
IBM System/360 Conversion Aids:

The 1620 Simulator

for IBM System/360

Program Number 360C-SI-752

This document describes the internal
logic of the IBM System/360 Simulator for
the IBM 1620 Modell and Model 2.

Program Logic Manuals are intended for
use by IBM systems engineers involved in
program maintenance, and by systems pro­
grammers involved in altering the program
design. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

Restricted Distribution

Y27-7116-1

Program Logic

PREFACE

This document describes the structure
and functions of the Simulator: its compo­
nents, their functions, and the control
flow among them. The organization of each
component and the instructions used to
implement its functions are described in
the program listing .•

The manual consists of six sections.
section 1 is an introduction to the Simula­
tor and includes a description of its
overall structure and input/output flow.
Section 2 describes the simulation program,
SIM20; section 3 describes EDITOR, the
program used to adapt SIM20 to the 1620
system simulated; section 4 describes the
disk initialization program, DSKINT; Sec­
tion 5 describes the updating program,
UPDT20: and Section 6 describes the common
subprograms used by EDITOR and UPDT20.

The reader should be familiar with the
contents of the following publications:

or

IBM System/360 System Summary,
Form A22-6810

IBM System/360 Principles of Operation,
Form A22-6821

IBM 1620 Central processing Unit,
Modell, Form A26-5706

IBM 1620 Central processing Unit,
Model 2, Form A26-5781

IBM system/360 Conversion Aids:
The 1620 Simulator for IBM
System/360, Form C28-6529

RESTRICTED DISTRIBUTION: This publication is intended for use by IBM
personnel only and way not be wade available to others without the
approval of local IBM management.

Second Edition (September 1966)

This is a major revision of, and makes obsolete, Form Y27-7116-0. The
present edition of this publication should be reviewed in its entirety.

Ispecifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres­
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica­
tion to: IBM France, Centre d'Etudes et Recherches, Programming
publications, Department 841, 06 - La Gaude, France.

@ International Business Machines Corporation 1966

INTRODUCTION • •

Overall Logic of the Simulator

System/360 Main Storage Allocation •
EDITOR. • • • • • • • • • • • •
SIM20 • • • • • • • • • • • • •

No Disk Simulation • • • • •
Storage-Resident I/O (Including

Disk) Routines. • • • • • •
Disk-Resident I/O (Including

Disk) Routines.
DSKINT.
UPDT20 •••••••.••

Layout of the Simulator on Tape. •

SIM20.

1

1

1
1
8
8

9

9
9

• 10

• 11

• 15

CPU Simulation • • 15
Simulated 1620 Core Storage • 15

Representation of 1620 Positions • 15
Addressing of Fields • 16
Addressing of Records. • • 16

Simulated 1620 Registers. • • 11
1620 Storage Registers. • 11
1620 Model 2 Index Registers • 11
Simulator Registers •••••••• 11

Basic Interpretive Routine •••••• 11
Address Conversion Subroutines. • • • 18

Standard Address Conversion
Subroutine. • • • • • • • • • • • 18

Indirect Addressing Subroutine • . 18
Index Subroutine (1620 Model 2) •• 18

CPU Simulation Process. • 18
FIXADD Routine • • 19
MULT Routine • • • • • • • 19
FIXDIV Routine • • 19

Tables. • • • • • • • 19
Operation Code Table (OPTBL) 19
Code Conversion Tables • • 19

I/O Simulation • • • • . •
Channel Control Blocks.
Unit Control Blocks • •
Channel Table . • . • •
Buffers • • • • • • • • •
Logic of I/O Simulation

• 20
20

• • • • • 20
• • • • • 21

• 21
• 21

I/O Simulation Routines <Other Than
Disk) •••••••••••

Read Operation • . • • • • •
Write Operation. . •
Exceptional Conditions •

Disk Simulation Routines ••
Sector Arrangement • •

• 21
• 21
· 22
· 22
· 22
· 22
• 23 Disk Indicators •.•

Write Address Switch .
Protection Flag. . •
Disk Addresses • • •

• • • • 23

Disk Read, Write, and Check
Instructions ••

Seek Operations. • •••••

• 23
• • • 23

• 23
. • • 24

Console Simulation • • • • •
Simulated Keys, Switches, and
Indicators • • • • • • •

Simulated Console Keys
Simulated Console Switches
Simulated Indicators •

Logic of Key Simulation •
Messages and Commands

MESSAG Subroutine. •
RNTY Sequence. • • • •
Write Numerically and
Alphamerically operations

EDITOR

Overall Logic of EDITOR. • •

DSKINT •

Logic of DSKINT.

Buffers and Tables • •

UPDT20 • • • •

Corrections. •

INITUP Routine •

File Processing Routine (FLTGA).
NLSTP Routine. • • • •
SKLDM Routine.
SKCRDM Routine •
SKLDN Routine. •

Module Processing Routines
(CSTGA and CSTGB) • • • • •

SKCRDA Subroutine. •
SKLDA Subroutine •
RISN Subroutine. •

CONTENTS

• • 24

• • 24
• • 24
• • 24
• • 24
• • 24
• • 25
• • 25

• 25

• • 25

• • 41

41

44

• • 44

44

46

• 46

• • 46

• 46
• 46

• • 46
46

• 46

41
• • 41

41
41

End of File Processing Routine (CSTGC) • 41

Record Processing Routine (RCTGB) •••• 41
SKCRDA Routine • • • 41
SKLDB Routine. • • • 41
RISN Routine • • • 48

COMMON SUBPROGRAMS •

Absolute Loader (ABSLOD) •
ABSLOD Cards and Functions ••

Card Sequence. •
Card Formats •
Text Card. • • •
Replace Card •
Load End Card. • • • •
Processing of END Cards by

ABSLOD. • • • • • • •
LDR Card • • • • • • • • •
Load Terminate Card. • • •

Additional ABSLOD Functions •

• • 50

50
• • 50
• • 50
• • 50
• • 51

• 51
• 51

52
• 52

52
• • 53

3

Control Program (CONTPR) • • • • • • 53

4

Interruption Processing • • • • • •
Machine-Check Interruptions. • •
Supervisor-Call Interruptions ••
Program Interruptions (SVC 6) ••
External Interruptions (SVC 10).
Disable I/O and External
Interruptions (SVC 8) • • •

Enable I/O and External

• 54
• 54
• 54
• 54
• 55

55

Interruptions (SVC 9) • •• • 55
I/O Device Verification (SVC 0) • • • 55
I/O Requests. • • • • • • • • • • • • 55

SVC Calling Sequence Parameters. • 56
I/O Request and Continue (SVC 2) • 57
I/O Request and Interrupt at

Channel End (SVC 1) • • • • •
I/O Request and Wait (SVC 11).
Exceptional Conditions • • •
Channel Status Information •

• • 57
58
58

• 58
I/O Processing within CONTPR. •

control Blocks • • • . • • •
Processing an SVC 2 calling
Sequence ••••

GETUCB Routine •
STRTIO Routine •
SENSE Subroutine
IOINT Routine. •
Chaining I/O Requests .•
Adding a Request to a Chain.
Types of Requests Chained. •
UNSTAK Routine • • • . • • •

setting up the SEREP Interface
(SVC 7). • • • • • •

Console Communication
Write Message (SVC 4) .•
Command Input (SVC 5) .•
Disable Console (SVC 15)
Enable Console (SVC 16).

SIM20 Interruption and Return
(SVC 3) ••••.•••.•••

Rewind and Rewind--and-Unload

• • • 59
59

• 59
• 59
• 59
• 60
• 60
• 60
• 60
• 61

• • • 61

· • • 61
· • • 61
· • • 62

• 62
• • • 63

• 63

• 63

Calling Sequences (SVC 13 and 14) •• 63
Set Wait State (SVC 19) . • •• • 64
Dump Systern/360 Main storage

(SVC 12) • • • • . • • . • • • • • • 64
Interface with IOPACK • . • •• • 64

Assign a System/360 Device to a
Simulator Support Function
(SVC 17) ••••••.•••••• 64

Execute an I/O Operation on a
Simulator Support Device
(SVC 18). • • • • • •

I/O Support Package (IOPACK)
System/360 Device Assignment

(SVC 17) • • • • • • • • • •
Execute a Logical I/O Operation

(SVC 18) • • • • • • •

Initialization Program (INIT) ••
Program Structure • •

Phase 1.
Phase 2.
Phase 3 ••
Phase 4.
Phase 5.

Card Sequence ••••
Linkage with CONTPR and IOPACK. •
Messages. • • • • • • • • •

• • 64

• • 64

64

66

67
• • 67

• 67
• • 67

• 68
• • 68
• • 68

• 68
• • 69
• • 69

Relocating Loader (RELLDR)
Special RELLDR Functions.
Loader Tables • • • • • •

• • • • • 69
• • 69
• • 70

Loader Cards. • • • • • • • 70
Set Location Counter Card.
Include Control Section Card •
External Symbol Dictionary Card.

• 70
70

• 71
Text Card. • • • • • • • •
Relocation List Dictionary
Replace Card •

• 73
Card. • 74

Load End Card.
Load Terminate Card. • • • • •

Card Sequence • •
Other Features ••••••

Loading in Absolute Form •
Selective Loading •••••

Self-Loading Program Generator
Routine. • • • •• • • • • •

Linkage with CONTPR and IOPACK. •
RELLDR Messages • • • • •

Informative Messages •
Warning Messages • • •
Error Messages • • •

APPENDIX. LIST OF SIM20 ROUTINES •

INDEX. • • . .

• • 74
75

• • 75
76

• • 76
• • 76

77

• • 77
• • 78
• • 78

78
• 78

• • 79

88

• 91

FIGURES

Figure 1. System/360 Main Storage
Allocation for EDITOR • • • • • • •

Figure 2. System/360 Main Storage
Allocation for SIM20 (No Disks) • • • •

Figure 3. System/360 Main Storage
Allocation for SIM20 (Storage­
Resident Disk Simulation Routines).

Figure 4. System/360 Main storage
Allocati.on for SIM20 (Disk-Resident

8

8

9

Disk Simulation Routines) ••••.•• 10

TABLES

Table 1. 1620 Numeric Characters and
Numeric Special Characters. • • • • • • 16

Table 2. 1620 'Alphameric Characters
and Alphameric Special Characters • 16

Table 3. Simulator General Register
Assignment. • • • • • . • • • • •• 17

Table 4. Structure of a CCB. • 20
Table 5. Structure of a UCB. • 20
Table 6. ABSLOD FUnctions. • •• 50
Table 7. Text Card. • • • 51
Table 8. Replace Card. • • • . 51
Table 9. Load End Card. • • • 52
Table 10. LDR Card. • • • • • •• . 52
Table 11. Load Terminate Card •• . 53
Table 12. SVC Table • • • • •.•••• 54
Table 13. Device Verification Table •• 56

CHARTS

Chart AA. Overall Logic of
EDITOR/UPDT20 · · · · · . · · 12

Chart AB. Overall Logic of SIM20 (No
Disk Simulation). · · · · · · 13

Chart AC. Overall Logic of SIM20
(With Disk Simulation). · · · · · · 14

Chart BA. SIM20 Internal Logic. · · 26
Chart BB. Address Conversion
Subroutines . · · . . . · · · · · · 27

Chart BC. FIXADD Routine. · · · · · 28
Chart BD. MULT Routine. · · 29
Chart BE. FIXDIV Routine. · · · · · 30
Chart BF. Simulation of I/O

(Other Than Disk) Operations. · · 31
Chart BG. Logic of Read Operations. · · 32
Chart BH. Logic of Write Operations · · 33
Chart BK. Console Simulation Logic. · · 34
Chart BL. Insert Key Simulation · 35
Chart BM. Disk Operation Entry

Routine . . . · · . . . · · · · · 36

ILLUSTRATIONS

Figure 5. System/360 Main Storage
Allocation for DSKINT · · · · · · · .• · 10

Figure 6. System/360 Main Storage
Allocation for UPDT20 · · · · 11

Figure 7. Layout of Programs on the
System Tape . · · · · · · · · · · .• 11

Figure 8.

Table 14.
Table 15.
Table 16.
Table 17.
Card .••

Table 18.
Card ..•

Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Card .••

Table 24.
Table 25.
Table 26.

Chart BN.
Chart BP.
Chart BQ.
Chart BR.
Chart CA.
Chart CB.
Chart DA.
Chart EA.
Chart FA •
Chart FB.
Chart FC.

(Part 1).
Chart FD.

(Part 2) •
Chart FE.
Chart FF.
Chart FG.
Chart FH.

Disk Sector Arrangement. · · 22

Logical I/O Operations. • • • 65
Special RELLDR Functions. • • 69
Set Location Counter Card • • 70
Include Control Section

External Symbol Dictionary

ESD Type 0 Term •
ESD Type 1 Term •
ESD Type 2 Term •
Text Card • • • •
Relocation List Dictionary

Replace Card. •
Load End Card •
Load Terminate Card •

Seek Disk Operations.
Read Disk Operations.
Write Disk Operations
Check Disk Operations · · · · Logic of EDITOR (Part 1).
Logic of EDITOR (Part 2).
DSKINT. · · · · Overall Logic of UPDT20 · Overall Logic of ABSLOD · Overall Logic of CONTPR · I/O Request and continue

· · · · · · · · · I/O Request and Continue

· · · · · · · · · UNSTAK Routine. · · · · · Overall Logic of IOPACK · Overall Logic of INIT · · Overall Logic of RELLDR

71

• 72
• 72
• 73

73
73

74
• • 75
• • 75
• • 76

· 37

· · 38
39

· · 40

· · 42

· · 43

· · 45

· · 49

· · 80

· · 81

· · 82

· · 83

· · 84
85

· · 86

· 87

5

The 1620 Simulator distributed by IBM is
a set of four programs, plus a group of
general subprograms used by two of them.

The four programs which make up the
Simulator are:

1. SIM20, the program which contains the
routines to simulate the 1620

2. EDITOR, a program used to adapt SIM20
to the particular 1620 system being
simulated and to the System/360 used
for simulation, and to create a self­
loading version of SIM20

3. DSKINT, a disk initialization utility
program used to simulate 1620 systems
with disk storage drives

4. UPDT20, the program used to maintain
and modify the Simulator

The subprograms used by EDITOR and
UPDT20 are:

1. ABSLOD, an absolute loader used to
load the other four programs or SIM20
into System/360 main storage

2. CONTPR, a control program used to
supervise System/360 interruptions, to
perform physical I/O operations, and
to communicate with the 1052 Printer­
Keyboard

3. IOPACK an I/O support package used to
perform logical I/O operations on
devices for Simulator support func­
tions

4.

5.

INIT, an initialization program used
to initialize CONTPR, IOPACK, and
RELLDR

RELLDR, a relocating loader used to
load EDITOR and UPDT20 into System/360
main storage

The way in which these programs and
subprograms perform the various functions
of the Simulator is outlined in the follow­
ing sections and is described in more
detail in the sections devoted to the
individual programs and sUbprograms.

OVERALL LOGIC OF THE SIMULATOR

Chart AA shows
those parts of the
common subprograms.

the overall logic of
Simulator using the
This relationship, in

INTRODUCTION

conjunction with the System/360 main stor­
age allocation, is described in the follow­
ing section.

SYSTEM/360 MAIN STORAGE ALLOCATION

Figures 1 through 6 illustrate the allo­
cation of System/360 main storage to the
programs and subprograms which make up the
Simulator. Each step corresponds to a
phase of the loading or initialization
procedure.

Figure 1 shows the allocation of
System/360 main storage to the components
of EDITOR; Figure 2, to those of SIM20 when
disks are not simulated; Figure 3, to those
of SIM20 when disks are simulated, and the
I/O simulation routines are permanently in
main storage; Figure 4, to those of SIM20
when disks are simulated, and the I/O
simulation routines are resident on disk;
Figure 5, to those of DSKINT; Figure 6, to
those of UPDT20. The System/360 addresses
given below are approximate, and give an
idea of the amount of main storage allocat­
ed to each component.

EDITOR

The System/360 main storage allocation
for EDITOR 1S glven in the following steps
and follows the logic shown in Chart AA.

Step 1 (IPL): When the load key on the
system control panel is pressed, the IPL
sequence is loaded into the first bytes of
System/360 main storage, and ABSLOD is
loaded into an upper part of main storage.

Step 2 (Absolute Load): ABSLOD
CONTPR, IOPACK, INIT, and RELLDR.
having loaded these subprograms, it
the addresses of CONTPR, IOPACK, and
to INIT.

loads
After
sends

RELLDR

step 3 (Subprogram Initialization): Con­
trol is then transferred to INIT, which
reads the DEV360, DEVSUP, and CALL control
cards; from the information in these cards,
it builds up the appropriate channel and
unit control blocks and initializes CONTPR,
IOPACK, and RELLDR._

Step 4 (Relocating Load): After initiali­
zation, control is transferred to RELLDR,
which loads EDITOR into System/360 main
storage. It uses IOPACK for I/O opera­
tions, and uses certain facilities of
CONTPR.

Introduction 7

Step 1
r---T---T------T--------------------,
I I I IABSLODI I
I P I I I I
I L I I (lK) I I L ___ ~ ___ ~ ______ ~ ___________________ J

Step 2
r------T------T--------------------------------------T------T------T----T------T--------,
ICONTPRIIOPACKI I INIT IABSLODI I RELLDR I I
I I I I I I I I I
I (3K) I (3K) I I (4K) I (lK) I I (SK) I I L ______ ~ ______ ~ ______________________________________ ~ ______ ~ ______ ~ ____ ~ ______ ~ _______ J

Step 3
r------T------T-------T------------------------------T------T------T----T------T--------,
ICONTPRIIOPACKI I/O I I INIT IABSLODI I RELLDR I I
I I I Control I I I I I I I
I (3K) I (3K) I Blocks I I (4K) I (lK) I I (SK) I I L ______ ~ ______ ~ _______ ~ ______________________________ ~ ______ ~ ______ ~ ___ ~ ______ ~ _______ J

Step 4
r------T------T-------T------y--,
ICONTPRIIOPACKI I/O I EDITOR I I
I I I Control I I Unused I
I (3K) I (3K) IBlocks I (SK) I I L ______ ~ ______ ~ _______ ~ ______ ~ __ J

Figure 1. System/360 Main Storage Allocation for EDITOR

SIM20

The System/360 main storage allocation
for SIM20 depends on the version of the I/O
simulation section used.

No Disk Simulation

When the 1620 installation being simu­
lated has no disk storage drives, the
loading procedure is as described in the
following paragraphs and as illustrated in
Figure 2 (see Chart AB).

Step 1 (Same as in Figure 1)

Step 2

Step 1 (IPL): Same as step 1 for EDITOR.

Step 2 (Absolute Load): ABSLOD loads a
condensed SIM20 version of CONTPR into
addresses 00000 through 02299; it then
loads SIM20. CPU and console simulation
routines are loaded into addresses 02300
through 09699, and I/O simulation routines
are loaded into addresses 09700 through
10999.

r-------T----------T----------T----------------------------T------T----'
I 1620 I CPU and I I/O I I ABSLOD I I
I Control I Console· I (Non-disk) I I I I
I Program I Simulation I Simulation I I (lK) I I L _______ + __________ + __________ + ____________________________ ~ ______ ~ ____ J

I I I
02300 09700 11000

Step 3
r-------T----------T----------T--,
I 1620 I CPU and I I/O I Simulated I
I Control I Console I (Non-disk) I 1620 Core I
I program I Simulation I Simulation I Storage I L _______ + __________ + __________ + __ J

I I I
02300 09700 11000

Figure 2. System/360 Main Storage Allocation for SIM20 (No Disks)

8

Step 3 (Setting Simulated 1620 Core
Storage): Control is then transferred to
SIM20, which sets simulated 1620 eore stor­
age to zero, starting at address 11000.
Storage is set to zero through address
30999 to simulate a 20,000-position 1620;
through address 50999 to simulate a
40,000-position 1620; through address 70999
to simulate a 60,000-position 1620.

Storage-Resident I/O (Including Disk)
Routines

Step 1 (IPL): Same as step 1 for EDITOR.

Step 2 (Absolute Load): The same as step 2
for a 1620 with no disk storage drives,
except that the disk simulation routines
are loaded into addresses 12300 through
14199 (see Figure 3).

Step 3 (Setting Simulated 1620 Core
Storage): Control is then transferred to
SIM20, which sets simulated 1620 core
storage to zero, starting at address 14200.
Storage is set to zero through address
34199 to simulate a 20,000-position 1620;
through address 54199 to simulate a 40,000-
position 1620; through address 74199 to
simulate a 60,000-position 1620.

Disk-Resident I/O (Including Disk) Routines

Step 1 (IPL): Same as step 1 for EDITOR.

Step 2 (Absolute Load): ABSLOD loads a
condensed SIM20 version of CONTPR into
addresses 00000 through 02299; it then
loads SIM20. CPU and console simulation
routines are loaded into addresses 02300
through 09699, and I/O simulation routines

Step 1 (Same as in Figure 1)

12300
Step 2 I

(other than those for disks) are loaded
into a 2,000-byte reserved area at address­
es 09700 through 11699 (see Figure 4).

Step 3 (Setting Simulated 1620 Core
Storage): Control is then transferred to
SIM20, which sets simulated 1620 core stor­
age to zero, from address 11700 through
31699.

When a 1620 disk instruction is encoun­
tered, the disk simulation routines are
read into System/360 main storage in the
2,000-byte reserved area from address 09700
through 11700, thus overlaying the other
I/O simulation routines.

DSKINT

The System/360 main storage allocation
for SIM20 when a 1620 installation with
disk storage drives is being simulated
depends on whether or not the disk simula­
tion routines are permanently in main stor­
age. In either case, DSKINT must be used
to place certain initial information on the
2311 Disk Storage Drive.

The main storage allocation for DSKINT
is given in the following steps and is
illustrated in Figure 5 (see Chart AC).

Step 1 (IPL) :. Same as step 1 for EDITOR.

Step 2 (Absolute Load): ABSLOD loads a
condensed SIM20 version of CONTPR into
addresses 00000 through 02299, it then
loads SIM20 and DSKINT. CPU and console
simulation routines are loaded into
addresses 02300 through 09699, I/O simula-

r-------T----------T----------T----t----------T------------------------,
I 1620 I CPU and I I/O I I Disk I I
I Control I Console I (Non-disk) I I Simulation I I

I Program I Simulation I Simulation I I I I
L-------t----------t----------t----~----------t-------_________________ J

I I I I
02300 09700 11000 14200

12300
Step 3 I
r-------T----------T----------T----t----------T------------------------,
I 1620 I CPU and I I/O I I Disk I Simulated I
I Control I Console I (Non-disk) I I Simulation I 1620 Core I
I Program I Simulation I Simulation I I I Storage I
L-------t----------t----------t----~----------t-------_________________ J

I I ' I I
02300 09700 11000 14200

Figure 3. System/360 Main Storage Allocation for SIM20
(Storage-Resident Disk Simulation Routines)

Introduction 9

tion routines (other than those for disks)
are loaded into addresses 09700 through
10999, disk simulation routines are loaded
into addresses 12300 through 14199, and
DSKINT is loaded into addresses 16400
through 24599.

Step 3 (Disk Initialization): Control is
then transferred to DSKINT, which on opera­
tor request:

1. Places certain initial information on
a specified 2311 Disk Storage Drive
and establishes the format of informa­
tion on this storage drive

2. Loads SIM20 onto the same 2311 Disk
Storage Drive, in a self-loading for­
mat

System/360 main storage is then dumped
onto disk, as follows:

• CONTPR and CPU and console simulation
routines onto cylinder 00

• The I/O simulation routines (other than
those for disks) onto cylinder 01

Step 1 (Same as in Figure 1)

Step 2

• The disk simulation routines onto cyl­
inder 02

DSKINT is not loaded onto disk; in order
to be used again, it must be re-Ioaded from
cards.

For a subsequent SIM20 run, SIM20 alone
is loaded from disk, using an IPL proce­
dure.

Note: "Console SimUlation" includes the
Insert and Automatic Load operations.

UPDT20

System/360 main storage allocation for
UPDT20 is given in the following 'steps and
is illustrated in Figure 6 (see Chart AA).

Steps 1 through 3: Same as steps 1 through
3 for EDITOR.

Step 4 (Relocating Load): After initiali­
zation, control is transferred to RELLDR,
which loads UPDT20 into System/360 main
storage. It uses IOPACK for I/O opera-

r-------T----------T----------T--,
I 1620 I CPU and I I/O I I
I Control I Console I (Non-disk) I I
I Program I Simulation I Simulation I I L _______ + __________ + __________ + __ J

I I I
02300 09700 11700

Step 3
r-------T----------T----------T----------------------------T-----------,
I 1620 I CPU and I I/O I Simulated I I
I Control I Console I (Non-disk) I 1620 Core I I
I Program I Simulation I Simulation I Storage I I L _______ + __________ + __ --------+-----------------------_____ + ___________ J

I I I I
02300 09700 11700 31700

Figure 4. System/360 Main Storage Allocation for SIM20
(Disk-Resident Disk Simulation Routines)

Step 1 (Same as in Figure 1)
12300 16400

Step 2 I I
r-------T----------T----------T----+----------T----+--------------T----'
I 1620 I CPU and I I/O I I Disk I I I I
I Control I Console I (Non-disk) I I Simulation I I DSKINT I I
I Program I Simulation I Simulation! I I I I I L _______ + __________ + __________ + ____ i __________ + ____ i ______________ + ____ J

I I I I I
02300 09700 11000 14200 24600

Figure 5. System/360 Main Storage Allocation for DSKINT

10

tions, and uses certain facilities of
CONTPR.

LAYOUT OF THE SIMULATOR ON TAPE

The Simulator system tape distributed by
IBM contains the four programs (SIM20,
EDITOR, DSKINT, and UPDT20), the five com­
mon subprograms (ABSLOD, CONTPR, IOPACK,
INIT, and RELLDR), and the sample program
described in the publication IBM System/360
Conversion Aids: The 1620 Simulator for IBM
System/360, Form C28-6529. EDITOR, UPDT20,
and the common subprograms are in binary,

Steps 1 through 3 (Same as in Figure 1)

Step 4

SIM20 and DSKINT are in symbolic form, and
the sample program is in BCD code.

The way in which these programs and
subprograms are placed on tape is shown in
Figure 7. There is a tape mark at the end
of each program and at the end of the
common subprograms. Following the last
binary program (EDITOR) is a one-.card
binary file, labeled SYSINEND, which marks
the end of the binary system tape. This
file is followed by a tape mark, SIM20,
DSKINT, and another tape mark. At the end
of the system tape is the sample program,
in BCD code, followed by two tape marks.

r------T------T-------T-------T---,
ICONTPRIIOPACKI I/O I UPDT20 1 I
I I I Control I I I
I (3K) I (3K) I Blocks I (7K) I I L ______ L ______ L _______ ~ _______ ~ ___ J

Figure 6. System/360 Main Storage Allocation for UPDT20

r------T--------T------T------T------T------T------T-T-------------------T-------T1
I I PL + I I I I I I I I I Sample I I
I I CONTPR I IOPACKI INIT IRELLDRI UPDT20 I EDITOR I I SIM20+DSKINT I II
IABSLODI I I I I I I I I Program I I L ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~_~ ___________________ ~ _______ ~J

t
I

SYSINEND
End of System Tape

Figure 7. Layout of Programs on the System Tape

Introduction 11

Chart AA. Overall Logic of EDITOR/UPDT20

IPL

*AA *
* B2*
* * *

ABSLOD X
*****B2**********
* * * ABSOLUTE *
* * * LOADER *
* * *****************

INIT X
*****02**********
* * ****
* * * * *INITIALIZATION *x •••• * 02 *
* * * * * * ****

x .*.
F2 *. *****F3********** • * *. EDITOR * * • * • CALL' *. * SEND ADDRESS

. CONTROL X* OF EDITOR
. CARD. * TO RELLDR
.. * *

* •• * ******"'*********'"
'" • =UPDT20

x
:****G2***"'*"'***:
* SEND ADDRESS *
'" OF UPDT20 *
'" TO RELLDR '"

* '" *****************
· . • x •••••••••••••••••••••••••

* * * C4 *
* *

X

******C4***********
****C5*********

CONTPR
AND

10PACI<

'" * ENTERE) ON *
x •••••••• *INTERRUPTION OR*

* I/O REQUEST *

x .*. 04 *.
.* * • • * *. YES *. C.OMMUNI CAT ION. * •••••••••••••••.••

. REQUEST .
. .

* •• * * NO

x .*.
E4 * •

• * * • • * CALLING *. INIT
. PROGRAM . ..••

. .
. .

* •• *
* RELLDR •

.*.
F4 "' •

.* * •

x

* * * 02 *
* * ****

.* PROGRAM *. NO
*. LOADED • * ••••

. .
. .

* •• * * YES

.*.
J4 *.

x

* * '" 1<2 *
'" * **"'*

UPDT20.* *. EDITOR .* WHlcH *.
•••••••••• PROGRAM ••••••••••
X "'. LOADED .* X

X

"'''''''*H5*'''******* * OPERATOR *
* * *CDMMU~ICATIONS *

*******"'*******

***** *..* *****

**** * *. * K2 *.x.
* * **** •

RELLDR X
*****1<2**********
* * * READ AND * * *
* PROCESS * •••• x* C4 *
* LOAD CARDS * * *
* * ****

12

"'EA * * •• * *CA *
* Bl* * * B2*

* * * * * *

Chart AB. Overall Logic of SIM20 (No Disk Simulation)

IPL

***** *AB *
* B2*

* * *

ABSLOD X
*****B2**********
* * * ABSOLUTE *

* * * LOADER *

* * *******"**********

* *. * 02 *.x.
* * ****

****C4*********
* ENTERED ON *
INTERRUPTION OR
* I/O REQUEST *

******01 ***********
X

****"02*********"
X

******04***********
SYSTEM/360

CONTROL
PANEL

* * * * SIMULATION *
•••••••• x* OF 1620 KEYS *

* AND SW ITCHES *

* " *****************

SIM20
CONTROL
PROGRAM

.*.
E4 *.

**** CONSOLE .* *.
* *.* *. * 02 *X •••• ". CALLER .*
* * *. .* **** *...

* *. * G2 *.X. • * .x •••••••••••••••••••••••••

***" X

G2·*· *. *****G3.*********
**** CONSOLE .* TYPE *. * *

* * .* OF *. I/O * 1620 I/O *

* •• * * I/O

* 02 *x •••• *. OPERATION •••••••••• x* *x •••••••••••••••••
* * *. .* * SIMULATION *
**** *..* * * * •• * *****************

* CPU

x ,
*****H2**********

* * * 1620 CPU *
* * * SIMULATION *

* * *****************

x

* * * G2 *
* * ****

Introduction 13

Chart AC. Overall Logic of SIM20 (With Disk Simulation)

IPL

***** *AC *
* B2*
* * *

ABSLOD X
*****B2**********
* * * ABSOLUTE *
* * * LOADER *
* * *****************

DSKINT X
*****C2**********
* * **** * DISK * * * * *X •••• * C2 *
*INITIALIZATION * * *
* * ****

1620
CONSOLE •
SIMULATION X

****11.4********* * ENTERED ON *
INTERRUPTION OR
* I/O REQUEST *

X
******B4***********

SIM20
CONfROL.
PROGRAM

x .*. C4 *.
**** .* *. * * • * *. I/O * E2 *X •••• *. CALLER ••••••

* * *. .* **** CONSOLE *. • *
* •• *

* • DSK INT

x .*.
04 *.

**** .* *. * * NO.* *. * C2 *X •••• *.COMMUNICATION.*
* * *. REQUEST .*
**** *..* * •• * * YES

******E 1 *********** *****E2********** X

SYSTEM/360
CONTROL

PANEL

14

* * **** * * SIMULATION * * * •••••••• x. OF 1620 KEYS *X •••• * E2 *
* AND SWITCHES * * *
* * ****

* *. * H2 *.X. * * .x •••••••••••••••••••••••••

**** X
SIR .*.

H2 *. *****H3**********
**** .* TYPE *. * *

* * .* OF *. I/O * 1620 *

****E4********* * OPERATOR *
* * * COMMUNICATION *

: E2 :X •••••• *. OPERATION •••••••••••• X: I~~M~~~T~~~K !x •••.••••••.••••.•••..•••••.••
**** CONSOLE *..* * *

*. • * ***************** * CPU

X

*****J2**********
* * * 1620 *
* CPU *
* SIMULATION *
* * *****************

x

* * * H2 *
* * ****

SIM20 consists of the following logical
sections:

1. CPU simulation routines, which simu­
late the 1620 CPU instructions

2. I/O simulation routines, which simu­
late 1620 I/O instructions

3. Console simulation routines, which
simulate the functions of the 1620
Console; that is, keys, switches, and
Automatic Load

The way in which thes~ logical sections
perform the various functions of SIM20 is
described in detail in the text devoted to
the individual logical sections. Charts AB
and AC show the overall logic of SIM20i
that is, the relationship among the logical
sections and CONTPR.

When SIM20 has been loaded into
System/360 main storage, control is trans­
ferred to the console simulation section,
which simulates the functions of the 1620
Console and allows operator communication
with SIM20.

The CPU simulation section simulates
1620 CPU instructions. It gives control to
the I/O simulation section or to the con­
sole simulation section whenever it encoun­
ters an I/O or console instruction, or
whenever an I/O or console interruption has
been signaled by CONTPR.

The I/O simulation section simulates
1620 I/O instructions, calling on CONTPR to
perform any necessary physical I/O opera­
tions.

CPU SIMULATION

This logical section of SIM20 is made up
of the following parts:

1. Simulated 1620 core storage

2. Simulated 1620 index registers (Model
2) and storage registers

3. Basic Interpretive Routine

4. Subroutines for address conversion

5. Operation routines to simulate 1620
instructions

6. Tables

SIMULATED 1620 CORE STORAGE

Each six-bit position of 1620 core stor­
age is simulated by one byte in System/360
main storage.

Each 1620 instruction is represented by
12 bytes. The first two bytes contain the
operation code of the instruction, the next
five bytes contain the P address, and the
last five bytes contain the Q address. If
one or both addresses are missing, the
corresponding 5- or 10-digit fields may be
used by the 1620 program for storing data,
as is usual in 1620 programming.

Representation of 1620 positions

Each six-bit position is simulated by
System/360 byte, as follows:

1620
r- r-T- r- r- r-,
IC FI8 4 2 11
L_J _..L_J _J _J _J

r- r- r- r-T- r- r- r-,
System/360 18 4 2 118 4 2 11

L_J _J _J _..L_J _J _J _J

zone numeric

a

The 1620 parity-check bit is simulated
by the parity bit of the byte. The zone
part of the byte can contain either a
hexadecimal D, which represents the flag,
or a hexadecimal F, which indicates an
unflagged character.

The meaning of the flag (D) depends on
its position in the field. The different
positions and their meanings are shown
below.

Position

In the rightmost address
of a field

In the leftmost address
of a field

In the rightmost byte of
an address field

In the thousands, hUn­
dreds, or tens position
of an address field

In an entry in the Add
table in simulated 1620
core storage (Model 1
only)

Meaning

Minus sign

Field mark

Indirect ad­
dressing

Address in­
dexing

Carry

Simulated 1620 numeric characters and
numeric special characters are given in
Table 1, and simulated 1620 alphameric
characters and alphameric special charac­
ters are given in Table 2.

SIM20 15

For all 1620 operations in the numeric
mode, 1620 characters are represented in
simulated core storage by the hexadecimal
characters FO through FF and DO through DF,
and are processed directly. Numeric spe­
cial characters, however, are truncated at
processing time in arithmetic and compare
operations, though they are not modified in
simulated core storage. For example, FA is
truncated to FO when placed in a general
register to be added to another digit; but
it retains the value FA in simulated core
storage.

The rule used for truncating special
characters is: the 8 and 2 bits are sup-
pressed. Thus,

FA is truncated to FOIDA is truncated to DO
FB is truncated to FllDB is truncated to Dl
FC is truncated to F21DC is truncated to D2
FD is truncated to F31DD is truncated to D3
FE is truncated to F41DE is truncated to D4
FF is truncated to F51DF is truncated to D5

Addressing of Fields

A field is defined by the address of its
rightmost byte, and is processed from right
to left until a byte with a hexadecimal D
in its zone part is encountered. The
address of the byte being processed is
placed in general register RP or RQ. As
the bytes of a field are addressed consecu­
tively, the contents of RP or RQ are
decremented by one each time a byte is
processed.

Addressing of Records

A record is defined by the address of
its leftmost byte, and is processed from
left to right until a byte with a hexadeci­
mal A in its numeric part is encountered.
The address of the byte being processed is
placed in general register RP or RQ. Since
the bytes of a record are addressed consec­
utively, the contents of RP or RQ are
incremented by one each time a byte is
processed.

Table 1. 1620 Numeric Characters and Numeric
Special Characters

r----------------T---------------------------------,
I 1620 CHARACTER I SYSTEMV360 REPRESENTATION I
I ~----------------T----------------~
I I UNFLAGGED I FLAGGED I
~----------------+----------------+----------------~
I 0,1,2, ••• 9 I FO,F1,F2, ••• F9 I DO,D1,D2, ••. D9 I
I Record Mark I FA I DA I
I Group Mark I FF I DF I
I Numeric Blank I FC I DC I
I Minus Zero I ------ I DO I L ________________ ~ ________________ ~ ________________ J

Table 2. 1620 Alphameric Characters and Alphameric Special
Characters

r---------T------------T---------T------------T--------------T------,
I 1620 I System/360 I 1620 I System/360 1 1620 I S/36 0 1
~---------+------------+---------+------------+--------------+------~
I A F4Fl R or -9 F5F9 8 F7F8
I B F4F2 S F6F2 9 F7F9
I C F4F3 T F6F3 FOF3

D F4F4 U F6F4 FOF4
E F4F5 V F6F5 + FiFO
F F4F6 W F6F6 $ F1F3
G F4F7 X F6F7 * F1F4
H F4F8 Y F6F8 F2FO
I F4F9 Z F6F9 / F2Fl

J or -1 F5Fl 0 F7FO, F2F3
K or -2 F5F2 1 F7Fl (F2F4
L or -3 F5F3 2 F7F2 F3F3
M or -4 F5F4 3 F7F3 @ F3F4
N or -5 F5F5 4 F7F4 Blank FOFO
o or -6 F5F6 5 F7F5 Flagged Zero F5FO
P or -7 F5F7 6 F7F6 Record Mark FOFA
Q or -8 F5F8 7 F7F7 Group Mark FOFF

---------~------------~---------~------------~--------------~------

16

SIMULATED 1620 REGISTERS

Although most 1620 registers are not
directly simulated, their functions are
simulated by System/360 general registers
and by elements of System/360 main storage.
The following description gives the corre­
spondence between 1620 register functions
and the System/360 elements used for their
simulation.

1620 Storage Registers

The function of the 1620 storage reg­
ister IR-1 is simulated by the System/360
general register CNTR.

The functions of registers IR-2 and PR-1
are simulated by two full-words labeled IR2
and PR1.

The functions of the following 1620
storage registers are performed by working
registers (general registers WR1 to WR6):

OR-1
OR-2
OR-3
OR-4
OR-5
PR-2
PR-3
MAR
MBR
MDR
OP
CR-1
Multiplier-Quotient
Digit and Branch

Since they are used only by the 1710
Control System, the storage registers IR-3
and IR-4 are not simulated.

1620 Model 2 Index Registers

Each of the two bands (Band 1 and Band
2) of seven index registers is simulated by
numeric core storage positions at simulated
1620 addresses 300 through 339 (Band 1) and
340 through 379 (Band 2).

Simulator Registers

In addition to the general registers
used to simulate 1620 registers, certain
general registers are used for SIM20 func­
tions. These registers and their functions
are given in Table 3.

The two SIM20 base registers are not
included in Table 3. The fUnctions of
these registers are described in the fol­
lowing paragraphs.

Table 3. Simulator General Register
Assignment

r-----------T-----------------------------,
I SYMBOLIC I FUNCTION I
I N~ I I
~-----------+-----------------------------i
I MAPORG I Contains the address of the I
I I first byte of simulated I
I I 1620 core storage I
~-----------+-----------------------------i
I SIZE I Contains the address of the I
I I last byte of simulated 1620 I
I I core storage I
~-----------+-----------------------------~
I RP I Contains the converted P I
I I address of the current 1620 I
I I instruction I
~-----------+-----------------------------~
I RQ I contains the converted Q I
I I address of the current 1620 I
I I instruction I
r------·----+-----------------------------~
I R1, R2 I Contain subroutine return I
I I addresses I
~-----------+-----------------------------~
I WR1 to WR61 Used as working registers I
I I I L ___________ ~ _____________________________ J

SIM20 is divided into three logical
parts in system/360 main storage. The
first part is contained in the bytes with
addresses 00000 through 04095, and any
element in this part can be addressed
directly. The second part is contained in
the bytes with addresses 04096 through
08191, and the third part in the bytes with
addresses 08192 through 12287.

The two base registers SIMB1 and SIMB2
are used in such a way that the address of
any element of the second or third part of
SIM20 can be expressed as the contents of
SIMB1 or SIMB2 plus a displacement.

SIMB1 always contains the value 4096,
and is used to address the second part of
SIM20. SIMB2 always contains the value
8192, and is used to address the third
part.

When disk simulation routines are per­
manently in main storage (on a System/360
with 65,536 or more bytes of main storage),
SIMB2 may temporarily contain the value
12288, but is reset to 8192.

BASIC INTERPRETIVE ROUTINE

The Basic Interpretive Routine (BIR) is
entered each time a 1620 instruction is
encountered (see Chart BA). It first
checks the value of the bit which simUlates
the Start/Stop key. If the value is one,
the Stop key is simulated, and the simulat­
ed 1620 stops and enters the Manual mode.
If the value is zero, the Start key is

SIM20 17

simulated, and the simulated 1620 enters
the Automatic mode.

When the simulated 1620 is in the Manual
mode, all the bits which simulate console
keys and switches are scanned, the
appropriate operations are executed, and
the BIR is re-entered. When the simulated
1620 is in the Automatic mode, according to
the value of the operation code of the
current 1620 instruction (contained in the
operation code table), the following opera­
tions are performed:

1. The standard address conversion sub­
routine is called, and the P address
or the Q address, or both, are con­
verted to binary.

2. Depending on the type of 1620 instruc­
tion, the indirect addressing or index
address conversion subroutine, or
both, are called.

ADDRESS CONVERSION SUBROUTINES

SIM20 contains three address conversion
subroutines (see Chart BB): a standard
subroutine used for all 1620 instructions,
an indirect addressing subroutine used by
those 1620 instructions for which indirect
addressing is specified, and an index sub­
routine used when a band has been selected
(1620 Model 2 only).

These subroutines are associated with
the BIR, but, since not all 1620 instruc­
tions require both P and Q addresses, are
not incorporated into the BIR. Further­
more, the subroutines are divided into
three sections. P-address conversion only,
Q-address conversion only, and P- and Q­
address conversion.

Standard Address Conversion Subroutine

This subroutine converts the P address
or the Q address, or both, into binary and
adds the result to the contents of general
register MAPORG. The contents of this
register are then compared with the con­
tents of general register SIZE to determine
whether the address falls within the bounds
of simulated 1620 core storage. If it
does, control is transferred to the opera­
tion routine which simulates the execution
of the current 1620 instruction; if it does
not, the message MAR CHK is printed on the
1052 printer-Keyboard, and simulation is
stopped (the BIR enters the 1620 Manual
mode).

Indirect Addressing Subroutine

This subroutine
standard conversion
for the presence of a

18

is entered from the
subroutine, and tests
flag in the units

position of the address in general register
R1. If there is no flag, control is
transferred to the operation routine which
simulates the execution of the current
instruction. If a flag is present, the
indirect address is fetched from simulated
core storage, and the procedure described
under "Standard Address Conversion
Subroutine" is executed until no further
flag is found.

Index Subroutine (1620 Model 2)

This subroutine is entered from the
standard conversion subroutine, and tests
whether a band has been selected. If not,
control is transferred to the indirect
addressing subroutine. If so, the address
of the index register is computed from the
flag pattern of the address field of the
instruction. The corresponding core stor­
age field is packed, converted to binary,
and added to the previously converted
address. The result is compared with the
contents of general register SIZE to deter­
mine whether the address falls within the
bounds of simulated 1620 core storage. If
the resulting 1620 address is greater than
the address of the last byte of simulated
core storage, it results in a MAR CHK
indication. If the resulting 1620 address
is negative, it is replaced by the
System/360 effective address corresponding
to the ten's complement of this negative
address. Control is then transferred to
the indirect addressing subroutine.

CPU SIMULATION PROCESS

Chart BA gives the overall operation of
the CPU simulation section of SIM20. The
following paragraphs describe this opera­
tion.

The BIR is entered each time a 1620
instruction is encountered. After having
decoded the instruction, it places the
simulated 1620 in either the Manual or the
Automatic mode. When it is in the Manual
mode, the bits which simulate the 1620
console keys and switches are scanned, and
control is returned to the BIR. When it is
in the Automatic mode, the execution of the
current 1620 instruction is simulated.

When the instruction has been executed,
the indicators involved in the operation
are updated, the instruction counter CNTR
is incremented by 12 (except for 1620
Branch instructions, where CNTR contains
the P address), and control is returned to
the BIR.

The simUlation of 1620 CPU instructions
normally consists of three distinct steps:

1. Converting 1620 addresses into effec­
tive System/360 binary addresses

2. Simulating the proper function of the
instruction

3. Updating indicators (if necessary)

Charts BC, BD, and BE illustrate the
logic of three typical routines used to
process arithmetic operations in either
fixed or floating point. The FIXADD rou­
tine adds two fields, digit by digit; the
MOLT routine multiplies two fields; and the
FIXDIV routine divides two fields.

FIXADD Routine

The FIXADD routine (see Chart BC) adds
two fields, using either the simulated 1620
Model 1 core storage tables (1620 addresses
300 through 399) or 1620 Model 2 direct
addition. In both cases, each digit to be
processed is converted before addition,
using internal table look-up. This method
allows the use of the FIXADD routine for
subtraction as well as addition, using
complement tables.

MOLT Routine

The MULT routine (see Chart BD) directly
simulates the 1620 multiplication process.
Each partial product is computed from the
mUltiply tables at simulated 1620 addresses
100 through 299, and is added to the
product area. A carry is propagated from
right to left as many times as necessary.
The process is repeated for each digit of
the multiplier field, the partial product
being added each time to the preceding
result.

When the leftmost flag in the multiplier
field is encountered, the process is termi­
nated and the indicators are updated. In
fixed-point multiplication, the product is
left in the product area; in floating-point
multiplication, it is shifted (if
necessary) and moved to the P field.

FIXDIV Routine

The FIXDIV routine (see Chart BE)
directly simulates the 1620 automatic
divide process. The Q field is subtracted
(that is, added in complement form), digit
by digit, from the dividend. This subtrac­
tion loop is repeated until a leftmost
carry of zero is obtained, indicating that
one operation too many has been performed.
The divisor field is then shifted one
position to the right, and the subtraction
loop is repeated. The division is termi­
nated when the rightmost address of the
divisor corresponds to the rightmost
address of the dividend. The indicators
are then updated.

TABLES

There are two types of tables in the CPU
simulation section of SIM20: an operation
code table and code conversion tables.

Operation Code Table (OPTBL)

OPTBL is made up of 154 half~words,
containing the absolute addresses in
System/360 main storage of the routines
which simulate the 1620 instructions. This
table allows a maximum of 99 operation
codes, of which some may be invalid on the
particular 1620 system being simulated, and
of which some are always invalid since they
correspond to no existing 1620 operation
code.

The Basic Interpretive Routine uses this
table in order to transfer control to the
appropriate routine to simulate a particu­
lar 1620 instruction. The EIR packs the
operation code, multiplies it by two, and
uses the result as an index in OPTBL. The
half-word at the index is placed in general
register Rl, and control is then trans­
ferred to the address in Rl.

Code Conversion Tables

Code conversion tables are used by the
routines which simulate 1620 I/O operations
(other than those for disk). Code conver­
sion is not necessary for disk operations,
since the code on disk is the same as that
in main storage.

Code conversion is performed by the MASK
subroutine: after filling the buffer, and
before transferring the data to simulated
storage (input operations); and after
transferring data from simulated storage to
the buffer, and before emptying the buffer
(output operations). The I/O simulation
routine which calls the MASK subroutine
places the address of the appropriate code
conversion table in a working register.

Each table is made up of a series of
character strings. The last character
string in the table is followed by a
delimiter character (either X'EE' or X'EF',
depending on the type of table). This
delimiter character is used to stop table
loading.

Each character string can contain a
variable number of characters. The first
character is a relative address index which
indicates at which address in the zone the
string should be loaded. The second char­
acter contains the length (in the form L-l)
of the character string. The data in the
string starts at the third character and
contains L characters.

SIM20 19

I/O SIMULATION

This section of the PLM contains a
general description of the I/O simulation
section of SIM20. Among the topics dis­
cussed are the simulation of 1620 I/O
devices, buffer formats, and the general
technique of I/O simulation.

CHANNEL CONTROL BLOCKS

One channel control block (CCB) in
System/360 main storage is associated with
each System/360 channel used by SIM20.
SIM20 assumes that three CCBs have been
created during an editing run; these CCBs
correspond to multiplexor channel 0 and
selector channels 1 and 2. The CCB for a
particular channel contains the address of
the first byte of the unit control block
for each device attached to the channel.

Since the 1620 system has no channels,
there is no restriction on the assignment
of 1620 I/O devices to System/360 channels.
The assignment of I/O devices to channels
conforms to System/360 Operating System
standard addressing, and is set up by
DEVICE control information during an edit­
ing run.

The detailed structure of a CCB is given
in Table 4.

Table 4. structure of a CCB
r------T----------------------------------,
I WORD I CONTENTS I
~------+----------------------------------~
I 1 I Always contains zeros I
~------+----------------------------------~
I 2 I Contains the address of the I
I I first byte of this CCB I
~------+----------------------------------~
I 3 lOne word for each System/360 I
I. I device attached to this channel, I
I. I broken down as follows: I
I n I The first byte contains the I
I I System/360 hexadecimal address I
I I of the device I
I I The last three bytes contain the I
I I address of the first byte of its I
I I associated UC.B I L ______ ~ __________________________________ J

UNIT CONTROL BLOCKS

One unit control block (UCB) in
System/360 main storage is associated
with each 1620 I/O device to be simulat­
ed. UCBs are created from DEVICE control
information during an editing run. A
maximum of ten 1620 I/O devices, each
with a corresponding UCB, can be simulat­
ed, as follows:

20

• One console typewriter

• One paper tape reader

• One card reader

• One card punch

• One printer

• Four disk storage drives

When System/360 Operating System stan­
dard addressing is used, two of the disk
storage drives are attached to selector
channell, two to selector channel 2, and
the rest of the devices to multiplexor
channel O.

The detailed structure of a UCB is
given in Table 5.

Table 5. Structure of a UCB
r----------T------------------------------,
I SYMBOLIC I CONTENTS I
I NAlVlE I I
~----------+------------------------------~
I DEVTYP I Four bytes, containing the I
I I type of System/360 device I
I I (for example, 1442, 1052) I
~----------+------------------------------~
I DEV360 I Two bytes, containing the I
I I System/360 address of the I

I I device I
~----------+------------------------------~
I DEVSPF lOne byte, denoting the spe- I
I I cial features of the device I
~----------+------------------------------~
I BORCH lOne byte, giving the device I
I I status: I
I I OO=available I
I I 11=busy I
I I 01=chained I

I I 10=busy, unit check encoun- I

I I tered I
~----------+------------------------------~
I DEVSVC I Three bytes, containing the I

I I address of the SVC calling I

I I sequence I
~----------+------------------------------~
I DEVCHN I Three bytes, containing, if I
I I chained, the address of the I
I I next UCB on the chain I
t----------+------------------------------~
I DEVINT I Three bytes, containing the I
I I return address in case of an I
I I interruption I
~----------+------------------------------~
I SENSE I Three bytes, containing I
I I sense information I
~----------+------------------------------~
I INVST lOne byte, containing any I
I I invalid status bits I L __________ i ______________________________ J

CHANNEL TABLE

The Channel Table (CHTABL) is a block of
four consecutive full-words in System/360
main storage. The first three full-words
correspond, in order, to Systern/360 chan­
nels 0, 1, and 2; each contains the address
of the first byte of the CCB associated
with the corresponding channel. The fourth
full-word must contain zeros.

BUFFERS

Only one I/O buffer is used by SIM20
since the processing of 1620 CPU instruc­
tions is interrupted only during the trans­
fer of data from simulated 1620 core stor­
age to the buffer, or from the buffer to
simulated core storage.

The length of this buffer is set at 210
bytes, based on the following considera­
tions:

1. I/O operations on the console type­
writer and on paper tape devices are
executed with groups of 100 charac­
ters, or fewer when a record mark or
an end of block is detected.

2. I/O operations on a card read-punch
device are executed with groups of 80
characters.

3. Output operations on the printer may
process up to 144 characters at a
time.

4. I/O operations on disk storage drives
use two fields of 105 bytes each.

For 1620 I/O operations in the Alphamer­
ic mode, the expansion of each character
read (or the reduction of each two-digit
field to a written character) is performed,
one character at a time, during code con­
version. Thus, a double-length I/O buffer
is not necessary.

LOGIC OF I/O SIMULATION

Depending on the characteristics of the
1620 system to be simulated, EDITOR pro­
duces one of two versions of the I/O
simulation section.

1. To simulate 1620 systems that have
disk storage drives and are too large
to be simulated on a System/360 with
32,768 bytes of main storage, SIM20 is
edited in the following way:

a. I/O simulation routines for 1620
disk operations are placed on cyl­
inder 2 of a 2311 Disk Storage
Drive; I/O simulation routines for

console typewriter, paper tape
device, card read punch, and
printer operations are placed on
cylinder 1; and the rest of SIM20
is placed on cylinder O. At the
beginning of simulation, the con­
tents of cylinders 0 and 1 are
read into System/360 main storage.

b. During simulation, when a 1620
disk operation is to be performed,
SIM20 transfers the I/O simulation
routines for disks from the 2311
into System/360 main storage,
overlaying the I/O simulation rou­
tines (except Insert and Automatic
Load) for the other 1620 devices.
The 1620 disk operation is then
simulated.

c. Later, when a 1620 I/O operation
is to be performed on a device
other than a disk storage drive,
the disk simulation routines are
replaced in System/360 main stor­
age by the I/O simulation routines
for the other 1620 devices.

The overall logic of this version
of the I/O simulation section is shown
in Chart BA.

2. Few 1620 systems require the above­
described I/O simulation technique.
When simulating most 1620 systems, all
the I/O simulation routines remain
permanently in System/360 main
storage, and all 1620 I/O operations
(including disk operations) are per­
formed as soon as requested.

I/O SIMULATION ROUTINES (OTHER THAN DISK)

The BIR analyzes the operation code of
the I/O instruction and, according to its
value, transfers control to the appropriate
simulation routine (see Charts BF, BG, and
BH). The method of simulation depends on
whether the instruction requests a read or
a write operation.

Read Operation

A read operation is performed in the
following way:

1. Information is read from an I/O device
into the I/O buffer. The physical
transfer of data from the device to
the buffer is performed as follows:

a. SIM20 submits an I/O and continue
(SVC 2) or an I/O and interrupt at
channel end (SVC 1) request to
CONTPR.
SVC 1 is used in card read punch
and printer simulation; SVC 2 is

SIM20 21

2.

3.

4.

5.

used in typewriter, paper tape,
and disk simulation.

b. Control is transferred to CONTPR.

c. The physical read operation is
begun.

d. Control is returned to SIM20 as
soon as the request is accepted.

The MASK subroutine is called and, if
so indicated by the command-check
byte, loads the code conversion table.
When the table has been loaded, the
"lock switch" in the I/O request
sequence is turned on. At channel
end, CONTPR tests for exceptional con­
ditions that may have been detected
during the read operation. If none
have been detected, control is
returned to SIM20.

The VALIN subroutine converts the
information in the buffer into SIM20
internal code and checks the validity
of all characters.

The information
the I/O buffer
core storage.

is
into

transferred from
simulated 1620

The 1620 I/O indicators and switches
associated with the operation are
updated, and control is passed to the
BIR to analyze the next 1620 instruc­
tion.

Chart BG shows the overall logic of a
read operation.

Write Operation

The simulation of a write operation is
similar to that of a read operation; it is
performed in the following way:

1. The VALOUT subroutine converts the
information in the buffer from SIM20
internal code into the appropriate
output code and checks the validity of
all characters.

2. The information
simulated 1620
I/O buffer.

is transferred from
core storage into the

3. The physical write operation is per­
formed.

Chart BH shows the overall logic of a
write opEration.

Exceptional Conditions

The following exceptional conditions may
occur during the execution of an I/O opera­
tion.

22

Unrecoverable Errors: I/O errors involving
a channel or a control unit are classed as
unrecoverable errors. Wnen such an error
is detected, a message is sent to the
operator, and control 1S transferred to the
BIR. The simulated 1620 is placed in the
Manual mode.

Intervention Required: When intervention
is required at an I/O device, a message is
sent to the operator, and control is passed
to the BIR.

The operator message simulates the sta­
tus of a 1620 I/O indicator. The simulated
1620 enters the Manual mode, and the opera­
tor must perform a 1620 Start operation in
order to resume simulation of the instruc­
tion.

Unit Exception: The response of SIM20 to a
unit-exception condition depends on the
type of read operation being performed.
This condition may, for example, denote a
last-card or cancel indication.

Unit Check: When a unit-check condition
occurs, a sense operation is performed at
the device; according to the resulting
sense information, the 1620 I/O indicators
concerned are set "on". If no indicators
are involved in the operation, the standard
error recovery procedures are performed.

DISK SIMULATION ROUTINES

The following sections present the tech­
nique used in the I/O simUlation section of
SIM20 to simUlate 1620 disk operations.

Sector Arrangement

On the disk packs for 1311 Disk Storage
Drives, the 20 sectors of any on~ track are
arranged consecutively from 0 to 19. On
the disk packs for 2311 Disk Storage
Drives, the sectors are rearranged as shown
in Figure 8.

Figure 8. Disk Sector Arrangement

This rearrangement of sectors allows
efficient simulation of 1620 disk opera­
tions involving a number of consecutive
1311 sectors in logical sequence. For
example, the processing of a series of
sectors during a 1620 Read Disk operation
is simulated in the following way:

1. The first sector in the series is read
into the I/O buffer.

2. A certain amount of CPU processing is
performed to check the results of the
operation.

3. The data is transferred from the I/O
buffer into simulated 1620 core stor­
age.

4. A counter is incremented in order to
read the next sector in the series.

While steps 2, 3, and 4 are being
executed, the two sectors immediately fol­
lowing the sector just read pass under the
read/write head of the disk unit. For this
reason, the sectors are arranged in the
order:

n,n+7,n+14,n+l,n+8,n+15, •••

The result is that when SIM20 is ready to
accept the next sector in logical sequence,
that sector is the next one to pass under
the read/write head.

This rearrangement of sectors reduces
the processing time for multi-sector opera­
tions from 4.25 ms per sector (1311 Disk
Storage Drive) to 3.57 ms per sector.

Each sector on a 2311 track is made up
of the following elements:

• Identification

• Key length (=0)

• Count (=105 bytes)

• 105 bytes of data (the first 5 bytes
contain the sector address, and the
last 100 the contents of the sector)

An additional 21st sector is placed at
the end of each 2311 track; it contains the
1620 addresses of the 20 preceding sectors.
Since each 1620 sector address is 5 bytes
long, this sector contains 100 bytes. It
is used by SIM20 to check the addresses of
the sectors on the track; when the sector
addresses are modified as a result of a
1620 disk operation, its contents are
changed accordingly.

Disk Indicators

The 1620/1311 indicators

36 (address check)
37 (WLRC/RBC)
38 (cylinder overflow)

and the read- and write-check indicators 06
and 07 are simulated by bits in System/360
main storage. These indicators are set by
the SIM20 sequences which perform address
comparison on the 21st sector, check cylin­
der overflow by arithmetic computation, and

perform a wrong-length record check by
character comparison.

Write Address Switch

The write-address switch is simulated by
bit 5 of the byte at System/360 address
00001. When "on", it allows 1620 programs
to modify the addresses of sectors on 2311
tracks; when the addresses are modified,
the contents of the 21st sector of the
track are changed accordingly.

Protection Flag

As on the 1620, write protection in
SIM20 consists in placing a flag on the
leftmost position of the sector address:
that is, in the first of the 105 data
bytes.

Disk Addresses

SIM20 determines the 2311 cylinder and
head numbers by converting the disk control
field specified by the 1620 disk instruc­
tion. The addresses thus defined are
placed in System/360 main storage so that
they can be used by further 1620 disk
instructions.

Disk Read, Write, and Check Instructions

When one of these 1620 disk instructions
is encountered, the Disk Operation Entry
routine (see Chart BM) is ,called. This
routine makes a number of tests:

• Read, write, or check operation (Charts
BP,BQ,BR)

• Track or sector mode

• With or without WLRC/RBC (wrong-length­
record check, read-back check)

Depending on the result of these tests,
it then passes control to the appropriate
routine.

Sector Mode Operations: A loop processes,
one at a time, the sectors of a sequence,
regardless of the length of the sequence.
The routine increments a counter as neces­
sary, and checks the results of the opera­
tion from sector to sector and track to
track.

Track Mode Operations: These are also
performed sector by sector (including the
proceSSing of sector addresses) until the
20th sector has been processed. This
requires three rotations because of the
disk sector arrangement chosen.

SIM20 23

Seek Operations

The simulation of a 1620 seek operation
(see Chart BN) is performed in the follow­
ing steps:

1. Conversion of the contents of the disk
control field

2. Issuance of a System/360 Seek Cylinder
and Head command

CONSOLE SIMULATION

SIMULATED KEYS, SWITCHES, AND INDICATORS

All 1620 console keys, switches, and
indicators are simulated by bits in a
double-word at System/360 address 00000,
since SIM20 tests these bits when the
simulated 1620 is in the Manual mode. The
functions of simulated keys, switches, and
indicators are simulated only when the
simulated 1620 is in the Manual mode. The
operator can change the settings of keys
and switches directly by manipulating
System/360 control panel switches. SIM20
can also display the status of 1620 indica­
tors in such a way that the operator can
read them directly on the system control
panel.

Simulated Console Keys

1620 Model 1 and Model 2 console keys
are simulated by seven bits in the byte
with System/360 address 00000.

• The Start and Stop keys (bit 0 of the
byte) are simulated by the same
System/360 control panel switch:

OFF=Start key (bit contains zero)
ON=Stop key (bit contains one)

• The Automatic Load key of the 1622 Card
Reader is simulated by bit 6 of the
byte. Its function is simulated only
when the simulated 1620 is in the
Manual mode. Setting the bit to one
corresponds to pressing the Automatic
Load key.

The correspondence between simulated
1620 console keys and the bits of byte
00000 is given in the listing of SIM20.

Simulated Console Switches

1620 Modell and Model 2 console switch­
es are simulated by eight bits in the byte
with System/360 address 00001. The first
four bits of this byte correspond to 1620
program switches 1, 2, 3, and 4; the
following bit, to the disk-check switch;
and the last two, to the I/O-check switch

24

(read check, write check) and the overflow
switch (arithmetic check, exponent check).

The function of the 1620 parity bit is
simulated by the parity bit of the
appropriate System/360 byte; therefore, the
1620 parity-check switch is not simulated.

Bit 5 of byte 00001 simulates the write­
address switch, which is used by 1620
programs that modify sector addresses on
1311 Disk Storage Drives. Its effect is
simulated only during 1620 disk operations.

The correspondence between simulated
1620 console switches and the bits of byte
00001 is given in the listing of SIM20.

Simulated Indicators

1620 Model 1 and Model 2 indicators are
simulated by 17 bits in System/360 main
storage at addresses 00002 through 00007.
Indicators 19 and 39, which summarize the
other indicators, are not simulated. When
a BI or BNI instruction requests that
indicator 19 or 39 be tested, the corre­
sponding detailed indicator bits (indica­
tors 06+07+25+36+37+38) are tested simulta­
neously.

The third bit of byte 00002 is used as
the npaper tape switch. n If this bit
contains a 1, the 1621 Paper Tape Reader is
simulated by a card reader; if it contains
zero, the 1621 is simulated by the 2671
Paper Tape Reader.

LOGIC OF KEY SIMULATION

The simulation of 1620 console keys
(except the Stop key) is effective only
when the simulated 1620 is in the Manual
mode.

The BIR, which is given control whenever
a 1620 instruction has been completely
processed, tests the value of the
start/stop bit (bit 0) at System/360
address 00000. If this bit contains a
zero, simulation continues with the next
1620 instruction in sequence. If this bit
contains a one, control is passed to a
closed loop, which tests successively the
value of the save, reset, check reset,
insert, modify, and automatic load bits.
If all these bits contain zeros, the
sequence loops endlessly. As soon as a
value of one is encountered, the corre­
sponding functions are performed. These
bits can be set by storing them in
System/360 main storage through the system
control panel.

When one of the save, check reset, or
insert operations is performed, control is
returned to the closed loop, and the simu-

lated 1620 remains in the Manual mode. The
only way to exit from this loop is to
perform a Start or Automatic Load opera­
tion; that is, to set the start/stop bit to
zero. Control is then returned to the BIR,
which resumes simulation of 1620 instruc­
tions.

When the automatic load bit contains a
one, control is passed to the Read Numer­
ically (Card) sequence, which reads the
first card into simulated 1620 core stor­
age, at address 00000, sets the contents of
the simulated instruction counter to 00000,
and sets the start/stop bit to zero, with­
drawing control from the closed loop.
Loading then begins immediately.

When the modify bit contains a one, the
corresponding function is performed (all
simulated 1620 core storage is set to
zero), provided that the start/stop bit
contains a zero. When simulated core stor­
age has been cleared, the start/stop bit is
set to one, and the closed 100p is re­
entered.

The logic of key simulation is shown in
Charts BA, BK, and BL.

MESSAGES AND COMMANDS

All I/O operations on the 1052 Printer­
Keyboard are performed by the TYPIO
subroutine, which may be given control at
any time, provided that it has been given
the necessary information: a device
address, a read or write command, a count,
and the address of a buffer. This general
purpose routine is used by:

• The MESSAG subroutine, which prints all
SIM20 messages on the 1052 Printer­
Keyboard

• The ALARM sequence, which performs the
error recovery procedures for the 1052

• The INSERT, RNTY, RATY, WNTY, WATY, and
DNTY sequences, which simulate 1620
console typewriter operations

MESSAG Subroutine

The MESSAG subroutine is given control
whenever a part of SIM20 must display a
message on the 1052 Printer-Keyboard. It
contains three options:

1. Send a message and continue simula­
tion.

2. Send a message and stop the BIR.

3. Send an INTERVENTION REQUIRED message
(such as Reader No Feed), stop the
BIR, and return control to the BIR
without incrementing the simulated
instruction counter. The operator can
then re-start simulation on the same
1620 instruction as soon as the
required device is ready.

The MESSAG subroutine processes every
message, provided it is given the message
address (that is, the first character of
the string representing the message). This
character must contain the length of the
message proper, which begins with the next
byte.

RNTY Sequence

The RNTY sequence simUlates the 1620
Insert, Read Numerically (Typewriter), and
Read Alphamerically (Typewriter) instruc­
tions. All three instructions are pro­
cessed using modifier switches.

An Insert operation issues a read com­
mand on the 1052, with a count of 100
bytes. These 100 bytes are converted into
SIM20 internal code and placed in simulated
1620 core storage, starting at address
00000. The closed loop of the BIR is then
re-entered, ready for a start operation.

A Read Numerically or Alphamerically
operation is processed by sending commands
to read 100 bytes to the 1052, converting
these bytes, and placing them in simulated
1620 core storage. This process is repeat­
ed until an end-of-block indication is
encountered.

Note that an Insert, a Read Numerically,
or a Read Alphamerically operation must not
be terminated by a Release and Start opera­
tion, as is done on a 1620, because the
end-of-block indication is the only one
that can release the 1052 Printer-Keyboard,
by sending channel-end and device-end indi­
cations to SIM20.

Write Numerically and Alphamerically
Operations

These operations are performed in the
same way as the insert and read operations:
by sending commands to the 1052 to write
strings of 100 bytes until a record mark is
detected in simulated 1620 core storage.

SIM20 25

Chart BA. SIMlO Internal Logic

***** 10BA *
101Oc~1O

*

IPL

***** *BA *
**B~*

*

BEGIN X
*****B2 **********
* * SIM20
* * 1OINITIALIZATION *
* * *****************

ENTRY1 X
*1O***C2**101O*1010101O1O
* BIR *
--*-*-*-*-*-*-* ••••••• x* PI CK UP AND *X •••••••• l1li ••••••••••••••••••••

26

* ANALYZE NEXT *
* INSTRUCTION *

x
.1O.

02 *. *****03******* .* . *.
• 1O 'STOP' 1O. =1 * SET SlM20

.••••• X* IN 1620 ...
1O. BIT.1O * MANUAL MODE *
.. * ... * •• * **************

* =0

START X
'**E2****
* * * SET 5IM20
* IN 1620 *
1OAUTOMATI C MODE*
* * **************

OPTBL X
*****F2****'******
* * OPERATION *
* CODE TABLE ..
.. LOOK-UP *
* *****************

X
*****G2**********
1OCONVPQ BBB2*
--*-*-*-*-*-*-*
* CONVERT * * 1620 ADDRESS * * INTO BINARY *

X

x

*BK *
* 81*
* * *

*****H2********** *****H3*******
: ~~~Ui:~~ * •••••••• x: UPDATE 1620 ** ••• :

INSTRUCTION .. * INDICATORS * *
***************** **************

Chart BB. Address Conversion Subroutines

P OR Q ADDRESS CONVERSION

***** ENTRY *BB *
* B2*
* *

CONVPQ X
*****82 **********
.. CONVERT ..
* ADDRESS INTO *
* BINARY :

.****** •• ****

X
*****C2**********
* ADD ORIGIN *
* ADDRESS OF *
*SIMULATED 1620 ..
: CORE STORAGE *

X
*****02 **********
* INDEX BBC3*
--*-*-*-*-*-*-*
* SUBROUTINE *
* FOR ADDRESS
* INDEXING *

X
*****E2**********
1 NDAD BBF3
--*-*-*-*-*-*-*
* SUBROUT I NE ..
* FOR INDIRECT
* ADDRESSING *
*********«.*******

x

RETURN TO CALLER

, INDEX'
SUBROUTINE

***** *BB *
**C;*

x .*. INDX4
.* C3 *. *. :****C4*********:

.* SELECTED *. 1.2 CONVERT *

INDX5
*****cs**********
* * ADD

•• X*. INDEX .* .•....•• X.SPECIFIED INDEX* •••••••• x* TO CURRENT
ADDRESS

**** .. *
* C3 *
* *

*. BAND." .. REGISTER * ..
.. INTO BINARY *

... .* *************-*** * 0 . .
.x ••••••••••••••••••••..•••••••••••••••••••••••••••••
X

*
*

RETURN TO CALLER

, INDAD'
SUBROUTINE

*BB *
.. F3"

X .".
F3 *. *****F4********** *****FS**********

.* *. * PICK UP * * *
.* INDIRECT *. YES INDIRECT "REPLACE FORMER *

. ADDRESS X* ADDRESS AND * .••••••. X* ADDRESS BY ..
". FLAG.* .. CONVERT INTO * .. NEW ONE ..
.. .. BINARY .. *

* •• * ***************** ***************** .. NO

X

***** .. *
*

RETURN TO CALLER

X

**** * C3

RETURN TO
, INDEX'

SUBROUTINE

NOTE THIS FL.OWCHART CORRESPONDS TO THE MAXIMUM POSSIBLE
1620 CPU CONFIGURATION. IN CERTAIN SMALLER CONFIGURATIONS.
'INDEX' OR 'INDAO' SUBROUTINES MAY BE ABSENT.

SIM20 27

Chart BC. FIXADD Routine

'FIXADD MODI'
***** *BC *
* *B;*

*
x

***** *6C *
* 63*
* *
*

.*. ADD3 X
*****83**********
* TEST END OF *

81 *. *****82*******
• * *. * NO *

• * P AND 0 *. YES * COMPLEMENT * P FIELD *
.SIGNS ARE THE. •••••••• X*TABLE REQUIRED * * DECREMENT P *

* FIELD POINTER * *. SAME.* * SWITCH OFF *
.. * * *

***************** * •• * **************
* NO

· . • x •••••••••••••••••••••••••
ADD4 X

:****c 1 ******* * :****C2*********:

* *.
: C3 :.x.
**** x ADDC .*.

C3 *.
.* IS P *.

* PREPARE * * DECREMENT * NO.* FLAG *.
* SWI TCHES FOR *
END OF P AND Q

•••••• *p FIELD SCANNER*x •••••••• *. DETECTED BY .*
* * *. SCANNER .*

* FIELDS * * * *..*
************** ***************** *. .*

* YES

X
ADD5 X ADDG ADDA .*.

*****01 ********** *ADDPQ *
--*-*-*-*-*-*-*
ADD FIRST DIGIT
OF Q ADDRESS TO

:***~*!~~~;;;***:

x
:****El*********:
* DECREMENT *
* POINTERS OF P *
: AND Q FIELDS :

***************** · . • X •••••••••••

ADDF X
*****F1**********
:~~~~~*-*-*-*-*-:
* ADO CURRENT *
DIGIT OF P TO Q
* ADDRESS *

X
AQEND .*.

Gl *.
.* Q *. .* FIELD *. YES

. EXHAUSTED . ••••
. .

. .
* •• * * NO

X
*****Hl ********** * TEST END OF *

Q FIELD *
* DECREMENT Q *
: FIELD POINTER:

· . • x •••••••••••

x
APEND .*.

28

Jl *. .* p *.
.* FIELD *. YES

. EXHAUSTED . ••••
. . *. .*

* •• * * NO

x

* *
: B3 :

x

* *
: C3 :

*****02******* 03 *.
** *. * * NO.* WAS *.
*RESTORE P SIGN *X •••••••• *. COMPLEMENT .*
* * X *.REQUIRED .*

* *..*
************** * •• *

x

* * * *
* * * RETURN

TO CALLER

* YES

x .*.
E3 *.

.* *.
• ONE.* *.
•••••• *. LAST CARRY .*

. .
. .

* •• *
* ZERO

X
*****F3**********
* PREPARE *
* POINTERS AND
* SWITCH TO *
* RECOMPLEMENT *
* WITH ADDPQ *

ADDI X
*****G3**********
*ADDPQ *
--*-*-*-*-*-*-*

••••••••••••••••• x* *
*RECOMPLEMENT P *
* FIELD *

x .*.
*****H2********** H3 *.
* * .*ENO OF *.

* NO.* RECOM- *.
DECREMENT *x •••••••• *.PLEMENTATION.*

* POINTERS * *. .*
* * *..*
***************** * •• *

* YES

ADDN X
:****J3*********:
* COMPUTE SI GN *
*OF RESULTING P *
: FIELD *

x

* * * * *

* RETURN TO
CALLER

CVQ

'ADDPQ'
R~~n~E

*BC *
* B4*
* *

x .*. 84 * •
.* * • :****85*********:

.* IS *. YES * TAKE THE *
. COMPLEMENT . •••••••• X*COMPLEMENT of Q*

.REQUIRED . * DIGIT *
.. *

* •• * ***************** * NO

· . • x •••••••••••••••••••••••••
ADDPQX X

:****C4*********:
* ADD Q DIGIT *
WITH CARRY TEST
: IF NEW CARRY :

*********4*******

X
ADDPQS .*.

04 *.
.* *. .* *. ON

.RECOMPLEMENT . ••..
. SWITCH .

. . * •• *
* OFF

x
:****E4*********:
* COMPUTE
: 10 * P + Q *
* * *****************

· . .x •••••••••••

ADDPQ4 X
*****F4**********
* * * ADD *
*ADDRESS OF ADO *
: TABLE *

X
*****G4**********
* * * SEARCH AND *
STORE RESULTING
* DIGIT IN P *
* FIELD

X
*****H4**********
* * * * *RESET CARRY IF *
* ANY *
* * *****************

x

*
*

* RETURN
TO CALLER

Chart BD. MULT Routine

'MULT'
ROUTINE
***** *BD *
* Bl*
* *

X
*****81**********
* * *CLEAR POSITIONS*
80 TO 99 SAVE p
:AND Q ADDRESSES:

*****:.************

x
*****c 1 ********** * LOAD *
* FIRST POINTER *
WITH ADDRESS OF
* POSITION 99 *

**** * *. ! 01 :.x.
**** • MULTF X

*****01**********
* LOAD *
* 2ND POINTER *
WITH ADDRESS OF
: 1ST POINTER :

X

*****E 1 **********
* * * CLEAR
* WORKING
* REGISTERS *
* * *****************

X
*****F1*****"'****
* COMPUTE *
* WITH Q DIGIT *
* ADDRESS FOR *
:MULTIPLY TABLE:

**** * * • ... Gl *.X.

* * **** • MULTO X
*****Gl**********
* LOAD SCANNER. *
*COMPLETE ADDR. *
* OF MULTIPLY *
* TABLE WITH *
* 10 * P *

X
*****Hl**********
* GET 1ST *
* RESULT DIGIT *
* AND ADD TO IT *
* DIGIT IN *
* PRODUCT AREA *

X
*****Jl**********
* GET *
*POSSIBLE CARRY *
* NORMALIZE *

RESULT AND *
* STORE IT *

x
**** * * * B2 *

* *

* *
: B2 :

X
*****82**********
* * * DECREMENT
* SCANNER GET *
SECOND DIGIT OF
* RESULT *

x
:****C2*********:
* ADD TO IT THE *
* DIGIT IN *
* PRODUCT AREA
* * *****************

MULTB X
*****02**********
* ADD *
* CARRY SET NEW *
*CARRY NORMALIZE*X •••••••••••••••••••••••••••••
* AND STORE *
* RESULT *

x .*.
E2 *. *****E3**********

.* *. * ...
• * *. YES * DECREMENT * • *. NEW CARRY .* .•••.•.• X.SCANNER INSERT * ••••
. . * THE FOLLOWING *
.. * DIGIT ...

*. • * *****************
* NO

X
MULTA .*.

G2 *. *****G3**********
.* *. * * .* IS P *. NO * DECREMENT *

.DIGIT FLAGGED. •••••••• X*SECOND POINTER * ••••
. . * BY ONE *

. . * •• * ***************** x
* YES ****

X
MULTC .*. MULTE

H2 *. *****H3**********
.* *. * RESTORE P *

.* IS Q *. NO * ADDRESS *
.DIGIT FLAGGED. •••••••• X* DECREMENT Q *

. . x * ADDRESS AND *
.. * FIRST POINTER *

*. • * ***************** * YES

x .*.
J2 "'.

.* *. .* RQ = *. YES •
.INITIAL VALUE. ••••••

. .
. .

* •• * * NO

X MULTI

**** . '" '" .. x: 01 :

*****K2 ******* *****K3**********
* * * * * SET * * DEFINE *

* *
: GI :

*FLAG RESTORE P * •••••••• X*SIGN OF RESULT * ••••••••
* SIGN * * AND SET IT * X
... * *****
************** ***************** * *

*
* RETURN TO

CALLING SEQUENCE

SIM20 29

Chart BE. FIXDIV Routine

'FIXDIV'
SUBROUTINE
***** *BE *
* 81*
* *

X
*'****81**********
* * * SAVE P AND *
Q ADDRESSES AND
* SIGNS *
* * *****************

**** * *. * Cl *.X.

* * **** •

* *
: 82 :

FIXD4 X
*****62**********
* ADD *
* CARRY TO P *
FIELD INCREMENT
: QUOTIENT BY 1 :

********,*********

x

* *
: 83 :

••••••••••• x. . .
.FIXD9 X

*****B3**********
*ADDPQ *
--*-*-*-*-*-*-*
* RE-ADD LAST *
* SUBTRACTION *
*DIGIT BY DIGIT *

x
FIXDID x .*. .*.

:****Cl*********: C2 *.
• * *.

9 OR .* TEST *. *CLEAR REGI STER *
* TO STORE 1 *
* DIGIT OF

•••••• *. DIGIT OF .*
.GREATER*.QUOTIENT .*

QUOTIENT *

· . • x •••••••••••

. .
* •• *

*LESS THA'"
.9

x

* *

C3 * •
.* *.

• NO.* IS P *.
•••. *. FIELD .*

.EXHAUSTED.
. .

* •• * * YES

FIXDTA x * *
* *

FIXD8 X
:****01*********:
.. PREPARE
* POINTERS AND
* REGISTERS

*
* * * * *****************

*****03**********
.. *ADDPQ *

RETURN TO CALLER TO *-*-*-*-*-*-*-*-*
TREAT OVERFLOW * RE-ADD *

LAST DIGIT OF Q

:*****:!;i~*****:

••••••••••• x.
:FIXDA x FIXD10 X

4*E 1 *******
*ADDPQ *
--*-*-*-*-*-*-*
* SU8TRACT *
*Q DIGIT FROM P *
* DIGIT *

x .*. Fl *.
• * * •

• * END *. YES
. OF Q FIELD . ••••

. .
. .

* •• *
* NO

x
:****Gl*********:

*****E3**********
* STORE ..
* DIGIT OF *
* QUOT I ENT AND *
* CARRY TO P *
* FIELD *

x .*.
:****F2*********: _*F3 *_* •

INCREMENT * NO.* IS *.
*p FIELD ADORESS*X •••••••• *. DIVISOR .*
* BY ONE * *.EXHAUST~D.*

* *..*
***************** *. .*

x
... ***

* * .. C1 *
* * ****

* YES

FIXD12 X
:****G3******* ...

• * DECREASE *
•••• *POINTERS FOR P *

: AND Q FIELDS :

SET
* FLAG ON
: QUOTIENT

FIXD1
*****H 1 ******jf-***
*ADDPQ *
--*-*-*-*-*-*-* •
* SUBTRACT *X •••
LAST DIGIT FROM
* P FIELD *

X
FIXDIE .*. FIXD5 .*.

30

J1 *. J2 *.
.* *. .* * •

• * TEST *. ZERO.* *. NO
. LAST CARRY . •••••••• X*.P FIELD NULL .* ••••

. . *. .*
.. *..*

* •• * * •• * x
* ONE * YES **** · . • x •••••••••••••••••••••••••
x

* *
: 82 :

* * * B3 *
* *

x
:****H3******* ...

* SET FLAG AND *
* SIGN ON ..
* REMAINDER *
* ..

x
:****J 3*********:

DEFINE
SIGN OF

: QUOTIENT *
*

~
* *
* *
* *
* RETURN

TO CALLING
SEQUENCE

Chart BF • Simulation of I/O (Other Than Disk) Operations

. *.*.
"BF "
""c~"

x
OUTIN .". DPROG .". OUTIN6

C2 *. C3 *. ******C4***********
." IS ". ." ". LOAD ENTIRE SE-

." REQUESTED ". NO ." IS IT A ". YES "QUENCE OF DISK"
. SEQUENCE .-•••••••• X. 1620 DISK .* •••••••• X SIMULATION FROM

". IN CORE ." ".OPERATION." CYLIND. 02 INTO
"STORAGE" ".." CORE STORAGE

* •• * * .. * ... ************
" YES " NO

X
·*E2*******

OUTIN2 X
******03***********

LOAD ENTIRE
"SEQUENCE OF 1/0*

SIMULATION FROM
CYLIND.Ol INTO"

CORE STORe

" " . " GIVE CONTROL " X •
... TO THIS *X •••
" SEQUENCE :

*****.****** •• ***

x
***.*
"BA "
""C~"

RETURN TO
BASIC INTERPRETIVE

ROUTINE

SIM20 31

Chart BG. Logic of Read Operations

EXCRET FROM
CONTROL PROGRAM

*BG *
* C2*

* *

x .*.
C2 *.

.* ARE *.
NO.* 1620 *.

•••••••••••••••••• *. INDICATORS .*
.INVOLVED .

X
******01***********

SEND MESSAGE
AND SET

'STOP' BIT
* TO ONE *

~~!~~!;*~~~B

x

*BA *
**C~*

RETURN TO
BASIC INTERPRETIVE

ROUTINE

32

. .
* •• *

* YES

x
:****02******* *
*SET APPROPRIATE
1620 INDICATORS
: AND MODE *

*BG *
* A3*

* *

X
*****A3**********
* REQUEST A *
*READ OPERATION *
* FROM CONTROL * ••••••.•
*PROGRAM BY SVC * x
... 1 * *****
***************** *

* *
*

SIM 20
CONTROL PROGRAM

ACCRET FROM
CONTROL PROGRAM

*BG *
* C3*

* *

MASK X
:****C3*********:
* PREPARE *
CODE CONVERSION
* TABLE *

X
*****03*******
* * * * *SET READ SW I TCH*
* ON *

.x ..•....•.•.
x .*.

E3 * •
• * * • • * *. ON •

. READ SWITCH . ••.•
. .

. .
* •. * * OFF

VALIN X
*****F3**********
* * * TRANSLATE *
*INPUT DATA AND *
:CHECK VALIDITY:

x .*.
G3 *.

.* * •

NRMRET FROM
CONTROL PROGRAM

*BG *
* C4*

* *

x
:****C4******* *

* SET * * *
:READ SWITCH OF:*X •••• : C4 :

* *

x

* * *
* *

RETURN TO THE
PO I NT OF I NTERRUPT ION

BY SVC 3

:****G4******* *
• * INVALID *. YES SET 1620

. CHARACTER . .•••...• x* READ CHECK ...
. . * INDICATOR ON *
..

* •• * **************
* NO

:x :
x

*BA *
* *C~*

RETURN TO
BAS I C I NTERPRET I VE

ROUTINE

Chart BH. Logic of Write Operations

EXCRET FROM
CONTROL PROGRAM

*BH *
* F2*

* *
*

x .*.
F2 *.

.* ARE *.
NO.* 1620 *.

•••....•.•...•...• *. INDICATORS .*
.INVOLVED .

X
******Gl ***********

SEND MESSAGE
AND SET

'STOP' BIT
* TO ONE *

(MANUAL MODE)

x

*BA *
* C2*

* *
*

RETURN TO
BASIC INTERPRETIVE

ROUTINE

. .
* •• *

* YES

X
*****G2 ******* * ..
*SET APPROPRI ATE
1620 INDICATORS
* AND MODE *

x

* * .. F4 ...

* *

RETURN TO
BASIC INTERPRETIVE

ROUTINE

*BH *
* *A;*

MASK X
:****A3*********:
* PREPARE *
CODE CONVERS ION
* TABLE *

VALOUT X
*****83**********
* * * TRANSLATE *
OUTPUT DATA AND
:CHECK VALIDITY:

x .*.
C3 *.

.* * • :****C4******* *
• * INVALID *. YES SET 1620

. CHARACTER . .•.•.•.• X* WRITE CHECK ...
. . * INDICATOR ON *
.. ... *

... '" .* ************** * NO

. .

.x. '" '" "'. '" '" '" '" '" '" '" '" "'. '" "'. '" '" '" '" '" ",.
X

*****03**********
* REQUEST *
.. A WRITE ..
*OPERATION FROM * ••••••••
CONTROL PROGRAM X
... BY SVC 1 ... *4***
*****************

SIM 20
CONTROL PROGRAM

ACCRET FROM
CONTROL PROGRAM

*BH *
* F3*

* * *

X
*****F3*******
* * * SET *
:WR ITE SW ITCH O~*

.x. '" "' ..
x .*.

G3 *.
.* *.

.* *. ON '"
.WRITE SWITCH . •...

. .
. .

* .• *
* OFF

x

*BA *
* C2*

* *

RETURN TO
BASIC INTERPRETIVE

ROUTINE

NRMRET FROM
CONTROL PROGRAM

*BH *
* F4*
* *

X
*****F4*******
* " * SET
* WRITE SWITCH *X •••• * F4 *
* OFF * * *

x

RETURN TO
THE POI NT OF
INTERRUPTION

BY SVC 3

SIM20 33

Chart BK • Console Simulation Logic

• x •••• ~ .. .
x

.*. KSAVE
B1 *. *****B2******1'

.1' *. * SAVE *
.1' *. ;1 INSTRUCTION *

••• x*. 'SAVE' BIT .* •••••••• X* COUNTER AND *
. . * RESET 'SAVE' *
.. * BIT TO ZERO*

. . **************
* =0

· . • x
x

.1'. KRESIO
.* C 1 *. *. :****C2 ******* * :****C3******* *

• 'CHECK RESET'. =:1 *RESET ALL CHECK * RESET *
. BIT . .••..••• X* INDICATORS * •••••••• x* 'CHECK RESET' *

. . * TO ZERQ * * BIT TO ZERO *
. . * * * *. .* ************** **************

* =0

· . • x
x

.*. KRESET
.* 01 *.1'. :~~;:~2;~;;~~~T. :****03******* *

.* *. =1 * COUNTER TO * *RESET ALL 1620*
. 'RESET' BIT . •••••••• X*ORIGIN ADDRESS * •••••••• X* INDICATORS

. . * OF SIMULATED * * TO ZERO
.. * CORE STORAGE* * *

* •• * ************** ************** * =0

· . • x
x

.*. KINSER
El *. *****E2*1'*****

.* *. *LOAD INSTRUCT •
• * *. =1 * COUNTER AND p*

.'INSERT' BIT . •.•••••• X* REGISTER WITH * ••••••••
. . * 1620 ADDRESS * X
.. * 00000 * *****

. . ************** *BL *
* ;:0 * A2*

x
.*. KAUTO

* * *

F1 *. *****F2******* *****F3*******
.* *. *LOAD INSTRUCT. * *

.*'AUTOMATIC *. =1 * COUNTER AND p* * RESET 'STOP' *
. LOAD' eIT . ••••.... X* REGISTER WITH * ••.••••• X* BIT TO ZERO * .•••.•..

. . * 1620 ADDRESS * * (AUTOMATIC * X
.. * 00000 * * MODE) * *****

* •• * ************** ************** *BG *
* =0 * *Ai*

x
.*. KCLEAR

G) ... *****G3******* *****G4******* • * *. * * * RESET *
.* 'MODIFY' *. =1 *RESET SIMULATED * 'MODIFY' BIT * •

. BIT . •.....•..••••••••.•.•..•...•.••••• x* 1620 CORE * •••••••• X* TO ZERO AND * ••••
. . *STORAGE TO 'FO' * 'STOP' BIT *

. . * * * TO ONE *
. . ************** **************

* =0

· . • x
x

.*. KSTART
.*H1 *.*. :****H2********

• =1 .* *. =0 * SET SIM20 *
•••• *. 'STOP' BIT ~* •••••••• X* IN 1620 *

34

. . *AUTOMATIC MODE*
.. * *

..* **************

x

*BA *
**C~*

*
RETURN TO

BASIC INTERPRETIVE
ROUTINE

Chart BL. Insert Key Simulation

*BL *
* A2*

* *

RNTY X
*****A2 **********
* INPUT *
* REQUEST TO
*CONTROL PROGRAM*X •••••••••••••••••••••••••••••
* 'READ 100 *
* BYTES'
******* **********

RNTYGO X
******82***********

SIM20
CONTROL
PROGRAM

MASK X
*****C2 **********
* * * PREPARE CODE
* CONVERSION

TABLE

X
*****02 **********
* * * COMPUTE DATA *
* LENGTH L FROM *
* CSW RESIDUAL *
:*****~~~~!*****:

x
• *.

E2 *. GREATER THAN OR
.* *. EQUAL TO 100

.* *.
. VALUE OF L . ••.•••••.•••••••.•

. .
. .

. .
*
• LESS THAN 100

X
*****F2 *******
* *
* SET * * EXIT SWITCH *
* TO 'EXIT'

X
*****F3*******
* * * SET * * EXIT SWITCH *
* TO' RETRY' *
* **************

· . • x •••••••••••••••••••••••••

VALIN X
*****G2**********
* TRANSLATE *
* INPUT DATA
* INTO *
: INTERNAL CODE :

•• x* E4 *
* *

NOTE= THIS FLOWCHART IS ALSO VALID FOR
THE 'READ TYPEWRITER' OPERATION.

: E4 : •••

X
.* •

E4 *. *****E5*******
.* *. * *

.* *. =1 * RESET
. 'INSERT' 6IT . •.•.••.• X* • INSERT' bIT

. . * TO ZERO *
.. * *

* •• * ************** * =0

X
TYPSWI .*.

G" *.
.* -K-.

..* * •
•••••• *.EXIT SWITCH.*

RETRY *. .*
. .

* •• *
*EXIT

X

*BA *
* *c~*

RETURN TO
BASIC INTERPRETIVE

ROUTINE

X

*BK *
* Bl*
* *

RETURN TO
MANUAL MODE

SIM20 35

Chart BM .. Disk Operation Entry Routine

*6M *
* *!;;"

x .*.
C2 *. *****C3**********

.* *. * INITIALJZE *
.* *. TRACK *SECTOR ADDRESS * *SET UPPER LIMIT

. MODE . •••••••• X*TO FIRST SECTQR* •••••••• X*OF SECTOR COUNT*
. . * OF TRACK * * TO 20 *
.. '* * *"'.-* *****************

• SECTOR

X
it****02*****it*
* * *SET UPPER LIMIT
OF seCTOR CQUNT
* TO REQUEST *
* COUNT *
it**it**********

it*******

· . • x I!I lit." "' ••••••••• " ••••••

x .*.
E2 *. *****1:;;3*******

.* *. '* *
.it WLRC/RBC *. YES *SET SWITCH FOR*

. . •••••••• X*WLRC INDICATOR *
.REQUeSTEp. * 'ON' *
.. *

* •• * ****""******** * NO

X
*****F2*******
* * *SET SWITCH FOR*
*WLRC INDICATOR *
* 'OFF' *
* * **************

· . • x •• , "' .. "'
x .*.

G2 * .
• * *.

READ.* DISK *. WRITE
......... *. .* .••••.••
X *.OPERATION.* X

***** *.. * *****
*BP ... * •• * *BQ *
* 63* * * 63*
* * • CHECK * *
* *

36

x

*BR *
**Bi*

Chart BN. Seek Disk Operations

***** *BE *
* B3*

* *

CONVCW X
*****63**********
* * CONVERT
* 1620 DISK *
* CONTROL FIELD *

* * *****************

SEEK X
*****C3**********
* REQUEST A *
* SEEK COMMAND *
* FROM THE *
CONTROL PROGRAM

* * *****************

IORW X
******03***********

SIM20
CONTROL
PROGRAM

x .*. SKSN
E3 ... ******E4***********

.* *. SEND MESSAGE
NORMAL.* *. ABNORMAL*AND SET 'STOP' *
.••••••• *. TERMINATION .* ••••.••. x BIT TO ONE
x *. .* *(MANUAL MODEl*

***** *..*
*SA .. * •• * *************
* * C~* *

RETURN TO
BASIC INTERPRETIVE

ROUTINE

x

*BA *
* C2*
* * *

RETURN TO
BASI C I NTERPRETI VE

ROUTINE

SIM20 37

Chart BP. Read Disk Operations

*BP *
* *B~*

CONVCW X
*****83**********
* * * CONVERSION OF *"
* 1620 DISK *
* CONTROL FIELD *

* * *****************

DISRMH X
*****C3**********
*COMPARE SECTOR *
* ADDRESS TO

••••••••••••••••• X*ADDRESS STORED *
*IN 21ST RECORD *
* OF TRACK *

*****E2*******
* * INCREMENT *

* * *SECTOR ADDRESS*

* * **************
x

• NO
ENDISK .*.

F2 *.
.* HAS *.

YES .*LAST SECTOR*.
.•.••.•• *. HAS BEEN .*
X *. READ .*

***** *..*
*SA * * .• *
* C2* *
* * x

X
MATCH .*. WLRIND

03 *. *****04*******
.* *. * SET * .* SECTOR *. NO 1620

. ADDRESSES . •••••••• x* CORRESPOND! NG *•...
. COMPARE . * INDICATOR ON * X
.. * * *****

* .. * ************** *BA *
* YES * C2*

ROUTI X
*****E3**********
* * *REQUEST A READ *
* COMMAND FROM *
CONTROL PROGRAM

* * *****************

IORW X
******F3***********

SIM20
CONTROL
PORGRAM

* *

RETURN TO
BASIC INTERPRETIVE

ROUTI NE

RETURN TO
BASIC I NTERPRETI VE

ROUTI NE
x

.*. DISKER .*. EXCR3
******G5***********

38

G3 *. G4 *.
• * * • • * 1620 * . :****G2*********:

*MOVE DATA FROM * NORMAL ~* *. ABNORMAL .*DISK OR 1/0*. NO * SEND MESSAGE
*SUFFER TO 1620 *X •••••••• *. TERMINATION .* .••••••• x*. INDICATORS .* .••••..• x AND SET 'STOP'
* CORE STORAGE * *. .* *.CONCERNED.* * BIT TO ONE *
:***.************ *_*. _*_* *_*. _.e* ~~!~~:;*~~~;!

x * * YES

WLRIND
*****H3*******
* * • * UPDATE 1620 * •

•••••••••••••••••• * DISK OR I/O *X •••••••••••••••••
* INDICATORS *

x

*BA *
* C2*

* *
RETURN TO

BASIC INTERPRETIVE
ROUTINE

Chart BQ. Write Disk Operations

***** *Ba *
* B3*
* *
*

CONVCW X
*****83**********
* * * CONVERSION OF *
* 1620 DISK * * CONTROL FIELD *
* * *****************

DISRMH X
*****C3**********
* COMPARE *
*SECTOR ADDRESS *

••••••••••••••••• X*TO ADDRESSES OF*
*21ST RECORD OF *
* TRACK *

X
MATCH .*. WLRINO

03 *. *****04*******
.* *. ... SET *

.* SECTOR *. NO * 1620 *
. ADDRESSES . ••••••.• X* CORRESPONDING * ••••••••

. COMPARE . * INDICATOR ON * X
.. *****

* •• * ************** -BA * * YES * C2*

*****F2 ... ;.*****
* * INCREMENT

* * *SECTOR ADDRESS*

* * **************
x

X
*****E3**********
* * *MOVE DATA FROM *
* 1620 CORE *
* STORAGE TO *
* BUFFER *

ROUT2 X
*****F3**********
* * *REaUEST A WR I TE*
* COMMAND FROM *
CONTROL PROGRAM

* * *****************

IORW X
******G3***********

SIM20
CONTROL
PROGRAM

• NO X
ENDIS2 .*. .*. DISKEW .*.

H2 *. H3 *. H4 * •
. * HAS *. .* *. .* 1620 *.

* *

RETURN TO
BASIC INTERPRETIVE

ROUTINE

EXCR3
******H5***********

SEND MESSAGE
YES .*LAST SECTOR*. NORMAL .* *. ABNORMAL .*DISK OR 1/0*. NO AND SET

•••••••• -. BEEN .*x ••••.••• *. TERMINATION .* •.•••••• x*. INDICATORS .* •••••... X
X *. WRITTEN .* *. .* *.CONCERNED.*

***** *..* *..* *..*
-BA ... * •. * * •• * * •• *
* C2* * * * YES
* * X
*

RETURN TO
BASIC INTERPRETIVE

ROUTINE
*****J3*******
* * • * UPDATE 1620 * •

• ••••••••••••••••• * DISK OR I/O *X •••••••••••••••••
* INDICATORS *
* * **************

'STOP' BIT
TO ONE (MANUAL*

MODEl

x

*BA *
**Ci*

RETURN TO
BASIC INTERPRETIVE

ROUTINE

SIM20 39

Chart BR. Check Disk Operations

:****C2******* *

***** *BR *
* B3*

* *

CONIICW X
*****63**********
* * * CONIIERS ION OF *
* 1620 DISK *
* CONTROL FIELD *

* * *****************

DISRMH X
*****C3**********
*COMPARE SECTOR *

* INCREMENT * * ADDRESS TO *
*SECTOR ADDI<ESS * •••••••• x * ADDRESSES *
* * *STORED IN 21ST *

************** x

• NO
ENDISK .*.

E2 * •
• * *.

YES • *LAST SECTOR*.
••••••.• *. HAS BEEN .*
X *. CHECKED .*

*RECD. OF TRACK *

X
MATCH .*. WLRIND

03 *. *****04*******
• * *. * SET *

.* SECTOR *. NO 1620
. ADDRESSES . ••.••..• x* CORRESPONDING * ••••••••

. COMPARE . * INDICATOR ON * X

.. * * *****
. . ************** *BA * * YES **C~*

ROUT1 X
*****E3**********
* * *REQUEST A READ *
* COMMAND FROM *
CONTROL PROGRAM

RETURN TO
BASIC INTERPRETIVE

ROUTINE

RETURN TO
BASIC INTERPRETIVE

ROUTINE

***** *..*
*BA * * •• *
* C2* *

* * ***********4*****

* * x

• YES
WLRIND .*. IORW X

40

*****Fl ******* F2 *.
* * .* *. * SET 1620 * NO .*COMPARISON *.
* CORRESPONDING *X •••••••• *.. IS .*
* INDICATOR ON * *SUCCESSFUL.*
* * *..*
************** *. • *

x
***** *BA *

* x

******F3***********

SIM20
CONTROL
PROGRAM

X
* C2*
* * *****G2 *;.******** G3 .*. *. D I SKER G4· *. *.

* COMPARE DATA * .* *. .* *.
EXCR3

******G5***********
SEND MESSAGE

* IN BUFFER TO * NORMAL.* *. ABNORMAL .1620 DISK 01'1*. NO * AND SET
RETURN TO

BASIC INTERPRETIVE
ROUTINE

* DATA IN 1620 *x •••••••• *. TERMINATION .* •••••••• X*I/O INDICATORS.* •••••••• X
* CORE STORAGE * *. .* *.CONCERNED.*
* * *..* *..*
***************** * •• * * •• *

x * * YES

WLRIND
*****H3*******
* * • * UPDATE 1620 * • • ••••••••••••••••• * DISK OR I/O *X •••••••••••••••••
* INDICATORS *

'STOP' BIT TO
* ONE (MANUAL *

MODEl

x

*BA *
* C2*
* *

RETURN TO
BASIC INTERPRETIVE

ROUTINE

EDITOR is an independent program used to
create a symbolic version of SIM20, adapted
to the particular 1620 system being simu­
lated, and to the System/360 model on which
SIM20 is to be run (see Charts CA and CB).

Using information from control cards,
EDITOR extracts from the symbolic SIM20
tape distributed by IBM those routines
needed to simulate a given 1620 system.
Five types of control cards are used by
EDITOR:

• CPU1

• CPU2

• FEATURE

• DEVICE

• START

defines the 1620 CPU to be
simulated.

defines the corresponding
System/360 cPU.

defines
optional
lated.

a 1620
feature

special or
to be simu-

defines a 1620 I/O device to
be simulated and a correspond­
ing System/360 I/O device.

indicates the end of the con­
trol card deck and begins the
editing process.

OVERALL LOGIC OF EDITOR

The following steps give the overall
logic of EDITOR and follow the logic shown
in Charts CA and CB.

1. Control cards are read, one at a time,
and the control information is used to
build up a table of arguments, later
used to select routines from the sym­
bolic SIM20 tape.

EDITOR

2. When the START card is encountered,
processing begins; EDITOR checks the
compatibility of:

a. CPU1 and CPU2 cards, to ensure
that the 1620 defined in the CPU1
card can be simulated on the
System/360 defined in the CPU2
card

b. FEATURE and CPU2 cards, to ensure
that the optional or special fea­
tures defined in the FEATURE card
can be simulated on the System/360
defined in the CPU2 card

c. DEVICE cards and the table of
accepted devices contained in EDI­
TOR

When an incompatibility is found, a
message is sent to the operator
requesting'him to enter two correct
control statements or to resume the
editing process.

3. The SIM20 version of CONTPR is written
on the output device.

4. EDITOR then builds up the eeBs and
ueBs from the information in the
DEVICE control cards, selects routines
from the SIM20 tape according to the
table of arguments, and writes the
selected routines on the output
device.

5. When the end of the SIM20 tape is
reached, a message is sent to the
operator requesting him either to stop
the editing procedure or to provide
new control cards.

6. The SIM20 tape is then rewound, ready
for the next editing run.

Editor 41

Chart CA. Logic of EDITOR (Part 1)

*CA *
* B2*
* *
*

BEGIN X
*****82 ** ********
* * : EDITOR :

:INITlALIZATION :

READI X
******C2***********

••••••••••••••••• x
READ A

*CONTROL CARD *
x •••••••••••••••••

ERIA •
******Fl***********

SEND MESSAGE

CPl
CP2

X FEATI
COMPAR .*. DEVI.

E2 *. *****E3**********
.* CPUl, *. * *

• * CPU2. *. YES * PREPARE *
. FEATURE OR . •••••••• x* CORRESPONDING *

. DEVICE . * TABLE OF *
.CARD . * ARGUMENTS *

*. • * ***************** * NO

x .*.
F2 *.

.* *.
NO • * I SIT A *. , INVALID

CONTROL
*INFORMATION' *

X •••••••• *. START .*

42

. CARD .
. .

* •. * * YES

x
STARTI .*.

H2 *.
.* *.

CPER
******H3***********

.* CONTROL *. NO * SEND ERROR

READTY
******H4***********

RETRY
*****H5**********
* * *REQUEST TWO NEW* * PROCESS *

. t NF. . •••••••• X •••••••• x CONTROL CARDS •••••••• X* THESE CONTROL *
COMPAT IBLE.

. .
* .• *

* YES

MESSAGE *FROM OPERATOR* * CARDS *
* ***************** . .

.X •••

**! ... *
*CB *
**B;*

Chart CB. Logic of EDITOR (Part 2)

*CB *

* *8~*

COMPSM X
***** *62 ***********

COPY ABSOLUTE
* LOADER FROM *

INPUT ONTO
OUTPUT

****~!;;*****

X
******C2***********

COpy SIM20
CONTROL PROGRAM

FROM INPUT
TO OUTPUT

FILE

CTPIU X
*****02 **********
* BUILD UP *
CCB'S AND UCB'S
* ON OUTPUT *
* FILE FROM
* ARGUMENTS *

.•••.•••••. x. · . .READSM X
******E2 ***********

READ
FOLLOWING

SECTION OF
INPUT
FILE

x .*.
F2 *.

.* IS *.
• NO • * ARGUMENT *.
•••• *. PRESENT
X *.IN TABLE .*

. .
* •• *

* YES

:COMPSM x
******G2***********

* COPY SECTION *
ONTO

* OUTPUT FILE *

x .*.
H2 * •

• * *.
• NO END OF * •
•• •• *. INPUT .*

. FILE .
. .

* •• * * YES
**** • * .. x: C4 :

* * * C4 * •..
* * **** .

MESSAG X
******C4***********

MESSAGE
'END OF
SIM20'

x .*. .*.
04 *. 05 *.

.* *. .* *. CARDS
.* ANOTHER *. YES .* FILE *.

. FILE X*. .* •.•.
.REQUESTED. *. IS ON .*
.. *..*

* •• * * .• * * NO * TAPE

RWIA X
******E5 ***********

REWIND
INPUT
FILE

. .

.x •.•.•••••••

MESSAG X

x

*CA *
* B2*

******F4***********

*
*

MESSAGE
'END OF

EDITING'

X
****G4*********

* WAIT *
*

* *

Editor 43

DSKINT

DSKINT is automatically edited by EDITOR
when a 1620/1311 system is requested in
control information. The output file of
EDITOR contains both SIM20 and DSKINT in
symbolic format. After assembly, the
binary deck obtained is self-loading and
immediately gives control to DSKINT.

LOGIC OF DSKINT

DSKINT (see Chart DA):

1. Sets the device address of the
System/360 devices used by SIM20.

2. Relocates the non-disk I/O simuiation
routines when the special disk­
resident version of SIM20 has been
requested.

3. Requests from the operator the address
of the 2311 Disk Storage Drive which
must be initialized (the disk ad­
dresses given by the operator are
checked to ensure that they conform to
the UCBs in SIM20).

4. Requests from the operator whether the
disk formats are to be set up on the
2311 Disk Storage Drives. If they
are, the program writes the home
address, the record 0, and 21 records
on the 2311. The first 20 records
correspond to the 20 sectors of the
1311 and contain the System/360 iden­
tification followed by 105 data bytes
(5 for the address, 100 for data); the
100 data bytes all contain X'FO'.
Sector addresses are numbered succes­
sively from 00000 through 19999.

The last, or 21st, record summariz­
es sequentially the preceding 20
addresses (for example, for track 0,
cylinder 0, the 21st record contains
sector addresses 00000, 00001, 00002,
••• 00019).

5. Requests from the operator whether
SIMlO is to be loaded from System/360
main storage. Ii so, it is loaded
onto cylinders 00, 01, and 02, in the
following manner:

44

a. The first track of cylinder 00 is
an IPL track, and the following
tracks contain parts of SIM20 (CPU
and console simulation routines).

b. Cylinder 01 is loaded with the I/O
simulation routines (other than
those for disks).

c. Cylinder 02 is loaded with the
disk simulation routines.

6. Signals the end of these two opera­
tions by messages END OF FORMAT and
END OF LOADING, and then branches back
to step 3.

Note: An exceptional condition not cleared
by. an error recovery procedure places the
System/360 in the wait state. Operator
commands such as END or NO in response to
the message SIMULATOR LOADING NEEDED also
place the System/360 in the wait state.

Loading SIM20 onto disk in a self­
loading format is necessary when the user
has defined a 1620/1311 system when editing
SIM20. The DSKINT binary card deck, though
it contains SIM20, cannot give control
directly to SIM20. A SIM20 run can be
started only by an IPL from the disk unit.

Formatting is necessary when the disk
storage drive must be used to simulate a
1620/1311 system. Formatting is not
necessary when the disk storage drive is
used only as SIM20 residence.

BUFFERS AND TABLES

DSKINT contains three buffers:

1. An input/output buffer IOBUFF, used to
write messages or to enter commands

2. A 3,400-byte buffer located at address
X'6000', used to load the CPU and
console simulation routines onto cyl­
inder 00

3. A 2,100-byte buffer located at address
X'6EOO', used to load the disk simula­
tion routines onto cylinder 02 (no
buffer is necessary to load the other
I/O simulation routines onto cylinder
01)

The program also contains two blocks of
main storage:

1. A field for each sector, containing:
The home address (4 bytes)
The record 0 (1 byte)
The key length (1 byte -- always = 0)
The data length (2 bytes -- always =
105)
The data field (105 bytes)

2. An IPL field containing the IPL
sequence for 2311 Disk Storage Drives

Chart DA.

IPL

. ••
"DA ..
.. Bl"

BEGIN X

DSKINT

******61**·.*·*·*.*
MESSAGE TO

"REQUEST ADDRESS"
OF DISK UNIT X •••

TO BE PROCESSED

X
ANAMES

Cl * •
• * .'.

." OPERATOR ". END

..... ..
: C3 : •••

**** •
NOFORM X

····*·C3***********
MESSAGE TO

*. .-•....•.••....•....
.. REQUEST IF

SIM20
. REPLY . .. LOADING IS ..

. .
* ••• ~;;~;~

"ADDRESS

X
A6A X WAI T ANAMES

****"·01**·***···** X D3 ".

"RE~~~~~G~H~~HER·" ··**02**··***** .* *.
.. .. NO .* *.

FORMAT IS
NEEDED

.. WAIT .X •••••••• -. OPERATOR .*
.. *. REPLY .*

.** •••• ****.*** *..*

X
ANAMES

El *.
.* *. ..**

." OPERATION ". NO
*. • •••.. x- C3 ..

". REPLY."
.. ••••

* •• *
.. YES

X
······F1--········· WRITE

"HOME ADDRESSES,"
RO AND
SECTOR
IDENTS. * ••••• * ••••••

X
····**Gl** •• ··***.*

MESSAGE TO
SIGNAL END

.. OF FORMAT ..

....
." x: C3 :

..

* •• *
.. YES

INI21 X

··**·*E3***········ CONSOLE AND CPU
.. SIMULATION ..

ARE LOADED ON
"TO CYL IN. 00 ..

WITH IPL
..***** •••••••

X

**····F3··········· NON DISK I/O
.. SIMULATION

I S LOADED ONTO
.. CYL INDER 01 ..

X *·· ... G3*·········· DISK SIMULATION
.. IS LOADED ..

ONTO CYLINDER
.. 02 ..

WHSSAG X
······H3···*******·

MESSAGE
'END OF

.. LOADING'

**** ." ..
• • X. B 1

DSKINT 45

Form Y27-7116-1, Page Revised by TNL Y33-7002, 4/27/67

UPDT20

UPDT20 (see Chart EA) reads from the
device with symbolic name UPDTOLD a version
of the Simulator system tape to be correct­
ed, makes the corrections indicated in the
information read from the device with sym­
bolic name UPDTCORR, and writes the cor­
rected version of the system tape on the
device with symbolic name UPDTNEW.

To simplify the presentation, this de­
scription refers only to a system tape, but
it is also valid when the Simulator is on
punched cards.

LAYOUT OF THE SYSTEM TAPE

The system tape on UPDTOLD is made up of
several files:

• A file contains one or several modules
which, in turn, contain one or several
records.

• Each file is followed by a tape mark.

• The end of the system tape is indicated
by two tape marks.

Note: When the Simulator is distributed on
cards, the card deck contains only one file
composed of several modules.

IDENTIFICATION OF SYSTEM TAPE COMPONENTS

The three components of the system tape
are identified as follows:

• A file is identified by the identifi­
cation of its first module.

• A module is identified by the identifi­
cation of its first record.

A module is composed of all the
consecutive records having the same
identification in columns 73 through 75
for symbolic card-image records, or in
columns 73 through 76 for binary card­
image records.

• A record is identified by its serial
number in columns 77 through 80 for
binary records, or in columns 76
through 80 for symbolic records.

Record numbers in each module must
be in ascending order.

The identification of system tape compo­
nents is illustrated in Table 5A.

Table 5A. Identification of Simulator Sys-
tem Tape

r-------T---------T----------T------------,
I I I I I
I FILES I MODULES I RECORDS I COMPONENTS I
I , , , ,
~-------+---------+----------+------------~
,A21B , A21B 'A21BOOOl 'COMMON SUB- ,
, , , A21Bnnnn 'PROGRAMS ,
I r---------+----------~ I
, ,A22B, A22BOOOl 'composed of ,
, , , A22Bnnnn ,modules: ,
, ~---------+----------~ A21B A.22B ,
, , , , A23B A24B ,
, , , I A25B A26B ,
I I , , ,
,r---------+----------~ ,
I ,A26B, A26BOOOl ,LDT card ,
~-------+---------+----------+~-----------~
'TM' , 'Tape mark ,
~-------+---------+----------+------------~
I A2UB , A2UB 'A2UBOOOl 'UPDT20 ,
I , , A2UBnnnn , ,
I r---------+----------~ ,
, 'A27B' A27BOOOl 'LDT card ,
r-------+---------+----------4------------~
'TM I , 'Tape mark ,
r-------+---------+----------+------------~
'A2EB , A2EB ,A2EB0001 ,EDITOR ,
, , , A2EBnnnn I ,
r-------+---------+----------+------------~
I TM' , ,Tape mark ,
r-------+---------+----------+------------~
I A2ZB , A2ZB ,A2ZBOOOl 'SYSINEND ,
~-------+---------+----------+------------~
,TM, , ,Tape mark ,
r-------+---------+----------+------------~
'A2S 'A2S ,A2S00001 ,SIM20 ,
I I , A2Snnnnn , ,
r-------+---------+----------+------------~
'TM' , 'Tape mark ,
~-------+---------+----------+------------~
I A2P I AP21 I A2POOOOO 'SAMPLE PRO- ,
I , I 1 , GRAM ,
r-------+---------+----------+------------~
'TM' , 'Tape marks ,
,TM, , ,Data end ,
r-------~---------~----------~------------~ , ,
I 1Identification field not significant. , , , L ___ J

UPDATING FUNCTIONS

Updating can be done at file level, at
module level, or at record level. For
corrections at module or record level, the
file containing the module or record to be
corrected must first be defined.

Form Y27-7116-1, Page Added by TNL Y33-7002, 4/27/67

The main updating functions are:

Updating at File Level

• Copy an old file onto UPDTNEW

• Correct and copy an old file onto
UPDTNEW

Updating at Module Level

• Copy an old module onto UPDTNEW

• Replace an old module by a new one

Updating at Record Level

• Delete an old record or a set of
consecutive records

• Insert a new record or a set of conse­
cutive records

• Replace an old record or a set of
consecutive records by a new one

• Re-number a set of consecutive records

Note: All undefined records are copied
WIthOut modification.

Other updating functions such as delet­
ing, inserting, and listing all or only the
corrected modules on UPDTNEW at file level,
or deleting, inserting, re-numbering, ann
re-identifying a module at module level, or
re-identifying a record or a set of conse­
cutive records at record level, are
explained in detail in the listing of the
UPDT20 program supplied with the Program
Logic Manual.

UPDATING THE SYSTEM TAPE

The correction data used to update the
system tape may be on cards or on tape.
The correction cards (or card images)
required for UPDTCORR are divided into
control cards and modification cards.

Since correction cards are not sorted by
the program, the sequence of the files,
modules, and records required for correc­
tion must exactly correspond to the
sequence of the files, modules, and records
of the tape distributed by IBM. Any cor­
rections the user may receive will be in
the correct order.

Control Cards

Three types of control card are used for
the main updating functions.

• The / UPDATE card defines the old file
to be corrected or copied onto UPDTNEW.
If this control card has not been
specified for an old file, this file is
ignored by UPDT20.

• The RIS mode C card defines each module
to be replaced in the file defined by
the / UPDATE card.

• The RIS mode R card defines the record,
or set of consecutive records, to be
corrected in the file defined by the
/ UPDATE card.

Modification Cards

The modification cards contain the
reulacement data for the new modules or the
insertion or replacement data for the new
records to be written on UPDTNEW.

The identification in columns 73 through
75, or in columns 73 through 76 is that of
the module defined in the corresponding RIS
card.

Control Card Formats

The format of the / UPDATE card is
illustrated in Figure 9. The format of the
RIS mode C card is given in Figure 10, and
that of the RIS mode R card in Figure 11.

r---T-------------------------------------,
I Column I I
I 1 3 15 18 80 I I
1 I I I I I I I
~---+----------------------------~--------~
I / UPDATE I Defines card as / UPDATE control I
1 I card I
I I I
1 xxx I Identification of first symbolic I
I I module of the file I
1 I I
1 XXXB I Identification of first binary I
I I module of the file I L ___ ~ _____________________________________ J

Figure 9. Format of the / UPDATE Card

UPDT20 46. 1 •

Form Y27-7116-1, Page Added by TNL Y33-7002, 4/27/67

r---T-------------------------------------,
I Column I I
I 12 8 41 44 80 I I
I" 1 I I I I I
~---+-------------------------------------~
I *RIS C I Defines card as RIS mode C card I
I I C mode C I
I I I
I R I R replace module I
I I I
I xxx I Identification of module to be re- I
I XXXB I placed (same for old and new module) I
~-----_-__ --i----_________________________________ ~
I * = 12-2-9 punch I
I Note: This card is required only for modules to be replaced. I L ___ J

Figure 10. Format of the RIS Mode C Card

r---T-------------------------------------,
I Column I I
I 12 8 24 41 59 67 80 I I
1" I I I I I I I I
~---+-------------------------------------~
I *RIS Defines card as RIS mode R card
I Column 44 must be blank.
I
I
I
I
I

XXXnnnnn
XXXBnnnn

XXXnnnnn
XXXBnnnn

R
I
S
N

nnnnn1

Identification of first old record
to be replaced, deleted, or re­
numbered, or the record after which
the first new record is to be in­
serted

Identification of last old record
to be replaced, deleted, or re­
numbered

Replace
Insert
Suppress (delete)
Re-number

Identification number required for
first new record

nn1 Increment value of identification
~---i---__________________________________ ~
I * = 12-2-9 punch I
I 1Leading zeros can be ignored. I L ___ J

Figure 11. Format of the RIS Mode R Card

Form Y27-7116-1, Page Added by TNL Y33-7002, 4/27/67

CODING EXAMPLES

The following examples show how the
control cards should be punched to perform
the updating functions described in the
section "Updating the System Tape."

1. / UPDATE A21B

2. *RIS A2EB R C

3. *RIS A2S01230 A2S01240

4. *RIS A2S01375

5. *RIS A2S02300 A2S02380

6. *RIS A2S08000 A2S09810

7. / UPDATE A21B
/ UPDATE A2UB
/ UPDATE A2EB
*RIS A2EB R C
r
I new module (replacement cards)
L

/ UPDATE A2ZB
/ UPDATE A2S
*RIS A2S01230 A2S01370
*RIS A2S03750
r
I insertion cards
L

*RIS A2S02300 A2S02380
r , replacement cards
L

/ UPDATE A2P

S

I 01376 001

R 02300 005

N 10010 005

S
I 3751 001

R 02300 005

*repres ents a mUltiple punch of 12-2-9 in column 1.

Updating a File

In example 1 above, file A21B is to be
copied onto UPDTNEW with or without a
modification at module or record level.

Updating a Module

In example 2, the whole binary module
identified by A2EB is to be replaced.

Updating a Record

In example 3, records A2S01230
A2S01240 of the file defined
/ UPDATE card are to be deleted.

through
by the

In example 4, new records are to be
inserted after record A2S01375 of the file
defined by the / UPDATE card. The iden-

tification of the first new record is to be
A2S01376; the numbering step is 1.

In example 5, records A2S02300 through
A2S02380 are to be replaced by a record or
set of records. The identification of the
first replacement record is 02300; the
numbering step is 5.

In example 6, records A2S08000 through
A2S09810 are to be re-numbered beginning
with number 10010; the numbering step is 5.

Updating the System

Example 7 shows a sequence of correction
cards used in updating the system tape.
The first part covers updating the system
tape and replacing module A2EB. The second
part covers updating the system tape and

UPDT20 46.3· \

Form Y27-7116-1, page Added by TNL Y33-7002, 4/27/67

I deleting, inserting, replacing
numbering records of file A2S.

INITUP ROUTINE

and re-

The INITUP routine initializes UPDT20
by:

• Reading the first record of the system
tape on UPDTOLD and the first / UPDATE
card

• Transferring control to the File Pro­
cessing routine (FLTGA)

FILE PROCESSING ROUTINE (FLTGA)

This routine selects the operations to
be performed on a file.

Entry Points: The FLTGA routine has two
entry points, first from the INIT routine,
and then from the CSTGL routine after
processing a file.

Input: When the routine is entered, the
first record of the system tape to be
corrected (or the last tape mark on the
tape) and. a / UPDATE card (or the last of
the correction cards) have been read.

Operation: This routine analyzes the
contents of the / UPDATE card and of the
record, and transfers control to the rou­
tine to perform the requested operation.

46.4

Exits: Control is transferred to one of
the routines NLSTP, SKLDM, SKCRDM, SKLDN,
or CSTGB. When the routines SKCRDM, SKLDN,
and CSTGB are entered, the last record read
has been specified in the / UPDATE card.

NLSTP Routine

This routine is entered at the end of
the run. It writes the last tape mark on
the system tape on UPDTNEW.

SKLDM Routine

If the record just read has not been
specified in the / UPDATE card, this rou­
tine suppresses a file on the system tape
on UPDTOLD. All the records on this system
tape, up to the next tape mark, are sup­
pressed; that is, they are not written on
the system tape on UPDTNEW. Control is
then transferred to the CSTGC routine (end
of processing of a file).

SKCRDM Routine

If the / UPDATE card is followed by a
Imodification card, this routine skips over
the correction cards for a file. All the

Imodification and RIS cards following this
/ UPDATE card are read, but not processed.
Control is then transferred to the SKLDN
routine.

SKLDN Routine

If the / UPDATE card is followed by
another / UPDATE card or by no card at all,

this routine copies a file from the system
tape on UPDTOLD onto the tape on UPDTNEW.
The record just read, and all those that
follow, up to the next tape mark, are
copied onto the tape on UPDTNEW. Control
is then transferred to the CSTGC routine
(end of processing of a file).

MODULE PROCESSING ROUTINES
<CSTGA AND CSTGB)

These routines select the operations to
be performed on a module <control section),
provided that the / UPDATE card is followed
by an RIS mode C card.

Entry Points: The CSTGB routine is entered
from the FLTGA routine, and the CSTGA
routine is entered from the routines
SKCRDA, SKLDA, RISN (after an entire module
has been processed), and RCTGB (after all
the records in a module have been
corrected).

Input: When the routine is entered, the
first record of a module from the system
tape on UPDTOLD (or a tape mark after all
the modules in a file have been processed)
and an RIS card (or a / UPDATE card or the
last of the correction cards) have been
read.

Operation: The routine analyzes the param­
eters in the RIS card and the contents of
the first record of the module. Control is
then transferred to the appropriate subrou­
tine to process the module.

Exit: When the module has been processed
(when the program has encountered a tape
mark on the system tape on UPDTOLD, a
/ UPDATE card, or the last of the correc­
tion cards on UPDTCORR), control is trans­
ferred to the CSTGC routine.

SKCRDA Subroutine

If the RIS card is invalid, this routine
skips over the correction cards for the
module. This card and all the MODIF and
RIS cards for this module are read, but not
processed. Control is then returned to
CSTGA to process the next module in the
file.

SKLDA Subroutine

If the RIS card has not specified the
record just read, this routine copies a
module from the system tape on UPDTOLD onto
the tape on UPDTNEW. Control ~s then
returned to CSTGA to process the next
module in the file.

RISN Subroutine

If the RIS card has specified the record
just read, and if this RIS card is a mode C
card, this routine replaces, inserts, sup­
presses, or re-numbers an entire module.
Control is then returned to CSTGA to pro­
cess the next module in the file.

END OF FILE PROCESSING ROUTINE <CSTGC)

This routine is entered from the rou­
tines CSTGA, CSTGB, SKLDM, and SKLDN. It
writes the end-of-file tape mark on the
tape on UPDTNEW and transfers control to
the FLTGA routine to process the next file.

RECORD PROCESSING ROUTINE (RCTGB)

This routine selects the operations to
be performed on the records of a given
module, provided that the RIS card has
specified the record just read, and that
the RIS card is a mode R card.

Entrv Points: This routine is entered from
the CSTGA routine, and from the routines
SKCRDA, SKLDB, and RISN.

Input: When the routine is entered, a
record of the module being processed (or
the first record of the next module, or a
tape mark after the last record of a module
has been processed) and an RIS card refer­
ring to this module (or an RIS card refer­
ring to another module, or a / UPDATE card)
have been read.

Operation: This routine analyzes the pa­
rameters of the RIS card and the contents
of the record just read. Control is then
transferred to the appropriate subroutine
to process the record.

Exit: When all the records in a module
have been processed, control is transferred
to the CSTGA routine to process the next
module.

SKCRDA Routine

If the RIS card is invalid, this routine
skips over the correction cards for a
module. This RIS card and all the correc­
tion cards for the module are read, but not
processed. Control is then returned to
RCTGB to process the next record.

SKLDB Routine

If the RIS card has not specified this
record, this routine copies a record from
the system tape on UPDTOLD. Control is
then returned to RCTGB to process the next
record.

UPDT20 47

RISN Routine

If the RIS card has specified the record
or records and if the RIS card is a mode R
card, this routine replaces, inserts, sup­
presses, or re-numbers a set of records.
Control is then returned to RCTGB to pro­
cess the next record.

48

Chart EA. Overall Logic of UPDT20

***** *EA *
* *B;*

* *
: B2 :

x
INITUP X .*. CSTGA+CSTGB
*****81********** 82 *. *****83**********
* * .* ARE *. * *
* * .*CORRECTIONS*. YES * DETERMINE THE *
:INITIALIZATION : *.REQUIRED IN A.* •••••••• X*FUNCTIONS TO BE*X •••••••••••••••••••••••••••••

. MODULE . *EXECUTED IN THE*
.. * OLD MODULE *

*. . * ***************** * NO

X
FL TGA X CSTGC X .*.
:****Cl *********: :****C2*********: • * C3 END *. *.
* DETERMINE THE * * TERMINATE * YES .*OF OLD FILE*.
*FUNCTIONS TO BE*X •••••••• * PROCESSING *X •••••••• *. AND OF FILE .*
EXECUTED IN THE * OF FILE * X *CORRECTIONS*
* OLD FILE * *. .*

***************** ***************** *. .*

x .*. NLSTP
01 *.

_*0; OE~OTA~E*. YES * ****02********* *
. AND OF TAPE . •••••••• X* END OF JOB *

CORRECTI ONS *

*. • * *************** * •• * * NO

x
• *. SKLDM

• * El ANY *. *. :****E2*********:
• *CORRECTION *. NO * SUPPRESS *

.CARD FOR THE . •••••••• X* THE * •• X.
.OLD FILE . * OLD FILE *
.. *

. . *****************
* YES

x
.*. SKCRDM

Fl *. *****F2**********
.* ANY *. * *

.* ERRORS IN *. YES * IGNORE THE *
. CORRECTION . •••••••• X*CORRECTIONS FOR*

. CARDS . * THAT FILE *
. .

. . ***************** * NO

x
• *. SKLDN X

.* Gl *. *. :****G2*********:
• * A COPY IS *. YES * * •

. REQUESTED . •••••••• X* COPY OLD FILE * ••••
. . * * *. .*

* •• * ***************** * NO

x

* *
: B2 :

* NO

x
.*. SKCRDA

03 *. *****04**********
.* ANY *. * *

.* ERRORS IN *. YES * IGNORE THE * •
. CORRECTION . •••••••• X*CORRECTIONS FOR* ••••

. CARDS . * THAT MODULE * X
.. * *

. . *****************
* NO

x
.* •

E3 * •
.* * •

SKLDA
:****E4*********:

• * MODULE TO *. NO * * •
.BE CORRECTED . •••••.•• X*COPY OLD MODULE* ••••

. FOUND . * * x
.. * *

. . *****************
* YES

x
.*. RISN

F3 *. *****F4********** .* ARE *. * REPLACE OR *
.*CORRECTIONS*. NO * INSERT OR

.REQUIRED IN A. •••••••• X* SUPPRESS OR * ••••
. RECORD . * RENUMBER * X

*. *. .*.* :***!*~~~~;~****:
* YES

RCTGB X .* •
*****G3********** G4 *. * * .*END OF *. • * DETERMINE THE * .*OLD MODULE *. YES •

••• X*FUNCTIONS TO BE* •••••••• X*. AND CORREC- .* ••••
EXECUTED IN THE *. TIONS .*
* OLD RECORD * *..*
***************** * •• *

* NO

X
SKCRDA .*.
*****H3********** H4 *.
* * .* ANY *.

• * IGNORE THE * YES .* ERRORS IN * •
• X •• *CORRECTIONS FOR*X •••••••• *. CORRECTION .*

* THAT RECORD * *. CARDS .*
* * *..*
***************** * •• *

* NO

X
SKLDB .*.
*****,,)3********** ,,)4 *.
* * .* *.

• * * NO .* RECORD TO * •
• X •• *COPY OLD RECORD*X •••••••• *.BE CORRECTED .*

* * *. FOUND .*
* *..*

***************** * •• *

RISN
*****K3**********
* REPLACE OR *

• * INSERT OR *

* YES

•••• * SUPPRESS OR *X •••••••••••••••••
* RENUMBER *

:***!*~;~~~~****:

UPDT20 49

COMMON SUBPROGRAMS

ABSOLUTE LOADER (ABSLOD)

ABSLOD is used to
subprograms into the
locations assigned by
Chart FA}:

• CONTPR

• IOPACK

• INIT

• RELLDR

load the following
System/360 storage

the assembler (see

ABSLOD also accepts assembled programs
intended to be loaded by a relocating
loader, but with the limitations given in
the section ftAdditional ABSLOD FUnctions. ft

ABSLOD is used to load the assembled
SIM20 and OSKINT programs.

ABSLOD CARDS AND FUNCTIONS

Five types of load card are recognized
by this loader: TXT and END cards which
were generated by the assembler, any REP
cards which may be inserted by the user,
and the LOR and LOT cards which were
supplied by the IBM programmer. The load
cards of the subprograms listed above have
been converted, in the correct order, to
card images on magnetic tape and form the
first portion of the Simulator system tape.

The functions of ABSLOD and the cards
associated with each function are listed in
Table 6.

Card Seguence

Each subprogram, or control section, in
the Simulator system tape includes at least
two types of card: TXT and END, in that

Table 6. ABSLOD Functions

order. The LDR card is placed between the
END card of IOPACK and the first card of
INIT. The last card in the deck is an LDT
card.

If the user wants to make any changes in
the assembled program, he must insert the
appropriate REP cards after the last TXT
card of the control section concerned and
before the END card.

As each TXT or REP card is read, ABSLOD
places the contents of the card in storage
at the absolute address given in that card;
therefore, the addresses in the c~rds need
not be in increasing order of value. It is
also possible to overlay a section which
has already been loaded.

The value of the highest address loaded
is recorded by the loader in a location
counter (LOCCTR). Each time the location
counter is incremented, its value is
checked to make sure that the loader pro­
gram is not overlaid. If it is, loading is
interrupted and the Systero/360 enters the
wait state.

Card Formats

Values in load cards produced by the
assembler are represented in IBM extended
card code; for example, the decimal value
20 (represented in one byte as 0001 0100)
becomes an 11-9-4 punch in one card column.

In contrast, the prograrr~er uses the
more convenient hexadecimal code if REP
cards are used. The hexadecimal equivalent
of decimal 20 is 14; this is a 1 punch and
a 4 punch in two successive card columns,
representing the contents of one byte. .

r--T----------------------,
I FUNCTIONS I CARDS I
~--+----------------------~
I Loading: Places the instructions or constants, or both, of a I Text (TXT) I
I control section into the storage locations assigned by the I I
I assembler. I I
I I I
I Correcting: Allows changes to be made to the instructions or I Replace (REP) I
I constants in the program at load time. I I
I I I
I Transferring Control: Ends loading of the control section and I Load End (END) I
I transfers control to some location within the section. I Load Terminate (LDT) I L __ ~ ______________________ J

50

Text Card

The Text (TXT) card is generated by the
assembler and contains, in IBM extended
card code, the following:

1. The address at which the assembled
instructions and constants in the card
are to be inserted

2. The number of bytes of information
contained in the card

3. The text itself, up to a maximum of 56
bytes

The contents of the TXT card fields are
defined in Table 7.

Table 7. Text Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1 Load card identification

2-4

5

6-8

9-10

11-12

13-14

15-16

(12-2-9 punch). Identif~es
this as a card acceptable to
the loader.

TXT. Identifies the type of
load card.

Blank.

The address, in extended card
code, at which the information
on the card is to be loaded.

Blank.

Number, in extended card code,
of bytes of text in the card.

Blank.

The Information for RELLDR.
contents of these columns is

I ignored by ABSLOD.
I

17-72 I From 1 to
(instructions
assembled in
code).

56 bytes of text
or constants
extended card

I
I
I
I

73-80 I Not used by the loader. _______ ~ _________________________________ J

Replace Card

Replace (REP) cards are supplied by the
programmer and must be placed in the con­
trol section immediately after the last TXT
card. Assembled instructions or constants,
or both, are replaced byte for byte by the
instructions or constants punched in the
card in hexadecimal code. A REP card may
contain a minimum of two bytes (one
half-word) and a maximum of 22 bytes.

The programmer cannot replace a two-byte
instruction by a four-byte instruction
through the load program. Instead, he must
either re-assemble his source program or
patch; that is, replace the incorrect or
old entry with a branch instruction to some
storage location into which the replacement
will be loaded. Replacement must be made
byte for byte.

The contents of the REP card fields are
defined in Table 8.

Table 8. Replace Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 REP. Identifies the type of
load card.

5-6 Blank.

7-12

13-16

17-70

71-72

Address, in hexadecimal, of the
area to be replaced. It must
be right-justified in these
columns. Unused leading
columns are filled with zeros.
The address must specify a
half-word boundary.

Blank.

A maximum of eleven 4-digit
hexadecimal fields, separated
by commas, each replacing one
previously loaded half-word
(two bytes). The last field
must not be followed by a
comma.

Blank.

73-80 Not used by the loader. l _______ ~ _____________________________ ~ __ _

Load End Card

The Load End (END) card is generated by
the assembler when it encounters the END
instruction. This card ends the loading of
a control section and may specify a loca­
tion within the section to which control is
to be transferred.

The contents of the END card fields are
defined in Table 9.

Common Subprograms 51

Table 9. Load End Card
r-------T---------------------------------,
! COLUMN! CONTENTS !
~-------+---------------------------------~

1 Load card identification
t12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 END. Identifies the type of
load card.

5

6-8

9-14

15-16

17-72

Blank.

Address (may be blank), in
extended card code, of the
point in the control section to
which control may be trans­
ferred at the end of the load­
ing process. See the priority
conditions discussed under the
LDT card.

Blank.

Information for RELLDR. The
contents of these columns is
ignored by ABSLOD.

Blank.

73-80 Not used by the loader.
-------~---------------------------------

processing of END Cards by ABSLOD

When an END card is found by ABSLOD,
parameters pertinent to this card are
stored in System/360 main storage, then
transferred to registers or return address­
es when an LDT card is found.

Four types of END Cards may be found by
ABSLOD:

1. CONTPR END card

The address of the last byte of
CONTPR, which is contained in the
location counter, is stored in
System/360 main storage. When an LDT
card is found, this address is stored
in System/360 general register 2.

2. IOPACK END card

The address of the byte following
IOPACK, which is contained in
LOCCTR+l, is stored in Systemv360 main
storage. When an LDT card is found,
this address is stored in System/360
general register 1.

3. INIT END card

52

The entry point in INIT, specified
in this card, is stored in a PSW. It

is used as a return address to INIT at
the end of ABSLOD.

4. RELLDR END card

The entry point in RELLDR, speci­
fied in this card, is stored in
System/360 main storage. It is used
as a return address to RELLDR at the
end of INIT.

LDR Card

Of the four other subprograms included
in the Simulator system tape, two (CONTPR
and IOPACK) are designed to reside perma­
nently in storage with whatever other pro­
gram is being used: EDITOR or UPDT20, and
are therefore loaded starting at address O.
The two other subprograms (INIT and RELLDR)
are used only to load and initialize the
Simulator programs; thereafter they are
overlaid. These two subprograms are there­
fore loaded into storage after address
56000.

The LDR card, which is placed immediate­
ly after IOPACK, terminates incrementing of
the location counter (LOCCTR) at this
point, so that the Simulator programs may
be loaded from this address'onwards. The
location counter is therefore not incre­
mented when INIT and RELLDR are loaded.

The contents of the LDR card £ields are
defined in Table 10.

Table 10. LDR Card
r-------T---------------------------------,
! COLUMN! CONTENTS I
~-------+---------------------------------~

1 ! Load card identi£ication
! (12-2-9 punch). Identifies
I this as a card acceptable to
I the loader.
I

2-4 I LDR. Identifies the type of
I load card.
I

5-72 I Blank.
I

73-80 I Not used by the loader.
-------~---------------------------------

Load Terminate Card

The Load Terminate (LDT) card is placed
at the end of the input deck. It has two
uses:

1. It ends the loading process.

2. It causes control to be transferred to
some location within the section or
sections loaded.

The location to which control is trans­
ferred is determined according to the fol­
lowing order of priority:

1. Control is always transferred to any
location specified in the LDT card.

2. If the LDT card does not specify a
location, control is transferred to
the first location specified by an END
card encountered during the current
loading process.

3. If neither the LOT card nor any END
cards specify a location, control is
transferred to location 0, resulting
in an error halt.

The contents of the LDT card fields are
defined in Table 11.

Table 11. Load Terminate Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
r-------+---------------------------------~

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 LDT. Identifies the type of
load card.

5

6-8

9-72

Blank.

Address (may be blank), in
extended card code, of the
point in the program to which
control is to be transferred.

Blank.

73-80 Not used by the loader. _______ l ________________________________ _

The LDT card at the end of RELLDR is
blank and control is transferred to the
address specified in the END card at the
end of INIT.

ABSLOD prepares the following data in
the general registers for INIT:

• The address of the last byte of CONTPR

• The current value of the location
counter

• The address in RELLDR to which control
must be transferred when initialization
is completed

ABSLOD initializes the machine-check and
program-check new PSWs to cause the
System/360 to enter the wait state if a
machine check or a program check occurs.
Before loading, ABSLOD also sets core stor-

age to zero from location X'180' (384
decimal) to the end of storage, except for
the area occupied by ABSLOD.

After control is transferred to the
loaded program, the Simulator operates in
the problem state, disabled for all inter­
ruptions except machine check or program
check until the PSWs for these interrup­
tions are altered by the programs loaded.

ADDITIONAL ABSLOD FUNCTIONS

ABSLOD also accepts assembled programs
intended to be loaded by a relocating
loader, but with the following limitations:

1. Cards of other types than those listed
above (SLC, ICS, ESD, and RLD) are
ignored, as is any information on TXT,
REP, and END cards meaningful only to
RELLDR.

2. Control sections are not linked.
Should one control section refer to
instructions or data in a section
assembled separately, absolute ad­
dresses are used.

CONTROL PROGRAM (CONTPR)

CONTPR (see Chart FB) is used by EDITOR,
UPDT20, and, in a reduced form, by SIM20
and DSKINT. To simplify the presentation,
this description refers only to EDITOR, but
is valid for all the programs. When a part
of CONTPR is not used by SIM20 and DSKINT,
it is so stated.

CONTPR consists of routines to:

• Process machine-check interruptions

• Process supervisor-call interruptions

• Process program interruptions

• Process I/O interruptions

• Verify the characteristics of I/O de­
vices

• Process I/O requests

• Set up the standard SEREP interface

• Communicate
Keyboard

with the 1052 Printer-

CONTPR operates in the supervisor state,
whereas EDITOR operates in the problem
state. Any attempt to execute a privileged
instruction within EDITOR causes a program
interruption.

Common Subprograms 53

INTERRUPTION PROCESSING

Machine-Check Interruptions

When a machine-check interruption oc­
curs, CONTPR is entered. It responds by
setting up the standard SEREP interface for
a machine check.

Supervisor-call Interruptions

Supervisor-call (SVC) interruptions are
processed by means of an SVC table of 20
full-word entries corresponding, in order,
to the allowed values (0 through 19) of the
interruption code in an SVC instruction.
These codes and their corresponding
functions are given in Table 12.

If the interruption code is greater than
19, a program interruption is artificially
created; the. interruption code portion of
the program old PSW is set to indicate an
operation exception. Otherwise, control is
passed to the appropriate routine via the
SVC table.

For most of its fUnctions, CONTPR must
be given a number of parameters, whose
values are set up in the bytes immediately
following the SVC instruction. An SVC
instruction, together with its necessary
parameters, is referred to as an SVC call­
ing sequence.

The general and floating-point registers
may contain any value when an SVC calling
sequence is presented to CONTPR. When
control is returned to EDITOR, the contents
of these registers remain unchanged.

Only the SVC instructions with interrup­
tion codes 1, 2, 3, 7, 8, and 9 are used by
SIM20 and DSKINT.

Program Interruptions (SVC 6)

when a program interruption occurs,
CONTPR is entered.

When CONTPR is loaded into System/360
main storage, program interruptions are
processed in the following way:

1. A PSW is loaded, for which I/O and
external interruptions are enabled,
and in which the wait state bit is one
and all the interruption code bits are
zeros.

2. The wait light on the system control
panel is turned on, and, except when
processing I/O and external interrup­
tions, operator intervention is await­
ed.

54

Table 12. SVC Table
r------T----------------------------------,
I SVC I FUNCTION I
I CODE I I
~------+----------------------------------i

o I/O device verification1

1 Submit an I/O request and inter­
rupt at channel end2

2

3

4

Submit an
continue2

I/O request and

Return to the point of interrup­
tion

Write a message1

5 Set command parameters1

6

7

8

9

10

Set return address for a program
interruption1

Set up SEREP interface

Disable I/O and external inter­
ruptions

Enable I/O and external inter­
ruptions

Set return address for an exter­
nal interruption1

11 Submit an I/O request and wait1

12

13

14

15

16

17

Dump System/360 main storage1- 2

Rewind a specified 2400-Series
Magnetic Tape Unit1

Rewind and unload a specified
2400-Series Magnetic Tape Unit1

Disable console (ignore atten­
tion interruptions)1

Enable console (accept attention
interruptions) 1

Set parameters for a logical I/O
request to IOPACK1

18 Submit a logical I/O request to
IOPACK1

19 Set the wait state bit "onn in
the current PSW1

~------~----------------------------------~
I 1These SVC codes are not used by SIM20 I
I and DSKINT. I
I 2These SVC codes are not used by EDITOR I
I and UPDT20. I l ___ J

The processing of subsequent program
interruptions may be changed by submitting
an SVC 6 calling sequence to CONTPR. This
calling sequence has the following form:

I

PRPSW
1+14

CNOP
SVC
DC
DS
Any

2,8
6
A (PRRET)
D

instruction

As a result of this calling sequence,
when any subsequent program interruption
occurs, the program old PSW is placed in
the double-word with address PRPSW, I/O and
external interruptions are disabled, and
control is returned to EDITOR at address
PRRET.

This SVC calling sequence is not used by
SIM20 and DSKINT.

External Interruptions {SVC 10}

When an external interruption occurs,
CONTPR is entered.

In the following cases, external inter­
ruptions are ignored:

• When CONTPR is loaded into System/360
main storage

• When an external interruption occurs
because of an external signal

In these cases, the external old PSW is
loaded into the PSW.

External interruptions related to the
timer or to the interrupt key on the system
control panel can be processed by submit­
ting an SVC 10 calling sequence to CONTPR.
This calling sequence has the following
form:

I
I
I
EXTPSW
1+18

CNOP
SVC
DC
DC
DS
Any

6,8
10
A (T IIvIINT)
A (KEYINT)
D

instruction

As a result of this calling sequence,
when any subsequent timer or interrupt-key
interruption occurs, the external old PSW
is placed in the double-word with address
EXTPSW, I/O and external interruptions are
disabled, and control is returned either to
the instruction with address TIMINT (timer

-interruption) or to that with address KEY­
INT (interrupt-key interruption).

If the value of TIMINT or KEYINT is
zero, the interruption is ignored.

This SVC calling sequence is not used by
SIM20 and DSKINT.

Disable I/O and External Interruptions
(SVC 8)

The SVC 8 calling sequence causes I/O
and external interruptions to be disabled;
that is, the system mask is set to the
val ue X' 00 ' .

The disabled state may be set up either
by the svc 8 calling sequence or as a
result of an interruption.

Enable I/O and External Interruptions
(SVC 9)

The SVC 9 calling sequence causes I/O
and external interruptions to be enabled;
that is, the system mask is set to the
value X'FF'.

I/O DEVICE VERIFICATION (SVC O)

CONTPR verifies that the device at a
given System/360 address is of the type
"tttt" and has special features correspond­
ing to "ssw. The value of "tttt" and the
bit structure of the special-features byte
"ss" for the devices supported by CONTPR
are presented in Table 13.

The SVC 0 calling sequence has the
following form:

CNOP 0,4
I SVC 0
DEV360 DC X'Oddd'
TYPE DC c'tttt'
FEATURE DC X'ss'

DC AL3(ERROR}
1+12 Any instruction

If the device at System/360 address
X'Oddd' corresponds to the device specified
in the SVC 0 calling sequence, control is
returned to address 1+12; if not, control
is returned to address ERROR.

This SVC calling sequence is not used by
SIM20 and DSKINT.

I/O REQUESTS

Three types of I/O request can be sub­
mitted to CONTPR. These are:

• I/O Request and Wait: CONTPR returns
control to EDI'l"OR only when all acti vi­
ty related to the I/O operation has
terminated. (This type of I/O request
is not used by SIM20 and DSKINT.)

Common Subprograms 55

Table 13. Device Verification Table
r------------------------T-------------------------------------,
I DEVICE TYPE I SPECIAL-FEATURES BYTE I
~------------------------+-------------------------------------~
I 1442 Card Read Punch I Bit 7 = 0 No Card Image feature I
I tttt = 1442 I Bit 7 = 1 Card Image feature I
~------------------------+-------------------------------------~
I 2501 Card Reader I Bit 7 = 0 No Data Mode 2 I
I tttt = 2501 I Bit 7 = 1 Data Mode 2 I
~------------------------+-------------------------------------~
I 2520 Card Read Punch I Bit 7 = 0 No Data Mode 2 I
I tttt = 2520 I Bit 7 = 1 Data Mode 2 I
~------------------------+-------------------------------------~
I 2540 Card Read Punch I Bit 7 = 0 No Column Binary feature I
I tttt = 2540 I Bit 7 = 1 Column Binary feature I
~------------------------+-------------------------------------~
I 1403 Printer I Bit 7 = 0 100 print positions I
I tttt = 1403 I Bit 1 = 1 132 print positions I

~------------------------+-------------------------------------~
I 1443 Printer I Bit 7 = 0 120 print positions I
I tttt = 1443 I Bit 1 = 1 144 print positions I
~------------------------+-------------------------------------~
I 2400-Series Magnetic I Bit 7 0 Nine-track tapes I
I Tape Unit I Bit 1 1 Seven-track tapes I
I tttt = 2400 I I
I I Bit 6 0 No data converter I
I I Bit 6 1 Data converter I

I I I
I I Bit 5 0 Seven-track tapes I
I I Bit 5 1 Nine-track tapes I

~------------------------+-------------------------------------~
I 1052 Printer-Keyboard I No special features I

~------------------------+-------------------------------------~
I 2671 Paper Tape Reader I No special features I
~------------------------+-------------------------------------~
I 2311 Disk Storage Drivel No special features I l ________________________ ~ _____________________________________ J

• I/O Request and Continue: CONTPR
returns control to SIM20 as soon as
possible after having accepted the
request. I/O interruptions related to
such a request interrupt SIM20 and
transfer control to CONTPR. CONTPR
preserves all information related to
the I/O interruption and, if this
information indicates that all the I/O
activity related to the request has
terminated, returns control to SIM20 at
a predetermined location. Otherwise,
control is returned to SIM20 at the
point of interruption.

• I/O Request and Interrupt at Channel
End: This request is similar to the I/O
request and continue, except that, in
the absence of unusual conditions, the
channel-end condition also causes
CONTPR to return control to SIM20 at a
predetermined location.

SVC Calling Sequence Parameters

The SVC calling sequences for I/O
requests contain the following parameters:

56

• DEV360

• CAWADD

• STATUS

gives the System/360 address of
the device for which the re­
quest is intended.

gives the address of the first
ccw to be executed. (There is
no restriction on the CCWs that
can be presented. In particu­
lar, a string of CCWs connected
by either data chaining or com­
mand chaining is permitted.)

is treated by CONTPR as two
hexadecimal digits, STRTBT and
ERRTYP. On receipt of the I/O
request, both STRTBT and ERRTYP
are set to zero.

STRTBT is set to one only when the
physical I/O operation has been
initiated at the device. When
control is returned to SIM20 at
address ACCRET (request ac­
cepted), STRTBT indicates
whether or not the physical I/O
operation has been initiated.
Also, at initial selection, if
an error condition precludes

the initiation of the opera­
tion, STRTBT is set to one.

ERRTYP indicates whether or not an
exceptional condition has oc­
curred and, if so, the type of
condition.

• SNSADD

• SVCCSw

• SVCPSW

denotes the address of the
first of three bytes used to
accumulate the first three
bytes of sense information dur­
ing a sense operation performed
as a result of a unit-check
condition detected during the
execution of an I/O request.
On receipt of an I/O request,
these bytes are set to zero.

denotes the address of a
double-word used to accumulate
channel status information. On
receipt of an I/O request, the
contents of this double-word
are set to zero. If channel
and device status information
is generated on more than one
occasion during the execution
of a chain of I/O commands,
CONTPR accumulates the logical
"OR" of this status information
in the appropriate bytes of
SVCCSW.

denotes the address of a
double-word in which is placed
the I/O old PSW generated by
the last I/O interruption
related to the request. (This
parameter is not present in the
I/O request and wait calling
sequence.)

I/O Request and continue (SVC 2)

The SVC calling sequence used to submit
an I/O request and continue has the follow­
ing form:

CNOP 4,8
I SVC 2
DEV360 DC X'Oddd'
CAWADD DC A(CCWADD)
STATUS DS C
SNSADD DS 3C
SVCCSW DS D
SVCPSW DS D

DC A (NRMRET)
DC A (EXCRET)

ACCRET Any instruction
(Address 1+36)

If the associated channel, subchannel,
control unit, or device is busy, precluding
initiation of the I/O request, CONTPR
places this request in a queue until all
parts of the device path are free.

Control is returned to SIM20 under any
of the following conditions.

• Physical I/O operation started:

STRTBT=l
Return to address ACCRET

• Device path (channel, subchannel, con­
trol unit, or device) busy:

Add I/O request to request queue
STRTBT=O
Return to address ACCRET

• PhySical I/O operation started and ter­
minated with no exceptional conditions:

STRTBT=l
Place OSVPSW at SVCPSW
Address ACCRET to address part of
SVCPSW
Return to address NRMRET with all
I/O and external interruptions
disabled

• Exceptional condition has prevented the
starting of the I/O operation or the
I/O operation has started and terminat­
ed with an exceptional condition:

STRTBT=l
Place OSVPSW at SVCPSW
Address ACCRET to address part of
SVCPSW
Return to
I/O and
disabled

address EXCRET with all
external interruptions

An I/O interruption related to this
request interrupts the Simulator and gives
control to CONTPR. If examination of the
interruption indicates that not all the
activity related to the request has termi­
nated, control is returned to the point of
interruption. Otherwise, control is re­
turned to one of the addresses NRMRET or
EXCRET, according to the conditions de­
scribed under "Exceptional Conditions."
The I/O old PSW is placed in the double­
word with address SVCPSW, and all I/O and
external interruptions are disabled.

An I/O request and continue calling
sequence for a device in the busy or
chained state is not allowed when SIM20 is
in the disabled state.

This SVC calling sequence is not used by
EDITOR and UPDT20.

I/O Request and Interrupt at Channel End
(SVC 1)

The SVC calling sequence used to submit
an I/O request and interrupt at channel end
has the following form:

Common Subprograms 57

I
DEV360
CAWADD
STATUS
SNSADD
SVCCSW
SVCPSW

ACCRET

CNOP 4,8
SVC 1
DC X, Oddd'
DC A(CCWADD)
OS C
DS 3C
OS 0
OS 0
DC A (NRMRET)
DC A(EXCRET)
Any instruction
(address 1+36)

This calling sequence performs the same
functions as the I/O request and continue,
except for the following additional
facility offered by the I/O request and
interrupt at channel end.

When a channel-end condition occurs
without the device-end condition, a test is
made for the presence of a unit-exception
or unit-check condition.

If neither of these conditions is pre­
sent, the I/O old PSW is placed in the
double-word with address SVCPSW, and con­
trol is returned to SIM20 at location
NRMRET with all I/O and external interrup­
tions disabled. Otherwise (channel end
accompanied by unit check or unit
exception), control is returned to SIM20 at
the point of interruption. Thus, on de­
vices for which channel end and device end
occur separately, there can be two returns
to NRMRET.

This SVC calling sequence is not used by
EDITOR and UPDT20.

I/O Request and Wait (SVC 11)

The SVC calling sequence used to submit
an I/O request and wait has the following
form:

I
DEV360
CAWADD
STATUS
SNSADD
SVCCSW
EXCRET

NRMRET

CNOP 4,8
SVC 11
DC X· Oddd'
DC A(CCWADD)
OS C
OS 3C
OS 0
Any four-byte instruction
(address 1+20)
Any instruction (address 1+24)

STRTBT is Significant only in the I/O
request and continue/interrupt at channel­
end calling sequences. In the I/O request
and wait, it always contains the value one
(physical I/O operation initiated at the
device) when control is returned to EDITOR.

I/O and external interruptions related
to other I/O requests are allowed to occur
While CONTPR is waiting for the I/O request

58

and wait to terminate. such interruptions
are processed normally.

An I/O request and wait calling sequence
is not allowed when EDITOR is in the
disabled state.

This SVC calling sequence is not used by
SIM20 and DSKINT.

Exceptional Conditions

Control is returned to SIM20 at address
NRMRET with ERRTYP=O (no exceptional condi­
tions encountered) or at address EXCRET for
the following conditions:

• No unit control block exists for this
device (ERRTYP=2).

• The device or its associated control
unit, subchannel, or channel is not
operational (ERRTYP=l).

• A program-check or
condition has been
channel (ERRTYP=3).

protection-check
detected by the

• A unit-check condition has occurred
(ERRTYF=O) •

A sense operation is performed on
the device, and a maximum of three
bytes of sense information are
stored, starting at address SNSADD.

• A unit-exception or chaining-check con­
dition has occurred (ERRTYP=O).

Note: The first two of these exceptional
conditions are mutually exclusive. but the
last three may occur concurrently. In this
case, ERRTYP is set to the value corre­
sponding to the first exceptional condition
detected.

Channel Status Information

Information from the CSWs which can be
generated as a consequence of the execution
of an I/O request is accumulated in the
double-word SVCCSW. On receipt of an I/O
request, CONTPR sets the contents of SVCCSW
to zero.

The execution of a chain of I/O commands
produces, at most, one non-zero value each
for the command address and count parts of
a CSW. (CONTPR ignores any SVC in which
the program-controlled interruption is the
only status bit present.) The values of
these quantities are set into the approp~i­
ate bytes of SVCCSW.

If non-zero values of the two status
bytes are produced during the execution of
a chain of I/O commands, CONTPR accumulates

the logical "OR" of this status information
in the appropriate bytes of SVCCSW.

If, when a chain of I/O commands has
terminated, a unit-check status bit is
present in SVCCSW, CONTPR performs a sense
operation and places a maximum of three
bytes of sense information, starting at
address SNSADD.

When control is returned to SIM20 with
ERRTYP=l or 2, SVCCSW always contains zero,
indicating that no I/O operation has start­
ed for the I/O request.

When control is returned with ERRTYP=3,
the I/O operation has terminated, and
SVCCSW <and, in the case of unit check, the
bytes at SNSADD) describes the state of
this termination.

I/O PROCESSING WITHIN CONTPR

The following paragraphs contain an out­
line of the techniques used by CONTPR in
scheduling input/output operations. These
teChniques are explained with particular
reference to the I/O request and continue
<SVC 2) calling sequence.

Control Blocks

CONTPR associates a block of ,28 bytes of
System/360 main storage, called a unit
control block, with each System/360 device.
Each unit control block contains informa­
tion giving the address, characteristics,
and status of a device.

With each System/360 channel, CONTPR
associates a block of eight bytes of
System/360 main storage. This block is
called a channel control block and is used
to control the chaining of I/O requests for
the associated channel (see "Chaining I/O
Requests").

Three general registers (I, J, and K)
are assigned to contain the addresses of
the first byte of an SVC calling sequence,
of a unit control block, and of a channel
control block, respectively. Hence, using
I, J, or K, any element in an SVC calling
sequence, in a unit control block, or in a
channel control block may be expressed as a
displacement augmented by the contents of
I, J, or K.

Processing an SVC 2 Calling Sequence

Charts FC and FD show how an SVC 2
calling sequence is processed by CONTPR.
This processing is divided into two parts,
as follows:

Part 1: This part is entered once to ini-

tiate the physical I/O operation,
if possible.

Part 2: This part may be entered more than
once. It is entered once for each
I/O interruption associated with
the physical activity initiated by
part 1.

GETUCB Routine

The GETUCB routine uses the System/360
device address to generate the index pair
(J,K). It uses the device table DEVTAB.
There is one DEVTAB table for each
Systern/360 channel. Each DEVTAB table con­
tains a set of consecutive full-word
entries corresponding to the devices
attached to a channel.

Bits S through 7 of each
the System/360 address of
excluding the channel part.

word
the

contain
device,

Bits 8 through 31 of each word contain
the address of the associated unit control
block.

STRTIO Routine

The STRTIO routine tries to initiate an
I/O operation and, depending upon the con­
ditions encountered, has one of the follow­
ing exits:

TERM

DEVBSY

PATHB

EXCEPT

CHEND

START

The operation has been started
and terminated irnmedi,ately with­
out unit check, unit exception,
or other error conditions.

The device is busy with some
previous I/O request.

The associated channel, subchan­
nel, or control unit is busy, or
the operation must be delayed
because some outstanding sense
requests have not yet terminated.

The operation cannot be started
because of a unit-check or unit­
exception condition on the
device.

The operation has been started
and terminated with a unit-check
or unit-exception condition.

The device is not operational.

A program-check condition has
occurred.

The operation has produced an
immediate channel-end condition.

The operation has started without
any immediate status conditions.

Common Subprograms 59

For the exit EXCEPT, if a unit-check
condition has occurred, the STRTIO routine
calls the SENSE subroutine.

SENSE Subroutine

The SENSE subroutine carries out a sense
operation and places the first three sense
bytes in the SVC calling sequence, and the
last three sense bytes in the unit control
block.

IOINT Routine

The IOINT routine is
an I/O interruption,
following exits:

entered following
and has one of the

TERM

EXCEPT

SENSE

CHEND

OTHER

The operation has terminated
without unit check, unit excep­
tion, or other error conditions.

The operation has terminated, and
a unit-exception, chaining-check,
or protection-check condition has
occurred.

The operation has terminated, and
a unit-check condition has been
detected.

A channel-end condition has been
detected.

None of the above.

In the case of the exit SENSE, a request
to carry out a sense operation for this
device is added to the chain of waiting I/O
requests for the associated channel.
Furthermore, CONTPR has a parameter,
labeled SNSCNT, whose value is equal to the
number of outstanding sense requests on all
System/360 channels. If any I/O request is
attempted when SNSCNT is non-zero, the
STRTIO routine returns to exit PATHB. This
is done to avoid destroying sense informa­
tion by a subsequent I/O request.

Chaining I/O Requests

The
moment
rnation
block.
in one

• Busy

state of a given device at any
is determined by CONTPR from infor­
in its associated unit control

CONTPR treats each device as being
of the following three states:

CONTPR has started activity
for some I/O request, and
this activity has not yet
terminated.

• Chained Not busy; an SVC 1 or SVC 2
calling sequence for the
device has been received,
but cannot yet be executed.

• Available Not busy and not chained.

60

Any I/O interruption, except an atten­
tion interruption, received for a device
which is in the available or chained state
is ignored.

Available State

I/O REQUEST AND WAIT: If the device for
which the request is received is in the
available state, CONTPR tries to start the
corresponding I/O operation. If the status
of the channel, subchannel, control unit,
or device precludes initiation of the oper­
ation, CONTPR cycles1 on the SVC calling
sequence until the request is accepted.
otherwise, the operation is started, the
busy state is set, and CONTPR cycles on the
SVC calling sequence until all related I/O
interruptions have been received and pro­
cessed.

I/O REQUEST AND CONTINUE/INTERRUPT AT CHAN­
NEL END: If the device for which the
request is received is in the available
state, CONTPR tries to start the corre­
sponding I/O operation. It sets either the
busy state (operation started) or the
chained state (operation waiting) and
returns control to SIM20 at address ACCRET
(request accepted).

Busy or Chained State

Any I/O request received for a device in
the busy or chained state causes CONTPR to
cycle on the new SVC calling sequence.

Adding a Request to a Chain

The channel control block with, for
example, address K for a particular
System/360 channel contains two full-word
quantities labeled IOQBEG(K) and IOQEND(K),
used in chaining I/O requests for this
channel. Furthermore, each unit control
block with, for example, address J attached
to this channel contains a full-word quan­
tity labeled DEVCHN(J).

Initially, when no requests are chained:

• IOQBEG(K) contains zero.

• IOQEND(K) contains the
IOQBEG(K).

address of

1TO ·cyclen means that CONTPR places the
address of the SVC instruction into the
address part of the supervisor-call old
PSW and then loads this PSW. Thus, CONTPR
returns to the SVC instruction, which is
repeated until the operation can be ini­
tiated.

• DEVCHN(J) contains zero for all the
unit control blocks on the channel.

To add a request to a chain, the follow­
ing steps are carried out:

1. Extract the
IOQEND(K) •

address contained in

2. Place at this address the value of J
associated with the I/O request.

3. Place DEVCHN(J)
IOQEND(K).

at the address

Then, if two values of J (for example,
J 1 and J 2) are added to the chain:

• IOQBEG(K) contains J 1 •

• DEVCHN(J 2) contains o.

• IOQEND(K) contains DEVCHN(J2).

• DEVCHN(J) contains 0 for all other
devices on this channel.

Types of Reguests Chained

Two types of request may be added to a
channel chain:

1. SVC 1, SVC 2, SVC 13, and SVC 14
requests for which the exit PATHB is
taken when the STRTIO routine is
called

2. Sense operation requests for which the
exit SENSE is taken when the IOINT
routine is called

(A parameter in the unit control block
enables CONTPR to distinguish between these
two types of request.)

UNSTAK Routine

The UNSTAK routine (see Chart FE)
attempts to initiate as many I/O operations
on a designated channel as possible. The
routine is entered with one input parame­
ter, the channel index K.

Any unit control block for which an I/O
operation is started (or is inhibited owing
to exceptional conditions) is removed £rom
the chain of requests for this channel.

SETTING UP THE SEREP INTERFACE (SVC 7)

If certain unrecoverable conditions are
encountered during the execution of an I/O
request, there is no return from CONTPR to
EDITOR. Instead, the standard SEREP inter­
face is set up.

During the execution of an I/O request,
one of the following conditions may occur:

• One or more of the channel status
indications (channel control check,
interface control check, channel data
check) is detected.

• A channel or device status indication
which should not occur is detected.

• A sense operation cannot be performed
on a device. (Such a sense operation
is attempted each time the execution of
an I/O request gives rise to a unit­
check condition.)

In these situations,
main storage the elements
standard SEREP interface.
in which I/O and external
disabled, in which the
one, and for which all
code bits are ones.

CONTPR sets up in
necessary for the
It loads a PSW

interruptions are
wait state bit is
the interruption

In all other cases, control is returned
to EDITOR.

EDITOR may find it necessary, as a
result of the conditions under which an I/O
request has terminated, to set up the SEREP
interface. (For example, the condition
ERRTYP=l may be interpreted as a SEREP
condition.)

The following calling sequence should be
used in EDITOR to request that CONTPR set
up the standard SEREP interface:

tt

I
TYPE

CNOP
SVC
DC
DC

2,4
7
X'tt'
AL3(IOREQ)

denotes the type of interface which is
required. Thus:

tt=OF
tt=lF
tt=3F

indicates a channel failure.
indicates a device failure.
indicates a device-not-opera­
tional condition.

IOREQ
denotes the address of the SVC
instruction in the calling sequence of
the I/O request which gave rise to
this SEREP condition.

CONSOLE COMMUNICATION

.Two types of console communication are
handled by CONTPR. The first type allows a
message to be sent from EDITOR to the 1052
Printer-Keyboard, and the second allows
transmission of a command from the 1052 to
EDITOR in response to an attention inter-

Common Subprograms 61

ruption from the operator. There are no
facilities for processing queues of mes­
sages or commands. SIM20 and DSKINT do not
use CONTPR for console communication.

Write Message (SVC 4)

A request to write a message can be
submitted by EDITOR to CONTPR using an SVC
calling sequence of the following form:

I
N

1+6

CNOP
SVC
DC
DC
Any

2,4
4
X'nn'
AL3(BUFF)

instruction

The bytes to be printed are taken from
locations

BUFF+1,BUFF+2, ••• BUFF+X'nn'

CONTPR sends the contents of these bytes
to the 1052 Printer-Keyboard, using a Write
Inhibit Carrier Return command. Conse­
quently, if a new line is required at the
end of the message, the nnew linen charac­
ter should be set up in location
BUFF+X' nn' •

If, when a write message calling
sequence is submitted, CONTPR is busy with
a read or write request for the printer­
keyboard, it cycles on the calling sequence
until the previous request has terminated.
When it accepts the calling sequence, it
sets the contents of the byte at address
BUFF to x'OO', initiates the writing of the
message, and returns control to EDITOR at
address 1+6.

When the request has terminated, CONTPR
sets the byte at address BUFF to some
non-zero value. Thus:

62

• A programming error has been detected.
This probably indicates that· part of
CONTPR has been overwritten (BUFF=
X'03') •

• A device error has been detected during
the printing of the message. CONTPR
repeats the message; if a second error
occurs, a control alarm is issued
(BUFF=X'Ol').

If no second error occurs, BUFF=X'07'.

• A device error has prevented the
printing of the message. CONTPR tries
to repeat the operation. If the fail­
ure occurs again, a control alarm is
issued, and the SEREP interface is set
up.

If the failure does not occur again,
BUFF=X' 07' •

• The message was written without error
(BUFF=X'07').

When EDITOR is in the disabled state, a
write message request cannot be submitted
unless the disabled state was caused by an
interruption resulting from an operator
command at the 1052 Printer-Keyboard.

This SVC calling sequence is not used by
SIM20 and DSKINT.

Command Input (SVC 5)

When the attention key on the 1052
Printer-Keyboard is pressed, EDITOR is
interrupted and CONTPR is entered. In
response to this interruption, CONTPR sets
up and executes a read command. Informa­
tion is read from the 1052 into a command
buffer. When the reading operation has
terminated, control is returned to EDITOR
at a predetermined address."

Before information can be transmitted
from the 1052 to the Simulator, an SVC
calling sequence of the following form must
be submitted:

CNOP 6,8
T SVC 5
N DC X'nn'

DC AL3(BUFF)
COMLEN DC X'OO'

DC AL3(COMRET)
COMPSW DS D
1+18 Any instruction

This calling sequence need be presented
to CONTPR only once, and the parameters
which it contains are used, as described
below, in conjunction with all the commands
from the operator. (Any attention inter­
ruptions which occur before this calling
sequence is submitted are ignored.)

The byte at address COMLEN contains the
number of characters read.

X'nn' denotes the
characters that can
number of characters,
exceed X' nn' •

maximum
be read.

COMLEN,

number of
Hence, the
can never

The characters of any command are placed
in locations

BUFF+1,BUFF+2, ••• BUFF+COMLEN

The following termination conditions may
be associated with the reading of a com­
mand:

• A device error has been detected during
the reading of the command. CONTPR
issues an error message for the opera­
tor and returns control to the point of

interruption.
ignored.

Thus, the command is

• A control alarm is issued and the SEREP
interface is set up. This may be the
result of one of the following condi­
tions:

1. A device error has prevented the
reading of the command. CONTPR
has retried the operation and the
failure has occurred again.

2. The error message to the operator,
in the case of a device error
during the execution of a read
command, cannot be written.

• A programming error has occurred. This
probably indicates that part of CONTPR
has been overwritten (BUFF=X'03').

• The command has been read without error
(BUFF=X'07').

For the last two of these termination
conditions, control is returned to EDITOR
at location COMRET with all I/O and exter­
nal interruptions disabled. The PSW of
EDITOR at the point of interruption is
placed in location COMPSW.

To avoid the possibility of overwriting
the . information in the command buffer by a
subsequent command from the operator, the
sequence starting at location COMRET should
have completely processed this information
before returning to the point of interrup­
tion.

The cancel condition at the 1052
Printer-Keyboard is treated normally; that
is, a new request to read from the 1052 is
issued.

This SVC calling sequence is not used by
SIM20 and DSKINT.

Disable Console (SVC 15)

The SVC calling sequence

I SVC 15

causes attention interruptions (resulting
from an operator command on the 1052
Printer-Keyboard) to be ignored.

This SVC calling sequence is not used by
SIM20 and DSKINT.

Enable Console (SVC 16)

The SVC calling sequence

I SVC 16

causes such attention interruptions to be
accepted if an SVC 5 calling sequence (set
command parameters) has been previously
submitted.

This SVC calling sequence is not used by
SIM20 and DSKINT.

SIM20 INTERRUPTION AND RETURN (SVC 3)

When an interruption occurs, control is
given to CONTPR, which may return control
either to the point of interruption or to a
predetermined location. In the latter
case, the old PSW at the point of interrup­
tion is stored in a double-word at a
predetermined address. In addition, all
I/O and external interruptions are dis­
abled.

Control may be returned to the point of
interruption by using an SVC calling
sequence of the form:

I
CNOP
SVC
DC

2,4
3
A (RETPSW)

where RETPSW denotes the predetermined
address at which CONTPR has stored the old
PSW.

The current PSW is replaced by the
contents of the double-word with address
RETPSW, thus returning control to the point
of interruption.

REWIND AND REWIND-AND-UNLOAD CALLING
SEQUENCES (SVC 13 AND 14)

When an I/O request and continue calling
sequence is used to rewind or to rewind and
unload a 2400-Series Magnetic Tape Unit,
the operation is normally terminated (and
EDITOR interrupted) only when the device­
end signal is received from the tape unit.

The two SVC calling sequences given
below enable CONTPR to terminate the
operation when the channel-end signal is
received. In this case, I/O interruptions
for the tape unit which occur after the
channel-end signal has been received are
ignored.

The following SVC calling sequences are
used for the rewind and rewind-and-unload
functions:

Common Subprograms 63

4,8
I

CNOP
SVC 13 (Rewind)

or
I
DEV360
CAWADD
STATUS
SNSADD
SVCCSW
SVCPSW

SVC 14 (Rewind-and-Unload)

ACCRET

DC X, Oddd'
DC A(CCWADD)
DS C
DS 3C
DS D
DS D
DC A (NRMRET)
DC A(EXCRET)
Any instruction
(address 1+36)

When a channel-end condition occurs
without device end, the following tests are
made.

Rewind: Has a unit-exception or unit­
check condition occurred?

Rewind-and-Unload: Has a unit-exception
condition occurred?

If not, control is returned to EDITOR at
location NRMRET and the device-end
condition is ignored. Otherwise, the ter­
mination of this operation is identical to
that of the I/O request and continue opera­
tion.

CONTPR makes no check for the validity
of the co~~and code in the CCW provided by
EDITOR. Thus, in EDITOR, a command code
corresponding to the operation to be per­
formed must be placed in the CCW. If it is
not, CONTPR treats the calling sequence as
an I/O request and continue calling
sequence, but terminates the operation as a
rewind or rewind-and-unload.

These two SVC calling sequences are not
used by SIM20 and DSKINT.

SET WAIT STATE (SVC 19)

The SVC calling sequence

I SVC 19

sets the wait state bit "on"
PSW. ALL I/O and external
are enabled.

in the current
interruptions

When an I/O or external interruption
occurs, CONTPR is entered. The wait state
bit is set "off" in the old PSW at the
point of interruption, and control is
returned either to the point of interrup­
tion by loading the old PSW, or to a
predetermined location. The old PSW at the
point of interruption is also stored at a
predetermined location.

This SVC calling sequence is not used by
SIM20 and DSKINT.

64

DUMP SYSTEM/360 MAIN STORAGE (SVC 12)

This SVC calling sequence is not used by
the 1620 Simulator.

INTERFACE WITH IOPACK

The two following SVC calling sequences
are used to request that an I/O operation
be performed on an EDITOR support device.
On receiving the calling sequences, CONTPR
transfers control to IOPACK.

These two SVC calling sequences are not
used by SIM20 and.DSKINT.

Assign a System/360 Device to a Simulator
Support Function (SVC 17)

Before a request for an I/O operation by
an EDITOR support device can be submitted
to IOPACK, an SVC 17 calling sequence must
be submitted to CONTPR.

Execute an I/O Operation on a Simulator
Support Device (SVC 18)

To execute an I/O operation on an EDITOR
support device, an SVC 18 calling sequence
must be submitted to CONTPR.

I/O SUPPORT PACKAGE (IOPACK)

IOPACK (see Chart FF) is a subprogram
conSisting of a set of routines which
perform logical I/O operations on
System/360 I/O devices used for EDITOR
support functions. It also performs logi­
cal I/O operations for UPDT20j but, to
simplify the presentation, this description
refers only to EDITOR.

The I/O operations which IOPACK is
designed to perform and the associated
System/360 devices are given in Table 14.

All these routines are designed for
non-overlapped operation. Thus, program
execution is suspended until the I/O opera­
tion has terminated.

IOPACK examines the error conditions
which can occur when operating the devices
given in Table 14, and takes the action
prescribed by System/360 standards. Opera­
tor message facilities are provided via the
1052 Printer-Keyboard.

SYSTEM/360 DEVICE ASSIGNMENT (SVC 17)

When an SVC 17 calling sequence is
submitted to CONTPR, control is transferred
to IOPACK.

Table 14. Logical I/O Operations
r-----------------------T----------------------------------,
I OPERATION I SYSTEMV360 DEVICE I
~-----------------------+----------------------------------~
I Read a card I 1442 Card Read Punch, Model Nl I
I I 2501 Card Reader, Model Bl or B2 I
I I 2520 Card Read Punch, Model B1 I
I I 2540 Card Read Punch I
~-----------------------+----------------------------------~
I Punch a card I 1442 Card Read Punch, Model N1 I
I (optional) I 2520 Card Read Punch, Model B1 I
I I 2540 Card Read Punch I
~-----------------------+----------------------------------~
I Write a message I 1052 Printer-Keyboard I
I I I
~-----------------------+----------------------------------~
I Read a command I 1052 Printer-Keyboard I
I I I
~-----------------------+----------------------------------~
I Print a line I 1403 Printer I
I I 1443 Printer I
I I I
~--~--------------------+----------------------------------~
I Print a line and skip I 1403 Printer I
I to the first line on I 1443 Printer I
I the next page I I
~-----------------------+----------------------------------~
I Read a tape record I 2400-Series Magnetic Tape Unit I
I I rvlodel 1, 2, or 3 I
I I I
~-----------------------+----------------------------------~
I Write a tape record I 2400-Series Magnetic Tape Unit I
I I Modell, 2, or 3 I
I I I
~-----------------------+----------------------------------~
I Write a tape mark I 2400-Series Magnetic Tape Unit I
I I Modell, 2, or 3 I
I I I L _______________________ ~ __________________________________ J

The SVC 17 calling sequence has the
following form:

CNOP 0,4

IOTYPE is one character, I or 0, which
specifies the type of operation (input or
output) to be performed on the device named
SYMBOL. "ddd" denotes the System/360
address and "tttt" the type of this device.

I SVC 17-
SYMBOL DS 8C
DEV360 DC X' Oddd'
TYPE DC C'tttt'
IOTYPE DS C

DC AL3 (ERROR)
1+20 Any instruction

This calling sequence assigns the
System/360 device address given by DEV360
to the symbolic name SYMBOL.

SYl-'illOL is a symbolic name assigned by
EDITOR to a System/360 device. This name
may contain from one to eight characters,
being any combination of alphabetic and
numeric characters. The first character
must be alphabetic, the symbolic name is
left-adjusted, and all remaining characters
in the eight-byte field must be blank.

The types of device and the operations
accepted on them are as follows:

2540,2520,1442
2501
1403,1443
2400
1052

I (0 optional)
I
o
I and 0
I and 0

With each SYMBOL,DEV360 group is asso­
ciated a block of control information in a
table called SYMTAB.

IOPACK verifies the following condi­
tions:

• SYMTAB is not full.

Common Subprograms 65

If the table is full, IOTYPE is set to
X'Ol'.

• A routine exists for the operation to
be performed and for the device to be
used.

If not, IOTYPE is set to X'02'.

• A unit control block in CONTPR exists
for this device.

If not, IOTYPE is set to X'03'.

In the above cases, when IOTYPE is set
to X'02' or X'03', control is returned to
EDITOR at location ERROR. otherwise, the
SYMBOL,DEV360 group is placed in SYMTAB and
control is returned to EDITOR at location
1+20.

SYMTAB can contain a maximum of 10
SYMBOL,DEV360 groups. Once an entry is
placed in the table, it cannot be removed.
Therefore, the SVC 17 calling sequence
either adds a new SY~BOL,DEV360 group to
the table (if the table is not full), or
assigns a different System/360 device to a
symbol already in the table.

SYMTAB is created when IOPACK is
tialized, before EDITOR is loaded.
contents of the table remain unchanged
control is transferred from RELLDR to
TOR.

ini­
The

when
EDI-

control Card Entry: The functions of the
SVC 17 calling sequence may be performed by
entering a control card at the time of
program initialization. This control card
has the following format:

/ DEVSUP SYMBOL=X'ddd' ,tttt,IOTYPE

where SYMBOL, ntttt", ndddn, and IOTYPE
denote the same quantities as in the SVC 17
calling sequence. The blanks before and
after DEVSUP must be respected.

EXECUTE A LOGICAL I/O OPERATION (SVC 18)

The SVC calling sequence used to request
a logical I/O operation on an EDITOR sup­
port device has the following form:

I
SYivlBOL
COUNT
BUFFER
1+16

CNO}>
SVC
DS
DC
DC
Any

0,4
18
8C
FL2'nn'
A(BUFF)

instruction

SYMBOL denotes the same quantity as in
the SVC 17 calling sequence. COUNT con­
tains the number of bytes of data to be
processed, and BUFFER contains the address

66

of the I/O buffer for the device being
used.

The data is fetched from or placed in
locations

BUFF+l,BUFF+2, ••• BUFF+X'nn'

For an output operation on the 1403 or
1443 Printer, the EBCDIC character in loca­
tion BUFF+l specifies the type of print
command, as follows:

The character "1" Write and skip to
channel 1 after print­
ing.

Any other character Write and space one
line after printing.

ThUS, the data is fetched from locations

BUFF+2,BUFF+3, ••• BUFF+X'nn'

For an output operation on a 2400-Series
Magnetic Tape Unit, it may be necessary to
write a tape mark (particularly after a
unit exception has occurred, denoting the
end of tape). To write a tape mark, COUNT
must contain one (nn=l) and BUFF+l must
contain a 7-8 punch (hexadecimaI7F).

The I/O operation is performed using an
SVC 11 calling sequence (I/O request and
wait). CONTPR cycles on the SVC 11 calling
sequence until the request has terminated.
The request may terminate in any of the
following ways:

• An unrecoverable error has occurred.

•

Control is returned either from CONTPR
to IOPACK, or from IOPACK to EDITOR.
In the first case, the standard SEREP
interface is set up. In the second
case, a message is issued requesting
that a System/360 dump program be load­
ed (a part of the system has probably
been over-written), or that the stand­
ard SEREP program be loaded (a machine
malfunction has been detected).

The device SYMBOL is unknown to IOPACK.
It has not been defined by a control
card, nor by an SVC 17 calling
sequence. The byte at address BUFF is
set to the value X'Ol'.

• A device malfunction has been detected
during the execution of the I/O
request, and a message has been issued
to inform the operator of the malfunc­
tion. IOPACK has received a command to
terminate the I/O operation. The byte
at address BUFF is set to the value
X, 02' •

• A unit-exception condition has occurred
during a read or write operation on a

magnetic tape unit. A message is
issued and control is returned to EDI­
TOR, with the byte at address BUFF set
to the value X'03'.

• None of the above conditions has
occurred; that is, the I/O operation
has terminated with no exceptional con­
ditions. The byte at address BUFF is
set to the value X'07'.

In the last of these cases, IOPACK
returns control to EDITOR at location 1+16.

INITIALIZATION PROGRAM (INIT)

This subprogram (see Chart FG) initial­
izes CONTPR, IOPACK, and RELLDR for an
EDITOR or UPDT20 run. To simplify the
presentation, this description refers only
to EDITOR, but is valid for both programs.
Initialization is performed in the follow­
ing manner:

CONTPR: It initializes the 1052 Printer­
Keyboard Read/Write routine and creates the
channel and unit control blocks.

IOPACK: It creates SYMTAB, which assigns
System/360 devices to the symbolic names of
EDITOR support devices.

RELLDR: It selects the program to be
loaded, defines the length of the loader
tables, the output device to be used by the
Self-Loading Program Generator routine (if
it is required), and the names of any
control sections which must not be loaded.

Three types of control card are used by
the program for the above functions; these
are, respectively, DEV360, DEVSUP, and CALL
cards. The format and contents of these
cards are described in the publication IBM
System/360 Conversion Aids: The 1620 SiIDU=
lator for IBM System/360, Form C28-6529.
The program translates the mnemonic operand
terms in the cards by means of a dictionary
(DICT) which contains, against each oper­
and, the action to be taken and any data
required for this action.

PROGRAM STRUCTURE

To simplify the presentation, the
program may be divide':] into five phases.

Phase 1

ABSLOD has loaded CONTPR, IOPACK, INIT,
and RELLDR, and has prepared the following
data in the general registers:

• The address of the last byte of CONTPR

• The current value
counter (address of
following IOPACK)

of
the

the location
first byte

• The address in RELLDR to which control
must be transferred at the end of INIT

Control is transferred to INIT, which
needs to read control information but does
not know the address of the device on which
to read it. It cannot issue a message to
the operator since the address of the 1052
Printer-Keyboard is also unknown, so it
sets the system in the wait state. The
operator then presses the request key on
the 1052, causing an attention interrup­
tion. The program now inserts in a CCB and
a UCB at the end of the program the address
of the 1052 which is recorded in the I/O
old PSW, and issues a message to the
operator requesting the address of the
control information input device.

When the operator has typed a command
indicating the type and address of the
input device, a UCB (together with a CCB if
the device is not on the same channel as
the 1052 Printer-Keyboard) is completed for
this device.

Phase 2

Each control card or card image (on
tape) is read, listed on the 1052 Printer­
Keyboard, and analyzed with the aid of the
dictionary (DICT); the result is then
entered, in condensed form, in a table
(TABLE). This table is created in front of
INIT during program execution and overlays
the first routine (initialization) of this
program. The table is filled backwards;
that is, the first element is contiguous to
INIT, and the table is extended to the
front as new elements are added. The
condensed DEV360 card images are sorted in
order of increasing channel-unit addresses
and are placed in the first part of the
table; the condensed DEVSUP card images are
placed after the last DEV360 card image, in
the order in which they are read. The
length of the table is adjusted as each
card image is entered.

The last card in the deck is the CALL
card and it is processed as follows:

1. The name of the program to be loaded
by RELLDR is placed in the dictionary
for later use.

2. If the selective loading feature is to
be used, flags are set in the list of
optional control sections against
those which will be required.

3. If the term LIST is present, a flag is
set on to inform RELLDR that, later,
it must print loading messages.

Common Subprograms 67

4. If the term "INIT=nnnnnn" is present,
the symbolic name "nnnnnn" is saved to
inform RELLDR on which output device
the self-loading program must be gen­
erated.

5. A card punching routine, which may be
used by the Self-Loading Program Gen­
erator routine, is included at the end
of IOPACK. If the output device
called by the term "INIT=nnnnnn" is
not a card punch, this card punching
routine will not normally be required;
therefore, the location counter is
decremented by the length of this
routine to save storage space. Should
the card punching routine be required
in another program (UPDT20, for
example), the term PUNCH must be added
to the operand field of the CALL card
to prevent the location counter from
being decremented.

Phase 3

The program uses the data contained in
the first part of the table (TABLE) to
build up channel and unit control blocks in
storage, starting at the address contained
in the location counter.

One channel control block is created for
each available System/360 channel, and one
unit control block for each available
device. The format of channel and unit
control blocks is discussed in the section
"I/O Simulation."

As each control block is created, the
location counter is incremented and, at the
end of this phase, it points to the first
byte following the last unit control block
created.

Phase 4

With the data stored in the second part
of the table (TABLE), the program creates
SYMTAB in IOPACK by means of SVC 17 calling
sequences. This calling sequence is de­
scribed in the section "I/O Support Pack­
age."

If the EDITOR support device which will
be used to load the program specified in
the CALL card is not defined at this point,
the program stops after issuing an error
message, and cannot continue.

Phase 5

The program now prepares to transfer
control to RELLDR. The name of the program
to be loaded, which is in the dictionary,
is used to check that the file about to be
read is the correct one. The first card or
card image in the file is read. This first
card is the PROGNAME card, which contains
the name of the program and the size of the
loading tables required to load it.

68

It is assumed that in the case of a
program on cards, the first card read will
be the correct one; that ,is, that unwanted
programs will have been removed. Should
this not be the case, an error message will
be printed and the program will stop.

In the case of a program on tape, if the
name in the PROGNAME card image is not the
name required, the file will be skipped,
and the next PROGNAME card image will be
read and checked. This action is repeated
until the correct file is found or until
the SYSINEND card image is met. In the
latter case, an error message will be
printed, and the program will stop.

INIT prepares a list of parameters for
RELLDR which contains, in all cases, the
following items:

• The size of the loader tables needed to
load the specified program

• The current value of the location
counter

• A flag to indicate whether or not
loader messages should be issued

The list of parameters may also contain
one or more of the following items, depend­
ing on which terms were present in the CALL
card:

• The symbolic name and the address of
the output support device

• The name(s) of the control section(s)
to be ignored in the program about to
be loaded

If the term "INIT=nnnnnn" was present in
the CALL card, and if the 1052 Printer­
Keyboard used before the self-loading
program is created is not the same as the
one to be used afterwards, then the param­
eters prepared for RELLDR must include the
address of the 1052 to be used after the
self-loading program has been created, and
the address of its unit control block.

Once the list of parameters is complete,
INIT transfers control to RELLDR at the
address which was specified by ABSLOD. The
system then operates in the problem state,
disabled for all interruptions except a
machine check or a program check.

CARD SEQUENCE

DEV360 and DEVSUP cards may be mixed and
in any order, but the last card must be the
CALL card since, in addition to the fUnc­
tions indicated above, it marks the end of
control information input. Should the CALL
card not be the last, the DEV360 and DEVSUP
cards placed after it will be ignored and

will cause an error at some time during
program execution.

If two DEV360 cards define different
devices at the same address, only the
latter definition is retained. Similarly,
if two DhVSUP cards assign the same symbol­
ic name to two System/360 devices, only the
latter assignment is retained.

LINKAGE WITH CONTPR AND IOPACK

INIT, after it has initialized CONTPR
during phase 1, uses both that program and
IOPACK to read the control information and
to issue messages. The linkage between
these programs is discussed in the sections
nControl Programn and nI/O Support Pack­
age.-

MESSAGES

Messages are printed by INIT on the 1052
Printer-Keyboard to inform the operator of
any errors detected while the control
information is read or during the initiali­
zation itself (phases 3, 4, and 5). These
messages are listed and explained in the
publication IBM System/360 Conversion Aids:
The 1620 Simulator for IBM System/360, Form
C28-6529.

RELOCATING LOADER (RELLDR)

RELLDR (see Chart FH) is used to load
EDITOR or UPDT20, whichever is specified in
the CALL control card.

Table 15. Special RELLDR FUnctions

The distinguishing feature of this load­
er, as opposed to ABSLOD, is its ability to
load control sections into storage at
addresses other than those assigned by the
assembler; that is, to relocate them, and
to complete linkage among the sections by
means of special tables.

RELLDR uses the location counter
(LOCCTR) to determine where control sec­
tions will be loaded. Initially, LOCCTR
indicates the first byte that follows the
last unit control block created by INIT.
Thereafter, it is incremented by the number
of bytes indicated in an ESD type 0 term
(see -ESD Type 0 Term (Control Section
Name)-}, or by the length indicated on an
ICS card (see "Include Control Section
Card"); or it may be set to a definite
value by an SLC card (see "Set Location
Counter Carda). Each time LOCCTR is incre­
mented, the new value is compared with the
low-order address of the loader tables to
prevent these tables and the loader.program
from being overlaid. If an attempt is made
to overlay the tables and loader program,
an error halt occurs. After loading, how­
ever, when control has been transferred to
the program loaded, the space occupied by
the loader tables and program is available
and may be overlaid.

SPECIAL RELLDR FUNCTIONS

RELLDR has not only the three functions
of ABSLOD, that is, loading, correcting,
and transferring control, but also the
special functions described with their
associated load cards in Table 15.

r---T---------------------------------,
I FUNCTIONS I CARDS I

~---+---------------------------------~
I Relocating: Can place the instructions I Set Location Counter (SLC) I

I and constants of a control section into I Include Control Section (ICS) I

I storage locations other than those as- I External Symbol Dictionary I
I signed by the assembler; that is, relo- I (ESD type 0 term) I
I cate them. I Text (TXT), Replace (REP) I
~---+---------------------------------~
I Linkage: Loads two or more control sec- I External Symbol Dictionary I
I tions one after the other and completes I (ESD type 1 and 2 terms) I
I linkage among them so tha.t one control I Relocation List Dictionary I
I section may refer to constants or in- I (RLD) I
I structions, or both, within another; I Replace (REP) I
I makes any changes necessary to evaluate I I
I address constants of up to four bytes I I

I which are used by the control section. I I
~---+---------------------------------~
I Transferring Control: Ends loading and I Load End (END) I
I causes control to be transferred accord- I Load Terminate (LDT) I
I ing to the priority noted in the dis- I I
I cussion of the LDT card. I I
~---~---------------------------------~
I Note: The function of the REP card is essentially the same as in ABSLOD. I
I The END card remains an essential part of each control section, but I
I is subordinate in fUnction to the LDT card. I l ___ J

Common Subprograms 69

LOADER TABLES

To relocate assembled addresses and to
link the various modules or control sec­
tions, the loader uses three tables,
referred to as the Dictionary, the Ref­
erence Table, and the Relocation List.
These tables are built before storage just
before RELLDR, overlaying ABSLOD, which is
no longer required.

The Dictionary is used to list the
symbolic names of all the control sections,
entry points, and external symbols as they
are encountered during the entire loading
process, and their relocated addresses when
they are known.

The Reference Table is used to relocate
all the assembly addresses of a control
section and to calculate, when possible,
the value of the load constants in that
section. Any load constant whose value
cannot be calculated because the relocated
address of the symbol to which it refers is
not yet known, is placed in the Relocation
List until it can be calculated.

When an END card is encountered, the
Reference Table is cleared in preparation
for the next control section, and the
Relocation List is scanned to calculate the
value of any load constants for which the
relocated address of the related symbol is
now known.

LOADER CARDS

The formats of the eight types of load
card recognized by RELLDR are described in
detail in the following sections, together
with the manner in which each type of card
is processed by the loader.

Set Location Counter Card

The Set Location Counter (SLC) card sets
the location counter to an address indicat­
ed in one of three ways:

1.

2.

3.

Any absolute address
hexadecimal number
columns 7-12.

specified as a
punched in card

Any symbolic address already defined
as a control section name or entry
point. This is specified by a symbol­
ic name punched in card columns 17-22.

The sum of the absolute address in
card columns 7-12 and the internal
address of the symbolic name in card
colmans 17-22, if both these fields
are specified.

If only one field is
must be left blank.

used, the other
If both fields are

70

blank,
warning
causes
message
the new

the SLC card is ignored and a
message is issued. If the SLC card
LOCCTR to be decremented, a warning
is also issued as LOCCTR is set to
value.

The SLC card is normally placed in front
of the control section to which it applies,
but it will be recognized at any point
within an assembled control section.

The contents of the SLC card fields are
defined in Table 16.

Table 16. Set Location Counter Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 SLC. Identifies the type of
load card.

5-6 Blank.

7-12 Address in hexadecimal (to be
added to the value of any sym­
bol specified in columns
17-22). The address must be
right-justified in these
columns. Unused columns are
filled with zeros.

13-16 Blank.

17-22 I Symbolic name (may be blank)
I whose internal assigned loca­
I tion will be used by the load­
I ere The symbol must be left­
I justified in these columns.
I Unused columns are left blank.
I

23-72 I Blank.
I

73-80 I Not used by the loader. _______ i ________________________________ _

Include Control section Card

The Include Control Section (ICS) card
is used to reserve storage space for a
control section which will be loaded later.
The card specifies the name and the length
of the control section.

Control sections are loaded only on
double-word boundaries. The loader auto­
matically makes this adjustment before
loading any given control section, in the
following manner:

1. The location
necessary, to
boundary.

counter is adjusted, if
the next double-word

2. The symbolic name is stored in the
Dictionary, with the current value of
the location counter.

3. The length of the control section is
added to the value of the location
counter and the latter is set to the
resulting sum to reserve the storage
area.

when the loader
to this control

is already known;
section is loaded,

in the area of storage

Later,
reference
location
control
placed
it.

encounters a
section, its

and when the
it will be
reserved for

The loader does not retain the length of
the control section given by the assembler
in the ESD type 0 term; therefore, the
length specified in the ICS card must not
be less than that specified in the ESD type
o term. If it is, the control section
concerned will overlap the next one in
storage. Storage space may be reserved for
REP cards by specifying a greater length in
the ICS card. A warning message is issued
if the length stated in the rcs card
differs from that in the ESD type 0 term.

ICS cards are normally placed before the
first card of a control section, but they
will be recognized at any point within an
assembled control section.

The contents of the ICS card fields are
defined in Table 17.

Table 17. Include Control Section Card
r-------T-------------~-------------------l

I COLUMN I CONTENTS I
~-------+---------------------------------~

1 Load card identification

2-4

5-16

17-22

23-24

25-28

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

ICS. Identifies the type of
load card.

Blank.

Name of control section, left­
justified.

Blank.

Length (in bytes) of the
control section, in hexadecimal
notation, right-justified.
Unused leading columns are
filled with zeros.

I 29-72 Blank.
I
I 73-80 Not used by the loader. L _______ L _________________________________ J

External Symbol Dictionary Card

The
cards
These
term:

External Symbol
are generated by
cards may contain

Dictionary (ESD)
the assembler.
three types of

1. The ESD type 0 term defines the name,
the assembled starting address, and
the length of a control section. It
is produced by the assembler when it
encounters a START instruction. Only
one ESD type 0 term is produced per
control section, and it is assigned an
external symbol identification (ESID)
of 01.

2. The ESD type 1 term defines an entry
pOint within the control section to
which another section may refer. One
ESD type 1 term is produced by the
assembler each time it encounters an
ENTRY instruction.

3. The ESD type 2 term points to a name
within another control section to
which this section may refer. One ESD
type 2 term is produced by the assem­
bler each time it encounters an EXTRN
instruction, and is assigned an ESID
of from 02 onwards, in the order in
which it is encountered among the
external symbols of the control sec­
tion being assembled.

The variable field on the ESD card may
contain up to three terms, which may be of
the same or of mixed type. The contents of
the common fields of the ESD card are
defined in Table 18; the contents of the
variable field will be discussed under each
type of term.

ESD Type 0 Term <Control Section Name)

This term defines the name, .or entry
point, of the control section. It is
produced by the assembler when it encount­
ers a START instruction. If the START
instruction does not specify a control.
section name, blanks will be placed in the
Dictionary to define that "name."

The assembler assigns an external symbol
identification of 01 (ESID 01) to the
control section. This number is used by
the loader as a pointer to the Reference
Table entry. This entry is created by the
loader when it processes the ESD type 0
term, and contains the address of the
control section name in the Dictionary and
the address at which it was assembled. The
ESID 01 appears in the ESD type 0 term, in
all the ESD type 1 terms, and in all TXT,
RLD, and END cards produced by the assem­
bler. The loader can thus calculate the

Common Subprograms 71

Table 18. External Symbol Dictionary Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------1

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 ESD. Identifies the type of
load card.

5-10

11-12

13-14

15-16

17-64

65-72

Blank.

Number of bytes in the variable
field (card columns 17-64), in
extended card code.

Blank.

ESID of the first ESD type 0 or
2 term, if any, in the card.

Variable information field con­
taining from one to three
16-column terms (see Tables 19,
20, and 21). Unused columns
are left blank.

Blank.

73-80 Not used by the loader. _____ ~_~ _________________________________ J

control section's relocation factor when­
ever it is needed; this factor is the
difference between the address where the
control section is loaded (recorded in the
Dictionary) and that at which it was
assembled (recorded in the Reference
Table).

The address at which the control section
will be loaded is determined by the follow­
ing conditions:

1. If the name of the section defined by
the ESD type 0 term is already in the
Dictionary, then the section will be
loaded at the location specified in
the Dictionary, and no adjustment is
made to the location counter.

2. If the name of the control section
defined in the ESD type 0 term is not
in the Dictionary, then:

72

a. The location counter is adjusted,
if necessary, to the next double­
word boundary.

b. The control section name is placed
in the Dictionary, with the
current value of the location
counter.

c. The location counter is increment­
ed by the length of the control

section, and the section will be
loaded at the value now specified
in the Dictionary.

The loader loads only one control sec­
tion at a time and clears all entries in
the Reference Table when it encounters an
END card. Since it does not save the ESIDs
from one section to another, there is no
conflict in the Reference Table when the
next section is assigned the same number
(ESID 01).

The contents of an ESD type 0 term are
defined in Table 19.

Table 19. ESD Type 0 Term
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1-6 Control section name.

7-8 Blank.

9 Extended card code 12-0-1-8-9
(hexadecimal 00), identifying
this as an ESD type 0 term.

10-12

13

Address, in extended card code,
of the first byte of the con­
trol section as assigned by the
assembler.

Blank.

14-16 Length, in bytes, of the con­
trol section (extended card
code).

-------~---------------------------------

ESD Type 1 Term (Entry Point)

This term defines an entry point within
the control section to which another sec­
tion may refer. One such term is produced
by the assembler each time it encounters an
ENTRY instruction. All ESD type 1 terms
are assigned the same ESID as that of the
ESD type 0 term of the same control sec­
tion.

The loader processes ESD type 1 terms by
scanning the Dictionary to see whether the
entry point has already been defined as an
external symbol in another control section.
If it has, the relocated address is now
calculated and placed in the Dictionary
against the name; if not, a new entry
containing the name and the relocated
address of the program entry point is
created.

The contents of an ESD type 1 term are
defined in Table 20.

Table 20. ESD Type 1 Term
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1-6 Name of entry point.

7-8

9

10-12

13-14

15-16

Blank.

Extended card code 12-1-9
(hexadecimal 01), identifying
this as an ESD type 1 term.

Address, in extended card code,
of the entry point as assigned
by the assembler.

Blank.

ESID, in extended card code,
assigned to the control section
in which the entry point
occurs. _______ i ________________________________ _

ESD Type 2 Term (External Symbol)

This term points to a name within anoth­
er control section to which this section
may refer and is produced by the assembler
when it encounters an EXTRN instruction.
One term is produced for each external
symbol thus defined and assigned an ESID of
from 02 onwards as it is encountered in the
program. This number is used as a pointer
to the Reference Table entry and appears in
the RLD card associated with that external
symbol.

The loader processes an ESD type 2 term
by scanning the Dictionary to see whether
the external symbol has already been
defined as an entry in another control
section. If it has not, the symbol is
entered in the Dictionary but the address
is left blank. A Reference Table entry is
then created which contains the address of
the symbol in the Dictionary.

The loader loads only one control sec­
tion at a time and clears all entries in
the Reference Table when it encounters an
END card. Since it does not save the ESIDs
from one section to another, there is no
conflict in the Reference Table when the
next section is assigned the same numbers
(02, 03, etc.).

The contents of an ESD type 2 term are
defined in Table 21.

Text Card

The Text (TXT) card is generated by the
assembler. It contains the instructions
and constants of the program to be loaded,
and the address at which tne first byte of
text in the card is to be loaded. Each
card contains a maximum of 56 bytes of text
in extended card code.

Table 21. ESD Type 2 Term
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1-6 Name of external symbol.

7-8

9

10-12

Blank.

Extended card code 12-2-9
(hexadecimal 02), identifying
this as an ESD type 2 term.

Extended card code 12-0-1-8-9
(hexadecimal 00), three times.
The address assigned to an
external symbol by the assem­
bler is always zero.

13-16 Blank. _______ i ________________________________ _

The loader relocates the address in the
card by the relocation factor of the con­
trol section to which the card belongs, and
stores the contents of the card at that
address.

The contents of the TXT card fields are
defined in Table 22.

Table 22. Text Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------1

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 TXT. Identifies the type of
load card.

5

6-8

9-10

11-12

13-14

15-16

17-72

Blank.

Address, in extended card code,
at which the information on the
card is to be loaded.

Blank.

Number of bytes of text in the
card, in extended card code.

Blank.

External Symbol Identification
(ESID) assigned to the control
section in which the text
occurs (in extended card code).

A maximum
instructions
assembled in
code.

of 56 bytes of
and constants

extended card

73-80 Not used by the loader. L _______ i _________________________________ J

Common Subprograms 73

Relocation List Dictionary Card

The Relocation List Dictionary (RLD)
card is produced by the assembler when it
encounters a DC instruction or the second
operand of a CCW instruction which defines
an address as a relocatable symbol or
expression. This may be the address either
of an internal symbol which occurs only
within the control section or of an exter­
nal symbol belonging to another section.

The contents of the RLD card fields are
defined in Table 23.

The loader uses position and relocation
headers (see Table 23) to enter the Ref­
erence Table and the Dictionary. It calcu­
lates the relocated address of the load
constant and the value of the expression.
If the latter cannot be computed because
the relocation header refers to a symbol
which has not been loaded yet, the loader
places the loading address and the reloca­
tion headers of the load constant in the
Relocation List. The loader scans the
Relocation List at the end of each control
section and finishes processing load con­
stants which refer to symbols defined in
that control section.

Table 23. Relocation List Dictionary Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
r-------t---------------------------------i

1 Load card identification

2-4

5-10

11-12

13-16

I 17-72
I
I
I
I
I
I
I
I

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

RLD. Identifies the type of
load card.

Blank.

Number of bytes of information
in the variable field (card
columns 17-72), expressed in
extended card code.

Blank.

Variable field in extended card
code, consisting of the follow­
ing subfields:

Relocation Header. Two-byte
ESID of the symbol in the load
constant. The EsrD is 01 if
the symbol is internal to the
control section, and greater

I I than 01 if it is external. L _______ L ________________________________ _

(continued)

74

Table 23. Relocation List Dictionary Card
(continued)

r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------t---------------------------------i

Position Header. Two-byte ESID
assigned to the control section
in which the load constant
appears.

Flag Byte. (Bits 0 to 3 are
not used.) This byte contains
three items:

1. Size. Bits 4 and 5 indi­
cate the length in bytes of
the load constant as fol­
lows:

2.

00 - one byte
01 - two bytes
10 three bytes
11 - four bytes

ComElement flag. When bit
6 is a one, the value of
the symbol must be sub-
tracted from the expression
in which it occurs. When
bit 6 is zero, the value
must be added.

3. Continuation Flag. When
bit 7 is a one, it means
that this is one of a ser­
ies of expressions to be
derived from the value of
one symbol. When bit 7 is
a zero, it means that this
is the only expression, or
the last expression, to be
derived from the value of
one symbol.

Address. Three-byte address of
the expression given by the
assembler, in extended card
code.

The flag-byte and address
fields may be repeated for
other expressions as long as
the continuation flag is on in
the current four-byte entry.

73-80 Not used by the loader. L _______ ~ _________________________________ J

Replace Card

Replace (REP) cards are produced by the
programmer to substitute new text for por­
tions of assembled text. They must be
placed immediately after the last TXT card.
Assembled instructions or constants, or
both, are replaced byte for byte by the
instructions or constants punched in the
card in hexadecimal code. A REP card may

contain a minimum of 2 bytes (one
half-word) and a maximum of 22 bytes. The
assembled address of the first byte of text
to be replaced, which must be stated in the
card, will be relocated by the loader.

If additions made by REP cards increase
the length of a control section, an ICS
card must be placed at the front of the
control section to define the new length of
the section.

The contents of the REP card fields are
defined in Table 24.

Table 24. Replace Card
r-------T---------------------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------1

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 REP. Identifies the type of
load card.

5-6

7-12

13

14-16

17-70

71-72

Blank.

Address, in hexadecimal, of the
area to be replaced. It must
be right-justified and unused
leading columns must be filled
with zeros. The address must
specify a half-word boundary.

Blank.

External Symbol Identification
(ESID), in hexadecimal,
assigned to the control section
in which the replacement is to
be made. If this number is not
known, the field must be filled
with zeros.

A maximum of eleven 4-digit
hexadecimal fields, separated
by commas, each replacing one
previously loaded half-word (2
bytes). The last field must
not be followed by a comma.

Blank.

73-80 Not used by the loader.
-------~---------------------------------

Load End Card

The Load End (END) card is produced by
the assembler when it encounters the END
instruction; it ends loading of the control
section and may specify a location within
the section to which control should be
transferred. When the loader encounters
this card, it clears the Reference Table

and scans the Relocation List to finish
processing any load constants related to
symbols which have been defined in the
control section just loaded.

The contents of the END card fields are
defined in Table 25.

Table 25. Load End Card
r-------T-------------~-------------------,
I COLUMN I CONTENTS I
~-------+---------------------------------~

1 Load card identification

2-4

5

6-8

9-14

15-16

17-72

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

END. Identifies the type of
load card.

Blank.

Address (may be blank), in
extended card code, of the
point in the control section to
which control may be trans­
ferred at the end of the load­
ing process. See priority con­
ditions discussed under the LDT
card.

Blank.

External Symbol Identification
(ESID) of the control section.

Blank.

73-80 Not used by the loader.
-------~---------------------------------

Load Terminate Card

The Load Terminate (LDT) card must be
placed at the end of the input deck. It
has two uses:

1. It ends the loading process.

2. It causes control to be transferred to
some location within the section or
sections loaded.

The contents of the LDT card fields are
defined in Table 26.

When the loader encounters the LDT card,
it scans the Dictionary to see whether all
the symbols have a loading address; that
is, whether they have been defined, and if
they have not, it issues a warning message.

The
errors
and if
printed
state.

loader then checks whether any
have been detected during loading,
so, it causes a message to be
and the system to enter the wait

Common Subprograms 75

Table 26. Load Terminate Card
r-------T---------------------------------,
I COWMN I CONTENTS I
t-------+----------------~----------------~

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 LDT. Identifies the type of
load card.

5-16

17-22

23-72

Blank.

Name of the symbolic entry
point to the loaded program in
standard card code, left­
justified. This field may be
blank.

Blank.

73-80 Not used by the loader. _______ ~ _________________________________ J

If no errors have occurred during
loading, the loader transfers control to a
location determined by the following order
of priority:

1. The Self-Loading Program Generator
routine if the CALL card specified
that an initialized self~loading ver­
sion of the program be produced on
magnetic tape or punched cards

2. Any location specified in the LDT card

3. The first location specified by an END
card encountered during the current
loading process

4. The first byte of the first control
section loaded by RELLDR

After control has been transferred to
the loaded program, the system operates in
the problem state, enabled for all inter­
ruptions. If a program 9heck occurs, the
program new PSW causes the loader to issue
a message and to set System/360 in the wait
state. This is true only as long as RELLDR
has not been overlaid, nor the program new
PSW altered, by the program being executed.

CARD SEQUENCE

The following list shows the sequence of
cards in a series of control sections ready
to be loaded by RELLDRi it does not show
all the permissible combinations.

76

SLC sets the location counter at an
absolute address.

ICS defines control section B as a sec­
tion to be loaded later and speci-

fies the length to be reserved for
it.

ESD defines the name and length of sec­
tion A (type 0 term), any entry
points in section A to which section
B may refer (type 1 term), and any
external symbols in section B to
which section A refers (type 2
term).

TXT contains instructions and constants
of section A.

REP contains changes or additions to
section A.

RLD contains information for evaluating
relocatable addresses in section A.

END can contain an address within sec­
tion A to which control will be
transferred after loading if no
address is given in the LDT card.

ESD defines the name and length of sec­
tion B (type 0 term), any entry
points in section B to which section
A may refer (type 1 term), and any
external symbols in section A to
which section B refers (type 2
term).

TXT contains instructions and constants
of section B.

RLD contains information for evaluating
relocatable addresses in section B.

END can contain an address within sec­
tion B to which control will be
transferred after loading if no
address is given in the LDT card nor
in the previous END card.

LDT ends the loading process. If this
card specifies an address for trans­
fer of control, this overrules any
address saved or specified by an END
card.

OTHER FEATURES

In addition to its basic functions,
RELLDR can be used for absolute loading.

RELLDR cannot implement the
load procedure for programs
available storage.

Loading in Absolute Form

overlaying­
larger than

If the ESD cards are removed from the
control section before loading, RELLDR
operates in a manner similar to ABSLOD.

The loader will load one or more control
sections, either in absolute form or in
both absolute and relocatable form, until
it encounters an LDT card. However, the
following restrictions apply:

1. The loader will not record in the
loader tables the presence of a con­
trol section loaded in absolute form.

2. No linkage is provided with any sec­
tion loaded in absolute form; there­
fore, if the user wishes to load a
section at the location assigned by
the assembler and have linkage with
another section, he must specify the
starting address with an SLC card and
leave in the ESD cards.

3. If two or more control sections are
loaded in absolute form, any common
addresses in these sections will be
overlaid.

The location counter setting depends on
the SLC, ICS, and ESD (type 0 term) cards
read during loading. If the control sec­
tion to be loaded in absolute form is the
first one, the location counter contains
the address of the first storage location
following the unit control blocks created
by INIT. To avoid overlaying programs that
have already been loaded, an absolute load­
ing address must not be lower than the one
contained in the location counter, nor
greater than that of the start of the
loading tables.

Selective Loading

The selective loading function saves
storage space by loading only those parts
of the Simulator which are necessary to
simulate a particular installation.

Optional sections have two control sec­
tion names, one defining the complete con­
trol section, the other defining a dummy or
a shorter version of the section. Depend­
ing on the options specified in the CALL
card, which are translated into the
appropriate control section names by INIT,
RELLDR will load one or the other section.
When the loader is initialized, it creates
a loading table (LDOPT) of control sections
that must not be loaded.

Both control sections of any optional
portion of the program must conform to the
following requirements:

1. Their names must be different and no
reference must be made to these names
in any other portion of the Simulator.

2. They must contain the same number of
entry points with the same. names to

avoid leaving any external symbols in
other sections undefined.

3. They must be assembled separately,
each one on its own.

SELF-LOADING PROGRAM GENERATOR ROUTINE

This routine is entered from RELLDR if
the term nINIT=nnnnnnn was present in the
CALL card processed by INIT (nnnnnnnn being
the symbolic name of the output device).
It creates a punched card deck or a magnet­
ic tape file in a form which can be loaded
by the System/360 IPL procedure. This card
deck or tape file contains the contents of
main storage between locations 24 and the
last byte loaded by RELLDR (LOCCTR-1); that
is:

• CONTPR

• IOPACK

• The program just loaded (specified in
the CALL card)

Since CONTPR and IOPACK are needed to
create the card deck or tape, the routine
first copies this storage area into main
storage beyond location LOCCTR.

The magnetic tape file consists of:

1. A 24-byte IPL record containing a PSW
and two CCWs

2. A variable-length record containing a
copy of the storage area concerned

The card deck consists of:

1. A 24-byte IPL card containing a PSW
and two CCWs

2. A 56-byte IPL card containing a boot­
strap loader made up of sev€n chained
CCWs

3. As many TXT cards as are required to
contain the storage area concerned

4. An END card to exit from the bootstrap
loading loop and terminate the IPL
procedure

The Self-Loading Program Generator rou­
tine ends by issuing one of the following
messages and setting System/360 in the wait
state:

1. A212A END OF INITIALIZATION - This is
the normal end of the routine.

2. A213W INITIALIZATION ERROR, CANNOT
CONTINUE This message is issued if
the area of storage between LOCCTR and

Common Subprograms 77

the beginning of this routine in main
storage is too short to contain the
copy of locations 24 to LOCCTR-l.

LINKAGE WITH CONTPR AND IOPACK

RELLDR uses CONTPR and IOPACK for all
input/output operations, including mes­
sages. The linkage between these subpro­
grams and RELLDR is discussed in the sec­
tions "Control program" and "I/O Support
package."

RELLDR lVlESSAGES

RELLDR can produce off-line messages for
the programmer if the parameter LIST is
added to the CALL card after the other
parameters it may contain. Under normal
conditions, no messages are needed, or
printed; the parameter LIST should be
inserted in the CALL card only if loading
does not terminate correctly to determine
why during another attempt; in this case,
the CALL card has the following format:

/ CALL EDITOR, LIST

The messages are recorded on the support
device identified by the symbol SIM2PRNT,
defined in a DEVSUP control card before
EDITOR was loaded, and are classified under
three headings:

Information These messages are for informa­
tion only , giving, for
instance, the addresses at
which the various control sec­
tions start.

Warning These messages draw attention
to possible recoverable errors
which may occur but do not
interrupt loading.

Error These messages indicate any
errors such that loading cannot
continue.

In the following messages "xxxxxx" rep­
resents one of the following:

• A symbolic name

• The identification number punched in
card columns 73-80

• The serial number of the card in the
deck if columns 73-80 are blank

The term "card" refers either to an
actual card or to a tape record in the form
of a card image.

78

Informative Messages

RLOOI xxxxxx CONTROL SECTION LOADED
AT •••••
The first byte of
tion identified
"xxxxxx" is loaded
stated.

the control sec­
by the symbol
at the address

RLOI1 * INITIAL PSW ••••••
This is the PSW which transfers
control to the program loaded.

Warning Messages

RL021 xxxxxx ILLEGAL CARD IN LOADER INPUT
The card indicated was not recog­
nized by the loader and was ignored.

RL031 xxxxxx TXT FOLLOWS REP OR RLD CARD
The TXT card indicated was out of
sequence. The loader processed the
card, but part of the control sec­
tion loaded may have been overlaid.

RL04I xxx xxx ADDRESS OUTSIDE C.S. OR C.S.
ALREADY LOADED
The address contained in the TXT or
REP card indicated is beyond the end
of the control section being loaded
or in a preceding control section
already loaded. The card was
ignored.

RL051 xxxxxx TXT CARD CONTAINS MORE THAN
56 BYTES
The loader stores as many bytes as
are stated in card columns 11-12,
but this may cause a program error
at a later stage. This message will
occur only if an error is made when
correcting or repunching a TXT card.

RL06I xxxxxx TEXT OVERLAYS LOADER TABLES
The control section being loaded is
longer than stated in the ESD card
(type 0 term) or the ICS card and
overlays the start of the loader
tables. This message can occur only
if the end of the control section
has been modified by REP cards. The
card indicated was ignored.

RL071 xxxxxx ESD CARD FOLLOWS TXT CARD
The card indicated was out of
sequence and was ignored.

RL08I xxxxxx USED AS ENTRY AND CONTROL
SECTION NAME
The symbol in the card indicated,
already defined in an ESD type 1
term, has been found in an ESD type
o term or vice versa. This might be
a source of error.

RL09I xxxxxx CONTROL SECTION DEFINED WITH
2 LENGTHS
The control section defined in the

card indicated has been previously
defined with a different length by
an ESD type 0 term or an ICS card.
The new definition was ignored.

RL10I xxxxxx LDT CARD NOT PRECEDED BY END
CARD
The last control section loaded did
not contain an END card. The loader
assumed that there was one but that
it did not specify any transfer
address.

RLllI xxx xxx EXTERNAL SYMBOL HAS NO REAL
DEFINITION

RL12I

The symbol shown, which was recorded
as an external, does not correspond
to any entry point or control sec­
tion name. This message is printed
after the LOT card has been read.

xxx xxx BLANK OR
CARD
The REP card
conform to the
was ignored.

COMMA MISSING IN REP

indicated does not
standard format and

RL13I xxxxxx ADDRESS OF SYMBOL IN SLC CARD
NOT RELOCATED
The symbol in the SLC card indicated
has not been defined yet, has not
been relocated yet, or does not
exist. In the first two cases, the
SLC card is out of sequence; in the
last, the symbol is erroneous. The
card was processed as though no
symbol were specified.

RL14I xxxxxx NEITHER NAME NOR ADDRESS IN
SLC CARD
Since the SLC card indicated con­
tained no data, it was ignored.

RL15I xxx xxx SLC HAS SET LOC. CNTR. TO
VALUE ALREADY LOADED
The updated value of the location
counter is smaller than the previous
one, therefore all or part of the
control section previously loaded
may be overlaid.

RL16I xxx xxx CHARACTER IN CARD NOT HEXA­
DECIMAL
'llhe card indicated, which may be a
REP, an SLC, or an ICS card, con­
tains a non-hexadecimal character in
a field which must be hexadecimal.
The card was ignored.

RL17I xxxxxx ENTRY POINT IS REPEATED
The symbol contained in the card
indicated has already been defined
as an entry point. The card was
ignored.

RL18I xxxxxx ENTRY POINT NOT RELOCATABLE
The address of the entry point on

the card indicated cannot be relo­
cated within the limits of the con­
trol section to which it belongs.
This can arise only if the card was
punched by hand and a mistake was
made in calculating or punching the
address. The loader relocates the
entry point at address o.

RL19I xxxxxx ADDRESS NOT RELOCATABLE

RL20I

This message applies only to RLD
cards and means that the address of
a constant in the card cannot be
relocated within the limits of the
control section to which it belongs,
or that the control section has
already been loaded. The first case
is due to an error in hand-punching
a card, the second indicates that
the control section has been repeat­
ed by error on the tape or in the
card deck.

xxxxxx EOF BEFORE END OF LOADING
No LDT card was found at the end of
the file. The loader assumes that
there was one but that it did not
contain a transfer address, and ends
loading accordingly.

Error Messages

RL21W xxx xxx INSUFFICIENT SPACE FOR LOADER
TABLES
The area of main storage reserved
for the loader tables is too small.
The length of this area was speci­
fied in the card preceding the first
module or control section to be
loaded. This message occurs only if
the user has modified the Simulator
system delivered by IBM.

RL22W xxxxxx INSUFFICIENT SPACE AVAILABLE
FOR THE PROGRAM
This message may be due to an SLC
card with too high an address, or it
may occur if the space for the
loader tables has been increased by
the user to such an extent that
there is not enough storage left to
accommodate the program. In the
latter case, if the loader table
size cannot be reduced, RELLDR will
have to be moved further on in
storage.

RL23W xxxxxx PROGRAM ERROR
This message occurs only if part of
the support programs <CONTPR or
IOPACK) has been accidentally over­
laid during loading, for instance as
a result of an erroneous SLC card.
The card which was being loaded at
the time the program error occurred
is identified in the message.

Common Subprograms 79

Chart FA. Overall Logic of ABSLOD

INITIAL ENTRY ROUTINE­
ENTER ONLY ONCE DURING
LOADER RESIDENCE.WHEN THE

***** *FA *
* A3*
* *
*

LOADER PROGRAM IS EXECUTED LENTRY X

ENTER EACH TIME A CARD OR
CARD IMAGE MUST BE READ
DURING LOADER EXECUTION

80

*****A3**********
* PREPARE PSWS *
* FOR MACHINE *
* CHECK AND *

PROGRAM
CHECK

LENTRE X
*****83********** * SET UP LOADER *
* WITH *
* APPROPR I ATE *
* LOADER INPUT *
* DEVICE *

CLEAR X
*****C3******* * CLEAR STORAGE
*FROM 386 TO END
* EXCEPT FOR *
LOADER PROGRAM
* AREA *

••••••••••• X.X •••••••••••••••••••••••••••••••••••••

:GETCRD x
*****03**********
* CARD ANALYSIS *
* ROUTINE - *
* READ CARD OR *
* CARD IMAGE *

:****~~*!!~~ *** **

X .*.
E3 . *.

.* * •
LENTXT

:****E4*********:
• * TXT *. YES * PLACE TEXT

.••... X* * ••••
. CARD. * IN STORAGE * X
.. * * .. * *****************

* NO X

X
• *. LENREP •

F3 * •
• * * • :****F4*********:

• * REP *. YES * CONVERT CARD
.•.••• x* *

. CARD. * TO TXT CARD *
.. *

* •• * *****************
* NO

X
.*. LENEND

G3 *. *****G4**********
.* *. * *

.* END *. YES * SAVE TRANSFER *
. . .••••••• X* * ••••

. CARD. * ADDRESS * X
.. * * •. * *****************

* NO

X .*.
H3 * •

• * * •
LENLDR

:****H4*********:
• * LDR *. YES *FREEZE LOCATION*

*. *. CARD .* .* •••.•.•• x: COUNTER :. ~ ••

.. *
. . ***************** * NO

X .*.
J3 *. *****J4**********

.* *. * SET UP DATA *
.* LOT *. YES * FOR *

. . .••.•••• X*INITIALIZATION *
. CARD. * PROGRAM *
.. *

* •• * ***************** * NO

X

:****K3*********:
• * *
•••• : IGNORE CARD :

X

*FG *
* Bl*
* *

Chart FB.

****F 1 ********* * I/O *
* INTERRUPTION *

* ***************

X
*****Gl**********
:~~~*~~~;~~~~~;-:
* * * INTERRUPTION * RECEIVER *

Overall Logic of CONTPR

*FB *
* B2*
* *
*
x .*.

82 *. *****83**********
• * SVC *. *SVC *

.* 0.3.5.6,7 *. YES *-*-*-*-*-*-*-*-* *. 8.9.10.15 .* ••.••••. X* * •••••••• *. 16.19 .* ... 0.3.5.6.7.8.9 ... X
.. * 10.15.16,19'" *****

* •• * *****************... ... RETURN TO
* NO * CALLER

EACH SVC REPRESENTS * *
ONE ROUT INE *

x .*.
C2 *. *****C3**********

.*-* *. *. YES ::~:*-*-*-*-*-*-: *. SVC 12 .* .•..••.. x* * •••••••• *. .* ... 12 ... X
. . ***** * •• * ***************** ... RETURN TO

* NO * * * * CALLER

x .*.
02 *. *****03**********

.... -* *- •• YES ::~.:*-*-*-*-*-*-: *. SVC 17.18 .* •••••••• X... * ••••••••
. . * 17.18 ... X

. ***** *. .'" ***************** *FF ... BRANCH TO I/O SUPPORT
* NO * * B~* PACKAGE

*****E3**********
*SVC *
--*-*-*-*-*-*-* ••••••••••••••••• x* *
:1.2.4.11.13 14 :

X
*****F3**********
::~~*~~~!~~:*-*-:
* * *INITIALIZATION *

:*****~;~;~*****:

X
******G3***********

INITIATE
1/0 OPERATION

x

*

x .*. .*. *****Hl********** *****H2********** H3 *. H4 *. *****H5**********
*1/0 ROUTINE * *SENSE ROUTINE * .* *. .* *. *STACK ROUTINE *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*EXCEPTIONAL* STATE *. BUSY.* *. NO *-*-*-*-*-*-*-*-* * INTERRUPTION * •••••••• X* PICK *x •••••••• *. OF CHANNEL .* •••••••• X*. SVC 11 .* •••••••• X* CHAIN I/O *
*ANALYZER BLOCK * *up SENSE BYTES *CONDITION *. .* *. .* * REQUEST AND *
* * * * *..* *..* CONTINUE *
***************** ***************** * •• * * •• * *****************

X
*****J2**********
UNSTAK FEB1
--*-*-*-*-*-*-*
TRY TO I NI T I ATE
*CHAINED OPN ON *
* CHANNEL *

*OPERATION * YES
.STARTED

x .*.
J3 *.

.* *. • * *. YES • *. SVC 11 .* •••••••.•••••••• x.
. . *. .*

* •• * * NO . .
••••••••••••••••••••••••• X.

x

* *
* *
* RETURN TO

CALLER

x
* ****K4********* *'

WAIT

x

* *
* * * *

* RETURN TO
CALLER

Common Subprograms 81

Chart Fe. I/O Request and continue (Part 1)

***** *FC * ENTRY FOR
* 62* SVC 2

* * SEQUeNCE

*

X
*****62**********
*GETUCB *
--*-*-*-*-*-*-* * GET * INOEX PAIR *
* (J.K) *

it .*.
C2 * •

• * *.
NO.* INDEX * •

•••• *. PAIR FOUND .*
. .

. .
* •• *

* YES

X
******02***********

STRTIO
--*-*-*-*-*-*-*

TRY TO
* START 1/0 *

OPERATION

it

" " * E3 "
" *

.*. X
E2 *. """"*E3********""

.* *. * *
.* *. YES RETURN TO

. OPERATION . •••••... X* CALLER AT * ••••
. STARTED . X *ADDRESS ACCRET *
.. ... *

* •• * ***************** * NO

X .*.
F2 *.

a'" * • • * *. YES •
. CHANNEL END . ••••••

. .
. .

* •• *
* NO

X
• *.

G2 *. *****G3*********"
.* *. * *

.* ". YES * RETURN TO *

X

* * * *
" * * 1/0 REQUEST
ACCEPTED

.?EVICe BUS: •• * •••••••• X: ~~~~~~sAl :
.. * * * •• * ***************** X

* NO *****

* *
* "

it * CYCLE ON .*. 1/0 REQUEST
H2 *. *****H3*""*"**l>**

.* *. *STACK * ****
.* *. YES *-*-*-*-*-*-*-*-* * * *. PATH BUSY .* .•.•..•. X* ADO 1"10 * •••. X* E3 *
. . * REQUEST TO * " *

*. • * * CHANNEL CHA IN " ****
*. • * ***************** * NO

X .".
J2 *. *****J3"*********

.* *. * DISABLE AND "
.* OPERATION *. YES "RETURN TO

. TERMINATED . •••••••• X- CALLER AT * ••••
. . *ADDRESS NRMRET *
.. * *

*. . * *****************
" NO
" (ERROR)

X
*****K2**********
" DISABLE AND "

x

* *
*

* I/O REQUEST TERMINATED
WITHOUT ERROR

• " RETURN TO "
' •• X* C;:ALLER AT " ••••

82

*ADDRESS EXCRET *

!***************: X

" " * " " * * 1/0 REQUEST TERMINATED

WITH ERROR

Chart FD. I/O Request and Continue (Part 2)

*FD * ENTER HERE

* *B;* ~~i~R~GgTION
'* OCCURS

X
*****82**********
*GETUCB *
--*-*-*-*-*-*-* * GET

INDEX PAIR
* (J.K) *

X
*****C2**********
*IOINT *
--*-*-*-*-*-*-*
* EXAMINE *
* INTERRUPTION *
* CONDITIONS *

x
.* •

.... 02 *. :****03******* ...
• * OPERATION *. YES * SET RETURN *

. TERMINATED . ••.••••• X* ADDRESS =
. . x * EXCRET *
..

. . **************
* NO

X .*.
E2 * •

• * * • . * *. YES •
. ERROR . ..••..

*.
. .

* •. * * NO
.(SENSE. CHEND •
• OTHER)

X
*****F2**********
UNSTAK FEBl
--*-*-*-*-*-*-* •
... START ANY *X •••••••••••••••••
WAITING I/O FOR
* THIS CHANNEL *

X

* * *
* * * RETURN TO

CALLING
PROGRAM

Common Subprograms 83

Chart FE. UNSTAK Routine

ENTER X
*****B 1 *******
* SET *
* POINTER *

••• X*=IOQBEG(K) SET *
* UNSTSW 'OFF' *

* * **********~***

**** * *. : Cl :.X.
**** x

:****Cl*********:

* * * C2 *
* *

X
*****C2*******
* * * PICK UP * * SET

* J AT ADDRESS *X •••••••• * POINTR =
* POINTR * * DEVCHN(J)
* * * ***************** *~************

* * *

* *
: B3 :

X
******83***********

STRTIO
--*-*-*-*-*-*-*

TRY TO
START 1/0 *
OPERATION

*********** *

x

* * * C4 *
* *

.*. REMOVE UCB X
C3 *. *****C4**********

.* *. * WORD AT *
.* *. YES *ADDR. DEVCHN(J)*

. OPERATION . •.••.••• x* TO WORD AT *
. STARTED . X *ADDRESS POINTR *
.. * *

. . *****************
* NO

x X x
• *. .*. .*.

01 *. 02 *. 03 *.
• * *. .* *. .* *.

.* •
D4 * •

.* * • :****05******* *
.* *. NO .* TYPE *. NOT SENSE .* *. YES • • * IS *. Y:::S * SET POINTR IN*

. IS J=O . •••••••• X*. OF REQUEST .*.... *. CHANNEL END .* ••••.•
. . *. .* *. .*
.. *..* *..*

* •• * * •. * x * •• *
* YES *SENSE **** * NO

**** * *. * 101 *.X.
* * **** x .*.

El *.
• * *.

* *
: B3 :

x .*.
103 *.

.* * •

.THIS WORD = O. •••••••• X*WORD AT ADDRESS*
. . * IOQEND(K) *

. . *
* •• * **************

* NO

X
*****E4*******
* *

x

* * * El *
* *

• ON .* *. .* *. YES SET WORD AT *
•••. *. UNSTSW .*

84

. .
. .

* •• *
* OFF

x

*
* * * *

* RETURN TO
CALLING PROGRAM

X
*****G2**********
*SENSE *
--*-*-*-*-*-*-*
* PICK *
*up SENSE BYTES *
* * *****************

x .*.
NO H2 *.
(PATH.* *.
BUSY).* SENSE * •

••• *. ACCEPTED .*
. .

. .
x

* *

* •• *
* YES

: C2 :

X

*****J2*******
* * * * * REDUCE SNSCNT *
* BY ONE *
* * **************

X
*****K2*******
* * * * *SET UNSTSW ·ON·* ••••
* *
* * ************** x

* *
: C4 :

. PATH BUSY . ••..
. .

* ADDRESS * ••••
* DEVCHN(J) TO *

. .
* •• * * NO

x .*.

x

* * * C2 *
* * ****

* ZERO *

.*F3 *.*. :****F4********
.* *. YES * SET RETURN *

x

* * * C1 *
* *

. EXCEPTIONAL . ••.••••• x* ADDRESS = * ••••
.CONDITION. * EXCRET *
.. * *

* •• * **************
*NO
• (OPERATION
• TERMINATED)

X
*****G3*******
* * * SET RETURN *
* ADDRESS = *
: NRMRET **

X

* * * C4 *
* *

Chart FF. Overall Logic of IOPACK

***** *FF *
* A3*

* *

X
*****A3**********
* ENTRY *
---*-*-*-*-*-*-*
* * : ENTRY ROUTINE :

x .*.
B3 * •

• * *.
YES .* * •

•••••••••••••••••• *. SVC 17 CALL .*

x .*.
02 *.

.* ARE *.
NO.* INPUT *. .••••..•.••••••..• *. PARAMETERS

X
*****Gl*******
* * * SET ERROR *

RETURN *
* INDICATION * *

CONSISTENT.
. . * •• *

*

X
*****G2*******
* * * UPDATE *.

IOPACK *
DICTIONARY *

*
. .
••••••••••••••••••••••••• x.

. .
. . * •• 4-

* NO(SVC 18)

X
*****C3**********
*INITIALIZATION *
--*-*-1-*-*-*-*
* GENERAL *
*INITIALIZATION *
* ROUTINE *

X
*****03**********
*IN IT IAL IZAT ION *
--*-*-2-*-*-*-*
* ONE BLOCK *
* FOR EACH I/O *

:***~~;~:!!~~***:

X
*****E3********** * I/O REQUEST *
--*-*-*-*-*-*-*
* SEND I/O
* REQUEST TO *
* CONTPR *

X
******F3***********

CONTPR

x
.* •

G3 *. ******G4***********
.* *. MESAGE ****G5*********

.* *. YES ... -*-*-*-*-* *- *
.~NUSUAL EN~*.* •••••••• x *iN~~~~~~~~ON X: WAIT ...

. . ***************
. . ************* * NO

X
*****H3********** ONE BLOCK FOR
* CONDITIONS * EACH I/O
--*-*-*-*-*-*-* OPERATION
* ROUTINE TO *
* ANALYZE CSW + *
* SENSE BYTES *

X

*****.J3********** * EXITS *
--*-*-* ... *-*-*-*
* * : EX IT ROUTI NE :

': .•..........•.........•. x:

X
***** RETURN TO
* 4 CALLER

* * *

Common Subprograms 85

Chart FG. Overall Logic of INIT

***** *FG *
* Bl*
* *
*

INIT X
*****81 **********
* * *INITIAL ROUTINE*
*SAVE DATA FROM *
:ABSOLUTE LOADER:

X
*****Cl**********
*INITIALIZE I/O *
* ROUTINE FOR *
1052 TYPEWRITER
* AND CTL CARD *
* INPUT DEVICE *

• X ••••••••••••••••••••••••••••••••••••• e •••••••••••••••••••••••••

GETCRD X
******01***********

READ A CONTROL
*CARD AND PR I NT *

CONTENTS ON
1052

TYPEWRITER

CRDAN X

86

*****E 1 ********** * ANALYZE CARD *
AND BUILD

* OBJECT CARD
: IMAGE *

x .*. .*. CTLPR .
F 1 *. F2 *. *****F3**********

.* *. .* *. * MERGE OBJECT *
.* VALID *. YES .* DEV 360 *. YES * CARD IMAGE * •

. . •••••••• x*. .* •••••••• X* WITH ELEMENTS * ••••
. CARD . *. CARD.* * IN FIRST PART * X
.. *..* * OF TABLE *

* •• * * •• * *****************
* NO * NO

x
.*. DEVPR

G2 *. *****G3**********
• * *. * STORE OBJECT *

.* DEVSUP *. YES * CARD IMAGE
-. CARD ••• * •••••••• X: (~~DT~~~i) : ••••

.. * * *. .* *****************
* NO

x .*. CALLPR CTLBL
H2 *. *****H3********** *****H4**********

.* *. * SAVE NAME OF * * PROCESS TABLE *
.* CALL *. YES *PROGRAM CALLED * *(IST PART)BUILD*

. . •••••••• X*SET UP I/O PACK* •••••••• X*CHANNEL + UNIT *
. CARD. * TO INITIALIZE * *CONTROL BLOCK·S *
.. *PROGRAM CALLED * * ADJUST LOCCTR *

*. • * ***************** ***************** * NO

LOCATE IOPACK X
*****J3********** *****J4**********
* GET' SYSTEM * * PROCESS TABLE *
SUPPORT DEVICE' * (2ND PART). *
* READY iO LOAD *X •••••••• *INITIALIZE I/O *
* PROGRAM * *SUPPORT PACKAGE*
* CALLED * * PROGRAM. *
***************** *****************

x .*. X K3 *. *****K4**********
****K2********* .* HAS *. * SAVE ADDRESS *

* * YES.* ANY *. NO * OF DATA FOR *
••••••••••••••••• X* ERROR WAIT *X •••••••• *.UNRECOVERABLE.* •••••••• X*RELOCAT. LOADER*

* * *ERROR BEEN.* * IN PARAM~TER *
*************** *.FOUND.* * LIST REGISTER *

. . *****************
*

x
***** *FH *
* A2*
* *
*

Chart FH. Overall Logic of RELLDR

*FH *

* * A~* LEN!:!**A2********** RES~~!**A3********** LDC!~~**A4**********
*INITIALIZATION * * INITIALIZE * *GET CARD IMAGE *

• * RTN- SET UP * * SW ITCHES TO * * ROUTI NE x: I~~~R~~g~~~~ : •••••••• x: PRO~~i~ THE : •••••••• x: GETI~g~~ER :x
* SET CONSTANTS * * MODULE * * *
****.************ ***************** *****************

* * * C2 *
* *

x
• *.

C2 *.
UPDT20.* *. EDITOR

.* WHICH *.
•• •••••••• PROGRAM .* •••.••..
x *. LOADED .* X

x

x .*. 64 *. *****95*******
.* *. * * .* SLC *. YES * S",T LOCATION *

. CARD . ••..•.•. X* * ••.•
. . * COUNTER * X
.. * * •• * **************

* NO

x
.* •

C4 *. *****cs**********
.* *. *RESERVE STORAGE*

.* ICS *. YES * FOR C.S. AND *
. CARD . •••••••• X* PLACE NAME * ••••

. . * IN * X
***** *..* ***** *..* * DICTIONARY *
*EA ... * •• * *CA * * •• * *****************
* *B!* * * *B!* * NO

END IN WAIT STATE

*****G2 **********
"*Gl******* * PRODUCE "

* END OF" " 2 IPL CARDS *
* *X •••••••• * N TXT CARDS *
*INITIALIZATION * * 1 END CARD *

x *****************

X

• CARDS

*****Hl*;******** H2·*·*.
* PRODUCE * • * *.
* I IPL RECORD * TAPE .* *. * 1 PROGRAM *X •••••••• *. OUTPUT • *

RECORD * *. DEVICE .*
* *.TYPE .*

***************** *. .*
* x

*
x .*.

D4 *. *****05**********
.* *. *BUILD UP DICT. *

.* ESD *. YES * AND REF TAB. •
. CARD . •••••••• X*WITH C.S. NAME * ••••

. . * ENTRIES AND * X
.. * EXTERNALS *

.... • * ***************** * NO

X .*. E4 *. *****E5**********
.* *. * RELOCATE *

.* TXT *. YES ASSEMBLY •
. CARD . •••••••• X* ADDRES.s AND * ••••

". .* * PLACE TEXT IN" X
*.." * STORAGE *

* •• * *****************
* NO X

X

F4 .*. *. *****FS*:'********
.* *. * *

." REP *. YES * CONVERT TO *
. CARD . ••••••.. X*

. . * TXT CARD
.. * * * •• * *****************

* NO

X .*.
G4 *. *****G5**********

.* *. " EVALUATE LOAD ..
• * RLD *. YES * CONSTANTS OR

.. CARD ••• * •••••••• X: R~t~~~T~~N : ••••

.. * LIST *
*. • * *****************

.. NO

x
*****H3.;******** H4 .*. *.
CLEAR REF TABLE .* *.
*PROCESS RELOC. * YES.* END *.
* LIST SAVE *X •••••••• *. CARD .*
*FIRST TRANSFER * *. .*
* ADDRESS FOUND * *..*
***************** * •• *

* NO

• YES X .*. .*. .*.
Jl *. J2 *. *****J3********** J4 * •

• * *. .* *. * PLACE LOT OR * .* * •
• * INITIA- *. NO.* ERROR *. * END CARD YES.* LOT *.

*. LIZATION .*X •••••••• *. FOUND .*X •••••••• * TRANSFER *x •••••••• *. CARD .*
.REQUESTED. *. DURING .* * ADDRESS IN * *. .*
.. *LOADING* * INITIAL PSW * *..*

* •• * * •• * ***************** * •• *
* NO * YES * NO

X
****Kl*********

* LOAD * * *
* INITIAL PSW " •••• X" C2 *

* * * * ***************

. .

.. x.

X
****K4*********

* * ERROR WAI T *

Common Subprograms 87

APPENDIX. LIST OF SIM20 ROUTINES

The following list contains the symbolic
names and functions of all major SIM20
routines.

Basic and Console Simulation Routines

ALARM

BIR

EXCRET

Issues alarm commands on the 1052
Printer-Keyboard

Basic Interpretive Routine: decodes
the operation codes of 1620
instructions

Selects exceptional
all I/O requests

returns from

MASK Builds up all code conversion
tables required by I/O operations

MESSAG Processes all output messages on
the 1052 Printer-Keyboard

OUTIN

TYPIO

VALIN

Selects the sequence corresponding
to any 1620 I/O instruction and, in
the case of the disk-resident ver­
sion, checks its presence in core
storage

Processes all physical I/O requests

Performs code conversion and valid­
ity checking in all input opera­
tions

CPU Simulation Routines

ARCHK Processes arithmetic overflow and
underflow

COMP Compares P and Q fields in 1620 add
and subtract and floating add and
subtract operations

CONVP Converts the P address only

CONVPQ Converts both P and Q addresses

CONVQ Converts the Q address only

EXCHK Processes exponent overflow
underflow

and

EXPOW Checks for exponent overflow and
underflow

FIXADD Adds or subtracts P and Q fields in
1620 add and subtract and floating
add and subtract operations

88

FIXDIV

INDAD

INDEX

INDIC

MOLT

SHIFT

Divides P and Q
divide and floating
tions

fields
divide

Processes indirect addresses

in 1620
opera-

Processes address indexing (1620
Model 2)

Updates HP/EZ indicators after all
arithmetic operations

Multiplies
multiply
operations

P and Q fields in 1620
and floating multiply

Shifts P or Q fields, when the P
and Q exponents are different, in
1620 floating add and subtract
operations

I/O Simulation Routines

GETEOR Scans the P field to detect a
record mark in output operations

VALOUT Performs code conversion and valid-
ity checking in all output opera-
tions

Disk Simulation Routines

CONVCW Converts the 1620 disk control
field into data consistent with
System/360 commands

DCFADD Checks the sequence of sector
addresses and updates the counter

DISKER Handles all exceptional returns
from I/O request and wait in read
and check operations

DISKEW Handles all exceptional returns
from I/O request and wait in write
operations

DISRMH Prepares data for the MATCH subrou­
tine

ENDISK Detects the end of a disk operation
by checking the sector count
against zero

IORW Processes all physical read and
write operations on disk

MATCH Checks all sector addresses submit­
ted against the contents of the
21st sector

READ21 Reads the 21st sector in core stor­
age for the MATCH subroutine

TESTGM Scans data to detect group marks

TRAKED Performs all checks and counts in
track mode operations

WLRCSB Tests for a group mark after the
last sector in operations with WLRC

ABSLOD Routines (Module A21)

GETCRD Analyzes loader cards

IPLCTL Loads ABSLOD into System/360 main
storage

LDREAD Reads from tape or cards

LENEND Processes END cards

LENLDR Processes LDR cards

LENLDT Processes LDT cards

LENREP Processes REP cards

LENTRY Initialization routine

LENTXT Processes TXT cards

LHEXB1 Converts hexadecimal to binary

CONTPR Routines (Module A22)

COMAND Reads commands
Printer-Keyboard

from the 1052

INTUCB Determines the device index J of a
unit control block and the channel
index K of a channel control block,
given the device address

IOCONT Processes I/O request and continue
calling sequences

IOINT Processes I/O interruptions

IOWAIT Processes I/O request and
calling sequences

MESAGE Transmits messages to the
Printer-Keyboard

SENSE Performs sense operations

wait

1052

SEREP Sets up the standard SEREP inter­
face for I/O failures

STACK Chains I/O request and continue
calling sequences

STRTIO Performs physical I/O operations

SVCINT Processes SVC interruptions

UNSTAK Initiates as many I/O operations as
possible on a deSignated channel
chain

VERIFY Verifies the type and charac­
teristics of a device

IOPACK Routines (Module A23)

CALLA Processes
sequences

I/O request calling

CONSLE Transmits messages to the 1052
Printer-Keyboard

CVRTM Converts binary to hexadecimal

INFACT Calls the write routine for IOPACK
messages

IOPACK I/O support package entry routine

NRMRET Sets up exits for I/O request call­
ing sequences

PN1442/
PN2540 Punches cards

PRNT Printer output

RD1442/
RD2540 Reads cards

STRTIO Initializes I/O request
sequences

SWEXT

TP70P/
TAPERD/

Processes input commands

calling

TAPEWR Reads or writes magnetic tapes

TYPRD Reads operator commands

TYPWRT Writes operator messages

INIT Routines (Module A24)

CALLPR Processes CALL cards

CRDAN

·CTLBL

CTLPR/

Analyzes control cards

Builds channel and unit control
blocks

DEVPR Stores control information table

Appendix 89

GETCRD Reads control cards LDEND Processes END cards

LDESD Processes ESD cards
INIT Initialization routine

LDlCS Processes ICS cards
IOPACK Creates SYNTAB in the I/O support

package LOLDT Processes LDT cards

LOCATE Exit routine LDMSDG/
LPRINT Prints loading messages

LOCERR Prints error messages
LOREP Processes REP cards

MSDG Writes messages
LORIN Loader initialization routine

RELLDR Routines (Module A2S) LDRLD Processes RLD cards

LDSLC Processes SLC cards
LDCARD Reads card image

LDSWT Analyzes loader cards
LDEDIT self-Loading Program Generator rou-

tine LDTXT Processes TXT cards

90

Where more than one reference is given,
the first page number indicates the major
reference.

Absolute loader ••••••••••••••••.•••••••• 7
Allocation, System/360 main
storage •••••••••••••••••••••• 7,8,9,10,11

Assignment, System/360 device •.•• 64,65,67

Basic Interpretive Routine •••••••••• 17,18
BIR •••••••.••••••••••••••••••••••••• 17, 18
Buffer ••••••••••••••••••••••••••• 21,44,63
Buffer length ••••••••••••••••••.••••••• 21

CCB •••••••.••••.••••••••••••••••• 20,41,67
CCW ••••••••••••••••••••••••••• 56,64,74,77
Channel

Mul tipl exor •••••••••••••••••.•••••••• 20
Selector •••••••••.••••••••.•••••••••• 20

Channel control check •••••••••••••••.•• 61
Channel data check •••••••••••••••••• 61
Channel end •••••.•••••••••• 57,58,59,60,64
Channel status information .••••••••• 58,57
Channel Status Word •••••••••••••••••••• 58
Character

Alphameric ••••••••••••••••••••••••
Numeric •••••.•.•••••••••••••••••••
Special •••••••••••••••••••••••••••

15,16
15,16
15,16

Chart (Reference)
Chart AA •••••••••••••••••••••••••••••• 7
Chart AB •••••••••••••••••••••••••••••• 8
Chart AC ••••••••••••••••.••••••••••••• 9
Chart BA •••••••••••••••••••• 17,18,21,25
Chart BB ••••••••••••••••••••••••••••• 18
Chart BC ••••••••••••••••••••••••••••• 19
Chart BD ••••••••••••••••••••••••••••• 19
Chart BE .•••••••••••••••••.••.••••••• 19
Chart BF ••••••••••••••••.•.•••••••••• 21
Chart BG · . • • • • • • . • • • • • • • . . • • • • • • •. 22,21
Chart Btl • • • • • • • • • . • • • • • • • • • • • • • • •• 22,21
Chart BK •• 25
Chart BL •• 25
Chart BM • •••••••••••••• '. • • • • • . • • • • • •• 23
Chart BN •• 24
Chart BP •• 23
Chart BQ • . • • • • • • •• 23
Chart BR • • • • • • • • • • • • . • • • • • • • • • • • • • • •• 23
Chart CA •• 41
Chart CB •• 41
Chart DA • • • • • • • • • • • • • • • • • • . • • • • • • • • •• 44
Chart EA •• 46
Chart FA •• 50
Chart FB •• 53
Chart FC •• 59
Chart FD • • . •• 59
Chart FE •• 61
Chart FF' • • • • • • • • . • • • • • • • • • • • . • • • • • • •• 64
Chart FG • • . • • • • • • • • • • • • • . • • • • • • • • • • •• 67
Chart Fd • • • • • • • • • • • • • • • • . • • • • • • • • • • •• 69

CHTABL ••••••.•••••••••••••••.•••••••••• 21

Command ••••••••••••••••• 44,61,62,63,64,67
Console simulation •••••••••••••••••• 34,24
Control alarm ••••••••••••••••••••••• 62,63
Control block

Channel ••••••••••••••••••••••••••• 20,68
Unit •••••••••••••••••••••••• 20,66,68,69

Control card
CALL •••••••••••••••• 7,66,67,68,76,77,78
CPUl ••••••••••.•..••.••••••.••••••••• 41
CPU2 ••••••••••••••••••••••••••••••••• 41
DEVICE ••••••••••••••••••••••••••••••• 41
DEVSUP •••••••••••••••••••• 7,67,68,69,78
DEV360 ••••••••••••••••••••••• 7,67,68,69
FEATURE •••••••••••••••••••••••••••••• 41
MODIF ••••••••••••••••••••••••••••• 46,47
RIS mode C •••••••••••••••••••••••• 46,47
RIS mode R ••••••••••••••••••••• 46,47,48
START •••••••••••••••••••••••••••••••• 41
UPDATE ••••••••••.••••••••••••••••• 46 , 47

Control program •••••••••••••••••••••• 53,7
Conversion -

Address •••••••••••••••••••••• 27,18
Code ••••••••••••••••••••••••••••••••• 19
P-address •••••••••••••••••••••••••••• 18
Q-address •••••••••••••••••••••••••••• 18

Core storage, 1620 ••••••••••••••••••••• 15
CPU simulation •••••••••••••••••••••• 15,18

Device end
Disk

58,63,64

Address •••••••••••••••••••••••••••••• 23
Check operation ••••••••••••••••••• 40,23
Control field •••••••••••••••••••••••• 24
Read operation •••••••••••••••••••• 38,23
Seek operation •••••••••••••••••••• 37,24
Write operation ••••••••••••••••••• 39,23

DSKINT ••••••••••••••••••••••• 44,7,9,10,11
Dump, System/360 •••••••••••••••••••• 64,66

EDITOR •••••••••••••••••••••••••••• 41,7,11
ESD type 0 term •••••••••••• 71,72,69,76,77
ESD type 1 term •••••••••••• 72,73,69,71,76
ESD type 2 term •••••••••••••••••• 73,69,71
Exceptional condition ••••••••••••••• 22,58

Field •••••••••••••••••••••••••••• 15,16,19
Flag •••••••••••••••••••••••••• 15,19,67,68
Format, load card •••••••••••••••••••••• 50

Index Register ••••••••••••••••••• 17,15,18
Band 1 ••••••••••••••••••••••••••••••• 17
Band 2 ••••••••••••••••••••••••••••••• 17

Indicator
Address check •••••••••••••••••••••••• 23
Indicator 19 ••••••••••••••••••••••••• 24
Indicator 39 ••••••••••••••••••••••••• 24
WLRC/RBC ••••••••••••••••••••••••••••• 23

INIT=nnnnnn ••••••••••••••• w ••••••••• 68,77
Initialization program ••••••••••••••• 67,7
Interface control check •••••••••••••••• 61
Interruption

Attention ••••••••••••••• ~ ••• 61,62,63,67

Index 91

Code ••••••••••••••••••••••••••••••••• 54
Disable •••••••••••••••••• 55,57,58,62,63
Enable •••••••••••••••••••••• 55,54,63,64
External •••••••••••••• 55,54,57,58,63,64
I/O ••••••••••••••••.••••••••••••••• 59,60
Machine-check ••••••••••••••••••••• 54,53
Program •••••••••••••••••••••••• 53,54,55
SIM20 •••••••••••••••••••••••••••••••• 63
Supervisor-call ••••••••••••••••••• 54,53

Intervention, operator •••••••••••••• 22,25
I/O support package •••••••••••••••••• 64,7
IPL ••••••••••••••••••••••••••• 7,8,9,44,77

Key
Automatic Load ••••••••••••••••••••••• 24
Interrupt •••••••••••••••••••••••••••• 55
Start, 1620 ••••••••••••••••••••••• 17,24
Stop, 1620 •••••••••••••••••••••••• 17,24

LIST •••••••••••••••••••••••••••••••• 67,78
Loader card

END •••••••••• 51,52,75,50,53,69,71,76,77
ICS •••••••••••••••••••••• 70,71,69,75,77
LDR •..•••••••••••••.•••••••••••••. 52,50
LDT ••••••••••••••••••• 52,53,75,76,69,77
REP •••••••••••••••••••••• 51,74,75,50,69
RLD •••••••••••••••••••••••••••• 74,69,71
SLC •••••••••••••••••••••••••••• 70,69,77
TXT ••••••••••••.••• 51,73,50,69,71,74,77

Loading
Absolute ••••••••••••••••••••••• 50,76,77
Selective ••••••••••••••••••••••••• 67,77
Location counter •••••••• 50,67,68,69,70,

72,76,77,78
Logic, Overall

ABSLOD ••••••••••••••••••••••••••••••• 80
CONTPR ••••••••••••••••••••••••••••••• 81
DSKINT •••••••••••••••••••••••••••• 45,44
EDITOR •••••••••••••.•••••••• 42,43,12,41
INIT ••••••••••••••••••••••••••••••••• 86
IOPACK ••••••••••••••••••••••••••••••• 85
I/O simulation ••••••••••••••••••••••• 21
Key simulation •••••••••••••••••••• 24,35
RELLDR 87
Simulator .••••••••••••••••••••••••• 12,7
S IM2 0 ••••••••••••••••.•••••••••••• 13, 14
UPDT20 •••••••••••••••••••••••••••• 12,49

Logical I/O operation •••••••••••• 66,64,65

Machine check •••••••••••• 0 •••••••• 53,54,68
Message ••••••••••••• 69,61,62,63,64,70,71,

75,76,77,78,79
Mode, 1620

Automatic ••••••••••••••••••••••
Manual •••••••••••••••••••••••••

18,24,25
24,18,25

parity-check bit ••••••••••••••.•••••••• 15
PROGNAME card •••••••••.•••••••••••••••• 68
Program check •.•••••••••••• 53,58,59,68,76
Protection check ••••••••••••••••••••••• 58
Protection flag •••••••••••••••••••••••• 23
PSW •••••• 53,54,55,57,58,60,61,63,64,76,78
PUNCH •••••••••••••••••••••••••••••••••• 68

Read operation .•.•••••••••••••••• 32,21,23
Record ••••••••••••••••••••••••••••••••• 16
Register, SIM20

MAPO RG •••••••••••••••••••••••••••• 1 7 , 18

92

RP
RQ
R1

•••••••••••••••••••••••••• ~ ••••• 16,17
•••••••••••••••••••••••••••••••• 16,17
••••••••••••••••••••••••••••• 17,18,19

R2
SIMB1
SIMB2 ••••••••••••••••••••••••••••••••

17
17
17

SIZE •••••••••••••••••••••••••••••• 17,18
WR1
WR2
WR3
WR4
WR5
WR6

Register, 1620
CR-l •••••••••••••••••••••••••••••••••
Digit and Branch •••••••••••••••••••••
IR-1
IR-2
IR-3
IR-4
MAR
MBR ••••••••••••••••••••••••••••••••••
MDR •••••••••••••••.•••••••••••••••••••
Multiplier-Quotient ••••••••••••••••••
OP •••••••••••••••••••••••••••••••••••
OR-1
OR-2
OR-3
OR-4
OR-5
PR-1
PR-2
PR-3

17
17
17
17
17
17

11
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

Relocating loader ••••••••••••••••••••
Request, I/O

69,7

Chaining I/O requests ••••••••••••• 60,59
I/O request and continue •••• 57,56,82,83
I/O request and interrupt
at channel end •••••••••••••••• 57,55,60

I/O request and wait •••••••• 58,55,57,60
Rewind •••••••••••••••••••••••••••••• 63, 64
Rewind and unload ••••••••••••••••••• 63,64

Sample program ••••••••••••••••••••••••• 11
Sector

Address •••••••••••••••••••••••••••••• 23
Arrangement of ••••••••••••••••••••••• 22
Sector mode operations ••••••••••••••• 23

Self-Loading Program Generator
routine •••••••••••••••••••••• 77,67,68,76

Sense byte ••••••••••••••••••••••• 57,58,59
Sense operation ••••••••••••••••••••• 60,61
Sequence

ALARM ••••••••••••••••••••.•••••••••••• 25
DNTY ••••••••••••••••••••••••••••••••• 25
INSERT ••••••••••••••••••••••••••••••• 25
RATY 25
RNTY ••••••••••••••••••••••••••••••••• 25
WATY ••••••••••••••••••••••••••••••••• 25
WNTY ••••••••••••••••••••••••••••••••• 25

SEREP interface ••••••••••••••• 61,62,63,66
Simulation routine

Disk ••••••••••••••••••••••••••••••••• 22
I/O, non-disk •••••••••••••••••••••••• 21

Simulator .• _ •• 7
SIM20 •••••••••••••••••••••••• 15,7,8,11,44
SIM20, disk resident
version •••••••••••••••••••• 21,9,10,14,44

Special features byte ••••••••••••••• 55,56
State

Available •••••••••••••••••••••••••••• 60
Busy •••••••••••••••••••••••••••••• 60,57
Chained ••••••••••••••••••••••••••• 60,57
Wait ••••••••••••••••••••• 64,54,67,75,77

Subprogram
ABSLOD •••••••••••••••••••••••• 50,7,8,11
CONTPR ••••••••••••••••••••• 53,7,8,11,50
INIT ••••••••••••••••••••••• 67,7,8,11,50
IOPACK •••••••••••••••••• 64,7,8,10,11,50
RELLDR ••••••••••••••••••••• 69 , 7 , 8 , 11, 5 0

Subroutine
Address conversion •••••••••••••••••••
MASK •••••••••••••••••••••••••••••••••
MESSAG •••••.•••••••••••••••••••••••••
VALIN ••••••••••••••••••••••.•••••••••

18
19
25
22

VALOUT ••••••••••••••••••••••••••••••• 22
Supervisor call ••••••••••••••••••••• 53,54
SVC 0 ••••••••••••••••••••••••••••••• 55,54
SVC 1 •••••••••••••••••••••••••••• 57,54,61
SVC 2 ••••••••••••••••••••••••• 57,54,59,61
SVC 3 ••••••.•••.•.•••••••••••..••••• 63,54
SVC 4 •••••••••••••••••••••.••••••••• 62,54
SVC 5 ••••••••••••••.•••••••••••••••• 62,54
SVC 6 •••••••••••••••••••••••••••••••••• 54
SVC 7 ••••••••••••••••••••••••••••••• 61,54
SVC 8 •••••••••••••..•••••••••••••••• 55, 54
SVC 9 ••••••••••••••••••••••••••••••• 55,54
SVC 10 •••••••••••••••••••••••••••••• 55,54
SVC 11 •••••••••••••••••••••••••••••• 58,54
SVC 12 •••••••••••••••••••••••••••••• 64,54
SVC 13 ••••••••••••••••••••••••••• 63,54,61
SVC 14 ••••••••••••••••••••••••••• 6.3,54,61
SVC 15 •••••••••••••••••••••••••••••• 63,54
SVC 16 •••••••••.•••••••••••••••••••• 63,54
SVC 17 •••.••••••••••••••••••••••• 64,65,54
SVC 18 ••••••••••••••••••••••••••• 66,54,64
SVC 19 •••••••••••••••••••••••••••••• 64,54
Switch

Disk Check ••••••••••••••••••••••••••• 24

I/O check ••••••••••••••••••.••••••••••
Overflow •••••••••••••••••••••••••••••
Paper tape •••••••••••••••••••••••••••
Parity check •••••••••••••••••••••••••
Program•.•....•.........•......

24
24
24
24
24

Write address •••••••••••••••••••••••• 23
SYSINEND •••••••••••••••••••••••••••• 11,68
System control panel ••••••••••••••••••• 24
System tape •••••••••••••••••••••••••••.• 11

Table
Channel •••••••••••••••••••••••••••••• 21
Code conversion •••••••••••••••••••••• 19
Dictionary ••••••••••••••• 70,69,72,74,75
Operation code ••••••••••••••••••••••• 19
Reference ••••••••••••••••••• 70,72,74,75
Relocation List •••••••••••••••• 70,74,75
TABLE ••••••••••••••••••••••••••••• 67,68

Tape mark •••••••••••••••••••••••• 11,46,66
Track mode operation ••••••••••••••••••• 23
Type, I/O device •••••••••••••••••••• 55,56

UCB •••••••••••••••••••••••••••••• 20,41,67
Unit check •••••••••••••• 22,57,58,59,61,64
Unit exception •••••••••••••••• 22,58,64,66
Unrecoverable errQr •••••••••••••••••••• 22
Updating function

Insert ••••••••••••••••••••••••• 46,47,48
Re-number •••••••••••••••••••••• 46,47,48
Replace •••••••••••••••••••••••• 46,47,48
Suppress ••••••••••••••••••••••• 46,47,48

UPDTCORR •••••••••••••••••••••••••••• 46 , 47
UPDTNEW ••••••••••••••••••••••••••••• 46,47
UPDTOLD ••••••••••••••••••••••••••••• 46,47
UPDT20 ••••••••••.•••••••••••• 46,7,10,11,12

Verification, I/O device •••••••••••• 55,56

Write operation •••••••••••••••••• 33,22,23

Index 93

READER'S COMMENTS

IBM System/360 Conversion Aids: The 1620 Simulator
for IBM System/360; Program Number 360C-SI-752

~Y27-7116-1

Your comments will help us to produce better publications for your use. Please check or
fill in the items below and add explanations and other comments in the space provided.

Which of the following terms best describes your job?

n Programmer
n Manager
n Operator
n Instructor

n Systems Analyst
n Engineer
n Mathematician
n Student/Trainee

n Customer Engineer
n Systems Engineer
n Sales Representative
n Other (explain) ______________ __

Does your installation subscribe to the SRL Revision Service? n Yes n No

How did you use this publication?

n As an introduction
n As a reference manual
n As a text (student)
n As a text (instructor)
n For another purpose (explain) __ __

Did you find the material easy to read and understand?

Did you find the material organized for convenient use?

Specific Criticisms (explain below)

Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and Other Comments

n Yes n No (explain below)

n Yes n No (explain below)

FOLD

FOLD

Y27-7116-1

PAR AVION

IBM WORLD TRADE LAB

CENTRE D'ETUDES ET RECHERCHES

06-LA GAUDE (ALPES-MARITIMES)

FRANCE

ATTN: PROGRAMMING PUBLICATIONS

DEPARTMENT 841

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I080t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FOLD

AFFIX POSTAGE

FOLD
::s
c:
(f) .
:Po

Y27-7116-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10S01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Technical Newsletter S360-35 File Number

Re: Form No. Y27-7116-1

This Newsletter No. Y33-7002

Date April 22, 1967

IBM SYSTEM/360 CONVERSION AIDS:
THE 1620 SIMULATOR FOR IBM SYSTEM/360
PROGRAM LOGIC MANUAL

This technical newsletter amends the
Conversion Aids: The 1620 Simulator,
Y27-7116-1. The attached pages replace
Corrections and additions to the text
to the left of the change. A dot (.)
indicates that the entire page should be

Pages to be
Inserted

1 and 2
45, Q6, 46.1
through 46 .• 4

Summary of Amendments

Previous Newsletter Nos.

publication IBM System/360
Program Logic Manual, Form
pages in the publication.
are noted by vertical bars
next to a page number
reviewed.

Pages to be
Removed

1 and 2
45 and 46

section UPDT20, page 46, has been modified. The layout of the
system tape is described, and the identification of its components
is illustrated in Table 5A.

The chapter "Corrections" has been replaced by a description of
the updating functions, correction card formats, and examples of
updating.

On page 47, under "SKCRDA Subroutine," the words "MODIF cards"
should be changed to "modification cards."

Note: Please file this cover letter at the back of the publica­
tion. Cover letters provide a quick reference to changes, and a
means of checking receipt of all amendments.

RESTRICTED DISTRIBUTION

IBM France, Centre d'Etudes et Recherches, Programming Publications, Department 841, 06 La Gaude, France

None

PRINTED IN U.S.A. Y33-7002 (Y27-7116-1) Page 1 of 1

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46.0
	46.1
	46.2
	46.3
	46.4
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97

