
HP 9000 Computer Systems

HP C/HP-UX Reference Manual

Workstations and Servers

ABCDE

HP Part No. 92453-90085

Printed in U.S.A. May 1997

E0597

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by
copyright. All rights are reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under the
copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in paragraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c) (1,2).

c
 Copyright 1989, 1991, 1992, 1993, 1994, 1996, 1997 by

HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. The dates on the title page
change only when a new edition is printed.

The software code printed alongside the date indicates the version level of the
software product at the time the manual was issued. Many product updates
and �xes do not require manual changes and, conversely, manual corrections
may be done without accompanying product changes. Therefore, do not expect
a one-to-one correspondence between product updates and manual updates.

First Edition August 1989 HP-UX: 92453-01A.07.09
Second Edition January 1991 HP-UX: 92453-01A.08.11
Third Edition August 1992 HP-UX: 92453-01A.09.17
Fourth Edition January 1994 HP-UX: 92453-01A.09.61
Fifth Edition June 1996 HP C/HP-UX A.10.32
Sixth Edition May 1997 HP C/HP-UX A.10.33

You may send any suggestions for improvements in this manual to:

Languages Information Engineering Manager
Hewlett-Packard Company
Mailstop 42UD
11000 Wolfe Road
Cupertino CA 95014-9804

iii

Preface

This manual presents reference information on the C programming language, as
implemented on HP 9000 computers. It presents information speci�c to writing
and executing C programs on the HP-UX operating system. This manual is
intended for experienced C programmers who are familiar with HP computer
systems.

Manual Organization

This manual is organized as follows:

Chapter 1 Introduction
Provides an introduction to the HP C programming language.

Chapter 2 Lexical Elements
Presents the lexical elements of HP C, including tokens,
keywords, identi�ers, constants, punctuation, and comments.

Chapter 3 Data Types and Declarations
Describes C data types, declarations, type speci�ers,
storage-class speci�ers, structure and union speci�ers,
enumerations, type names, and initialization.

Chapter 4 Type Conversions
Explains type conversions that occur when di�erent data types
are used within a program.

Chapter 5 Expressions
Describes how to form expressions in HP C and includes
information on operators and operator precedence.

Chapter 6 Statements
Provides details on HP C statements.

Chapter 7 Preprocessing Directives
Describes preprocessor directives that function as compiler
control lines.

Chapter 8 C Library Functions
Lists the header �les that de�ne the objects found in each
library and describes how to use library functions.

iv

Chapter 9 Compiling and Running HP C Programs
Describes how to compile and run an HP C program on the
HP-UX operating system.

Chapter 10 HP C/HP-UX Implementation Topics
Presents information speci�c to programming in C on HP 9000
computers.

Chapter 11 Using Intrinsics
Describes how to call the external routines known as intrinsics.

Chapter 12 The Listing Facility
Explains the listing format of the HP C compiler and describes
facilities that can be used to de�ne characteristics of the
format.

Appendix A Syntax Summary
Summarizes the HP C language syntax.

Related Information

Refer to the following materials for further information on C programming.

American National Standard for Information Systems|Programming
Language|C, ANSI/ISO 9899-1990 .

HP C Programmer's Guide|This programming guide explains how to
program in HP C and gives detailed descriptions of storage and alignment, the
optimizer, HP C debugging, and programming for e�ciency and portability.

HP-UX Floating-Point Guide|This manual describes the IEEE
oating-point
standard, the HP-UX math libraries on HP 9000 systems, performance tuning
related to
oating-point routines, and
oating-point coding techniques that can
a�ect application results.

HP-UX Reference|For HP-UX 10.30 the manpages are available in Instant
Information under the title HP-UX Reference and via the man command.
For HP-UX 10.20 the manpages are available in LaserROM and via the man
command. They document commands, system calls, subroutine libraries, �le
formats, device �les, and other HP-UX related topics.

v

HP-UX Linker and Libraries Online User Guide|This manual describes
programming in general on HP-UX. For example, it covers linking, loading,
shared libraries, and several other HP-UX programming features.

Conventions

This manual uses a variation of the Backus-Naur form to describe the HP
C language. The language is described in terms of syntactic categories
(nonterminals). Syntax descriptions de�ne the syntactic categories. The ::=
symbol following a syntactic category introduces its de�nition. Alternate
de�nitions are listed on separate lines unless preceded by \one of the following"
or an equivalent expression.

A de�nition of a syntactic category can be recursive. For example,

expression ::=

assignment-expression

expression, assignment-expression

The second alternate de�nition for expression contains expression . This allows
for expression to consist of any number of assignment-expressions , separated by
commas.

C statements are described generally, and then each statement is covered
separately. All syntactic categories are fully de�ned.

vi

NOTATION DESCRIPTION

(see margin) Change bars in the margin show where substantial
changes have been made to the manual since the last
edition.

nonitalics Within syntax descriptions, nonitalicized words
represent literals. Enter them exactly as shown. This
includes nonitalicized braces and brackets appearing
within syntactic descriptions. Nonitalicized words and
punctuation characters appear in computer font. In
the following example, you must provide both the
keyword and the trailing semicolon:

break;

italics Within syntax descriptions, italicized words denote
argument names, program names, or strings that you
must replace with an appropriate value. In the
following example, you must replace identi�er with the
name of a label you want the program to transfer
execution to at this point:

goto identi�er ;

[] Within syntax descriptions, italicized brackets
surround optional elements. For example, the
expression in the return statement is optional:

return [expression] ;
... Within examples, vertical ellipses may show where

portions of the example were omitted.

vii

Contents

1. Introduction
ANSI Mode . 1-2
Compatibility Mode . 1-2
Focus of this Manual 1-3
HP C Online Help . 1-3
Accessing HP C Help with the +help Option 1-3
Accessing HP C Help with the Front Panel 1-3
Accessing HP C Help with the dthelpview Command 1-4

2. Lexical Elements
Tokens . 2-1
Keywords . 2-2
Identi�ers . 2-3
Constants . 2-12
Floating Constants . 2-12
Integer Constants . 2-14
Enumeration Constants 2-18
Character Constants 2-18
String Literals . 2-22
Operators . 2-24
Punctuators . 2-25
Comments . 2-26

3. Data Types and Declarations
Program Structure . 3-2
Declarations . 3-3
Storage-Class Speci�ers 3-5
Type Speci�ers . 3-7
HP Speci�c Type Quali�ers 3-9
Type Quali�ers . 3-11

Contents-1

Structure and Union Speci�ers 3-14
Enumeration . 3-20
Declarators . 3-23
Type Names . 3-28
Type De�nitions Using typedef 3-30
Initialization . 3-32
Function De�nitions . 3-37
Four-Byte Extended UNIX Code (EUC) 3-41

4. Type Conversions
Integral Promotions . 4-2
Usual Arithmetic Conversions 4-3
Arithmetic Conversions 4-5
Integral Conversions 4-5
Floating Conversions 4-6
Arrays, Pointers, and Functions 4-7

5. Expressions
Operator Precedence 5-2
Lvalue Expressions . 5-4
Primary Expressions 5-5
Post�x Operators . 5-6
Array Subscripting . 5-7
Function Calls . 5-9
Structure and Union Members 5-12
Post�x Increment and Decrement Operators 5-13
Unary Operators . 5-14
Pre�x Increment and Decrement Operators 5-15
Address and Indirection Operators 5-16
Unary Arithmetic Operators 5-17
The sizeof Operator . 5-18
Cast Operators . 5-19
Multiplicative Operators 5-20
Additive Operators . 5-22
Bitwise Shift Operators 5-24
Relational Operators 5-25
Equality Operators . 5-27
Bitwise AND Operator 5-29

Contents-2

Bitwise Exclusive OR Operator 5-30
Bitwise Inclusive OR Operator 5-31
Logical AND Operator 5-32
Logical OR Operator 5-33
Conditional Operator 5-34
Assignment Operators 5-36
Comma Operator . 5-39
Constant Expressions 5-40

6. Statements
Labeled Statements . 6-2
Compound Statement or Block 6-3
Expression and Null Statements 6-5
Selection Statements 6-6
The if Statement . 6-7
The switch Statement 6-9
Iteration Statements 6-11
The while Statement 6-13
The do Statement . 6-14
The for Statement . 6-15
Jump Statements . 6-17
The goto Statement . 6-19
The continue Statement 6-20
The break Statement 6-21
The return Statement 6-22

7. Preprocessing Directives
Source File Inclusion 7-4
Macro Replacement . 7-6
Prede�ned Macros . 7-10
Conditional Compilation 7-11
Line Control . 7-15
Pragma Directive . 7-16
Error Directive . 7-17
Trigraph Sequences . 7-18

Contents-3

8. C Library Functions

9. Compiling and Running HP C Programs
Compiling HP C Programs 9-1
Compatibility Mode vs. ANSI C Mode 9-2
The cc(1) Command 9-2
Specifying Files to the cc Command 9-2
Specifying Options to the cc Command 9-3
An Example of Using a Compiler Option 9-3
Concatenating Options 9-3

HP C Compiler Options 9-4
Examples of Compiler Commands 9-27
Environment Variables 9-29
CCOPTS Environment Variable 9-29
TMPDIR Environment Variable 9-30

Compiling for Di�erent Versions of the PA-RISC Architecture . 9-30
Using +DA to Generate Code for a Speci�c Version of

PA-RISC . 9-30
Using +DS to Specify Instruction Scheduling 9-31
Compiling in Networked Environments 9-32

Pragmas . 9-33
Intrinsic Pragmas . 9-33
INTRINSIC Pragma 9-33
INTRINSIC FILE Pragma 9-33

Copyright Notice and Identi�cation Pragmas 9-34
COPYRIGHT Pragma 9-34
COPYRIGHT DATE Pragma 9-34
LOCALITY Pragma 9-34
VERSIONID Pragma 9-35

Optimization Pragmas 9-35
ALLOCS NEW MEMORY Pragma 9-35
FLOAT TRAPS ON Pragma 9-35
[NO]INLINE Pragma 9-35
[NO]PTRS STRONGLY TYPED Pragma 9-36
NO SIDE EFFECTS Pragma 9-36

Shared Library Pragma 9-36
HP SHLIB VERSION Pragma 9-36

Data Alignment Pragma 9-37

Contents-4

HP ALIGN Pragma 9-37
Data Alignment Stack 9-37
Alignment Modes 9-38
Accessing Data with the HP ALIGN Pragma 9-39

Listing Pragmas . 9-41
LINES Pragma . 9-41
WIDTH Pragma 9-41
TITLE Pragma . 9-42
SUBTITLE Pragma 9-42
PAGE Pragma . 9-42
LIST Pragma . 9-42
AUTOPAGE Pragma 9-42

Running HP C Programs 9-43

10. HP C/HP-UX Implementation Topics
Data Types . 10-1
Bit-Fields . 10-3
IEEE Floating-Point Format 10-4
Lexical Elements . 10-6
Structures and Unions 10-6
Type Mismatches in External Names 10-7
Expressions . 10-7
Pointers . 10-7
Maximum Number of Dimensions of an Array 10-8
Scope of extern Declarations 10-8
Conversions Between Floats, Doubles, and Long Doubles 10-8
Statements . 10-9
Preprocessor . 10-9
Library Functions and Header Files 10-9
The Math Library 10-9
Other Library Functions 10-10

The varargs Macros . 10-10
Example . 10-11

HP Speci�c Type Quali�ers 10-13
Location of Files . 10-14

Contents-5

11. Using Intrinsics
INTRINSIC Pragma 11-2
Examples . 11-2

INTRINSIC FILE Pragma 11-4

12. The Listing Facility
Listing Format . 12-1
Compatibility Mode 12-1
ANSI Mode . 12-1

Listing Pragmas . 12-2
Listing Options . 12-3
Identi�er Maps . 12-3
Code O�sets . 12-7
Example . 12-7

A. Syntax Summary
Lexical Grammar . A-1
Tokens . A-1
Keywords . A-2
Identi�ers . A-2
Constants . A-3
String Literals . A-6
Operators . A-6
Punctuators . A-7
Header Names . A-7
Preprocessing Numbers A-8

Phrase Structure Grammar A-9
Expressions . A-9
Declarations . A-12
Statements . A-16
External De�nitions A-17

Preprocessing Directives A-18

Index

Contents-6

Figures

2-1. C Types . 2-11
10-1. Internal Representation of Floating-Point Numbers 10-4

Tables

2-1. Special Characters 2-21
3-1. C Type Speci�ers . 3-8
3-2. Declarations using const and volatile 3-12
5-1. C Operator Precedence 5-3
7-1. Prede�ned Macros 7-10
7-2. Trigraph Sequences and Replacement Characters 7-18
9-1. HP C Compiler Options at a Glance 9-5
9-2. HP C Compiler Option Details 9-9
10-1. HP C/HP-UX Data Types 10-2
10-2. Location of Files . 10-14

Contents-7

1

Introduction

HP C originates from the C language designed in 1972 by Dennis Ritchie at
Bell Laboratories. It descended from several ALGOL-like languages, most
notably BCPL and a language developed by Ken Thompson called B.

Work on a standard for C began in 1983. The Draft Proposed American
National Standard for Information Systems--Programming Language C was
completed and was approved by the Technical Committee X3J11 on the C
Programming Language in September, 1988. It was forwarded to X3, the
American National Standards Committee on Computers and Information
Processing, early in 1989. It became an American National Standard in
December, 1989.

C has been called a \low-level, high-level" programming language. C's
operators and data types closely match those found in modern computers.
The language is concise and C compilers produce highly e�cient code. C
has traditionally been used for systems programming, but it is being used
increasingly for general applications.

The most important feature that C provides is portability. In addition,
C provides many facilities such as useful data types, including pointers
and strings, and a functional set of data structures, operators, and control
statements.

The creation of an ANSI standard for C raises the question of compatibility
with preexisting implementations of the language. For the most part, the
committee that developed the standard adopted the goal of codifying existing
practice, rather than introducing new language features that had never been
tried. They went to great lengths to minimize changes which would \break"
existing programs.

Many programs will compile and execute properly in an ANSI C environment
with no changes. In the vast majority of cases where a change is required, the
o�ending construct will be identi�ed by a warning or error message produced

Introduction 1-1

by the compiler. In a few cases, which are believed to be rare in actual
practice, certain program constructs will be accepted but will behave di�erently
under ANSI C. HP C/HP-UX is capable of producing migration warnings to
help identify code where such \quiet changes" would occur.

ANSI Mode

Unless you are writing code that must be recompiled on a system where
ANSI C is not available, it is recommended that you use the ANSI mode
of compilation for your new development. It is also recommended that you
use ANSI mode to recompile existing programs after making any necessary
changes.

Because an ANSI-conforming compiler is required to do more thorough error
detection and reporting than has been traditional among C compilers in the
past, you may �nd that your productivity will be enhanced because more errors
will be caught at compile time. This may be especially true if you use function
prototypes.

If you do not specify the mode of compilation, beginning with the HP-UX
10.30 operating system release, it defaults to -Ae.

Compatibility Mode

You may not want to change your existing code, or you may have old
code that relies on certain non-ANSI features. Therefore, a compatibility
mode of compilation has been provided. In this mode, virtually all
programs that compiled and executed under previous releases of
HP C/HP-UX will continue to work as expected.

At the HP-UX 10.20 operating system release, compatibility mode was the
default.

1-2 Introduction

Focus of this Manual

This manual presents ANSI C as the standard version of the C language.
Where certain constructs are not available in compatibility mode, or would
work di�erently, it is noted and the di�erences are described.

HP C/HP-UX, when invoked in ANSI mode, is a conforming implementation of
ANSI C, as speci�ed by American National Standard 9899-1990. This manual
uses the terminology of that standard and attempts to explain the language
de�ned by that standard, while also documenting the implementation decisions
and extensions made in HP C/HP-UX. It is not the intent of this document to
replicate the standard. Thus, you are encouraged to refer to the standard for
any �ne points of the language not covered here.

HP C Online Help

Online help for HP C is available for HP 9000 workstation and server users.
The online help can be accessed from any X Windows display device. Several
methods of invoking the HP C online help are listed below.

Note that error messages are documented in the online help.

Accessing HP C Help with the +help Option

You may access HP C online help with the command line:

cc +help

Accessing HP C Help with the Front Panel

To access HP C online help if HP C and the help system are installed on your
workstation:

1. Click on the ? icon on the HP VUE front panel.

2. The \Welcome to Help Manager" menu appears. Click on the HP C icon.

Introduction 1-3

Accessing HP C Help with the dthelpview Command

If HP C is installed on another system or you are not running the help system,
enter the following command from the system where HP C is installed:

/usr/dt/bin/dthelpview -h c

1-4 Introduction

2

Lexical Elements

This chapter describes the lexical elements of the C language, using
Backus-Naur form.

Tokens

A token is the smallest lexical element of the C language.

Syntax

token ::= keyword

identi�er

constant

string-literal

operator

punctuator

Description

The compiler combines input characters together to form the longest token
possible when collecting characters into tokens. For example, the sequence
integer is interpreted as a single identi�er rather than the reserved keyword
int followed by the identi�er eger.

A token cannot exceed 509 characters in length. Consecutive source code lines
can be concatenated together using the backslash (n) character at the end of
the line to be continued. The total number of characters in the concatenated
source lines cannot exceed 509.

Lexical Elements 2-1

Tokens

The term white space refers to the set of characters that includes spaces,
horizontal tabs, newline characters, vertical tabs, form feeds, and comments.
You can use white space freely between tokens, and extra spaces are ignored in
your programs. But note that at least one space may be required to separate
tokens. So, a character such as a hyphen (-) can take on di�erent meanings
depending upon the white space around it.

For example:

a- -1

is di�erent from

a--1

Keywords

The following keywords are reserved in the C language. You cannot use them
as program identi�ers. Type them as shown, using lowercase characters.

auto do goto signed union

break double if sizeof unsigned

case else int static void

char enum long struct volatile

const extern register switch while

continue float return __thread (HP-UX 10.30 and later)

default for short typedef

2-2 Lexical Elements

Identifiers

Identifiers

An identi�er is a sequence of characters that represents an entity such as a
function or a data object.

Syntax

identi�er ::= nondigit

identi�er nondigit

identi�er digit

identi�er dollar-sign

nondigit ::= any character from the set:

_ a b c d e f g h i j k l m n o p

q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X

Y Z

digit ::= any character from the set:

0 1 2 3 4 5 6 7 8 9

dollar-sign ::= the $ character

Description

An identi�er must start with a nonnumeric character followed by a sequence of
digits or nonnumeric characters. Internal and external names may have up to
255 signi�cant characters.

Identi�ers are case sensitive. The compiler considers upper- and lowercase
characters to be di�erent. For example, the identi�er CAT is di�erent from the
identi�er cat. This is true for external as well as internal names.

An HP extension to the language in compatibility mode allows $ as a valid
character in an identi�er as long as it is not the �rst character.

The following are examples of legal and illegal identi�ers:

Lexical Elements 2-3

Identifiers

Legal Identi�ers

Sub_Total

X

aBc

Else

do_123

Illegal Identi�ers

3xyz First character is a digit.

const Con
ict with a reserved word.

#note First character not alphabetic or .

Num'2 Contains an illegal character.

All identi�ers that begin with the underscore () character are reserved for
system use. If you de�ne identi�ers that begin with an underscore, the
compiler may interpret them as internal system names. The resulting behavior
is unde�ned.

Finally, identi�ers cannot have the same spelling as reserved words. For
example, int cannot be used as an identi�er because it is a reserved word. INT
is a valid identi�er because it has di�erent case letters.

Identifier Scope

The scope of an identi�er is the region of the program in which the identi�er
has meaning. There are four kinds of scope:

1. File Scope|Identi�ers declared outside of any block or list of parameters
have scope from their declaration point until the end of the translation unit.

2. Function Prototype Scope|If the identi�er is part of the parameter list in
a function declaration, then it is visible only inside the function declarator.
This scope ends with the function prototype.

3. Block Scope|Identi�ers declared inside a block or in the list of parameter
declarations in a function de�nition have scope from their declaration point
until the end of the associated block.

4. Function Scope|Statement labels have scope over the entire function in
which they are de�ned. Labels cannot be referenced outside of the function
in which they are de�ned. Labels do not follow the block scope rules. In

2-4 Lexical Elements

Identifiers

particular, goto statements can reference labels that are de�ned inside
iteration statements. Label names must be unique within a function.

A preprocessor macro is visible from the #define directive that declares
it until either the end of the translation unit or an #undef directive that
unde�nes the macro.

Identifier Linkage

An identi�er is bound to a physical object by the context of its use. The
same identi�er can be bound to several di�erent objects at di�erent places in
the same program. This apparent ambiguity is resolved through the use of
scope and name spaces. The term name spaces refers to various categories of
identi�ers in C (see \Name Spaces" later in this chapter for more information).

Similarly, an identi�er declared in di�erent scopes or in the same scope more
than once can be made to refer to the same object or function by a process
called linkage . There are three kinds of linkage:

1. Internal|within a single translation unit, each instance of an identi�er with
internal linkage denotes the same object or function.

2. External|within all the translation units and libraries that constitute an
entire program, each instance of a particular identi�er with external linkage
denotes the same object or function.

3. None|identi�ers with no linkage denote unique entities.

If an identi�er is declared at �le scope using the storage-class speci�er static,
it has internal linkage.

If an identi�er is declared using the storage-class speci�er extern, it has the
same linkage as any visible declaration of the identi�er with �le scope. If there
is no visible declaration with �le scope, the identi�er has external linkage.

If the declaration of an identi�er for a function has no storage-class speci�er,
its linkage is determined exactly as if it were declared with the storage-class
speci�er extern. If the declaration of an identi�er for an object has �le scope
and no storage-class speci�er, its linkage is external.

The following identi�ers have no linkage: an identi�er declared to be anything
other that an object or a function; an identi�er declared to be a function

Lexical Elements 2-5

Identifiers

parameter; and a block scope identi�er for an object declared without the
storage-class speci�er extern.

For example:

extern int i; /* External linkage */

static float f; /* Internal linkage */

struct Q { int z; }; /* Q and z both have no linkage */

static int func() /* Internal linkage */

{

extern int temp; /* External linkage */

static char c; /* No linkage */

int j; /* No linkage */

extern float f; /* Internal linkage; refers to */

/* float f at file scope */

}

Two identi�ers that have the same scope and share the same name space
cannot be spelled the same way. Two identi�ers that are not in the same scope
or same name space can have the same spelling and will bind to two di�erent
physical objects. For example, a formal parameter to a function may have the
same name as a structure tag in the same function. This is because the two
identi�ers are not in the same name space.

If one identi�er is de�ned in a block and another is de�ned in a nested
(subordinate) block, both can have the same spelling.

For example:

{

int i; <---A

.

. <---B

.

{

float i; <---C

. <---D

.

.

2-6 Lexical Elements

Identifiers

} <---E

.

. <---F

.

} <---G

In the example above, the identi�er i is bound to two physically di�erent
objects. One object is an integer and the other is a
oating-point number.
Both objects, in this case, have block scope. At location A, identi�er i is
declared. Its scope continues until the end of the block in which it is de�ned
(point G). References to i at location B refer to an integer object.

At point C, another identi�er is declared. The previous declaration for i is
hidden by the new declaration until the end of the block in which the new i is
declared. References to the identi�er i result in references to a
oating-point
number (point D). At the end of the second block (point E), the
oating-point
declaration of i ends. The previous declaration of i again becomes visible, and
references to identi�er i at point F reference an int.

Storage Duration

Identi�ers that represent variables have a real existence at run time, unlike
identi�ers that represent abstractions like typedef names or structure tags.
The duration of an object's existence is the period of time in which the object
has storage allocated for it. There are two di�erent durations for C objects:

1. Static|An object whose identi�er is declared with external or internal
linkage, or with the storage-class speci�er static, has static storage
duration. Objects with static storage duration have storage allocated to
them when the program begins execution. The storage remains allocated
until the program terminates.

2. Automatic|An object whose identi�er is declared with no linkage, and
without the storage-class speci�er static, has automatic storage duration.
Objects with automatic storage duration are allocated when entering a
function and deallocated on exit from a function. If you do not explicitly
initialize such an object, its contents when allocated will be indeterminate.
Further, if a block that declares an initialized automatic duration object is
not entered through the top of the block, the object will not be initialized.

Lexical Elements 2-7

Identifiers

Name Spaces

In any given scope, you can use an identi�er for only one purpose. An
exception to this rule is caused by separate name spaces. Di�erent name spaces
allow the same identi�er to be overloaded within the same scope. This is to say
that, in some cases, the compiler can determine from the context of use which
identi�er is being referred to. For example, an identi�er can be both a variable
name and a structure tag.

Four di�erent name spaces are used in C:

1. Labels|The de�nition of a label is always followed by a colon (:). A label
is only referenced as the object of a goto statement. Labels, therefore, can
have the same spelling as any nonlabel identi�er.

2. Tags|Tags are part of structure, union, and enumeration declarations.
All tags for these constructs share the same name space (even though a
preceding struct, union or enum keyword could clarify their use). Tags can
have the same spelling as any non-tag identi�er.

3. Members|Each structure or union has its own name space for members.
Two di�erent structures can have members with exactly the same names.
Members are therefore tightly bound to their de�ning structure. For
example, a pointer to structure of type A cannot reference members from a
structure of type B. (You may use unions or a cast to accomplish this.)

4. Other names|All other names are in the same name space, including
variables, functions, typedef names, and enumeration constants.

Conceptually, the macro prepass occurs before the compilation of the
translation unit. As a result, macro names are independent from all other
names. Use of macro names as ordinary identi�ers can cause unwanted
substitutions.

Types

The type of an identi�er de�nes how the identi�er can be used. The type
de�nes a set of values and operations that can be performed on these values.
There are three major categories of types in C|object type, function type, and
incomplete type.

2-8 Lexical Elements

Identifiers

I. Object Type

There are 3 object types|scalar, aggregate, and union. These are further
subdivided (see �gure 2-1).

1. Scalar|These types are all objects that the computer can directly
manipulate. Scalar types include pointers, numeric objects, and
enumeration types.

a. Pointer|These types include pointers to objects and functions.

b. Arithmetic|These types include
oating and integral types.

i. Floating: The
oating types include the following:

oat|A 32-bit
oating point number.
double|A 64-bit double precision
oating point number.
long double|A 128-bit quad precision
oating point number.

ii. Integral: The integral types include all of the integer types that
the computer supports. This includes type char, signed and
unsigned integer types, and the enumerated types.

char|An object of char type is one that is large enough to store
an ASCII character. Internally, a char is a signed integer.

Integer|Integers can be short, long, int, or long long; they
are normally signed, but can be made unsigned by using the
keyword unsigned with the type. In C, a computation involving
unsigned operands can never over
ow; high-order bits that do not
�t in the result �eld are simply discarded without warning. A
short int is a 16-bit integer. The int and long int integers are
32-bit integers. A long long int is a 64-bit integer. Integer types
include signed char and unsigned char (but not \plain" char).

Enumerated|Enumerated types are explicitly listed by the
programmer; they name speci�ed integer constant values. The
enumerated type color might, for example, de�ne red, blue, and
green. An object of type enum color could then have the value
red, blue, or green. As an extension to the HP C compiler,
it is possible to override the default allocation of four bytes for
enumerated variables by specifying a type in the declaration. For

Lexical Elements 2-9

Identifiers

example, a short enum is two bytes long and a char enum is one
byte.

2. Aggregate|Aggregate types are types that are composed of other
types. With some restrictions, aggregate types can be composed of
members of all of the other types including (recursively) aggregate
types. Aggregate types include:

a. Structures|Structures are collections of heterogeneous objects.
They are similar to Pascal records and are useful for de�ning
special-purpose data types.

b. Arrays|Arrays are collections of homogeneous objects. C arrays can
be multidimensional with conceptually no limit on the number of
dimensions.

3. Unions|Unions, like structures, can hold di�erent types of objects.
However, all members of a union are \overlaid"; that is, they begin at
the same location in memory. This means that the union can contain
only one of the objects at any given time. Unions are useful for
manipulating a variety of data within the same memory location.

II. Function Type

A function type speci�es the type of the object that a function returns. A
function that returns an object of type T can be referred to as a \function
returning T", or simply, a T function.

III. Incomplete Type

The void type is an incomplete type. It comprises an empty set of values.
Only pointers and functions can have void type. A function that returns
void is a function that returns nothing. A pointer to void establishes a
generic pointer.

2-10 Lexical Elements

Identifiers

Figure 2-1 illustrates the C types.

Figure 2-1. C Types

Lexical Elements 2-11

Constants

A constant is a primary expression whose literal or symbolic value does not
change.

Syntax

constant ::=
oating-constant

integer-constant

enumeration-constant

character-constant

Description

Each constant has a value and a type. Both attributes are determined from its
form. Constants are evaluated at compile time whenever possible. This means
that expressions such as

2+8/2

are automatically interpreted as a single constant at compile time.

Floating Constants

Floating constants represent
oating-point values.

Syntax

oating-constant ::=

fractional-constant [exponent-part] [
oating-su�x]

digit-sequence exponent-part [
oating-su�x]

fractional-constant ::=

[digit-sequence] . digit-sequence

digit-sequence .

2-12 Lexical Elements

Floating Constants

exponent-part ::=

e [sign] digit-sequence

E [sign] digit-sequence

sign ::=

+

-

digit-sequence ::=

digit

digit-sequence digit

oating-su�x ::=

F

f

L

l

Note Su�xes in
oating-constants are available only in ANSI mode.

Description

A
oating constant has a value part that may be followed by an exponent part
and a su�x specifying its type. The value part may include a digit sequence
representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part. The exponent includes an e or an
E followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part must be used; either the
period or the exponent part must be used.

The format of
oating-point numbers is given in Chapter 10, \HP C/HP-UX
Implementation Topics."

A
oating constant may include a su�x that speci�es its type. F or f speci�es
type float (single precision). L or l speci�es long double (quad precision).
The default type (unsu�xed) is double.

Lexical Elements 2-13

Floating Constants

Examples

3.28e+3f
oat constant = 3280

6.E2F
oat constant = 600

201e1L long double constant = 2010

4.8 double constant = 4.8

Integer Constants

Integer constants represent integer values.

Syntax

integer-constant ::=

decimal-constant [integer-su�x]

octal-constant [integer-su�x]

hex-constant [integer-su�x]

decimal-constant ::=

nonzero-digit

decimal-constant digit

octal-constant ::=

0

octal-constant octal-digit

hexadecimal-constant ::=

0x hexadecimal-digit

0X hexadecimal-digit

hexadecimal-constant hexadecimal-digit

nonzero-digit ::= any character from the set

1 2 3 4 5 6 7 8 9

2-14 Lexical Elements

Integer Constants

octal-digit ::= any character from the set

0 1 2 3 4 5 6 7

hexadecimal-digit ::= any character from the set

0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

integer-su�x ::=

unsigned-su�x [length-su�x]

length-su�x [unsigned-su�x]

unsigned-su�x ::= any character from the set

u U

length-su�x ::=

long-su�x

long-long-su�x

long-su�x ::= any character from the set

l L

long-long-su�x ::= any character from the set

ll LL Ll lL

Note The u and U su�xes are available only in ANSI mode (-Aa
option).

Note The ll, LL, Ll, and lL su�x is not available under strict
ANSI (-Aa) compilation mode.

Lexical Elements 2-15

Integer Constants

Description

An integer constant begins with a digit, but has no period or exponent part. It
may have a pre�x that speci�es its base (decimal, octal, or hexadecimal) and
su�x that speci�es its type.

The size and type of integer constants are described in Chapter 10, \HP
C/HP-UX Implementation Topics."

Octal constants begin with a zero and can contain only octal digits. Several
examples of octal constants are:

077 01L 01234567 0222l

Hexadecimal constants begin with either 0x or 0X. The case of the x character
makes no di�erence to the constant's value. The following are examples of
hexadecimal constants:

0xACE 0XbAf 0x12L

The su�x L or l stands for long. The su�x ll, LL, lL, or Ll stands for long
long. The su�x U or u stands for unsigned. These su�xes can be used on all
three types of integer constants (decimal, octal, and hexadecimal).

The type of an integer constant is the �rst of the corresponding list in which its
value can be represented, as shown:

Unsu�xed decimal: int, unsigned long int.
Unsu�xed octal or hexadecimal: int, unsigned int.
Su�xed by the letter u or U: unsigned int.
Su�xed by the letter l or L: long int, unsigned long int.
Su�xed by both the letters u or U and l or L: unsigned long int.
Su�xed by the letters ll, LL, Ll, or lL: long long int, unsigned long

long int.
Su�xed by both the letters u or U and ll, LL, Ll, or lL: unsigned long
long int.

2-16 Lexical Elements

Integer Constants

Examples

0xFFFFu unsigned hexadecimal integer

4196L signed long decimal integer

0X89ab signed hexadecimal integer

047L signed long octal integer

64U unsigned decimal integer

15 signed 32-bit decimal integer

15L signed long (32-bit) decimal integer

15LL signed 64-bit decimal integer

15U unsigned decimal integer

15UL unsigned long decimal integer

15LU unsigned long decimal integer

15ULL unsigned long long decimal integer

0125 signed 32-bit octal integer

0125ll signed 64-bit octal integer

Lexical Elements 2-17

Enumeration Constants

Enumeration constants are identi�ers de�ned to have an ordered set of integer
values.

Syntax

enumeration-constant ::= identi�er

Description

The identi�er must be de�ned as an enumerator in an enum de�nition.
Enumeration constants are speci�ed when the type is de�ned. An enumeration
constant has type int.

Character Constants

A character constant is a constant that is enclosed in single quotes.

Syntax

character-constant ::=

'c-char-sequence'

L'c-char-sequence'

c-char-sequence ::=

c-char

c-char-sequence c-char

c-char ::=

any character in the source character set except

the single-quote ', backslash \, or new-line character

escape-sequence

2-18 Lexical Elements

Character Constants

escape-sequence ::=

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence

simple-escape-sequence ::= one of

\' \" \? \\

\a \b \f \n \r \t \v

octal-escape-sequence ::=

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence ::=

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

Note \a and \? are available only in ANSI mode.

Description

There are two types of character constants|integral character constants and
wide character constants .

Integral character constants are of type int. They do not have type char.
However, because a char is normally converted to an int in an expression,
this seldom is a problem. The contents can be ASCII characters, octal escape
sequences, or hexadecimal escape sequences.

Octal escape sequences consist of a backslash, (n) followed by up to three
octal digits. Hexadecimal escape sequences also start with a backslash, which is
followed by lowercase x and any number of hexadecimal digits. It is terminated
by any non-hexadecimal characters.

Lexical Elements 2-19

Character Constants

The digits of the escape sequences are converted into a single 8-bit character
and stored in the character constant at that point. For example, the following
character constants have the same value:

'A' '\101' '\x41'

They all represent the decimal value 65.

Character constants are not restricted to one character; multi-character
constants are allowed. The value of an integral character constant containing
more than one character is computed by concatenating the 8-bit ASCII code
values of the characters, with the leftmost character being the most signi�cant.
For example, the character constant 'AB' has the value 256*'A'+'B' =

256*65+66 = 16706. Only the rightmost four characters participate in the
computation.

Wide character constants (type wchar_t) are of type unsigned int. A wide
character constant is a sequence of one or more multibyte characters enclosed
in single quotes and pre�xed by the letter L. The value of a wide character
constant containing a single multibyte character is a member of the extended
execution character set whose value corresponds to that of the multibyte
character. The value of a multibyte character can be found by calling the
function mbtowc.

For multi-character wide character constants, the entire content of the constant
is extracted into an unsigned integer and the resulting character is represented
by the �nal value.

Some characters are given special representation in escape sequences. These are
nonprinting and special characters that programmers often need to use (listed
in Table 2-1).

2-20 Lexical Elements

Character Constants

Table 2-1. Special Characters

Character Description

nn New line

nt Horizontal tab

nv Vertical tab

nb Backspace

nr Carriage return

nf Form feed

nn Backslash character

n' Single quote

n" Double quote

na Audible or visible alert (control G)

n? Question mark character '?'

Examples

'a' represents the letter a, the value 97

'\n' represents the newline character, the value 10

'\?' represents a question mark, the value 63

'7' represents the character 7, the value 55

'\0' represents the null character, the value 0

'\101' represents the letter A, the value 65

Lexical Elements 2-21

String Literals

A string literal is a sequence of zero or more characters enclosed in double
quotation marks.

Syntax

string-literal ::=

"[s-char-sequence]"

L"[s-char-sequence]"

s-char-sequence ::=

s-char

s-char-sequence s-char

s-char ::=

any character in the source character set except

double quote, backslash, or newline

escape-sequence

Description

You can type special characters in a character string literal using the escape
sequence notation described previously in the section on character constants.
The double quote character (") must be represented as an escape sequence if
it is to appear inside a string literal. Represent the string 'he said "hi"' with

"he said \"hi\""

A character string has static storage duration and type array of char.

The actual characters stored in a character string literal are the exact
characters speci�ed. In addition, a null character (n0) is automatically added
to the end of each character string literal by the compiler. Note that the
null character is added only to string literals. Arrays of characters are not
terminated with the extra character.

Character string literals that have no characters consist of a single null
character.

2-22 Lexical Elements

String Literals

Note that a string literal containing one character is not the same as a
character constant. The string literal "A" is stored in two adjacent bytes with
the A in the �rst byte and a null character in the second byte; however, the
character constant 'A' is a constant with type int and the value 65 (the ASCII
code value for the letter A).

ANSI C allows the usage of wide string literals. A wide string literal is a
sequence of zero or more multibyte characters enclosed in double-quotes and
pre�xed by the letter L. A wide string literal has static storage duration
and type \array of wchar_t." It is initialized with the wide characters
corresponding to the given multibyte characters.

Example

L"abc##def"

Character string literals that are adjacent tokens are concatenated into a single
character string literal. A null character is then appended. Similarly, adjacent
wide string literal tokens are concatenated into a single wide string literal to
which a code with value zero is then appended. It is illegal for a character
string literal token to be adjacent to a wide string literal token.

Example

char *string = "abc" "def";

Lexical Elements 2-23

Operators

An operator speci�es an operation to be performed on one or more operands.

Syntax

operator ::= One selected from the set

[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= !=

^ | && || ? : = == *=

/= %= += -= <<= >>= &= ^= |=

, # ##

Description

Operator representations may require one, two, or three characters. The
compiler matches the longest sequence to �nd tokens. For example,

a+++++b

is parsed as if it had been written

a++ ++ + b

which results in a syntax error. An alternate parse

a++ + ++b

is not chosen because it does not follow the longest �rst rule, even though it
results in a syntactically correct expression. As a result, white space is often
important in writing expressions that use complex operators. The precedence
of operators is discussed in more detail in Chapter 5. The obsolete form of the
assignment operators (=* instead of *=) is not supported. If this form is used,
the compiler parses it as two tokens (= and *).

The operators [], ?:, and () (function call operator) occur only in pairs,
possibly separated by expressions. You can use some operators as either binary
operators or unary operators. Often the meaning of the binary operator is

2-24 Lexical Elements

Punctuators

much di�erent from the meaning of the unary operator. For example, binary
multiply and unary indirection:

a * b versus *p

Punctuators

A punctuator is a symbol that is necessary for the syntax of the C language,
but performs no run-time operation on data and produces no run-time result.

Syntax

punctuator ::= One selected from:

[] () { } * , : = ; # ...

Description

Some punctuators are the same characters as operators. They are distinguished
through the context of their use.

Example

#include <stdio.h> /* # marks the processing directive "include"*/

main() /* (and) mark the beginning and end of

argument list */

{ /* { marks the beginning of a block */
printf("\nHello world\n"); /* ; marks the end of a statement */

} /* } marks the end of a block */

Lexical Elements 2-25

Comments

You can include comments to explain code in your program by enclosing the
text with /* and */ characters. If the /* character sequence is located within a
string literal or a character constant, the compiler processes them as \normal"
characters and not as the start of a comment.

You cannot nest comments. To comment blocks of code, enclose the block
within the #if and #endif statements, as shown below:

#if 0...
code...

#endif

2-26 Lexical Elements

3

Data Types and Declarations

In C, as in many other programming languages, you must usually declare
identi�ers before you can use them. The declarable entities in C are:

objects
functions
tags and members of structures, unions, and enumerated types
type de�nition names

This chapter describes declarations, type speci�ers, storage-class speci�ers,
structure and union speci�ers, enumerations, declarators, type names, and
initialization. Data types and declarations are de�ned using Backus-Naur form.

Data Types and Declarations 3-1

Program Structure

A translation unit consists of one or more declarations and function de�nitions.

Syntax

translation-unit :=

external-declaration

translation-unit external-declaration

external-declaration :=

function-de�nition

declaration

Description

A C program consists of one or more translation units, each of which can
be compiled separately. A translation unit consists of a source �le together
with any headers and source �les included by the #include preprocessing
directive. Each time the compiler is invoked, it reads a single translation unit
and typically produces a relocatable object �le . A translation unit must contain
at least one declaration or function de�nition.

3-2 Data Types and Declarations

Declarations

Declarations

A declaration speci�es the attributes of an identi�er or a set of identi�ers.

Syntax

declaration ::=

declaration-speci�ers [init-declarator-list] ;

declaration-speci�ers ::=

storage-class-speci�er [declaration-speci�ers]

type-speci�er [declaration-speci�ers]

type-quali�er [declaration-speci�ers]

init-declarator-list ::=

init-declarator

init-declarator-list , init-declarator

init-declarator ::=

declarator

declarator = initializer

Description

Making a declaration does not necessarily reserve storage for the identi�ers
declared. For example, the declaration of an external data object provides the
compiler with the attributes of the object, but the actual storage is allocated in
another translation unit.

A declaration consists of a sequence of speci�ers that indicate the linkage,
storage duration, and the type of the entities that the declarators denote.

You can declare and initialize objects at the same time using the
init-declarator-list syntax. The init-declarator-list is a comma-separated
sequence of declarators, each of which may have an initializer.

Data Types and Declarations 3-3

Declarations

Function de�nitions have a slightly di�erent syntax as discussed in "Function
Declarators" later in this chapter. Also, note that it is often valid to de�ne a
tag (struct, union, or enum) without actually declaring any objects.

Examples

Valid Declarations:

extern int pressure []; /* size will be declared elsewhere */

extern int lines = 66, pages; /* declares two variables,

initializes the first one */

static char private_func (float); /* a function taking a float,

returning a char, not known

outside this unit */

const float pi = 3.14; /* a constant float, initialized */

const float * const pi_ptr = π /* a constant pointer to a constant

float, initialized with an

address constant */

static j1, j2, j3; /* initialized to zero by default */

typedef struct

{double real, imaginary;} Complex; /* declares a type name */

Complex impedance = {47000}; /* second member defaults to zero */

enum color {red=1, green, blue}; /* declares an enumeration tag and

three constants */

int const short static volatile signed

really_Strange = {sizeof '\?'}; /* pretty mixed up */

Invalid Declarations:

int ; /* no identifier */

; /* no identifier */

int i; j; /* no specifiers for j */

3-4 Data Types and Declarations

Storage-Class Specifiers

Storage-Class Specifiers

A storage-class speci�er is one of several keywords that determines the
duration and linkage of an object.

Syntax

storage-class ::=

typedef

extern

static

auto

register

Description

You can use only one storage-class speci�er in a declaration.

The typedef keyword is listed as a storage-class speci�er because it is
syntactically similar to one.

The keyword extern a�ects the linkage of a function or object name. If the
name has already been declared in a declaration with �le scope, the linkage will
be the same as in that previous declaration. Otherwise, the name will have
external linkage.

The static storage-class speci�er may appear in declarations of functions
or data objects. If used in an external declaration (either a function or a
data object), static indicates that the name cannot be referenced by other
translation units. Using the static storage class in this way allows translation
units to have collections of local functions and data objects that are not
exported to other translation units at link time.

If the static storage class is used in a declaration within a function, the value
of the variable is preserved between invocations of that function.

The auto storage-class speci�er is permitted only in the declarations of objects
within blocks. An automatic variable is one that exists only while its enclosing
block is being executed. Variables declared with the auto storage-class are all
allocated when a function is entered. Auto variables that have initializes are

Data Types and Declarations 3-5

Storage-Class Specifiers

initialized when their de�ning block is entered normally. This means that auto
variables with initializes are not initialized when their declaring block is not
entered through the top.

The register storage class suggests that the compiler store the variable in a
register, if possible. You cannot apply the & (address-of) operator to register
variables.

If no storage class is speci�ed and the declaration appears in a block, the
compiler defaults the storage duration for an object to automatic. If the
declaration of an identi�er for a function has no storage-class speci�er,
its linkage is determined exactly as if it were declared with the extern
storage-class speci�er.

If no storage class is speci�ed and the declaration appears outside of a function,
the compiler treats it as an externally visible object with static duration.

Refer to Chapter 2 for a description of storage duration and linkage.

3-6 Data Types and Declarations

Type Specifiers

Type Specifiers

Type speci�ers indicate the format of the storage associated with a given data
object or the return type of a function.

Syntax

type-speci�er ::=

char

short

int

long

long long

unsigned

signed

float

double

void

struct-or-union-speci�er

enum-speci�er

typedef-name

Description

Most of the type speci�ers are single keywords. (Refer to Chapter 10 for
sizes of types.) The syntax of the type speci�ers permits more types than are
actually allowed in the C language. The various combinations of type speci�ers
that are allowed are shown in Table 3-1. Type speci�ers that are equivalent
appear together in a box. For example, specifying unsigned is equivalent to
unsigned int. Type speci�ers may appear in any order, possibly intermixed
with other declaration speci�ers.

Data Types and Declarations 3-7

Type Specifiers

Table 3-1. C Type Specifiers

void

char

signed char

unsigned char

short, signed short, short int, or signed short int

unsigned short, or unsigned short int

int, signed, signed int, or no type speci�ers

unsigned, or unsigned int

long, signed long, long int, or signed long int

long long, signed long long, long long int, or signed long long int

unsigned long, or unsigned long int

unsigned long long, or unsigned long long int

oat

double

long double

struct-or-union speci�er

enum-speci�er

typedef-name

If no type speci�er is provided in a declaration, the default type is int.

Floating-point types in C are float (32 bits), double (64 bits), and long

double (128 bits).

3-8 Data Types and Declarations

HP Specific Type Qualifiers

HP Specific Type Qualifiers

Syntax

type-quali�er ::= __thread

Description

This section describes the HP speci�c type quali�er|__thread.

Beginning with the HP-UX 10.30 operating system release, the --thread
keyword de�nes a thread speci�c data variable, distinguishing it from other
data items that are shared by all threads. With a thread-speci�c data variable,
each thread has its own copy of the data item. These variables eliminate the
need to allocate thread-speci�c data dynamically, thus improving performance.

This keyword is implemented as an HP speci�c type quali�er, with the same
syntax as type quali�ers const and volatile, but not the same semantics.

Syntax examples:

__thread int var;

int __thread var;

Semantics: Only variables of static duration can be thread speci�c. Thread
speci�c data objects can not be initialized. Pointers of static duration that are
not thread speci�c may not be initialized with the address of a thread speci�c
object|assignment is okay. All global variables, thread speci�c or not, are
initialized to zero by the linker implicitly.

Only one declaration, for example,

__thread int x;

Data Types and Declarations 3-9

HP Specific Type Qualifiers

is allowed in one compilation unit that contributes to the program (including
libraries linked into the executable). All other declarations must be strictly
references:

extern __thread int x;

Any other redeclarations of this thread-speci�c x will result in a duplicate
de�nition error at link time.

Even though __thread has the same syntax as a type quali�er, it does not
qualify the type, but is a storage class speci�cation for the data object. As
such, it is type compatible with non-thread-speci�c data objects of the same
type. That is, a thread speci�c data int is type compatible with an ordinary
int, (unlike const and volatile quali�ed int).

3-10 Data Types and Declarations

Type Qualifiers

Type Qualifiers

Syntax

type-quali�er ::= const

volatile

Description

This section describes the type quali�ers|volatile and const.

The volatile type quali�er directs the compiler not to perform certain
optimizations on an object because that object can have its value altered in
ways beyond the control of the compiler.

Speci�cally, when an object's declaration includes the volatile type quali�er,
optimizations that would delay any references to (or modi�cations of) the
object will not occur across sequence points. A sequence point is a point in the
execution process when the evaluation of an expression is complete, and all
side-e�ects of previous evaluations have occurred.

The volatile type quali�er is useful for controlling access to memory-mapped
device registers, as well as for providing reliable access to memory locations
used by asynchronous processes.

The const type quali�er informs the compiler that the object will not be
modi�ed, thereby increasing the optimization opportunities available to the
compiler.

An assignment cannot be made to a constant pointer, but an assignment can
be made to the object to which it points. An assignment can be made to a
pointer to constant data, but not to the object to which it points. In the case
of a constant pointer to constant data, an assignment cannot be made to either
the pointer, or the object to which it points.

Type quali�ers may be used alone (as the sole declaration-speci�er), or
in conjunction with type speci�ers, including struct, union, enum, and

Data Types and Declarations 3-11

Type Qualifiers

typedef. Type quali�ers may also be used in conjunction with storage-class
speci�ers.

Table 3-2 illustrates various declarations using the const and volatile type
quali�ers.

Table 3-2. Declarations using const and volatile

Declaration Meaning

volatile int vol_int; Declares a volatile int variable.

const int *ptr_to_const_int;

int const *ptr_to_const_int;

Both declare a variable pointer to a
constant int.

int *const const_ptr_to_int Declares a constant pointer to a variable
int.

int *volatile vpi, *pi; Declares two pointers: vpi is a volatile
pointer to an int; pi is a pointer to an int.

int const *volatile vpci; Declares a volatile pointer to a constant
int.

const *pci; Declares a pointer to a constant int. Since
no type speci�er was given, it defaults to
int.

When a type quali�er is used with a variable typed by a typedef name,
the quali�er is applied without regard to the contents of the typedef. For
example:

typedef int *t_ptr_to_int;
volatile t_ptr_to_int vol_ptr_to_int;

In the example above, the type of vol_ptr_to_int is volatile t_ptr_to_int,
which becomes volatile pointer to int. If the type t_ptr_to_int were
substituted directly in the declaration,

volatile int * ptr_to_vol_int;

the type would be pointer to volatile int.

3-12 Data Types and Declarations

Type Qualifiers

Type quali�ers apply to objects, not to types. For example:

typedef int * t;

const t *volatile p;

In the example above, p is a volatile pointer to a const pointer to int.
volatile applies to the object p, while const applies to the object pointed to
by p. The declaration of p can also be written as follows:

t const *volatile p;

If an aggregate variable such as a structure is declared volatile, all members of
the aggregate are also volatile.

If a pointer to a volatile object is converted to a pointer to a non-volatile
type, and the object is referenced by the converted pointer, the behavior is
unde�ned.

Data Types and Declarations 3-13

Structure and Union Specifiers

A structure speci�er indicates an aggregate type consisting of a sequence of
named members. A union speci�er de�nes a type whose members begin at
o�set zero from the beginning of the union.

Syntax

struct-or-union speci�er ::=

struct-or-union [identi�er] f struct-declaration-list g

struct-or-union identi�er

struct-or-union ::=

struct

union

struct-declaration-list ::=

struct-declaration

struct-declaration-list struct-declaration

struct-declaration ::=

speci�er-quali�er-list struct-declarator-list;

speci�er-quali�er-list ::=

type-speci�er [speci�er-quali�er-list]

type-quali�er [speci�er-quali�er-list]

struct-declarator-list ::=

struct-declarator

struct-declarator-list , struct-declarator

struct-declarator ::=

declarator

[declarator] : constant-expression

3-14 Data Types and Declarations

Structure and Union Specifiers

Description

A structure is a named collection of members. Each member belongs to a name
space associated with the structure. Members in di�erent structures can have
the same names but represent di�erent objects.

Members are placed in physical storage in the same order as they are declared
in the de�nition of the structure. A member's o�set is the distance from the
start of the structure to the beginning of the member. The compiler inserts
pad bytes as necessary to insure that members are properly aligned. For
example, if a char member is followed by a float member, one or more
pad bytes may be inserted to insure that the float member begins on an
appropriate boundary.

The HP C Programmer's Guide provides a detailed comparison of storage and
alignment on HP computers.

Unions are like structures except that all members of a union have a zero
o�set from the beginning of the union. In other words, the members overlap.
Unions are a way to store di�erent type of objects in the same memory
location.

A declarator for a member of a structure or union may occupy a speci�ed
number of bits. This is done by following the declarator with a colon and a
constant non-negative integral expression. The value of the expression indicates
the number of bits to be used to hold the member. This type of member
is called a bit-�eld. Only integral type speci�ers are allowed for bit-�eld
declarators.

In structures, bit-�elds are placed into storage locations from the most
signi�cant bits to the least signi�cant bits. Bit-�elds that follow one another
are packed into the same storage words, if possible. If a bit-�eld will not
�t into the current storage location, it is put into the beginning of the next
location and the current location is padded with an unnamed �eld.

A colon followed by an integer constant expression indicates that the compiler
should create an unnamed bit-�eld at that location. In addition, a colon
followed by a zero indicates that the current location is full and that the
next bit-�eld should begin at the start of the next storage location. Refer to
Chapter 10 for the treatment of the sign for bit-�elds.

Data Types and Declarations 3-15

Structure and Union Specifiers

Although bit-�elds are permitted in unions (ANSI mode only), they are just
like any other members of the union in that they have a zero o�set from the
beginning of the union. That is, they are not packed into the same word, as in
the case of structures. The special cases of unnamed bit-�elds and unnamed
bit-�elds of length zero behave di�erently with unions; they are simply
unnamed members that cannot be assigned to.

The unary address operator (&) may not be applied to bit-�elds. This implies
that there cannot be pointers to bit-�elds nor can there be arrays of bit-�elds.

Refer to Chapter 10 for more information on bit-�elds.

Structure and Union Tags

Structures and unions are declared with the struct or union keyword. You
can follow the keywords with a tag that names the structure or union type
much the same as an enum tag names the enumerated type. (Refer to the
section "Enumeration" later in this chapter for information on enumerated
types.) Then you can use the tag with the struct or union keyword to declare
variables of that type without re-specifying member declarations. A structure
tag occupies a separate name space reserved for tags. Thus, a structure tag
may have the same spelling as a structure member or an ordinary identi�er.
Structure tags also obey the normal block scope associated with identi�ers.
Another tag of the same spelling in a subordinate block may hide a structure
tag in an outer block.

A struct or union declaration has two parts: the structure body, where the
members of the structure are declared (and possibly a tag name associated
with them); and a list of declarators (objects with the type of the structure).

Either part of the declaration can be empty. Thus, you can put the structure
body declaration in one place, and use the struct type in another place to
declare objects of that type.

3-16 Data Types and Declarations

Structure and Union Specifiers

For example, consider the following declarations:

struct s1 {

int x;

float y;

};

struct s1 obj1, *obj2;

The �rst example declares only the struct body and its associated tag name.
The second example uses the struct tag to declare two objects|obj1 and
obj2. They are, respectively, a structure object of type struct s1 and a
pointer object, pointing to an object of type struct s1.

This allows you to separate all the struct body declarations into one place
(for example, a header �le) and use the struct types elsewhere in the program
when declaring objects.

Consider the following example:

struct examp {

float f; /* floating member */

int i; /* integer member */

}; /* no declaration list */

In this example, the structure tag is examp and it is associated with the
structure body that contains a single
oating-point quantity and an integer
quantity. Note that no objects are declared after the de�nition of the
structure's body; only the tag is being de�ned.

A subsequent declaration may use the de�ned structure tag:

struct examp x, y[100];

This example de�nes two objects using type struct examp. The �rst is a single
structure named x and the second, y, is an array of structures of type struct
examp.

Another use for structure tags is to write self-referential structures. A
structure of type S may contain a pointer to a structure of type S as one of its
members. Note that a structure can never have itself as a member because
the de�nition of the structure's content would be recursive. A pointer to a
structure is of �xed size, so it may be a member. Structures that contain

Data Types and Declarations 3-17

Structure and Union Specifiers

pointers to themselves are key to most interesting data structures. For
example, the following is the de�nition of a structure that is the node of a
binary tree:

struct node {

float data; /* data stored at the node */

struct node *left; /* left subtree */

struct node *right; /* right subtree */

};

This example de�nes the shape of a node type of structure. Note that the
de�nition contains two members (left and right) that are themselves pointers
to structures of type node.

The C programming rule that all objects must be de�ned before use is relaxed
somewhat for structure tags. A structure can contain a member that is a
pointer to an as yet unde�ned structure. This allows for mutually referential
structures:

struct s1 { struct s2 *s2p; };

struct s2 { struct s1 *s1p; };

In this example, structure s1 references the structure tag s2. When s1 is
declared, s2 is unde�ned. This is valid.

Example

struct tag1 {

int m1;

int :16; /* unnamed bit-field */

int m2:16; /* named bit-field; packed into */

/* same word as previous member */

int m3, m4;

}; /* empty declarator list */

3-18 Data Types and Declarations

Structure and Union Specifiers

union tag2 {

int u1;

int :16;

int u2:16; /* bit-field, starts at offset 0 */

int u3, u4;

} fudge1, fudge2; /* declarators denoting objects

of the union type */

struct tag1 obj1, *obj2; /* use of type "struct tag1",

whose body has been declared above */

Data Types and Declarations 3-19

Enumeration

The identi�ers in an enumeration list are declared as constants.

Syntax

enum-speci�er ::=

[type-speci�er] enum [identi�er] fenumerator-listg

[type-speci�er] enum identi�er

enumerator-list ::=

enumerator

enumerator-list , enumerator

enumerator ::=

enumeration-constant

enumeration-constant = constant-expression

enumeration-constant ::= identi�er

Description

The identi�ers de�ned in the enumerator list are enumeration constants of
type int. As constants, they can appear wherever integer constants are
expected. A speci�c integer value is associated with an enumeration constant
by following the constant with an equal sign (=) and a constant expression.
If you de�ne the constants without using the equal sign, the �rst constant will
have the value of zero and the second will have the value of one, and so on. If
an enumerator is de�ned with the equal sign followed by a constant expression,
that identi�er will take on the value speci�ed by the expression. Subsequent
identi�ers appearing without the equal sign will have values that increase by
one for each constant. For example,

enum color {red, blue, green=5, violet};

de�nes red as 0, blue as 1, green as 5, and violet as 6.

Enumeration constants share the same name space as ordinary identi�ers.
They have the same scope as the scope of the enumeration in which they are

3-20 Data Types and Declarations

Enumeration

de�ned. You can also use the int or long type speci�er to indicate 4-byte
enums, even though 4-byte enums are the default.

The identi�er in the enum declaration behaves like the tags used in structure
and union declarations. If the tag has already been declared, you can use the
tag as a reference to that enumerated type later in the program.

enum color x, y[100];

In this example, the color enumeration tag declares two objects. The x object
is a scalar enum object, while y is an array of 100 enums.

An enumeration tag cannot be used before its enumerators are declared.

Examples

enum color {RED, GREEN, BLUE};

enum objectkind {triangle, square=5, circle}; /* circle == 6 */

Sized enum - HP C Workstation and Servers Extension

By default, the HP 9000 workstations and servers HP C compiler allocates four
bytes for all enumerated variables. However, if you know that the range of
values being assigned to an enum variable is small, you can direct the compiler
to allocate only one or two bytes by using the char or short type speci�er.
If the range is large, you can direct the compiler to allocate eight bytes by
using the long long type speci�er. You can also use the long type speci�er to
indicate 4-byte enums, even though this is the default. For example:

long long enum bigger_enum {barge, yacht}; /* 8-byte enum type */

enum default_enum {ERR1, ERR2, ERR3, ERR4}; /* 4-byte enum type */

long enum big_enum {STO, ST1, ST2, ST3}; /* 4-byte enum type */

short enum small_enum {cats, dogs}; /* 2-byte enum type */

char enum tiny_enum {alpha, beta}; /* 1-byte enum type */

When mixed in expressions, enums behave exactly as their similarly sized type
counterparts do. That is, an enum behaves like an int, a long enum acts like a
long int, and a short enum acts like a short int. You will, however, receive

Data Types and Declarations 3-21

Enumeration

a warning message when you mix enum variables with integer or
oating-point
types, or with di�erently typed enums.

The sizeof() function returns the actual storage allocated when called with
enum-speci�er .

Note enumeration-constants will have the same size as the type
speci�ed in the enumeration declaration.

char enum {a}; /* sizeof(a) returns 1. */

3-22 Data Types and Declarations

Declarators

Declarators

A declarator introduces an identi�er and speci�es its type, storage class, and
scope.

Syntax

declarator ::=

[pointer] direct-declarator

direct-declarator ::=

identi�er

(declarator)

direct-declarator [[constant-expression]]

direct-declarator (parameter-type-list)

direct-declarator ([identi�er-list])

pointer ::=

* [type-quali�er-list]

* [type-quali�er-list] pointer

type-quali�er-list ::=

type-quali�er

type-quali�er-list type-quali�er

parameter-type-list ::=

parameter-list

parameter-list , ...

parameter-list ::=

parameter-declaration

parameter-list , parameter-declaration

parameter-declaration ::=

declaration-speci�ers declarator

declaration-speci�ers [abstract-declarator]

Data Types and Declarations 3-23

Declarators

identi�er-list ::=

identi�er

identi�er-list , identi�er

Description

Various special symbols may accompany declarators. Parentheses change
operator precedence or specify functions. The asterisk speci�es a pointer.
Square brackets indicate an array. The constant-expression speci�es the size of
an array.

A declarator speci�es one identi�er and may supply additional type
information. When a construction with the same form as the declarator
appears in an expression, it yields an entity of the indicated scope, storage
class, and type.

If an identi�er appears by itself as a declarator, it has the type indicated by the
type speci�ers heading the declaration.

Declarator operators have the same precedence and associativity as operators
appearing in expressions. Function declarators and array declarators bind more
tightly than pointer declarators. You can change the binding of declarator
operators using parentheses. For example,

int *x[10];

is an array of 10 pointers to ints. This is because the array declarator binds
more tightly than the pointer declarator. The declaration

int (*x)[10];

is a single pointer to an array of 10 ints. The binding order is altered with the
use of parentheses.

Pointer Declarators

If D is a declarator, and T is some combination of type speci�ers and storage
class speci�ers (such as int), then the declaration T *D declares D to be a
pointer to type T. D can be any general declarator of arbitrary complexity. For
example, if D were declared as a pointer already, the use of a second asterisk
indicates that D is a pointer to a pointer to T.

3-24 Data Types and Declarations

Declarators

Some examples:

int *pi; /* pi: Pointer to an int */

int **ppi; /* ppi: Pointer to a pointer to an int */

int *ap[10]; /* ap: Array of 10 pointers to ints */

int (*pa)[10]; /* pa: Pointer to array of 10 ints */

int *fp(); /* fp: Function returning pointer to int */

int (*pf)(); /* pf: Pointer to function returning an int*/

The binding of * (pointer) declarators is of lower precedence than either []

(array) or () (function) declarators. For this reason, parentheses are required
in the declarations of pa and pf.

Array Declarators

If D is a declarator, and T is some combination of type speci�ers and storage
class speci�ers (such as int), then the declaration

T D[constant-expression];

declares D to be an array of type T.

You declare multidimensional arrays by specifying additional array declarators.
For example, a 3 by 5 array of integers is declared as follows:

int x[3][5];

This notation (correctly) suggests that multidimensional arrays in C are
actually arrays of arrays. Note that the [] operator groups from left to right.
The declarator x[3][5] is actually the same as ((x[3])[5]). This indicates
that x is an array of three elements each of which is an array of �ve elements.
This is known as row-major array storage.

You can omit the constant-expression giving the size of an array under certain
circumstances. You can omit the �rst dimension of an array (the dimension
that binds most tightly with the identi�er) in the following cases:

If the array is a formal parameter in a function de�nition.

If the array declaration contains an initializer.

If the array declaration has external linkage and the de�nition (in another
translation unit) that actually allocates storage provides the dimension.

Data Types and Declarations 3-25

Declarators

Note that the long long data type cannot be used to declare an array's size.

Following are examples of array declarations:

int x[10]; /* x: Array of 10 integers */

float y[10][20]; /* y: Matrix of 10x20 floats */

extern int z[]; /* z: External integer array of undefined

dimension */

int a[]={2,7,5,9}; /* a: Array of 4 integers */

int m[][3]= { /* m: Matrix of 2x3 integers */

{1,2,7},

{6,6,6} };

Note that an array of type T that is the formal parameter in a function
de�nition has been converted to a pointer to type T. The array name in this
case is a modi�able lvalue and can appear as the left operand of an assignment
operator. The following function will clear an array of integers to all zeros.
Note that the array name, which is a parameter, must be a modi�able lvalue to
be the operand of the ++ operator.

void clear(a, n)

int a[]; /* has been converted to int * */

int n; /* number of array elements to clear */

{

while(n--) /* for the entire array */
a++ = 0; / clear each element to zero */

}

Function Declarators

If D is a declarator, and T is some combination of type speci�ers and storage
class speci�ers (such as int), then the declaration

T D (parameter-type-list)

or

T D ([identi�er-list])

declares D to be a function returning type T. A function can return any type of
object except an array or a function. However, functions can return pointers to
functions or arrays.

3-26 Data Types and Declarations

Declarators

If the function declarator uses the form with the parameter-type-list , it is
said to be in \prototype" form. The parameter type list speci�es the types
of, and may declare identi�ers for, the parameters of the function. If the list
terminates with an ellipsis (, . . .), no information about the number of types
of the parameters after the comma is supplied. The special case of void as the
only item in the list speci�es that the function has no parameters.

If a function declarator is not part of a function de�nition, the optional
identi�er-list must be empty.

Function declarators using prototype form are only allowed in ANSI mode.

Functions can also return structures. If a function returns a structure as a
result, the called function copies the resulting structure into storage space
allocated in the calling function. The length of time required to do the copy
is directly related to the size of the structure. If pointers to structures are
returned, the execution time is greatly reduced. (But beware of returning a
pointer to an auto struct|the struct will disappear after returning from the
function in which it is declared.)

The function declarator is of equal precedence with the array declarator. The
declarators group from left to right. The following are examples of function
declarators:

int f(); /* f: Function returning an int */
int *fp(); /* fp: Function returning pointer to an int */

int (*pf)(); /* pf: Pointer to function returning an int */

int (*apf[])(); /* apf: Array of pointers to functions */

/* returning int */

Note that the parentheses alter the binding order in the declarations of pf and
apf in the above examples.

Data Types and Declarations 3-27

Type Names

A type name is syntactically a declaration of an object or a function of a given
type that omits the identi�er. Type names are often used in cast expressions
and as operands of the sizeof operator.

Syntax

type-name ::=

speci�er-quali�er-list [abstract-declarator]

abstract-declarator ::=

pointer

[pointer] direct-abstract-declarator

direct-abstract-declarator

(abstract-declarator)

[direct-abstract-declarator] [[constant-expression]]

[direct-abstract-declarator] ([parameter-type-list])

Description

Type names are enclosed in parentheses to indicate a cast operation. The
destination type is the type named in the cast; the operand is then converted
to that type.

A type name is a declaration without the identi�er speci�ed. For example, the
declaration for an integer is int i. If the identi�er is omitted, only the integer
type int remains.

Examples

int int

int * Pointer to int

int () Function returning an int

int *() Function returning a pointer to int

int (*)() Pointer to function returning an int

3-28 Data Types and Declarations

Type Names

int [3]; Array of 3 int

int *[3]; Array of 3 pointers to int

int (*)[3]; Pointer to an array of 3 int

The parentheses are necessary to alter the binding order in the cases of pointer
to function and pointer to array. This is because function and array declarators
have higher precedence than the pointer declarator.

Data Types and Declarations 3-29

Type Definitions Using typedef

The typedef keyword, useful for abbreviating long declarations, allows you to
create synonyms for C data types and data type de�nitions.

Syntax

typedef-name ::= identi�er

Description

If you use the storage class typedef to declare an identi�er, the identi�er is a
name for the declared type rather than an object of that type. Using typedef

does not de�ne any objects or storage. The use of a typedef does not actually
introduce a new type, but instead introduces a synonym for a type that already
exists. You can use typedef to isolate machine dependencies and thus make
your programs more portable from one operating system to another.

For example, the following typedef de�nes a new name for a pointer to an int:

typedef int *pointer;

Instead of the identi�er pointer actually being a pointer to an int, it becomes
the name for the pointer to the int type. You can use the new name as you
would use any other type. For example:

pointer p, *ppi;

This declares p as a pointer to an int and ppi as a pointer to a pointer to an
int.

One of the most useful applications of typedef is in the de�nition of structure
types. For example:

typedef struct {

float real;

float imaginary;

} complex;

The new type complex is now de�ned. It is a structure with two members,
both of which are
oating-point numbers. You can now use the complex type

3-30 Data Types and Declarations

Type Definitions Using typedef

to declare other objects:

complex x, *y, a[100];

This declares x as a complex, y as a pointer to the complex type and a as an
array of 100 complex numbers. Note that functions would have to be written
to perform complex arithmetic because the de�nition of the complex type does
not alter the operators in C.

Other type speci�ers (that is, void, char, short, int, long, long long,

signed, unsigned, float, or double) cannot be used with a name declared
by typedef. For example, the following typedef usage is illegal:

typedef long int li;...
unsigned li x;

typedef identi�ers occupy the same name space as ordinary identi�ers and
follow the same scoping rules.

Structure de�nitions which are used in typedef declarations can also have
structure tags. These are still necessary to have self-referential structures and
mutually referential structures.

Example

typedef unsigned long ULONG; /* ULONG is an unsigned long */

typedef int (*PFI)(int); /* PFI is a pointer to a function */

/* taking an int and returning an int */

ULONG v1; /* equivalent to "unsigned long v1" */

PFI v2; /* equivalent to "int (*v2)(int)" */

Data Types and Declarations 3-31

Initialization

An initializer is the part of a declaration that provides the initial values for the
objects being declared.

Syntax

initializer ::=

assignment-expression

{initializer-list}

{initializer-list , }

initializer-list ::=

initializer

initializer-list , initializer

Description

A declarator may include an initializer that speci�es the initial value for the
object whose identi�er is being declared.

Objects with static storage duration are initialized at load time. Objects with
automatic storage duration are initialized at run-time when entering the block
that contains the de�nition of the object. An initialization of such an object is
similar to an assignment statement.

You can initialize a static object with a constant expression. You can
initialize a static pointer with the address of any previously declared object of
the appropriate type plus or minus a constant.

You can initialize an auto scalar object with an expression. The expression is
evaluated at run-time, and the resulting value is used to initialize the object.

When initializing a scalar type, you may optionally enclose the initializer in
braces. However, they are normally omitted. For example

int i = {3};

is normally speci�ed as

int i = 3;

3-32 Data Types and Declarations

Initialization

When initializing the members of an aggregate, the initializer is a
brace-enclosed list of initializes. In the case of a structure with automatic
storage duration, the initializer may be a single expression returning a type
compatible with the structure. If the aggregate contains members that are
aggregates, this rule applies recursively, with the following exceptions:

Inner braces may be optionally omitted.

Members that are themselves aggregates cannot be initialized with a single
expression, even if the aggregate has automatic storage duration.

In ANSI mode, the initializer lists are parsed \top-down;" in compatibility
mode, they are parsed \bottom-up." For example,

int q [3] [3] [2] = {

{ 1 }

{ 2, 3 }

{ 4, 5, 6 }

};

produces the following layout:

ANSI Mode Compatibility Mode

--------- ------------------

1 0 0 0 0 0 1 0 2 3 4 5

2 3 0 0 0 0 6 0 0 0 0 0

4 5 6 0 0 0 0 0 0 0 0 0

It is advisable to either fully specify the braces, or fully elide all but the
outermost braces, both for readability and ease of migration from compatibility
mode to ANSI mode.

Because the compiler counts the number of speci�ed initializes, you do not
need to specify the size in array declarations. The compiler counts the
initializes and that becomes the size:

int x[] = {1, 10, 30, 2, 45};

This declaration allocates an array of int called x with a size of �ve. The size is
not speci�ed in the square brackets; instead, the compiler infers it by counting
the initializes.

As a special case, you can initialize an array of characters with a character
string literal. If the dimension of the array of characters is not provided, the

Data Types and Declarations 3-33

Initialization

compiler counts the number of characters in the string literal to determine the
size of the array. Note that the terminating \0 is also counted. For example:

char message[] = "hello";

This example de�nes an array of characters named message that contains six
characters. It is identical to the following:

char message[] = {'h','e','l','l','o','\0'};

You can also initialize a pointer to characters with a string literal:

char *cp = "hello";

This declares the object cp as a character pointer initialized to point to the
�rst character of the string "hello".

It is illegal to specify more initializes in a list than are required to initialize the
speci�ed aggregate. The one exception to this rule is the initialization of an
array of characters with a string literal.

char t[3] = "cat";

This initializes the array t to contain the characters c, a, and t. The trailing
'n0' character is ignored.

If there are not enough initializes, the remainder of the aggregate is initialized
to zero.

Some more examples include:

char *errors[] = {

"undefined file",

"input error",

"invalid user"

};

In this example, the array errors is an array of pointers to character (strings).
The array is initialized with the starting addresses of three strings, which will
be interpreted as error messages.

An array with element type compatible with wchar_t (unsigned int) may be
initialized by a wide string literal, optionally enclosed in braces. Successive
characters of the wide string literal initialize the members of the array. This

3-34 Data Types and Declarations

Initialization

includes the terminating zero-valued character, if there is room or if the array
is of unknown size.

Examples

wchar_t wide_message[]=L"x$$z";

You initialize structures as you do any other aggregate:

struct{

int i;

unsigned u:3;

unsigned v:5;

float f;

char *p;

} s[] = {

{1, 07, 03, 3.5, "cats eat bats" },

{2, 2, 4, 5.0, "she said with a smile"}

};

Note that the object being declared (s) is an array of structures without a
speci�ed dimension. The compiler counts the initializes to determine the
array's dimension. In this case, the presence of two initializes implies that the
dimension of s is two. You can initialize named bit-�elds as you would any
other member of the structure.

If the value used to initialize a bit-�eld is too large, it is truncated to �t in the
bit-�eld.

For example, if the value 11 were used to initialize the 3-bit �eld u above, the
actual value of u would be 3 (the top bit is discarded).

A struct or union with automatic storage duration can also be initialized with
a single expression of the correct type.

struct SS { int y; };

extern struct SS g(void);

func()

{

struct SS z = g();

}

Data Types and Declarations 3-35

Initialization

When initializing a union, since only one union member can be active at one
time, the �rst member of the union is taken to be the initialized member.

The union initialization is only available in ANSI mode.

union {

int i;

float f;

unsigned u:5;

} = { 15 };

3-36 Data Types and Declarations

Function Definitions

Function Definitions

A function de�nition introduces a new function.

Syntax

function-de�nition ::=

[declaration-speci�ers] declarator [declaration-list] compound-statement

Description

A function de�nition provides the following information about the function:

1. Type.

You can specify the return type of the function. If no type is provided, the
default return type is int. If the function does not return a value, it can
be de�ned as having a return type of void. You can declare functions as
returning any type except a function or an array. You can, however, de�ne
functions that return pointers to functions or pointers to arrays.

2. Formal parameters. There are two ways of specifying the type and number
of the formal parameters to the function:

A. A function declarator containing an identi�er list .

The identi�ers are formal parameters to the function. You must include
at least one declarator for each declaration in the declaration list of the
function. These declarators declare only identi�ers from the identi�er
list of parameters. If a parameter in the identi�er list has no matching
declaration in the declaration list, the type of the parameter defaults to
int.

B. A function declarator containing a parameter type list (prototype form).

In this case, the function de�nition cannot include a declaration list. You
must include an identi�er in each parameter declaration (not an abstract
declarator). The one exception is when the parameter list consists of a
single parameter of type void; in this case do not use an identi�er.

Data Types and Declarations 3-37

Function Definitions

Note Function prototypes can be used only in ANSI mode.

3. Visibility outside de�ning translation unit. A function can be local to
the translation unit in which it is de�ned (if the storage class speci�er is
static). Alternatively, a function can be visible to other translation units
(if no storage class is speci�ed, or if the storage class is extern).

4. Body of the function. You supply the body that executes when the
function is called in a single compound statement following the optional
declaration-list.

Do not confuse de�nition with declaration, especially in the case of functions.
Function de�nition implies that the above four pieces of information are
supplied. Function declaration implies that the function is de�ned elsewhere.

You can declare formal parameters as structures or unions. When the function
is called, the calling function's argument is copied to temporary locations
within the called function.

All functions in C may be recursive. They may be directly recursive so the
function calls itself or they may be indirectly recursive so a function calls one
or more functions which then call the original function. Indirect recursion can
extend through any number of layers.

In function de�nitions that do not use prototypes, any parameters of type
float are actually passed as double, even though they are seen by the body of
the function as
oats. When such a function is called with a
oat argument,
the
oat is converted back to
oat on entry into the function.

Note In compatibility mode, the type of the parameter is silently
changed to double, so the reverse conversion does not take
place.

In a prototype-style de�nition, such conversions do not take place, and the
oat
is both passed and accessed in the body as a
oat.

char and short parameters to nonprototype-style function de�nitions
are always converted to type int. This conversion does not take place in
prototype-style de�nitions.

3-38 Data Types and Declarations

Function Definitions

In either case, arrays of type T are always adjusted to pointer to type T, and
functions are adjusted to pointers to functions.

Single dimensioned arrays declared as formal parameters need not have their
size speci�ed. If the name of an integer array is x, the declaration is as follows:

int x[];

For multidimensional arrays, each dimension must be indicated by a pair of
brackets. The size of the �rst dimension may be left unspeci�ed.

The storage class of formal parameters is implicitly "function parameter." A
further storage class of register is accepted.

Examples

The following example shows a function that returns the sum of an array of
integers.

int total(data, n) /* function type, name, formal list */

int data[]; /* parameter declarations */

int n;

{

auto int sum = 0; /* local, initialized */

auto int i; /* loop variable */

for(i=0; i<n; ++i) /* range over all elements */

sum += data[i]; /* total the data array */

return sum; /* return the value */

}

Data Types and Declarations 3-39

Function Definitions

This is an example of a function de�nition without prototypes.

int func1 (p1, p2) /* old-style function definition */

int p1, p2; /* parameter declarations */

{ /* function body starts */

int l1; /* local variables */

l1 = p1 + p2;

return l1;

}

Here is an example of a function de�nition using prototypes.

char *func2 (void) /* new-style definition */

/* takes no parameters */

{

/* body */

}

int func3 (int p1, char *p2, ...)/* two declared parameters:

p1 & p2 */

/* "..." specifies more,

undeclared parameters

of unspecified type */

{
/* body */ /* to access undeclared

parameters here, use the

functions declared in the

<stdarg.h> header file. */

}

3-40 Data Types and Declarations

Four-Byte Extended UNIX Code (EUC)

Four-Byte Extended UNIX Code (EUC)

HP C/HP-UX supports four-byte Extended UNIX Code (EUC) characters in
�lenames, comments, and string literals.

Data Types and Declarations 3-41

4

Type Conversions

The use of di�erent types of data within C programs creates a need for data
type conversions. For example, some circumstances that may require a type
conversion are when a program assigns one variable to another, when it passes
arguments to functions, or when it tries to evaluate an expression containing
operands of di�erent types. C performs data conversions in these situations.

Assignment|Assignment operations cause some implicit type conversions.
This makes arithmetic operations easier to write. Assigning an integer type
variable to a
oating type variable causes an automatic conversion from the
integer type to the
oating type.

Function call|Arguments to functions are implicitly converted following
a number of "widening" conversions. For example, characters are
automatically converted to integers when passed as function arguments in the
absence of a prototype.

Normal conversions|In preparation for arithmetic or logical operations,
the compiler automatically converts from one type to another. Also, if
two operands are not of the same type, one or both may be converted to a
common type before the operation is performed.

Casting|You can explicitly force a conversion from one type to another
using a cast operation.

Returned values|Values returned from a function are automatically
converted to the function's type. For example, if a function was declared
to return a double and the return statement has an integer expression, the
integer value is automatically converted to a double.

Conversions from one type to another do not always cause an actual physical
change in representation. Converting a 16-bit short int into a 64-bit double
causes a representational change. Converting a 16-bit signed short int to a
16-bit unsigned short int does not cause a representational change.

Type Conversions 4-1

Integral Promotions

Wherever an int or an unsigned int may be used in an expression, a narrower
integral type may also be used. The narrow type will generally be widened
by means of a conversion called an integral promotion. All ANSI C compilers
follow what are called value preserving rules for the conversion. In HP C the
value preserving integral promotion takes place as follows: a char, a short int, a
bit-�eld, or their signed or unsigned varieties, are widened to an int; all other
arithmetic types are unchanged by the integral promotion.

Note Many older compilers, including previous releases of HP
C/HP-UX, performed integral promotions in a slightly di�erent
way, following unsigned preserving rules . In order to avoid
\breaking" programs that may rely on this non-ANSI behavior,
compatibility mode continues to follow the unsigned preserving
rules. Under these rules, the only di�erence is that unsigned
char and unsigned short are promoted to unsigned int, rather
than int.

In the vast majority of cases, results are the same. However,
if the promoted result is used in a context where its sign
is signi�cant (such as a division or comparison operation),
results can be di�erent between ANSI mode and compatibility
mode. The following program shows two expressions that are
evaluated di�erently in the two modes.

#include <stdio.h>

main ()

{

unsigned short us = 1;

printf ("Quotient = %d\n",-us/2);

printf ("Comparison = %d\n",us<-1);

}

In compatibility mode, as with many pre-ANSI compilers, the
results are:

Quotient = 2147483647

Comparison = 1

4-2 Type Conversions

ANSI C gives the following results:

Quotient = 0

Comparison = 0

To avoid situations where unsigned preserving and value
preserving promotion rules yield di�erent results, you could
refrain from using an unsigned char or unsigned short in an
expression that is used as an operand of one of the following
operators: >>, /, %, <, <=, >, or >=. Or remove the ambiguity
by using an explicit cast to specify the conversion you want.

If you enable ANSI migration warnings, the compiler will warn
you of situations where di�erences in the promotion rules
might cause di�erent results. See Chapter 9 for information on
enabling ANSI migration warnings.

Usual Arithmetic Conversions

In many expressions involving two operands, the operands are converted
according to the following rules, known as the usual arithmetic conversions.
The common type resulting from the application of these rules is also the type
of the result. These rules are applied in the sequence listed below.

1. If either operand is long double, the other operand is converted to long

double.

2. If either operand is double, the other operand is converted to double.

3. If either operand is
oat, the other operand is converted to float.

4. Integral promotions are performed on both operands, and then the rules
listed below are followed. These rules are a strict extension of the ANSI
\Usual Arithmetic Conversions" rule (Section 3.2.1.5). This extension
ensures that integral expressions will involve long long only if one of the
operands is of type long long. For ANSI conforming compilation, the
integral promotion rule is as de�ned in Section 3.2.1.1 of the Standard. For
non-ANSI compilation, the unsigned preserving promotion rule is used.

Type Conversions 4-3

A. If either operand is unsigned long long, the other operand is converted
to unsigned long long,

B. otherwise, if one operand is long long, the other operand is converted to
long long,

C. otherwise, if either operand is unsigned long int, the other operand is
converted to unsigned long int,

D. otherwise, if one operand is long int, and the other is unsigned int,
and long int can represent all the values of an unsigned int, then the
unsigned int is converted to a long int. (If one operand is long int,
and the other is unsigned int, and long int can NOT represent all
the values of an unsigned int, then both operands are converted to
unsigned long int.)

E. If either operand is long int, the other operand is converted to long

int.

F. If either operand is unsigned int, the other operand is converted to
unsigned int.

G. Otherwise, both operands have type int.

Note In compatibility mode, the rules are slightly di�erent.

Step 1 does not apply, because long double is not supported in
compatibility mode.

Step 3 does not apply, because in compatibility mode, whenever
a
oat appears in an expression, it is immediately converted to
a double.

In step 4, remember that the integral promotions are performed
according to the unsigned preserving rules when compiling in
compatibility mode.

4-4 Type Conversions

Arithmetic Conversions

In general, the goal of conversions between arithmetic types is to maintain the
same magnitude within the limits of the precisions involved. A value converted
from a less precise type to a more precise type and then back to the original
type results in the same value.

Integral Conversions

A particular bit pattern, or representation , distinguishes each data object
from all others of that type. Data type conversion can involve a change in
representation.

When signed integer types are converted to unsigned types of the same length,
no change in representation occurs. A short int value of -1 is converted to an
unsigned short int value of 65535.

Likewise, when unsigned integer types are converted to signed types of the
same length, no representational change occurs. An unsigned short int value of
65535 converted to a short int has a value of -1.

If a signed int type is converted to an unsigned type that is wider, the
conversion takes (conceptually) two steps. First, the source type is converted to
a signed type with the same length as the destination type. (This involves sign
extension.) Second, the resulting signed type is converted to unsigned. The
second step requires no change in representation.

If an unsigned integer type is converted to a signed integer type that is wider,
the unsigned source type is padded with zeros on the left and increased to the
size of the signed destination type.

When a long long is converted into another integral data type that is of
shorter length, truncation may occur. When a long long is converted into a
double type no over
ow will occur but may result in loss of precision.

In general, conversions from wide integer types to narrow integer types discard
high-order bits. Over
ows are not detected.

Conversions from narrow integer types to wide integer types pad on the left
with either zeros or the sign bit of the source type as described above.

A \plain" char is treated as signed.

Type Conversions 4-5

A \plain" int bit-�eld is treated as signed.

Floating Conversions

When an integer value is converted to a
oating type, the result is the
equivalent
oating-point value. If it cannot be represented exactly, the result
is the nearest representable value. If the two nearest representable values are
equally near, the result is the one whose least signi�cant bit is zero.

When a long long is converted into a
oating type no over
ow will occur but
may result in loss of precision. Converting a long long into a quad precision

oating point value should be precise with no over
ow.

When a
oating type is converted into a long long type, the fractional part is
discarded and over
ow may occur.

When
oating-point types are converted to integral types, the source type
value must be in the representable range of the destination type or the result is
unde�ned. The result is the whole number part of the
oating-point value with
the fractional part discarded as shown in the following examples:

int i;

i = 9.99; /* i gets the value 9 */

i = -9.99; /* i gets the value -9 */

float x1 = 1e38; /* legal; double is converted to float */

float x2 = 1e39; /* illegal; value is outside of range

for float */

long double x3 = 1.f; /* legal; float is converted to long

double */

When a long double value is converted to a double or
oat value, or a double
value is converted to a
oat value, if the original value is within the range of
values representable in the new type, the result is the nearest representable
value (if it cannot be represented exactly). If the two nearest representable
values are equally near, the result is the one whose least signi�cant bit is zero.
When a
oat value is converted to a double or long double value, or a double
value is converted to a long double value, the value is unchanged.

4-6 Type Conversions

Arrays, Pointers, and Functions

An expression that has function type is called a function designator . For
example, a function name is a function designator. With two exceptions, a
function designator with type \function returning type" is converted to an
expression with type \pointer to function returning type." The exceptions are
when the function designator is the operand of sizeof (which is illegal) and
when it is the operand of the unary & operator.

In most cases, when an expression with array type is used, it is automatically
converted to a pointer to the �rst element of the array. As a result, array
names and pointers are often used interchangeably in C. This automatic
conversion is not performed in the following contexts: (1) when the array is the
operand of sizeof or the unary &; (2) it is a character string literal initializing
an array of characters; or (3) it is a wide string literal initializing an array of
wide characters.

Type Conversions 4-7

5

Expressions

This chapter describes forming expressions in C, discusses operator precedence,
and provides details about operators used in expressions.

An expression in C is a collection of operators and operands that indicates
how a computation should be performed. Expressions are represented in in�x
notation. Each operator has a precedence with respect to other operators.
Expressions are building blocks in C. You use the C character set to form
tokens. Tokens, combined together, form expressions. Expressions can be used
in statements.

The C language does not de�ne the evaluation order of subexpressions within a
larger expression except in the special cases of the &&, ||, ?:, and , operators.
When programming in other computer languages, this may not be a concern.
C's rich operator set, however, introduces operations that produce \side
e�ects." The ++ operator is a prime example. The ++ operator increments a
value by 1 and provides the value for further calculations. For this reason,
expressions such as

b = ++a*2 + ++a*4;

are dangerous. The language does not specify whether the variable a is �rst
incremented and multiplied by 4 or is �rst incremented and multiplied by 2.
The value of this expression is unde�ned.

Expressions 5-1

Operator Precedence

Precedence is the order in which the compiler groups operands with operators.
The C compiler evaluates certain operators and their operands before others.
If operands are not grouped using parentheses, the compiler groups them
according to its own rules.

Table 5-1 shows the rules of operator precedence in the C language. Table 5-1
lists the highest precedence operators �rst. Most operators group from the left
to the right but some group from the right to the left. The grouping indicates
how an expression containing several operators of the same precedence will be
evaluated. Left to right grouping means the expression

a/b * c/d

behaves as if it had been written:

(((a/b)*c)/d)

Likewise, an operator that groups from the right to the left causes the
expression

a = b = c

to behave as if it had been written:

a = (b = c)

5-2 Expressions

Operator Precedence

Table 5-1. C Operator Precedence

Operators Grouping

() [] -> . left to right

+ ! ~ ++ -- - * & sizeof

(See note 1 below.)
right to left

(type) right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= *= /= %= += -= <<=

>>= &= ^= |=

right to left

, left to right

1 Note that the +, -, *, and & operators listed in this row are unary operators.

Expressions 5-3

Lvalue Expressions

An lvalue (pronounced \el-value") is an expression that designates an object.
A modi�able lvalue is an lvalue that does not have an array or an incomplete
type and that does not have a \const"-quali�ed type.

The term \lvalue" originates from the assignment expression E1=E2, where
the left operand E1 must be a modi�able lvalue. It can be thought of as
representing an object \locator value." For example, if E is the name of an
object of static or automatic storage duration, it is an lvalue. Similarly, if E
denotes a pointer expression, *E is an lvalue, designating the object to which E

points.

Examples

Given the following declarations:

int *p, a, b;

int arr[4];

int func();

a /* Lvalue */

a + b /* Not an lvalue */

p /* Lvalue */

p / Lvalue */

arr /* Lvalue, but not modifiable */

(arr + a) / Lvalue */

arr[a] /* Lvalue, equivalent to *(arr+a) */

func /* Not an lvalue */

func() /* Not an lvalue */

5-4 Expressions

Primary Expressions

Primary Expressions

The term primary expression is used in de�ning various C expressions.

Syntax

primary-expression ::=

identi�er

constant

string-literal

(expression)

Description

A primary expression is an identi�er, a constant, a string literal, or an
expression in parentheses that may or may not be an lvalue expression.
Primary expressions are the basic components of all expressions.

An identi�er can be a primary expression provided that you have declared
it properly. A single identi�er may or may not be an lvalue expression. A
function name is not an lvalue.

A constant is a primary expression and can never be an lvalue.

A string literal is a primary expression. The type of the string literal is \array
of characters." If the string literal appears in any context other than as the
operand of sizeof, the operand of unary &, or the initializer for an array of
characters, it is converted to a pointer to the �rst character.

Examples

identi�er: var1

constant: 99

string-literal: "hi there"

(expression) (a+b)

Expressions 5-5

Postfix Operators

Post�x operators are unary operators that attach to the end of post�x
expressions. A post�x expression is any expression that may be legally followed
by a post�x operator.

Syntax

post�x-expression ::=

primary-expression

post�x-expression [expression]

post�x-expression ([argument-expression-list])

post�x-expression . identi�er

post�x-expression -> identi�er

post�x-expression ++

post�x-expression --

argument-expression-list ::=

assignment-expression

argument-expression-list , assignment-expression

Examples

The following are examples of post�x operators:

The 'element of' operator ([]) : array1[10]

The post�x increment operator (++) : index++

The post�x decrement operator (--) : index--

The argument list of function calls : func(arg1,arg2,arg3)

The selection operator (.) : struct_name.member

The selection operator (->) : p_struct->member

5-6 Expressions

Array Subscripting

Array Subscripting

A post�x expression followed by the [] operator is a subscripted reference to a
single element in an array.

Syntax

post�x-expression [expression]

Description

One of the operands of the subscript operator must be of type pointer to T (T
is an object type), the other of integral type. The resulting type is T.

The [] operator is de�ned so that E1[E2] is identical to (*((E1)+(E2)))

in every respect. This leads to the (counterintuitive) conclusion that the []
operator is commutative. The expression E1[E2] is identical to E2[E1].

C's subscripts run from 0 to n-1 where n is the array size.

Multidimensional arrays are represented as arrays of arrays. For this reason,
the notation is to add subscript operators, not to put multiple expressions
within a single set of brackets. For example, int x[3][5] is actually a
declaration for an array of three objects. Each object is, in turn, an array of
�ve int. Because of this, all of the following expressions are correct:

x

x[i]

x[i][j]

The �rst expression refers to the 3 by 5 array of int. The second refers to an
array of �ve int, and the last expression refers to a single int.

The expression x[y] is an lvalue.

There is no arbitrary limit on the number of dimensions that you can declare in
an array.

Because of the design of multidimensional C arrays, the individual data objects
must be stored in row-major order.

Expressions 5-7

Array Subscripting

As another example, the expression

a[i,j] = 0

looks as if array a were doubly subscripted, when actually the comma in the
subscript indicates that the value of i should be discarded and that j is the
subscript into the a array.

5-8 Expressions

Function Calls

Function Calls

Function calls provide a means of invoking a function and passing arguments to
it.

Syntax

post�x-expression ([argument-expression-list])

Description

The post�x-expression must have the type \pointer to function returning T".
The result of the function will be type T. Functions can return any type of
object except array and function. Speci�cally, functions can return structures.
In the case of structures, the contents of the returned structure is copied
to storage in the calling function. For large structures, this can use a lot of
execution time.

Although the expression denoting the called function must actually be a
pointer to a function, in typical usage, it is simply a function name. This works
because the function name will automatically be converted to a pointer, as
explained in Chapter 4.

C has no call statement. Instead, all function references must be followed by
parentheses. The parentheses contain any arguments that are passed to the
function. If there are no arguments, the parentheses must still remain. The
parentheses can be thought of as a post�x call operator .

If the function name is not declared before it is used, the compiler enters the
default declaration:

extern int identi�er();

Function arguments are expressions. Any type of object can be passed to a
function as an argument. Speci�cally, structures can be passed as arguments.
Structure arguments are copied to temporary storage in the called function.
The length of time required to copy a structure argument depends upon the
structure's size.

If the function being called has a prototype, each argument is evaluated and
converted as if being assigned to an object of the type of the corresponding

Expressions 5-9

Function Calls

parameter. If the prototype has an ellipsis, any argument speci�ed after the
�xed parameters is subject to the default argument promotions described
below.

The compiler checks to see that there are as many arguments as required by
the function prototype. If the prototype has an ellipsis, additional parameters
are allowed. Otherwise, they are
agged are erroneous. Also, the types of the
arguments must be assignment-compatible with their corresponding formal
parameters, or the compiler will emit a diagnostic message.

If the function does not have a prototype, then the arguments are evaluated
and subjected to the default argument promotions; that is, arguments of type
char or short (both signed and unsigned) are promoted to type int, and
oat
arguments are promoted to double.

In this case, the compiler does not do any checking between the argument
types and the types of the parameters of the function (even if it has seen
the de�nition of the function). Thus, for safety, it is highly advisable to use
prototypes wherever possible.

In both cases, arrays of type T are converted to pointers to type T, and
functions are converted to pointers to functions.

Within a function, the formal parameters are lvalues that can be changed
during the function execution. This does not change the arguments as they
exist in the calling function. It is possible to pass pointers to objects as
arguments. The called function can then reference the objects indirectly
through the pointers. The result is as if the objects were passed to the function
using call by reference. The following swap function illustrates the use of
pointers as arguments. The swap() function exchanges two integer values:

void swap(int *x,int *y)

{

int t;

t = *x;

*x = *y;

*y = t;

}

5-10 Expressions

Function Calls

To swap the contents of integer variables i and j, you call the function as
follows:

swap(&i, &j);

Notice that the addresses of the objects (pointers to int) were passed and not
the objects themselves.

Because arrays of type T are converted into pointers to type T, you might
think that arrays are passed to functions using call by reference. This is not
actually the case. Instead, the address of the �rst element is passed to the
called function. This is still strictly call by value since the pointer is passed by
value. Inside the called function, references to the array via the passed starting
address, are actually references to the array in the calling function. Arrays are
not copied into the address space of the called function.

All functions are recursive both in the direct and indirect sense. Function A
can call itself directly or function A can call function B which, in turn, calls
function A. Note that each invocation of a function requires program stack
space. For this reason, the depth of recursion depends upon the size of the
execution stack.

Expressions 5-11

Structure and Union Members

A member of a structure or a union can be referenced using either of two
operators: the period or the right arrow.

Syntax

post�x-expression . identi�er

post�x-expression -> identi�er

Description

Use the period to reference members of structures and unions directly. Use the
arrow operator to reference members of structures and unions pointed to by
pointers. The arrow operator combines the functions of indirection through a
pointer and member selection. If P is a pointer to a structure with a member M,
the expression P->M is identical to (*P).M.

The post�x-expression in the �rst alternative must be a structure or a union.
The expression is followed by a period (.) and an identi�er. The identi�er
must name a member de�ned as part of the structure or union referenced in
the post�x-expression . The value of the expression is the value of the named
member. It is an lvalue if the post�x-expression is an lvalue.

If the post�x-expression is a pointer to a structure or a pointer to a union,
follow it with an arrow (composed of the - character followed by the >) and an
identi�er. The identi�er must name a member of the structure or union which
the pointer references. The value of the primary expression is the value of the
named member. The resulting expression is an lvalue.

The . operator and the -> operator are closely related. If S is a structure, M is
a member of structure S, and &S is a valid pointer expression, S.M is the same
as (&S)->M.

5-12 Expressions

Postfix Increment and Decrement Operators

Postfix Increment and Decrement Operators

The post�x increment operator ++ adds one to its operand after using its value.
The post�x decrement operator -- subtracts one from its operand after using
its value.

Syntax

post�x-expression ++

post�x-expression --

Description

You can only apply post�x increment ++ and post�x decrement -- operators to
an operand that is a modi�able lvalue with scalar type. The result of a post�x
increment or a post�x decrement operation is not an lvalue.

The post�x-expression is incremented or decremented after its value is used.
The expression evaluates to the value of the object before the increment or
decrement, not the object's new value.

If the value of X is 2, after the expression A=X++ is evaluated, A is 2 and X is 3.

Avoid using post�x operators on a single operand appearing more than once in
an expression. The result of the following example is unpredictable:

*p++ = *p++;

The C language does not de�ne which expression is evaluated �rst. The
compiler can choose to evaluate the left side of the = operator (saving the
destination address) before evaluating the right side. The result depends on the
order of the subexpression evaluation.

Pointers are assumed to point into arrays. Incrementing (or decrementing) a
pointer causes the pointer to point to the next (or previous) element. This
means, for example, that incrementing a pointer to a structure causes the
pointer to point to the next structure, not the next byte within the structure.
(Refer also to \Additive Operators" for information on adding to pointers.)

Expressions 5-13

Unary Operators

You form unary expressions by combining a unary operator with a single
operand. All unary operators are of equal precedence and group from right to
left.

Syntax

unary-expression ::=

post�x-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

unary-operator ::= one selected from

& * - ~ ! +

Examples

The unary plus operator : +var

The unary minus operator : -var

The address-of operator : &var

The indirect operator : *ptr

The logical NOT operator : !var

The bitwise NOT operator : ~var

5-14 Expressions

Prefix Increment and Decrement Operators

Prefix Increment and Decrement Operators

The pre�x increment or decrement operator increments or decrements its
operand before using its value.

Syntax

++ unary-expression

-- unary-expression

Description

The operand for the pre�x increment ++ or the pre�x decrement -- operator
must be a modi�able lvalue with scalar type. The result is not an lvalue.

The operand of the pre�x increment operator is incremented by 1. The
resulting value is the result of the unary-expression .

The pre�x decrement operator behaves the same way as the pre�x increment
operator except that a value of one is subtracted from the operand.

For any expression E, the unary expressions ++E and (E+=1) yield the same
result. If the value of X is 2, after the expression A=++X is evaluated, A is 3 and
X is 3.

Pointers are assumed to point into arrays. Incrementing (or decrementing) a
pointer causes the pointer to point to the next (or previous) element. This
means, for example, that incrementing a pointer to a structure causes the
pointer to point to the next structure, not the next byte within the structure.
(Refer also to \Additive Operators" for information on adding to pointers.)

Expressions 5-15

Address and Indirection Operators

The address (&) and indirection (*) operators are used to locate the address of
an operand and indirectly access the contents of the address.

Syntax

& cast-expression

* cast-expression

Description

The operand of the unary indirection operator (*) must be a pointer to type T.
The resulting type is T. If type T is not a function type, the unary-expression
is an lvalue.

The contents of pointers are memory addresses. No range checking is done on
indirection operations. Speci�cally, storing values indirectly through a pointer
that was not correctly initialized can cause bounds errors or destruction of
valid data.

The operand of the unary address-of operator (&) must be a function
designator or an lvalue. This precludes taking the address of constants (for
example, &3), because 3 is not an lvalue. If the type of the operand is T, the
result of the address of operator is a pointer to type T. The & operator may not
be applied to bit �elds or objects with the register storage class.

It is always true that if E is an lvalue, then *&E is an lvalue expression equal to
E.

5-16 Expressions

Unary Arithmetic Operators

Unary Arithmetic Operators

A unary arithmetic operator combined with a single operand forms a unary
expression used to negate a variable, or determine the ones complement or
logical complement of the variable.

Syntax

+ cast-expression

- cast-expression

~ cast-expression

! cast-expression

Description

The unary plus operator operates on a single arithmetic operand, as is the case
of the unary minus operator. The result of the unary plus operator is de�ned
to be the value of its operand. For example, just as -2 is an expression with
the value negative 2, +2 is an expression with the value positive 2.

In spite of its de�nition, the unary plus operator is not purely a no-op.
According to the ANSI standard, an unary plus operation is an expression that
follows the integral promotion rule. For example, if i is de�ned as a short
int, then sizeof (i) is 2. However, sizeof (+i) is 4 because the unary
plus operator promotes i to an int. The result of the unary - operator is the
negative value of its operand. The operand can be any arithmetic type. The
integral promotion is performed on the operand before it is used. The result
has the promoted type and is not an lvalue.

The result of the unary ~ operator is a one's (bitwise) complement of its
operand. The operand can be of any integral type. The integral promotion is
performed on the operand before it is used. The result has the promoted type
and is not an lvalue.

The result of the unary ! operator is the logical complement of its operand.
The operand can be of any scalar type. The result has type int and is not an
lvalue. If the operand had a zero value, the result is 1. If the operand had a
nonzero value, the result is 0.

Expressions 5-17

The sizeof Operator

The sizeof operator is used to determine the size (in bytes) of a data object
or a type.

Syntax

sizeof unary-expression

sizeof (type-name)

Description

The result of the sizeof operator is an unsigned int constant expression
equal to the size of its operand in bytes. You can use the sizeof operator in
two di�erent ways. First, you can apply the sizeof operator to an expression.
The result is the number of bytes required to store the data object resulting
from the expression. Second, it may be followed by a type name inside
parentheses. The result then is the number of bytes required to store the
speci�ed type.

In either usage, the sizeof operator is a compile-time operator that you can
use in place of an integer constant.

The usual conversion of arrays of T to pointers to T is inhibited by the sizeof
operator. The sizeof operator returns the number of bytes in an array rather
than the number of bytes in a pointer.

When you apply the sizeof operator to an expression, the expression is not
compiled into executable code. This means that side e�ects resulting from
expression evaluation do not take place.

5-18 Expressions

Cast Operators

Cast Operators

The cast operator is used to convert an expression of one type to another type.

Syntax

cast-expression ::=

unary-expression

(type-name) cast-expression

Description

An expression preceded by a parenthesized type name causes the expression to
be converted to the named type. This operation is called a cast . The cast does
not alter the type of the expression, only the type of the value. Unless the type
name speci�es void type, the type name must specify a scalar type, and the
operand must have scalar type.

The result of a cast operation is not an lvalue.

Conversions involving pointers (other than assignment to or from a \pointer to
void" or assignment of a null pointer constant to a pointer) require casts.

A pointer can be cast to an integral type and back again provided the integral
type is at least as wide as an int.

A pointer to any object can safely be converted to a pointer to char or a
pointer to void, and back again. If converted to a pointer to char, it will point
to the �rst (lowest address) byte of the original object. For example, a pointer
to an integer converted to a character pointer points to the most signi�cant
byte of the integer.

A pointer to a function of one type can safely be converted to a pointer to a
function of another type, and back again.

Expressions 5-19

Multiplicative Operators

The multiplicative operators perform multiplication (*), division (/), or
remainder (%).

Syntax

multiplicative-expression ::=

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

Description

Each of the operands in a multiplicative expression must have arithmetic type.
Further, the operands for the % operator must have integral type.

The usual arithmetic conversions are performed on the operands to select a
resulting type. The result is not an lvalue.

The result of the multiplication operator * is the arithmetic product of the
operands.

The result of the division operator / is the quotient of the operands.

The result of the mod operator % is the remainder when the left argument is
divided by the right argument. By de�nition, a%b==a- ((a/b)*b). The second
operand (/ or %) must not
be 0.

The following table describes the result of a/b for positive and negative integer
operands, when the result is inexact.

5-20 Expressions

Multiplicative Operators

b positive b negative

a positive Largest integer less than the
true quotient.

Smallest integer greater than
the true quotient.

a negative Smallest integer greater than
the true quotient.

Largest integer less than the
true quotient.

For example, -5/2 == -2. The true quotient is -2.5; the smallest integer greater
than -2.5 is -2.

The following table describes the sign of the result of a%b for positive and
negative operands, when the result is not zero.

b positive b negative

a positive + +

a negative - -

For example:

-5 % 2 == -1

Examples

var1 * var2

var1 / var2

var1 % var2

Expressions 5-21

Additive Operators

The additive operators perform addition (+) and subtraction (-).

Syntax

additive-expression ::=

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

Description

The result of the binary addition operator + is the sum of two operands. Both
operands must be arithmetic, or one operand can be a pointer to an object
type and the other an integral type. The usual arithmetic conversions are
performed on the operand if both have arithmetic type. The result is not an
lvalue.

If one operand is a pointer and the other operand is an integral type, the
integral operand is scaled by the size of the object pointed to by the pointer.
As a result, the pointer is incremented by an integral number of objects (not
just an integral number of storage units). For example, if p is a pointer to
an object of type T, when the value 1 is added to p, the value of 1 is scaled
appropriately. Pointer p will point to the next object of type T. If any integral
value i is added to p, i is also scaled so that p will point to an object that is i
objects away since it is assumed that p actually points into an array of objects
of type T. Use caution with this feature. Consider the case where p points to
a structure that is ten bytes long. Adding a constant 1 to p does not cause p
to point to the second byte of the structure. Rather it causes p to point to the
next structure. The value of one is scaled so a value of ten (the length in bytes
of the structure) is used.

The result of the binary subtraction operator - is the di�erence of the two
operands. Both operands must be arithmetic; the left operand can be a pointer
and the right can be an integral type; or both must be pointers to the same
type. The usual arithmetic conversions are performed on the operands if both
have arithmetic type. The result is not an lvalue.

5-22 Expressions

Additive Operators

If one operand is a pointer and the other operand is an integral type, the
integral operand is scaled by the size of the object pointed to by the left
operand. As a result, the pointer is decremented by an integral number
of objects (not just an integral number of storage units). See the previous
discussion on the addition operator + for more details.

If both operands are pointers to the same type of object, the di�erence between
the pointers is divided by the size of the object they point to. The result, then,
is the integral number of objects that lie between the two pointers. Given two
pointers p and q to the same type, the di�erence p-q is an integer k such that
adding k to q yields p.

Examples

var1+var2

var1-var2

Expressions 5-23

Bitwise Shift Operators

The bitwise shift operators shift the left operand left (<<) or right (>>) by the
number of bit positions speci�ed by the right operand.

Syntax

shift-expression ::=

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

Description

Both operands must be of integral type. The integral promotions are
performed on both operands. The type of the result is the type of the
promoted left operand.

The left shift operator << shifts the �rst operand to the left and zero �lls the
result on the right. The right shift operator >> shifts the �rst operand to the
right. If the type of the left operand is an unsigned type, the >> operator zero
�lls the result on the left. If the type of the left operand is a signed type,
copies of the sign bit are shifted into the left bits of the result (sometimes
called sign extend).

Example

var1>>var2

5-24 Expressions

Relational Operators

Relational Operators

The relational operators compare two operands to determine if one operand is
less than, greater than, less than or equal to, or greater than or equal to the
other.

Syntax

relational-expression ::=

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

Description

The usual arithmetic conversions are performed on the operands if both have
arithmetic type. Both operands must be arithmetic or both operands must
be pointers to the same type. In general, pointer comparisons are valid only
between pointers that point within the same aggregate or union.

Each of the operators < (less than), > (greater than), <= (less than or equal)
and >= (greater than or equal) yield 1 if the speci�ed relation is true;
otherwise, they yield 0. The resulting type is int and is not an lvalue.

When two pointers are compared, the result depends on the relative locations
in the data space of the objects pointed to. Pointers are compared as if they
were unsigned integers.

Because you can use the result of a relational expression in an expression, it
is possible to write syntactically correct statements that appear valid but
which are not what you intended to do. An example is a<b<c. This is not
a representation of \a is less than b and b is less than c." The compiler
interprets the expression as (a<b)<c. This causes the compiler to check
whether a is less than b and then compares the result (an integer 1 or 0) with
c.

Expressions 5-25

Relational Operators

Examples

var1 < var2

var1 > var2

var1 <= var2

var1 >= var2

5-26 Expressions

Equality Operators

Equality Operators

The equality operators equal-to (==) and not-equal-to (!=) compare two
operands.

Syntax

equality-expression ::=

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

Description

The usual arithmetic conversions are performed on the operands if both have
arithmetic type. Both operands must be arithmetic, or both operands must be
pointers to the same type, or one operand can be a pointer and the other a null
pointer constant or a pointer to void.

Both of the operators == (equal) and != (not equal) yield 1 if the speci�ed
relation is true; otherwise they will yield 0. The result is of type int and is not
an lvalue.

The == and != operators are analogous to the relational operators except for
their lower precedence. This means that the expression a<b==c<d is true if and
only if a<b and c<d have the same truth value.

Use caution with the == operator. It resembles the assignment operator (=)
and is often pronounced the same when programs are read. Further, you can
use the == operator in expressions syntactically the same as you would the =
operator. For example, the statements

if(a==b) return 0;

if(a=b) return 0;

look very much alike, but are very di�erent. The �rst statement says \if a is
equal to b, return a value of zero." The second statement says \store b into a

and if the value stored is nonzero, return a value of zero."

Expressions 5-27

Equality Operators

Examples

var1==var2

var1!=var2

5-28 Expressions

Bitwise AND Operator

Bitwise AND Operator

The bitwise AND operator (&) performs a bitwise AND operation on its
operands. This operation is useful for bit manipulation.

Syntax

AND-expression ::=

equality-expression

AND-expression & equality-expression

Description

The result of the binary & operator is the bitwise AND function of the two
operands. Both operands must be integral types. The usual arithmetic
conversions are performed on the operands. The type of the result is the
converted type of the operands. The result is not an lvalue.

For each of the corresponding bits in the left operand, the right operand, and
the result, the following table indicates the result of a bitwise AND operation.

Bit in Left Operand Bit in Right Operand Bit in Result

0 0 0

0 1 0

1 0 0

1 1 1

Example

var1 & var2

Expressions 5-29

Bitwise Exclusive OR Operator

The bitwise exclusive OR operator (^) performs the bitwise exclusive OR
function on its operands.

Syntax

exclusive-OR-expression ::=

AND-expression

exclusive-OR-expression ^ AND-expression

Description

The result of the binary operator ^ is the bitwise exclusive OR function of the
two operands. Both operands must be integral types. The usual arithmetic
conversions are performed on the operands. The type of the result is the
converted type of the operands. The result is not an lvalue.

For each of the corresponding bits in the left operand, the right operand, and
the result, the following table indicates the result of an exclusive OR operation.

Bit in Left Operand Bit in Right Operand Bit in Result

0 0 0

0 1 1

1 0 1

1 1 0

You can use the exclusive OR operation for complementing bits. If a mask
integer is exclusive OR'd with another integer, each bit position in the mask
having a value of one will cause the corresponding position in the other
operand to be complemented.

Example

var1 ^ var2

5-30 Expressions

Bitwise Inclusive OR Operator

Bitwise Inclusive OR Operator

The bitwise inclusive OR operator (j) performs the bitwise inclusive OR
function on its operands.

Syntax

inclusive-OR-expression ::=

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

Description

The result of the binary operator j is the bitwise OR function of the two
operands. Both operands must be integral types. The usual arithmetic
conversions are performed on the operands. The type of the result is the
converted type of the operands. The result is not an lvalue.

For each of the corresponding bits in the left operand, the right operand, and
the result, the following table indicates the result of a bitwise OR operation.

Bit in Left Operand Bit in Right Operand Bit in Result

0 0 0

0 1 1

1 0 1

1 1 1

Example

var1 | var2

Expressions 5-31

Logical AND Operator

The logical AND operator (&&) performs the logical AND function on its
operands.

Syntax

logical-AND-expression ::=

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression

Description

Each of the operands must have scalar type. The type of the left operand need
not be related to the type of the right operand. The result has type int and
has a value of 1 if both of its operands compare unequal to 0, and 0 otherwise.
The result is not an lvalue.

The logical AND operator guarantees left-to-right evaluation. If the �rst
operand compares equal to zero, the second operand is not evaluated.

This feature is useful for pointer operations involving pointers that can be
NULL. For example, the following statement:

if(p!=NULL && *p=='A') *p='B';

The �rst operand tests to see if pointer p is NULL. If p is NULL, an indirect
reference could cause a memory access violation. If p is non-NULL, the second
operand is safe to evaluate. The second expression checks to see if p points to
the character 'A'. If the second expression is true, the && expression is true
and the character that p points to is changed to 'B'. Had the pointer been
NULL, the if statement would have failed and the pointer would not be used
indirectly to test for the 'A' character.

Example

var1 && var2

5-32 Expressions

Logical OR Operator

Logical OR Operator

The logical OR operator (||) performs the logical OR function on its operands.

Syntax

logical-OR-expression ::=

logical-AND-expression

logical-OR-expression || logical-AND-expression

Description

Each of the operands must be of scalar type. The type of the left operand need
not be related to the type of the right operand. The result has type int and
has a value of 1 if either of its operands compare unequal to 0, and 0 otherwise.
The result is not an lvalue.

The logical OR operator guarantees left-to-right evaluation. If the �rst operand
compares unequal to 0, the second operand is not evaluated.

Example

var1 || var2

Expressions 5-33

Conditional Operator

The conditional operator (?:) performs an if-then-else using three expressions.

Syntax

conditional-expression ::=

logical-OR-expression

logical-OR-expression ? expression : conditional-expression

Description

A conditional expression consists of three expressions. The �rst and the second
expressions are separated with a ? character; the second and third expressions
are separated with a : character.

The �rst expression is evaluated. If the result is nonzero, the second expression
is evaluated and the result of the conditional expression is the value of the
second expression. If the �rst expression's result is zero, the third expression
is evaluated and the result of the conditional expression is the value of third
expression.

The �rst expression can have any scalar type. The second and third
expressions can be any of the following combinations:

1. Both arithmetic.

The usual arithmetic conversions are performed on the second and third
expressions. The resulting type of the conditional expression is the result
of the conversion.

2. Both are pointers to type T.

Arrays are converted to pointers, if necessary. The result is a pointer to
type T.

3. Identical type object.

The types can match and be structure, union, or void. The result is that
speci�c type.

5-34 Expressions

Conditional Operator

4. Pointer and Null pointer constant or a pointer to void

One expression may be a pointer (or array that is converted to a pointer)
and the other a null pointer constant or a pointer to void. The result is
the same type as the type of the pointer operand.

In all cases, the result is not an lvalue.

Note that either the second or the third expression is evaluated, but not both.
Although not required for readability, it is considered good programming style
to enclose the �rst expression in parentheses. For example:

min = (val1<val2) ? val1:val2;

Example

This expression returns x if a is 0, or return y if a is not 0.

a == 0 ? x : y

The following statement prints "I have 1 dog." if num is equal to 1, or "I have

3 dogs.", if num is 3.

printf ("I have %d dog%s.\n",num, (num>1) ? "s" : "");

Expressions 5-35

Assignment Operators

Assignment operators assign the value of the right operand to the object
designated by the left operand.

Syntax

assignment-expression ::=

conditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator ::= one selected from the set

= *= /= %= += -= <<= >>= &= ^= |=

Description

Each assignment operator must have a modi�able lvalue as its left operand.
An assignment operator stores a value into the left operand. The C language
does not de�ne the order of evaluation of the left and right operands. For this
reason, you should avoid operations with side e�ects (such as ++ or --) if
their operands appear on both the left and right side of the assignment. For
example, you should not write an expression like the following because the
results depend on which operand is evaluated �rst.

*p++ = *p--

Simple Assignment

In simple assignment, the value of the right operand replaces the value of the
object speci�ed by the left operand. If the source and destination objects
overlap storage areas, the results of the assignment are unde�ned.

The left and right operands can be any of the following combinations:

1. Both arithmetic

If both of the operands are arithmetic types, the type of the right operand is
converted to the type of the left operand. The converted value is then stored
in the location speci�ed by the left operand.

5-36 Expressions

Assignment Operators

2. Both structure/union

If both operands are structures or unions of the same type, the right
structure/union is copied into the left structure/union. A union is
considered to be the size of the largest member of the union, and it is this
number of bytes that is moved.

3. Left operand is a pointer to type T

In this case, the right operand can also be a pointer to type T. The right
operand is then copied to the left operand.

The right operand can also be a null pointer constant or a pointer to void.

A special case of pointer assignment involves the assignment of a pointer to
void to another pointer. No cast is necessary to convert a \pointer to void"
to any other type of pointer.

An assignment is not only an operation, it is also an expression. Each operand
must have an arithmetic type consistent with those allowed by the binary
operator that is used to make up the assignment operator. You can use the +=
and -= operators with a left operand that is a pointer type.

Compound Assignment

Given the general assignment operator op=, if used in the expression

A op= B

the result is equal to the following assignment

A = A op (B)

except that the expression represented by A is evaluated only once.

Therefore,

A[f()] += B

is very di�erent from

A[f()] = A[f()] + B

because the latter statement causes the function f() to be invoked twice.

Expressions 5-37

Assignment Operators

Assignment operators are useful to reference complex subscript operators. For
example:

a[j+2/i] += 3.5

In this case, the subscript expression is evaluated only once.

Examples

a += 5 Add 5 to a.

a *= 2 Multiply a by 2.

a = b Assign b to a.

a <<= 1 Left shift a by 1 bit.

5-38 Expressions

Comma Operator

Comma Operator

The comma operator is a binary operator whose operands are expressions. The
expression operands are evaluated from left to right.

Syntax

expression ::=

assignment-expression

expression , assignment-expression

Description

The comma operator is a \no-operation" operator. Its left operand is evaluated
for its side e�ects only. Its value is discarded. The right operand is then
evaluated and the result of the expression is the value of the right operand.

Because the comma is a punctuator in lists of function arguments, you need to
use care within argument lists to ensure that the comma is treated as a comma
operator and not as an argument separator.

f(a, (b=7, b), c);

This example passes three arguments to f(). The �rst is the value of a, the
second is the value of b which is set equal to 7 before the function call, and
the third is the value of c. The comma separating the assignment expression
and the argument b is enclosed in parentheses. It is therefore interpreted as a
comma operator and not as an argument separator.

Examples

func(a, (b=0, b), c) /*Set b to 0 before passing it to func. */

index++, a = index /*Increment index and then assign it to a.*/

i=0, j=0, k=0 /*Initialize i,j,k to 0 */

Expressions 5-39

Constant Expressions

Constant expressions are expressions that can be evaluated during translation
rather than run-time.

Syntax

constant-expression ::=

conditional-expression

Description

A constant expression must evaluate to an arithmetic constant expression,
a null pointer constant, an address constant, or an address constant plus or
minus an integral constant expression.

An integral constant expression must involve only integer constants,
enumeration constants, character constants, sizeof expressions, and casts to
integral types. You cannot include the array subscripting ([]), member access
(. and ->), and address of (&) operators in integral constant expressions. An
integral constant expression with the value 0, or such an expression cast to
type void *, is called a null pointer constant . An address constant is a pointer
to an object of static storage duration or to a function designator.

Further, you cannot use a function call, an increment or a decrement operator,
or indirection or assignment operations in a constant expression.

Constant expressions are usually used for \allocation" type operations. An
example of this is array allocation. The size of an array is given as a constant
expression.

Examples

2 * 2

3 + 3
(-2.5) + 99.8 * 4.5

5-40 Expressions

6

Statements

This chapter describes the statements in the C programming language. The
statements are grouped as follows:

Labeled Statements.
Compound Statement or Block.
Expressions and Null Statement.
Selection Statements.
Iteration Statements.
Jump Statements.

Statements are the executable parts of a C function. The computer executes
them in the sequence in which they are presented in the program, except where
control
ow is altered as speci�ed in this chapter.

Syntax

statement ::=

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

Example

labl: x=y;

{ int x; x=y; }

x=y;

if (x<y) x=y;

for (i=1; i<10; i++) a[i]=i;

goto labl;

Statements 6-1

Labeled Statements

Labeled statements are those preceded by a label.

Syntax

labeled-statement ::=

identi�er : statement

case constant-expression : statement

default: statement

Description

You can pre�x any statement using a label so at some point you can reference
it using goto statements. This includes statements already having labels. In
other words, any statement can have one or more labels a�xed to it.

The case and default labels can only be used inside a switch statement.
These are discussed in further detail in the section on the switch statement
appearing later in this chapter.

Examples

if (fatal_error)

goto get_out;...
get_out: return(FATAL_CONDITION);

6-2 Statements

Compound Statement or Block

Compound Statement or Block

Compound or block statements allow you to group other statements together in
a block of code.

Syntax

compound-statement ::=

{[declaration-list][statement-list]}

declaration-list ::=

declaration

declaration-list declaration

statement-list ::=

statement

statement-list statement

Description

You can group together a set of declarations and statements and use them as if
they were a single statement. This grouping is called a compound statement or
a block .

Variables and constants declared in the block are local to the block and any
subordinate blocks declared therein unless declared extern. If the objects are
initialized, the initialization is performed each time the compound statement is
entered from the top through the left brace ({) character. If the statement is
entered via a goto statement or in a switch statement, the initialization is not
performed.

Any object declared with static storage duration is created and initialized when
the program is loaded for execution. This is true even if the object is declared
in a subordinate block.

Statements 6-3

Compound Statement or Block

Example

if (x != y)

{

int temp;

temp = x;

x = y;

y = temp;

}

6-4 Statements

Expression and Null Statements

Expression and Null Statements

An expression in C can also be a statement. A null statement is an expression
statement with no expression and it is used to provide a null operation.

Syntax

expression-statement ::=

[expression];

Description

You can use any valid expression as an expression statement by terminating it
with a semicolon. Expression statements are evaluated for their side e�ects
such as assignment or function calls. If the expression is not speci�ed, but the
semicolon is still provided, the statement is treated as a null statement.

Null statements are useful for specifying no-operation statements. No-operation
statements are often used in looping constructs where all of the \work" of the
statement is done without an additional statement. For example, a program
fragment that sums up the contents of an array named x containing 10 integers
might look like this:

for(i=0,s=0; i<10; s+=x[i++]);

No additional statement is necessary to specify the required function, however,
the syntax of the for statement requires a statement following the closing) of
the for. To meet this syntax requirement, you can use a null statement.

Example

expression;: x=y;

Statements 6-5

Selection Statements

A selection statement alters a program's execution
ow by selecting one path
from a collection based on a speci�ed controlling expression. The if statement
and the switch statement are selection statements.

Syntax

selection-statement ::=

if (expression) statement

if (expression) statement else statement

switch (expression) statement

Examples

if (expression) statement:

if (x<y) x=y;

if (expression) statement else statement:

if (x<y) x=y; else y=x;

switch (expression) statement:

switch (x)

{ case 1: x=y;

break;

default: y=x;

break;

}

6-6 Statements

The if Statement

The if Statement

The if statement executes a statement depending on the evaluation of an
expression.

Syntax

if (expression) statement

if (expression) statement else statement

Description

The if statement is for testing values and making decisions. An if statement
can optionally include an else clause. For example:

if (j<1)

func(j);

else

{

j=x++;

func(j);

}

The �rst statement is executed only if the evaluated expression is true (in other
words, evaluates to a nonzero value). The expression may be of any scalar
type. Note that expressions involving relational expressions actually produce a
result and may therefore be used in an if statement.

If you include the else clause, the statement after the else is executed only
if the evaluated expression is false (in other words, evaluates to a zero value).
Under no circumstances are both statements in an if-else statement executed
(unless you include a goto statement from one substatement to the other).

If the �rst substatement is entered as the result of a goto to a label, the second
substatement (if provided) is not executed.

The \dangling else" ambiguity associated with if statements of this form is
resolved by associating the else with the last lexically preceding else-less if
that is in the same block, but not in an enclosed block.

Statements 6-7

The if Statement

The else-if construction is useful to include more than one alternative to the
if statement. The following is an example of a three-way branch using the
else-if chain:

if(a==b)

k = 1;

else if(a==c)

k = 2;

else if(a==d)

k = 4;

Regardless of the relationships between the variables a, b and c, only one
statement assigning a value to k is executed. You should use the else-if
chain in place of the switch statement when the controlling expressions are
not constant expressions. However, nesting too many else-if statements can
make a program cumbersome.

The tests are each executed in order until successful or until the end of the
selection statement is reached. In the previous example, if a is equal to d, all
three comparisons would be executed. On the other hand, if a is equal to c,
only the �rst two comparisons are executed. Therefore, conditions that are
most likely to be true should be tested �rst in an else-if chain. The switch
statement, however, may execute only one comparison (depending on e�ciency
tradeo�s). Use the switch statement where possible to make a program more
readable and e�cient (see \The switch Statement").

6-8 Statements

The switch Statement

The switch Statement

The switch statement executes one or more of a series of cases based on the
value of an expression. It o�ers multiway branching.

Syntax

switch (expression)

statement

Description

The expression after the word switch is the controlling expression . The
controlling expression must have integral type. The statement following the
controlling expression is typically a compound statement. The compound
statement is called the switch body.

The statements in the switch body may be labeled with case labels. The case
label is followed by an integral constant expression and a colon. No two case

constant expressions in the same switch statement may have the same value.

When the switch statement executes, integral promotions are performed on
the controlling expression; the result is compared with the constant expressions
after the case labels in the switch body. If one of the constant expressions
matches the value of the controlling expression, control passes to the statement
following that case expression.

If no expression matches the value of the control expression and a statement
in the switch body is labeled with the default label, control passes to
that statement. Only one statement of the switch body may be labeled the
default. By convention, the default label is included last after the case
labels, although this is not required by the C programming language.

If there is no default, control passes to the statement immediately following
the switch body and the switch e�ectively becomes a no- operation
statement.

The switch statement operates like a multiway else-if chain except the
values in the case statements must be constant expressions, and, most
importantly, once a statement is selected from within the switch body, control

Statements 6-9

The switch Statement

is passed from statement to statement as in a normal C program. Control may
\fall" through to following case statements. Using a break statement is the
most common way to leave a switch body. If a break statement is encountered,
control passes to the statement immediately following the switch body.

Example

The following example shows a switch statement that includes several case
labels. The program selects the case whose constant matches getchar.

switch (getchar ())

{

case 'r':

case 'R':

moveright ();

break;

case 'l':

case 'L':

moveleft ();

break;

case 'B':

moveback ();

break;

case 'A':

default:

moveahead ();

break;

}

6-10 Statements

Iteration Statements

Iteration Statements

You use iteration statements to force a program to execute a statement
repeatedly. The executed statement is called the loop body. Loops execute until
the value of a controlling expression is 0. The controlling expression may be of
any scalar type.

C has several iteration statements: while, do-while, and for. The main
di�erence between these statements is the point at which each loop tests for the
exit condition. Refer to the goto, continue, and break statements for ways to
exit a loop without reaching its end or meeting loop exit tests.

Syntax

iteration-statement ::=

while (expression) statement

do statement while (expression);

for ([expression1] ; [expression2]; [expression3]) statement

Examples

These three loops all accomplish the same thing (they assign i to a[i] for i
from 0 to 4):

i = 0;

while (i < 5)

{

a[i] = i;
i++;

}

i = 0;

do

{

a[i] = i;

i++;

} while (i < 5);

Statements 6-11

Iteration Statements

for (i = 0; i < 5; i++)

{

a[i] = i;

}

6-12 Statements

The while Statement

The while Statement

The while statement evaluates an expression and executes the loop body until
the expression evaluates to false.

Syntax

while (expression)

statement

Description

The controlling expression is evaluated at run time. If the controlling
expression has a nonzero value, the loop body is executed. Then control
passes back to the evaluation of the controlling expression. If the controlling
expression evaluates to 0, control passes to the statement following the loop
body. The test for 0 is performed before the loop body is executed. The
loop body of a while statement with a controlling constant expression that
evaluates to 0 never executes.

Example

For example:

i = 0;

while (i < 3) {

func (i);

i++;

}

The example shown above calls the function func three times, with the
argument values of 0, 1, and 2.

Statements 6-13

The do Statement

The do statement executes the loop body one or more times until the
expression in the while clause evaluates to 0.

Syntax

do statement while (expression)

Description

The loop body is executed. The controlling expression is evaluated. If the
value of the expression is nonzero, control passes to the �rst statement of the
loop body. Note that the test for a zero value is performed after execution of
the loop body. The loop body executes one time regardless of the value of the
controlling expression.

Example

For example:

i = 0;

do {

func (i);
i++;

} while (i<3);

This example calls the function func three times with the argument values of
0, 1, and 2.

6-14 Statements

The for Statement

The for Statement

The for statement evaluates three expressions and executes the loop body
until the second expression evaluates to false.

Syntax

for ([expression1] ; [expression2]; [expression3]) statement

Description

The for statement is a general-purpose looping construct that allows you to
specify the initialization, termination, and increment of the loop. The for uses
three expressions. Semicolons separate the expressions. Each expression is
optional, but you must include the semicolons.

Expression1 is the initialization expression that typically speci�es the initial
values of variables. It is evaluated only once before the �rst iteration of the
loop.

Expression2 is the controlling expression that determines whether or not
to terminate the loop. It is evaluated before each iteration of the loop. If
expression2 evaluates to a nonzero value, the loop body is executed. If it
evaluates to 0, execution of the loop body is terminated and control passes to
the �rst statement after the loop body. This means that if the initial value of
expression2 evaluates to zero, the loop body is never executed.

Expression3 is the increment expression that typically increments the variables
initialized in expression1 . It is evaluated after each iteration of the loop body
and before the next evaluation of the controlling expression.

The for loop continues to execute until expression2 evaluates to 0, or until a
jump statement, such as a break or goto, interrupts loop execution.

If the loop body executes a continue statement, control passes to expression3 .
Except for the special processing of the continue statement, the for statement
is equivalent to the following:

Statements 6-15

The for Statement

expression1;

while (expression2) {

statement

expression3;

}

You may omit any of the three expressions. If expression2 (the controlling
expression) is omitted, it is taken to be a nonzero constant.

Example

For example:

for (i=0; i<3; i++) {

func(i);

}

This example calls the function func three times, with argument values of 0, 1,
and 2.

6-16 Statements

Jump Statements

Jump Statements

Jump statements cause the unconditional transfer of control to another place in
the executing program.

Syntax

jump-statement ::=

goto identi�er;

continue;

break;

return [expression];

Examples

These four fragments all accomplish the same thing (they print out the
multiples of 5 between 1 and 100):

i = 0;

while (i < 100)

{

if (++i % 5)

continue; /* unconditional jump to top of while loop */

printf ("%2d ", i);

}

printf ("\n");

i = 0;

L: while (i < 100)

{

if (++i % 5)

goto L: /* unconditional jump to top of while loop */

printf ("%2d ",i);

}

printf ("\n");

Statements 6-17

Jump Statements

i = 0;

while (1)

{

if ((++i % 5) == 0)

printf ("%2d ", i);

if (i > 100)

break; /* unconditional jump past the while loop */

}

printf ("\n");

i = 0;

while (1)

{

if ((++i % 5) == 0)

printf ("%2d ", i);

if (i > 100) {

printf ("\n");

return; /* unconditional jump to calling function */

}

}

6-18 Statements

The goto Statement

The goto Statement

The goto statement transfers control to a labeled statement that is within the
scope of the current function.

Syntax

goto identi�er;

Description

The goto statement causes an unconditional branch to the named label in
the current function. Because you can use goto statements to jump to any
statement that can be labeled, the potential for their abuse is great. For
example, you can branch into loop bodies and enter blocks at points other
than the head of the block. This can cause problems if you attempt to access
variables initialized at the beginning of the block. Generally, you should avoid
using goto statements because they disturb the structure of the program,
making it di�cult to understand. A common use of goto statements in C is to
exit from several levels of nested blocks when detecting an error.

Statements 6-19

The continue Statement

The continue statement is used to transfer control during the execution of an
iteration statement.

Syntax

continue;

Description

The continue statement unconditionally transfers control to the loop-
continuation portion of the most tightly enclosing iteration statement. You
cannot use the continue statement without an enclosing for, while, or do
statement.

In a while statement, a continue causes a branch to the code that tests the
controlling expression.

In a do statement, a continue statement causes a branch to the code that tests
the controlling expression.

In a for statement, a continue causes a branch to the code that evaluates the
increment expression.

Example

For example:

for (i=0; i<=6; i++)

if(i==3) continue;

else printf("%d\n",i);

This example prints:

0

1

2

4

5

6

6-20 Statements

The break Statement

The break Statement

The break statement terminates the enclosing switch or iteration statement.

Syntax

break;

Description

A break statement terminates the execution of the most tightly enclosing
switch or iteration statement. Control is passed to the statement following the
switch or iteration statement. You cannot use a break statement unless it is
enclosed in a switch or iteration statement. Further, a break will only break
out of one level of switch or iteration statement. To exit from more than one
level, you must use a goto statement.

When used in the switch statement, break normally terminates each case

statement. If you use no break (or other unconditional transfer of control),
each statement labeled with case
ows into the next. Although not required, a
break is usually placed at the end of the last case statement. This reduces the
possibility of errors when inserting additional cases at a later time.

Example

For example:

for (i=0; i<=6; i++)

if(i==3) break;

else printf ("%d\n",i);

This example prints:

0

1

2

Statements 6-21

The return Statement

The return statement causes a return from a function.

Syntax

return [expression];

Description

When a return statement is executed, the current function is terminated and
control passes back to the calling function. In addition, all memory previously
allocated to automatic variables is considered unused and may be allocated for
other purposes.

If an expression follows the return statement, the value of the expression
is implicitly cast to match the type of the function in which the return
statement appears. If the type of the function is void, no expression may
follow the return statement.

A given function may have as many return statements as necessary. Each may
have an expression or not, as required. Note that the C language does not
require that return statements have expressions even if the function type is
not void. If a calling program expects a value and a function does not return
one (that is, a return statement has no expression), the value returned is
unde�ned.

Reaching the �nal g character of a function without encountering a return is
equivalent to executing a return statement with no expression.

6-22 Statements

7

Preprocessing Directives

Preprocessing directives function as compiler control lines. They allow you to
direct the compiler to perform certain actions on the source �le.

You can use the preprocessing directives to make a number of textual
changes in the source before it is syntactically and semantically analyzed and
translated. Since preprocessing occurs conceptually before the compilation
process, there is generally no relationship between the syntax of a translation
unit and preprocessing directives. There are some restrictions on where
#pragma directives may appear within a translation unit. Refer to Chapter 9
for details.

Syntax

preprocessor-directive ::=

include-directive newline

macro-directive newline

conditional-directive newline

line-directive newline

error-directive newline

pragma-directive newline

Description

The preprocessing directives control the following general functions:

1. Source File Inclusion

You can direct the compiler to include other source �les at a given
point. This is normally used to centralize declarations or to access standard
system headers such as stdio.h.

Preprocessing Directives 7-1

2. Macro Replacement

You can direct the compiler to replace token sequences with other
token sequences. This is frequently used to de�ne names for constants
rather than hard coding them into the source �les.

3. Conditional Inclusion

You can direct the compiler to check values and
ags, and compile
or skip source code based on the outcome of a comparison. This feature
is useful in writing a single source that will be used for several di�erent
computers.

4. Line Control

You can direct the compiler to increment subsequent lines from a
number speci�ed in a control line.

5. Pragma Directive

Pragmas are implementation-dependent instructions that are
directed to the compiler. Because they are very system dependent, they are
not portable.

All preprocessing directives begin with a pound sign (#) as the �rst character
in a line of a source �le. White space may precede the # character in
preprocessing directives. The # character is followed by any number of spaces
and horizontal tab characters and the preprocessing directive. The directive is
terminated by a new-line character. You can continue directives, as well as
normal source lines, over several lines by ending lines that are to be continued
with a backslash (n).

Comments in the source �le that are not passed through the preprocessor are
replaced with a single white-space character.

7-2 Preprocessing Directives

Examples

include-directive: #include <stdio.h>

macro-directive: #define MAC x+y

conditional-directive: #ifdef MAC

line-directive: #line 5 "myfile"

pragma-directive: #pragma INTRINSIC func

Preprocessing Directives 7-3

Source File Inclusion

You can include the contents of other �les within the source �le using the
#include directive.

Syntax

include-directive ::=

#include <�lename>

#include "�lename"

#include identi�er

Description

In the third form above, identi�er must be in the form of one of the �rst two
choices after macro replacement.

The #include preprocessing directive causes the compiler to switch its input
�le so that source is taken from the �le named in the include directive.
Historically, include �les are named:

�lename.h

If the �le name is enclosed in double quotation marks, the compiler searches
your current directory for the speci�ed �le. If the �le name is enclosed in angle
brackets, the \system" directory is searched to �nd the named �le. Refer to
Chapter 10 for a detailed description of how the directory is searched.

Files that are included may contain #include directives themselves. The HP C
compiler supports a nesting level of at least 35 #include �les.

The arguments to the #include directive are subject to macro replacement
before the directive processes them. Error messages produced by the HP C
compiler usually supply the �le name the error occurred in as well as the �le
relative line number of the error.

7-4 Preprocessing Directives

Source File Inclusion

Examples

#include <stdio.h>

#include "myheader"

#ifdef MINE

define filename "file1"

#else

define filename "file2"

#endif

#include filename

Preprocessing Directives 7-5

Macro Replacement

You can de�ne text substitutions in your source �le with C macro de�nitions.

Syntax

macro-directive ::=

#define identi�er [replacement-list]

#define identi�er ([identi�er-list])

[replacement-list]

#undef identi�er

replacement-list ::=

token

replacement-list token

Description

A #define preprocessing directive of the form:

#define identi�er [replacement-list]

de�nes the identi�er as a macro name that represents the replacement list.
The macro name is then replaced by the list of tokens wherever it appears in
the source �le (except inside of a string or character constant, or comment). A
macro de�nition remains in force until it is unde�ned through the use of the
#undef directive or until the end of the translation unit.

Macros can be rede�ned without an intervening #undef directive. Any
parameters used must agree in number and spelling, and the replacement lists
must be identical. All white space is treated equally.

The replacement-list may be empty. If the token list is not provided, the macro
name is replaced with no characters.

If the de�ne takes the form

#define identi�er ([identi�er-list]) replacement-list

a macro with formal parameters is de�ned. The macro name is the identi�er
and the formal parameters are provided by the identi�er-list which is enclosed

7-6 Preprocessing Directives

Macro Replacement

in parentheses. The �rst parenthesis must immediately follow the identi�er
with no intervening white space. If there is a space between the identi�er and
the (, the macro is de�ned as if it were the �rst form and that the replacement
list begins with the (character.

The formal parameters to the macro are separated with commas. They may or
may not appear in the replacement list. When the macro is invoked, the actual
arguments are placed in a parentheses-enclosed list following the macro name.
Comma tokens enclosed in additional matching pairs of parentheses do not
separate arguments but are themselves components of arguments.

The actual arguments replace the formal parameters in the token string when
the macro is invoked.

If a formal parameter in the macro de�nition directive's token string follows
a # operator, it is replaced by the corresponding argument from the macro
invocation, preceded and followed by a double-quote character (") to create a
string literal. This feature may be used to turn macro arguments into strings.
This feature is often used with the fact that the compiler concatenates adjacent
strings.

After all replacements have taken place during macro invocation, each instance
of the special ## token is deleted and the tokens preceding and following the ##
are concatenated into a single token. This is useful in forming unique variable
names within macros.

The following example illustrates the use of the # operator for creating string
literals out of arguments and concatenating tokens:

#define debug(s, t) printf("x" # s "= %d, x" # t " %s", x ## s, x ## t)

Invoked as: debug(1, 2);

Results in:

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);

which, after concatenation, results in:

printf("x1= %d, x2= %s", x1, x2);

Spaces around the # and ## are optional.

Preprocessing Directives 7-7

Macro Replacement

Note The # and ## operators are only supported in ANSI mode.

The most common use of the macro replacement is in de�ning a constant.
Rather than hard coding constants in a program, you can name the constants
using macros then use the names in place of actual constants. By changing the
de�nition of the macro, you can more easily change the program:

#define ARRAY_SIZE 1000

float x[ARRAY_SIZE];

In this example, the array x is dimensioned using the macro ARRAY_SIZE rather
than the constant 1000. Note that expressions that may use the array can also
use the macro instead of the actual constant:

for (i=0; i<ARRAY_SIZE; ++i) f+=x[i];

Changing the dimension of x means only changing the macro for ARRAY_SIZE;
the dimension will change and so will all the expressions that make use of the
dimension.

Some other common macros used by C programmers include:

#define FALSE 0

#define TRUE 1

The following macro is more complex. It has two parameters and will produce
an in-line expression which is equal to the maximum of its two parameters:

#define MAX(x,y) ((x) > (y) ? (x) : (y))

Parentheses surrounding each argument and the resulting expression insure
that the precedences of the arguments and the result will not improperly
interact with any other operators that might be used with the MAX macro.

Using a macro de�nition for MAX has some advantages over a function
de�nition. First, it executes faster because the macro generates in-line code,
avoiding the overhead of a function call. Second, the MAX macro accepts any
argument types. A functional implementation of MAX would be restricted to the
types de�ned for the function. Note further that because each argument to the
MAX macro appears in the token string more than once, check to be sure that

7-8 Preprocessing Directives

Macro Replacement

the actual arguments to the MAX macro do not have any \side e�ects." The
following example

MAX(a++, b);

might not work as expected because the argument a is incremented two times
when a is the maximum.

The following statement

i = MAX(a, b+2);

is expanded to:

i = ((a) > (b+2) ? (a) : (b+2));

Examples

#define isodd(n) (((n % 2) == 1) ? (TRUE) : (FALSE))

/* This macro tests a number and returns TRUE if the number is odd. It will */

/* return FALSE otherwise. */

#define eatspace() while((c=getc(input)) == ' ' || c == '\n' || c == '\t');

/* This macro skips white spaces. */

Preprocessing Directives 7-9

Predefined Macros

In addition to __LINE__ and __FILE__ (see \Line Control" below), ANSI C
provides the __DATE__, __TIME__ and __STDC__ prede�ned macros. Table 7-1
describes the complete set of macros that are prede�ned to produce special
information. They may not be unde�ned.

Table 7-1. Predefined Macros

Macro Name Description

__DATE__ Produces the date of compilation in the form Mmm dd yyyy.

__FILE__ Produces the name of the �le being compiled.

__LINE__ Produces the current source line number.

__STDC__ Produces the decimal constant 1, indicating that the
implementation is standard-conforming.

__TIME__ Produces the time of compilation in the form hh:mm:ss.

Note __DATE__, __TIME__, and __STDC__ are only de�ned in ANSI
mode.

7-10 Preprocessing Directives

Conditional Compilation

Conditional Compilation

Conditional compilation directives allow you to delimit portions of code that
are compiled if a condition is true.

Syntax

conditional-directive ::=

#if constant-expression newline [group]

#ifdef identi�er newline [group]

#ifndef identi�er newline [group]

#else newline [group]

#elif constant-expression newline [group]

#endif

Here, constant-expression may also contain the de�ned operator:

defined identi�er

defined (identi�er)

Description

You can use #if, #ifdef, or #ifndef to mark the beginning of the block of
code that will only be compiled conditionally. An #else directive optionally
sets aside an alternative group of statements. You mark the end of the block
using an #endif directive. The structure of the conditional compilation
directives can be shown using the #if directive:

#if constant-expression
...

/* (Code that compiles if the expression evaluates

to a nonzero value.) */

#else
...

/* (Code that compiles if the expression evaluates

to a zero value.) */

#endif

Preprocessing Directives 7-11

Conditional Compilation

The constant-expression is like other C integral constant expressions except
that all arithmetic is carried out in long int precision. Also, the expressions
cannot use the sizeof operator, a cast, or an enumeration constant.

You can use the defined operator in the #if directive to use expressions that
evaluate to 0 or 1 within a preprocessor line. This saves you from using nested
preprocessing directives.

The parentheses around the identi�er are optional. For example:

#if defined (MAX) && ! defined (MIN)...

Without using the defined operator, you would have to include the following
two directives to perform the above example:

#ifdef max

#ifndef min

The #if preprocessing directive has the form:

#if constant-expression

Use #if to test an expression. The compiler evaluates the expression in the
directive. If it is true (a nonzero value), the code following the directive is
included. If the expression evaluates to false (a zero value), the compiler
ignores the code up to the next #else, #endif, or #elif directive.

All macro identi�ers that appear in the constant-expression are replaced by
their current replacement lists before the expression is evaluated. All defined
expressions are replaced with either 1 or 0 depending on their operands.

Whichever directive you use to begin the condition (#if, #ifdef, or #ifndef),
you must use #endif to end the if-section.

The following preprocessing directives are used to test for a de�nition:

#ifdef identi�er

#ifndef identi�er

They behave like the #if directive but #ifdef is considered true if the
identi�er was previously de�ned using a #define directive or the -D option.
#ifndef is considered true if the identi�er is not yet de�ned.

7-12 Preprocessing Directives

Conditional Compilation

You can nest these constructions. Delimit portions of the source program using
conditional directives at the same level of nesting, or with a -D option on the
command line.

Use the #else directive to specify an alternative section of code to be compiled
if the #if, #ifdef, or #ifndef conditions fail. The code after the #else
directive is compiled if the code following any of the if directives does not
compile.

The #elif constant-expression directive tests whether a condition of the
previous #if, #ifdef, or #ifndef was false. #elif is syntactically the same as
the #if directive and can be used in place of an #else directive.

Examples

Valid combinations of these conditional compilation directives follow:

#ifdef SWITCH

/* compiled if SWITCH is defined */

#else

/* compiled if SWITCH is undefined */

#endif /* end of if */

#if defined(THING)

/* compiled if THING is defined */

#endif /* end of if */

#if A>47

/* compiled if A evaluates > 47 */

#else

#if A < 20

/* compiled if A evaluates < 20 */

#else

/* compiled if A >= 20 and <= 47 */
#endif /* end of if, A < 20 */

#endif /* end of if, A > 47 */

Examples

#ifdef (HP9000_S800) /* If HP9000_S800 is defined, INT_SIZE */

Preprocessing Directives 7-13

Conditional Compilation

#define INT_SIZE 32 /* is defined to be 32 (bits). */

#elif defined (HPVECTRA) && defined (SMALL_MODEL)

#define INT_SIZE 16 /* Otherwise, if HPVECTRA and */

#endif /* SMALL_MODEL are defined, INT_SIZE is */

/* defined to be 16 (bits). */

#ifdef DEBUG /* If DEBUG is defined, display the */

printf("table element : \n"); /* table elements. */

for (i=0; i < MAX_TABLE_SIZE; ++I)

printf("%d %f\n", i, table[i]);

#endif

Note The #elif directive is only supported in ANSI mode.

7-14 Preprocessing Directives

Line Control

Line Control

You can cause the compiler to increment line numbers during compilation from
a number speci�ed in a line control directive. (The resulting line numbers
appear in error message references, but do not alter the line numbers of the
actual source code.)

Syntax

line-directive ::=

#line digit-sequence [�lename]

Description

The #line preprocessing directive causes the compiler to treat lines following it
in the program as if the name of the source �le were �lename and the current
line number is digit-sequence. This is to control the �le name and line number
that is given in diagnostic messages, for example. This feature is used primarily
for preprocessor programs that generate C code. It enables them to force the
HP C compiler to produce diagnostic messages with respect to the source code
that is input to the preprocessor rather than the C source code that is output
and subsequently input to the compiler.

HP C de�nes two macros that you can use for error diagnostics. The �rst is
__LINE__, an integer constant equal to the value of the current line number.
The second is __FILE__, a quoted string literal equal to the name of the input
source �le. Note that you can change

__FILE__ and __LINE__ using #include or #line directives.

Example

#line digit-sequence [�lename]: #line 5 "myfile"

Preprocessing Directives 7-15

Pragma Directive

You can provide instructions to the compiler through inclusion of pragmas.

Syntax

pragma-directive ::=

#pragma replacement-list

Description

The #pragma preprocessing directive provides implementation-dependent
information to the compiler. See Chapter 9 for descriptions of pragmas
recognized by HP C/HP-UX. Any pragma that is not recognized by the
compiler is ignored.

Example

#pragma replacement-list: #pragma intrinsic func

7-16 Preprocessing Directives

Error Directive

Error Directive

Syntax

#error [pp-tokens]

The #error directive causes a diagnostic message, along with any included
token arguments, to be produced by the compiler.

Examples

#ifndef (HP_C)

#error "HP_C not defined!" /* This directive will produce

#endif the diagnostic message "HP_C

not defined!" */

#if TABLE_SIZE % 256 != 0

#error "TABLE_SIZE must be a multiple of 256!"

#endif /* This directive will produce

the diagnostic message

"TABLE_SIZE must be a

multiple of 256! */

Note The #error directive is only supported in ANSI mode.

Preprocessing Directives 7-17

Trigraph Sequences

The C source code character set is a superset of the ISO 646-1983 Invariant
Code Set. To enable programs to be represented in the reduced set, trigraph
sequences are de�ned to represent those characters not in the reduced set. A
trigraph is a three character sequence that is replaced by a corresponding single
character. Table 7-2 gives the complete list of trigraph sequences and their
replacement characters.

Table 7-2.

Trigraph Sequences and

Replacement Characters

Trigraph Sequence Replacement

??= #

??/ n

??' ^

??([

??)]

??! j

??< f

??> g

??- ~

Any ? that does not begin one of the trigraphs listed above is not changed.

7-18 Preprocessing Directives

8

C Library Functions

The C library (/usr/lib/libc.a or /lib/libc.sl) is divided into di�erent
subsections. Each subsection has a header �le that de�nes the objects found in
that section of the library.

The standard headers are:

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>

<errno.h> <setjmp.h> <stdlib.h>

<float.h> <signal.h> <string.h>

<limits.h> <stdarg.h> <time.h>

The order of inclusion of these header �les using the #include directive makes
no di�erence. Also, if you include the same header �le more than once, an error
does not occur.

Function names beginning with an underscore (_) are reserved for library use;
you should not specify identi�ers that begin with an underscore.

To use some facilities, the C source code must include the preprocessor
directive:

#include <libraryname.h>

The preprocessor looks for the particular header �le de�ned in libraryname in a
standard location on the system.

The standard location is /usr/include.

The libraryname must be enclosed in angle brackets. For example, if you
want to use the fprintf function, which is in the standard I/O library, your
program must specify

#include <stdio.h>

C Library Functions 8-1

because the de�nition of fprintf, as well as various types and variables used
by the I/O function, are found in the stdio.h header �le.

The C library contains both functions and macros. The use of macros improves
the execution speed of certain frequently used operations. One drawback to
using macros is that they do not have an address. For example, if a function
expects the address of (a pointer to) another function as an argument, you
cannot use a macro name in that argument. The following example illustrates
the drawback:

#define add1(x) ((x)+=1)

extern f();

main()

{ ...
f(add1); <--This construct is illegal....

}

Using add1 as an argument causes an error.

The #undef directive may be used to reference a true function instead of a
macro.

There are three ways in which a function can be used:

In a header �le (which might generate a macro)

#include <string.h>

i = strlen(x);

By explicit declaration

extern int strlen();

i=strlen(x);

By implicit declaration

i = strlen(x);

For more information on C library functions, see the HP-UX Reference and
HP-UX Linker and Libraries Online User Guide.

8-2 C Library Functions

9

Compiling and Running HP C Programs

This chapter describes how to compile and run HP C workstation and server
programs on the HP-UX operating system. The compiler command and its
options are presented. You can compile HP C programs to assembly, object, or
executable �les. You can also optionally optimize code to improve application
run-time speed.

Compiling HP C Programs

When you compile a program, it passes through one or more of the following
steps depending upon which command line options you use:

Preprocessor: This phase examines all lines beginning with a # and performs
the corresponding actions and macro replacements.

Compilation Process: This phase takes the output of the preprocessor and
generates object code.

Optimization: This optional phase optimizes the generated object code.

Linking: In this phase, the linker is invoked to produce an executable
program. External references in shared and archived libraries are resolved
as required. The startup routines in /opt/langtools/lib/crt0.o are
copied in, and the C library in /lib/libc.sl or /lib/libc.a is referenced.
(By default, shared libraries take precedence over archived libraries if both
versions are available. However, if you use the LPATH environment variable,
you should make sure that all shared libraries come before any archive
library directories. See the HP-UX Linker and Libraries Online User Guide
for information on LPATH or on creating and linking with shared libraries.)
Object modules are combined into an executable program �le.

Compiling and Running HP C Programs 9-1

Compatibility Mode vs. ANSI C Mode

The HP C compiler provides two modes of operation: compatibility mode
and ANSI C mode. The compatibility mode option causes the compiler to
compile code in a manner similar to version 3.1. ANSI C mode is a strict
implementation of the standard. See \Compiler Options" in this chapter for
more information.

The cc(1) Command

Use the cc(1) command to compile HP C programs. It has the following
format:

cc [options] �les

where:

options is one or more compiler options and their arguments, if any.
Options can be grouped together under one minus sign.

�les is one or more �le names, separated by blanks. Each �le is
either a source or an object �le.

Specifying Files to the cc Command

Files with names ending in .c are assumed to be HP C source �les. Each HP
C source �le is compiled, producing an object �le with the same name as the
source �le except that the .c extension is changed to a .o extension. However,
if you compile and link a single source �le into an HP C program in one step,
the .o �le is automatically deleted.

Files with names ending in .i are assumed to be preprocessor output �les (see
the -P compiler option under Table 9-2 in this chapter). Files ending in .i are
processed the same as .c �les, except that the preprocessor is not run on the
.i �le before the �le is compiled.

Files with names ending in .s are assumed to be assembly source �les; the
compiler invokes the assembler to produce .o �les from these.

9-2 Compiling and Running HP C Programs

Files with .o extensions are assumed to be relocatable object �les that are
included in the linking. All other �les are passed directly to the linker by the
compiler.

Specifying Options to the cc Command

Each compiler option has the following format:

-optionname [optionarg]

where:

optionname is the name of a standard compiler option.

optionarg is the argument to optionname.

The optional argument -- delimits the end of options. Any following
arguments are treated as operands (typically input �lenames) even if they
begin with the minus (-) character.

An Example of Using a Compiler Option

By default, the cc command names the executable �le a.out. For example,
given the following command line:

cc demo.c

the executable �le is named a.out.

You can use the -o option to override the default name of the executable �le
produced by cc. For example, suppose my_source.c contains C source code
and you want to create an executable �le name my_executable. Then you
would use the following command line:

cc -o my_executable my_source.c

Concatenating Options

You can concatenate some options to the cc command under a single pre�x.
The longest substring that matches an option is used. Only the last option can
take an argument. You can concatenate option arguments with their options if
the resulting string does not match a longer option.

Compiling and Running HP C Programs 9-3

For example, suppose you want to compile my_file.c using the -v, -g, and
-DPROG=sub compiler options. There are several ways to do this:

cc my_file.c -v -g -DPROG=sub

cc my_file.c -vg -D PROG=sub

cc my_file.c -vgDPROG=sub

cc -vgDPROG=sub my_file.c

HP C Compiler Options

Table 9-1 summarizes the command line options supported by HP 9000
workstations and servers. See Table 9-2 for detailed information about each
option.

9-4 Compiling and Running HP C Programs

Table 9-1. HP C Compiler Options at a Glance

Option Description

-Aa Enables strict ANSI C compliance.

-Ac Disables ANSI C compliance (HP C version 3.1 compatibility).

-Ae Enables ANSI C compliance, HP value-added features (as
described for +e option), and _HPUX_SOURCE name space macro. It
is equivalent to -Aa +e -D_HPUX_SOURCE.

-c Compiles only, does not link.

-C Prevents the preprocessor from stripping comments.

-Dname De�nes the preprocessor variable name with a value of \1".

-Dname=def De�nes the preprocessor variable name with a value of def .

-E Performs preprocessing only with output to stdout.

-g Inserts information for the symbolic debugger in the object �le.

-G Inserts information required by the gprof pro�ler in the object �le.

-Idir Inserts dir in the include �le search path.

-lx Links with the /lib/libx.a and /usr/lib/libx.a libraries.

-Ldir Links the libraries in dir before the libraries in the default search
path.

-n Generates shareable code.

-N Generates unshareable code.

-o out�le Places object modules in out�le �le.

-O Optimizes at level 2.

-p Inserts information required by the prof pro�ler in the object �le.

-P Performs preprocessing only with output to the corresponding .i
�le.

-q Marks the executable as demand loadable.

Compiling and Running HP C Programs 9-5

Table 9-1. HP C Compiler Options at a Glance (continued)

Option Description

-Q Marks the executable as not being demand loadable.

-s Strips the symbol table from the executable �le.

-S Generates an assembly language source �le.

-t x,name Substitutes or inserts subprocess x with name.

-Uname Unde�nes name in the preprocessor.

-v Enables verbose mode.

-V Causes subprocesses to print version information to stderr.

-w Suppresses warning messages.

-Wd,-a or +a Omits HP provided pre�x �les required by the linker.

-Wx , arg1
[,arg2,..,argn]

Passes the arguments arg1 through argn to the subprocess x .

-y Generates information used by the HP SoftBench static analysis
tool.

-Y Enables Native Language Support (NLS).

-z Disallows run-time dereferencing of null pointers.

-Z Allows dereferencing of null pointers at run-time.

+DAmodel Generates object code for a speci�c version of the PA-RISC
architecture.

+dfname Speci�es the pro�le database to use with pro�le-based
optimization.

+DSmodel Performs instruction scheduling for a speci�c implementation of
PA-RISC.

+e Enables the following HP value added features while compiling in
ANSI C mode: sized enum, long long, long pointers, compiler
supplied defaults for missing arguments to intrinsic calls, and $ in
identi�er HP C extensions.

9-6 Compiling and Running HP C Programs

Table 9-1. HP C Compiler Options at a Glance (continued)

Option Description

+ESfic Replaces millicode calls with inline fast indirect calls.

+ESlit Places string literals and constants into read-only data storage.

+ESnoparmreloc Disables parameter relocation for function calls.

+ESsfc Replaces function pointer comparison millicode calls with inline
code.

+f Inhibits the promotion of float to double, except for function
calls and returns.

+FP
ags Controls
oating-point traps.

+help Invokes the initial menu window of the online programmer's guide.

+I Prepares the object code for pro�le-based optimization data
collection.

+k Generates long-displacement code sequences so a program can
reference large amounts of global data physically located in shared
libraries.

+L Enables any #pragma listing directives and the listing facility.

+m Prints identi�er maps in the source code listing.

+M Provides ANSI migration warnings that explain the di�erences
between code compiled with -Ac and -Aa.

+o Prints hexadecimal code o�sets in the source code listing.

+Oopt Invokes optimization level opt where opt is 0 to 4. See the HP C
Programmer's Guide for additional optimization options.

+P Performs pro�le-based optimization.

Compiling and Running HP C Programs 9-7

Table 9-1. HP C Compiler Options at a Glance (continued)

Option Description

+pgmname Speci�es the execution pro�le data set to be used by the optimizer.

+r Inhibits the automatic promotion of float to double.

+ubytes Controls pointer alignment where bytes is 1, 2, or 4.

+wn Speci�es the level of the warning messages where n is 1 - 3.

+z Generates shared library object code.

+Z Generates shared library object code with a large data linkage
table.

Table 9-2 describes in detail the options that HP C workstations and servers
support.

9-8 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details

Option What It Does

-Alevel where level can be a, c or e.

a Requests a compilation in ANSI C mode.

The -Aa option requests a strict implementation of ANSI C. ANSI
C speci�es which names are available in the standard libraries and
headers, which are reserved for the implementation, and which
must be left available for you. HP C in ANSI mode conforms to
these restrictions and only names permitted by ANSI C are
de�ned or declared in the standard libraries and headers.

Macro de�nitions can be used to access names that are normally
de�ned in other standards (POSIX and XOPEN, for example),
and in HP C Version 3.1 compatibility mode.

To gain access to all variables and functions de�ned by POSIX,
include the following line at the start of your source �le before
including any system headers:

#define _POSIX_SOURCE

or de�ne this macro by using the -D name option:

cc -D _POSIX_SOURCE myfile.c

To gain access to all the names de�ned by XOPEN, include the
following line at the start of your source �le before including any
system headers:

#define _XOPEN_SOURCE

Compiling and Running HP C Programs 9-9

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-Alevel
(continued)

or de�ne the macro on the command line:

cc -D _XOPEN_SOURCE myfile.c

To gain access to all the names normally available in compatibility
mode, include the following line at the start of your source �le
before including any system headers:

#define _HPUX_SOURCE

or de�ne the macro on the command line:

cc -D _HPUX_SOURCE myfile.c

_HPUX_SOURCE de�nes a superset of names de�ned by
_XOPEN_SOURCE. _XOPEN_SOURCE de�nes a superset of names
de�ned by _POSIX_SOURCE.

c Requests compatibility with version 3.1. This was the default at
the HP-UX 10.20 operating system release. It is a non-ANSI
implementation.

e Requests a compilation in ANSI C mode with HP C extensions.
This option is the same as specifying -Aa, -D _HPUX_SOURCE, and
+e. This is the default at the HP-UX 10.30 and later operating
system releases.

-c Compiles one or more source �les but does not enter the linking
phase. The compiler produces the object �le (a �le ending with .o

by default) for each source �le (a �le ending with .c, .s, or .i).
Object �les must be linked before they can be executed.

-C Prevents the preprocessor from stripping comments. See the
description of cpp(1) in the HP-UX Reference manual for details.

-Dname
-Dname=def

De�nes name to the preprocessor cpp as if de�ned by the
preprocessing directive #define. If =def is not given, name is \1".

Macros should be assigned integer values when they will be used
in constant expressions that are to be evaluated by the conditional
compilation directives #if and #else. See the section titled
\Conditional Compilation" in Chapter 7 for more information.

9-10 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-E Runs the preprocessor only on the named HP C or assembly
programs and sends the result to standard output (stdout).

-g Inserts information for the symbolic debugger in the object �le.

In conjunction with the HP Distributed Debugging Environment
(DDE), the C compiler now provides support for debugging
optimized code. This support includes:

Tracebacks with line-number annotation

Setting breakpoints and single-stepping at the source statement
level

Mapping between source statements and machine instructions

Viewing and modifying global variables at procedure call
boundaries

Viewing and modifying parameters on procedure entry

To enable debugging of optimized code, specify the -g compile-line
option together with the -0, +01, or +02 option. Currently,
debugging is supported at optimization levels 2 and below. If you
try to use -g with the +03 or +04 option, the compiler will issue a
warning stating that the options are incompatible, and will ignore
the -g option.

-G Prepares the object �le for pro�ling with gprof. See the gprof(1)
description in the HP-UX Reference manual for details.

-Idir Adds dir to the list of directories that are searched for include �les
by the preprocessor. For include �les that are enclosed in double
quotes and do not begin with a /, the preprocessor �rst searches
the current directory, then the directory named in the -I option,
and �nally, the standard include directory /usr/include. For
include �les that are enclosed in < and > symbols, the search path
begins with the directory named in the -I option and is completed
in the standard include directory, /usr/include. The current
directory is not searched.

Compiling and Running HP C Programs 9-11

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-lx Causes the linker to search the libraries /usr/lib/libx.a or
/usr/lib/libx .sl (searched �rst) and
/opt/langtools/lib/libx.a or /opt/langtools/lib/libx.sl
(searched second). The -a linker option determines whether the
archive (.a) or shared (.sl) version of a library is searched. The
linker searches the shared version of a library by default.

Libraries are searched when their names are encountered.
Therefore placement of a -l is signi�cant. If a �le contains an
unresolved external reference, the library containing the de�nition
must be placed after the �le on the command line. See the
description of ld(1) in the HP-UX Reference for details.

-Ldir Causes the linker to search for libraries in the directory dir before
using the default search path. The default search path is the
directory /usr/lib followed by /opt/langtools/lib. -Ldir must
precede -lx on the command line; otherwise -Ldir is ignored.
This option is passed directly to the linker.

For example:

cc -L/project/libs prog.c -lfoo -lbar

Compiles and links prog.c and directs the linker to search the
directories /project/libs, /usr/lib, then /opt/langtools/lib

for libfoo.a, libfoo.sl, libbar.a, and libbar.sl libraries.

-n Causes the program �le produced by the linker to be marked as
shareable. For details and system defaults see the description of
ld(1) in the HP-UX Reference manual.

-N Causes the program �le produced by the linker to be marked as
unshareable. For details and system defaults see the ld(1)
description in the HP-UX Reference manual.

-o out�le Causes the output of the compilation sequence to be placed in
out�le. The default name is a.out. When compiling a single
source �le with the -c option, you can also use the -o option to
specify the name and location of the object �le.

9-12 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-O Invokes the optimizer to perform level 2 optimization. Other
optimization levels can be set. Refer to the HP C Programmer's
Guide for details on optimization.

-p Causes the compiler to produce extra pro�ling code that counts
the number of times each routine is called. Also, if link editing
takes place, this option replaces the standard startup routine with
a routine that calls monitor(3C) at the start and writes out a
mon.out �le upon normal termination of the object program's
execution. An execution pro�le can then be generated using
prof(1).

-P Preprocesses only. Runs the preprocessor with the -P option only
on the named HP C source �les and leaves the result in the
corresponding �les with .i as the su�x.

-q Causes the output �le from the linker to be marked as demand
loadable. For details and system defaults, see the ld(1)
description in the HP-UX Reference manual.

-Q Causes the program �le created by the linker to be marked as not
demand loadable. For details and system defaults, see the ld(1)
description in the HP-UX Reference manual.

-s Strips the executable. Causes the program �le created by the
linker to be stripped of symbol table information. Specifying this
option prevents using a symbolic debugger on the resulting
program. See the ld(1) description in the HP-UX Reference
manual for more details.

-S Compiles the named HP C program and leaves the assembly
language output in a corresponding �le with .s as the su�x.

Compiling and Running HP C Programs 9-13

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-t x,name Substitutes or inserts subprocess x with name, where x is one or
more of a set of identi�ers indicating the subprocesses. This
option works in two modes: 1) if x is a single identi�er, name
represents the full pathname of the new subprocess; 2) if x is a set
of identi�ers, name represents a pre�x to which the standard
su�xes are concatenated to construct the full pathnames of the
new subprocesses. x can be one or more of the following values:

Value Description

p Preprocessor (standard su�x is cpp).
c Compiler (standard su�x is ccom).
0 Same as c.
a Assembler (standard su�x is as).
l Linker (standard su�x is ldr).

-Uname Unde�nes or removes any initial de�nition of name in the
preprocessor. See the cpp(1) description in the HP-UX Reference
manual for details.

-v Enables the verbose mode sending a step-by-step description of
the compilation process to standard error (stderr.)

-V Prints version information on each invoked subprocess to standard
error (stderr.)

-w Suppresses warning messages.

-Wx , arg1
[,arg2,..,argn]

Passes the arguments arg1 through argn to the subprocess x of
the compilation. x can be one of the values described under the -t
option with the addition of d, to pass an option to the cc driver.
These options are HP value added extensions to HP C.

9-14 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-W c,-e

or +e

Enables the following HP value added features while compiling in
ANSI C mode: sized enum, long long, long pointers, compiler
supplied defaults for missing arguments to intrinsic calls, and $ in
identi�er HP C extensions.

-W c,-L

or +L
Enables any #pragma listing directives and the listing facility. A
straight listing prints the following:

A banner on the top of each page.
Line numbers.
The nesting level of each statement or declaration.
The postprocessed source �le with expanded macros, include
�les, and no user comments (unless the -C option is used).

Under ANSI mode, -Wc,-L causes the compiler to generate an
output list of the source without the cpp macro replacements. The
-Wc,-Lp option causes the compiler to generate an output list of
the source with the cpp macro replacements.

-W c,-m

or +m
Causes the identi�er maps to be printed. First, all global
identi�ers are listed, then all the other identi�ers are listed by
function at the end of the listing. For struct and union members,
the address column contains B@b, where B is the byte o�set and b

is the bit o�set. Both B and b are in hexadecimal.

-W c,-o

or +o
Causes the code o�sets to be printed in hexadecimal grouped by
function at the end of the listing.

-W c,-Rnum or
+Rnum

Allow only the �rst num register variables to actually have the
register class. Use this option when the register allocator issues an
out of general registers message.

Compiling and Running HP C Programs 9-15

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-W c,-wn or +wn Speci�es the level of the warnings messages. The value of n can be
one of the following:

Value Description

1 All warnings are issued. This includes low level
warnings that may not indicate anything wrong
with the program.

2 Only warnings indicating that code generation
might be a�ected are issued. This is equivalent
to the compiler default without the -w options.

3 No warnings are issued. This is equivalent to the
-w option.

-W d,-a When processing �les written in assembly language, this option
speci�es that the compiler should not assemble with the pre�x �le
that sets up the space and subspace structure required by the
linker. Programs assembled with this option may not link unless
they contain the equivalent information.

You can then optimize the program based on this pro�le data by
re-linking with the +P command line option.

The +I command line option is incompatible with the -g, -p, -s,
-S, and -y options. The +I option does not a�ect the default
optimization level or the optimization level speci�ed by the -O or
+O options. For more details on invoking pro�le-based
optimization, refer to the HP C Programmer's Guide.

-y Requests the compiler to generate additional information for the
static analysis tool, which is a part of the HP SoftBench software
development environment. See HP Softbench Static Analyzer:
Analyzing Program Structure for more information.

9-16 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

-Y Enables Native Language Support (NLS) of 8-bit and 16-bit
characters in comments, string literals, and character constants.
See hpnls(5), long(5), and environ(5) in the HP-UX Reference
manual for a description of the NLS model.

The language value is used to initialize the correct tables for
interpreting comments, string literals, and character constants. It
is also used to build the pathname to the proper message catalog.
Refer to \Location of Files" in Chapter 10 for a description of this
path.

-z Disallows run-time dereferencing of null pointers. Fatal errors
result if null pointers are dereferenced.

-Z Allows dereferencing of null pointers at run-time. (This behavior
is the default.) The value of a dereferenced null pointer is zero.

+DAmodel Generates object code for a particular version of the PA-RISC
architecture.

If you do not specify this option, the default object code generated
is determined automatically as that of the system on which you
run the compilation. +DA also speci�es which version of the
HP-UX math library to link in when you have speci�ed -lm.

(See the HP-UX Floating-Point Guide for more information about
using math libraries.)

model can be a model number of an HP 9000 system (such as, 730,
877, H50, or I50), one of the PA-RISC architecture designations
1.1, or 2.0, or portable. For example, specifying +DA1.1 or
+DA735 generates code for the PA-RISC 1.1 architecture.
Similarly, specifying +DA2.0 generates code for the PA-RISC 2.0
architecture. Specifying +DAportable generates code compatible
across HP 9000 workstations and servers.

See the �le /opt/langtools/lib/sched.models for model
numbers and their architectures. Use the command uname -m to
determine the model number of your system.

Compiling and Running HP C Programs 9-17

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+DAmodel
(continued)

Note: Object code generated for PA-RISC 2.0 will not execute on
PA-RISC 1.1 systems.

To generate code compatible across PA-RISC 1.1 and 2.0
workstations and servers, use the +DAportable option.

For best performance use +DA with the model number or
architecture where you plan to execute the program.

Starting at the HP-UX 10.20 release, the default object code
generated by HP compilers is determined automatically as that of
the machine on which you compile. (Previously, the default code
generation was PA-RISC 1.0 on Series 800 servers, and PA-RISC
1.1 on Series 700 workstations.)

For more information on this option, see \Using +DA to Generate
Code for a Speci�c Version of PA-RISC" in this chapter.

+dfname Speci�es the path name of the pro�le database to use with
pro�le-based optimization. This option can be used with the +P
command line option. The pro�le database by default is named
flow.data. This �le stores pro�le information for one or more
executables. Use +df when the flow.data �le has been renamed
or is in a di�erent directory than where you are linking.

You can also use the FLOW_DATA environment variable to specify a
di�erent path and �le name for the pro�le database �le. The
+dfname command line option takes precedence over the
FLOW_DATA environment variable.

Note, the +dfname option cannot be used to redirect the
instrumentation output (with the +I option). It is only compatible
with the +P option.

9-18 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+DSmodel Performs instruction scheduling tuned for a particular
implementation of the PA-RISC architecture.

model can be a model number of an HP 9000 system (such as 730,
877, H50, or I50); a PA-RISC architecture designation 1.1 or 2.0;
or a processor name (such as PA7100LC). For example, specifying
+DS720 performs instruction scheduling tuned for one
implementation of PA-RISC 1.1. Specifying +DSPA7100LC

performs scheduling for a system with a PA7100LC processor.
Specifying +DSPA8000 performs instruction scheduling for systems
based on the PA-RISC 8000 processor.

To obtain the best performance on a particular model or processor
of the HP 9000, use +DS with that model number or processor
name.

If you plan to run your program on both PA-RISC 1.1 and 2.0
systems, use the +DS2.0 designation.

See the �le /opt/langtools/lib/sched.models for model
numbers and the processor names for which
implementation-speci�c scheduling is performed. Use the
command uname -m to determine the model number of your
system.

Object code with scheduling tuned for a particular model or
processor will execute on other HP 9000 systems, although
possibly less e�ciently.

For more information on this option, see \Using +DS to Specify
Instruction Scheduling" in this chapter.

+e See -W c,-e

+ESfic Replaces millicode calls with inline fast indirect calls. The +ESfic
compiler option a�ects how function pointers are dereferenced in
generated code. The default is to generate low-level millicode calls
for function pointer calls.

Compiling and Running HP C Programs 9-19

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+ESfic

(continued)
The +ESfic option generates code that calls function pointers
directly, by branching through them.

The +ESfic option should only be used in an environment where
there are no dependencies on shared libraries. The application
must be linked with archive libraries. Using this option can
improve run-time performance.

+ESlit Places string literals and constants de�ned with the ANSI C
const type quali�er into the LIT subspace. The LIT subspace
is used for read-only data storage. This option can reduce memory
requirements and improve run-time speed in multi-user
applications.

Normally the C compiler only places
oating-point constant values
in the LIT subspace, and other constants and literals in the
$DATA$ subspace. This option allows the placement of large data
objects, such as ANSI C const arrays, into the LIT subspace.

All users of an application share the static data stored in the LIT
subspace. Each user is allocated a private copy of the dynamic
data stored in the $DATA$ subspace. By moving additional static
data from the $DATA$ subspace to the LIT subspace, overall
system memory requirements can be reduced and run-time speed
improved. Most applications can bene�t from this option.

Users should not attempt to modify string literals if they use the
+ESlit option. The reason is that this option places all string
literals into read-only memory. Particularly, the following C
library functions should be used with care, since they can alter the
contents of string literals if users specify string literals as the
receiving string.

extern char *strncat(char *, const char *, size_t);

extern void *memmove(void *, const void *, size_t);

extern char *strcpy(char *, const char *);

extern char *strncpy(char *, const char *, size_t);

extern char *strcat(char *, const char *);

extern char *strtok(char *, const char *);

9-20 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+ESnoparmreloc +ESnoparmreloc disables parameter relocation for function calls.
If your source code uses the ANSI C function prototype
consistently in both declaration and de�nition of a function, this
option may allow you to produce smaller and faster function entry
code.

The library is compiled with this option o�. So, to use this option
in your code, you must declare the library functions without
function prototype.

For example, cos has not been compiled with +ESnoparmreloc. If
you declare cos with a function prototype as shown below, and
compile with +ESnoparmreloc, an incorrect value will be passed to
cos().

double cos(double);

main()

{

printf("%f\n", cos(1.0));

}

For more information on parameter relocation, see the HP
PA-RISC Procedure Calling Conventions Reference Manual, HP
part number 09740-90015.

+ESsfc Replaces millicode calls with inline code when performing simple
function pointer comparisons. The +ESsfc compiler option a�ects
how function pointers are compared in generated code. The
default is to generate low-level millicode calls for function pointer
comparisons.

The +ESsfc option generates code that compares function pointers
directly, as if they were simple integers.

The +ESsfc option should only be used in an environment where
there are no dependencies on shared libraries. The application
must be linked with archive libraries. Using this option can
improve run-time performance.

Compiling and Running HP C Programs 9-21

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+f Inhibits the automatic promotion of float to double when
evaluating expressions. This di�ers from the +r option in that
both parameters and function return values are still promoted to
double. In ANSI mode, this option is ignored and a warning is
issued.

+FP
ags Speci�es what
oating-point traps to enable and also enables or
disables fast under
ow mode.
ags is a series of upper case or
lower case letters from the set [VvZzOoUuIiDd] with no spaces,
tabs, or other characters between them. If the upper-case letter is
selected, that behavior is enabled. If the lower-case letter is
selected or if the letter is not present in the
ags, the behavior is
disabled. By default, all traps are disabled. The values for
ags
are:

V Enable traps on invalid
oating-point operations.

v Disable traps on invalid
oating-point operations.

Z Enable traps on divide by zero. (If your program must
conform to the POSIX standard, do not enable this
trap.)

z Disable traps on divide by zero.

O Enable traps on
oating-point over
ow.

o Disable traps on
oating-point over
ow.

U Enable traps on
oating-point under
ow.

u Disable traps on
oating-point under
ow.

I Enable traps on
oating-point operations that produce
inexact results.

i Disable traps on
oating-point operations that produce
inexact results.

9-22 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+FP
ags
(continued)

D Enable fast under
ow (
ush to zero) of denormalized
values. (Enabling fast under
ow is an unde�ned
operation on PA-RISC 1.0 based systems, but it is
de�ned on all subsequent versions of PA-RISC. Selecting
this value enables fast under
ow only if it is available on
the processor that is used at run time.)

d Disable fast under
ow (
ush to zero) of denormalized
values.

To dynamically change these settings at run time, refer to
fpgetround(3M).

+help Invokes the initial menu window of the online programmer's guide.

If +help is used on any command line, the compiler invokes the
online programmer's guide and then processes any other
arguments.

If $DISPLAY is set, +help invokes the helpview(1X) command. If
the display variable is not set, a message so indicates.

For example, the following command:

cc -c sub.c prog.c +help

invokes the online programmer's guide and compiles sub.c and
prog.c into relocatable object code �les.

+I Instructs the compiler to instrument the object code for collecting
run-time pro�le data. The pro�ling information can then be used
by the linker to perform pro�le-based optimization. Code
generation and optimization phases are delayed until link time by
this option.

After compiling and linking with +I, run the resultant program
using representative input data to collect execution pro�le data.

Pro�le data is stored in flow.data by default. See the +dfname
option for information on controlling the name and location of this
data �le.

Compiling and Running HP C Programs 9-23

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+k Generates long-displacement code sequences so a program can
reference large amounts of global data that is physically located in
shared libraries. Only use +k when you get a linker message
indicating you need to use it.

By default, the HP C compiler generates short-displacement code
sequences for programs that reference global data that is
physically located in shared libraries. For nearly all programs, this
is su�cient.

If your program references a large amount of global data in shared
libraries, the default code generation for referencing that global
data may not be su�cient. If this is the case, when you link your
program the linker will give an error message indicating that you
need to recompile your program with the +k option.

+L See -W c,-L

+m See -W c,-m

+M Emit warnings of Quiet Changes, use the +M option with either
-Aa or -Ac. Warnings of Quiet Changes were formerly part of +w1.

The document Rationale for Draft Proposed American National
Standard for Information Systems available with the ANSI
Programming Language C Standard ISO 9899:1990 discusses the
behavioral di�erences in code that is migrated to ANSI C. These
di�erences are called Quiet Changes.

+o See -W c,-o

9-24 Compiling and Running HP C Programs

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+Oopt Invokes the level of optimization selected by opt . opt can have any
of the following values.

1 Performs level 1 optimizations.

2 Performs level 1 and 2 optimizations.

3 Performs level 1, 2, and 3 optimizations.

4 Performs level 1, 2, 3, and 4 optimizations.

For a complete list of advanced optimization toggles, see Chapter 4
\Optimizing HP C Programs" of the HP C Programmer's Guide.

+P Directs the compiler to use pro�le information to guide code
generation and pro�le-based optimization. This option causes the
compiler to generate intermediate compiler code instead of
compiled object code. The actual code generation is done at link
time.

The +P option does not a�ect the default optimization level, or the
optimization level speci�ed by the -O or +Oopt options.

Note: Source �les that are compiled with the +I option do not
need to be recompiled with +P in order to use pro�le-based
optimization. You only need to relink the object �les with the +P
option after running the instrumented version of the program.

The +P command line option is incompatible with the +I, -g, -s,
-S, and -y options.

Also refer to the +I, +pgm and +df command line options.

For more information on using these options, see the HP C
Programmer's Guide.

+pgmname Speci�es a program name to look up in the flow.data �le. Used
with pro�le-based optimization and the +P option.

+pgmname should be used when the name of the pro�led
executable di�ers from the name of the current executable
speci�ed by the -o option.

Compiling and Running HP C Programs 9-25

Table 9-2. HP C Compiler Option Details (continued)

Option What It Does

+Rnum See -W c, -Rnum

+r Inhibits the automatic promotion of float to double when
evaluating expressions and passing arguments. This option is not
valid in ANSI mode.

+ubytes Forces all pointer references to assume that data is aligned on
either an 8-bit, 16-bit, or 32-bit addresses. bytes can be 1 (8-bit),
2 (16-bit), or 4 (32-bit). The default value for +u is 2. This option
can be used when reading in non-natively aligned data. Pragmas
are also available to assist with processing non-natively aligned
data. See Chapter 2, \Storage and Alignment Comparisons," in
the HP C Programmers Guide for more information.

+wn See -W c,-wn

+z Generates object code that can be added to a shared library.
Object code generated with this option is position independent,
containing no absolute addresses. All addresses are either
pc-relative or indirect references.

The -p and -G options are incompatible with this option and are
ignored. See the HP-UX Linker and Libraries Online User Guide
for detailed information on shared libraries.

+Z This option is similar to +z with the di�erence being that space
for more imported symbols is allocated. The size of the data
linkage table allocated by the +z and +Z options is machine
dependent. Use the +Z option when the linker ld issues an error
message indicating data linkage table over
ow. For more
information on shared libraries, see the HP-UX Linker and
Libraries Online User Guide.

Any other option encountered generates a warning to standard error (stderr.)
(Options not recognized by cc are not passed on to ld. Use the -Wl,arg
option to pass options to ld.)

9-26 Compiling and Running HP C Programs

Examples of Compiler Commands

cc -Aa prog.c

requests a strict ANSI C compilation of prog.c.

cc -tp,/users/devel/cpp prog.c

uses /users/devel/cpp as the pathname for the preprocessing phase.

cc -tpca,/users/devel/x prog.s

uses /users/devel/x/cpp for cpp, /users/devel/x/ccom for ccom, and
/users/devel/x/as for as; the assembly �le prog.s is processed by the
speci�ed assembler.

cc -Aa prog.c procedure.o -o prog

compiles and links the �le prog.c, creating the executable program �le
prog. The compiler produces prog.o. The linker ld(1) links prog.o and
procedure.o with all of the HP C startup routines in /lib/crt0.o and the
library routines from the HP C library /lib/libc.a.

cc prog.c -co /users/my/prog.o

compiles the source �le prog.c and places the object �le prog.o in
/users/my/prog.o.

cc -Wp,-H150000 p1.c p2.c p3.c -o p

compiles the source �les in the option -H150000 to the preprocessor cpp to
increase the de�ne table size from the default.

cc -Wl,-vt *.c -o vmh

compiles all �les in the working directory ending with .c, passes the -vt
option to the linker, and causes the resulting program �le to be named vmh.

cc -vg prog.c

compiles prog.c, adds debug information, and displays the steps in the
compilation process.

cc -S prog.c

compiles the �le prog.c into an assembly output �le called prog.s.

cc -Wc,-R15 prog.c

Compiling and Running HP C Programs 9-27

compiles prog.c placing no more than the �rst �fteen declared register
variables in each function into registers.

cc -Wc,-L,-m,-o prog.c

compiles prog.c and produces a source listing, local and global identi�er
maps, and local code o�sets on the standard output device.

cc -OAa prog.c

compiles prog.c in ANSI mode and requests level 2 optimization.

cc +O1 prog.c

compiles prog.c and requests level 1 optimization.

cc +w1 prog.c -c

compiles prog.c with low-level warnings emitted and suppresses linking.

cc -D BUFFER_SIZE=1024 prog.c

passes the option -D BUFFER_SIZE=1024 to the preprocessor, setting the
value of the macro for the compilation of prog.c.

cc -lm prog.c

compiles prog.c requests the linker to link the library /lib/libm.a with the
object �le prog.o to create the executable a.out.

cc -L/users/devel/lib -lme prog.c

compiles prog.c and causes the linker to search the directory
/users/devel/lib for the library libme.a, before searching in /lib or
/usr/lib for it.

9-28 Compiling and Running HP C Programs

Environment Variables

This section describes the following environment variables you can use to
control the C compiler:

CCOPTS.
TMPDIR.

CCOPTS Environment Variable

You can pass arguments to the compiler using the CCOPTS environment variable
or include them on the command line. The CCOPTS environment variable
provides a convenient way for establishing default values for cc command line
options. It also provides a way for overriding cc command line options.

The syntax for the CCOPTS environment variable in C shell notation is:

setenv CCOPTS [options] [j [options]]

The compiler places the arguments that appear before the vertical bar in front
of the command line arguments to cc. It then places the second group of
arguments after any command line arguments to cc.

Options that appear after the vertical bar in the CCOPTS variable override and
take precedence over options supplied on the cc command line.

If the vertical bar is omitted, the compiler gets the value of CCOPTS and places
its contents before any arguments on the command line.

For example, the following in C shell notation

setenv CCOPTS -v

cc -g prog.c

is equivalent to

cc -v -g prog.c

For example, the following in C shell notation

setenv CCOPTS "-v | +O1"

cc +O2 prog.c

is equivalent to

cc -v +O2 prog.c +O1

Compiling and Running HP C Programs 9-29

In the above example, level 1 optimization is performed, since the +O1
argument appearing after the vertical bar in CCOPTS takes precedence over the
cc command line arguments.

TMPDIR Environment Variable

Another environment variable, TMPDIR, allows you to change the location of
temporary �les that the compiler creates and uses. The directory speci�ed in
TMPDIR replaces /tmp as the default directory for temporary �les. The syntax
for TMPDIR in C shell notation is:

setenv TMPDIR altdir

where altdir is the name of the alternative directory for temporary �les.

Compiling for Different Versions of the PA-RISC
Architecture

This section discusses the use of the +DA and +DS options in more detail.

Using +DA to Generate Code for a Specific Version of PA-RISC

By default, compiling on di�erent HP 9000 systems produces code for the
architecture of the system on which the compilation is performed. Use the +DA
option to change this default behavior.

The +DA option speci�es which PA-RISC instruction set the compiler should
use when generating code. Specifying +DAportable ensures your code will
run on HP PA-RISC 2.0 and 1.1 systems, although the performance of your
program may not be as good as it could be if optimized for a speci�c system.
Specifying +DA1.1 may give better performance on PA-RISC 1.1 systems,
but the executable �le generated with this option will not run on PA-RISC
1.0 systems. Specifying +DA2.0 gives optimal performance on PA-RISC 2.0
systems, but the program will not run on the earlier PA-RISC architectures.

Use the command uname -m to determine the model number of your system.

When you use the +DA option depends on your particular circumstance.

9-30 Compiling and Running HP C Programs

If you plan to run your program on the same system where you are
compiling, you don't need to use +DA.

If you plan to run your program on one particular model of the HP 9000 and
that model is di�erent from the one where you compile your program, use
+DAmodel with the model number of the target system.

For example, if you are compiling on a 720 and your program will run on an
855, you should use +DA855. This will give you the best performance on the
855.

If you plan to run your program on PA-RISC 2.0 and 1.1 HP 9000 systems,
use +DAportable to ensure portability.

If you do not specify a +DA or +DS option, the default instruction scheduling
is based on that of the system on which you compile. If you do specify a +DA
option and do not specify a +DS option, the default instruction scheduling is
based on what you specify in +DA, and not based on that of the system on
which you compile. For example, specify +DA1.1 and do not specify +DS, and
instruction scheduling will be for 1.1. Specify +DAportable and do not specify
+DS, and instruction scheduling will be for 1.1. (+DAportable is currently
equivalent to +DA1.1.)

Using +DS to Specify Instruction Scheduling

Instruction scheduling is di�erent on di�erent implementations of PA-RISC
architectures. You can improve performance on a particular model or processor
of the HP 9000 by requesting that the compiler use instruction scheduling
tuned to that particular model or processor. Using scheduling for one model or
processor does not prevent your program from executing on another model or
processor.

Use the +DS option to specify instruction scheduling tuned to a particular
implementation of PA-RISC. Note that model can be a model number of an HP
9000 system (such as 730, 877, or H40); a PA-RISC architecture designation
1.1 or 2.0; or one of the PA-RISC processor names (such as PA7000, PA7100,
PA7100LC, or PA8000.)

For example, to specify instruction scheduling for the model 867, use +DS867.
To specify instruction scheduling for the PA-RISC 7100LC processor, use

Compiling and Running HP C Programs 9-31

+DSPA7100LC. To specify instruction scheduling for systems based on the
PA-RISC 8000 processor, use +DSPA8000.

If you plan to run your program on both PA-RISC 1.1 and 2.0 systems, use the
+DS2.0 designation.

See the �le /opt/langtools/lib/sched.models for model numbers and
processor names. Use the command uname -m to determine the model number
of your system.

If you do not specify a +DA or +DS option, the default instruction scheduling
is based on that of the system on which you compile. If you do specify a +DA
option and do not specify a +DS option, the default instruction scheduling is
based on what you specify in +DA, and not based on that of the system on
which you compile. For example, specify +DA1.1 and do not specify +DS, and
instruction scheduling will be for 1.1. Specify +DAportable and do not specify
+DS, and instruction scheduling will be for 1.1. (+DAportable is currently
equivalent to +DA1.1.)

When you use the +DS option depends on your particular circumstance.

If you plan to run your program on one particular model of the HP 9000 and
that model is di�erent from the one where you compile your program, use
+DSmodel with either the model number of the target system or the processor
name of the target system.

For example, if you are compiling on a system with a PA7100 processor and
your program will run on a system with a PA7100LC processor, you should
use +DSPA7100LC. This will give you the best performance on the PA7100LC
system.

If you plan to run your program on many models or processors of the HP
9000, use +DSmodel with either the model number or processor name of the
fastest system on which you will be running your application.

Compiling in Networked Environments

When compiles are performed using diskless workstations or NFS-mounted
�le systems, it is important to note that the default code generation and
scheduling are based on the local host processor. The system model numbers of
the hosts where the source or object �les reside do not a�ect the default code
generation and scheduling.

9-32 Compiling and Running HP C Programs

Pragmas

A #pragma directive is an instruction to the compiler. Put pragmas in your C
source code where you want them to take e�ect, but do not use them within a
function. A pragma has e�ect from the point at which it is included to the end
of the translation unit (or until another pragma changes its status).

This section introduces the following groups of HP C compiler directives:

intrinsic pragmas

copyright notice and identi�cation pragmas

data alignment pragmas

optimization pragmas

program listing pragmas

shared library pragmas

Refer to the HP C Programmer's Guide for additional information on pragmas.

Intrinsic Pragmas

See Chapter 11, \Using Intrinsics" for further information about the pragmas
introduced here.

INTRINSIC Pragma

#pragma INTRINSIC intrinsic name1 [user name] [,intrinsic name2]

[user name]...

Declares an external name as an intrinsic.

INTRINSIC FILE Pragma

#pragma INTRINSIC_FILE "path"

Speci�es the path of a �le in which the compiler can locate information about
intrinsic functions.

Compiling and Running HP C Programs 9-33

Copyright Notice and Identification Pragmas

The following pragmas can be used to insert strings in code.

COPYRIGHT Pragma

#pragma COPYRIGHT "string"

Places a copyright notice in the object �le, using the \string" argument and
the date speci�ed using COPYRIGHT_DATE. If no date has been speci�ed using
#pragma COPYRIGHT_DATE, the current year is used. For example, assuming the
year is 1990, the directive #pragma COPYRIGHT "Acme Software" places the
following string in the object code:

(C) Copyright Acme Software, 1990. All rights reserved. No part

of this program may be photocopied, reproduced, or transmitted

without prior written consent of Acme Software.

COPYRIGHT DATE Pragma

#pragma COPYRIGHT_DATE "string"

Speci�es a date string to be used in a copyright notice appearing in an object
module.

LOCALITY Pragma

#pragma LOCALITY "string"

Speci�es a name to be associated with the code written to a relocatable object
module. All code following the LOCALITY pragma is associated with the
name speci�ed in string. The smallest scope of a unique LOCALITY pragma
is a function. For example, #pragma locality "mine" will build the name
"$CODE$MINE$".

Code that is not headed by a LOCALITY pragma is associated with the name
$CODE$. An empty \string" causes the code name to revert to the default name
of $CODE$.

9-34 Compiling and Running HP C Programs

VERSIONID Pragma

#pragma VERSIONID "string"

Speci�es a version string to be associated with a particular piece of code. The
string is placed into the object �le produced when the code is compiled.

Optimization Pragmas

For additional information on the following optimization pragmas see Chapter
4, \Optimizing C Programs," of the HP C Programmer's Guide.

ALLOCS NEW MEMORY Pragma

#pragma ALLOCS_NEW_MEMORY functionname1,...,functionnamen

States that the function functionname returns a pointer to new memory that it
allocates or a routine that it calls allocates. This pragma provides additional
information to the optimizer which results in more e�cient code. (See the HP
C Programmer's Guide for additional information.)

FLOAT TRAPS ON Pragma

#pragma FLOAT_TRAPS_ON

�
functionname, . . . functionname

_ALL

�

Informs the compiler that you may have enabled
oating-point trap handling.
When the compiler is so informed, it will not perform loop invariant code
motion (LICM) on
oating-point operations in the functions named in
the pragma. This pragma is required for proper code generation when

oating-point traps are enabled and the code is optimized.

The _ALL parameter speci�es that loop invariant code motion should be
disabled for all functions within the compilation unit.

[NO]INLINE Pragma

#pragma INLINE [functionname1,...,functionnamen]

#pragma NOINLINE [functionname1,...,functionnamen]

Compiling and Running HP C Programs 9-35

Enables (or disables) inlining of functions. If particular functions are speci�ed
with the pragma, they are enabled (or disabled) for inlining. If no functions are
speci�ed with the pragmas, all functions are enabled (or disabled) for inlining.
Refer to the C Programmer's Guide for details and examples.

[NO]PTRS STRONGLY TYPED Pragma

#pragma PTRS_STRONGLY_TYPED BEGIN

#pragma PTRS_STRONGLY_TYPED END

#pragma NOPTRS_STRONGLY_TYPED BEGIN

#pragma NOPTRS_STRONGLY_TYPED END

Speci�es when a subset of types are type-safe, providing a �ner level of control
that +O[no]ptrs_strongly_typed. The pragma will take precedence over the
command line option, although sometimes both are required. Refer to the C
Programmer's Guide for details and examples.

NO SIDE EFFECTS Pragma

#pragma NO_SIDE_EFFECTS functionname1,...,functionnamen

States that functionname and all the functions that functionname calls will
not modify any of a program's local or global variables. This pragma provides
additional information to the optimizer which results in more e�cient code.
See the HP C Programmer's Guide for further information.

Shared Library Pragma

This section describes a pragma for shared libraries. For detailed information
on shared libraries, see the HP-UX Linker and Libraries Online User Guide.

HP SHLIB VERSION Pragma

#pragma HP_SHLIB_VERSION "mm/[yy]yy"

Assigns a version number to a shared library module. This enables you to store
multiple versions of a subroutine in a shared library.

9-36 Compiling and Running HP C Programs

The version number is speci�ed by mm/[yy]yy. mm represents the month, and
must be from 1 to 12. [yy]yy represents the year, either in 2 digits or 4 digits.
If the 2 digit form is used, it must be from 90 to 99, and will be interpreted as
1990 to 1999. The 4 digit form must be from 1990 to 7450.

This pragma provides a way to guard against unexpected side e�ects when
a shared library is updated. You can put multiple versions of a routine in
the library and ensure that programs use the correct version. The date in
the SHLIB_VERSION pragma provides the version number. Programs call the
version in the shared library with a date less than or equal to the date the
program was linked.

The version number should only be incremented when changes made to a
subroutine make the new version of the subroutine incompatible with previous
versions.

Data Alignment Pragma

This section discusses the data alignment pragma HP_ALIGN and its various
arguments available on the HP 9000 workstations and servers, to control
alignment across platforms. In the following discussion, a word represents
a 32-bit data structure. Refer to Chapter 2, \Storage and Alignment
Comparisons," in the HP C Programmer's Guide for detailed information on
the HP_ALIGN pragma.

HP ALIGN Pragma

#pragma HP_ALIGN align mode [PUSH]

#pragma HP_ALIGN POP

Data Alignment Stack. The PUSH and POP options allow functions to establish
their own alignment environment for the duration of the function call, and
restore the alignment environment previously in e�ect when exiting the
procedure.

The HP_ALIGN pragma must have a global scope (outside of any function,
enclosing structure, or union).

#pragma HP_ALIGN POP

Compiling and Running HP C Programs 9-37

This option to HP_ALIGN restores the previous alignment environment saved
using the HP_ALIGN PUSH pragma by deleting the current alignment mode from
the top of the stack. If the alignment stack is empty, the default alignment is
made the current mode.

#pragma HP_ALIGN align mode PUSH

This pragma saves the current alignment environment for later retrieval by
pushing it into a last in, �rst out (LIFO) stack. The align mode is made the
new current alignment by placing it on the top of the stack.

Alignment Modes. align mode can be any of the following values:

#pragma HP_ALIGN HPUX_WORD

Results in int and float types being halfword aligned (two-byte aligned),
doubles being word aligned (four byte aligned), and all structs being at least
halfword aligned. This is the default for the Series 300/400 computer.

#pragma HP_ALIGN HPUX_NATURAL_S500

Results in doubles being word aligned. This is the default for the Series 500
computer.

#pragma HP_ALIGN HPUX_NATURAL

Results in native alignment for the HP 9000 workstations and servers. The int
and float types are word aligned, doubles are double-word aligned (8-byte
aligned) , and structs may be byte aligned depending upon the data types
used within the structure.

#pragma HP_ALIGN NATURAL

Results in a superset of the above. Uses native alignment provided by
HPUX_NATURAL, all structs and unions are at least halfword aligned, and
DOMAIN bit-�eld mapping is used. (See Chapter 2, \Storage and Alignment
Comparisons," in the HP C Programmer's Guide for details regarding Domain
bit-�elds.)

#pragma HP_ALIGN DOMAIN_NATURAL

Similar to NATURAL except long doubles are only 8 bytes long (treated as
doubles).

#pragma HP_ALIGN DOMAIN_WORD

9-38 Compiling and Running HP C Programs

Similar to HPUX_WORD, with the following exceptions: long doubles are only 8
bytes long (treated as doubles) and DOMAIN bit-�eld mapping is used. (See
Chapter 2, \Storage and Alignment Comparisons," in the HP C Programmer's
Guide for details regarding Domain bit-�elds.)

#pragma HP_ALIGN NOPADDING

Causes all structure and union members that are not bit-�elds to be packed on
a byte boundary. It does not cause crunched data packing, where there are
zero bits of padding. It only ensures that there will be no full bytes of padding
in the structure or union.

Accessing Data with the HP ALIGN Pragma. The HP_ALIGN pragma isolates
data structures that are not naturally aligned for PA-RISC systems.

References to non-natively aligned data often results in poorer run-time
performance than references to natively aligned data. Natively aligned data is
often accessed with a single load or store instruction. Non-natively aligned data
must be accessed with one or more load and store instructions.

The HP_ALIGN pragma di�ers from the +ubytes compiler option. When you
use the HP_ALIGN pragma, the compiler localizes ine�cient code generation
to accesses of data declared with structures or unions under the HP_ALIGN
pragma. The +ubytes option assumes that all references to pointer objects are
misaligned and performs worst case code generation for all loads and stores of
dereferenced data.

The HP_ALIGN pragma o�ers better run-time performance than the +unumber
option. However, the HP_ALIGN pragma requires careful pointer assignment and
dereferencing. The following example shows how the pragma is often misused,
and what can be done to correct the mistake.

#pragma HP_ALIGN HPUX_WORD

struct {

char chardata;

int intdata;

} stvar;

Compiling and Running HP C Programs 9-39

main()

{

int *localptr;

int localint;

localptr = &stvar.intdata;

localint = *localptr; /* invalid dereference */

}

The above program aborts at run-time when localptr is dereferenced.
The structure stvar is declared under the HP_ALIGN HPUX_WORD pragma.
Its members will not be natively aligned for PA-RISC. The member
stvar.intdata is aligned on a two byte boundary.

The error occurs after the address of stvar.intdata is assigned to localptr.
localptr is not a�ected by the HP_ALIGN HPUX_WORD pragma. When localptr

is used to access the data, it is treated as a pointer to four-byte aligned data
rather than as a pointer to two-byte aligned data and a run-time error can
occur.

Two solutions help to work around this problem. First, the recommended
solution is to access non-natively aligned data through structures or unions
that are declared under the HP_ALIGN pragma. For example, the above
program can be transformed to:

#pragma HP_ALIGN HPUX_WORD

struct {

char chardata;

int intdata;

} stvar; /* stvar is declared under the HP_ALIGN pragma */

9-40 Compiling and Running HP C Programs

main()

{

int *localptr;

int localint;

localint = stvar.intdata; /* Valid access of non-naturally */

/* aligned data through a struct */

}

The second method is to inform the compiler that all access of data must
assume potentially non-natural alignment. In the case of #pragma HP_ALIGN

HPUX_WORD shown in the �rst example above, you can use the +u2 command
line option. This causes all loads and stores of any data to be performed in
increments of no greater than 2-bytes at a time.

For complete details about the +ubytes option, see Table 9-2.

Listing Pragmas

The listing pragmas introduced in this section are discussed in more detail in
Chapter 12.

LINES Pragma

#pragma LINES linenum

Sets the number of lines per page to linenum . The default is 63. The minimum
number of lines per page is 20.

WIDTH Pragma

#pragma WIDTH pagewidth

Sets the width of the page to pagewidth. The default is 80 columns. The
minimum number of columns per page is 50. Place the WIDTH pragma before
any TITLE or SUBTITLE pragmas. The width of the title and subtitle �elds
varies with the page width.

Compiling and Running HP C Programs 9-41

TITLE Pragma

#pragma TITLE "string"

Makes string the title of the listing. String can have a length of up to 44
characters less than the page width (additional characters are truncated with
no warning). The default is no title.

SUBTITLE Pragma

#pragma SUBTITLE "string"

Makes string the subtitle of the listing. String can have a length of up to 44
characters less than the page width (additional characters are truncated with
no warning). The default is no subtitle.

PAGE Pragma

#pragma PAGE

Causes a page break and begins a new page.

LIST Pragma

#pragma LIST

�
ON

OFF

�

Turns listing functionality ON or OFF when used with the -Wc,-L command
line option. The default is ON. Use this pragma to exclude source lines you do
not need to list such as include �les.

AUTOPAGE Pragma

#pragma AUTOPAGE

�
ON

OFF

�

ON causes a page break after each function de�nition. If the pragma is declared
without specifying either the ON or OFF option, then page breaks are generated.
If the pragma is not used then no page breaks are generated.

9-42 Compiling and Running HP C Programs

Running HP C Programs

After a program is successfully linked, it is in executable form. To run the
program, enter the executable �lename (either a.out or the name following the
-o option).

Compiling and Running HP C Programs 9-43

10

HP C/HP-UX Implementation Topics

This chapter describes topics that are speci�c to programming in C on HP
9000 workstations and servers.

Data Types

Data types are implemented in HP C/HP-UX as follows:

The char type is signed.

All types can have the register storage class, although it is only honored
for scalar types. Ten register declarations per function are honored. More are
honored when the +R option is used.

The signed integer types are represented internally using twos complement
form.

Structures and unions start and end on an alignment boundary which is that
of their most restrictive member.

The long long data type cannot be used to declare an array's size.

The long long data type is available only under -Ac, -Aa +e, and -Ae

compilation modes.

Table 10-1 lists the sizes and ranges of di�erent HP C/HP-UX data types.

Refer to the HP C Programmer's Guide for comparisons of data storage and
alignment on the following computer systems:

HP 3000 Series 900
HP 3000/V
HP 9000 Series 700/800

HP C/HP-UX Implementation Topics 10-1

Table 10-1. HP C/HP-UX Data Types

Type Bits Bytes Low Bound High Bound Comments

char 8 1 -128 127 Character

signed char 8 1 -128 127 Signed integer

unsigned char 8 1 0 255 Unsigned integer

short 16 2 -32,768 32,767 Signed integer

unsigned short 16 2 0 65,535 Unsigned integer

int 32 4 -2,147,483,648 2,147,483,647 Signed integer

unsigned int 32 4 0 4,294,967,295 Unsigned integer

long 32 4 -2,147,483,648 2,147,483,647 Signed integer

long long 64 8 -263 263 -1 Signed integer

unsigned long 32 4 0 4,294,967,295 Unsigned integer

unsigned long long 64 8 0 264 -1 Unsigned integer

float 32 4 See (a) below. See (b) below. Floating-point

double 64 8 See (c) below. See (d) below. Floating-point

long double 128 16 See (e) below. See (f) below. Floating-point

enum 32 4 -2,147,483,648 2,147,483,647 Signed integer

Comments

In the following comments, the low bounds of float, double, and long

double data types are given in their normalized and denormalized forms.
Normalized and denormalized refer to the way data is stored. Normalized
numbers are represented with a greater degree of accuracy than denormalized
numbers. Denormalized numbers are very small numbers represented with
fewer signi�cant bits than normalized numbers.

a. Least normalized: 1.17549435E-38F
Least denormalized: 1.4012985E-45F

10-2 HP C/HP-UX Implementation Topics

b. 3.40282347E+38F

c. Least normalized: 2.2250738585072014E-308
Least denormalized: 4.9406564584124654E-324

d. 1.7976931348623157E+308

e. Least normalized:
3.3621031431120935062626778173217526026E-4932L

Least denormalized:
6.4751751194380251109244389582276465525E-4966L

f. 1.1897314953572317650857593266280070162E+4932L

Bit-Fields

Bit-�elds in structures are packed from left to right (high-order to low-order).

The high order bit position of a \plain" integer bit-�eld is treated as a sign
bit.

Bit-�elds of types char, short, long, long long, and enum are allowed.

The maximum size of a bit-�eld is 64 bits.

If a bit-�eld is too large to �t in the current word, it is moved to the next
word.

The range of values in an integer bit-�eld are:

-2,147,483,648 to 2,147,483,647 for 32-bit signed quantities

0 to 4,294,967,295 for 32-bit unsigned quantities

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 for 64-bit signed
quantities

0 to 18,446,744,073,709,551,615 for 64-bit unsigned quantities

Bit-�elds in unions are allowed only in ANSI mode.

HP C/HP-UX Implementation Topics 10-3

IEEE Floating-Point Format

The internal representation of
oating-point numbers conforms to the IEEE

oating-point standard, ANSI/IEEE 754-1985, as shown in �gure 10-1.

Figure 10-1. Internal Representation of Floating-Point Numbers

The s �eld contains the sign of the number. The exp �eld contains the biased
exponent (exp = E + bias, where E is the real exponent) of the number.
The values of bias and the maximum and minimum values of the unbiased
exponent appear in the following table:

oat double long double

bias +127 +1023 +16383

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Emin-1 is used to encode 0 and denormalized numbers.

10-4 HP C/HP-UX Implementation Topics

Emax+1 is used to encode in�nities and NaNs.

NaNs are binary
oating-point numbers that have all ones in the exponent and
a nonzero fraction. NaN is the term used for a binary
oating-point number
that has no value (that is, \Not A Number").

If E is within the range

Emin <= E <= Emax

the mantissa �eld contains the number in a normalized form, preceded by an
implicit 1 and binary point.

In accordance with the IEEE standard,
oating-point operations are performed
with traps not enabled, and the result of such an operation is that de�ned by
the standard. This means, for example, that dividing a positive �nite number
by zero will yield positive in�nity, and no trap will occur. Dividing zero by zero
or in�nity by in�nity will yield a NaN, again with no trap. For a discussion
of in�nity arithmetic and operations with NaNs, in the context of the IEEE
standard, see the HP Precision Architecture and Instruction Set Reference
Manual (HP part number 09740-90014).

For detailed information about
oating-point arithmetic on HP-UX, how
HP-UX implements the IEEE standard, and the HP-UX math libraries, see the
HP-UX Floating Point Guide.

Note that in�nities and NaNs propagate through a sequence of operations. For
example, adding any �nite number to in�nity will yield in�nity. An operation
on a NaN will yield a NaN. This means that you may be able to perform a
sequence of calculations and then check just the �nal result for in�nity or NaN.

The HP-UX math library provides routines for determining the class of a

oating point number. For example, you can determine if a number is in�nity
or NAN. See the HP-UX Reference for descriptions of the functions fpclassify,
fpclassifyf, isinf, and isnan.

HP C/HP-UX Implementation Topics 10-5

Lexical Elements

Identi�ers: 255 characters are signi�cant in internal and external names.

Character Constants: Any character constant of more than one character
produces a warning. The value of an integral character constant containing
more than one character is computed by concatenating the 8-bit ASCII
code values of the characters, with the leftmost character being the
most signi�cant. For example, the character constant 'AB' has the value
256*'A'+'B' = 256*65+66 = 16706. Only the rightmost four characters
participate in the computation.

The case of alphabetic characters is always signi�cant in external names.

The execution character set and the source character set are both ASCII.

Nonprinting characters in character constants and string literals must be
represented as escape sequences.

Structures and Unions

Structure or union references that are not fully quali�ed (see example below)
are
agged with an error by the compiler.

struct{

int j;

struct {int i;}in;

} out;

out.i=3;

The correct statement for the example above is out.in.i = 3;.

10-6 HP C/HP-UX Implementation Topics

Type Mismatches in External Names

It is illegal to declare two externally visible identi�ers of di�erent types with
the same name in separately compiled translation units. The linker might not
diagnose such a mismatch.

Expressions

The value of an expression that over
ows or under
ows is unde�ned, except
when the operands are unsigned.

Pointers

Pointers to functions should not be compared using relational operators
because the pointers represent external function labels and not actual
addresses.

Dereferencing a pointer that contains an invalid value results in a trap if the
address references protected memory or if the address is not properly aligned
for the object being referenced.

A declaration of a pointer to an unde�ned structure tag is allowed, and the
tag need not be de�ned in the source module unless the pointer is used in an
expression.

HP C/HP-UX Implementation Topics 10-7

Maximum Number of Dimensions of an Array

Arrays can have up to 252 dimensions.

Scope of extern Declarations

Identi�ers for objects and functions declared within a block and with the
storage class extern have the same linkage as any visible declaration with
�le scope. If there is no visible declaration with �le scope, the identi�er
has external linkage, and the de�nition remains visible until the end of the
translation unit.

However, because this is an extension to ANSI C, a warning will be issued on
subsequent uses of the identi�er if the absence of this extended visibility could
cause a change in behavior on a port to another conforming implementation.

Conversions Between Floats, Doubles, and Long Doubles

When a long double is converted to a double or float, or when a double

is converted to a float, the original value is rounded to the nearest
representable value as the new type. If the original value is equally close to
two distinct representable values, then the value chosen is the one with the
least signi�cant bit equal to zero.

Conversions between
oating-point types involve a change in the exponent,
as well as the mantissa. It is possible for such a conversion to over
ow.

10-8 HP C/HP-UX Implementation Topics

Statements

The types of switch expressions and their associated case label constants do
not need to match. Integral types can be mixed.

All expressions of integral types are allowed in switch statements.

Preprocessor

The maximum nesting depth of #include �les is 35.

For include �les that are enclosed in double quotes and do not begin with a
/, the preprocessor will �rst search the current directory, then the directory
named in the -I option, and �nally, in the standard include directory
/usr/include.

For include �les that are enclosed in < and > signs, the search path begins
with the directory named in the -I option and is completed in the standard
include directory, /usr/include. The current directory is not searched.

Library Functions and Header Files

This section describes the implementation of library functions in HP
C/HP-UX. For complete information about library functions on HP C/HP-UX,
see the HP-UX Reference manual and HP-UX Linker and Libraries Online
User Guide.

The Math Library

When using any of the the mathematical functions in the <math.h> header,
you must include the -lm
ag on the cc or ld command when linking. This
will cause the linker to link in the appropriate math library.

Note C math libraries have traditionally used a function called
matherr, which was required by the SVID2 speci�cation
but is not speci�ed by ANSI C, SVID3, or XPG4.2. In the

HP C/HP-UX Implementation Topics 10-9

HP-UX math library, the SVID2 matherr function exists
under the names matherr and _matherr. These functions are
still provided in libm.a to assist in supporting old programs.
Executables built at HP-UX releases 10.0 through 10.20 that
use matherr or _matherr will continue to run at the next
release of HP-UX. However, these functions are obsolete and
will not be supported for newly compiled or linked programs at
the next release of HP-UX.

Refer to the HP-UX Floating-Point Guide for further details.

Other Library Functions

longjmp: Because HP C/HP-UX can place automatic variables in registers,
you cannot rely on their values if they are changed between the setjmp and
longjmp functions.

setjmp: There are no restrictions on when calls to setjmp can be made.

The varargs Macros

The varargs macros allow accessing arguments of functions where the number
and types of the arguments can vary from call to call.

Note The <varargs.h> header has been superseded by the standard
header <stdarg.h>, which provides all the functionality of
the varargs macros. The <varargs.h> header is retained for
compatibility with pre-ANSI compilers and earlier releases of
HP C/HP-UX.

To use varargs, a program must include the header <varargs.h>. A function
that expects a variable number of arguments must declare the �rst variable
argument as va_alist in the function declaration. The macro va_dcl must be
used in the parameter declaration.

A local variable should be declared of type va_list. This variable is used to
point to the next argument in the variable argument list.

10-10 HP C/HP-UX Implementation Topics

The va_start macro is used to initialize the argument pointer to the initial
variable argument.

Each variable argument is accessed by calling the va_arg macro. This macro
returns the value of the next argument, assuming it is of the speci�ed type, and
updates the argument pointer to point to the next argument.

The va_end macro is provided for consistency with other implementations;
it performs no function on the HP 9000 Series 800 computers. The following
example demonstrates the use of the <varargs.h> header:

Example

#include <varargs.h>

#include <stdio.h>

enum arglisttype {NO_VAR_LIST, VAR_LIST_PRESENT};

enum argtype {END_OF_LIST, CHAR, DOUB, INT, PINT};

int foo (va_alist)

va_dcl /* Note: no semicolon */

{

va_list ap;

int a1;

enum arglisttype a2;

enum argtype ptype;

int i, *p;

char c;

double d;

/* Initialize the varargs mechanism */

va_start(ap);

/* Get the first argument, and arg list flag */

a1 = va_arg (ap, int);
a2 = va_arg (ap, enum arglisttype);

printf ("arg count = %d\n", a1);

HP C/HP-UX Implementation Topics 10-11

if (a2 == VAR_LIST_PRESENT) {

/* pick up all the arguments */

do {

/* get the type of the argument */

ptype = va_arg (ap, enum argtype);

/* retrieve the argument based on the type */

switch (ptype) {

case CHAR: c = va_arg (ap, char);

printf ("char = %c\n", c);

break;

case DOUB: d = va_arg (ap, double);

printf ("double = %f\n", d);

break;

case PINT: p = va_arg (ap, int *);

printf ("pointer = %x\n", p);

break;

case INT : i = va_arg (ap, int);

printf ("int = %d\n", i);
break;

case END_OF_LIST :

break;

default: printf ("bad argument type %d\n", ptype);

ptype = END_OF_LIST; /* to break loop */

break;

} /* switch */

} while (ptype != END_OF_LIST);

}

/* Clean up */

va_end (ap);

}

10-12 HP C/HP-UX Implementation Topics

main()

{

int x = 99;

foo (1, NO_VAR_LIST);

foo (2, VAR_LIST_PRESENT, DOUB, 3.0, PINT, &x, END_OF_LIST);

}

HP Specific Type Qualifiers

See the section \HP Speci�c Type Quali�ers" in chapter 3.

HP C/HP-UX Implementation Topics 10-13

Location of Files

Table 10-2 lists the location of the HP C �les.

Table 10-2. Location of Files

File or Library Location

Driver /opt/ansic/bin/cc

/opt/ansic/bin/c89

Preprocessor /opt/langtools/lbin/cpp (Compatibility mode)
/opt/langtools/lbin/cpp.ansi (ANSI mode)

Compiler /opt/ansic/lbin/ccom

Assembler /usr/ccs/bin/as

Linker /usr/ccs/bin/ld

Advanced Optimizing
Code Generator

/usr/ccs/lbin/ucomp

C libraries (libc) /usr/lib/libc.a1

/lib/libc.sl

Debugging Aid Routines /opt/langtools/lib/end.o

man Pages /opt/ansic/share/man/man1.Z/cb.1 (English)

/opt/ansic/share/man/man1.Z/cc.1 (English)

/opt/ansic/share/man/man1.Z/cflow.1 (English)

/opt/ansic/share/man/man1.Z/cxref.1 (English)

/opt/ansic/share/man/man1.Z/lint.1 (English)

/opt/ansic/share/man/man1.Z/protogen.1 (English)

/opt/langtools/share/man/man1.Z/cpp.1 (English)

/opt/langtools/share/man/man1.Z/lex.1 (English)

/opt/langtools/share/man/man1.Z/yacc.1 (English)

10-14 HP C/HP-UX Implementation Topics

Table 10-2. Location of Files (continued)

File or Library Location

Message Catalogs /opt/ansic/lib/nls/msg/C/cc.cat (English)

/opt/ansic/lib/nls/msg/C/cb.cat (English)

/opt/ansic/lib/nls/msg/C/cflow.cat (English)

/opt/ansic/lib/nls/msg/C/cxref.cat (English)

/opt/ansic/lib/nls/msg/C/lint.cat (English)

/opt/ansic/lib/nls/msg/C/protogen.cat (English)

/opt/langtools/lib/nls/msg/C/cpp.cat (English)

/opt/langtools/lib/nls/msg/C/lex.cat (English)

/opt/langtools/lib/nls/msg/C/yacc.cat (English)

/opt/langtools/lib/nls/msg/C/libmp.cat (English)

Normal startup opt/langtools/lib/crt0.o

PBO Startup /opt/langtools/lib/icrt0.o

PBO Shared Libraries
Startup2

/opt/langtools/lib/scrt0.o

HP C/HP-UX Implementation Topics 10-15

Table 10-2. Location of Files (continued)

File or Library Location

gprof startup /opt/langtools/lib/gcrt0.o

prof startup /opt/langtools/lib/mcrt0.o

crt0.o for +Oparallel /opt/langtools/lib/mpcrt0.o

crt0.o for +Oparallel
and gprof

/opt/langtools/lib/mpgcrt0.o

Assembler pre�x �le /usr/lib/pcc_prefix.s

Pro�led C library /usr/lib/libp/libc.a

Temporary �les /var/tmp3

Math libraries4,5 /usr/lib/libm.a (PA-RISC 1.0, archive)

/usr/lib/libp/libm.a (a pro�led version of
/usr/lib/libm.a)

/usr/lib/libm.sl (PA-RISC 1.0, shared)

/usr/lib/pa1.1/libm.a (PA-RISC 1.1, archive)6

10-16 HP C/HP-UX Implementation Topics

Table 10-2. Location of Files (continued)

File or Library Location

Parallel Runtime
Library

/opt/langtools/lib/libmp.a

Standard Include Files /usr/include

Online Help /opt/ansic/dt/appconfig/help/C

C Tools /opt/ansic/bin

/opt/ansic/lbin

/opt/langtools/bin

/opt/langtools/lbin

1You can change the search path for libc.a through the -Ldir option. See
Chapter 9 for details.

2See the HP-UX Linker and Libraries Online User Guide for more
information on PBO of shared libraries.

3You can change the default location for the temporary �les used and
created by the C compiler by setting the environment variable TMPDIR. If the
compiler cannot write to $TMPDIR, it uses the default location /var/tmp. See
the HP-UX Reference for details.

4The appropriate library �le is automatically selected based upon the options
selected on the command line.

5The libM library, which formerly supported XPG and POSIX while the
libm library supported SVID, is obsolete now that these standards are
compatible. The various versions of libM now exist only as symbolic links
to the corresponding versions of libm. The symbolic links will eventually
disappear.

6For performance reasons, HP provides the PA1.1 version of libm.a only
as an archive library. For information about performance issues related to
shared and archive libraries, refer to the HP-UX Floating Point Guide.

HP C/HP-UX Implementation Topics 10-17

11

Using Intrinsics

An intrinsic is an external routine that can be called by HP C or any language
that the HP-UX operating system supports. The intrinsic can, in turn, be
written in any supported language. However, its formal parameters must be of
data types that have counterparts in HP C. This chapter describes the use of
intrinsic functions in HP C programs.

Intrinsics are used much like library functions, except that users may write
their own intrinsic routines, and then create an INTRINSIC_FILE. This
�le contains information about the number and type of parameters of the
intrinsic. It is similar to a C header �le. Additionally, the information in the
INTRINSIC_FILE is accessible by other compilers, such as Pascal or FORTRAN.
This will allow a single interface for multiple languages.

The body of an intrinsic routine is put into a library that contains the bodies
of other intrinsics. Then, the declarations are put into an INTRINSIC_FILE.
When calling an intrinsic from a program, #pragma INTRINSIC is used to
specify the name of the intrinsic routine, and #pragma INTRINSIC_FILE is used
to specify the location of the declaration of the intrinsic routine. Since the
body of the intrinsic routine actually resides in a user-built library, that library
must be linked in explicitly.

Using Intrinsics 11-1

INTRINSIC Pragma

The INTRINSIC pragma allows you to declare an external function as an
intrinsic. This pragma has the following format:

#pragma INTRINSIC intrinsic name1 [user name]
[,intrinsic name2 [user name]] . . .

where:

intrinsic name is the name of the intrinsic you want to declare.

user name is a valid C identi�er. If speci�ed, you can use this name to
invoke the intrinsic from the source program.

Examples

#pragma INTRINSIC FOPEN

#pragma INTRINSIC FCLOSE myfclose

#pragma INTRINSIC FCHECK, FGETINFO

#pragma INTRINSIC FWRITE mpe_fwrite, FREAD mpe_fread

The �rst example shows how to declare the FOPEN intrinsic. The second
example shows how to declare FCLOSE; you must call it by the name myfclose
in your program. The third and fourth examples each declare two intrinsics.
The fourth provides alternative names for the intrinsics.

When you designate an external function as an intrinsic, the compiler refers
to a special �le (called an intrinsic �le) to determine the function type, the
number of parameters, and the type of each parameter. The compiler then uses
this information to perform the necessary conversions and insertions to invoke
the routine, or to issue warnings and errors if proper invocation is not possible.

Speci�cally, for intrinsic calls, the HP C compiler does the following:

Converts all value parameters to the type expected by the intrinsic function.
Conversions are performed as if an assignment is done from the value to the
formal parameter. This is known as assignment conversion. If a value cannot
be converted, an error message is issued.

Converts addresses passed as reference parameters to the proper address
type. This essentially means that short addresses are converted to long

11-2 Using Intrinsics

addresses as required by the intrinsic function. An integer value of zero is
considered a legal value (NULL) for any address parameter.

Allows missing arguments in the call to the intrinsic if the intrinsic de�nes
default values for those parameters. The compiler supplies the default values
for the missing arguments, or issues a diagnostic if there is no de�ned default
value. Missing arguments are allowed within an argument list or at the end
of an argument list.

Issues an error message if there are too many arguments.

Inserts \hidden" arguments required by Pascal routines that have ANYVAR
parameters (size is hidden), or that are EXTENSIBLE (parameter count is
hidden). See the HP Pascal Programmer's Guide for more information.

Remember that C does not normally do any parameter counting, converting,
or checking. So, if you attempt to declare an intrinsic using a standard C
declaration rather than using the #pragma INTRINSIC statement, none of the
above checks, conversions, or insertions are done. The address of an intrinsic
can be taken, but if a call is made using a pointer to the intrinsic, the above
checks are not performed. The intrinsic call then degenerates into a normal C
function call.

To ensure that all calls are handled as expected, the intrinsic pragma should
declare the name of the intrinsic using an identi�er with the identical case that
is used by the function calls in the program, especially if the optional user
name is not speci�ed. No other functions in the program should have the same
name as any intrinsic that is declared, regardless of the case. This is because
the actual run time symbol used to call an intrinsic is not necessarily the same
case as the identi�er used to declare that intrinsic.

Using Intrinsics 11-3

INTRINSIC FILE Pragma

The INTRINSIC_FILE pragma speci�es the path of a �le in which the compiler
can locate information about intrinsic functions. This pragma has the following
format:

#pragma INTRINSIC_FILE "path"

where path is the fully quali�ed path of a �le. The compiler will look in this
�le for information about intrinsics declared using the INTRINSIC pragma. If
you do not specify a full path name, the compiler searches in your current
directory.

If you do not use the INTRINSIC_FILE pragma, the compiler looks in a �le
called /usr/lib/sysintr. You need to use the INTRINSIC_FILE pragma
only if you are building your own intrinsic �les using the HP Pascal compiler
and you must specify a �le other than the default. Refer to the HP Pascal
Programmer's Guide for information about building your own intrinsic �les.

The compiler searches in the speci�ed �le until another INTRINSIC_FILE
pragma is encountered. To return the search to /usr/lib/sysintr, specify the
INTRINSIC_FILE pragma with a null string, as shown below:

#pragma INTRINSIC_FILE ""

Here are some examples of INTRINSIC_FILE and INTRINSIC pragmas:

#pragma INTRINSIC FOPEN, FCLOSE, FREAD /* /usr/lib/sysintr used */

#pragma INTRINSIC_FILE "myintr"

#pragma INTRINSIC mytest1, mytest2 /* myintr used */

#pragma INTRINSIC_FILE ""

#pragma INTRINSIC FCHECK, FGETINFO /* /usr/lib/sysintr used */

In the �rst example above, the compiler searches the default �le for information
about the FOPEN, FCLOSE, and FREAD intrinsics. The second pragma speci�es a
di�erent �le for the compiler to search, myintr. The compiler looks for this �le
in the current directory. The third pragma declares two intrinsics, mytest1 and
mytest2, which must be described in myintr. The fourth pragma returns the
search to /usr/lib/sysintr, where FCHECK and FGETINFO are sought when the
�fth pragma is encountered.

11-4 Using Intrinsics

12

The Listing Facility

The HP C compiler generates a listing whenever a program is compiled with
the +L option. This listing is sent to standard output (stdout), and it can be
redirected to a �le using the shell redirection facility.

Listing Format

The listing consists of the following information:

A banner on the top of each page.

A line number for each source line.

The nesting level for each statement or declaration.

There are two styles of listing available: compatibility mode and ANSI mode.

Compatibility Mode

In compatibility mode, the text of the listing is the output of the preprocessor,
after macro substitution with #include �les inserted.

ANSI Mode

In ANSI mode, the text of the listing is the original version of the source
�le, before macro substitution; #include �les are inserted. To produce the
non-ANSI style listing, compile with the +Lp option instead of the +L option.

Note The +Lp option only has this e�ect when it is used in
conjunction with the -Aa option.

The Listing Facility 12-1

In either mode, comments are stripped from the listing (unless the -C option is
speci�ed).

Listing Pragmas

The listing facility provides a number of pragmas to control various features of
the listing format. The available pragmas are described below.

#pragma LINES linenum

Sets the number of lines per page to linenum. Default is 63. Minimum number
is 20 lines.

#pragma WIDTH pagewidth

Sets the width of the page to pagewidth. Default is 80 columns. Minimum
number is 50 columns.

Note If the WIDTH pragma is being used, put it before any TITLE or
SUBTITLE pragmas, since the title and subtitle �eld widths vary
with the page width.

#pragma TITLE "string"

Sets the page title to string . string is truncated without warning to 44
characters less than the page width. Default is the empty string.

#pragma SUBTITLE "string"

Sets the page subtitle to string . string is truncated without warning to 44
characters less than the page width. Default is the empty string.

Note The TITLE and SUBTITLE pragmas do not take e�ect until the
second page, because the banner on the �rst page appears
before the pragmas.

#pragma PAGE

Causes a page break and the start of a new page.

12-2 The Listing Facility

#pragma AUTOPAGE

�
ON

OFF

�

Causes a page break after each function de�nition. Default is OFF.

#pragma LIST

�
ON

OFF

�

Turns the listing ON/OFF. The default is ON. Use this pragma as a toggle to turn
listing o� around any source lines that you do not want to be listed, such as
include �les.

Listing Options

Two compiler options are provided to write additional information to the
listing. The +m option is used to generate identi�er maps. The +o option is
used to generate code o�sets.

Identifier Maps

When the +m option is speci�ed, the compiler produces a series of identi�er
maps, grouped by function. The map shows the declared identi�ers, their
storage class, type, and address or constant value.

The �rst column of the map lists, in alphabetical order, the initial 20
characters of all the identi�ers declared in the function. Member names of
structures and unions appear indented under the structure or union name.

The second column displays the storage class of each identi�er. The compiler
distinguishes the following storage classes:

auto external definition static

constant member typedef

external register

The third column shows the type of the identi�er. The types include:

array int unsigned char

char long int unsigned int

The Listing Facility 12-3

double long long int unsigned long

enum short int unsigned long long

float struct unsigned short

function union void

The fourth column indicates the relative register location of an identi�er.
Members of a union type are in the form W @ B, where W is the byte o�set
and B is the bit o�set within the word. Both o�sets are given in hexadecimal
notation.

12-4 The Listing Facility

Example

main()

{

enum colors {red, green, blue} this_color;

struct SS {

char *name;

char sex;

int birthdate;

int ssn;

float gpa;

struct SS *previous;

} pupil_rec;

union UU {

int flag;

float average;

} datum;

struct SS second_pupil;

this_color = red;

pupil_rec.sex = 'm';

datum.flag = 1;
second_pupil.gpa = 3.72;

}

G L O B A L I D E N T I F I E R M A P

Identifier Class Type Address

---------- ----- ---- -------

main ext def int () main

The Listing Facility 12-5

L O C A L I D E N T I F I E R M A P S

main

Identifier Class Type Address

---------- ----- ---- -------

blue const enum colors 2

datum auto union UU SP-64

flag member int 0x0 @ 0x0

average member float 0x0 @ 0x0

green const enum colors 1

pupil_rec auto struct SS SP-60

name member char * 0x0 @ 0x0

sex member char 0x4 @ 0x0

birthdate member int 0x8 @ 0x0

ssn member int 0xc @ 0x0

gpa member float 0x10 @ 0x0

previous member struct * 0x14 @ 0x0

red const enum colors 0

second_pupil auto struct SS SP-88

name member char * 0x0 @ 0x0

sex member char 0x4 @ 0x0
birthdate member int 0x8 @ 0x0

ssn member int 0xc @ 0x0

gpa member float 0x10 @ 0x0

previous member struct * 0x14 @ 0x0

this_color auto enum colors SP-36

12-6 The Listing Facility

Code Offsets

When the +o option is speci�ed, the compiler produces a series of the code
o�sets for each executable statement, grouped by function. Source line
numbers are given in decimal notation followed by the associated code address
speci�ed in hexadecimal notation. The code address is relative to the beginning
of the function.

Example

main()

{

int j;

void func1 ();
void func2 ();

for (j=0; j&<50; j++) {

func1 (j);

func2 (j);

}

}

void func1 (i)

int i;

{

while (i &< 50) {

if (!(i % 5))

printf ("%d is divisible by 5\n", i);

i++;

}

}

void func2 (j)

int j;

{

int k, m;

The Listing Facility 12-7

k = j % 10 ? 1 : 0;

if (k) {

m = 23;

k = m * m;

}

}

C O D E O F F S E T S

main "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset

7 8 8 18 9 20

func1 "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset

17 c 18 14 19 24 20 34

func2 "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset

30 4 31 20 32 28 33 30

12-8 The Listing Facility

A

Syntax Summary

This appendix presents a summary of the C language syntax as described in
this manual.

Lexical Grammar

Tokens

token ::= keyword

identi�er

constant

string-literal

operator

punctuator

preprocessing-token ::=

header-name

identi�er

pp-number

character-constant

string-literal

operator

punctuator

each non-white-space character cannot be one of the above

Syntax Summary A-1

Keywords

keyword ::= any word from the set:

auto extern sizeof

break float static

case for struct

char goto switch

const if __thread (HP-UX 10.30 and later)

continue int typedef

default long union

do register unsigned

double return void

else short volatile

enum signed while

Identifiers

identi�er ::= nondigit

identi�er nondigit

identi�er digit

identi�er dollar-sign

nondigit ::= any character from the set:

_ a b c d e f g h i j k l m n o p

q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X

Y Z

digit ::= any character from the set:

0 1 2 3 4 5 6 7 8 9

dollar-sign ::= the $ character

A-2 Syntax Summary

Constants

constant ::=

oating-constant

integer-constant

enumeration-constant

character-constant

oating-constant ::=

fractional-constant [exponent-part] [
oating-su�x]

digit-sequence exponent-part [
oating-su�x]

fractional-constant ::=

[digit-sequence] . digit-sequence

digit-sequence .

exponent-part ::=

e [sign] digit-sequence

E [sign] digit-sequence

sign ::=

+

-

digit-sequence ::=

digit

digit-sequence digit

oating-su�x ::=

f l F L

Syntax Summary A-3

integer-constant ::=

decimal-constant [integer-su�x]

octal-constant [integer-su�x]

hexadecimal-constant [integer-su�x]

decimal-constant ::=

nonzero-digit

decimal-constant digit

octal-constant ::=

0

octal-constant octal-digit

hexadecimal-constant ::=

0x hexadecimal-digit

0X hexadecimal-digit

hexadecimal-constant hexadecimal-digit

nonzero-digit ::= any character from the set:

1 2 3 4 5 6 7 8 9

octal-digit ::= any character from the set

0 1 2 3 4 5 6 7

hexadecimal-digit ::= any character from the set

0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

integer-su�x ::=

unsigned-su�x [long-su�x]

length-su�x [unsigned-su�x]

A-4 Syntax Summary

unsigned-su�x ::=

u U

length-su�x ::=

long-su�x

long-long-su�x

long-su�x ::= any character from the set

l L

long-long-su�x ::= any character from the set

ll LL Ll lL

enumeration-constant ::= identi�er

character-constant ::=

'c-char-sequence'

L'c-char-sequence'

c-char-sequence ::=

c-char

c-char-sequence c-char

c-char ::=

any character in the source character set except

the single quote ('), backslash (\), or new-line character

escape-sequence

escape-sequence ::=

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence

simple-escape-sequence ::=

Syntax Summary A-5

\' \" \? \\ \ddd \xdd

\a \b \f \n \r \t \v

octal-escape-sequence ::=

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence ::=

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

String Literals

string-literal ::=

"[s-char-sequence]"

L"[s-char-sequence]"

s-char-sequence ::=

s-char

s-char-sequence s-char

s-char ::=

any character in the source character set except

the double-quote (") , backslash (\), or new-line

character escape-sequence

Operators

operator ::= One selected from:

[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= == != ^ |

&& || ? :

= *= /= %= += -= <<= >>= &= ^= |=

, # ##

A-6 Syntax Summary

Punctuators

punctuator ::= One selected from:

[] () { } * , : = ; ... #

Header Names

header-name ::=

<h-char-sequence>

"q-char-sequence"

h-char-sequence ::=

h-char

h-char-sequence h-char

h-char ::=

any character in the source character set except

the newline character and >

q-char-sequence ::=

q-char

q-char-sequence q-char

q-char ::=

any character in the source character set except

the newline character and "

Syntax Summary A-7

Preprocessing Numbers

pp-number ::=

digit

. digit

pp-number digit

pp-number nondigit

pp-number e sign

pp-number E sign

pp-number .

A-8 Syntax Summary

Phrase Structure Grammar

Expressions

primary-expression ::=

identi�er

constant

string-literal

(expression)

post�x-expression ::=

primary-expression

post�x-expression [expression]

post�x-expression ([argument-expression-list])

post�x-expression . identi�er

post�x-expression -> identi�er

post�x-expression ++

post�x-expression --

argument-expression-list ::=

assignment-expression

argument-expression-list , assignment-expression

unary-expression ::=

post�x-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

unary-operator ::= one selected from

& * + - ~ !

Syntax Summary A-9

cast-expression ::=

unary-expression

(type-name) cast-expression

multiplicative-expression ::=

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression %% cast-expression

additive-expression ::=

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

shift-expression ::=

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

relational-expression ::=

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

equality-expression ::=

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

A-10 Syntax Summary

AND-expression ::=

equality-expression

AND-expression & equality-expression

exclusive-OR-expression ::=

AND-expression

exclusive-OR-expression ^ AND-expression

inclusive-OR-expression ::=

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression ::=

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression

logical-OR-expression ::=

logical-AND-expression

logical-OR-expression || logical-AND-expression

conditional-expression ::=

logical-OR-expression

logical-OR-expression ? logical-OR-expression :

conditional-expression

assignment-expression ::=

conditional-expression

unary-expression assign-operator assignment-expression

assign-operator ::= one selected from the set

= *= /= %= += -= <<= >>= &= ^= |=

Syntax Summary A-11

expression ::=

assignment-expression

expression , assignment-expression

constant-expression ::=

conditional-expression

Declarations

declaration ::=

declaration-speci�ers [init-declarator-list] ;

declaration-speci�ers ::=

storage-class [declaration-speci�ers]

type-speci�er [declaration-speci�ers]

type-quali�er [declaration-speci�ers]

init-declarator-list ::=

init-declarator

init-declarator-list , init-declarator

init-declarator ::=

declarator

declarator = initializer

storage-class-speci�er ::=

typedef

extern

static

auto

register

A-12 Syntax Summary

type-speci�er ::=

void

char

short

int

long

float

double

signed

unsigned

struct-or-union-speci�er

enum-speci�er

typedef-name

struct-or-union speci�er ::=

struct-or-union [identi�er] fstruct-declaration-listg

struct-or-union identi�er

struct-or-union ::=

struct

union

struct-declaration-list ::=

struct-declaration

struct-declaration-list struct-declaration

struct-declaration ::=

speci�er-quali�er-list struct-declarator-list;

speci�er-quali�er-list ::=

type-speci�er [speci�er-quali�er-list]

type-quali�er [speci�er-quali�er-list]

Syntax Summary A-13

struct-declarator-list ::=

struct-declarator

struct-declarator-list , struct-declarator

struct-declarator ::=

declarator

[declarator] : constant-expression

enum-speci�er ::=

[type-speci�er] enum [identi�er] {enumerator-list}

[type-speci�er] enum identi�er

enumerator-list ::=

enumerator

enumerator-list , enumerator

enumerator ::=

enumeration-constant

enumeration-constant = constant-expression

type-quali�er ::=

const

noalias

volatile

declarator ::=

[pointer] direct-declarator

direct-declarator ::=

identi�er

(declarator)

direct-declarator [[constant-expression]]

direct-declarator (parameter-type-list)

A-14 Syntax Summary

direct-declarator ([identi�er-list])

pointer ::=

* [type-quali�er-list]

* [type-quali�er-list] pointer

type-quali�er-list ::=

type-quali�er

type-quali�er-list type-quali�er

parameter-type-list ::=

parameter-list

parameter-list , ...

parameter-list ::=

parameter-declaration

parameter-list , parameter-declaration

parameter-declaration ::=

declaration-speci�ers declarator

declaration-speci�ers [abstract-declarator]

identi�er-list ::=

identi�er

identi�er-list , identi�er

type-name ::=

speci�er-quali�er-list [abstract-declarator]

abstract-declarator ::=

pointer

[pointer] direct-abstract-declarator

direct-abstract-declarator ::=

(abstract-declarator)

Syntax Summary A-15

[direct-abstract-declarator] [[constant-expression]]

[direct-abstract-declarator] ([parameter-type-list])

typedef-name ::=

identi�er

initializer ::=

assignment-expression

{initializer-list}

{initializer-list , }

initializer-list ::=

initializer

initializer-list , initializer

Statements

statement :=

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

labeled-statement :=

identi�er : statement

case constant-expression : statement

default: statement

compound-statement :=

{ [declaration-list] [statement-list] }

declaration-list :=

declaration

declaration-list declaration

A-16 Syntax Summary

statement-list :=

statement

statement-list statement

expression-statement :=

[expression];

selection-statement :=

if (expression) statement

if (expression) statement else statement

switch (expression) statement

iteration-statement :=

while (expression) statement

do statement while (expression)

for ([expression]; [expression]; [expression]) statement

jump-statement :=

goto identi�er ;

continue ;

break ;

return [expression] ;

External Definitions

translation-unit :=

external-declaration

translation-unit external-declaration

external-declaration :=

function-de�nition

declaration

function-de�nition :=

[declaration-speci�ers] declarator [declaration-list]

Syntax Summary A-17

compound-statement

Preprocessing Directives

preprocessing-�le :=

[group]

group :=

group-part

group group-part

group-part :=

[pp-tokens] new-line

if-section

control-line

if-section :=

if-group [elif-groups] [else-group] endif-line

if-group :=

if constant-expression new-line [group]

ifdef identi�er new-line [group]

ifndef identi�er new-line [group]

elif-groups :=

elif-group

elif-groups elif-group

elif-group :=

elif constant-expression new-line [group]

else-group :=

else new-line [group]

A-18 Syntax Summary

endif-group :=

endif new-line

control-line :=

include pp-tokens new-line

define identi�er replacement-list new-line

define identi�er([identi�er-list]) replacement-list newline

undef identi�er new-line

line pp-tokens new-line

error [pp-tokens] new-line

pragma [pp-tokens] new-line

new-line

replacement-list :=

[pp-tokens]

pp-tokens :=

preprocessing-token

pp-tokens preprocessing-token

new-line :=

the new-line character

Syntax Summary A-19

Index

A

-Aa option, 9-8
-Ac compiler option, 9-10
\a (control G escape code), 2-20
addition operator (+), 5-22
address-of operator (&), 5-16
adjacent character string literals, 2-23
adjacent wide string literals, 2-23
-Ae compiler option, 9-10
aggregate
initializing, 3-32
types, 2-9

ALLOCS NEW MEMORY pragma,
9-35

AND bitwise operator (&), 5-29
AND logical operator (&&), 5-32
ANSI C
mode, 1-2, 9-2
standard, 1-1

ANSI migration warnings, 9-24
a.out �le, 9-3
apostrophes, 2-18
arithmetic
conversions, 4-5
operators, 5-17
types, 2-9

array, 2-10, 4-7
declarator, 3-25
maximum number of dimensions,

10-8
row-major storage, 3-25
storage, 3-25

subscripting, 5-7
assembly source �les, 9-2
assignment, 4-1
conversion, 11-2
expression, 5-4, 5-37
operator (=), 5-36

automatic storage duration, 2-7
AUTOPAGE pragma, 9-42, 12-2
auto scalar objects, 3-32
auto storage class speci�er, 3-5

B

\\(backslash escape code), 2-20
\b (backspace escape code), 2-20
bit-�elds, 3-15, 4-5, 10-3
manipulation, 5-29

bitwise AND operator (&), 5-29
bitwise exclusive OR operator (^), 5-30
bitwise inclusive OR operator (j), 5-31
bitwise shift operators, 5-24, 10-7
block of code, 6-3
block scope, 2-4
break statement, 6-21

C

calling a function, 5-9
by reference, 5-11
by value, 5-11

casting, 4-1
cast operator, 3-28, 5-19
cc command, 9-1
-c compiler option, 9-10

Index-1

-C compiler option, 9-10
CCOPTS environment variable, 9-29
character constants, 2-18
integral, 2-19
wide, 2-19

characters, 2-22
string literals, 2-23

char type, 3-7
C libraries, 9-12
code o�sets, 9-24, 12-7
comma operator (,), 5-39
comments in HP C programs, 2-26
compilation
ANSI mode, 1-2
compatibility mode, 1-2, 9-2
compilation process, 9-1
compiler options, 9-8
conditional, 7-1, 7-11
PA-RISC architecture versions, 9-30

compiler options, 9-8
-Aa, 9-8
-Ac, 9-10
-Ae, 9-10
-c, 9-10
-C, 9-10, 12-1
+DAmodel , 9-17, 9-30
+dfname, 9-18
-Dname, 9-10
+DSmodel , 9-19, 9-31
+e, 9-14
-E, 9-11
+ES�c, 9-19
+ESlit, 9-20
+ESnoparmreloc, 9-21
+ESsfc, 9-21
+f, 9-21
+FP
ags, 9-22
-g, 9-11
-G, 9-11
+help, 9-23
+I, 9-23

-Idir , 9-11
+k, 9-24
+L, 9-15, 9-24, 12-1
-l, 9-12
-Ldir , 9-12
+m, 9-15, 9-24, 12-3
+M, 9-24
-n, 9-12
-N, 9-12
+o, 9-15, 9-24
-o, 9-12
-O, 9-13
+Oopt , 9-25
+P, 9-25
-p, 9-13
-P, 9-13
+pgmname, 9-25
-q, 9-13
-Q, 9-13
+r, 9-26
+Rnum, 9-15, 9-26
-s, 9-13
-S, 9-13
summary, 9-4
-t, 9-14
+ubytes, 9-26, 9-39
-Uname, 9-14
-v, 9-14
-V, 9-14
-w, 9-14
-Wc,-0, 12-3
-Wc,-e, 9-14
-Wc,-L, 9-15
-Wc,-m, 9-15, 12-3
-Wc,-o, 9-15, 12-7
-Wc,-Rnum, 9-15
-Wc,-wn, 9-15
-Wd, -a, 9-16
+wn, 9-15, 9-26
-Wx , 9-14
-Y, 9-17

Index-2

-y option, 9-16
+z, 9-26
+Z, 9-26
-z, 9-17
-Z, 9-17

compiling HP C programs, 9-1
compound statement, 6-3
conditional compilation, 7-1, 7-2, 7-11
conditional operator (?:), 5-34
constant, 2-12
character, 2-18
decimal, 2-14
de�ned, 2-12
enumeration, 2-18
expression, 5-18, 5-40

oating, 2-12
hexadecimal, 2-14
integer, 2-14
octal, 2-14

continuation character, 2-1
continue statement, 6-20
conversions
arithmetic, 4-5
data type, 4-1

oating, 4-6
integral, 4-5

COPYRIGHT DATE pragma, 9-34
COPYRIGHT pragma, 9-34
cpp(1), 9-2, 9-10

D

+DAmodel compiler option, 9-17, 9-30
data alignment pragma, 9-37
data declarations, 10-8
data representation, 4-5
data type, 3-3
ranges, 10-1
sizes, 10-1

data type conversion, 4-1
data types, 10-1
aggregate, 2-9

arithmetic, 2-9
as implemented in HP C/HP-UX,

10-1
char, 3-7
double, 3-7
enumeration, 2-9

oat, 3-7

oating-point, 2-9
function, 2-9
int, 3-7
integral, 2-9
long, 3-7
long long, 3-7
pointer, 2-9
scalar, 2-9
short, 3-7
structure, 2-9
union, 2-9
void, 2-9

decimal constant, 2-14
declaration, 3-3
declarator, 3-23
array, 3-25
pointer, 3-24

decrement operator (--), 5-6, 5-13
decrement operator (|), 5-15
default listing, 12-1
de�ned operator, 7-11
demand loadable, 9-13
digit, 2-3, 2-14
directives, preprocessor, 7-1
division operator (/), 5-20
-Dname compiler option, 9-10
do statement, 6-14
\" (double quote escape code), 2-20
double type, 3-7
+DSmodel compiler option, 9-19, 9-31

E

+e compiler option, 9-14
-E compiler option, 9-11

Index-3

#elif, 7-11
#else, 7-11
else clause, 6-7
#endif, 7-11
enum
declaration, 3-20
statement, 2-18

enumeration, 3-20
constants, 2-18
types, 2-9

enumerator, 3-20
environment variables, 9-29
CCOPTS, 9-29
TMPDIR, 9-30

equality operators, 5-27
#error, 7-17
error messages, 1-3
escape sequences
hexadecimal, 2-20
octal, 2-20

+ES�c compiler option, 9-19
+ESlit compiler option, 9-20
+ESnoparmreloc compiler option, 9-21
+ESsfc compiler option, 9-21
expression, 5-1, 6-5
assignment, 5-37
constant, 5-40

extern, 6-3
declarations, 10-8
storage class speci�er, 3-5

F

+f compiler option, 9-21
\f (form feed escape code), 2-20
�le
scope, 2-4

oating-point
constants, 2-12
conversions, 4-6
operations, 9-22
types, 2-9, 3-7

oat type, 3-7
for statement, 6-15
+FP
ags compiler option, 9-22
function, 4-7, 10-10
call, 4-1, 5-9
call by reference, 5-11
call by value, 5-11
declarator, 3-26
de�nitions, 3-37
library, 8-2
prototypes, 2-4, 3-37
referencing functions instead of macros,

8-2
scope, 2-4

function types, 2-9

G

-g compiler option, 9-11
-G compiler option, 9-11
goto statement, 6-2, 6-19
gprof(1), 9-11

H

header �les
location, 8-1
specifying, 8-1

+help compiler option, 9-23
help, online, 1-3
hexadecimal
constants, 2-14
escape sequences, 2-20

HP ALIGN pragma, 9-37, 9-38, 9-39
HP C �le location, 10-14
HP C source �les, 9-2
HP SHLIB VERSION pragma, 9-36
HP speci�c type quali�er, 3-9, 10-13
HPUX SOURCE name space macro,

9-10

I

+I compiler option, 9-23

Index-4

identi�er, 2-3, 2-5, 2-8
maps, 9-24, 12-3
scope, 2-4
types, 2-8

-Idir compiler option, 9-11
IEEE
oating-point format, 10-4
#if, 7-11
#ifdef, 7-11
#ifndef, 7-11
if statement, 6-7
include �les, 7-1
inclusive OR operator , 5-31
increment operator (++), 5-6, 5-13,

5-15
indirection operator, 5-16
initialization
aggregates, 3-32
auto scalar objects, 3-32
expression, 6-15
static objects, 3-32

initialization of objects, 3-32
integer
constants, 2-14
types, 2-9

integral
character constants, 2-19
conversions, 4-5
promotion, 4-2

integral promotion
unsigned preserving rules, 4-2

integral types, 2-9
intrinsic, 11-1, 11-2
de�ned, 11-1

INTRINSIC FILE pragma, 9-33, 11-4
INTRINSIC pragma, 9-33, 11-2
int type, 3-7
iteration statements, 6-11

J

jump statements, 6-17

K

+k compiler option, 9-24
keywords, 2-2
listed, 2-2

L

labeled statements, 6-2
labels, 2-8, 6-2
language support, 9-17
+L compiler option, 9-15, 9-24, 12-1
-Ldir compiler option, 9-12
left shift operator (<<), 5-24
lexical elements, 2-1
library functions, 8-2
#line, 7-15
line control, 7-15
line number speci�cation, 7-1
LINES pragma, 9-41, 12-2
linkage of an identi�er, 2-5
linking, 9-1
listing, 9-24
facility, 12-1
format, 12-1
options, 12-3
pragmas, 9-41, 12-2

LIST pragma, 9-42, 12-2
literal
string, 2-22
wide string, 2-23

LOCALITY pragma, 9-34
location of HP C �les, 10-14
table, 10-14

logical AND operator (&&), 5-32
logical complement, 5-17
logical OR operator (jj), 5-33
long long type, 2-15, 3-7
long type, 3-7
loop body, 6-11
lvalue, 5-4
-lx compiler option, 9-12

Index-5

M

macro, 2-8, 10-10
de�nition, 7-6
names, 2-4
prede�ned, 7-10
replacement, 7-6

marco
replacement, 7-2

math libraries, 10-9
location of �les, 10-16

maximum number of array dimensions,
10-8

+m compiler option, 9-15, 9-24, 12-3
+M compiler option, 9-24
multiplication operator (*), 5-20
multiplicative operators, 5-20

N

names
type, 3-28

name spaces, 2-5, 2-8, 9-10
Native Language Support (NLS), 9-17
-n compiler option, 9-12
-N compiler option, 9-12
nesting level, 9-24
NLS, 9-17
\n (newline character escape code),

2-20
[NO]INLINE pragma, 9-35
nondigit, 2-3
nonprinting characters, 2-20
no-operation statements, 6-5
[NO]PTRS STRONGLY TYPED

pragma, 9-36
NO SIDE EFFECTS pragma, 9-36
null statement, 6-5

O

+o compiler option, 9-15, 9-24
-o compiler option, 9-12
-O compiler option, 9-13

octal constant, 2-14
octal escape sequences, 2-20
ones complement, 5-17
online help, 1-3
+Oopt compiler option, 9-25
operator, 2-24, 2-25
(--), 5-13
addition (+), 5-22
address-of (&), 5-16
assignment, 5-36
bitwise AND (&), 5-29
bitwise exclusive OR (^), 5-30
bitwise inclusive OR (j), 5-31
bitwise shift, 5-24
cast, 5-19
comma (,), 5-39
conditional (?:), 5-34
de�ned, 7-11
division (/), 5-20
equality, 5-27
indirection, 5-16
logical AND (&&), 5-32
logical OR (jj), 5-33
multiplication (*), 5-20
multiplicative, 5-20
post�x, 5-6
post�x decrement, 5-13
post�x increment, 5-13
precedence, 5-2
precedence table, 5-3
pre�x decrement, 5-15
pre�x increment, 5-15
relational, 5-25
remainder (%), 5-20
sizeof, 5-18
subtraction (-), 5-22
tokens, 2-24
unary, 5-14
unary arithmetic, 5-17

optimization, 9-1, 9-25
optimizer, 9-13

Index-6

OPTIMIZE pragma, 9-35
OR (bitwise exclusive) operator (^),

5-30
OR (bitwise inclusive) operator (j) ,

5-31
OR (logical) operator (jj), 5-33
over
ow expression, 10-7
overloading classes, 2-8

P

PAGE pragma, 9-42, 12-2
parallel runtime library, 10-17
PA-RISC architecture versions, 9-30
+P compiler option, 9-25
-p compiler option, 9-13
-P compiler option, 9-13
+pgmname option, 9-25
pointer, 4-7, 10-7
declarator, 3-24

pointer types, 2-9
portability, 1-1
POSIX SOURCE name space macro,

9-9, 9-10
post�x
decrement operator, 5-13
increment operator, 5-13
operator de�ned, 5-6

#pragma, 7-16
pragma
[NO]PTRS STRONGLY TYPED,

9-36
pragmas, 7-1, 9-33
ALLOCS NEW MEMORY, 9-35
AUTOPAGE, 9-42, 12-2
COPYRIGHT, 9-34
COPYRIGHT DATE, 9-34
data alignment, 9-37
HP ALIGN DOMAIN NATURAL,

9-38
HP ALIGN DOMAIN WORD, 9-38
HP ALIGN HPUX NATURAL, 9-38

HP ALIGN HPUX NATURAL S500,
9-38

HP ALIGN HPUX WORD, 9-38
HP ALIGN NATURAL, 9-38
HP SHLIB VERSION, 9-36
INTRINSIC, 9-33, 11-2
INTRINSIC FILE, 9-33, 11-4
LINES, 9-41, 12-2
LIST, 9-42, 12-2
LOCALITY, 9-34
[NO]INLINE, 9-35
NO SIDE EFFECTS, 9-36
OPTIMIZE, 9-35
PAGE, 9-42, 12-2
SUBTITLE, 9-42, 12-2
TITLE, 9-42, 12-2
VERSIONID, 9-35
WIDTH, 9-41, 12-2

precedence of operators, 5-2
prede�ned macros
__DATE__, 7-10
__FILE__, 7-10
__LINE__, 7-10
__STDC__, 7-10
__TIME__, 7-10

pre�x decrement operator, 5-15
pre�x increment operator, 5-15
preprocessing directives
#de�ne, 7-6
#elif, 7-11
#else, 7-11
#endif, 7-11
#error, 7-17
#if, 7-11
#ifdef, 7-11
#ifndef, 7-11
#include, 7-4
#line, 7-15
#pragma, 7-16

preprocessor, 9-1, 9-10, 9-13
preprocessor directives, 7-1

Index-7

primary expression, 5-5
pro�le-based optimization, 9-25
pro�ling, 9-11
promoting
oating-point numbers as

oats, 9-21
promotion, integral, 4-2
punctuators, 2-25

Q

-q compiler option, 9-13
-Q compiler option, 9-13
\? (question mark escape code), 2-20
Quiet Changes, 9-24

R

ranges of data types, 10-1
\r (carriage return escape code), 2-20
+r compiler option, 9-26
register storage class speci�er, 3-5
register variables, 9-26
relational operators, 5-25
relocatable object �le, 3-2, 9-2
remainder operator (%), 5-20
reserved words, 2-2
returned values, 4-1
return statement, 6-22
right shift operator (>>), 5-24
+Rnum compiler option, 9-15, 9-26
row-major array storage, 3-25
running HP C programs, 9-43

S

scalar objects
initializing, 3-32

scalar types, 2-9
-s compiler option, 9-13
-S compiler option, 9-13
scope, 10-8
of an identi�er, 2-4
of function prototypes, 2-4

selection statements, 6-6

self-referential structure, 3-17
shared libraries, 9-1
shared library pragma, 9-36

short type, 3-7
simple assignment, 5-36
\' (single quote escape code), 2-20
sized enum, 3-21
sizeof operator, 3-28, 5-18
sizes of data types, 10-1
source �les
assembly, 9-2
HP C, 9-2
inclusion, 7-4

special characters table, 2-20
speci�er
storage-class, 3-5
structure, 3-14
type, 3-7
union, 3-14

statements, 5-1
break, 6-21
compound, 6-3
continue, 6-20
de�ned, 6-1
do, 6-14
for, 6-15
goto, 6-19
groups, 6-1
if, 6-7
iteration, 6-11
jump, 6-17
labeled, 6-2
no-operation, 6-5
null, 6-5
return, 6-22
selection, 6-6
switch, 6-9
while, 6-13

static, 6-3
objects, 3-32
storage duration, 2-7

Index-8

static storage class speci�er, 3-5
<stdarg.h>, 10-10
storage-class speci�ers, 3-5
storage duration, 2-7
string
literal, 2-22

structure, 3-14, 10-6
members, 5-12
self-referential, 3-17
speci�er, 3-14
tag, 3-16

structure types, 2-9
structure/union member (.), 5-6, 5-12
structure/union pointer (->), 5-6
structure/union pointer (arrow), 5-12
subprocess, 9-14
subscript operator ([]), 5-6
SUBTITLE pragma, 9-42, 12-2
subtraction operator (-), 5-22
switch statement, 6-2, 6-9
symbolic debugger, 9-11
symbol table, 9-13

T

tag, 2-8
structure, 3-16
union, 3-16

-t compiler option, 9-14
\t (horizontal tab escape code), 2-20
thread HP speci�c type quali�er, 3-9
TITLE pragma, 9-42, 12-2
TMPDIR environment variable, 9-30
token, 5-1
de�ned, 2-1
operator, 2-24
syntax, 2-1

translation unit, 3-2
trigraph sequences, 7-18
type
const quali�er, 3-11
conversions, 4-1

de�nitions, 3-30
enumeration, 3-20
mismatches in external names, 10-7
names, 3-28
speci�ers, 3-7
volatile quali�er, 3-11

typedef keyword, 3-5, 3-30
types of identi�ers, 2-8

U

+ubytes compiler option, 9-26, 9-39
-Uname compiler option, 9-14
unary arithmetic operators, 5-17
unary operators, 5-14
under
ow expression, 10-7
union, 3-15, 10-6
members, 5-12
speci�er, 3-14
tag, 3-16

union types, 2-9
unsigned keyword, 3-7
/usr/lib/sysintr , 11-4

V

va args macros, 10-10
va dcl macro, 10-10
value preserving rules, 4-2
va start macro, 10-10
-v compiler option, 9-14
-V compiler option, 9-14
verbose mode, 9-14
VERSIONID pragma, 9-35
version print, 9-14
void type, 3-7
void types, 2-9
volatile type quali�er, 3-11
\v (vertical tab escape code), 2-20

W

-Wc,-e compiler option, 9-14
wchar t typedef, 2-20, 2-23, 3-34

Index-9

-Wc,-L compiler option, 9-15
-Wc,-m compiler option, 9-15
-Wc,-o compiler option, 9-15
-w compiler option, 9-14
-Wc,-Rnum compiler option, 9-15
-Wc,-wn compiler option, 9-15
-Wd, -a compiler option, 9-16
while statement, 6-13
white space, 2-1
wide character constants, 2-19
wide string literal, 2-23
WIDTH pragma, 9-41, 12-2
+wn compiler option, 9-15, 9-26
-Wx compiler option, 9-14

X

XOPEN SOURCE name space macro,
9-9, 9-10

XOR, 5-30

Y

-y compiler option, 9-16
-Y compiler option, 9-17

Z

+z compiler option, 9-26
+Z compiler option, 9-26
-z compiler option, 9-17

-Z compiler option, 9-17

Index-10

