
1401 DATA PROCESSING SYSTEM BULLETIN

PROGRAMS FOR IBM 1401 CARD SYSTEMS: PRELIMINARY SPECIFICATIONS

This bulletin is a minor revision of, but does not supersede, the original edition, form J28-0209. The changes
are in the first paragraph of Clear Storage Routine (with respect to the card column mentioned) and in the first

and third paragraphs of Print Storage Program.

This bulletin describes five IBM 1401 utility programs, five frequently-used subroutines
and four program error-detection aid routines for use in program testing. The above
programs were developed for use on 1401 systems using card input and card or printed
output. Each program is easily adapted to perform its function in conjunction with the
user's programs. Flexibility of the programs provides for using either 100 or 132
positions of printing, where applicable, as well as providing for adapting the programs
for use on 1401 systems equipped with 1400, 2000 or 4000 positions of core storage.

© 1960 by International Business Machines Corporation

TABLE OF CONTENTS

Page

UTILITY PROORAMS

Introduction

Clear Storage Routine

Card Loader Program

Print Storage Program 4

Punch Storage Program

Punch - List-Sequence Check 6

SUBROUTINES

Introduction 9

Linkage From Main Program to Subroutine 10

Multiply I Subroutine 11

Multiply II Subroutine 12

Divide Subroutine 13

Dozens-To-Units Conversion Subroutine 22

Units-To-Dozens Conversion Subroutine 22

PROGRAM ERROR-DETECTION AIDS

Introduction 24

Insert Halts 25

Insert Linkages To Fixed Print Storage 27

Insert Linkages To Selective Print Storage 30

Remove Linkages 33

2

UTILITY PROGRAMS

In programming the mM 1401 to solve problems or to perform functions assigned to it
by the user, several routines are required repeatedly. For example, prior to loading a
program itt is usually desirable to clear storage to blanks. Thus, a clear storage program
is usually used prior to each loading of programs c ~..:ta. Also, if a printed or punched
record of storage contents is desired, a program is required to provide it. These programs
and some others which are general in application and used frequently in the operation of
data processing systems are classified as utility programs. Several utility programs
will be supplied to assist in efficient operation of the 1401 system.

The utility programs specllfied in this bulletin are:

Clear Storage
Card Loader
Print Storage
Punch Storage
Punch-List-Sequence Check

Each program is described separately; descriptions of the control cards necessary to
specify the variables requjired to adapt the utility programs to the user's needs and/or
equipment are included.

CLEAR STORAGE ROUTINE

Prior to loading information into the 1401 system it is frequently desirable to clear storage.
This routine, contained in two cards, clears all of storage to blanks and leaves a word
mark set in location 001. Column 27 of-icard number two contains one of three alphabetic
letters, depending upon th~~number of storage positions with which the 1401 system is
equipped: 1 i

T for 1400 positions
Z for 2000 positions
I for 4000 positions

CARD LOADER PROGRAM:

This program is designed to load into the 1401 system those instructions (in machine
language) and constants which are punched into cards. The instructions and constants
supplied by the user should be punched in one-per-card format as speCified below under
Instruction or Constant Card Format.

Instruction or Constant Card Format

Column 1 is punched with a factor code. The codes are defined as follows:

I - Factor is an instruction.

3

4

K - Factor is a constant with a word mark to be set in the high-order position.

N - Factor is a constant with no word mark to be set.

* - Denotes a comment card (acceptable in this routine only to provide compatibility
with the Punch-List-Sequence Check program).

/ - Denotes an END card (optional; may be used to begin the execution of the
object program immediately after loading).

Columns 2-4 are punched with the number of characters in the instruction or constant,
with the number right-justified and preceded by zeros when necessary; e. g., an eight
character instruction is punched OOB.

Columns 5-7 are punched with the specified storage location of the factor, as follows:

For an instruction, the storage location of the high-order position is specified.
For a constant, the storage location of the low-order position is specified.

Columns B-onward, as needed, are punched with the instruction, constant, or comments.
Remarks are acceptable, not only on comments cards, but also when punched to the right
of instructions or constants. Instructions are coded in machine language.

A comments card requires only an asterisk in column 1 and the remarks in columns 8-
onward. The comments card is not processed by this routine, but is allowed to be
included in the deck for convenience when processing the deck using the Punch-List
Sequence Check program.

Self-loading subroutines in machine language may also be loaded along with related
programs using this loader program. The procedure is to p'lace' the subroutine card
deck, preceded by its location designator card (see page 24), behind the related program
deck.

The Card Loader Program requires approximately 110 storage locations, and it loads cards
at the rate of BOO per minute.

This program is self-loading; i. e., it contains loading instructions as well as program
instructions and constants. The loading instructions cause the program instructions and
constants to be stored in the locations assigned to them. The Card Loader Program may
be located in storage either in locations 0090-0199 or locations 1290-1399, depending
upon which of two program decks is used.

PRINT STORAGE PROGRAM

This program is designed to print out selective portions of storage. The portion of
storage to be printed out is specified in a control card (the last card of the program deck)
which contains the locations of the lower and the upper limit of core storage and the
model number of the IBM 1403 printer used with the system. The lower limit address
is to be punched in card columns 1-3, the upper limit address in columns 4-6, and the

1403 model number in colUltnn 7. Modell, represented by a 1-punch in column 7, specifies
a 1403 equipped with 100 print positions, while model 2, represented by a 2-punch in
column 7, specifies 132 print positions. The Print Storage Program is self-loading
and relocatable. The printed output will contain an indication of the positions of any
word marks in the selected portion of storage.

Relocatable programs are those programs whose instructions and constants may be
assigned any locations in storage. Instructions and constants of relocatable programs
are initially assigned storage locations beginning with location 000. Relocatable programs
may be loaded into any locations in core storage by the user who supplies the starting
location. The starting location, specified in a location designator card as explained on
page 24, is the location in storage where the first instruction of the relocatable program
is to be stored. The loading of a relocatable program is accomplished by its loading
program which modifies the appropriate storage locations, incrementing each one by
the starting address.

This program requires approximately 145 storage locations.

Control Card Format

1 :~ 3 4

Selected Block of Storage:

Lower
Limit
Address

PUNCH STORAGE PROGRAM

5

Upper
Umit
Address

6 7

1403
Model
Number

This program may be used to punch out selective portions of storage. The portion of
storage to be punched out is specified in a control card (the last card of the program
deck) which contains the 10lcations of the lower limit and the upper limit of core storage.
The lower limit is to be punched in card columns 1-3 and the upper limit in columns 4-6.
The card output resulting from this prograrn is a self-loading deck. If desired, the user
may specify in the control Icard, columns 7·-9, the location of the instruction in the object
program to be executed after reloading the selected portion of storage punched out. When
this option is used, the Punch Storage Program produces an END card which is selected
into pocket 4 of the 1402 Card Read Punch. This card, when reloaded as the last card
of the output produced by the Punch Storage Program, clears the read area and causes
the program to branch to the specified starting location after the information punched
out is reloaded into storage. The Punch Storage Program is self-loading and relocatable.

This program requires about 160 storage locations. It punches out the selected portion
of storage at the rate of 250 cards per minute.

5

6·

Control Card Format

1 2 3

Selected Block of Storage:

Lower
Limit
Address

PUNCH-LIST-SEQUENCE CHECK

5

Upper
Limit

Address

6 7 8

Starting

Location

9

This program is designed to punch, list, and sequence check, or any combination of
these operations, information from an input program deck whose format conforms to
that specified for the Card Loader Program, page 3. The options selected by the user,
as well as the designation of the storage capacity of his 1401 system, are specified
either in a control card or by setting the sense switches as shown in Figure 1 on a following
page. For example, if the user chooses to punch a self-loading program deck from an
input deck which is of the format specified for the Card Loader Program, and if his 1401
system has a storage capacity of 2000, he may specify his output option and storage
capacity in either one of two ways:

1. A control card with a 1-punch in column 1 and a 2-punch in column 4.
2. Setting the sense switches Band F DOWN; C, D, E and G UP.

If a control card is used, it is placed with the input cards as the first card of the deck.
Program operation in determining the output options and storage capacity of the system
first checks for the presence of a control card, taking the information from it if specified
therein. If a control card is not present, the program checks the position of the sense
switches, taking the information from their settings. If no output option is specified
(neither punch, list, nor sequence check), the following message is printed: OUTPUT
NOT SPECIFIED. If no 1401 system storage capacity is specified, STORAGE SIZE NOT
SPECIFIED is printed out.

If the option to punch is chosen, the output cards will be a self-loading program deck,
the first two cards of which contain a clear storage routine. Comments cards in the
input deck, identified by an asterisk punch in column 1, are not punched. Optional use
of one header card in the input deck is provided, as follows: One header card per program,
identified in the input deck by an asterisk in column 1 and an H in column 2, and containing
heading information in columns 8-80, will be punched. When an input header card is
included, it must precede all other program cards of the input deck, following only the
control card (if one is used) of the Punch-List-Sequence Check program. The output
header card contains 1001 in columns 1-4; the heading information is contained in
columns 8-80.

For the listing option, the program prints from the input program deck the factor code
from column 1, the number of characters in the instruction or constant from columns
2-4, the storage location of the instruction or constant from columns 5-7, the instruction
or the constant and comments, if any, from columns 8-80. Comments cards, if present,
are also listed.

For the option of sequence checking, the program checks not only that the addresses of
the factors (i. e., instructions and constants) are in sequence, but also that no addresses
are skipped. If either condition is not met,. the words SEQUENCE BREAK are printed
on a separate line regardless of whether or not the listing option is chosen, to call
attention to the change in normal sequence.

Sequence checking of storage locations of factors is done in the following manner: A
counter, set to an approprJiate starting address for the first factor, is incremented by
the number of characters in the count field of the first factor. This result is the computed
storage location of the first factor. A test is made to determine whether the computed
and the assigned (i. e., punched in the card) storage locations are the same. If they are
not the same, the comment SEQUENCE BREAK is printed on a separate line. The
counter computing the storage addresses is: reset to the assigned location, however, and
the computed location of the next factor is determined by incrementing the counter by the
number of characters in that factor. A test is made to determine whether the computed
and assigned storage locations agree for this factor. If the locations agree, the program
proceeds to operate upon the next factor.][t should be noted that when the locations do
not agree, the program assumes that the assigned storage location punched in the instruction
or constant card is correc1t; the break in sequence is indicated by the printed line mentioned
above.

If the user's option specifies listing and sequence checking, the next printed line after
the comment SEQUENCE BREAK is the normal printed line for that instruction or constant.
If the option is sequence checking but not listing, then on the line below the comment
SEQUENCE BREAK appears an image of the card without the normal spacing between
characters and alignment in format.

As an exa:mple of the procedure for using this program, the following conditions are
assumed:

A user has a 1401 program card deek punched in the format specified for the
Card Loader Program; the first card of his input deck is a header card, containing
an asterisk punch in column 1, an H punch in column 2, and the name of the program
in columns 8-onward. He chooses to produce a self-loading output deck using the
Punch-List-Sequence Check progra:m, list the input cards, and sequence check
the storage locations of the input deck program instructions and constants. His
1401 system is equipped with 4000 positions of storage. The user chooses to
specify his output options and 1401 system capacity by preparing a control card,
in which he punches a 1 in column 1, a 1 in column 2, a 1 in column 3, and a 3
in column 4. Had he chosen to do so, he could have used the sense switches of
the mM 1401 Processing Unit rather than the control card to specify his output
options and storage capacity, using the following settings: switches B, C, D, and
G DOWN; switches E and F UP.

The user readies his 1401 system, places the program deck for the Punch-List
Sequence Check program in the 1401 read feed hopper and loads that program
into the system. The input prograrn deck, assembled as described in the next
paragraph, is plac~3d in the read feed hopper and program execution is begun by
depression of the 1402 read feed Start key.

7

8

In this example the user puts together an input deck in the following order:
Control card, followed by the one header card, followed by the cards of his object
program. The input deck is placed in the 1402 read feed hopper, blank cards in
the punch feed hopper and the Punch switch on the 1402 Card Read Punch is
turned ON. Depression of the Start key of the 1402 read feed starts program
operation. The first two cards punched out contain a clear storage routine. The
next card of output is the header card. The output deck is a self-loading pro~~ram
deck. Comments cards of the input deck are not punched out. The listing ineludes
the comments cards of the input deck. If storage locations were skipped or if
they were not assigned in sequence, indications are printed out as previously
explained. Upon encountering an end-of-file condition the program halts. After
placing another input program deck, assembled as described above, in the read
feed hopper, operation upon it may be started by depression of the 1401 read
feed Start key, transferring program control to the location of the first instruction
of the Punch-List-Sequence Check program.

Control
Card
Format

Corresponding
Sense
Switches

1

1-Punch
Specifies to
Punch a Self-
Loading
Program
Deck

B
Down

Card Columns
2 3 4

1-Punch 1-Punch Specifies
Specifies Specifies to 1401 System
to List Sequence Storage

Check Capacity:

1-Punch - 1400;
2-Punch - axlOj
3-Punch - 4000.

E, }
C D F· Down

Down Down or d

Figure 1
Methods of Specifying Output Options and 1401 System Storage Capacity

SUBROUTINES

Arithmetic computation routines such as multiply and divide are frequently necessary as
subordinate parts, or subroutines, of data processing programs. Several subroutines
will be supplied which the user may incorporate into his main programs.

The subroutines specified in this bulletin are:

Multiply I
Multiply II
Divide

(for storage space economy)
(for speed economy)

Dozens-to-Units Conversion
Units-to-Dozens Conversion

Also presented are the instructions to transfer program control from a main program
to a subroutine.

Depending upon their strulcture and use, subroutines are usually classified as either
open or closed. An open subroutine is a set of instructions, integrated into the logical
flow of a main program, for performing a given function. If the function performed by
the subroutine is required more than once during the execution of the main program,
the instructions of the open subroutine appear at each place needed in the main program.
Since the open subroutine is a part of the logical flow of the main program, data needed
by the subroutine is provided by the main program in the same manner as data furnished
to any other part of the main program.

A closed subroutine is a set of instructions, not integrated into the logical flow of a main
program, for performing a given function. The set of instructions of a closed subroutine
appears only once in a main program, even though the function performed by the subroutine
is used at many places in the program. A closed subroutine performs initialization of
work areas and the necessary movement of data associated with its function. At each
point in the main progranl where the closed subroutine is to be used, a linkage is inserted
to provide (1) an entry to the subroutine, (2) a method for determining the address of the
instruction in the main program to be executed after leaving the subroutine and (3) a means
for obtaining the data required by the subroutine.

Each subroutine described in this bulletin is a closed routine. As closed subroutines,
they each contain instructions which initialize work areas and move information about
as required in conjunction with performing the arithmetic for the operation. In some
applications it may be advantageous to use open subroutines rather than closed ones,
taking advantage of known contents of certain storage locations to eliminate unnecessary
operations. Thus the user, by modifying the closed subroutines for some applications,
will save a small amount of the execution time and a considerable amount of the storage
space required.

If no sign determination of the result is required, the multiply and the divide subroutines
may be modified to save a small amount of time and a significant amount of storage space.

Each subroutine is descr:ibed and the instructions and parameter definitions to be inserted
into the main program are specified.

9

10

Program decks for each of the five subroutines presented in this bulletin will be supplied
in either of two formats: (1) symbolic, 1 or (2) self-loading, relocatable, in machine
language.

LINKAGE FROM MAIN PROGRAM TO SUBROUTINE

In order to transfer control from the main program to a subroutine, the user must include
in the main program two instructions and the storage address of the low-order positions
of the data fields required.

The two instructions are as follows:

(A) OPERAND (B) OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. en

I~I CHAR. en
ADDRESS ILl ADDRESS w

ADJ.
Q: ADJ. a::

3 5 6 7 6 13 14 16 17 27 28 38

7 ~V: !L~.-l
I I

3 •• (SR Label) I I 1 ••••
~o L .L --1-_ 1- I 1- I

I
! (Sll ~abel}

I I I I
~o 4 L-L--L....----L- B I I I I ~. I I I

I I I) I I

~o ..L........l--- I I >: I I I

The first instruction places the location of its (A) operand in a three-character work area,
defined in the subroutine, whose location is just ahead of the first instruction of the
subroutine. This instruction provides the subroutine with sufficient information so that
it can locate the parameter definitions and establish the location in the main program to
which the subroutine transfers control after completing its operations.

The second instruction is an unconditional branch instruction, transferring program
control from the main program to the first instruction of the subroutine.

The parameters required by the subroutine must follow the above two instructions. Their
formats are as follows:

(A) OPERAND (B) OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. en

I~I CHAR. en
ADDRESS ILl ADDRESS ILl

ADJ.
Q: ADJ. Q:

3 5 6 7 6 13 14 1-6 17 27 26 38

3 D s:A * I I / PARAM 1: I
I-~ I I 1 I 1 1

3 D s:A * I 1
PARA 1M 2: I

0 2 0 l I I I I I I I

I I I I I

e-?~ ~L_L-~_~ I _L---L-I I I I I

Control will be returned to the main program at the instruction following the last para1neter
definition.

The following example illustrates the specifications given above.

1 See the bulletin lCmM 1401 Symbolic Programming System: Preliminary Specificatioltls, "
form J28-0200.

(AI OPERAND (Sl OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. u;

I~I CHAR. u;
ADDRESS w ADDRESS w

ADJ. cr ADJ. cr
3 5 6 7 .8 13 14 16 17 27 28 38

I I I I I
0 I 0l ~ ___ L I' I • I I I I I ...l I I • I I I I . I . I I . I I
0 2 10 I I 1- L • I I I I I I-!-L I I I

1M;v I N tA M IE I

I I
O,1111~1

I I
0 3 0 7 --L-L~~ __ ... I I I I I

M;V : I I
L3 IM,U,L,T , 1 1

I I
J.1 0 4 1 0 7 ----L... I I Il. *1 I I I I 1-1 1- I

~I I MU
I I I I

0 5 0 4 ~- L T 11..------'-_ I ..l~I ___ I

~~-A
I I I

0 6 0 3 I -L-.----L ___ * I I R f~L~ __ I ____ ~_L_.i-I I I 1

S :A
I

OIU R,S
I I

0 7 0 3 f I D * I ...L I H I I

lM-tY~
I I I

0 1 8 0 7 L .J ...L L. P R OlD I o f 1 16 O---.L._~I I

I I I I
0 9 0 ° I I • I I ° I I 0.-J. ... -L-.L I I

I I I I
I 0 0 ° I I I' I I I

.
I I I I ~_L_L_L __ I .1 i

I I I I
I I 10 ...l ~_._,----_.L----.l I I I ~---L- I I

The instruction shown on line 030 represents the last instruction in the main program to
be executed prior to encountering the multiply subroutine linkage. In the subroutine it
is desired to multiply rate times hours to yield the product PROD. The two instructions
on lines 040 and 050 are required to provide entry to the multiply subroutine. Line 060
specifies the multiplier parameter (RATE), and line 070 specifies the multiplicand
parameter (HOURS). The instruction on line 080 is the first instruction in the main program
to be executed after leaving the subroutine.

MULTIPL Y I SUBROUTINE

This multiply subroutine i:s provided for use on 1401 systems not equipped with the
multiply-divide optional feature. Multiply I is designed to multiply two numbers, each
having a maximum of ten digits, using a minimum of storage space. The result is
located in the symbolic loeation labeled PROD as a 20-digit number with the proper sign.
The sign of the result is either one or two zone bits (B and A, or B) of the binary coded
decimal codes B, A, 8,4, 2, 1. If the result of multiplication is positive, the units position
of location PROD contains (in addition to its binary coded decimal digit) both zone code
bits B and A; if the result is negative, it contains the zone code bit B. The user may
relocate the product, if desired, by an appropriate instruction; or he may use the product
area for further operations on the result of the multiplication.

This subroutine requires approximately 230 storage locations.

In order to incorporate Multiply I as a subroutine into a main program, the user appropriately
inserts the following instructions and parameters in his main program:

11

12

(A) OPERAND (B) OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. ul

I~I CHAR. en
ADDRESS w ADDRESS w

ADJ. Ct: ADJ. Ct:

3 5 6 7 8 13 14 16 17 27 28 38

1--.11 MV' *
I I

1 3 MU LT 1 I I 1 -~L~_ ----------L----L-__ ~____L_ __ I_~_L ____ __ _ J ____ 1_.1_ I I I-I I 1- I

4 B I M U.i_~-,-::r 1 I I I I 4 0 2 0
-L~--1- I I I I I I I I ~

3 D.1S :A *1.
I I ,> (:Multiplier l~bal) : ~o L J._~1. .1 .J ---'- I I I

3 !!----,-S 'A *1
I I

: (:Multiplicand l~beb 0 4 0 ---'---_-L_.l.....-------'-__ .-l-.. I I I I

I I I I I
0 5 0 L ~.L....i~______'_____'--_L----.I_ L_ I I __i_ •••

I I -.-1..._

The timing estimates for Multiply I are as follows:

For the maximum size of multiplier and multiplicand, ten digits each, an average
time of approximately 45 milliseconds is required.

For multipliers and multiplicands one-half the maximum size (five digits each)
an average time of approximately 2S milliseconds is required.

In this subroutine the multiply time depends not only upon the number of digits in the
multiplier and multiplicand, but also upon the value (0-9) of each digit of the multiplier.
When comparing the amounts of time required to multiply a given multiplicand by various
one-digit multipliers, the least amount of time is required to multiply the multiplicand
by 0, and the greatest amount of time is required to multiply the multiplicand by 9. The
average time, therefore, corresponds to a multiplier halfway between 4 and 5. For this
reason the average multiply times in the two examples given above are based upon an
average value of 4. 5 for each multiplier digit.

As was previously mentioned, a small amount of time and a considerable amount of
storage can be saved over that otherwise required if Multiply I is made an open subroutine
or if it is altered to require no sign determination for the product. Making it an open
subroutine will save approximately two milliseconds of time and 75 storage locations.
This is a saving of approximately 4% of the time and 32% of the storage space required.

Modifying this subroutine to make no sign determination for the product will reduce the
time and storage requirements, compared to the unmodified version, by approximately
one millisecond and 60 locations. This is a saving of about 2% and 25%, respectively,
of the time and storage space required.

MULTIPLY II SUBROUTINE

Like Multiply I, this multiply subroutine is designed for use on 1401 systems not equipped
with the multiply-divide optional feature. Multiply II is available to multiply two numbers,
each having a maximum of nine digits, in a minimum amount of time for large numbers.
The result is an 1S-digit number located in symbolic location PROD with the proper sign.
The BCD (i. e., binary coded decimal) zone bit structure for the sign of the product is
the same as that explained in the Multiply I Subroutine. In the Multiply II Subroutine the
salient feature is saving time, whereas in the Multiply I Subroutine it is conserving
storage space.

To incorporate Multiply II as a subroutine of a main program, the same procedure and
similar instructions as given for Multiply I Subroutine are used. The symbolic name of
the subroutine is MULT2 in. place of MULTI.

This subroutine requires approximately 340 storage locations.

The timing estimates for M:ultiply II are as follows:

For the maximum size of multiplier and multiplicand, nine digits each, a multiply
tim,e of approximately 26 milliseconds is required. Unlike Multiply I, multiply
tim.e for this subrou.tine is not affected by the value of multiplier digits because
a table of factors of the multiplicand is used.

For a multiplier and a multiplicand approximately one-half the maximum size
(i. e., five digits ea,ch) a multiply time of approximately 21 milliseconds is required.

As previously mentioned, a small amount of time and a considerable amount of storage
space can be saved over that otherwise required by modifying Multiply II for use as an
open subroutine or by modifying it to require no sign determination for the product. The
approximate amount of time and storage space saved when Multiply II is made an open
subroutine is the same as that for Multiply I, namely two milliseconds (8%) and 75
locations (22%).

Modifying Multiply II to make no sign determination for the product will reduce the time
and space requirements, compared to the unmodified version, the same as for Multiply I,
or approximately one millisecond (4%) and 60 locations (18%).

DIVIDE SUBROUTINE

This subroutine is provided to accomplish division on 1401 systems not equipped with the
multiply-divide optional feature. The length of divisor, dividend and quotient each may
range from one to 20 digits" according to the conditions given on page 20. The results
of division are stored by thle subroutine in the symbolic field labeled QUOT (see Figure 3).
The sign of the quotient and the sign of the remainder are represented in their respective
locations as zone bits of the BCD code, as explained in the Multiply I Subroutine. The
remainder sign is the same as the sign of the dividend and is included in the units position
of the remainder (see Figure 3). The quotient sign is determined by the subroutine from
a sign analysis of the dividend and the divisor and is included in the units position of the
quotient.

The Divide Subroutine acco:mplishes division by means of repetitive subtraction. For
each quotient digit required, beginning with the high-order quotient digit position, the
divisor is subtracted from Illie dividend; subtraction cycles continue until the result of
subtraction turns negative, while the number of subtraction cycles is counted. The number
of subtraction cycles required before the result turns negative is the quotient digit.
Figure 2 illustrates the me1lliod of division used by the subroutine.

13

14

Shift-Factor, n

One requirement of this subroutine is that the divisor be so aligned with the high-order
positions of the dividend that no more than nine repetitive subtraction cycles are required
before the result turns negative. In the example shown in Figure 2, considering the units
position of the divisor with respect to the units position of the dividend, the divisor iB
offset to the left of the dividend one position. The number of positions of left-offset of
the units position of the divisor with respect to the units position of the dividend is the
shift-factor, n. The Divide Subroutine uses the shift-factor, n, for two purposes:

1. To position the divisor with respect to the dividend prior to developing the
first (high-order) quotient digit.

2. To control the number of quotient digits developed by terminating division
after developing (n + 1) quotient digits.

As will be noted from each example of division given, the value of n is one less than the
number of quotient digits required in a problem. The value of n, which is a positive,
2-digit number ranging from 00-19 inclusive, must be specified by the user once for
each subroutine application, as shown on page 21.

The method of division used by this subroutine, illustrated in Figure 2, is as follows:

Division Problem: (+43).;. (+3) = quotient (2 digits) and remainder

In this example the quotient will be computed to two digits. The divisor (+3), the
dividend (+43) and the shift-factor n (01) are specified to the subroutine as explained
on page 21. The following program action is accomplished automatically by the
subroutine.

The subroutine clears the field labeled QUOT to zeros. The dividend (43) is loaded
into the symbolic field labeled QUOT. In order to provide one position of storage
in which each quotient digit will be developed (one at a time), the dividend is
moved one position to the left. The relative alignment of dividend and divisor,
specified by the shift-factor n, is maintained by positioning the divisor, prior to
the first subtraction, so that its units position will be subtracted from the location
QUOT - (n + 1) of the field labeled QUOT. Development of the high-order quotient
digi t begins.

+
1. The divisor (3) is subtracted from the dividend (04). The sign of the result (01)

is tested; since it is positi:ve, 1 is added to the contents of storage location
QUOT (having been initiaily set to 0, it now contains 1) and subtraction will
continue.

+
2. The divisor (3) is subtracted from the previous result of subtraction (01). The

sign of the resul(02) is tested; since it is negative, 1 is not added to the contents
of storage location QUPT . (it contains 1) and the divisor is added back to the
result (02), restoring the previous positive result (ot) which is less than the
divisor.

r
Development of high
order quotient digit:

1 = net number of
subtraction cycles

-+-
Development of the next
quotient digit (in this case,
the last):

4 = net number of
subtraction cycles

Subroutille has finished
division, having developed
(n + 1) quotient digits.

r Storage location QUOT

a 4 3 a
- 3

+ a 131
- 3

a 2 3 1
+ 3

+ a 131

1 3 1 a
- 3

+
1 a 1 1
- 3

+ a 7 1 2
- 3

+ a 4 1 3

- 3

+ a 1 1 4
- 3

a 2 1 4
+ 3

+ +
all 4

Figure 2

Results of division
as stored in field
labeled Quar

Division Problem: Eto43) f (+3) = Quotient (2 Digits) and Remainder

Information Supplied to the Divide Subroutine:

Divisor:
Dividend:
Shift-Factor, n:

+
3
+

43
at

15

16

Development of the high-order quotient digit (1) is complete. To develop the
second quotient digit the subroutine moves the contents of the field labeled QUOT,
which contains 0131, one position to the left and places a zero in the low-order
position (storage location QUOT).

3. The divisor is subtracted from the (shifted) previous result, i. e., the previous
positive remainder. The sign of the result (1~) is tested; since it is positive,
1 is added to the contents of storage location QUOT (making the contents 1)
and subtraction will continue.

+
4. The divisor is subtracted from the previous result (10). The sign of the

result (07) is tested; since it is positive, 1 is added to the contents of storage
location QUOT (making the contents 2) and subtraction will continue.

+
5. The divisor is subtracted from the previous result (07). The sign of the result

+
(04) is tested; since it is positive, 1 is added to the contents of storage location
QUOT (making the contents 3) and subtraction will continue.

+
6. T~e divisor is subtracted from the previous result (04). The sign of the result

(01) is tested; since it is positive, 1 is added to the contents of storage location
QUOT (making the contents 4) and subtraction will continue.

+
7. T~e divisor is subtracted from the previous result (01). The sign of the result

(02) is tested; since it is negative, 1 is not added to the contents of storage
location QUOT (it contains 4) and the divisor is added back to the result (02),

+
restoring the previous positive result (01) which is less than the divisor.

Development of the second quotient digit (4) is complete. Furthermore, division
is complete because of a signal to the subroutine that (n + 1) quotient digits have
been developed. The results of the problem in this example appear in storage in
the symbolic field labeled QUOT as 0 t 1 4.

Location of Results

The quotient consists of (n + 1) digits. The low-order position of the quotient and the
quotient sign are located in symbolic location QUOT. The remainder consists of the
same number of digits as the divisor field. The low-order position of the remainder and
the remainder sign are located in storage at symbolic location [QUOT - (n + 1)]. Defining
the length of the divisor field as LDVR, the zero, which always precedes the remainder,
and the associated word mark both are located in symbolic location [QUOT - (n + 1 + LDVR)].
It should be noted that the quotient and the remainder are not separated by a word mark.
Figure 3 illustrates the contents of the symbolic field QUOT.

Length of Dividend

In the example shown in Figure 2, the division problem was (+43) -:- (+3), to yield a two-digit
quotient and a remainder. However, if the number of quotient digits desired is increased,
the dividend length must be increased by adding a sufficient number of zeros to the low
order end. The two following examples, shown in Figures 4 and 5, illustrate the effect

Symbolic Field Labeled QUOT

Number of digits = LDVR + n + 2

Zero

and r- Remainder ----1

1
..... ---- Quotient ---

Word
Mark No. of digits = LDVR No. of digits = n + 1

~ 1 X 1';-1 X 1~:E8
t t t

QUOT - (n + 1 + LDVR) QUOT - (n + 1) QUOT

Figure 3

Contents of Symbolic Storage Field QUOT

of the dividend length as well as the shift-factor. The first of these (shown in Figure 4),
while using the same values of divisor and dividend shown in Figure 2, requires that the
quotient be computed more precisely than in Figure 2. The second example to follow t in
addition to illustrating the method of division, points out the use of the range of data in
applying the Divide Subroutine.

Referring to Figure 4, the division problem is: (+43) i- (+3) = quotient (4 digits)
and remainder.

The length of the dividend (43) must be increased before use by the subroutine
by adding two zeros to the low-order end if the quotien~ is to be computed to four
digits. The altered dividend appears in storage as 4300. The problem to be solved
by the subroutine is represented as:

(+4::1.00) .;. (+3) = XX. XX and remainder

The value of n (the shift-factor) specified to the subroutine is equal to one less
than the number of quotient digits desired. In this example, therefore, n is equal
to 3; it is specified to the subroutine as 03. It should be noted that the value of n
causes the divisor to be positioned with respect to the altered dividend as supplied
to the subroutine (e. g., 4300).

Referring now to Figure 5, gross weekly pay divided by total hours worked per
week will yield average pay for this example. Average pay will be computed to
m.ils. Two practieal restrictions will be assumed and used advantageously:

1. Average pay does not exceed 9.999 dollars.
2. Total number of hours worked per week does not exceed 99.9.

The form of the computed quotient, average hourly pay, is X. XXX. Gross pay
and total hours worked per week are in the form XXX. XX dollars and XX. X hours,
respectively. The divisor, total hours per week, will be used in the form given,

17

18

r
Development of high
order quotient digit:

I
1 = net number of

subtraction

cycles

* Development of the next
quotient digit:

4 = net number of
subtraction
cycles

043000

- 3

+
013001

- 3

023001
+ 3

+
013001

30010

- 3

+
100011

- 3

+
070012

- 3

+ o 400 1 3

- 3

+ o 100 1 4

- 3

-
020014

+ 3

+
o 100 1 4

f
Development of the next
quotient digit:

3 = net number of
subtraction
cycles

Development of the next
quotient digit (in this
case, the last):

I
3 = net number of

subtraction

cycles

100 140

- 3

+
070 141

- 3

+
040 1 4 2

- 3

+ o 1 0 143

- 3

020 143
+ 3

+
010 143

101430

- 3

+ o 7 143 1

- 3

+ o 4 143 2

- 3

+
011433

- 3

o 2 143 3

+ 3

+ +
Results of division
as stored in field
labeled QUOT

---.... 011433

Subroutine has finished
division, having developed
(n + 1) quotient digits.

Figure 4

Division Problem: (+43) f (+3) =Quotient (4 Digits) and Remainder

Information Supplied to the Divide Subroutine:

+
Divisor: 3

+
Dividend: 4300

+
Shift-Factor, n: 03

Development of

high-order
quotient digit:

3 = net number of
subtraction

cycles

Development of
the next quotient

digit:

2 = net number of
subtraction

cycles

1

18106000

- 5 6 4

+
1246600

- 5 6 4

+
06826002

- 5 6 4

+
01186003

- 5 6 4

044 (5 600 3
+ 5 6 4

+
01186003

11860030

- 5 6 4

+
06220031

- 564

+
00580032

- 5 6 4

05060032
+ 5 6 4

+
00580032

Figure 5

Development of the

next quotient digit:

1 = net number of

subtraction
cycles

Development of the
next quotient digit

(in this case,
the last):

o = net number of
subtraction cycles

t

Results of division as stored in
field labeled QUOT

Subroutine has finished.division,
having developed (n + 1)

quotient digits.

05800320

- 5 6 4

+
00160321

- 5 6 4

05480321

+ 564

+ o 0 160 3 2 1

01603210

- 5 6 4

04043210
+ 5 6 4

+ +
Q1603210

J

Division Problem: (+18106) ~ (+564)=Quotient (4 Digits) and Remainder

Information Supplied to the Divide Subroutine:

Divisor:

Dividend:

Shift-Factor, n:

+
564

+
1810600

+
03

19

20

xx. X hours. The form of the dividend, however, must be altered prior to its
use in the Divide Subroutine to yield the four quotient digits which are required
in the statement of the problem.

To use a specific example:

Gross weekly pay
Number of hours worked in the week

$181. 06
56.4

To determine the number of zeros required to be added to the low-order positions
of the dividend, the usual rule is used: the number of decimal places in the dividend
equals the sum of the number of decimal places in the quotient and the divisor.
In this example, the sum of the number of decimal places in the divisor (XX. X)
and the quotient (X. XXX) is four; therefore the form of the dividend (XXX. XX)
must be altered by the addition of two zeros to the low-order end so that it has
four decimal places. The altered form of the dividend will be XXX. X:X:OO, and for
the specific example it will be supplied to the subroutine as 1810600. The problem
to be solved by the subroutine is represented as:

(+ 181. 0600) .;. (+56.4) = X. XXX and remainder

To evaluate n, the shift-factor: n = the number of quotient digits - 1; since there
are four quotient digits required in this example, n is equal to 3. The shift-factor
03 specifies to the Divide Subroutine that it must left-offset the units position of
the divisor three positions with respect to the units position of the dividend prior
to the first subtraction operation.

Conditions Governing Length and Position of Divisor and Dividend

The conditions governing the maximum length (i. e., the maximum number of digits) and
the position of divisor and dividend are as follows:

1. The length of the dividend field must be no greater than 20.

2. The length of the divisor field plus the shift-factor n must be no greater than 20.

3. The length of the dividend field must be greater than the shift-factor n.

4. There must be no more than nine repetitive subtraction cycles executed before
the result of subtraction turns negative. This condition can occur, of course,
only when developing the high-order quotient digit.

5. The number of Significant digits (i. e., the number of digits excluding leading
zeros) in the dividend must not exceed the length of the divisor field plus the
length of the quotient field.

A divisor whose value is zero is one special case which does not meet condition 4. Other
cases which do not meet condition 4 occur if too small a value of the shift-factor n is
specified.

If condition 4 above is not met, the Divide Subroutine exits, setting the overflow indicator
and returns program control to the main program. The overflow condition will be detected
only if a subsequent logic operation (i. e., test and branch on overflow) is performed by
the main program before an add or subtract operation resets the indicator. The test and
branch instruction shown on line 060 following the parameter specifications is recommended
to detect. an overflow condition.

To incorporate the Divide Subroutine in a main program, the user appropriately inserts
the following instructions and parameters in his main program:

(AI OPERAND (BI OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. en

I~I CHAR. en d
ADDRESS w ADDRESS w

ADJ. 0: ADJ. 0:

3 5 6 7 8 13 14 16 17 27 28 38 39

M,V' *1
I I

~3) DLI~lV I D,~:~: 1 0 I 10 7 I ~ I I 1- I ~L :'

B ' ,D IE:
I , I I

0 2 0 4 IhlX--,-~ I -L---1- I I -'-._L_~l I I -- f=--'---L----

3 D S 'A *
I I (Qivi~~L

I
0 3 0 L ~ -- I I I_~- - ~~~~~

D S'A *1
I I

:.. (Dividend Lg.~~lJ_L __ ~_ 0 4 0 3 I I _ -,--_-,--_1 __ '-------'--- --

f--:i?J9 :w I I I I
0 5 0 2 ~---- ~~-'---------1--I ___ L_--,-_I~_~~ L __ --L J L I I

B I
I I I I

Z 0 6 0 5 1 I i ___ ~_ LB--LlLQi!lLX I I L _'-----1 __ 1 __ _ J ___ L ___ L __ --'---_

I I I I I
0 7 0 ---L----L---L------'----l ___ -----'--__ -L~ _ -------'- ~ 1 ___ 1 ___ I L _~ I I I I I _ L J_ 1-------' __ I ___ I __ L __ L '-',

On line 050 above, xx represents the value of the shift-factor n. This subroutine requires
approximately 415 storag·e locations.

The timing estimates for the Divide Subroutine are as follows:

For a divisor of 1.0 digits and a dividend of 20 digits yielding a quotient of 10
digits each having: an average value of 4. 5, this subroutine requires approximately
71 milliseconds. In a manner analogous to Multiply I, the average value of a
quotient digit is taken to be that value of the digit corresponding to the average
division time. It lies halfway between digit values 4 and 5; hence it is equal to 4. 5.

For a divisor of 51 digits and a dividend of 10 digits yielding a quotient of 5 digits
each having an average value of 4. 5, this subroutine requires approximately 35
milliseconds.

As mentioned previously ~ modifying Divide for use as an open subroutine or modifying
it to require no sign determination for the quotient reduces the amount of time and storage
space otherwise requiredl. The amount of time saved when Divide is made an open
subroutine is approximately three milliseconds, or 4%; the space saved is approximately
125 locations, or 30%.

Modifying this subroutine to make no sign determination for the quotient reduces the time
and space required compared to the unmodified version by approximately one millisecond,
or 1%, and 75 storage loeations, or 18%.

21

22

DOZENS-TO-UNITS CONVERSION SUBROUTINE

This subroutine converts dozens to units. The dozens field may range from 0/12 dozen
to 9,999,999 11/12 dozens. The fractional portion of dozens is located in the low-order
position of an eight-digit (maximum) field. The integers 0 through 9 denote the fractions
0/12 through 9/12 in the units position of the dozens field; the symbols minus (-) and
ampersand (&) denote respectively the fractions 10/12 and 11/12 in the units position of
the dozens field. The result of conversion is located in symbolic locations UNITS as a
nine-digit number.

To incorporate Dozens-to-Units Conversion as a subroutine of a main program, the user
appropriately inserts the following instructions and parameter in his main program:

(A) OPERAND (B) OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. u)

I~I CHAR. u)

ADDRESS LLJ ADDRESS LLJ

ADJ. a:: ADJ. a::
3 5 6 7 8 13 14 16 17 27 28 38

I,
I-~ 7 --1----1-__ .1______ L _____ L _____ M_LY~ ___ >tc_-L_ -1 ____ --L __ J_-L ___ ~~ __ 3 D Z C V R T:-: 1

I D z',C.3 IR ,T :
I I I

0 2 0 4 .L-~L-1-__ ~-L I 1 I I 1 I 1

S 'A *
1 I IT (Dozens field l~belL __ ----.L_ h~ 0 3 0 3 ~-----1- D --L_ __L I 1

I I
'-~ 1 I : V? 1 I ~-. I I 1<

This subroutine requires approximately 145 storage locations.

The estimates for timing for this subroutine are as follows:

For the maximum_ size of the dozens field, 8 digits, yielding a maximum size of
the units field, 9 digits, this conversion subroutine requires approximately three
milliseconds.

For values approximately one-half the maximum given above, the time required
is approximately the same, being 3% less than that required for fields of
maximum size.

As mentioned previously, making Dozens-to-Units Conversion an open subroutine reduces
the time and storage otherwise required. The approximate reductions are slightly less
than one millisecond (27%) and 45 storage locations (31%).

UNITS-TO-DOZENS CONVERSION SUBROUTINE

This subroutine converts units to dozens, including fractions of dozens 0/12 through 11/12.
The units field may range from one to eight digits (a nine-digit units field is possible if
it creates an eight-digit result including the fraction of dozens). The result of conversion
is located in symbolic location DOZENS as an eight-digit number, whose units position
integers 0 through 9 denote the fractional parts of dozens 0/12 through 9/12; and whose
units position symbols minus (-) and ampersand (&) denote respectively the fractions
10/12 and 11/12.

To incorporate Units-to-Dozens Conversi0n as a subroutine of a main program, the user
appropriately inserts the following instructions and parameter in his main program:

(AlOPERAND (Bl OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. en

I~I CHAR. en
ADDRESS w ADDRESS w

ADJ. 0:: ADJ. 0::

3 5 6 7 8 13 14 16 17 27 28 38

7 IMV' *
I I

3 U,N,C V R,T:-: 1 0 I ,0 L_ t I i I-I ,
UN C IV R T:

I I I
0 2 0 4 , , I B I I , , , , I I

S:A *
I I (Units field labbl): 0 3 0 3 I D I I , , I I I I

0 4 0 1 I I I I
,

This subroutine requires approximately 205 locations in storage.

Timing estimates for this subroutine are as follows:

For the maximum size of 8 digits in the units field, yielding a maximum of 7
"dozens quotient" digits, each having an average value of 4.5, this subroutine
requires approxinlately 33 milliseconds. (For an explanation of the average value
of 4. 5, see the tirning estimates for the Divide Subroutine, page 21.)

For a units field one-half the maximum size, the time required is approximately
23 milliseconds.

As in the other subroutines presented in this bulletin~ making Units-to-Dozens an open
subroutine reduces the tilme and storage otherwise r~quired. The approximate reductions
are the same as those for the Dozens-to-Units Conveirsion Subroutine, being slightly
less than one millisecond (3%) and 45 storage locations (22%).

23

24

PROGRAM ERROR-DETECTION AIDS

It is recommended practice, of course, to machine test data processing programs before
putting them into productive operation. Programming errors discovered during program
testing should be traced to find their cause. The user usually localizes the causes of
program errors by a procedure such as comparing the actual contents of certain storage
locations with the contents he expects from the previous steps of his program. He may,
therefore, wish to insert halt instructions at strategic places in his program so that he
may manually read out or print out storage contents; or he may wish to insert linkages
into his program at convenient places to automatically print out blocks of storage contents,
to aid in finding the first occurrence of a program error.

Several programs will be supplied to aid the user during program testing to detect the
cause of program errors, if any exist. The program error-detection aids presented in
this bulletin are:

Insert Halts
Insert Linkages to Fixed Print Storage
Insert Linkages to Selective Print Storage
Remove Linkages

Caution should be observed when selecting the instruction after which linkages to a routine
are placed. For example, if a linkage to a print storage routine is placed after an
unconditional branch instruction, the print storage routine will not be executed. If a
linkage to a. print storage routine is placed after a conditional branch instruction, the
print storage routine will be executed only if the condition is not met. If a linkage to a
print storage routine is placed after an instruction which is modified by another operation,
the object program will not function properly and the print storage routine might not be
executed.

All of the above programs are relocatable and self-loading. Each requires that the
first card of the deck be a housekeeping card, which is supplied with the deck, and that
the second card of the deck be a location designator card, which the user prepares. In
the latter card the user specifies the starting location, represented by kkk, of the
relocatable error-detection aid program. The format for the location designator card
is as follows:

Columns 33-39
Columns 40-43
Columns 44-46

L046183
1001
kkk (starting location of relocatable program)

The instruction in columns 33-39 causes the starting location punched in columns 44-46
to be loaded into locations 181-183. When a relocatable program is being loaded, the
loading program instructions (which are included in the program decks of self-loading
programs) use the starting address to modify the appropriate storage addresses of program
instructions and constants.

Each program is described separately; descriptions of the control cards necessary to
specify the variables to adapt the error-detection aids to the user's needs and/or equipment
are included.

INSERT HALTS

This program is designed to insert halt instructions into an object program. The user
specifies in a control card the location and length (character count) of the instruction after
which he desires to insert a halt instruction, and the location of the "patch" area. The
patch consists of the instruction after which the halt is to be placed and the halt instruction;
the patch area may be any available area in core storage large enough to contain these
instructions. If more than one patch is desired, they may be placed in one patch area,
as indicated below in the explanation of the control card, columns 5-7.

The halt instruction has either one of two formats: . xxx or . xxxb, where:

decimal is the operation code for stop.

xxx represents the machine address of the instruction in the object program to be
executed next after executing the halt instruction. This address is provided
automatically 'by the Insert Halts program.

b is one blank position required by the Insert Halts program for only the last
halt instruction in the patch area.

The size of patch areas required will be illustrated by the following two examples:

If it is desired to i.nsert a halt instruction after only the following object program
ins truction:

M 035 226

a patch area containing at least twelve storage locations is required, as follows:
seven storage locations for the object program. instruction above and five locations
for the halt instruction. In this instance the halt instruction is required to contain
one blank position because it is the last halt instruction in the patch area.

Using another eXaJnple, if it is desired to insert halt instructions after each of the
following object program instructions:

M 035 226

A 044 S56

E S56 299

/ 080

25

26

a patch area containing at least 42 storage locations is required. Of this number
25 locations are required for the object program instructions and 17 locations
are required for the halt instructions. The 17 locations are required for three
halt instructions with the format· xxx and the last halt instruction with the fOrInat
·xxxb.

This program is self-loading and relocatable. It requires approximately 205 storage
locations.

Control Card Format

2

Location of
Instruction
Removed

3 4

Instr.
Length

5 6

Address of
Patch Area,
or *bb

7

Columns 1-3 are to be punched with the machine address in the assembled program of
the instruction following which the halt instruction is to be placed. This instruction must
be four to eight characters in length; it will be removed from its assembled location and
placed in the patch area by the program.

Column 4 is to be punched with the length of the instruction to be removed to the patch
area. The length, as stated above, may be from four to eight characters.

Columns 5-7 are to be punched with either the machine address of the patch area, or *bb.
If the patch is to be placed behind the previous patch, column 5 should contain an asterisk
punch and columns 6 and 7 should be blank.

Program flow after insertion of a halt instruction is illustrated in Figure 2 below.

Obi ect Program Patch

Instruction
A

Instruction
B

[Instr~ction Figure 6

Instruction
C

Program Flow After Inserting a Halt Instruction

If an END card (optional) is desired to be used to begin execution of the object program
after Insert Halts program execution is completed, its format should be /111080 in columns
1-7, which clears the read area to blanks and branches to location III, the starting address
of the object program. If an END card is not used, locations 001-080 contain the word
marks set by the self-Ioad:ing Insert Halts program.

The order of the cards required for this routine is as follows: The first card is the
housekeeping card, supplied with the Insert Halts program deck. The second card, prepared
by the user, is the location designator card. The self-loading Insert Halts program deck
supplied by IBM follows. The control cards, prepared by the user, follow the Insert Halts
program deck. The optional END card, prepared by the user, is the last card.

The operating procedure for this routine is as follows: An object program into which it
is desired to insert halt instructions is loaded into the 1401 system. The card deck for
Insert Halts program, assembled in the order indicated in the previous paragraph (with
the END card as the last card), followed by the data cards for the object program if they
are required, are placed iltl the 1402 read feed hopper and loaded. At this point in the
procedure the following program action has occurred:

1. The object prog-ram has been loaded.

2. The Insert Halts routine has been loaded and executed; i. e., the linkages to
the halt instructions have been inserted into the object. program.

If the optional END card was used, as recommended, object program execution is begun
automatically after the Insert Halts program has been executed. Execution of the object
program continues, including reading of the data cards if the object program calls for this
operation, until an inserted halt instruction stops the program. Upon the program's
stopping, the user may take such action as he had planned; e. g., he may check input
locations, intermediate results, or output locations. Depression of the Start key on the
1401 Processing Unit console causes program execution to proceed. Object program
execution continues until the next inserted halt instruction stops it, and so on until the
program has been completely executed or until a programming error is encountered which
cannot be corrected immediately.

After obtaining the desired information about the object program being tested with the
aid of the Insert Halts prol~ram, the user may wish to restore the object program to its
original condition; i. e., to remove from the program the inserted halt instructions. He
may do this by using another program, Remove Linkages, which is described .on page 33.

INSERT LINKAGES TO FDCED PRINT STORAGE

This program inserts into an object program linkages to a routine which prints out the
contents of storage between specified limits. The limits of storage printout are specified
by the user in the print storage-control card, the format of which is shown below.

The linkages to the print storage routine will be inserted by this program after any
appropriate object prograln instruction of the user's choice. The program action in
inserting the linkages of this routine is similar to that of Insert Halts program.

27

28

The Insert Linkages to Fixed Print Storage program consists of two routines, a patch
routine (Phase I) and a print storage routine (Phase II). The print storage routine uses
only one control card, while the patch routine may utilize several control cards because
linkages may be inserted to print storage at several points in a program. Patch routine
control cards are required to specify the points in the program at which storage printout
is desired. Formats for the control cards are given below.

Control Card Format - Patch Routine (Phase I)

1 2

Location of

Instruction

Removed

3 4

Instr.
Length

5 6

Address of

Patch Area,

or *bb

7

The fields of this control card are the same as those explained in the Insert Halts program,
page 26.

Control Card Format - Print Storage Routine (Phase II)

1. 2 3 4 5 6 7

Selected Block of Storage:

Lower Upper 1403
Limit Limit Model

Address Address Number

The above two machine addresses, columns 1-6, are specified by the user to cause the
contents of the corresponding block of core storage to be printed out. In this routine the
units and tens positions of the lower limit of the block of storage being printed deternline
the leftmost print positi.on of the first printed line of the block. In like manner the units
and tens positions of the upper limit determine the rightmost position of the last printed
line. For example, if the lower limit and the upper limit of the block of storage being
printed is, respectively, 623 and 974, the printed results would have the following format:

Line No. Contents of Storage Locations Print Position No.

1 623-700 23-100
2 (ls representing word marks for line 1)
3 701-800 1-100
4 (ls representing word marks for line 3)
5 801-900 1-100
6 (ls representing word marks for line 5)
7 901-974 1-74
8 (ls representing word marks for line 7)

Prior to execution of the object program (i. e., the program to which this program error
detection aid routine is being applied), the contents of the block of core storage defined
in the print storage control card is automatically printed out, together with a line indicating

the limits of storage printed and a heading line identifying the units positions of the
printed output (i. e., 1234567890 and repeat, to identify print positions 1, 2, 3, ·4, 5, 6,
7, 8, 9, 10, and so on to 100). Prior to each subseqaent printout the object program
instruction which was last executed is printed out.

Column 7 of the print storage control card specifies the model number of the 1403 printer.
A I-punch specifies model 1 printer, equipped with 100 print positions; a 2-punch specifies
model 2 printer, equipped with 132 print positions.

If an END card (optional) is used to begin execution of the object program after execution
of the Insert Linkages to Fixed Print Storage routine ~s completed, its format should be
/111080 in columns 1-7 , which clears the read area to:blanks and branches to location III,
the starting address of the object program. If an EN]) card is not used, locations 001-
080 contain the word marks set by the self-loading print storage routine.

After this program has inserted linkages into an object program, program flow proceeds
as indicated in Figure 7.

The minimum size of the patch area is from 18 to 22 storage locations per object program
instruction removed to the patch area depending upon :the length of the instruction so
removed.

The Insert Linkages to Fixed Print Storage program requires approximately 260 storage
locations and prints storage at the rate of 600 lines per minute.

The order of the cards required for this routine is as. follows:

1. Housekeeping eard (first card)
2. Location designator card
3. Phase I program deck
4. Phase I control cards
5. Phase II program deck
6. Phase II control card
7. END card (optional) (last card)

Supplied with the program deck
Prepared by the user
Supplied by mM
Prepared by the user
Supplied by mM
Prepared by the user
Prepared by the user

The operating procedure for this routine is as follows!: An object program is loaded into
the 1401 system, and the Insert Linkages to Fixed Print Storage deck, assembled as
described in the previous paragraph, is used to load that routine into the 1401 system.
At this point in the procedure the following program a'ction has occurred:

1. The object prOI?;ram has been loaded.

2. Phase I, the patch routine, has been loaded and executed. The linkages have
been inserted into the obj ect program.

3. Phase II, the print storage routine, has been loaded.

Next, the initial printout occurs, as follows: the first line indicates the storage limits
of the printout, the second line is a heading line identifying the units positions of printed
output (as explained above), and the third and succeeding lines, as required, contain

29

30

alternately the contents of storage and locations of word marks (as indicated on page 28).
If the optional END card, placed as the last card of the insert linkages deck, was used,
object program execution begins automatically. When the object program branches to
the patch area, it executes the instruction prior to the print storage linkages (e. g. ,
Instruction C, Figure 7) and executes the linkage instructions to the program error
detection aid. The print storage routine prints the last object program instruction executed
(e. g., Instruction C, Figure 7), a heading line identifying the units positions of the
printed output, and the contents of the specified block of storage. Each printed line of
storage contents is followed by a printed line indicating the word marks for that line, as
shown on page 28. The object program proceeds automatically, executing the next
instruction (e. g., Instruction D in Figure 7); and so on until the object program has
been completely executed, printing out the instructions and storage contents as specified
by the user. Thus the Insert Linkages to Fixed Print Storage routine produces a printed
record of the contents of the storage locations specified by the user to aid in locating a
programming error.

Formerly,
Instruction C

Object Program

Instruction
A ~

~
Instruction

B

~ r -1-1
II Branch to I -I Patch I r

L..: ___ J

f
Instructi on

0

Figure 7

Program Flow After Inserting Linkages to Print Storage

INSERT LINKAGES TO SELECTIVE PRINT STORAGE

Patch

_ ..
l

Instruction
C ,

Linkage to
Print Stor.

t
Print

Storage ,

This program inserts into an object program linkages to a routine which prints out storage
contents between selective limits. The limits of storage printout using this routine is
specified for each instruction after which printout is to occur, whereas the limit of
storage printout using the Insert Linkages to Fixed Print Storage routine is specified
once for each object program application.

As with the Insert Linkages to Fixed Print Storage, the linkages to the print storage
routine will be inserted by this program after any appropriate object program instructions
of the user's choice. The program action in inserting the linkages is similar to that of
Insert Halts program.

The Insert Linkages to SeJlective Print Storage program consists of two routines, a patch
routine (Phase I) and a print storage routine (Phase II). The patch routine requires one
or more control cards whose format is given below.

Control Card Format - Patch Routine (Phase I)

2 3 4 5 6 7 8 9 10

I
11 12 13

Location of Instr. Location of Selected mock of Storage:
Instruction Length Patch Area,
Removed or *bb Lower Upper

Limit Limit
Address Address

The first three fields, card columns 1-7, are the same as those explained in the Insert
Halts program, page 26. Columns 8-10 and 11-13 specify, respectively, the lower and
the upper limits of storage being printed. As in the filsert Linkages to Fixed Print Storage
program, the units and tens positions of the lower limit address determine the leftmost
print position of the first line, and the units and tens positions of the upper limit address
determine the rightmost position of the last printed line.

Control Card Format - Initial Printout

2 3

Initial Storage Printout:

Lower
Limit
Address

4 5

Upper
Limit
Address

6 7

1403
Model
Number

The two machine addressl8s above in columns 1-6 specify the block of storage selected
to be printed out prior to execution of the object program and column 7 specifies the 1403
model number. A I-punch in column 7 specifies model 1, equipped with 100 print positions;
a 2-punch specifies model 2, equipped with 132 print positions. If no initial storage
printout is desired, a card with columns 1-6 left blank should be substituted for the card
whose format is shown above.

As explained in the Insert Linkages to Fixed Print Storage program, if it is desired to
use an END card (optional) to clear the read area to blanks and begin execution of the
object program, its format should be /111080 in columns 1-7, III being the object program
starting location. The flow of program control for this program is similar to that shown
on page 30.

The minimum size of the patch area required is from 24 to 28 storage locations per object
program instruction removed to the patch area depending upon the length of the instruction
so removed.

31

32

The Insert Linkages to Selective Print Storage program requires approximately 300
storage locations and prints storage at the rate of approximately 600 lines per minute.

The order of the cards required for this routine is as follows:

1. Housekeeping card (first card)
2. Location designator card
3. Phase I program deck
4. Phase I control cards
5. Phase II program deck
6. Initial printout control card
7. END card (optional) (last card)

Supplied with the program deck
Prepared by the user
Supplied by mM
Prepared by the user
Supplied by mM
Prepared by the user
Prepared by the user

The operating procedure for this program is as follows: An object program is loaded into
the 1401 system, and the Insert Linkages to Selective Print Storage program, the deck
for which was described in the previous paragraph, is then loaded. At this point in the
procedure the following program action has occurred:

1. The object program has been loaded.

2. Phase I, the patch routine, has been loaded and executed. The linkages have
been inserted into the object program.

3. Phase IT, the printout storage routine, has been loaded.

If a block of storage was specified in the initial printout control card in columns 1-6, an
initial printout occurs as follows: the first line indicates the storage limits of the printout,
the second line is a heading line identifying the units positions of printed output (as
explained on page 29), and the third and succeeding lines, as required, contain alternately
the contents of storage and locations of word marks (as indicated on page 28). If no block
of storage was specified in columns 1-6 of the initial printout control card, no initial
printout occurs. If the optional END card, placed as the last card of the insert linkages
deck, was used, program execution begins automatically. When the obj ect program
branches to the patch area, it executes the instruction prior to the print storage linkages
(e. g., Instruction C, Figure 7) and executes the linkage instructions to the program error
detection aid routine. The print storage routine prints on the first line the last object
program instruction executed (e. g., Instruction C, Figure 7) and the printout storage
limits speCified for the instruction, on the second line the heading identifying the units
positions of the printed output, and on the third and succeeding lines, as required,
alternately the contents of the block of storage specified for the instruction and the
locations of word marks (as shown on page 28). The object program proceeds automatically,
executing the next instruction (e. g., Instruction D in Figure 7); and so on until the object
program has been completely executed, printing out the instructions and storage contents
specified by the user. Like the Insert Linkages to Fixed Print Storage program, this
routine produces a printed record of the contents of storage locations specified by the
user to aid in locating a programming error.

As explained in the Insert Halts and the Insert Linkages to Fixed Print Storage programs,
the linkages may be removed from the object program by using the Remove ,Linkages
program, described on page 33.

REMOVE LINKAGES

This program removes from an object program those linkages previously inserted to aid
in detecting program errors. The linkages removed are replaced by the instructions
previously removed from the object program. The control cards required for this program
are the same control cards used with the programs (i.e., Insert Halts, Insert Linkages
to Fixed Print Storage, or Insert Linkages to Selective Print Storage) to insert the
linkages into the object program. The Remove Linkages program is self-loading and
relocatable. It requires approximately 160 storage locations and removes linkages at
the rate of BOO cards per m.inute.

If an optional END card is used to begin, automatically, execution of the obj ect program
after execution of the Remove Linkages routine is completed, its format should be /IIIOBO
in columns 1-7. This instruction clears the read area to blanks and branches to location
III, the starting address of the object program. If an END card is not used, locations
001-OBO contain the word rnarks set by the self-loading Remove Linkages program.

In addition to removing linkages previously inserted into an object program by one of
the insert linkage programls described in this bulletin,: it may be convenient to insert
new linkages, all in one machine pass. This may be done by using the Remove Linkages
program. The following is an example of the order of cards required to remove linkages
previously inserted into an object program by Insert I:.inkages to Fixed Print Storage and
to insert new linkages using Insert Linkages to Selective Print Storage:

1. Housekeeping card for Remove Linkages
program deck (first card)

2. Location designator card

3. Remove Linkages program deck

4. Control cards for Phase I and Phase II
of the Insert Linkages to Fixed Print
Storage progra:m

5. Housekeeping card for Insert Linkages
to Selective Print Storage program

6. Location designator card for Phase I of
the Insert Linkages to Selective. Print
Storage program

7. Phase I program deck for Insert
Linkages to Selective Print Storage
program

B. Phase I controll cards of the Insert
Linkages to Selective Print Storage
program

Supplied with the Remove
Linkages program deck

Prepared by the user

Supplied by mM

Prepared by the user (the same
control cards used to insert
the linkages now being removed)

Supplied with the program deck

Prepared by the user

Supplied by mM

Prepared by the user

33

34

9. Phase II program deck of the Insert
Linkages to Selective Print Storage
program

10. Initial printout control card of the
Insert Linkages to Selective Print
Storage program

11. END card (optional) (last card)

Supplied by IBM

Prepared by the user

Prepared by the user

Program operation using the example just described in the paragraph above is as follows:
Assuming that the object program with linkages previously inserted is stored in the 1401
systenl, the deck used with Remove Linkages routine (assembled as described in the
previous paragraph) is loaded into the 1401 system. At this point in the operating procedure
the following program action has occurred:

1. The Remove Linkages routine has been loaded and executed. The linkages
have been removed from the object program and the object program has been
restored to its original condition.

2. Phase I, the patch routine, of the Insert Linkages to Selective Print Storage
program has been loaded and executed. The new linkages have been inserted
into the object program.

3. Phase II, the printout storage routine, of the Insert Linkages to Selective Print
Storage program, has been loaded.

4. If a block of storage was specified in the initial printout control card in columns
1-6, the contents of this block have been printed out, together with a printed
line indicating the storage limits specified and a heading line identifying the
units positions of printed output; otherwise no initial printout occurs.

If the END card, whose use is optional but recommended, is used as the last card of the
Remove Linkages deck, program execution begins automatically. From this point on the
operation is the same as that previously described for the Insert Linkages to Selective
Print Storage routine.

IBM 1401 PUBLICATIONS

The following IBM 1401 Systems literature has been published as of the date of this bulletin:

Form Number

GENERAL INFORMATION MANUAL

F20-0208

BULLETINS

IBM 1401 Data Processing System
From Control Panel to Stored Program

J28-0200 IBM 1401 Symbolic Programming System: Preliminary Specifications

J28-0207 Timing Estimates for the 1401 Generalized Sort Program

The following IBM 1401 Machine literature has been published as of the date of this bulletin:

GENEHAL INFORMATION MANUAL

D24-1401

BULLETIN

G24-1402

G24-1406

1401 Data Processing System

Special Features

Increased Storage
IBM 1401 Models A4, B4, C4, D4
IBM 1401 Models A5, B5, C5, D5
IBM 1401 Models A6, B6, C6, D6

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N. Y. Printed in U.S .A. J29-0209-1 6/60

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

