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Cost-Effective Hardware for a 
Compact Integrated Business Computer 
CMOS/SOS technology helps reduce an eight-board 
processor to only two boards. Advanced architecture 
supports the features the user sees. 

by Arndt B. Bergh and Kenyon C. Y. Mei 

T
HE HP 300 SOFTWARE ENVIRONMENT, described 
last month, is built on the architectural capabilities 
of the HP 300 computer hardware. The HP 300 is a 

stack machine with additional data spaces and a separate 
code space. This means that the environment of an execut­
ing program consists of a non-modifiable code space of one 
or more code segments, and a number of data spaces that 
include the stack, the global data segment, and additional 
array data segments that may be needed by the program 
(see Fig . 1). The stack is used for program control, param­
eter passing, local storage, and expression evaluation. The 
data segments provide space for global data and additional 
array data. 

There is a stack for every program or task, but only one is 
active at any time. The stack operates in the normal push 
down, pop up mode using zero-address instructions. One­
address, indexed, direct or indirect instructions are pro­
vided for access to data within the stack, global, and code 
segment spaces. Indirect reference addressing is provided 

Code Segments 

• • • 

4-----, 

Addressing Modes 

Top-of-stack operations 

Registers: 

HP 30 
(Executing o 

...etc ... 

Direct with optional indexing, relative to: 
Program Counter 
Procedure Base 
Stack Pointer 
Global Data Base 

Indirect via above, with optional indexing to: 
Current Code Segment 
Any Data Segment 

for access to data in data segments. 
The HP 300 has a rich instruction set of almost 200 in­

structions, including data manipulation instructions, pro­
gram control instructions, and privileged instructions to 
aid the task of the operating system. 

Capabilities provided by this structure include relocat­
ability, reentrancy, recursion, code sharing, program pro­
tection, convenient dynamic storage allocation, and a logi­
cal virtual memory structure for code and data that provides 
a very large machine address space. 

All program and data spaces are relocatable, that is, they 
can be located anywhere in real memory without alteration. 
A natural reentrancy capability is provided since program 
code is separated from data and is not alterable. This means 
that a program may be interrupted from a code segment, and 
that segment may be used by other programs and later 
reentered by the first without concern that the code may 
have been altered by the other programs. 

By a simple linking mechanism, code is accessed logi-

Global Data Segment 

• 
••• 

Array Data Segments 
(Local or Global Data) 

Fig. 1. HP 300 addressing 
scheme. The environment of an 
executing program includes 
non-modifiable code segments 
and a number of data spaces that 
include the stack, the global data 
segment, and array data seg­
ments as needed. 
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cally through system tables. Together with the previous two 
properties, this provides a convenient means for the sharing 
of code. These code segment properties and the procedure 
call mechanism that is used with the stack also provide a 
natural recursion capability, that is, the ability of a segment 
of code to call itself. 

Both user and system code and data are subject to mem­
ory protection checks, a feature that is very important to the 
integrity of the system when used in multiprogramming 
and multitasking applications. Dynamic storage allocation 
is a feature of the stack architecture that provides a more 
efficient use of main memory. 

Virtual Memory 
An architectural feature that greatly expands the capabil­

ity of the HP 300 is the new virtual memory structure that 
includes both code and data segmentation. Tables main­
tained by the system contain entries for all the code and data 
segments used by a program. Only the code and data seg­
ments currently being used need be present in memory, 
with new segments being brought into memory as they are 
needed. The operating system uses this feature to develop a 
working set of code and data segments for each program so 
the use of memory resources can be optimized. 

Data Segmentation 
A variable may be passed to a program or procedure 

either by value or by reference, that is, by passing its actual 
value or by passing a pointer to the storage location of its 
value. In the HP 300, the indirect pointer used for accessing 
reference variables has been made a 32-bit data descriptor, 
or label. This label specifies the data area in which the data 
resides, and the relative location within that data area. If the 
label points to a data segment, the segment number in the 
label is used to index into the data segment table to find the 
location of the segment in real memory (see Fig. 2). The 
offset in the data label plus the index register then are used 
to compute the relative address of the data within the seg­
ment. For protection, additional information in the table is 
used to verify the validity of the label. This label structure 
provides the HP 300 with addressability to a data space of 
up to 250 million bytes for the system plus up to 250 million 
additional bytes of data for each task that is active on the 
system. 

Data Segment Table 

Data Label 

Segment Number 

Control Bits 
A: Absence Bit 
M: Mode Bit 
R: Reference Bit 
D: Dirty Bit (Indicates 

Recent Change) 

Fig. 2. When variables are passed by reference to a memory 
location, the pointer to the location is a 32-bit data label that 
contains a segment number and an offset. The segment 
number is used to index into the data segment table for the 
status and location of the segment. Segment presence and 
mode are checked and the offset is added to the address from 
the table to give the address of the data. 
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Code Segmentation 
The HP 300 system programming language is a block­

structured, procedure-oriented language. Procedures used 
by a program may be located in separate code segments. 
Calls to these segments are made through 32-bit program 
labels that consist of a segment number and a logical entry 
number in the target segment. The segment number is used 
to index into a system-maintained code segment table to 
find the location of the target code segment. The logical 
entry number in the label is used to index into the proce­
dure entry point table (STT) appended to the code segment 
to find the starting address of the procedure. This segment 
structure provides up to a gigabyte of system code space 
plus up to a gigabyte of additional user code space for each 
task that is active on the system. 

Instruction Set 
Instructions are provided for manipulating the following 

data types: bit, byte, decimal and byte strings, 16-bit integer 
and logical, 32-bit integer and floating point, and 64-bit 
floating point. These are predominantly zero-address in­
structions, such as add, subtract, compare, shift, and so on. 
They operate on the top of the stack and their opcode-only 
nature saves space and thus improves code compactness. 
Indexable one-address memory instructions, such as quad 
load, are provided for accessing these data types in mem­
ory. Program control instructions, such as procedure call, 
are included to support the block-structured system pro­
gramming language. A set of privileged instructions for 1/0 
and operating system use, such as task launch, also have 
been provided. 

All these features provide advantages that are important 
in a multiprogramming environment. The user program 
lives in a protected logical addressing structure, with pro­
gram space managed and protected by the system. Al­
though it is a 16-bit machine, the HP 300 provides process­
ing power approaching that of a 32-bit machine. 

Central Processing Unit 
The HP 300 CPU, Fig. 3, is an answer to the challenges of 

high computing speed, low power consumption, and phys­
ical compactness. Three custom-designed large-scale inte­
grated (LSI) circuits, processed by HP's complementary 
metal-oxide-semiconductor/silicon-on-sapphire (CMOS/ 
SOS) facility, enabled our logic designers to pack what 
might have been an eight-board CPU into two. The inte­
grated-circuit chip set, 6K 32-bit words of read-only mem­
ory control store, and some peripheral logic reside on one of 
the boards, the processor board. The other board, the bus 
interface controller board, contains registers, drivers, and 
the asynchronous hand-shake logic required to communi­
cate through the intermodule bus, which connects the 
processor elements (Fig. 4). 

The fact that the HP 300 CPU is a microprogrammed 
processor greatly simplifies hardware design and allows a 
great deal of flexibility in the development schedule. It also 
allows other groups to take advantage of this powerful 
processor. For example, the input/output processor is emu­
lated by the CPU, that is, a portion of the CPU's micro­
programming implements a separate 1/0 processor with an 
instruction set that is different from the CPU's. Another new 
HP computer system, the HP 3000/33, uses the same proces-



Intermodule Bus Interface 

• • To Intermodule Bus 

Internal 
Clock .. 
Freeze llJJI 

Enable ROM 
Address 
Register 

Load 

Read-Only Memory 
Constant 

ROM 
Control 
Store 

RASS 
Condition 

Attention 

Pending .. 
Interrupt ... 

Clear llli 

CPU Data Bus 

RALU 

Control 

Fig. 3. The HP 300 CPU hardware is functionally partitioned into three CMOS/SOS chips. The 
processor control unit (PCU) chip generates microinstruction addresses that control the other 
two chips: the register, address, skip, and special (RASS) chip and the register, arithmetic, and 

logic unit (RALU) chip. 

sor hardware (with one pin hardwired to a different voltage) 
with its own microprogram. A powerful self test is easily 
implemented by the inclusion of self-test microcode. 

CMOS/SOS technology was chosen mainly because of its 
good speed-power product, high density, and ease of de­
sign. This technology allowed relatively inexperienced 
logic designers to start designing while the process was 
being developed. This is because designing a CMOS chip is 
like designing static logic, so the designers did not have to 
be concerned about charge storage and timing, which are 
critical in dynamic NMOS integrated circuits. The en-

gineering decision to design a three-chip set was based on 
optimal logic partitioning, pin limitation, projected yield 
due to chip size, speed, and available development re­
sources such as manpower and time. 

The HP 300 CPU is a general-purpose microprogrammed 
processor with special features useful for emulation of the 
HP 300 system language instructions. Decoding of 
Huffman-coded instructions and automatic bounds check­
ing are all done by hardware. Two top-of-stack (TOS) regis­
ters are provided for fast access to the stack. To reduce the 
complexity of the stack control logic, the stack area in main 
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Up to Four 
RS-232-Compatible Lines 

(Extender Adds Four More Lines) 
~ 

Custom Processor-to-HP-IS Interface Chip 

HP-18 

• • 

memory is always kept current , that is, the contents of the 
hardware stack registers are duplicated in main memory. 
All data registers are 16 bits wide. Double- and four-word 
instructions are facilitated by taking advantage of two- and 
four-word shift hardware '. Environmental registers (address 
pointers) are 20 bits wide for easy manipulation of 20-bit 
addresses. 

The LSI Chip Set 
The processor control chip (PCU), Fig. 5, is the smallest 

chip (5260 x 3570 micrometres) . It contains 5000 devices 
(transistors and diodes). Microprogram sequencing, 
CPU clock generation , and a real-time clock are the 
major functions of the PCU. The sequencing hardware in­
cludes microaddress incrementers , a two-level subroutine 
save-register stack, and a mapper that maps the current 
instruction to the beginning of the microprogram that exe­
cutes it. The PCU generates a variable, single-phase mi­
crocycle clock that governs CPU operation. The length of 
the clock period depends on the microinstruction being 
executed. It can also be extended to wait for memory data or 
the next microinstruction during a jump. A system real­
time clock and immediate microprogram data are also gen­
erated by the PCU. 

The register-address-skip-special (RASS) chip , Fig. 6, 

6 HEWLETI-PACKARD JOURNAL JULY 1979 

12·Megabyte 
Fixed Disc 

1-MegJbyte 
Floppy Disc 

lnteg~ljed , 
Displily 
System 

Intermodule Bus 
150 Lines Wide 

Fig. 4. The 150-line intermodule 
bus connects the processor ele­
ments, the memory elements , and 
the input/output channels . The bus 
is asynchronous and provides 
separate address and data hand-
shake lines for better perfor­
mance. Peripheral devices are 
connected to the general input/ 
output channel via the HP Inter­
face Bus (IEEE 488) . 

and the register-arithmetic-logic-unit (RALU) chip , Fig. 7, 
together perform the data path functions . The RALU chip 
contains about 8000 devices and measures 4930 x 4930 
micrometres. It provides 16 registers, eight for address 
storage and the other for general-purpose use. The arith- · 
metic and logic computation hardware also reside on 
this chip . In addition to standard ALU functions , the RALU 
performs integer multiply/divide , decimal addition , and 
64-bit shift operations. 

The RASS chip (4480 x 5200 micrometres , 7000 de­
vices) serves several purposes. Its register file provides 
the second operand to the ALU. If the current instruction is 
a memory reference type , special hardware will extract the 
Huffman-coded displacement with the contents of the 
index register added to it if necessary. The RASS also au­
tomatically checks the effective address against its proper 
base and limit registers within one microcycle. This power­
ful feature saves both time and microprogram steps. Condi­
tion code , interrupt priority control , and skip decision logic 
also reside on the RASS. 

The Main Memory 
A standard HP 300 Computer System includes 256K 

bytes of main storage , which is expandable to 1024K bytes 
in 128K-byte increments. The main memory consists of a 



Fig. 5. PCU chip . 

controller board and two or more memory array boards . The 
controller handles the IMB handshake and the error detec­
tion and correction of memory data words. Together with 
each 16-bit data word stored in memory array boards , there 
are six extra check bits; they enable the controller to correct 
all single-bit errors and detect all double and/or odd errors. 
The history of error activities is logged in the controller 
automatically to provide useful service information. 

CPU Operation 
The timing of CPU operations is controlled by the CPU 

clock generated by the PCU chip. The rising edge of this 
clock loads the new microinstruction into the ROM instruc­
tion registers, and the decoding begins immediately. A and 
B operands are selected and sent to A and B registers on the 
RALU chip. When the CPU clock changes state, the direc­
tion of the time-multiplexed CPU data bus is turned around , 
and the result from the ALU is sent to its designated destina­
tion. The fetching of the next microinstruction is done in a 
pipelined fashion: the PCU sends out the next ROM address 
while the current microinstruction is being processed. This 
overlap eliminates waiting for the next microinstruction. 

A 32-bit microinstruction is interpreted as one of five 
different formats , depending on its function specification 
(Fig. 8). For example, one of the formats divides the 32 bits 
into seven control fields: three fields specify the operand 
pair and storage registers , two fields specify arithmetic/shift 
options, another field indicates conditional skips , and the 
last field sets the status of control flip-flops . 

The HP 300 processor can be view ed as a three-address 

Fig. 6. RASS chip. 

machine . However, not all formats provide this three­
address capability. Jump address and ROM constants are 
included at the expense of other fields. 

The microprocessor design is closely tailored to the HP 
300 architecture. As an example, we can look at part of the 
STORE instruction , which pops the top element of a data 
stack into a memory location. This instruction specifies one 
of three possible base registers , a five-to-eight-bit displace-

Fig. 7. RAW chip . 
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Fig. 8. HP 300 microinstructions are 32 bits wide and come in 
five formats . 

ment, and an indexing option. The microprogram to emu­
late a STORE is shown below: 

ABUS BBUS FUNCTION LABEL 
BASE PADD JSB STRI 
TOSA XFER 

S CAD 

STORE 
MSPE 

BUSD 

s 

SPECIAL SKIP 
!N OR 

BWRQ UBND 
CLAT NEXT 

The first line computes the operand address by adding a 
base register, a displacement, and the conditional index. 
The RALU hardware handles the BASE option and chooses 
the S, DB, or Q register as the ABUS operand. The RASS 
extracts the correct displacement and adds the index regis­
ter to it if needed, providing the result (PADD) as the BBUS 
operand. The sum of these two operands (JSB implies 
addition) is stored into three registers (MSPE): the memory 
address register on the BIC board, the effective address 
E register for bounds comparison on the RASS, and an 
internal RALU register for future access. If the instruction is 
an indirect store, the PCU does a subroutine jump (JSB) to 
microroutine STRI and saves the return address in a 
hardware subroutine stack. 

The second line transfers the top element in the data stack 
(TOSA) to the memory data register (BUSD) and writes it out 
to memory (BWRQ). The address in E is checked (UBND) 
against proper base and limit registers in the RASS. A 
violation would result in an immediate microprocessor trap 
before the data is written into memory. 

To finish the STORE routine, the last line decrements the 
stack pointer(s) and pops the top element in the internal 
register stack (CLAT)-the PCU hardware simply declares 
current top-of-stack register TOSA invalid and the next-to­
top register TOSB becomes the new TOSA. The end of the 
instruction is marked by NEXT, which causes the hardware 
to enter the instruction fetch phase. 
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A Computer Input/Output System Based 
on the HP Interface Bus 
by W. Gordon Matheson 

T HE BASIC INPUT/OUTPUT BUS of the HP 300 is 
the HP Interface Bus, or HP-IB , HP's implementation 
of IEEE Standard 488 and identical ANSI standard 

MC1.1. The integrated display system (IDS), the flexible 
disc drive, the system disc drives , the printers, and other 
devices interface to the system via the HP-IB. However, the 
HP-IB is not the only 1/0 bus allowed on the HP 300. The 
computer hardware supports up to fifteen 1/0 channels of 
several different classes. An HP 300 1/0 channel is inter­
faced to the system by a channel controller board installed 
on the intermodule bus (IMB) to provide interrupt ca­
pability, DMA (direct memory access) , channel program 
management facilities, and special protocol translation 
between the computer system and devices on the 1/0 bus. 
For brevity, channel controllers will be called "channels" 
in this article. 

1/0 Channel Characteristics 
An 1/0 channel contains up to 16 read/write registers. It 

also responds to various 1/0 commands issued over the IMB 
for such purposes as processing interrupts and channel 
program service requests , channel identification, and in­
itialization. The 1/0 system structure supports eight devices 
per channel. Each channel may incorporate a DMA facility 
for performing data transfers between main memory and 
peripheral devices without central processing unit (CPU) 
intervention. Priority for memory access is based on physi­
cal proximity to the CPU. Many 1/0 channels may conduct 
DMA transfers concurrently on the IMB, interleaving their 
memory cycles with the CPU on a priority demand basis. 

At initial release the HP 300 has only two channel types , 
the 31262A General 1/0 Channel (GIC) for HP-IB interfacing , 
and the 31264A Asynchronous Data Communication 

Halted 
Running 
OMA Data Transfer 
Waiting for Device 

Channel (ADCC) for management ofup to eight RS-232 data 
communication links. 

Device Reference Table 
Each of the eight devices on an 1/0 channel has a four­

word entry i~ reserved memory. The first word contains the 
address of the next channel instruction to be executed. The 
second word contains the memory address of a special 
interrupt parameter area, called the channel program vari­
able area (CPVA). The third word is the label of the code 
segment to be executed when the device interrupts the CPU. 
The fourth word is used to coordinate and maintain the 
activity status of programmed 1/0 operations. The area of 
memory containing this information for all 1/0 devices is 
called the device reference table, or DRT (see Fig. 1). 

1/0 Operations 
There are three types of 1/0 operations: direct 1/0, pro­

grammed 1/0, and interrupt processing. 
Direct 1/0 operations are done with a set of VO-oriented 

CPU instructions . They allow a privileged-mode program­
mer to read and write channel registers, perform special 
diagnostic operations, affect the ability of channels to re­
quest interrupts, reset and initialize the channels, and iden­
tify which channels are present on the IMB. · 

Interrupt processing is done within a multilevel priority 
structure. Channels are individually enabled and disabled 
for accessing a common interrupt request line by bits within 
a mask word broadcast to all channels simultaneously. This 
is done by the CPU to disable interrupts from lower-priority 
channels when it decides to service an interrupt from a 
particular channel. Interrupt request priority is determined 
strictly by channel number. The standard order is for lower 

110 Driver 
Data Segment 

. }) ·-
Current Instruction 

Interrupt 
Data Segment 

CPVA 

Channel 
Program 

Fig. 1. HP 300 hardware input/ 
output system memory organiza­
tion . Every 110 device has an entry 
in the device reference table 
(ORT) . The channel program vari­
able area (CPVA) contains inter­
rupt parameters . 
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channel and device numbers to have higher priority. How­
ever, each channel determines the priority of its devices and 
may provide means for the programmer to disable devices 
individually. 

When the CPU is interrupted, it queries the highest­
priority requesting channel to obtain the device number to 
be serviced. Then the CPU saves the old software environ­
ment on the stack and establishes a new software environ­
ment on the interrupt control stack in the interrupt code 
segment indicated by the device's DRT entry. 

Programmed 1/0 is a means of accomplishing 1/0 opera­
tions through execution of special 1/0 programs that are 
initiated by software but executed by a special 1/0 processor 
or by the CPU in a special 1/0 processor mode. Programmed 
1/0 is provided to allow complex 1/0 operations to proceed 
ifi parallel with software execution, and to remove the bur­
den of detailed management of low-level 1/0 bus protocols 
from software. 

Channel Programs 
A channel instruction set is defined for the GIC as part of 

the basic system capabilities. This is used to create 1/0-
oriented channel programs, which are not executable by 
software (they are generally contained within a data seg­
ment). The channel instruction set is designed around a 
management framework for the HP-IB that provides inter­
leaved service on several devices concurrently and inde­
pendently. Many channel instructions are in high-level 
forms (buffer transfers, pauses, halts, computed jumps, 
etc.), with the details of HP-IB command structure and 
protocol being handled by a channel program processor. 

Fig. 2 illustrates the logical operation of the 1/0 system. 
Channel program execution is initiated when a SIOP 
machine instruction is executed, specifying a selected 
channel, device, and starting address for the channel pro­
gram. When the channel program terminates, a CPU inter­
rupt will be requested for that device, with parameters 
indicating the reason for the interrupt stored in the CPVA. 
Executing the SIOP instmction on a channel that does not 
execute its own channel programs causes the channel to 
request channel program service on one of two CSRQ 
switch-selected lines on the IMB. CSRQ1 goes to the CPU. 
CSRQ2 is provided so that it may be possible in the future to 
design a separate channel program processor (CPP) to re­
lieve the CPU of its channel program processing load. 
Channels that execute their own channel programs may do 
so simultaneously with CPU operations, and do not use a 
CSRQ line. 

When the CPU sees a request on CSRQ1, it enters a special 
CPP mode of operation to execute the channel program for 
the device without disturbing the software environment. 
When the device's channel program is terminated or tem­
porarily suspended pending a device request, the CPU re­
sumes execution of software instructions until the next 
request for channel program service. The CPU will usually 
be in CPP mode a small fraction of the time. 

The CP:U checks for a number of errors during channel 
program execution, and may abort the program without 
affecting operations with other devices. Some detectable 
errors are: invalid instructions, illegal use of some instruc­
tion features, HP-IB lockup, and DMA memory errors. Each 
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Fig. 2. HP 300 hardware input/output system logical opera­
tion. Channel programs for input and output operations are 
written in a special instruction set and executed either by the 
110 channels themselves or by the CPU in a channel program 
processor (CPP) mode. 

error is reported by interrupt with a special code in a re­
served CPVA word. DMA error messages include the sus­
pected offending memory address. 

1/0 Channel Types 
There are three classes of 1/0 channels allowed by the 

HP 300 hardware 1/0 system, although not all have 
been developed. 
CIC-Type Channels: This class of channel works with the 
channel program service procedures of the CPU. It trans­
lates all device requests into channel program service re­
quests. This type of channel must look very similar to the 
31262A GIC in register format, and it must appear to attach 
to an HP-IB. 
Software-Controlled Channels: It is possible to have a 
channel that relies on software instead of programmed 1/0 
to perform all operations. Such a channel translates device 
service requests into CPU interrupt requests. 
Program-Interpreting Channels (PIC): It is possible for a 
channel to be designed to execute its own unique channel 
instruction set. Such a channel may use a programmed 1/0 
approach similar to that of GIC-type channels, or it may use 
request and response queues for communication, executing 
on table structures instead of single-channel instructions. 

System Identification Provisions 
To facilitate system autoverification and autoconfigura­

tion, identification features were added to all levels of the 
1/0 system. First, there is an 1/0 instruction that identifies all 
used channel numbers on the IMB. Second, each channel 



A Small, Low-Cost 12-Megabyte 
Fixed Disc Drive* 

by Richard L. Smith 

Early in the conceptual phase of the HP 300 project, the need for a 
resident low-cost mass memory was recognized . While many exist­
ing disc drives would have adequately fulfilled the needs of a system 
memory, none met the requirements of available space, power, relia­
bility, and capacity necessary for the small integrated system con­
cept of the HP 300. Thus, the design goals for this memory were: 
smallest possible size, 12-megabyte capacity, low cost, high data 
reliability, high performance, and compatability with the mounting, 
cooling, power, RFI, and HP-IB requirements of the HP 300 System. 
Fig. 1 is a photograph of the disc drive used in the HP 300. 

Fig. 1. This 12-megabyte fixed disc provides built-in mass 
memory for the HP 300 Computer. 

The size goal dictated the use of a rotary (rather than linear) 
actuator, brushless de (rather than ac) motor, and a single platter. 
The capacity goal required that both sides of the platter be used for 
data and that linear and radial densities be maximized . The cost goal 
indicated that a high degree of tooling would be needed and that a 
maximum use of microprocessor firmware rather than discrete cir­
cuitry was necessary. 

The high data reliability could be met in one of two conventional 
ways: using MFM encoding and error correcting circuitry, or using a 
self-clocking code such as double-frequency FM. We opted for the 
lower capacity but highly reliable FM encoding technique and there­
fore saved the substantial cost of error correcting circuitry. 

To use a lower-cost rotary actuator, it is necessary to use 
Winchester-type heads and media. The Winchester technology was 
pioneered by IBM Corporation . The heads are designed to take off 
and land from a lubricated disc surface and fly about 0.5 µm from the 
disc, which is rotating at 3000 r/min . Because of this extreme proxim­
ity of the head to the disc surface, cleanness is essential. The drive is 
manufactured in a class-100 clean environment and sealed from 
outside contamination. Internal air is continuously purged by recir­
culating it through a 0.3-µm filter . 

To meet the capacity and performance goals, a technique of posi­
tioning the read/write heads was developed that uses the data sur­
face directly as a reference, ratherthan a separate reference surface. 
Data is organized on a disc surface into concentric circles called 
tracks and blocks of data called sectors. Between sectors there 
normally are gaps with nothing recorded in them. In our intersector 
gaps we place information for locating the track center on a sampled 
basis, and track identification addresses in Gray code format so that 
we can update our position when seeking a new address (see Fig. 2). 

I' 
11 

lntersector Gap • 1 

• ------Htt-f-H-Tra~k. 
• Centerline 

• -----+-H-1-H---- · 
•---~ +--HH-f+---m • ~SFineo ~ lden~~~~!tion I erv- . _ 

Fields Fields 
(Gray Code) 

Fig. 2. Information recorded in gaps between data records on 
the disc makes it possible to use the data surface as a refer­
ence for positioning the read/write heads. 

When a head is on track it reads equal amounts of A and B fine 
servo fields. This information can be decoded on a sampled basis, 
once per sector, and used for fine servo positioning. 

When a head is traversing the disc surface in a seek mode, it 
samples the Gray code track addresses to update its position and 

*Editor's note: A more complete article on this new state-of-the-art disc drive is planned for a 
future issue. 
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servo on a real-time basis. To reduce the circuitry required for the 
seek algorithm, a resident microprocessor is used. When a new 
address is commanded , the microprocessor computes the distance 
to be covered and generates an acceleration signal based on the 
formula s = Y2at2 . As the actuator moves the head toward the 
desired location, the microprocessor monitors the track addresses 
and corrects the acceleration term as required . 

Since a reference surface is not used, there is no clock track 
available and therefore spinc;:Jle speed control is essential. The spin­
dle hub includes teeth that are sensed optically. The edge of each 
tooth is used to determine a radial line across the disc that represents 
the beginning of each sector. The speed of each tooth is measured 
and used in a phase-lock servo comparator to keep the spindle 
speed constant. Additional circuitry monitors all internal voltages and 

has a configuration register that identifies the channel 
class, specific type , and capabilities . On the HP-IB, the HP 
printers and discs, the integrated display system , and some 
other peripherals respond to a unique identification pro­
tocol whereby the system may determine attached device 
types and addresses without user intervention. 

31262A General 1/0 Channel 
The GIC contains registers and a DMA facility for inter­

facing the HP-IB to the IMB . It is designed to be operated 
using channel programs, so device requests on the HP-IB 
cause only channel program service requests and not inter­
rupt requests. Interrupts are requested only by command of 
the CPP or CPU when required in the course of programmed 
1/0. Eight registers on the GIC are associated with manage­
ment of the HP-IB, and are contained in the PHI chip, an HP 
propietary SOS/MOS LSI component. 1 The PHI chip pro­
vides all the interface functions of the HP-IB and performs 
the detailed handshaking and control sequences , keeping 
these details of HP-IB operation transparent to the CPU or 
CPP. DMA logic can be invoked to transfer data bytes be­
tween main memory and the HP-IB at up to one million 
bytes per second . The GIC has timeout logic to detect lock­
ups or inordinate delays in HP-IB or DMA operation. 

Channel Instruction Set 
The HP 300 channel instruction set executed by the CPU 

is as follows: 
READ , WRITE: Transfer bytes between an HP-IB device and 

main memory. After the transfer, the byte count and mem­
ory address residues are left in the instruction fields . 
Options: 
1. Full record or subrecord (burst) transfers 
2. Up to 15 data chain blocks 
3. Data bucket/source using single memory word 
4. Disable updating of residue byte count and address 
5. Start/end on left or right byte of memory word. 

DEVICE-SPECIFIED JUMP: Uses a byte of status from the 
device to do a table lookup for the address of the next 
channel instruction to execute. 

IDENTIFY: Performs a unique HP-IB protocol sequence that 
returns an identification code from the HP-IB device . 

CLEAR: Sends an HP-IB Selected Device Clear command to 
the HP-IB device to reset it. 

COMMAND HP-IB: Sends up to eight HP-IB commands of the 
programmer's sel ection. 
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the speed control so that data is written only when the drive is ready. 
To maximize data transfer rate and signal-to-noise ratio, read and 

write amplifiers are mounted with the heads on the actuator arms. It 
was decided that a single read/write head per disc surface, rather 
than the conventional two heads per surface, was a better choice for 
a low-cost objective. 

The built-in microprocessor allows the controller to be resident with 
the drive and is powerful enough to permit the inclusion of 56 sepa­
rate self-test features including reading and writing to an unused 
track. Self-test is automatically initiated on power-up or may be com­
manded locally or remotely . Results of the self-test are displayed by 
lights on the controller board . A 256-byte sector buffer is included as 
part of the controller to allow buffered reads and writes to accommo­
date differing data transfer rates . 

EXECUTE DMA : Performs initiation and termination book­
keeping for a DMA transfer without any HP-IB pro­
tocol. 

RELATIVE JUMP: · Branches unconditionally to continue 
channel program execution at a new address . 

WAIT: Suspends the channel program until the device 
requests service on the HP-IB. 

WRITE RELATIVE IMMEDIATE: Writes a literal into a speci­
fied word of the channel program. 
There are also instructions for reading, writing , and mod­

ifying channel registers. The instruction set provides access 
to almost every capability of the HP-IB. 
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An Innovative Programming and 
Operating Console 
by Alfred F. Knoll and Norman D. Marschke 

T
HE HP 300 's integrated display system (IDS) is a 
microcontroller-based alphanumeric keyboard and 
display system optimized for use as the system 

console and program development station in the HP 300. 
Full use of the powerful programming, display manage­
ment, and editing features of the HP 300 dictates this 
somewhat unconventional, specialized programming and 
operating console. As an integral part of the HP 300 instead 
of a remote general-purpose terminal, the IDS shares the HP 
Interface Bus with the built-in fixed and flexible discs. 
Although it may seem unusual to have a programming 
console on the same interface bus as the computer mass 
storage devices, it is precisely this arrangement that gives 
the IDS its unusual features. By allowing the IDS the same 
communication capabilities as the discs, a very close in­
teractive relationship with the CPU is made possible. Tak~ 
ing advantage of this association is the key to the IDS fea­
tures. 

The Window Concept 
Perhaps the most revolutionary feature of the IDS is the 

idea of being able to view and manipulate portions of a 
number of independent display files that coexist simul­
taneously on a single CRT. Conventional terminals operate 
in an essentially serial fashion: the items displayed are 
sorted by entry sequence, so that the last item displayed is 
the most recent entry. By contrast, the IDS display is sorted 
by ultimate item organization. 

This element of visual fidelity adds a new facet to the 
classical concept of interactive programming. Since multi­
ple interactions can be sorted on the display by their envi­
ronment rather than by entry sequence, the HP 300 need not 
follow the conventions imposed by ordinary terminals. 

A window can be considered a viewport into a file , in­
stead of a copy of a file. Using this concept, changes or 
additions to the display via the keyboard are made simul­
taneously to the actual file with the results immediately 
visible to the user. 

Windows are implemented on the display by dividing the 

screen into rectangular subsets of the 24-row-by-80-column 
display. These areas are delineated by dotted lines called 
borders . The dotted lines occupy the space between adja­
cent characters, so the number of displayable characters is 
not reduced by the presence of these window borders . 

Each window can be considered a separate display al­
most as if it were an independent terminal. The information 
in a window can be edited or scrolled both horizontally and 
vertically without altering either the contents or the posi­
tion of the other windows on the screen. The capability to 
store more than one environment (or window set) locally 
and modify any eligible window, whether it is currently 
active or not, provides previously unattainable file manipu­
lation power. 

The Softkey Concept 
The versatility of window-oriented display management 

is further enhanced by the softkeys. The eight softkey 
switches add a new dimension to task selection and user 
interaction. Program-definable labeling of these keys per­
mits the creation of powerful, easy-to-use application pro­
grams not possible with conventional terminals. The labels 
defining the functions of the softkeys are displayed in a 
window next to the softkeys along the right side of the CRT. 

Several important capabilities are provided by the seem­
ingly simple dynamic labeling of these special-function 
keys. The first and perhaps most obvious is that of allowing 
the user to quickly select from a menu of options just what 
to do next. Suitable relabeling allows the selection of one of 
512 items using only three keystrokes. 

The next friendly feature realized by the softkeys is syn­
tactical independence. For normal mortals , errors in system 
command creation and entry can be annoying , frustrating , 
and potentially disastrous. Use of the softkeys eliminates 
spelling and punctuation errors from the task selection 
process . 

Yet another important feature is the simple fact that the 
possible next action options are displayed for the user's 
selection. One doesn't have to remember all the commands 
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Fig. 1. Dual bus structure enables close interaction between 
the HP 300 CPU, the integrated display system (IDS) control­
ler, and the HP 300 display processor. 

or refer to a command summary or manual because the next 
set of menu items is displayed on the CRT. The problem of 
communicating one's desires to the AMIGO operating sys­
tem is thereby vastly simplified. 

Window Implementation 
Implementation of the window-oriented display man­

agement features of the IDS requires very close interaction 
between the HP 300 CPU, the IDS controller (an MC2 mi­
crocontroller1}, and the HP 300 display processor. To ena­
ble this close association the IDS uses a dual bus structure 
(see Fig. 1). A 16-bit program and control bus is provided for 
the execution of the MC2 firmware that handles CPU com­
munications and controls the display processor. A separate 
eight-bit display data bus is used by the display processor 
for creating the composite character stream necessary to 
refresh the CRT. Functional separation of the display re­
fresh and display editing processes gives the controller the 
bandwith necessary to support window management. 

The display processor hardware incorporates two 80-
character row buffers that ensure uninterrupted CRT re­
freshing. While one buffer is being filled with the compos­
ite character information for the next row of the display 
(characters, video enhancements, character set selection, 
and window border information), the other buffer is supply­
ing character stream information to the scan generator for 
the row currently being displayed. When the row is com­
pletely displayed the buffers are functionally exchanged 
and assembling of the next row can begin. The operation of 
the scan generator is similar to that of the HP 2640A 
Terminal. 2 

The Display Program 
The technique of creating the composite character stream 

was developed especially for the IDS. The characters are 
displayed on the screen as a set of 24 contiguous rows. 
Unfortunately this organization is not the most advanta­
geous storage arrangement. To facilitate the editing neces­
sary to provide both horizontal and vertical partial screen 
scrolling and the environment switching that is fundamen­
tal to the HP 300, a program and data access algorithm was· 
devised for managing the display memory. 

The display program is created by the IDS controller in 
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response to window requirements from the user. This pro­
gram resides in the display memory along with the text that 
it puts on the CRT. The display processor accesses this 
program and creates the composite character stream in re­
sponse to the program parameters. 

The display program is made up of two parts, the instruc­
tion table and the text (see Fig. 2). The active instruction 
table is a sequence of four-byte instructions sufficient to 
define all the rows in the currently viewed windows on the 
screen. The text is a series of linked buffers in the same 
memory, containing ASCII character codes and various 
embedded display control information bytes. Each row in 
each window is defined by one four-byte instruction and its 
associated text buffer list. 

The table is accessed as a series of four-byte instructions. 
Each instruction refers to an individual row of text in a 
single window. For a vertically partitioned screen the first 
instruction refers to the first row of text in the first or upper 
left window area. The next instruction refers to the first row 
of text in the window immediately adjacent to the right 
border of the first window. For the simplest single-window 

• 

Text Data (16 Bytes) • / 

Fig. 2. IDS controller creates a display program in response 
to the user's window requirements. The program, organized 
as shown here, consists of a series of four-byte instructions 
and text. Text is stored as a series of linked 18-byte buffers. 
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Fig. 3. IDS display instruction format. 

screen, 24 display instructions are required, one for each 
row in the window. The total number of instructions re­
quired for a particular display depends upon the number of 
rows that are partitioned vertically. If six of the 24 rows are 
partitioned between two vertical windows, these six rows 
require 2x6=12 instructions in addition to the instructions 
required for the remaining 18 rows. 

The format of the display instruction is shown in Fig. 3. 
The first byte in the four-byte instruction contains a zero in 
bit location 8 (bits 0-7 are not used by display instructions). 
This indicates to the display processor that the four bytes 
are instructions rather than an instruction link. The next 
seven bits contain the window width measured in character 
positions. The second byte in the display instruction is the 
initial video enhancement byte for this row in this window. 
The third byte in the display instruction is used in conjunc­
tion with the fourth byte to point to the text data that is to be 
displayed in the window. Bit 8 of the third byte set to 1 
indicates that this is the last window in the row. 

Text Data Format 
The text data is usually stored (by memory management 

convention) as a series of linked buffers with each contain­
ing 18 bytes. As far as the display processor is concerned, 
the buffers can be any length. However, the memory man­
agement firmware uses 18 bytes as the standard length. The 
buffer format is 16 data bytes followed by a two-byte data 
link. 
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Fig. 4. Linkage and enhancement information is embedded 
in the text to be displayed. To distinguish between characters 
and linkages , a Huffman-coded set of data byte formats is 
used. 

Since linkage and enhancement information is embed­
ded in the text, a Huffman-coded set of data byte formats is 
used to distinguish between characters and linkages (see 
Fig. 4). ASCII characters that represent text to be displayed 
have a 0 in the most significant bit followed by the seven 
ASCII bits. A data link used for linking the lists together is 
identified by a 1 in the MSB followed by a O in the next bit. 
The succeeding bits become the MSBs of the pointer. The 
next byte in the buffer is used as the LSBs of the pointer, 
much the same as an instruction link. 

It is important to note that the various types of data bytes 
may be arranged in any order within the data list. The 
leading-ones coding makes them positionally independent, 
unlike the instruction bytes , which must be sequential 
within each four-byte instruction. This feature allows 
character set selection and video enhancement changes to 
be mixed easily within the same row of text. 

Sample Display Program 
Fig. 5 shows the display screen produced by the sample 

display program diagrammed in Fig. 2. 
The sample program is designed to partition the upper 

six rows of the display area into two windows. The first 
window is 30 characters wide and the second is 50 charac­
ters wide. The first row of the first window contains the 
alphabet, while the first row of the second window contains 
the words THIS IS THE SECOND WINDOW. All other rows in 
the first two windows are blank. The first row of the last 
window (18 lines of 80 character positions each) contains 
the text THIS IS THE THIRD WINDOW, while the remaining 
rows are blank. 

Recalling the previous discussion, it is apparent that 
2x6+18=30 display instructions are required for this sam­
ple program. 

The display processor begins each frame at the top of the 
instruction table by accessing the four-byte instruction for 
row 1 in window 1. Then, as directed by the data address in 
the instruction, it accesses the linked data buffers until the 
window width is satisfied. For row 1 of window 1, the data 
list is 16 characters of the alphabet followed by a link to the 
remainder of the alphabet. When the end-of-string (EOS) 
flag is encountered in the data list, the row is blank-filled to 
the end of window 1. The processor then proceeds back to 
the instruction table for row 1 of window 2 followed by the 
data list for window 2. 

The second and subsequent rows of windows 1 and 2 are 
blank, so the addresses in the instructions for these rows/ 
windows point directly to the EOS flag . 

In a similar manner, each row of the display is processed 
with one or more sequences of an instruction fetch followed 
by a data list. After the last row on the screen, the processor 
resets the instruction address to the top of the table and 
starts all over again (every 1/60th or 1/50th second) for 
refresh of the next frame. 

Using this program technique, vertical or horizontal 
scrolling requires only the alteration of the data pointers in 
the instruction table. Environment switching can be ac­
complished by creating a set of window information that is 
not referenced in the current instruction table, then merely 
inserting an instruction link in the table to point to the new 
window instructions. 

JULY 1979 HEWLETT-PACKARD JOURNAL 15 



ABCDEFGHIJKLMNOPQRSTUVWXYZ T THIS IS THE SECOND WINDOW 
I 

~---------------------J ___________________ _ 
THIS IS THE THIRD WINDOW 

Fig. 5. Display resulting from the program of Fig. 2. 

Multilingual Capabilities 
The problem of satisfying international keyboard and 

character graphic standards is easily solved in the IDS by a 
combination of hardware and firmware. 
· The display processor block contains space for up to three 
alternate character graphic ROM sets. Each of the sets con­
tains an identity code that is read and stored by the control­
ler during the power-on sequence. This code allows the 
controller to configure the alternate character set keys on 
the keyboard, and provides a linkage mechanism for the 
multilingual features. 

The IDS keyboard is self-scanning, and interrupts the 
controller whenever the state of any key changes. This frees 
the controller from the tedious task of scanning the 

Firmware 

-

Character Graphic 
ROMs 

Fig. 6. Multilingual transformation algorithm selects either a 
control code or a character to be displayed depending on the 
key that was pressed and the language being used. 
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keyboard and provides rollover and autorepeat capability. 
A seven-bit keystation number is returned whenever the 
keyboard interrupt is serviced. The fact that this number 
has no direct relation to any ASCII character or code is the 
key to multilingual configurations. 

Fig. 6 depicts the transformation algorithm used to im­
plement the multilingual feature. The ROM ID obtained at 
power-on from the extension graphic ROM contains two 
information fields: the map select field selects a base set 
map corresponding to the base set graphics ROM, and the 
table select field is used to point to one of eight extension 
tables. 

To process a keystroke, the selected base set map is ad­
dressed with the keystation number and the upper- or 
lower-case shift bit. The byte th us addressed is one of three 
types: local control, base set ASCII, or indirect vector. 

If the key is a local control key, such as SHIFT or DEL 

ENTRY, a local control code is returned to the controller 
program and no chai:acter graphic is produced. If the key 
meaning is invariant regardless of the language option, a 
base set ASCII character is generated and used as an input to 
the base set character graphic ROM to produce the character 
on the CRT. 

If the key meaning is dependent upon the language op­
tion and hence the extension graphic ROM, an indirect 
vector is returned. Six bits of this vector are used as an offset 
to access a particular location in the extension table 
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specified by the value of the table select field of the ROM ID. 
The contents of this location is a byte containing an ASCII 
code and an extension ROM select bit. If the desired charac­
ter is not part of the base set, the select bit enables the 
extension graphic ROM and the ASCII code specifies the 
character. If, on the other hand, the particular character is 
not changed under the language option in question , the 
base set is selected , and as before , the ASCII code specifies 
the character. 

The maps and extension tables for all the standard Euro­
pean keyboard configurations are contained in a single 
ROM that is standard with the IDS. Configuring the IDS to 
support a different keyboard arrangement is merely a matter 
of placing the proper extension ROM in its socket and 
replacing or rearranging a few keycaps. 

Testability 
One of the primary objectives of the IDS design was 

testability. The successful meeting of this objective re­
volved around the development of a comprehensive but 
simple self-test capability. This is achieved by dedicating 
part of the firmware to a set of self-test routines and provid­
ing a simple means of displaying test status. 

The IDS self-test is invoked at power-on and takes ap­
proximately three seconds. An HP LED array mounted on 
the controller printed circuit assembly and visible from the 
rear of the HP 300 displays the test results in hexadecimal 
form. The test is designed to require no external signals 
other than power from the mainframe and thus establishes a 

measure of goodness for the IDS independent of the state of 
the remainder of the HP 300. The test is comprehensive 
enough to create about a 90% confidence level in the func­
tional integrity of the IDS. 
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AMIG0/300: A Friendly Operating System 
by Ralph L. Carpenter 

T HE FIRST FEATURE most people notice when see­
ing an HP 300 in operation for the first time is the 
ease with which the man/machine gap may be 

bridged. For example, the operating system's user inter­
face subsystem, the console handler, responds to natural­
language commands , such as COPY FILE A to B. Most com­
mands may be interrupted by the ATTN key on the inte­
grated display system (IDS) . When the ATTN key is pressed, 
execution of the command (in this case duplication of a 
file) continues , but two of the softkeys become labeled 
CANCEL COPY and ACTIVATE COPY. Cancellation of the 
copy results in the shutting down of the in-process dupli­
cation; activation simply results in the original display, 
that is , just the COPY command in the input window and 
the softkey labeled HELP. 

This design of an improved man/machine interface, 
sometimes known as friendliness, has been carried 
throughout the design of the HP 300 operating system, 
AMIG0/300, resulting in modularity, maintainability, sup­
portability, and ease of distribution. AMIG0/300 supports 

multiprogramming, multitasking, virtual memory, a large 
dictionary of commands , tools for synchronization of task 
execution, and transportability of programs. The purpose of 
this article is to present an overview of AMIG0/300's struc­
ture and functional modularity, and to give the reader more 
of an understanding of what makes the HP 300 tick. File 
management and terminal management, which are operat­
ing system services, were discussed last month and are not 
included here. 

Command Interface 
The IDS serves as the console for the HP 300. It has several 

novel features that are managed by the console handler 
portion of the operating system. 
1. Softkeys. There are are eight keys along the righthand 

side of the screen. Labels showing the functions of the 
keys may be displayed on the screen. 

2. Windows and borders . The IDS can accommodate sev­
eral display structures on the screen at one time , sepa­
rated by borders (series of tiny dots). One such window 
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is dedicated to softkey labels. 
3. ATTN (attention) key. This key causes an immediate 

asynchronous interrupt. 
4. System message light. This LED blinks whenever the 

system needs the operator's attention. 
5. Scrolling capability. One window at a time may be 

shifted up or down and left or right to provide full 
visibility of the data attached to that window. 

In addition to the softkey window, the console handler 
maintains the environment window, containing the genera­
tion name of the AMIG0/300 operating system along with 
the current domain arid the current date and time, the input 
window, in which all typed commands and all command 
interaction are displayed, the error window, in which all 
interactive command errors are displayed, and one large 
display window that may optionally be divided in half. The 
display window contains scrollable output from previous 
console activity. 

All console activity is logged, beginning with the wel­
come banner (system identification, command language 
version, and date of release), a list of device differences 
between the active configuration and that which the system 
was told to expect, the AMIG0/300 physical file name for 
the console being logged, the file name of the previous 
console log (only one previous log is retained), an indicator 
showing how many times the log has overflowed, and for 
each command that executes successfully, the date and 
time execution finished, along with the date and time of 
each job termination. 

A job represents one execution of the user's application 
program or of an HP-supplied subsystem (like BASIC). The 
operator is allowed to run several concurrent copies of the 
same program by using the form RUN PAS J1. This causes 
program P to be run as a background job. If the operator uses 
the shorter form RUN P, program P is run as an interactive 
job. Ownership of the system console is automatically 
granted to the interactive job and must be taken from it via 
the ATTN key and specifically given to another job via the 
ACTIVATE softkey or command. A job may consist of several 
programs, because one program may load and start another 
program using the standard systems services known as 
program management. The only level at which a job is 
defined is the console handler level. 

Command Language 
The AMIG0/300 system command language was de­

signed to be as friendly as possible while providing a pow­
erful and useful tool for users . It has an easy-to-learn syntax 
and an English-like grammar, enabling the operator to form 
command sentences that have obvious meanings. 

Imperative sentences consisting of a verb followed by an 
object form the basis of the language. Declarative sentences 
are used in some cases where appropriate. Some commands 
allow modifying clauses that supply optional parameters to 
the command interpreter. These modifying clauses may 
take various forms depending on the operator's wishes. 
Abbreviations of language keywords are allowed , and mis­
spellings of language keywords are corrected for the 
operator (up to a point). The command interpreter is sensi­
tive to common errors such as character transpositions and 
replications, and it can handle missing , incorrect, or extra 
characters depending on the length of the keyword and its 
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context. 
A command sentence is , in effect, a pattern of keywords 

and data items. Whenever a keyword is required in the 
pattern and the string entered as input does not match the 
pattern; an error condition exists. Fortunately, many errors 
of this type can be corrected dynamically. The abbreviation 
rules already discussed are an example , as are common 
typing errors such as replicated characters and simple letter 
transpositions. More severe errors such as missing or incor­
rect characters are correctable only in limited cases . Correc­
tion of this type of error depends heavily on the length of the 
input string and the context in which the keyword is re­
quired. 

The AMIG0/300 operating system is the first HP comput­
ing system to employ sophisticated input correction 
techniques. Therefore , it is anticipated that users will re­
quire a certain amount of experience to feel comfortable 
·with the system. 

Several factors that are not obvious contribute to the 
reliability of the methods chosen to do dynamic error cor­
rection. First, the system is very context sensitive. It oper­
ates under the assumption that the user knows in general 
what he or she wants to do , even though the exact syntax of 
the command statement may not be known by the person 
entering the command. Thus only keywords legal in a given 
context are "candidates". This list is always much shorter 
than the list of all keywords known to the command in­
terpreter. Second, before a correction is done, all candidates 
are examined and a(tandidate is chosen only if it is a unique 
choice that differs from the typed input by no more than an 
internally set threshold. Finally, the different sentence 
structures of the various commands, the distribution of 
keywords, and checks on the data entered add the same 
redundancy to the command language that are present in 
spoken communication. This further diminishes the possi­
bility that an erroneous command input will be accepted 
even if an erroneous keyword substitution is made. 

Example: The command verb DUPLICATE may be entered 
in any of the following ways. 

DUP 
DPLCT 
DPULICATE 
DUPLIKATE 

substring abbreviation 
abbreviation by vowel removal 
transposition 
wrong character 

There are three general classes or types of errors reported 
by the AMIG0/300 command interpreter. These include 
errors in the command pattern input (called syntax errors), 
errors in the meaning of data in the command (called 
semantic errors), and system errors detected during the 
execution of the command. 

Syntax errors are errors detected during the interpreta­
tion of the command input by the user and represent an 
uncorrectable failure to match the input with a valid com­
mand pattern. When this occurs, the cursor is positioned in 
the IDS input window at the symbol that caused the error, 
and a descriptive message is written to the IDS error win­
dow. These messages generally indicate what specific 
keyword or data Hem is required , so in many instances a 
person can learn the syntax of a command by interaction 
with the error handler. More general messages are reported 
when no command verb is found and when the list of legal 



options is too long to fit in the input window. 
Semantic errors are errors detected during the execution 

of a command. These generally concern data that has been 
input as part of the command, and they deal with the mean­
ing of the data. For example a PURGE FILE command may be 
entered with the syntactically correct file name Fl(ME). The 
command may still fail because no file by that name exists 
or the user attempting the PURGE does not have access to the 
file. Semantic errors are reported in much the same manner 
as syntax errors, except that in some cases, the cursor is 
simply reset to the beginning of the command. 

Finally, a command may fail during execution because of 
a system failure. For example a DUPLICATE could be termi­
nated by an error in the 1/0 system, or because it is explicitly 
aborted by the user. Execution errors are also reported in the 
IDS error window. 

Program Management 
A program, as the word is commonly used, is a series of 

instructions telling a machine how to behave. On the HP 
300 this form of program exists as a workspace, that being 
the set of files containing the source code, relocatable object 
code (both in unlinked, symbolic form and in a form that 
has had all its externals resolved), compiler listing, seg­
menter listing, linker listing, a file used by the symbolic 
debug facility for mapping code and data into their corres­
ponding source line number and data symbols, and a file 
containing file equations for execution of the program in 
the particular machine environment. In AMIG0/300, the 
word "program" is most commonly used to describe the 
installed (loaded) machine-level representation of a work­
space. 

A program is, first of all, a member of a job. Remember, 
however, that the job concept exists only at the console 
handler level in AMIG0/300. A program may contain code 
that calls an AMIG0/300 service for loading and starting 
programs. These services are part of AMIG0/300's program 
management facility. Such programmatic loading/starting 
of a program (more specifically, a workspace is loaded and 
the corresponding program is started) creates a hierarchy of 
programs. Bottom-level programs may terminate, and that 
is that, but if a program terminates at a higher level in the 
program hierarchy, all of its descendant programs must be 
terminated also. 

In addition to the program termination and abort capabil­
ity, program management also provides for blocking and 
unblocking of subordinate programs, inquiring as to the 
status of a subordinate program, and retrieval of a parameter 
array supplied at program startup. 

Task Management and Synchronization 
The primary structure of an execution environment 

under AMIG0/300 is known as a task. These are the basic 
building blocks that make up programs, which in turn 
make up jobs. Initially, there exist only two tasks in each 
program environment, one known as the outer block task 
and the other known as the when task. The when task is 
used solely by the AMIG0/300 operating system and is not 
visible to the user; it is employed to support asynchronous 
(or without wait) completion of file and terminal input/ 
output. The outer block task may create and start sibling 

tasks, but there exists no hierarchical relationship among 
tasks within a program environment. Each task has its own 
arithmetic and control stack, used for procedure linkage, 
parameter passing, and procedure-local storage. All tasks 
share the same set of code segments in the program envi­
ronment. Any sibling task that is created or started is lim­
ited to those code segments that are in the workspace. Thus, 
an outer block task may only create or start a sibling task at a 
procedure that is within the workspace. In addition to this 
set of code segments, all tasks within a program share a 
global data storage area and a set of program-local data 
segments. Task management services include creation, 
initiation of execution, aborting, blocking and unblocking, 
alteration of a task's priority as well as other environmental 
parameters, and other services. 

Tasks may communicate information to one another by a 
number of methods. The easiest to understand is the mem­
ory file communication technique. This technique is rec­
ommended for interprogram communication, when the 
sending task and the receiving task are in two separate 
program environments. A memory file is simply a system­
owned (protected) data segment whose access is strictly 
controlled by the file management facility under stringent 
rules: 
1. Only one program may read (receive) information from 

the file, although multiple programs may write (send) 
into it. Although multiple tasks in the receiving program 
have access to this file, it is left to the application pro­
grammer to synchronize the sequence of reads or to 
specify that all reads are to be performed by one task. 

2. Queuing is first-in-first-out. A read request issued 
against an empty memory file causes the receiver to wait 
until a data element is sent by an active sender. Sending 
is done without delay, unless the memory file is full. 

Another method of intertask communication, which is 
not permitted between programs, is via ID numbers and 
events. For each program, the system maintains a list of ID 
numbers, each of which is a positive integer. ID synchroni­
zation services are applied to this set of ID numbers. They 
allow the user to refer to system objects (tasks, etc.) without 
granting the user direct access to the corresponding control 
blocks. Since ID numbers are local to each program, syn­
chronization cannot occur across program boundaries, ex­
cept via files. 

There are five primitive functions for intertask syn­
chronization: signal, wait, wait-any, request, and release. 
These primitives can be applied to system-supplied events 
(e.g., wait for a write to the printer to complete), or they can 
be applied to programmatically reserved ID numbers. ID 
numbers reserved. by programs are called user-created IDs, 
and their meanings are left to the program (for example, an 
ID might represent completion of a series of computations, 
with the result finally being stored into an area of storage 
that is commonly addressable by two different tasks). The 
wait-any primitive may be used where a number of asyn­
chronous signals or multiple IDs are expected (e.g., mul­
titerminal read operations). The request and release primi­
tives are reserved for use on a very special type of ID, the 
resource semaphore. 

In a program that includes multiple tasks, common data 
must be protected from conflicting access by several tasks. 
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Configuring and Launching the 
AMIG0/300 System 

by Donald M. Wise and James C. McCullough 

SYSTEM BUILD is a privileged system program that provides the 
capabilities of creating, modifying, or deleting an HP 300 software 
configuration, a process sometimes referred to as system genera­
tion. It is invoked in the MANAGER domain by the command BUILD 

SYSTEM, and can be run concurrently with other programs. After com­
pletion of SYSTEM BUILD it is not necessary to stop the system im­
mediately. The currently-running software configuration remains in 
effect until the next SYSTEM STARTUP (see below), at which time the 
newly built software configuration takes effect. 

SYSTEM BUILD takes full advantage of the power of the integrated 
display system (IDS) by extensive use of windows and softkeys. 
Configuration options are displayed in menu-like fashion in the 
softkey window and can be randomly selected via the softkeys (see 
Figs. 1 and 2). Configuration parameters are specified by answering 
questions in the interactive window. There is no command syntax to 
be learned. A sequence of questions can be terminated by simply 
selecting another softkey instead of answering the question. The 
current configuration is displayed in the display window during 
specification of each option, and is then updated to reflect the 
specified change. Each user input is checked for errors, which are 
reported in inverse half-bright video in the error window. And of 
course the HELP facility is available via a softkey, with text entries 
keyed to the configuration parameter questions to reduce index 
searching. 

SYSTEM BUILD is easy to use not only because of the power of the I OS, 
but also because of underlying design goals of minimizing user 
interaction and of using terminology that is familiar to the user. SYSTEM 

Fig. 1. System generation on the HP 300 is accomplished with 
the help of SYSTEM au1w, a privileged system program. 

Fig. 2. Configuration options are selected by means of 
softkeys. Configuration parameters are specified by answer­
ing questions in the interactive window. 
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BUILD does not require the user to respecify the entire configuration 
each time. Instead, the user starts with an existing configuration and 
specifies only the changes that are to be made. User interaction is 
also simplified by allowing changes to be specified in terms already 
known. For example, to add the IMAGE/300 data base software, the 
user specifies the name IMAGE/300 and the appropriate volume 
label, but does not need to know the names of the data files, libraries, 
and workspaces that make it up. Or, to add a printer to the hardware 
configuration the user specifies its name (e.g., PRINTER1), device type 
(e.g., 2631) and its hardware location (e.g., channel 1, device 7), but 
does not need to know the name of the printer driver. An added 
benefit of such simple terminology is a reduced possibility of error. 

The process of building a system involves three phases: initializa­
tion, specification, and build. In initialization the user selects the 
configuration that is to be modified, which can be the currently 
running configuration or an inactive configuration (a description of a 
configuration that was saved during a previous SYSTEM ~UILD session). 
During the specification phase the user changes the starting config­
uration by adding or deleting software and hardware. At this time the 
modified configuration may be listed on the printer and can be saved 
as an inactive configuration for initialization during a subsequent 
SYSTEM BUILD session. This feature allows the user to stop SYSTEM BUILD 

and resume later without having to respecify changes already 
specified. Also during the specification phase, the configuration is 
checked for errors. The user is not allowed to proceed to the build 
phase until all such errors have been corrected . 

The nature of the build phase depends on whether or not the entire 
configuration must be built. If the software configuration has 
changed, or if the starting configuration is an inactive configuration, 
then the entire configuration must be built . The user is prompted to 
mount the flexible discs containing system software. Then system 
code segments are linked together, system tables are built, and 
system programs (e.g., the BASIC compiler and SYSTEM BUILD) are 
prepared and linked to the new system. The entire process takes 45 
to 60 minutes or more, depending upon the optional software, list 
device, system disc, system memory size, and other activity on the 
system. However, if the starting configuration is the currently running 
configuration and if the software configuration has not Ghanged, then 
only the system tables must be rebuilt, a process requ]fin·g less than 
five minutes. 

Another major design goal of SYSTEM BUILl:l is the abl lity to recover 
from unexpected hardware and software errors. For example, if an 
error is detected by SYSTEM BUILD (such as an 1/0 error while writing to 
the printer) the user is informed of the nature of the error and the file or 
device involved . The user can then retry the request. If SYSTEM BUILD is 
unexpectedly terminated (e.g., by a user command or a power fail­
ure), the currently running system configuration remains in effect. 
The user can then rerun SYSTEM BUILD and attempt the build without 
having to restore a backup of the currently running configuration. 
Once the new configuration is built, the currently running configura­
tion is saved as a backup. If the new configuration cannot be started 
for some reason (e.g ., insufficient memory because of large system 
parameter values) then the backup system is automatically started . 
The user can then run SYSTEM BUILD, correct the error, and rebuild the 
new configuration. Once the new configuration has been started, the 
backup can be purged via SYSTEM BUILD to conserve disc space. 

Among the more advanced· features of SYSTEM BUILD is its cross­
configuration capability. A configuration can be specified that is 
completely different from the currently running configuration . This 



Fig. 3. HP 300 control panel is used when starting the system. 

configuration can then be built on a foreign system volume, and this 
volume can be transported to another machine with a compatible 
hardware configuration and used as its system volume . Other ad­
vanced features of SYSTEM BUILD include tools that are useful in operat­
ing system development but are not normally used by HP customers. 

Starting the System 
SYSTEM STARTUP consists of two privileged programs responsible for 

launching the AMIG0/300 operating system. SYSTEM STARTUP gains 
control via the LOAD or POWER ON sequence as a privileged stand-alone 
program and completes the launch task as a privileged program with 
access to AMIG0/300 system services. 

The initiation of SYSTEM STARTUP is accomplished by user manipula­
tion of switches on the HP 300 control panel (see Fig. 3) . First, the user 
dials the channel and device numbers of the system disc, then turns 
on the integrated system followed by the peripherals, and then 
presses HALT, RESET, and LOAD. 

In keeping with the HP 300's friendliness and ease of use, several 
features simplify the task of starting up the AMIG0/300 operating 
system. SYSTEM STARTUP launches the operating system without user 
interaction. The only exception occurs when completion of a system 
dump is required after an abnormal system shutdown. Changes 
involving real memory size, the number of 1/0 channels, 1/0 channel 
mix, and number and status of 1/0 devices are detected by SYSTEM 

STARTUP and reported to the user. If SYSTEM STARTUP determines that it 
cannot successful ly complete launching the currently configured 
system, it will attempt to launch the previously configured system. 
Th is is possible because SYSTEM BUILD always saves a backup system 
when a new system is generated. 
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data structure , since any other tasks that subsequently re­
quest this resource will be delayed. When the owning task 
has finished the operation, it must release ownership. This 
allows another task to be granted ownership and continue 
its execution. Thus, all tasks that cooperate by issuing the 
appropriate request and release requests will have mutually 
exclusive access to the resource. 

Virtual Memory Management 
The AMIG0/300 memory management services provide 

virtual storage capability to programs operating on the HP 
300. This feature is invisible to the programs , that is , no 
planned segmentation or overlay structure need be invoked 
by a program. There is a limit on the code segment size 
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(currently 16K words), but one routine may call another 
without having knowledge about the segmentation. Arrays 
may be very large (the current limit of total directly ad­
dressable array storage is about two megawords for an ap­
plication program), thus reducing the need to resort to 
temporary file storage of intermediate results. Also availa­
ble through the memory manager is the ability to alter the 
size of the arithmetic/control stack, dynamic allocation and 
deallocation of arrays, the ability to alter the size of an array, 
and the ability to inquire into the parameters controlling the 
bounds on segment sizes. 

Other invisible facilities provided by the memory man­
ager to support the virtual environment include disc file 
block transfers (used by file management), buffer allocation 
and freeze-down/unfreeze (used by file management and 
terminal management), migration of segments from mem­
ory to disc (used by the scheduler), and miscellaneous other 
internal services. 

Virtual memory configurations include both random ac­
cess memory and bulk disc memory. Variable-length code 
and data segments are subject to migration between mem­
ory and disc according to the following rules: 
1. Individual segments migrate in (i.e., from disc to mem­

ory) when demanded either by a microcode-induced 
trap or by an explicit migration request from some 
software module. 

2. Groups of segments migrate in before execution of a task 
provided that the segments were previously migrated 
out (i.e., from memory to disc storage). 

3. Groups of segments migrate out whenever a task en­
counters a relatively long suspension. 

4. Individual segments migrate out whenever they impede 
an inbound migration request. Candidates for outward 
migration are carefully selected on the basis of the own­
ing task's priority, the state and age of the segment, and 
the content of the segment. 

Storage space for an array may reside in one of three 
locations: in the global region, on the arithmetic/control 
stack, or in one or more data segments. Which region is used 
depends upon the language in which the program is writ­
ten. In the HP 300 system language, array space is allocated 
in the global region when the declaration 

type ARRAY name (range) 
appears in the program's main procedure, or the declaration 

OWN type ARRAY name (range) 
appears in a procedure, and range is a relatively small 
number. Array space is allocated on the stack when the 
declaration 

type ARRAY name (range) 
appears in a procedure , and range is a relatively small 
number. Data segment space is allocated for the array when 
the declaration 

(OWN) type ARRAY name(*) or (range) 
where range is a relatively large number, appears anywhere 
in the program. The preceding discussion applies to array 
allocation through the declarative capability of the HP 300 
system language. In addition to declarative allocation, the 
programmer may employ the ALLOCATE statement for 
dynamic size adjustments. 

The arithmetic/control stack is used for storage of 
procedure-local variables , intermediate computational re­
sults , parameters for called procedures, and stack markers 
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(i.e., return code segment number, program register , and 
old value of local-storage stack pointer). The stack may be 
expanded (but not shrunk) automatically by the AMIGO/ 
300 operating system upon a trap condition known as stack 
overflow. Once the stack reaches its maximum size , 
AMIG0/300 is not able to grow the stack any further. A stack 
overflow trap occurring when the stack is at its maximum 
size causes the program to be aborted. 

A memory management service is provided to disable 
automatic stack expansion. Another service may be in­
voked to shrink the stack. Controlled expansion/shrinkage 
of the stack may be done at any opportune time in the 
progress of the application or subsystem (whereas automa­
tic expansion may introduce a thrashing condition). 

Two important points should be considered in regard to 
programs intended to execute in a multiprogramming vir­
tual memory environment. First, one can never predict the 
execution-time program mixture. Therefore, few assump­
tions should be ~ade about guaranteed performance. Sec­
ond, the amount of random-access memory available to the 
task is always dependent upon instantaneous machine-load 
considerations, such as priority preemption, buffer freeze­
downs , and so on. 

Timer Services 
An application programmer can use the timer services in 

many ways. For example: 
1. To retrieve today 's date and/or the current time, for print­

ing dated (volatile) reports , for logging of transactions, 
for computing elapsed time, for noting the time to an 
interactive application program user, and so on. 

2. To retrieve the job date (i.e., the date parameter specified 
in the RUN command) for preprinting checks, invoices , 
and so on. 

3. To perform a conversion from one date form to another, 
for example from Julian to month/day or vice versa. 

4. To add a date (Julian form only is supplied) and a con­
stant for sales forecasting reports and the like. 

5. To begin a watchdog timer at the same time that another 
request of possibly indefinite duration is initiated. This 
guarantees that, by use of the wait-any synchronization 
service , there will be some reasonable limit to the delay. 
For example , the system might be programmed to 
prompt an interactive terminal user that input is re­
quested, and find, by timer expiration, that there is no 
one at the terminal. 

Trap Handling 
A series of arithmetic computations is usually done with­

out regard to the data being operated on. Thus an under­
flow , overflow, divide by zero, or similar condition may 
occur. Even an experienced programmer may accidentally 
incur bounds violation traps-for example, by execution of 
an instruction that references an uninitialized address 
parameter, or by indexing beyond the end of an array. 

When a trap of this type occurs , the AMIG0/300 trap 
handler does not abort the program , as is usual , but instead 
transfers control to a user-supplied or library routine. In a 
user-supplied routine , files and data bases might be brought 
to a known state before the program is aborted . A library 
routine might be more intricately tied into an error report-



ing package (e.g., the AMIG0/300 formatter). 
In the case of a bounds violation, the trap handler looks to 

see if the symbolic debug package is configured into the 
program, and if so, invokes the symbolic debug package's 
trap handling routine to interact with the operator and to 
report where in the program the violation occurred. 

Internal Interrupt Handler 
The internal interrupt handler takes care of every 

microcode-induced trap. Many of these imply that the HP 
300 hardware is responding erroneously, or that there is 
some inconsistency within AMIG0/300 itself, in which case 
the system is brought to a graceful shutdown (as graceful as 
possible under the circumstances). However, most of the 
traps fielded by the internal interrupt handler are normal 
and are expected to occur. For example, code and data 
segments under AMIG0/300 are normally not locked into 
memory , so they may be absent when needed. In such a 
circumstance, the microcode understands that the desired 
segment is not resideBt in memory, and that AMIG0/300 
will take care of making the segment resident before con­
tinuing execution of the task that incurred the absence trap. 
The internal interrupt handler does not resolve the issue of 
making the segment resident and rescheduling the task for 
later execution. Instead, it calls upon the memory manager 
and the scheduler to do so. 

Other expected events that are processed by the internal 
interrupt handler include: 
1. Bounds violation. The trap handler is invoked if the code 

that incurred the violation was other than system code. 
2. Arithmetic overflow, underflow, invalid operand (e.g., 

divide by zero), invalid character. These also result in 
invocation of the trap handler if encountered in program 
code. 

3. IPL, or cold-load. This trap invokes the AMIG0/300 
startup program. 

4 . Power-fail and power-on (to the central processing unit, 
or CPU). Currently, AMIG0/300 does minimal recovery. 

5. Timer (CPU clock) trap. Transfer of control is passed to 
the kernel (see next section) for handling of the timer 
trap. 

6. Debug instruction executed. Control is passed to the 
system debug facility. 

The internal interrupt handler also fields many unex­
pected traps, most of which result in a soft crash of the 
AMIG0/300 system. 

The Kernel of AMIG0/300 
The kernel of AMIG0/300 consists of the following ser­

vices, which are a basis for the multitasking environment: 
1. The dispatcher, which is responsible for selection of 

one of the tasks in the system to become active 
2. Allocation of control blocks that define tasks , events, 

semaphores, 1/0 request elements, and generalized 
control structures 

3. Handling of timer traps , maintenance of the watchdog 
timer queue, and initiation of timer requests 

4. Setting and retrieving the date and the time of day 
5. Starting, stopping, retrieving, and initializing a task's 

CPU execution timer 
6. Recovery from power failure 
7. Blocking and unblocking tasks 

8. Synchronization primitives (wait and post) 
9. 1/0 initiation and completion 

10. Generalized queue-handling routines. 
This kernel consists of two major facilities. One is known 

as the control program, but since it bears no resemblance to 
a program as formally defined in AMIG0/300, it is simply 
referred to as CP. The other kernel facility is the 1/0 system, 
consisting of a driver interface in two forms: the initiator 
interface , known as the 1/0 request service, and the 
completor/continuator interface, known as the dispatcher. 
Device drivers are not included in the kernel 1/0 system, 
but they must, of course, conform to certain behavior 
patterns to be qualifiable. 

Each task is bound to a list of completed (i.e., posted) 
events for that task. Of course, each posted event must be 
configured as owned by an existing task before invocation 
of the post primitive. The wait primitive examines this list 
of events, waiting for the appearance on the list of the 
particular event specified. The wait-any primitive takes the 
first-found completed event (if there is one) and processes 
that one. When the wait (or wait-any) primitive is unable to 
locate the event in question, an instruction is executed that 
causes the dispatcher to begin execution, and suspends the 
previously executing task. A special type of event, 
nicknamed the when event, is capable of vectoring execu­
tion of the task to a preconfigured procedure entry point. 
The when event is processed whenever a wait-any primi­
tive is requested by a task to which the event has been 
configured and the event is already complete (i.e., posted), 
or upon completion of such an event for which a task is in 
the wait-any state. 

Resource semaphore locking/unlocking primitive ser­
vices provide a means of traffic flow control, such that data 
structures, etc. that are going to be revised or investigated 
by one task can be protected from investigation or revision 
by another task, where both tasks may be executing the 
same code. The current AMIG0/300 implementation per­
mits only one task to lock any semaphore. An attempt to 
lock by another task results in the second task being blocked 
(that is, taken off the dispatcher 's active task list) until the 
owner relinquishes control via an unlock, at which time the 
dormant task becomes the owner and is unblocked. Mea­
surements will reveal whether this simplistic approach to 
semaphore queueing is adequate or not. If not, the queuing 
algorithm can be changed without revision of higher-level 
AMIG0/300 code. 

Scheduling and Dispatching 
As mentioned above, the dispatcher is part of the kernel 

of AMIG0/300. Its primary duty is to put tasks into execu­
tion, but it also responds to 1/0 drivers' interrupt handlers 
requesting that completion processing be performed. In the 
latter case, the dispatcher simply calls the driver's com­
pletor section, having found the entry label in a fixed table. 
1/0 completion processing can be preempted by further 
interrupts , but only one completor may run at a time. 

Dispatching of tasks is a process of searching the dis­
patcher's active task queue for the first unblocked task. 
Since tasks are installed by the scheduler in priority order, 
the first-found task will be of highest precedence. Another 
function related to the dispatching of tasks is the termina-
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tion of a task's execution. This occurs whenever the task 
requests a wait service or when the task 's remaining-CPU­
time counter goes to zero. Once the dispatcher or the wait 
primitive determines that the task currently executing 
should cease execution, the scheduler is invoked to arbi­
trate. If there is nothing for the task to do, that is, if the wait 
primitive invoked the scheduler, the task is automatically 
blocked, and may be removed from the dispatcher's queue 
should the event being awaited be a long-term event. Gen­
erally , all events are long-term except the completion of a 
disc transfer. If entry into the scheduler was caused by a 
task's CPU time running out, the scheduler must assess the 
state of the task relative to other tasks in the scheduler's 
queue, a superset of the dispatcher's queue. If need be, the 
current task is blocked by the scheduler. It may also be 
dequeued from the dispatcher's list. When an awaited event 
occurs , the event is linked into the waiting task's complete 
list by the post primitive. If the list was previously empty, 
entry to the scheduler is again made. This time , the 
scheduler may find the task in a state that permits it to run if 
unblocked, so the scheduler unblocks the task. On the other 
hand, the task may be off the dispatcher's runable task 
queue , in which case the scheduler must see whether or not 
the task's memory resources have been consumed, and if so, 
must ultimately stage the task's working set back into mem­
ory. We now arrive at the portion of the scheduler that is 
tightly coupled to the memory manager. 

Whenever an absence trap (previously discussed) occurs , 
the memory manager looks for free memory of adequate size 
to hold the demanded segment. If it cannot find sufficient 
free memory, it begins to try different means of making it 
available. If all fails, it invokes the scheduler for a policy 
decision: Is the task in question of sufficient precedence to 
warrant the displacement of another task, or is it not? This 
decision involves potential queue manipulation, and very 
possibly a task switch (i.e. , dispatch) to, a different task. 

System Debug Facility 
The system debug facility has been more instrumental in 

wringing out mistakes in the rest of AMIG0/300 than any 
other feature. With it, one can insert, clear, or list break­
points (permanent, temporary , or counting), display code 
and data segment contents , print a trace of the control stack, 
display global or stack storage locations, display absolute 
memory locations, display register contents , and modify 
code and data segment contents. By knowing where the 
kernel keeps its data structures , the systems programmer 
can look at a task 's current state, find out whether an event 
is complete or not, locate driver storage and external device 
states, and obtain many other pieces of vital information. 
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A Multiple-Output Switching Power 
Supply for Computer Applications 
Designed for computer mainframes, this OEM power supply 
is an economical solution for the HP 300's power 
requirements. 

by Dilip A. Amin and Thane Kriegel 

M OST COMPUTER SYSTEMS are powered by cus­
tom power supplies, designed for a specific appli­
cation. There are reasons for this: tradition, size or 

shape constraints, and the fact that each new computer has 
its own sequencing or status reporting requirements. Re­
cent advances in technology have made power supply 
development a major expense, so that it no longer makes 
sense to develop a new power supply for each new product. 

The power supply used in the HP 300 is a standard, 
'off-the-shelf power supply designed for computer main­
frame applications . The HP Model 63312F four-output 
550W modular switching power supply provides 5V at up 
to 50A, ±12V or ±15V at up to 10A and 40V at 1A. 

Use of this commercially available unit was made possi-

ble by features incorporated in the 63312F and by partition­
ing the power system in such a way that the under and 
overvoltage shutdown and on-off sequencing circuits are 
not in the power supply, but in the system. The 63312F has 
two shutdown terminals that can be used to control the 
outputs for sequencing, undervoltage, and so on. In addi­
tion, a 15V bias source is provide.cl by the 63312F to power 
the external system's supervisory circuits, even when the 
power supply outputs are shut down. The ±12V outputs of 
the 63312F can be changed to± 15V by simply shorting two 
terminals. 

By incorporating these features in the power supply and 
by keeping the system supervisory circuits out of the 
63312F, HP has been able to use this same standard off-the-

Fig. 1. Th.ree interlocking, func­
tionally independent printed cir­
cuit boards contain all the circuits 
in the 63312F Multiple Output 
Switching Power Supply . The 
supply provides up to 550 watts at 
5V, ± 12V or ± 15V, and up to 40V. 
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shelf power supply in two other computers, the HP 3000 
Model 33 and the HP 3000 Series Ill.* 

As computers move out of the controlled environment of 
the computer room and into the office or factory, additional 
safety and electromagnetic interference (EMI) requirements 
are imposed. Since most of the impact of these requirements 
is on the power supply, using a standard power supply that 
meets worldwide safety and EMI requirements simplifies 
getting approval of the system. 

The 63312F Power Supply is designed to meet many of 
the worldwide safety requirements. It is one of the few 
assemblies connected directly to the power line, and there­
fore is designed not to fail in such a way as to present a 
shock or fire hazard to the operator. In addition, the power 
supply was designed to minimize the amount of elec­
tromagnetic interference conducted back onto the power 
line. 

The 63312F is packaged in a 203X292X127-mm enclo­
sure (Fig. 1). The circuits are contained on three interlock­
ing printed circuit boards. The circuit boards are function­
ally independent. The input ac line circuits ar~ all on the 
motherboard, mounted horizontally in the bottom of the 

*Ed itor' s note: Articles on these systems are planned for a future issue 

V3(-) 

I 

chassis. The EMI filter and safety isolation circuits are also 
on this assembly. 

The two vertical plug-in boards are the output circuits. 
One board contains the 5V, 50A output circuits and the 40V, 
1A output circuit. The other board contains the ±12V to 
±15V output regulators. Forced air cooling keeps the inter­
nal temperature rise to only 4°C and improves the reliability 
of the power supply. Putting all the components including 
the 50A output circuits on printed circuit boards eliminates 
most hand wiring. This provides consistent performance 
and reliable low-cost wave-soldered connections. 

Theory of Operation 
Fig. 2 is a circuit diagram of the 63312F Power Supply. 

The ac power line voltage is rectified and filtered to provide 
an unregulated 300-volt de source. A doubler/bridge con­
figuration allows either 120 or 220 Vac input voltage opera­
tion. Line voltage selection is achieved by external straps on 
the input barrier strip. Thermistors R1 and R2 are provided 
to limit the inrush current necessary to charge the energy 
storage capacitors C1 and C2 when power is applied . 

The 20-kHz inverter circuit converts the 300-volt de 
source to a pulse-width-modulated (PWM), 150-volt-peak 

I --

"--------------.~-----------------------:~::.~.:~-----:,-----1--------------~,~~-----1 11CA IT·;~:~::' 

I 01 V4(-) 

SV Overvoltage 

V2, V3 Overvoltage 

V1 Adj 

_ _ J_ _ _ 

Fig. 2. 63312F Power Supply circuit diagram. Large-scale-integrated-circuit pulse-width mod­
ulators (PWM !Cs) control the conduction periods of the inverter circuits. 
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square wave. This circuit consists of flux-balancing 
capacitor C3 , inverter transformer Tl, switching transistors 
Ql and Q2, fuse F2, and current transformer T2. Alternately 
switching transistors Ql and Q2 on and off creates the 
20-kHz PWM square wave. Diodes CRl and CR2 keep trans­
istors Ql and Q2 in the active mode during the on part of the 
cycle and a negative base voltage is applied during the 
turn-off transition to hasten turn-off and minimize switch­
ing losses in Ql and Q2. 

Besides voltage transformation, inverter transformer Tl 
provides safety isolation between the primary and regu­
lated outputs. The stepped-down secondary voltages of Tl 
are rectified and average-filtered to provide the five-volt 
output. The flux balancing capacitor, C3, prevents de flux 
build-up on Tl caused by asymmetrical characteristics of 
Ql and Q2. However, unbalanced flux can occur during 
transients, resulting in high magnetizing currents in Tl. 
These currents are sensed by the current transformer, T2 , 
and the appropriate correction signal is communicated to 
the control circuitry. 

The five-volt output (Vl) is controlled and regulated by 
voltage and current error amplifiers Ul and U2. The signals 
from the error amplifiers are fed to U3, a large-scale 
integrated-circuit pulse-width modulator (PWM IC), to 
control the conduction period of the main inverter. The 
PWM IC has min/max pulse width limiters and its output 
drives the inverter transistors Ql and Q2 through the iso­
lated drive transformers, T3 and T4. 

A 60-Hz bias transformer, T5, provides regulated bias 
voltage to the control circuit and drive power to inverter 
transistors Ql and Q2. In addition, bias is provided to 
power external circuitry for system monitoring and control. 
The fan is connected with the autotransformer primary of 
bias transformer T5 to accept either 120 or 220 Vac input 
power. 

Auxiliary Regulators 
Two additional regulated outputs, V2 and V3, are pro­

vided. These outputs derive their inputs from auxiliary 
windings on inverter transformer Tl. These voltages are 
rectified, averaged-filtered , and regulated by a 40-kHz 
switching regulator in the continuous current mode. The 
turn-on/off circuit for these regulators is shown in Fig. 3. 

The control circuits are similar to the main five-volt out­
put control circuit. Voltage and current error amplifiers 
provide the control signals to PWM !Cs to turn off the 
switching transistors. (A clock turns on the switches.) 

Fig. 3. Turn on /off circuit for the V2 and V3 regulators. Energy 
stored in the inductor turns 03 off rapidly to reduce storage 
time and improve efficiency. 

!l 
0 
> 

.---------- V3 

Time 

Fig. 4. Turn-on sequencing is designed for proper operation 
of semiconductor memory devices . 

Flyback diodes maintain continuous current in the output 
filter chokes. 

The voltage error amplifier for V2 is connected so the V2 
output voltage tracks the V3 output. In addition, V2 is 
inhibited until the V3 output has reached a predetermined 
level (see Fig. 4). This form of voltage sequencing is re­
quired in computer systems for proper operation of 
semiconductor memory devices. Current limit and 
overvoltage protection are also provided on V2 and V3. 

Other Circuits 
In addition to the main output regulator and control cir­

cuits, additional circuits are provided for protection and 
power management. These include: 

• Slow turn-on 
• Overcurrent/short circuit 
• Overvoltage 
• Line undervoltage 
• Line overvoltage 
• Overtemperature 
• Inrush current protection 
• Inverter peak current limiter 
• Internal overload protection 
• Remote turn-on/off 
• Remote sensing. 

Electromagnetic Interference 
The power supply is designed to meet the Federal Repub­

lic of Germany EMI specification VDE 0871/3.68. A seven­
segment EMI filter was designed that incorporates both 

Fig. 5. Bias transformer uses novel concentric bobbins to 
achieve required safety spacings. 
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SPECIFICATIONS 
HP Model 63312F Power Supply 

OUTPUT RATINGS: For a total of 550 wans maximum. 

OUTPUT V1: 4.75V to 5.25V at up to 50A 
OUTPUT V2: + 11.4V to + 15.75Vat up to 10A 
OUTPUT V3 : - 11.4V to - 15.75V at up to 10A 

Screwdriver voltage controls and current limit controls are accessible through holes in 
the panel 

Output V1 is isolated from V2, V3, and ground and has an independent voltage control. 

Outputs V2 and V3 are complementary tracking outputs adjusted by one voltage 
control. They have a common return terminal and are isolated from V1 and ground . 

TOTAL OUTPUT POWER: 550 watts when ac input is 100·127Vac or 200·250Vac. Derate 

from 550 W to 475 Was ac input decreases from 100 to 67Vac or 200 to 174Vac. 
TEMPERATURE RATING: O"C.to 40°C at full output. Contact your HP field engineer for 

derating information between 40"C and 70"C. Storage temperature range is - 55"C 
to +85°C. 

INPUT RATINGS: 87· 127Vac or 174·250Vac, 47·63 Hz, sing le·phase 1400 VA maJC:i· 
mum. Voltage range is changeable on input terminal block 

Dilip A. Amin 

INPUT PROTECTION : 20A ac line fuse inside the unit 
OUTPUT VOLTAGE EFFECTS FOR V1 , V2, ANO V3 : 

SOURCE EFFECT: 0.1% for input 87-127Vac or 174·250Vac. 
LOAD EFFECT: 0. 1% tor no-load to full- load current change . 

TEMP. EFFECT: 0.02%/'C, O'C to 40' C 

PARO (Ripple and Noise)· 
OUTPUT V1: 50 mV p-p (20 Hz-20MHz) 
OUTPUTS V2 and V3: 75 mV p-p (20 Hz-20 MHz) 

REMOTE SHUTDOWN : Terminals are provided for remote on-off control of all outputs 
together , and also !or outputs V2 and V3 alone. (An open collector low logic level or a 
contact closure = output off.) 

POWER SUPPLY PROTECTIVE FEATURES: 

Output overcurrent protection 

Output overvoltage protection 
Output reverse voltage protection 

Overtemperature protection 
PEAK INRUSH CURRENT: Less than BOA peak at turn-on. 

COOLING : Integral cooling fan. 
REMOTE SENSING : Remote sensing terminals are provided for each output that will main· 

tain nominal voltage at the load by correcting for load lead voltage drop of up to 5%. 

i DilipAminjoined HP's New Jersey Divi­
sion in 1973, six years after completing 
his Bachelor of Engineering degree at 

i Maharaja Sayajirao University in 
Baroda, India, and four years after re­
ceiving his MEE degree from Stevens 
Institute of Technology in Hoboken, 
New Jersey. Responsible for the circuit 
design and production introduction of 
the 63312F Power Supply, Dilip was a 
project manager for switching power 
supplies for three years before joining 
HP. He's named as the inventor on a 
high-frequency SCR switching reg­
ulator patent. Dilip, his wife and two 

daughters live in Dover, New Jersey. He enjoys hiking, gardening, 
riding bicycles, sightseeing and discovering new places of interest. 

DIELECTRIC WITHSTAND TEST VOLTAGE : 
PRIMARY TO ANY OUTPUT: 1500Vrms for 1 minute 
PRIMARY TO CASE: 1500Vrms for 1 minute 

AN Y OUTPUT TO CASE: 100Vdc for 1 minute. 

SAFETY STANDARDS: The power supply meets the requirements of UL478 and is in the 

Recognized Component Index under Guide QQFU2, File ES 1529 
EMI CHARACTERISTICS: Conducted interference meets t he re qui rements of 

VOE 0875/7.71 Level A. 

CARRYOVER TIME: At full load and 87Vac input, the output voltages decrease less than 
2% during the first 20 ms after input power interruption. 

WEIGHT: Net 6.8 kg (15 lb) , shipping 8.6 kg (19 lb) 
DIMENSIONS: 126 mm H x 207 mm W x 315 mm D (4.96 x 8.14 x 12.4 in) 
PRICE IN U.S.A. : 

Model 6331 2F Multiple Output de Power Supply 
List Price, $825.00. 

OEM 100 unit quantity, $660.00 each 

MANUFACTURING DIVISION: NEW JERSEY DIVISION 

Green Pond Road 
Rockaway, New Jersey 07666 U.S.A 

Thane Kriegel 
Tim Kriegel came to HP in 1972 with four 
years experience in power supply de­
velopment and three years in video sys­
tems design. He contributed to the 
62605M SOOW switching supply as 
project engineer and served as proj­
ect leader for the 63312F 550W multi­
output switching supply. Tim rec·eived 
his BSEE degree in 1965 from North­
eastern University in Boston. A native of 
the state he still lives in, Tim and his wife 
and five children , ages 9 to 19, live in 
Denville , New Jersey. The family enjoys 
camping together and Tim finds most of 
his leisure time well filled with the work 
of renovating an 80-year-old home. 

common mode and normal mode filters. The input storage 
capacitors have low series resistance and inductance to 
minimize conducted noise to and from the inverter. The 
inverter transformer has dual primary windings and multi­
shielded secondaries to reduce noise conducted through 
interwinding capacitances. All outputs have Schottky rec­
tifiers and high-frequency filters to minimize output ripple 
and noise. 

internal construction requirements on the safety isolation 
transformers. New techniques were created in the trans­
former designs to provide the additional dielectric strength 
without sacrificing performance and costs . The bias trans­
former , T5, uses novel concentric bobbins to achieve the 
required safety spacings (see Fig 5). Inverter transformer T1 
and driver transformers T3 and T 4 are wound with wire that 
has additional insulation , and extra taping between wind­
ings is provided. 

Safety 
Requirements for high dielectric breakdown strength 

proved to be an interesting challenge in the design of this 
computer power supply. Specifications for printed circuit 
board trace spacings and component spacings made high­
density packaging more difficult. In addition, there were 
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