(D Jvtyait

HP 1000 A700 Computer

Reference Manua_l

Hi
HaiPRIPS

HP 1000 A700 Computer

Reference Manual

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

The Federal Communications Commission (in 47 CFR 15.805) has
specified that the following notice be brought to the attention of the
users of this product.

Warning: This equipment generates, uses, and can radiate radio frequency energy and
if not installed and used in accordance with the instruction manual, may cause in-
terference to radio communications. It has been tested and found to comply with the
limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against such interference. Opera-
tion of this equipment in a residential area is likely to cause interference in which case
the user at his own expense will be required to take whatever measures may be
required to correct the interference.

KA cxcicnro

HEWLETT-PACKARD COMPANY o ’
Data Systems Division ' ~ MANUAL PART NO. 02137
11000 Wolfe Road ? , : ; Printed in U.S.A. Mar
Cupertino, California 95014 ‘ ‘ e

 uo7s2

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition Mar 1982
Update 1 ...t Jul 1982
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1982 by HEWLETT-PACKARD COMPANY

ii

DOCUMENTATION MAP

iii

' CONTENTS

Section I Page
GENERAL FEATURES
Architecture ...t 1-1
Floating Point Processor 1-1
User Microprogrammingc...cooeeon... 1-1
Virtual Control Panel 1-2
Bootstrap Loaders 1-2
Self-Test Routinesccoiiiiiiio.. 1-2
Time Base Generatorcccoiuuoae. 1-2
Power Supplyo 1-2
Input/Output 0o 1-2
MemOrY ..ottt 1-3
Software 1-3
HP Interface Bus 1-3
Computer Networkcouun. 1-4
Expansion and Enhancement 1-4
Specifications il 14
Section II Page
OPERATING FEATURES
Hardware Registersot 2-1
A-Register i 2-1
B-Register ...ttt 2-1
P-Register 2-1
Extend (E) Registerc.ooiiinat. 2-1
Overflow (O) Register 2-1
Central Interrupt Register 2-1
Violation Register 2-1
Parity Error Register 2-1
Interrupt System Register 2-1
X-and Y-Registersiiiii... 2-1
WMAP-Registercoovuriiiniinnineneen 2-1
Virtual Registers 2-2
M-Register i 2-2
T-Registero 2-2
Controls and Indicators 2-2
Self-Test ... e 2-2
Bootstrap Loaderso, 2-2
Loader Selection for Auto-Boot 2-2
Program Startsc.ccciiiiiiiiiiian. 2-3
PROM Re-Entry and Sequential Execution 2-4
Device Parameters and Media Formats 2-4
Virtual Control Panel 2-4
VCP Program Operationcoouuuunn. 2-4
Loader Commandsccooviinnnennn.. 2-6
VCP User Considerationscc.uon. 2-6
VCP Slave Functions 2-6
Section III Page
PROGRAMMING INFORMATION
Data Formatsccoiiiiiiininnn.ns 3-1
Addressing i 3-1
Paging 3-1
Direct and Indirect Addressing 3-3
Memory Mappingccoviiiiniian. .. 3-3
Reserved Memory Locations 3-3

iv

Nonexistent Memoryc..ouun.n. 3-4
Base Set Instruction Formats 3-4
Memory Reference Instructions 3-4
Register Reference Instructions 3-4
Input/Output Instructions 34
Extended Arithmetic Memory
Reference Instructions 3-5
Extended Arithmetic Register
Reference Instructions 3-5
Extended Instructions 3-5
Floating Point Instructions 3-5
Language Instruction Set 3-5
Double Integer Instructions 3-5
Virtual Memory Instructions.................... 3-5
Operating System Instructions 3-5
Base Set Instruction Coding 3-5
Memory Reference Instructions 3-5
Register Reference Instructions 3-7
Shift/Rotate Groupccovvvveeeennn.. 3-7
Alter/Skip Groupcoiiiiiiiii 3-10
Input/Output Instructions...................... 3-12
Extended Arithmetic Memory
Reference Instructions 3-14
Extended Arithmetic Register
Reference Instructions 3-15
Extended Instruction Group 3-17
Index Register Instructions.................. 3-17
Jump Instructions 3-20
Byte Manipulation Instructions.............. 3-21
Bit Manipulation Instructions 3-22
Word Manipulation Instructions 3-23
Floating Point Instructions 3-24
Single Precision Operations 3-24
Double Precision Operations 3-25
Language Instruction Set 3-27
Double Integer Instructions 3-29
Virtual Memory Instructions................... 3-31
Operating System Instruction Set 3-33
Execution Timesot 3-33
Scientific Instruction Set 3-33
Execution Times and Interrupts................ 3-38
Vector Instruction Set 3-38
Execution Times and Interrupts................ 3-45
Assembly Language 3-45
RTE Implementation.................c...ooov.n. 3-46
Section IV Page
DYNAMIC MAPPING SYSTEM
Memory Addressingiiiiiiiin. 4-1
General Descriptionsiin. ... 4-2
Page Mapping Register Instructions 4-2
Working Map Instructions 4-2
Cross-Map Instructions 4-2
Detailed Descriptions 4-3
DMS Instruction Execution Times 4-11
Assembly Language and RTE Implementation. 4-11

Section V Page
MICROPROGRAMMING

The Microprogrammed Computer 5-1
The Microprogrammable Computer 5-1
Customized Instructions 5-1
System Speed i 5-1
Memory Space and Security 5-1
Developing Microprograms 5-2
Support for the Microprogrammer 5-2
FPP Microprogrammingccouvu.... 5-2
Conclusionoiiiiiiiiiiiiiiii 5-2
Section VI Page
INTERRUPT SYSTEM
Power Fail Interrupt 6-1
Parity Error Interrupt 6-3
Memory Protect Interrupt 6-3
Unimplemented Instruction Interrupt 6-3
Time Base Generator Interrupt 6-3
Input/Output Interrupt 6-4
Interrupt Priority i, 6-4
Central Interrupt Register 6-4
Processor Status Register 6-4
Interrupt Type Control 6-5
Instruction Summary, 6-5
Section VII Page
INPUT/OUTPUT SYSTEM
Input/Output Addressing 7-1
Input/Output Priority 7-1
Interface Elements 7-3
Global Registerc.iiiin... 7-4

Control Bits ...ttt 7-4
FlagBitsccoiiiiiiiiiiiiiiiiiiaa., 7-4
Data Buffer Register 7-4
Control Registero..... 7-4
Direct Memory Accessccvvvvninenennnnnn.. 7-4
Control Word 1, 7-5
Control Word 2cciiiinn.... 7-5
Control Word 3, 7-5
DMA Transfer Initialization 7-5
Self-Configured DMA 7-5
DMA Data Transfercoovnnnn. 7-5
Non-DMA Data Transfercovvunnn 7-7
Input Data Transfer (Interrupt Method) 7-7
Output Data Transfer (Interrupt Method) 7-7
Non-Interrupt Data Transfer 7-7
Input ... 7-9
Output ..o 7-9
Diagnose Modes, 7-9
Diagnose Mode 1..............coiiiiiinnnnnn. 7-10
Diagnose Mode 2....... i, 7-10
Diagnose Mode 3 i 7-10
Appendix A Page
Character Codescoiiiiiiiiniinnn. A-3
Octal Arithmeticccoin... A4
Octal/Decimal Conversions A-5
Mathematical Equivalents A-6
Octal Combining Tables A-8
Instruction Codes in Octal A-9
Base Set Instruction Codes in Binary............. A-10
Extend and Overflow Examples A-15
Interrupt and Control Summary A-16

Title Page
HP 1000 A700 Computersooevvvennn.. 1-0
A700 Computer Simplified Block Diagram 1-2
Loading Device Parameters and Media Formats2-7
Loader Command Format 2-9
Data Formats and Octal Notation 3-2
Base Set Instruction Formats 3-4
Shift and Rotate Functions 3-8
Examples of Double-Word Shifts and Rotates 3-16
Basic Logical Memory Addressing Scheme 4-1
Expanded Memory Addressing Scheme 4-1

Title Page
Microprogramming Implementation Process 5-3
Input/Output Systemccoiiiii... 7-2
I/O Priority Assignments 7-2
Priority Linkage (Simplified) 7-2
Interrupt Sequenceol 7-3
General Bit Definitions for Control Word 1......... 7-6
DMA Input Data Transfer......................... 7-8
Input Data Transfer (Interrupt Method) 7-8
Output Data Transfer (Interrupt Method) 7-9

CTABLES

Title Page
Options and Accessories 1-5
Specifications o . 1-6
Start-Up Switch Settings 2-3
VCP Characters and Associated Registers 2-5
VCP Commandsccoviiiiinnieninnnn..n. 2-6
VCP Loader Command Errors 2-10
Memory Paging.............. ... 3-3
Reserved Memory Locations 3-3
Shift/Rotate Group Combining Guide 3-8
Alter/Skip Group Combining Guide 3-10
Typical Base Set Instruction Execution Times 3-34

Typical Execution Times for Floating Point
Instructions with Optional Hardware FPP Card . 3-35

vi

Title Page
SIS Instruction Error Codes 3-35
Typical Scientific Instruction Set

Execution Timescccovviiveni.... 3-45
Typical Vector Instruction Set 3-45
Instructions and Opcodes for RTE

Implementation...................coviii.... 3-47
Dynamic Mapping Instructions Execution Times...4-11
A700 Interrupt Assignments 6-1
Sample Power Fail Subroutine 6-2
Instructions for Select Codes 00 through 07 6-5
Noninterrupt Transfer Routines 7-9
Diagnose Mode 1ccoiviiiiinnn.... 7-10
Diagnose Mode 2o it 7-10

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS

Instructi‘on‘ i P ~ ; Page nstruction g :?Page

ADA
ADB

ADX

ADY
ALR
ALS
AND
ASL
ASR
BLF

BLR
BLS

BRS
CAX
CAY

CBS

CBT
CBX
CBY

CCA' 5

‘;“And” to A

Arithmetic Shift Right.................. 3.15

‘Rotate B Left Four 3-8
B Left Shift, Clear Slgn .
B Left Shift . ~

B nght Shift

Copy AtoX ..ioiniinninn. ARRINYS 3-17
CopyAton..‘.“.;..;.‘.., 3-17
ts : .

Compare Bytes . e : 2!
CopyBtoXo.oin RERTRPPp

Cemplement E. ‘ e :
Compare Words e .. 328 MB10 Cr
- Compare t0 A -.....v.ivovriii 36 MBIL G

: Floatmg Pemt to Single Integer3-25
- Single Integer to Floating Point 3.25
Floating Point Multiply.................3-24

. Floating Point Subtract................. 3-24

kAddtoA..;;.,..‘ ST TR 36 p falt ... e
Addto B ... 3-6 . ;
Add Memory to X e e 3-17
Add Memory to Y ...t 3-17
Rotate A Left Four 38
A Left Shift, Clear ngn SRR 3-8
szleftShlft :]

A Right Sh” i

Copyk B to Y

T 2 to DATAl S
‘ toDATAz

vii

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS (Continued)

Instruction Page
OTB Output Bl 3-13
RAL Rotate A Left 3-10
RAR Rotate ARight 3-10
RBL Rotate B Left 3-10
RBR Rotate BRight 3-10
RRL Rotate Left (32) 3-15
RRR Rotate Right (32) 3-15
RSS Reverse Skip Sense 3-11
SAX Store A Indexed by X 3-19
SAY Store A Indexed by Y 3-19
SBS Set Bits..........cooiiiiii i 3-22
SBT Store Byteol 3-22
SBX Store B Indexed by X................... 3-19
SBY Store BIndexed by Y................... 3-19
SEZ Skipif EisZero 3-11
SFB Scan for Byte 3-22
SFC Skipif FlagClear 3-13
SFS Skipif FlagSet 3-13
SIMP Save Interrupted Map 4-4
SLA Skip if LSB of A is Zero 3-10,3-11
SLB Skip if LSB of B is Zero............ 3-10,3-11
SOC Skip if Overflow Clear 3-13
SOS Skip if Overflow Set 3-14
SPMR Store Page Mapping Register 4-3
SSA Skip if Sign of AisZero 3-12
SSB Skip if Sign of Bis Zero 3-12
STA Store A ... 3-7
STB Store B 3-7
STC Set Control 3-14
STF Set Fla ..o, 3-14
STMP Store Map Set.............ccccvvvinn... 4-3
STO Set Overflow 3-14
STX Store X to Memory 3-19
STY Store Y to Memory 3-19
SWMP Save Working Map 4-4
SZA Skipif AisZero 3-12
SZB SkipifBisZero 3-12
TBS Test Bits.............c.ooi i, 3-23
XAX Exchange Aand X 3-20
XAY Exchange Aand Y 3-20
XBX Exchange Band X 3-20
XBY Exchange Band Y 3-20
XCAl Cross Compare A through DATA1 Map ... 4-6
XCA2 Cross Compare A through DATA2 Map ... 4-6
XCB1 Cross Compare B through DATAL Map ... 4-6
XCB2 Cross Compare B through DATA2 Map ... 4-7
XJMP Cross MapdJump 4-3
viii

Instruction Page
XLA1 Cross Load A through DATAl Map 4-4
XLA2 Cross Load A through DATA2 Map 4-5
XLB1 Cross Load B through DATA1 Map....... 4-5
XLB2 Cross Load B through DATA2 Map....... 4-5
XOR “Exclusive Or” to A 3-7
XSA1 Cross Store A through DATA1 Map 4-5
XSA2 Cross Store A through DATA2 Map 4-6
XSB1 Cross Store B through DATA1 Map 4-5
XSB2 Cross Store B through DATA2 Map 4-6
.CFER Transfer Complex or Double

Floating Point 3-28
.CPM Single Integer Arithmetic Compare...... 3-28
.CPUID Processor Identification 3-33
.DAD Double Integer Add 3-29
.DCO Double Integer Compare 3-30
.DDE Double Integer Increment............... 3-30
.DDS Double Integer Decrement and Skip

ifZero ... 3-31
.DFER Transfer Extended Floating Point 3-27
.DIN Double Integer Increment 3-30
.DIS Double Integer Increment and Skip

ifZero i 3-31
.DNG Double Integer Negate.................. 3-30
.DSB Double Integer Subtract 3-29
.DSBR Double Integer Subtract Reverse 3-29
.ENTC Transfer Parameter Addresses 3-28
.ENTN Transfer Parameter Addresses 3-28
.ENTP Transfer Parameter Addresses P 3-28
.ENTR Transfer Parameter Addresses 3-28
.FWID Firmware Identification................. 3-33
IMAP 16-Bit Subscript Mapping 3-31
IRES 16-Bit Subscript Resolution 3-31
JMAP 32-Bit Subscript Mapping 3-32
JRES 32-Bit Subscript Resolution 3-32
.LBP Mapping with Registers 3-33
.LBPR Mapping with DEF 3-32
.LPX Indexed Mapping with Registers 3-32
.LPXR Indexed Mapping with DEF 3-32
.PMAP Map Specified Page..................... 3-31
SETP Set ATable............................ 3-28
SIP Skip if Interrupt Pending 3-33
.WFI Wait for Interrupt 3-33
XFER Transfer Extended Floating Point 3-27
ZFER Transfer Eight Words 3-28
.FCM Complement and Normalize Single

Floating Point 3-29

Update 1

ALPHABETICAL INDEX OF INSTRUCTIONS PROVIDED BY
THE OPTIONAL FLOATING POINT PROCESSOR CARD

Instruction

ix

S

Figure 1-1. HP 1000 A700 Computers

1-0

The HP 1000 A700 Computer and Computer System
(hereafter referred to as A700 computers) are high
performance members of the HP 1000 A-Series Computer
family. The A700 computers deliver full minicomputer
power to a wide variety of applications, and maintain
software compatibility with previous HP 1000 Computers.
The A700 hardware is available as HP 2137A Computers
(boxes) and computer system processor units (HP 2197A/
B). (See figure 1-1.)

1-1. ARCHITECTURE

The A700 computer architecture is based on a distributed
intelligence concept that separates the processing of
input/output (I/O) instructions from that of other in-
structions. The central processor unit (CPU) resides on
two printed circuit boards and features a fully
microprogrammed control processor. The CPU executes
the powerful HP 1000 instruction set, including index
instructions and a full complement of instructions for
logical operations as well as bit and byte manipulation.
The A700 computer base instruction set also includes
double-integer and virtual memory addressing instruc-
tions, and a language instruction set that substantially
increases program execution speed for such high-level
languages as FORTRAN and Pascal. The CPU also
performs several system level functions, including mem-
ory protect, power fail/auto restart, time base generation,
parity error interrupt, and extensive self-tests.

All input/output instructions are executed by custom
silicon-on-sapphire (SOS) input/output processor (IOP)
integrated circuit chips that reside on the individual 'O
interface cards. A common backplane links the processor,
memory, and I/O cards. The instructions are fetched from
memory and decoded by the processor card. When an
instruction is decoded as being of the I/O type, it is
broadcast on the backplane for execution by the appro-
priate /O chip. Because each I/O card is capable of op-
erating independently of the CPU, the A700 can perform
direct memory access (DMA) /O transfers very efficiently.
An /O card interacts with the CPU only on DMA initia-
tion and completion; beyond that, the entire high-speed
transfer is handled by the /O card, leaving the CPU free
to work on other tasks. This achieves high efficiency in
CPU and IO throughput. Figure 1-2 is a simplified block
diagram of the A700 computer.

1-2. FLOATING POINT PROCESSOR

A hardware Floating Point Processor card can be plugged
into the card cage of A700 computers to provide high-
speed dedicated logic that performs floating point

arithmetic operations. The Floating Point Processor (FPP)
has custom SOS chips and provides exceptionally fast
execution of single precision (32-bit) and double precision
(64-bit) floating point operations. The FPP includes a
powerful Scientific Instruction Set (SIS) that performs
trigonometric, logarithmic, and other transcendental
functions. The FPP also includes a Vector Instruction Set
(VIS) which uses the FPP as a computing resource to
perform vector and matrix arithmetic and to process large
data arrays. (The FPP is optional with A700 computers
and standard in A700 systems.) The FPP achieves ex-
tremely high accuracy with computational speeds that are
6 to 30 times faster than comparable software routines.

1-3. USER MICROPROGRAMMING

The power and flexibility of microprogramming is made
available to the A700 computer user through a
microinstruction set of microorders. Microprogrammers
have access to special scratch pad registers in addition to
the other internal registers of the A700, and can address

MEMORY

MEMORY
CONTROLLER

UPPER
PROCESSOR

LOWER
PROCESSOR

INTERFACE

INTERFACE

INTERFACE

Figure 1-2. A700 Computer Simplified Block Diagram

1-1

General Features

up to 16K, 32-bit words of control store. A700 computers
also support up to three levels of nested subroutines in
microprograms. Microprogramming offers the advantages
of speed and security as well as the ability to expand the
instruction set to meet a variety of special computing
needs.

Microprogramming is supported by Hewlett-Packard
through a software package and customer training
courses. A paraphraser microassembler allows the user to
write microprograms in a versatile free-format style that
greatly enhances program readability and documentation
compared to traditional microprogramming techniques.
User-developed microprograms can be dynamically loaded
into optional Writable Control Store (WCS) cards for
execution, and permanently fused into programmable
read-only memory (PROM) chips for mounting on the
optional PROM Control Store card. (Refer to Section V for
more information on microprogramming.)

1-4. VIRTUAL CONTROL PANEL

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal) to control the CPU in a manner similar to a
conventional computer control panel and also provides
additional features. That is, it allows the operator to ac-
cess the various registers (A, B, P, etc.), examine or
change memory, and control execution of a program. The
VCP program is stored in PROM on the memory controller
card. In a typical application, the VCP could be an HP
262x or HP 264x Terminal interfaced by an HP 12005A
Asynchronous Serial Interface Card. When not being used
as the VCP, the VCP-assigned terminal can be used in the
same way as any other terminal connected to the system.
When the A700 computer is operating as a node in a
computer network via DS/1000-IV, the VCP can be an
adjacent computer in the network.

1-5. BOOTSTRAP LOADERS

There are several bootstrap loaders stored in PROM on the
memory controller card. The loaders provide program
loading from several sources including disc drives, PROM
storage modules, a DS/1000-IV network link, HP mini-
cartridge tapes, and cartridge tapes of the HP 7908/11/12
Disc Drives. The first three loaders can be selected for
auto-boot by switches on the computer frontplane; any of
the loaders can be selected by operator commands via the
Virtual Control Panel.

1-6. SELF-TEST ROUTINES

Self-test routines are standard in the A700 computer and
are stored in PROM on a central processor card and on the
memory controller card. These routines are executed
whenever computer power is turned on, providing a
convenient confidence-check of the processor card, mem-
ory cards, and part of the logic on each input/output card.

1-2

A700

Execution of these routines can also be initiated by a
switch on the computer frontplane or by operator com-
mand via the Virtual Control Panel.

1-7. TIME BASE GENERATOR

One of the processor cards includes a time base generator
which can be used to time external events or to create a
real-time clock in software. The time base generator
(TBG) can generate an interrupt every 10 milliseconds.
The TBG, which can be enabled and disabled by standard
I/0 instructions, is disabled at power up.

1-8. POWER SUPPLY

A700 computers have a power supply designed to continue
normal operation in environments where ac line power
may fluctuate widely. Input line voltages and frequencies
may vary widely without affecting the operation of the
computer. An optional battery backup card and battery
pack can be installed in the power supply area to sustain
memory for 30 or 60 minutes (depending on memory size)
in the event of a complete power failure, thus providing an
automatic restart capability. Another power supply option
provides two 25-kHz voltages that can be rectified at the
load and used to power accessory plug-in cards used for
measurement and control applications.

1-9. INPUT/OUTPUT

The input/output system for A700 computers features a
custom SOS chip on each I/O card, enabling each card to
process its own /O instructions and handle direct memory
access (DMA) data transfers. The /O system has a mul-
tilevel vectored priority interrupt structure with 53
distinct interrupt levels, each of which has a unique
priority assignment. Any /O device can be selectively
enabled or disabled, or all /O devices can be enabled or
disabled under program control.

Data transfer between the computer and I/O devices can
take place under DMA control or program control. The
DMA capability provides a direct link between memory
and I/O devices. The total bandwidth through multiple
DMA channels is 4.0 million bytes (2.0 million words) per
second.

The A700 computer backplane provides the link between
the processor, memory, interface cards, and the power
supply. The backplane has slots for 20 plug-in cards. Two
slots must be used for the processor cards, one for the
memory controller card, and one for each memory array
card. Thus, depending on the number of memory array
cards installed, there are up to 16 slots available for I/O
cards in the box computer. In addition to the two processor
cards and the two memory cards, the computer system
includes as standard a Floating Point Processor card, a
terminal interface card, and a disc drive interface card,
leaving up to 13 slots available for VO cards.

AT00

The A700 computer uses the HP L-Series I/O cards and an
important feature of these cards is a common-content
Global Register which can be loaded with the select code of
a specific O card. When the Global Register is enabled all
T/O instructions are executed only by the I/O card whose
select code is in the Global Register. This not only
facilitates setting up DMA transfers but also makes re-
configuration of an I/O driver a simple matter of changing
the Global Register to the appropriate select code. Also,
since the Global Register can direct I/O instructions to a
specific I/O card, the I/O-instruction address bits can be
used to access registers on an I/O card. This feature is
utilized in the design of the L-Series I/O cards to increase
their capabilities.

About one-third of the area on all L-Series /O cards is
occupied by identical logic called the I/O Master, consist-
ing of an I/O processor chip and its associated logic. The
I/O Master is also available in breadboard form for users
who wish to design their own I/O cards. The 'O Master is
described in detail in the HP 1000 L-Series Computer 1/0
Interfacing Guide, part no. 02103-90005.

1-10. MEMORY

A700 computers are available with either of two
semiconductor memory systems based on 64k-bit NMOS/
RAM chips. The standard memory system consists of a
memory controller card and up to four HP 12103A/B/C/D
Memory Array Cards, each having 128k, 256k, 512k, or
1024k bytes of dynamic random-access memory (RAM).

The optional error correcting memory system provides
fault-secure memory operation for the A700 computers.
The system consists of the same memory controller card
used for standard memory, and up to four HP 12104A
512k Byte Error Correcting Memory Array Cards. (Mem-
ory cycle time is the same for error correcting memory as
it is for standard memory unless an error is being cor-
rected.) The system is capable of correcting all single-bit
errors and of detecting all double-bit errors and most
multiple-bit errors. The memory controller card logs the
error syndrome of single-bit errors, and LEDs on the
memory array cards identify the memory chips causing
these errors. The error correcting system is particularly
valuable in computer systems with large amounts of
memory, or where fault-secure operation is essential.

The maximum memory size available in A700 computers
is four million bytes using standard memory, and two
million bytes using error correcting memory. Addressing
physical memory configurations larger than 64k bytes is
made possible by the use of the Dynamic Mapping System
(DMS), which is standard in the A700 and is described in
Section IV. The DMS is a powerful memory management
scheme that allows A700 computer users to address up to
32 megabytes of memory and provides either write or
read-and-write protection of each individual 2048-byte
page. For data integrity, memory parity checking is
provided as a standard feature, and a parity-valid indi-

General Features

cator light is provided on each memory array card for
quick fault isolation.

1-11. SOFTWARE

Software support for the A700 computers begins with
RTE-A.1, a member of HP’s family of Real-Time Executive
(RTE) operating systems. RTE-A.1 is a real-time
multiprogramming, multi-user system designed to take
full advantage of the A700 I/O structure to enhance over-
all CPU and I/O throughput. RTE-A.1 offers a wide range
of configurations, from a small, memory-based, execute-
only system to a full disc-based system with on-line pro-
gram development. Utilizing the A700 mapped memory
system, RTE-A.1 supports user partitions of up to 64k
bytes and memory sizes from 128k bytes to four mega-
bytes. Memory can be divided into fixed and dynamically
allocated partitions at system generation time. Critical
programs can be made resident in fixed partitions to en-
sure fastest possible response to requests for their
execution. Other programs can be assigned partitions
from the dynamic memory pool according to need, using
the smallest available block of memory.

RTE-A.1 also supports Virtual Memory Addressing
(VMA) for access to data arrays much larger than main
memory (up to 12.6 megabytes). The disc functions as an
extension of main memory so far as data is concerned, in a
manner that is transparent to the user and does not re-
quire any special programming. In addition, RTE-A.1
supports a special case of VMA, called Extended Memory
Area (EMA). With EMA, up to two megabytes of a
program’s data can be in main memory at once, which
affords faster processing of data arrays small enough to
use the EMA capability. The programmer chooses the data
array handling mode at program load time.

Disc-based RTE-A.1 systems support program develop-
ment in FORTRAN 77, Pascal/1000, BASIC, and Macro/
1000 Assembly Language. Program development for the
A700 can be performed on an HP 1000 System under
RTE-6/VM or RTE-IVB.

The diagnostic packages listed in table 1-1 may be used for
testing and fault location.

1-12. HP INTERFACE BUS

Among the I/O interface cards available for the A700
computer is the HP 12009A HP-IB Interface Card which
can interface the A7T00 computer to a variety of HP
peripherals and other equipment compatible with the
Hewlett-Packard Interface Bus (HP-IB). (HP-IB is the
Hewlett-Packard implementation of IEEE standard 488-
1978, “Digital Interface for Programmable Instrumen-
tation”.) A single HP 12009A can control up to 14 HP-IB
instruments and several can be used to achieve concurrent
operation of multiple HP-IB instrumentation clusters
under the RTE-A.1 multiprogramming operating system.

1-3

General Features

1-13. COMPUTER NETWORK

The user can configure the A700 computer into an HP
DS/1000-1V Distributed System by using either an HP
12007A or an HP 12044A HDLC Interface. Both of these
interfaces support the high-level data link communica-
tions (HDLC) protocol, functioning as a preprocessor to
handle low and medium levels of protocol processing. The
A700 computers can be easily mixed with other members
of the HP 1000 family in a single computer network. The
HP 12042A Programmable Serial Interface allows the
sophisticated OEM to design his own customized protocol
for networks. Hewlett-Packard offers a customer training
course on how to program the PSI card.

1-14. EXPANSION AND ENHANCEMENT

Table 1-1 lists accessory products available to expand or
enhance the A700 computers.

1-4

A700

1-15. SPECIFICATIONS

The HP 1000 A600/A700 Computational Products
Technical Data handbook, part no. 5953-2898, provides
complete specifications for the A700 computers and
systems. Table 1-2 provides an abridged set of A700
specifications. Except where indicated, the specifications
are applicable to both the HP 2137A Computer and the HP
2197A/2197B Computer System. Both the computer and
the computer system have been product accepted by the
Underwriters’ Laboratories (UL) and the Canadian
Standards Association (CSA). The A700 computer and
system also meet the RFI standards of the Federal
Communications Commission (FCC) and Verband
Deutches Electrotechnikes (VDE).

AT700 General Features

Table 1-1. Options and Accessories

1-5

General Features

Table 1-2. Specifications

A700

sPEQIF,lf;:A" ONS

97A, AND 2197B

CENTRAL PROCESSOR
- Word Size:

Instructlon Set:

'~ Memory Reference:
- Register Reference:

Input/Output:

Extended Anthmetlc

Index:

Floating Point:
Scientific:*
Language:
Dynamic Mapping:
Vector Instructions:*
Double Integer:
Virtual Memory:
Operating System:

Registers:
~ Accumulators:

index:
Mamory Rogistar'

Power Fail Prow

CONTROL PROCESSO
Address Space:
Microinstruction Word Slze'

| Word Types:

Cycle Time:

ALU and Cond:t nal:
. Store:
- B-Bus:
- A-Bus:

Bit, Byte, Word Mampulatzon: ,‘ :

205 standard i
14

‘ 13
10
34

10

TO THE HP 2137, 2

structions. 270 with the Floating Point Processor card.”

icitly addressable, also explcitly addressable as

ng accu;any of the tlme base generator

each).

: oosntam a jump~to-
ubrouttne A mmlmum

ing
, at 10-milliseoond intervals, that

1-6

AT700 General Features

Table 1-2. Specifications (Continued)

1-7

General Features A700

Table 1-2. Specifications (Continued)

1-8

A700 General Features

Table 1-2. Specifications (Continued)

General Features AT700

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICA

ELECTRICAL SPECIFICATIONS

 Standard Line Voltage and Line
; Fraquoncy
Line Voltage (With 7‘908R)

Line Vo!hgo (Wlth 7911R
or 7912R): '

Lino Frequency:

~ Option 015 Llne Vcntuge end
- Line Fuquamy

Line Voltage (With 7908R):

Line Voltage (With 7911R
or 7912R):

Line anuepcy:

~ Power Requirements:

' Maximum Current Roﬁulred-

~ Maximum Power Dissipation in TEREE T R
Uppm‘ Section of 2187A | B I R

PHYSICAL CHARACTERISTKOS

Dlmonsions
Helght.

Non-operattng

" Relative Humidity:
SPU only:

1-10

AT700 General Features

Table 2-1. Specifications (Continued)

SP£CIFIOATIONS APPLICABLE ONLY TO THE HP 2197N2197B SYSTEMS (Qonﬁnuod)

'manmnmn Disc. Do 20% 0 80% non-condensmg
Alﬁtuda 1 A ' ~

To 4.6 km (15 000 ft).
To 15.3 km (50, 000 ft)
HP 1000 A700«Senes products are type tested fm normal sthpmg and hand&mg

shock and vibration. (Contact factory for review of any applicat;on that requwes
aperation under continuous vibration.)

1-11/1-12

This section describes the bootstrap loaders, the Virtual
Control Panel (VCP) program, and the central processor
registers accessible to the programmer.

2-1. HARDWARE REGISTERS

The processor cards have several working registers that
can be selected for display and modification via the Vir-
tual Control Panel program. (Interface card registers are
described in Section VII of this manual and in the inter-
face card reference manuals.) The functions of these
processor card registers are described in the following
paragraphs.

2-2. A-REGISTER

The A-register is a 16-bit accumulator that holds the
results of arithmetic and logical operations performed by
programmed instructions. This register can be addressed
directly by any memory reference instruction as location
000000 (octal), thus permitting interrelated operations
with the B-register (e.g., “add B to A,” “compare B with
A)” etc.) using a single-word instruction.

2-3. B-REGISTER

The B-register is a second 16-bit accumulator which can
hold the results of arithmetic and logical operations
completely independent of the A-register. The B-register
can be addressed directly by any memory reference in-
struction as location 000001 (octal) for interrelated op-
erations with the A-register.

24, P-REGISTER

The 15-bit P-register holds the address of the next in-
struction to be fetched from memory.

2-5. EXTEND (E) REGISTER

The one-bit extend (E) register is used by rotate in-
structions to link the A- and B-registers or to indicate a
carry from the most-significant bit (bit 15) of the A- or
B-register by an add instruction or an increment in-
struction. This is of significance primarily for multiple-
precision arithmetic operations. If already set (logic 1), the
extend bit cannot be cleared by a carry. However, the
extend bit can be selectively set, cleared, complemented,
or tested by programmed instructions.

2-6. OVERFLOW (0) REGISTER

The one-bit overflow (O) register is used to indicate that
an add instruction, divide instruction, or an increment
instruction referencing the A- or B-register has caused (or
will cause) the accumulators to exceed the maximum
positive or negative number that can be contained in these
registers. The overflow bit can be selectively set, cleared,
or tested by programmed instructions.

2-7. CENTRAL INTERRUPT REGISTER

The central interrupt register is a six-bit register that
holds the select code of the last interface card or internal
condition whose interrupt request was serviced.

2-8. VIOLATION REGISTER

The violation register is a 15-bit register that records the
logical address of any fetched instruction that violates
memory protection rules.

2-9. PARITY ERROR REGISTER

The 24-bit parity error register stores the physical address
of the last memory location that caused a parity error.

2-10. INTERRUPT SYSTEM REGISTER

The interrupt system register is a one-bit register that
indicates the status of the interrupt system. When set
(logic 1), the interrupt system is enabled; when cleared (0),
the interrupt system is disabled.

2-11. X- AND Y-REGISTERS

These two 16-bit registers, designated X and Y, are ac-
cessed through the use of the 32 index register instruc-
tions and two jump instructions described in Section IIIL.

2-12. WMAP-REGISTER

This 16-bit register holds the logical map numbers used
for memory references by Dynamic Mapping System
instructions. (The DMS is described in Section IV.)

2-1

Operating Features

2-13. VIRTUAL REGISTERS

There are two virtual registers, M and T, that are created
by the Virtual Control Panel program and which can be
accessed, via the VCP, to examine or change a program in
memory or to manually create a program in memory.

2-14. M-REGISTER

The M-register holds the address of the memory cell
currently being read from or written into by the Virtual
Control Panel.

2-15. T-REGISTER

The T-register indicates the contents of the memory lo-
cation currently pointed to by the M-register.

2-16. CONTROLS AND INDICATORS

Operator controls and indicators for an A700 computer
system are described in the appropriate system Getting
Started Manual.

On the HP 2137A A700 Computer there is only one
operator control: a line-power switch on the rear panel.
This two-position switch controls the application of ac line
power to the computer power supply and ventilating fans.
Light-emitting diodes (LEDs) on the processor frontplane
provide indications for the computer self-test.

2-17. SELF-TEST

The self-test consists of two test programs (Test 1 and Test
2) that automatically execute each time the computer is
powered up and which provide a quick, convenient check
of basic computer operation. (Also, the self-test can be
executed by pressing the Reset switch on the frontplane.)
If either test program fails, the computer will not operate.
Successful completion of the self-test is followed im-
mediately by execution of either a bootstrap loader, the
Virtual Control Panel program, or a program sustained in
memory by an optional battery pack, as preselected by the
user.

Test 1 is a microprogram stored in PROM on the Lower
Processor card and executes immediately upon power up.
It checks logic and registers on the processor cards and
checks the PROM on the memory controller card. If the
Floating Point Processor card is installed, it is also
checked by Test 1. On successful completion Test 2 is
started. If Test 1 detects a failure of a processor card or the
memory controller, it stops executing and the frontplane
LEDs indicate a failure code. If a floating point processor
error is detected, it is indicated by the LEDs but self-test
execution continues so that diagnostic testing can be
performed. Test 1 execution time is negligible. (Each

2-2

AT700

processor card test and the memory controller test can be
looped for troubleshooting. Refer to the computer in-
stallation and service manual for more information.)

Test 2 is an assembly language program stored in PROM
on the memory controller card and executes upon suc-
cessful completion of Test 1. Test 2 checks the computer’s
basic instruction set, several internal flags, and all the
memory. If memory was sustained by the optional battery
pack, Test 2 checks it in a non-destructive manner by
reading each memory location, thus making a parity
check on the data. If a parity error does occur, the location
is read again. Soft errors (defined as a parity error only on
the first of two reads of a memory location) are reported to
the VCP (if present). If memory was not sustained, Test 2
writes all ones to each memory location, and reads back
the data; and then writes all zeros and reads back. (The
memory is cleared.) Test 2 also checks the I/O Master logic
on each interface card to ensure that data transfer, flag,
interrupt, and direct memory access (DMA) functions are
processed correctly. If Test 2 detects a failure, it stops
executing and the frontplane LEDs indicate a failure code.
(If a VCP is in the system and the failure does not hinder
VCP operation, the VCP program is entered and the fail-
ure code is displayed on the VCP.) The LED indication on
successful completion of Test 2 depends on the computer
action selected by the Start-Up (BOOT SEL) switches on
the frontplane. Test 2 has a maximum execution time of
five seconds.

2-18. BOOTSTRAP LOADERS

Bootstrap loading of a program for the A700 computer is
provided for by four loaders contained in PROMs on the
memory controller card. These are the same PROMs that
contain self-test Test 2 and the Virtual Control Panel
(VCP) program. The loading devices are disc drive (via
HP-IB), PROM storage module, DS/1000-IV network link,
HP 264x mini-cartridge tape, and cartridge tape of the HP
7908/11/12 Disc Drive. There are two ways to invoke a
loader: auto-boot when power comes up; and by VCP
command. Auto-boot can only invoke three of the loaders:
disc, PROM module, and DS/1000-IV; the VCP can invoke
any of the loaders by a command from the operator. The
VCP load commands are discussed later in this section.

2-19. LOADER SELECTION FOR
AUTO-BOOT

The selection of an auto-boot is by means of four of the
BOOT SEL switches located on the frontplane. These
switches, the Start-Up switches, are set during installa-
tion and also provide options other than auto-boot
selection. When a loader has been selected for auto-boot
and the self-test completes, the boot loader executes if
memory was lost; or the program in memory executes if
memory was sustained by the optional battery backup
pack. Refer to Table 2-1 for Start-Up switch settings.

AT700 Operating Features

Table 2-1. Start-Up Switch Settings

BOOT SEL
SWITCHES*
1 2 3 4 COMPUTER ACTION
c C C 2z Loop on self-test regardless of error.
c € C 2z Do not use. (Reserved.)
c C O z Loop on self-test and stop on error.
c C O zZz Do not use. (Reserved.)
c O C 2z Start boot PROM program at location 30002B.
cC 0O o z Run VCP** routine on completion of self-test.
O C C 2z If memory lost (not sustained), run VCP routine; otherwise, restart program (JMP 4B).
(Note 2)
O C 0O z If memory lost, load and execute program from PROM card; otherwise, restart pro-

gram (JMP 4B). (Note 2) (In order to auto-boot from PROM, the card must have select
code 22. Equivalent to loader command %BRM.)

O O C z If memory lost, load and execute program via HDLC card; otherwise, restart program
(JMP 4B). (Note 2) (In order to auto-boot via HDLC, the card must have select code
24. Equivalent to loader command %BDS.)

0O O O 2z if memory lost, load and execute program from first file of disc (via HP-1B); otherwise,
restart program (JMP 4B). (Note 2) (In order to auto-boot via HP-IB, the HP-IB inter-
face card must have select code 27 and the disc drive must have HP-IB address 2.
Equivalent to loader command %BDC.)

*O = open (up); C = closed (down).
Z = C = Normal mode, break enabled.
= O = Break disabled.
**Virtual Control Panel.

Notes: 1. When a loader finishes an auto-boot, it starts execution of the loaded program at location 02.

2. If the auto-restart feature is disabled (frontplane switch M closed), the program cannot restart and the
boot loader (or VCP routine) will execute.

3. Do not use any switch combination that is not shown above.

2-20. PROGRAM STARTS 1. A = zero.
2. B = zero.
When an auto-boot completes without error, the loaded ¢. %E command from VCP:
program starts execution at memory location 02. The 1. A= -1
loader sets the contents of the A- and B-registers as 2. B = zero.
follows:

d. %B command from VCP:
a. Cold start (memory not sustained): 1. A = loader command parameters.

1. A = loader command parameters. 2. B = pointer to a string area where:

2. B = pointer to string area. Word 1 = memory size.
Word 2 = string length.
b. Auto-restart (memory sustained; execution starts at Word 3 = first word of string.
location 04): Word n = n-2 word of string.

Update 1 2-3

Operating Features

2-21. PROM RE-ENTRY AND
SEQUENTIAL EXECUTION

The memory controller card PROM can be re-entered from
a program to boot load and execute the next sequential

program from the loading device. The method to re-enter
the PROM code, is as follows:

a. With the disc loader, re-enter to boot load the specific
program described by the “ABS” code in the following
call back programming sequence.

CLA,CLE,INA Indicate disc call back — do not
suspend

HLT 3,C Enable PROM

ABS... HP-IB bus address

ABS... Device unit number (head for 7906)

ABS... Absolute starting sector (Vector 1
for 7908/11/12)

ABS... Cylinder offset (Vector 2 for 7908/
11/12)

ABS... Vector 3 for 7908/11/12

This sequence assumes that the Global Register is set
prior to entry to the loader and that the absolute starting
sector is the combined cylinder/head/sector for that drive.
When the load is completed, the loader will start execution
in the standard JMP 2 manner. If a suspend after load was
specified by the E-register being set when called, the
program will halt after the load. In the case of the halt the
operator can enter either a %E or a %R to continue. Any
error will return to the VCP, if present, or start the
original load over.

The 7906 will be accessed in the surface mode only, all
other discs will be accessed in the cylinder mode.

2-22. DEVICE PARAMETERS AND
MEDIA FORMATS

There is a specific data format for each combination of
loader, interface card, loading device, and media. The data
formats are described in figure 2-1.

2-23. VIRTUAL CONTROL PANEL

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal) to control the CPU in a manner similar to a
conventional computer control panel. That is, it allows the
operator to load programs using the loaders, access the
various registers (A, B, P, etc., plus I/O card registers),
examine or change memory, and control execution of a
program. There are two VCP programs stored in PROM on
the memory controller card: one is for use with an HP
12005 Interface Card, and the other is for use with an HP
12007/12044 DS/1000-IV Card. Only one interface card in

A700

the computer can serve as a VCP interface; the card
selection is established when the system is installed.

2-24. VCP PROGRAM OPERATION

The VCP program is executed from PROM as a software
program and uses the various machine registers (A, B,
etc.) during its execution. Therefore, these registers are
automatically saved upon entry to the VCP code. (The
save area is in boot RAM on the memory controller card.)
Thus, the response to an inquiry is the data that was saved
at the time of entry to the program. The exceptions to this
are indicated by the absence of an asterisk in table 2-2.
When the operator enters the Run (%R) command, the
VCP program restores the machine with the current data
in the save area and starts execution as specified by the
program execution address in the P-register.

The VCP program can be entered in three ways as follows:

a. After a power-up, PROM execution is directed to the
VCP program instead of a boot load routine;

b. When the VCP interface card requests a slave cycle to
enable the VCP program (e.g., BREAK key pressed on
VCP); or

¢. When a HLT (halt) instruction is fetched and one I/O
card is enabled for break (otherwise the instruction
has no effect).

After a power-up, the total memory size and the amount of
error correcting memory are displayed on the VCP screen.
The A-register is set to the number of I/O chips that were
tested during the self-test. This enables the operator to
verify that all installed memory and I/O cards were tested.
(Also, except when the self-test detects a duplicate /O
select code and reports it in the B-register, the B-register
contains the revision code of the VCP PROMs.) When
entered, the VCP displays the basic set of registers (P, A,
B, RW, M, and T) and issues the VCP prompt (VCP >) for
an operator response. The operator can enter any of the
characters or commands listed in Tables 2-2 and 2-3 and
the VCP program will respond as indicated in the tables.
A carriage return is used to terminate a VCP entry.

After a response to an inquiry the operator can change the
data contained in that register or memory location by
entering new data; for example:

A 001234 4321<cr>

operator inputs
<cr> is carriage return

A 004321

2-4 Update 1

AT700 Operating Features

Table 2-2. VCP Characters and Associated Registers

'RESPONSE!

A-register contents
B-register contents
E-regxster contents

: - -Global Reg:ster (GR) contents and sta:us (bst 1
: idlsabled) ~ ,

i
e
S G*;

o | x| oO-egister cont s
P | Owoox | Program execution address
RS | wooox | Switch register ontents
T | oooox oo ~ Memory contents pointed to by
v o - xxxxxx 2l | Violation register (mem
e . P X -register contents
: Y-reglster contents
RC a 000K : Central Interrupt Regrstef conten
RD* | xo0ox xooxx | Data for /O diagnose modes 1
RF* | wwox | lOfiags: Flags 20 thru 24, and
R | xooox Interrupt mask register
RR L xxxxx XXXXXX ' Parity violation: reglster nteais"
RW* XX Working map set (WMAP)
- DMA self-configuratiol
DMA control register
DMA address register
DMA count register
- /O scratch register
VO scratch register
/O scratch register
VO card data register
‘Optional /O card register
‘Optional /O card register
Output Help file ‘

t x = octal data.
* Regqsters that are mamtamed in the VCP save area of boot RAM

ks ,changed by the user the new value is ret
: C nge* the VCP Qmm is reiurned ’ :]

Operating Features

Table 2-3. VCP Commands

| COMMAND* MEAmﬂG

%B | Load and go (boot). Execute a speetﬂed Ioa :

%C Clear memory Set all memory to zero and pef«~)
form a preset. :

%E Execute. Start execution of program at locétron
B-register equals 0).

%L Load. Similar to %B ekcept do not start execu-
' tion. See Figure 2-2 for format. (%L followed by
%R is equivalent to %B)

%P Preset. Generate acontrol reset (CRS) signal
on the backplane to initialize all cards

in the save area and start execution at address,
specified by the P-register S

C%T Test. Initiate the self—test and return to VCP
(memory is sustained but the I/O system is
reset). : :

%U Start execution at addréss 30002B in boot -
memory, the opt:ona! user-supp!ied loader
program. .

- %W Write. Write to the selected device. (See,

~ Figure 2-2 for format.) When writing to a disc

drive, the Count and Pal

- Figure 2-1 must be i
and 00001.

w|ocagnns0® =

D Docremem Decremem memory pointer and i
dtsplay the contents of the M- and T-regrsters
valid only after T. :

Lk | List. List n blocks of esght memory Iocatiensz '
: . | starting with location pomted to by the
M-regtstar :

N Next. Same as D except
. Valid only after T. ;

RMxx List the 32 map reglsiers in the DMS map
specified by xx. :

Show the value of régister yy in ffmap‘:
If a number is input after this comman
regtster IS changed to the new value

~ RMxxPyy

7 - Output Hetp file.

: routme ‘and start program execution at comple—, :

P=2 (A-register equals =1 (alt ones) andu

%R Run. Set all registers to the appmpﬂate vaiuesw |

| *Must be followed by a carriage return.

2-6

A700

Data input is terminated by the operator entering a
carriage return. If during an input the program cannot
interpret a character, the program will output the
characters “1?” and then start a new line with the VCP
prompt. Entry errors may be corrected by backspacing
over them and entering the correct information. During
any data input the operator can abort the input by enter-
ing a rub-out (DEL). The loader commands, %B, %L, and
%W can also be aborted by a rub-out. When entering data
into a register, leading zeros may be omitted. If the
operator types a question mark, the VCP will output a
“help” file that summarizes acceptable command entries.

2-25. LOADER COMMANDS

The loader commands can be entered via the VCP in
either of two ways:

a. Allow the parameter default values (given in figure
2-1) to be used; or

b. Specify all necessary parameters.

The VCP loader command format is shown in figure 2-2.
The loader command error codes and their meanings are
listed in table 2-4.

2-26. VCP USER CONSIDERATIONS

When using the VCP to debug a program the user should
be aware of the following conditions:

a. The VCP program uses an interface card and modifies
the characteristics of that card. When the VCP pro-
gram exits, it sets Register 24 on the interface card to
all ones to allow software detection of a VCP in-
teraction and, thus, reinitialization of an operation.
(This also causes an interrupt if the interrupt system
is enabled.) Also, the VCP will leave the card in the
output mode with both Flag 30 and Control 30 set.

b. The status of the interrupt system (STC 4 (on) or CLC
4 (off)) is not indicated and will remain unchanged
unless %P is executed to preset the computer.

c. Memory protect is indicated by the sign bit of RW
(WMAP register) and may be modified.

2-27. VCP SLAVE FUNCTIONS

The slave feature of an I/O processor chip is used in
conjunction with the VCP program. The slave feature
enable is read into the I/O chip of the VCP interface card
on power-up and cannot be altered until the next power-up
condition. After power-up a change in the state of the
slave signal causes the /O chip to generate a slave request
on the next instruction fetch. When the request is granted,
the /O chip requests the CPU’s current P-register con-

A700

Operating Features

Figure 2-1. Loading Device Parameters and Media Formats (Part 1 of 2)

2-7

Operating Features A700

'DISC DRIVE
| Device: HP 9895, 7902 7906 7908, 7910, 7911, or 7912 DtSC Dnve, or cartridge t&pe drive of the 7908/11/12
; Disc Drive. : ,
Interface: HP 12009A HP-IB Interface
Default “

~ Parameters”: 002027

Format: - Count-Partial-Data
: i Countt = number of 64k byte blocks.
Partialt = number of words of partial 84k byte block. -
Data = 16-bit words, one word per iocatlon until Count and Partvai are satlsfued.‘

~ Loader: Uses HP-IB protl to commumcaie with the disc. The load sequence IS

1. Device clear |

2, Status check . =

3. Read/write 32k words via DMA
4. Status check

Note: Each file starts on‘a track boundary.

-

' COMPUTER NETWORK

‘Device: HP 1000 Computer

Interface: HP 12007A/ 12044A HDLC 1nterface

By 000024

, Reads absoiute binary or memory 1mage ﬂtes, wntes a 32k memo:y |mage Me

‘Loader: Standard handshake usmg HP dlstributed system protocol. Block number and unit number are not used.

*See anure 2-2 fi Eaader command formats
+The Count and Par%i»al vaiues are stored in memow Iocatlons 00000 and 00001 respectwely

Figure 2-1. Loading Device Parameters and Media Formats (Part 2 of 2)

2-8

A700 Operating Features

Figure 2-2. Loader Command Format

2-9

Operating Features

Table 2-4. VCP Loader Command Errors

ERROR N
CODE MEANING

2 Select code less than 20 octal. Lok
3 No card with the select code you specified.

Canrlﬁgo Tape Loader Errors

110 File forward error. Status ln B-regcster
111 Checksum error. :

112 No data before EOF (end of file).

120 Write error. Status in B-register.

PROM Module Loadér Errors

211 End of programs.
212 Bad format.
213 System Iarger than 32k must starton card boundary

08/1000 Loader Emm

310 | Time out after CLC 0. Check select code specuﬁad 4
311 Checksum error. P file not absolute binary. o
312 Time out after download fequest. :

313 Time out after file number. e ‘ :
314 Badtransfer (Central generate: Status in B-regoster ;
315 Time out after buffer request
316 Time out after count. echo.
317 Time out waiting for- data. ;
320 | Time out after VCP mode requests a QS write
321 Central will not accept data. Status in B-register.

Disc Loader Errors

411 Time out readmg disc type. Check HP»JB addre
412 Time out UDC (Universal Devba Code ¢
status Check disc.
413 Status error. Status in B~reg|
414 Time out during file mask.
415 Time out during seek. .
416 Time out during read or write command
417 | Time out during DMA of data.
420 Parity error during DMA transfer
1. | Time out during FIFO flush.

ring . DSJ (Devme Speciﬂed Jumpj

A700

tents and saves these contents in a register in the I/O chip.
The I/O chip then stores the starting address of the VCP
program into the CPU’s P-register, instructs the CPU to
enable the boot PROM, and allows execution to start. The
VCP program can be started in several other ways, as
follows:

a. On power-up and after the self-test the VCP program
starts execution if it is selected in lieu of a boot loader.
This selection may often be used because the loaders
can be invoked individually from the VCP.

b. When a HLT* (halt) instruction is executed the /O
processor chip interprets it in the same manner as a
change in the slave enable signal. This allows a
program to have breakpoints for debugging purposes.
(Note that a HLT instruction is not executed but
causes a memory protect interrupt if memory protect
is enabled.)

During execution of the VCP program, access to the
P-save register in the I/O chip is accomplished with LIA/B
3 and OTA/B 3 (without the instruction’s Flag bit set). It
should also be noted that the I/O chip will not execute a
slave request until an STC 2 (enable break feature) in-
struction has been executed. This prevents re-entry of the
VCP program once it has been entered.

During the self-test, the starting address of the VCP
program is assigned to the break-enabled I/O card by an
OTA/B 3,C* instruction with the A- or B-register set to the
address. This address can also be read back with an LIA/B
3,C* instruction.

* If break is not enabled on any I/O card, then the in-
struction has no effect.

This section describes the software data formats and the
base set machine-language instruction coding required to
operate the computer and its associated input/output
system. This section also describes the optional floating
point instructions, Scientific Instruction Set instructions,
and Vector Instruction Set instructions. Machine-
language instruction coding for the Dynamic Mapping
System is presented in Section IV.

3-1. DATA FORMATS

As shown in Figure 3-1, the basic data format is a 16-bit
word in which bit positions are numbered from 0 through
15 in order of increasing significance. Bit position 15 of the
data format is used for the sign bit; a logic 0 in this
position indicates a positive number and a logic 1 in this
position indicates a negative number. The data is assumed
to be a whole number and the binary point is therefore
assumed to be to the right of the number.

The basic word can also be divided into two 8-bit bytes or
combined to form a 32-bit double integer. The byte format
is used for character-oriented input/output devices; pack-
ing two bytes of data into one 16-bit word is accomplished
by software drivers. In I/O operations, the higher-order
byte (byte 1) is the first to be transferred.

The double integer format is used for extended arithmetic
in conjunction with the extended arithmetic instructions
described under paragraphs 3-21 and 3-22. Bit position 15
of the most-significant word is the sign bit and the binary
point is assumed to be to the right of the least-significant
word. The integer value is expressed by the remaining 31
bits.

The two floating point formats in Figure 3-1 are used with
floating point software. Bit position 15 of the most-
significant word is the mantissa sign and bit position 0 of
the least-significant word is the exponent sign. Bits 1
through 7 of the least-significant word express the ex-
ponent and the remaining bits express the mantissa. A
single precision floating point number is made up of a
23-bit mantissa (fraction) and sign and a 7-bit exponent
and sign, thus providing six significant decimal digits in
the mantissa. A double precision floating point number is
made up of a 55-bit mantissa and a 7-bit exponent and
sign, thus providing 16 significant decimal digits in the
mantissa. If either the mantissa or the exponent is

negative, that part must be stored in two’s complement
form. The number must be in the approximate range of
10738 to 10*®. When loaded into the accumulators, the
A-register contains the most-significant word and the
B-register contains the least-significant word.

Figure 3-1 also illustrates the octal notation for both
single-length (16-bit) and double-length (32-bit) words.
Each group of three bits, beginning at the right, is
combined to form an octal digit. A single-length (16-bit)
word can therefore be fully expressed by six octal digits
and a double-length (32-bit) word can be fully expressed by
11 octal digits. Octal notation is not shown for byte or
floating point formats, since bytes normally represent
characters and floating point numbers are given in decimal
form.

The range of representable numbers for single integer
data is +32,767 to —32,768 (decimal) or +77,777 to
—100,000 (octal). The range of representable numbers for
double integer data is +2,147,483,647 to —2,147,483,648
(decimal) or +17,777,777,777 to —20,000,000,000 (octal).

3-2. MEMORY ADDRESSING

3-3. PAGING

The computer memory is logically divided into pages of
1,024 words each. A page is defined as the largest block of
memory that can be directly addressed by the address bits
of a single-length memory reference instruction. (Refer to
paragraph 3-8.) These memory reference instructions use
10 bits (bits 0 through 9) to specify a memory address;
thus, the page size is 1,024 locations (2000 octal). Octal
addresses for each page, up to a maximum memory size of
32k words, are listed in Table 3-1.

Provision is made to directly address one of two pages:
page zero (the base page consisting of locations 00000
through 01777) and the current page (the page in which
the instruction itself is located). Memory reference
instructions reserve bit 10 to specify one or the other of
these two pages. To address locations on any other page,
indirect addressing is used as described in following
paragraphs. Page references are specified by bit 10 as
follows:

a. Logic 0 Page Zero (Z).

b. Logic 1 = Current Page (C).

3-1

Programming Information

A700

DATA FORMATS

--- > INCREASING MEMORY --->

SINGLE INTEGER

PACKED
BYTE
FORMAT

DOUBLE INTEGER

SINGLE PRECISION
FLOATING POINT.

DOUBLE PRECISION

FLOATING POINT

Sign Bit

/— Least significant data bit

1514131211109 8 7 6

54 32 10 \
Binary point

Byte O Byte 1
N N
r Y N
151413121110 98 76 54 32 10
Binary
/—-— Sign Bit point
5141312111098 76 54 32 10 151413121110 9 8 76 54 3210
[\ — . J
Integer
/-——- Mantissa sign 31 bits Exponent sign -—\
1541413121110 98 76 54 32 10 151413121110 98 76 54 32 10
AL J
VT v
Binary Mantissa Exponent
Point 23 bits 7 bits

/———— Mantissa sign

Exponent sign ——\

«

(

{

&

1541413 10 1514 2 1 0 1514 2 10 1514 8 76 54 32 10
~ AL -~ J
Binary point Mantissa Exponent
55 bits 7 bits

WORD
FORMAT

8’

INTEGER
DOUBLE WORD

OCTAL NOTATION

1514131211109 8 76 54 32 10

S 84 83 82

8

0

151413121110 98 76 54 32 10

151413121110 98 76 54 32 10

;\/—)_‘V—'&V—M‘%—“&'\J"Wﬂ/—&v—}

8]0 89 88 8

86

85

84 83 i 82 8 1 80

2270-2

3-2

Figure 3-1. Data Formats and Octal Notation

Update 1

A700

Table 3-1. Memory Paging

 OCTAL
ADDRESSES

~ MEMORY

. 00000 to 01777
02000 to 03777
04000 to 05777
06000 to 07777
10000 to 11777
12000 to 13777
| 14000 to 15777
| 20000 to 21777
| 22000 to 23777
24000 to 25777
| 26000 to 27777
| 30000 to 31777

32000 to 33777
34000 to 35777

S om N o s WN—OD

136000 to 37777

40000 to 41777
42000 to 43777
44000 to 45777
46000 to 47777
50000 to 51777
52000 to 53777
54000 to 55777
56000 to 57777
60000 to 61777
62000 to 63777
64000 to 65777
66000 to 67777
70000 to 71777
72000 to 73777
74000 to 75777

76000 to 77777

3-4. DIRECT AND INDIRECT
ADDRESSING

All memory reference instructions reserve bit 15 to specify
either direct or indirect addressing. For single-length
memory reference instructions, bit 15 of the instruction
word is used; for extended arithmetic memory reference
instructions, bit 15 of the address word is used. Indirect
addressing uses the address part of the instruction to
access another word in memory, which is taken as the new
memory reference for the same instruction. This new
address word is a full 16 bits long: 15 address bits plus
another direct/indirect bit. The 15-bit length of the
address permits access to any location in memory. If bit 15
again specifies indirect addressing, still another address is
obtained; thus, multistep indirect addressing may be done
to any number of levels. The first address obtained that

Programming Information

does not specify another indirect level becomes the
effective address for the instruction. Direct or indirect
addressing is specified by bit 15 as follows:

Direct (D).

a. Logic 0

b. Logic 1 Indirect (1).

3-5. MEMORY MAPPING

Memory mapping is a standard feature of the A700
computer and is used to access all locations of main
memory. Memory mapping is provided by the Dynamic
Mapping System described in Section IV.

3-6. RESERVED MEMORY LOCATIONS

The first 64 memory locations of the base page (octal
address 00000 through 00077) are reserved as listed in
Table 3-2. The first two locations are reserved as addresses
for the two 16-bit accurmulators (the A- and B-register). If
options or input/output devices corresponding to locations
00020 through 00077 are not included in the system
configuration, these locations can be used for program-
ming purposes. The last 64 locations of the physical base
page (octal addresses 1700 through 1777) are reserved for
use by the Virtual Control Panel program for the string
area.

Table 3-2. Reserved Memory Locations

00007
00010
100011-0001;
00020-00077

01700-01777 | VCF string area.

3-3

Programming Information

3-7. NONEXISTENT MEMORY

Nonexistent memory is defined as those locations not
physically implemented in the machine. Any attempt to
write into a nonexistent memory location will be ignored
(no operation). Any attempt to read from a nonexistent
memory location will return an all-ones word (177777
octal); no parity error occurs.

3-8. BASE SET INSTRUCTION
FORMATS

The base set of instructions are classified according to
format. The six formats used are illustrated in Figure 3-2
and described in the following paragraphs except for the
Dynamic Mapping System (DMS) instructions, which are
described in Section IV. In all cases where a single bit is
used to select one of two cases (e.g., D/I), the choice is made
by coding a logic O or logic 1, respectively.

[refiapafizlfiole e 7]6[5] a] 3] 2[1]0]
1 | J . | .
B T |

| 1 zicoy o :l’

]! nstrucnon] l Memory Address "Al“' ‘
o 1 ‘ .

© MEMORY
REFERENCE

PP
B |
o
! it
|

|
g
|
|
A/B S/A B |
REGISTER ‘ - e
i 1 b
REFERENCE[?“s I l ., fnstruction J
| : ! ol
i | i
I o |
| [| {
| I .
. | !] 1
1 | I 1 |
1 A/B | i
|NPUT/OUTPUTI Class []cnsnu'cnon Channel No. J

| !
| Instruction -

|

! L
ARITHMETIC [[[e]
© MEMORY. 1 : : 7
REFERENCE 1 l o Memory Address J

oAy T B]

|
:Class : '(hstmc:m.)n
f g |
| | bl
EXTENTED ;| ¥ | . AT ; .
ARITHMETIC l [I[R l o of _ft;
|
|
1
|
[

REGISTER Shifts |
REFERENCE Tl

i

EXTENDED | L
tnstruc‘non‘_li

INSTRUCTION I Class
GROUP

|
|
.

I
1

|
Sb
0
IR I SO VU B
Class L Instruction J

FLOATING 1
POINT

Figure 3-2. Base Set Instruction Formats

3-4

A700

3-9. MEMORY REFERENCE
INSTRUCTIONS

This class of instructions, which combines an instruction
code and a memory address into one 16-bit word, is used to
execute some function involving data in a specific memory
location. Examples are storing, retrieving, and combining
memory data to and from the accumulators (A- and
B-registers) or causing the program to jump to a specified
location in memory.

The memory cell referenced (i.e., the absolute address) is
determined by a combination of 10 memory address bits (0
through 9) in the instruction word and 5 bits (10 through
14) assumed from the current contents of the M-register.
This means that memory reference instructions can
directly address any word in the current page;
additionally, if the instruction is given in some location
other than the base page (page zero), bit 10 (Z/C) of the
instruction doubles the addressing range to 2,048 locations
by allowing the selection of either page zero or the current
page. (This causes bits 10 through 14 of the address
contained in the M-register to be set to zero instead of
assuming the current contents of the M-register.) This
feature provides a convenient linkage between all pages of
memory, since page zero can be reached directly from any
other page.

As discussed under paragraph 3-4, bit 15 is used to specify
direct or indirect memory addressing. Note also that since
the A- and B-registers are addressable, any single-word
memory reference instruction can apply to either of these
registers as well as to memory cells. For example, an ADA
0001 instruction adds the contents of the B-register
(address 0001) to the contents currently held in the
A-register; specify page zero for these operations since the
addresses of the A- and B-registers are on page zero.

3-10. REGISTER REFERENCE
INSTRUCTIONS

In general, the register reference instructions manipulate
bits in the A-register, B-register, and E-register; there is
no reference to memory. This group includes 39 basic
instructions which may be combined to form a one-word
multiple instruction that can operate in various ways on
the contents of the A-, B-, and E-registers. These 39 in-
structions are divided into two subgroups: the shift/rotate
group (SRG) and the alter/skip group (ASG). The appro-
priate subgroup is specified by bit 10 (S/A). Typical opera-
tions are clear and/or complement a register, conditional
skips, and register increment.

3-11. INPUT/OUTPUT INSTRUCTIONS

The input/output instructions use bits 6 through 11 for a
variety of I/O instructions and bits O through 5 to apply
the instructions either to a specific 'O channel (if the
Global Register is disabled) or to an I/O card register. This
provides the means of controlling all peripherals con-
nected to the I/O channels and for transferring data to and
from these peripherals. Included also in this group are

A700

instructions to control the interrupt system, overflow bit,
and computer halt.

3-12. EXTENDED ARITHMETIC MEMORY
REFERENCE INSTRUCTIONS

As the single-word memory reference instruction described
previously, the extended arithmetic memory reference
instructions include an instruction code and a memory
address. In this case, however, two words are required.
The first word specifies the extended arithmetic class
(bits 12 through 15 and 10) and the instruction code (bits 4
through 9 and 11); bits 0 through 3 are not needed and are
coded with zeros. The second word specifies the memory
address of the operand. Since the full 15 bits are used for
the address, this type of instruction may directly address
any location in memory. As with all memory reference
instructions, bit 15 is used to specify direct or indirect
addressing. Operations performed by this class of
instructions are integer multiply and divide {(using
double-length product and dividend) and double load and
double store.

3-13. EXTENDED ARITHMETIC REGISTER
REFERENCE INSTRUCTIONS

This class of instructions provides long shifts and rotates
on the combined contents of the A- and B-registers. Bits
12 through 15 and 10 identify the instruction class; bits 4
through 9 and 11 specify the direction and type of shift;
and bits 0 through 3 control the number of shifts, which
can range from 1 to 16 places.

3-14. EXTENDED INSTRUCTIONS

The extended instructions include index register instruc-
tions, bit and byte manipulation instructions, and move
and compare instructions. Instructions comprising the ex-
tended instruction group are one, two, or three words in
length. The first word is always the instruction code;
operand addresses are given in the words following the
instruction code or in the A- and B-registers. The operand
addresses are 15 bits long, with bit 15 (most-significant
bit) generally indicating direct or indirect addressing.

3-15. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtrac-
tion, multiplication, and division of floating point quan-
tities. Conversion routines are provided for transforming
numerical integer representations to/from floating point
representations.

3-16. LANGUAGE INSTRUCTION SET

The language instruction set performs several frequently
used high-level language operations, including parameter
passing, array address calculations, and floating point
conversion, packing, rounding and normalizing.

Programming Information

3-17. DOUBLE INTEGER INSTRUCTIONS

The double integer instructions allow arithmetic and test
operations on 32-bit quantities. The data format for double
integer values is shown in Figure 3-1.

3-18. VIRTUAL MEMORY INSTRUCTIONS

The virtual memory instructions perform accesses to
Virtual Memory and the Extended Memory Area, which
are extensions of logical memory.

3-19. OPERATING SYSTEM
INSTRUCTIONS

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

3-20. BASE SET INSTRUCTION CODING

Machine language coding for the base set of instructions
are provided in following paragraphs. Definitions for these
instructions are grouped according to the instruction type:
memory reference, register reference, input/output,
extended arithmetic memory reference, and extended
arithmetic register reference.

Directly above each definition is a diagram showing the
machine language coding for that instruction. The gray
shaded bits code the instruction type and the green shaded
bits code the specific instruction. Unshaded bits are
further defined in the introduction to each instruction
type. The mnemonic code and instruction name are in-
cluded above each diagram.

In all cases where an additional bit is used to specify a
secondary function (D/I, Z/C, or H/C), the choice is made
by coding a logic 0 or logic 1, respectively. In other words,
a logic 0 codes D (direct addressing), Z (zero page), or H
(hold flag); a logic 1 codes I (indirect addressing), C
(current page), or C (clear flag).

3-21. MEMORY REFERENCE
INSTRUCTIONS

The following 14 memory reference instructions execute a
function involving data in memory. Bits 0 thrcugh 9
specify the affected memory location on a given memory
page or, if indirect addressing is specified, the next
address to be referenced. Indirect addressing may be
continued to any number of levels; when bit 15 (D/I) is a
logic 0 (specifying direct addressing), that location will be
taken as the effective address. The A- and B-registers may
be addressed as locations 00000 and 00001 (octal),
respectively.

If bit 10 (Z/C) is a logic 0, the memory address is an page
zero; if bit 10 is a logic 1, the memory address is on the

3-5

Programming Information

current page. If the A- or B-register is addressed, bit 10
must be a logic 0 to specify page zero, unless the current
page is page zero.

ADA ADD TO A
15114 131211110 98 7 65 4 3|2 1 0

Clifofofofe] | T T T [TTT]

\)
Y
Memory Address

Adds the contents of the addressed memory location to the
contents of the A-register. The sum remains in the
A-register and the contents of the memory cell are
unaltered. The result of this addition may set the extend
bit or the overflow bit. (Extend and overflow examples are
illustrated on page A-13.)

ADB ADDTOB
15114 13121110 9|8 7 6]5 4 3|2 1 0

Colrfofofefre] F [T [[TT]

Y
Memory Address

Adds the contents of the addressed memory location to the
contents of the B-register. The sum remains in the
B-register and the contents of the memory cell are
unaltered. The result of this addition may set the extend
bit or the overflow bit. (Extend and overflow examples are

A700

CPB COMPARE TO B
14 131211110 918 7 6|5 4 3|2 1 0

15
CofrfofafrlZef J [[T []7]]

A\
Memory Address

Compares the contents of the addressed memory location
with the contents of the B-register. If the two 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed. Neither the B-register contents nor memory cell
contents are altered.

IOR “INCLUSIVE OR” TO A
14 131211110 9]8 7 6]5 4 3]2 1 0

15
Cdofefefofrd [[[T][]

A4
Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“inclusive or' operation. The contents of the memory cell
are unaltered.

illustrated on page A-13.) Y4 INCREMENT AND SKIP IF ZERO
15114 1312|1110 9]8 7 6|5 4 3|2 1 0
Ao cano10a Pfola[1% [[T[T
15114 131211110 9|8 7 6|5 4 3|2 1 0 - /
[07.'6 Tﬂh OIZ/CI] l l I l l Memor;/Address
\— V / Adds one to the contents of the addressed memory

Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“and’’ operation. The contents of the memory cell are
unaltered.

CPA COMPARE TO A
15114 131241110 98 7 65 4 3|2 1 0

Coltfolofofrel T] [T][]]]

\— /
\'4
Memory Address

Compares the contents of the addressed memory location
with the contents of the A-register. If the two 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed. Neither the A-register contents nor memory cell
contents are altered.

3-6

location. If the result of this operation is zero (memory
contents incremented from 177777 to 000000), the next
instruction is skipped; i.e., the P-register is advanced two
counts instead of one count. If the result of this operation
is not zero, the next sequential instruction is executed. In
either case, the incremented value is written back into the
memory cell.

JMP JUMP
15114 13121110 98 7 6]5 4 3|2 1 0

Lodoffofofee] [[][]]]

\ V]
Y
Memory Address

Transfers control to the addressed memory location. That
is, a JMP causes the P-register count to set according to
the memory address portion of the JMP instruction so
that the next instruction will be read from that location.

AT00

JSB JUMP TO SUBROUTINE
15|14 13121110 9|8 7 6|5 4 3|2 1 0

Llofolnfafad T[T T[T

\ J
\'4
Memory Address

This instruction, executed in location P (P-register count),
causes the computer control to jump unconditionally to
the memory location (m) specified by the memory address
portion of the JSB instruction. The contents of the
P-register plus one (return address) is stored in memory
location m, and the next instruction to be executed will be
that contained in the next sequential memory location
(m + 1). A return to the main program sequence at P + 1
will be effected by a JMP indirect through location m.

LDA LOAD A
1514 13121110 9]8 7 6]5 4 3|2 1 0

Clofifofelrel [T T[] /[]

\ /
Y

Memory Address

Loads the contents of the addressed memory location into
the A-register. The contents of the memory cell are
unaltered.

LDB LOAD B
1514 1312|1110 98 7 6|5 4 3|12 1 0

Lhlfolh P TTTTTTT L

\ J
\'4
Memory Address

Loads the contents of the addressed memory location into
the B-register. The contents of the memory cell are
unaltered.

STA STORE A
15014 13121110 98 7 6|5 4 312 1 0

Cloalelofofe] [T TT T]]

A4
Memory Address

Stores the contents of the A-register in the addressed
memory location. The previous contents of the memory
cell are lost; the A-register contents are unaltered.

STB STOREB
15|14 13121110 98 7 6]5 4 3]2 1 0

oDl [T

\'4
Memory Address

Programming Information

Stores the contents of the B-register in the addressed
memory location. The previous contents of the memory
cell are lost; the B-register contents are unaltered.

XO0R “EXCLUSIVEOR” TO A
15014 13 12]1110 98 7 6|5 4 3j2 1 0

Pdofafofoloel f [[T [[]1]]

v~
Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“exclusive or’’ operation. The contents of the memory cell
are unaltered.

3-22. REGISTER REFERENCE
INSTRUCTIONS

The 39 register reference instructions execute functions
on data contained in the A-register, B-register, and E-
register. These instructions are divided into two groups:
the shift/rotate group (SRG) and the alter/skip group
(ASG). In each group, several instructions may be com-
bined into one word. Since the two groups perform sepa-
rate and distinct functions, instructions from the two
groups cannot be mixed. Unshaded bits in the coding diag-
rams are available for combining other instructions.

3-23. SHIFT/ROTATE GROUP. The 20 in-
structions in the shift/rotate group (SRG) are defined first;
this group is specified by setting bit 10 to a logic 0. A
comparison of the various shift/rotate functions are il-
lustrated in Figure 3-3. Rules for combining instructions
in this group are as follows (refer to Table 3-3):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

b. References can be made to either the A-register or
B-register, but not both.

c. Sequence of execution is from left to right.

d. In machine code, use zeros to exclude unwanted
microinstructions.

e. Code a logic 1 in bit position 9 to enable shifts or
rotates in the first position; code a logic 1 in bit
position 4 to enable shifts or rotates in the second
position.

f. The extend bit is not affected unless specifically stated.
However, if a ‘‘rotate-with-E”’ instruction (ELA, ELB,
ERA, or ERB) is coded but disabled by a logic 0 in kit
position 9 and/or position 4, the E-register will be
updated even though the A- or B-register contents are
not affected; to avoid this situation, code a ‘‘no
operation” (three zeros) in the first and/or second
positions.

3-7

Programming Information

Table 3-3. Shift/Rotate Group Combining Guide

"‘/\"‘\l

“s
)

ALS
ARS
RAL
RAR
ALR
ALF

[.CLE]

ERA
ELA

l\.’\/\/J

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB

{,CLE]

l""\J

r*

[.SLA} | ';f

1suel |,/ RBE

| /ALs]
ARS(]
W

BLS

ARS
BRS

RAL
RBL

RAR
RBR

ALR
BLR

ERA
ERB

ELA
ELB

ALF
BLF

A or Begsler;

S N
MOEETEE T

[

wn

SR EEPN
BEEEENENEREEAE

{caannnnnannnniic)f

nlwlels'

1 E m 1

|15|11l\3l12
\.

wbi

3-8

Figure 3-3. Shift and Rotate Functions

A700

ALF ROTATE A LEFT FOUR

15[14 13 12]11 10 “9{‘8 7 6|54 3[2 10

L

1st Position 2nd Position

Rotates the A-register contents (all 16 bits) left four
places. Bits 15, 14, 13, and 12 rotate around to bit
positions 3, 2, 1, and 0, respectively. Equivalent to four
successive RAL instructions.

ALR A LEFT SHIFT, CLEAR SIGN

1’5”141312 1110 9 8 7 6 5 4 3 2 1 0

v

1st Position 2nd Position

Shifts the A-register contents left one place and clears sign
bit 15.

ALS A LEFT SHIFT
15 14’1312 1110 9 8 7 6 5 4 3 2 10
[0]ofojofolo]1] [1] folofo

1st Position 2nd Position

Arithmetically shifts the A-register contents left one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
The bit shifted out of bit position 14 is-lost; a logic 0
replaces vacated bit position 0.

ARS A RIGHT SHIFT
5 4 3 2 10

15114 13 12

fofofolofojofrfofof1] [1] Jojo[
1st Position 2nd Position

Arithmetically shifts the A-register contents right one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
A copy of the sign bit is shifted into bit position 14; the bit
shifted out of bit position 0 is lost.

BLF ROTATE B LEFT FOUR
15[14 13 12]11 10 9

1st Position 2nd Position

A700

Rotates the B-register contents (all 16 bits) left four
places. Bits 15, 14, 13, and 12 rotate around to bit
positions 3, 2, 1, and 0, respectively. Equivalent to four
successive RBL instructions.

BLR B LEFT SHIFT, CLEAR SIGN

]

L

1st Position 2nd Position

Shifts the B-register contents left one place and clears sign
bit 15.

BLS B LEFT SHIFT

15]14 13 12]1110 9] 8 7“6 54 3]1210

S N

1st Position 2nd Position

Arithmetically shifts the B-register contents left one place,
15 magnitude bits only; bit 15 (sign) is not affected. The
bit shifted out of bit position 14 is lost; a logic 0 replaces
vacated bit position 0.

BRS B RIGHT SHIFT
J141312f1110 98 7 6[5 4 3]2 1 0

[1] Jefols

1st Position 2nd Position

Arithmetically shifts the B-register contents right one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
A copy of the sign bit is shifted into bit position 14; the bit
shifted out of bit position 0 is lost.

CLE CLEARE
15114 13 12 87 6|54 3]2 10

HEOEERE

Clears the E-register; i.e., the extend bit becomes a logic 0.

Programming Information

ELA ROTATE E LEFTWITH A
15 141312”’1110‘9 8 7 6 5 4 3 2 1 0
[ofofofofo] 1]

L

‘Ist Position 2nd Position

Rotates the E-register content left with the A-register
contents (one place). The E-register content rotates into
bit position 0; bit 15 rotates into the E-register.

ELB ROTATE E LEFTWITH B
1511413 1211110 9{8 7 B 5 4 3 2 10

[ofofofofafoft] e
iy

1st Position 2nd Position

Rotates the E-register content left with the B-register
contents (one place). The E-register content rotates into
bit position 0; bit 15 rotates into the E-register.

ERA ROTATE E RIGHT WITH A

151413 12J1110 9]8 7 6]5 4 3]2 1 0

[ofofojo] [Jrfelt

B T

1st Position 2nd Position

Rotates the E-register content right with the A-register
contents (one place). The E-register content rotates into
bit position 15; bit 0 rotates into the E-register.

ERB ROTATE E RIGHT WITH B
8 7 615 4 3]2 10

JERER

Y L

1st Position 2nd Position

1511413 12]1110 9

Rotates the E-register content right with the B-register
contents (one place). The E-register content rotates into
bit position 15; bit 0 rotates into the E-register.

NOP NO OPERATION
8 7 6|54 312 1 0]

15114 13 12

This all-zeros instruction causes a no-operation cycle.

3-9

Programming Information

RAL ROTATE A LEFT

15]14 13 12J1110 9|8 7 6|5 4 3}]2 1 0
[olololofolo 1 Jo[a o] [1] Jol1]o

LY

1st Position 2nd Position

Rotates the A-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

RAR ROTATE A RIGHT

15]14 13 12]1110 9§} 8 54 312 10
[ofo oTofofo 1 ot e] [1] foir]s

A N

1st Position 2nd Position

Rotates the A-register contents right one place (all 16
bits). Bit 0 rotates into bit position 15.

RBL ROTATE B LEFT

15[1413 12]1110 9|8 7 6]5 4 3]2 1 0
[o]ooJof1JoT1 o]t o] [1] [ofr]o

A700

SLB SKIP IF LSB OF B IS ZERO
5141312’11109 8 7 6|54 3|12 10

1
lofofofofofol | [[[[[o] []

Skips the next instruction if the least-significant bit (bit 0)
of the B-register is a logic 0.

3-24. ALTER/SKIP GROUP. The 19 instructions
comprising the alter/skip group (ASG) are defined next.
This group is specified by setting bit 10 to a logic 1. Rules

for combining instructions are as follows (refer to
Table 3-4):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

b. References can be made to either the A-register or
B-register, but not both.

c. Sequence of execution is from left to right.

d. If two or more skip functions are combined, the skip
function will occur if either or both conditions are met.
One exception exists: refer to the RSS instruction.

e. In machine code, use zeros to exclude unwanted
instructions.

Table 3-4. Alter/Skip Group Combining Guide

R T

1st Position 2nd Position

Rotates the B-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

RBR ROTATE B RIGHT

15]1413 12]1110 9]8 7 6]5 4 3]2 1 0
[oJoJofofsfofsfofo o] [1] Jo1]1]

R

1st Position 2nd Position

Rotates the B-register contents right one place (all 16
bits). Bit 0 rotates into bit position 15.

SLA SKIP IF LSB OF A IS ZERO
15|14 13121110 9|8 7 6|5 4 3|2 1 0

lofojojofojo[| [T [[0 | |

Skips the next instruction if the least-significant bit (bit 0}
of the A-register is a logic 0.

3-10

aey| :
ACME! | 1.SSA] [SLA] L.INA] [,S2A) [RSS]

. : CLE .
:} l.sEZ) HCME}] 1.5s8] {,SLB] [,INB] [,528] [,RSS]
o lece] | ‘ ‘

CCA CLEAR AND COMPLEMENT A
5114 131211110 918 7 65 4 3]2 1 0

1
[ofofofofoln A [s [T [T T[]

Clears and complements the A-register contents; i.e., the
contents of the A-register become 177777 (octal). This is
the two’s complement form of -1.

ccs CLEAR AND COMPLEMENT B
5[14 13121110 918 7 6}]5 4 3|2 1 0

1
[oJolofofalala ol T T T T[]

Clears and complements the B-register contents; i.e., the
contents of the B-register become 177777 (octal). This is
the two’s complement form of -1.

A700

CCE CLEAR AND COMPLEMENT E

Programming Information

INA INCREMENT A

150114 131211110 98 7 6|5 4 3]2 1 0

[ofofofo] T [WAl T T T[]

Clears and complements the E-register content (extend
bit); i.e., the extend bit becomes a logic 1.

CLA CLEAR A
15114 131211110 9[}8’7 6154 3]2 10

[ofoTofofoolofo] [T T [1 11

Clears the A-register; i.e., the contents of the A-register
become 000000 (octal).

CLB CLEAR B
15114 13 12 111:0 9_8: 76154 31210
LofolofotTolon T TT T T

Clears the B-register; i.e., the contents of the B-register
become 000000 (octal).

CLE CLEARE
15114 131211110 9|8 7 65 4 3]2 1 0

[ofofofof [n[[[ofof [] [

Clears the E-register; i.e., the extend bit becomes a logic 0.

15114 13 12]1110 9|8 7 65 4 3|2 1 0

oJofofofo[o] | [T [T T T Tl]

Increments the A-register by one. The overflow bit will be
set if an increment of the largest positive number (077777
octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

INB INCREMENT B
15014 13121110 918 7 65 4 3]2 1 0

[ofofofofe o[T T [T [T o]]

Increments the B-register by one. The overflow bit will be
set if an increment of the largest positive number (077777
octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

RSS REVERSE SKIP SENSE
15]14 131211110 9|8 7 6]5 4 3]2 1 0

[ofofolof W[[T TIT[]]

Skip occurs for any of the following skip instructions, if
present, when the non-zero condition is met. An RSS
without a skip instruction in the word causes an
unconditional skip. If a word with RSS also includes both
SSA and SLA (or SSB and SLB), bits 15 and 0 must both
be logic 1's for a skip to occur; in all other cases, a skip
occurs if one or more skip conditions are met.

CMA COMPLEMENT A SEZ SKIP IF E IS ZERO
15114 ’1312‘ 1ﬂ1 1u0 9 ’8: 7 6154 31210 1’5 ’14 1312 1110 918 7 615 4 312 10
fofofofofo[aafo] T T [I [1] lolololol LT T T T T T [T 1

Complements the A-register contents (one’s complement).

CMB COMPLEMENT B
14 13121110 9|8 7 6}5 4 312 1 0

15
[ofofofofa[anfol T T T [T 11

Complements the B-register contents (one’s complement).

CME COMPLEMENT E

15|14 13121110 98 7 6]5 4 3]2 1 0

[ofoJofo]l W7 J Tae] [[] 1]

Complements the E-register content (extend bit).

Skips the next instruction if the E-register content (extend
bit) is a logic 0.

SLA SKIP IF LSB OF A IS ZERO
15114 13121110 9|8 7 6]5 4 3]2 1 0

[ofofofofols] J T [[[[of []

Skips the next instruction if the least-significant bit (bit 0)
of the A-register is a logic 0; i.e., skips if an even number is
in the A-register.

SLB SKIP IF LSB OF B IS ZERO

54 3|12 10

L[]]

15014 1312]1110 918 7 6

[ofofofofo e[| [|

3-11

Programming Information

Skips the next instruction if the least-significant bit {bit 0)
of the B-register is a logic 0; i.e., skips if an even number is
in the B-register.

SSA SKIP IF SIGN OF A IS ZERO

1514 131211110 9|8 7 65 4 3]2 1 0

lofofofofof[s[[[[] [+]]]|

Skips the next instruction if the sign bit (bit 15) of the
A-register is a logic 0; i.e., skips if a positive number is in
the A-register.

SSB SKIP IF SIGN OF B IS ZERO
1,5 14 1312‘1110 918 7 6]5 4 3]2 1 0
[ofofolon D[T T T [0T 1 [

Skips the next instruction if the sign bit (bit 15) of the
B-register is a logic 0; i.e., skips if a positive number is in
the B-register.

SZA SKIP IF A IS ZERO
15114 131211110 918 7 6|5 4 3]2 1 0

[ofofofofofo] T [[T [[[1]

Skips the next instruction if the A-register contents are
zero (16 zeros).

SZB SKIP IF B IS ZERO

14131211110 9]8 7 65 4 3|2 1 0

15
[oJofofod 0] T T T T T 11 I}

Skips the next instruction if the B-register contents are
zero (16 zeros).

3-25. INPUT/OUTPUT INSTRUCTIONS

The following input/output instructions provide the
capability of setting, clearing or testing the flag and
control bits associated with DMA, programmed I/O, in-
terrupts, memory protect, time base generator, parity
error, Global Register, and overflow. I/O instructions with
select codes of seven or less have various functions. (Refer
to Table 6-3 for further information regarding specific
select-code functions.) I/O instructions permit data trans-
fer between the A- and B-registers and either specific 'O
devices or between registers associated with memory
protect, parity error, or interrupts. The various registers
and I/O devices are addressed by means of their register
numbers and select codes.

3-12

A700

Bit 11, where relevant, specifies the A- or B-register or
distinguishes between set control and clear control;
otherwise, bit 11 may be a logic 0 or a logic 1 without
affecting the instruction (although the assembler will
assign zeros in this case). In those instructions where bit
position 9 includes the letters H/C, the programmer has
the choice of holding (logic 0) or clearing (logic 1) the
device flag after executing the instruction. (Exception: the
H/C bit associated with instructions SOC and SOS holds or
clears the overflow bit instead of the device flag.) Note
that this H/C option is not supported on many of the /'O
instructions with select code less than 10 octal.

Bits 8, 7, and 6, specify the appropriate I/O instruction.
When the Global Register is enabled, bits 5 through 0
apply the instruction to a register on the I/O card whose
select code is in the Global Register. (The Global Register
is discussed further in paragraph 7-4.)

NOTE

Execution of I/O instructions is inhibited
when the memory protect feature is
enabled. Refer to paragraph 6-3.

The following instruction descriptions assume that the
global register is disabled and, therefore, the instructions
are addressed to a select code.

CLC CLEAR CONTROL
1514’131211109 8 7 6|54 312 10

[ofolofiaeh i T T 1]

2\
Select Code or
Register Number

Clears the control bit (Control 30) of the selected 1/O
channel or function. This turns off the specific device
channel and prevents it from interrupting. A CLC 00
instruction clears the control bits from select code 20 up-
ward, effectively turning off all I/O devices.

CLF CLEAR FLAG
15]14 1312|1110 9|8 7 6|5 4 3]2 1 0

[1fofofo] [afsfofofa] [[[| |

\'4
Select Code or
Register Number

Clears the flag (Flag 30) of the selected I/O channel or
function. A CLF 00 instruction disables the interrupt sys-
tem for the time base generator and all interface cards;
this does not affect the status of the individual channel
flags.

CLO CLEAR OVERFLOW

1514 1312J1110 9f8 7 6[5 4 3[2 1 0
1Jofofofoj1]1fofo]1]ojolo]o]o]1

Clears the overflow bit.

A700

HLT HALT
]5 ’14 13 12 11 10 8 7 615 4 312 10
[loolo Tipelololol [[L]

-
Select Code or
Register Number

Halts the computer, holds or clears the flag of the selected
1/0 channel, and invokes the virtual control panel
program. The HLT instruction will be contained in the
T-register, which is displayed on the VCP when the VCP
program starts executing. The P-register (also displayed)
will normally contain the HLT location plus one. Note
that if break is not enabled on any I/O card, the HLT
instruction has no effect.

Programming Information

By executing a logical “inclusive or” function, merges the
contents of the addressed I/O buffer or special function
register into the B-register.

OTA OUTPUT A
15{14 13 12 I5 4 32 10
\ J

\

Register Number

Outputs the contents of the A-register to the addressed I/O
buffer or special function register. The contents of the
A-register are not altered.

LIA LOAD INTO A
1514 13 121110 9 6]5 4 3]2 1 o] o8 OUTPUT B
olofofo] [T LT 15]14 13 12 8 7 6[5 4 3[]2 10
\ - 2 o] [[1]]
Register Number \ /
Y

Loads the contents of the addressed I/O buffer or special
function register into the A-register.

LIB LOAD INTO B
54 3|2 10

Register Number

Loads the contents of the addressed I/O buffer or special
function register into the B-register.

MIA MERGE INTO A
1413 12]1110 9 54 312 10

Register Number

By executing a logical “inclusive or” function, merges the
contents of the addressed I/O buffer or special function
register into the A-register.

MiB MERGE INTO B
15014 13 12]1110 98 7 65 4 312 1 0

HE

—
Register Number

Register Number

Outputs the contents of the B-register to the addressed I/O
buffer or special function register. The contents of the
B-register are not altered.

SFC SKIP IF FLAG CLEAR
1]t 1312]1110 9]8 7 6]5 4 3]2 1 0
1folojo fofafo] [[] [|
\ /
—

Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag
30) of the selected channel is clear (device busy).

SFS SKIP IF FLAG SET
15‘ 14 13 12" 1 10 9 3 7 5 4 3|12 10
\\ /
Y

Select Code or
Register Number

Skips the next programmed instrucﬁon if the flag (Flag
30) of the selected channel is set (device ready).

SOC SKIP IF OVERFLOW CLEAR
‘15’14131211,1098‘76543210
1 Tol1vcfol1]ofo]o]ofo]o]1

3-13

Programming Information

Skips the next programmed instruction if the overflow bit
is clear. Use the H/C bit (bit 9) to either hold or clear the
overflow bit following the completion of this instruction
(whether the skip is taken or not).

S0S SKIP IF OVERFLOW SET
1514 13121110 98 7 6]5 4 3[2 1 0
[1Tolofofo]1vcfo]1T1]a]o]ofo]o]s

Skips the next programmed instruction if the overflow bit
is set. Use the H/C bit (bit 9) to either hold or clear the
overflow bit following the completion of this instruction
(whether the skip is taken or not).

STC SET CONTROL
15114 1312|1110 98 7 6|5 4 3|2 1 0

Lifofojofofpefrfefe] | [] [|

\4
Select Code or
Register Number

Sets the control bit (Control 30) of the selected I/0 channel
or function.

STF SET FLAG
15114 13 1241110 918 7 6]5 4 3]2 1 0

L1fofojof [1]ofojofr] [[| [|

4
Select Code or
Register Number

Sets the flag (Flag 30) of the selected I/O channel or func-
tion. An STF 00 instruction enables the interrupt system
for the time base generator and all interface cards.

A700

As for all memory reference instructions, indirect
addressing to any number of levels may also be used. A
logic 0 in bit position 15 specifies direct addressing; a logic
1 specifies indirect addressing.

oIv DIVIDE

1511413 12J1110 98 7 6]5 4 3]J2 1 O
1jo0j0/0fjojo0j0j1/0/0j0|0(0JO|0O|O
5,

\— _/

\'4
Memory Address

Divides a double-word integer in the combined B- and
A-registers by a 16-bit integer in the addressed memory
location. The result is a 16-bit integer quotient in the
A-register and a 16-bit integer remainder in the B-register.
Overflow can result from an attempt to divide by zero, or
from an attempt to divide by a number too small for the
dividend. In the former case (divide by zero), the division
will not be attempted and the B- and A-register contents
will be unchanged except that a negative quantity will be
made positive. In the latter case (divisor too small), the
execution will be attempted with unpredictable results left
in the B- and A-registers. If there is no divide error, the
overflow bit is cleared.

DLD DOUBLE LOAD
15141312P110 9ls 7 6]5 4 3|2 1 0
1]ojofof1/o{ofo|[1]{o]o[{ofofo0]0
D/'

e v J

Memory Address

Loads the contents of addressed memory location m
(and m + 1) into the A- and B-registers, respectively.

STO SET OVERFLOW DST DOUBLE STORE
15114 131211110 918 7 6|5 4 312 1 0 15114 13 12111 10 8 7 615 4 312 1 0
[1]ololoJol1]o]ofol1folofofo]oi1 1{oTolof1]olo|1]o]ofololo]o]0]0
O,
Sets the overflow bit. !
. /
Y

3-26. EXTENDED ARITHMETIC MEMORY

REFERENCE INSTRUCTIONS

The four extended arithmetic memory reference in-
structions provide for integer multiply and divide and for
loading and storing double-length words to and from the
A- and B-registers. The complete instruction requires two
words: one for the instruction code and one for the
address. When stored in memory, the instruction word is
the first to be fetched; the address word is in the next
sequential location.

Since 15 bits are available for the address, these
instructions can directly address any location in memory.

3-14

Memory Address

Stores the double-word quantity in the A- and B-registers
into addressed memory locations m (and m + 1),
respectively.

MPY MULTIPLY
1511413 12]1110 9]8 7 65 4 3j2 1 0
1{oj0j0j0/0/0j0|1/0jO[0j0JO|O|D
o/, |

N— v /

Memory Address

A700

Multiplies a 16-bit integer in the A-register by a 16-bit
integer in the addressed memory location. The resulting
double-length integer product resides in the B- and
A-registers, with the B-register containing the sign bit and
the most-significant 15 bits of the quantity. The A-register
may be used as an operand (i.e., memory address 0),
resulting in an arithmetic square. The instruction clears
the overflow bit.

3-27. EXTENDED ARITHMETIC REGISTER
REFERENCE INSTRUCTIONS

The six extended arithmetic register reference instructions
provide various types of shifting operations on the
combined contents of the B- and A-registers. The
B-register is considered to be to the left (most-significant
word) and the A-register is considered to be to the right
(least-significant word). An example of each type of shift
operation is illustrated in Figure 3-4.

The complete instruction is given in one word and includes
four bits (unshaded) to specify the number of shifts
(1 to 16). By viewing these four bits as a binary-coded
number, the number of shifts is easily expressed;
i.e., binary-coded 1 = 1 shift, binary-coded 2 = 2 shifts . . .
binary-coded 15 = 15 shifts. The maximum number of 16
shifts is coded with four zeros, which essentially
exchanges the contents of the B- and A-registers.

The extend bit is not affected by any of the following
instructions. Except for the arithmetic shifts, overflow
also is not affected.

ASL ARITHMETIC SHIFT LEFT
15014 13 1211110 98 7 6]5 4 3|2 1 0

Jolo [1 [
\— e’

Number of Shifts

Arithmetically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
low-order positions of the A-register. The sign bit is not
affected, and data bits are lost out of bit position 14 of the
B-register. If any one of the lost bits is a significant data
bit (‘‘1"" for positive numbers, ‘0" for negative numbers),
the overflow bit will be set; otherwise, overflow will be
cleared during execution. See ASL example in Figure 3-4.
Note that two additional shifts in this example would
cause an error by losing a significant ‘1’.

ASR ARITHMETIC SHIFT RIGHT
15|14 13 12
oo

Number of Shifts

Programming Information

Arithmetically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. The sign bit is unchanged and
is extended into bit positions vacated by the right shift.
Data bits shifted out of the least-significant end of the
A-register are lost. Overflow cannot occur because the
instruction clears the overflow bit.

LSL LOGICAL SHIFT LEFT
1514 13 12J1110 9 210

[1ToToTo o]0 Il

Number of Shifts -

Logically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
low-order bit positions of the A-register; data bits are lost
out of the high-order bit positions of the B-register.

LSR LOGICAL SHIFT RIGHT

15§14 1312|1110 9}8 7 6}5 4 3]2 1 0

[feToTo[o o]t oTo o[+ To] | T |
N —

Number of Shifts

Logically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
high-order bit positions of the B-register; data bits are lost
out of the low-order bit positions of the A-register.

RRL ROTATE LEFT
15114 1312|1110 9|8 7 6]5 4 312 1 0

[1JoJolofo]0 L
e’

Number of Shifts

Rotates the combined contents of the B- and A-registers
left n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the high-order end of the B-register are rotated
around to enter the low-order end of the A-register.

RRR ROTATE RIGHT
15114 13 121110 98 7 6)}5 4 312 1 0

[1]ofo]o L

Number of Shifts

Rotates the combined contents of the B- and A-registers

3-15

Programming Information

A700

ASR 5

(Arithmetic Shift Right
5 places)

- B-REGISTER

b Bits lost

{ 1011 000 101 000 101

0101 101011100 111 |

'
¥
'
¥

[1111110110001 010

0010101011010 111 |

ASL 5

(Arithmetic Shift Left
5 places) :

 1$

— e nw]ew = - -

000 000 111 101 000

1101101000110 111 |

P e = P,

0011110 100011 011

0100 011 011 100 000 |@—— Zeros Filled

LSR5
(Logical Shift Right
5 places)

p Bits lost

1011 000 101 000 101

0101101011100 111 |

os filled —{ 0000 010 110 001 010

0010101011010 111

LSLS ,
(Logical Shift Left
5 places)

- { 0101000 111 101 000 !

-

101 101 000 110 111

0011110 100 011 011

: Zeros filted

0100011011 100 000 |

RRR 8
(Rotate Right
8 places)

101 110 111 000 010

| 0100010110000 111 |

[1000011101

1100 001 001 000 101 |

RRL 7
{Rotate Left
7 placas)

I 0110011 101 111 000

| 0110011010000 111 | |

1011110000 110011

0100 001 110 110 011 |

Figure 3-4. Examples of Double-Word Shifts and Rotates

3-16

A700

right n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the low-order end of the A-register are rotated
around to enter the high-order end of the B-register.

3-28. EXTENDED INSTRUCTION GROUP

3-29. INDEX REGISTER INSTRUCTIONS. The
index registers (X and Y) are two 16-bit registers accessi-
ble by the following instructions.

ADX
1514 13 12

ADD MEMORY TO X
1110 918 7 65 4 3]210

v

Memory Address

Adds the contents of the addressed memory location to the
contents of the X-register. The sum remains in the
X-register and the contents of the memory cell are
unaltered. The result of this addition may set the extend
bit or the overflow bit.

ADY
15114 13 12]11 10 9

ADD MEMORY TO Y
8 7 6 5 4 3

~
Memory Address

Adds the contents of the addressed memory location to the
contents of the Y-register. The sum remains in the
Y-register and the contents of the memory cell are
unaltered. The result of this addition may set the extend
bit or the overflow bit.

CAX COPY ATO X

Copies the contents of the A-register into the X-register.
The contents of the A-register are unaltered.

CAY COPY ATOY

Copies the contents of the A-register into the Y-register.
The contents of the A-register are unaltered.

Programming Information

CBX COPYBTO X
54 3 2 10

Copies the contents of the B-register into the X-register.
The contents of the B-register are unaltered.

CBY COPYBTOY

Copies the contents of the B-register into the Y-register.
The contents of the B-register are unaltered.

CXA COPY X TO A
15114 1312 876543210

[Io o o0

Copies the contents of the X-register into the A-register.
The contents of the X-register are unaltered.

COPY X TO B
876543210

Copies the contents of the X-register into the B-register.
The contents of the X-register are unaltered.

COPY YTO A

Copies the contents of the Y-register into the A-register.
The contents of the Y-register are unaltered.

COPY Y TOB
5 4 3J]2 1 0

Copies the contents of the Y-register into the B-register.
The contents of the Y-register are unaltered.

DSX DECREMENT X AND SKIP IF ZERO

Programming Information

Subtracts one from the contents of the X-register. If the
result of this operation is zero (X-register decremented
from 000001 to 000000), the next instruction is skipped;
i.e., the P-register count is advanced two counts instead of
one count. If the result is not zero, the next sequential
instruction is executed.

DsY DECREMENT Y AND SKIP IF ZERO
15[14 13 1211 10 98 7 6
1JofJojof1]of1]1]1]

Subtracts one from the contents of the Y-register. If the
result of this operation is zero (Y-register decremented
from 000001 to 000000), the next instruction is skipped;
i.e., the P-register count is advanced two counts instead of
one count. If the result is not zero, the next sequential
instruction is executed.

ISX INCREMENT X AND SKIP IF ZERO
15]14 1312]11 10 98 7 &6
[1fo]ofof1]o]1]1]1]1

Adds one to the contents of the X-register. If the result of
this operation is zero (X-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the P-register
count is advanced two counts instead of one count. If the
result is not zero, the next sequential instruction is
executed.

ISY INCREMENT Y AND SKIP IF ZERO
15[1a 1312]11 10 9f8 7 6|5 4 3
[ir]oJofofefofafafa{1]]

Adds one to the contents of the Y-register. If the result of
this operation is zero (Y-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the P-register
count is advanced two counts instead of one count. If the
result is not zero, the next sequential instruction is
executed.

LAX LOAD A INDEXED BY X
15114 13 12§11 10 9

110j0/0jJ0 0|1
12/

Operand Address

3-18

A700

Loads the A-register with the contents indicated by the
effective address, which is computed by adding the
contents of the X-register to the operand address..The
effective address is loaded into the M-register; the
X-register and memory contents are not altered. Indirect
addressing is resolved before indexing; bit 15 of the
effective address is ignored.

LAY LOAD A INDEXED BY Y
15014 13 12]1110 98 7 6|5 4 3j2 10
1jojojojojoj1j1|1|[1}1]0f1]oj1[0
s [1

Vv

Operand Address

Loads the A-register with the contents indicated by the
effective address, which is computed by adding the
contents of the Y-register to the operand address. The
effective address is loaded into the M-register; the
Y-register and memory contents are not altered. Indirect
addressing is resolved before indexing; bit 15 of the
effective address is ignored.

LBX LOAD B INDEXED BY X
1514 13 121110 9]8 7 65 4 3]2 1 0
1folefofa]olfr|1]1]1]ojojoj1]0
O

v

Operand Address

Loads the B-register with the contents indicated by the
effective address, which is computed by adding the
contents of the X-register to the operand address. The
effective address is loaded into the M-register; the
X-register and memory contents are not altered. Indirect
addressing is resolved before indexing; bit 15 of the
effective address is ignored.

LBY LOAD B INDEXED BY Y
15114 13 1211 10 9 0
1{ojofof1{of1 1o
1

Operand Address

A700

Loads the B-register with the contents indicated by the
effective address, which is computed by adding the
contents of the Y-register to the operand address. The
effective address is loaded into the M-register; the
X-register and memory contents are not altered. Indirect
addressing is resolved before indexing; bit 15 of the
effective address is ignored.

LOAD X FROM MEMORY
876J543J210
1|1 ~

v

Memory Address

Loads the contents of the addressed memory location into
the X-register. The A- and B-registers may be addressed
as locations 00000 and 00001, respectively; however, if it is
desired to load from the A- or B-register, copy instructions
CAX or CBX should be used since they are more efficient.

LDY LOAD Y FROM MEMORY
1514 13 12]11 10 9

1]0/0]0 1]

D/|

Memory Address

Loads the contents of the addressed memory location into
the Y-register. The A- and B-registers may be addressed as
locations 00000 and 00001, respectively; however, if it is
desired to load from the A- or B-register, copy instructions
CAY or CBY should be used since they are more efficient.

Programming Information

SAY STORE A INDEXED BY Y
1514 13 12[1110 9
1]ofoofofo]1]

Operand Address

Stores the contents of the A-register into the location
indicated by the effective address, which is computed by
adding the contents of the Y-register to the operand
address. The effective address is loaded into the
M-register; the A- and Y-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored.

SBX STORE B INDEXED BY X
15]14 13 12111 10 9]8 7 6
1jojojofrjof1j1|1]|1]
°

Oporan;(Addross

Stores the contents of the B-register into the location
indicated by the effective address, which is computed by
adding the contents of the X-register to the operand
address. The effective address is loaded into the
M-register; the B- and X;register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored.

SBY STORE B INDEXED BY Y

Operand Address

Stores the contents of the B-register into the location
indicated by the effective address, which is computed by
adding the contents of the Y-register to the operand

SAX STORE A INDEXED BY X address. The effective address is loaded into the
M-register; the B- and Y-register contents are not altered.
15114 13 ’12 11 10’ u 9 Indirect addressing is resolved before indexing; bit 15 of
1]0/0]0} 11l the effective address is ignored.
= | :
/
'\ - STX STORE X TO MEMORY

Operand Address

Stores the contents of the A-register into the location
indicated by the effective address, which is computed by
adding the contents of the X-register to the operand
address. The effective address is loaded into the
M-register; the A- and X-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored.

15014 13 12J1110 918 7 6]5 4 3]2 1 0
1]of{ofo 11
Lo

N g

Memory Address

Stores the contents of the X-register into the addressed
memory location. The A- and B-registers may be
addressed as locations 00000 and 00001, respectively. The
X-register contents are not altered.

3-19

Programming Information

STORE Y TO MEMORY

876|543

VO

Memory Address

Stores the contents of the Y-register into the addressed
memory location. The A- and B-registers may be
addressed as locations 00000 and 00001, respectively. The
Y-register contents are not altered.

XAX EXCHANGE A AND X

15]1a 1312]11 10 9] 8 7 6]5 4 3
E}UI ofofojo [ji1 D Jofe]T

Exchanges the contents of the A- and X-registers.

XAY EXCHANGE A ANDY

15[14 131211 10 9]8 7 6|5 4 3
[1fofofofo]o]1]1 1 [1]1]a}]1

Exchanges the contents of the A- and Y-registers.

XBX EXCHANGE B AND X

AT00

control to jump unconditionally to the memory location
specified in the memory address. Indirect addressing may
be specified. The contents of the P-register plus two (re-
turn address) is loaded into the Y-register. A return to the
main program sequence at P + 2 may be effected by a JPY
instruction (described next).

JPY JUMP INDEXED BY Y
1514 1312[1110 98 7 65 4 3]2 1 0
wlofolofrjotp it rr]ofr]o

g

Operand Address

Transfers control to the effective address, which is
computed by adding the contents of the Y-register to the
operand address. Indirect addressing is not allowed. The
effective address is loaded into the P-register; the
Y-register contents are not altered.

15[1 131211 10 9] 8 7 65 4 3[2 1 0
[fofo o} e ol o] 1f1]ofofr{r]1]

Exchanges the contents of the B- and X-registers.

XBY EXCHANGE B AND Y

1514 1312]11 10 9f8 7 65
1fofofofrfof1fr]1]1]1]

Exchanges the contents of the B- and Y-registers.

3-30. JUMP INSTRUCTIONS. The following four
jump instructions allow a program to either jump to or exit

JLA JUMP AND LOAD A
15[14 13 12J1110 9]8 7 6]5 4 3|2 1 0
1]ofoJofo]ofof1]1To]o]oofo]o]0]
D/I

\ o/

v
Memory Address

This instruction, executed in location P, causes computer
control to jump unconditionally to the memory location
specified by the second word of the instruction. The
contents of the program counter plus two are stored in the
A-register. A return to the main program will be effected
by a JMP indirect through location 00000 (the A-register).

§ . JLB JUMP AND LOAD B
rom a subroutine.
15 1413’1‘2 1”1 10 9 8 7‘ 5‘ 5 4 312 10
JLY JUMP AND LOAD Y o, T
1514’13121110987654”321ﬂ \ v /
1jofojof1jojr]r[r|r]r[1|o]ofr]o0 Memory Address
o This instruction, executed in location P, causes computer
~ v - control to jump unconditionally to the memory location
Memory Address specified by the second word of the instruction. The

This instruction is designed for entering a subroutine. The
instruction, executed in location P, causes computer

3-20

contents of the program counter plus two are stored in the
B-register. A return to the main program will be effected
by a JMP indirect through location 00001 (the B-register).

A700

3-31. BYTE MANIPULATION INSTRUCTIONS.
A byte address is defined as two times the word address
plus zero or one, depending on whether the byte is in the
high-order position (bits 8 through 15) or low-order posi-
tion (bits O through 7) of the word containing it. If the byte
of interest is in bit positions 8 through 15 of memory
location 100, for example, then the address of that byte is
2% 100 + 0, or 200; the address of the low-order byte in the
same location is 201 (2* 100 + 1). Because of the way byte
addresses are defined, 16 bits are required to cover all
possible byte addresses in a 32K-word memory configura-
tion. Hence, for byte addressing, bit 15 does not indicate
indirect addressing.

Byte addresses 000 through 003 reference bytes in the A-
and B-registers. These addresses will not cause memory
violations. The user should, however, be careful in
referencing these byte addresses; for example, storing into
byte address 002 or 003 would destroy the byte address
originally contained in the B-register.

CBT COMPARE BYTES
15141312'_11109876543210
1folojof1jof1prjafr]jr|1{of1{1]o
> i L L N AN

0Jojo|ojofofojojojojo|o|o]o]o |0

Return if array 1 = array 2

Return if array 1 < array 2
>

Return if array 1 array 2

Compares the bytes in string 1 with those in string 2. This
is a three-word instruction where

Word 1 = Instruction code,

Word 2

Address of word containing the string
count, and

Word 3 = All-zeros word reserved for use by
microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address of string 1 and
the B-register contains the first byte address of string 2.

The number of bytes to be compared is given in the mem-
ory location addressed by Word 2 of the instruction; the
number of bytes to be compared is restricted to a positive
integer greater than zero. The strings are compared one
byte at a time; the ith byte in string 1 is compared with
the ith byte in string 2. The comparison is performed
arithmetically; i.e., each byte is treated as a positive
number. If all bytes in string 1 are identical with all bytes
in string 2, the “equal” exit is taken. As soon as two bytes
are compared and found to be different, the “less than” or
“greater than” exit is taken, depending on whether the
byte in string 1 is less than or greater than the byte in
string 2. The three ways this instruction exits are as
follows:

Programming Information

a. No skip if string 1 is equal to string 2: the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incremented
by the count stored in the address specified in Word 2.

b. Skips one word if string 1 is less than string 2: the
P-register advances two counts from Word 3 of the
instruction. The A-register contains the address of the
byte in string 1 where the comparison stopped.

c. Skips two words if string 1 is greater than string 2; the
P-register advances three counts from Word 3 of the
instruction. The A-register contains the address of the
byte in string 1 where the comparison stopped.

For all three exits, the B-register will contain its original
value incremented by the count stored in the address
specified in Word 2. This instruction is interruptible. The
interrupt routine is expected to save and restore the
contents of the A- and B-registers. During the interrupt,
the remaining count is stored in Word 3 of the instruction.

LBT LOAD BYTE
1514 13 12]1110 918 7 6

0 DDO DD an0

This one word instruction loads into the A-register the
byte whose address is contained in the B-register. The
byte is right-justified with leading zeros in the left byte.
The B-register is incremented by one.

MBT MOVE BYTES

15)14 13 12 6]5 4 312 1 0

ojojojojojoojojo(0jo0j0j0)J0|0]0

Moves bytes in a left-to-right manner; i.e., the byte having
the lowest address from the source is moved first. This is a
three word instruction where

Word 1

Instruction code,

Word 2 = Address of word containing the byte
count, and

Word 3 All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address source and the
B-register contains the first byte address destination.

The number of bytes to be moved is given by a 16-bit
positive integer greater than zero addressed by Word 2 of
the instruction. The byte address in the A- and B-registers

Update 1 3-21

Programming Information

are incremented as each byte is being moved. Thus, at the
end of the operation, the A- and B-registers are incre-
mented by the number of bytes moved. Wraparound of the
byte address would result from a carry out of bit position
15; therefore, if the destination became 000, 001, 002, or
003, the next byte would be moved into the A- or
B-register and destroy the proper byte addresses for the
move operation. For each byte move, a memory protect
check is performed.

This instruction is interruptible. The interrupt routine is

A700

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers.

3-32. BIT MANIPULATION INSTRUCTIONS.
The following three instructions allow any number of bits
in a specified memory location to be cleared, set, or tested.

expected to save and restore the contents of the A- and CBS CLEAR BITS

B-registers. During the interrupt, the remaining count is

stored in Word 3 of the instruction. 15114 13 12 " 109)8 7 635 4 3121 0
1Jo0j0j0f1j0 11111 [1]1}§1]0]0

SBT STOREBYTE [P

15[14 1312|1110 9] 8 7 6]5 4 3]2 1 o &2

CLoTooft o [[r 11 [[1 [o[o] . 2

Stores the A-register low-order (right) byte in the byte
address contained in the B-register. The B-register is
incremented by one. A memory protect check is performed
before the byte is stored. The left byte in the A-register
does not have to be zeros. The other byte in the same word
of the stored byte is not altered.

SFB SCAN FOR BYTE
15[14 1312]11 10 98 7 65 4 3|2 1 0
rjofofojafoifn oA [0 1]

This is a one word instruction with the operands in the A-
and B-registers. The A-register contains a termination

byte (high-order byte) and a test byte (low-order byte).
The B-register contains the first byte address of the string
to be scanned.

A string of bytes is scanned starting at the byte address
given in the B-register. Scanning terminates when a byte
in the string matches either the test byte or the
termination byte in the A-register. The manner in which
the instruction exits depends on which byte is matched
first. If a byte in the string matches the test byte, the
instruction will not skip upon exit; the B-register will
contain the address of the byte matching the test byte. If a
byte in the string matches the termination byte, the
instruction will skip one word upon exit; the B-register
will contain the address of the byte matching the
termination byte plus one.

The scanning operation will not continue indefinitely even
if neither the termination byte nor test byte exists in
memory. These bytes are in the A-register with byte
addresses 000 and 001, respectively. Thus, if no match is
made by the time the B-register points to the last byte in
memory, the B-register will roll over to zero and the next
test will match the termination byte in the A-register with
itself.

3-22

Memory Address

Clears bits in the addressed location. This is a three-word
instruction where

Word 1 Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word where bits are to be
cleared.

The bits to be cleared correspond to logic 1's in the mask.
The bits corresponding to logic 0's in the mask are not
affected. A memory protect check is performed prior to
modifying the word in memory.

SBS SET BITS
1501413 12J11 10 9]8 7 65 4 3J2 1 0
1jofofof1|{of1]1]1 1{1{1]o]1]1

g

Memory Address
Sets bits in the addressed location. This is a three-word
instruction where
Word 1 = Instruction code,
Word 2 = Address of a 16-bit mask, and

Word 3 Address of word where bits are to be set.

The bits to be set correspond to logic 1's in the mask. The
bits corresponding to logic 0’s in the mask are not affected.
A memory protect check is performed prior to modifying
the word in memory.

A700

TBS TEST BITS
15]14 13 12]11 10 o]8 7 6]5 4 3J2 1 0
1 o”uo‘lfu i1]1{1]{1]1]|0]1
5, ‘

D/F

Memory Address

Tests (compares) bits in the addressed location. This is a
three-word instruction where

Word 1 Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 Address of word in which bits are to be

tested.

The bits in the addressed memory word corresponding to
logic 1's in the mask are tested. If all the bits tested are
1's, the instruction will not skip; otherwise the instruction
will skip one word (i.e., the P-register will advance two
counts from Word 3 of the instruction).

3-33. WORD MANIPULATION INSTRUCTIONS.
The following instructions facilitate the comparing and
moving of word arrays.

cMwW COMPARE WORDS

1514 13 12|11 10 9]8 7615 4 3|2 1 0

ojojoftjofrfrj1jt]ri{rj1]1]1]o0

D
|

ojojojo0jo0/00j0/0(0j0;0|0]jO|0|O

Return if array 1 array 2

Return if array 1 < array 2

Return if array 1

v/
\

array 2

Programming Information

The number of words to be compared is given in the
memory location addressed by Word 2 of the instruction;
the number of words to be compared is restricted to a
positive integer greater than zero. The arrays are com-
pared one word at a time; the ith word in array 1 is
compared with the ith word in array 2. This comparison is
performed arithmetically; i.e., each word is considered a
two’s complement number. If all words in array 1 are
equal to all words in array 2, the “equal” exit is taken. As
soon as two words are compared and found to be different,
the “less than” or “greater than” exit is taken, depending
on whether the word in array 1 is less than or greater
than the word in array 2. The three ways this instruction
exits are as follows:

a. No skip if array 1 is equal to array 2; the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incremented
by the word count stored in the address specified in
Word 2.

b. Skips one word if array 1 is less than array 2; the
P-register advances two counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

c. Skips two words if array 1 is greater than array 2; the
P-register advances three counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

For all three exits, the B-register will contain its original
value incremented by the word count stored in the address
specified in Word 2. This instruction is interruptible. The
interrupt routine is expected to save and restore the
contents of the A- and B-registers. During the interrupt,
the remaining count is stored in Word 3 of the instruction.

MVW MOVE WORDS
1514 13 12|11 10 9|8 7 6|5 4 3|2 1 0
ojofofrjorfritjrfr{rf1fr{1{1

D
|

Compares the words in array 1 with those in array 2. This
is a three-word instruction where

Word 1 Instruction code,

Word 2

Address of word containing the word
count, and

Word 3 = All-zeros word reserved for use by
microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first word address of array 1 and
the B-register contains the first word address of array 2.
Bit 15 of the addresses in the A- and B-registers are
ignored; i.e., no indirect addressing allowed.

ojo|ojojojofojojofojoj0jOf0j0|0O

Moves words in a left-to-right manner; i.e., the word
having the lowest address in the source is moved first.
This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the count,
and

Word 3

All-zeros word reserved for use by
microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first word address source and the
B-register contains the first word address destination. The

Update 1 3-23

Programming Information

number of words to be moved is a 16-bit positive integer
greater than zero addressed by Word 2 of the instruction.
The word addresses in the A- and B-registers are incre-
mented as each word is being moved. Thus, at the end of
the operation, the A- and B-registers are incremented by
the number of words moved.

Wraparound of the word address would result from a carry
into bit position 15 (i.e., at 32767). If the destination
address became 000 or 001, the next word would be moved
into the A- or B-register and destroy the proper word
addresses for the move operation. For each word move, a
memory protect check is performed.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction.

3-34. FLOATING POINT INSTRUCTIONS
The floating point instructions allow addition, subtrac-
tion, multiplication, and division of both single precision
(32-bit) and double precision (64-bit) floating point
quantities, and conversion of quantities from floating
point format to integer format or vice versa. Data formats
are-shown in Figure 3-1. Except for zero, all floating point
operands must be normalized (i.e., sign of mantissa differs
from most significant bit of mantissa).

For multiple-word instructions, indirect addressing to any
number of levels is permitted for the words indicated as
memory address. A logic 0 in bit position 15 specifies
direct addressing; a logic 1 specifies indirect addressing.

The execution times of the floating point instructions are
specified in Tables 3-5 and 3-6. These instructions are
non-interruptible; any attempted interrupt is held off for
the full execution time of the currently active floating
point instruction. However, data transfer via direct
memory access is not held off.

Information required for direct user-microprogramming
utilizing the Floating Point Processor card is provided in
the HP 92045A Microprogramming Package Reference
Manual, part no. 92045-90001.

NOTE

The optional Floating Point Processor
(FPP) card is required for execution of
the floating point instructions labeled
“Optional” in the following paragraphs.

3-35. SINGLE PRECISION OPERATIONS. Over-
flow for single precision operations occurs if the result lies
outside the range of representable single precision float-
ing point numbers [—2'?7, (1-272%) 2!?7]. In such a case, the
overflow flag is set and the result (1-2-%%) 2'*7 is returned
to the A- and B-registers. Underflow occurs if the result

3-24

A700

lies inside the range [—27'2%(1+27%2), 27'*]. In such a case,
the overflow flag is set and the result 0 is returned to the
A- and B-registers.

FAD FLOATING POINT ADD

15014 1312|1110 98 7 6}5 4 3|2 1 0
1j0/0/0j1/0/1j0/0/0}J0|0(0]J0|0|O

A4
Memory Address

Adds the floating point quantity in the A- and B-registers
to the floating point quantity in the specified memory
locations. The floating point result is returned to the A-
and B-registers.

FSB FLOATING POINT SUBTRACT

1511413 1211110 98 7 6]5 4 3J2 1 0

1]o(0j0}1/0;1]0|0|0}j0;1/0]0|0|0
Oy

A4
Memory Address

Subtracts the floating point quantity in the specified
memory locations from the floating point quantity in the
A- and B-registers. The floating point result is returned to
the A- and B-registers.

FMP FLOATING POINT MULTIPLY
151413 12J1110 98 7 65 4 3]2 1 0
1]jo(0joj1jo|1jo0joj0}j1|0|0jO|0O]|O

AN -/

Y
Memory Address

Multiplies the floating point quantity in the A- and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned to
the A- and B-registers.

FDV FLOATING POINT DIVIDE
15[14 13 12]1110 9|8 7 6|5 4 3[2 1 0
1]ojoefoj1joj1]o/ojof1/1]0fo]0]0
D/|

\ _/

v

Memory Address

A700

Divides the floating point quantity in the A- and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned to
the A- and B-registers.

FLOATING POINT TO
FIX SINGLE INTEGER

15114 131211110 98 7 6]5 4 3|2 1 0
[1]ofofof1of[1]afo]1fofoofo]0]0

1
Converts the floating point quantity in the A- and
B-registers to single integer format. The integer result is
returned to the A-register. If the magnitude of the floating
point number is <1, regardless of sign, the integer 0 is
returned. If the magnitude of the exponent of the floating
point number is =18, regardless of sign, the integer 32767
(077777 octal) is returned as the result and the overflow
flag is set.

SINGLE INTEGER TO

FLT FLOATING POINT
1u5141,312 11109 7 ,6 5 4 3,2 1 0’
[1]o]o] {1j0jof1]of[1]o]o]o]0

Converts the single integer quantity in the A-register to
single precision floating point format. The floating point
result is returned to the A- and B-registers.

.FIXD* FLOATING POINT TO
(Optional) DOUBLE INTEGER
15

14
10

1312411 10 918 7 615 4 3]2 1 0O
ofo[1]0]1 amr{o [oJo[1ToT0

Converts the floating point quantity in the A- and
B-registers to double integer format. The integer result is
returned to the A- and B-registers. (The A-register con-
tains the most-significant word and the B-register con-
tains the least-significant word.) If the magnitude of the
floating point number is <1, regardless of sign, the integer
0 is returned. If the magnitude of the floating point
number is =32, regardless of sign, the integer 23'—-1 is
returned as the result and the overflow flag is set.

.FLTD* DOUBLE INTEGER TO
(Optional) FLOATING POINT

Programming Information

3-36. DOUBLE PRECISION OPERATIONS. Over-
flow for double precision operations occurs if the result lies
outside the range of representable double precision float-
ing point numbers [—2'?7, (1-275%) 2-1?7]. In such a case,
the overflow flag is set and (1—2-%) 2!%7 is returned as the
result. Underflow occurs if the result lies inside the range
[-27128 (1427%%), 2712%], In such a case, the overflow flag is
set and O is returned as the result.

15]14 13 12[11 10 9} 8 7 sls 4 3}2 10

[1]ofo of1fo]1foe]o

Converts the double integer quantity in the A- and
B-registers to single precision floating point format. The
floating point result is returned to the A- and B-registers.

.TADD* DOUBLE FLOATING
(Optional) POINT ADD
14 13 12][11 10 918 7 615 4 32 1 0

-~

Memory Address

Adds two double precision floating point quantities (au-
gend plus addend). This is a four-word instruction where

Word 1 = Instruction code.
Word 2 = Address of result.

Word 3 = Address of augend.

Word 4 = Address of addend.
.TsuB* DOUBLE FLOATING
(Optional) POINT SUBTRACT
15]14 13 12|11 10 9|8 7 sl 4 3[2 10
D/'
D/|
D/I

-
Memory Address

Subtracts one double precision floating point quantity
from another (minuend minus subtrahend). This is a
four-word instructon where

Word 1 = Instruction code.

Word 2 = Address of result.
Word 3 = Address of minuend.
Word 4 = Address of subtrahend.

*For HP Assembly Language usage, refer to paragraph
3-46.

3-25

Programming Information

.TMPY* DOUBLE FLOATING

(Optional) POINT MULTIPLY
1514 13 12J11 10 98 7 635 4 312 1 0
1]o0(o0joj1joj1jojojojrjo0j0joO|f1]0
Io,

D,

o,

Memory Address
Multiplies one double precision floating point quantity by
another (multiplicand by multiplier). This is a four-word
instruction where

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of multiplicand.

A700
TFTS* SINGLE INTEGER TO
(Optional) DOUBLE FLOATING POINT
15114 13 12§11 10 918 7 65 4 3121 0
' 110{0|0}1|0|1]Jo|/0|1}Jo|1|0f0(1](0
dl

Memory Address

Converts the single integer quantity in the A-register to
double precision floating point format. The floating point
result is returned to the specified memory locations.

Word 4 = Address of multiplier. .TFXD* DOUBLE FLOATING
.TDIV* DOUBLE FLOATING (Optional) POINT TO DOUBLE INTEGER
(Optional) POINT DIVIDE
15]14 13 12]11 10 98 7 6}5 4 3]2 1 0 15114 13 1211110 9 10

1fofofof1Jo[1foJofof1T1Tofo]1]0o] [ilofolofl1]0]1 1o
I'iq [°
ID i Memory Address
~~ ~ - Converts the double precision floating point quantity in
Memory Address

Divides one double precision floating point quantity by
another (dividend by divisor). This is a four-word instruc-
tion where

Word 1 = Instruction code.
Word 2 = Address of result.

Word 3 = Address of dividend.
Word 4 = Address of divisor.
TJFXS* DOUBLE FLOATING
(Optional) POINT TO SINGLE INTEGER
1514131211109875‘5 4‘32‘1“‘0
1{of{oof1]o[{1]olo|1]ofo|o}o(1]0
5, B

“v*

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to single integer format.
The integer result is returned to the A-register. If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =16, regardless
of sign, the integer 2"°—1 is returned as the result and the
overflow flag is set.

*For HP Assembly Language usage, refer to paragraph
3-46.

3-26

the specified memory locations to double integer format.
The integer result is returned to the A- and B-registers.
(The A-register contains the most-significant word and
the B-register contains the least-significant word.) If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =32, regardless
of sign, the integer 2°'—1 is returned as the result and the
overflow flag is set.

TFTD* DOUBLE INTEGER TO
(Optional) DOUBLE FLOATING POINT
1514 13 12]11 10 9]8 7 65 4 3]2 1 0
1jojojof1]o]1]ofojrjoj1jofr]1]0O
D/l

Memory Address

Converts the double integer quantity in the A- and
B-registers to double precision floating point format. The
floating point result is returned to the specified memory
locations.

AT700

3-37. LANGUAGE INSTRUCTION SET

The Language Instruction Set (LIS) instructions perform
several frequently-used FORTRAN operations including
parameter passing, array address calculations, and float-
ing point conversion, packing, rounding and normaliza-
tion operations.

For multiple-word instructions, indirect addressing to any
number of levels is permitted for the words indicated as a
memory address. A logic 0 in bit position 15 specifies
direct addressing; a logic 1 specifies indirect addressing.

The following paragraphs provide machine language
coding and definitions for the Language Instruction Set.
Data formats are shown in Figure 3-1.

NOTE

The optional Floating Point Processor
(FPP) card is required for execution of
LIS instructions labeled “Optional” in
the following paragraphs.

For a more detailed description of the instructions in the
Language Instruction Set, refer to the Relocatable Library
Reference Manual, HP part no. 24998-90001.

Programming Information

NGL* DOUBLE FLOATING POINT
(Optional) TO SINGLE FLOATING POINT
15[14 13 12f11. 10 98 7 6]5 4 3]2 10
[1jojojof1jof1joj{1]|0 1/0(0
D

|
D

|

.BLE* SINGLE FLOATING POINT TO
(Optional) DOUBLE FLOATING POINT
15|14 13 12]11 10 9|8 7 6)5 4 3]2 1 0
1fojojofrjoj1Joj1foJofofof1|1]1
D'I
lD

I
ID

I

Memory Address

Converts the single precision floating point quantity in
specified memory locations to a double precision floating
point quantity. The result is returned to other specified
memory locations. This is a four-word instruction where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of result.
Word 4 = Address of operand.

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to a single precision float-
ing point quantity. The result is placed in the A- and
B-registers. Overflow is cleared unless, during execution,
rounding results in overflow or underflow of the exponent,
in which case overflow is set and the result is truncated to
the greatest positive number. This is a three word in-
struction where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of operand.

TRANSFER EXTENDED

.XFER* FLOATING POINT

15[14 1312]11 10 9]8 7 6]5 4 3]2 1 0

Transfers an extended precision floating point quantity
(three consecutive words) from one memory location to
another. The A-register must contain the source address
and the B-register must contain the destination address.
The source address +3 is returned to the A-register; the
destination address +3 is returned to the B-register.

“For HP Assembly Language usage, refer to paragraph

3-46.

Update 1 3-27

Programming Information

TRANSFER EXTENDED

A700

ZFER* TRANSFER EIGHT WORDS
15[14 13 12|11 10 9|8 7 6]5 4 3|2 1 0
fofofoftTo1]o]1Jofo[[11]1]"
D’!
D,
|

.DFER* FLOATING POINT

15014 13 12f11 10 9)8 7 65 4 3]2 1 0o
ojlof{ojt1{o(1]Joj1]{ojojoj{of1{0]|1

D

|

D

|

Memory Address

Transfers an extended precision floating point quantity
(three consecutive words) from one memory location to
another. The source address +3 is returned to the
A-register; the destination address +3 is returned to the
B-register. This is a three word instruction where

Il

Word 1 Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

TRANSFER COMPLEX

.CFER* OR DOUBLE FLOATING POINT
15[14 13 12§11 10 98 7 6|5 4 3|2 1 0
1jojojof1fo|1jojf1]{ofojfr|{1]o|0 |1
D|

D

!

Memory Address

Transfers a double precision floating point quantity (four
consecutive words) from one memory location to another.
The source address +4 is returned to the A-register: the
destination address +4 is returned to the B-register. This
is & three word instruction where

Word 1 = Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

“For HP Assembly Language usage, refer to paragraph
3-46.

-~

Memory Address

Transfers eight consecutive words from one memory lo-
cation to another. The-source address +8 is returned to the
A-register; the destination address +8 is returned to the
B-register. This is a three word instruction where:

Word 1 = Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

.ENTN* TRANSFER PARAMETER ADDRESSES

15114 13 12111 10 918 7 6]5 4 3 2’1 0
[000 KN RO CNENE) ERCIC

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-
rameter DEF in the calling routine. A true address is
determined by eliminating all indirect references.

.ENTC* TRANSFER PARAMETER ADDRESSES

15141312111098 7 605 4 312 10
Frfofofof1jof1fof1loJo|1]1]1]0]1

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-
rameter DEF in the calling routine. There must be exactly
two words between the subroutine entry point and the
.ENTC instruction. A true address is determined by
eliminating all indirect references. Used for privileged or
re-entrant subroutines.

3-28 Update 1

A700

NEGATE SINGLE

..FCM* FLOATING POINT

15114 13 12111 10

9|8 7 65 4 312 10

1{oJof1]1]of1]o

Negates a packed single precision floating point quantity
located in the A- and B-registers. The result is returned to
the A- and B-registers.

Programming Information

Performs the double integer operation:
(A.B) = (A.B) + <OPND>

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual sum, in unsigned
form. The extend bit will be set if an unsigned carry out of
the A-register occurs.

.DSB* DOUBLE INTEGER SUBTRACT

15]14 13 12

1110 918 7 6}5 4 3]21

..TCM* NEGATE DOUBLE

(Optional) FLOATING POINT

15[14 13 12111 10 98 7 65 4 3|2 1 0
i ;

'

Memory Address

Negates a packed double precision floating point quantity
located in the specified memory locations. The result is
returned to the same specified memory locations.

3-38. DOUBLE INTEGER INSTRUCTIONS
The double integer instructions allow arithmetic and test
operations on 32-bit integer quantities. The data format
for double integer values is shown in figure 3-1. Double
integer values contained in the (A,B) registers have the
most significant bits in the A-register. Values stored in
memory require two locations. The operand address in a
double integer instruction points to the first memory loca-
tion, which contains the most significant bits.

Instructions which do not return information in the ex-
tend or overflow bits will not alter the state of these flags.
Operations which may return an overflow condition will
clear overflow at entry.

The instructions .DMP, .DDI, and .DDIR utilize the
Floating Point Processor card, if installed.

e

Memory Address
Performs the double integer operation:

(AB) = (A,B) — <OPND>

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual difference, in un-
signed form. The extend bit will be set if an unsigned
borrow out of the A-register occurs.

DOUBLE INTEGER

.DSBR* SUBTRACT REVERSE
15014 13 12]11 10 9] 8 7 6|5 4 3]2 1 0
0/0|0 {o[1]1]0f0

v

Memory Address
Performs the double integer operation:

(A,B) =<OPND> - (A,B)

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual difference, in un-
signed form. The extend bit will be set if an unsigned
out of operand.

.DAD* DOUBLE INTEGER ADD .DMP* DOUBLE INTEGER MULTIPLY
15[14 13 12|11 10 9] 8 7 6|5 4 3]2 1 0 1511413 12J11 10 918 7 6)5 4 321 0
1{ojojof1]0]1]o0 0/0j1}1]0]|0 lo{1]1]0]o0

v

Memory Address

Memory Address

*For HP Assembly Language usage, refer to paragraph
3-46.

Update 1 3-29

AT00

TRANSFER PARAMETER

.ENTR* ADDRESSES

15141312111’09876 5 4 312 10
[1fofofo]1]ol1Jo]1]ofo]r[ofo]1]s

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. A true address is determined by
eliminating all indirect references.

TRANSFER PARAMETER

.ENTP* ADDRESSES

15114 13 12]11 10 9)8 7 6|5 4 312 1 0

[1folojof1]o]rfol1{ofo[1]o]1[0]0

Transfers the true addreses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. A true address is determined by
eliminating all indirect references. Used for privileged or
re-entrant subroutines.

Update 1

Programming Information

.CPM* SINGLE INTEGER ARITHMETIC COMPARE

1514 13 12J11 10 9|8 7 6|5 4 3|2 1 0
ojojofjt1{o|1fjo[1fofof1]|1]1
D
I
D

Return if operand 1 = operand 2

Return if operand 1 < operand 2

Return if operand 1 > operand 2

Arithmetically compares operands addressed by second
and third word. Does not skip if operands are equal;
however, skips one instruction if the first operand is less
than the second, or skips two instructions if the first
operand is greater than the second.

.SETP* SET A TABLE

15[14 13 12|11 10 9|8 7 6|5 4 3]2 1 0
1Jofojof1jof1]o|1|ofojofof1|1]1
0] Count=0

Sets a table of increasing numbers in consecutive memory
locations. The A-register must contain the initial number
and the B-register must contain the initial memory ad-
dress (direct only); the contents of the succeeding memory
location must define the number of memory locations
(count = 0). Entries in the table are established by in-
crementing the initial address and number by one (1) for
each successive entry until the last number, initial
number + COUNT -1, is reached and the A-register
equals the initial value+COUNT. Wraparound will
produce undefined results. This instruction is interrup-
tible. On return, the B-register equals the initial address
+COUNT.

NOTE

If the initial address +COUNT -1 re-
sults in an address which is beyond the
end of logical memory, addresses within
the base page are destroyed.

3-28A/3-28B

Programming Information

Performs the double integer operation:

tA,B) = (AB) x -:OPND"-

The contents of <OPND > are unaltered. If overflow oc-
curs, the result (077777, 177777) is returned and overflow
is set.

.oo1* DOUBLE INTEGER DIVIDE
15114 13 1211 10 9] 8 7 615 4 321 0
rjojojoj1fojt1jojojo0 111(0]0
D/I

Memory Address
Performs the double integer operation:
(A,By = (A.B) + “OPND

The contents of - OPND - are unaltered. If overflow or
divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

DOUBLE INTEGER

.DDIR* DIVIDE REVERSE
15114 13 12|11 10 9] 8 7 6}5 4 3121 0
tjojojojr1joj1jojoj1}joO|1|1 0|0

N

Memory Address

Performs the double integer operation:

(AB) = - OPND> = (A.B)

The contents of - OPND - are unaltered. If overflow or
divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

.DNG* DOUBLE INTEGER NEGATE
15|14 13 12]11 10 9} 8 7 6]5 4 3]2 1 O
1{ofolol1]o]1]o][1]ofajolo]of1]1

Performs the double integer operation:

(AB) = - (AB)

*For HP Assembly Language usage, refer to paragraph
3-46.

3-30

A700

An input value of (100000, 000000) is left unchanged and
overflow is set. An input value of zero will cause the

extend bit to be set.

.DCO* DOUBLE INTEGER COMPARE
15[14 13 12]11 10 9|8 7 6]5 4 3]21 0
1jojojofj1joj1joj1]ofjojoj0]}1/0]0
D/l

Memory Address

Compares the double integers (A,B) and - OPND™>

If iA.B) = --OPND> Return to P+2
If (A.B) -- <:OPND > Return to P+3
If (A.B) > - OPND > Return to P+4

where P is the address of the .DCO instruction. The value
of both double integers and the overflow bit are unaltered.

.DIN* DOUBLE INTEGER INCREMENT

5 4 3[2 10
ofoftfofo]o

15114 131211 10 918 7 6
Clololo[r[o[t[o]r o

Performs the double integer operation:
(ALB) = (AB) + 1

An input value of (077777, 177777) will return a result of
(100000, 000000) and set overflow. An input value of
(177777, 177777) will return a result of zero and cause the
extend bit to be set.

.DDE* DOUBLE INTEGER DECREMENT

15114 13 12J11 10 9|8 7 65 4 3]2 1

[1]o]oJof+Jo]1]o]1[o]o]o |1

Performs the double integer operation:

(AB) = (AB) - 1

Update 1

A700

An input value of (100000, 000000) will return the result
(077777, 177777) and set overflow. An input value of zero
will return the result (177777, 177777) and cause the
extend bit to be set.

DOUBLE INTEGER INCREMENT

Programming Information

MAP* 16-BIT SUBSCRIPT MAPPING
15114 13 12[11 10 9]18 7 6}5 4 3]J2 1 0

0

.DIs* AND SKIP IF ZERO Word 2 = DEF dope vector
Word 3 = Subscript N
15114 13 1211 10 918 7 6§58 4 3121 0 :
11ololol1] o0} ofofol1]ol1]0 Word N+2 = Subscript 1
Performs a subscript calculation and maps the result into
N - logical memory. Each of the subscripts and dimensions are

-, -

Memory Address

Performs the double integer operation:
<OPND> = «<OPND> + 1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in <OPND> is
treated as an unsigned number, and a carry out of the
<<OPND> is ignored.

DOUBLE INTEGER DECREMENT

.DDs * AND SKIP IF ZERO
1514 13 12|11 10 98 7 6|5 4 3
1514131211109876543210
1111
Error return
~ B Normal return

16-bit integers. However, the calculation uses 32-bit adds
and multiplies. The subscript words cannot address the A-
or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

.PMAP* MAP SPECIFIED PAGE

-

Memory Address
Performs the double integer operation:

<OPND> = <OPND> -1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in <OPND> is
treated as an unsigned number, and a borrow out of the
<OPND> is ignored.

3-39. VIRTUAL MEMORY INSTRUCTIONS
The Virtual Memory Instructions perform accesses to
Virtual Memory and Extended Memory Area, which are
extensions of logical memory. If an addressed data item is
in physical memory, the instructions perform the required
mapping, including modification of map registers and
entry of the appropriate page numbers into the user’s
logical address space. If an addressed data item is not in
physical memory, a macrocode routine first swaps the data
item from disc to physical memory, then restarts the
microcode routine that maps it.

For more information on VMA and EMA, refer to the
RTE-A.1 Programmer's Reference Manual, HP part no.
92077-90007. .

On entry, the A-register is loaded with the number of the
user-map register to be altered and the B-register is
loaded with the page ID, which are the parameters passed
to the routine. If an attempt is made to map in the last+1
page, the last page of memory is mapped read and write
protected and the E-register is set. When no error occurs, a
normal return occurs to the second word after the in-
struction; mapping is complete, and the contents of the A-
and B-registers are incremented. If a fault occurs and the
sign bit is set in the A-register, an error return to the word
following the instruction occurs. The O-register is un-
defined. The E-register is set if an attempt was made to
map the last+1 page; otherwise it is cleared.

.IRES* 16-BIT SUBSCRIPT RESOLUTION

15|14 1312J11 10 9|8 7 6)5 4 3|2 1 O

Word 2 = DEF dope vector
Word 3 = Subscript N

H
I Word N+2 = Subscript 1

*For HP Assembly Language usage, refer to paragraph
3-46.

Update 1 3-31

Programming Information

Performs a subscript calculation. Each of the subscripts
and dimensions are 16-bit integers. However, the calcu-
lation uses 32-bit adds and multiplies. The subscript
words cannot address the A- or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A- and B-registers contain the
address of the array element in double-integer format
(most significant word in the A-register).

.JMAP* 32-BIT SUBSCRIPT MAPPING

1514 13 121110 9] 8 7 6]5 4 3]21 0
1jofojof1jo|1]of1]|of1]of1]of1]0

I°

Word 2 = DEF dope vector
Word 3 = Subscript N

H
L]
| word N+2 = subscript 1 |

Performs a subscript calculation and maps the result into
logical memory. Each of the subscripts and dimensions are
32-bit integers, and the calculation uses 32-bit adds and
multiplies. The subscript words cannot address the A- or
B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

.JRES* 32-BIT SUBSCRIPT RESOLUTION

15114 13 12]1110 918 7 6

110j0j0}1(0)1§011 1|0
]

A700

address of the array element in double-integer format
(most significant word in the A-register).

.LPXR* INDEXED MAPPING WITH DEF

1514131zl11109 8 7 6|5 4 3]2 10
1{ojojof1{of1jo[1]|of1joj1]1]{0]0

“Vv*

Memory Address

On entry, the pointer specified by the second instruction
word is resolved, and the double word it points to is loaded
into the A- and B-registers. The offset specified in the
third instruction word is resolved, and the double word it
points to is added to the contents of the A- and B-registers.
The result is treated as a 26-bit VMA pointer and is
mapped. On exit, the B-register contains the logical
address of the data item, and the A-register is undefined.
The offset word cannot refer to the A- or B-register.

.LPX* INDEXED MAPPING WITH REGISTERS

15014 13 12111 10 9] 8 7 615 4 3§21 0
1fofofosJo 1ot To1 et |10
1%

g

Memory Address

On entry, the second instruction word either directly or
indirectly points to a double integer in memory, which is
to be added to the double integer in the A- and B-registers
to form a double-word VMA pointer. The result is treated
as a 26-bit VMA pointer and is mapped. On exit, the
B-register contains the logical address of the data item,
and the A-register is undefined.

.LBPR* MAPPING WITH DEF

Word 2 = DEF dope vector

Word 3 = Bubsciipt N 15]14 13 12]11 10 9f8 7 6]5 4 3]21 0
: 1]ofofof1{of1]o|1 af1[0[1]1]1]0
Word N+2 = Subscript 1 l°/|

Performs a subscript calculation. Each of the subscripts
and dimensions are 32-bit integers, and the calculation
uses 32-bit adds and multiplies. The subscript words
cannot address the A- or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per

element, and a two-word offset.

On a normal return, the A- and B-registers contain the

*For HP Assembly Language usage, refer to paragraph
3-46.

3-32

Memory Address

On entry, the pointer specified by the second instruction
word is resolved and the double word it points to is loaded
into the A- and B-registers. This value is treated as a
26-bit VMA pointer and is mapped. On exit, the B-register
contains the logical address of the data item, and the
A-register is undefined.

A700

.LBP* MAPPING WITH REGISTERS
15]14 1312111 10 918 7 6;5 4 3

ojojofrfofr

On entry, the 26-bit VMA pointer is contained in the
A-register (most significant word) and B-register. The
data item is mapped. On exit, the B-register contains the
logical address of the data item, and the A-register is
undefined.

3-40. OPERATING SYSTEM
INSTRUCTION SET

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

.CPUID* PROCESSOR IDENTIFICATION
15014 1312]1110 98 7 6]5 4 3|2 1 0

The A-register is loaded with a number that identifies the
series of processor installed in the computer system,
where:

Octal 2 = AB00 Series.
Octal 3 = A700 Series.

.FWID* FIRMWARE IDENTIFICATION

15§14 1312111 10 9] 8 7 6}5 4 3

2

1

On entry, the B-register holds a number indicating which
bank of 1k microwords is identified. On exit, the
A-register contains a number that identifies the specific
ROM package (lower byte) and revision date code (upper
byte). If no microcode exists in the selected block, the
A-register is set to 177777 octal.

WFI* WAIT FOR INTERRUPT
15114 13 1211 10 98 7 6]5 4 3)2 1 0]

This instruction is equivalent to a JMP * except that the
processor does not perform memory accesses, which would
decrease the effective bandwidth of the memory
backplane. This instruction is interruptible.

Programming Information

.SIp* SKIP IF INTERRUPT PENDING

15118 13 1211 10 948

7 6]5 4 3]2 1 0

The processor skips if an I/O interrupt is pending (INTRQ-
is asserted on the A-Series backplane), which is inde-
pendent of the Type 2 and Type 3 interrupt masks. (Refer
to Table 6-1.)

3-41. EXECUTION TIMES

Table 3-5 lists the execution times required for the various
base set instructions, and Table 3-6 lists the execution
times for floating point instructions with the optional
floating point processor card.

3-42. SCIENTIFIC INSTRUCTION SET

The Scientific Instruction Set (SIS) is included with the
optional Floating Point Processor (FPP) card and performs
nine trigonometric and logarithmic functions. The fol-
lowing paragraphs provide machine language coding and
definitions for the SIS instructions. Error conditions and
codes are given in Table 3-7. Note that except for zero, all
floating point operands must be normalized (i.e., sign of
mantissa differs from most significant bit of mantissa).

The following paragraphs provide machine language cod-
ing and definitions for the SIS instructions. Error condi-
tions and codes are given in table 3-6. Note that except for
zero, all floating point operands must be normalized (i.e.,
sign of mantissa differs from most significant bit of
mantissa).

TAN* TANGENT

15114 131211 10 9]8 7 6]5 4 3|2 1 0

Calculates the tangent of the single precision floating
point quantity (in radians) contained in the A- and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error return will execute the next instruction, set
the overflow bit, and return an ASCII error code in the A-
and B-registers.

SQRT* SQUARE ROOT

15141312;;”109;8765,4;32‘1 ‘

*For HP Assembly Language usage, refer to paragraph
3-46.

3-33

Programming Information

Table 3-5. Typical Base Set Instruction Execution Times

A700

INSTRUCTION Exagm'm TIME (usec) Exacunon TIME (,mc)
Memory Reference Group S N OTNB 3.00
_ CLC 3.50
(Direct) STA sTC 4.50
LDA/B, STA/B 1.00 o :
ADA/B, IOR, XOR, AND 1.00 SC5: SFC, SFS without skip 300
CPA/B 1.50 : S with skip 225
ISZ without skip 1.50 ?)"LF 5. 2?2
with skip 1.75 0 A/B 300
JSB 1.50 SR
JMP 0.75 CLG;:STG 2,75
3C6: SFC, SFS without skip - 3.50
(One Indirect) ‘ S , an:o:;t:k P 375
LDA/B, STAB 1.50 . 5'00
ADA/B, IOR, XOR, AND 1.50 3';25
CPA/B 2.00 3z
1sz 2.00 300
JsB 1.50 :
JMP 1.50 3.00
:) 3:25
(Each Additional Indirect) 0.50 ;
Atter/Skip Group 0.75 t0 225 250
: i 3.50
Shift/Rotate Group 075 to 3.00 5.25
; 6.00
DLD 250 5.25
DST 225
MPY 6.00
DIV 851095 o
ASL 1.75 plus 0.50/shift £i75
ASR, LSL, LSR, RRL, RRR 1.75 plus 0.25/shift oi7e
— : 1.25
Input/Output Group 125
HLT 18.75 1.75
: 1.75
By select code: 0.75
SCo: CLF 450 2.25
STF 575 2.25
'SFC, SFS without skip 425 1.26
with skip 475 1.75
LIAB 6.75 - Per each mdirect address Ievel 0.50
-OTA/B 6.00] i
600 : 1.
oLe 850, - JLA JLB ’75
SCi: CLF, STF 2.00 aso
SFC, SFS without skip 2.50 ,
with skip 275 P :
LIA/B 16.25 3.75 plus 1.00/word
OTA/B 275 3.75 plus 1.25/word
§C2. STF 4,75
CLF - 4.00 1.75
- SFC, SFS with skip 4,50 2.50
: without skip 475 4.25 plus 2. 33/byte
‘LIAB 875 , 1.50 plus 1.50/byte
OTAB 1800, ;. Faster execution if FPP
sTC } 8.50; card is installed.
: gle Preersion) ,
OTAB 6.00, R 1.75 10 6.50
SC4: SFC, SFS without skip 2.75 ’ FIX 1.50 to 6.50
with skip -3.00 FAD FSB 7.75 to 26. .00
LIA/B - 2.75 FMP : 13.75 to 25.25

3-34

A700

Programming Information

Table 3-5. Typical Base Set Instruction Execution Times (Continued)

EXECUTION TIME (usec)

msmc'nbﬂ

E)(EGU’!'!ON TIME (usec)

INSTRUCTION
A ‘

unguagc Imtmcﬁon SG!

LENTR

ENTP
ENTN
ENTC

LSETP (mterruphble)
: per table entry
, .XFER
.DFER
.CFER
ZFER
CPM
..FCM

18.25 to 29.75

4.75.
525

3.50 to 4.25
1.50 to 6.50
8.75*
6.25*
7.00*

- .CPUID
FWID
.SIP

- with skip
WFI

Operating Symm lmtructtom

execution times.

Table 3-6. Typical Execution Times for Floating Point

Instructions with
FPP Card

Optional Hardware

1nstnucnoﬁ

aECUT!ON TIME (;mec)

i w&th FFP' card
'.DD# standard :
with FPP"’ card

2,50 to 3.50

32510 3.50
1.75
32510 3.50
27510 325
3.00

16.75 to 27.00
513
9.25 to 73.10
7.29
9510 7350
7.20 :

FAD, FSB, FMP
oV
FIX FLT

: 425
6.25
75 to 3. 25
375
300
.. 9.00
©: 14,50

505

~ Per parameter (m FPP*)
PMAP :

| *Floating pomt processor

9.75 ;,
9.75 10 14.75.
65 :
75
11.00 to 26.00
75
50
9.75 to 14.75

5oomsoo

Table 3-7. SIS Instruction Error Codes

Note: Memory refresh during a processor memory access can
make an instruction approximately 3% slower. Heavy DMA

activity can also degrade inst
tion for memory.

ruction times due to conten-

3-35

Programming Information

Calculates the square root of the single precision floating
point quantity contained in the A- and B-registers. The
result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error return will
execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

ALOG* NATURAL LOGARITHM
15[14 13 12]11 10 9|8 7 6
1Jofofof1fof1]o1{1]

Calculates the natural logarithm of the single precision
floating point quantity contained in the A- and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error return will execute the next instruction, set
the overflow bit, and return an ASCII error code in the A-
and B-registers.

ATAN* ARCTANGENT

15114 13 1211 10 9|8 7 6
[1]ofofof1]of1fof1]1].
Calculates the arctangent of the single precision floating

point quantity contained in the A- and B-registers. The
result (in radians) is returned to the A- and B-registers.

cos* COSINE

15[14 1312|1110 o8 7 6]5 4 3f2 1 0
1Jofofof1 o] 1Jof1]1]of1]o]1]

Calculates the cosine of the single precision floating point
quantity (in radians) contained in the A- and B-registers.
The result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error return will
execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

SIN* SINE

15[14 13 12[11 10 9|8 7 6
Plojofoftfof1fojt{1]o

Calculates the sine of the single precision floating point
quantity (in radians) contained in the A- and B-registers.
The result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error return will
execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

EXP* E TO THE POWER X

15114 1312 1 “10‘9 8 7 6
Lol ol [A[i]

*For HP Assembly Language usage, refer to paragraph
3-46.

3-36

A700

Calculates e to the power x of the single precision floating
point quantity contained in the A- and B-registers. The
result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error condition
will execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

ALOGT* COMMON LOGARITHM
15114 1312111 10 9} 8 7 6] ¢ 5 4q 3

Calculates the common logarithm of the single precision
floating point quantity contained in the A- and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error condition will execute the next instruction,
set the overflow bit, and return an ASCII error code in the
A- and B-registers.

TANH* HYPERBOLIC TANGENT

15[14 1312f11 10 9|8 7 6

5 4 312 10

Calculates the hyperbolic tangent of the single precision
floating point quantity contained in the A- and
B-registers. The result is returned to the A- and
B-registers.

DPOLY * POLYNOMIAL EVALUATION

15014|13[12] 11{10|9] 8 |7 [6] 5|4]3] 2[1 |0
X [X X T

D/l

D/l

D/l

D/l

D/l

Memory Address

Evaluates a polynomial or quotient of polynomials using
64-bit flotaing-point. This is a seven-word instruction
where:

Word 1 = Instruction code.

A700

Word 2 = Sub-opcode.

Word 3 = Address of result Y (64-bit floating).
Word 4 = Address of argument X (64-bit floating).
Word 5 = Address of coefficient Py (64-bit floating).
Word 6 = Address of numerator order M (integer).
Word 7 = Address of denominator order N (integer).

Define P(Z) = Py, ZM + Py, ZM' + .. + P,Z + P,
QZ) =28 + Quy + ... + QZ + Q,

The computation performed depends on the values of bits
F, S, T of the sub-opcode:

F=0: Y = PX)/Q(X)

F=1, S=0, T=0: Y = P(X*)/Q(X?)

F=1, 8=0, T=1: Y = X*P(X?)/Q(X?)

F=1,S=1, T=0: Y = PX»/(P(X?»-Q(X?) (N>0)
F=1, S=1, T=1: Y = X*P(X?)/P(X*)-Q(X*) (N>0)

Horner’s Rule is used to evaluate the polynomial(s). The
coefficients must be stored sequentially in memory, start-
ing with Py, in the order:

PMa PM—la ey Ph P(l’ QN*[? cee g Ql) QO

where Qy = 1.0 is implied but not stored. If N=0, no
coefficients are provided for Q and only P is evaluated. The
case N=0 and S=1 is not allowed.

Any underflow or overflow which occurs invalidates the
final result. M must be at least one. The A,B,X,Y and E
registers are undefined after this instruction. The O regis-
ter is set if any underflow or overflow occurs, else cleared.

This instruction is interruptible. Since it restarts after an
interrupt, it is not recommended for very large values of
(M+N).

Timing: Approximately 13.88+8.33M if N=0
18.5+8.33(M+N) if N>0

Programming Information

.FPWR* EXPONENTIATION

15114 13 12]11 10 9 7 615 4 3]2 1 0

8
D,
/

-
Memory Address

Raises a 32-bit floating-point number to un integer power.

This is a two-word instruction, where:

Word 1 = Instruction code.
Word 2 = Address of base X (32-bit floating).

The power I is supplied in the A-register. It is unsigned
and must be in the range [2,32768]. The left-to-right bi-
nary method is used to compute X!, e.g. if [=83,, = 123, =
1010011, then

X2 = X«X 10

X4 = X2+X2 100

X5 = X4xX 101
X100 = X5xX5 1010
X20 = X10xX10 10100
X40 = X20xX20 101000
X4t = X40«X 101001
X82 = X414X41 1010010
X83 = X824X 1010011

The X,Y and E registers are undefined. The O register is
set if underflow or overflow occur else cleared. The A and
B registers contain the result.

Timing: Approximately 18.5 + 2.56M + 3.24N
microseconds

where M = (# bits in I)
N = (# bits set in I)

JATLG * (1 =X)/(1+X) .TPWR* EXPONENTIATION
1514 13 1211 10 9]8 7 6: ud 3;: ‘1’ 518 13 12]11 10 918 7 sl5 & 3 0
v) 1 o,
MemoryVAddress D/I
Performs the computation X = (1-X)/(1+X). MemOFYVAddfeSS

Word 1 = Instruction code.
Word 2 = Direct address of X (64-bit floating).

The AB,X,Y,E and O registers are undefined after this
instruction.

Raises a 64-bit floating-point number to an integer power.
This is a three-word instruction, where:

Word 1 = Instruction code.
Word 2 = Address of result (64-bit floating).
Word 3 = Address of base X (64-bit floating).

*For HP Assembly Language usage, refer to paragraph
3-46.

3-37

Programming Information

The power I is supplied in the A-register. It is unsigned
and must be in the range [2,32768]. The left-to-right bi-
nary method is used.

The A,B,X,Y and E registers are undefined. The O register
is set if underflow or overflow occur else cleared.

Timing: Approximately 20.37 + 4.16M + 5.55N
microseconds

where M
N

(# bits in D)
(# bits set in I)

3-43. EXECUTION TIMES AND

INTERRUPTS

Table 3-8 lists the typical execution times required for the
SIS instructions. Also listed is the maximum period of
non-interruptible instruction execution. If an instruction
is interrupted, its execution restarts from the beginning.

3-44. VECTOR INSTRUCTION SET

The Vector Instruction Set (VIS) is included with the
optional Floating Point Processor (FPP) card and performs
arithmetic operations on arrays of floating point numbers.
The VIS utilizes the FPP as a computing resource and
provides nineteen operations in both single and double
precision formats, for a total of 38 instructions. For more
information on the VIS instructions, refer to the VIS
User’s Manual, HP part no. 12824-90001.

Vector instructions require six to ten memory locations to
specify parameters of the following type:

Opcode — Specifies the microcode entry point.
Bit 4, or P-bit, indicates the precision
of the operation. (P=0 for single
precision, P=1 for double precision.)

Return — Specifies the direct address of the

address next instruction.

The remaining parameters are addresses which may be
direct or indirect, as indicated by bit 15. These include:
Vector Specifies the address of the first vec-
tor element to be processed. Vector
elements require two (single preci-
sion) or four (double precision) mem-

*For HP Assembly Language usage, refer to paragraph
3-46.

3-38

A700

ory locations. All vectors in a given
instruction must be of the same preci-
sion. Note that for instructions that
contain two vector operands, these
operands may both specify the same
vector. Similarly, the result vector
may replace one of the operands.

Scalar — Specifies the address of a single float-
ing point quantity. Scalars are used
for both operands or results. The pre-
cision of the scalar must match that of
the associated vectors.

Integer — Specifies the address of an integer
quantity in which a result is
returned.

Increment — Specifies the address of an integer
quantity associated with each vector.
The increment indicates the spacing
between vector elements to be pro-
cessed. (An increment of 1 indicates
that each element will be processed,
an increment of 2 indicates every
other element, etc.) An increment of
zero will cause the first element of the
vector to be used in all operations.
Negative increments will step
through the vector in reverse order,
i.e., decreasing memory locations.
Vector elements skipped over by the
increment will not be modified.

#Elements — Specifies the address of an integer
quantity indicating the number of
vector elements to be processed. A
value less than or equal to zero will
result in a NOP operation.

VADD/DVADD * VECTOR ADD

15]14/13|12)11{10}9§ 8 |7 [6)5([4[3] 2|1 (0
110]0 (11011 0{P|0joO]O
01X X|[X X|X|XIX|X|X]X|X
D/l
D/l
D/l
D/l
D/
D/l
D/
N——— g

-~

Memory Address

A700

Performs the vector operation:

Th

VSUB/DVSUB *

V3 = V1 + V2

is is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.
Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.
Word 9 = Address of # elements N.

VECTOR SUBTRACT

15§14/13]12]11]10({ 9] 8 |7 | 6] 5 4|

1

0

0
1
X

D/l

D/l

D/l

D/l

D/l

D/l

D/l

v

Memory Address

Performs the vector operation:

Th

V3 =V1 - V2

is is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.
Word 7 = Address of vector V3.

Word 8 = Address of increment INCRS3.
Word 9 = Address of # elements N.

Programming Information

VMPY/DVMPY * VECTOR MULTIPLY

15 14[13{12} 11109} 8 [7 |6]5]4]3] 2|1]0

1]olo|ol1|ol1]ofalololP|o]1]0

OfX[X|XIX|X|XIX|X|XIX[X{X]X|X|X

D/l

D/

D/l

D/I

D/l

D/l

D/l

'

Memory Address

Performs the vector operation:

V3 = V1 » V2

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.
Word 7 = Address of vector V3.

Word 8 = Address of increment INCRS.
Word 9 = Address of # elements N.

VDIV/DVDIV * VECTOR DIVIDE

150 14/13[12] 11{10[9] 8 | 7
1fofojof1]of1]o]o
of x| x|x]x|x{x]x|x
D/t
D/l
D/l
D/l
D/l
D/l
D/l

><L= >

'

Memory Address

*For HP Assembly Language usage, refer to paragraph
3-46.

3-39

Programming Information

Performs the vector operation:

V3 =V1l/V2

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.
Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.
Word 9 = Address of # elements N.

VSAD/DVSAD * SCALAR-VECTOR ADD
15]14[13|12]11]10|9] 8 |7 | 6 4(3)2
1]olojof1|o[1]o|o]ojo|P|o}1]
OfX|X|XIX[X|X]X X|x|x

D/l

D/l

D/l

D/l

Dl

D/l

v

Memory Address

Performs the vector operation:

V2 =S+ V1
This is an eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCRZ2.
Word 8 = Address of # elements N.

*For HP Assembly Language usage, refer to paragraph
3-46.

3-40

A700

VSSB/DVSSB * SCALAR-VECTOR SUBTRACT

716]5|4]3]2]1
olofolPla]1]1

15| 14]13[12] 11
of x[x|x]x

v’

Memory Address

Performs the vector operation:
V2 =8 -Vl
This is an eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of # elements N.

VSMY/DVSMY * SCALAR-VECTOR MULTIPLY

15]14[13[12] 11]10| 0] 8 [7 |6] 5 a|3] 2]
[1lolofof1lol:]o]o]o]olP|1]0]0
o x [x [xPx[x[x]x|x{xfx{x|x]x|x|x
D/l

D/l
D/l

D/l
D/
D/l

-

Memory Address

A700

Performs the vector operation:
V2 =S «V1

This is an eight-word instruction, where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of scalar S.
Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

VSDV/DVSDV *

SCALAR-VECTOR DIVIDE

VPIV/DVPIV *

Programming Information

VECTOR PIVOT

5|al3]2f{1]o0

jo 001

x [x [x]x[x |x
D/l
D/
D/l
D/l
D/l
D/
D/
D/l

15] 14

X io |—

o]]]

D/l

o

D/l

(o)]]

D/l

v

Memory Address

Performs the vector operation:

V2 =8/V1

This is an eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCRI1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of # elements N.

N

Memory Address

Performs the vector operation:

V3 =8+V1l + V2

This is a ten-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of vector V3.

Word 9 = Address of increment INCR3.
Word 10 = Address of # elements N.

VABS/DVABS * VECTOR ABSOLUTE VALUE
5/4(|3]2|1]0
o|Plofo]1
XX [x]x[x|x

D/l

D/l

D/

D/l

D/l

-~

Memory Address

*For HP Assembly Language usage, refer to paragraph

3-46.

3-41

Programming Information A700

Performs the vector operation: VNRM/DVNRM * VECTOR NORM

V2 = ABS (VD)
15]14]13/12| 11{10/9] 8 |7 [6]| 5[4 [3] 2|1

This is a seven-word instruction, where 1lolololt1lol1lo 1jo|Pfo]1 (1|1

Word 1 = Instruction code. 0
Word 2 = Return address. D/l
Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1. D/l
Word 5 = Address of vector V2. D/l

Word 6 = Address of increment INCR2.
Word 7 = Address of # elements N.

D/l

v

Memory Address

Performs the vector operation:

SUM = S ABS (V1)

VSUM/DVSUM * VECTOR SUM
Note that for VNRM the sum is internally accumulated in
151 1413|112} 11{10] 91 8 6lslal3l2l1]0 double precision; the answer is then truncated to single
1 <In precision.

1]olofol1]|of1]ofo]1]0] 101

O XX | XIX[X [XIX([X | X]IX|[X[X]X|X[X

o This is a six-word instruction, where

D/l Word 1 = Instruction code.

Word 2 = Return address.
on Word 3 = Address of scalar SUM.
D/l Word 4 = Address of vector V1.
~ — Word 5 = Address of increment INCR1.
o Word 6 = Address of # elements N.
Memory Address
Performs the vector operation:
SUM = Y V1
*
Note that for VSUM the sum is internally accumulated in VDOT/DVDOT VECTOR DOT PRODUCT
double precision; the answer is then truncated to single
precision. 1511411312 11109 8(7(6]5|4(312[1]0
1]ojojoftjoj1jo0jof1joO[Pj1]Oj0]0
This is a six-word instruction, where Ol XX |XEX[X |IXIX[XIXEX[IX|XIX|X|X
D/l

Word 1 = Instruction code.
Word 2 = Return address. D/l
Word 3 = Address of scalar SUM.

Word 4 = Address of vector V1. o/
Word 5 = Address of increment INCR1. D/l
Word 6 = Address of # elements N. D/l
D/l

N— g

v’

Memory Address

*For HP Assembly Language usage, refer to paragraph
3-46.

3-42

A700

Performs the vector operation:
DOT = 3 V1 « V2

Note that for VDOT the product and sum is internally
accumulated in double precision; the answer is then trun-
cated to single precision.

This is an eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar DOT.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of # elements N.

Programming Information

VECTOR MAXIMUM

VMAX/DVMAX * VECTOR MAXIMUM VALUE
15 14]13]12] 11 5(4]3]2[1]0
1]o0]o] pl1]ojo

o x XIx |x [x]x [x |x
D/l

D/

D/l

D/l

hd

Memory Address

Performs the vector operation:
IMAX = Position (MAX(V1))

Note that IMAX is the position of the maximum of those
elements that were tested, as requested by INCR1 and N.
If INCR1 # 1, the position is given by:

IPOS = 1 + INCR1 *» (IMAX - 1)

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of integer IMAX.
Word 4 = Address of vector V1.

Word 5 = Address of increment INCRI1.
Word 6 = Address of # elements N.

VMAB/DVMAB * ABSOLUTE VALUE
15]14/13]12 1(0
Tololol Tile
of x|x (X X |X
D/
D/l
D/l
D/l

v’

Memory Address

Performs the vector operation:
IMAB = Position (MAX(ABS(V1)))

Note that IMAB is the position of the maximum absolute
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by:

IPOS = 1 + INCR1 » (IMAB - 1)

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of integer IMAB.
Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of # elements N.

VMIN/DVMIN * VECTOR MINIMUM VALUE
15 a(3l2(1]o0
1 1of1]1
0 X (X]x (x |x
D/l
D/l
D/l
D/l

hd

Memory Address

*For HP Assembly Language usage, refer to paragraph
3-46.

3-43

Programming Information A700

Performs the vector operation: VMOV/DVMOV * VECTOR MOVE
IMIN = Positi MIN(V1)
osition (MIN(VLD 15141312]1110987654321
Note that IMIN is the position of the minimum absolute (1]o0|ofof1|{o]1]0l0 1jof{P{1]1]1]0
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by: O X[X [XPX|X XPX X XPX X X)X X X
D/
IPOS = 1 + INCR1 = (IMIN - 1) on
D/l
This is a six-word instruction, where D/l
Word 1 = Instruction code. D/l
Word 2 = Return address. ~— __
Word 3 = Address of integer IMIN. Memory deress
Word 4 = Address of vector V1.]
Word 5 = Address of increment INCR1. Performs the vector operation:
Word 6 = Address of # elements N. V2 = V1
This is a seven-word instruction, where
. VECTOR MINIMUM Word 1 = Instruction code.
VMIB/DVMIB ABSOLUTE VALUE Word 2 = Return address.
Word 3 = Address of vector V1.
Word 4 = Address of increment INCR1.
15 14/13]12}11/10/ 9] 8 ~7 6 5 4132 10 Word 5 = Address of vector V2.
1]o0{o0j0}1j0[1J0|O(1fjO|P1}f1]0]1 Word 6 = Address of increment INCR2.
0 X X X x x x X X x x x x X x x Word7=Addressof#e1ementsN.
ol VSWP/DVSWP * VECTOR SWAP
D/l
D/I 151‘4131211109876543210
o/ . 1jojojojtfojt1jofojrjofpPjt}1]1]1
~— ~ — O X [X [XIX[X XX [X[XIX|X[X]X[X[X
Memory Address
D/l
Performs the vector operation: oIl
.. D/l
IMIB = Position (MIN(ABS(V1))
D/l
Note that IMIB is the position of the minimum absolute D/l
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by: — v ud

Memory Address

IPOS = 1 + INCR1 » (IMIB - 1) Performs the vector operation:

V1l <==>V2
This is a six-word instruction, where This is a seven-word instruction, where
R e Word 1 = Instruction code.
Word 2 = Return ad@ress. Word 2 = Return address.
Word 3 = Address of integer IMIB. Word 3 = Address of vector V1.
Word 5 ~ Addrens of increment INCR1 Word 4 = Addressof increment INCR1
Word 6 = Address of # elements N. Word 6 = Address of increment INCR2.

Word 7 = Address of # elements N.

*For HP Assembly Language usage, refer to paragraph
3-46.

3-44

AT00

Table 3-8. Typical Scientific Instruction Set
Execution Times

o15-m
" 3-36 - S
Y 8-87

. 23-28
- 5‘20

< 8 microseconds.

55E-16
| BE-17
8.8E-17
1.3E-16

3-45. EXECUTION TIMES AND
INTERRUPTS

Table 3-9 lists the typical execution times for the VIS
instructions. VIS times are composed of two parts: a fixed
time per instruction execution, and a per-element loop
time. Thus the time to process 100 elements equals the
fixed time plus 100 multiplied by loop time.

The maximum period of non-interruptible instruction
execution for all VIS instructions is 24 microseconds.
When a VIS instruction is interrupted, the current state of
execution is stored in the first word of the result memory
location, as well as the A, B, X, and Y registers. When
re-entered following the interrupt processing, the VIS
instruction will resume execution from the point of
suspension.

Programming Information

Table 3-9. Typical Vector Instruction Set Execution Times

p time is the
lals

3-46. ASSEMBLY LANGUAGE

New instructions not recognized by the HP Macroas-
sembler require different handling in HP Assembly
Language programming. These instructions are as-
terisked in the preceding paragraphs and must be used in
the form: JSB x where x is the instruction. (The in-
struction, x, must be declared as an external at the be-
ginning of the assembly language program.) Most of these

3-45

Programming Information

instructions correspond to library subroutines* and must
be implemented into HP RTE systems (as described in the
following paragraph) to enable their execution in
hardware-firmware instead of in software.

3-47. RTE IMPLEMENTATION

New instructions can be implemented in an HP RTE-A.1
operating system simply by changing library entry points
during the parameter input phase of system generation.
(Refer to the appropriate RTE manual for the system
generation procedure.) With the opcodes given in Table
3-10, the entry point changes would be as indicated below:

JLA RP,100600
.JLB,RP,104600

MW21,RP,105736
MW22 RP,105737

Alternatively, entry points may be changed by loading
(via LOADR) a “replacement” program when user
programs are loaded. Replacement programs RPL.7 and
RPL.F are included in the RTE-A.1 system software.

*Refer to the Relocatable Library Reference Manual, part
no. 24998-90001.

3-46

A700

A700 Programming Information

Table 3-10. Instructions and Opcodes for RTE Implementatlon

 ocTAL
OPCODE

~ INSTRUCTION OCTAL
_ MNEMONIC OPCODE _

105121
105123
105125
105127
105130
105131
105132
105133
105’135 ~

- .bsB 105034
.DMP 105054
ool 105074
DSBR 105114
DDIR 105134
.DNG - 105203
DCO 105204
DIN 105210
.DDE 105211
DIS S 108212
PMAP 105240
JRES :
JRES
IMAP
JMAP
LPXR
LPX
LBPR
.LBP , ;
CPUD
FWID
SIP 105303
vADD ;‘ 105001
vsuB
VMPY
VDIV
VSAD
VSSB
VSMY
VSDV
VPIV 105
~ VABS 105108
. VSUM 105105
~VNRM - [is 1 105107
vDOT 108 R
VMAX
VMAB
VMIN

105701
105702
105703

: 101724
101725
101726
105721
105722
105723
105724
- 105725
- 105726
101727
101730
101731

105885 |

101736
101737
105727

- 105031 :

3-47/3-48

The basic addressing space of the HP 1000 A700 computer
is 32768 words, which is referred to as logical memory.
The amount of memory actually installed in the computer
system is referred to as physical memory. The Dynamic
Mapping System (DMS) is standard logic in the HP 1000
A700 computer and provides an addressing capability for
up to 16 million words of physical memory. The DMS
allows logical memory to be mapped into physical memory
through the use of dynamically-alterable memory maps.

4-1. MEMORY ADDRESSING

The basic memory addressing scheme provides for ad-
dressing 32 pages of logical memory, each of which con-
sists of 1024 words. This memory is addressed through a
15-bit logical address bus as shown in Figure 4-1. The
upper 5 bits of this bus provide the logical page address
and the lower 10 bits provide the relative word offset
within the page.

Figure 4-1. Basic Logical Memory Addressing Scheme

Also associated with any memory access is a 5-bit logical
map number. The DMS converts the logical map number
and the logical page address into a 14-bit physical page
number, thereby allowing 16k (2'*) pages of physical
memory to be addressed. This conversion is accomplished
by having the 5-bit logical map number and the 5-bit
logical page address access 1024 page mapping registers
(PMRs), each of which is 16 bits wide. Each of these map
registers contains the user-specified (privileged) 14-bit
page address. This new page address is combined with the
original 10-bit page offset to form a 24-bit memory address
as shown in the figure 4-2.

The PMRs also contain two bits of memory protection
information. Bit 15 indicates that the page is read-
protected when privileged mode is disabled. Bit 14 in-
dicates that the page is write-protected when privileged
mode is disabled. Any attempt to read from a read-
protected page will result in a read violation and the
memory read will return an undefined result. Any at-
tempt to write into a write-protected page will result in a
write violation and the memory will not be altered.

If a read or write violation occurs, the DMS signals the
memory protect logic (located on the memory controller
card) that a violation has occurred, which causes the
memory protect logic to generate an interrupt. As dis-
cussed in Section VI, memory protect violations are in-
terrupted to select code 07.

The width of the PMRs is limited to a 16-bit word, of which
two bits specify read/write protection, so the maximum
width of the physical page address is 14 bits.

Figure 4-2. Expanded Memory Addressing Scheme

4-1

Dynamic Mapping System

4-2. GENERAL DESCRIPTIONS

4-3. PAGE MAPPING REGISTER
INSTRUCTIONS

The page mapping register instructions allow the
privileged user to alter the PMRs, each of which have the
following format:

PAGE MAPPING REGISTER FORMAT

0
physical page number

13
14 — write protect this page

15 — read protect this page

The page mapping register instructions are:

LPMR - loadaPMRindexed by register A from register B
SPMR - store a PMR indexed by register A to register B
LDMP - load a map from memory

STMP - store a map to memory

4-4. WORKING MAP INSTRUCTIONS

The computer will maintain three logical maps,
cumulatively called the Working Map Set (WMAP). The
working map instructions allow the system to alter the
logical maps, and also to initiate a user program.

The Execute map is the map number used for instruction
fetches and normal memory accesses. The data maps
(DATA1 and DATA2) are the map numbers used in
cross-map memory references. There are two data maps to
allow the system to do cross-map moves from one area of
memory to another without having to go through the sys-
tem map. In addition, this feature allows the system to be
able to quickly access one area of memory (such as a
System Available Memory map) while being able to also
access another (such as the user’s map). A memory ref-
erence to locations O or 1 in the Execute map are defined to
access the A- or B-registers, respectively. References to 0
or 1 in the data maps are defined to access physical mem-
ory locations.

The format of WMAP is as follows:

WMAP FORMAT:

0
} Execute map number
4
5
} DATA1 map number
9
10
} DATAZ2 map number
14
15 — memory protection enable

4-2

A700

Upon servicing interrupts, the computer saves the cur-
rently executing WMAP in a register called IMAP, and
loads WMAP with the following values:

The DATA1 map is set to the old Execute map.
The new Execute map is set to zero.
c. The DATA2 map contains an undefined value.

d. Memory protection is disabled.
The working map instructions are:

XJMP - cross jump

SWMP - store current WMAP into memory
SIMP - store current IMAP into memory

LWDL1 - load WMAP field DATA1 from memory
LWD2 - load WMAP field DATA2 from memory

4-5. CROSS-MAP INSTRUCTIONS

While the working map instructions provide a way to load
the working map set, the cross-map instructions provide a
means to use them.

These instructions are non-privileged. For all of these
instructions, indirect DEF references are done through
the Execute map, while the final reference is done through
the specified map.

Abbreviations used are:

“0” - means logical Execute map
“1” - means logical DATA1 map
“2” _ means logical DATA2 map

The cross map instructions are:

XLA1 - cross load A through the DATAI map
XLB1 - cross load B through the DATA1 map
XLA2 - cross load A through the DATA2 map
XLB2 - cross load B through the DATA2 map
XSA1 - cross store A through the DATA1 map
XSB1 - cross store B through the DATAL map
XSA2 - cross store A through the DATA2 map
XSB2 - cross store B through the DATA2 map
XCAL1 - cross compare A through the DATA1 map
XCB1 - cross compare B through the DATA1 map
XCAZ2 - cross compare A through the DATA2 map
XCB2 - cross compare B through the DATA2 map
MWOO - cross move words from Execute to Execute
MWO1 - cross move words from Execute to DATA1
MWO2 - cross move words from Execute to DATA2
MW10 - cross move words from DATA1 to Execute
MW11 - cross move words from DATA1 to DATA1
MW12 - cross move words from DATA1 to DATA2
MW20 - cross move words from DATA2 to Execute
MW21 - cross move words from DATA2 to DATA1
MW22 - cross move words from DATA2 to DATA2
MBOO - cross move bytes from Execute to Execute
MBO1 - cross move bytes from Execute to DATA1
MBO2 - cross move bytes from Execute to DATAZ2

A700

MB10 - cross move bytes from DATA1 to Execute
MBI11 - cross move bytes from DATA1 to DATA1
MB12 - cross move bytes from DATA1 to DATA2
MB20 - cross move bytes from DATAZ2 to Execute
MB21 - cross move bytes from DATA2 to DATA1
MB22 - cross move bytes from DATA2 to DATA2

4-6. DETAILED DESCRIPTIONS

The following paragraphs provide machine language
coding and definitions for the DMS instructions.

LPMR LOAD PAGE MAPPING REGISTER

15[14 13 12[11 10 9|8 7 &

Loads the contents of the B-register into the page mapping
register (PMR) addressed by the contents of the
A-register. Any attempt to address a PMR outside the
range of 0 to 1023 produces undefined results. The format
tor the PMR contents is: bit 15 = read protect; bit 14 =
write protect; and bits 13 to 0 = physical page number.
This instruction is privileged. After the operation, the
A-register is incremented.

SPMR STORE PAGE MAPPING REGISTER
15 1413 12 8 76

Loads the contents of the page mapping register (PMR)
addressed by the value in the A-register into the
B-register. Any attempt to address a PMR outside the
range of 0 to 1023 produces undefined results. The format
for the PMR contents is: bit 15 = read protect; bit 14 =
write protect; and bits 13 to 0 = physical page number.
This instruction is privileged. After the operation, the
A-register is incremented.

Dynamic Mapping System

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed, when modification of a
currently executing map is tried, or when the resolved
address of the map image is outside the range of 2 to 77740
octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection.

STMP STORE A MAP

15(14 13 12{11 10 ﬂs 76|54 3|2 10
D/ll
D/ll

LDMP LOAD A MAP
15}14 13 12|11 10 9 10
[1]o] o] 1 10

Loads the map number specified by Word 2 from the 32-
word block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

Stores the map number specified by Word 2 to the 32-word
block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number X 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed, when modification of a
currently executing map is tried, or when the resolved
address of the map image is outside the range of 2 to 77740
octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection.

XJMP CROSS MAP JUMP

1514 13 12111 10 918 7 6

Dynamic Mapping System

Resolves indirect references, sets the program counter to
the resolved address specified by Word 3, and loads
WMAP with the contents of Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new WMAP number.
Word 3 = Pointer to next instruction (new PC value).

All memory references (direct and indirect) are done in the
Execute map and may include the A- and B-registers. The
next instruction will be fetched using the new WMAP.
This instruction is privileged and is interruptible in that it
may be restarted during indirect address resolution after
three levels of indirection.

SWMP SAVE WORKING MAP

A700

Loads the DATAI1 register from the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA1 map.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection. Map numbers outside the range of 0-31 pro-
duce undefined results.

15 14 13 1211 10 9
1]ofo]o]1]o]1

-t | oo

7 695 4 3121 0

o

LwD2 LOAD DATA2 MAP
14 13 12]1110 98 7 6]5 4 3)2 10
1jojojofifofrfr]r]1]ojojo}ijoje

Stores WMAP at the memory location pointed to by Word
2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection.

SIMP SAVE INTERRUPTED MAP
15 14 13 12"11 10 9 8 7 615 4’3l2 ’1’”0
11010 0"‘1 o 1 0 03 1

wdl |

Stores IMAP at the location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection.

LwD1 LOAD DATA1 MAP
154 13 12[1110 98 7 65 4 32 1 0O
1fofofofafot]1]1]1 oo o]1

o,

4-4

Word 1 = Instruction code.
Word 2 = Pointer to new DATA2 map.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection. Map numbers outside the range of 0-31 pro-
duce undefined results.

Loads the DATAZ2 register from the memory location
pointed to by Word 2, where:

XLA1 CROSS LOAD A THROUGH DATA1 MAP

14 13 12[1110 9’

S
-l en
- | &
° —
oo

oo
o|w

Loads the A-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

A700

XLB1 CROSS LOAD B THROUGH DATA1 MAP

15

14

13 12[1110 9f8 7 &6

-t | &

o
o |w
|-
)

Loads the B-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 mabp,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XLA2 CROSS LOAD A THROUGH DATA2 MAP

15014 13 12|11 10 8|8 7 6[5 4 3J21 0
o)

Loads the A-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XLB2 CROSS LOAD B THROUGH DATA2 MAP

15114 13 12]11 10

Loads the B-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

Dynamic Mapping System

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XSA1 CROSS STORE A THROUGH DATA1 MAP

1511413 121110 9|8
1{ojojofojoj1]1

Stores the A-register contents in the memory location
pointed to by Word 2, where:

-y
-] O

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XSB1 CROSS STORE B THROUGH DATA1 MAP

15[14 13 121110 98
1foJoJof a1 1]
D/'

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

4-5

Dynamic Mapping System

XSA2 CROSS STORE A THROUGH DATA2 MAP

15414 13 12]11 10 9| 8 7
1jo({ojo0jojof1j1{1

- o

4 3)2 0

15/

Stores the A-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATAZ2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

X8B2 CROSS STORE B THROUGH DATA2 MAP

15114 13 12]11 10 9

110j0(0f1]0f1
D

- | 0D

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XCA1 CROSS COMPARE A THROUGH
DATA1 MAP
15141312’11109 8 7 ;5
1lolojofolof1|1|{1|[1]0]1

‘ﬁ
D/l T

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

4-6

A700

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XCB1 CROSS COMPARE B THROUGH
DATA1 MAP

15T1e 13 12[11 10 3

dN
- |

3 0
0j1[1]0

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATA1 map. Because A-
and B-register addressing is disabled in the DATA1 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

XCA2 CROSS COMPARE A THROUGH

DATA2 MAP
15]14 1312|1110 98 7 6|5 4 3|2 1 0
D/'

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATAZ2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATAZ2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be’
restarted during indirect address resolution after three
levels of indirection.

A700

XCB2 CROSS COMPARE B THROUGH
DATA2 MAP
15/14 13 121110 9 8 76154 312 10

D/I

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers. The direct
memory reference is done in the DATAZ2 map. Because A-
and B-register addressing is disabled in the DATA2 map,
direct addresses 0 and 1 refer to physical memory loca-
tions. This instruction is interruptible in that it may be
restarted during indirect address resolution after three
levels of indirection.

MWo00 CROSS MOVE WORDS,

EXECUTE TO EXECUTE

15[14 13 12[1110 9|8 7 6]5 4 3|2 1
[1]olefola]ol s [a]a] 1 o1 o] 1] 1]

Moves a block of words from the Execute map to the
Execute map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be a positive integer equal to or greater than
zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the A-
and B-registers contain the original values incremented
by the number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MWo1 CROSS MOVE WORDS,

EXECUTE TO DATAI1

151413121110 9 8 7 615 4 3 2’1 0
Lifojojofefofsfefe1fof[1]1fo]0]0;

Moves a block of words from the Execute map to the
DATAI1 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-

Dynamic Mapping System

tion address in the DATA1 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

Mwo2 CROSS MOVE WORDS,

EXECUTE TO DATA2

1514 1312|1110 98 7 6f5 4 3]2 1 0
fifofofofafof1fa]a]1]al1]1 1]

Moves a block of words from the Execute map to the
DATA2 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

Mw10 CROSS MOVE WORDS,

DATA1 TO EXECUTE

15{14 13 12]1110 98 7 6|5 4 3|2 1 0
[1]ofoJof1]o]1fa]a1 o] 1] 1]a]1]0

Moves a block of words from the DATA1 map to the
Execute map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

4-7

Dynamic Mapping System

MW11 CROSS MOVE WORDS, DATA1 TO DATA1

15114 13 1241110 918 7 6
[1]ofofofa]ol1f1]1]1]0]1

Moves a block of words from one location in the DATA1
map to another in the DATA1 map. The A-register
specifies the source address, the B-register specifies the
destination address, and the X-register specifies the
number of words to be moved (which must be a positive
integer equal to or greater than zero). Address bit 15 must
be zero, as indirect source and destination references are
not allowed. On return, the A- and B-registers contain the
original values incremented by the number of words
moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW12 CROSS MOVE WORDS, DATA1 TO DATA2

15[1413 121110 9f8 7 6|5 4 3{2“; 10
[]ofo]o 1efrfofe]r]r]u]o

Moves a block of words from the DATA1l map to the
DATAZ2 map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW20 CROSS MOVE WORDS,

DATA2 TO EXECUTE

15|14 1312|1110 9
[1]o]o]o]t]o]1]1

Moves a block of words from the DATA2 map to the
Execute map. The A-register specifies the source address
in the DATA2 map, the B-register specifies the destina-

4-8

A700

tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW21 CROSS MOVE WORDS, DATA2 TO DATA1

151413 12§1110 918 7 6

Moves a block of words from the DATA2 map to the
DATA1 map. The A-register specifies the source address
in the DATA2 map, the B-register specifies the destina-
tion address in the DATAl map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A- and
B-registers contain the original values incremented by the
number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW22 CROSS MOVE WORDS, DATA2 TO DATA2

15[14 13 12|11
[1]o]o]o]1

Moves a block of words from the DATA2 map to the
DATA2 map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be a positive integer equal to or greater than
zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the A-
and B-registers contain the original values incremented
by the number of words moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

A700

MB00 CROSS MOVE BYTES,
EXECUTE TO EXECUTE

15[14 13 12|11 10 9{8 7 6

Moves a block of bytes from one location in the Execute
map to another in the Execute map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the A- and
B-registers contain the original values incremented by the
number of bytes moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-; B- and X-registers.

MBO1 CROSS MOVE BYTES,
EXECUTE TO DATA1

15{14 13 12|11 10 918 7 6; 5”4 3|2 1 0
[T Jof1f1]ofojo

Moves a block of bytes from a location in the Execute map
to one in the DATA1 map. The A-register specifies the
source address in the Execute map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB02 CROSS MOVE BYTES,
EXECUTE TO DATA2

1511413 12]1110 9|8 7 6|5 4“3 =
NnnNogn

Moves a block of bytes from a location in the Execute map
to one in the DATA2 map. The A-register specifies the
source address in the Execute map, and the B-register

Dynamic Mapping System

specifies the destination address in the DATA2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

This instruction produces undefined results if the source
or destination address rolis over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB10 CROSS MOVE BYTES,
DATA1 TO EXECUTE

1514 13 12]1110 9 }8 7 6|5 4 3|2 10

Moves a block of bytes from a location in the DATA1 map
to one in the Execute map. The A-register specifies the
source address in the DATA1 map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB11 CROSS MOVE BYTES, DATA1 TO DATA1

15114 13 12
I

Moves a block of bytes from one location in the DATA1
map to another in the DATA1 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order:
(bits 7 to 0) position, respectively. On return, the A- and
B-registers contain the original values incremented by the
number of bytes moved, and the X-register is zero.

a 32 10
1]1fo]1]1

1110 918 7 6

4-9

Dynamic Mapping System

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB12 CROSS MOVE BYTES, DATA1 TO DATA2

1511413 1241110 9|8 7 6]5 4 3|2 1 0
[1fofofofofof1]1f1]1]ol1{1]1]0]0

Moves a block of bytes from a location in the DATA1 map
to one in the DATA2 map. The A-register specifies the
source address in the DATA1 map, and the B-register
specifies the destination address in the DATAZ2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB20 CROSS MOVE BYTES,
DATA2 TO EXECUTE

15[14 13 12[11 10 9
[1]ofofofofo]1

Moves a block of bytes from a location in the DATA2 map
to one in the Execute map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

4-10

A700

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB21 CROSS MOVE BYTES, DATA2 TO DATA1

15]1413 121110 9]8 7 6]5 4 3]2 1 0
[1folofofofafrfa[1][1]of1[1]}1]1]0

Moves a block of bytes from a location in the DATA2 map
to one in the DATA1 map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A- and B-registers contain the original
values incremented by the number of bytes moved, and
the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB22 CROSS MOVE BYTES, DATA2 TO DATA2

15]14 1312|1110 98 7 6]5 4 3[2 1 0
[foToJofefola[aa o a1 e 1]

Moves a block of bytes from one location in the DATA2
map to another in the DATA2 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the A- and
B-registers contain the original values incremented by the
number of bytes moved, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

AT00 Dynamic Mapping System

4-7. DMS INSTRUCTION EXECUTION 4-8. ASSEMBLY LANGUAGE AND
TIMES RTE IMPLEMENTATION

Table 4-1 lists the execution times for the various DMS

Refer to paragraphs 3-46 and 3-47 for information on
instructions.

implementing the DMS instructions in HP Assembly
Language and in an HP RTE-A.1 operating system.

Table 4-1. Dynamic Mapping Instructions Execution Times

4-11/4-12

& sccrion

This section contains an introductory discussion of the
A700 computer microprogramming techniques and de-
velopment. For additional information, refer to the HP
92045A Microprogramming Package Reference Manual,
part no. 92045-90001.

5-1. THE MICROPROGRAMMED
COMPUTER

The control section of a computer is the portion of the
computer that directs and controls the other sections; i.e.,
the memory section, input-output section, and the
arithmetic-logic section. In totally hardwired computers,
the control section logic is normally “spread out” physi-
cally throughout the computer. This design approach
makes it impossible to enhance the computer’s instruction
set without redesign. In contrast, A700 computers have a
fully microprogrammed control section, which means that
the sequence in which the control functions are performed
are made programmable through the use of a technique
called microprogramming.

The action taken when any one of the A700 base set of 205
assembly language instructions is executed is determined
by a microprogram associated with the assembly language
instruction (these microprograms reside in a special
memory called control store); the control section oversees
the translation and controls the execution of the
microprogram. With this design approach, instruction set
enhancements can be made by changing or adding to the
set of microprograms that control the machine’s execution.
Many computers are microprogrammed; however,
Hewlett-Packard has taken the concept one step further to
offer the power of microprogramming to the user.

5-2. THE MICROPROGRAMMABLE
COMPUTER

A700 computer users can more fully take advantage of the
computer’s power by utilizing microprogramming. The
microprogrammer has more instructions, a more flexible
word format, more registers, and faster execution times to
work with than does the assembly language programmer.
The microinstruction word length is 32 bits which enables
concurrent operations to be performed in a single in-
struction. Microprogrammers can access 29 scratch pad
registers in addition to those available to the assembly
language programmer and have up to 16,384 32-bit words
of memory (termed control store) in which to store
microprograms. Up to three levels of nested subroutines
are possible in A700 computers. The microprogrammer

works in a much faster environment than does the as-
sembly language programmer for two reasons. One, since
microinstructions have access to most of the internal parts
of the computer’s architecture, fewer memory fetches are
required to accomplish most tasks. Two, the
microinstruction execution time of 250 nanoseconds is
much faster than the typical assembly instruction
execution time of 1 to 2 microseconds.

These capabilities are easily taken advantage of by A700
computer users through the extensive support provided by
Hewlett-Packard. Some of the more important benefits of
Hewlett-Packard’s microprogramming are given in the
following paragraphs.

5-3. CUSTOMIZED INSTRUCTIONS

Through the use of microprogramming, the computer’s
assembly language instruction set can be expanded with
instructions tailored for specific applications. By adding
special purpose instruction sets, the general purpose
computer can be uniquely adapted for a certain job and
thus become very efficient at that job. Applications that
may be profitably microcoded include arithmetic calcu-
lations. /O device driver programs, and sorts and table
searches.

Microprogramming is very similar to assembly language
programming, although it is more powerful in many ways.
Some knowledge of the internal structure of the computer
is required, but once this knowledge is attained, the in-
creased power and flexibility of microprogramming can
ease the solution of many programming tasks.
Microprograms are easily callable by assembly or higher
level language programs.

5-4. SYSTEM SPEED

Microprogramming often-used routines will typically
decrease program execution time by factors of two to ten
and sometimes by as much as twenty or more. Software
routines can be made to execute at the hardware speeds of
the microprogram environment and the additional reg-
isters available to the microprogrammer can serve to
eliminate many time-consuming memory fetches.

5-5. MEMORY SPACE AND SECURITY

By converting software routines into microprograms,
space in main memory that would normally be required
for time-critical routines can be freed for other uses. The

5-1

Microprogramming

routines remain instantly callable, as opposed to routines
stored in a peripheral device. Microprograms are also less
accessible than conventional software which affords a
higher degree of security to microcoded routines.

5-6. DEVELOPING MICROPROGRAMS

Developing microprograms is similar to developing Pascal
language programs and is done with the aid of the HP
paraphraser (MPARA). Since the user will not normally
want to microcode all of a certain program, some analysis
is required to determine which segments of the assembly
language program can be most profitably converted to
microcode. By substituting this section of code with a
microprogrammed subroutine that is callable by the
assembly or higher level program, overall execution time
is reduced.

Once the microprogrammer has determined what segment
to implement in microcode, the microprogram is developed
as shown in Figure 5-1. The paraphraser program (in
main memory) is used to assemble the source
microprogram into an object program. Then, the object
microprogram is loaded into writable control store (WCS).

When the microprogram is fully checked out, that user
may choose to have his program reside permanently in
programmable read-only memory (PROM) or in WCS
where it may be altered programmatically. Implementa-
tion in ROM is accomplished by programming the PROMs
with a PROM writer and installing the programmed
PROMs in the computer. The mask tapes shown in figure
5-1 are required by the PROM writer and are generated by
the software at the user’s command. ROM-resident
microprograms are permanent and do not have to be
reloaded each time the computer is powered up; this
implementation also prevents users from erroneously
destroying the microprogram. The user who does not
require such permanence for microprogram storage may
execute his microcode from WCS. Microprograms used in
this manner may be loaded with the WCS I/O utility
routine and may be altered under program control to suit
a variety of users. User-written microprograms are easily
accessed by assembly or higher level programs. Once the
microprogram is developed and loaded into control store, it
may be called in a very similar manner to a software
subroutine.

5-7. SUPPORT FOR THE
MICROPROGRAMMER

Hewlett-Packard provides a comprehensive set of
hardware manuals, software manuals, and training
courses to make user microprogramming easy to learn and
implement. For permanent implementation of
microprograms, PROMs may be installed in the HP
12155A PROM Control Store Card. Up to 8,192 32-bit
words of control store in the form of 8K bit PROMs may be

5-2

A700

installed in the optional PROM Control Store Card which
occupies a slot in the card cage of the computer
mainframe.

The 4K writable control store (WCS) option provides a
read-write control store module which can be used for the
development and execution of wuser-supplied
microprograms. Microprograms in WCS are executed at
the same speed as those in the read-only control store.
Each WCS module consists of a single card which plugs
into the card cage, thus eliminating the need for extensive
cabling or an additional power supply. A WCS card
contains 4,096 32-bit locations of random-access-memory
(RAM), including all necessary address and read/write
circuits. WCS can be written into or read under computer
control using standard input/output instructions. An 'O
utility program makes it possible for FORTRAN and
Pascal programs to write into or read from a WCS module
using a conventional program call. A WCS module is read
at full speed by way of a flat cable connecting it to the
control section of the processor.

Available microprogramming software includes the
paraphraser as well as a diagnostic, driver program, and
I/O utility program for use with the writable control store
module. These software aids operate under the Hewlett-
Packard Real Time Executive (RTE) operating systems.

A course is offered at HP facilities in Cupertino, California
for customer training. Requiring a knowledge of HP 1000
assembly language as a prerequisite, the course features
in-depth coverage of microprogram development and
implementation, and provides hands-on experience for the
microprogrammer. The A700 microprogrammer may also
take advantage of other user-written microprograms via
the HP Contributed Library.

5-8. FPP MICROPROGRAMMING

Information on directly microprogramming the Floating
Point Processor (FPP) card is given in the HP 92045A
Microprogramming Package Reference Manual, part no.
92045-90001.

5-9. CONCLUSION

Microprogramming is a very powerful tool that gives the
user many advantages in terms of speed, flexibility, and
program security. Microprogramming does have its
limitations however, and the potential user should
examine very closely the extent of support provided by the
computer manufacturer. Hewlett-Packard has by far sold
and supported the greatest number of microprogrammable
computers in the world, and provides world-wide customer
support. Customer training courses and documentation
have been refined from years of customer-contributed
feedback and actual implementation is made easy through
extensive software support packages and inexpensive
hardware tools.

A700

Microprogramming

ACTIVITY PROFILE | = |
GENERATION = |
PROGRAM

USER ‘
MICROPROGRAMMING
REQUIREMENT

STUDY RESULTS
AND/OR ,
PLAN MICROPROGRA!

RUN PROGRAM

ANALYSIS : COMPUTER

CONTROL
MEMORY

ASSIGN ASSEMBLY

LANGUAGE =~

~ RUCTION CODE
| TO DETERMINE
| ACCESS POINT

WRITE THE
MICROPROGRAM
IN PARAPHASER
LANGUAGE

~ PREPARE AND

a /NPUT SOURCE
) (EDIT USING
EDIT/1000)

. STORE

~ MICROASSEMBLE
v - ~ ON DISC

MICROPROGRAM
LISTNG

>
OBJECT CODE

DISC FILE (OR TO
OUTPUT DEVICE)

NEW (EDITED)
INTERIM
DISC FILE

WRITABLE
CONTROL

| sTORE ' R ; u
n‘(WCS) @9

- ouTPUT
" DATA CARTRIDGE|

~ TAPE (OR OTHER
 DEVICE)

PERFORM
EDITING AND
CHECKOUT
| USING WCS,
 PARAPHASER |
AND EDIT/1000 |

- MICROPROGRAM /-
| EXECUTION =

~ MICROPROGRAM

USER PROGRAMS
IN MAIN MEMORY |

8200-8

Figure 5-1. Microprogramming Implementation Process

5-3/5-4

The vectored priority interrupt system has up to 53 dis-
tinct interrupt levels, each of which has a unique priority
assignment. In the A700 computer, the interrupt priority
of an I/O card is based on the card’s proximity to the
processor card and is independent of the card’s select code.
The I/O card in the slot nearest to the processor card has
the highest interrupt priority. Each /O card has higher
interrupt priority than I/O cards farther from the pro-
cessor card and lower priority than cards closer to the
processor card. As shown in Table 6-1, the select code of an
interrupt level is associated with an interrupt location in
memory.

Any device can be selectively enabled or disabled under
program control, thus switching the device into or out of
the interrupt structure. In addition, the interrupt system
is divided into types of interrupts (Table 6-1). Interrupt
Type 3 can be enabled or disabled under program control
using a single instruction, and interrupt Types 2 and 3
combined can be enabled or disabled using a single
instruction.

Table 6-1. A700 Interrupt Assignments

6-1. POWER FAIL INTERRUPT

The computer power supply is equipped with power-
sensing circuits. When primary line power fails or drops
below a predetermined level while the computer is
running, an interrupt to memory location 00004 is
automatically generated. Memory location 00004 is in-
tended to contain a jump-to-subroutine (JSB) instruction
referencing the entry point of a user-supplied power fail

subroutine. The interrupt capability of lower-priority
operations is automatically inhibited while a power fail
subroutine is in process.

A minimum of five milliseconds is available between the
detection of a power failure and the loss of usable power
supply power to execute a power fail subroutine; the
purpose of such a routine is to transfer the current state of
the computer system into memory and then halt the
computer. A sample power fail subroutine is given in
Table 6-2. The optional battery backup module will supply
enough power to preserve the contents of memory for a
sustained line power outage of 30 or 60 minutes, depend-
ing on the amount of memory installed.

The user has a switch-selectable option of what action the
computer will take upon restoration of primary power.
When frontplane switch M is closed, the computer will
execute either a loader or the Virtual Control Panel
routine, depending on the setting of the Start-Up switches.

NOTE

Switch M is mounted on the processor
frontplane and is not an operator control.
The setting of this switch is normally
determined by the System Manager
prior to or during system installation.

When switch M is open, the automatic restart feature is
enabled. After the self-test is executed following the re-
turn to normal power levels, an interrupt to location
00004 occurs. This time the power-down portion of the
subroutine is skipped and the power-up portion begins.
(Refer to Table 6-2.) Those conditions existing at the time
of the power fail interrupt are restored and the computer
continues the program from the point of the interruption.

Note that an auto-restart interrupt to location 00004 oc-
curs only if that location’s contents are not zero; otherwise,
the system is re-booted. This is done so that if power fails
and is restored during a boot, an attempt to restart a
partially loaded program can be avoided. To enable this to
happen the program being loaded should initially load
location 00004 with zero and load the power-fail JSB
instruction only when the load is otherwise complete.

If the computer memory does not contain a subroutine to
service the power fail interrupt, location 00004 should
contain a NOP instruction (00 octal).

At the end of a restart routine, consideration should be

given to re-initializing the power-fail logic and to restor-
ing the interrupt capability of the lower priority functions.

6-1

Interrupt System AT00

Table 6-2. Sample Power Fail Subroutine

LABEL

PFAR

QWN; |

ask register,

6-2

A700

6-2. PARITY ERROR INTERRUPT

Parity checking of memory is a standard feature in the
A700 computer. The parity logic continuously generates
correct parity for all words written into memory and
monitors the parity of all words read out of memory. Par-
ity can be programmatically set to even parity (STF 05) or
cleared to odd parity (CLF 05). (Odd parity must be used
with error correcting memory.) Correct odd parity is
defined as having the total number of “1” bits in a 17-bit
memory word (16 data bits plus the parity bit) equal to an
odd value. If a “1” bit (or any odd number of “1” bits) is
either dropped or added in the transfer process involving a
standard memory array card, a Parity Error signal is
generated when that word is read out of memory. In the
case of data access from an error correcting memory
(ECM) array card, the parity interrupt occurs only if a
double-bit (non-correctable) error is detected; single-bit
errors do not cause parity interrupts since the error is
automatically corrected by the ECM array card.

The Parity Error signal will generate an interrupt to
memory location 00005 if the parity system was previ-
ously enabled by an STC 05 instruction. Parity interrupts
turn off the system. Location 00005 may contain either a
JSB instruction referencing the entry point of a user-
supplied parity error subroutine (included in RTE-A.1) or
a JMP instruction pointing to a HLT instruction. (/O
instructions, including a HLT instruction, may not be in a
trap cell). A parity error during a DMA transfer causes an
interrupt to the memory location corresponding to the
select code of the I/O card making the transfer if the
proper bit has been set in the control word.

The memory address of the parity error will be loaded
automatically into the parity register which is accessible
to the user by a programmed LIA 05 or LIB 05 instruction
for bits 0 through 15, and by an LIA 5,C or LIB 5,C for bits
16 through 23.

If a parity error occurs during a read of an instruction,
that instruction is executed but memory writes are dis-
abled. When a parity error occurs, it is recommended that
the entire program or set of data containing the error
location be reloaded.

6-3. MEMORY PROTECT INTERRUPT

The memory protect feature provides the capability of
protecting selected pages of memory against alteration or
entry by programmed instructions except those involving
the A- and B-registers.

The memory protect logic, when enabled by an STC 07
instruction, also prohibits the execution of all I/O in-
structions except those referencing I/O select code 01 (the
processor card status register and the overflow register).
(Execution of all HLTs is prohibited.) Thus, an executive
program residing in protected memory can have exclusive
control of the I/O system.

Interrupt System

The memory protect logic is disabled automatically by any
interrupt and must be re-enabled by an STC 07 or XJMP-
instruction at the end of each interrupt subroutine.

Programming rules pertaining to the use of memory
protect are as follows (assuming that an STC 07 instruc-
tion has been given):

a. Locations 00000 and 00001 in the Execute map are
the A- and B-registers and are not in protected
memory. Locations 00000 and 00001 in the DATA1
and DATA2 maps are real memory locations (not the
A- and B-registers) and may reside in protected
memory.

b. A user-specified 1024-word page of memory is read
and/or write protected by Page Mapping Register
instructions deseribed in Section IV.

c. Execution will be inhibited and an interrupt to loca-
tion 07 will occur if any instruction addresses a loca-
tion in protected memory, or if any privileged in-
struction is attempted (excluding those addressing
select code 01 but not HLT 01). After three successive
levels of indirect addressing, the logic will allow a
pending interrupt.

Following a memory protect interrupt, the address of the
illegal instruction will be present in the violation register.
This address is made accessible to the programmer by an
LIA 07 or LIB 07 instruction, which loads the address into
the A- or B-register.

Note that DMA operation is not affected by memory
protect.

6-4. UNIMPLEMENTED INSTRUCTION
INTERRUPT

An unimplemented instruction interrupt (to memory
location 00010) is requested when the CPU signals that
the last instruction fetched was not recognized by itself or
by any other system card. This interrupt provides a
straightforward entry to software routines for the execu-
tion of instruction codes not recognized by the computer
hardware. The unimplemented instruction interrupt must
receive immediate service in order to recover the in-
struction code that caused it. For this reason, and because
it is desirable to permit the use of unimplemented in-
structions anywhere, the unimplemented instruction
interrupt is never inhibited.

6-5. TIME BASE GENERATOR
INTERRUPT

A time base generator interrupt request is made when the
CPU signals that its internal clock divider chain has rol-
led over. The clock divider is set to roll over at 10-

6-3

Interrupt System

millisecond intervals for maintaining a real-time clock.
The interrupt occurs through location 00006 and can be
masked (inhibited) by using bit 1 of the interrupt mask
register. (The interrupt mask register allows interrupts
from the TBG and the I/O cards to be selectively masked.
For details on the interrupt mask register, refer to the HP
1000 L-Series Computer I/O Interfacing Guide, part no.
02103-90005.) The TBG can be turned on by an STC 06
instruction, and turned off by a CLC 06 or CLC 00
instruction.

6-6. INPUT/OUTPUT INTERRUPT

Interrupt locations 20 through 77 (octal) are reserved for
I/O devices. In a typical I/O operation, the computer issues
a programmed command such as Set Control/Clear Flag
(STC,C) to one or more external devices to initiate an
input (read) or an output (write) operation, via either
programmed /O or DMA. While the I/O card is in the
process of transferring data, the computer may be either
running a program or looping, waiting for a flag to get set.
Upon completion of the read or write operation, the
interface flag is set. If the corresponding control bit is set,
the interface will interrupt. Its request will be passed
through a priority network so that only the highest prior-
ity interrupting device will receive service. The computer
will acknowledge the interrupt and the highest priority
device will receive service when the current instruction
has finished executing, except under the following
circumstances:

a. Interrupt system disabled or interface card interrupt
disabled (or masked).

b. JMP indirect or JSB indirect instruction not suffi-
ciently executed. These instructions inhibit all in-
terrupts except power fail or memory protect until the
succeeding instruction is executed. After three
successive levels of indirect addressing, the logic will
allow a pending I/O interrupt.

c. A DMA (direct memory access) data transfer is in
process.

d. Current instruction is any I/O instruction. The
interrupt in this case must wait until the succeeding
instruction is executed.

After an interface card has been issued a Set Control (STC
instruction) and its flag bit becomes set, all interrupt
requests from lower-priority devices are inhibited until
this flag bit is cleared by a Clear Flag (CLF) instruction,
or until control is cleared by a Clear Control (CLC) in-
struction. A service subroutine in process for any device
can be interrupted only by a higher-priority device; then,
after the higher-priority device is serviced, the inter-
rupted service subroutine can continue. In this way it is
possible for several service subroutines to be in the
interrupt state at one time; each of these service sub-
routines will be allowed to continue after the higher-

6-4

AT00

priority device is serviced. All such service subroutines
normally end with a JMP indirect or XJMP instruction to
return the computer to the point of interrupt.

Note that interrupt trap cells must contain a JMP or JSB
instruction because maps change on interrupt.

6-7. INTERRUPT PRIORITY

The interrupt servicing priority among the system in-
terrupts is as follows:

a. Parity error (select code 5).

b. Unimplemented instruction (select code 10).
c. Memory protect (select code 7).

d. Power fail (select code 4).

e. Time base generator (select code 6).

f. I/O interrupts (select codes 20 through 77).

6-8. CENTRAL INTERRUPT REGISTER

Each time an interrupt occurs, the address of the interrupt
location is stored in the central interrupt register. The
contents of this register are accessible at any time by
executing an LIA 04 or LIB 04 instruction. This loads the
address of the most recent interrupt into the A- or
B-register.

6-9. PROCESSOR STATUS REGISTER

The processor status register is two registers: one for input
and one for output. The input register shows the status of
the frontplane BOOT SEL switches and is read into the
upper eight bits of the A- or B-register by an LIA/B 01
instruction. The switch, bit, and function relationships are
as follows:

SWITCH BIT MEANING

S1 8 Boot select

S2 9 Boot select

S3 10 Boot select

S4 11 Boot select

S5 12 VCP program select

S6 13 Not used

S7 14 Not used

S8 15 Auto-restart enabled (1)/

disabled (0)

The output register drives the frontplane LEDs. The out-
put of the lower eight bits of the A- or B-register are sent
to the LEDs by an OTA/B 01 instruction. A logic 1 in
either register lights the corresponding LED.

A700

6-10 INTERRUPT TYPE CONTROL

I/O address 00 is the master control address for Type 3
interrupts (TBG and /O cards). An STF 00 instruction
enables Type 3 interrupts and a CLF 00 disables Type 3
interrupts. (Type 3 interrupts are disabled when power is
initially applied.) I’O address 04 is the master control
address for Type 2 interrupts (power fail and memory
protect) and Type 3 interrupts combined. An STC 04
instruction enables Type 2 and 3 interrupts, and a CL.C 04
disables Type 2 and 3 interrupts.

Interrupt System

6-11. INSTRUCTION SUMMARY

Table 6-3 is a summary of instructions for select codes 00
through 07. For a summary of instructions used with the
I/O cards, refer to an I/O card reference manual.

The Type 2 and 3 interrupt mask from I/O address 04 is a
different Type-3 mask than the Type-3 mask at /O ad-
dress 00. If either of these two masks are set, Type 3
interrupts will be disabled. In addition to these two
interrupt masks, the Time Base Generator flag interrupt
can also be masked by bit 0 of the Interrupt Mask Regis-
ter. If any of these three masks are set then the TBG flag
interrupt will be disabled.

Table 6-3. Instructions for Select Codes 00 through 07

INSTRUCTION FUNCTION INSTRUCTION FUNCTION |
STC O - NOP STC 4 Enable Type 2 and 3 interrupts
CLC O - System reset CLC 4 . Disable Type 2 and 3 interrupts
STF O . Enable Type 3 interrupts STF 4 - NOP !

CLF O Disable Type 3 interrupts CLF 4 - NOP
- SFS 0 Skip if Type 3 interrupts enabled SFS 4 | Skip if power is stable °
SFC 0 ~ Skip if Type 3 interrupts disabled SFC 4 1 . Skip if power going down
LI*o - Load from interrupt mask register LI" 4 Load from central interrupt register
MI* 0 NOP M4 | NOP ,
oT* 0 Output to interrupt mask register oT* 4 Output to central interrupt register
STC 1 - NOP STC 5 :, Enable parity error tmerrupts
CLC 1 - NOP cLcs . Disable parity error interrupts
STF 1 . Same as Set Overflow (STO) STF 5 - Set parity sense {0 even parity
CLF 1 Same as Clear Overflow (CLO) CLF 5 - Clear parity sense to odd parity
SFS 1 Same as Skip if Overflow Set (SOS) SFS 5 Skip if parity sense is even
SFC 1 Same as Skip if Overflow Clear (SOC) SFC 5 ; ‘Sklp if parity sense is odd
Lr 1 . Load from processor status register Lrs . Load from parity regaster (bits 0-15)
M1 Merge from processor status register L 5,C |-~ Load from parity register (bits 16-23)
o1 1 ~ Output to processor status register MI* 5 . NOP :
oT 5 NOP
STC 2 Enable break feature STC 6 - Turn on time base generator
CLC 2 . NOP CLC6 | Tum off time base generator
STF.2 .| Disable Global Register STF 6 ' Set time base generator flag
CLF 2 -1 = Enable Global Register CLF 6 |- . Clear time base ‘generator flag
SFS 2 Skip if Global Register disabled ~ SFS6 o Skap if time base gsnerator flag set
SFC 2 . Skip if Global Register enabled SFC 6 i
Lr 2 Load from Global Register L6 - 'NOP
MI* 2 ~ NOP , MI* 6 ~ NOP_
0T 2 . Output to Global Register (Note 1) oT* 6 ~ Nop
STC 3 NOP STC 7 o Enable memory protect
CLC 3 NOP - CLC7 _NoP ;
STF 3 NOP STF 7 - NOP
CLF 3 - NOP CLF 7 - NOP
SFS 3 NOP SFS 7 - NOP
SFC 3 . NOP SFC7 “NOP
L3 Load from P SAVE Lr 7 | Load from v:olatson regrster :
MI* 3 NOP MI* 7 - NO -
oT 3 Output to P SAVE or 7 ~NOP
L 3,C - Load from ROM P
oT* 3,C Output to ROM P
"= AorB.
Note 1. An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

Update 1

6-5/6-6

The purpose of the input/output system is to transfer data
between the computer and external devices. As shown in
figure 7-1, data can be transferred either by a direct
memory access (DMA) feature or through the A- or
B-register in the CPU (non-DMA). Each L-series I/O card
has DMA logic and DMA is normally used for most /'O
data transfers. Once the DMA logic has been initialized,
no programming is involved and the transfer occurs in two
distinct steps as follows:

a. Between the external device and its I/O interface card
in the computer;

b. Between the /O card and memory via the backplane
data bus. This two-step process also applies to a DMA
output transfer except in reverse order.

As mentioned above, data may be transferred under
program control without using the DMA feature. This
type of transfer allows the computer to manipulate the
data during the transfer process. A non-DMA input
transfer is a three-step process as follows:

Between the external device and its I/O card;

b. Between the I/O card and the A- or B-register via the
data bus and the processor card; and

c. Between the A- or B-register and memory via the
processor and the data bus.

Note that in the DMA transfer the processor card is
bypassed. Since a DMA transfer eliminates programmed
loading and storing via the accumulators, the time in-
volved is very short. Further information on the DMA
feature is given in paragraph 7-9.

7-1. INPUT/OUTPUT ADDRESSING

As shown in Figure 7-2, an external device is connected by
cable directly to an interface card located in the computer
mainframe. The interface card, in turn, plugs into one of
the input/output slots, each of which is assigned a fixed
interrupt priority. Note, however, that the select code of
the L-Series interface cards is independent of the priority.
The computer communicates with a specific device on the
basis of its select code which is set by switches on the
interface card.

Figure 7-2 shows an interface card inserted in the I/O slot
having the highest priority. If it is decided that the as-
sociated device should have lower priority, its interface
card and cable may simply be exchanged with those
occupying some other I/O slot. This will change the prior-
ity but not the I/O address (select code). Due to priority

chaining, there can be no vacant slots from the highest
priority slot to the lowest priority slot used. Only select
codes 20 through 77 (octal) are available for input/output
cards; the lower select codes (00 through 17) are reserved
for other features.

7-2. INPUT/OUTPUT PRIORITY

The plug-in card slots of the A700 computers are num-
bered 1 through 20. Generally, slots 1 through 4 are used
for the memory and processor cards and the remaining
slots are available for I/O cards, with slot 5 having the
highest I/O interrupt priority. An I/O channel consists of
an I/O device (or devices) and its I/O card, and is assigned
the number of the card slot.

When an input/output device is ready to be serviced, it
causes its interface card to request an interrupt so that the
computer will interrupt the current program and service
the device. Since many device interface cards will be
requesting service at random times, it is necessary to
establish an orderly sequence for granting interrupts.
Also, it is desirable that high-speed devices should not
have to wait for low-speed device transfers. Both of these
requirements are met by a series-linked priority structure
illustrated by Figure 7-3. The bold line, representing a
priority enabling signal, is routed in series through each
card capable of causing an interrupt. The card cannot
interrupt unless this enabling signal is present at its
input.

- Each device (or other interrupt function) can break the

enabling line when it requests an interrupt. If two devices
simultaneously request an interrupt, the device with the
highest priority will be the first one that can interrupt
because it has broken the enable line for the lower-priority
device. The other device cannot begin its service routine
until the first device is finished. However, a still higher-
priority device (one interfaced through a lower-numbered
slot) may interrupt the service routine of the first device.
Figure 7-4 illustrates a hypothetical case in which several
devices request service by interrupting a CPU program.
Both simultaneous and time-separated interrupt requests
are considered.

Assume that the computer is running a CPU program
when an interrupt from I/O channel 7 occurs (at reference
time t1), and that the card in slot 7 is assigned select code
22. With the I/O card supplying the select code as the
memory address, a JSB instruction in the interrupt loca-
tion for select code 22 causes a program jump to the service
routine for the channel-7 device (select code 22). The JSB
instruction automatically saves the return address (in a
location which the programmer must reserve in his

7-1

Input/Output System AT00

o PROCESSOR
: : FRONTPLANE ‘
PROCESSOR
CARDS
MEMORY
: CONTROLLER
A-REG. B-REG. ‘ AND ARRAY
; S CARDS
A N A
\ BACKPLANE \
A A A
Y _ R N | Y
I/O INTERFACE | /O INTERFACE ' /0 INTERFACE
CARD CARD k CARD
Yy ‘ l i Y
PERIPHERAL " PERIPHERAL ' PERIPHERAL
DEVICE : DEVICE o DEVICE
Figure 7-1. Input/Output System
LOWER MEMORY
- PROCESSOR ‘CONTROLLER
- CARD ~ CARD
B 7M_~____—___7_—_—qﬂ_ﬂ_j_—_7
‘MEMORY
FRONTPLANE
L PROCESSOR
FRONTPLANE
A AR AR
TO YO DEVICE WITH o NS TO /O DEVICE WITH \ \
LOWEST PRIORITY : HIGHEST PRIORITY UPPER MEMORY |
; T : ~ , PROCESSOR ARRAY
CARD CARD
8200-62

Figure 7-2. I/O Priority Assignments

7-2

A700

routine) for a later return to the CPU program.

The routine for channel 7 (select code 22) 7 is still in
progress when several other devices request service (set
flag). First, channels 8 and 9 request service simul-
taneously at time t2; however, since neither one has
priority over channel 7, their flags are ignored and chan-
nel 7 continues transfer. But at t3, a higher priority device
on channel 5 requests service. This request interrupts the
channel 7 transfer and causes the channel 5 transfer to
begin. The JSB instruction saves the return address for
return to the channel 7 routine.

During the channel 5 transfer, the channel 6 flag is set
(t4). Since it has lower priority than channel 5, channel 6
must wait until the end of the channel 5 routine. And
since the channel 5 routine, when it ends, contains a
return address to the channel 7 routine, program control
temporarily returns to channel 7 (even though the waiting
channel 6 has higher priority). The JMP,I instruction used
for the return inhibits all interrupts until fully executed.
At the end of this short interval, the channel 6 interrupt
request is granted.

Input/Output System

When channel 6 has finished its routine, control is re-
turned to channel 7, which at last has sufficient priority to
complete its routine. Since channel 7 has been saving a
return address in the main CPU program, it returns
control to this point.

The two waiting interrupt requests from channels 8 and 9
are now enabled. Channel 8 has the higher priority and
goes first. At the end of the channel 8 routine control is
temporarily returned to the CPU program. Then the low-
est priority channel (channel 9) interrupts and completes
its transfer. Finally, control is returned to the CPU
program, which resumes processing.

7-3. INTERFACE ELEMENTS

The interface card provides the communication link
between the computer and one or more external devices.
The interface card includes several basic elements which
either the computer or the device can control in order to
effect the necessary communication. These basic elements
are the Global Register, control bits, flag bits, data buffer

| coMPUTER | powe]

LOGIC ;ﬁﬁo$gc7,

o
DEVICE

| HIGHEST
| 110 PRIORITY.

- | o
- | DEVICE

ééﬂECT
CODE

MEMORY g7 |

. o g i 06 :
GENERATOR

CPU
 PROGRAM

] B} TOGETHER

Figure 7-3. Priority Linkage (Simplified)

Figure 7-4. Interrupt Sequence

7-3

Input/Output System

register, and control register. Other registers, associated
only with DMA, are discussed in paragraph 7-9. The
control and flag bits and the data buffer and control
registers of an interface card can be addressed directly
when the card’s select code is in the Global Register (GR)
and the GR is enabled. Refer to the interface card refer-
ence manuals for specific information on the data and
control registers.

7-4. GLOBAL REGISTER

In the A-Series computers, the select code that is in the
Global Register specifies which I/O card is enabled to
execute I/O instructions. The Global Register (GR) is a
register on each I/O card that can be loaded with the select
code of any one of the I/O cards. (At any given time, the GR
on all I/O cards is loaded with the same select code.) When
the GR is enabled, an I/O instruction is executed only by
the I/O card whose select code matches the select code in
its GR. Also, the GR allows other registers on the selected
I/O card to be accessed programmatically by I/O in-
structions. The Global Register on all /O cards may be
simultaneously loaded with an OTA/B 02 instruction,
enabled with a CLF 02 instruction, and disabled with an
STF 02 instruction.

7-5. CONTROL BITS

The control bits on an interface card are used to turn on a
specific I/O function. In addition, a control bit must be set
to allow the corresponding flag bit to interrupt. There are
three control bits associated with each I/O select code:
control 20, 21, and 30. Control 30 is the only control bit
that can be accessed with or without the Global Register
being enabled. When control 30 is set it generates an
action command, allowing one word or character to be
read or written. Control 20 and 21 can only be accessed
when the Global Register is enabled. When control 20 is
set it turns on DMA self-configuration. The setting of
control 21 enables DMA transfers.

7-6. FLAG BITS

The flag bits (when set) are used primarily to interrupt or
to signal completion of a task. Flag 30, the only flag bit
accessible without using the Global Register, signals
either one data element has been transferred or that an
interrupting condition has been detected. There are three
other flags, all of which must be accessed with the Global
Register enabled. Flag 20 signals DMA self-configuring
transfer complete; flag 21 signals DMA transfer complete;
and flag 22 signals parity error during DMA. The device
cannot clear the flag bit. If the corresponding control bit is
set, priority is high, and the interrupt system is enabled,
then setting the flag bit will cause an interrupt to the
location corresponding to the I/O card’s select code.

7-7. DATA BUFFER REGISTER
The data buffer register (designated Register 30) is used

for the intermediate storage of data during an I/O trans-
fer. Typically, the data capacity is 16 bits.

7-4

A700

7-8. CONTROL REGISTER

The control register (designated Register 31) enables a
general purpose interface card to be configured for
compatibility with a specific I/O device or to be pro-
grammed for particular modes of operation. The control
register must be programmatically set up for each par-
ticular application. Refer to the interface card manuals for
specific information on the control register.

7-9. DIRECT MEMORY ACCESS

The direct memory access (DMA) capability of each
L-Series interface card provides a direct data path be-
tween memory and a peripheral device, making it practi-
cal to use DMA for most data transfers. The use of DMA to
perform I/O data transfers reduces the number of in-
terrupts from one per byte or word to one per complete
DMA block transfer. (Maximum DMA block size is 65,5636
bytes.)

The maximum DMA transfer rate is 4.0 million bytes per
second; this is also the combined limit for DMA transfers
by two or more I/O cards. Except when the DMA feature is
operating at full bandwidth, the central processor can
interleave memory cycles with the DMA operation. The
DMA feature is provided by the following elements:

a. The common backplane that links the processor,
memory, and I/O cards;

b. The capability of the I/O cards to execute I/O in-
structions; and

c. The Global Register which:

1. Enables only the I/O card whose select code is in
the Global Register to execute I/O instructions,
freeing the address bits of the /O instruction; and

2. Enables the I/O-instruction address bits to be
used to access registers on the I/O card specified
by the Global Register.

Each /O card has four registers associated with DMA.
Three of them must be loaded with control words that
specify the DMA operation. The fourth register is used for
a special type of DMA operation called self-configured
DMA which is discussed later. All of these registers can be
accessed only when the select code of the desired I/O card
is in the Global Register. The DMA registers and their
functions are as follows:

a. Register 20, DMA Self-Configuration Address
Register;

b. Register 21 (for Control Word 1), DMA Control
Register;

c. Register 22 (for Control Word 2), DMA Address
Register; and

d. Register 23 (for Control Word 3), Word/Byte Count
Register.

A700

7-10.. CONTROL WORD 1

Control Word 1 (CW1) must be loaded into Register 21 of
the desired I/O card as part of the DMA initialization
process. The general definitions of the bits in Control
Word 1 are given in figure 7-5. Note that the requirements
of individual I/O cards may vary slightly from the general
definitions and that it is necessary to refer to the I/O card
reference manuals for specific programming information.

7-11. CONTROL WORD 2

Control Word 2 (CW2) loads into Register 22 the address
of the first memory location to be read from or stored into
when the DMA operation is initiated. The most significant
bit, bit 15, is not used by the DMA control logic; when
CW2 is read for status, bit 15 is the complement of bit 7 in
CW1 (figure 7-5).

7-12. CONTROL WORD 3

Control Word 3 (CW3) loads into Register 23 the two’s-
complement number of data elements to be transferred by
DMA. Data elements may be either words or bytes as
specified by bit 13 of CW1 (figure 7-5). The end of a DMA
data transfer is indicated by the transition from —1 to 0 of
the value in Register 23 (the Word/Byte Count Register);
this causes the I/O card to generate a completion inter-
rupt. (A DMA transfer can also be terminated in other
ways as described in the interface card manuals.)

7-13. DMA TRANSFER INITIALIZATION

A DMA data transfer is started by:

a. Loading the Global Register with the select code of
the desired I/O card;

b. Loading the three DMA registers: DMA control into
Register 21, DMA address into Register 22, and
word/byte count into Register 23;

c. Loading the control register (Register 31) of the I/O
card (described in the individual interface card
reference manuals); and

d. Issuing an STC instruction to Register 21 (DMA
Control Register).

A typical programming sequence to configure the DMA
logic for a DMA transfer is as follows:

LDA SC Load select code

0oTA 2,C Set up Global Register

CLC 21B

LDA CW1

0TA 21B Output DMA control word
LDA CW2

0TA 22B Output DMA starting address
LDA CW3

OTA 23B Output DMA word/byte count

Input/Output System

LDA CNTL
0TA 31B Output I/O card control word
STC 21B,C Start DMA and device

<continue any other processing>

7-14. SELF-CONFIGURED DMA

Each I/O card also has logic that can automatically load
the DMA registers discussed previously with the DMA
control words from sequential locations in memory. This
process is performed by using the I/O card’s Register 20,
the Self-Configuration Register. The DMA self-
configuration feature is initialized by setting the value of
Register 20 to the memory address of a list of DMA
“triplets” or “quadruplets”.

A triplet is of the form: DMA control word, DMA transfer
address, and word/byte count. The triplet words are the
words to be loaded into Registers 21, 22, and 23, respec-
tively. A quadruplet is of the form: DMA control word,
I/O-card control word, transfer address, and word/byte
count. Bit 8 of the DMA control word (Control Word 1)
determines whether a triplet or quadruplet is loaded. (A
quadruplet is used only when the I/O-card control word
must be changed; refer to the interface card manuals for
detailed information.) As each register is loaded, the
contents of Register 20 are incremented, leaving it point-
ing to the memory location to be loaded into the next
register.

DMA self-configuration can be chained to enable con-
secutive DMA transfers via the same I/O card with a
minimum of interrupts. If bit 15 of Control Word 1 in a
triplet (or quadruplet) is a logic 1, the DMA registers will
be loaded with the next triplet or quadruplet in memory
(as pointed to by Register 20) upon completion of the
current DMA block transfer. When bit 15 (and bit 11) is a
logic 0, the current DMA block transfer is followed by a
completion interrupt.

7-15. DMA DATA TRANSFER

Figure 7-6 illustrates, in general, the sequence of oper-
ations for a DMA input data transfer (the minor differ-
ences for an output transfer are explained in text). Note
that the Global Register has been enabled and loaded with
the VO card’s select code.

The initialization routine sets up the DMA control reg-
isters on the I/O card (1) and issues the start command
(STC 21,C) to the DMA Control Bit (Control 21). (If the
operation is an output, the I/O card buffer is also loaded at
this time.) The DMA logic is now turned on and the
computer program continues with other instructions.

Setting the DMA Control bit (2) causes the I/O card to
send a Start signal (with a data word if it is an output
transfer) to the external device (3). The device goes
through a read or write cycle and returns a Done signal
(with a data word if it is an input transfer). The Done

7-5

Input/Output System AT700

15 14 13 12 11 10 9 8 7 6 5 4 0

CONT| DVCMD |BYTE | RES | CINT | REM | FOUR | AUTO IN Various | ADDR EXT BUS

CONT (Contmue) bnt 15
Bit 15 = 1;
Biﬂs

]

5

DVCMD (Dewce Command) bit 14
Blt 14 = 1: Issue a Device Command gnal fc«
Bnt 14 = 0: No Device Command stgn '

; BYTE (Byte/word transfer), bit 13 '
But 13 = 1; Conduct DMA transfer in
Bst 13 = 0. Conduct DMA transfer in word mo

RES (Residue), b;t 12 ,
Bit 12 = 1: Write word/byte coum back lnto memory.
Bit 12 = 0: Word/byte count is not wnttan

" CINT (Completion Interrupt), bit 1 F

btt 19 : equa}s 0

FOU!E% (Fetch tour control word

Bit 9 =1: Causes DMA self-co guratnaﬂ
control worc& ‘

Bit 8 =0: Foro put transters

input
transfers the last?d ‘

IN. (Transfer In), bit 7. !
Bit 7=1: Perform DMA transfe
BR 7 0 Perform DMA tr.

: Vaneus, btts 5 and 6 User defmab!e

* ADDR EXT BUS, bits 4-0 gl Lip
These five bits allow DMA accesses to physica

Figure 7-5. General Bit Definitions for Control Word 1

A700

signal (4) requests the DMA logic (5) to transfer a word
into (or out of) memory (6). The process now loops back to
step 3 to transfer the next word.

After the specified number of words has been transferred,
the DMA logic generates a completion interrupt (7). The
program control is now forced to a completion routine (8),
the content of which is the programmer’s responsibility.

For more detailed information on DMA, refer to the /O
interfacing guide, part no. 02103-90005.

7-16. NON-DMA DATA TRANSFER

The following paragraphs describe how data is transferred
between memory and input/output devices without using
DMA. The sequences presented are simplified in order to
present an overall view without the involvement of
software operating systems or device drivers.

7-17. INPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-7 illustrates the sequence of events required to
input data using the interrupt method. Note that some
operations are under control of the computer program
(programmer’s responsibility) and some of the operations
are automatic. Note also that the Global Register has been
loaded and enabled and the I/O card’s control register has
been loaded.

The operations begin (1) with the programmed instruction
STC 30,C which sets the Control bit (Control 30) and
clears the Flag bit (Flag 30) on the I/O card. Since the next
few operations are under control of the hardware, the
computer program may continue the execution of other
instructions. Setting the Control bit causes the card to
output a Start signal (2) to the device, which reads out a
data character and asserts the Done signal (3).

The device Done signal sets the Flag bit, which in turn
generates an interrupt (4) provided that the interrupt
conditions are met; i.e., the interrupt system must be on
(STF 00 previously given), no higher priority interrupt is
pending, and the Control bit is set (done in step 1).

The interrupt causes the current computer program to be
suspended and control is transferred to a service sub-
routine (5). It is the programmer’s responsibility to pro-
vide the linkage between the interrupt location (which
agrees with the select code) and the service subroutine. It
is also the programmer’s responsibility to include in his
service subroutine the instructions for processing the data
(loading into an accumulator, manipulating if necessary,
and storing into memory).

The subroutine may then issue further STC 30,C in-
structions to transfer additional data characters. One of
the final instructions in the service subroutine must be
CLC 30,C. This step (6) restores the interrupt capability to
lower priority devices and returns the I/O card to its static

Input/Output System

“reset” condition (Control clear and Flag clear). This
condition is initially established by the computer at power
turn-on and it is the programmer’s responsibility to return
the I/O card to the same condition on the completion of
each data transfer operation. At the end of the subroutine,
control is returned to the interrupted program via pre-
viously established linkages.

7-18. OUTPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-8 illustrates the sequence of events required to
output data using the interrupt method. Again note the
distinction between programmed and automatic opera-
tions. Note also that the Global Register has been loaded
and enabled and that the I/O card’s control register has
been loaded. It is assumed that the data to be transferred
has been loaded into the A-register and is in a form suita-
ble for output.

The output operation begins with a programmed in-
struction (OTA 30) to transfer the contents of the
A-register to the /O card buffer (1). This is followed (2) by
the instruction STC 30,C which sets the Control bit
(Control 30) and clears the Flag bit (Flag 30) on the I/O
card. Since the next few operations are under control of
the hardware, the computer program may continue the
execution of other instructions. Setting the Control bit
causes the card to output the buffered data and a Start
signal (3) to the device, which writes (e.g., records, stores,
etc.) the data character and asserts the Done signal (4).

The device Done signal sets the card’s Flag bit, which in
turn generates an interrupt (5) provided that the interrupt
system is on, priority is high, and the Control bit is set
(done in step 2). The interrupt causes the current com-
puter program to be suspended and control is transferred
to a service subroutine (6). It is the programmer’s re-
sponsibility to provide the linkage between the interrupt
location (which agrees with the select code) and the ser-
vice subroutine. The detailed contents of the subroutine
are also the programmer’s responsibility and the contents
will vary with the type of device.

The subroutine may then output further data to the /O
card and reissue the STC 30,C command for additional
data character transfers. One of the final instructions in
the service subroutine must be a clear control (CLC 30,C).
This step (7) allows lower priority devices to interrupt and
restores the I/O card to its static “reset” condition (Control
clear and Flag clear). At the end of the subroutine, control
is returned to the interrupted program via the previously
established linkages.

7-19. NON-INTERRUPT DATA TRANSFER

It is also possible to transfer data without using the
interrupt system. This involves a “wait-for-flag” method
in which the computer commands the device to operate
and then waits for the completion response. In using this
method to transfer data, computer time is relatively

7-7

Input/Output System

AT700

COMPUTER
PROGRAM

INITIALIZATION
ROUTINE

SET CONTROL

DMA |
LOGIC ;

INPUT
DEVICE

) START

DATA

rINTERRUPT L7777

COMPLETION

ROUTINE

MEMORY

W‘ BUFFER

4 DONE

STC 30,C

INTERRUPT |7

SERVICE

SUBROUTINE

SET CONTROL |
CLEAR FLAG

SET FLAG

CLEAR CONTROL

[BUFFER

7-8

Figure 7-7. Input Data Transfer (Interrupt Method)

A700

unimportant. It is assumed that the interrupt system is
turned off (STF 00 not previously given). It is also as-
sumed that the Global Register has been loaded and
enabled and that the I/O card’s control register has been
loaded. As shown in table 7-1, the programming is very
simple; each of the routines will transfer one word or
character of data.

7-20. INPUT. As described in paragraph 7-17, an
STC 30,C instruction begins the operation by commanding
the device to read one word or character. The computer
then goes into a waiting loop, repeatedly checking the
status of the Flag bit (Flag 30). If the Flag bit is not set,
the JMP *-1 instruction causes a jump back to the SFS
instruction. (The *-1 operand is assembler notation for
“this location minus one.”) When the Flag bit is set, the
skip condition for SFS is met and the JMP instruction is
skipped. The computer thus exits from the waiting loop
and the LIA 30 instruction loads the device input data into
the A-register.

7-21. OUTPUT. The first step, which transfers the
data to the I/O card buffer, is the OTA 30 instruction.
Then STC 30,C commands the device to operate and accept
the data. The computer then goes into a waiting loop as
described in the preceding paragraph. When the Flag bit
becomes set, indicating that the device has accepted the
output data, the computer exits from the loop. (The final
NOP is for illustration purposes only.)

7-22. DIAGNOSE MODES

A diagnose mode allows the /O cards to be accessed for

OTA 30

BUFFER

Input/Output System

Table 7-1. Noninterrupt Transfer Routines

diagnostic or test purposes. A diagnose mode is estab-
lished when an OTA/B 2 instruction (output to the Global
Register) is executed with the A- or B-register value equal
to one through seven. (The diagnose mode is terminated
when an OTA/B 2 instruction is executed with the A- or
B-register equal to zero.) When establishing a diagnose
mode the current contents of the Global Register (GR) is
not altered. The diagnose mode can be on an individual I/O
card or on all /O cards. If the GR is disabled then all I/O
cards accept the diagnose mode. If the GR is enabled, only
the I/O card whose select code is in the GR will accept the

STC 30,C
[]

INTERRUPT W/ /]

SERVICE
SUBROUTINE

SET CONTROL
CLEAR FLAG

SET FLAG

CLEAR CONTROL|

7-9

Input/Output System

diagnose mode. Diagnose Mode 7 is used to disable any
service request (SRQ) signal coming into the I/O chip
which may cause DMA to cycle during a test. (Mode 7 can
be disabled only by a CRS signal (CLC 0).) Diagnose
Modes 4 through 6 are reserved for future definition.
Diagnose Modes 1 through 3 are described in the following
paragraphs.

7-23. DIAGNOSE MODE 1

When an OTA/B 2 instruction is executed with the A- or
B-register equal to one each I/O card responds by turning
off priority to the next I/O card. When the instruction is
complete the only I/O card receiving priority will be the
highest priority IO card (i.e., the one directly next to the
processor card. When a subsequent LIA/B 2 instruction is
executed, the I/O card receiving priority sets the A- or
B-register equal to its select code and identification data
(ID) and passes priority to the next I/O card. Having
responded once it will not respond again unless Mode 1 is
established again. The next LIA/B 2 executed sets the A-
or B-register equal to the second I/O card’s select code and
ID. The second I/O card at completion of the instruction
passes priority to the next I/O card. This process continues
until the last I/O card responds. After the last IO card
responds the next LIA/B 2 will not affect the A- or
B-register and therefore can be detected as a no response.
(An OTA/B 2 with the A- or B-register equal to 0 ter-
minates this sequence.)

Mode 1 can also be used to retrieve the select code and ID
of a desired I/O card without going through the priority
process. This is accomplished by establishing Mode 1 and
then executing an LIA/B xx, where xx is the I/O card select
code. This procedure will not modify a priority sequence
already in process. The Mode 1 select code and ID format is
shown in table 7-2.

7-24. DIAGNOSE MODE 2

Diagnose Mode 2 causes an I/O card to respond to an
LIA/B 2 instruction in the same manner as in Mode 1
except that the data set into the A- or B-register is as
shown in table 7-3.

7-25. DIAGNOSE MODE 3
Diagnose Mode 3 allows an I/O chip to do a DMA transfer

without affecting the I/O card. When Mode 3 is entered the
/O chip does a DMA input transfer of the data in the

7-10

A700

configuration address register to the location in memory
pointed to by the DMA address register. The configuration
address register is incremented after each transfer so that
the data can be verified. The transfer continues until the
DMA count is incremented to zero. Mode 3 also prevents
any STC instructions from generating a device command
to the /O card.

Table 7-2. Diagnose Mode 1

Table 7-3. Diagnose Mode 2

Bl arpennix

A-1/A-2

A700 Appendix

CHARACTER CODES

First Character Second Character

Appendix A700
OCTAL ARITHMETIC
ADDITION
TABLE EXAMPLE
0 02 03 04 05 06 07 Add: 3677 OCTAL
1 o - + 1331 OCTAL
2' (111—-) CARRIES
3 5230 OCTAL
4 N
5|
6 |
7 g
MULTIPLICATION
TABLE EXAMPLE
1102 03 04 05 06 07 Multiply: 657 OCTAL
SRS x 54 OCTAL
2|04 06 10 12 14 16 —
3|06 11 14 17 22 26 4?224
4010 14 20 24 30 34
5(12 17 24 31 3% 43 458j4 OCTAL
6 (14 22 30 36 44 52
" . Reminder: add in octal
7(16 26 34 43 52 61 (Reminder: add in octa)
COMPLEMENT
To find the two's complement form of an octal number. (Same procedure whether converting from positive to negative
or negative to positive.)
RULE EXAMPLE
1. Subtract from the maximum Two's complement of 556,
representable octal value.
177777
2. Add one. — 000556
177221
+ 1
177222¢
8200-43

A4

A700

Appendix

OCTAL/DECIMAL CONVERSIONS

TABLE

TABLE

TABLE

OCTAL TO EZCRMAL'?

DECIMAL TO OCTAL

For reverse conversion (two’s complement octal to negative decimal):

1. Complement, using procedure on facing page.
2. Convert to decimal, using OCTAL TO DECIMAL table.

EXAMPLE

Convert 463, to a decimal integer.

400, = 256,,

60, = 48,

%= _30
307 decimal

EXAMPLE

Convert 5229,, to an octal integer.

5000,, = 11610,
200, = 310,
20, = 24,
9 = 11,
12155,
(Reminder: add in octal)
EXAMPLE

Convert —629,, to two’s complement octal.

—500,, = 177014,
—100,, = 177634,

—20,, = 177754, (Add in octal)
-9, = 177767,
176613,

Appendix A700

MATHEMATICAL EQUIVALENTS

2 = M IN DECIMAL
; 2" K 27" 65 536 16 0.00001 52587 89062 &
1 0 1.0 131 072 17 0.00000 76293 94531 25
2 1 0.5
4 2 0.25 262 144 18 0.00000 38146 97265 625
524 288 19 0.00000 19073 48632 8125
8 3 0.125 1 048 576 20 0.00000 09536 74316 40625
16 4 0.0625
32 5 0.03125 2 097 152 21 0.00000 04768 37158 20312 5
4 194 304 22 0.00000 02384 18579 10156 25
64 6 0.01562 5 8 388 608 23 0.00000 01192 09289 55078 125
: 128 7 0.00781 25
g 256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 0625
33 554 432 25 0.00000 00298 02322 38769 53125
512 9 0.00195 3125 67 108 864 g 0.00000 00149 01161 19384 76562 5
1 024 10 0.00097 65625
2 048 1 0.00048 82812 5 134 217 728 27 0.00000 00074 50580 59692 38281 25
268 435 456 28 0.00000 00037 25290 29846 19140 625
4 096 12 0.00024 41406 25 536 870 912 29 0.00000 00018 62645 14923 09570 3125
. 8192 13 0.00012 20703 125
- 16 384 14 0.00006 10351 5625 1 073 741 824 30 0.00000 00009 31322 57461 54785 15625
2 147 483 648 3 0.00000 00004 65661 28730 77392 57812 5
32 768 15 0.00003 05175 78125 4 294 967 296 32 0.00000 00002 64365 38696 28906 25
10 = 7 IN OCTAL
2‘ 107 n 1077 107 n 107"
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32
1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11
303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63
46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01
7346 545 000 9 0.000 000 000 104 560 276 41

A-6

AT700 Appendix

MATHEMATICAL EQUIVALENTS

DECIMAL

* 2F * 2 x 2%
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 ' 0.1 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 : 03 1.23114 44133 44916
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 . 0.4 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 7 05 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 k 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 ; 0.8 1.74110 11265 92248
1.00625 97782 1

7 logqe 2, nlog, 10 IN OCTAL

" n 10g442 n log, 10) n logye 2 n log, 10

1 0.30102 99957 3.32192 80949 ' 6 1.80617 99740 19.93156 85693
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
3 0,90308 99870 996578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489

MATHEMATICAL CONSTANTS IN OCTAL SCALE

(3.11037 552421) g, (2.55760 521305} g, (0.44742 147707) g,
(0.24276 301556) g, (0.27426 530661) g -(0.43127 233602) (g,
(1.61337 611067 g, (1.51411 230704) g, '+ = -(0.62573 030645) (g,
(1.11206 404435) g, = (0.33626 754251)(g, - (1.32404 746320) (g,
(1.51544 163223) (g) (1.34252 166245) g, (0.54271 027760) g,

(3.12305 407267) g, - (3.24464 741136) (g, (2.23273 067355) (g

A-7

Appendix A700
OCTAL COMBINING TABLES
MEMORY REFERENCE INSTRUCTION!
INDIRECT ADDRESSING
Refer to octal instruction codes given on the following page.
To combine code for indirect addressing, merge “100000°" with octal instruction code.
REGISTER REFERENCE INSTRUCTIONS
SHIFT-ROTATE GROUP (SRG) ALTER-SKIP GROUP (ASG)
1. sefect to operate A or B. 1. select to operate on A or B.
2. select 1 to 4 instructions, not more than one 2. select 1 to 8 instructions, not more than one
from each column. from each column.
3. combine octal codes (leading zeros omitted) 3. combine octal codes (leading zeros omitted)
by inclusive or. by inclusive or.
4. order of execution is from column 1 to column 4. 4. order of execution is from column 1 to column 8.
A OPERATIONS A OPERATIONS
1 2 3 4 1 2 3 4
ALS (1000) CLE (40) SLA (10) ALS (20) CLA (2400) SEZ (2040} CLE (2100) SSA (2020)
ARS (1100) ARS (21) CMA (3000) CME (2200}
RAL (1200) RAL (22) CCA (3400} CCE (2300)
RAR (1300) RAR (23)
ALR (1400) ALR (24) 5 6 7 8
ERA (1500) ERA (25) SLA (2010) INA (2004) SZA (2002) RSS (2001)
ELA (1600) ELA (26)
ALF (1700) ALF (27)
B OPERATIONS B OPERATIONS
1 2 3 4 1 2 3 4
BLS (5000) CLE (4040) SLB (4010) BLS (4020) CLB (6400) SEZ (6040) CLE (6100) SSB (6020)
BRS (5100) BRS (4021) CMB (7000) CME (6200)
RBL (5200) RBL (4022) CCB (7400) CCE (6300)
RBR (5300) RBR (4023)
BLR (5400) BLR (4024) 5 6 7 8
ERB (5500) ERB (4025) SLB {6010) INB (6004) SZB (6002) RSS (6001)
ELB (5600) ELB (4026)
BLF (5700) BLF (4027)
PUT/OUTPUT INSTRUCTIONS |
CLEAR FLAG
Refer to octal instruction codes given on the following page.
To clear flag after execution (instead of holding flag), merge “001000"" with octal instruction code.
'8200-47

AT700 Appendix
INSTRUCTION CODES IN OCTAL
Memory Reference 'SLB 006010 DSY 105771 .DCO 105204 vsuB 105003
SR : SSA. 002020 ISX 105760 .DDE 105211 VSUM 105105
ADA | ssB 006020 ISY 105770 .DDI 105074 VSWP 105117
ADB - 8ZA 002002 Jy 105762 - .DDIR 105134 DVABS 105123
AND —~ | szB 006002 JPY 105772 .DDS 1105213 DVADD 105021
CPA 05(0XX)— | LAX 101742 .DIN 105210 DVDIV 105025
cPB tos&xx; Input/Output LAY 101752 DIS 105212 DVDOT 105130
IOR ~ 03(00XX)— | CLC 1067~ LBT 105763 DNG 105203 DVMAB 105132
ISz - 03(1XX)— CLF 1031- LBX 105742 .DMP 105054 DVMAX 105131
JMP 02(1XX)— | cLo 103101 LBY 105752 .DSB 105034 DVMIB 105135
JSB - 01(1XX)— | HLT 1020~ LDX 105745 .DSBR 105114 DVMIN 105133
DA 08(0XX)— | LIA 1025- LDY 105755 VMA/EMA DVMOV 105136
LDB 06(1XX)~— LB 1065~ MBT 105765 ‘ DVMPY 105024
STA 07(0XX)— | MIA 1024~ MVW 105777 IMAP 105250 DVNRM 105127
STB 07(1XX)}— | MIB 1064~ SAX 101740 IRES 105244 DVPIV 105121
XOR 0200XX)— | OTA 1026 SAY 101750 JMAP 105252 DVSAD 105026
~ " Binary | OTB 1066— SBS 105773 JRES 105245 DVSDV 105031
‘ | sFc 1022 SBT 105764 LBP 1105257 DVSMY 105030
s""““m 'SFS 1023- SBX 105740 LBPR 105256 DVSSE 105027
ALF 001700 -SoC 102201 SBY 105750 LPX 105256 DVSUB 105023
- ALR 001400 808 102301 SFB 105767 LPXR 105254 DVSUM 105125
- ALS 001000 . 8TC 1027 STX 105743 .PMAP 105240 DVSWP 105137
~ ARS 001100 STF 1021~ STY 105753 o
BLF 005700 | STO 102101 TBS 105775 Oper. Syst. Set Dynamic Map Syst.
' BLR 005400 1 : XAX 101747 .CPUID ~ 105300 LDMP 105702
BLS 005000 Extended Arithmetic | xay 101757 FWID 105301 LPMR 105700
RS : ASL 1000(01X)— | XBX 105747 .SIP 105303 LWD1 105704
_ASR 1010(01X)— | XBY 105757 WFI 105302 MB0O 101727
DIV 100400 b ek i MBO1 101730
JA 100600 Floatjng Point Scientific Inst. Set MB02 101731
DLD 104200 FAD 105000 ALOG 105322 MB10 101732
DST 104400 FDV 105060 ALOGT = 105327 MB11 101733
e 104600 FIX 105100 ATAN 105323 MB12 101734
LSL 1000(10X)~ | FLT 105120 /ATLG . 105333 MB20 101735
“LSR 1010(10X)— | FMP 105040 /CMRT* ~ 105332 MB21 101736
| mpy 100200 "FSB 105020 COS 105324 MB22 101737
1 RAL 1001(00X)— | .FIXD 105104 DPOLY 105331 MWO0O 105727
"RRR 1011(00X)- | .FLTD 105124 EXP 105326 MWO1 105730
i Binary TADD 105002 FPWR 105334 MW02 105731
S .TDIV 105062 SIN 105325 MW10 105732
; Ext. Inst. Group TFTD 105122 SQRT 105321 MW11 105733
- ADX 105746 JTFXD 105106 TAN 105320 MW12. 105734
ADY 105756 TFXS 105102 TANH 105330 MW20 - 105735
CAX 101741 TIMPY 105042 TPWR 105335 MW21 105736
CAY) }g;;gl .TSuB 105022 Vector Inst, Set . gﬁﬁz }gg;g;
Language Inst. Set . .
105766 o VABS = 105103 STMP 105703
105741 .BLE 105207 VADD - ‘105001 ‘SPMR 105701
105751 .CFER 105231 VDIV, ' 105005 SWMP 105706
105776 .DFER _ 105205 VDOT 105110 XCA1 101726
101744 .CPM 105236 VMAB 105112 XCA2 101723
105744 ENTC 105235 VMAX 105111 XCB1 105726
101754 ENTN 105234 VMIB. 105115 XCB2 105723
105754 .ENTP 105224 VMIN = 105113 XJMP 105710
105761 .ENTR - 105223 VMOV 105116 XLA1 101724
: .ECM 105232 VMPY 105004 XLAZ 101721
.NGL 105214 VNRM 105107 XLB1 105724
SETP 105227 VPV 105101 XLB2 105721
.TCM 105233 VSAD 105006 XSA1 101725
XFER 105220 VSDV - 105011 XSA2 101722
1 ; ZFER 105237 VSMY 105010 XSB1 105725
"Not directly user callable) 3SB 05007 ¢ 1057
B o by H Double nteger VSSB - 105007 XSB2 05722
.DAD 105014

Refer to precedmg page for octai combmmg tables.

A-9

Appendix

BASE SET INSTRUCTION CODES IN BINARY

AT00

15

14

12 | n

| MEMORY REFERENCE |

1 els 4

D/
D/l
o/
o
1]
D/l
D/l
D/l

=l

D/l

AND
XOR
IOR
JsB
JMP
1Sz
- AD*
cP
LD*
ST*

001
010
o1

001
010
011

- 100
101

110

11

0

NSTRUCTIONS

P

SHIFT/ROTATE GROUP

LS

1 R'R
LR
o ELY
| e

ALT

0

ER/SKIP GROUP

000

RSS

“INPUT/OUTPUT GROUP_

1

1000

PPN P [

E

i

XTEN{JED:ARIT

HMETIC GROUP

000

“Notes: * = A or B, according to bit 11.
Dil, BB, ZIC, DIE, HIC coded 0
_ ""Second word is Memory Addres

A-10

A700 Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 [14 13 12 | 1110 o] 8

FLOATING POINT INSTR N (Continued)

A-11

Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

A700

15 [14 13

12 | 1

10

9 | s

7

6 | 5

4

3 | 2

DMS INSTRUCTIONS

1 000

A aaaaa

B/W
B/W
B/W
B/W
B/W
B/W
B/W
B/W
B/W

01

111

000

001
010

011

LPMR
SPMR
LDMP
STMP
LWD1
LwD2
SWMP
SIMP
XJMP
XL
XSs*1
XC*1
XL*2
X8*2
Xc2
M°00
M°01
M°02
M°10
M°11
M°12
M°20
Mme21
Me22

000
001
010
o1
100
101
110
111
000
100
101
110
001
010
011
111

001
010
011
100
101
110
11

SCIENTIFIC INSTRUCTION SET

1 000

101

011

010

011

TAN
SQRT
ALOG
ATAN
cos
SIN
EXP
ALOGT
TANH
DPOLY
/CMRT
/ATLG
.FPWR
.TPWR

000
001
010
011
100
101
110
111
000
001
010
ot1
100
101

VECTOR INSTRUCTION SET

1 000

101

000

001

000

001

010

011

000

VADD

vsSuB
VMPY
VDIV
VSAD
VSSB
VSMY
VSDV
DVADD

-DvsuB

DVMPY
DVDIV
DVSAD

‘DVSSB

DVSMY
DVSDV
VPIV
VABS
VSUM

001
011
100
101
110
111
000
001
001
o1
100
101
110
m
000
001
001
011
101

Notes: * = A (0) or B (1), according to bit 11.
° =B (0) or W (1), according to bit 11.

A-12

A700 Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 |14 13 12 | 1 0 9| 8 7 6| 5 4 3] 2 1 0
VECTOR INSTRUCTION SET (Continued) S

VNRM 111
001 VDOT 000
VMAX 001
VMAB 010
VMIN 011
VMIB 101
VMOV 110
VSWP 111
010 DPIV 001
DVABS 011
DVSUM 101
1 DVNRM 111
1] 000 101 001 011 DVDOT 000
DVMAX 001
DVMAB 010
DVMIN 011
DVMIB 101
DVMOV 110
DVSWP 111

A-13

Appendix A700

BASE SET INSTRUCTION CODES IN BINARY (Continued)

EXTENDED INSTRUCTION
GROUP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
saxsavisexssy | 1|0 o ofasl o 1|1 1 1|1 o |xy|o o o

CAX/CAY/CBX/CBY 110 0 0 jAB| 0O 1 11 t 11 0 XYl o o0 1

LAX/LAY/LBX/LBY 1]o o ojaslo 1|1 1 1|1 o |xy|o 1 o

STX/STY 1:‘0 0 011 0 1 11 1 1 0 |xy}| 0 A L |

CXA/CYA/CXB/CYB 1o o ofaBlo 11 1 1|1 ofxy| 1 o o]

LDX/LDY 1o o o1 o 1] 1 1 l1 oo fxvf1 0o 1

ADX/ADY 1o o oft o 1|1 1 a1 o x|t 1 o0

XAX/XAY/XBX/XBY 1o o ofaslo 1 f1 1 1|1 o x| o1 1

ISX/ISY/DSX/DSY 1o o o |1 0 1l 1 11 |{xy| o o|w

JLY =0
JPY =1

JUMP INSTRUCTIONS

BYTEINSTRUCTIONS | 1|0 0 o0 |1

LBT 1 1
SBT

MBT
CBT
SFB

onononon
— b b
-

—~o-o0

BIT INSTRUCTIONS 1 0 ” 0 o 1 0 1 1 ; 1 1 ; , g ////////// //

SBS 11
cBS 1 0 0
TBS 1 0 1

W

WORD INSTRUCTIONS t]o o 0}|-1 A I R E S R B IR IS I 1///A

cMW

]

1

8200-52

A-14

A700 Appendix

EXTEND AND OVERFLOW EXAMPLES

T " ov=uncHanGe Wb % OV=UNCHANGED
.y E=1. R RN 1 5 E=UNCHANGED

8200-48 .

A-15

Appendix A700
INTERRUPT AND CONTROL SUMMARY
INST S.C. 00 S.C. 01 8.C. 02 8.C. 03 S.C. 04 8.C. 05 S.C. 08 s.C. 07
STC NOP NOP Enable break NOP Enable Type Enable parity | Turn on Time Turn on memory
mode. 2and 3 error Base Generator. | protect.
interrupts. interrupts.
CLC | System reset. NOP NOP NOP Disable Type - | Disable parity | Turn off Time NOP
2and 3 error Base Generator.
interrupts. interrupts.

STF Enable Type 3 STO Disable Global NOP NOP Set parity Set Time Base NOP
interrupts. Register. sense toeven | Generator

parity. flag.

CLF | Disable Type 3 cLo Enable Global NOP NOP Set parity Clear Time NOP
interrupts. Register. sense to odd | Base Generator

parity. flag.

S8FS | Skipif Type 3 SOS Skip if Global NOP Skip if power Skip if parity | Skip if Time NOP
interrupts are Register is not going down | senseis even. | Base Generator
enabled. disabled. flag is set.

SFC | Skip if Type 3 SOC Skip if Global NOP Skip if power Skip if parity | Skip if Time NOP
interrupts are Register is is going down. | sense is odd. | Base Generator
disabled. enabled. flag is clear.

L Load from in- Load from pro- | Load from Load from lL.oad from cen- | Load bits 0-15 NOP Load from
terrupt mask cessor status Global PSAVE or (with tral interrupt from parity violation
register. register. Register. ,C) ROMP. register. error register, register.

or (with ,C)
bits 16-23.
L NOP Merge from pro- NOP NOP NOP NOP NOP NOP
cessor status
register.

oT* Output to in- Output to pro- | Output to- Output to Output to cen- NOP NOP NOP
terrupt mask cessor status Global PSAVE or (with | tral interrupt
register. register. Register. ,C ROMP. register.

(Note 1)
Note 1: An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

(ﬁlﬂ HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division

MANUAL PART NO. 02137-90001 11000 Wolfe Road
Printed in U.S.A. March 1982 Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-29A
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	A-01
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	xBack

