HP 13255
PROCESSOR (8085A-2) MODULE
Manual Part Mo. 13255-97252 PRIMTED $9 / 249$

FEB-14-82

DATA TERMINAL TECHNICAL INFORMATION

Printed in U.S.A.

1.0 INTRODUCTION

1.0.1 The Memory Controller Module has been designed to be used in the 2647F terminal. It is used to provide all random access memory space required for the terminal environment; this includes variable space as well as basic program and work space. It is accessed by the processor through the terminal bus.
1.0.2 The Memory Controller consists of control and timing circuitry and up to four banks of eight 64 K socketed MOS RAM chips each for a total possible capacity of 256 K bytes.
1.0.3 The memory mapping of the Memory Controller is as follows: there are two optional mapping possibilities. Which is selected depends on the presence or absence of jumper W1. If W1 is absent, the board is strapped as a 128 K byte board which answers to the addresses for variable space and basic space. If WI is present, then the Memory Controller is strapped to be used in a RAM based terminal environment, answering to the terminal code addresses as well as the above mentioned variable and basic spaces. These addresses are determined by the state of the three most significant address bits, ADDR16, ADDR17, and ADDR18 as described below.
2.0 OPERATING PARAMETERS

A summary of operating parameters for the Memory Controller is contained in tables 1.0 through 5.0.

Table 1.0 Physical Parameters

PROCESSOR (8085A-2) MODULE

Manual Part Mo. 13255-97252
 PRIRTED
 91249

FEB-14-82

MOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY RIND WITH REGARD TO THIS MATERIAL, INCLUDIMG, BUT MOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITTY AND FITEEESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights are resorved. No part of this document may be photocopied or reproduced without the prior written consent of BewlettPackard Company.

Copyright c 1982 by HEWLETT-PACKARD COMPANY

HOTE: This document is part of the 2647F DATA TERMINAL product series Technical Information Package (HP 13255).
1.0 INTRODUCTION
1.0.1 The Memory Controller Module has been designed to be used in the 2647F terminal. It is used to provide all random access memory space required for the terminal environment; this includes variable space as well as basic program and work space. It is accessed by the processor through the terminal bus.
1.0.2 The Memory Controller consists of control and timing circuitry and up to four banks of eight 64K socketed MOS RAM chips each for a total possible capacity of 256K bytes.
1.0.3 The memory mapping of the Memory Controller is as follows: there are two optional mapping possibilities. Which is selected depends on the presence or absence of jumper W1. If W1 is absent, the board is strapped as a 128 K byte board which answers to the addresses for variable space and basic space. If WI is present, then the Memory Controller is strapped to be used in a RAM based terminal environment, answering to the terminal code addresses as well as the above mentioned variable and basic spaces. These addresses are determined by the state of the three most significant address bits, ADDR16, ADDR17, and ADDR18 as described below.

2.0 OPERATING PARAMETERS

A summary of operating parameters for the Memory Controller is contained in tables 1.0 through 5.0.

Table 1.0 Physical Parameters

Table 2.0 Reliability and Environmental Information

Table 3.0 Power Supply and Clock Requirements - Measured (At +/-5\% Unless Otherwise Specified)

Table 4.0 Jumper Definitions

I	Function
1 PCA	---------------------------------------
\| Designation	In (Closed) \mid Out (Open
\|============	========================\|==================
\|	
I	
\| Switch	
1	
1 A	Data Bit $=0 \quad$ Data Bit $=1$
\| B	
1 C	
1 D	
\| E	
\| F	
\| G	
I H	
1 J	
\| K	
\| L	The switches are located on the Processor
1 M	PCA and are read by firmware to determine
\| N	the operating mode of the terminal. (refer
$1 \quad \mathrm{P}$	to tables 6.0, 6.1, and 6.2 for accessing
- Q	these bits.)
1 R	
1 S	
1 T	
I U	
I V	
I W	
\| X	
I Y	
I Z	
\mid	

Table 5.0 Connector Information

Table 5.0 Connector Information (Cont.)

Table 5.1 Connector Information (Keyboard)

Table 5.1 Connector Information (Keyboard Cont'd)

Table 6.0 Module Bus Pin Assignments

Table 6.1 Module Bus Pin Assignments

Function Performed: Read Switches J through R on Keyboard section of $8085 \mathrm{~A}-2$ processor PCA	\| Value	Bus Signal
	\| X	ADDR 15
Poll Bit: Not Applicable	X	ADDR 14
	X	ADDR 13
Module Address: ($\operatorname{ADDR} 11,10,9,4)=(0011)$	\mathbf{X}	ADDR 12
	0	ADDR 11
	0	ADDR 10
	1	ADDR 9
	X	ADDR 8
Function Specifier: $\begin{aligned} \text { ADDR } & 5=0 \\ A D D R & =1\end{aligned}$	1	ADDR 7
	X	ADDR 6
	0	ADDR 5
	1	ADDR 4
	X	ADDR 3
	X	ADDR 2
Data Bus Bit Interpretation	X	ADDR 1
	X	ADDR 0
B7 When set to 1 , Switch R is open	\|======	======
	B7	BUS 7
	B5	BUS 5
B6 When set to 1 , Switch Q is open	B4	BUS 4
	B3	BUS 3
	B2	BUS 2
	B1	BUS 1
B5 When set to 1 , Switch P is open	B0	BUS 0
	\| $======$	$=======2$
	$\begin{aligned} & \mid 1=\text { Logica } \\ & 10=\text { Logica } \end{aligned}$	$\begin{aligned} & 1=\text { Bus Loh } \\ & 0=\text { Bus Hig } \end{aligned}$
B4 When set to 1 , Switch N is open	\| $\mathrm{X}=$ Don't	
	======	$=====$
B3 When set to 1 , Switch M is open		
B2 When set to 1, Switch L is open		
B1 When set to 1 , Switch K is open		
BO When set to 1 , Switch J is open		

Table 6.2 Module Bus Pin Assignments

Table 6.3 Module Bus Pin Assignments

Table 6.4 Module Bus Pin Assignments

Table 6.5 Module Bus Pin Assignments

Table 6.6 Module Bus Pin Assignments

Function Performed: Write LED latch and trigger alarm generator (Beep)	\| Value	Bus Signal $:=======$
	X	ADDR 15
Poll Bit: Not Applicable	X	ADDR 14
	X	ADDR 13
Module Address: ($\operatorname{ADDR~} 11,10,9,4$) $=(0011$)	x	ADDR 12
	0	ADDR 11
	0	ADDR 10
	1	ADDR 9
	X	ADDR 8
Function Specifier: $\begin{aligned} \text { ADDR } 5 & =0 \\ \text { ADDR } 5 & =0\end{aligned}$	10	ADDR 7
	X	ADDR 6
	0	ADDR 5
	1	ADDR 4
	X	ADDR 3
	X	ADDR 2
Data Bus Bit Interpretation	X	ADDR 1
	X	ADDR 0
B7 When set, Beeper is triggered	\| $====$ =	=======
	\| B7	BUS 7
	B6	BUS 6
	B5	BUS 5
When set, LED \# 7 is turned on	1 B4	BUS 4
	B3	BUS 3
	B2	BUS 2
	B1	BUS 1
B5 When set, LED \#6 is turned on	B0	BUS 0
	\| $======$	======
	$\left\lvert\, \begin{aligned} & 1=\operatorname{Logice} \\ & 10=\operatorname{Logic} \end{aligned}\right.$	$\begin{aligned} & 1=\text { Bus LO } \\ & 0=\text { Bus Hi } \end{aligned}$
B4 When set, LED \#5 is turned on	\| $\mathrm{X}=$ Don't	
	======	$=$ = $=$
B3 When set, LED \#4 is turned on		
B2 When set, LED \#3 is turned on		
B1 When set, LED \#2 is turned on		
BO When set, LED \#1 is turned on		

Table 6.7 Module Bus Pin Assignments

3.0 FUNCTIONAL DESCRIPTION. Refer to the block diagram (figure 9), schematic diagram (figure 10), the timing diagrams (figures 1,2, and 3), and the parts list (02640-60249).

The 8085A-2 Processor PCA is the main controller in the terminal. It also acts as the hardware interface between the processor and the keyboard. It consists of a clock generator, processor/address logic, loader ROM/ Bus cont logic, mode latch/ interrupts, address/ data drivers, request state machine, bank select logic, keyboard decoding logic, keyboard switches/ bus driver-receiver, power on logic, and the beeper.
3.1 CLOCK GENERATOR.
3.1.1 The clock generator runs from a 19.66 MHz hybrid crystal oscillator and is capable of producing either a 9.8304 MHz clock or a 4.915 MHz clock signal to the processor. The 9.8304 MHz signal is used for normal terminal operation. The 4.915 MHz signal can be generated by grounding Test Point "GO SLOW", and is used primarily for R\&D development.
3.1.2 The two NAND gates (U67) connected to the output of the oscillator are there to allow dissabling of the crystal, as well as the insertion of another clock at U67 pin 5 for DTS70 Testing.

Under normal terminal operation "GO SLOW" is not grounded. This clears flip flop U28 and places a "0" on the input of U43 pin 4. The 19.6608 MHz oscillator signal then travels to the divide by 2 clock input of the flip flop 445 Pin 1. After dividing, the flip flop outputs two 9.8304 MHz signals directly to the processor.

When the PCA is being used in connection with development systems for R\&D development the "GO SLOW" Test Point must be grounded. This produces a " 1 " at the input of the NOR gate U37 Pin 9. The result is U43 Pin 5 is pulled low forcing the input to the second plip plop U45 Pin 1 to be the output of the first flip flop U28 Pin 9. The first flip flop (U28) divides the 19.6608 MHz signal down to 9.8304 MHZ . The second flip flop (U45) then divides the signal down again to 4.915 MHz .
3.2 PROCESSOR/ADDRESS LOGIC
3.2.1 The processor/address logic consists of two parts. The first is the 8085A-2 processor itself. It contains 16 address lines allowing up to 64 K of addressing. It has 8 of the address lines multiplexed as data lines to the processor. The second section is the Address logic which consists of two transparent latches to assure the addresses are transmitted to and remain as long as possible to the rest of the board and terminal.
3.2.2 The 8085A-2 Processor takes a clock input (U51-1,2) and divides it by two to produce a 4.915 Mz signal at pin 37 under normal operation. This signal then gets buffered out to the backplane to be used as the system clock. NOTE: There can be no other source driving the blackplane (P13)
3.2.3 Every machine cycle will be one of five types listed below.

ALE (U51-30) occurs during the first clock state of a machine cycle. The falling edge of ALE guarantees the addresses are valid.

READY (U51-35) is used to add wait states to the processor. If during a read or write cycle READY is low, the processor will wait an integral number of clock cycles for READY to go high before continuing with the read or write.

INTR (U51-10) is used to interrupt the processor. It is sampled only during the next to the last clock cycle of an instruction. If it is high, the program counter will be inhibited from incrementing and an INTA (Interrupt acknowledge) will occur.

INTA (U51-11) occurs in response to a high on the INTR line. During the interrupt acknowledge cycle INTA goes low, external logic provides a restart instruction to the processor depending on what caused the interrupt. (See section 3.4 for details on interrupts).

RESET IN (U51-36) forces the program counter to zero when low. The processor is held in the reset condition as long as this line is low.

A8-Al5 are the high order address lines.
$A D 1-A D 7$ are the lower 8 address lines as well as the data lines. The lower 8 bits of the address appear on the first clock cycle of a machine cycle and are guaranteed valid on the falling edge of ALE. During the second clock cycle the 8 lines become the data input or output depending on whether the processor is reading or writing.

NOTE: For more details on the 8085A-1, refer to INTELs "MCS 80/85 FAMILY USER`S MANUAL".
3.2.4 The 16 addresses are latched into 2 transparent 8 bit latches. (U41, U42) by the falling edge of ALE. Once latched, the addresses remain there until ALE goes high the next machine cycle.
3.2.5 A memory mapped I / O is used. Memory references between $32 k$ and $36 k$ (A15-A12 $=1000$) and Bank Select being 111 (ADDR18-ADDR16) are interpreted by the hardware as I / O operations. For firmware writing simplicity, address bits 8 and 4 are interchanged during an I/O operation.

U44 is used to detect if addresses are in the $32 k-36 k$ range. If bank selects (ADDR18-ADDR16) are 111 then (not)IOEN (U73-5) will be low. If both these situations occur, U73-4 will go high. This causes U72 to swap BADDR4 with BADDR8 and to pull (not)I/O on the backplane low.
(not)I/O on the backplane will also become active low whenever ALE is strobed. This is used by the 2647F ROM assembly in each machine cycle for the required deselecting of the power down ROMS. When this occurs, U73-2 will go high.

3.3 LOADER ROM / BUS CONTROLLER LOGIC

3.3.1 The logic in this portion of the circuit is used to serve three purposes. First, it generates the signal used to enable the bidirectional data bus driver (U12), second, it supplies the logic that is necessary to down load code into RAM for a RAM based terminal, and third it supplies the logic to clock the mode latch.
3.3.2 The logic used to down load code to RAM in a RAM based unit is not present in a typical production P.C. board. In order for terminal code to be down loaded to RAM through floppy disc, the following parts must be inserted on the processor board.

1. 1-LS244 in U11
2. 1-2532 EPROM (programed) in U21
3. $3-20 \mathrm{ohm}$ resistor packs in $\mathrm{R} 3, \mathrm{R} 4, \mathrm{R} 5$

When the parts are present and a jumper is installed the loader logic will be activated at power up until all code is loaded. The code then triggers the logic to deactivate itself. The loader is active when the data driver U 11 is on. This is true only under the following conditions.

1. The jumper is installed.
2. A READ operation is being performed with the address less than 4 K .
3. Flip Flop U34-5 is set.
4. No Interrupt acknowledge cycle is in progress.

Condition 1 is met when jumper is installed in lower left-hand corner of board. This will pull U73-8 low as well as U610-12. If condition 3 is met U610-11 will also be low. This makes LDAC go high which creates an additional wait state to the processor. Required for the slower EPROMs.

Condition 2 is met when the processor addresses lower then 4 K (U44-8 goes low) and a READ operation is performed (notRD goes low). The result is that U43-11 goes low.

Condition 3 is met when PON clocks the flip flop U34. It remains set until all the code is loaded and the software performs an "OUT CO" instruction. This causes IO/M (U51-34) high, (not)WR low, BADDR15 high, and (not)ADDR14 low. The result is U43-3 goes low which clears the flip flop U34. Condition 4 occurs only if an interrupt occurs and (not INTA) goes low (U33-2). When all 4 conditions are met, the loader ROM will be active and the data from the EPROM will be driven onto the processor data bus (DO-D7).
3.3.3 The address and data driver to the backplane (U12) is enabled when (not)BUSEN is low. (not)BUSEN goes low when

1. S1 or (not)RD is low. And...
2. Any one of conditions $1,2,3$ from above is not met.

If either S1 or (not)RD is low, U48-3 will be low. If any one of conditions $1,2,3$ from above is not met, U33-3 will be low. When U48-3 and U33-3 are both low, the address and data bus driver will be active.
3.3.4 The mode latch (U22) is clocked whenever MODCLK (UT3-13) goes from a low to a high. This occurs when the software does an "OUT 80" instruction. When this happens, the processor pulls (not)WR high, IO/(not)M high, BADDR15 high , and BADDR14 high. This will cause U55-6 to go low as well as U73-11. The result is that MODCLK goes high for one machine cycle.
3.4 ADDRESS/DATA DRIVERS
3.4.1 This section provides many of the signals to the backplane bus. The address lines (not)ADDRO - (not)ADDR15 as well as the bank select lines ADDR16 -ADDR18 are always driving the backplane. Data is transmitted as well as received through the bi-directional driver (LS640). Many of the other control signals are also driven with a continuously enabled driver U66 (S241).
3.4.2 The data driver/receiver (U12) is enabled when (not)BUSEN goes low (refer to section 3.3.3). U12-1 determines if data is to be driven onto or received from the backplane. When S1 is high, the processor is reading data. U12-1 is high and data flows from the backplane into the processor (when the device is also enabled). When S1 is low, the processor is writing and data flows from the processor to the backplane.
3.4.3 The 2647F is the only 4 X terminal in which the system clock is generated from the processor. It is mandatory that no other clock is driving the backplane (the power supply control board's system clock must be disconnected from the backplane). The terminal must use the processor's clock when the 8085A-2 processor is being used. This is needed to maintain syncronization between the 8085 A and the other modules in the terminal.
3.5 MODE LATCH / INTERRUPTS
3.5.1 This section of the logic serves two main functions. First, it uses the "OUT 80° instruction to set conditions in the logic. The software writes a set of logic conditions into the accumulator. It follows this with the OUT, which writes what's in the accumulator into the mode latch(U22). Secondly, the logic which detects, prioritizes, and executes interrupts to the procerror, resides in this section.
3.5.2 When an "OUT 80° instruction is executed, MODCLK clocks the data bits DO-D7 into the LS273 U22. These bits are interpreted as follows.

DATA BIT	MEANING
D0	1=Timer running
D1	1-Timer re-enable
	$0=$ Timer interrupt acknowledged
D2	1=Bank select bit BS1 set
D3	1=Bank select bit BSO set
D4	1=Data comm interrupt held off
D5	$1=$ Timer interrept held off
D6	1=Poll interrupt(read with next input operation)
D7	1=Bank select bit BS2 set

3.5.3 The 8085A supports hardware vectored priority interrupts on five levels. This has been allocated as follows:

PRIORITY	INTERRUPT ADDR	SOURCE	CAN FIRMWARE DISABLE
Lowest	30	10 mSec Timer	Yes
	40	Data Comm	Yes
	50	(not)ATN2	No
	60	NOT USED	-
Highest	70	Test Point	No

The 10 mSec Timer and data comm interrupts can be disabled by an out 80 instruction in the firmware. The disables provide a method of masking undesired interrupts so that interrupts may be re-enabled during processing of interrupts of intermediate priority. Lower priority interrupts are masked off at entry to the interrupt processing routine, then interrupts are enabled, thus providing that higher priority interrupts may be acknowledged. Subsequent interrupts from the device currently being processed may be considered either higher or lower than the interrupt currently being processed, according to whether it itself is masked.
3.5.4 The mode latch can disable the timer and data comm. interrupts by setting bits D5 and D4 respectively in the mode latch (U22). The disable signals go to U38-10 and U38-5 respectively and preven: the timer or data comm. interrupts irom being detected. U18, U19, U110, and U111 form a divide by 49152 circuit which divides the 4.915 Mhz . system clock down to 100 Hz (10 millisecond period). At Power On U2212,9 comes up low which clears out the entire counter timer. When the mode latch is then set with U22-12 high, the timer begins counting clock pulses. After 10 milliseconds U19-10 goes from a high to a low. If the TIM RE-EN (U22-9) has been set high, U110-8 will be clocked low, causing a timer interrupt. Whatever is requesting an interrupt will pass its interrupt through the holding latch (U36) into the priority encoder (U35). If any of the inputs to the priority encoder are low, an interrupt signal is sent to the processor from U35-15. The encoder prioritizes the interrupts and places the interrupt address of the highest priority interrupt on its output (U35-6,7,9). The interrupt will be unable to reach the processor if the bank selects are being switched and latched into U56 in the bank select portion of the logic. The software expects that data to be there regardless of an interrupt so U510-10 will go low holding off any interrupts to the processor until U56 finishes latching its bank select data. When the processor finally gets the interrupt signal, it then performs an interrupt acknowledge cycle by pulling (not)INTA low (U51-11). When this occurs, U36 latches in the interrupts. U22 then drives the interrupt address onto the processor data bus. The processor then jumps to the vectored address that holds the routine for that specific interrupt source (ie. timer, data comm., test point, or (not)ATN2).

3.6 BANK SELECT LOGIC

3.6.1 This portion of the logic is the most difficult to understand The algorithm is complex and the timing is critical. It is not advised that any changes to this portion of the circuit is made without first carefully understanding its entire operation and then testing it thoroughly.

This logic provides the processor with the ability to address more than the 64K of memory the processor alone only addresses. The software is used to set logic bits called bank select bits, to increase the address lines from 16 to 19. The new address lines ADDR16, ADDR17, and ADDR18 are generated through the logic in this circuit which in turn is set from the firmware. Because an additional 3 address lines are now available, a total of 8 (2 raised to the third power) banks of 64 K is now available for the terminals architecture. The 2647F is designed with the architecture structure listed below.

$\begin{aligned} & \text { ADDR18 } \\ & \text { (BS2) } \end{aligned}$	ADDR17 (BS1)	$\begin{gathered} \text { ADDR16 } \\ (\text { BSO }) \end{gathered}$	ROM OR RAM	1 MAIN PURPOSE			
0	0	0	ROM	MAIN CODE			
0	1	0	ROM	MAIN CODE			
1	0	0	RAM	STACK, VAR, BUFFER			
1	1	0	RAM	WORK SPACE			
1	1	1	RAM	DSPLY MEM., I/O			
64K							
I	I	1 I	1	1 \|			
I	1	1 I	I	\|Disply			
	1	1 I	1	\|Memory			
48K 1------	\|-----			48K\|------			
,	1	\|Common	\| Work		1		
	,	\|Memory ${ }^{\text {\| }}$	\|Space		36K\|------		
\| Main		\|		\|		\| I/O	
\| Code	\| Main	\| ie.		ie. \|	32K\|------1		
1	\| Code	\| Stack		\| Basic		1 1	
,		\| Variab			1 I		
,	1	\| Buffer ${ }^{\text {l }}$	1 \|	1 \|			
I	I	\|		1 \|	1 1		
I	1	1 I	1 \|	11			
1	,	I	1 I	11			
,	1	1 \|	I	1 i			
OK -----	010	100	110	111			
OOO ROM	010	100	110	111			
ROM	ROM	RAM	RAM	RAM			

The bank select logic algorithm was created to minimize the amount of additional firmware needed to switch to alternate banks of 64K. The hardware actually reads some of the software coming from ROM to the processor and anticipates the need to write or read to an alternate bank of memory. Once anticipated, it switches to the necessary banks for the proper number of memory cycles before returning to the original bank. The processor itself (8085A) has no knowledge of what bank the information it is reading from or writing to.

A different bank of 64 K can be reached several different ways (see flow chart, figure 4)

1. Any stack operation will automatically read or write to the stack on bank 100 and return to the bank specified by the mode latch. (see figure 5 and section 3.6.2)
2. As long as the previous instruction was not an $O U T$ with $A=0$ (the 8 bits in the second byte of the OUT is specified as ABCDEFGH) any memory access with the addresses above 48 K will go to the common page (100) until either an address is below 48 K or and OUT is performed with $A=0$. If below 48 K , it returns to mode latch bank select bits BS2,BS1,BSO. If any OUT instruction occurs following a $>48 \mathrm{~K}$ access see 3 or 4 below. (see figure 6 and section 3.6.3)
3. If an OUF is read with $A=0$ and $B=1$ the following instruction will execute its memory read or write on the bank specified by $O P Q$ in the accumulator (the accumulator's 8 bits are specified as JKLMNOPQ) and return to the bank specified by the mode latch. (see figure 8 and section 3.6.4)
4. If an OUT is read with $A=0$ and $B=0$ the following instruction will execute its memory read or write on the bank specified by FGH of the second byte of the OUT instruction. It will return to the bank specified by the mode latch. (see figure 7 and section 3.6 .5)

These four ways of changing banks with the bank select logic can best be understood through 4 examples. The following four sections each explain one of the 4 approaches listed above. The examples of software code were made up for illustration purposes only.

NOTE: The OUT instruction contains 2 bytes
One is the OUT itself
The other is the 8 bits ABCDEFGH in the second byte of the OUT.
-
The 8 bits in the accumulator are specified JKLMNOPQ

3.6.2 EXAMPLE 1 (Changing the bank select using stack operations.)

When the software must "CALL" a routine it must save the current program counter in RAM so that when it "RETURN"s it can call back that address to the program counter within the processor and resume. When a "CALL" instruction is read from ROM into the processor the bank select logic recognizes it as a CALL instruction by decoding the processor data bus (DO-D7) in a PROM (U71). The PROM only reads the bus during an op-code fetch ($\mathrm{U} 58-12,13$ are both high). If the instruction read is a Stack operation, like a "CALL" the PROM (UT1) outputs a high on U7112. Because U48-4 is also high at this time, U69-15 becomes low. A low input signifies the counter (U69) should load the initial count from its inputs ($U 69-11,12,14$) into the counter on the next rising edge of its CLK input (U69-7).Refer to figure 5. The initial count originates from the PROM also (U71). The initial count determines the number of machine cycles aeeding to be performed before switching to the COMMON bank (100). This depends on the stack instruction being executed. The PROM contains this info for each instruction and has the following interpretation.

PROM OUTPUTS
(71)

04	03	02
--	--	-
1	1	1
0	1	1
0	0	1
0	0	0

NUMBER OF ADDITIONAL
MEMORY CYCLES BEFORE SWITCHING TO ALTERNATE BANK.

1
2
3

For this example a CALL instruction has 5 cycles. The first is the opcode fetch to read the CALL, the second and third is to read the new address, and the fourth and the fifth is to move the address in the program counter to the stack (bank 100). In this case, because we have already read the op-code, there are just 2 more cycles needed before switching to bank 100. From the table it shows the values $04=0,03=0$, and $02=1$. When the fourth cycle occurs, U69-13 goes high. This causes U57-1 to go high which multiplexes $1 B, 2 B$, and $3 B$ (100) to the output 1Y, 2 Y , and 3 Y . The bank select 100 is driven onto the backplane through the enabled driver U68-1. The bank remains at 100 until the next instruction is fetched. When this occurs, U58-11 goes low during the opcode fetch. U411-8 will then go low causing the counter U69 to clear. This results in the U571 to return to its low state causing the original bank select values from the mode latch (BSO,BS1,BS2) to be driven onto the backplane (000 or 010). This example is true for all stack operations. The only differences are the number of cycles the logic must wait before switching to the codmon bank (100).
3.6.3 EXAMPLE 2 Changing bank select by addressing above 48K. (Refer to figure 6).

If memory is accessed above 48 K , the bank select bits will switch to the common page 100 for that accesss. For example, the instruction "STA F000" moves the contents of the accumulator to F000 ,which is above 48K. When F000 is placed on the address bus, BADDR14 and BADDR15 are both high. This causes U33-8 to be low, which in turn makes U57-1 high. This selects the 1B,2B,3B values 100 ($U 57-10,6,3$). The bits 100 are driven onto the backplane through U68-4,6,8. The memory access is then performed on the common bank. This is all provided that U68-1 is enabled. If the previous instruction to the STA was an OUT with $A=0$, then a different bank other than 100 is trying to be accessed. When this occurs, U48-11 will be high, which disables U68-1 and enables U6819, hence the bank select bits will come from U56.

3.6.4 EXAMPLE 3 Changing bank select by using OUT instruction with $A=0$ and $B=1$

(Refer to figure 8)
This method is taken when the bank select bits are to originate from the lower 3 bits in the accumulator OPQ. To illustrate this, suppose the following code is read from ROM

> OUT 4 F
> MOV A,M
> STA FOOO

The purpose of this is to move from memory (Address in H,L registers) on the bank specified by the lower three bits in the accumulator to the accumulator and then move that from the accumulator to location F000.

When the OUT instruction writes the contents of the accumulator to location 4F4F (01001110100111), U510-6 goes high as well as REQ (U589). The result is the multiplexer U56 clocks in the inputs depending on which set of inputs is selected (U56-10). In this case BADDR14=1 and data bits D2,D1,DO are clocked into the multiplexer. D2,D1,D0 are the lower three bits of the accumulator OPQ. These bits become the bank select bits during the following instruction. The OUT has also caused U59-5 to go high, which makes the counter U69 ready to load the count value (U69-15 low) on the next (not)MEMCYC (U69-7). The opcode MOV is read next from ROM. The PROM (UT1) decodes MOV similarly as in EXAMPLE 1 and places the value 111 on the inputs to the counter (U6914,12,11). At the end of the MOV opcode fetch, the counter clocks these values which causes OH (U69-13) to go high. The flip flop U59 also clocks a high to its output pin 9. Because U48-12,13 are both high now, U68-19 is enabled, which drives the outputs of U56 to the backplane. The bank selects are now set at $O P Q$ and are ready for the processors next machine cycle. The next cycle is to read from memory. This is now done on the new bank OPQ. Following this read from the changed bank, the processor is ready to do an opcode fetch of the STA. An opcode fetch causes the signals SO and S1 to be high. U58-11 then goes low, which clears the flip flop U59-13 and the counter U69-9. This in turns disables U68-19 and re-enables U68-1. The opcode is then read from the bank specified by the mode latch (U5711,5,2).

3.6.5 EXAMPLE 4 Changing the bank select by using the OUT instruction

 with $A=0$ and $B=0$(Refer to figure 7)
This approach is used when the bank select bits are to originate from the lower 3 bits on the address bus during an OUT operation. The sequence of steps is almost identical to EXAMPLE 4, except that because $B=0$, BADDR14 is now low instead of high. When $U 56$ gets clocked during the write cycle of the OUT operation, $C 1, B 1, A 1$ (U56-9,4,3) are now clocked into the multiplexer. These bits are simply the lower three addresses BADDR2,1,0. Because the address bus is simply the second byte of the OUT instruction repeated a second time (0606 for figure 7), BADDR2,1,0 is really FGH in the second byte of the OUF (100 for this example). All other operations are the same as in EXAMPLE 3.

3.7 REQUEST STATE MACHINE

3.7.1 This portion of the logic is used to provide the "READY" signal to the processor, which if not active, will cause the processor to wait indefinitely until "READY" returns to its normal high state. The signal (not)REQ is also generated in this section. When low, it tells the other modules as well as its own that the processor is ready to write or read. Addresses are stable during a request and data is valid during the entire cycle of a write request. Figure 1 shows the relationship of (not)REQ to the other relevant signals on the backplane. It should be noted that data must be valid on the backplane 115 nanoseconds prior to the rising edge of T3 for a memory read, Not on the rising edge of (not)REQ (like the other 4X processor protocol required).
3.7.2 The processor can enter into a wait state by two possible methods. Either an external module can pull (not)WAIT low (U410-12) or the processor module can (U410-13). Due to timing requirements, the processor module will always insert at least 1 wait state in every machine cycle. (Refer to figure 3) ALE is strobed every machine cycle. When this occurs, it toggles U210-5 high. The rising edge of SYS CLK during T1 then toggles U211-6 low, causing the processor to enter into a wait state after T2. Provided Test Point 4 "EPROM" is not grounded or the "LOADER ROM" active (LDACT is high), U311-10 will remain high. U211-6 going low causes U311-8 to therefore go low also. The result is the flip flop U210-5 will be cleared. The rising edge of T3 then toggles U211-6 back, which returns the processor to the ready state. The net result is 1 wait state is added to the machine cycle.

If either Test Point 4 ("EPROM") is grounded or the loader ROM is active, LDACT (U47-5) is high, then two wait states will be added to each machine cycle. This occurs because U311-10 is now low. Unlike the last case when U211-5 goes high, the flip flop U210-5 is not cleared. Another clock cycle later causes flip flop U211-7 to go low. The flip flop U210-5 is finally cleared and READY returns to its active state the following rising edge of SYS CLK. (see figure 3). The net result is 2 wait states are added to each machine cycle.

In order for an external module to create a wait state, it must pull (not)WAIT low 120 nanoseconds prior to the rising edge of the processor generated wait state (see figure 2).
3.7.3 A request is generated whenever a (not)RD or (not)WR cycle is performed. If either of these signals is low U210-12, the input to the flip flop is also low (see figure 2). The rising edge of T2 clocks the output U210-9 low, which when ORed with the input, produces a low on U411-3. This is the asserted time of (not)REQ. When (not)RD or (not)WR returns high during $T 3$, the input U411-2 also returns high, which in turn returns (not)REQ P1-Y to the inactive high state.
3.8 POWER ON LOGIC
3.8.1 The firmware can disable the keyboard reset before and after critical sections of the code. If enabled, the PON signal (P1-D) is pulled low by the user pressing the reset key, which resets the hardware, and the processor begins at location 00 when released.
3.8.2 The reset can be disabled by the firmware writing to the keyboard as shown in table 6.7. This causes MODE SEL U45-13 to go low, which resets the Plip flop output U45-9. With U410-10 now low, any reset to the keyboard is no longer passed through U410-8. The result is the reset is held off until enabled. When the firmware sets the flipflop output U45-9, the keyboard reset is then enabled. A high to U410-9 (RESET key pressed) causes the flipflop output U28-5 to go high on the next system clock. U410-5 will then go high, provided a memory cycle is not in progress (U410-4 high). U47-10 will go low pulling PON low on the backplane.

On the system clock following the release of the reset flipflop, U28-5 is pulled low. The capacitor C10 then begins charging up. This is to assure that bouncing in the reset line is not transmitted to the backplane. After charging up to the threshold of U67, the backplane PON is returned to its active high state.

3.9 KEYBOARD DECODING LOGIC

3.9.1 This section of the logic is used to provide some of the control signals for both the interface logic as well as the keyboard itself. The keyboard can only be addressed when the bank selects are 111 and memory is being addressed between 32 k and 36 k . The keypoard module is specified by (not)ADDR11, 10,9,4 = 1100. As mentioned earlier, addresses 4 and 8 are swapped during an I/O operation. The addresses 5 and 7 are then used to specify which keyboard function is to be performed.
3.9.2 IO (U39-6) will go high when the processor is addressing between 32 K and 36 K and the bank select bits are set at 111 . U55-8 is activated low when the processor has address bit BADDR8,9,10,11 $=1100$. When these two signals are active, the decoder is finally enabled when the (not)LREQ signal (U39-5) is strobed low. Tables 6.0 through 6.7 indicate the function specifiers for each keyboard function (ie. Table 6.2 indicates the function specifier ADDR $7=1$ AND ADDR $5=1$ in order to perform the function of reading keyboard switches S through Z). Transistor Q1 is used to guarantee that LED EN is below ground when off, to assure no flickering occurs of the LEDs on the keyboard.
3.10 BEEPER
3.10.1 The function of this section is to provide a 800 Hz signal to the keyboard speaker when triggered by the firmware. Table 6.6 shows that when $\operatorname{BADDR} 5=0$ and $\operatorname{BADDR} 7=0$ and the keyboard is addressed, the decoder (U39) pulls (not)LED EN low (U37-2). When (not)BUST is also low (U37-2), the flip flop is clocked (U110), causing the output to go high (Pin 5). The 800 Hz signal originating from the timer interrupt counter is passed through U29-6 and driven to the speaker (P2-B) through the current limiting resistor R25. (not)Q of the flipflop (U110-6) goes low when the flipflop is clocked. After approximateiy 100 milliseconds, the capacitor C9 has charged up triggering U511-5 low and reseting the flipflop to its original state. This will cause U29-4 to go low, which prevents the 800 Hz signal from passing through. The net result is a 100 millisec a signal of 800 Hz is sent to the speaker.
3.11.1 This section of the logic contains two main functions. First, it has 24 option switches (A through Z), which are set by the user. Their function is dependent on the software written for the terminal. The switches are separated into three groups of eight. Each set of eight is driven through a LS240 onto the keyboard data bus when enabled.

Enabling i.s done according to the function specifiers in tables 6.0 through 6.2. When the switch is open, it is at a logic 1, and when closed it is at a logic 0 .
3.11.2 The second function of this section is to drive and receive data from the backplane to the keyboard data bus. Any time the processor is writing, S1 will be low. This causes U13-1,19 to go low, which then drives the backplane data onto the keyboard data bus, even if the processor is not writing to the keyboard. This will not create any problems because the keyboard ignores the data bus unless a keyboard function signal is active (ie. MODE SEL). The data is inverted onto the keyboard data bus. The processor reads from the keyboard through the buffer U23. When the keyboard module is addressed, U38-12,13 are both low. If a read is being performed by the processor, (not)RD is also low causing U311-2 to then go high. As long as test point "KYB DIS" is not grounded, U311-3 will then go low enabling the driver U23. Data is noninverted from the keyboard data bus onto the backplane. If a problem is suspected with the keyboard section of this PCA, "KYB DIS" can be grounded which disconnects the keyboard section of the PCA. The keyboard interface used on the other $4 X$ products can be installed in the backplane to confirm if the -60249 keyboard logic is the cause of the original problem.

FIGURE 1: PROCESSOR BOARD TIMING

NOTES:

1) All times in nanoseconds

- = EARLIEST TIME
) - = LATEST TIME

Figure 1
02640-60249 Timing Diagram FEB-14-82

FIGURE 2: PROCESSOR BOARD TIMING (2 WAIT STATES)

NOTES:

1) All times in nano seconds
2) - =earliest time
3) -- = LATEST TIME

Figure 2

FIGURE 3: READY STATE MACHINE

Q

$\overline{Q 3}$

I WAIT STATE GENERATED
(U3Il-10) IS HIGH
2 WAIT STATES GENERATED
cu3い-10) 15 Low

FIGURE 4: BANK SELECT ALGORITHM

EXAMPLE I

FIGURE 5: CHANGING BANK SELECTUSING STACK OPERATION

(U68-12
\qquad

SOFTWARE NOTES	GIVEN MODE LATCH	
ADDRESS INSTRUCTIONS	$B S 2=0$	
$O O 22$	CALL OO28	$B S 1=1$
$-\quad-28, ~ B S O=0$		

EXAMPLE 2

FIGURE 6: CHANGING BANK SELECT BY ADDRESSING ABOVE 48 K

ADDRESS 16
(U68-12) Low

SOFTWARE NOTES
address
0010
0014

GIVEN MODE LATCH
$B S 2=0$
$B S 1=1$
$B S O=O$

FIGURE 7: CHANGING BANK SELECT BY USING OUT INSTRUCTION WITH $A=O, B=O$

ADDRESS 16
U68-12

SOFTWARE NOTES GIVEN MODE LATCH
$0040 \quad$ OUT $06 \quad B S 2=0$
$0042 \quad$ MOV MA BSI 2 .
$0043 \quad M V I \quad A, F F \quad B S O=0$
Figure 7
$06=00000110$
HEX = BINARY

SECOND byte of out instruction = abcdefgh

ADDRESS 18
ADDRESS 17
(UG8-14) HIGH
ADDRESS 16
SOFTWARE NOTES
ADDRESS INSTRUCTION
OUT 4 F
0032 MOV A, M
$\begin{array}{ll}0032 & \text { MOV A,M } \\ O O 33 & S T A ~ F O O O\end{array}$

GIVEN MODE LATCH
$B S 2=0$
$B S 2=0$
$B S 1=1$
$B S O=0$
ACCUMULATOR $=00000111$

Figure 8

(2) $(x-y-2) \begin{aligned} & x=\text { SCHEMATIC PAGE } \\ & Y=\text { ROW } \\ & z=C O L A M N\end{aligned}$

Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
	02640-60249	9	1	Processor /KEYRDARD IF PCA	28480	$02640 \cdots 60249$
Cl_{1}	18130-2879	7	5	CAPACJTOR FXD EUP $+50-13 \%$ ESUCD AL	c3480	0180-2879
Ca	0180-2879	7		CAPACITOR FXD E2UF+50-10\% 25UDC AL.	33480	0180-2879
c3	0180-9879	7		CAPACITOR FXD OIJF+59 - 10% ESUDC AI.	28483	1180-2879
C_{5}	0160-4557	0	3	CAPACITOR -FXD, 1UF + - 20\% 50UDC CER	16299	CACO4X7R104M0S0A
cs	$0160 \cdots 455 \%$	0			$16: 299$	CAC04XVR104M053A
c6	0160-4577	0		CAPACITOR-FXD, $14 \mathrm{~F}+\mathrm{Ca}$ - 50% (IUDC CFR	16299	CACO4X7R104MOSOA
C7	0160-4554	7	25		19480	8160-4554
C8	0180-2879	7		CAPACTTOR-FXD 2 UUF+50-10\% $25 \cup D C$ AL.	29480	0180-2879
C9	0180-2879	7		CAPACJTIR - FXD EQUF+50-13\% SEVDC AL	28480	0180-2879
C10	0160-4844	8	1	CAPACTTOR -FXD 1UF + $60-20 \%$ 50UDC CER	28480	0160-484.4
${ }^{6} 11$	0180-0116	17	1		56889	1500685×903512
${ }^{6} 12$	0160-4554	7		CAPACITOR FXD , O1UF + - 20\% 50UDC CER	381800	016014554
C14	0160-455.4	7		CAPACITIOR FXD, O1UF + - 23\% SDUDC CER	C8480	3160-4554
C15	0160-455.4	7		CAPACITOR -FXD . O1UF + - 2C\% 50UDC CER	29480	0160-4554
${ }^{6} 16$	0160-4534	7		CAPACTTOR FXD , 01UF + - 23% SOUDC CER	28480	0160-4554
617	0160-4554	7		CAPACITOR FXD . O1UF + -2a\% SOUDC CER	26480	01.60-4554
C18	0160-4554	7		CAPACJTOR FXD , DIUF + 233 SOUDC RER	28489	0160-4554
C19	0160-4555	7		CAPACITOR-FXD .01UF +-20\% 50UDC CER	23480	0160.4554
C20	$0160-4554$ $0160-4554$	7		CAPACTTOR -FXD O1UF +-2J\% SOUDC SER	28480	2160-4554
Ce1	0160-4554	7		CAPACTTOR-FXD, 01UF + 2A\% SOUDC CER	28480	$0160 \cdots 4554$
$\mathrm{Cl2}$	1160-4554	7		CAPACITOR FXD. O1UF + 233 ESONDC CER	28480	0160-4554
Ce3	0160-4554	7		CAPACTTOR -FXD . 114 F + - 20% SOUDC CFR	29480	0160-4554
024	0160-4554	7		CAPAC1TOR FXD . $113 \mathrm{~F}+\cdots 23 \%$ SOUDDC CER	28480	9160-4554
ces	0160-4554	7		CAPACTIUR FXD . O1UF +-20\% SOUDC CER	29480	$0160 \cdots 4554$
c26	0160-4554	7		CAPACITIR FXO, D1bF - 2ix Sovde cer	28480	0160-4554
07	0160-4554	7		CAPACITOR - FXD, O1UF +-20\% SOVDC CER	29480	016.0-45554
C28	0160-4554	7		CAPACITIR FXX OXIJF + 20\% SOUCC CER	28480	0160-4554
CP	01.60-4554	7		CAPACTTOR FXD , OLUF + - 20\% SOUDC CER	23480	$0160-4554$
C30	0160-4554	7		CAPACITITR FXD, 91UF + 20\% S0UTC CER	28480	0160-45354
C31	0160-4554	7		CAPACTTOR - FXD . 01UF +-.20\% 50UDC CER	29480	016.014554
C,32	0160-4554	7		CAPACITOR FXD . 01uF $+20 \%$ Savde CER	28480	0160-4554
C33	0160-4554	7		CAPACTTOR-FXD , 01UF +-20\% 50VDC CER	20.480	0160104554
C34	8160-4554	7		CAPACITCR FXD , DIUF + - 20\% SOUDC CER	28483	0160-4554
cos	0160-4554	7		CAPACTTOR -FXD . $014 \mathrm{~F}+\cdots \mathrm{CO}$ 50UDC CFR	2 3 480	016.0.-4554
c36	0160-4554	7		CAPACITOR FFX , D1UF + 20\% STOUDC CER	28480	0160-4554
F1	2110-0423	8	3	FUSE 1.5A 1250 NTD . $281 \times .093$	23480	$2110 \cdots 0423$
F 2	$2110 \cdots 0423$	8		FLSE 1.5A 285 U NTD $\mathrm{EB1} \mathrm{\times .073}$	28480	2110-0423
F3	2110-0423	9		Fuse $1.5 A$ 125V NTO . $281 \times .093$	23480	2110-0423
Q1	1854-0477	7	1	TRANSTSTOR NPN 2NEC2EA SI TO-19 PD-50amb	0.4713	2ヵmeza
9%	1853-02891	9	1	TRANGTSTOR PNP 2N2907A ST TO-19 PD=4EOMW	04\%13	2N2707A
R1	0693-1025	9	6	RESTSTSR $1 \mathrm{~K} 5 \%$ 25, FC TR= $=400 /+603$	01121	CEtios
R2	1810-0279	5	6	NETWORK - RES $10.5 T P 4.7 K$ GHM $\times 9$	01121	2104.472
R6	1810-0230	8	1	NETWURK RES 10 STP10.0K DAM $\times 9$	01121	2104103
R\%	1810-0279	5		NETWORK-RES 10-6TP4, 7 K OHM $\times 9$	61121	2104472
RB	0683 -4715	0	3	RESTSTOR 4705%. 2514 FC T $5=-400 / 4600$	31121	C64715
R9	1810 02.79	5		NETWORK RES $10 . \mathrm{CTP4}$ - 7 K OHM $\times 9$	01121	2104472
R10	0683-4715	5		RESTSTRR 4730%, 5 SW F FC TE=-403/4600	31121	CB4715
R11	1810-0279	5		NETWORK-RES 10 STP 4.7 K OHM $\times 9$	01121	2164472
R12	18683-1025	9			01121	CE1025
R13	06.83-4715	0		RESISTOR 470 $5 \% .25 W$ FC TC: $=-400 /+600$	01121	CE4715
214	1010-0279	5		NETWORK RES 10 STP4.7K DRM $\times 9$	01121	2104.72
215	0683-1025	9		RESTSTOR $1 \mathrm{~K} 5 \%$, 250 FC TC $=-4001+600$	01121	criess
R16	0683-1015	7	1		01121	Cb1915
R17	0683-1025	9		RESISTOR 116 5\%, 2 EWW FG TCO $=400 /+600$	01121	CBUAEs
R1B	$0683 \cdots 1035$	1	1	RESESTR $10 \mathrm{~K} 5 \%$.2EW FC, TC= $400 / 4700$	31121	CB1035
R 19	0757-0284	7	$?$	RESTSTOR 1501%, 12 EW F TCO $=0+100$	24546	C4 $1 / 8 \mathrm{TOW} 151 \cdots \mathrm{~F}$
R20	0683-4725	2	1		31121	C6.4725
RE1	0757-0290	5	1	RESTSTOR 6.19 K 1\% . 12 FW F TC $=0+\ldots 100$	19701	MF4C1/8-T0 6191-F
R22	0757-0284	7			245.86	C4-1/8-Ti $-151-\mathrm{F}$
R23	0683-1025	9			c112.	Cul0es
R24	0683-1025	9		RESTSTGR $1 \mathrm{~K} 5 \%$. 2504 FE TC= $-409 / 8030$	91121	CB1.2es
R25	0683-4705	8	1	REststor 475%, ${ }^{\text {S }}$	01121	Cr.4705
826	$1810-0279$	5		NETWCRE RES 19 STP4.7K DAM $\times 9$	01121	2104.472
51	3101-1993	9	3	SWTTCH-RKR DTP - RKR-ASSY E-1A 05A 30UDC	ambu	31.1-1993
52	31911983	9			28480	3191-1983
83	3101-1983	9		SWTTCH RKR DTP RKR - ASSY G IA A OEA JPvDC	28480	3101-1983
TP1	0360-0535	10	4	TERMTNAL TEST POTNT PCE	39000	Grder by deseriftion
Tpa	0360-0535	0		TERMTNA TIGT POTNT PCE	00000	ORDER BY DESCRTPTION
TP3	9360-3535	0		TERMINAL IEST POENT PCE	3.3000	nrier by dechripticn
TP4	0360-0535	0		TERMINAI TES POTNT PCB	00000	orner by dmgeriptuon

Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} \mathbf{c} \\ \mathrm{D} \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
012	1920-2206	3	1	IC MISC TTL LS	01295	SNTALS643N
413	1820-1917	1	8	IC BFR TTL LS ITNE DRUR OCTL	01295	EN74LS5240N
118 419	$1820-1989$ $1820-1989$	7	2		07263 07263	$741.5393 P \mathrm{C}$ $741.5393 P \mathrm{C}$
422	1820-1917	1		ic erfr ttl lis line drve octl.	01295	SN74LS240N
บ23	1820-2024	3	2	IC DRUR TTI. LS LINE DRUR OCTL.	01295	SN74LS244N
1124	1820-1917	1		IC firr til lis line drur octl.	01295	SN74I.S240N
426	1820-1917	1		IC BFR TIT. LS LINE DRUR OCTL.	01295	SN74L.S240N
427	1820-1917	1		IC ERR TTL LS LINE DRUR OCTL	31295 01295	SN7ALSS240N SN74LS74AN
428	1820-1112	8	4	IC fF TtL l.	01295	SN74LS74AN
429	1820-1201	6	4		01295	SN74LSn8N
432	1920-1730	6	,	IC FF TTL LS D TYPE POS-EDGE-TRIG COM	01295	SN741.S273N
433	1820-1197	9	3	IC GATE TTL LS NAND RUAD 2 --INP	01295	SN74LS00N
433 435	$1820-1112$ $1820-1851$	-		IC FF TTL LS l TYPE POS-EDGE-TRIG IC ENCDR TTL	01295 01295	SN74LS74AN SN74LS148N
435	1820-1851	2	1	IC ENCDR TTLL LS		SN74LS148N
436	1820-1445	0	2	IC LChtil ls 4 bit	01295	SN74LS375N
438	1820-1208	3	2	IC GATE TTL LS OR QUAd 2-inp	01295	SN74L532N
439	1820-1216	3	1	IC DCDR THL LS 3-TO-E-LINE 3-INP	01295	SN74LSISAN
441	1820-2102	8	2	IC LCH TTL LS D - TYpe dett	01295	SN74LS373N
442	1820-2102	8		IC LCH TTi. Ls d-type octl.	01295	SN74L.S373N
443	1820-1208	3		IC gate til les or quad z-Jnp	01295	SN74LS32N
444	1820-1204	9	2	IC GATE TIL LS NAND DUAL 4 INP	01295	SN74LS20N
145	1820 -1212	9	3	IC FF TTL ILS J-K neg ediee.trig	01295	SN74LS112AN
446 1447	$1813-0143$ $1820-0471$	8	1	IC-OSCTLIATOR 9.6608 IC INU TIL HEX INT	34344 01295	$\mathrm{K} 1148-19.6608 \mathrm{MHz}$ (SN7406N
1447	1820-0471	0	1	IC INU TTL. HEX 1-.tnp	01295	5N7406N
448	1820-1201	6		IC CATE TTL LS AND QUAD 2-INP	01295	SN74LS09N
449	1820-1416	5	1	IC SCHMTTT-TRIG TTL LS INU HEX 1-INP	31295	SN74LS14N
US1	1820-2205	2	1	ic micproc nmos e-bit	346.49	P90日5A-2
453	1820-1917	1		IC EFR TTIL LIS LJNE DRUR OCTL.	01295	SN7ALSE40N
U154	1820-1917	1		IC bFR TTL LS Line drve octi.	01295	SN74LS240N
455	1820-1204	9		IC GATE TTL LIS NAND DUAL 4 -INP	91295	SN74Lszon
1156	1920-1444	9	1	IC MUXR/DATA-SEI TTI. LS 2 -toli-line quad	01295	SN74LS299n
457	1820-1438	1	2	IC MUXR/DATA SEIL TTL LS $2-\mathrm{TO-1-LINE}$ qlad	01295	SN744. S257AN
458	1820-1197	9		IC CATE TTL. LS NAND QUAD $2 \cdots$ INP	01295	SN74LS00N
459	1820-1112	8			01295	SN74LS74AN.
466	1820-1624	7	1	IC brer Tti. S OCTL. 1 -INP	01295	SN74S241N
467	1820-1425	6	1	IC SCHMITT-TRTG TTL LS NAND QUAD 2-TNP	01295	SNT4LSSI32N
468	1820-2024	3		IC DPVR TTI LS LTNE DPUR OCTL	01295	SN74LS244N
469	1820-1922	8	1	IC SHF RGTR TTI. L.S PRL--IN SERTAL OUT	01295	5N741.5166N
471	1816-1491	7	1	IC-- ROM $256 \times 476.11-5$	34371	HM1..7611-5 PROGRAMMED
U72	1820-1438	1		If muxr/data gei ttl ls $2 \cdots$ To-1-line ruad	01295	SN74LSESTAN
4110	1820-1112	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74L.S74AN
4111	1820-1212	9		IC PF TTL LS J K Neghence-trig	01295	SN741.S112AN
4210	1920-0693	8	1	IC FF TTL S D-TYPE POS-EDGE - TRIG	01295	SN74S74N
U211	132:0-1212	9		IC FF TIL LS T -K NEG-EDGE TRIG	31295	SN74LS112AN
4310	1820-1367	5	1	IC GATE TTI S AND QUAD 2 In	01295	SN74S08N
U311	1820-1197	9		IC. GATE TIL LS NAND QUAD $2-\mathrm{TNP}$	01295	5N74LS3jn
U371	1820-1144	6	3	IC GATE TTL LS NOR QUAD 2 INP	01295	SN74L.S02N
13410	1820-1201	6		IC GATE TTI. LS AND QUAD ? -INP	01295	SN74LS08N
4411	1820-1449	4	1	ic gate til s or quad 2 -inf	01295	SN74S32N
U510	1820-1201	6		IT. GATE TTL IS AND QUAD 2 -INP	31295	SN74LSI日
4511	1820-1917	1		IC bFR TTL LS LINE DRUR OCTL	01295	SN74LS240N
U610	1920-1144	6		IC GATE TTL IS NAR QUAD 2 ITNP	01295	SN74LS02N
U732	1820-1144	6		IC GATE tti is nor quad z-inf	01295	SN74LSO2N
$\times 1.51$	1200-0817	4	1	SOCkET-tc 40-CONT DIP DIP GLDR	28480	1230-0817
	$\begin{aligned} & 0460-1282 \\ & 0890-0043 \end{aligned}$	$\begin{array}{\|c} 8 \\ 8 \end{array}$		TAPE-- . SW PDE.Y RRZ TUETNC:-FLEX	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 046,0-1282 \\ & 0890 \cdots 0043 \end{aligned}$

