quarter hour log, the shift-end log is printed. At 
9:00 a. m., the first of the periodic one-hour logs 
is printed. 

Output 2. This output is on the process operator's 
1053 printer and shows three of the operator con­
sole functions being executed. The first function 
occurs at 11:28 a. m., Friday and consists of 
changing the high and low limits on operator guide 
point 5. Note that two minutes later point 5 is 
recorded as being out of limits, and calls for a de­
mand scan, at which time no limit violation is re­
corded. Four minutes later, at 11:34 a. m., the 
operator calls for complete information on operator­
guide point 5. The value of point 5 is recorded; its 
high and low limits and the two conversion factors 
are printed. 

Output 3. Output 3 shows two of the other functions 
which can be performed from the process operator's 
console. The first is the calling of a trend log on 
operator guide point 6. The operator specifies to the 
system through the console that he wants a trend log 
on operator guide point 6 every ten second s, and 
that he wants this trend log repeated 300 times. This 
is followed by the output from the trend lo~~. 

Between the normal scan at 9: 17 a. m. ~Uld the 
next normal scan at 9:19 a. m., eleven values of the 
trend log are printed. (In normal operations, with­
in a two-minute period, twelve trend logs would be 
printed.) The reason for the eleven printed values 
is because the last trend log and the normal scan 
are both queued at the same time, and that the 
normal scan is queued with a higher value than the 



trend log. The normal scan is therefore printed 
first with only eleven trend logs between it and the 
preceding normal scan. After only nineteen trend 
logs have been printed, the operator decides to abort 
the trend operation before it runs to completion, by 
depressing the abort trend log function button on his 
console. At 9:21 a. m., the sequence of process jobs 
is changed when the operator enters a new sequence 
number of zero into the system. This is done be­
cause the operator wants the computer to go into a 
suspended state, as far as the paper machine is con­
cerned, when the current job runs to completion. It 
also means that the paper machine is being taken 
off computer control. At 9:23 a. m., the manufac­
turing process of this grade of paper comes to an 
end; the system then recognizes that the operator 
has changed job sequences to indicate that it is now 
time for a production stop. This occurs at 9 :25 a. m. 
The operator now enters a new job number, 35, so 
that when the paper machine is ready to commence 
a new cycle of operation, all he need do is to hit the 
grade abort function switch to bring the process back 
under control. 

Output 4. Output 4 shows how the operator changes 
the job sequence so that a different grade of paper 
can be made when a present grade under production 
is completed. At 12:26, the production on the pre­
ceding grade of paper being completed, the new 
grade, 4530 (which the operator has entered into the 
system), is initiated. 

Output 5. Output 5 shows the printout on the process 
operator's 1053 Printer at the time of a reload con­
dition. At this point, an intentional reload of the sys­
tem is caused by bringing about an op-code violation 
in the Skeleton by depressing stop, reset, start. Fol­
lowing the normal scan at 9 :06 a. m., the EAC reload 
message is printed. The cold start core load which 
determines that this is a reload operation then prints 
the message: Process Restart Checkpoint. At this 
time, all of the variables in INSKEL COMMON have 
been reinitialized, and the system is back in control 
of the process. Following the normal scan at 9:07 
a. m., the quarter hour log, the one hour log and the 
shift-end log are printed. These are printed at this 
time to assure the operator that the system is run­
ning correctly and that all functions are operating. 

Note that at 9:10 a. m. the operator performs a de­
mand scan and is told that a limit violation has oc­
curred on point 5. 

Output 6. Output 6 demonstrates what happens when 
an error occurs in a nonprocess time-shared job. 
On Wednesday at 13:56, a time-shared nonprocess 
program is executed while the process is being 
monitored. This time-shared program which con­
tains a FORTRAN I/O error thus causes the sys­
tem to abort that job. Note that this has no effect 
on the control of the process. 

Output 7. Output 7 demonstrates the use of the 
TSX C. E. interrupt routine to bring logical drive 0 
on-line. (Logical drive 0 had been taken off-line 
prior to 9: 02 a. m. on Tuesday.) This means that 
the system is operating with only the process cart­
ridge on-line. At 9:02 a. m., it was decided to run 
some non-process jobs; it therefore became neces­
sary to place a nonprocess cartridge on logical drive 
zero and to bring that drive on-line. 

Before the drive is brought on-line through the 
use of the TSX C. E. interrupt program, the operator 
first calls in his C. E. unmasked core load via the 
console interrupt. Once the message is printed, 
stating that this core load is in core, he depresses 
the C. E. interrupt button. This brings the C. E. 
interrupt routine into core; the operator then pro­
ceeds to bring logical drive 0 on-line. Once the drive 
is on-line, normal process control continues, and the 
operator is now able to execute time-sharing jobs. 

Output 8. Output 8 is on the foremen's 1053 Printer. 
This shows two things: first, that information is 
given to the foreman, and the extent to which it varies 
from that supplied to the process operator. It also 
shows at what time system operation is terminated 
after a period of continuous operation. Note too, 
that the Monday morning report is printed exactly on 
time at 8:30 a.m. 

Output 9. Output 9 is from the nonprocess time­
shared side of the sample system. It shows what is 
printed on the 1443 Printer at the time the job files 
on disk are updated with data on new grades of paper 
to be produced. 

Programming Techniques 209 



Table 17. Program Data Sheets 

These are specifications sheets of each program used 
in the TSX Sample System (see Basic System Docu­
mentation Needed). Each encircled listing number in 
the table corresponds to its exact counterpart in 
Program Listing No.9: System Generation. 

Listing~ 

Progrru~ SCHED 

Type. INSKEL CAll. COUNT Subroutine 

® 
Description. This subroutine schedules the periodic execution 

of the programs listed in the external statement. This sub­
routine is entered every 20 seconds. 

System Variables Referenced. SWO, SWl, SW2, SW3, SW4, 
-SWS, DA Y, fBASE, IBASZ, !BAZZ. 

Files Referenced. None 

Programs Called. SCHED, SCAN2, LOGIS, LOG60, SHIFf, 
WEEK 

Calling Programs. RSTAR, COLDP, GRADE 

System Subroutines Called. None 

Restart Core Load. N/ A 

® 
LEVI0 

Type. INSKEL INTERRUPT Subroutine 

Description. This subroutine does closed loop control of eight 
--set pomt stations. Every twenty seconds, the scheduler 

subroutine gives a call level to this routine and sets SW4 to 
point to the scan section such that all eight points are 
scanned. When the scan is finished, the output to each OD.­

line station is computed and the first pulse output is given. 
Timer B is then used to set-up fifteeh mIllisecond entries 
into the subroutine so that all necessary pulses are given. 

System Variables Referenced. OFFLN (1-8), SW4, 
VALUE (6-13, 15) SETPT (1-8), COUM.T (1-8) 

Files Referenced. None 

Programs Called. sour 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 

210 

Listing No. @ 
Program. SOUT 

Type. INSKEL CALL TIMER Subroutine 

Description. This subroutine services timer S and is used for 
initiating entries into the level 10 subroutine for the out­
putting of pulses to the set point stations. 

System Variables Referenced. SWO, SW4 

Files Referenced. None 

Programs Called. None 

Calling Programs. LEVI0 

System Subroutines Called. None 

Restart Core Load. N/ A 

Listing No. ® 
Program. QUE IS 

Type. INSKEL INfERR UPT Subroutine 

Description. This subroutine queues the fifteen minute log routine 
on demand. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. LOG IS 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 



Listing No. ® 
Program. TCONT 

Type. INSKEL CAll. COUNT Subroutine 

Description. This subroutine periodically queues the trend 
log program the number of times specified. 

System Variables Referenced. ITCNT 

Files Referenced. None 

Programs Called. TREND, TCONT 

Calling Programs. TCONT 

System Subroutines Called. None 

Restart Core Load. N/A 

Listing No. 

Program. TABRT 

Type. INSKEL INTERRUPT Subroutine 

Description. This subroutine aborts the trend log on 
demand. 

System Variables Referenced. ITCNT 

Files Referenced. None 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/A 

Listing No. 

Program. GETVL 

Type. USER Subroutine 

Description. This subroutine reads the analog input value for 
each of the sixteen data entry dials. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

Calling Programs. CONVR, CMIPT 

System Subroutines Called. None 

Restart Core Load. N/ A 

Listing No. 

Program. CONVR 

~ USER Subroutine 

® 

Description. This subroutine scans the 16 data entry dials at 
the process operator's console and converts them to an 
integer value with range 0 to 9. 

System Variables Referenced. G(1-16), H(1-16) 

Files Referenced. None 

Programs Called. None 

Calling Prirams. COGlP, CllSP, MGRTP, CPJSP, STRND, 
AIMO 

Systems Subroutines Called. GETVL 

Restart Core Load. N/ A 

Programming Techniques 211 



212 

@ 
Progra~ PT1M.E 

Type. USER Subroutine 

Description. This subroutine reads the clock and converts 
the time to a floating point number with the decimal 
p<)int separating hours and minutes. 

System Variables Referenced. None 

Files Referenced. None 

Programs CaIled. None 

CaIliD&Programs. RSTAR) GRADE, SCAN2, LOG1S, 
~60, SHIFT, WEE~ COGLP, CCLSPt CPJSPt A1M.ON 

System Subroutines C aIled. None 

Restart Core Load. N/ A 

Listing No. 

Progr:~ IADDR 

Type •• USER Subroutine 

Descr~ption. This subroutine gets the address of a 
FORTRAN variable. 

System Variables Referenced. None 

Files Referenced. None 

Programs C aIled. None 

C aIling Programs. None 

Syste:m Subroutines C aIled. None 

Restart Core Load. N/ A 

Listing No. 

Program. ISBAD 

Type. USER Subroutine 

DeSCri~tion. This subroutine gets the address of the entry 
po nt to a subroutine 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

CaIling Programs. None 

System. Subroutines C aIled. None 

Restart Core Load. N/ A 

® 
Listing No. 

Program. CESET 

Type. INSKEL INTERRUPT Subroutine 

Description. This subroutine queues the CE unmask program 
so that devices may be taken off-line or put on line. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. CEINT 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. NJ A 



Listing No. ® 
Program. ABORT 

Type. INSKEL INTERR UPT Subroutine 

Description. This subroutine queues the grade change program 
causing the present grade to be aborted. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. GRADE 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 

IJsting No .. 

Program. ENOOD 

Type. INSKEL CALL COUNT Subroutine 

@ 

Description. This subroutine aborts the grade in progress 
when the run time for that grade has elapsed. 

System Variables Referenced. SW3 

Files Referenc ed. None 

Programs Called. GRADE 

Calling Programs. RST ARt COLDP 

System Subroutines Called. None 

Restart Core Load. N/ A 

Listing No. 

Program. COLDN 

Type. MAINLINE CORE LOAD 

Description. This cold start core load is used to give 
perpetual time sharing. 

System Variables Referenced. RANGE, LOW, A, :s. G, H 

Files Referenced. 
File 1, Records 1 + 2 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. COLDN 

Listing No. 

Program. COLDS 

Type. MAINLINE CORE LOAD 

Description. This is the normal cold start core load. It sets 
time sharing time to zero so that console interrupt must 
have been pushed before logic al drive zero is ever 
referenced. This core load chains to COLDP to actually 
cold start the process. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. COLDP 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. COLDS 

Programming Techniques 213 



214 

.Listing No. 

Progt~ RST AR 

Type:.,. MAINLINE CORE LOAD 

® 

~ription. This is the system restart core load. Whenever 
a restart condition occurs, this routine is loaded to variable 
core to make sure system constants in INSKEL COMMON 
are valid. 

System Variables Referenced. SWO, SW3, RANGE, LOW, A, 
B, JOBN, DAY, IENDT, AHL, ALL, SETPT 

Files Referenced. 
File 1 Record 1 
File 3 Records 1, 2, 3 

Programs Called. SCHE)), GRAD~ ENDGD 

CallIng Programs. None 

System Subroutines Called. PTIME 

Restart Core Load. COWS 

Listing No. 

Prog~ COLDP 

Typ=. MAINLINE CORE LOAD 

Desc:ription. This is the system process cold start and reload 
-- core load. If sense switch 6 is on, it does a process 

cold start and if sense switch 6 is off it assumes a reload 
condition has occurred SO that it initializes the system to 
the last check point. 

System Variables Referenced. SWO, SWl, SW3, SWS, 
RANGE, IbW, DAY JOBNt ~ l\ SETPTt AHL,. All, 
IENDT. G, H 

Files Referenced. 
File 1 Records 1, 2 
File 3 Records 1, 2, 3 

~ams Called. SCHED, GRADE, ENDGD 

Calling Programs. COLDS 

System Subroutines Called. None 

Restart Core Load. COLDS 

Listing No • 

Program. CElNl' 

Type. MAINLINE CORE LOAD 

Description. This core load is for use with the CE interrupt. It 
makes sure that all levels are unmasked after use of the CE 
interrupt routine. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

Calling Programs. CESET 

System Subroutines Called. None 

Restart Core Load. 

Listing No. 

Program. DUM 

CEINI' 

Type. MAINUNE CORE LOAD 

Description. This is a dummy core load for use in replacing 
or deleting system core loads. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. DUM 



Listing No. 

Program. IDUM 

Type. JNTERR UPT CORE LOAD 

Description. This is a dummy core load for use in replacing 
or deleting system core loads. 

System Variables Referenced. None 

Files Referenced. None 

Progr ams Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 

Listing No. ® 
Program. GRADE 

Type. MAINLINE CORE LOAD 

DescriptiOn. This program starts the production of a new grade. 

System Variables Referenced. SWO, SW3, DAY, lOBN, RANGE, 
LOW AJ::n:, ALL, SETPT, IENDT 

Files Referenced. 
File 2 
File 3, Records 1, 2, 3 

Programs Called. SCHED 

Calling Programs. ABORT, ENDeD, RSTAR, COLDP 

System Subroutines Called. PTIME 

Restart Core Load. RST AR 

@ ® 
Listing No. 

Program. CDUM: 

Type. COMBINATION CORE LOAD 

Description. This is a dummy core load for use in replacing 
or deleting system core loads. 

System Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. CDUM: 

Listing No. 

Program. SCAN2 

Type. Co;MBINATION CORE LOAD 

Description. This combination core load scans all of the Op­
guide points on the system and notes any limit violation to 
the operator. 

System Variables Referenced. DAY 

Files Referenced. None 

Programs Called. None 

Calling Programs. SCHED 

System Subroutines Called. PTIME, LWIT 

Restart Core Load. RST AR 

Programming Techniques 215 



Listing No. ® 
Program. UMIT 

Type. USER Subroutine 

Description. This subroutine is the subroutine to be used in 
the AIS read and transfer functipn of the mainline core 
load. 

System Variables Referenced. AHL, AU 

Files Referenced. None 

Programs Called. None 

Calling Programs. SCAN2 

System Subroutines Called. NONE 

Restart Core Load. NI A 

® 
Listing No. 

Progr~~ LOG 15 

Type. MAINLINE CORE LOAD 

Description. This is the fifteen minute log program which logs 
the values of all process variables in the system. 

216 

System Variables Referenced. DAY, B(1-40), A(1-40), 
LOW(1-8), RANGE(1-8) 

Files Referenced. None 

Programs Called. None 

Calling Programs. SCHED, QUE15 

System Subroutines Called. PTIME 

Restart Core Load. RSTAR 

Listing No. ® 
Program. LOG60 

Type. MAINLINE CORE LOAD 

Description. This program puts out the hour log. 

System Variables Referenced. DAY 

Files Referenced. None 

Programs Called. None 

Calling Programs. SCHED 

System Subroutines Called. PTIME 

Restart Core Load. RST AR 

Listing No. 

Program. SHIFT 

Type. MAINLINE CORE LOAD 

Description. This program outputs the shift log. 

System Variables Referenced. DAY 

Files Referenced. None 

Programs Called. None 

Calling Programs. SCHED 

System Subroutines Called. PTIME 

Restart Core Load. RSTAR 



Listing No. 

Program. WEEK 

Type. MAINLINE CORE LOAD 

Description. This program outputs the weekly Monday 
morning log. 

System Variables Referenced. DAY 

Files Referenced. NONE 

Programs Called. None 

Calling Programs. SCHED 

System Subroutines Called. PTIME 

Restart Core Load. RSTAR 

Listing No. ® 
Program. COGLP 

Type. INTERRUPT CORE LOAD 

Description. This core load changes the limits on operator­
guide points at operator request. 

System Variables Referenced. AHL, ALL, DAY 

Files Referenced. 
File 3,Record 3 

Programs Called. None 

Calling Progr ams. None 

System Subroutines Called. PTIME, CONVR 

Restart Core Load. N/ A 

® ® 
Listing No. 

Program. TREND 

Type. MAINLINE CORE LOAD 

Description. This is the trend log core load. It reads the 
vatue that the operator has asked. It is queued 
periodically by the TCONT subroutine with the period 
specified by the operator. 

System Variables Referenced. IPONT, LOW, RANGE, A, B 

Files Referenced. None 

Programs Called. None 

Calling Programs. TCONT 

System Subroutines Called. None 

Restart Core Load. RST AR 

Listing No. 

Program. CCLSP 

Type. INTERRUPT CORE LOAD 

DeSCription. This core load changes the set point value for a 
set point station upon operator request. 

System Variables Referenced. RANGE, LOW, SETPT, DAY 

Files Referenced. 
File 3,Record 2 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. CONVR, PTIME 

Restart Core Load. N/ A 

Programming Techniques 217 



218 

Listing No. 

Program. MGRTP 

Type., INTERRUPT CORE LOAD 

@ 

DeSCriP~on. This core load chang.. es the run time for a 
gra e upon operator request. 

System Variables Referenced. IENDT, JOBN, DAY, SW3 

Files Referenced. 
File 3, Record 1 

Programs Called. None 

Call.ing Programs. None 

Systel:O Subroutines Called. CONVR 

Restart Core Load. N/ A 

Listing No. 

Progr;~ CPJSP 

Type., JNTERR UPT CORE LOAD 

® 

Description. This core load changes the sequence of 
--grades upon operator request. 

System Variables Referenced. JOBN, DAY, IENDT, SW3 

Files Referenced. 
File 3, Record 1 

Progr ams C aIled. None 

Calling Programs. None 

System Subroutines Called. CONVR, PTIME 

Restart Core Load. N/ A 

® 
Listing No. 

Progr am. STRND 

Type. INTERRUPT CORE LOAD 

Description. This core load initiates a trend log of the point 
speclbed by the operator. 

System Variables Referenced. IPONT, IPERD, ITCNT 

Files Referenced. None 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. CONVR 

Restart Core Load. N/ A 

® 
listing No. 

Program. AlMON 

Type. INTERRUPT CORE LOAD 

Description. This core load logs all information about any 
POlUt lU the system. 

System Variables Referenced. A, B, DAY, LOW, RANGE, 
SElp1 

Files Referenced. None 

Progr ams Called. None 

Calling Programs. None 

System Subroutines Called. PTIME, CONVR 

Restart Core Load. N/ A 



Listing No. @ 
Program. SPECL 

Type. NONPROCESS CORE LOAD 

Description. This is a special one-time-only core load to set 
up the job files on disk for test purposes. 

System Variables Referenced. AI-n., ALL, A, B, RANGE, 
lOW, SETPT ( 1-8) ]OBN 

Files Referenced. 
File I,Record 1 - RANGE, lOW, A, B 
File 2,Record 1 -], ITtME, SETPT, AHL, All 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Loa.d. N/ A 

@ 
Listing No. 

Program. SCALE 

Type. NONPROCESS CORE LOAD 

Description. This nonprocess core load is for calibrating 
the set point stations. 

System Variables Referenced. RANGE, LOW, A, B 

Files Referenced. 
File 1, Record 1 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 

Listing No. 
@ 

Program. RCAlB 

Type. NONPROCESS CORE lOAD 

Description. This nonprocess core load is for calibrating 
the an310g input points for Op-guide. 

System Variables Referenced. A, B, RANGE, lOW 

Files Referenced. 
File I, Record 1 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Restart Core Load. N/ A 

® 
listing No. 

Program. CMIPT 

Type. NONPROCESS CORE lOAD 

Description. This nonprocess core load is for calibrating 
the data entry dials. 

System Variables Referenced. G(I-16), H(1-16) 

Files Referenced. 
File I, Record 2 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. GETVL 

Restart Core Load. N/ A 

Programming Techniques 219 



220 

® 
Program. LOAD] 

Type. NONPROCESS CORE LOAD 

Description. This program loads the process job files on disk 
with data read from cards. 

Syste1:Q Variables Referenced. None 

Files Referenced. None 

Programs Called. None 

Calling Programs. None 

System Subroutines Called. None 

Rest:n1: Core load. N/ A 



PROGRAM LISTING NO.9: SYSTEM GENERATION 

<D TASK 1800 TSX-II-l SAMPLE SYSTEM 
SEN SW 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 
SEN SW 2 ON FOR SKELETON BUILDER 

TASK DISK WRITE ADDRESSES PROGRAM 
ENTER NO. TRIES ON DATA SW MAX001F 

DATA SWITCHES EQUAL LOGICAL DRIVE 
DRIVE CODES--HEX 0000 0001 0002 
THERE ARE NO DEFECTIVE CYLINDERS 
SEN SW 0 ON GO TO TASK OFF REDO 
TASK DISK WRITE ADDRESSES PROGRAM 

ENTER NO. TRIES ON DATA SW MAX001F 
DATA SWITCHES EQUAL LOGICAL DRIVE 
DRIVE CODES--HEX 0000 0001 0002 
CYLINDERS 0013 0013 0013 

ARE DEFECTIVE 
DO NOT USE SKEL.BLD WITH THIS PACK 

SEN SW 0 ON GO TO TASK OFF REDO 
TASK 1800 TSX-II-1 SAMPLE SYSTEM 
SEN SW 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 
SEN SW 2 ON FOR SKELETON BUILDER 

IISYSTEMLOADER 
11* IBM 1800 TSX-II SAMPLE SYSTEM 
*ASSIGNMENT 
00 01 33 
01 02 04,33 
02 02 00,08 
03 02 02/02,:B 
04 03 01/01,36/04,37105 
05 04 33,06/03,11,12 
06 03 10,34,33 
07 04 03/07,32,20,16 
08 01 33 
09 01 33 
10 01 33 
11 01 33 
12 01 33 
13 01 33 
14 01 33 
15 01 33 
99 01 42106 
DEVICE LEV BIT lAC LUN 
PISW 00 00 33 
DISK-l 01 00 04 
PISW 01 01 33 
TIMERS 02 00 00 
DISK-2 02 01 08 
CARD-1 03 00 02 02 
PISW 03 01 33 
TYP1G1 04 00 01 01 
TYP2G1 04 01 36 04 
TYP3G1 04 02 37 05 
PISW 05 00 33 
PRNT-1 05 01 06 03 
DINP 05 02 11 
DAOP 05 03 12 
ADC-1 06 00 10 
COMP-1 06 01 34 
PISW 06 02 33 
PAPTPE 07 00 03 07 
CONSOL 07 01 32 
RPQ-01 07 02 20 
ADC-2 07 03 16 
PISW 08 00 33 
PISW 09 00 33 
PISW 10 00 33 
PISW 11 00 33 
PISW 12 00 33 
PISW 13 00 33 
PISW 14 00 33 
PISW 15 00 33 
KEYB-1 42 06 

YOU DEFINED 000016 110 DEVICES 
AND A TOTAL OF 000029 ILSW B1TS 

*LDDSK .LET 
SECTOR 0155 

*LDDSK .DCOM 
SECTOR 0000 

*LDDSK .MBT 
SECTOR 0002 

f2\ Conti nued 
\!:.J *LDDSK .SUP 

SECTOR 0005 
*LDDSK .eLB 

SECTOR 0010 
*LDDSK leLST 

SECTOR 063A 
*LDDSK .DUP 

SECTOR 001A 
*LDDSK .ASM 

SECTOR 0066 
*LDDSK .FOR 

SECTOR 0095 
*LDDSK .SIM 

SECTOR 00F6 
*LDDSK .EPRG 

SECTOR 0618 
*LDDSK SBRT 
lAND 
CLEAR 
CLOCK 
COUNT 
DMP DMPHX DMPDC 
DMPS DMPST 
DPART 
ENDTS 
IEOR 
LD 
LEVEL 
MASK 
OPMON 
lOR 
QIFON 
QUEUI: 
RESMK 
SAVMK 
SETCL 
TIMER 
UNMK 
UNQ 
VIAQ 
CONHX 
TRPRT 
FLIP 
EADD 
EATN 
EAVL 
EAXB 
EAXI 
EDVR 
ELD 
ELN 
EMPY 
ESINE 
ESQR 
ETNH 
ETRTN 
EXPN 
FSBR 
FARC 
FATN 
FAVL 
FAXB 
FAXI 
FBTD 
FDIV 
FIXIX 
FLO 
FLN 
FLOAT 
FMPY 
FSINE 
FSQR 
FTNH 
FTRTN 
FXPN 
lABS 

ESUB 
EATAN 
EABS 
EAXBX 
EAXIX 
EDVRX 
ELDX 
EALOG 
EMPYX 
ESIN 
ESQRT 
ETANH 
ETNTR 
EEXP 
FSBRX 

EAODX ESUBX ESBR ESBRX 

IFIX 
NORM 
SNR 
XDD 
XMD 
XMDS 
XSQR 
BINDC 
BINHX 

FATAN 
FABS 
FAXBX 
FAXIX 
FOTB 
FOIVX 
FIXI 
FLOX 
FALOG 

FMPYX 
FSIN 
FSQRT 
FTANH 
FTNTR 
FEXP 

EDIV 
ESTO 

EOIVX 
ESTOX 

ECOSN ECOS 

FADD FSUB 

FDVR FDVRX 

FSTO FSTOX 

FCOSN FCOS 

FADDX FSUBX 

Programming Techniques 221 



CD Continued 

OC.BIN 
EB·PA 
EBPRT 
HOLEB 
HOLPR 
HXBIN 
PAPEB 
PAPHL 
PA,PPR 
PRT 
ADRCK 
CDMGO COMGl 
OATSW 
OVCHK 
ESIGN 
FCTST 
FSIGN 
IOU 
ISIGN 
ISTOX 
LDFAC STFAC SBFAC OVFAC 
MDFIO MDAF MOAI MDCOM MOF MDFX MOl M) IX t>',DREO MOWR T 
MDFNO 
MF: 10 MRED MWRT MCOMP MIOAF MIOAI MlOFX MIOIX "'IIOF MIDI 
MGOTO MFIF MIIF MEIF 
MIAR MlA"RX MFAR MFARX MEAR MEARX 
OVERF 
PAUSE 
RI:WNO BCKSP EOF 
SAVE 10FIX 
SL ITE SLITT 
SSWTC 
STOP 
SUBIN 
SUBSC 
TSTOP 
TSTRT 
nEST TSET 
UFIO URED UWRT UIOI UIOF UIOAI UIOAF UIDFX LJIDIX UCOMP 
PLOTX 
C,~RON 

P,~PTN 

MAGT 
AIPTN AIPN 
AISQN AISN 
AIRN 
Ai'H NT 
DINP 
DIEXP 
DICMP 
DAOP 
lOPE OUSLY ETS 
XSAVE XEXIT XLOAD 
GAGED UNGAG 
AlP 
AIS 
AIR 
CS VS 01 PI 
CSC VSC DIC PIC 
CSX VSX DIX PIX 
DAC CO DO PO 
QZERQ 
QZOlO 
BTiBT 
BT2BT 
FCHAR 
SCALF 
FGRID 
FPLOT 
ECHAR 
SCArE 
EGRID 
EPLOT 
POINT 
FCHRX FCHRI WCHR! 
FRULE FMOVE FINC 
ECHRX ECHRI VCHRl 
ERULE EMOVE EINC 
XYPLT 
PLOTl PLOTS 
11* SYDIR 
*DEDIT 32K 020CYL 
THE SOURCE CORE-SIZE IS 032768 
THE OBJECT CORE-SIZE IS 032768 
END SYSTEM LOAD 

222 



Continued 

TASK 1800 TSX-II-l SAMPLE SYSTEM 
SEN SW 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 
SEN SW 2 ON FOR SKELETON BUILDER 

II JOB 
II * DEFINE THE SAMPLE SYSTEM TO BE A TWO DRIVE SYSTEM 
II DUP 
*DEFINE NDISK 2 
DUP FUNCTION COMPLETED 

II JOB 
II * LABEL DISK DRIVE ZERO WITH 00000 
II DUP 
*DLABL a 00000 
OUP FUNCTION COMPLETED 

II JOB 
II * LABEL DISK DRIVE ONE WITH 11111 
II DUP 
*DLABL 1 11111 
DUP FUNCTION COMPLETED 

~ II JOB X X 
~ II * DEFINE DRIVE ZERO CONFIGURATION 

II DUP 
*DEFINE CONFG COPO 020 000 
DUP FUNCTION COMPLETED 

II JOB X X 
II * DEFINE DRIVE ONE tONFIGURATION 
II DUP 
*DEFINE CONFG SXIN1IIDEIMIFIPI 16000 16767 
DUP FUNCTION COMPLETED 

I I JOB A 

080 010 05 

II * SET UP FILES FILEl, FILE2, AND FILE3 ON DRIVE ONE 
II OUP 
*STOREDATAD 
DUP FUNCTION 
*STOREDATAD 
DUP FUNCTION 
*STOREDATAD 
DUP FUNCTION 

1 1 FILEl 
COMPLETED 

1 1 FILE2 
COMPLETED 

1 1 FILE3 
COMPLETED 

II JOB A 

002 

100 

003 

II * STORE SYSTEM DIRECTOR FROM CARDS ON DISK 
II DUP 
*STORE RD 1 SYDIR 
SYDIR OUTTR CHAIN INTEX SHARE SPECL BACK EACLK 
DUP FUNCTION COMPLETED 

Programming Techniques 223 



® II JOB A 
10 II * INSKEL CALL COUNT SUBROUTINE 

II FOR 

224 

'~LIST ALL 
** PERIODIC PROGRAM SCHEDULER 

SUBROUTINE SCHED 
C 
C THIS SUBROUTINE SCHEDULES THE PERIODIC EXECUTION OF THE PROGRAMS 
C LISTED IN THE EXTERNAL STATEMENT. THIS SUBRI)UTINE IS ENTERED 
C EVERY 20 SECONDS. 
C 

C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUEI15l,SETPTIS),COUMTIS),OFFLNI.8) 
EXTERNAL SCAN2,LOG15,LOG60,SHIFT,WEEK 
DIMENSION RANGE(8),AHLI40l~ALLI40),AI40),BI40I,LOWI8l,GI16I,HI16I 
COMMON/INSKEL/SWO,SW1,SW2,$W3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,lHL,ALL,A,B,IBASE,IBASZ,IBAZZ.G,H,IENDT,IPERD,ITCNT 
2 tI PONT 

C SET UP NEXT ENTRY INTO THE SCHEDULER. 
C 

CALL COUNTIO,l,20) 
C 
C INITIATE CLOSED LOOP CONTROL PROGRAM ON L~VEL 10. 
C 

C 

GO TO 197,l),SW3 
97 GO TO 199,98),SWO 
99 CALL LEVEL(10) 
98 SW4=1 

C TEST FOR TWO MINUTE LIMIT SCAN 
C 

C 

SW5=SW5+1 
GO TO 11,1,l,l,l,2),SW5 

2 CALL QUEUEISCAN2,9,Ol 
CALL ENDTS 
SW5=0 
CONTINUE 

C READ CLOCK 
C 

CALL CLOCKIIl 
C 
C TEST FOR FIFTEEN MINUTE LOG 
C 

IFIIBASEl4.,4,5 
4 IF1250-IlI0,6,6 
5 IFIIBASE-II6,6,10 
6 GO TO 166,67l,SW3 

66 CALL QUEUEILOG15,11,Ol 
CALL ENDTS 

67 IBASE=IBASE+250 
IFIIBASE-23760l10,7,7 

7 IBASE=O 
10 CONTINUE 

C 
C TEST FOR HOUR LOG 
C 

IFIIBASZlll,11,12 
11 IF1250-Il20,13,13 
12 IFIIBASZ-II13,13,20 
13 GO TO 1113,114) ,SW3 

113 CALL QUEUEILOG60,12,01 
CALL ENDTS 

114 IBASZ=IBASZ+I000 
IF(23100-IBASZI14,14,20 

14 IBASZ=O 
20 CONTINUE 

C 
C TEST FOR SHIFT END LOG AT 8.15.16.15,00.15 
C 

IFIIBAZZ-250121,21,22 
21 IF(I-IOOOI22,22,30 
22 IF(IBAZZ-I)23,23,30 
23 CALL QUEUEISHIFT,13,01 

CALL ENDTS 
IBAZZ=IBAZZ+SOOO 
IF(17000-IBAZZI24,24,30 

24 IBAZZ=250 
30 CONTINUE 

C 
C UPDATE DAY OF WEEK 
C 

IFII-IOOI31,31,35 
31 IF(SWll32,32,36 
32 DAY=DAY+1 

IF(S-DAYI33,33,34 



® 

C 
C 
C 

Continued 

33 DAY=l 
34 SW1=1 

GO TO 36 
35 SW1=-1 
36 CONTINUE 

TEST FOR 8.30 MONDAY MORNING LOG 

IFIDAY-2)100,40,100 
40 IFII-8500)41,42,42 
41 SW2=-1 

GO TO 100 
42 IFISW2143,43,100 
43 CALL QUEUEIWEEK,14,0) 

SW2=1 
CALL ENDTS 

100 RETURN 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF CSW1II*)=FFFE CSW2(I*)=FFFD C S W 3 I 1* ) = F F FC C S W4 I 1*) = F FF B CSW5 I 1*) .. FFFA 

STATEMENT ALLOCATIONS 
97 =0021 99 =0027 
7 -0079 10 =0070 
22 =00B9 23 =OOBF 
40 =0102 41 =0108 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
SCAN2 LOG15 LOG60 

INTEGER CONSTANTS 

98 =002A 
11 =0081 
24 =0003 
42 =010F 

SHIFT WEEK 

2 =003E 1 =004A 4 =0051 
12 =0089 13 =008F 113 =0095 
30 =0007 31 =0000 32 "'00E1 
43 =0113 100 .. 011F 

COUNT LEVEL QUEUE ENDTS 

0=0002 1=0003 20=0004 10=0005 
23100=000C 13=0000 8000=000E 17000=000F 

9=0006 
100=0010 

250=0007 
8=0011 

CORE REQUIREMENTS FOR SCHED 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

SCHED 
DUP FUNCTION COMPLETED 
*DELET SCHED 
SCHED 
025 NAME NOT IN L/F 
*STORE 1 SCHED 
SCHED 
DUP FUNCTION COMPLETED 

® 
II JOB A 
II * INSKEL INTERRUPT SUBROUTINE 
II FOR 
*LI ST ALL 

464 VARIABLES 

** LEVEL 10 SUBROUTINE FOR CLOSED LOOP CONTROL 
SUBROUTINE LEVI0 

C 

2 PROGRAM 

C THIS SUBROUTINE DOES CLOSED LOOP CONTROL OF EIGHT SET POINT 

288 

C STATIONS. EVERY TWENTY SECONDS THE SCHEDULER SUBROUTINE GIVES 
C A CALL LEVEL TO THIS ROUTINE AND SETS SW4 TO POINT TO THE SCAN 
C SECTION SUCH THAT ALL EIGHT POINTS ARE SCANNED. WHEN THE SCAN IS 
C FINISHED THE OUTPUT TO EACH ON-LINE STATION IS COMPUTED AND THE 
C FIRST PULSE OUTPUT IS GIVEN. TIMER B IS THEN USED TO SET UP 
C FIFTEEN MILLISECOND ENTRIES INTO THE SUBROUTINE SO THAT ALL 
C NECESSARY PULSES ARE GiVEN. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMT(8),OFFLNI8) 
EXTERNAL SOUT 
DIMENSION IBIT(8),IBIZI8),IBIAI8),IOUT(3) 
DIMENSION INV(17) 
DIMENSION RANGE(8),AHL(40),ALLI40),A(40),B(40),LOW(8),G(16),H(16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT.OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DATA IBIT/Z4000,ZI000,Z0400,ZOI00,Z0040,Z0010,Z0004,Z00011 
DATA IBIZ/Z8000,Z2000,Z0800,Z0200,Z0080,Z0020,Z0008,Z00021 
DATA IBIA/Z3FFF,ZCFFF,ZF3FF,ZFCFF,ZFF3F,ZFFCF,ZFFF3,ZFFFCI 

5 =0059 6 =005F 
114 =0090 14 =00A9 
33 cOOED 34 =OOFI 

CLOCK COMGO 

11=0008 23760=0009 
2=0012 8500y0013 

66 
20 
35 

-0065 
=OOAD 
.. 00F7 

12=000A 
14"'0014 

67 =0060 
21 =00B3 
36 =OOFC 

1000=000B 

Programming Techniques 225 



® 

226 

Continued 

C 
C 
C 
C 

c 

READ DIGITAL INPUT SWITCHES TO DETERMINE WHICH STATIONS ARE 
ON-LINE. 

INV(17)=64 
CALL CSXI01011,INV(1),INVI17» 
INV(1)=0 
00 678 J=1,8 
K=J+8 
OFFLNIJ)=INVIK) 

678 INV(1)=INVI1)+OFFLNIJ) 
IFIINV(1»699,699,679 

699 IOUTI1I=0 
GO TO 12 

679 CONTINUE 

C BRANCH ON SW4 TO EITHER SCAN SECTION OR OUTPUT SECTION. 
C 

GO TO 11000,3000),SW4 
1000 CONTINUE 

C 
C SCAN SECTION 
C 
C 
C SET PULSE OUTPUT WORD TO ZERO 
C 

lOUT (1) =0 
CALL AISI02001,VALUE(6),VALUEI15),4096) 

99 CAll AISIO,IV) 
GO TO (99,88),IV 

88 CONTINUE 
00 100 J=1,8 
IFIOFFLNIJ»1,100,1 

1 IFISETPTIJ»111,100,111 
111 VAL=SETPTIJ)-VALUEIJ+5) 

VAL=VAL*2000./RANGEIJ) 
COUMTIJ)=VAL 
IFICOUMTIJ»2,100,4 

2 COUMTIJ)=-COUMTIJ) 
IOUT(1)=IORIIOUTll),IBIT(JI) 
GO TO 100 

4IOUTI1I=IORIIOUTIl),IBIZIJ) 
100 CONTINUE 

I F I IOU T I 11 ) 101, 12, 101 
101 SW4=2 

3000 CONTINUE 
C 
C OUTPUT SECTION 
C 

IOUT(2)=126 
C 
C THE FOLLOWING 8IT IS SET IN THE OUTPUT WORD FOR INCREMENTING A 
C PULSE COUNTER FOR DETERMINING THE NUMBER OF PULSES GIVEN AT 
C ANY TIME. 
C 

C 

lOUT (1) = I OR I lOUT I 1) , I BIZ (3) ) 
CALL POI02001,IOUT(1),IOUTI3» 

C SEE WHICH POINTS ARE TO GO OUT NEXT TIME 
C 

C 

00 10 J=1,8 
IFIOFFLNIJ»3,9,3 

3 IFICOUMTIJ»9,9,20 
20 COUMTIJ)=COUMTIJ)-l 

IFICOUMTIJ»9,9,10 
9 IOUT(1)=IANDIIOUTI1),IBIAIJ» 

10 CONTINUE 

C CALL TIMER B FOR RE-ENTRY TO THfS SECTION IN 15 MILLISECONDS IF 
C THERE ARE ANY MORE PULSES TO GO OUT. 
C 

C 

IFIIOUT(1»11,12,11 
11 CALL TIMERISOUT,2,15) 
12 CONTINUE 

C DISPLAY PULSE OUTPUT FOR VISUAL VERIFICATION OF DIRECTION OF 
C MOVEMENT. 
C 

IOUT(2)=127 
CALL POI01001,IOUTll),IOUTI3» 
CALL INTEX 
END 



® Continued 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

DAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
IBASEII~<)=FE77 

IPERDII*)=FE32 
IBIAI I )=0019-0012 

STATEMENT ALLOCATIONS 

CSW1II*)=FFFE 
JOBNII*)=FFFS 

OFFLNII*)=FFBF-FFBS 
IBASZII*)=FE76 
!TCNT( I*)=FE31 

10UTII )=001C-001A 

CSW2II*)=FFFD 
VALUEII*)=FFF7-FFE9 

AHL(R*)=FFB6-FF6B 
IBAZZII*)=FE75 
IPONTII*)=FE30 

INV (I ) =0020-0010 

C S W 3 ( I * ) =F F ,F C 
RANGE(R*)=FFE6-FFDS 

ALL(R*)=FF66-FF1S 
GIR*)=FE72-FE54 

CVALIR )=0000 
J(I )=002E 

CSW4II*)=FFFB 
LOW(I*)=FFD7-FFDO 

AIR*)=FF16-FECS 
HCR*)=FE52-FE34 

IBITII )=0009-0002 
K( I )=002F 

67S =OOSO 699 =009B 679 =00A3 1000 =00A9 99 
100 =0156 101 =0165 3000 =0169 3 =01A5 20 

=00C3 SS 
=OlAE 9 

=OOCD 1 
=OlBF 10 

=OODA III =00E3 2 
=OIDA 11 =01E9 12 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
SOUT CSX AIS 
ISTOX SUBSC 

REAL CONSTANTS 
.200000E 04=003S 

INTEGER CONSTANTS 

lOR PO lAND TIMER INTEX FMPY FDIVX FLD FSTO IFIX 

CSW511*)=FFFA 
SETPT(I*)=FFCF~FFC8 

BIR*)=FEC6-FE78 
IENDT 11*) =FE33 

IBIZII )=OOIl-OOOA 
IVI I )=0030 

=0114 4 
=OlEF 

FLOAT 

=013B 

COMGO 

64=003A 1011=003B 0=003C 1=003D S=003E 2001=003F 4096=0040 2=0041 1260::0042 15=0043 
127=0044 1001=0045 

CORE REQUIREMENTS FOR LEV10 
COMMON 0 INSKEL COMMON 464 VARIABLES 56 PROGRAM 466 

END OF COMPILATION 

LEVIO 
DUP FUNCTION COMPLETED 
II DUP 
*DELET LEVIO 
LEV10 
D25 NAME NOT IN L/F 
*STORE 1 LEVI0 
LEVIO 
DUP FUNCTION COMPLETED 

@ 
II JOB A 
II * INSKEL CALL TIMER SUBROUTINE 
II FOR 
*LIST ALL 
** TIMER B SUBROUTINE TO SETUP RE-ENTRY INTO LEVEL 10 PROGRAM 

SUBROUTINE SOUT 
C 
C THIS SUBROUTINE SERVICES TIMER B AND IS USED FOR INITIATING 
C ENTRIES INTO THE LEVEL 10 SUBROUTINE FOR THE OUTPUTING OF PULSES 
C TO THE SET POINT STATIONS. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUECI5),SETPTIS),COUMT(S),OFFLN(S) 
DIMENSION RANGECS),AHLC40),ALLC40),A(40),B(40),LOW(S),G(16),H(16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,r PONT 

GO TO (3,21,SWO 
3 GO TO (2,I),SW4 
1 CALL LEVELCIO) 
2 RETURN 

END 
VARIABLE ALLOCATIONS 

CSWOCI*)=FFFF 
DAYCI*)=FFF9 

COUMT(I*)=FFC7-FFCO 
IBASE(H<)=FE77 
IPERDCI*)=FE32 

STATEMENT ALLOCATIONS 

CSW1CI*)=FFFE 
JOBNC Uf)=FFFS 

OFFLNII*)=FFBF-FFB8 
IBASZ( 1>~)=FE76 
ITCNT(I'~)=FE31 

3 =OOOS 1 =OOOE =0011 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
LEVEL COMGO 

CSW2CI*)=FFFD CSW3(I*)=FFFC 
VALUE(I*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8 

AHL(R*)=FFB6-FF68 ALLCR*)=FF66-FF18 
IElAZZ( I~<)=FE75 GCR*)=FE72-FE54 
I PONT C 1':<) =FE30 

CSW4CI*)=FFFB CSW511*)=FFFA 
LOWCI*)=FFD7-FFDO SETPTCI*)=FFCF-FFC8 

ACR*)=FF16-FEC8 BCR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

Programming Techniques 227 



@ 

@ 

@ 

228 

Continued 

INTEGER CONSTANTS 
10=0000 

CORE REQUIREMENTS FOR SOUT 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

SOUT 
DUP FUNCTION COMPLETED 
*STORE 1 SOUT 
SOUT 
DUP FUNCTION COMPLETED 

I I JOB A 
II * INSKEL INTERRUPT SUBROUTINE 
II FOR 
*LlST ALL 

464 VARIABLES 

** QUEUE 15 MINUTE LOG ON DEMAND 
SUBROUTINE QUE15 

c 

o PROGRAM 20 

C THIS SUBROUTINE QUEUES THE FIFTEEN MINUTE LOG ROUTINE ON DEMAND. 
C 

EXTERNAL lOGlS 
CALL ENDTS 
CALL QUEUEILOGI5,7,O) 
CALL INTEX 
END 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
LOGlS ENDTS QUEUE 

INTEGER CONSTANTS 
7=0000 0=0001 

INTEX 

CORE REQUIREMENTS FOR QUE15 
COMMON ° INSKEL COMMON 

END OF COMPILATION 

QUI:15 
DUP FUNCTION COMPLETED 
*STORE 1 QUE15 
QUE15 
DUP FUNCTION COMPLETED 

II JOB A 
II * INSKEL CALL COUNT SUBROUTINE 
II FOR 
*LlST ALL 

° VARIABLES 

** PERIODIC QUEUE OF TREND LOG SUBROUTINE 
SUBROUTINE TeONT 

C 

° PROGRAM 

C THIS SUBROUTINE PERIODICALLY QUEUES THE TREND LOG PROGRAM THE 
C NUMBER OF TIMES SPECIFIED. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUEI151,SETPTIS),COUMTI81,OFFLNI81 
EXTERNAL TREND 

14 

D I MENS I ON RANGE (S 1 , AHl( 40) , ALL 1401, A 140) , B (itO 1 , L OW (8) , G ( 16 1 , H ( 161 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,I PONT 

CALL ENDTS 
CALL QUEUEITREND,2,0) 
ITCNT=ITCNT-1 
IFIITCNTl2,2,l 



® Continued 

1 CALL COUNT(2,3,IPERD) 
2 RETURN 

END 
VARIABLE ALLOCATIONS 

CSWO(I*)=FFFF 
DAY(I'~)=FFF9 

COUMT(I*)=FFC7-FFCO 
IBASE(I*)=FE77 
IPERD(I*)=FE32 

CSWl(I*)=FFFE 
JOBN(I*)=FFF8 

OFFLN(I*)=FFBF-FFB8 
IBASZ(I*)=FE76 
!TCNT( I*)=FE31 

STATEMENT ALLOCATIONS 
1 =0017 2 =OOlC 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
TREND ENDTS QUEUE 

INTEGER CONSTANTS 
2=0000 0=0001 

COUNT 

1=0002 

CORE REQUIREMENTS FOR TCONT 

CSW2( l~c)=FFFD CSW3(I*)=FFFC 
VALUE(I*)=FFF7-FFE9 RANGE(R*)=FFE6-FFD8 

AHL(R*)=FFB6-FF68 ALL(R*)=FF66-FF18 
IBAZZ(I*)=FE75 G(R*)=FE72-FE54 
IPONT(I*)=FE30 

3=0003 

COMMON 0 INSKEL COMMON 464 VARIABLES o PROGRAM 30 

END OF COMPILATION 

TCONT 
DUP FUNCTION COMPLETED 
*DELET TCONT 
TCONT 
D25 NAME NOT IN L/F 
*STORE 1 TCONT 
TCONT 
DUP FUNCTION COMPLETED 

@ 
II JOB A 
II * INSKEL INTERRUPT SUBROUTINE 
II FOR 
*LIST ALL 
** ABORT TREND LOG SUBROUTINE 

SUBROUTINE TABRT 
C 
C THIS SUBROUTINE ABORTS THE TREND LOG ON DEMAND. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8) 
DIMENSION RANGE(8),AHLI40),ALL(40),AI40),BI40),LOW(8),GI16),HI16) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LDW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

ITCNT=O 
CALL INTEX 
END 

VARIABLE ALLOCATIONS 
CSWO( I*)=FFFF 

DAYII*)=FFF9 
COUMT(I*)=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*)=FE32 

FEATURE~ SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
INTEX 

INTEGER CONSTANTS 
0=0000 

CSWIII*)=FFFE 
JOBNII*)=FFF8 

DFFLNII*)=FFBF-FFB8 
IBASZII*)=FE76 
!TCNTII*)=FE31 

CORE REQUIREMENTS FOR TABRT 

CSW2II*)=FFFD CSW3II*)=FFFC 
VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFDff 

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18 
IBAZZII'n=FE75 G(R*)=FE72-FE54 
IPONTII*)=FE30 

COMMON 0 INSKEL COMMON 464 VARIABLES o PROGRAM 8 

END OF COMPILATION 

CSW4II*)=FFFB CSW511*)=FFFA 
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

CSW411*)=FFFB CSW511*)=FFFA 
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

Programming Technique 229 



® Continued 

TABRT 
DUP FUNCTION COMPLETED 
*STORE 1 TABRT 
TABRT 
DUP FUNCTION COMPLETED 

® 
II JOB A 
II * USER SUBROUTINE 
II FOR 
*Ll ST ALL 
** SUBROUTINE FOR READING DATA ENTRY DIALS 

SUBROUTINE GETVL(INVAL) 
C 
C THIS SUBROUTINE READS THE ANALOG INPUT VALUE FOR EACH OF THE 
C SIXTEEN DATA ENTRY DIALS. 
C 

DIMENSION INS(12),INR(12),INVAL(16) 
CALL AISt02011,INR(1),INRtl0),b) 
CALL AIS(02001,INSt1),INS(12),4098) 
CALL AISt00010,IV) 
GO TO t1,2),IV 

2 CALL AIStO,IV) 
GO TOt2,3),IV 

3 DO 4 J=I,8 
K=9-J 

4 INVALtJ+8)=INR(K) 
DO 5 J=1,4 
K=ll-J 
INVALtJ)=INS(K) 

5 INVALtJ+4)=INStK-6) 
RETURN 
END 

VARIABLE ALLOCATIONS 
INStl )=OOOB-OOOO INR(I )=0017-000C IV( I )::0018 J(I )=0019 

STATEMENT ALLOCATIONS 
1 -0059 2 =0063 3 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

C4LLED SUBPROGRAMS 
AIS COMGO ISTOX 

INTEGER CONSTANTS 

SUBSC 

=0060 4 =0077 5 =OOAA 

SUBIN 

2011=0020 0=0021 2001=0022 4098:0023 10=0024 1=0025 

CORE REQUIREMENTS FOR GETVL 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

GETVL 
DUP FUNCTION COMPLETED 
*STORE 1 GETVL 
GETVL 
DUP FUNCTION COMPLETED 

® 
II JOB A 
II * USER SUBROUTINE 
II FOR 
*Ll ST ALL 

o VARIABLES 32 PROGRAM 

** SUBROUTINE FOR READING AND CONVERTING DATA ENTRY DIALS 
SUBROUTINE CONVR(INVAL) 

C 
C THIS SUBROUTINE SCANS THE 16 DATA ENTRY DIALS AT THE PROCESS 
C OPERATORS CONSOLE AND CONVERTS THEM TO AN INTEGER VALUE WITH 
C RANGE 0 TO 9. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTt8),OFFLN(8) 
DIMENSION INVALtI6) 

166 

DIMENSION RANGE(8),AHL(40),ALL(40),At40),Bt40),lOWt8),Gt16),HI16) 

230 

K (I )=OOlA 

8=0026 9"=0027 4=0028 11=0029 



® Continued 

COMMON/INSKEL/SWO,SWI,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 
IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H 

CALL GETVL (INVAL) 
DO 10 J=I,l6 

10 INVAL(J)=INVAL(J)*G(J)+H(J) 
RETURN 
ENU 

VARIABLE ALLOCATIONS 
CSWO(I*);FFFF CSWl(I*)=FFFE 

DAY(I*)=FFF9 JOBN(I*)=FFF8 
COUMT(I*)=FFC7-FFCO OFFLN(I*)=FFBF-FFB8 
IBASEII*)=FE77 IBASZ(I*)=FE76 

STATEMENT ALLOCATIONS 
10 =0014 

FEATURES SUPPURTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
GETVL FADDX FMPYX 

INTEGER CONSTANTS 
1=0004 16=0005 

IFIX 

CORE REQUIREMENTS FOR CONVR 

FLOAT 

CSW2(I*)=FFFD CSW3II*)=FFFC 
VALUE ( I':') =FFF7-FFE9 RANGE I R*) =FFE6-FFD8 

AHL(R*)=FFB6-FF68 ALL(R*)=FF66-FFIB 
IBAZZ(I*)=FE75 GIR*)=FE72-FE54 

ISTOX SUBSC SUBIN 

COMMON 0 INSKEL COMMON 460 VARIABLES 4 PROGRAM 54 

END OF COMPILATION 

CONVR 
DUP FUNCTION COMPLETED 
*STORE 1 CONVR 
CONVR 
OUP FUNCTION COMPLETED 

® 
II JOB A 
II * USER SUBRUUTINE 
II FOR 
'~LIST ALL 
** TIME CONVERSION SUBROUTINE 

SUBROUTINE PTIME(X) 
C 
C THIS SUBROUTINE READS THE CLOCK AND CONVERTS THE TIME TO A 
C FLUATING POINT NUMBER WITH THE DECIMAL POINT SEPERATING HOURS 
C AND MINUTES. 
C 

CALL CLOCK(I) 
J=I/l000"~1000 

I=I-J 
X=(II*60./I000.)+J/I0)/I00. 
RETURN 
END 

VARIABLE ALLOCATIONS 
III )=0002 J(I )=0003 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
CLOCK FADD FMPY FDIV FSTO 

REAL CONSTANTS 
.600000E 02=0004 .100000E 04=0006 

INTEGER CONSTANTS 
1000=000A 10=000B 

CORE REQUIREMENTS FOR PTI~E 

FLOAT SUBIN 

.100000E 03=0008 

COMMON 0 INSKEL COMMON o VARIABLES 4 PROGRAM 

END OF COMPILATION 

PTIME 
DUP FUNCTION COMPLETED 

56 

CSW4(I*)=FFFB CSW5II*)=FFFA 
LDW(I*)=FF07-FFDO SETPTII*)=FFCF-FFC8 

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78 
H(R*)=FE~2-FE34 J(I )=0000 

Programming Techniques 231 



® 

@ 

232 

Continued 

II DUP 
*STORE 1 PTIME 
PTIME 
DUP FUNCTION COMPLETED 

II JOB A 
II * USER SUBROUTINE 
II * THE FOLLOWING TWO SUBROUTINES ARE USED IN FORTRAN TO OBTAIN THE 
II * ADDRESS OF EITHER A VARIABLE OR A SUBROUTINE 
II ASM 

>j:LIST 
*PRINT SYMBOL TABLE 

*****************************~********************* 

* IADDR SUBROUTINE * *****************************.********************* 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS SUBROUTINE GETS THE ADDRESS OF A 
FORTRAN VARIABLE. 

FORTRAN CALL 
I=IADDR(ABCI 

AFTER EXECUTION OF THE ABOVE STATEMENT 
I EQUALS THE ADDRESS OF THE VARIABLE ABC. 

ASM GENERATED CODE 
CALL IADDR 
DC ADDR(ABCI 

RESULT IS IN THE ACCUM UPON RETURN 

THE SUBROUTINE IS RE-ENTRANT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*****************************~,********************* 
0000 09044119 ENT IADDR DEFINE ENTRY POINT 
0000 0 0000 IADDR DC 0 CALL ENTRY 
0001 01 66800000 LDX 12 IADDR SAVE RET ADDR AND SET XR2 
0003 0 C200 LD 2 0 TO PARAMETER--GET PARAMETR 
0004 00 4EOOOOOl BSC L2 1 RETURN 
0006 END 

SYMBOL TABLE 

IADDR 0000 

NO ERRORS IN ABOVE ASSEMBLY. 
IADDR 
DUP FUNCTION COMPLETED 
II DUP 
*STORE 1 IADDR 
IADDR 
DUP FUNCTION COMPLETED 
II ASM 

*L1ST 
*PRINT SYMBOL TABLE 



® Continued 

*************************************************** 
* ISBAD SUBROUTINE * 
*************************************************** 
* * 
* 
* * 
* 
* 
* 
* * 
* 
* 
* 
* 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS SUBROUTINE GETS THE ADDRESS OF THE 
ENTRY POINT TO A SUBROUTINE. 

FORTRAN CALL 
EXTERNAL SUBR 

I=ISBAD(SUBR) 

AFTER EXECUTION OF THE ABOVE STATEMENT 
I EQUALS THE ADDRESS OF THE ENTRY POINT 
OF THE SUBROUTINE SUBR. 

ASM GENERATED CODE 
CALL ISBAD 
CALL SUBR 

ENTRY ADDR TO SUB IS IN ACCUM UPON RETURN 

THE SUBROUTINE IS RE-ENTRANT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ~< 

* 
* 
* 
* 
* 
* 
* 
* 
* *************************************************** 

0000 09882044 ENT 
0000 0 0000 ISBAD DC 
0001 01 66800000 LOX 12 
0003 0 C200 LD 2 
0004 0 1008 SLA 
0005 01 4C10000A BSe L 
0007 00 C6800001 LD 12 
0009 0 7001 MDX 
OOOA 0 C201 LD 2 
OOOB 00 4EOOOO02 BSC L2 
OOOE END 

ISBAD 0000 

NO ERRORS IN ABOVE ASSEMBLY. 
ISBAD 
DUP FUNCTION COMPLETED 
II DUP 
*STORE 1 ISBAD 
ISBAD 
OUP FUNCTION COMPLETED 

II JOB A 
II * INSKEL INTERRUPT SUBROUTINE 
II FOR 
*LIST ALL 
** QUEUE OF CE UNMASK ROUTINE 

SUBROUTINE CESET 
C 

ISBAD DEFINE ENTRY POINT 
0 CALL ENTRY POINT 
ISBAD XR2#RET ADDR AND CALL PARA 
0 IS IT BSI LOR BSI I 
8 PUT INDIRECT BIT IN 0 POS 
*+3,- BRANCH FOR DIRECT BSI 
1 GET SUB ENTRY POINT 
*+1 
1 GET SUB ENTRY POINT 
2 EXIT 

SYMBOL TABLE 

C THIS SUBROUTINE QUEUES THE CE UMASK PROGRAM SO THAT DEVICES MAY 
C BE TAKEN OFF-LINE OR PUT ON-LINE. 
C 

EXTERNAL CEINT 
CALL ENDTS 
CALL QUEUE(CEINT,20,0) 
CALL INTEX 
END 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
CEINT ENDTS QUEUE 

INTEGER CONSTANTS 
20=0000 0=0001 

INTEX 

Programming Techniques 233 



@ 

® 

@ 

234 

Continued 

CORE REQUIREMENTS FOR CESET 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

CESET 
DUP FUNCTION COMPLETED 
II DUP 
*STORE 1 CESET 
CESET 
DUP FUNCTION COMPLETED 

II JOB A 
II * INSKEL INTERRUPT SUBROUTINE 
II FOR 
"~LIST ALL 

o VARIABLES 

** ABORT GRADE PROCESS INTERRUPT SUBROUTINE 
SUBROUTINE ABORT 

C 

o PROGRAM 

C THIS SUBROUTINE QUEUES THE GRAUE CHANGE PROGRAM CAUSING THE 
C PRESENT GRADE TO BE ABORTED. 
C 

EXTERNAL GRADE 
CAll ENDTS 
CALL QUEUEIGRADE,5,OI 
CAll INTEX 
END 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
GRADE ENDTS QUEUE 

INTEGER CONSTANTS 
5=0000 0=0001 

INTEX 

CORE REQUIREMENTS FOR ABORT 
COMMON ° INSKEl COMMON 

END OF COMPILATION 

ABORT 
DUP FUNCTION COMPLETED 
II DUP 
*STORE 1 ABORT 
ABORT 
DUP FUNCTION COMPLETED 

II JOB A 
II * INSKEL CALL COUNT SUBROUTINE 
II FOR 
*LIST ALL 
** END OF GRADE COUNT SUBROUTINE 

SUBROUTINE ENDGD 
C 

o VA?.IABlES ° PROGRAM 

14 

14 

C THIS SUBROUTINE ABORTS THE GRADE IN PROGRESS WHEN THE RUN TIME FOR 
C THAT GRADE HAS ELAPSED. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUEI151,SETPT(81,COUMT(81,OFFLN(81 
EXTERNAL GRADE 
D I MENS I ON RANGE (8 I, AH l (40 I , A Ll 140 I, A I 40 I , B I 'fO I , LOW 181 , G 116 I , H ( 16 I 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,All,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,r PONT 

GO TO (1,2), SW3 
CONTINUE 
CALL ENDTS 
CALL QUEUEIGRADE,5,01 

2 RETURN 
END 



@ Continued 

VARIABLE ALLOCATIONS 
CSWOII*I=FFFF CSWIII*I=FFFE CSW2 11* I =FFFD CSW3II*I=FFFC CSW4II*I=FFFB CSW 5 ( 1* I =FFFA 

DAYI I~(I=FFF9 JOBNII*I=FFF8 VALUE(I*I=FFF7-FFE9 RANGE(R*I=FFE6-FFD8 LOWII*I=FFD7-FFDO SETPTII*I=FFCF-FFC8 
COUMTII*I=FFC7-FFCO OFFLNII*I=FFBF-FFB8 AHLIR*I=FFB6-FF68 ALL(R*I=FF66-FF18 AIR*I=FF16-FEC8 B(R*I=FEC6-FE78 
IBASE(I*I=FE77 IBASZII*I=FE76 IBAZlII*I=FE75 G(R*I=FE72-FE54 HIR*I=FE52-FE34 IENDTII*I=FE33 
IPERD(I*I=FE32 ITCNT(I*I=FE31 IPONTII*I=FE30 

STATEMENT ALLOCATIONS 
1 =0009 2 =0011 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
GRADE ENDTS QUEUE COMGO 

INTEGER CONSTANTS 
5=0000 0=0001 

CORE REQUIREMENTS FOR ENDGD 
COMMON 0 INSKEL COMMON 464 VARIABLES 0 PROGRAM 20 

END OF COMPILATION 

ENOGO 
OUP FUNC TI ON COMPLETED 
II OUP 
*STORE 1 ENOGO 
ENOGD 
OUP FUNCTION COMPLETED 

@ 
II JOB A 
II OUP 
*OUMPLET 

LET 

PACK LABEL 
00000 

.OCOM 0010 0000 .MBT 0020 0010 .SKSB 0020 0030 .SUP OOBO 0050 .CLB OOAO 0100 .DUP 0440 01AO 

.ASM 0300 05EO .FOR 0680 08EO .SIM 05FO OF60 .LET 0080 1550 lAND 0002 1500 CLEAR 0009 1502 
CLOCK 0002 15DB COUNT 0004 1500 OMP 0017 15Cl OMPHX OMPDC OMPS 0010 15F8 
OMPST DPART 0002 1608 ENOTS 0002 160A IEOR 0002 160C LD 0002 160E LEVEL 0004 1610 
MASK 0003 1614 OPMON 0002 1617 lOR 0002 1619 QIFON OOOA 161B QUEUE OOOC 1625 RESMK 0004 1631 
SAVMK 0003 1635 SETCL 0003 1638 TIMER 0006 1638 UNMK 0005 1641 UNQ 0005 1646 VIAQ 0007 1648 
CONHX 0006 1652 TRPRT 0007 1658 FLIP 0007 165F EADO OOOB 1666 ESUB EAOOX 
ESUBX ESBR ESBRX EATN 0000 1671 EATAN EAVL 0003 167E 
tABS EAXB 0006 1681 EAXBX EAXI 0006 1687 EAXIX EOVR 0007 1680 
EOVRX EOIV EOIVX ELD 0009 1694 ELOX ESTO 
ESTOX ELN OOOB 1690 EALOG EMPY 0004 16A8 EMPYX ESINE 0000 16AC 
ESIN ECOSN ECOS ESQR 0007 1689 ESQRT ETNH 0006 16CO 
ETANH ETRTN 0004 16C6 ETNTR EXPN OOOB 16CA EEXP FSBR OOOB 16D5 
FSBRX FAOO FSUB FAOOX FSUBX FARC 0004 16EO 
FATN OOOC 16E4 FATAN FAVL 0003 16FO FABS FAXB 0006 16F3 FAXBX 
FAXI 0006 16F9 FAXIX FBTO 001A 16FF FOTB FDIV 0008 1719 FOIVX 
FOVR FOVRX FIXIX 0005 1721 FIXI FLO 0009 1726 FLDX 
FSTO FSTOX FLN OOOB 172F FALOG FLOAT 0003 173A FMPY 0005 1730 
FMPYX FSINE OOOB 1742 FSIN FCOSN FCOS FSQR 0007 1740 
FSQRT FTNH 0006 1754 FTANH FTRTN 0004 175A FTNTR FXPN 0009 175E 
FEXP lABS 0003 1767 IFIX 0004 176A NORM 0004 176E SNR 0003 1772 XOO 0006 1775 
XMO 0005 177B XMOS 0004 1780 XSQR 0004 1784 BINOC 0006 1788 BINHX 0004 178E OCBIN 0006 1792 
EBPA 0006 1798 EBPRT OOOA 179E HOLEB 0012 17A8 HOLPR OOOD 17BA HXBIN 0005 1 7C 7 PAPEB 0010 17CC 
PAPHL 0014 170C PAPPR 0011 l7FO PRT 0005 1801 AORCK 0007 1806 COMGO 0006 180D COMG1 
DATSW 0004 1813 OVCHK 0002 1817 ESIGN 0005 1819 FCTST 0003 181E FSIGN 0005 1821 IOU 0007 1826 
ISIGN 0003 1820 ISTOX 0003 1830 LDFAC 0004 1833 STFAC S8FAC OVFAC 
MDF IO 0023 1837 MOAF MOAI MOCOM MOF MOFX 
MOL MDIX MOREO MDWRT MOFND 0008 185A MF 10 0059 1862 
MREO MWRT MCOMP M lOAF MIOAI M IOFX 
MIOIX MIOF M 101 MGOTO OOOE 1888 MFIF M I IF 
MEIF MIAR OOOE 18C9 MIARX MFAR MFARX MEAR 
MEARX OVERF 0002 1807 PAUSE 0002 1809 REWNO 0009 1808 BCKSP EOF 
SAVE OOOA 18E4 IOFIX ,SL ITE 0006 18EE SL ITT SSWTC 0004 18F4 STOP 0003 18F8 
SUBIN 0005 18FB SUBSC 0004 1900 TSTOP 0002 1904 TSTRT 0002 1906 TTEST 0003 1908 TSET 

Programming Techniques 235 



@ Continued 

UFIO OOlC 
UlOAF 
PAPTN 0010 
AIRN 0000 
lOPE 0009 
GAGED 0003 
VS 
PIC 
CO 
BT2BT 0003 
SCALE 0002 
WCHRI 
VCHRI 

PLOTS 

HET 

PACK LABEL 
00000 

9DUMY OOAO 

LET 

PACK LABEL 
11111 

.LET 0080 
SPECL 
QUE15 0002 
IADDR 0002 
• E ll80 

FLET 

PACK LABEL 
11111 

.PRWS 0051 
INPSI/ 4180 
IPRSI/ 4180 

190B 

194A 
1992 
19E6 
19F8 

1A49 
1A63 

05AO 

0000 

0159 
0175 
0180 

1118 
12C3 
15AD 

URED 
UIOFX 
MAGT 0020 
ANINT 0014 
oUSLY 
UNGAG 
DI 
csx 0004 
DO 
FCHAR 0005 
EGRID 0008 
FRULE 0009 
ERULE OOOB 

• TEr~p 1AEO 

• E OOAO 

SYDIR 009E 
BACK 
TCONT 0003 
ISBAD 0002 

.FIOS OOOF 
FILE1 0002 
.SKEL 0036 

OUP FUNCTION COMPLETED 

II JDB A 
II END Of ALL JOBS 

® 

195A 
199F 

lA2F 

lA4C 
1A65 
lA9D 
1ACB 

IBOO 

05AO 

0080 

0158 
0177 

1169 
12F8 
15E2 

TASK 1800 TSX-II-l SAMPLE SYSTEM 
SEN sw 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 
SEN sw 2 ON FOR SKELETON ~UILDER 
PLACE TASK DECK IN CARD HOPPER 
PUT SKL BUILD PROG IN CARD HOPPER 
II JOB A 

UWRT 
U IOIX 
AIPTN 0009 
DINP 0013 
ETS 
AlP 0004 
PI 
VSX 
PO 
SCALF 0002 
EPLOT 0005 
FMOVE 
EMOVE 

.E 5AOO 

oUTTR 
EACLK 
TABRT 0002 
CESET 0002 

.MESS 00A3 
FILE2 0064 
.EPRG 0022 

197A 
19B3 

19FB 

:LA51 
I.A6D 

lBOO 

015E 
0179 

1178 
12FA 
1618 

UIOI 
UCOMP 
AIPN 
DIEXP 0006 
XSAVE 0009 
AIS OOOD 
CSC OOOA 
DIX 
QZERQ 0002 
FGRID 0007 
POINT 0007 
FINC 
EINC 

CHAIN 
SCHED 0014 
GETVL OOOB 
ABORT 0002 

IEPDM 7FFF 
FILE3 0003 
ICLST 0780 

II XEQ SKBLD 
*INCLDSCHED/2600,ENDGD/2601,QUE15/0001,CESET/2500,AllORT/OOOO,LEV10/2410 
*INCLDTCONT/2602,TABRT/0002 
~'CCEND 

KOC ANINT 0023 LEV.1 

SKEL CORE MAP 
TYPE NAME ARG1 ARG2 

LIBF DISKN 02A9 3EBB 
LIBF TYPEN 0674 3EBE 
LI BF WRTYN 0674 3EBE 
LI BF PRNTN OB6F 3ECl 

236 

19C6 
19EF 
19FF 
1A25 

1A3A 
1A53 
1A72 

OUE 
0160 
6i 7B 

121B 
135E 
163A 

UIOF 
PLOTX 0000 
AISQN OOOF 
DICMP 0007 
XEXIT 
AIR 0011 
VSC 
PIX 
QZOI0 0006 
FPLoT 0004 
FCHRX 0024 
ECHRX 0025 
XYPLT 0007 

INTEX 
LEV10 0024 
CoNVR 0005 
ENDGD 0002 

IEPSV 0780 
9DUMY 0217 
.E 0280 

1927 
1983 
19CC 

1AOC 

lA3C 
1A5A 
1A79 
lAA6 
lAD6 

0132 
016B 
0170 

1282 
1361 
12F8 

U IDA I 
CARON 0016 
AISN 
DAoP 0013 
XLoAD 
CS 0008 
DIC 
DAC 0007 
BTl~T 0007 
ECHAR 0005 
FCHRI 
ECHR I 
PLOT I 0003 

SHARE 
SoUT 0003 
PTIME 0005 
• TEMP 017F 

IINSV 48FF 
ISPSV 4180 

1934 

19D3 

1AlD 

1A33 
lA42 
1A5E 

1ADD 

0156 
0170 
0180 

1288 
1578 



® Continued 

LIBF CARDN OEOD 3EC4 
CALL EX IT 206E 00B6 
CALL LINK 2070 008E 
INSK OF62 1349 
PNT SYDIR 134A 30B4 
ICI SCHED 2391 1200 
ICI ENDGD 24AO 1201 
IC I QUE15 24B4 0001 
IC I CESET 24C2 1100 
IC I ABORT 24DO 0000 
ICI LEV10 2522 100A 
ICI TCONT 26EA 1202 
IC I TABRT 2705 0002 
CALL OUTTR 1D8C 3E46 
CALL CHAIN IF63 3E45 
CALL INTEX 1E90 3E44 
CALL SHARE 2009 3E43 
CALL SPECL 1FA9 3E42 
CALL BACK 1FF1 3E41 
CALL EACLK 2305 3E40 
CALL COUNT 270C 3E3F 
LIBF COMGO 2740 3EC7 
CALL LEVEL 2792 3E3E 
CALL QUEUE 27CA 3E3D 
PNT SCAN2 30B8 
CALL ENDTS 288C 3E3C 
CALL CLOCK 2896 3E3B 
PNT LOG15 30BC 
PNT LOG60 30CO 
PNT SHIFT 30C4 
PNT WEEK 30C8 
PNT GRADE 30CC 
PNT CEINT 3000 
LIBF ISTOX 28A8 3ECA 
CALL CSX 28C8 3E3A 
LIBF SUBSC 28EE 3ECD 
CALL AIS 291C 3E39 
LIBF FLOAT 29E6 3EOO 
LIBF FSTO 2A4A 3E03 
LIBF FLO 2A64 3E06 
LIBF FMPY 2A70 3E09 
LIBF FOIVX 2ABA 3EOC 
LIBF IFIX 2B26 3EOF 
CALL lOR 2B52 3E38 
CALL PO 2B60 3E37 
CALL lAND 2BBC 3E36 
CALL TIMER 2BCA 3E35 
CALL SOUT 2C21 3E34 
PNT TREND 3004 
LIBF COMG1 2781 3EE2 
LIBF ADRCK 2C34 3EE5 
CALL VSX 28C8 3E33 
CALL DIX 28C8 3E32 
CALL PIX 28C8 3E31 
CALL QZ010 2C98 3E30 
CALL QZERQ 2CEC 3E2F 
LIBF OIEXP 2CFA 3EE8 
LIBF AISQN 2046 3EEB 
LIBF NORM 2E3C 3EEE 
LIBF FLDX 2ASF 3EFl 
LIBF FSTOX 2AOO 3EF4 
LIBF FMPYX 2A78 3EF7 
LIBF FARC 2E68 3EFA 
LIBF FDIV 2ABF 3EFD 
LIBF FDVR 2B05 3FOO 
LIBF FDVRX 2BOO 3F03 
CALL FTNTR 2E9C 3E2E 
CALL FTRTN 2EB6 3E2D 
CALL DAC 2B60 3E2C 
CALL CO 2B60 3E2B 
CALL DO 2B60 3E2A 
LIBF DAOP 2EC4 3F06 
CALL GAGED 2FFO 3E29 
CALL UNGAG 3001 3E28 
LIBF AISN 2046 3F09 
CALL ANINT 3010 3E27 
PTCH 314C 3DB1 

Programming Techniques 237 



® CClntinued 

ICL TABLE MAP 
LLBB WC/EP SA ICLT 

0000 2400 1454 
0001 24B4 1456 
0002 2705 1458 
100A 2522 15B8 
1100 24C2 15C4 
1200 2391 15CC 
1201 24AO 15CE 
1202 26EA 1500 

K13 SCAN2 LEV.1 

K13 LOG15 LEV.1 

K13 LOG60 LEV.1 

K13 SHIFT LEV.l 

K13 WEEK LEV.l 

K13 GRADE LEV.l 

Kl3 CEINT LEV.l 

K13 TREND LEV.l 

DATA SW 0 ON TO ABORT SKEL 

SKB, SYDIR LD NX 

TASK 1800 TSX-II-l SAMPLE SYSTEM 
SEN SW 0 ON FOR ABSOLUTE LOADER 
SEN SW 1 ON FOR NONPROCESS MONITOR 

@ 
II J08 A 
II * MAINLINE CORE LOAD 
II FOR COLON 
t~LIST ALL 
** OFF-LINE COLD START FOR PERPETUAL TIME SHARING 
*IOCS(DISK) 
C 
C THIS COLD START CORE LOAD IS USED TO GIVE PERPETUAL TIME SHARING. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8) 
DIMENSION RANGE(8),AHL(40),ALL(40),A(40),B(40),LOW(8),G(16),H(16) 
COMMON/INSKEL/Swo,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

lPT,CQUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 1(2,320,U,II) 
C 
C UNMASK ALL LEVELS AND CALL VIAQ WITH QUEUE EMPTY 
C 

CALL UNMK(-1,-1l 
READ(l'l)RANGE,LOW,A,B 
READ(l'2)G,H 
CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWO(I*I=FFFF 

DAY (I .;, I =FFF9 
COUMT(I*I=FFC7-FFCO 
I BASE (I >:<) =FE77 
IPERD(I>.c l=FE32 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
10CS 

CALLED SUBPROGRAMS 

CSWl(I*)=FFFE 
JOBN( I>:<)=FFF:8 

OFFLN(I*I=FFBF-FFB8 
IBASZ( I'~)=FE76 
ITCNT(I*)=FE3l 

UNMK VIAQ MDRED MDCOM MDAI 

238 

CSW2( I>:<I=FFf:D CSW3( I*I=FFFC 
VALUE( I>:<I=FFF'7-FFE9 RANGE (R~<)=FFE6-FFD8 

AHL(R*I=FFB6-FF68 ALL(R*I=FF66-FF18 
IBAZZ( I';<)=FE75 G(R*I=FE72-FE54 
IPONT(I*I=FE30 II(ll=OOOA 

MDAF 

CSW4(I*I=FFFB CSW5(I*)=FFFA 
LOW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8 

A(R*I=FF16-FEC8 B(R*I=FEC6-FE78 
H(R*I=FE52-FE34 IENDT(I*)=FE33 



Continued 

INTEGER CONSTANTS 
l=OOOC 2=0000 

CORE REQUIREMENTS FOR COLON 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

COLON 
DUP FUNC TI ON COMPLETED 
II DUP 
*DELET M COLON 
DUM 
025 NAME NOT IN LlF 
*STORECIL M 1 COLON 
*FILES(l,FILEl,11 
*CCEND 

CLB, BUILD COLON 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC OOOC 
*IST TABLE 3F18 0036 
*PNT TABLE 3F4E 0008 
*DFT TABLE 3F56 0006 
MAIN COLON 3F64 
PNT COLON 3F50 
PNT COLON 3F54 
CALL UNMK 3F8E 
L1BF MDRED 4040 3FOC 
L1BF MDAF 3FDF 3FOF 
L1BF MOAI 3FEC 3F12 
L1BF MDCOM 40A2 3F15 
CALL VIAQ 434C 
CALL BT2BT 43AC 
CALL SAVE 43C8 
CALL IOFIX 442C 
CORE 445E 3BA2 

CLB, COLON LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * MAINLINE CORE LOAD 
II ASM COLDS 

*L1ST 
*PRINT SYMBOL TABLE 

DUM 

COLON 

464 VARIABLES 12 PROGRAM 44 

COLON 

*************************************************** 

* * 

0000 0 1010 
0001 00 04000029 
0003 30 03201255 
0005 30 03593117 
0008 0000 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS IS THE NORMAL COLD 
START CORE LOAD. 

IT SETS TIME SHARING TIME TO ZERO 
SO THAT CONSOLE INTERRUPT 
MUST HAVE BEEN PUSHED BEFORE 
LOGICAL DRIVE ZERO IS EVER 
REFERENCED. 

THIS CORE LOAD CHAINS TO COLOP 
TO ACTUALLY COLO START THE PROCESS 

'" * 
* )~ 

* 
* 
* 
* 
* * 
* 
* *************************************************** 

START SLA 16 SET TIME SHARING TIME TO 0 
STO 41 
CALL CHA IN 
CALL COLDP CHAIN TO COLOP 
END START 

Programming Techniques 239 



® Continued 

SYMBOL TABU: 

® 

240 

START 0000 

NO ERRORS IN ABOVE ASSEMBLY. 
COLDS 
DUP FUNCTION COMPLETED 
II DUP 
*STORECIL M 1 COLDS COLDS COLDS 
*CCEND 

CLB, BUILD COLDS 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

*CDW TA~LE 3E82 OOOC 
'nBT TABLE 3E8E 0010 
*F 10 TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*IST TABLE 3FOC 0036 
*PNT TABLE 3F42 OOOC 
MAIN COLDS 3F4E 
PNT COLDS 3F44 
PNT COLDS 3F48 
PNT COLDP 3F4C 
GORE 3F58 40A8 

CLB, COLDS LD XQ 

o 45 CORE LOADS NOT FOUND 
COLDP 
DUP FUNCTION COMPLETED 

I I JOB A 
II * MAINLINE CORE LOAD 
II FOR RSTAR 
*LI ST ALL 
** RESTART CORE LOAD 
*IOCSIDISK,TYPEWRITER) 
C 
C 
G 
C 
C 

THIS IS THE SYSTEM RESTART CORE LOAD. WHEN EVER A RESTART 
CONDITION OCCURS THIS ROUTINE IS LOADED TO vAR!ABLE CORE TO MAKE 
SURE SYSTEM CONSTANTS IN INSKEL COMMON ARE VALID. 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8) 
E:XTERNAL GRADE 
DIM ENS ION RAN GEl 8 ) , A H L I 40 ) , ALL I 40 ) , A I 40) ,B I ,+ 0 ) , LOW I 8 ) ,G I 16 ) , H I 16 ) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASl,IBAlZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 112,320,U,II) 
DEFINE FILE 313,320,U,II) 

C RESTORE INSKEL COMMON 
SWO=2 
CALL UNMKI-l,-l) 
CALL PTIMEITIME) 
WRITEIlt1)TIME 
FORMATI' PROCESS RESTART TIME'F7.21 
READll'lIRANGE,LOW,A,B 
READI3'lIJOBN,DAY,IENDT,SW3 
READI3'2)SETPT 
READ(3'3)AHL,ALL 
GO TO (95,96),SW3 

96 CALL VIAQ 
95 CONTINUE 

SWO=l 
CALL CQUNTIO,1,5) 
CALL CLOCKII) 
IF (I-IENDT)101,102,103 

101 IPER"IENDT-I 
GO TO 104 

102 CALL CHAINIGRADE) 
103 IPER c I24000-IENDT)+I 
104 AA=IPER*3.6 

IFI32000.-AA)102,105,105 



® Continued 

105 IPER=AA 
CALL COUNTll,2,IPERI 
CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

DAYII*)=FFF9 
COUMTII*I=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*I=FE32 

STATEMENT ALLOCATIONS 

CSW1 I It,c )=FFFE 
JOBNI I'~)=FFF8 

OFFLNII*)=FFBF-FFB8 
IBASZII)~)=FE76 

ITCNTlIt.<)=FE31 

CSW2II*)=FFFD CSW3II*I=FFFC CSW4II*I=FFFB CSW511*)=FFFA 
VALUEII*)=FFF7-FFE9 RANGEIR*I=FFE6-FFD8 LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8 

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18 AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
IBAZZII*)=FE75 GIR*I=FE72-FE54 HIR*)=FE52-FE34 IENDTII*)=FE33 
IPONTII*I=FE30 CTIMEIR I=OOOC AAIR )=OOOE IIII )=0014 

1 =0022 96 =0080 95 =0082 101 =0096 102 =009E 103 =00A2 104 =OOAA 105 =00B8 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
GRADE UNMK PTIME 
MWRT MCOMP MIOF 

REAL CONSTANTS 
.360000E 01=0018 

INTEGER CONSTANTS 

VIAQ 
MDRED 

COUNT 
MDCOM 

.320000E 05=001A 

2=001C 1=0010 3=00lE 

CORE REQUIREMENTS FOR RSTAR 

CLOCK 
MDAI 

O=OOlF 

COMMON 0 INSKEL COMMON 464 VARIABLES 

END OF COMPILATION 

RSTAR 
DUP FUNCTION COMPLETED 
*STORECIL M 1 RSTAR RSTAR COLDS 
*FILESl1,FILEl,1) 
*FILESI3,FILE3,1) 
*CCEND 

CLB, BUILD RSTAR 

CORE LOAD MAP 
TYPE NAME ARGl ARG2 

*CDW TABLE 3E82 OOOC 
*18T TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 002A 
*IST TABLE 3F36 0036 
*PNT TABLE 3F6C OOOC 
*DFT TABLE 3F78 OOOC 
MAIN RSTAR 3FAA 
PNT RSTAR 3F6E 
PNT COLDS 3F72 
LIBF EBPRT 403C 3FOC 
CALL UNMK 40DC 
CALL PTIME 4132 
LIBF MWRT 42EC 3FOF 
LIBF MIDF 439D 3F12 
LIBF MCOMP 4379 3F15 
LIBF MDRED 4806 3F18 
LIBF MDAF 47A5 3FIB 
LIBF MDAI 47B2 3FlE 
LIBF MDCOM 4868 3F21 
LIBF MOl 47AA 3F24 
CALL VIAQ 4B12 
PNT GRADE 3F76 
LIBF FSUB 4B86 3F27 
LIBF LDFAC 4C10 3F2A 
CALL PRT 4C3E 
LIBF SUBIN 4C88 3F2D 
LIBF FADD 4B92 3F30 
LIBF IOU 4CC2 3F33 
CALL IDF IX 4D5C 
CALL BTlBT 4D8C 
CALL SAVE 4CF8 
CALL BT2BT 4DFO 
CORE 4EOE 31F2 

CHA IN 
~1DAF 

FSUB 
MDI 

FMPY 
TYPEN 

5=0020 24000=0021 

24 PROGRAM 172 

FLO 
EBPRT 

FSTO IFIX FLOAT COMGO LDFAC 

Programming Techniques 241 



® 

@ 

242 

Continued 

CLB, RSTAR LD XQ 

D 45 CoRELoADS NOT FOUND 
GRADE 
DUP FUNCTION COMPLETED 

I I .JoB A 
II * MAINLINE CORE LOAD 
I I l=oR CoLOP 
*LIST ALL 
** ON-LINE COLD START CORE LOAD 
*loCS ITYP~WRITER,KEYBoARD,DISK) 
C 
C 
C 
C 
C 
C 

C 

THIS IS THE SYSTEM PROCESS COLD START AND RELOAD CORE LOAD. 
IF SENSE SWITCH 6 IS ON ]T DOES A PROCESS COLD START AND IF 
SENSE SWITCH 6 IS OFF IT ASSUMES A RELOAD CONDITION HAS OCCURED 
SO THAT IT INITIALIZES THE SYSTEM TO THE LAST CHECK POINT. 

INTEGER SWO,SW1,SWZ,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTIS),COUMTIS),OFFLNI8) 
EXTERNAL GRADE 
DIMENSION RANGE(8),AHLI401,ALLI401,AI40),BI40),LOWI81,GI161,HI16) 
CoMMoN/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JoBN,VALUE,RANGE,LoW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ"G,H,IENDT,IPERD,ITCNT 
Z,I PONT 

DEFINE FILE lIZ,3Z0,U,II) 
DEFINE FILE 313,320,U,III 

C TAKE ALL CLOSED LOOPS OFF-LINE UNTIL OPERATOR BRINGS THEM ON-LINE 
C 

SWO=2 
C 
C UNMASK ALL LEVELS 
C 

CALL UNMKI-l,-l1 
C SET UP INSKEL COMMON 

READI1'1IRANGE,LoW,A,B 
READll'2IG,H 
SW5=5 
SW1=1 

C 
C SET UP BASE TIMES FOR SCHEDULER 
C 

C 

CALL CLoCKIII 
J=I/IOOO*1000 
K=I-J 
IBASE=J+IK/Z50*2501 
IBASZ=J 
IBAZZ=J/SOOO*SOOO+250 
SW3=2 
CALL CoUNTIO,l,l) 

C TEST FOR RELOAD OR COLD START 
C 

CALL SSWTCHI6,II) 
GO TO 1200,100),11 

200 CONTINUE 
WRITEI1,3) 
FoRMAT(' PROCESS COLD START') 
REAOI2,2)DAY,JoBN 

2 FoRMATII1,I5) 
CALL CHAINIGRAOE) 

100 READI3'l)JOBN,DAY,IENDT,SW3 
REAOI3'2)SETPT 
REAOI3'3)AHL,ALL 
SWO=1 
GO TO 196,95),SW3 

96 CONTINUE 
CALL CLOCKII) 
IFII-IENDTI101,102,103 

101 IPER=IENDT-I 
GO TO 104 

102 CALL CHAINIGRADE) 
103 IPER=124000-IENDT)+1 
104 AA=IPER*3.6 

IFI32000.-AAI102,105,105 
105 IPER=AA 

CALL COUNTl1,2,IPER) 
95 WRITEI1,l06) 



@ Continued 

106 FORMAT(' PROCESS 
CALL VIAQ 

RESTART CHECK POINT') 

END 
VARIABLE ALLOCATIONS 

CSWO(I*)=FFFF 
DAYII*)=FFF9 

COUMTII*)=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*)=FE32 

J(I )=0014 

STATEMENT ALLOCATIONS 

CSWlI H<)=FFFE 
JOBNII*)=FFF8 

OFFLNII*)=FFBF-FFB8 
IBASZII*)=FE76 
ITCNT( I*)=FE31 

KII )=0015 

3 =0026 2 =0032 106 =0035 200 
105 =011F 95 =0129 

FEATURES SUPPURTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
GRADE UNMK CLOCK COUNT SSWTC 
MRED MWRT MCOMP MIDI MDRED 

REAL CONSTANTS 
.360000E 01=0018 .320000E 05=001A 

INTEGER CONSTANTS 

CSW2 I I)~) =FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
IBAZZII*)=FE75 
I PONT I I~<) =FE30 

IPER( I )=0016 

=OOBB 100 =OOC13 

CHAIN VIAQ FSU8 
MDCOM MDAI MDAF 

2=001C l=OOlD 5=001E 1000=001F 250=0020 

CORE REQUIREMENTS FOR COLDP 

CSW3IH<)=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*)=FF66-FFIB 
GIR*)=FE72-FE54 

AAIR )=OOOC 

CSW4II*)=FFFB CSW5II*)=FFFA 
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

11(1 )=0012 III )=0013 

96 =00F2 101 =OOFD 102 =0105 103 =0109 104 =0111 

FMPY FLD FSTO IFIX FLOAT COMGO LDFAC 
~1D I TYPEN HOLEB E13PRT 

8000=0021 0=0022 6=0023 3=00~4 24000=0025 

COMMON 0 INSKEL COMMON 464 VARIABLES 24 PROGRAM 280 

END OF COMPILATION 

COLDP 
DUP FUNCTION COMPLETED 
*DELET M COLDP DUM 
DUM 
D25 NAME NOT IN L/F 
*STORECIL M 1 COLDP COLDP COLDS 
*FILES(1,FILE1,1) 
*FILESI3,FILE3,1) 
*CCEND 

CLB, BUILD COLDP 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

)~CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 002A 
*IST TABLE 3F36 0036 
*PNT TABLE 3F6C OOOC 
*DFT TABLE 3F78 OOOC 
MAIN COLOP 3FBD 
PNT COLDP 3F6E 
PNT COLDS 3F72 
LIBF EBPRT 40A8 3FOC 
LIBF HOLEB 4148 3FOF 
CALL UNMK 426A 
LI BF i'<IDRED 431C 3F12 
L1BF MDAF 4211B 3F15 
L1BF MOAI 42C8 3F18 
LIBF MDCOM 437E 3FIB 
CALL SSWTC 4628 
LIBF MWRT 47DC 3FlE 
L1BF MCOf~P 4869 3F21 
LIBF MRED 47C9 3F24 
LIBF MIDI 4892 3F27 
PNT GRADE 3F76 
LIBF MDI 42CO 3F2A 
L1BF FSUB 4CA2 3F2D 
L1BF LDFAC 4D2C 3F30 
C.~LL VIAQ 4D5A 
CALL PRT 4DBA 
CALL BT2BT 4E04 
CALL SAVE 4E20 
CALL IOFIX 4E84 
L1BF IOU 4EB4 3F33 
CALL BTlBT 4EEA 
CORE 4F50 30BO 

Programming Techniques 243 



244 

II JOB A 
II * MAINLINE CORE 
II FOR CEINT 
*lIST ALL 
** CE UNMASK CORE 
*loCSITYPEWRITER) 

LOAD 

LOAD 

C 
C 
C 
C 
C 

THIS CORE LOAD IS FOR USE WITH THE CE INTERRUPT. IT MAKES 
SURE THAT ALL LEVELS ARE UNMASKED AFER USE OF THE CE INTERRUPT 
ROUTINES. 

WRITE(l,l) 
FORMAT!' CE UNMASK CORE LOAD--PRESS START TO EXIT FROM CORE LOAD') 
PAUSE 
CALL UNMK!-1,-1) 
CAll VIAQ 
END 

STATEMENT ALLOCATIONS 
1 =0006 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
UNMK VIAQ MWRT 

INTEGER CONSTANTS 
1=0004 0=0005 

MCOMP 

CORE REQUIREMENTS FOR CEINT 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

CEINT 
DUF' FUNCT ION COMPLETED 
II DUP 

PAUSE TYPEN 

o VARIABLES 

*STORECIL M 1 CEINT CEINT CEINT 
*CCEND 

CLB, BUILD CEINT 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC OOOF 
*IST TABLE 3F1B 0036 
*PNT TABLE 3F52 0008 
MAIN CE INT 3F7E 
PNT CErNT 3F54 
PNT CErNT 3F58 
lIBF EBPRT 3F94 3FOC 
lIBF MWRT 41BE 3FOF 
lIBF MCOMP 424B 3F12 
lIBF PAUSE 4670 3F15 
CALL UNMK 4684 
CALL VIAQ 46CE 
CALL PRT 472E 
lIBF IOU 4778 3F18 
CALL IOF IX 4812 
CALl BTlBT 4842 
CAL.L SAVE 47AE 
COR.E 48A8 3758 

CLB, CEINT LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 

E:3PRT 

4 PROGRAM 

II * THE FOLLOWING ARE THREE DUMMY CORE LOADS FOR USE IN REPLACING 
II * OR DELETING SYSTEM CORE LOADS. 

54 



® 

Continued 

II * 
II * MAINLINE CORE LOAD 
II ASM DUM 

NO ERRORS IN ABOVE ASSEMBLY. 
DUM 
DUP FUNCTION COMPLETED 
*STORECI M 1 DUM 
*CCEND 

CLB, BUILD DUM 

CLB, DUM LD XQ 

DUP FUNCTION COMPLETED 
II * INTERRUPT CORE LOAD 
II ASM IDUM 

DUM DUM 

NO ERRORS IN ABOVE ASSEMBLY. 
IDUM 
DUP FUNCTION COMPLETED 
*STORECI I 1 IDUM IDUM 
*CCEND 

CLB, BUILD IDUM 

CLB, IDUM LD XQ 

DUP FUNCTION COMPLETED 
II * COMBINATION CORE LOAD 
II ASM CDUM 

NO ERRORS IN ABOVE ASSEMBLY. 
CDUM 
DUP FUNCTION COMPLETED 
*STORECI C 1 CDUM CDUM CDUM 
*CCEND 

CLB, BUILD CDUM 

CLB, CDUM LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * MAINLINE CORE LOAD 
II FOR GRADE 
*LIST ALL 
** GRADE CHANGE PROGRAM 
*IOCSIDISK,TYPEWRITERI 
C 
C THIS PROGRAM STARTS THE PRODUCTION OF A NEW GRADE. 
C 

C 

INTEGER SWO,SWl,SWZ,SW3,SW4,SW5,DAY 
INTEGER VALUEI151,SETPTIB),COUMTI81,OFFLN(81 
DIMENSION INPP(8) 
DIMENSIUN RANGE(8),AHL(40),ALL(401,A(40),B(401,LOW(SI 
COMMON/INSKEL/SWO,SWl,SWZ,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ 
EQUIVALENCE (VALUE(ZI,IENDTl 
DEFINE FILE Z(lOO,3Z0,U,JOBNI 
DEFINE FILE 3(3,3Z0,U,III 

C TAKE ALL LOOPS OFF CLOSED LOOP CONTROL UNTIL AFTER CHANGE 
C 

SWO=Z 
C 
C READ NEXT SEQUENTIAL GRADE FILE OFF OF DISK 
C 

IF(JOBNI999,999,9999 
999 SW3=2 

WRITE(3'1IJOBN,DAY,IENDT,SW3 
CALL PTIME(TIME) 
WRITEIl,998)TIME,DAY 
WRITE(4,998)TIME,DAY 
WRITE(5,998ITIME,DAY 

Programming Techniques 245 



® 

246 

Continued 

C 

998 FURMAT(' PRODUCTIUN STOP TIME'F7.2,' 
CALL VIAQ 

9999 SW3=l 
IF (lOl-JOBN)2,2,3 

2 JOBN=l 
3 READ(2'JOBN)I,ITIME,SETPT,AHL,ALL 

DO 10 J=l,B 
IF(SETPT(J»lO,lO,4 

4 SETPT(J)=SETPT(J)*RANGE(J)/lOO.+LOW(J) 
10 CONTINUE 

DAY' 12) 

C CALL COUNT TO SET UP TERMINATION OF GRADE ITIME SECONDS FROM NOW. 
C 

CALL COUNT (1,2,ITIME) 
IENDT=ITIME/3.6 
CALL CLOCK(II) 
IENDT=IENDT+II 
IF(24000-IENDT)100,100,101 

100 IENDT=IENDT-24000 
101 CONTINUE 

WRITE(3'1)JOBN,DAY,IEND1,SW3 
WRITE(3'2)SETPT 
WRITE(3'3)AHL,ALL 
SWO=l 
II=ITIME/3600 
ITIME=(ITIME-(II*3600»/60 
TIME=II+ITIME/100. 
CALL PTIMECTIl) 
WRITE(1,11)I,TIME,TIl,DAY 
WRITE(4,11)I,TIME,TIl,DAY 
WRITE(5,11)I,TIME,TIl,DAY 

11 FORt-IAT(//' START UF GRA[lE'I6,' PRODUCTION TIML'F9.2,' START TIME'F 
19.2,' DAY'I3) 

WRITE(1,500) 
500 FORMAT(' UP-GUIDE LIMITS FOR NEW GRADE') 

WRITE(1,5011 
501 FORMAT(' POINT HIGH LIMIT LOW LIMIT',10X' POINT HIGH LIMIT 

1 LOW LIMIT') 
DO 503 J=1,39,2 
K=41-J 
J1=J 
J2=J+1 

503 WRITE(1,502)J1,AHL(K),ALL(K),J2,AHL(K-l),ALL(K-1) 
502 FORMAT(I6,2F13.2,10XI6,2F13.2) 

WRITE(1,510) 
510 FORMAT(' CLOSED LOOP SET POINTS FOR NEW GRADE') 

WRITE(1,5111 
511 FORMAT(3X'POINT',5X'SETPT',5X'POINT'.5X'SETPT',5X'POINT',5X'SETPT' 

1,5X'POINTI ,5X'SETPT' I 
DO 6 J=1,8 

6 INPP(JI=(SETPT(JI-LOW(J)*100./RANGE(J) 
DO 30 1=1,5,4 
Jl=I 
J2=I+l 
.13=1+2 
J4=1+3 
IA=9-1 
IB=8-I 
IC=7-I 
10=6-1 

30 WR IT E ( 1,7) J 1, I NPP ( I A) ,J 2. I NPP ( I B I, J 3, I NPP ( IC ) ,J4, INPP ( 10) 
7 FORMAT(IB,110,3(110,1101) 

CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWO(I*)=FFFF 

DAY(I*)=FFF9 
COUMT(I*)=FFC7-FFCO 
IBASE( I*)=FE77 

INPP( I )=0019-0012 
Jl(1 I=OOlF 
IC(I )=0025 

STATEMENT ALLOCATIONS 

CSWl(I'n=FFF!: 
JUBN(I*)=FFF8 

OFFLN(I*I=FFBF-FFB8 
IBASl(I*)=FE76 

I I (I J =OOlA 
J2(1 1=0020 
10(1 )=0026 

CSW2 ( 1*) = "FFD 
VALUE(1*)=FFF7-FFE9 

AHL(R*)=FFB6-FF68 
IBAll ( 1* I =1"E75 

I (r )=:)OlB 
J3( I )='1021 

CSW3( !*)=FFFC 
RANGE(R*)=FFE6-FFD8 

ALL(R*I=FF66-FF18 
IENDT(I*)=FFF6 
ITIME(I )=OOlC 

J4(I )=0022 

CSW4( I*I=FFFB 
LOW(I*)=FFD7-FFDO 

A(R*)=FF16-FEC8 
CTIME(R )=OOOC 

J(I )=001D 
lAC I )=0023 

998 =003F 11 =0054 500 ::0077 501 =0088 50~ =OOAC 510 =00B4 511 =00C9 7 =00F2 999 
Z =0138 3 =013(; 4 ::015A 10 =017B 10) =OlAO 101 =01A6 503 =0220 6 =0250 30 

FEtlTURES SUPPORTED 
ONE WORD INTEGERS 
IDCS 

CALLED SUBPROGRAMS 

CSW5( I*)=FFFA 
SETPT(I*)=FFCF-FFC8 

B(R*)=FEC6-FE78 
CTIl(R I=OOOE 

K(I )=001E 
IB( I )=0024 

=0101 9999 =012E 
=02BO 

prIME VIAQ COUNT CLOCK FADD FMPY FMPYX FDIV FDIVX FSTO IFIX FLOAT ISTOX STFAC SBFAC 
M~~RT MCOMP MIOFX MIOI X MIOF MIDI SUBSC MDRED MDWRT MDCOM MDAI MDAF MOl TYPEN EBPRT 



® 

® 

Continued 

REAL CONSTANTS 
.100000E 03=002C .360000E 01=002E 

INTEGER CONSTANTS 
2=0030 3=0031 

39=003A 41=003B 

CORE REQUIREMENTS FOR GRADE 

1=0032 
9=003C 

4=0033 
7=003D 

COMMON 0 INSKEL COMMON 396 VARIABLES 

END OF COMPILATION 

GRADE 
DUP FUNC T IDN COMPLETED 
*DELET M GRADE DUM 
GRADE 
D25 NAME NOT IN L/F 
*STORECIL M 1 GRADE GRADE RSTAR 
*FILESI2,FILE2,11 
*FILESI3,FILE3,11 
*CCEND 

CLB, BUILD GRADE 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E OOlD 
*FID TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0036 
*IST TABLE 3F42 0036 
*PNT TABLE 3F78 0008 
*DFT TABLE 3F80 OOOC 
MAIN GRADE 4079 
PNT GRADE 3F7A 
PNT RSTAR 3F7E 
LIBF EBPRT 4264 3FOC 
LIBF MDWRT 4457 3FOF 
LIBF MDI 4310 3F12 
LIBF MDCOM 43CE 3F15 
CALL PTIME 4684 
LIBF MWRT 483E 3F18 
LIBF MIOF 48EF 3F1B 
LIBF MIDI 48F4 3F1E 
LIBF MCOMP 48CB 3F21 
CALL VIAQ 4CFO 
LIBF MDRED 436C 3F24 
LIBF MDAI 4318 3F27 
LIBF MDAF 430B 3F2A 
LIBF FADD 4D70 3F2D 
LIBF STFAC 4E04 3F30 
LI BF SBFAC 4E08 3F33 
LIBF MIOFX 48FB 3F36 
LIBF MIOIX 4900 3F39 
CAll PRT 4EIC 
CALL BT2BT 41::66 
CAll SAVE 4E82 
CAll IOFIX 4EE6 
LIBF SUBIN 4F16 3F3C 
LIBF IOU 4F50 3F3F 
CALL BTlBT 4F86 
CORE 4FEC 3014 

CLB, GRADE LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 

5=0034 
6=003E 

44 PROGRAM 

II * TWO MINUTE LIMIT SCAN ROUTINE--COMBINATION CORE LOAD 

101=0035 

696 

II * THIS PROGRAM IS INITIATED EVERY 2 MINUTES OR BY PROCESS INTERRUPT 
II * 
II * FIRST PART IS THE CONVERSION AND LIMIT CHECK SUBROUTINE U~ED BY AI 
II * USER SUBROUTINE 
II FOR 
*LIST ALL ** CONVERSION AND LIMIT CHECK SUBROUTINE 

SUBROUTINE LIMITII,JI 

8=0036 24000=0037 3600=0038 60=0039 

Programming Techniques 247 



@ 

248 

Continued 

C 
C 
C 
C 

C 

THIS SUBROUTINE IS THE SUBROUTINE TO BE USED IN THE AIS READ AND 
TRANSFER FUNCTION OF THE MAIN LINE CORE LOAD. 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8) 
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAy,JOBN,VA~UE,RANGE,LOW,SET 

IPT,CDUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

C CONVERT I PARAMETER TO ARRAY INDEX 
C 

C 

K=40-I 
M=I+l 

C CONVERT AI VALUE TO ENGINEERING UNITS 
C 

VSC=AIK)*LDIJI+BIKI 
C 
C TEST FOR HIGH LIMIT VIOLATION 
C 

C 

IFIVSC-AHLIK))2,1,1 
1 WRITEI1,100IM,VSC 

100 FORMATII HIGH LIMIT VIOLATION POINTI,I3,1 
GO TO 4 

C TEST FOR LOW LIMIT VIOLATION 
C 

2 IFIVSC-ALLIK))3,3,4 
3 WRITEIl,300)M,VSC 

300 FORMATI' lOW LIMIT 
4 RETURN 

END 

VIOLATION PO IN T I , 13, I 

VALUE',F12.4) 

VALUEI,F12.4) 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF CSWIII*)=FFFE 

JOBNII*)=FFF8 
OFFLNII*)=FFBF-FFBB 
IBASZII*)=FE76 
ITCNTII*)=FE31 

CSW2II*I=FFFD CSW3II*)=FFFC 
DAYII*)=FFF9 

COUMTII*I=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*)=FE32 

VALUEII*I=FFF7-FFE9 RANGEIR*)=FFE6-FFDB 
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FFIB 

IBAZZII*I=FE75 GIR*)=FE72-FE54 
IPONTII*)=FE30 CVSCIR )=0000 

STATEMENT ALLOCATIONS 
100 =0008 300 =0020 =006C 2 =0076 3 =0082 4 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CALLED SUBPROGRAMS 
LD FADDX FSUBX FMPYX FLO FSTO FLeAT LDFAC 

INTEGER CONSTANTS 
40=0006 1=0007 

CORE REQUIREMENTS FOR LIMIT 
COMMON 0 INSKEL COMMON 464 VARIABLES 6 PROGRAM 

END OF COMPILATION 

LIMIT 
DUP FUNCTION COMPLETED 
II * LEAVE THIS SUBROUTINE IN TEMP STORAGE SINCE IT IS ONLY USED 
II * WITH THIS MAINLINE 
II * NOW COMPILE THE MAINLINE 
II * COMBINATION CORE LOAD 
II FOR SCAN2 
*L1ST ALL 

=008A 

MWRT 

134 

** TWO MINUTE SCAN FOR LIMIT VIOLATIONS OF THOSE POINTS ON OP-GUIDE 
*IOCS ITYPEWRITER) 
C 
C THIS COMBINATION CORE LOAD SCANS ALL OF THE OP-GUIDE POINTS ON THE 
C SYSTEM AND NOTES ANY LIMIT VIOLATION TO THE OPERATOR. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUEllS),SETPTI8),COUMTIB),OFFLNIB) 
EXTERNAL LIMIT 
DIMENSION INP(42) 
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAy,JOB~I,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,(;,H,IENDT,IPERD,ITCNT 
2,I PONT 

MCOMP 

CSW4II*I=FFFB CSW5IIu)=FFFA 
LOWII*)=FFD7-FFDO SETPTlIu)=FFCF-FFC8 

AIR*)=FF16-FECB BIR")=FEC6-FE78 
HIR*)=FE52-FE34 IENDTlIu)=FE33 
KII )=0002 MIl )=0003 

MIOF MIDI SUBSC SUB:lN 



@ ~ontinued 

C GET TIME IN HOURS-MINUTES 
C 

CALL PTIMEITIME) 
C 
C DETERMINE IF THIS IS A DEMAND SCAN OR THE NORMAL 2 MINUTE SCAN BY 
C DETERMINING WHAT LEVEL IT IS XEQ-ING ON 
C 

C 

I=7+LDII04) 
IFILDII)-23)1,1,2 

C DEMAND SCAN 
C 

1 WRITEll,3)DAY,TIME 
3 FORMATI//,' DEMAND SCAN 

GO TO 5 
C 
C NORMAL 2 MINUTE SCAN 
C 

2 WRITEll,4)DAY,TIME 
4 FORMATI//,' NORMAL SCAN 

C 

DA Y , , 13, 4X ' TIM E ' ,F 12.2 ) 

C READ 40 RELAY POINTS USING AIS READ AND TRANSFER FUNCTION 
C 

5 CALL AISI15001,INPIl),INP(42),Q,LIMIT) 
6 CALL AISIO,!) 

GO TO (6,7), I 
7 CALL DPART 

END 
VARIABLE ALLOCATIONS 

CSWOII*)=FFFF CSW1II*)=FFFE CSW2II*)=FFFD CSW3(I*)=FFFC 

STATeMENT ALLOCATIONS 
3 =0036 4 =0049 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IDCS 

CALLED SUBPROGRAMS 
LIMIT PTIME LD 

INTEGER CONSTANTS 
7=0030 104=0031 

AIS 

CORE REQUIREMENTS FOR SCAN2 

=0060 2 =0077 5 =007F 6 

DPART COMGO. MWRT MCOMP 

23=0032 1=0033 15001=0034 

COMMON 0 INSKEL COMMON 464 VARIABLES 48 PROGRAM 

END OF COMPILATION 

SCAN2 
DUP FUNCTION COMPLETED 
~~DELET C SCAN2 CDUM 9999 
SCAN2 
025 NAME NOT IN L/F 
*STORECIL C 1 SCAN2 SCAN2 RSTAR 1515 
*CCEND 

CLB, BUILD SCAN2 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*F 10 TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0021 
*IST TABLE 3F2D 0036 
~(PNT TABLE 3F64 0008 
MAIN SCAN2 3FC8 
PNT SCAN2 3F66 
PNT RSTAR 3F6A 
LIBF EBPRT 400E 3FOC 
CALL PTIME 40BA 
CALL LD 40EA 
LIBF MWRT 4284 3FOF 
LIBF MIDI 433A 3F12 
L1BF MIOF 4335 3F15 
L1BF MCOMP 4311 3F18 
CALL LIMIT 476F 
CALL DPART 47C2 
CALL PRT 47DO 

=0095 7 

MIoF MIDI 

0=0035 

114 

CSW4II*)=FFFB CSW5(I*)=FFFA 

=009F 

TYPEN EBPRT 

Programming Techniques 249 



@ 

@ 

250 

Continued 

L I EiF SUBIN 481A 3F1B 
LIBF FADD '~874 3F1E 
LlBF IOU i~8F 2 3F2I 
CAL.L rOFIX 498C 
CAl.L BTlBT 49BC 
CAl.L SAVE 4928 
L IEiF FADDX 4B6E 3F24 
LlEiF FSUBX 't863 3F27 
LlBF LDFAC 4A20 3F2A 
CALL VIAQ 4A4E 
COFlE 4ABO 354F 

CLB, SCAN2 LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * MAINLINE CORE LOAD 
II FOR lOGI5 
*LIST ALL 
** 15 MINUTE LOG ROUTINE 
*IOCSITYPEWRITER) 
C 
C THIS IS THE FIFTEEN MINUTE LOG PROGRAM WHICH LOGS THE VALUES OF 
C ALL PROCESS VARIABLES IN THE SYSTEM 
C 

C 

INTEGER SWO,SW1,SW2,SW31SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI81,OFFLNIB) 
DIMENSION INPI421,VSCI401,INPPI101 
DIMENSION RANGEIBI,AHL(40),ALLI401,AI401,BI~OI,LOWI81,GI161,HI1~I 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASl,IBAl!,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

C START INPUT OF RELAY POINTS 
C 

CALL AISI12001,INPl11,INPI421,01 
C 
C PRINT HEADER OF LOG 
C 

CALL PTIMEITIMEI 
WRITEl1,1IDAY,TIME 
WRITEI5,1)DAY,TIME 
FORMATIII,' LOG15 DAY',I3,4X'TIME',F9.21 
WRITE11,1001 
WRITEI5tlOOI 

lOO FORMATI' OP-GUIDE POINTS'I 
WRITE 15,2) 
WRITE 11,2) 

2 FORMATI3X'POINT',5X'VALUE',5X'POINT',5X'VALUE',5X'POINT',5X'VALUE' 
1,5X'POINT',5X'VALUE'1 

C 
C START INPUT OF SS AI AND CONVERT RELAY AI WnILE SS IS COMING IN 
C 

C 

CALL AISI02001,INPPI11,INPPI101,40961 
DO 10 1=1,40 

10 VSCIII=AIII*INPII)+BIII 

C PRINT TABLE OF RELAY AI POINTS 
C 

C 

DO 20 J=1,37,4 
K=41-J 
Jl=J 
J2=J+I 
J3=J+2 
J4=J+3 
WRITEI5,3IJ1,VSCIKI,J2,VSCIK-11,J3,VSCIK-21,J4,VSCIK-3I 

20 WRITEIl,3IJ1,VSCIKI,J2,VSCIK-11,J3,VSCIK-21,J4,VSCIK-3I 
~ FORMATI4IIB,F12.211 

C PRINT THE SS VALUES 
C 

WRITEll,lOll 
WRITEI5,l01l 

101 FORMATI' CLOSED LOOP POINTS'I 
WRITEI1,21 
WRITEI5,21 

4 CALL AISIO,!I 
GO TO 14,51,1 

5 DO 6 J=l,8 



@ Continued 

6 INPPIJ)=IINPPIJ)-LOWIJ»*100./RANGEIJ) 
DO 30 1=1,5,4 
J1=1 
J2=1+1 
J3=I+2 
J4=1+3 
IA=9-1 
IB=8-1 
IC"7-1 
10=6-1 
WR 1 TE I 5,7) J 1, I NPP I I A) ,J 2, IN PP I I B) ,J 3, INPP I IC ) ,J4, INPP 110 ) 

30 WR I TE 11,7) J 1, I NPP I I A) ,J2 , I NPP I I B) ,J3, IN PP I IC ) ,J4, IN PI-' I 10 ) 
7 FORMATI18,I10,3II10,110» 

CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

DAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
I BASE I I'~) =FE77 
IPERDII*)=FE32 

INPPII )=0087-007E 
J31I )=008D 

STATEMENT ALLOCATIONS 

CS~IlII*)=FFFE 
JOBNII*)=FFF8 

OFFLNII*)=FFBF-FFB8 
IBASZII*)=FE76 
ITCNTI r*)=FE31 

I I r ) =0088 
J41I )=008E 

CSW2 I He) =FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
IBAZZII*)=FE75 
IPONTII*)=FE30 

JI I )=0089 
IAI I )=008F 

CSW3II,n=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*)=FF66-FF18 
GIR'~)=FE72-FE54 

CVSCIR )=004E-0000 
KI I )=008A 

IBII )=0090 

CSW411':<)=FFFB 
LDWII*)=FFD7-FFOO 

A I R':C) =FF16-FEC8 
HIR"~)=FE52-FE34 

CTIMEIR )=0050 
JIll )=0088 
ICII )=0091 

CSW5 II *) =FFFA 
SETPTII*)=FFCf-FFC8 

B I R~') =FEC6-FE 78 
IENOT I I~') =FE33 

INP I I ) =007D-0054 
J211 )=008C 
1011 )=0092 

1 =OOAA 100 =OOBA 2 =00C4 cOOED 101 =00F2 7 =OOFE 10 =0154 20 =01C2 4 =01F8 =0202 
6 =0206 30 =0281 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
AIS PTIME VIAQ 
MIOFX MIOIX MIOF 

REAL CONSTANTS 
.100000E 03=0098 

INTEGER CONSTANTS 
12001=009A 0=009B 

2=00A4 3=00A5 

FADDX 
MIDI 

FMPY 
SUBSC 

1=009C 
8=00A6 

CORE REQUIREMENTS FOR LOG15 

FDIVX 
TYPEN 

5=0090 
9=00A7 

COMMON 0 INSKEL COMMON 464 VARIABLES 

END OF COMPILATION 

LOG15 
DUP FUNCTION COMPLETED 
*DELET M LDG15 DUM 
LOG15 
025 NAME NOT IN LlF 
*STORECIL M 1 LOG15 LOG15 RSTAR 
*CCEND 

CLB, BUILD LOG15 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0021 
*IST TABLE 3F2D 0036 
*PNT TABLE 3F64 0008 
MAIN LOG15 4071 
PNT LOG15 3F66 
PNT RSTAR 3F6A 
LIBF EBPRT 4216 3FOC 
CALL PTIME 42C2 
LIBF MWRT 447C 3FOF 
LIBF MIDI 4532 3F12 
LIBF MIOF 4520 3F15 
LIBF MCOMP 4509 3F18 
LIBF FADDX 4948 3FIB 
LIBF MIOFX 4539 3F1E 
LIBF MIOIX 453E 3F21 
CALL VIAQ 49CC 
CALL PRT 4A2C 
LIBF SUBIN 4A76 3F24 

FLDX 
EBPRT 

FSTD 

2001=009E 
7=00A8 

FSTOX 

4096=009F 
6=00A9 

152 PROGRAM 530 

IFIX FLOAT 

40=00AO 

CDMGO ISTOX MWRT MCDMP 

37=00A1 4=00A2 41=00A3 

Programming Techniques 251 



@ Continued 

LIBF FADD 494E 3F27 
LIBF IOU 4ABO 3F2A 
CALL IOFIX 4B4A 
CALI!. BTlBT 4B7A 
CALIL SAVE 4AE6 
CORE 4BEO 3420 

CLB, LOG15 LD XQ 

DU~ FUNCTION COMPLETED 

® II ~IOB A 
II * MAINLINE CORE LOAD 
I I F'OR L(JG60 

252 

** ONE HOUR LOG 
*IOCS(TYPEWRITERI 
*LIST ALL 
C 
C THIS PROGRAM PUTS OUT THE HOUR LOG. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(151,SETPT(81,COUMT(81,OFFLN(81 
DIMENSION RANGE(81,AHL(401,ALL(401,A(401,B(401,LOW(81,G(16),H(161 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SWS,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ.IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

C 
C PRINT HEADING 
C 

CALL PTIME!TIMEI 
WRITE(l,IIDAY,TIME 
WRITEI4,IIDAY,TIME 
WRITEIS,I)DAY,TIME 
FORMATIII,Q ONE HOUR LOG DAYI,I3,5XITIMEI,F9.21 

C 
C OUTPUT ONE HOUR LOG 
C 
C 
C EXIT FROM ROUTINE 
C 

CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWOII*I=FFFF 

OAYII*I=FFF9 
COUMTII*I=FFC7-FFCO 
IBASE(I*I=FE71 
IPERDII*I=FE32 

STATEMENT ALLOCATIONS 
1 =0005 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SU8PROGRAMS 
PTIME VIAO MWRT 

INTEGER CONSTANTS 

CSWIII*I=FFFE 
JOBN( I~'I=FFF8 

OFFLNII*I=FFBF-FFB6 
IBASZII*I=FE76 
ITCNTII*I=FE31 

MCOMP MIOF 

1=0002 4=0003 5=0004 

CORE REQUIREMENTS FOR LOG60 

CSW21 I~cl=FFFD 
VALUE 11* 1 =FFF7-FFE9 

AHLIR*I=FFB6-FF68 
IBAHII*I=FE75 
IPONTII*I=FE30 

CSW3II*I=FFFC 
RANGEIR*I=FFE6-FFD8 

ALLIR*I=FF66-FFI8 
GIR*I=FE72-FE54 

.CTH1E(R 1=0000 

MIDI TYPEN EBPRT 

COMMON 0 INSKEL COMMON 464 VARIABLES PROGRAM 52 

END OF COMPILATION 

LOG60 
DUP FUNCTION COMPLETED 
II DlJP 
*STORECIL M 1 LOG60 LOG60 RSTAR 
*CCEND 

CLB, BUILD LOG60 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

CSW4(I*I=FFFB CSW5(I*I=FFFA 
LOW(I*I=FFD7-FFDO SETPTII*I=FFCF-FFC8 

A(R*I=FF16-FEC8 B(R*I=FEC6-FE78 
H(R*I=FE52-FE34 IENDT(I*I=FE33 



® Continued 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0018 
*IST TABLE 3F24 0036 
*PNT TABLE 3F5A 0008 
MAIN LOG60 3F7B 
PNT LOG60 3F5C 
PNT RSTAR 3F60 
LIBF EBPRT 3F98 3FOC 
CALL PTIME 4044 
LIBF MWRT 41FE 3FOF 
LIBF MIOI 42B4 3F12 
LI BF MIOF 42AF 3F15 
LIBF MCOMP 428B 3F18 
CALL VIAQ 46BO 
CALL PRT 4710 
LIBF SUBIN 475A 3F1B 
LIBF FADD 47B4 3F1E 
LIBF IOU 4832 3F21 
CALL IOFIX 48CC 
CALL BTlBT 48FC 
CALL SAVE 4868 
CORE 4962 369E 

CLB, LOG60 LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * MAINLINE CORE LOAD 
II FOR SHIFT 
*LIST ALL 
** SHIFT END LOG 
*IOCS (TYPEWRITER) 
C 
C THIS PROGRAM OUTPUTS THE SHIFT LOG 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8) 
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUF,RANGE,LOW,SET 

lPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

C 
C PRINT HEADER 
C 

CALL PTIMEITIME) 
WRITEIl,l)DAY,TIME 
WRITEI4,1)DAY,TIME 
WRITEI5,1)DAY,TIME 
FORMATIII,' SHIFT END LOG DA Y' , 13,5 X' TIM E I ,F 9.2 ) 

C 
C OUTPUT SHIFT END LOG 
C 
C 
C EXIT FROM ROUTINE 
C 

CALL VIAQ 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

DAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*)=FE32 

STATEMENT ALLOCATIONS 
1 =0005 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
PTIME VIAQ MWRT 

INTEGER CONSTANTS 

CSW1II*)=FFFE 
JOBNII*)=FFF8 

OFFLNII*)=FFBF-FFB8 
IBASZIU~I=FE76 
ITCNTI I~()=FE3l 

MCOMP MIOF 

1=0002 4=0003 5=0004 

CSW2 11* I =FFFD CSW3 I I ~(l =FFFC 
VALUEII*)=FFF7-FFE9 RANGEIR*I=FFE6-FFD8 

AHL I R'~) =FFB6-FF68 ALL I R~( I =FF66-FF18 
IBAZZI I':')=FE75 GIR'~I=FE72-FE54 

IPONTI I~')=FE30 CTIMEIR )=0000 

MIDI TYPEN EBPRT 

CSW4II*I=FFFB CSW5II*I=FFFA 
LOWII*I=FFD7-FFDO SETPTII*I=FFCF-FFC8 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*I=FE52-FE34 IENDTII*I=FE33 

Programming Techniques 253 



@ 

254 

Continued 

CURE REQUIREMENTS FOR SHIFT 
COMMON 0 INSKEL COMMON 464 

END OF COMPILATION 

SHIFT 
DUP FUNCTION COMPLETED 
II DUP 
*STORECIL M 1 SHIFT SHIFT RSTAR 
*CCEND 

CLB, BUILD SHIFT 

CORE LOAD MAP 
TYPE NAME ARGl ARGZ 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*F 10 TABLE 3EA.B 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0018 
*IST TABLE 3F24 0036 
*PNT TABLE 3F5A 0008 
MAIN SHIFT 3F7B 
PNT SHIFT 3F5C 
PNT RSTAR 3F60 
LI BF EBPRT 3F98 3FOC 
CALL PTIME 4044 
LIBF MWRT 41FE 3FOF 
LIBF MIOI 42B4 3FlZ 
LIBF MIOF 42AF 3F15 
LIBF MCOMP 4288 3F18 
CALL VIAQ 4680 
CALL PRT 4710 
LI8F SUBIN 475A 3FIB 
LIBF FADD 47B4 3F1E 
LIBF IOU 4B32 3FZl 
CALL IOFIX 48CC 
CALL BTlBT 48FC 
CALL SAVE 4868 
CORE 4962 369E 

CLB, SHIFT LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * MAINLINE CORE LOAD 
II FOR WEEK 
*LIST ALL 
** MONDAY MORNING LOG 
*IOCSCTYPEWRITERI 
C 

VARIABLES 2 PROGRAM 52 

C THIS PROGRAM OUTPUTS THE WEEKLY MONDAY MORNING LOG 
C 

C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUEC151,SETPTC81,COUMTC81,OFFLNCSl 
o I MENS I ON RANGE: C 8 I, AH L C 40 I ,A LL C 40 I, A C 40 I ,B C /~O I ,L OW C 8 I ,G C 16 I ,H C 16 I 
COMMON/INSKEL/SWO,SW1,SWZ,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZl,G,H,IENDT,IPERD,ITCNT 
Z,IPONT 

C PRINT HEADER 
C 

C 

CALL PTIMECTIMEI 
WRITEC4,1IDAY,TIME 
WRITEC5,1IDAY,TIME 
FORMATCII,' MONDAY MORNING REPORT 

C OUTPUT MONDAY MORNING REPORT 
C 
C 
C EXIT FROM PROGRAM 
C 

CALL VIAQ 
END 

DAY',I3,5X'TIME',F9.21 



Continued 
VARIABLE ALLOCATIONS 

CSWO(I*)=FFFF 
DAY(I*)=FFF9 

COUMT(I*)=FFC7-FFCO 
IBASE(I*)=FE77 
IPERD(I*)=FE32 

STATtMENT ALLOCATIONS 
1 =0004 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IDCS 

CALLED SUBPROGRAMS 
PTIME VIAQ MWRT 

INTEGER CONSTANTS 

CSWl( I>~)=FFFE 
JOBN(I*)=FFF8 

OFFLN(I*)=FFBF-FFB8 
IBASZ(I*)=FE76 
ITCNT( I*)=FE31 

MCOMP MIOF 

4=0002 5=0003 

CORE REQUIREMENTS FOR WEEK 

CSW2(I*)=FFFD CSW3(1*)=FFFC 
VALUE(I*)=FFF7-FFE9 RANGE(R*)=FFE6-FFD8 

AHL(R*)=FFB6-FF68 ALL(R*)=FF66-FF18 
IBAZZ(I*)=FE75 G(R*)=FE72-FE54 
IPONT(I*)=FE30 CTIME(R )=0000 

MIOI TYPEN EBPRT 

COMMON 0 INSKEL COMMON 464 VARIABLES 2 PROGRAM 48 

END OF COMPILATION 

WEEK 
DUP FUNC T ION COMPLETED 
II DUP 
*STORECIL M 1 WEEK 
*CCEND 

CLB, BUILD WEEK 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FID TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0018 
*IST TABLE 3F24 0036 
*PNT TABLE 3F5A 0008 
MAIN WEEK 3F7F 
PNT WEEK 3F5C 
PNT RSTAR 31'60 
LIBF EBPRT 3F94 3FOC 
CALL PTIME 4040 
LIBF MWRT 41FA 3FOF 
LIBF MIDI 4280 3F12 
LIBF MIDF 42AB 3F15 
LIBF MCOMP 4287 3F18 
CALL .VIAQ 46AC 
CALL PRT 470C 
LIBF SUBIN 47'56 3F1B 
LIBF FADD 47BO 3FlE 
LIBF IOU 482E 3F21 
CALL IOFIX 48C8 
CALL BTIBT 48F8 
CALL SAVE 4864 
CORt 495E 36A2 

CLB, WEEK LD XQ 

DUP FUNCTION COMPLETED 

® I I JOB A 
II * MAINLINE CORE 
II FOR TREND 
*LIST ALL 
** TREND LOG 
*IOCS(TYPEWRITER) 

LOAD 

WEEK RSTAR 

C 
C 
C 
C 
C 

THIS IS THE TREND LOG CORE LOAD. IT READS THE VALUE THAT THE 
OPERATOR HAS ASKED. IT IS QUEUED PERIODICALLY BY THE TCONT 
SUBROUTINE WITH THE PERIOD SPECIFIED BY THE OPERATOR. 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8) 

CSW4(I*I=FFFB CSW5(I*)=FFFA 
LOW(I*)=FFD7-FFDO SETPT(I*)=FFCF-FFC8 

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78 
H(R*)=FE52-FE34 IENDT(I*)=FE33 

Programming Techniques 255 



® 

256 

Continued 

DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GII6),HII6) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

CALL AIP(llOOO,INV,IPONT) 
CALL AIPIO,ITEST) 
GO TO 11,2),ITEST 

2 CONTINUE 
IFI4096-IPONT)4,4,100 

4 K=IPONT-4096+1 
J=9-K 
INV=IINV-LOWIJ))*lOO./RANGEIJ) 
WRITEI 1,5)K, INV 

5 FORMATI' TREND LOOP'I2,' VALUE'I6) 
CALL VIAQ 

1.00 K=IPONT+l 
J=41-K 
VAL=AIJ)*INV+B(J) 
WRITEll,lOl)K,VAL 

101 FORMATI' TREND OP-GUIDE'I3,' 
CALL VIAQ 
END 

VALUE'FIO.2) 

VARIABLE ALLOCATIONS 
CS~JO( I*)=FFFF CSWIII*)=FFFE 

JOBN.II*)::FFF8 
OFFLNII*)=FFBF-FFB8 
IBASZII*)::FE76 
ITCNTII*)=FE31 

CSW2II*)==FFD CSW3( I*)=FFFC 
DAYII*)=FFF9 

COUMT(I*I=FFC7-FFCO 
IBASEII*)=FE77 
IPERDII*I=FE32 

K (I ) =0004 

STATEMENT ALLOCATIONS 
5 =0010 101 =OOIF 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
AlP VIAQ FADDX 
TYPEN EBPRT 

REAL CONSTANTS 
.100000E 03=0008 

INTEGER CONSTANTS 
11000=000A O=OOOB 

J( I )=0005 

=0036 

FMPY FMPYX 

4096=000C 

CORE REQUIREMENTS FOR TREND 

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FF08 
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18 

IBAZZI I>:<)=~E75 GIR*)=FE72-FE54 
IPONTII*)=FE30 CVAL(R )=0000 

=0040 4 =0046 100 =0074 

FDIVX Fsro IFIX FLOAT COMGO 

1=0000 9=000E 41=000F 

COMMON 0 INSKEL COMMON 464 VARIABLES 8 PROGRAM 144 

END OF COMPILATION 

TREND 
DUP FUNCTION COMPLETED 
*DELET M TREND DUM 
TREND 
D25 NAME NOT IN L/F 
*STORECIL M 1 TREND TREND RSTAR 
*CCEND 

CLB, BUILD TREND 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*E:TV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0018 
*IST TABLE 3F24 0036 
*PNT TABLE 3F5A 0008 
MAIN TREND 3F93 
PI\IT TREND 3F5C 
PNT RSTAR 3F60 
LIBF EBPRT 3FFA 3FOC 
CALL AlP 409A 
LIBF MWRT 4250 3FOF 
LI BF MIDI 4306 3F12 
LI BF MCOMP 42DD 3F15 
CALL VIAO 4702 
LIBF FADOX 477C 3F18 
LI BF MIOF 4301 3FIB 
ClILL PRT 4800 

CSW4(I*)=FFFB CSW5(I*)=FFFA 
LOW(I*)=FFD7-FFOO SETPT(I*)=FFCF-FFC8 

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78 
H(R*)=FE52-FE34 IE~DT(I*)=FE33 

INV(I )=0002 lTEST(I )=0003 

MWRT MCOMP M IOF MIDI SUBSC 



® 

@ 

Continued 

L1BF AIPTN 484A 3F1E 
L1BF IOU 48CC 3F21 
CALL IOFIX 4966 
CALL BTlBT 4996 
CALL SAVE 4902 
CORE 49FC 3604 

CLB, TREND LD XQ 

DUP FUNCTION COMPLETEG 

II JOB A 
II * INTERRUPT CORE LOAD 
II FOR COGLP 
*L1 ST ALL 
** CHANGE OP-GUIDE LIMITS PROGRAM 
*IOCSITYPEWRITER) 
*IOCSIDISK) 
C 
C THIS CORE LOAD CHANGES THE LIMITS ON OPERATOR GUIDE POINTS AT 
C OPERATOR REQUEST. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTIS),OFFLNI8) 
DIMENSION INVAL(16) 
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWIS),GI16),HI16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 313,320,U,II) 
WRITEI1,555) 

555 FORMAT(//l 
CALL CONVRIINVAL) 
WRITE 11,302)INVAL 

302 FORMATI8I5) 
IPT=INVALIl)*10+INVALI9) 
AA=INVAL(2)*10000.+INVALI3)*1000.+INVALI4)*100.+INVALI5)*10.+INVAL 

1(6)+INVALI7)*.1+INVALI8)*.01 
BB=INVALIIO)~(10000.+INVALI11)*1000.+INVALI12)*100.+INVAL(13)*10.+I 

1NVAL(14)+INVALI15)*.1+INVALI161*.Ol 
IFIIPT)300,300,1 
K=41-IPT 
IFIK)300,300,2 

2 AHL(K)=AA 
ALL( K) =BB 
WRITEI3'3)AHL,ALL 
CALL PTIMEITIME) 
WRITEI1,3)IPT,AA,BB,DAY,TIME 

3 FORMATI' OP-GUIDE PT'l3,' HIGH L1MIT'F10.2,' LOW LIIHT'F10.2,' DAY 
1'12,' TIME'F7.2) 

CALL INTEX 
300 WRITE 11,301) 
301 FORMATI' INVALID ENTRY OP-REQUEST PI') 

CALL INTEX 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

OAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
IBASEII~')=FE77 

IPERD(I*)=FE32 
INVAL( I )=0027-0018 

STATEMENT ALLOCATIONS 

CSWlll*)=FFFE 
JOBNII*)=FFF8 

OFFLNII*)=FFBF-FFBS 
IBASZII*)=FE76 
ITCNTII*)=FE31 

I II I ) =0028 

CSW211*)=FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
IBAZZII*)=FE75 
I PONT 1 I~() =FE30 

I PT 1 I )=0029 

CSW311*)=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*)=FF66-FF18 
GIR*)=FE72-FE54 

AA(R )=0006 
KII )=002A 

CSW4(I*)=FFFB CSW5II*)=FFFA 
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8 

AIR*)=FF16-FECS BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

BBIR )=0008 CTIMEIR )=OOOA 

555 =004A 302 =0040 3 =0050 301 =0071 =0132 2 =013C 300 =0168 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
CONVR PTIME INTEX 
MOWRT MOCOM MDAF 

REAL CONSTANTS 
.100000E 05=003A 

INTEGER CONSTANTS 

FAOD 
TYPEN 

FMPY 
EBPRT 

.100000E 04=003C 

1=0046 10=0047 41=0048 

FLO FSTO FSTOX 

.100000E 03=003E 

3=0049 

FLOAT MWRT MCDMP MIDA I MIOF MIDI SUBSC 

.100000E 02=0040 .100000E 00=0042 .100000E-01z0044 

Programming Techniques 257 



@ 

258 

Continued 

CORE REQUIREMENTS FOR COGLP 
COMMON 0 INSKEL COMMON 464 

END OF COMPILATION 

COGLP 
DUP FUNCTION COMPLETED 
*DELET I COGLP IDUM 
COGLP 
02~) NAM E NOT IN L/F 
*STORECIL I 1 COGLP COGLP COGLP 
*FILESI3,FILE3,1) 
*CCEND 

CLB, BUILD CDGLP 

CORE LOAD MAP 
TYPE NAME ARGl ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*F 10 TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0027 
*PNT TABLE 3F34 0004 
~'DF'T TABLE 3F38 0006 
MAIN COGLP 3FB9 
PNl COGLP 3F36 
LIE',F EBPRT 40A6 3FOC 
LIeF MWRT 4200 3FOF 
LIE,F MCOMP 4350 3F12 
CAl.L CONVR 4788 
L I E,F MIOAI 43A7 3F15 
LIEiF FADD 47DC 3F18 
LIeF MDWRT Lt9AD 3F1B 
LIEIF MDAF 4861 3FlE 
LIeF MDCOM 4924 3F21 
CAl.L PTIME 4BDA 
LIeF MIDI 4386 3F24 
LIEIF MIOF 4381 3F27 
CAl.L PRT 'tCOA 
LIEiF IOU 4C54 3F2A 
CAl.L IOFIX 4CEE 
CAl.L BllBT 4DIE 
CAl.L SAVE 'tC8A 
LIEiF SUBIN 4D82 3F2D 
CAl.L GETVL 4DE6 
LIBF FADDX 4706 3F30 
CAl.L BT2BT 4E82 
CORE 4EAO 315F 

CLEI, COGLP LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * INTERRUPT CORE LOAD 
II FOR CCLSP 
*LIST ALL 

VARIABLES 

9999 

1100 

** CHANGE OF CLOSED LOOP CONTROL SET POINT 

*IOCSITYPEWRITER) 

*IOCSIDISK) 
C 

58 PROGRAM 

C THIS CORE LOAD CHANGES THE SET POINT VALUE fOR A SET POINT 
C STATION UPON OPERATOR REQUEST. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLN(8) 
DIMENSION INVAL(16) 

308 

DIM ENS ION RAN G E ( 8 ) , A H L I 40 ) , ALL ( 40 ) , A I 4 a ) , BI 't 0 ) , L OW ( 8 ) ,G ( 16 ) , H ( 1 6 ) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZl,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 3(3,320,U,II) 
WRITEll,555) 



Iii' Continued 

~ 555 FORMATIIIl 
CALL CONVRIINVALI 
WRITEIl,lOO)INVAL 

100 FORMATI8I5) 
CALL PTIMEITIMEI 
1=INVALlll 
J=INVAL(7)*10+INVALI8) 
I F I I )300,300,1 
K=9-'1 
IFIK)300,300,2 

2 IFIJI300,300,3 
3 SETPTIK)=J*RANGEIK)/100.+LOWIKI 

WRlTEI3'2)SETPT 
WRITEll,411,J,DAY,TIME 

4 FORMATI' LOOP'13,' NEW SET POINT'14,' DAY'I2,' TIME'F7.2) 
CALL INTEX 

300 WRlTEll,3011 
301 FORMATI' INVALID ENTRY OP-REQUEST P2') 

CALL INTEX 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF 

DAYII*I=FFF9 
COUMTII*I=FFC7-FFCO 
IBASEII*)=FE77 
IPERDI 1'~)=FE32 

I I I )=OOlB 

STATEMENT ALLOCATIONS 

CSWI I I~~ )=FFFE 
JOBNII*I=FFF8 

OFFLNII*I=FFBF-FFB8 
IBASZII*I=FE76 
ITCNTIl~()=FE31 

JII I=OOlC 

CSW2 11*) =FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
I BAZZ 11* I =FE75 
IPONTI 1~<)=FE30 

KI I )=001D 

CSW3II*)=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*I=FF66-FF18 
GIR*)=FE72-FE54 

CTIME(R )=0006 

CSW4( U,)=FFFB CSW511*1=FFFA 
LOW(I*)=FFD7-FFDO SETPTII*I=FFCF-FFC8 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

INVALI I )=0019-000A II (I )=OOlA 

555 c0029 100 =002C 4 ~002F 301 =0047 =007F =0089 3 =0080 300 =OOBF 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
CONVR PTIME INTEX 
~UBSC MDWRT MDCOM 

REAL CONSTANTS 
.100000E 03=0022 

INTEGER CONSTANTS 

FADD 
MDAI 

FMPYX 
TYPEN 

FDIV 
EBPRT 

1=0024 10=0025 9=0026 3=0027 

CORE REQUIREMENTS FOR CCLSP 
COMMON 0 INSKEL COMMON 464 VARIABLES 

END OF COMPILATION 

CCLSP 
DUP FUNCTION COMPLETED 
*DELET I CCLSP IDUM 9999 
CCLSP 
D25 NAME NOT IN L/F 
*STORECIL I 1 CCLSP CCLSP CCLSP 1101 
*FILESI3,FILE3,1) 
*CCEND 

CLB, BUILD CCLSP 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TA~LE 3E82 OOOC 
*IBT TABLE 3E8E 001D 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TAI:ILE 3FOC 0027 
*PNT TABLE 3F34 0004 
*DFT TABLE 3F38 0006 
MAIN CCLSP 3F8F 
PNT CCLSP 3F36 
LIBF EBPRT 3FFE 3FOC 
LIBF MW'RT 4228 3FOF 
LIBF MCOMP 42B5 3F12 
CALL CONVR 46EO 
LIBF MIOAI 42FF 3F15 
CALL PTIME 4720 
LIBF FADD 4770 3F18 
LIBF MDWRT 4941 .3FIB 
LIBF MDAI 4802 3F1E 
LIBF MDCOM 48B8 3F21 

FSTO IFIX FLOAT ISTOX MWRT MCOMP M lOA I MIOF M 101 

2=0028 

34 PROGRAM 164 

Programming Techniques 259 



@ 

(~) 

260 

Continued 

LIBF MIDI 42DE 3F24 
LIBF MIOF 4209 3F27 
CA.LL PRT 4B62 
LIBF IOU 4BAC 3F2A 
CALL IOFIX 4C46 
CA.LL BTlBT 4C76 
CA.LL SAVE 4BE2 
LIBF SUBIN 4CDA 3F2D 
CALL GETVL 403E 
LIBF FADDX 476A 3F30 
CA,LL BT2BT 4DDA 
CORE 40F8 3207 

CLB, CCLSP LD XQ 

DUP FUNCTION COMPLETED 

II' JOB A 
II'. INTERRUPT CORE LOAD 
II' FOR MGRTP 
.LIST ALL .* MODIFY GRADE RUN TIME PROGRAM 
*IOCSITYPEWRITER) 
*WCSIDISK) 
C 
C THIS CORE LOAD CHANGES THE RUN TIME FOR A GRADE UPON OPERATOR 
C REQUEST. 
C 

INTEGER SWO,SW1,SW2,SW39SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8J,COUMTI8),OFFLNI8) 
DIMENSION INVAL(16) 
DIMENSION RANGE(8),AHLI401,ALLI40),AI40),BI40),LOWIS),GI16),HI16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,1 PONT 

DEFINE FILE 313,320,U,II) 
IrIRITEIl,555) 

555 FORMATIII) 
CALL CONVRIINVAL) 
IrIRITEI1,302IINVAL 

302 FORMAT( 815) 
IH=INVAL(5)*10+INVALI6) 
IM=INVAL(7)*10+INVALIS) 
IFI24-IHI300,300,20 

20 IFI60-IM)300,300,21 
21 CALL CLOCKII) 

K~IH*1000+IM*100/6 

IFIK-I1192,2 
IPER=24000-K+I 
GO TO 3 

2 jpER=K-I 
3 AA-IPER*3.6 

IFI32000.-AA)4,5,5 
4 WRITEI1,40) 

40 FORMATI' TOO LONG OF A RUN TIME') 
CALL INTEX 

5 IPER-AA 
IENDT-K 
WRITEI3'1)JOBN,DAY,IENDT,SW3 
TIME=IIH*100+IM)/100. 
WRITEIl,6lTIME 

6 FORMATI' JOB WILL NOW TERMINATE AT'F7.2) 
CALL COUNTI1,2,IPERI 
CALL INTEX 

300 WR ITE 11,3011 
301 FORMATI' INVALID ENTRY OP-REQUEST P3') 

CALL INTEX 
END 

VARIABLE ALLOCATIONS 
CSWOII*I=~~~F CSW1II*)=FFFE CSW2II*J-FFFD CSW3II*I=FFFC 

STATEMENT ALLOCATIONS 
555 -00l6 302 -0039 40 -003C 6 
4 =0008 5 -OODE 300 -OlOC 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CALLED SUBPROGRAMS 
CONVR CLOCK INTEX 
MIOF MDWRT MDCOM 

COUNT 
MOl 

FSUB 
TYPEN 

-004A 301 m005A 20 

FMPY 
EBPRT 

f'DIV FLO 

=0098 21 

FSTO IFIX 

CSW4 11* )=FFFB CSW51l*)=FFFA 

-009E =OOBA 2 =OOCA 

FLOAT LDFAC MWRT M':OMP MIOAI 



Continued 

REAL CONSTANTS 
.360000E 01=0026 .320000E 05"'0028 .100000E 03=002A 

INTEGER CONSTANTS 
1=002C 10=0020 24=002E 60=002F 

CORE REQUIREMENTS FOR MGRTP 
COMMON 0 INSKEL COMMON 464 VARIABLES 

END OF COMPILATION 

MGRTP 
DUP FUNCTION COMPLETED 
*STORECIL I 1 MGRTP MGRTP MGRTP 1102 
*FILESI3,FILE3,1) 
*CCEND 

CLB, BUILD MGRTP 

CORE LOAD MAP 
TYPE NAME ARGl ARG2 

*COW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TA8LE 3EBB 0051 
*VTV TABLE 3FOC 0027 
*PNT TABLE 3F34 0004 
*DFT TABLE 3F38 0006 
MAIN MGRTP 3FA2 
PNT MGRTP 3F36 
L1BF EBPRT 404A 3FOC 
L1BF MWRT 4274 3FOF 
L1BF MCOMP 4301 3F12 
CALL CONVR 472C 
L1BF MIOAI 434B 3F15 
L1BF FSUB 4774 3F18 
L1BF LDFAC 47FE 3FIB 
L1BF MOWRT 497F 3FIE 
L1BF MOl 4838 3F21 
L1BF MDCOM 48F6 3F24 
L1BF MIOF 4325 3F27 
CALL PRT 4BAO 
L1BF IOU 4BEA 3F2A 
CALL IOFIX 4C84 
CALL BTlBT 4CB4 
CALL SAVE 4C20 
L1BF SUBIN 4018 3F2D 
CALL GETVL 4D7C 
L1BF FADDX 477A 3F30 
CALL BT2BT 4E18 
CORE 4E36 31C9 

CLB, MGRTP LD XQ 

DUP FUNCTION COMPLETED 

@lIIJOBA 
, II * INTERRUPT CORE LOAD 
II FOR CPJSP 
*L1 ST ALL 
** CHANGE PROCESS JOB SEQUENCE 
*IOCSITYPEWRITER) 
*IOCSIDISK) 
C 

1000=0030 

38 PROGRAM 

100=0031 

236 

C THIS CORE LOAD CHANGES THE SEQUENCE OF GRADES UPON OPERATOR 
C REQUEST. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8) 
DIMENSION INVAL(16) 
DIMENSION RANGE(8),AHL(40),ALLI40),AI40),BI40),LOWIS),GI16),HI16) 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 313,320,U,II) 
WRITEI1,555) 

6=0032 24000=0033 3=0034 2=0035 

Programming Techniques 261 



® 

262 

Conl~inued 

5')5 FORMATI//) 
CALL CONVRCINVAL) 
WRITEI1,1)INVAL 
FORMAT!SI5) 
I=INVAL(7)*10+INVALIS) 
AA=INVALI41*10000.+INVAL(5)*1000.+INVALI6)*100.+1 
IFIAA)4,4,22 

22 IFI32000.-AA)300,300,2 
2 IFII}3,3,4 
3 I" 100 
4 JOBN=I 

WRITEI3'1)JOBN,DAY,IENDT,SW3 
CALL PTIMEITIME) 
I=AA 
WRITEIl,5)I,JOBN,DAY,TIME 
FORMATI' NEXT JOB'16,' QUEUE SEQUENCE'I4,' DAY'12,' 
CALL INTEX 

300 WRITEIl,3011 
301 FORMATI' INVALID ENTRY OP-REQUEST P4'} 

CALL INTEX 
END 

TIME'F7.2) 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF CSWlll*)=FFFE 

JOBNII*)=FFFS 
OFFLNIl*)=FFBF-FFB8 
IBASZII*)=FE76 
ITCNTII*)=FE31 

CSW2II4)=FFFD CSW3II*)=FFFC 
OAYII*)=FFF9 

COUMTII*)=FFC7-FFCO 
IB,~SEI I*)=FE77 
IPI:RDII*)=FE32 

IIII )=0020 

STATEMENT ALLOCATIONS 

III )=0021 

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFDS 
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF16 

IBAZZII*)=FE75 GIR*)=FE72-FE54 
IPONTII*)=FE30 AAIR )=0006 

CSW4II*)=FFFB CSW511*)=FFFA 
LOWII*}=FFD7-FFDO SETPTllu}=FFCF-FFC8 

AIR*}=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTlln)=FE33 

CTIMEIR )=0008 INVALC I )=OOIF-OOlO 

555 =0034 1 =0037 5 =003A 301 =0056 22 -OOAC =00B3 3 =00B7 4 =OOBB 300 =OOEl 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IDes 

CALLED SUBPROGRAMS 
CONVR PTIME INTEX 
MIDI MDWRT MDCOM 

REAL CONSTANTS 
.100000E 05=002S 

INTEGER CONSTANTS 

FADD 
MDI 

FSUB 
TYPEN 

.100000E 04=002A 

1=0030 10=0031 100=0032 

CORE REQUIREMENTS FOR CPJSP 

FMPY 
EBPRT 

FLCo FSTO 

.100000E 03 .. 002C 

3=0033 

IF IX FLOAT 

.320000E 05-002E 

COMMON 0 INSKEL COMMON 464 VARIABLES 40 PROGRAM 192 

END OF COMPILATION 

CPJSP 
DUP FUNCTION COMPLETED 
*DELET I CPJSP IDUM 9999 
CPJSP 
D25, NAME NOT IN LlF 
*STORECIL I 1 CPJSP CPJSP CPJSP 1103 
*FILESI3,FILE3,1) 
*CCENO 

CLB, , BUILD CPJSP 

COR,E LOAD MAP 
TYPE NAME ARGI ARG2 

*CClW TABLE 3E82 OOOC 
*I8T TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0020 
*PNT TABLE 3F3A 0004 
*Of:T TABLE 3F3E 0006 
MAIN CPJSP 3FA4 
PNT CPJSP 3F3C 
LIBF EBPRT 4026 3FOC 
LIBF MWRT 4250 3FOF 
LIEiF MCOMP 4200 3F12 
CALL CONVR 4708 
LIBF MIOAI 4327 3F15 
LIEIF FADD 475C 3FlS 
LIBF LDFAC 47DA 3FlB 
LIEIF FSUB 4750 3FIE 

LDFAC MWRT MCOMP MID/I I MIOF 



® 

@ 

Continued 

L1BF MoWRT 495B 3F21 
L1BF MOl 4814 3F24 
L1BF MoCOM 4802 3F27 
CALL PTIME 4B88 
L1BF MIDI 4306 3F2A 
L1BF MIOF 4301 3F2o 
CALL PRT 4BB8 
LIBF IOU 4C02 3F30 
CALL IDF IX 4C9C 
CALL BTiBT 4CCC 
CALL SAVE 4C38 
L1BF SUBIN 4030 3F33 
CALL GETVL 4094 
LIBF FAooX 4756 3F36 
CALL BT2BT 4E30 
CORE 4E4E 31B1 

CLB, CPJSP LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * INTERRUPT CORE LOAD 
II FOR STRND 
*LIST All 
** START TREND LOG ROUTINE 
*IOCSITYPEWRITER) 
C 
C THIS CORE LOAD INITIATES A TREND LOG OF THE POINT SPECIFIED BY 
C THE OPERATOR. 
C 

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,oAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLN~~) 
DIMENSION INVAL(16) 
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LoWI8),GI16),HI16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,8,IBASE,IBASZ,IBAZZ,G,H,IENoT,IPERD,ITCNT 
2,I PONT 

WRITEl1,555) 
555 FORMAT II II 

CALL CONVRIINVAL) 
WRITEl1,1)INVAL 
FORMATISI5) 
II=INVAL(6)*100+INVALI7)*10+INVALIS) 
JJ=INVAL(14)*100+INVALI15)*10+INVALI16) 
IF I INVAL 11') 300, 2, 100 
I=INVAL(2)*10+INVALI3) 
I F I I ) 300,300,3 

3 J=I-1 
IFI40-J)300,300,4 

4 IPONT=J 
WRITEl1,5)I,II,JJ 
FORMAT II TREND LOG OP-GUIDE POINTII3,1 PERIOoI15,1 
GO TO 200 

100 IFIINVALI1'-l,300,101,300 
101 IFIINVAL13"300,300,102 
102 IFIINVALI3'-8)103,103,300 
103 IPONT =4095+INVAL(3) 

WRITEl1,104)INVALI3',II,JJ 
104 FORMAT I I TREND LOG LOOP'12,1 PERIOD'I6,1 
200 IPERD=II 

ITCNT=JJ 
CALL COUNTI2,3,2) 
CALL INTEX 

300 WRITEIl,30l) 
301 FORMAT I I INVALID ENTRY OP-REQUEST P5 1) 

CALL INTEX 
END 

COUNT 116) 

COUNT 115) 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF CSW111*)=FFFE 

JOBNII*)=FFF8 
OFFLNII*)=FFBF-FFB8 
IBASZII*'=FE76 
ITCNTII*)=FE31 

CSW2 11*' =FFFO CSW3 11*) =FFFC 
DAYII*)=FFF9 

COUMTII*)=FFC7-FFCO 
IBASEII*)=FE77 
IPEROII*)=FE32 

STATEMENT ALLOCATIONS 

VALUEI I*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8 
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18 

IBAZZII*)=FE75 G(R*)=FE72-FE54 
IPONTII*)=FE30 INVAl( I )=0011-0002 

CSW4II*)=FFFB CSW5II*'=FFF~ 
LOWII*'=FF07-FFDO SETPTII*)=FFtF-FFCS 

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII*)=FE33 

I 1 I I ) = 00 12 J J I I ) = 0 0 13 

555 =0026 1 =0029 5 =002C 104 =0049 301 =0061 =00B7 3 =00C8 4 =0004 100 =00E4 101 =OOEC 
102 =OOF2 103 =OOFA 200 =010E 300 =0110 

Programming Techniques 263 



@ Cont.inued 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

@ 

264 

IOCS 

CALLED SUBPROGRAMS 
CONVR COUNT INTEX MWRT MCOMP MIOAI M J(JI X MIOI TYPEN 

INTEGER CONSTANTS 
l=OOlE 100=001F 10=0020 40=0021 8=0022 4095=0023 

CORE REQUIREMENTS FOR STRND 
COMMON 0 INSKEL COMMON 464 VARIABLES 30 PROGRAM 262 

END OF COMPILATION 

STRND 
DUP FUNCTION COMPLETED 
*DELET I STRND IDUM 9999 
STRND 
025 NAME NOT IN L/F 
*STORECIL I 1 STRND STRND 1104 
*CCEND 

CLB, BUILD STRND 

CORE LOAD MAP 
rYPE NAME ARG1 ARG2 

*CDW TABl.E 3E82 OOOC 
¢lIBT TABLE 3E8E 0010 
*FID TABLE 3EAB 0010 
*ETIJ' TABLE 3EBB 0051 
*VTV TABLE 3FOC 001B 
*PNT TABLE 3F28 0004 
MAIN STRND 3F9D 
PNT STRNO 3F2A 
LIBF EBPRT 4050 3FOC 
LIBF MWRT 427A 3FOF 
LIBF MCOMP 4307 3F12 
CALL CONVR 4732 
LIBF: MIOAI 4351 3F15 
LIBF' MIOI 4330 3F18 
LIBf' MIOIX 433C 3F1B 
CAl.l. PRT 4766 
LIBF IOU 47BO 3F1E 
CALl. IOFIX 484A 
CALL. BTlBT 487A 
CALl. SAVE 47E6 
LIBF SUBIN 480E 3F21 
CALl. GETVL 4942 
LIBF: FADDX 49F8 3F24 
CORE: 4A7E 3581 

CLB" STRNO LD XQ 

DUP FUNCTION COMPLETED 

II .JOB A 
/I I:OR A I MON 
*LIST ALL 
** ANALOG INPUT LOG ROUTINE 
*IOCS(TYPEWRITERI 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS CORE LOAD LOGS ALL INFORMATION ABOUT ANY ANALOG INPUT POINT 
ON THE SYSTEM UPON OPERATOR REQUEST. 

POINTS ARE SELECTED AS FOLLOWS -­
OP-GUIDE POINTS - 01=0, 07-8=01-40 
CLOSED-LOOP POINTS - 01=1, 07-8=01-08 

INTEGER SWO,SW1,SW2,SW3,5W4,SW5,DAY 
INTEGER VALUEI151,SETPTI81,COUMTI81,OFFLN(8) 
DIMENSION INVALI161 
DIMENSION RANGEI81,AHL(40),ALLI40),AI40),BI40),LOWI8),GI16),HI16) 
COMMON/INSKEL/SWO,5Wl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IRA5Z,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

EBPRT 

2=0024 3=0025 



@ Continued 

WRITEIl,555) 
555 FORMATU/l 

C 
C READ DATA ENTRY DIALS 
C 

C 

CALL CONVRIINVAL) 
WRITEl1,900)INVAL 

900 FORMAT ISI5) 

C CONVERT POINT DESIGNATION, D7-S 
C 

IX1 = INVALI71*10 + INVALIS) 
C 
C MUST BE GREATER THAN 0 
C 

IFIIX1)SOO,SOO,10 
C 
C CHECK D1 
C 

10 IFIINVALI11-1)20,500,800 
C 
C CHECK INPUT OP-GUIDE POINT DESIGNATION 
C 

20 IFIIXl-40)30,30,SOO 
C 
C READ OP-GUIDE POINT 
C 

C 
C 
C 

C 
C 
C 

30 

35 

40 

IX2 = IX1-1 
CALL AlP IIlOOO,VALUEIl),IX2) 
CAll AlP 10,IX2) 
GO TO 135,401, IX2 

CONVERT VALUE SELECTED 

IX2 = 4l-IXl 
VAL = AIIX21*VALUElll 

PRINT TIME AND HEADER 

CALL PTIMEITIMEI 
WRITE 11,920)DAY,TIME 

+ B I I X2 I 

920 FORMAT II' DAY'I2,' TIME'F7.2) 
WRITE 11,930) 

930 FORMAT I' OP-GUIDE POINT VALUE HIGH LIMIT LOW LIMIT FAC 
-TOR A FACTOR B'l 

WRITE Il,940)IX1,VAL,AHLIIX2),ALLIIX2),AIIX21,BIIX2) 
CALL INTEX 

940 FORMAT 17X,I2,4X,FIO.2,lX,FIO.2,2X,F10.2,5X,E13.6,3X,E13.6) 
C 
C CLOSED-LOOP POINT, CHECK LIMIT ON DESIGNATION 
C 

500 IFIIX1-SI510,510,SOO 
510 IX2 = IXl+4095 

CALL AlP 101000,VALUEIll,IX2) 
520 CALL AlP 10,IX2) 

GO TO 1520,5301,IX2 
C 
C CONVERT SETPT FOR OUTPUT 
C 

530 IX2 = 9-IXl 
VALUElll = IVALUEIl)-LOWIIX2»*100./RANGEIIX21 
IAL = ISETPTIIX21-LOWIIX211*100./RANGE IIX21 

C 
C PRINT DAY, TIME, AND HEADER 
C 

C 

CALL PTIMEITIMEI 
WRITE Il,9201DAY,TIME 
WRITE 11,950) 

950 FORMAT I' CLOSED-LOOP POINT 
RANGE LOW'I 

C WRITE VALUES 
C 

VALUE SETPT OFFLN 

WRITE 11,9601IX1,VALUEl11,IAL,OFFLNIIX21,RANGEIIX21,LOWIIX21 
CAll INTEX 

960 FORMAT ISX,I2,7X,IS,5X,16,10X,12,7X,F10.2,4X,I61 
SOO WRITE 11,S101 

CALL INTEX 
810 FORMATI' INVALID ENTRY OP-REQUEST P6'1 

END 
VARIABLE ALLOCATIONS 

CSWOII*I=FFFF CSWIII*I=FFFE 
DAYII*I=FFF9 JOBNII*I=FFF8 

COUMTII*I=FFC7-FFCO OFFLNII*I=FFBF-FFBS 
IBASEII*I=FE77 IBASZII*I=FE76 

CSW2II*I=FFFD CSW3II*I=FFFC 
VALUEII*I=FFF7-FFE9 RANGEIR*I=FFE6-FFD8 

AHLIR*I=FFB6-FF68 ALLIR*)=FF66-FF1S 
I8AZZII*I=FE75 GIR*I=FE72-FE54 

CSW4II*I=FFFB CSW5(I*I=FFFA 
LOWII*I=FFD7-FFDO SETPTII*I=FFCF-FFC8 

AIR*I=FF16-FEC8 BIR*I=FEC6-FE78 
HIR*I=FE52-FE34 IENDTII*I=FE33 

Programming Techniques 265 



@ ContInued 

STATEMENT ALLOCATIONS 
555 =0028 900 =002B 920 =002E 930 =0039 940 =0062 950 =006F 960 =0097 810 =00A4 10 =0003 ;20 

266 

30 =00E3 35 =00F5 40 =OOFF 500 =013E 510 =0144 520 =0156 530 =0160 800 =OlBB 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
lOCS 

CALLED SUBPROGRAMS 
CONVR AlP PTIME 
MIOAI MIOFX MIOIX 

REAL CONSTANTS 
.100000E 03=001C 

INTEGER CONSTANTS 

INTEX 
MIOF 

FADDX 
MIDI 

FMPY 
SUBSC 

l=OOlE 10=001F 40=0020 11000=0021 

CORE REQUIREMENTS FOR AlMON 
CO,.,IMON 0 INSKEL COMMON 464 VARIA8LES 

END OF COMPILATION 

AlMON 
DUP FUNCTION COMPLETED 
':'DELET I AlMON IDUM 9999 
AlMON 
D25 NAME NOT IN L/F 
*STORECIL 1 AlMON AlMON 1105 
*CCEND 

CLB, BUILD AlMON 

CORE LOAD MAP 
TYPE NAME ARGl ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0027 
*PNT TABLE 3F34 0004 
MAIN AlMON 3FEC 
PNT AlMON 3F36 
LI BF EBPRT 40FA 3FOC 
LIBF MWRT 4324 3FOF 
LIBF MCOMP 43B1 3F12 
CALL CONVR 47DC 
LIBF MlOAI 43FB 3F15 
CALL AlP 4810 
LIBF F.ADDX 4856 3F18 
CALL PTIME 48E6 
LIBF MIDI 43DA 3F1B 
LIBF MIOF 43D5 3F1E 
LIBF MIOFX 43El 3F21 
LIBF MIDIX 43E6 3F24 
CALL PRT 4916 
LIBF IOU 4960 3F27 
CALL lOF IX 49FA 
CALL BTlBT 4A2A 
CALL SAVE 4996 
LIBF SUBIN 4A8E 3F2A 
CALL GETVL 4AF2 
LIBF AIPTN 4B8E 3F2D 
LIBF FADD 485C 3F30 
CORE 4C12 33ED 

CLB, AlMON LD XQ 

DUP FUNCTION COMPLETED 

FDIIIX 
TYPEN 

FLDX 
EBPRT 

0=0022 

FSTO 

41=0023 

~8 PROGRAM 422 

IF IX FLOAT COMGD 

8=0024 4095=0025 

ISTOX MWRT 

1000=0026 

=OODD 

MCOMP 

9=0027 



® II JOB 
II DUP 
*DUMPLET 

LET 

PACK LABEL 
00000 

.DCOM 0010 

.ASM 0300 
CLOCK 0002 
DMPST 
MASK 0003 
SAVMK 0003 
CONHX 0006 
ESUBX 
EABS 
EDVRX 
ESTOX 
ESIN 
ETANH 
FSBRX 
FATN OOOC 
FAXI 0006 
FDVR 
FSTO 
FMPYX 
FSQRT 
FEXP 
XMD 0005 
E8PA 0006 
PAPHL 0014 
DATSW 0004 
ISIGN 0003 
MOFIO 0023 
MOl 
MREO 
MIOIX 
MEIF 
MEARX 
SAVE OOOA 
SUBIN 0005 
UFIO 001C 
UIOAF 
PAPTN 0010 
AIRN OOOD 
lOPE 0009 
GAGED 0003 
VS 
PIC 
CO 
BT2BT 0003 
SCALE 0002 
WCHRI 
VCHRI 
PLOTS 

FLET 

PACK LABEL 
00000 

A 

0000 
05EO 
15DB 

1614 
1635 
1652 

16E4 
16F9 

177B 
1798 
17DC 
1813 
182D 
1837 

18E4 
18F8 
190B 

194A 
1992 
19E6 
19F8 

1A49 
lA63 

9DUMY OOAO 05AO 

LET 

PACK LABEL 
11111 

.LET 0080 
SPECL 
QUE15 0002 
IADDR 0002 
• E 1180 

0000 

0159 
0175 
0180 

• ,.1BT 0020 0010 
.FOR 0680 08EO 
COUNT 0004 15DD 
DPART 0002 1608 
OPMUN 0002 1617 
SETCL 0003 1638 
TRPRT 0007 1658 
ESBR 
EAXB 0006 1681 
EDIV 
ELN OOOB 169D 
ECOSN 
ETRTN 0004 16C6 
FAOD 
FATAN 
FAXIX 
FDVRX 
FSTOX 
FSINE OOOB 1742 
FTNH 0006 1754 
lABS 0003 1767 
XMDS 0004 1780 
EBPRT OOOA 179E 
PAPPR 0011 17FO 
OVCHK 0002 1817 
ISTOX 0003 1830 
MDAF 
MOIX 
MWRT 
MIDF 
MIAR OOOE 18C9 
OVEI{F 0002 18D7 
10FIX 
SUBSC 0004 1900 
URED 
UIOFX 
MAGT 0020 195A 
ANINT 0014 199F 
OUSLY 
UNGAG 
DI 
CSX 0004 1A2F 
DO 
FCHAR 0005 1A4C 
EGRID 0008 1A65 
FRULE 0009 1A9D 
ERULE OOOB 1ACB 
• TEMP 1AEO 1BOO 

.E OOAO 05AO 

SYDIR 009E 
BACK 
TCONT 0003 
ISBAD 0002 

0080 

015B 
0177 

.SKSB 0020 

.SIM 05FO 
DMP 0017 
ENDTS 0002 
lOR 0002 
TIMER 0006 
FLIP 0007 
ESBRX 
EAX8X 
EDIVX 
EALOG 
ECOS 
ETNTR 
FSUB 
FAVL 0003 
FBTD 001A 
FIXIX 0005 
FLN 0008 
FSIN 
FTANH 
IFIX 0004 
XSQR 0004 
HOLEB 0012 
PRT 0005 
ESIGN 0005 
LOFAC 0004 
MOAI 
MORED 
MCOMP 
MIDI 
MIARX 
PAUSE 0002 
SL ITE 0006 
TSTOP 0002 
UWRT 
UIOIX 
AIPTN 0009 
DINP 0013 
ETS 
AlP 0004 
PI 
VSX 
PO 
SCALF 0002 
EPLOT 0005 
FMOVE 
EMOVE 
.E 5AOO 

OUTTR 
EACLK 
TABRT 0002 
CES'ET 0002 

0030 
OF60 
15E1 
160A 
1619 
163B 
165F 

16FO 
16FF 
1721 
172F 

176A 
1784 
17A8 
1801 
1819 
1833 

18D9 
18EE 
1904 

197A 
19B3 

19FB 

1A51 
lA6D 

1BOO 

015E 
0179 

.SUP OOBO 

.LET 0080 
DMPHX 
IEOR 0002 
QIFON OOOA 
UNMK 0005 
EADD 0008 
EATN OOOD 
EAXI 0006 
ELO 0009 
EMPY 0004 
ESQR 0007 
EXPN 0008 
FADDX 
FABS 
FDTB 
FIXI 
FALOG 
FCOSN 
FTRTN 0004 
NORM 0004 
BINDC 0006 
HOLPR OOOD 
ADRCK 0007 
FCTST 0003 
STFAC 
MOCOM 
MDWRT 
M lOAF 
MGOTO OOOE 
MFAR 
REWND 0009 
SL ITT 
TSTRT 0002 
UIOI 
UCOMP 
AIPN 
DIEXP 0006 
XSAVE 0009 
AIS OOOD 
CSC OOOA 
DIX 
QlERQ 0002 
FGRID 0007 
POINT 0007 
FINC 
EINC 

CHAIN 
SCHEO 0014 
GETVL OOOB 
ABORT 0002 

0050 
1550 

160C 
161B 
1641 
1666 
1671 
1687 
1694 
16A8 
16B9 
16CA 

175A 
176E 
1788 
178A 
1806 
181E 

18BB 

18D8 

1906 

19C6 
19EF 
19FF 
1A25 

1A3A 
1A53 
1A72 

OIlE 
0160 
017B 

.CLB OOAO 
lAND 0002 
DMPDC 
LD 0002 
QUEUE OOOC 
UNQ 0005 
ESUB 
EATAN 
EAXIX 
ELOX 
EMPYX 
ESQRT 
EEXP 
FSUBX 
FAXB 0006 
FDIV 0008 
FLD 0009 
FLOAT 0003 
FCOS 
FTNTR 
SNR 0003 
BINHX 0004 
HXBIN 0005 
COMGO 0006 
FSIGN 0005 
SBFAC 
MDF 
MOFND 0008 
MIOAI 
MFIF 
MFARX 
BCKSP 
SSWTC 0004 
TTEST 0003 
UIOF 
PLOTX 0000 
AISQN OOOF 
DICMP 0007 
XEXIT 
AIR 0011 
VSC 
PIX 
QlOI0 0006 
FPLOT 0004 
FCHRX 0024 
ECHRX 0025 
XYPLT 0007 

INTEX 
LEV10 0024 
CONVR 0005 
ENDGD 0002 

0100 
1500 

160E 
1625 
1646 

16F3 
1719 
1726 
173A 

1772 
178E 
17C7 
180D 
1821 

185A 

18F4 
1908 

1927 
1983 
19CC 

1AOC 

1A3C 
1A5A 
1A79 
1AA6 
1A06 

0132 
016B 
0170 

.DUP 0440 
CLEAR 0009 
DMPS oalO 
LEVEL 0004 
RESMK 0004 
VIAQ 0007 
EADDX 
EAVL 0003 
EDVR 0007 
ESTO 
ESINE OOOD 
ETNH 0006 
FS8R OOOB 
FARC 0004 
FAX8X 
FDIVX 
FLDX 
FMPY 0005 
FSQR 0007 
FXPN 0009 
XDD 0006 
DC81N 0006 
PAPE8 0010 
COMG1 
IOU 0007 
DVFAC 
MDFX 
MFIO 0059 
MIOFX 
MI IF 
~EAR 
EOF 
STOP 0003 
TSET 
UIOAI 
CARON 0016 
AISN 
DAOP 0013 
XLOAO 
CS 0008 
DIC 
OAC 0007 
BTlBT 0007 
ECHAR 0005 
FCHRI 
ECHRI 
PLOTI 0003 

SHARE 
SOUT 0003 
PTIME 0005 
.TEMP 017F 

01AO 
1502 
15F8 
1610 
1631 
164B 

167E 
1680 

16AC 
16CO 
1605 
16EO 

1730 
174D 
175E 
1775 
1792 
17CC 

1826 

1862 

18F8 

1934 

1903 

lAID 

1A33 
1A42 
1A5E 

1ADD 

0156 
0170 
0180 

Programming Techniques 267 



® 

® 

268 

Continued 

FLET 

PACK LABEL 
lll.ll 

• PR~IS 0051 1118 .FIOS OOOF 1169 .MESS 
INPSV 4180 12C3 FILEI 0002 12F8 FILE2 
RSTAR OF8C 1367 COLDP 10CE 1374 CEINT 
GRADE 116A 138E SCAN2 OC2E 939C LOG15 
TR,ENO OB7A L3CC COGLP 101E 1306 CCLSP 
AlMON 0090 1414 9DUMY 0159 141F ISPSV 
ICLST 0780 163A .E 0280 12F8 

DUP FUNCTION COMPLETeD 

II .JOB A 
II END OF ALL JOBS 

I I .JOB A 
II * NONPROCESS CORE LOAD 
II * SPECIAL JOB TO SET UP FILES ON DISK 
II FOR SPECL 
oUST ALL 
** SPECIAL PROGRAM TO SET UP FILES ON DISK 
*IOCSIDISK,1443 PRINTER) 
*NONPROCESS PROGRAM 
*ONE WORD INTEGERS 
C 

00A3 1178 IEPDM 
0064 12FA FILE3 
OA26 1382 DUM 
005E 13A6 LOG60 
OF76 13E3 MGRTP 
4180 1578 IPRSV 

C THIS IS A SPECIAL ONE TIME ONLY CORE LOAD TO SET UP THE JOB 
C FILES ON DISK FOR TEST PURPOSES. 
C 

INTEGER SWO,SW1,SWZ,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8) 

7FFF 
0003 
012C 
OAEO 
OFB4 
4180 

DIM ENS I ON RAN G E ( 8 ) , A H l! 40 ) , ALL ( 40 ) , A ( 4 0) , B I 40 ) , L OW (8 I , G ( 16 ) , H ( 16 I 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOUN,VALUE,RANGE,LOW,SET 

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,r PONT 

DEFINE FILE 1(2,320,U,II) 
DEFINE FILE 2(100,320,U,J05NI 
DO 10 J=1,40 
AHl!J)=32000. 
ALL(JI=-32000. 
A(J)=-I. 

10 BIJ)=O. 
DO 11 J=l,8 
RANGEIJ)=-32000. 

11 LOW (J I =0 
WRITE(1 ' 1IRANGE,LOW,A,B 
DO 12 J=4d1 
K=:40-J 
AHL(KI=?? 

12 ALLIKI=4.S 
KK=O 
K=20 
IT IME=20':'60 
IX=-l 
DO 13 J=l,8 

13 SETPT(JI=O 
JOBN=l 
DO 100 J=1,100 
SETPT(1)=50+IX*20 
SETPT(2)=50-IX*20 
IX=IX*(-ll 
WRITE(2 ' JOBNIJ,ITIME,SETPT,AHL,ALL 
WRITE(3,14IJ,KK,K 

14 FORMAT(8IS) 
WRITE(3,14)SETPT(8I,SETPT(71,SETPT(6),SETPT(51,SETPT(4I,SETPT(3),S 

1ETPT(2I,SETPT(11 
OD 20 16=1,39,2 
IC=41-1El 
ID=IEl+1 

20 CONTINUe 
15 FORMAT(2(I10,2FI0.2» 

).00 CONTINUE 
CALL EX IT 
END 

12lB IEPSV 0780 1282 IINSV 48FF 1288 
135E COLON 05DC 1361 COLDS 0006 1366 
138B IDUM 0094 138C CDUM 013A 9380 
1361 SHIFT OAEO 13BA \~E-EK OADC 13C3 
13FO CPJSP OFCC l3FD STRND OBFC 140A 
15AD .SKEL 0036 15E2 .EPRG 0022 1618 



Ii" Continued 

~ VARIABLE ALLUCATIONS 
CSWOII*)=FFFF 

DAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
IBASEII*)=FE77 
I PERD I He) =FE32 

KKII )=OOOF 

CSWlll*)=FFFE 
JOBNII*)=FFF8 

OFFLNII*)=FFBF-FFB8 
IBASZII*)=FE76 
ITCNTII*)=FE31 
ITIM~II )=0010 

UNREFERENCED STATEMENTS 
15 

STATEMENT ALLOCATIONS 
14 =0036 15 =0039 10 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD INTEGERS 
IDCS 

CALLED SUBPROGRAMS 

=005A 11 

FLO FSTOX ISTOX STFAC SBFAC 
MOl PRNTN EBPRT 

REAL CONSTANTS 
.320000E 05=001E .100000E 01=0020 

INTEGER CONSTANTS 
1=0028 40=0029 
2=0032 3=0033 

CORE REQUIREMENTS FOR SPECL 

8=002A 
39=0034 

CSW211*)=FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
IBAZZI I>~)=FE75 
I PONT 11*) =FE30 

IXII )=0011 

CSW311*)=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*)=FF66-FF18 
GIR*)=FE72-FE54 

I I I I ) =OOOC 
IBII )=0012 

CSW4 11*) =FF FB 
LOWII*)=FFD7-FFOO 

AIR*)=FF16-FEC8 
HIR*)=FE52-FE34 
JII )=0000 

ICII )=0013 

CSW5(1*)=FFFA 
SETPT(I*)=FFCF-FFC8 

B(R*)=FEC6-FE78 
IENDT( 1*)=FE33 

K( I )=OOOE 
ID( I )=0014 

=0077 12 =OOAC 13 =0003 20 =015C 100 =0166 

MWRT MCOMP M IOIX 

.OOOOOOE 00=0022 

0=002B 
41=0035 

4=002C 

M 101 SUBSC SNR MDWRT MDCOM MDAI MOAF 

.550000E 01=0024 .450000E 01=0026 

11=0020 20=002E 60=002F 100=0030 50=0031 

COMMON 0 INSKEL COMMON 464 VARIABLES 30 PROGRAM 340 

END OF COMPILATION 

SPECL 
DUP FUNCTION COMPLETED 
II XEQ SPECL L 
*FILESll,FILE1,1) 
*FILESI2,FILE2,1) 
*CCEND 

CLB, BUILD SPECL 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

~,<CDW TABLE 3E82 OOOC 
~(I B T TABLE 3E8E 0010 
*F IO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 002A 
*PNT TABLE 3F36 0004 
*DFT TABLE 3F3A OOOC 
MAIN SPECL 3F79 
PNT SPECL 3F38 
LI BF EBPRT 40AC 3FOC 
LIBF SNR 414C 3FOF 
LIBF MOWRT 42B7 3F12 
LIBF MDAF 41613 3F15 
LIBF MDAI 4178 3F18 
LIBF MDCOM 422E 3FIB 
LI BF STFAC 44EE 3FIE 
LIBF SBFAC 44F2 3F21 
L.I B F MOl 4170 3F24 
LIBF MWRT 4690 3F27 
LIBF MIDI 4746 3F2A 
LIBF MCOMP 4710 3F2D 
LIBF MIDIX 4752 3F30 
CALL PRT 4B42 
CALL BT2BT 4B8C 
CALL SAVE 4BA8 
CALL IDF IX 4COC 
LH3F IOU 4C3C 3F33 
CALL BTlBT 4C72 
CORE 4CD8 3328 

CLB, SPECL LD XQ 

Programming Techniques 269 



@ Contil,ued 

1 0 20 

270 

0 0 0 0 0 
2 0 20 
0 0 0 0 0 
3 0 20 
0 0 0 0 0 
4 0 20 
0 0 0 0 0 
5 0 20 
0 0 0 0 0 
6 0 20 
0 0 0 0 0 

'"---{' 

r---.f--
95 0 20 

0 0 0 0 0 
96 0 20 

0 0 0 0 0 
97 0 20 

0 0 0 0 0 
98 0 20 

0 0 0 0 0 
99 0 20 

0 0 0 0 0 
100 0 20 

0 0 0 0 0 

1/ JOB A 
II * NON PROCESS CORE LOAD 
II FOR SCALB 
*LlST ALL 

0 70 30 

0 30 70 

0 70 30 

0 30 70 

0 70 30 

0 30 70 

t----..J 
I'-~ 

0 70 30 

0 30 70 

0 70 30 

0 30 70 

0 70 30 

0 30 70 

** CALIBRATION PROGRAM FOR SET POINT STATIONS 
*IOCSIDISK,1443 PRINTER,CARD) 
*NONPROCESS PROGRAM 
*ONE WORD INTEGERS 
C 
C THIS NONPROCESS CORE LOAD IS FOR CALIBRATING THE SET POINT 
C STATIONS. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8l,COUMTI8),OFFLNI8) 
DIMENSION RANGE(8),AHLI401,ALLI40),AI40),B(40),LOWI8),GI16),HI161 
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,IPONT 

DEFINE FILE 112,320,U,II) 
100 READI2,l)I 

1 FORMATIIlI 
IF I I) 100, 100,2 

2 J=9-1 
K=4095+I 
IFIJll00,100,3 

3 WRlTEI3,4)I 
4 FORMATI' SET LOOP'I2,' TO LOW VALUE') 

PAUSE 
CALL AIPIIIOOO,IL,K) 
CALL AIPIO.II) 
GO TO 15,6},II 

6 WRITEI3,999)IL 
WRITEI3,7) 

7 FORMATI' NOW SET IT TO HIGH VALUE') 
PAUSE 
CALL AIPIIIOOO,IH,K) 

8 CALL AlPIO,!I) 
GO TO (8,9), I I 

9 RANGEIJI=IH-IL 
WR I TE I 3,9991 I H 

999 FORMAT(' VALUE IS'IlO) 
LOWIJ)=IL 
WRITEIl'l)RANGE,LOW,A,B 
GO TO 100 
END 

VARIABLE ALLOCATIONS 
CSWOII*)=FFFF CSWlI I*)=FFFE 

JOBNII*I=FFF8 
OFFLNII*I=FFBF-FFB8 
IBASZII*l=FE76 
!TCNT! I~q=FE31 

CSW2II*)=FFFD 
VALUEII*)=FFF7-FFE9 

AHLIR*)=FFB6-FF68 
I BAZZ 11*) =FE75 
IPONTII*)=FE30 

CSW311*I=FFFC 
RANGEIR*)=FFE6-FFD8 

ALLIR*)=FF66-FF18 
G I R*) =FE72-FE54 

1111 1=0006 

DAYII*)=FFF9 
COUMTII*)=FFC7-FFCO 
IB/~SEI I'~I=FE77 
IPERDII*)=FE32 

K I I ) =0009 ILiI )=OOOA IHU )=OOOB 

CSW4II*)-FFFB CSW5II~)=FFFA 
LOWII*)=FFD7-FFDO SETPTII~)=FFCF-FFC8 

AIR*I=FF16-FEC8 BIR~)=FEC6-FE78 
HIR*)=FE52-FE34 IENDTII~)=FE33 
III )=0007 JII 1=0008 



'4i' Continued 

~ STATEMENT ALLOCATIONS 
1 =0017 4 =0019 7 =0029 999 =0038 100 =0040 2 

® 

9 =OOAC 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD INTEGERS 
IDCS 

CALLED SUBPROGRAMS 
AlP FSTOX FLOAT 
HOLEB PRNTN EBPRT 

INTEGER CONSTANTS 

COMGO 
CARON 

ISTOX MRED MWRT MCOMP 

2=000E 9=000F 4095=0010 3=0011 11000=0012 

CORE REQUIREMENTS FOR SCALB 
COMMON 0 INSKEL COMMON 464 VARIABLES 

END OF COMPILATION 

SCALB 
DUP FUNC T IDN COMPLETED 
II DUP 
*STORECIL 1 SCALB SCALB 
*FILES(1,FILE1,11 
*CCEND 

CLB, BUILD SCALB 

CORE LOAD MAP 
TYPE NAME ARG1 ARG2 

*CDW TABLE 3E82 OOOC 
*IBT TABLE 3E8E 0010 
*FlO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0027 
*PNT TABLE 3F34 0004 
*DFT TABLE 3F38 0006 
MAIN SCALB 3F78 
PNT SCALB 3F36 
L1BF HOLEB 3FF2 3FOC 
L1BF EBPRT 4114 3FOF 
L1BF MRED 432B 3F12 
L1BF MIDI 43F4 3F15 
L1BF MCOMP 43CB 3F18 
L1BF MWRT 433E 3F1B 
L1BF PAUSE 47FO 3F1E 
CALL AlP 4804 
L1BF MDWRT 4983 3F21 
L1BF MDAF 4837 3F24 
L1BF MDAI 4844 3F27 
L1BF MDCOM 48FA 3F2A 
CALL PRT 4BA4 
L1BF IOU 4BEE 3F2D 
CALL IOFIX 4C88 
CALL BTlBT 4CB8 
CALL SAVE 4C24 
L1BF AIPTN 4D1C 3F30 
CALL BT2BT 4D9E 
CORE 4DBC 3244 

CLB, SCALB LD XQ 

DUP FUNCTION COMPLETED 

I I JOB A 
II * DATA CARDS FOR CALIBRATING LOOPS 7 AND 8 
II XEQ SCALB FX 

SET LOOP 7 
VALUE IS 
NOW SET IT 
VALUE IS 
SET LOOP 8 
VALUE IS 
NOW SET IT 
VALUE IS 

TO LOW VALUE 
-202 

TO HIGH VALUE 
-31218 

TO LOW VALUE 
-644 

TO HIGH VALUE 
-31522 

14 PROGRAM 

=004A =005A 5 = 006 7 6 =0071 8 =0082 

MIDI SUBSC PAUSE MDWRT MDCOM MDAI MDAF 

0=0013 1=0014 0=0015 0=0016 

172 

Programming Techniques 271 



@ 

272 

II JOB A 
II * NONPROCESS CORE lOAD 
II FOR RCAlB 
*LIST ALL 
** CALIBRATION PROGRAM FOR OP-GUIDE POINTS 
*IOC5IDISK,1443 PRINTER,CARD) 
*NONPROCESS PROGRAM 
*ONE WORD INTEGERS 
C 
C THIS NONPROCESS CORE lOAD IS FOR CALIBRATING HiE ANALOG INPUT 
C POINTS FOR OP-GUIDE. 
C 

INTEGER SWD,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VAlUE(15),SETPTI8),COUMTI8),OFFlNI8) 
DIMENSION RANGE(8),AHlI40),ALlI40),A(40),B(40),lOW(8),G(16),H(16) 
COMMON/INSKEl/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VAlUE,RANGE,lOW,SET 

IPT,COUMT,OFFlN,AHl,All,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2'! PONT 

DEFINE FilE 112,32D,U,II) 
100 READ(2,1)I,ENGH,ENGl 

I FORMAT(12,8XFIO.2,FIO.2) 
IF(I)100,100,2 
l=41-1 
M=I-1 
IFIUIOO,lOO,3 

3 WR I TE 13,4) I 
4 FORMATI' SET POINT'13,' TO lOW VALUE') 

PAUSE 
CAll AIP(11000,Il,M) 
CALlAIP(O,II) 
GO TO (5,6),11 

6 WRITE(3,999)ll 
WRITE(3,7) 

7 FORMAT(' NOW SET IT TO HIGH VALUE') 
PAUSE 
CAll AIPI11000,IH,M) 

8 CAll AIP(O,!I) 
GO TO 18,9),!1 

9 AIl)=IENGH-ENGl)/(IH-Il) 
BIL)=ENGH-IAIlJ*IH) 
WRITE(3,999)IH 

999 FORMAT I ' VALUE IS'110) 
WRITEl1'l)RANGE,lOW,A,B 
GO TO 100 
END 

VARIABLE ALLOCATIONS 
CSWOII*J=FFFF 

DAYII*)=FFF9 
COUMT(I*)=FFC7-FFCO 
IBtI,SEII*J=FE77 
IPtRDI I~'J=FE32 

III )=OOOD 

STATEMENT ALLOCATIONS 

CSW1 I 1*) =FFFE 
JOBNII*)=FFF8 

OFFlNII*)=FFBF-FFB8 
IBASZII*)=FE76 
ITCNTI 1~<)=FE31 

LI I ) =OOOE 

CSW2II*)=FI'FD 
VAlUEII*)=F~F7-FFE9 

AHlIR*)=FF86-FF68 
IBAZZ( 1*)=Fl:7':> 
IPONTI 1* )=FE30 

M( I )=Oc)OF 

CSW311*)=FFFC 
RANGEIR*)=FFE6-FFD8 

AllIR*)=FF66-FF18 
GIR*)=FE72-FE54 

ENGHIR )=0006 
III I )=0010 

CSW411,,')=FFFB 
lOW(I*)=FFD7-FFDO 

AIR~')=FFI6-FtC8 

HI R ':' ) = FE 52- F E 3 L~ 
ENGL (R ) =0008 

IHI I )=0011 

1 =OOIC 4 =0021 7 =0031 999 =0040 100 =0048 =0056 =0066 =0073 6 
9 =0098 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD I NTE:GERS 
lOes 

CAll.ED SUBPROGRAMS 

CSW5 I I ~'l =FFFA 
SETPTII*)=FFCF-FFC8 

B (I{'~) =FEC6-FE 78 
lENDT( I>:')=FE33 

Jl(l )=OOOC 

=007D =008E 

AlP FSUB FMPYX FLO FSTO FSTOX FSB·{ FDVR FLOAT COMGO MRED MWRT MCOMP M IOF MIOI 
SUB£.C PAUSE MDWRT MDCOM t~DA I MDAF HOL,S PRNTN 

INTEGER CONSTANTS 
2=0014 41=0015 1=0016 3=0017 110JO=0018 

CORE REQUIREMENTS FOR RCALB 
COMMON 0 INSKEL COMMON 

END OF COMPILATION 

RCAlB 
DUP FUNCTION COMPLETED 
II DUP 
*DELET RCALB 
RCAlB 
025 NAME NOT IN L/F 
*STORECIl 1 RCAlB RCAlB 
*FIlESl1,FILE1,1) 
*CC END 

464 VARIABlE:S ~O PROGRAM 

EBPRT CARON 

0=0019 O=OOlA 0= 001 B 

188 



® Continued 

CLB, BUILO RCALB 

CORE LOAO MAP 
TYPE NAME ARG1 ARG2 

*COW TABLE 3E82 OOOC 
~qBT TABLE 3E8E 0010 
*FIO TABLE 3EAB 0010 
*ETV TABLE 3EBB 0051 
*VTV TABLE 3FOC 0030 
*PNT TABLE 3F3C 0004 
*OFT TABLE 3F40 0006 
MAIN RCALB 3F88 
PNT RCALB 3F3E 
UBF HOLEB 4010 3FOC 
UBF EBPRT 4132 3FOF 
UBF MREO 4349 3F12 
UBF MIDI 4412 3F15 
UBF MIDF 4400 3F18 
UBF MCOMP 43E9 3F1B 
UBF MWRT 435C 3F1E 

IUBF PAUSE 480E 3F21 
CALL AlP 4822 
UBF FSUB 4862 3F24 
UBF FSBR 484E 3F27 
UBF MOWRT 4A3F 3F2A 
UBF MDAF 48F3 3F2D 
UBF MDAI 4900 3F30 
UBF MDCOM 49B6 3F33 
CALL PRT 4C60 
UBF IOU 4CAA 3F36 
CALL 10FIX 4044 
CALL BTlBT 4074 
CALL SAVE 4CEO 
UBF AIPTN 4008 3F39 
CALL BT2BT 4E5A 
CORE 4E78 3188 

CLB, RCALB LD XQ 

DUP FUNCTION COMPLETED 

II JOB A 
II * DATA CARDS FOR CALIBRATING POINTS 5 THROUGH 12 
II XEQ RCALB FX 

SET POINT 
VALUE IS 
NOW SET IT 
VALUE IS 
SET POINT 
VALUE IS 
NOW SET IT 
VALUE IS 
SET POINT 
VALUE IS 
NOW SET IT 
VALUE IS 
SET POINT 
VALUE IS 
NOW SET IT 
VALUE IS 
SET POINT 
VALUE IS 

5 TO LOW VALUE 
-100 

TO HIGH VALUE 
-32362 

6 TO LOW VALUE 
-148 

TO HIGH VALUE 
-32462 

7 TO LOW VALUE 
-126 

TO HIGH VALUE 
-32338 

8 TO LOW VALUE 
-248 

TO HIGH VALUE 
-32562 

9 TO LOW VALUE 
-102 

NOW SET IT TO HIGH VALUE 

VALUE IS -32546 
SET POINT 10 TO LOW VALUE 

VALUE IS -78 
NOW SET IT TO HIGH VALUE 
VALUE IS -32458 
SET POINT 11 TO LOW VALUE 
VALUE IS -86 
NOW SET IT TO HIGH VALUE 
VALUE IS -32466 
SET POINT 12 TO LOW VALUE 
VALUE IS -100 
NOW SET IT TO HIGH VALUE 
VALUE IS -32516 

Programming Techniques 273 



@ II JOB A 
50 II * NONPROCESS CORE LOAD 

II FOR CMIPT 

274 

':'LIST ALL 
,* CALIBRATION PROGRAM FOR DATA ENTRY DIALS 
';'IOCS(DISK) 
*IOCS(1443 PRINTER) 
*NONPROCESS PROGRAM 
~nNE WORD INTEGERS 
C 
C THIS NONPROCESS CORE LOAD IS FOR CALIBRATING TI~E DATA ENTRY 
C DIALS. 
C 

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY 
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8) 
DIMENSION INA(16),INBI16) 
D I MENS ION RANGE (8) ,AH L( 40 ) ,ALL (40) , A I 40) , B (40) ,LOW (8) ,G ( 16 ) ,H ( 16) 
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET 

lPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT 
2,r PONT 

DEFINE FILE 1(2,320,U,II) 
WRITE(3,l) 
FORMAT(' SET DATA ENTRY DIALS TO 0') 
PAUSE 
CALL GETVL( INA) 
WRlTE(3,2) 

2 FORMAT(' SET DATA ENTRY DIALS TO 10') 
PAUSE 
CALL GETVL(INB) 
DO 10 J=1,l6 
GIJ)=10./(INBIJ)-INA(J» 

10 H(J)=lO.-(G(J)OINBIJ» 
WRlTE(1'2)G,H 
CALL EXIT 
END 

VARIABLE ALLOCATIONS 
CSWO(I~')=FFFF CSWl( I*)=FFFE 

JOBN(I*)=FFF8 
OFFLN(IO)=FFBF-FFB8 
IBASZ(I*)=FE76 
ITCNT( IO)=FE31 

CSW2(I-)=FFFD CSW3II*)=FFFC 
DAY (I~<) =FFF9 

COUMT(I*)=FFC7-FFCO 
18tISEII*)=FE77 
IPERD( I*)=FE:32 

J(I )=0029 

STATEMENT ALLOCATIONS 
1 =0034 2 =0043 10 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD INTEGERS 
IDes 

CALLED SUBPROGRAMS 

=007E 

GETVL FMPY FLDX FSTO FSTOX 
PRNTN EJ:lPRT 

REAL CONSTANTS 
.100000E 02=002C 

INTEGER CONSTANTS 
3=002E 1=002F 

CORe REQUIREMENTS FOR CMIPT 

16=0030 

VALUE(I*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8 
AHL(RO)=FFB6-FF68 ALL(R*)=FF66-FF18 

IBAZZIIO)=FE75 G(R*)=FE72-FE54 
IPONTll',)=FE30 INA(I )=0017-0008 

FSBR FDVR FLOAT MWRT MCOMP 

2=0031 0=0032 0=0033 

COMMON 0 INSKEL COMMON 464 VARIABLES 44 PROGRAM 122 

END OF COMPILATION 

CMIPT 
DUP FUNCTION COMPLETED 
*STORECIL 1 CMIPT CMIPT 
*FILESI1,FILEl,l) 
~'<CC END 

CLB, BUILD CMIPT 

CORE LOAD MAP 
TYPE NAME ARGl ARG2 

';'CDW TABLE 3E82 OOOC 
oIBT TABLE 3E8E 001D 
'~F 10 TABLE 3EAB 0010 
':'ETV TABLE 3EBB 0051 
oVTV TABLE 3FOC OOlE 
'<PNT TABLE 3F2A 0004 
"DFT TABLE 3F2E 0006 
MAIN CMIPT 3F81 

CSW4II*)=FFFB CSW5(I*)=FFFA 
LOW(IO)=FFD7-FFDO SETPT(I*)=FFCF-FFC8 

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78 
H(RO)=FE52-FE34 IENDT(I*)=FE33 

INB(I )=0027-0018 1111 )=0028 

SUBSC PAUSE MDWRT MDCOM MDAF 



® Continued 

PNT CMIPT 3F2C 
LIBF EBPRT 3FD4 3FOC 
LIBF MWRT 4lFE 3FOF 
LIBF MCOMP 428B 3F12 
LIBF PAUSE 46BO 3F15 
CALL GETVL 46EE 
LI BF FSBR 478A 3F18 
LIBF MDWRT 497B 3FIB 
LI BF MDAF 482F 3FlE 
LIBF MDCOM 48F2 3F21 
CALL PRT 4B9C 
L IBF IOU 4BE6 3F24 
CALL IOF IX 4C80 
CALL BTlBT 4CBO 
CALL SAVE 4CIC 
LIBF SUBIN 4014 3F27 
CALL BT2BT 4D4E 
CORE 4D6C 3294 

CLB, CMIPT LD XQ 

DUP FUNCTION COMPLETED 

@lIIJOB 
II XEQ CMIPT 

A 
FX 

SET DATA ENTRY DIALS TO 0 
SET DATA ENTRY DIALS TO 10 

® II JOB A 
II * NONPROCESS CORE LOAD 
II FOR LOADJ 
*LIST ALL 
** PROGRAM TO LOAD JOB DATA FILES ON DISK FROM CARDS 
*IOCSIDISK,1443 PRINTER,CARDI 
*NONPROCESS PROGRAM 
*ONE WORD INTEGERS 
C 
C THIS PROGRAM LOADS THE PROCESS JOB FILES ON DISK WITH DATA 
C READ FROM CARQS. 
C 

INTEGER SETPTI81 
DIMENSION AHLI401,ALLI401,INPPI81 
DEFINE FILE 2Il00,320,U,IIIl 
CALL PTIMEITIMEI 
WRITEI3,21TIME 

2 FORMATI'lPROCESS JOB FILE LOAD TIME'F7.2) 
JOBN=O 
ITIME=O 
DO 3 J=I,8 

3 SETPTIJl=O 
DO 4 J=1,40 
AHLIJl=32000. 

4 ALLlJl=-32000. 
10 READI2,111J,IV,BB,CC 
11 FORMATIIl,4XI5,2FI0.01 

GO TO IlOO,200,300,400,7001,J 
100 IFIIVI600,600,101 
101 JOBN=IV 

ITIME=BB*100. 
I = IT IME1l00*100 
K=ITIME-I 
1=1/100 
IFIK-601102,600,600 

102 AB=I*3600.+K*60. 
IFI32000.-ABI600,103,103 

103 ITIME=AB 
AB=BB 
GO TO 10 

200 IFIIVI600,600,201 
201 1=41-IV 

IFIII600,600,202 
202 AHLI 1 I=BB 

ALLlII=CC 
IFIAHLIII-ALLIII1600,600,10 

300 IFIIVI600,600,301 

Programming Techniques 275 



@2Continued 

301 1=9-IV 
IFI I )600,600,302 

302 SETPTII)=BB 
IFISETPTII»600,600,303 

303 IFIIOO-SETPTII»600,600,10 
400 IFIJOBN)600,600,409 
409 IN=JOBN/100*100 

I=JOBN-IN 
IFI 1)600,401,402 

401 1=100 
402 WRITEI2'I)JOBN,ITIME,SETPT,AHL,ALL 

WRITEI3,403)JOBN,AB 
403 FORMATI' GRADE NUMBER'16,5X' PRODUCTION TIME'F10.2) 

WRlTEI3,500) 
500 FORMATI' OP-GUIDE LIMITS FOR GRADE') 

WRITEI3,501) 
501 FORMATI' POINT 

1 LOW LIMIT') 
DO 503 J=1,39,2 
K=41-J 
Jl=J 
J2=J+l 

HIGH LIMIT LOW LIMIT',10X' POINT 

503 WRITEI3,502)Jl,AHLIK),ALLIK),J2,AHLIK-1),ALLIK-1) 
502 FORMATII6,2F13.2,10XI6,2F13.2) 

WRlTEI3,'510) 
510 FORMATI' CLOSED LOOP SET POINTS FOR GRADE') 

WRlTEI3,51l) 

HIGH LIMIT 

511 FORMATI3X'POINT',5X'SETPT',5X'POINT',5X'SETPT',5X'POINT',5X'SETPT' 
1,5X'POINT',5X'SETPT') 

DO 6 J=1.8 
6 INPPIJI=SETPTIJ) 

DO 30 1=1,5,4 
Jl=1 
J2=I+l 
J3=1+2 
J4=I+3 
IA=9-1 
IB=8-1 
IC=7-1 
10=6-1 

30 WR ITE I 3,7) J 1, I NP P I I A) , J 2, I NP P I I B) ,J 3, IN P P I I C) , J 4 , IN P P I I D) 
7 FORMATI18,II0,3II10,II0) 

GO TO 1 
600 WRITEI3,601)J,IV,BB,CC 
601 FORMATI' INVALID DATA CARO',/I5,4XI5,2F10.?) 

GO TO 1 
700 CALL EXIT 

END 

ALLIR )=00A4-0056 CTIMEIR )=00A6 
VARIABLE ALLOCATIONS 

AHLIR )=0054-0006 
INPP I I ) =00B7-00BO 

IV I I ) =00C4 
SETPTII )=00BF-00B8 IIIII )=OOCO 

III )=00C5 KII )=00C6 
J31 I )=OOCA J411 )=OOCB IA(I )=OOCC 

STATEMENT ALLOCATIONS 
2 =OOEB 11 =OOFD 403 =0103 500 =0118 501 =0127 
1 =01A7 3 =OlBC 4 =OlDB 10 =OlEB 100 =0200 
202 =025C 300 =0276 301 =027A 302 =0284 303 =0294 
6 =0324 30 =0368 600 =039C 700 =03AA 

FEATURES SUPPORTED 
NONPROCESS 
ONE WORD INTEGERS 
lOCS 

CALLED SUBPROGRAMS 

BB (R ) =00A8 
JOBN(I )=OOCI 

IN(I )=00C7 
IB( I )=OOCD 

502 =014B 510 
101 =0204 102 
400 =02Al 409 

PTIME FAOD FSUB FSUBX FMPY FLO FLDX FSTO FSTOX IF IX 
MWRT MCOMP MIOFX MIOIX MIOF MIDI SUBSC SNR MDWRT MDCOM 
EBPRT CARDN 

REAL CONSTANTS 
.320000E 05=0004 .100000E 03=0006 .360000E 04,,0008 .600000E 02=00DA 

INTEGER CONSTANTS 

CC (R )=OOAA 
!TIME(I )=00C2 

Jl( I )=00C8 
IC( I )=OOCE 

=0153 511 =0166 
=022C 103 =0243 
=02A5 401 =028B 

FLOAT COMGO 
MDAI MDAF 

3=00DC O=OODD l=OODE 
4=00E8 

8=000F 
7=00E9 

40=00EO 
(,=OOEA 

2=0.OE 1 100=00E2 60=00E3 
39=00E6 5=00E7 

CORE REOUIREMENTS FOR LOADJ 
COMMON 0 INSKEL COMMON o VARIABLES 21;> PROGRAM 728 

END OF COMPILATION 

276 

7 
200 
402 

ISTOX 
MD I 

AB(R )"OOAC 
J(I ),,00C3 

J2(I ),,00C9 
IDII )"OOCF 

"OlaF 601 =0196 
=024E 201 =0<'52 
=02BF 503 =02F4 

LDFAC MRED 
HOLEB PRNTN 

41=00E4 9=00E5 



® Continued 

LOADJ 
DUP FUNCTION COMPLETED 
~cOELET LOAOJ 
LOAOJ 
D25 NAME NOT IN L/F 
~'STORECIL 1 LOAOJ LOADJ 
*FILES(2,FILE2,1) 
,:cCCEND 

CLB, BUILD LOAOJ 

CORE LOAD MAP 
TYPE NAME ARGI ARG2 

*CDW TABLE 3E82 OOOC 
~'1 BT TABLE 3E:8E 001D 
*FIO TAt3LE 3EAB 0010 
)~ETV TAt3LE 3EBB 0051 
*VTV TABLE 3FOC 003F 
*PNT TAt3LE 3F4C 0004 
'~OFT TAt3LE 3F50 0006 
MAIN LOADJ 40F7 
PNT LOADJ 3F4E 
LI BF HOLEB 42FC 3FOC 
LIBF EBPRT 441E 3FOF 
CALL PTIME 44CA 
LIBF MWRT 4684 3F12 
LI BF MIOF 4735 3F15 
LIBF MCOMP 4711 3F18 
LIBF SNR 4B36 3FIB 
LIBF MREO 4671 3FIE 
LIBF MIDI 473A 3F21 
LIBF FAOO 4B6E 3F24 
LIBF FSUB 4B62 3F27 
LIBF LDFAC 41:lEC 3F2A 
LIBF FSUBX 4B5D 3F20 
LIBF MDWRT 4060 3F30 
LIBF MOl 4C26 3F33 
LIBF MDAI 4C2E 3F36 
LIBF MDAF 4C21 3F39 
LIBF fvlDCOM 4CE4 3F3C 
LIBF MIOFX 4741 3F3F 
LIBF MIOIX 4746 3F42 
CALL PRT 4F8E 
LIBF SUBIN 4FD8 3F45 
LIBF IOU 5012 3F48 
CALL IOF IX 50AC 
CALL BTlIH 50DC 
CALL SAVE 5048 
CALL BT2BT 5140 
CORE 515E 2EA2 

CLB, LOADJ LD XQ 

DUP FUNCTION COMPLETED 

@31IJOBA 
II * UPDATE A PROCESS JOB FILE ON DISK 
II XEQ LOADJ FX 

TIME 14.58 
PRODUC TI ON T I ME 

PROCESS JOB FILE: LOAD 
GRADE NUMBER 12345 
OP-GUIDE LIMITS FOR 
POINT HIGH LIMIT 

GRADE 

1 32000.00 
3 32000.00 
5 5.45 
7 5.45 
9 5.45 

11 5.45 
13 32000.00 
15 32000.00 
17 32000.00 
19 32000.00 
21 32000.00 
23 32000.00 
25 32000.00 
27 32000.00 
29 32000.00 
31 32000.00 
33 32000.00 
35 32000.00 

LOW LIMIT 
-3200P.00 
-32000.00 

4.96 
4.96 
4.96 
4.96 

-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

1.30 

POINT 
2 
4 
6 
8 

10 
12 
14 
16 
IB 
20 
22 
24 
26 
28 
30 
32 
34 
36 

HIGH LIMIT 
32000.00 
32000.00 

5.45 
5.45 
5.45 
5.45 

32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

LOW LIM IT 
-32000.00 
-32000.00 

4.96 
4.96 
4.96 
4.96 

-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

Programming Techniques 277 



® Continued 

37 32000.00 -32000.00 
39 32000.00 -32000.00 

CLOSED LOOP SET POINTS FOR GRADE 
POINT SETPT POINT SETPT 

1 
5 

PROCESS JOB 

@ II JOB 
II DUP 
*OUMPLET 

LET 

PACK LABEL 
00000 

.OCOM 0010 

.ASM 0300 
C.LOCK 0002 
OMPST 
MASK 0003 
SAVMK 0003 
CONHX 0006 
ESUBX 
EABS 
EOVRX 
ESTOX 
ESIN 
ETANH 
FSBRX 
FATN OOOC 
FAXI 0006 
FOVR 
FSTO 
FMPYX 
FSQRT 
FEXP 
XMO 0005 
EBPA 0006 
PAPHL 0014 
DATSW 0004 
ISIGN 0003 
MOF ID 0023 
MOl 
MREO 
MIOIX 
MEIF 
MEARX 
SAVE OOOA 
SUBIN 0005 
UF ID 001C 
UIOAF 
PAPTN 0010 
AIRN 0000 
lOPE 0009 
GAGED 0003 
VS 
PIC 
CO 
BT2BT 0003 
SCALE 0002 
WCHRI 
VCHRI 
PLOTS 

HET 

PACK LABEL 
00000 

0 
0 

FILE LOAD 

A 

0000 .MBT 
05EO .FOR 
1508 COUNT 

OPART 
1614 OPMON 
1635 SETCL 
1652 TRPRT 

ESBR 
EAXB 
EDIV 
ELN 
ECOSN 
ETRTN 
FADD 

16E4 FATAN 
16F9 FAXIX 

FOVRX 
FSTOX 
FSIf\JE 
FTNH 
lABS 

177B XMOS 
1798 EBPRT 
170C PAPPR 
1813 OVCHK 
182D ISTOX 
1837 MOAF 

MOIX 
MWRT 
MIOF 
MIAR 
OVERF 

18E4 IOFIX 
18FB SUBSC 
190B UREO 

UIoFX 
194A MAGT 
1992 ANINT 
19E6 OUSLY 
19F8 UNGAG 

01 
CSX 
DO 

1A49 FCHAR 
1A63 EGRIO 

FRULE 
ERULE 
• TEMP 

90UMY OOAO 05AO .E 

278 

2 0 
6 0 

TIME 14.58 

0020 0010 
0680 08EO 
0004 1500 
0002 1608 
0002 1617 
0003 1638 
0007 1658 

0006 1681 

OOOB 1690 

0004 16C6 

OOOB 1742 
0006 1754 
0003 1767 
0004 1780 
OOOA 179E 
0011 17FO 
0002 1817 
0003 1830 

OOOE 18C9 
0002 1807 

0004 1900 

0020 195A 
0014 199F 

0004 lA2F 

0005 lA4C 
0008 lA65 
0009 lA9D 
OOOB 1ACB 
lAEO IBOO 

OOAO 05AO 

38 
40 

POINT 
3 
7 

.SKSB 0020 

.SIM 05FO 
DMP 0017 
ENOTS 0002 
IDR 0002 
TIMER 0006 
FLIP 0007 
ESBRX 
EAXBX 
EOIVX 
EALOG 
ECOS 
ETNTR 
FSUB 
FAVL 0003 
FBTO 001A 
FIXIX 0005 
FLN OOOB 
FSIN 
FTANH 
IFIX 0004 
XSQR 0004 
HOLEB 0012 
PRT 0005 
ESIGN 0005 
LDFAC 0004 
MDAI 
MOREO 
MCOMP 
MIDI 
MIARX 
PAUSE 0002 
SLITE 0006 
TSTOP 0002 
UWRT 
UIOIX 
AIPTN 0009 
OINP 0013 
ETS 
AlP 0004 
PI 
VSX 
PO 
SCALF 0002 
E PLOT 0005 
FMoVE 
EMoVE 
.E 5AOO 

32000.00 -32000.UU 
32000.00 -32000.00 

SETPT POINT SETPT 
0 4 0 

15 8 86 

0030 .SUP OOBO 0050 .CLB OOAO 0100 .DUP 0440 01AO 
OF60 .LET 0080 1550 lAND 0002 1500 CLEAR 0009 15D2 
15El DMPHX DMPDC OMPS 0010 15F8 
160A IEOR .0002 160C LO 0002 160E LEVEL 0004 1610 
1619 QIFON OOOA 161B QUEUE OOOC 1625 RESMK 0004 1631 
163B UNMK 0005 1641 UNQ 0005 1646 VIAQ 0007 1641:i 
165F EAOD OOOB 1666 ESUB EAOOX 

EATN 0000 1671 EATAN EAVL 0003 167E 
EAXI 0006 1687 EAXIX EOVR 0007 1680 
ELO 0009 1694 ELOX ESTO 
EMPY 0004 16A8 EM PYX ESINE 0000 16AC 
ESQR 0007 16B9 ESQRT ETNH 0006 16CO 
EXPN OOOB 16CA EEXP FSBR OOOB 1605 
FAOOX FSUBX FARC 0004 16EO 

16FO FABS FAXB 0006 16F3 FAXBX 
16FF FOTB FDIV 0008 1719 FDIVX 
1721 F IX I FLO 0009 1726 FLr)X 
172F FALOG FLOAT 0003 173A FMPY 0005 1730 

FCOSf\J FCOS FSQR 0007 174D 
FTRTN 0004 175A FTNTR FXPN 0009 175E 

176A NORM 0004 176E SNR 0003 1772 XOO 0006 1775 
1784 BINOC 0006 1788 BINHX 0004 178E DCBIN 0006 1792 
17A8 HOLPR 0000 17BA HXBIN 0005 17C7 PAPEB 0010 l7CC 
1801 AORCK 0007 1806 COMGO 0006 180D COMG1 
1819 FCTST 0003 181E FSIGN 0005 1821 IDU 0007 1826 
1833 STFAC SBFAC OVFAC 

MOCoM MDF MOFX 
MOWRT MOFNO 0008 185A MFIo 0059 1862 
M IDAF MIOAI MIOFX 
MGOTO OOOE 18BB MFIF M I I F 
MFAR MFARX r~EAR 

1809 REWNO 0009 180B BCKSP EOF 
18EE SL ITT SSWTC 0004 18F4 STOP 0003 18F8 
1904 TSTRT 0002 1906 TTEST 0003 1908 TSET 

UIDI UIOF UIoAI 
UCot~P PLOTX 0000 1927 CARDN 0016 1934 

197A AIPN AISQN OOOF 1983 AISN 
19B3 OIEXP 0006 19C6 DICMP 0007 19CC DAOP 0013 1903 

XSAVE 0009 19EF XEX IT XLOAO 
19FB AIS 0000 19FF AIR 0011 1AOC CS 0008 lAlO 

CSC OOOA 1A25 VSC OIC 
OIX PIX OAC 0007 1A33 
QlERQ 0002 lA3A Ql010 0006 1A3C BTiBT 0007 lA42 

1A51 FGRID 0007 1A53 FPLoT 0004 1A5A ECHAK 0005 lASE 
1A6D POINT 0007 1A72 FCHRX 0024 1A79 FCHR I 

FINC ECHRX 0025 lAA6 ECHRI 
EINC XYPLT 0007 1A06 PLOTI 0003 1AOD 

IBOO 



® Continued 

LET 

PACK LABEL 
11111 

.LET 0080 
SPECL 
QUE15 0002 
IADDR 0002 
• E 1180 

FLET 

PACK LAI:lEL 
11111 

.PRWS 0051 
INPSV 4180 
RSTAR OF8C 
GRADE 116A 
TREND OB7A 
AlMON OD90 
ISPSV 4180 

DUP FUNCTION 

II JOB 
II END 

0000 

0159 
0175 
0180 

1118 
12C3 
1367 
138E 
13CC 
1414 
1578 

SYDIR 009E 
BACK 
TCONT 0003 
ISBAD 0002 

.FIOS OOOF 
FILE1 0002 
COLDP 10CE 
SCAN2 OC2E 
COGLP 101E 
SCALB OF3A 
IPRSV 4180 

COMPLETED 

A 

0080 

01513 
0177 

1169 
12F8 
1374 
939C 
13D6 
141F 
15AD 

OUTTR 
EACLK 
TABRT 0002 
CESET 0002 

.MESS 00A3 
FILE2 0064 
CEINT OA26 
LOG15 OD5E 
CCLSP OF76 
RCALB OFF6 
.SKEL 0036 

015E 
0179 

1178 
12FA 
1382 
13A6 
13E3 
142C 
15E2 

CHAIN 
SCHED 0014 
GETVL 00013 
ABORT 0002 

IEPDM 7FFF 
FILE3 0003 
DUM 012C 
LOG60 OAEO 
MGRTP OFB4 
CMIPT OEEA 
.EPRG 0022 

OllE 
0160 
017B 

121B 
135E 
13813 
13B1 
l3FO 
1439 
1618 

INTEX 
LEV10 0024 
CONVR 0005 
ENOGD 0002 

IEPSV 0780 
COLDN 05DC 
IDUM 0094 
SHIFT OAEO 
CPJSP OFCC 
LOADJ 12DC 
ICLST 0780 

0132 
01613 
017D 

1282 
1361 
138C 
l3BA 
13FO 
1445 
163A 

SHARE 
SOUT 0003 
PTIME 0005 
.TEMP 017F 

IINSV 48FF 
COLDS 00D6 
CDUM Ol3A 
WEEK OADe 
STRND OBFC 
9DUMY 0123 
.E 0280 

0156 
0170 
0180 

1288 
1366 
938D 
13C3 
140A 
1455 
12F8 

Programming Techniques 279 



PROGRAM LISTING NO. 10: ON-LINE PROCESS OUTPUT 

CD
TURN OFF WRITE STORAGE PROTECT SWITCH 

1 ENTER TIME THROUGH DATA SWITCHES 
TIME ENTERED WAS 08.016 HOURS 

PROCESS COLD START 
PRODUCTION STOP TIME 8.00 DAY 6 

000 1 3 ~ 5 
o 0 0 0 0 0 0 0 

NEXT JOB 123~5 QUEUE SEQUENCE ~5 DAY 6 TIME 8.02 

280 

START OF GRADE 123~5 PRODUCTION TIME 
OP-GUIDE LIMITS FOR NEW GRADE 

1. 29 START TIME 

POINT HIGH LIMIT LOW LIMIT 
1 32000.00 -32000.00 
3 32000.00 -32000.00 
5 5.~5 ~.96 
7 5.45 4.96 
9 5.45 ~.96 

11 5.45 ~.96 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 
21 32000.00 -32000.00 
23 32000.00 -32000.00 
25 32000.00 -32000.00 
27 32000.00 -32000.00 
29 32000.00 -32000.00 
31 32000.00 -32000.00 
33 32000.00 -32000.00 
35 32000.00 -32000.00 
37 32000.00 -32000.00 
39 32000.00 -32000.00 

CLOSED LOOP SET POINTS FOR NEW GRADE 
POINT SETPT POINT SETPT 

1 0 2 0 
506 0 

NORMAL SCAN DAY 6 TIME 8.03 

o 0 0 005 o 

POINT 
2 
4 
6 
8 

10 
12 
1~ 
16 
18 
20 
22 
24 
26 
28 
30 
32 
3~ 
36 
38 
40 

POINT 
3 
7 

7 
o 

LOOP 
o 0 0 

7 NEW SET PO I NT 
o 0 0 
50 DAY 6 TIME 

o 
8.05 

NORMAL SCAN DAY 6 

NORMAL SCAN DAY 6 

NORMAL SCAN DAY 6 

~ORMAL SCAN DAY 6 

NORMAL SCAN DAY 6 

LOG15 DAY 6 TIME 
OP-GUIDE POINTS 

POINT VALUE 
1 141511.00 
5 5.37 
9 5.14 

13 22.00 
17 714.00 
21 706.00 
25 712.00 
29 7011.00 
33 71~.00 
37 710.00 

CLOSED LOOP POINTS 
POINT VALUE 

1 0 
5 0 

SHIFT END LOG DAY 6 

TIME 

TIME 

TIME 

TIME 

TIME 

POINT 
2 
6 

10 
14 
18 
22 
26 
30 
34 
38 

POINT 
2 
6 

8.15 

TIME 

8.06 

8.07 

8.09 

8.12 

8.13 

VALUE 
973~.00 

5.16 
5.28 

20.00 
704.00 
698.00 
708.00 
718.00 
710.00 
70~.00 

VALUE 
o 
5 

8.15 

POINT 
3 
7 

11 
15 
19 
23 
27 
31 
35 
39 

POINT 
3 
7 

HIGH LIMIT 
32000.00 
32000.00 

5.~5 
5.45 
5.45 
5.45 

32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

SETPT 
o 

14 

VALUE 
24.00 

5.01 
5.00 

22.00 
716.00 
718.00 
704.00 
706.00 
70~.00 
716.00 

VALUE 
75 
49 

8.03 DAY 6 

LOW L1MI T 
-32000.00 
-32000.00 

4.96 
4.96 
~.96 
4.96 

-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

POINT 
4 
8 

SETPT 
o 

86 

POINT 
~ 
8 

12 
16 
20 
2~ 
28 
32 
36 
40 

POINT 
4 
8 

VALUE 
32.00 

5.10 
~.98 

42.00 
706.00 
706.00 
71~. 00 
704.00 
718.00 
706.00 

VALUE 
o 

85 



CD (Continued) 

NORMAL SCAN DAY 6 TIME 8.15 

NORMAL SCAN DAY 6 TIME 8.18 

NORMAL SCAN DAY 6 TIME 8.19 

NORMAL SCAN DAY 6 TIME 8.21 

NORMAL SCAN DAY 6 TIME 8.24 

NORMAL SCAN DAY 6 TIME 8.25 

NORMAL SCAN DAY TIME 8.27 

NORMAL SCAN DAY 6 TIME 8.30 

LOG15 DAY 6 TIME 8.30 
OP-GUIDE POINTS 

POI NT VALUE POINT VALUE POINT VALUE POI NT VALUE 
1 14162.00 2 9760.00 3 30.00 4 40.00 
5 5.37 6 5.16 7 5.00 8 5.09 
9 5.14 10 5.27 11 5.00 12 4.99 

13 18.00 14 28.00 15 18.00 16 22.00 
17 710.00 18 708.00 19 706.00 20 710.00 
21 706.00 22 704.00 23 714.00 24 706.00 
25 700.00 26 714.00 27 706.00 28 706.00 
29 702.00 30 712.00 31 706.00 32 710.00 
33 704.00 34 716.00 35 708 .. 00 36 712.00 
37 704.00 38 714.00 39 704.00 40 714.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POI NT VALU~ 

1 0 2 0 3 75 4 
5 0 6 5 7 49 8 85 

NORMAL SCAN DAY 6 TIME 8.31 

NORMAL SCAN DAY 6 TIME 8.33-

NORMAL SCAN DAY 6 TIME 8.36 

NORMAL SCAN DAY 6 TIME 8.37 

NORMAL SCAN DAY 6 TIME 8.39 

NORMAL SCAN DAY 6 TIME 8.42 

NORMAL SCAN DAY 6 TIME 8.43 

LOG15 DAY 6 TIME 8.45 
OP-GUIDE POINTS 

POINT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 14158.00 2 9770.00 3 28.00 4 34.00 
5 5.37 6 5.16 7 5.01 8 5.10 
9 5.14 10 5.27 11 5.00 12 4.98 

13 24.00 14 20.00 15 20.00 16 18.00 
17 706.00 18 706.00 19 704.00 20 716.00 
21 70 11.00 22 716.00 23 708.00 24 706.00 
25 706.00 26 708.00 27 704.00 28 716.00 
29 706.00 30 704.00 31 714.00 32 704.00 
33 7111.00 34 704.00 35 714.00 36 704.00 
37 714.00 38 704.00 39 718.00 40 706.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POI NT VALUE 

1 0 2 0 3 75 4 0 
5 0 6 5 7 49 8 85 

NORMAL SCAN DAY 6 TIME 8.45 

NORMAL SCAN DAY 6 TIME 8.48 

Progr amming T ecbniques 281 



G) (Continued) 

NORMAL. SCAN DAY 6 TIf.1E 8.49 

NORMAL. SCAN DAY 6 TIME 8.51 

NORMAL: SCAN DAY 6 TIME 8.54 

NORMAL SCAN DAY 6 TIME 8.55 

NORMAL. SCAN DAY 6 TIME 8.57 

NORMAL SCAN DAY 6 TIME 9.00 

LOG15 DAY 6 TIME 9.00 
OP-GUIDE POINTS 

POINT VALUE POINT VALUE POINT VALUE POI NT VALUE 
1 14158.00 2 9818.00 3 26.00 4 50.00 
5 5.37 6 5.16 7 5.01 8 5.10 
9 5.14 10 5.27 11 5.00 12 4.98 

ll3 38.00 14 28.00 15 30.00 16 30.00 
17 704.00 18 718.00 19 706.00 20 708.00 
n 702.00 22 716.00 23 712.00 24 700.00 
:15 718.00 26 704.00 27 716.00 28 706.00 
:19 710.00 30 710.00 31 706.00 32 706.00 
33 704.00 34 718.00 35 704.00 36 718.00 
37 708.00 38 708.00 39 712.00 40 706.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POI NT VALUE POINT VALUE 

1 0 2 0 3 75 4 0 
5 0 6 5 7 50 8 85 

ONE HOUR LOG DAY 6 TIME 9.00 

NORMAL SCAN DAY 6 TIME 9.01 

NORMAL SCAN DAY 6 TIME 9.03 

NORMAL SCAN DAY 6 TIME 9.06 

NORMAL SCAN DAY 6 TIME 9.07 

NORMAL SCAN DAY 6 <TIME 9.09 

NORMAL SCAN DAY 6 TIME 9.12 

NORMAL SCAN DAY 6 TIME 9.13 

LOG15 DAY 6 TIME 9.15 
OP-GU I DE POINTS 

POINT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 14150.00 2 9858.00 3 28.00 4 20.00 
5 5.37 6 5.16 7 5.01 8 5.10 
9 5.14 10 5.27 11 5.00 12 4.98 

13 22.00 14 26.00 15 24.00 16 26.00 
17 708.00 18 708.00 19 706.00 20 704.00 
21 714.00 22 706.00 23 708.00 24 706.00 
25 708.00 26 708.00 27 706.00 28 708.00 
29 704.00 30 716.00 31 708.00 32 710.00 
33 706.00 34 706.00 35 704.00 36 714.00 
37 706.00 38 704.00 39 716.00 40 704.00 

CLOSED lOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POI NT VALUE 

1 0 2 0 3 75 4 0 
5 0 6 5 7 49 8 85 

282 



A A 

CD V v 
0 0 0 0 5 1 0 

5 0 0 0 0 4 9 0 
OP-GUIDE PT 5 HIGH LIMIT 5.10 LOW LIMIT 4.90 DAY 6 TIME 11.28 

NORMAL SCAN DAY 6 TIME 11.30 
HIGH LIMIT VIOLATION POINT 5 VALUE 5.3716 

LOG15 DAY 6 TIME 11. 30 
OP-GUIDE PO I NTS 

POI NT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 14154.00 2 9260.00 3 26.00 4 106.00 
5 5.37 6 5.15 7 5.01 8 5.09 
9 5.14 10 5.27 11 5.00 12 4.98 

13 26.00 14 38.00 15 24.00 16 20.00 
17 708.00 18 704.00 19 718.00 20 704.00 
21 712.00 22 706.00 23 704.00 24 714.00 
25 706.00 26 706.00 27 704.00 28 714.00 
29 706.00 30 704.00 31 714.00 32 706.00 
33 702.00 34 716.00 35 706.00 36 702.00 
37 714.00 38 704.00 39 712.00 40 710.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POI NT VALUE 

1 0 2 0 3 1 4 0 
5 0 6 5 7 65 8 83 

DEMAND SCAN DAY 6 TIME 11.30 

NORMAL SCAN DAY 6 TIME 11. 32 

0 0 0 0 0 0 0 5 
0 0 0 0 0 0 0 0 

DAY 6 TIME 11. 311 
OP-GUIDE POINT VALUE HIGH LlMI T LOW LlMI T FACTOR A FACTOR B 

5 5.03 5.10 4.90 -0.309962E-03 -0.309947E-01 

NORMAL SCAN DAY 6 TIME 11.34 

NORMAL SCAN DAY 6 TIME 11.36 

NORMAL SCAN DAY 6 TIME 11.38 
1 A 

V V 

Programming Techniques 283 



CD ---I I 
0 0 6 0 0 0 1 0 
0 0 0 0 0 3 0 0 

TREND LOG OP-GUIDE POI NT 6 PERIOD 10 COUNT 300 
TREND OP-GUIDE 6 VALUE 5.01 
TREND OP-GUIDE Ii VALUE 5.01 

NORMAL SCAN DAY 3 TIME ~.17 
TREND OP-GUIDE Ii VALUE 5.49 
TREND OP-GUIDE 6 VALUE 5.65 
TREND OP-GUIDE 6 VALUE 5.64 
TREND OP-GUIDE Ii VALUE 5.79 
TREND OP-GUIDE 6 VALUE 6.19 
TREND OP-GUIDE 6 VALUE 6.56 
TREND OP-GUIDE 6 VALUE 6.73 
TREND OP-GUIDE Ii VALUE 6.73 

Dn/IAND SCAN DAY 3 TIME 9.19 
HIGH LIMIT VIOLATION POI NT 6 VALUE 6.7345 
TREND OP-GUIDE Ii VALUE 6.73 
TREND OP-GUIDE Ii VALUE 6.42 
TREND OP-GUIDE Ii VALUE 5.96 

NORMAL SCAN DAY 3 TIME 9.19 
HIGH LIMIT VIOLATION POINT 6 VAUIE 5.5796 
TREND OP-GUIDE 6 VALUE 5.57 
TREND OP-GUIDE 6 VALUE 5 •. 58 
TREND OP-GUI DE 6 VALUE 5.12 
TREND OP-GUIDE Ii VALUE 4.98 
TREND OP-GUIDE 6 VALUE 4.98 

0 0 0 0 0 0 0 0 
0 0 0 0 0 3 0 0 

NEXT JOB 0 QUEUE SEQUENCE 0 DAY 3 TIME 9.21 

NORMAL SCAN DAY 3 TIME 9.21 

NORMAL SCAN DAY 3 TIME ~.23 
PRODUCTION STOP TIME 9.25 DAV 3 

0 0 0 0 0 3 5 
0 0 0 0 0 3 0 0 

NEXT JOB 35 QUEUE SEQUENCE 35 DAY 3 TIME 9.25 

----,f t 

~------~/~-----------------t~-----------
400 0 0 4 3 0 

o 0 0 0 0 0 0 0 
NEXT JOB 4530 QUEUE SEQUENCE 30 DAY 

NORMAL SCAN DAY TIME 

NORMAL SCAN DAY TIME 

NORMAL SCAN DAY TIME 

START OF GRADE 4530 PRODUCTION 
OP-GUIDE LIMITS FOR NEW GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 32000.00 -32000.00 
3 32000.00 -32000.00 
5 5.55 4.45 
7 5.55 4.45 
9 5.35 4.45 

11 5.63 4.45 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 

12.20 

12.22 

12.24 

TIME 

TIME 12.19 

1.25 START TIME 

POI NT 
2 
4 
6 
8 

10 
12 
14 
16 
18 

HIGH LIMIT 
32000.00 
32000.00 

5.45 
5.45 
5.65 
5.62 

32000.00 
32000.00 
32000.00 

~---------------f------------------

284 

12.26 DAY 

LOW LI MI T 
-32000.00 
-32000.00 

4.45 
4.45 
4.45 
4.45 

-32000.00 
-32000.00 
-32000.00 



A 1\ 

ICD v 
v 

5 39 32000.00 -32000.00 40 320.00.00 -32000.00 
CLOSED LOOP SET POINTS FOR NEW GRADE 

POINT SETPT POINT SETPT POI NT SETPT POI NT SETPT 
1 0 2 0 3 0 4 0 
5 0 6 0 7 70 8 29 

NORMAL SCAN DAY 3 TIME 9.06 
997 09.130 RELOAD 
RELOAD 

PROCESS RESTART CHECK POI NT 

NORMAL SCAN DAY 3 TIME 9.07 

LOG15 DAY 3 TIME 9.07 
OP-GUIDE POINTS 

POINT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 14150.00 2 9946.00 3 24.00 4 -100.00 
5 5.03 6 5.01 7 4.99 8 4.90 
9 4.94 10 5.04 11 4.98 12 4.98 

13 30.00 14 22.00 15 24.00 16 26.00 
17 702.00 18 714.00 19 706.00 20 704.00 
21 714.00 22 704.00 23 716.00 24 708.00 
25 708.00 26 708.00 27 708.00 28 704.00 
29 716.00 30 704.00 31 712.00 32 702.00 
33 714.00 34 710.00 35 704.00 36 716.00 
37 704.00 38 716.00 39 704.00 40 718.00 

CLOSED LOOP POINTS 
POINT VALUE PO INT VALUE POINT VALUE POINT VALUE 

1 0 2 0 3 75 4 0 
5 0 6 0 7 69 8 29 

ONE HOUR LOG nAY 3 TIME 9.07 

SHIFT END LOG nAY TIME 9.08 

NORMAL SCAN DAY 3 TIME 9.09 

DEMAND SCAN DAY 3 TIME 9.10 
HIGH LIMIT VIOLATION POINT VALUE 7.3461 

DEMAND SCAN DAY 3 TIME 9.10 
1\ 

V V 

Programming Techniques 285 



,0 J' 
17 32000.00 -32000.00 18 32000.00 -32000.00 
HI 32000.00 -32000.00 u ~~~%~:~~ :U~~~:~~ 21. 32000.00 -32000.00 
23 32000.00 -32000.00 24 
H 32000.00 -32000.00 26 32000.00 -32000.00 
27' 32000.00 -32000.00 28 32000.00 -32000.00 
29 32000.00 -32000.00 30 32000.00 -32000.00 
31. 32000.00 -32000.00 32 32000.00 -32000.00 
33; 32000.00 -32000.00 34 32000.00 -32000.00 
3 t ' .' 32000.00 -32000.00 36 32000.00 -32000.00 
"3j' 32000.00 -32000.00 38 32000.00 -32000.00 
3~1 32000.00 -32000.00 40 32000.00 -32000.00 

CLOSED LOOP SET POINTS FOR NEW GRADE 
POI NT SETPT POI NT SETPT PO INT SETPT POINT SETPT 

1 0 2 n 3 0 4 0 
5 0 6 0 7 70 R 29 

NORMAL SCAN DAY TIME 13.48 

NORMAL SCAN DAY 4 TIME 13.50 

NORW,L SCAN DAY 4 TIME 13.52 

NORMAL SCAN DAY 4 TIME 13.54 

NORMAL SCAN DAY TIME 13.56 
F94 13.974 OF50 

RESTART 

NORMAL SCAN DAY 4 TIME 13.58 

LOG15 DAY 4 TIME 14.00 
OP-GU I DE POINTS 

POINT VALliE POI NT VALUE POINT VALUE POI NT VALUE 
1 14156.00 2 9724.00 3 34.00 4 24.00 
5 4.98 6 4.98 7 5.00 8 4.90 
9 4.94 10 5.04 11 4.98 12 4.98 

13 28.00 14 26.00 15 14.00 16 18.00 
17 706.00 18 706.00 19 708.00 20 706.00 
21 706.00 22 704.00 23 716.00 24 708.00 
25 706.00 26 704.00 27 714.00 28 706.00 
29 704.00 30 716.00 31 704.00 32 712.00 
33 70 11.00 34 714.00 35 708.00 36 702.00 
37 712.00 38 704.00 39 716.00 40 704.00 

CLOSED LOOP POINTS 
PO I NT VALUE POI NT VALUE POINT VALUE POINT VALUE 

1 0 2 0 3 0 4 n 
5 0 6 n 7 70 !J- 29 

ONE HOUR LOG OAY 4 TIME 1r..OO 

NORMAL SCAN DAY 4 TIME 1/1.00 

NORMAL SCAN OAY 4 TIME 14.02 

J' 

286 



CD ONE HOUR LOG DAY TIME q.OO 

NORMAL SCAN DAY 3 TIME q.OO 

7 0 0 0 0 0 9 5 
0 0 0 0 0 0 0 0 

LOOP NEW SET POINT 95 DAY TIME 9.02 

NORMAL SCAN DAY 3 TIME q.02 
CE UNMASK CORE LOAD--PRESS START TO EXIT FROM CORE LOAD 
CEI 09.070 

SSO ON ERR CNTRS 
SSl ON 1443 
SS2 ON 2310 
SS3 ON 1053 
2310 
UNIT USER ORIGINAL 

1 00 01 
2 02 02 
3 00 00 

2310 
UNIT 

1 
2 
3 

SWITCH 

USER ORIGINAL 
01 01 
02 02 
00 00 

PACKS 

NORMAL SCAN DAY 3 TIME 

START OF GRADE 85 PRODUCTION TIME 
OP-GUIDE LIMITS FOR NEW GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 32000.00 -32000.~0 
3 32000.00 -32000.00 
5 5.50 4.50 
7 5.50 4.50 
9 5.50 4.50 

11 5.50 4.50 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 

9.04 

0.20 START TIME 

POINT 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

HIGH LI MI T 
32000.00 
32000.00 

5.50 
5.50 
5.50 
5.50 

32000.00 
32000.00 
32000.00 
32000.00 

9.05 DAY 3 

LOW LIMIT 
-32000.00 
-32000.00 

4.50 
4.50 
4.50 
4.50 

-32000.00 
-32000.00 
-32000.00 
-32000.00 

Programming Techniques 287 



8 
---/-
CLOSED LOOP POINTS 

PCiINT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 0 2 () 3 0 4 0 
5 0 6 0 7 29 8 70 

ONE HOUR LOG DAY 2 TIME 8.00 

START OF GRADE 95 PRODUCTION TIME 0.20 START TIME 8.04 DAY 

LOG15 DAY 2 TIME 8.15 
OP-GUIDE POINTS 

POINT VALUE POINT VALUE POINT VALUE POINT VALUE 
1 111-154.00 2 911511.00 3 26.00 4 -62.00 
5 4.97 6 11.98 7 5.00 8 11.90 
9 11.911 10 5.011 11 4.98 12 11.98 

13 0.19 111 0.02 15 0.57 16 -0.00 
17 712.00 18 710.00 19 710.00 20 708.00 
21 710.00 22 710.00 23 710.00 24 712.00 
25 708 .. 00 26 712.00 27 708.00 28 706.00 
29 710 .. 00 .30 708.00 31 706.00 32 710.00 
33 708.,00 311 708.00 35 708.00 36 708.00 
37 708.,00 38 706.00 39 710.00 110 710.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POINT VALUE 

1 0 2 -1 3 0 II 0 
5 0 6 0 7 69 8 30 

SHIFT END LOG DAY TIME 8.15 

STAHT OF GRADE 96 PRODUCTION TIME 0.20 START TIME 8.25 DAY 

LOGlL5 DAY 2 TIME 8.30 
OP-GUIDE POINTS 

POINT VALUE POINT VALUE POINT VALUE POINT VALIJE 
1 111-154.00 2 91154.00 3 211.00 II -80.00 
5 11.97 6 11.98 7 5.00 8 11.90 
9 11.911 10 5.011 11 11.98 12 11.98 

13 0.88 111 0.20 15 0.110 16 -0.00 
17 71u.OO 18 710.00 19 710.00 20 708.00 
21 716.00 22 712.00 23 710.00 24 710.00 
25 714..00 26 710.00 27 706.00 28 714.00 
29 708.00 30 708.00 31 712.00 32 7111.00 
33 708.00 34 712.00 35 712.00 36 714.00 
37 706.00 38 710.00 39 712.00 40 712.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POINT VALUE POINT VALUE 

1 0 2 0 3 0 II 0 
5 0 6 0 7 2!l 8 70 

MONDAY MORNING REPORT DAY TIME 8.30 

START OF GRADE 97 PRODUCTION TIME 0.20 START TIME 8.45 DAY 

LOG1.5 DAY 2 TIME 8.115 
OP-GUIDE POINTS 

POINT VALUE POI NT VALUE POINT VALUE POINT VALUE 
1 14156.00 2 91144.00 3 36.00 4 -82.00 
5 11.97 6 11.98 7 5.00 8 11.90 
9 4.911 10 5.011 11 11.98 12 11.98 

13 0.71 14 0.36 15 0.69 16 -0.00 
17 706.00 18 708.00 19 712.00 20 712.00 
21 712.00 22 716.00 23 710.00 211 712.00 
25 710.00 26 716.00 27 7111.00 28 712.00 
29 710.00 30 714.00 31 710.00 32 710.00 
33 712.00 311 710.00 35 710.00 36 712.00 
37 710.00 38 ',10.00 39 710.00 110 710.00 

CLOSED LOOP POINTS 
POINT VALUE POINT VALUE POI NT VALUE POINT VALUE 

1 0 2 0 3 0 II 0 
5 () 6 0 7 36 8 63 

t 

288 



A I® (Continued) 
, 

LOG15 DAY 2 TIME 9.00 
OP-GUIDE POINTS 

POINT VALUE POINT VALUF. 
1 14156.00 2 9438.00 
5 4.97 6 4.98 
9 4.94 10 5.04 

13 0.28 14 0.36 
17 708.00 18 714.00 
21 714.00 22 714.00 
25 712.00 26 710.00 
29 710.00 30 708.00 
33 708.00 34 708.00 
37 708.00 38 714.00 

CLOSED LOOP POINTS 
POINT VALUE POI NT VALUE 

1 0 2 -1 
5 0 6 0 

ONE HOUR LOG OAY 2 TIME !LOO 
PRODUCTION STOP TIME 9.10 DAY 2 

'" , 

0 11 JOB A 
9 II * UPDATE A PROCESS JOB FILE ON DISK 

II XEQ LOADJ FX 

PROCESS JOB FILE LOAD TIME 11.14 
GRADE NUMBER 12345 PRODUCTION TIME 
OP-GUIDE LIMITS FOR GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 32000.00 -32000.00 
3 32000.00 -32000.00 
5 5.45 4.96 
7 5.45 4.96 
9 5.45 4.96 

11 5.45 4.96 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 
21 32000.00 -32000.00 
23 32000.00 -32000.00 
25 32000.00 -32000.00 
27 32000.00 -32000.00 
29 32000.00 -32000.00 
31 32000.00 -32000.00 
33 32000.00 -32000.00 
35 32000.00 -32000.00 
37 32000.00 -32000.00 
39 32000.00 -32000.00 

CLOSEn LOOP SET POINTS FOR GRADE 
POINT SETPT POINT SETPT 
102 0 
5 0 6 0 

PROCESS JOB FILE LOAD TIME 11.14 
GRADE NUMBER 4530 PRODUCTION TIME 
OP-GUIDE LIMITS FOR GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 32000.00 -32000.00 

32000.00 -32000.00 
5 5.55 4.45 
7 5.55 4.45 
9 5.35 4.45 

11 5.63 4.45 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 
21 32000.00 -32000.00 
23 32000.00 -32000.00 
25 32000.00 -32000.00 
27 32000.00 -32000.00 
29 32000.00 -32000.00 
31 32000.00 -32000.00 
33 32000.00 -32000.00 
35 32000.00 -32000.00 
37 32000.00 -32000.00 
39 32000.00 -32000.00 

CLOSEn LOOP SET POINTS FOR GRADE 
POINT SETPT POINT SETPT 
102 0 
5 0 6 0 

A 
'4 

POINT 
3 
7 

11 
15 
19 
23 
27 
31 
35 
39 

POINT 
3 
7 

1.30 

POINT 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

POINT 
3 
7 

1.25 

POINT 
2 

4 

6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

POINT 
3 
7 

VALUE 
22.00 

5.00 
4.98 
0.67 

708.00 
710.00 
712.00 
712.00 
710.00 
708.00 

VALUE 
0 

69 

HIGH LIMIT 
32000.00 
32000.00 

5.45 
5.45 
5.45 
5.45 

32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

SETPT 
o 

15 

HIGH LIMIT 
32000.00 

32000.00 
5.45 
5.45 
5.65 
5.62 

32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

SETPT 
o 

65 

POINT 
4 
8 

12 
16 
20 
24 
28 
32 
36 
40 

POINT 
4 
8 

• V 

LOW LIMIT 
-32000.00 
-32000.00 

4.96 
4.96 
4.96 
4.96 

-320.00.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

VALUE 
-78.00 

4.90 
4.98 

-0.00 
710.00 
712.00 
714.00 
712.00 
712.00 
714.00 

VALUE 
0 

30 

POINT 
4 
8 

SE TPT 
o 

86 

LOW L 1M IT 
-32000.00 

-32000.00 
4.45 
4.45 
4.45 
4.45 

-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

POINT 
4 
8 

SETPT 
o 

83 

Programming Techniques 289 



o (Corltinued) 

PROCESS JOB FILE LOAD TIME 11.14 
GRADE NUMBER 4531 PRODUCTION TIME 
OP-GUIDE LIMITS FOR GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 32000.00 -32000.00 
3 32000.00 -32000.00 
5 5.23 5.20 
7 5.23 5.21 
9 32000.00 -32000.00 

11 32000.00 -32000.00 
13 32000.00 -32000.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 
21 32000.00 -32000.00 
23 32000.00 -32000.00 
25 32000.00 -32000.00 
27 32000 00 -32000.00 
29 32000.00 -32000.00 
31 32000.00 -32000.00 
33 32000.00 -32000.00 
35 3?000.00 -32000.00 
37 32000.00 -32000.00 
39 32000.00 -32000.00 

CLOSED LOOP SET POINTS FOR GRADE 
POINT SETPT POINT £ETPT 
102 0 
5 0 6 0 

PROCESS JOB FILE LOAD TIME 11.14 
GRAOE NUMBER 4532 PRODUCTION TIME 
OP-GUIDE LIMITS FOR GRADE 
POINT HIGH LIMIT LOW LIMIT 

1 14200.00 14100.00 
3 30.00 20.00 
5 5.10 4.90 
7 5.10 4.90 
9 5.10 4.90 

11 5.10 4.90 
13 25.00 15.00 
15 32000.00 -32000.00 
17 32000.00 -32000.00 
19 32000.00 -32000.00 
21 32000.00 -32000.00 
23 32000.00 -32000.00 
25 32000.00 -32000.00 
27 32000.00 -32000.00 
29 32000.00 -32000.00 
31 720.00 700.00 
33 32000.00 -32000.00 
35 32000.00 -32000.00 
37 32000.00 -32000.00 
39 720.00 700.00 

CLOSED LOOP SET POINTS FOR GRADE 
POINT SETPT POINT SETPT 

1 0 2 0 
5 0 6 0 

PROCESS JOB FILE LOAD TIME 11.15 

II JOB A 
II END OF ALL JOBS FOR NOW 

290 

0.10 

POINT 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

POINT 
3 
7 

HIGH LIMIT 
32000.00 
32000.00 
32'000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

SETPT 
o 

45 

5.45 

POINT 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24· 
26 
28 
30 
32 
34 
36 
38 
40 

POINT 
3 
7 

HIGH LIMIT 
9890.00 
-10.00 

5.10 
5.10 
5.10 
5.10 

25.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 
32000.00 

720.00 
720.00 

32000.00 
32000.00 

720.00 
720.00 

SETPT 
o 

98 

LOW LIMI T 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

POINT 
4 

SETPT 
o 

47 

LOW LIMIT 
9880.00 
-30.00 

4.90 
4.90 
4.90 
4.90 

15.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 
-32000.00 

700.00 
700.00 

-32000.00 
-32000.00 

POINT 
4 
8 

700.00 
700.00 

SE TPT 
o 

12 



APPENDIX A. TSX SYSTEM COMPOSITION AND CAPABILITIES 

ON-LINE SYSTEM 
NONPROCESS OFF-LINE 

WITH WITHOUT MONITOR SYSTEM 
TIME-SHARING TIME-SHARING 

FIXED CORE CONTAINS SKELETON SKELETON TASK TASK 

SKELETON AREA OF DISK 
CONTAINS SKELETON SKELETON TASK SKELETON 

TSC IN FIXED CORE YES NO NO NO 

NONPROCESS MONITOR (NPM) 
FUNCTIONS YES NO YES YES 

CORE LOAD BUILD -
NONPROCESS CORE LOADS YES NO YES YES 

CORE LOAD BUILD -
PROCESS CORE LOADS YES NO NO YES 

RESUL T OF COLD START SYSTEM SKELETON SYSTEM SKELETON TASK SYSTEM SKELETO~"J 

EXECUTE PROCESS CORE LOADS YES YES NO NO 

EXECUTE PROCESS INTERRUPTS YES YES NO NO 

EXECUTE PROGRAMMED 
INTERRUPTS YES YES NO NO 

EXECUTE TIMER INTERRUPTS YES YES NO NO 

DATA PROCESSING I/O 
FUNCTIONS YES YES YES YES 

PROCESS I/O FUNCTIONS YES YES YES NO 

NPM ERROR MESSAGES YES NO YES YES 

TASK ERROR MESSAGES NO NO YES YES 

EAC ERROR MESSAGES YES YES NO NO 

CONTROL OF TASK FUNCTIONS NO NO YES YES 

CONTROL OF NPM FUNCTIONS TSC, NONPROCESS NON-APPLICABLE NONPROCESS SUPERVISOR NONPROCESS SUPERVISOR 
SUPERVISOR AND JOB AND JOB STACK AND JOB STACK 
STACK 

CONTROL OF PROCESS 
FUNCTIONS SYSTEM SKELETON SYSTEM SKELETON NON-APPLICABLE NON-APPLICABLE 

--
METHOD OF CALLING CORE NAME CARD, INTERRUPTS, NAME CARD, INTERRUPTS, / /XEQ AND LINK NON -APP L ICAB LE 
LOADS CALLS TO: CHAIN, VIAQ, CALLS TO: CHAIN, VIAQ, 

SPECL, BACK, DPART, SPECL, BACK, DPART, AND 
INTEX, SHARE, / /XEQ INTEX 
AND LINK 

VARIABLE AREA OF CORE PROCESS CORE LOADS, PROCESS CORE LOADS, NONPROCESS MONITQR, NONPROCESS MONITOR, 
CONTAINS NONPROCESS CORE EDP PROGRAMS, AND SYSTEM LOADER, TASK TASK UTILITIES, SYSTEM 

LOADS, NONPROCESS COLD START UTILITIES, NONPROCESS LOADER AND SKELETON 
MONITOR, EDP CORE LOADS AND BUILDER 
PROGRAMS, AND COLD SKELETON BUILDER 
START 

Appendix A. TSX System Composition and Capabilities 291 



AP~ENDIX B. SUMMARY OF TSX CALL STATEMENTS 

Where U sed Code 

I 

M 

M 

M 

M, I, N*, C 

M, I, N*, C 

M, I, N*, C 

M, I, N*, C 

M 

M, I, C 

292 

statement 

CALL INTEX 

CALL CHAIN (NAME) 

CALL SPECL (NAME) 

CALL BACK 

CALL QIFON (NAME, P, 
L, I, E) 

CALL CLEAR (M, L, It 
•••• , L, I,) 

CALL QUEUE (NAME, 
P, E) 

CALL UNQ (NAME, P) 

CALL VIAQ 

CALL MASK (I, J) 

Description 

Causes return of control to MIC on interrupt exit. 

Mainline core load designated by NAME is loaded and 
executed. 

Mainline core load containing this call is saved on disk. 
Mainline core load designated by NAME is loaded and 
executed. 

Mainline core load saved as a result of a CALL SPECL 
is restored to core and execution continues with the 
statement following the special call. 

Specified interrupts, that have been recorded, will be 
queued in the order called by the CALL QIFON statement 
and according to its designated parameters. 

NAME - name of the mainline core load. 
P - execution priority of the named mainline core load. 
L - interrupt level or indicator. 
I - PISW bit position indicator or CALL COUNT 

indicators. 
E - error parameter to specify the action to be taken 

if queue is full. 

Specified interrupts will be cleared of recorded status 
whether they were recorded or not. M specifi,es the 
number of L and I parameters to follow. L and I are 
the same as designated for CALL QIFON. If M = 0, 
all recorded status is cleared. 

Mainline core load designated by NAME is entered in 
core load queue with priority P and error option E. 

Mainline core load designated by priority P and NAME 
will be removed from the core load queue. 

Last logical statement of a mainline core load.. The 
first core load, of the highest priority entered in the 
queue, is loaded and executed. 

Interrupt levels specified by data statements for I and J 
are masked (no unmasking occurs). 



Where Used Code 

M, I, C 

M, I, N*, C 

M, I, C 

M, I, N, C 

M, I, N*, C 

M, I, N*, C 

M,X 

I, C 

M, I, N*, C 

M, I, N*, C 

M, I, C 

M, I, C 

Statement 

CALL UNMK (I, J) 

CALL SAVMK (I, J) 

CALL RESMK (I, J) 

CALL OPMON 

CALL TIMER (NAME, I, 
INT) 

CALL COUNT (IN, I, INB) 

CALL SHARE (I) 

CALL ENDTS 

CALL SETCL (I) 

CALL CLOCK (I) 

CALL LEVE L (L) 

CALL DPART 

M - Mainline core loads only. 
I - Interrupt core loads only. 
N - Nonprocess core loads only. 
C - Combination mainline and interrupt core load. 

Description 

Interrupt levels specified by data statements for I and J 
are unmasked (no masking occurs). 

Interrupt level mask status is saved in I and J (no 
masking or unmasking occurs). 

Interrupt levels are masked according to I and J (all 
other s are unmasked). 

Operation Monitor is reset. 

Interval timer specified by I (lor 2) is set up to count 
INT intervals. After !NT intervals have elapsed, ITC 
will branch to NAME (user's subprogram). 

Program interval timer specified by I (1, 2, 3, ••• , 9) 
is set to count INB intervals. Upon completion of INB 
intervals, the ITC will branch to the subroutine 
specified by IN (IN specifies a subroutine number from 
o - 31). 

The present core load is saved and nonprocess time ... 
sharing is set up for I timed intervals. 

Time-sharing is terminated. 

Programmed clock is set to equal I. 

Clock is read into I. 

Calls the programmed interrupt specified by the hard­
ware level L (L must be between 0 -23). 

Tests the operation level of present use and, if an 
interrupt level exists, executes a CALL INTEX; other­
wise a CALL VIAQ is executed. 

* - Must be an XEQ from core load area (INTERVAL TIMER CONTROL REQUIRED) 
X - Must be an XEQ from core load area (TIME -SHARING REQUIRED) 

Appendix B. Summary of TSX Call Statements 293 



APPENDIX C. ASSEMBLER LANGUAGE TSX CALLS 

This section describes the Assembler language 
equivalent of the FOR TRAN CA LL statements pro­
vided in the time-sharing executive system. 

Machine Interval Timers 

The Assembler language statements to call the 
TIMER subprogram are: 

CALL TIMER 
CALL NAME 
DC A 
DC B 

where NAME is the name of the subprogram to be 
executed when the time specified by B has elapsed. 
A and B must be defined as: 

A DC 1 For machine interval timer 

or 
(A). 

2 For machine interval timer 
(B). 

B DC XX The number of intervals to be 
counted before the subprogram 
is executed. 

Pr<:>grammed Interval Timers 

The Assembler language statements to call the 
COUNT subprogram are: 

CALL COUNT 
DC A 
DC B 
DC C 

where the parameters A, B, and C must be defined 
as: 

B DC 1-9 Programmed timer number 

294 

C DC XX 

A DC 0-31 

The number of intervals to be 
counted before the subprogram 
is executed. 

Number of the subprog:ram to 
be executed when the time has 
elapsed. 

The Assembler language statements to be used to 
read and to set the programmed real-time clock are: 

Read: 

CALL CLOCK 
DC A 

where A is the address of the location where the con­
tents of the clock are to be stored. 

Set: 

CALL SETCL 
DC A 

where A must be defined as: 

A DC XXXX The time to be used for setting 
the clock. The time must be 
represented in hours and 
thousandths of hours (t. e. , 
00000 through 23999). 

PSC Statements 

The following Assembler language statements are 
equivalent to the FOR TRAN language calls for core 
load sequencing. 

CALL BACK I 
CALL ENDTS 
CALL VIAQ 
CALL DPART 

No parameters are I'equired 
for these calls. 



Call Chain: 

CALL CHAIN 
CALL NAME 

where NAME is the name of the core load to be 
executed. 

Call Special: 

CALL SPECL 
CALL NAME 

where NAME is the name of the core load to be 
executed. 

C all Queue:' 

CALL QUEUE 
CALL NAME 
DC A 
DC B 

where NAME is the name of a core load to be added 
to the queue. A and B must be defined as follows. 

A DC 1-32,767 Priority Number 

B DC 1-32,766 Replace the lowest priority 
entry on error condition 

or 

o 
or 

32,767 

Call U nqueue: 

CALL UNQ 
CALL NAME 
DC A 

Ignore tlie call on error 
condition 
Restart on error condition 

where NAME is the name of a core load whose entry 
is to be removed from the queue. A must be defined 
as follows: 

A DC 1-32,767 Priority Number 

Call Time-Share: 

CALL SHARE 
DC A 

where A must be defined as follows: 

A DC xx Number of programmed timer 
base intervals to be used for 
nonproce'Ss operations. 

Call Programmed Settable Interrupts: 

CALL LEVEL 
DC A 

where A must be defined as: 

A DC 0-23 

Interrupt Calls 

User specified hardware level 
to cause interrupt 

The following Assembler language statements are 
used to service and clear recorded interrupts. 

Call Interrupt Exit: 

CALL INTEX No parameters are required for 
this call 

Service Recorded Interrupts 

CALL QIFON 
CALL NAME 
DC A 
DC 
DC 
DC 

B 
C 
D 

where NAME is the name of the core load to be 
serviced if recorded. A, B, C, and D must be 
defined as follows: 

Appendix C. Assembler Language TSX Calls 295 



A DC XX Priority number 
B DC XX Interrupt level number or 

indicator 
C DC XX Position within PISW or 

indicator 
D DC 1-32,767 Replace lowest priority entry 

or on error condition 
0 Ignore the c all on error 

or condition 
32,767 Restart on error condition 

Clear Recorded Interrupts: 

CALL CLEAR CALL CLEAR 
DC A DC A (when A = 0) 
DC Bll) 
DC C(l) 
DC B(2) 
DC C(2) 

where A, B, and C must be defined as follows: 

A DC XX Number of Bs and Cs which 
follow. If zero, all recorded 
status is cleared 

B DC XX Interrupt level number or 
indicator. Not used if A = 0 

C DC XX Position within PISW or 
indicator. Not used if A = 0 

Miscellaneous Subroutines: 

The following Assembler language statements are 
used to link the miscellaneous subroutines. 

Mask: 

CALL MASK 
DC A 
DC B 

where A and B must be defined as: 

296 

A DC /0000 Levels to masked. A represents 
the first 14 levels (0 through 13). 
For example, to mask levels 
o - 13, use: /FFFC 

B DC /0000 Levels to be masked. B re-
presents the second 10 levels 
(14 through 23). For example, 
to mask levels 14 through 23, 
use: /FFCO 

Unmask: 

CALL UNMK 
DC A 
DC B 

where A and B must be defined the same as shown for 
CALL MASK. The designated levels are unmasked. 

Save Mask: 

CALL SAVMK 
DC A 
DC B 

where A and B are the addresses of the core storage 
words where the contents of the interrupt mask 
register are to be placed: 

Restore Mask: 

CALL RESMK 
DC A 
DC B 

where A and B are the levels defined for fl1e CALL 
MASK or CALL UNMK. 

Reset Operations Monitor: 

CALL OPMON No parameters are required 
for this call 



APPENDIX D. CONTENTS OF THE FIXED AREA OF CORE 

Address Address 

Decimal Hexadecimal 
Description of Use Decimal Hexadecimal Description of Use 

00000 0000 Reserved 00038 0026 Physical 1443-1 device table 
address 

00001 0001 Branch instruction (/4400) 
00039 0027 Physical 1443-2 device table 

00002 0002 CE routine entry address address 
(EACA) 

00003 0003 Not used 
00040 0028 Beginning address of MIC 

00004 0004 Interval timer A 
00041 0029 User time-sharing time 

00005 0005 Interval timer B 
00042 002A Constant: -1 

00006 0006 Interval timer C 
00043 002B Constant: -10 

00007 0007 General I/O busy indicator 
00044 002C Entry address to 1053 no 

response subroutine 

00008 0008 Internal error interrupt 00045 0020 Timer busy indicators 
branch address 

00009 0009 Trace interrupt branch 
00046 002E Mask register (0-13) 

address 00047 002F 10CC control word for 

00010 OOOA Mainline return address 
UNMK1 

from CE routine 00048 0030 Mask register (14-23) 

00011 OOOB Level 0 interrupt address 00049 0031 10CC control word for 

00012 OOOC Levell Interrupt address 
UNMK2 

00013 0000 Level 2 interrupt address 
00050 0032 Mask levels 0-13 

00014 OOOE Level 3 interrupt address 
00051 0033 10CC for levels 0-13 

00015 OOOF Level 4 interrupt address 
00052 0034 Mask levels 14-23 

00016 0010 Level 5 interrupt address 
00053 0035 10CC for levels 14-23 

00017 0011 Level 6 interrupt address 
00054 0036 Pseudo accumulator (WK4) 

00018 0012 Level 7 interrupt address 
00055 0037 Pseudo accumulator (WK5) 

00019 0013 Leve I 8 interrupt address 
00056 0038 1 = time-sharing is in 

progress; 

00020 0014 Level 9 interrupt address 
0= not in progress 

00021 0015 Level 10 interrupt address 00057 0039 Address of magnetic tape 
sense control word 

00022 0016 Level 11 interrupt address 
00058 003A 1 = ITC is in system 

00023 0017 Level 12 interrupt address director; 
0= ITC is not included 

00024 0018 Level 13 interrupt address 
00059 003B Non-zero indicates TASK is 

00025 0019 Level 14 interrupt address in core 

00026 001A Level 15 interrupt address 00060 003C Address of timer A sub-
routine 

00027 001B Level 16 interrupt address 
00061 0030 Address of timer B sub-

00028 001C Level 17 interrupt address routine 

00029 OOlD Level 18 interrupt address 00062 003E Program timer 1 

00030 001E Level 19 interrupt address 00063 003F Timer 1 subprogram number 
(1-32) 

00031 001F Leve I 20 interrupt address 
00064 0040 Timer lon-off branch 

00032 0020 Level 21 interrupt address 
00065 0041 Program timer 2 

00033 0021 Level 22 interrupt address 
00066 0042 Timer 2 subprogram number 

00034 0022 Leve I 23 interrupt address (1-32) 

00035 0023 1 = Loop on 1443 not ready 00067 0043 Timer 2 on-off branch 
during nonprocess program; 
0= go to EAC 00068 0044 Program timer 3 

00036 0024 Logical 1443-1 device table 00069 0045 Timer 3 subprogram number 
address (1-32) 

00037 0025 Logical 1443-2 device table 00070 0046 Timer 3 on-off 
address branch 

Appendix D. Contents of the Fixed Area of Core 297 



r---" 
Address Address 

Decimal Hexadecimal Descriptian of Use Decimal Hexadecimal Description of Use 

00071 0047 Program timer 4 00105 0069 Interrupt core load ending 
f address 

00072 0048 Timer 4 subprogram number 
(1-32) 00106 006A CALL CHAIN entry 

00073 0049 Timer 4 on-off branch 00107 006B System director endir'g 
address 

00074 004A Program timer 5 
00108 006C Mask word out-of-core 

00075 004B Timer 5 subprogram number interrupts (0-13) 
(1-32) 

00109 006D Mask word for out-of-core 
00076 004C Timer 5 on-aff branch interrupts (14-23) 

00077 004D Program timer 6 00110 006E System mask save area (0-13) 

00078 004E Timer 6 subprogram number 00111 006F System mask save area (14-23) 
(1-32) 

00112 0070 1 = AI basic overlap feature 
00079 004F Timer 6 an-off branch available 

00080 0050 Program timer 7 00113 0071 1 = AI expander overlap 
feature available 

00081 0051 Timer 7 subprogram number 
(1-32) 00114 0072 Entry address for I/O error 

00082 0052 Timer 7 on-off branch 00115 0073 EAC error code 

00083 0053 Program timer 8 00116 0074 Error information 

00084 0054 Timer 8 subprogram number 00117 0075 Error information 
(1-32) 

00118 0076 Error information 
00085 0055 Timer 8 on-off branch 

00119 0077 Error information 
00086 0056 Program timer 9 

00120 0078 Entry address of EAC 
00087 0057 Timer 9 subprogram number 

(1-32) 00121 0079 Address of queue table 

00088 0058 Timer 9 on-off branch 00122 007A Maximum number of queue 
entries 

00089 0059 Timer-sparing timer 
00123 007B Number of interrupt levels 

00090 005A Exit address of I/O routines used (NULEV) 

00091 005B Time-sharing timer busy 00124 007C Entry address of disk 
indicator routine 

00092 OOSC Programmed clock 00125 007D Entry address of list printer 
routine 

00093 005D Programmed clock 
00126 007E Entry address of system printer 

00094 005E Branch to ITC exit routine routine 

00095 005F Constant: -50 00127 007F Constant: /0600 

00096 0060 Constant: 3 00128 0080 Constant: /0500 

00097 0061 PAUSE routine indicator 00129 0081 Constant: /F800 
specifying that interrupt has 
occurred 00130 0082 Constant: /OFF8 

00098 0062 Entry address of I/O test 00131 0083 Constant: /OOFF 
routine (lOTST) 

00132 0084 Constant: /8000 
00099' 0063 1 = CARDN is in skeleton 

00133 0085 Constant: /0001 
00100 0064 Mask routine indicator: 

1 = out-of-core interrupts ar e 00134 0086 Constant: /0002 
masked 

00135 0087 Constant: /0004 
00101 0065 Address of CALL INTEX 

processing routines 00136 0088 Constant: /0005 

00102 0066 Beginning address of variable 00137 0089 Constant: /0007 
core 

00138 008A Constant: /OFFF 
00103 0067 TV location (XR3) 

00139 008B Constant: /2000 
00104 0068 Interrupt level work area 

address (XR3) 00140 008C Constant: /0180 

298 



Address Address 

Decimal Hexadecimal Description of Use 
Decimal Hexadecimal Description of Use 

00141 008D Constant: 320 00171 OOAB TSC indicator: 0 = Call 

00142 008E CALL LINK entry address 
nonprocess monitor; 
1 = Call program from 
save area 

00143 008F Address of EAC disk down 
00172 OOAC Entry point to TVSAV message 
00173 OOAD Entry point to TVEXT 

00144 0090 Constant: 321 
00174 OOAE Endi ng address of ske leton 

00145 0091 Address of first word after I/O area 
ETV 

00175 OOAF Address of 1053 logical 
00146 0092 Constant: /FFOO table 

00147 0093 Constant: /FOOO 00176 OOBO Address of message buffer 
table 

00148 0094 Constant: /FF87 00177 OOBI Not used in an on-line sy~tem. 

00149 0095 Keyboard request indicator Under TASK, this is the stort-
i ng add ress of the T AS K core 

00150 0096 Program timer busy indicator dump program. 

00151 0097 Not used 00178 00B2 Address of EAC constants 

00152 0098 Entry address to set timers 
00179 00B3 Entry address of non process 

busy monitor read-in routine 

00153 0099 Entry point to EAC printer 00180 00B4 Non-disk FlO save area 

routine address 

00154 009A Entry point to OZSAV 
00181 00B5 Disk FlO save area address 

00155 009B Entry point to QZEXT 00182 00B6 Entry point to EXIT 
subroutine 

00156 009C Starting address of skeleton 
00183 00B7 Address of message buffer COMMON 

disk address 

00157 009D Length of ske leton 
00184 00B8 Entry for DISKN from ETV COMMON 

00158 009E Address of message buffer 
00185 00B9 Entry for TYPEN from ETV 

drive code 
00186 OOBA Entry for PRNTN from ETV 

00159 009F I/O Error routine entry/ 
00187 OOBB Address of disk drive table return address 

00160 OOAO Program interrupt 10CC 
00188 OOBC Address of logical drive 0 

(0-13) devi ce table 

00161 OOAI 10CC control word 
00189 OOBD Address of logical drive 1 

device table 

00162 00A2 Program interrupt 10CC 
00190 OOBE Address of logical drive 2 (14-23) 

device table 

00163 00A3 10CC control word 00191 OOBF Address of physical drive 0 
device table 

00164 00A4 TAS K nonprocess monitor abort 
indicator 00192 OOCO Address of physical drive 1 

device table 
00165 00A5 EAC printer type code: 

0= 1053, 1 = 1443 00193 OOCI Address of physical drive 2 
device table 

00166 00A6 List printer type code: 
0= 1053, 1 = 1443 00194 00C2 Address of save area for 

unformatted FlO 
00167 00A7 System printer type code: 

0= 1053, 1 = 1443 00195 00C3 Address of inskel ETV 

00168 00A8 Core size minus 1 00196 00C4 Address of variable ETV 

00169 00A9 Address of 1442 entry in 00197 00C5 Special save indicator 
interrupt branch table 

00198 00C6 User time-sharing (TfSHA) 
00170 OOAA Address of FORTRAN I/O for CALL VIAQ when Queue 

table is empty. 

Appendix D. Contents of the Fixed Area of Core 299 



Absolute loader function 13 

TASK 187 
operation 188 

Absolute programs, sector break 128-130 

A and B timers 43-45 
ADC 191 

Address protection 
AIPTN subroutine 

185 
75 

AIRN su.broutine 
AISQN subroutine 
Analog 

75 
75 

input functions 206 
input log listing 264 -266 
multiplexer 191 

proCI~SS I/O 191 
to-d:igital converter (ADC) 191 

Analog input basic (AIB) 137 
Analog input basic with comparator (AIBC) 137 

Analog input extended (AIE) 137 
Analog input extended with comparator (AlEC) 137 

Arithmetic and functional subroutines 10 
Assemble and execute nonprocess program 80-81 

Assembler 
ASM 11, 74, 122 

Call subroutines 181 
Control cards 79, 181 

impliCit and explicit subroutines 169-170 
TSX calls 294-296 

Writing assembler language subroutines 181-184 
Assembling programs 80-82 
Assignment card restrictions 128 
*ASSIGNMENT cards, function of 126-d7 
Assignment table (AT) and loader 122 
Automatic mode, loader 188 
Automatic time-sharing (VIAQ) 49 

BACK 19-20 
Back-up capability, EAC 60 

Bootstrap for nonprocess supervisor 122 
Bufferillg of messages 119-121 
Buffer size, disk 120 
Building TSX operating tables 124-125 
BZ1-8 118 

Calculating core size 
skeleton 172 
system director 132-133 
TASK 120-121 

CALL 

300 

BACK 19-20 
CHAIN 18 
CLEAR 41 

CLOCK 46 

COUNT 46 

DPART 31 

ENDTS 48 

EXIT 49 

INTEX 30 

LEVEL 49, 145 

LINK 49 

MASK 40 

OPMON 59 
QIFON 23-25 

QUEUE 20-23 

RESMK 40 

RETURN 33 

SAVMK 40 

SETCL 45 

SHARE 48 

SPECL 18 

TIMER 43 

UNMK 40 

UNQ 23 

VIAQ 25, 49 
Call COUNT subroutines 147 

CALL subroutines 186 
assembler 181 

timer 165 
type 179 

user programs 187 
Calling process core load externally 106 

CAR 68 
Card reproducing 107 
CARDN subroutine 75, 166 

SUP 72 
*CCEND and dump 98 
CDINS 118 
CDWexample 163 
C • Eo interrupt 199 

C • E. level interrupt switch 70 
CHAIN 18 

Chaining technique 18-20 

Channel address register (CAR) 68 
Characteristics of interrupts 29 
Checkpoint operation 197 
CLEAR subroutine 41 
Clock 46 

real time 45 -46 
real time setup (SETCL) 45 

Closed loop control 199 

Coding, reentrant 6 
Cold start 

cards 121 
CLST 
EAC 

9, 122, 151 
70 

logical number 109 



off-line 111 
on-line 107 
program 9, 122 

COLDS routines and time-sharing 198 
Combination core load 215 
COMMON 

COMM 179 
area 6-7, 76 
area, INSKEL/interrupt/normal 6-7 
communications area and NPM 71 

INSKEL 75 
LOCAL 99 

Communications area 
Disk 72 

nonprocess 72 
Communications linkages 101-102 

Compile and execute nonprocess programs 82 
Compile and store nonprocess programs 81-82 
Compiler, FORTRAN 11, 74 
Compiling programs 80-82 

Components, system 7 -11 
COMSZ equate card 119, 161 
Configuration, disk system 147-161 

Console 200 

interrupt 111-112 
interrupt logic 113 

CONTA 118 
Contact sense 192 

Continue, EAC 71 
Control 

Direct Digital (DDC) 195 

Error Alert (EAC) 14 
Interval Timer (ITC) 

Master Interrupt (MJC) 
Multi-level 16 

14, 133 
13, 33-39 

Program Sequence (PSC) 14, 17-18 

Programs 8-9 
Record analyzer, monitor 72 
Record Entry Table (CRENT) 175 
Time-sharing (TSC) 14 

Control cards 
Assembler 181 
*INCLD 173 
sequence of system loader 124 

Control cards, Monitor 77 
assembler 79 

DUP 78 
FORTRAN 78 
loader 77 
nonprocess monitor 77 -79 
simulator 79 

Conversion subroutines 10, 76 
Copying process data, example of 99 
Core 

contents, Fixed Area 297-299 
Dump, EAC 59 
exchange method, time-sharing. 14 

image formats 128 

map, skeleton 178 

off-line requirements 165 
on-line (non time-sharing) requirements 165 
on-line (time-sharing) requirements 164 
storage factors 164 
variable (VCORE) 8 

Core load 
area 82, 85, 101, 150, 160 
area, delete 84-85 
area, file-moving 99 

area, loading 98 
builder (CLB) 9, 122 
combination 84 

concept of a 5 
deleting and replacing 82-88 

file area, reserving 97-98 
interrupt 84 
link 84 
linkages, changing 86 
mainline and interrupt 
mainline queue tables 

nonprocess 84 
queue table 14 
rebuild 176 

31, 84 
132 

Core Load Builder (CLB) 122 

Core size 
calculating skeleton 172 
skeleton 164-171 
system director 132-133 

COUNT subroutine 46, 147, 166, 197 

NITP1/NITP2 147 
Counters, update EAC error 60 

CRENT 175 
Cycle steal 192 

DAC 192 

DACS 9, 191 
analog process I/O 191-192 

applications 193 
digital pr ocess I/O 192 

DAOP subroutine 75 
Data 

channels and masking 29 
entry dials 202 
format 187 
manipulation 97-99 
sheets, program 210-220 

Data acquisition and process control system (DACS) 9, 191 

Data files 84 
deleting/ replacing 82 -88 
dump from core load 98 

DCOM 72, 122 
entries 125 
SUP 72 

DDC 195, 199 

Debugging 
core loads 87 
process programs 112 

simulator 87-96 
system 203 

Index 301 



*DEDIT control card 127 
parameters 127 

*DEFINE CONFG 151-156, 164 

control card 151 
*DEFINE PAKDK (DUP) 150 

operation 107 
*DEFINE REMOV 150 

*DELETE 82 
Delete mainline 84-85 

combination core loads 84-85 
interrupt core loads 84-85 

Deleting 
core loads 82 -88 
data files 82-88 

programs 82-88 
Deleting from queue (UNQ) 23 

Dependence, time 15 
Design cClnsiderations, system 115-143 

Devices with no interrupt 127 
DICMP subroutine 75 
DIEXP sulbroutine 76 
Digital 

control, direct 195 
data display 202 
input switches 202 

process I/O 192 
to-Analog Converter (DAC) 192 

DINP subroutine 76 

Direct digital control (DDC) 195, 199 
Director, system 8, 130-143 
Disk 

areas, assignment 160 
buffer size 120 

cartridge initialization 157-159 
configuration examples 154-156 
drives and logical number 109 
edit phase 128 
file organization, example 205 
hardware 148 
layout 149 -151 

layout editing 125 
map for system programs 122 
organization 148-151 
sector distribut ion 159 
storage 159-161 
system configuration 147-161 
units conversion 148 
utility program (DUP) 10-11, 74, 122 

Disk Communications Area (DCOM) 72, 122 

DISKN subroutine 3, 75, 166 
EDP relation 70 

DLABL 
disk jnitialization 158 
DWRAD, TDWA 159 
functions of 159 

LET/FLET 158 
DPART routine 31 
DP and process I/O subroutines 10, 166 

302 

Dummy interrupt core load 111 

Dump 
core storage 59 
EAC 134 

from relocatable area 98-99 
from user area 98-99 

LET/FLET table 107 
*DUMP and *DUMPDA TA 98 

function of DUP 59 
Dumping from core load 98 

*DUMPLET 

LET/FLET 107 
listing 235, 267, 278 
use of 84 

DUP 10, 11, 74, 122 
control cards 78 
facilities 11 

ICLT 175 
sectors on system cartridge 74 

/ / DUP control record 74 
DWRAD 

disk initialization 157 
functions of 157-158 
TDWA, DLABL comparison 159 

EAC 14, 59-71 

dump 134 
error action 68 - 71 

error codes 61 
features of 59-60 

on-line recovery 62-67 
printer 199 
program breakdown 60-68 
system director 131 

EBPA 102 
EBT and ETV 163 

LIBF 164 

ECO 192 
ECPT2 118 

Edit phase, disk 128 
Editing and LET/FLET, DCOM 125 
Editing disk layout 125 
EDP 151 

DISKN relation 70 
EDPM 150 
Electronic contact operate (ECO) 192 
/ /END card and SUP 72 
/ /END OF ALL JOBS card 25, 26 

VIAQ 49 
ENDTS 48-49 
Entry to MIC 33-37 

Entry to SUP 73 

EPSV 150 
Equate cards and system director 131 

TASK 117-119 

Error 
action, EAC 68-71 
alert Control (EAC) 14, 59-71 



codes, EAC 61 
condition, servicing 4 
counters, updating 60 
decision subroutines 68, 70 

disk program (EDP) 68 
Dump Area (EDPM) 150 
procedures, I/O 198 
sample 197 
programs 123 
programs (EDP) 151 
save area (EPSV) 150 
subroutine, unused 60 

ETV 162, 175 
EBT 163 

example 163 
LIBF 162 
PNT 163 

Eventsequence 15 

Examples 
Nonprocess Monitor 79-114 

Execute highest priority core load (VIAQ) 25 

Execute nonprocess 
from core load area 82 
from temporary area 80-81 

Executive programs, functions of 12-114 

EXIT 49 

Exit 
EAC 68 

from MIC 37-39 

procedures from interrupt 33 
through interrupt level 71 

Explicit subroutines 166 
External calling of process core load 106 
External interrupt level 134 

FADD subroutine 143 
Features, EAC 59-60 
File area, reserving core load 

File protection 149 
*FILES control record 97 
Fixed area 161 

core contents 297 -299 
loce 145 

FLET 82 

definition of 122 
entries 109 
table dump 107 
tables 122 

FLIP 10, 101 
FOR 11, 74, 123 

FORTRAN 

97-98 

compiler (FOR) 11, 74, 123 
control cards 78 

DP I/O 166 
files, sample use 206 

impliCit and explicit subroutines 167-168 
I/O save area 150, 160 
I/O subroutines 10 
I/O table, example 163 
sectors on system cartridge 74 

Function buttons 202 

Functional simulate-class subroutines 76 
Functions of executive programs 12-114 
Functions of system director 133-135 

General TSX subroutines 76 
Guard interrupt core load 111 

Handling of interrupts 27-41 
Hardware timers 43-45 
HOLL 102 

lAC 
code example 126 

code and I/O interrupt 182 
codes and *ASSIGNMENT cards 126 
codes and LUN 127 

IBT 39 
example 163 

ICI 176,179 
ICLT 14, 35, 84, 144 

core load rebuild 176 

1ST 31 
map 179 

map interpretation 177 
NIL card and DUP 175 
PISW 143 

ICNT indicator in INSKEL COMMON 

ILSW 30, 126 
assignment 136 

bits and *ASSIGNMENT cards 126 
interrupt level 35 
PISW 143 

Implementation of LOCALs 99-102 

Implicit subroutines 166 
*INCLD control card 

core load rebuild 176 
use of 173 

In-core, EAC 68 
In-core interrupt (ICI) 

Index registers and MIC 

176, 179 
34 

50 

Initiating nonprocess monitor operation 109-110 
Initiating time -sharing 48-50 
Insert into queue (QUEUE) 20 

INSK 179 
INSKEL 

call COUNT 210, 211, 213, 224-225, 228-229, 234 

call TIMER 210, 227 
COMMON 4, 50, 179, 203 
interrupt subroutines 210-214, 225, 228, 229, 233 

INSV 150 

Internal interrupt level 134 
Internal machine error, causes 68 
Interprogram communication 7 

Interrupt 7, 27-29 
action of MIC 36 
assignment restrictions 137 
Branch Table (IBT) 35, 39 
characteristics of 29 
Control, Master (MIC) 13, 33-39 

Index 303 



core load 31-32, 215-218, 257-264 

core load, delete 84-85 

Core Load Table (ICL T) 14 
exit (INTEX) 33 
handling of 4, 27-41 

initiation of 15-16 
1/0 27, 39 
levels 28, 135, 185 

levels exit 71 
levels masking 29 
levels, out-of-core 146 

level and PISW group number 144 
level, sensed by ILSW 35 
masking 39-40, 186 

per level 137 
periodic 14 

philosophy 7, 27 -2 9 
priority 135 

procedures 33 

programs, Mainline/ Skeleton 30 

*RCORD card 42 
recording 41-42 
restrictions 40 

routine exit (DPART) 33 
Save Area (INSV) 37, 150 

servicing subroutines (ISS) 30, 41, 42, 144 
Status Table (1ST) 31, 35 
structure 7 
use of console 111-112 

Interval timer control (ITC) 14, 133 
Interval timers, use of 42-47 
INTEX 30 

INTKY 118 

Input/Output (I/O) 
analog process 191 
associated conversion subroutines 166 
device subroutines 30 
digital process 192 
error procedures 198 
interru.pts 27, 39 
simulator subroutines 75 
skeleton 12-13, 161 
subroutines 182 

unit table (lOUT) and loader 122 
unit table (lOUT) and LUN 125 

10CC locations in Fixed Area 145 

ISS subroutine 144, 176 
example of 183-184 

I/O subroutine 182 
1ST 31, 35 

ICLT 31 
ITC 14 

functions of 42 
system director 131 

JOB 79-80 

//JOB card and DCOM 72 
SUP 72 

304 

Job deck 79-80 

JTEST indicator in INSKEL COMMON 46 

Language translators 11 

LD(I) subroutine and timers 44,45 
LET 74, 80, 82 

entries 109 

/FLET and DLABL 158, 159 
/FLET entries 109, 125 
table dump 107 
tables 122 

use of 81-82 

Level 
interrupt 134 
interrupts per 137 
interrupt switch 70 

LEVEL subroutine 10, 49, 145 

Level work areas 14, 137, 185 
fixed section 139 
layout 138 

overlay section 138, 140-143 
LIBF 101, 179 

FLIP, LPT, VTV 101 
subroutines 182, 186 
user programs 187 

Library Function Subroutines (LIBF) 101, 179, 182, 186, 187 
Library, subroutine 123 
LINK 49 

Linkages, changing core load 86 
Linkages, communication 101-102 
LINS parameter 165 
Loader 

control cards 77 
operation 123-125 

system 9, 122 
Loading 

into core load area 98 

into NPWS 99 
nonprocess system 

Load Monitor function 
LOCAL 

calls 101 
COMMON 99 

123-124 

13 

definition of 5 

implementation of 99-102 
restrictions on use of 102 

subprograms 5 
uses of 102-103 

Location Equivalence Table (LET) 74, 80-82, 107, 109, 110, 122, 
125, 158-159 

Log description, sample program 206 
Logical number and disk drives 109 
LPT (Local Parameter Table) 101 
LSKEL parameter 164 

LSKEL and VCORE 164 
LUN 

lAC codes 127 
lOUT 125 



maximum LUN on TSX 126 
number assignment change 128 
numbers and *ASSIGNMENT card 126 

Machine features 1-2 
Machine Timers: A, B, C 14 
MAG T subroutine 75 
Mainline Core Load 31, 213, 217 

debugging with 112 
listing of 238-247, 250-257 
queue table 14, 132 

Mainline process, delete 84-85 
Mainline segmentation 22 
Manipulation, data 97-99 
Manual mode, loader 188 
MASK subroutine 10, 39 
Masking and data channels 29 
Masking interrupt levels 29 
Masking interrupts 39-40, 186 
Master Branch Table (MBT) 125 
Master Communications Area and Skeleton Common 175 
Master Communications Words (MCW) 175 
Master Interrupt Control (MIC) 13, 33-39, 131, 144, 185 
MBT (Master Branch Table) 175 
MBT and SKIBT 164 
MCW 175 
MESS 150 
MESS and DEFINE CONFG 153 
Message 

buffer (MESS) 150 
buffer area 160 
buffer size, change 128 
buffering 119-121 
unit size 119 

Method of operation, SUP 72-73 
MIC 13, 33-39, 185 

entry to 33-37 
exit from 37-39 
index registers 34 
interrupt action 36 
maximum number of serviced interrupts 39 
NB card 33 
sensing of ILSW /PISW 144 
system director 131 

Minimum system requirements 1-2 
Miscellaneous subroutines 10 
Modes of operation (of TSX) 3 
Monitor 

control cards 77 
control record analyzer 72 
Nonprocess (NPM) 71-114 
Operations 42, 59, 134 
Process 4 

Monitoring, Process 4 

Moving files in core load area 
Multi-drive TSX on-line system 
Multi-interrupt priority 28-29 
Multi-level control 16 
Multi-level programming 7 

99 
156 

Multi-process control 17 

NIL cards and ICLT 175 
NIL labels 143 
NOBUF 118 
NOCYL 118 
Non-interrupt devices 127 
Nonprocess 

Communications Area 72 
compile, store 80-82 
core load 84, 85, 219-220, 268-277 
core load listing 268-277 
execute 80-82 
Monitor (NPM) 25, 71-114 
Monitor control cards 77 - 79 
Monitor debugging 112 
Monitor examples 79-114 
Monitor initiating operation 109-110 
Monitor utility functions 107-114 
program debugging 87 
programs 80 
save area (NPSV) 150 
supervisor (SUP) 9, 72-73, 122 

supervisor bootstrap 122 
system 121-130 
system loading 123-124 
working storage (NPWS) 98-99 

*NONPROCESS PROGRAM control card 81 
Non-synchronous periodiC scheduling 26 
NPM 71 

operation initiation 110 

SHARE, VIAQ 110 
NPSV 150 
NPWS 98, 150, 159 
NULEV 135 

ICLLl/ICLL2 cards 146 
NUMBE 118 
Number of interrupt levels 135 

Object core size, change 128 
Off-line 

cold start 111 
execution of user program 187 
mode 3 
skeleton rebuild 175 
SYSGEN 116 

OG/SC 194 
ONLIN 119 
On-line 

core load rebuilding 85-86 
EAC error codes 61 
mode 3 
output, sample system 208 
process output listing, sample system 280-290 

SYSGEN 115 
system, multi-drive 156 

Operations Monitor 42, 59, 134 
time interval 59 

Operator Guide Control 200 

Index 305 



Operator Guide/Supervisory Control OG/SC 194 

OPMON 59 

Out-of-co're interrupt levels 146 

Overview of TSX system 1-11 

Packing user area 107 

PAPTN subroutine 75 

Parameters, *DEDIT control card 127 
Patch Area (PTCH) 162, 179 

Periodic program scheduler 197 

Periodic scheduling, non·-synchronous 26 

Phase, Disk Edit 128 
Philo~ophy, interrupt 27-29 

Physical disk and logical number 109 
PISW 30 

assignment, combination of 145 

ILSW 143 

indicators 143 

restrictions of use 144-146 

sensing of interrupt 35 

PLOTX subroutine 75 

PNT 84" 162 
ETV 163 

Preparing dummy interrupt core loads 111 
PRICS 118, 166 

Primary (Interrupt) Time Base 44, 133 

Printers, 1053/1816 14 

Priority 
assignments 29 

interrupt 135 

interrupt levels 28 

multi·· interrupt 28-29 
techniques 20-25 

PRNTN subroutine 3, 75, 166 

Process 
control 191 

core load 86, 106 

interrupt 32, 92, 144, 145 

Intermpt Status Word (PISW) 143 

Monitoring 4 

program, definition of 80 

program debugging 87 

Save Area (PRSV) 151 
Simulator 200-202 

work storage (PRWS) 150 
Processing programs 9-11 

Program 

breakdown, EAC 60-68 

cold start 9 

compiling 80-82 

control 8-9 

data sheets 210-220 

disk ultility (DUP) 10, 11, 74 

dump from core load area 98 

:i.nterrupt, included with mainline 30 
name table (PNT) 84 

process and nonprocess 80 

processing 9-11 

306 

sche~uler, periodic 197 
scheduling 14-26 

sequence 15 

Sequence Control (PSC) 14, 17-18 

service 9-10 

simulator 75-77 

skeleton interrupt 30 

user written 4 

Programmed interrupts 145 
Programmed timers 46 

Programming, multi-level 7 
reentrant coding 185-187 

techniques 181-290 

Protecting addresses 185 

PRSV 151 

PRWS 150 
PSC 14, 17-18, 162 

System Director 131 

PTCH 179 

QIFON 23-25 

use of 24 

Queue 

core load on indicator (QIFON) 23 

definition of 14 

subroutine 20-23 

table, core load 14 

table, mainline core load 132 

Queueing statements, use of 21 

Queueing techniques 20 -25 

Read-and-expand function 206 
Real-time 

clock ,,14, 45-46 

clock s~tup (SETCL) 46 
subroutines 10 

systems 191 

Re building FLE T 128 

Rebuilding process core loads 87 

*RCORD and LOCALs 103 

*RCORD card and interrupts 42 

Recording interrupts 41-42 

Recovery procedures, EAC 62-67 

Recursive entry to programs 14 

Reentrant 
coding 6, 185-187 
control 185 

program, MIC 13 
subroutine work level requirements 140-142 

Reload, EAC 71 

Relocatable 

Area 81-82, 98-99 

program area 159 

program, replace 85 

programs 82 -88 

subroutine area 107 

Relocation, TSX components 175 

Repacking relocatable subroutine area 107 



Replacing relocatable programs, coreloads, and data files 82-88 
Reproducing cards 107 

Reserving core load file area 97 -98 

RESMK 39 
Response time 165 

mainline interrupt 7 
Restrictions 

assignment card 128 
interrupt assignment 137 
LOCAL 101 
Simulator 77 

Restart, EAC 71 
RETURN 33 
Return saved mainline (CALL BACK) 19 
RPQ devices 30 

Rules governing interrupts 42 

Sample system, TSX 195 
SAVMK 39 
Scheduling 

periodic, non-synchronous 26 
program 14-26 

system 17 

Secondary Time Base (CBASE) 133, 134 
Sector break records for Absolute Programs 128-130 

Sector, definition of 148 
numbering 148 

Segmenting mainlines 22 
Selectable time-sharing (SHARE) 48 
Selective replacement of PNT 86 

*SEQCH function 86 
Sequence checking 18 
Sequence Control, Program (PSC) 14, 17-18 
Sequence technique 18-20 
Service programs 9-10 
Servicing error conditions 4 

interrupts 41 
subroutines 30-32 

SE TCL subroutine 45 
Setpoint station movement indicators 202 
SFIO 175 
SHARE and NPM initiation 110 
SHARE subroutine 48 
/ / SIM control record 75 

SIM subroutine 123 
Simulator (SIM) 11, 123 

control cards 79 
core load debugging 87 
debugging 75, 87-96 
functional simulate subroutines 76 
hardware requirements 75 
program 75 
restrictions 77 

TASK 87 
termination subroutines 76 

*SIMULCI and SUP 72 
*SIMULCI control record 75 
SKA 175 
SKEL 151 
SKEL core map 236-238 

Skeleton 
Area (SKEL) 151 
build function 13 
build prerequisites 173 
build process 173 -180 
build supervisor phase (SKA) 175 
builder 9, 13, 123, 161, 173-180 
COMMON 161 
core map interpretation 178 
core size 164-171, 172 
executive, role of 3-4 

FORTRAN I/O table (SFIO) 175 

interrupt branch table (SKIBT) 164 
interrupt programs 30 
I/O 3, 12-13, 161 
rebuild, on-line 175 
rebuilt core map 178 

subroutine map (SK-SUB) 125 

sUbroutine name table 175 
subroutines 125, 164 

Supervisor 72 
table building 175 

SKIBT and MBT 164 
SKSUB 125, 175 

Special Save Area (SPSV) 151 
SPECL subroutine 18 
SPSV 151 

*START SIMULATION control card 87 
Statements not used in error subroutines 60 

*STORECI and SUP 72 
*STOREDATA function 84 
*STOREMD operation 85 
Subprograms, LOCAL 5 
Subroutines 

arithmetic 10, 76 
Assembler implicit and explicit 169-170 

assignment, interrupt 7 
conversion 10, 76 
DP and process I/O 10 

FORTRAN impliCit and explicit 167-168 

FORTRAN I/O 10 
function 10 
general TSX 76 
in skeleton 164 

I/O device 30 
library 9, 10, 123 
miscellaneous 10 
servicing 30-32 
simulator 75-76 
user-error 59-60 
user-written 76, 162 

SUP 72, 122 

functions 72 

sectors on system cartridge 72 

Supervisor, Nonprocess 9, 72-73 
skeleton 72 

SYSGEN 115-117 
listing, sample system 221-279 

overview 116 
steps, sample system 206 -208 

Index 307 



TASK 116, 122 
System 

area allocation 153 
components 7 -11 
concepts of TSX 3-7 
configuration versatility 5 
design 196 
design <:onsiderations 115-143 
documentation 203 
flowchart, sample system 203-204 
requirements, minimum 1 

System director 4, 8, 13-71, 123, 130-143, 162 
equate cards 131 
functions of 133-135 
sizeof 131-133 
work areas 131 

System loader 9, 122, 123-125, 221-223 
listing, sample system 221-223 
operation 123-125 

System skeleton 12, 160, 161-180 
area 1.60 
constitution of 161-164 
layout at build time 174 
modify on-line 175 
rebuilding of 175 

Tables, U~T/FLET 122 
Table of variables, sample system 205 
TASK (Temporary Assembled Skeleton) 8, l2-13, 115, 123 

absolute loader 187 
absolute program, example 189-190 
conversion routines 13 
core sil~e calculation 120-121 
director 13 
disk write address (IDWA) 157 
EBPRT 13 
equate cards 11 7 -119 
Error Alert Control (TEAC) 13 
functions 8 
HOLEB 13 
initialization 175 

master interrupt control (TMIC) 13 
program set 13 
simulator 87 
Skeleton Builder 161 
System Skeleton 12 
utiliti£~s 13 

TBASE 49 
IDWA 

DWRAD, DLABL comparison 159 
use of 149, 157 

TEAC 13 
Techniques 

sequence or chaining 18-20 
queueing and priority 20 -25 

TEMP 82 
Temporary area 80-81 
Termination-class (simulator) subroutines 76 

308 

Time Bases 
interrupt 45 
primary 45, 133 
secondary 134 
timers, hardware 43-45 

Time dependence 15 
Timer 45 

A, B, and C 14, 43-45 
comparison of 48 
core location of 43 
'interval control program 14 
programmed 46 
time bases 43 
use of 42-47 

Time -shared NPM operation 114 
Time -sharing 4, 134 

Automatic Method 49 
COWS, sample system 198 
control (TSC) 14 
initiating 48-50 
optimum 200 
selectable 48 
use of 47-50 

TMIC 13 
Transducers 191 
Translators, language 11 
TRPR T subroutine 10 
TSC 14, 25 

system director 131 
TSX 

CALL statements 292-293 
component relocation 175 
operating tables 124 
sample system 195 
subroutine library 9-10 
system composition and capabilities 291 

TYPEN subroutine 3, 75 
/WRTYN 166 

UNMK 39 
UNQ 23 
Update error counters 60 
User 

area 85, 98-99, 107 
disk area 149 

error subroutine 59-60 
programs under TASK absolute loader 187-190 
subroutine listing 230-233, 247-250 
subroutines 162, 211-213, 230-233, 247-250 
writing assembler language subroutines 181 
written programs 4 

Utilities, stand-alone 123 
Utility functions, nonprocess monitor (general) 107-1ll4 
Utility Program, Disk (DUP) 74 

Variable core 8 
Variable Transfer Vector (VTV) 101 
Versatility, System 5 



VIAQ 25, 49 

I lEND OF ALL JOBS card 49 
NPM initiation 110 
use of 25 

Voltage sense 192 
VTV 101, 163 

Work areas, level 14, 137 

Work level 
reentrant subroutines 140-143 
requirements 140-143 
sections 138 

Writing User Assembler subroutines 181-184 
WRYTN subroutine 75 

llXEQ card and SUP 72 

Index 309 



READER'S COMMENT FORM 

IBM 1800 Time-Sharing Executive System 
Concepts and Techniques 

Form C26-3703-0 

• Your comments, accompanied by answers to the following questions, help us produce better 

publications for your use. If your answer to a question is "No" or requires qualification, 
please explain in the space provided below. Comments and suggestions become the property of 
IBM. 

Yes 

• Does this publication meet your needs? 0 
• Did you find the material: 

Easy to read and understand? 0 
Organized for convenient use? 0 
Complete? 0 
Well illustrated? 0 
Written for your technical level? D 

No 

o 

o 
o 
o 
o 
o 

• What ~ your occupation? ~~~~~~~~~~~~~~~~~~~~~~~~ 

• How do you use this publication? 
As an introduction to the subject? 0 As an instructor in a class? 0 
For advanced knowledge of the subject? 0 As a student in a class? [] 

For information about operating procedures? 0 As a reference manual? [] 

Other __ ~~~~~~~ __ ~~~ __ ~~ ____ ~~~ __ ~~~ __ ~~~ ____ ~ __ 

• Please give specific page and line references with your comments when appropriate. 

COMMENTS 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



C26-3703-0 

YOUR COMMENTS, PLEASE ••• 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions .on the back of 
this form together with your comments, will help us produce better publications for your 
use. Each re:ply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY .. 

IBM Corporation 
Monterey & Cottle Rds. 
San Jose, California 
95114 

Attention: Programming Publications, Dept. 232 

fold 

FIRST CLASS 1 
PERMIT NO. 2078 

SAN JOSE, CALIF. ------

, ._----------------------------------------------------------, 
fold 

Internationa,l Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains/N.Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 

() 
N 
0\ 
I 

(J,J 

?J 
(J,J 
I o 



C26-3703-0 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.106ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

() 
l\J 
0\ 
I 
W 

CJ 
W 
I o 


	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312

