THE HEWLETT-PACKARD
F-SERIES FLOATING POINT
PROCESSOR

THEORY OF OPERATION

NOTE
This document is part of the HP 1000 M, E, and F-

Series Computers Engineering and Reference
Documentation and is not available separately.

IB -i/-ii

PREFACE

This document is written to explain how the Floating Point Processor (FPP)
operates but not why each design decision was made. Thus, algorithm
implementation is described but the algorithm investigation is not. In one
sense this document is merely a reference to the schematics.

This document limits itself to the detailed inner workings of the processor.

Thus, the power supply, the programming and microprogramming,
microprogrammable processor port are not discussed here.

(HP 1000 M/E/F-SERIES ERD)

IB -ii

+ +
I |
| CONTENTS |
I |
+- +

Section I Page
GENERAL
Introduction ceseescescscesoscasassscsnssssssesosssnsssocscs
Related DOCUMENLS essescscscsssssoccscsessssssscsansoscsncse
FPP Relationship to 2111F/2117F ceecencccssscccsssccsnascs
Design PhiloSOphY eseeesvceoscescccscccccsssscosssscsscsnsos
Reference Information ceecesccssssccccosscsssscssscscscsasns
Binary Signal Levels sececcescsccscsscesssssscacssosscs
Logic CircultsS eoesoccsscososscsssncsssssossssssssnscnce
Signal NamesS ececeocscssccscsscsvcocscsssssosssssssssscs
Cross—References scecccsscescosssssncsscccecsscassssccse
Abbreviations and MnemonicCS esecsscoscosccssssscssssoocses
CPU-FPP Block Diagram ececescosccoscesccssssscscosssssscns
Functional CharacteristicCsS seescscoscsescscscsssscscsoscnsne
Floating Point Number FOrmatsS eesecocssssscocsssssnansss
Instruction COdeS ecesessvcsosscsscsscsscssesscscsssnnss
FeatuUreS eccecescccsccesccacosssctssesssssssscssssssssssss
FPP Control Signals eceococcscsocsscscscscssoscsssscsscse
Special OperationsS eecesceeceoscccascescscsssscecsscancs
Instruction Register Bit 7 seceescecvesonssscosncseee 12
Expanded Exponent and 5-Word FOrmat eecsoesscecoceccee 12
Algorithms eecececescsocscsscscssssssoscsscsssnsossssssssnanscs 12
Basic Hardware Configuration secesseesccesccsnscsssccscecss 13
Arithmetic Board ceecececsssvccsoccscscssosescansssscsasas 13
Control Board sessvscocevssscecscscesssssscsssncscscses l&

p—
QOO ULMUVUPEPEPAAEWWLONDNEPRE

—
N

Section II

DETAILED DISCUSSION OF THE FPP ALGORITHMS

Floating Point Number Representation eeesescesccsscecscess 17

Addition and Subtraction eceeseccesscescscscscesscssscsssesse 17
Mantissa Overflow eeeeecccesccsssccesccssossocscanseces 17
Normalization eecececceccoscsscsccccassncsscssnsssssses 19
Exponent Equalization ececeeccscesceccscsscscassscsscss 19
SWAMD ececsesescectsosccoscscscscsosscscssscscsscccsssses 20
Rounding ceecseecososcveoscossossossccocvsososossssssssssnse 20
Exponent Overflow/Underflow eeeceecccesccccassccscnssecas 21
Summary of Addition/Subtraction seececeessesceccccsssaes 21

Fix to Single or Double INteger essecesosvcccccrsccscsssces 22

Float from Single or Double Integer ececsescesscccsscscess 24

Multiplication eeececccsceccccsccscscocosososssssnssscsnsse 26
Elaboration of Multiplication Algorithm eeeceecescecesess 26
Multiplier Bits Truth Table ecesececocasccsscccsocosccse 27
Multiplication Decision Equations eeececscscccsocscsces 27
Rounding Techniques in Multiplication eeceseecsesecseees 31

(HP 1000 M/E/F-SERIES ERD)

IB -iv

Division eceescesccsosesocsccsccscccsccscccscossccssccssscscses
Division Process FundamentalS ecevescscececccscscscccccccs
Division Decision EqQuations eececececscescscscscscsccns
Corrections to the Quotient scescescesccscsscccocscssccse

Rounding TechniquesS eeeeseecesssrorsrsscccccsccscccosccssons

Section III
DETAILED DISCUSSION OF FLOATING POINT PROCESSOR HARDWARE
INntroducCtion sececscscosesvssvsscssscssosscsosssnsscscscsssnses
Arithmetic PCA 12740-60001 ccoovesvssscscccsnccsasasncscnns
Control PCA 12740-60002 secooeocsocsocoscessossssesscsscons
Execution Control esesescsscscsvecscoscssosscscscscnsccscs
Loading Sequence esseeesccsscssscscoscssscossssscsssosas
Execution Group ONe eeeecccssesossscsscsssessscssscsonse
Execution Group TWO eecccccescsossosscscsccccsssncsonse
Termination eseeccscssscosscacssscscscsccssosssnscensscse
MPP Interface and FPP Instruction Register ececcecececes
Implementation of Addition and Subtraction eeesecccecscececss
Implementation of Fix to Single/Double Integer cececesscces
Fix/Float CONStant esseesssecsssscescccsssossscsssscosss
Implementation of Float from Single/Double Integer eeeosese
Overview of EXEC2 Operations~Multiplication and
DIvViSiOn eesessesescsesccccsccescsoscvsesnsscscsscsososse
Implementation of the Multiplication Process seceececccecs
Implementation of the Division Process ssecesoesccceccecccs

Appendix A

SIGNAL NAMES AND DESCRIPTIONS ececcccccccccocscsccssoncsce
Control Board 12740-60002 eeeesescscsscscsccccscccscse
ALU Board 12740-60001 ccoeococoscccocoscsscscacssncnsocs

Appendix B
FPP/MPP SIGNAL LINES @ 0 0 0 00 000 0 S PO OGO OO PO 00O OSSOSO NSO PSP PSS

Appendix C
CURRENT REQUIRED @ 0 0 0 0 0000 000 S P00 PP 0 O0 0PN OLE OO DONDOSSDO OSSN

(HP 1000 M/E/F-SERIES ERD)

33
33
33
34
37

39
39
45
45
47
49
49
49
52
52
52
58
58

75
76
85

A-1
A-7

B-1

c-1

IB -v

1B -vi

I
| TABLES
|

Title Page

Load Control Sequence, Schematic Summary eecceesccescscese
State Machine Sequence for Add/Subtract esecvsscsscsesescccne
State Machine Sequence for Fix to Single/Double

INtEZEY ccccscoserscsecsecsscoscsccscsoscssssosssssssscss
Execl State Machine Schematic SummMATY eeeescosssscccsssoss
Multiply = Exec2 State Machine Explanation,

Schematic SUMMATY ececscecscscscscscssscsvscsosossssssnsoce
Division - Schematic Summary ecesceccecscscscsssscssscososcs
Division - Exec2? State Machine Explanation,

Schematic SUMMATY eeescecscssaccscssscesccasoscasscssocns

(HP 1000 M/E/F-SERIES ERD)

50
56

56
61

83
90

91

$——+

|
TILLUSTRATIONS |
|

Title Page

CPU-FPP Simplified Block Diagram eseeeecescccoooscssscscecss 5
Floating Point Number FOrmats seecesecccvesccccosssssscccnss b
Arithmetic Section of the Floating Point Processor eeseeee 15
Overall State Machine ceeecescccssssessscsssscesosssssccee 16
Addition and Subtraction Flowchart eececcecsesscssesessecse 18
Fix to Single/Double Integer Flowchart eecesscessccesssesss 23
Float from Single/Double Integer Flowchart seecececessssceee 25
Multiplication - Operation Sequence Example ecceesssecscece 29
Multiplication Example: 7 X 11463 ceeeseescsscessscosscess 30
Multiplication Flowchart eecesececosoocsccccccsccccsscncsoneeces 32
Division Example: 125/=5 eececescssssesccocesscsscsscosses 35
Division Flowchart eceeecocevcccccscesesosscsocoscescosnsssscscsse 30
Rounding Techniques eeeessecsecsccossscsscsscosssosscssscssess 38
Mantissa Register Logic—-Clear eeeeceecscoscscscescssssesss 40
Mantissa RegiSters eeveccecscesscccesenssceoosasssscoscaces 42
P=Bus Mode CONETOlS secesessssccasssssssssssesssssssssesss i
Execution Control Flowchart ecescescccecccsscccsscsssccncee 46
Load Sequence Flowchart eeeseescessscossscossscessocssssces 48
MPP to FPP Simplified Circuit Diagram esecececscssssscecess 53
FPP Communication Timing Diagram seeescccessscssssccssccess Dk
Addition and Subtraction Sequence Flowchart sesseeceesssss 55
Fix to Single/Double Integer Sequence Flowchart sseeesseces 57
Float from Single/Double Integer Sequence Flowchart seeeee 59
Execution Flowchart eeeesssssssscsccssssesessssssossoscces 60
Summary of Control Board Schematics eeceveccescscesscecsss 62
Exponents Equal Detection Circuitry eceescecescecescscscess 67
Swamp Detection Circults ceceeccsccoscsscsscsscrsssscesses 68
Mantissa Overflow CaSeS eceeesssscsssccccccscccsccccscccccce 70
Mantissa Overflow Circuits eceeceessccssccsvcccscccccccosccasee 71
Normalization Circuits esecescescccccsscsceccscovsccscssoee 72
Round CircCuitsS cceeeesscssccsssssscsssssossccsssooscscscsans /3
Exponent Overflow/Underflow ceeeececcscssscnscssesescasncse 74
Multiplication Decision Circuit seececeessscecccoccsconscne 77
Multiply/Divide Control States Schematic eeecscesscescsces 78
Round Circuits Devoted to Multiplication and

Division esseessssssssscvescsssssssosssssssossscscscnnnce 82

Division Sequence Decision Circults eeeeevecescccsscccssse 86

(HP 1000 M/E/F-SERIES ERD)

IB -vii/-viii

GENERAL

——t

=t
T
P I

+
|
SECTION I |
|
+

1.0 INTRODUCTION

The HP 1000 F-Series derives its computational power from the Hardware
Floating Point Processor (FPP). As the F-Series has the same central
processor as the E-Series computers, the floating point processor is the key
contribution to the F-Series. This document presents the theory of operation
for the floating point processor and describes the processor hardware in great
detail. For the most part, the central processor, power supply and
programming aspects of the floating point processor are not described, as
there already exists ample documentation covering their operation. See the
related documents section for the list of supporting documentation.

The reader of this document 1is assumed to be technically oriented and
experienced in digital logic design.

As the intent of this document is to provide understanding of the FPP
schematics, extensive reference to the schematics are made. Thus, the
schematics should accompany this document in order to facilitate their
understanding. Also, familiarity with Schottky TTL (74SXX) and Low-~Power TTL
(741.SXX) families is required.

2.0 RELATED DOCUMENTS

Schematics: D=12740-60001-51 through 56
D-12740-60002-51 through 55

Algorithms: This document makes extensive references to "The Logic
of Computer Arithmetic" by Ivan Flores, Prentice-Hall, Inc., 1963.

Recommended reading from Ivan Flores:
Floating point number representation: Sections 15.1, 15.2
Floating point addition and subtraction: Section 15.3

Floating point multiplication: Sections 10.2, 10.3, 10.5-10.8
Floating point division: Section 12.1, 12.2, 13.1-13.4

(4P 1000 M/E/F-SERIES ERD)

IB -1

IB -2

Floating Point Processor

Standard HP 1000 Floating Point Operations - formats and instruction codes:

HP 1000 F-Series Computer Operating and Reference Manual,
part no. 02111-90001

HP 1000 E-and F-Series Computer Microprogramming Reference Manual,
part no. 02109-90004

Microprogrammable Processor Port:
HP 1000 E-Series Microprogrammable Processor Port Application Note,
part no. 5953-0835

HP 1000 M/E/F-Series Computer I1/0 Interfacing Guide,
part no. 02109-90006

Installation:

HP 1000 F-Series Computer Installation and Service Manual,
part no. 02111-90002

Diagnostic:

HP 1000 F-Series Floating Point Processor Diagnostic Manual,
part no. 12740-90004

3.0 FPP RELATIONSHIP TO 2111F/2117F

The floating point processor is a hardware implementation of existing HP 1000
floating point arithmetic dinstructions. The processor performs these
operations on 32 bit single precision, 48 bit extended precision, or 64 bit
double precision operands which are represented in standard HP 1000 floating
point number formats. In the 2111F computer the floating point processor
boards are mounted inside the chassis over the card cages and power supply.
In the 2117F computer, the processor boards are in a separate unit with their
own power supply. The floating point processor communicates to the central
processor across the microprogrammable processor port, thus allowing fast and
direct microprogram control of the floating point processor.

4.0 DESIGN PHILOSOPHY

The goal of the F-Series computer was to achieve high computational
performance through a floating point processor (FPP). The processor had to
implement existing HP 1000 floating point arithmetic instructions. Thus, the
processor had to execute 32 bit single precision and 48 bit extended precision
floating point operations. Another design objective was to expand HP’s
floating point capability by also performing 64 bit double precision
operations and conversion routines for 32 bit double integers. As all the
registers and data paths were to fit on one 11x16 inch HP Corporate full
module standard circuit board, they would have to be implemented in MSI
circuits. The execution time objective for the floating point operations was
5 to 10 times faster than firmware operations on the E-Series.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

As stated above, one of the primary design goals of the floating point
processor was to implement the operations add, subtract, multiply, divide, fix
to integer, and float from integer with a minimum register and data path
configuration. This configuration had to f£fit on a single 11 by 16 inch
printed circuit board. Floating point addition and subtraction algorithms
involve shifting mantissas right to equalize exponents, adding and subtracting
mantissas and then shifting the result left to normalize it. Thus, the
minimum hardware configuration had to include bidirectional shift registers
and arithmetic logic units (ALUs). In 1light of this configuration, the
algorithms chosen for multiplication and division were ones that consist of
sequences of shift cycles and arithmetic cycles.

In addition to the register and data path board, hence called arithmetic
board, there is the control board which controls the operations of the
arithmetic board. Since the floating point operations consist of sequences of
shift and arithmetic (ALU) cycles, a state machine 1s used to direct the
sequences. In order to make the ALU cycles and shift cycles as short as the
hardware circuits permit, the state machine consists of high speed shift

registers clocked at 40 MHz. At 40 MHz a particular state is active for only
25 nanoseconds (ns).

Thus, the floating point processor consists of control and arithmetic printed

circuit boards. Also, a printed circuit backplane provides communication
between the two boards.

5.0 REFERENCE INFORMATION

The HP 1000 F-Series Floating Point Processor consists of two 11 by 16 inch
six layer and one 4 1/2 by 11 inch four layer printed circuit assemblies
(PCAs) . Schematics 1llustrate the electronics design and assembly drawings

illustrate component loading for the PCAs. The backplane drawings listed
below are located in Section VII.

BOARD SCHEMATICS ASSEMBLY DRAWING
Arithmetic D-12740-60001-51 through 56 F-12740-60001-1
Control D-12740-60002-51 through 55 F=12740-60002-1
Backplane C-12740-60004-51 D-12740-60004-1

5.1 Binary Signal Levels

Most logic used in the computer 1is implemented with Schottky or low-power
Schottky TTL components, and positive logic is employed. High levels are +2.5
to +3.5V normally. Low levels are 0.0 to 0.8V. Some circuitry may depart
from these values in special circumstances. The actual values to be expected
may be determined from the type, load, and condition of the component.
Logically, "1" is "high" or "true" and "O0" is "low" or "false".

(HP 1000 M/E/F-SERIES ERD)

IB -3

Floating Point Processor

5.2 Logic Circuits

Logic circuits in the theory and on the schematic are drawn to aid in the
understanding of the logical function. '"Bubbles" on inputs or outputs
indicate active low logic levels.

5.3 Signal Names

Signal names are alphanumeric identifiers selected to aid in understanding of
the signal function. Signal names are followed with a "+" if they are active
high and a "-" if they are active low. If there are no "+" or "-" following
the name, then the signal 1s active high. Busses are named by a sequence of
letters followed by a number indicating bit significance.

Many signal names have suffixes that help distinguish the origin or purpose of
the signal. For instance:

B - buffered

EN - enable, as in tri-state ooutput enable
FF - flip-flop

CK - clock

RS - reset

CTL- one of the control states

OP - operation

5.4 Cross-References

Each page of the schematic 1s broken up into 24 areas whose boundaries are
marked as grid locations. For instance the horizontal axis is marked 1
through 6 and the vertical axis is marked A through D. Signals which run from
sheet to sheet have the coordinates of their source listed next to their name.
Also, as this document discusses specific circuits, it will indicate the
coordinates of the circuit area in brackets; for example, PWRST- (U183-3 at
13B).

5.5 Abbreviations and Mnemonics

The following abbreviations and mnemonics occur frequently in the text. Their
meanings are given below:

AEXP - exponent register of operand A

ALU - arithmetic logic unit. Also, ALU cycle indicates a cycle
where operands must pass through the arithmetic logic units.

AMAN - mantissa register of operand A

BEXP - exponent register od operand B

BMAN - mantissa register of operand B

CMAN - mantissa register register of operand C

CPU - central processor unit

FPP - floating point processor

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

IR - instruction register of the floating point processor
LSB - least significant bit of mantissa
MPP - microprogrammable processor port

SWAMP- condition where operand exponents are too far apart to
do meaningful arithmetic.

5.6 CPU-FPP Block Diagram (Figure I-1)

The F-Series computer uses the same control processor as the E-Series computer
with the floating point processor connected directly to the main data bus via
the microprogrammable processor port. The floating point processor contains
data and control logic dedicated to floating point operations, so that the
control processor no longer needs to perform these calculations in firmware or
software routines.

— MEMORY
DECODING

LOGIC T

F-SERIES Y MPP
INSTRUCTION > > CENTRAL ———» FLOATING POINT
SET PROCESSOR |g——— PROCESSOR
y T
L» INPUT/OUTPUT

v ¢4

Figure I-1. CPU-FPP Simplified Block Diagram

6.0 FUNCTIONAL CHARACTERISTICS
6.1 Floating Point Number Formats (Figure I-2)

All floating point operands consist of a signed mantissa and signed exponent
represented in two’s complement HP 1000 series computer format as shown in
Figure I-2. Single, extended, and double precision mantissas are sign plus
23, 39 or 55 bits long respectively. The exponents of these operands are
always seven bits plus the exponent sign. Thus, exponents range from 2 exp
(127) to 2 exp (~128). The first word of an operand holds the most
significant mantissa bits. The operand’s last word consists of the 8 least
significant mantissa bits and the 8-bit exponent. Note that the exponent
magnitude is in bits 7 through 1 and the exponent sign bit is rotated to bit O
of the last word.

If an overflow or underflow result occurs during an operation, the FPP sets
the CPU overflow bit. Overflow occurs if the result of a floating point

(HP 1000 M/E/F-SERIES ERD)

IB-5

Floating Point Processor

operation 1lies outside the range of =2exp(l127) through (1 - 2exp(-n)) *
2exp(127), where "n" equals two less than the number of mantissa bits in an
operand format. Underflow occurs if the result 1lies within the range
- (14+2exp(-n)) *2exp(-129). The overflow result returned is the maximum

positive floating point number, 2exp(128) minus 2exp(-n), and the underflow
result returned is all zeros.

The single integer generated by fix and used by float is the standard HP 1000
16-bit two’s complement integer, and the double integer is the 32 bit two’s
complement integer.

Single precision = 32 bits (6 significant decimal digits in mantissa)

IR(1,0) = 00
[15 14 0][15 8 7 1 0]
SIGN - 23 MANTISSA BITS- -7- SIGN OF EXPONENT
OF BIT
MANTISSA EXPONENT

Extended precision = 48 bits (12 significant decimal digits in mantissa)

IR(1,0) = 01
[15 14 0115 0][15 8 7 1 0]
SIGN -=-39 MANTISSA BITS r=======— -7- SIGN OF EXPONENT
OF BIT
MANTISSA EXPONENT

Double precision = 64 bits (17 significant decimal digits in mantissa)

IR(1,0) = 10
15 14 0110156 0][15 0115 8 7 1 0]
SIGN W —=——————- 556 MANTISSA BITS -========== 7 SIGN OF EXPONENT
OF BIT
MANTISSA EXPONENT
INCREASING MEMORY ADDRESSES ---=-====- >

Figure I-2. Floating Point Number Formats
6.2 Instruction Codes
The hardware Floating Point Processor (FPP) executes the standard HP 1000

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

computer 32 bit floating point operations and the Fast Fortran Processor
executes 48 bit extended precision floating point operations, and offers as
well, 64 bit double precision floating point operations. Additionally, the
FPP 1instruction set includes fix to double integer and float from double
integer instructions which are available in all three floating point formats.
The following 1lists the instruction codes for the standard floating point
operations and calling sequences.

OPERATION INSTRUCTION
2 word 3 word 4 word
addition 105000 105001& 105002*
subtraction 105020 105021& 105022%*
multiplication 105040 105041& 105042%
division 105060 105061& 105062%*
fix to single integer 105100 105101%* 105102%*
fix to double integer 105104% 105105% 105106%*
float from single integer 105120 105121% 105122%*
float from double integer 105124% 105125%* 105126%*

* indicates new instruction code

& indicates instruction code different from Fast FORTRAN
Processor’s code

CALLING SEQUENCES:

2 word operation 3 word operation 4 word operation
OCT 105nn0 . OCT 105nnl OCT 105nn2
DEF OPND2 DEF RSULT DEF RSULT

DEF OPNDl DEF OPND1

DEF OPND2 DEF OPND2

The microcode for the standard 32 bit, 48 bit and 64 bit hardware floating
point instructions resides in module 3 of the F-Series control store, which on
M and E-Series contains the microcode for the firmware 32 bit floating point
instructions. If the FPP should fail, the module 3 microcode returns the
error result to the result location and sets the CPU overflow flip-flop. The
error result has 177777B, which is an invalid floating point number, in the
first word of the result.

While the above operations may be executed from software, the microprogrammer
is able to use many more features of the FPP. The microprogrammer controls
the operations of the FPP through an eight bit instruction which must be
loaded into the instruction register (IR) of the FPP. The Microprogramming
Reference Manual describes how to initiate operations, send operands to, or
retrieve results from the FPP. The following list describes what operations
are possible through FPP’s eight bit instruction. The instruction codes
consist of three fields which dictate the operation, the operand source, and
the operand length. If instruction register bit 7 1is set, 8-bit exponent
overflow detection is inhibited. The use of bit 7 is discussed in paragraph
6.4,

(HP 1000 M/E/F-SERIES ERD)

1B -7

Floating Point Processor

FPP INSTRUCTION REGISTER FORMAT:

IR bits 7 6,5,4 3,2 1,0
overflow operation operand source operand
length
Operation field opcodes: IR bits 654
add 000
subtract 001
multiply 010
divide 011
fix* 100
float* 101
diagnostic operation 110
diagnostic operation 111

The 5 word operand is used with the expanded exponent which is discussed in
paragraph 6.5.

IR bits 65432

*fix to single integer 100a0
fix to double integer 100al
float from single integer 100a0
float from double integer 101al

Where a=1 accumulator or a=0 fetched operand

Operand source field opcodes: IR bits 32

fetched operand * fetched operand 00
fetched operand * accumulator 01
accumulator * fetched operand 10
accumulator * accumulator 11

Here "*" indicates an operation requiring two operands. In the case of fix or
float which use only one operand, IR bit 3 specifies whether or not the
operand is from the accumulator.

Operand length field opcodes: IR bits 10

2 word operation 00
3 word operation 01
4 word operation 10
5 word operation 11

Most operations require sending two operands to the FPP. The order that these

operands are sent to the FPP is significant, and is shown in the following
table.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

Operation vs. operand sequence

first operand IR 3 second operand IR 2
addition augend addend
subtraction minuend subtrahend
multiplication multiplier multiplicand
division dividend divisor

6.3 Features

The floating point processor is designed to be functionally equivalent to the
HP 1000 software and firmware floating point subroutines. Thus, the only
effects to existing programs are shorter execution times. However, the FPP
has several features which allow the user to further decrease execution time
of floating point calculations. These features include the simple
microprogrammed interface, the flexibility of mixing 32, 48 or 64 bit

operations in consecutive instructions, and the accumulator function of the
processor.

The FPP is interfaced to the HP 1000 F-Series central processor through the
microprogrammed processor port. A description of the interface is provided in
the I/0 Interfacing Guide which a user may refer to in order to generate his
own interface. Since only eight signals are required to control the FPP, its
interface 1s easily wunderstood. Also refer to the HP 1000 E-Series and
F-Series Computer Microprogramming Reference Manual for a description of the
MPP control signals.

The processor’s internal registers may function as an accumulator register in
order to store intermediate results, which reduces memory overhead time during
successive floating point operations. Since the result of any floating point
operation is held in the FPP, it may be used as an operand in a subsequent
operation. Thus, in chained calculations, there is no need to store the
result in memory and then immediately fetch it for the next operation.
Instead, the user may use the accumulator to function as either, or both,
operands in a floating point operation. For example, the result of the
previous floating point operation may serve as the divisor or as the dividend
in a subsequent divide operation. The accumulator operations are controlled
by bits two and three of the instruction register, IR(2,3), they are easily
directed from microcode. Since the accumulator functions depend heavily on
the user’s application, they will not be furnished with the FPP microcode, but
must be written by the user.

All operands in the floating point processor are held in 64 Dbit registers.
For instance, a 32 bit operand is loaded with trailing zeros into the 64 bit
wide register. This feature enables the user to switch between 32, 48 and 64
bit operations with little 1loss in data significance. Round-off errors in
successive 32 bit operations can be reduced by performing 64 bit operations.
The final result may be retrieved as a 32 bit operand. However, since
accumulator operations depend on control information stored during the
previous operation, the wuser must not switch operand length before an
accumulator operation.

(4P 1000 M/E/F-SERIES ERD)

IB -9

IB-10

Floating Point Processor

The floating point processor does not freeze the CPU, so that the user may
initiate a floating point operation, concurrently perform other tasks 1in
microcode, and later retrieve the result from the FPP. For instance, in order
to reduce memory overhead between successive operations, the user can store
operands in the CPU scratch pads. Then he can manipulate memory addresses,
start an FPP accumulator operation, perform data reduction, retrieve the
floating point result in scratch pads, start the next FPP operation, and store
the previous result in memory. In these ways, it is possible to reduce the
impact of floating point operations on overall program execution time.

6.4 FPP Control Signals
PIRST Instruction Register Store

PIRST clocks the 1lower eight bits of the current CPU S-bus into the
instruction register on the FPP, if the FPP is not busy executing an operation
(MPPCND low). If the FPP is busy, it ignores PIRST.

PP5 Phase 5 of the CPU Cycle

FPP uses PP5 to synchronize data transfers between the FPP and the CPU.
PP2SP, MPBST, MPBEN, and PPISP are examined at PP5. MPPCND and NSTOV are
activated at the leading edge of PP5.

PP2SP Initiate an Operation

When PP2SP is received, the FPP prepares to execute the operation dictated by
the current contents of the FPP instruction register. The FPP ignores all
PIRST signals until it has completed the current operation, and asserts MPPCND
(low) to indicate that it is not ready to accept the next instruction.

MPBST Store the Operand Word

At the signal MPBST, the FPP stores the MPPIO data bus in its input register.
Operands are transferred to the FPP with successive MPBSTs. The most
significant 16-bits of the mantissa or integer is sent over the bus first,
followed by the remainder of the mantissa, and finally the exponent. Once an

entire operand is compiled in the input register, the FPP transfers the
operand to one of its internal registers.

MPBEN Retrieve the Operand Word

MPBEN indicates to the FPP that the CPU 1is ready for the next word of the
result. Since an operand is transferred to the FPP in 16-bit words, MPBST or
MPBEN must be asserted several times in order to transfer an entire operand.
The most significant 16 bits of the mantissa or integer are transferred first,
followed by the rest of the mantissa or integer. The last word of a floating
point result has the least significant 8 mantissa bits and the exponent.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

MPPCND Busy Flag

MPPCND is asserted (low) by PP2SP until the operation is completed. Once the
operation has completed, MPPCND is deasserted (high) indicating that the user
may retrieve the results or initiate a new operation.

NSTOV Set the CPU Overflow Flip-Flop

If an operation causes an exponential overflow, or underflow the CPU overflow
flip-flop is set at the trailing edge of the first MPBEN received by the FPP.

PP1SP FPP Reset and Qualifier

PP1SP resets the FPP and clocks the current FPP internal bus contents into the
FPP output register. Only the diagnostic uses this operation.

PPISP must be asserted whenever MPBST or MPBEN are asserted to guarantee
proper operation during memory refresh. During memory refresh the CPU
deasserts MPBEN and MPBST but not PPISP. The FPP will not transfer data
unless PPISP is receilved.

PLRO CPU Latch Register 0

This control signal addresses the FPP. When the FPP is not addressed, it
ignores all MPP signals, except for PIRST, and its output signals are disabled
from driving the port. A jumper on the 12740 control board controls the FPP
address, which is either PLRO high or PLRO low. However, for the base set
microcode to control the standard floating point operations the jumper must be
installed so that the FPP is addressed when PLRO is high (CPU latch register

0=0) .
FPP Control Signal--Microcode Opcode Relationship

The signals described above are activated or tested within the following HP
1000 F-Series microprogram opcodes:

SPECIAL JMP CNDX STORE S-BUS

PLRO L Word Types 1 or 2
PIRST IRCM Word Types 1 or 2
PP2SP MPP2 Word Types 1 or 2
MPBST MPPB Word Types 1 or 2
MPBEN MPPB Word Types 1 or 2
MPPCND MPP Word type 3

NSTOV OVFL Word Type 3

PP1SP MPP1 Word Types 1 or 2

(HP 1000 M/E/F-SERIES ERD)

IB-11

IB-12

Floating Point Processor

6.5 Special Operations
6.5.1 Instruction Register Bit 7

The FPP exponent logic circuits can hold up to a 10-bit exponent. The
exponent logic will detect overflow from an 8-bit exponent (normal operation)
or 10-bit exponent (special operation). Instruction register bit 7 indicates
whether. an 8-bit or 10-bit exponent is being manipulated. When IR (7) is 1,
the FPP sets the CPU overflow flip-flop and returns the overflow result, only
if the exponent overflows or underflows a 10 bit value. If the exponent

exceeds an 8 bit value but not a 10 bit value, the FPP does not go through the
overflow or underflow sequence.

6.5.2 Expanded Exponent and 5 Word Format

The FPP maintains a 10 bit exponent in its exponent register, so that
calculations may temporarily exceed 8 bits without losing accuracy. The 5
word operand format allows the user to retrieve and restore an intermediate
result whose exponent exceeds 8 bits. For example, in a square root of the
sum of the squares routine, it does not matter if the sum overflows an 8 bit
exponent, so long as the square root result is in range. The routine, with IR
(7) set, saves the operand in a temporary location using the 5 word format.
After the routine squares the second operand [IR (7) set], it returns the
first square to the FPP and forms the sum of the squares whose exponent may
exceed 8 bits. The routine proceeds to take the square root of the sum,
leaving IR (7) set, until the last operation when the resultant exponent is
checked for 8 bit overflow or underflow. Thus, the end result is fully
accurate, even though the sum of the squares might have exceeded the standard
range of HP 1000 floating point numbers.

7.0 ALGORITHMS

The addition and subtraction algorithms are the standard equalize exponents -
add or subtract mantissas - normalize mantissa procedures. The hardware
detects exponents which are too far apart to be equalized for meaningful
addition or subtraction, and transfers the larger operand to the output, or
result, register. In the case of exponent overflow or underflow during
normalization, the FPP returns the maximum number, or zero, respectively, and
sets the CPU overflow bit. Section II.2 discusses these algorithms in detail.

The algorithm used in multiplication is the method of shifting over strings of
zeros or ones, and detecting isolated ones or zeros as special cases. Thus,
the algorithm guarantees that for n digit mantissas, at most n/2 and typically
fewer than n/2 additions or subtractions are performed. In the case of 48 bit
operands, the partial product is truncated once if exceeds 64 bits. However,
32 bit operands produce the full 64 bit product which may be used in

subsequent 64 bit operations. Section 1II.5 discusses the multiplication
algorithm.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

Division is implemented by a non-restoring algorithm which shifts over strings
of zeros and ones. N digit mantissas require at most n additions and
subtractions, and typically, less than n/2. Since all operands are
normalized, the divisor requires no preprocessing, and since no remainders are
generated, no remainder correction is mnecessary. If division by zero 1is
attempted, the CPU overflow bit is set, and the maximum number is returned as
the quotient. Section II.6 provides further discussion of the division
algorithm.

8.0 BASIC HARDWARE CONFIGURATION

The FPP hardware is divided between two printed circuit boards; omne board
performs the arithmetic functions, while the second provides all the control
signals to the arithmetic board. The arithmetic board holds the operands,
ALUs and shift registers, as well as provides status information to the
control board. Correspondingly, the control Dboard contains the logic which
directs the sequence of functions that the operations undergo in completing an
instruction. The two boards communicate across two fifty pin connectors and a
printed circuit board backplane. All of the status and control interboard
signals, as well as additional status signals at a special diagnostic port

connector, may be monitored externally, thus enhancing trouble shooting
capability.

8.1 Arithmetic Board

The basic arithmetic structure, as shown in Figure 1I-3, consists of two
sections, one to handle exponent calculations, and the other to manipulate the
mantissas. There are three main registers in the mantissa section (AMAN,
BMAN, and CMAN), and two registers in the exponent area (AEXP and BEXP).
These registers hold various operands depending upon the function performed.

AEXP and BEXP are counter/registers used for expoment calculations. They are
incremented or decremented during multiplication and division. A comparator
connected between AEXP and BEXP gives exponent range information which is used
in the addition, subtract and fix instructions. A second comparator is used
in overflow detection.

AMAN, BMAN and CMAN registers hold the operand mantissas. AMAN contains the
augend in addition, the minuend in subtraction, the product in multiplication,
and the dividend and partial remainders in division. BMAN holds the addend in
addition, the subtrahend in subtraction, the multiplicand in multiplication
and the divisor in division. CMAN, which dis not used 1in addition or

subtraction, holds the multiplier in multiplication and the quotient in
division.

All three registers are implemented in shift registers, so that the mantissa
ALU 1is used only for arithmetic operations. During multiplication,
multiplexers at the output of the ALUs effectively shift the partial product
twice to the right. Therefore, on each pass through the ALUs, 100

(HP 1000 M/E/F-SERIES ERD)

IB-13

IB -14

Floating Point Processor

nanoseconds of shifting in the registers 1s eliminated, which speeds
multiplication.

The arithmetic board requires two data busses, the processor port and the
P-bus. The processor port bus transmits data to and from the CPU. The P-bus
routes operands from the input registers to the FPP A, B, and C registers, and
to the output registers. The P-bus is the main processor bus, and it provides
all communications within the arithmetic section. It is a 64 bit tri-state
bus, whose high output impedance in the off state is used to generate the all
ones condition of the overflow result.

The processor port bus 1is a 16-bit bidirectional data bus which reflects the
CPU S-bus. The S-bus usually drives the port bus through latches which are
clocked by the CPU phase 5 timing signal. The port bus drives the S-bus when
the opcode MPPB is specified in the S-bus field of a microprogram instruction.
The computer front panel holds the latches and drivers that interface the
S-bus and the port, bus. The port bus is tied to eight FPP separately enabled
groups of 16 registers which form the input and output registers. A 32, 48 or
64 bit operand is built in the input register from 16 bit data words received
over the processor port bus. The exponent portion of the operand must reside
in the last data word sent over the bus. Similarly, at the end of an
operation, the result in the output register is broken down to 16 bit words,

and the exponent is packed in the trailing word before its transfer to the
CPU.

8.2 Control Board

Control of the floating point operation d1s implemented through a 60 state
sequential machine. This state machine consists of a chain of 60 serially
connected and clocked flip-flops. One active pulse 1s passed along the
register chain activating various procedures and functions. Conceptually, the
execution of an instruction passes through up to four control phases where
each phase is comprised of several procedures and sub-operations. The four
execution phases are the receive operand sequence, the group one execution
sequence, the group two execution sequence and the termination sequence. The
flow through the phases varies for each instruction, which the diagram of
Figure I-4 summarizes.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

PROCESSOR PORT

I

({(PROCESSOR PORT BUS] ?]

\

(

J

V1

ALU

[v]

MPY SHIFT MPXR

2

8 .
(_r7; Bl T _JJJ
/ 56 J \.
MANTISSA P-BUS /
e 7 18 sl

EXPONENT P-BUS

r—

[

W[

BEXP

il

FLOATING POINT

AEXP CONSTANT
—
EXPONENTS
ALU COMPARATOR »| EQUAL
DETECTION
SWAMP, OVERFLOW
COMPARATOR |—{ AND UNDERFLOW

Figure I-3.

(HP 1000 M/E/F-SERIES ERD)

DETECTION

Arithmetic Section of the Floating Point Processor

MICROPROGRAMMED

IB -15

SUTYOEBR °3BAS T[BISAQ °*4-T 2an3Tg

SNLVLIS——
STYNDIS g ————
TOHINOD
- VERTS 309N3ND3S
HILSIDIH - NOILYNIWYIL ‘1vOi4
g
STVYNOIS
~¢————— JOHINOD -« o«
sng-d 30N3IND3S
NOILvYH3dO
3AIAIG ‘ATHILTINN
pe——
Y31S193Y
NOILONHLSNI €—v.ivad
-t)
ST0HLINOD 3DON3ND3S
B JAON - NOILYH3dO XId
H31S193Y 10vdians ‘aav
~— et
“
@
A A
@
O
(o]
o]
A
m ~— €
.M STVNDIS —— 3ON3INO3S
- 00710 avol
ﬂ Hal1s1D3y &

STVNOIS
£ < € 104H1INOD
ES]

o
(o)
—
[y —~€—7OHINOD

ANV1dANOVE STVNDIS TOHLNOD INIHOVIN 31V1S sSNg ddiN

(HP 1000 M/E/F-SERIES ERD)

IB -16

l
| DETAILED DISCUSSION OF THE FPP ALGORITHMS SECTION II
|

1.0 FLOATING POINT NUMBER REPRESENTATION

Before discussing floating point arithmetic, there are some aspects of
floating point numbers which should be pointed out.

First of all, a floating point number consists of a mantissa or fraction
multiplied by a power of two or exponent. Positive numbers have a zero in the
sign bit whereas negative numbers have a 1 in the sign bit. Negative numbers
are represented in two’s complement form. The range of positive mantissas (m)
is 1/2 less than or equal to 1 and the range of negative mantissas is -1 less
than or equal to -1/2. In binary form for a six bit mantissa the range is
1.000000 <m < 0.111111 and 1.000000 < m < 1.011111. Mantissa are in
normalized form when they are in these ranges. Note that the sign bit is
opposite 1in value from the bit just to the right of the binary point.
Mantissas are maintained in normalized form in order to provide as much
precision or fractional information as possible.

The exponents of the FPP is either seven or nine bits plus sign. The HP 1000
standard format is seven bits plus sign. However, if the user needs more than
seven bits, then a nine bit exponent plus sign may be utilized in the FPP.
The standard 7-bit overflow detection circuitry must be inhibited by setting
IR (7) of the FPP, also the expanded 5-word operand mode must be wused to
transfer the expanded 9-bit exponent in or out of the FPP. Note that the
overflow detection circuits always detect expanded exponent overflows,
irregardless of IR (7).

2.0 ADDITION AND SUBTRACTION (Figure II-1)

2.1 Addition/Subtraction Simple Case 1. Mantissa Overflow

Consider the simple case in addition or subtraction where the exponents of the
operands are equal. Add the mantissas and check if any corrections need be

made to the result.

For example: 3/4 in binary form: 0.11000
+ 1/2 + 0.10000

-~ ——— — ——— o — — — - ——

5/4 1.01000

(HP 1000 M/E/F-SERIES ERD)

IB -17

Floating Point Processor

(BEXP—AEXP)} >N
SWAMP

(AEXP—BEXP) >N
SWAMP

(AEXP—BEXP)>
OR

BEXP—AEXP)>

AEXP>BEXP AEXP <BEXP

AEXP=BEXP
?

A A

SHIFT AMAN RIGHT
(BEXP—AEXP) PLACES

SHIFT BMAN RIGHT
(AEXP—BEXP) PLACES

AMAN=AMAN:BMAN

MANTISSA

OVERFLOW
?

YES

A

SHIFT AMAN RIGHT
INCREMENT EXPONENT

SHIFT AMAN LEFT
DECREMENT EXPONENT

1S AMAN
NORMALIZED
?

NO

\

IF ADD, RESULT=8B
IF SUB, RESULT=-B

SHOULD AMAN

BE ROUNDED
?

BMAN IS SET TO
ALLO'S, LSB =1

]

EXPONENT
OVER/
UNDERFLOW
?

RESULT=A UNDERFLOW

OVERFLOW

PBUS = 1'S
SET CPU OVFL

PBUS = 0'S
SET CPU UNFL

VT‘
LOAD A,B,C & OUTPUT
REGISTERS WITH RESULT

7700-548

Figure II-1. Addition and Subtraction Flowchart
IB -18 (HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

Here 1s a case of mantissa overflow; the mantissa exceeds the acceptable
range. The mantissa is corrected by shifting it to the right one place while
shifting in the proper sign. Thus, 1.01000 becomes 0.10100. Note that
shifting the mantissa to the right one place has the effect of halving the
mantissa and, conversely, shifting the mantissa to the left has the effect of
doubling the mantissa. In order to preserve the value of the floating point
number, shifts to the mantissa must be accompanied by changes to the exponent.
In order to correct the overflowed mantissa, the mantissa 1s shifted to the
right or halved and the the the corresponding exponent is incremented.

To correct mantissa overflow m>=1 orm < =1

1. shift mantissa right shifting in proper sign
2. increment exponent

2.2 Addition/Subtraction Simple Case 2. Normalization or
Mantissa underflow

Consider the case of addition -1 plus 1/2.

-1 in binary form: '1.0000
+ 1/2 + 0.10000
-1/2 1.10000

Here the result, =1/2, is not in the range of proper mantissas. Since, the
sign bit has the same sense as the bit to the right of the decimal point. It
is an underflowed mantissa. The result is corrected or normalized by shifting
it left one place which has the effect of multiplying it by 2. In order to
preserve the value of the floating point number, the exponent must be
decremented. Sometimes it 1is necessary to shift the mantissa several places

to bring it to normalized form. For each left shift the exponent should be
decremented.

To correct an unnormalized mantissa =-1/2 <= m < 1/2
1. shift mantissa left until it is normalized
2. decrement exponent for each shift

2.3 Exponent Equalization

The previous cases assume that the exponents of the floating point numbers are
equal. The exponents can be made equal by incrementing the smaller exponent
while shifting its mantissa left. Since the mantissa 1is halved at each

increment to the exponent, the value of the floating point number is
maintained.

(4P 1000 M/E/F-SERIES ERD)

IB -19

IB -20

Floating Point Processor

Example:

Add 8 to -3/8. 8 = 1/2 x 2exp(4); -3/8 = -3/4 x 2exp(-1)

Equalize the exponents by shifting its mantissa and incrementing the
exponent five times

m exp m exp
8 =1/2 | 4 -3/8 = =3/4 | -1
0.10000]/0100 1.0100000]1111

1.1010000|0000 shift
1.1101000]0001 shift
1.1110100/0010 shift
1.1111010/0011 shift
1.1111101]0100 shift

VN =

1/2 | 4 0.1000000|0100
-3/128 | 4 + 1.1111101/0100
61/128 | 4 0.0111101|0100

The result is not in normalized form. Thus, shift the mantissa left and
decrement the exponent.

Result = 0.1111010 | 0011 = 61/64 x 2exp(3) = 61/8 =7 5/8

2.4 Swamp

As mentioned above, before mantissas can be added or subtracted, exponents of
the operands must be equal. Exponents are equalized by shifting the smaller
mantissa right while its exponent 1is 1incremented until the exponents are
equal. However, there is a limit to the number of places an operand should be
shifted to equalize exponents. This limit corresponds to the length of the
mantissa. Once the smaller operand is shifted off the register it does not
effect the larger operand during the operation. In the single precision case,
once the 24 bit mantissa is shifted right 24 places, 1t contributes no
significance to the result. Thus, before equalizing the exponents, their
difference is checked against the length of the mantissa register. If the
exponent difference exceeds the number of bits in the mantissa, then the swamp
condition exists. Essentially the operands are so far apart that their sum
equals the larger operand. Therefore, in swamp cases the result is merely the
larger operand. Note that 1in subtraction if the larger operand is the
subtrahend, the result is the two’s complement of the original subtrahend,
since it essentially is subtracted from zero.

2.5 Rounding
The arithmetic process may generate a mantissa which is longer (has more bits)
than the original mantissa which was input as an operand. For instance, in

the exponent equalization process a mantissa 1is shifted to the right beyond

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

the other mantissa. The resulting mantissa 1s a combination of the shifted
mantissa and the other mantissa. Then this mantissa must be truncated or
rounded to the standard floating point format, which consists of 24, 40, or 56
bits depending on the precision. The round or truncate decision is based on
the bits to the right of the least significant bit (LSB). For instance,
positive mantissas are rounded if the bit just to the right of the LSB, which
is called a guard bit, 1is a one. On the other hand, in order to maintain
symmetry about zero, negative mantissas are rounded only if the guard bit is a
one and there is at least another one to the right of the guard bit. The
rounding process adds a one to the LSB of the mantissa.

For example, consider the four bit mantissa case where 0.10110000 is rounded
to 0.110 (3/4), but its complement 1.0101000 is truncated to 1.010 (-3/4);
0.10101111 is truncated to 0.101 (5/8), but its complement 1.01010001 is
rounded to 1.011 (-5/8).

Thus, after the resultant sum or difference is adjusted for mantissa overflow
or underflow, it may be rounded, which means it must pass through the ALUs a
second time. Consider another rounding case of our four bit mantissa:
rounding 0.111111 to 1.000 causes mantissa overflow. TIf mantissa overflow
occurs during rounding the result must be corrected. The mantissa is shifted
to the right and its exponent is incremented forming a proper result.

2.6 Exponent Overflow/Underflow

After all the exponent adjustments are completed, the resultant exponent is
checked to ensure that it 1s in the proper range. For instance, if 1/2 x
2exp(127) is added to 3/4 x 2exp(127) mantissa overflow occurs which causes
the exponent to be incremented out of range (5/8 x 2exp(l128)). When exponent
overflow occurs, the overflow constant of 1-1/2exp(N) x 2exp(127) (where N=24,
40 or 56 depending on the precision of the result) is the result. Also, the
CPU overflow flip-flop is set, indicating that it 1s not a valid result.

Conversely, say that 1/2 x 2exp(-128) is added to -3/4 x 2exp(-128) Since this
mantissa result of =-1/4 undergoes normalization, the exponent is decremented
to =129 which is out of range. In the case of exponent underflow, the result
of all zeros is returned to the CPU and the CPU overflow flip-flop 1is set.
However, if the exponent is in range, and the operation is complete, then the
CPU overflow flip-flop is not set.

2.7 Summary of Addition/Subtraction

1. Load operands into registers.

2. Check that the exponent difference is less than the swamp constant.

3. Equalize the exponents by shifting the smaller mantissa to the right,
and incrementing its exponent. :

4o Add/subtract the mantissas.

5. If mantissa overflow occurs, shift in the proper sign and increment the
exponent.

(HP 1000 M/E/F-SERIES ERD)

IB-21

IB -22

Floating Point Processor

6. If the mantissa is not normalized, shift it left while decrementing the
exponent.

7. Round the mantissa if necessary. If mantissa overflow occurs, cor-
rect it.

8. Check for exponent overflow or exponent underflow.

9. Load the result into all registers.

10. Set the CPU overflow flip-flop 1f an overflow or underflow occurred.

3.0 FIX TO SINGLE OR DOUBLE INTEGER (Figure II-2)

The fix to integer operation converts a number from 32, 48 or 64 bit floating
point format to single or double integer format. The conversion operation
uses many of the same sequences that addition or subtraction wuse in the
floating point processor. For instance, before the conversion can begin, the
floating point number has to be checked that it is in the range of integers.
The range of 16 bit single integers is [0, 2exp(1l5)-1) and [-1, =2exp(l5)]
while the range of 32 bit double integers is [0, 2exp(31)-1] and [-1,
-2exp(31)]. The fix/float constant is 15 for conversion to single integers
and is 31 for double integers 1if the operand’s exponent 1is negative, the
floating point processor returns zero as the result. If the exponent 1is
greater than 15 (single integers) or 31 (double integers), the FPP returns a

result of 2exp(l5)-1 (single) or 2exp(31)-1 (double) and sets the CPU overflow
flip-flop.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

UNDERFLOW

FIX OPERAND IN AMAN, AEXP
CONSTANT IN BEXP

SINGLE INTEGER CONSTANT =15
DOUBLE INTEGER CONSTANT = 31

YES

!

IS AEXP <0
?

YES

OVERFLOW

AEXP > 15/31
?

RESULT =0

AEXP = BEXP
?

Yy

SHIFT AMAN RIGHT
INCREMENT AEXP

IS A(55) = | AND

A(39-0)/

A(23-0)+0
?

YES

INCREMENT A(55-40)/
A(55-24)

v

RESULT =215-1/
231.1; SET
CPU OVERFLOW

Figure II-2.

LOAD A,B,C & OUTPUT
REGISTERS WITH RESULT

Fix to Single or Double Integer Flowchart

(HP 1000 M/E/F-SERIES ERD)

IB -23

IB -24

Floating Point Processor

However, 1f the operand is in integer range, the fix operation wundergoes
exponent equalization for the conversion process. The operand is in AMAN and
AEXP while a constant, 15 or 31, is 1loaded into BEXP. AMAN is shifted to the
right until AEXP equals the constant in BEXP. For instance, in the single
integer case 1f the floating point operand is 5/8 x 2exp(3), the mantissa
would be shifted 15-3 or 12 places to the right. The fix operation result is
the uppermost sixteen bits of AMAN or in this case, the integer 5.

The fix operation results are checked for rounding also. Positive integers
are always truncated, but negative integers are rounded if there are any "1"s
to the right of the integer’s least significant bit in AMAN. This is the case
if the original operand’s mantissa had "1"s beyond the integer’s LSB or
shifting the mantissa right put "1"s beyond the integer’s LSB. This rounding

procedure maintains symmetry about zero. Note that +1 1/2 is truncated to +1,
while -1 1/2 is rounded to -1.

Summary of Fix to Single/Double Integer

1. Load floating point operand in AMAN, AEXP.

2. Load the integer test comnstant, 15/31, into BEXP.

3. Check that AEXP is positive and not greater than 15/31 to ensure that
the floating point operand can be converted to a valid integer.

4. Go through the exponent equalization sequence.

5. Round result if necessary.

6. Load result in all registers.

4.0 FLOAT FROM SINGLE OR DOUBLE INTEGER (Figure II-3)

The float operation converts a single or double integer into a 32, 48 or 64
bit floating point number. The integer is loaded into AMAN while a constant
is loaded into AEXP and BEXP. The exponent constant is 15 for single integers
and 31 for double integers. Float is the simplest of all operations, since
the operand merely undergoes normalization. For example, say that a single
integer operand is 12 which is 000014 (octal). This operand must be shifted
left eleven places to be normalized. Since the mnormalization sequence
decrements the exponent with each shift, the final exponent 1is 15-=11 = 4.
Thus, the resulting operand is 3/4 x 2exp(4) = 12. The FPP never rounds a
FLOAT result. Also, since all single and double integers are in the floating
point number range, overflow and underflow can never occur.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

EXECUTION

FLOAT BEGIN
START

AMAN HOLDS SINGLE/DOUBLE INTEGER
AEXP AND BEXP HOLD INTEGER CONSTANT
SINGLE INTEGER CONSTANT =15

DOUBLE INTEGER CONSTANT =31

IS AMAN NO

NORMALIZED
i//////

YES

SHIFT AMAN LEFT
DECREMENT EXPONENT

v

LOAD A,B,C & OUTPUT
REGISTERS WITH RESULT

Figure II-3. Float from Single or Double Integer
(HP 1000 M/E/F-SERIES ERD)

1B -25

IB -26

Floating Point Processor

5.0 MULTIPLICATION

One of the primary design goals of the floating point processor was to
implement the operations add, subtract, multiply, divide, fix to integer and
float from integer with a minimum register and data path configuration which
would all fit on a single printed circuit board. Floating point addition and
subtraction algorithms involve shifting mantissas right to equalize exponents,
adding or subtracting mantissas and then shifting the resultant mantissa left
to normalize 1it. Thus, the minimum hardware configuration had to include
bidirectional shift registers and arithmetic logic units (ALUs). 1In light of
this configuration, the subsequent algorithm investigation focused on

multiplication and division algorithms that dictated sequences of shift cycles
and arithmetic cycles.

5.1 Elaboration of Multiplication Algorithm

Multiplication is the most complex of all the floating point operations. Not
only does it follow the most complicated of the FPP’s algorithms, but also it
uses special circuits which make it go faster.

For example, the multiply algorithm shifts over strings of zeros and ones
while detecting and correcting for isolated zeros or ones. The description of
this algorithm will start with and build wupon the simplest type of multiply
methods. The simplest multiply algorithm scans the multiplier and adds a copy
of the multiplicand to the partial product at each "1" bit position of the
multiplier. Observe that a bit pattern in the multiplier of ...1000010... 1is
equivalent to 2exp(n+5) + 2exp(n). Also, vee00111110... equals
2exp(nt4d)+2exp(n+3)+2exp(nt+2)+2exp(n+l)+2exp(n) or, more importantly,
2exp(nt+5)-2exp(n); note that one addition and one subtraction replaces four
additions. Since any multiplier can be reduced to a string of ones and zeros,
multiplication can be a process of add or subtract cycles and shift cycles.
Since FPP shift cycles take only 50 nanoseconds while arithmetic cycles take
125 nanoseconds, the algorithmic goal is to perform as few ALU cycles as
possible. With this in mind, what happens in the sequence ...0001000...? TIf
the 1lone one 1is treated as a string, the above method dictates
+2exp(n+l)-2exp(n) =-- one addition and one subtraction. Obviously, omne
addition should suffice. If a history bit (H) is used to indicate the type of
string, a string of ones or a string of zeros, that is being shifted over, the
isolated bit can be detected, and the single addition will be performed.

Since multiply undergoes an arithmetic cycle only at the start and end of
strings and once at 1isolated bits, the processor will never perform two
consecutive arithmetic cycles. Thus, an arithmetic cycle is always followed
by a shift cycle. Also, each arithmetic cycle includes a shift operation.
This means that each time a partial product passes through the arithmetic
circuits, the algorithm shifts 1t twice. The FPP accomplishes this double
shift through multiplexers which are placed at the output of the arithmetic
circuitry. With the wuse of the multiplexers, every arithmetic cycle
eliminates two shift cycles.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

5.2 Multiplier Bits Truth Table

Here is the truth table from which the algorithm dictates the sequénce of
arithmetic and shift cycles which is based on the multiplier bits. The
multiplication process scans the multiplier from right to left looking at two
bits (C(nt+l),C(n)) at a time. Note that the multiplier is in tne FPP’s
C-register and C(n+l), C(n) are the two least significant bit portions of the
C-register. The history bit (H) records what type of string has been shifted

over. The history bit and partial product are cleared before multiplication
begins.

C(n+l) C(n) H Next H Significance Operation
0 0 0 0 continue string of 0’s Shift partial
product right
0 0 1 0 end of string of 1’ s; Add multiplicand
start of string of 0’s to partial
product, shift
0 1 0 0 isolated 1 case Add multiplicand
to partial
product; shift
0 1 1 1 continue string of 1°s Shift partial
product right
1 (VI 0 continue string of 0’s Shift partial
product right
1 0 1 1 isolated zero Subtract multi-

plicand from
partial product,

shift
1 1 0 1 end of string of 0%s; Subtract multi-
start string of 1°s plicand from
partial product,
shift
1 1 1 1 continue string of 1°s Shift partial

5.3 Multiplication Decision Equations

The following equations derived from the truth table control the
multiplication process. In the equations a plus sign (+) represents a logical
OR, and a colon (:) represents a logical AND.

1. Decision on whether to start a shift cycle or an ALU cycle next.

Shift cycle = H XOR C(n)
ALU cycle = H XOR C(n)

(HP 1000 M/E/F-SERIES ERD)

IB -27

IB -28

Floating Point Processor

2. Decision on whether to add or subtract the multiplicand from the
partial product.

Add = ALU cycle : C(n+l)
Subtract = ALU cycle : C(n+l)

3. Determination of the next history bit. Next H = [C(n+1):C(n)] + C(n):H +
C(n+l):H

For more information on the multiplication algorithm see "The Logic of
Computer Arithmetic" by Ivan Flores, Chapter 10.

Figure II-4 displays a sample multiplier and the operations which would be

performed during its multiplication. Figure 1II-5 shows an example of
multiplying 7 by -11463.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

oTdwexq uorieasdg souenbag--uorledTTdIITOR °*%-I11 2an381g

H31TdILTNN 40 AN3 103134 ‘1OVH18NS ‘S.1 40 ONIHLS LHVLS —
141HS 'S,0 40 DNIHLS INNILNOD —

1d1HS ANV AQV 'S.0 40 ONIYLS 1HV1IS—

14IHS 'S, 40 ONIHLS INNILNOD —

L14IHS ANV 1OvH18NS ‘S.1 40 ONIYLS 1HV1S -]
141HS ‘S,0 40 ONIHLS INNILNOD —

1d4IHS NV @AV ‘S.,0 40 DNIH1S 1HV1S —
141HS GNV 1OVH18NS ‘S,1 40 DNIHLS 1HV1S —
141HS ANV aaV ‘S.0 40 ONIHLS 1HV1S—

14IHS ANV 10vH18NS ‘S,1 40 DNIYLS 1HVLS -
14IHS ‘S0 40 DNIHLS INNILNOO—

141HS ANV @AV ‘L a31v10S!

14IHS ANV QQV ‘L d31v10SI alﬁ

141HS 'S.0 40 OZ_IPwu

0 l 0 l 0 0

2
y

—
0

HIIdILTINW 3TdNVS

[
0

0

S —

P

4

(HP 1000 M/E/F-SERIES ERD)

IB -29

Floating Point Processor

€9%11 x [°Tdwexy uoT3edTTdIITNR

13ns3d 10001000
Fl
01001000
‘NOILVZITYIWHON

01004000
I+
10001000

01110000 +
1 LO00000

= 1N3INOdX3 10NA0Hd

I + LNINOdX3 ONVOIIdILINW
+ ININOdX3 ANVOITdILINW

= ININOdX3 LONAOHd

001 ¢ 1 0

I ¢ v 9 L 8 6
(o I e T coms BN s W s B e B |
00 ol

0

d31s1934-

d3dINN

LL11000L0LO000LLOE

111 LO00LOLO00O0L LOL'L
L1110001L0L0000L 0L

00100°L +

1 111000101L0000010°0
1111000401L00000°L

00LLL0+

1111000104 101000
LEELO00LOLLOL0

00LHLO +
LLLLO00L0LOLL'L
001 110001010°

00100°L +
00LLLL0001L 1000
00000111 L000LL0

001110+
0000014 4LOOKELL

0000004 LELOOLL L
0000000LLLLOO L

0000100°t +
0000004 +1000'0
0000001 1 1000
00000LLL'0

000004110
000000000

10NA0Hd TVILHYd = NYAY

(00100°1)— = QOLLLO
NYWE
ANvOIdILINN

*G-I1 @an31g

2L0IEL
1v208

Ly208— = .¢ X = 1INs3d

1IN3INOdX3 LNIWIHOIA ‘1437 VSSIINVIN 1dIHS
‘d3ZIMYWHON LON Si 1oNaodd

SS3004dd DNINHO4 10NA0Hd 40 AN3 < 0=H3INNOD

30IM1 LON

‘JONO LdIHS ‘I = H3LNNOD IONIS 1ONG0Hd VILlHVd WO
ANVOITdILTNW (INSW3TIWOD S.2 3HL ady HO) LOVH1ENS 6 3 o I
30IML 1dIHS ANV 10NA0Hd TYILHVd OL ANVOITdILINW aay 8 0 o
J0IML 14IHS ANV LONGOHd Tvildyd OL aNVOIdILINW aay 'L 0 L0

30IML 14IHS ANV LONAO0Hd vildvd WOY4d
ANvOIdILINN (INIW3TDWOD S.2 3HL adv HO) 10vd1ians ‘9 I 0o I
JOIML 14IHS ANV LONA0Hd Iidvd Ol GNYOIdILTNW aay 'S 0 L0
10NdoHd 1vIldvd 1dIHS ¢ 3 Lol

30IML 14IHS ANV 1ONA0Hd 1vIlHvYd WOHd
ANVOIdILINW (INWINdWOO S.2 IHL aay HO) LOVH1ENS € 3 [
10NdoHd Vildvd 14IHS ¢ 0 0 0
JOIML 1dIHS ANV 1LONAdOHd 1vildvd OL ANVYOIdILINW ady ' 0 o 1

H 1X3N “H °0

cl
el
St

H3IINNOD

11000000 ‘00040 = ¢2x 82 = £ = ANVOIdILINW

04110000 "LOOLLIOOLLO0LOL = » @ X VBEIL
eoviLL—

= €9¥Li- = Y3INdILINW

(HP 1000 M/E/F-SERIES ERD)

IB -30

Floating Point Processor

5¢4 Rounding Techniques in Multiplication

Since multiplication produces a double length mantissa product, the product
must be rounded or truncated back to the original, standard length. For
instance, in a 32 bit single precision multiply, the 24 bit mantissa operands
produce a 48 bit mantissa product. The 48 bit product must be rounded or
truncated to form a proper 24 bit result. The FPP develops all partial
products in the A mantissa register (AMAN). This register is 56 bits wide,
AMAN (55-0), and partial products are oriented so that AMAN (55) is the sign
bit and AMAN (54) is the first bit to the right of the binary point. Thus,
the single precision product occupies AMAN (55-32), extended precision AMAN
(55-16) and double precision AMAN (55-0).

The rules for rounding in multiplication are the same as the rounding rules in
addition or subtraction. Namely, positive mantissas are rounded if the first
guard bit (the bit to right of the 1least significant bit) is a one. On the
other hand, negative mantissas are rounded only if the first guard bit is a
one and there is another one to the right of that guard bit. The round
information circuits hold the guard bit and the "sticky" bit. The sticky bit
is a latch register which gets set 1if it detects a one to the right of the
guard bits. Since a product may be normalized, or shifted left, at most two
places, the round circuits hold three guard bits which represent the first
three bits to the right of the product’s LSB. Thus, during normalization the

bit in the third guard bit position may be shifted left to the first guard bit
position.

Multiplication sets up the rounding information register in two ways. First
of all, as the partial product is shifted right during shift cycles, the guard
bits are also shifted right. The bit from the partial product’s LSB 1is
shifted into the first guard bit. Since the final product’s LSB position,
depends on the precision of the operation, multiplexers are used to select the
proper LSB for the guard bit. Thus, the guard bit may be fed from AMAN (32),
AMAN (16) or AMAN(O) depending on the precision of the operation.

Multiplication also sets wup the round information register during arithmetic
cycles. Remember that in arithmetic cycles the output of the ALUs is shifted
to the right twice through multiplexers. Thus, the two least significant
partial product bits must be routed to the first two guard bits. As the twice
shifted ALU results are loaded into the partial product register (AMAN), the
two bits to the right of the LSB are loaded into the first two guard bits of
the round register. The outputs of the first two guard bits are routed to the
inputs of the third guard bit and sticky bit every time the round register is
loaded. In this way the round register 1s effectively shifted twice to the
right. Thus, every multiplication ALU cycle has the effect of shifting two
bits into the round register. Again, since the partial product’s LSB position
depends on the precision of the operation, another set of multiplexers are
used to select either ALU(33,32), ALU(17,16) or ALU (1,0) to be loaded in the
round register. Thus for any precision, the guard and sticky bits always
accurately represent the bits to the right of the LSB, even while the partial
product 1is shifted right once, shifted right twice or 1left shifted. A
multiplication flowchart is shown in Figure II-6.

(HP 1000 M/E/F-SERIES ERD)

IB-31

Floating Point Processor

EXECUTION BEGIN:

CLEAR A MANTISSA,

SET A AND C TO SHIFT RIGHT
MODE, CLEAR HISTORY BIT

y

AORB=0

GO TO UNDERFLOW

ALU
CYCLE

HISTORY BIT
©

IF MADSB-C1, ADD

IF MADSB-C1,SUBTRACT
SET MNTSO

SET AMAN TO LOAD
SHIFT C RIGHT
DECREMENT COUNTER

SHIFT
CYCLE
A 4
DISABLE MPLXR SHIFT
SHIFT A,C RIGHT NO SET MPY FINAL SHIFT
DECREMENT COUNTER]

v

? YES

NO

MPY/DIV INITIALIZATION:
CLOCK 1ST DECISION,
CLOCK HISTORY BIT,
LOAD COUNTER

v

MPY-CLOCK C-tNITIAL:
SHIFT C RIGHT ONCE,
SET EXPONENT ALU TO ADD

A

AEXP, BEXP =
(AEXP+BEXP +1)

LOAD PART. PRODUCT IN A.
SHIFT C RIGHT
DECREMENT COUNTER

SET A TO SHIFT RIGHT

?4

HISTORY BIT=CqC1-CoH+C1q H

7700-549

IB -32

SHIFT A RIGHT

GO TO NORMALIZATION PREPARATION

v

Figure II-6. Multiplication Flowchart

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

6.0 DIVISION

6.1 Division Process Fundamentals

The division process is similar to the multiplication process, in that it
consists of ALU and shift cycles. The A register holds the original dividend
which becomes the partial remainder. The B register holds the divisor, while
the quotient 1is developed in the C register. Division uses a non-restoring
algorithm which shifts over strings of ones and zeros in the partial
remainder. At the end of the strings the divisor is added to or subtracted

from the partial remainder. The algorithmic goal 1is to reduce the partial
remainder to zero.

Looking at the division process in greater detail, the partial remainder is
shifted left until it is in normalized form. Then if the divisor and partial
remainder are both positive or both negative, the divisor is subtracted from
the partial remainder. Otherwise, the divisor is added to the partial
remainder. The sign of the arithmetic result, which 1is the new partial
remainder, determines the sense of the quotient bit for that cycle. If the
new partial product is not normalized, [the case when the sign bit, AMAN(55),
is the same sense as AMAN(54)], then it is shifted left wuntil it is
normalized. Since the divisor is normalized, the partial remainder should be
left in normalized form. Otherwise, it would not be significant to perform
arithmetic with an operand that is not normalized (under range). Also, shift
cycles take 50ns, whereas ALU cycles take 175ns, so that division 1s faster if
shift cycles are performed whenever possible. Each shift cycle as well as an
ALU cycle forms a quotient bit. However, in shift cycles the quotient bit 1s
determined by the Exclusive OR function of the signs of the divisor and
partial remainder. A counter controls the number of quotient bits formed and

signals the completion of division. The equations and circuitry which direct
the division process are summarized below.

6.2 Division Decision Equations
1. The decision on whether to perform an ALU cycle or shift cycle:
If AMAN(55) = AMAN(54), do a shift cycle. Otherwise, do an ALU cycle.

2. The decision of whether to add or subtract the divisor from the partial
product in an ALU cycle:

If AMAN (55) = BMAN (55), subtract. Otherwise, add.

3. Quotient bit determination:

During shift cycles: quotient bit = AMAN(55) XORed with BMAN(55) During
ALU cycles: quotient bit = ALU(55) XORed with BMAN(55)-

(4P 1000 M/E/F-SERIES ERD)

1B -33

IB -34

Floating Point Processor

6.3 Corrections to the Quotient

When the quotient is formed, it may have the wrong sign. The wrong quotient
sign is produced when the first ALU cycle is successful, which is when the
|divisor| < |dividend|. For example, in the case of 3/4 divided by 1/2, the
first ALU cycle subtraction results in 3/4-1/2=1/4 which means the first
quotient bit 1is a 1. Since the first quotient bit ends up in the quotient
sign position, this quotient will have the wrong sign. If the quotient has
the wrong sign, it is sent through the mantissa overflow sequence to correct
it. This sequence shifts the mantissa right while shifting in the proper
sign, and increments the exponent.

The division algorithm develops a one’s complement representation of the
quotient. Thus, negative quotients may have to be incremented in order to
convert them to the two’s complement representation. The floating point
processor combines the conversion with the rounding procedure. The floating
point processor develops an extra quotient bit called the guard bit which is
used in the decision of whether or not to round the quotient. Note that if
the quotient has the wrong sign, it 1is shifted right in the mantissa overflow
sequence, so that the LSB is shifted into the guard bit position. The
rounding decision is made after a quotient sign adjustment. The quotient is
rounded if the guard bit is a one, regardless of whether the quotient is
positive or negative. By combining the two’s complement conversion step with
the rounding step after the sign adjustment sequence, all division results are
properly rounded. Figure 1II-7 provides a division example and the flowchart
in Figure II-8 summarizes the division process.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

10100000

10100000

10100000
A

00100000

11000000 —
1 1100000

IN3INOJX3

G-/6z1 @T1duexy UOTSTATQ */-I1 2in31g

NOILISOd 118 a4vnNo

N

11101100
1101100
101100

01100

1100
100

00

0000kL0°1

o) g
1N3ILOND dOSIAIg

0011100}
I+
11011000

LLEOLLOO

00000000

00000000

000000070

00000000

00000000

00001107} +
00004010

00010100

001010070
01010000

0000LLO'L +
oiloLLol0

10110100

0000LL0°L +
LOLELLLO

v
H3IANIVINIY vIldvd

GZ—- =g X gelse— =
(LNINOJX3) 10100000 {¥SSILNVIN)0000000 ¢

IN3ILOND ANNOY OS ‘I = L8 advNo LSHId

AIN3ILOND TVNIH %*

INIWIHONI NV NDIS H3dOHd NI 14IHS ‘NDIS

L14IHS ‘L = °D ‘NDIS NVAE # NDIS NVAY -
J1OAD L4IHS < A3ZITYWHON LON SI NVAY -~

14IHS ‘L = °O ‘NDIS NVAE # NDIS NYAY
J10AD LHIHS < Q3ZINYWHON 1ON SI NYAY -

14IHS ‘L = °D ‘NOIS NVNE # NDIS NYAY
JTOAD LHIHS < Q3ZIMYWYHON LON SI NVIAV -~

14IHS ‘0 = °D < NOIS NVINE # NOIS NV -

aav < NOIS NVINE # NOIS NVYIAY
®g

JIOAD NIV < A3ZITYWHON SI NVIAV

1= °0 < NDIS NVIE # NOIS NYAV ‘1dIHS -
e

FTOAD LdIHS ‘G3ZITVINHON LON SI NYAY

1= °0 < NDIS NV # NOIS NVAV ‘LdIHS -
g

JTOAD LJIHS < Q3ZIMYIWHON LON St NVIAV

HIANIVINTYH TVILHYd LJIHS ‘0= °0 < NDIS NVANE # NDIS NIV

aqay < NDIS NVINE # NOIS NVV -~
JTOAD NIV < A3ZITVIWHON SI NYINV -

HIANIVINIY TVILHVYd LIHS ‘0= °O ‘NDIS NYIWg # NOIS LINS3H NV °

aav OS ‘NVWE 40 NDIS # NVAY 40 NOIS

J10AD NV OA OS ‘AIZITVWHON Si NVINY

ONOHM SYH LNIILOND "NYWY OL LNIILOND IAOW — SS300H DNINFOL IN3ILOND 40 AN3

el

SHILSID3Y 118 8 SNHIONOD ITdWVX3 SIHL

H31S1934 O NI A3d013A3d IN3ILOND
11000000 = € = dX39 ‘0000L10'L = 8/S— = NVYWE J31SID3H 8 < HOSIAIQ
11100000 = Z = dX3V ‘10LLLLE0 = 821/62L = NVINV H3LSID3Y V < AN3AIAID

¢ X 8/5— = 6— »ZX 82L/S2L = Sg 'S~ + 2l

(HP 1000 M/E/F-SERIES ERD)

IB -35

Floating Point Processor ,

EXECUTION BEGIN:
A & C <SHIFT LEFT MODE

AORB=0 YES
?
NO

MPY/DIV INITIALIZATION

LOAD MPY/DIV COUNTER

SET DECISION REG, TO DADSB
LOAD QUOTIENT SIGN REGISTER

[

GO TO
OVERFLOW

NO
GO TO UNDERFLOW

DivecQ =
As5(+)Bss

ALU CYCLE

(Ag5(*+)Bss): IF 1, ADD

IF 0, SUBTRACT
SET MNTSO0 TO ADD OR SUB,
SET AMAN TO LOAD MODE
LOAD PARTIAL REM IN AMAN
SET AMAN TO SHIFT LEFT MODE

DIVCO = Ags (V)Bss

SHIFT DIVCO IN C REGISTER
SHIFT AMAN LEFT
DECREMENT COUNTER

COUNTER
ZERO
?

IB -36

LOAD LAST DIVCO IN GUARD 1
C REGISTER DRIVES P-BUS
SET AMAN TO LOAD MODE
LOAD QUOTIENT IN AMAN

SET MANTISSA OVERFLOW

EXPONENT
SEQUENCE

LOAD (AEXP—BEXP)
INTO AEXP, BEXP

GO TO NORMALIZATION PREPARATION

(HP 1000 M/E/F-SERIES ERD)

Figure II-8. Division Flowchart

Floating Point Processor

7.0 ROUNDING TECHNIQUES (Figure II-9)

In order to minimize error propagation in a floating point calculation, each
floating point operation must produce results that are as accurate as
possible. Some operations generate mantissa results that have more than 24,
40 or 56 bits. For instance, multiplication of two 24 bit mantissas generates
a 48 bit product. The excess bits are wused in the decision of whether to
truncate or round the result to form a proper length mantissa. Rather than
use expensive double length registers, the FPP holds information about the
extra bits in a single 4 bit register.

This rounding information register holds three guard bits, which represent the
three bits to the right of the resulting mantissa’s LSB. Also, the round
decision uses a sticky bit to indicate if there are any ones in the bits to
the right of the guard bits. The sticky bit latch is an RS flip-flop which is
set by a "one" that is right shifted out of the guard bits. It 1s cleared
between operations. Although the FPP maintains a single round register,
rounding information is routed to the register in four ways.

First of all, as operands are shifted right, the bit from the LSB position is
shifted into the round register. Since the LSB position depends on the
precision of the floating point operation, multiplexers are wused to shift
either the thirty-second, sixteenth, or the zero bit into the first guard bit.

A refinement 1is made on the shift-right-multiplex-LSB process in the
subtraction case where the subtrahend is undergoing exponent equalization. In
subtraction, since the subtrahend is complemented and then added to the
ninuend, the subtrahend bits entering the round register have to be
complemented. One method of forming the two’s complement of a binary number
is to start at the right end of the number and move left. Until a 1 1is
encountered, leave all =zeros as they are, then take the one’s complement of
all the bits to the left of the first 1. For example, the bits 0101000 would
be passed to the first guard bit as 1011000. For greater detail, the FPP
passes the bits shifted out of the LSB as they are until a 1 1is detected,
which sets a latch. The set latch causes all succeeding bits to be
complemented. In this way, the round register effectively maintains a
complemented subtrahend.

Multiplication sets up the round register in a third way. Since the partial
product is shifted twice to the right during ALU cycles, the two LSBs must be
loaded into the round register. Again, as the LSB position depends on the
precision of the operation, a second set of multiplexers are used to sort out
the proper LSB for the round register.

In contrast to the other floating point operations, division uses different
information in its rounding decision. The division process develops one extra
quotient bit which is loaded into the first guard bit. After the quotient and
round register are adjusted for mantissa overflow or normalization, and if the
first guard bit is a 1, the quotient is rounded.

(HP 1000 M/E/F-SERIES ERD)

1B -37

Floating Point Processor

MULTIPLEXER

PROVIDES 2 LSBs

OF PARTIAL PRODUCT
DURING MULTIPLY'S
ALU CYCLES.

2ND

LSB

QUOTIENT BIT

MULTIPLEXER
TRUE
PROVIDES LSB ouTPUT
DURING RIGHT
SHIFT
OPERATIONS INVERTED
OUTPUT
ONE'S
DETECT
LATCH

IB -38

1ST
LSB

DIVISION’S EXTRA

SHIFT Dpj Dg D D
INPUT ATB TCTD

GUARD BITS
12 3
’-

[

INITIALIZE

INITIALIZE

STICKY
BIT

. —

SIGN OF MANTISSA

Figure I1I-9. Rounding Techniques

(HP 1000 M/E/F-SERIES ERD)

ROUND-

P T

I I I
| DETAILED DISCUSSION OF FLOATING POINT PROCESSOR | SECTION III |
I I I

1.0 INTRODUCTION

Section III describes the operation of the floating point processor hardware.
Section II presented the processes the floating point operations undergo, and
Section III discusses merely how the hardware works. The implementation
discussion moves from flowchart summaries to circuit models including detailed
references of the schematics.

The floating point processor consists of two printed circuit assemblies
(PCAs), the 12740-60001 Arithmetic PCA and the 12740-60002 Control ©PCA.
Accordingly, the schematics are part number D-12740-60001-51 through -~56 and
part number D-12740-60002-51 through =55 respectively. This section first

discusses the circuitry and layout of the arithmetic PCA and then the
circuitry of the control PCA.

2.0 ARITHMETIC PCA 12740-60001

The arithmetic PCA holds the operand registers, data paths and arithmetic
logic units (ALUs) of the floating point processor. The arithmetic PCA is
divided between a mantissa section and an F,0FFent section as shown in Figure
I-3. Each section holds F=0FF, output, operand registers and ALUs which are
linked through an internal bus named the P-bus. The input and output
registers transmit data to and from the CPU across the microprogrammable
processor porte Besides input and output registers, there are three main
registers in the mantissa section (AMAN, BMAN and CMAN) and two registers in
the exponent section (AEXP and BEXP).

In the mantissa section AMAN, BMAN and CMAN registers hold the operand
mantissas. These registers are 56 bits wide to accommodate 55 bits plus the
sign of double precision mantissas. AMAN (55-0) consists of omne 745194 and
thirteen 74LS194As which are all four bit bidirectional wuniversal shift
registers. AMAN (55-52) holds the most significant bits and is the 745194
part. AMAN(55-53) drive the control board. BMAN (55-00) 1is made up of
fourteen 74LS194A parts. CMAN(55-0) consists of eight 745299 parts. The CMAN
parts are eight bit universal shift/storage registers. Since at most only a
couple of bits of the C register are used at any time during an operation, it
can be implemented with octal parts whose inputs and outputs are multiplexed
on the same pins. In all of the mantissa registers bits 55-32, bits 55-16 and

bits 55-0 hold, respectively, single, extended and double precision mantissas
(Figure III-1).

(HP 1000 M/E/F-SERIES ERD)

1B -39

Floating Point Processor

Ie9TD~-2T807 I193s189y eSsTIuEBy *I-III °In31d
-MO1443aNN

-OHVITD - [(-L1TLOWY3IL - -NIANNOHY) - -dOXI[d + (~NDg23IX3 - £€93H1)] - +dOAMZ

-8¥0dV310 - [(-11LOWHIL - -NIANNOHY) - -dOXId + (-NDEIIX3I - £€93HI)] - +dOAME

-11084Vv310 - (+¥1LOdWVYMS - +8TVND3I) - ~NILNVLSNOOIdd

-g84v370 - (+1X0948 - JOaMZ)
~2€a4dv3ITD - (+1X0DH19 - dOAME)
(+71LOdWVYMS - +VIVND3) - (+NDEIIX3I + +dOAdW)

-VHV3IO -« [(-L1T1LOWY3L - -NIANNOHY) - +7198XId + (+NILNVLSNOOIdS - 19S1VOTd)] =

—3TONISVHTD » [{-LTLOWHIL - ~-NIANNOHY) - -dOXId4 + (-ND823X3 - £€934I)] - -78ALVOTd - JOAML

-ZeVHVY3T0 - [(-1T1LOWHIL - -NIANNOHY) - ~dOXId + (+NILNVLSNOIdd - + LVO14)] =

-379N0AVHII - JOAME - [(-1T1LOWHIL - -NIANNOHY) * ~dOXId + +NDEO3IX3 - €934I]

= -0d"Vv31D
= ~¢€oHV3IT0
= -8¥04VvV310
= -84dv310
= -2€adv3io
= -8¥8HV3ITD

= -¥YHdv3o
-3TONISVHIO

= =¢EVHVYIID

-378N0AvYyI0

= -8¥vYHV3IO

A

1NIOd ©ONI1VvO14 378N0a

-< LNIOd SNILYO14 a3aNILX3 -
- LNIOd ONILYOT4 3T1ONIS >
1
1
-8y HVYI1D o -z£oHv3I10 * & DuvI1D
1
" " I v310 HY37) 1
HY3TD FERE v310 HY310 | uv3 379 w310 431SI53Y
90zn 98LN 991N arLN ! aLin 96N 9N VSSILNVIA D
1
> -8v8HYITID ‘ 9+ -zeaHYI 1D ‘ ¢ -+ -guv31d
310 HY v310
Hv310 uv ERbe) Hv31D uv3 HY310 HY31D H3LSIDIY
£0ZN‘E6LN £8LN'ELLN €9LN‘ESLN evLN'EELN £ZIN‘eLIN £0LN'E6N £8N‘ELN VSSILNVIN 8
o -8vV HVYI1D -378N0avY10 | -zevHYI1O *1— -vHvY31D
] | i
T ERE) "N ERE) "v3io gvatoH | HY3T1D " ERE ERE] il
! ! w31sioay
z0Zn‘zéLn z8LNzLLN zoin‘zsin ZrLnNzeLn ' zzin‘ziin zoLn‘zen z8n‘zLn m VSSILNVIN ¥
1
I
L st 9t €z | 2 Le ze 6 | or Ly 8¥ g |
| i [
i | !
“ je———— H393INI ITONIS————-
1]
le H3ID3I1NI 379N0A —-l

(HP 1000 M/E/F-~SERTES ERD)

1B 40

Floating Point Processor

The C register is implemented with octal parts whose inputs and outputs are
multiplexed, so that the part can achieve eight bit capability within a 20 pin
package. Additional high speed registers duplicate some of the C-register in
order to accelerate multiplication. The multiplication decision algorithm use
the two least significant bits of the multiplier which is held in the C
register. As the multiply decision on whether to perform an ALU or shift
cycle must be formed within 50 nanoseconds, Schottky registers must be used to
provide the multiplier bits. In order to provide two multiplier bits within a
50 nanosecond shift cycle, the eight least significant bits of the C register
multiplier are duplicated in two 748194 four bit bidirectional shift
registers. Since the precision of the operation determines the eight least
significant bits (bits 47-40, 23-16 or 7-0 for single, extended or double
precision, respectively), 745153 dual 4-line-to-l-line data multiplexers route
the appropriate eight bits to the duplicated multiplier look ahead registers.

As to the exponent section, AEXP and BEXP hold the exponents of the operands.
Since exponent equalization, mantissa overflow and normalization processes
increment or decrement the exponent, AEXP and BEXP are implemented in 745169
parts which are synchronous four bit up/down counters. As AEXP and BEXP hold
up to ten bits, these registers are formed from three 745169 parts.

The function of the mantissa and exponent registers depends on the floating
point operation being executed. For instance, AMAN and AEXP hold the augend
in addition, the minuend in subtraction, the partial product in
multiplication, the dividend and partial remainder in division and the
floating point operand in fix to single/double integer. Also, AMAN holds the
single integer (held in AMAN(55-40)) or double integer (held in AMAN (55-24))
operand in the float operation. BMAN and BEXP hold the addend in addition,
the subtrahend in subtraction, the multiplicand in multiplication and the
divisor in division. The third mantissa register, CMAN, holds the multiplier
in multiplication, the quotient in division and 1s not used 1in any of the
other floating point operations.

Both the mantissa and exponent sections have a bank of arithmetic logic umits,
745381. In the mantissa group, these four bit ALUs are used only in the A
plus B or A minus B modes. Since the mantissa may contain 56 bits, fourteen
74S38ls are required. Also, due to the long length of the mantissa, the speed
of generating and propagating carries across the mantissa is accelerated
through the use of two levels of 745182 look-ahead carry generator circuits.
On the other hand, as the exponent section requires only three 74838ls, its
generate and propagate logic is implemented discretely with AND-OR-INVERT and
NAND gates. The four modes of the 74538ls that the exponent section uses are
the A plus B, A minus B, Inclusive-OR and clear modes.

In the mantissa section the outputs of the ALUs are routed to inputs of 745257
quadruple 2-line to l-line data selectors/ multiplexers. In one mode which is
usually active, the output of an ALU is routed directly to the same bit
position of the P-bus (ALU(50)) passes to P-bus(50)). In the other mode,
which is active during multiplication, the selectors route ALU output data
from two bit positions to the right to a P-bus position (ALU(52)) passes to
P-bus(50)). Thus, the partial product is effectively right shifted twice as
it passes through the multiplexer circuits (Figure I11-2).

(HP 1000 M/E/F-SERIES ERD) IB -41

Floating Point Processor

s123s189y

BSSTIuB °*7-II1 2an31g

(1-91) SN8 O/t dd

20zNn 98LN 99LN 9vin alin 96N an
0 L 8 Sl 9l [4 144 1€ ze 62 ov (A4 8y S5
sozn S6LN s8in SZin san sSiN Sbin SELN GeLn Siin soLN s6n s8N 74
4 E] E) d 4 E] d El d El d 4 El El
Yozn veiNn 8N viin 91N vain trin veELN veZin viin voLn veN 8N vin
i) A\ 8 Vv a v 9 v a v g v 8 v g \4 a v] v il v] v 2 v g A4
€0zn £61LNn gsin gin £91N €GN gviLn geln £€zin etin €0LN £6n £8Nn €Ln
zozn [4:11p] z8Ln Zen zgin Zsin rin zen zzin ZiLin 2oin 60 8N [41q]
0 € v L 8 4% Zl st 9l 61 [s74 jx4 174 Le 8z 1€ (4% SE 9 6¢ or ey 144 iy 8y IS 28 jeict
16N Lein LSLN LEn LN en n
102N L8N 19N N tein Lon 18N
\. A\\¥

0550042

66ZSvL
431819340

LELStL
H3IX3adILnw

L8ESYL
nv

v61STVL
H3181934-8

veLSPL
H31S1934-v

VLESYL
"3181934 1Nd1N0

VLESTIVL
H31SI93H LNdNI

(HP 1000 M/E/F-SERIES ERD)

1B -42

Floating Point Processor

The least significant bits of the mantissa registers send information to the
round information circuits. The round circuits consist of a guard bit
register, two "ones" detect latches and multiplexers that feed the inputs to
the guard bit register. For instance, a 745151 8-line to l-line nul tiplexer
selects the precision dependent least significant bit of either AMAN or BMAN
for the right shift input of the guard bit register. The guard bit register
18 a 748194 four bit Dbidirectional universal shift register. During
multiplication ALU cycles a 74S153 dual 4-line to 1-line mul tiplexer selects
the two appropriate precision-dependent least significant bits of the outputs
to the ALUS.

The P-bus was designed to be a tristate bus, so that several registers could
drive it. TFor instance, the input register, ALU multiplexer outputs or the C
register may drive the mantissa P-bus. Note that these registers all have
tristate outputs. The mantissa P-bus drives the 1inputs of the output
register, AMAN, BMAN and CMAN registers and the zero detect circuits. The
zero detect logic consists of twelve 5-input NOR gates whose output tie to the
inputs of a 13-input NAND gate. If the mantissa P-bus 1s all zeros, the
output of the NAND gate is high. Each P-bus bit is tied to a 1000 ohm pull-up
resistor, so that when no register drives the P-bus, the P-bus 1is all ones.
The all ones condition 1s used to generate the overflow constant. The
underflow sequence clears the C register and then activates its outputs, so
that the C register drives all zeros onto the P-bus. Therefore, in sum, the
P-bus at anytime either holds the contents of the input register, the contents
of the ALU multiplexers, the contents of the C register which may be all
zeros, or if no register is driving it, the P-bus is all ones (Figure III-3).

(HP 1000 M/E/F>SERIES ERD)

IB -43

Floating Point Processor

S$T013U0) OPO snNg-d °*¢-III 2an81J

- NINTVdX3 ———— INVISNOOdS
- N3NV NID3IHNI
- NINIVdX3 " ~——————— INVISNODdH
- N3NV - N3IDIYNI
- N3INTVdX3 INVISNOOdJH N3ID3ENI
- N3INIYW N3OD3HNI
- NINTVdXT N3D3uNI
NaNIvN N3IOHHD = N3NV = N3D3HNI

(sng-d S3AlHA

H31S1934 ON)
NINTVdX3 ¢——— gMOT4H3A0 NINTVAXT NIDIYNI
NINTVW ——————— gMO13H3IA0 N3NV - NIDIHNI
< NINTYAX3 N393YNI
- NaNTvW N3ODHO —— N3NTYN - NIOIYNI
- N3INWdX3 -- N3O3HNI
- NNV - N3D3HNI

dStdd 22710 92110 9v110 110 NDg03X3 MODYY dSzdd

1383y

lole|nwindde Woly y
(v) lvo4 (£

10JB|NWNOO. WO} Y
(v) x14 (9

NdO woy vy
{v) LvO1d “(v) xid (s

uonesado yuod buneoyy Aue = |
10 mojjiepun = ynsal ‘g.v (p

uoiesado juiod Buneoy Aue =
MOjIBA0 = Jnsai g,y (g

101B|NWNI0E
wouy 10 NdH wol g'y ‘giy (2

Jojejnwnooe
woi} 10 NdD wol = g'y
AdW ‘gns ‘aav = . a.v (1

NOILVH3d0

(HP 1000 M/E/F-SERIES ERD)

IB -44

Floating Point Processor

Similarly, the exponent P-bus may driven by the input register, the ALUs or by
a floating point constant set up by buffers. Since the ALUs (745381) do not
have tristate outputs, their outputs are routed to the P-bus through tristate
buffers. In order to generate the underflow constant of all zeros, the
underflow sequence sets the ALUs to the clear mode and enables the ALUs’
output buffers to drive the P-bus. As the P-bus bits are tied high through
1000 ohm pull-up resistors, the P-bus 1is in the all ones state when 1is not
driven. The overflow sequence disables all registers and buffers from driving
the P-bus in order to create the overflow constant.

The exponent section contains five 74585 four bit magnitude comparators.

These comparators detect the swamp condition, exponents equal condition and
exponent overflow or underflow condition.

The following summarizes the circuitry depicted on each page of the arithmetic
PCA schematics part number D-12740-60001-51 through-56.

Schematics page 51: mantissa section bits 55-40

page 52: mantissa section bits 39-24

page 53: mantissa section bits 23-8

page 54: mantissa section bits 7-0, zero detect logic,
round decision circuits

page 55: exponent section

page 56: 1look ahead carry generator circuits,
multiplier look ahead registers

3.0 CONTROL PCA 12740-60002

The control PCA holds the state machine which dictates the sequence of
operations that the arithmetic PCA performs. Besides the state machine, the
control PCA contains the microprogrammable processor port (MPP) interface, the

instruction register, P-bus mode control logic, register and ALU control logic
and operation decision logic.

3.1 Execution Control

Control of execution is implemented through a 60 state sequential machine.
This state machine consists of a chain of 60 serially connected clocked
flip~flops in which one signal is passed along the chain activating various
procedures and functions. Conceptually, the execution of an instruction
passes through up to four control phases where each phase is comprised of
several procedures and sub-operations. The four control phases are the
loading sequence, the exec 1 group phase, the exec 2 phase and the termination
sequence. The flow through the four phases varies for each instruction, and
is combined in the flowchart in Figure III-4.

(HP 1000 M/E/F-SERIES ERD)

IB -45

Floating Point Processor

IB -46

7700534

EXEC 1 GROUP
ADD, SUBTRACT OR FiX

'

LOAD INSTRUCTION REGISTER
WITH EVERY INSTRUCTION

INSTRUCTION
?

FPP BUSY SIGNAL

FETCH
OPERAND FROM
MEMORY

LOAD SEQUENCE

IN 16 BIT DATA WORDS

LOAD OPERAND FROM CPU

I

LOAD A, BOR C REGISTERS

FETCH

ANOTHER

OPERAND
?

WHICH

EQUALIZE EXPONENTS;
SHIFT MANTISSA RIGHT;
INCREMENT EXPONENT

ADD OR SUBTRACT

FLOAT

YES

EXEC 2 GROUP
MULTIPLY OR
DIVIDE

OPERATION
?

ot
NORMALIZED
?

MANTISSA

OVERFLOW
?

i

SHIFT MANTISSA LEFT:
DECREMENT EXPONENT

SHIFT MANTISSA RIGHT;
INCREMENT EXPONENT

]

LOAD OUTPUT REGISTER
WITH RESULT

FPP BUSY SIGNAL *

CPU RETRIEVES RESULT
IN 16 BIT DATA WORDS

Figure III-4.

TERMINATION SEQUENCE

A
I ADD/SUBTRACT EXPONENTS I

ADD OR SUBTRACT
MANTISSAS

I SHIFT A & C REGISTERS J

INCREMENT COUNTER

COUNTER
ZERO
?

Execution Control Flowchart

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

3.1.1 Loading Sequence

The first phase, the loading sequence, which is show in Figure III-5, 1is
initiated from the processor port signal PP2SP, which directs the FPP to
execute the current instruction. The FPP proceeds to reset its control logic
and assert the FPP busy (MPP) signal. The FPP may load from the CPU both or
either of the FPP internal A and B registers or bypass the loading sequence
entirely depending on IR(3,2). If 1IR(3,2) equals 11 designating an
accumulator * accumulator operation, no operands from the CPU should be
loaded, and control passes directly to the next phase of execution.
Otherwise, if IR(3) is 0, the A register is loaded with the first operand from
the computer CPU. Similarly, if IR(2) is 0, the B register i1s loaded from the
CPU. IR(1,0) control the number of 16 bit words accepted by the input
register in building an operand. Also, the FPP must detect the last word of
an operand, since it contains the exponent which must be unpacked from the
mantissa. Once IR(3,2) have been checked, and all registers loaded, the begin
execution signal becomes active. Control then passes to the exec 1 group
phase in the case of add, subtract, fix and float, or passes to the exec 2
group phase in the case of multiply and divide.

(HP 1000 M/E/F-SERIES ERD)

1B -47

Floating Point Processor

IB -48

INSTRUCTION CODING

I71g 15 14
0000 ADD
0 001 SUBTRACT
Q 010 MULTIPLY
0011 DIVIDE
0 100 FIX
0101 FLOAT
Itlo
o0 32 BIT OPERATION
g1 48
10 64
11 64 BIT -5 WORD
FORMAT
1312
00 MEMORY *MEMORY
01 MEMORY*ACCUMULATOR
10 ACCUMULATOR*MEMORY
11 ACCUMULATOR*ACCUMULATOR

BEGIN LOAD

FpPBSY !

FPPRST
RESET WORD COUNT

PP2SP -*FPP INST. |

YES, ACCUMULATOR* ACCUMULATOR

IREG3,2=11
?

NO

FIX OR FLOAT
OPERATION

F.P. CONSTANT-*EXPONENT PBUS]

NO

CLOCK A-REGISTER

ARG20-PBUSO
RESET WORD COUNT

{REG3=0
?

YES, FETCH OPERAND
FOR A-REGISTER

PPSTB—>CLK IN 1ST WD
ckiwat

FLOAT YES

SINGLE
?

PPSTB~>CLK IN 2ND WD
cKiwat

FLOAT YES

DOUBLE
?

PPSTB->CLK IN 3RD WD
cKiwat

[PPSTB>CLK IN 4TH WD I

7700-551 L

Figure III-5.

y

CLOCK A-REGISTER
ARG20=PBUSO
RESET WORD COUNT

YES, FETCH OPERAND
FOR B-REGISTER

PPSTB-*CLK IN 1ST WD
ckiwzt

'

PPSTB>CLK IN 2ND WD
ckiwat

PPSTB—>CLK IN 3RD WD
ckiwat

PPSTB—>CLK IN 4TH WD

CLOCK B-REGISTER
BRG20=PBUSO
RESET WORD COUNT

L

(HP 1000 M/E/F-SERIES ERD)

EXBGN

FIX: CLEAR B MANTISSA

FLOAT: CLEAR B

FLOAT SINGLE: CLEAR Agg-Ag

FLOAT DOUBLE: .CLEAR Ap3-Ag

FLOAT: OPERAND IN A MANTISSA
FP CONSTANT IN A AND B
EXPONENT

FP CONSTANT IN B EXPONENT

OPERAND IN A MANTISSA AND

A EXPONENT

FIX:

Load Sequence Flowchart

Floating Point Processor

Fix and float are two special cases to the loading sequence. Fix and float
differ from the other instructions in that they operate on one operand, and
both use a constant in the exponent register. For example, float loads the
integer operand into the mantissa portion of the A register and then undergoes
normalization while decrementing the constant in the exponent, in order to
produce a floating point number. On the other hand, fix loads 1its floating
point operand into the A mantissa and exponent registers and then equalizes
A’s exponent against the constant in BEXP, thereby generating an integer
result. Thus, the loading sequence for fix and float loads an operand into A
and a constant into the exponent before proceeding to the exec 1 group phase.

3.1.2 Execution Group One

The execution group one phase is a sequence of procedures, some of which are
used by each operation. The procedures are swamp check, exponent
equalization, ALU operation, normalization, round checking and exponent range
checking. Add and subtract are the only operations that undergo all of these
procedures. In fix, 1f the operand”s exponent is positive, and the operand
can be converted to an integer, the operand merely goes through the exponent
equalization process of the exec 1 phase. Otherwise, 1if the fix single
operand exceeds 32767 (maximum 16-bit integer), or the fix double operand
exceeds 2,147,483,653 (maximum 32-bit integer) the maximum integer is returned
and the overflow bit set.

In a float operation, the integer operand is merely normalized to become a
floating point number. Thus, once a fix operand has been equalized and
perhaps rounded, or a float operand is normalized, and the other operation
results have completed the rounding check, control enters the exponent range
check and the termination sequence.

3.1.3 Execution Group Two

The shift and add-or-subtract algorithms of multiplication and division are
performed in the execution group two phase of execution. A counter, which is
incremented on each shift or pass through the ALU, determines the end of this
phase. For example, in a 32 bit divide the shift/ALU process 1is completed
once 24 shifts and/or passes through the ALU have occurred. Once a product or
a quotient have been formed, control passes to the normalization procedure of

the exec group one phase, and then continues through to the termination
sequence.

3.1.4 Termination

During the termination sequence, the final properly formed result 1is loaded
into the output register as well as 1into all of the FPP internal registers.
Thus, in a subsequent accumulator operation, the accumulator may be specified
as either or both operands. Again, bits zero and one of the instruction
register control the number of words returned to the CPU and are responsible
for packing the exponent into the last word of the operand. At this point,
the floating point processor lowers its FPP busy flag indicating that the

(HP 1000 M/E/F-SERIES ERD)

IB -49

Floating Point Processor

computer may fetch the instruction result, or initiate a new operation. And
so ends the execution of a floating point instruction.

SCHEMATIC SUMMARY III-I
LOAD CONTROL SEQUENCE

Schematic reference D-12740-60002-51 through-55

l. load instruction register (U81) with every instruction while
(IRST:PP5:FPPBUSY) is true
activate INSTRCK+ (U31-6 at 12-A)

2. PP2SP indicates FPP will perform operation if (PP2SP:LBIT
0 ADDRESS:FPPBUSY- high), activate FPP operations (Ul71-3 at 12-B)

(a) Set FPPBUSY flip-flop U155-3,4,5,6; U112-1,2,3 at 13-A)
to busy state to lock up instruction register; note
U30-1,2 held low.

(b) Activate FPPRS+ (U1l81-6, at 13-A):
Clear round control (Ul24-4 at 25-C)

(c) Activate PWRST- (U182-3 at 13-A):
Disable swamp delay control state 1 (U204-4 at 21-B)
Disable equalize control state 1(U184-4 at 22-B)
Disable swamp control state 4 (U194-4 at 22-C)
Disable normalize preparation control state 2 (Ul64-4 at 24-B)
Disable normalization control state 3 (Ul44-4 at 24-C)
Disable round decision control state 1 (Ul54-4 at 25-B)
Set the equalize A/B register to EQUALA+ (U82-4 at 41-B)
Set the mantissa ALU mode SO flip-flop to Add - SO high
Disable the C register output enable (U176-1,2,12,13;

U166-4,5,6 at 52-C)

(d) Activate PWRST2 - (U182-5 at 1l4-A):

Set load A/B to load A (U141-10 at 14-B)

Disable execution begin state (Ul4l-4 at 15-A)

Enable fix round flip-flop (U74-4,5,6,8,9,10 at 26-C)

Activate CLEAR ROUND- (P3-19, U84-8 at 26-C)
ALU board actions:
Disable one’s detect flipflop (U87-4,5,6,8,9,10 at 44-C)
Disable sticky bit (U77-1,2,3,4,5,6 at 44-C)
Disable complement carry-in flip-flop

(U52-4,5,6,11,12,13, at 43-D)

Clear guard 3 save register (Ul06-4 at 44-C)
Clear guard bits register (U63 at 43-C)

Disable MDY/DIV initializaion register (U30-10 at 31-A)

Set counter load flipflop to load (U41-8,9,10,11; U83-

8,9,10 at 32-A)
Disable MPY/DIV shift control state 1 (U52-1 at 32-B)

(HP 1000 M/E/F-SERIES ERD)

IB -50

Floating Point Processor

3.

Disable mantissa overflow detect register (Ul3-4-at 32-D)

Disable MPY/DIV shift control state 2 (U52-10 at 32-B)

Disable MPY/DIV ALU control state 5 (U32-4 at 34-B)

Set EXPALUSO (U15-8 at 42-D) P1-10 low

Set EXPALUS1 (Ul16-3 at 42-D) P1-13 high

Set EXPALUS2 (U55-8 at 42-D) P1l-15 low

Set exponent registers to load mode: EXDLD- low (Pl-4,
U26-6 at 44-~D)

Set exponent registers to count up mode: EXPCNTUP+ high
(P1-6,U36-6 at 44-C)

Set ARGSO high (P1-42, U45-9, 44-B)

Set ABRGS1 high (P1l-44, U35-5 at 44-A)

Set CRGSO high (P1-46, U56-12 at 44-C)

Set CRGS1 high (P1-48, U56-8 at 44-C)

(e) Activate PP2RS+ (U161-8 at 13-B):
If IREG3:FIXORFLOAT+, activate INREGEN (U166-3 at 52-D)

Enable EXPINCK (Ul46-1 at 14-C)

Enable input word clocks (U135-2,5,10,13; U206-10 at
14-C)

If IRGOO:1RGO1l, enable EXPUINEN~ (P1-18, U196-6 at
12-D)

Disable MALUEN+ (P3-39, U205-4 at 53-C)

Disable EXPALUEN~-(P3-23, U176-8 at 53-D)

(f) Activate PP2RS2- (U1ll2-11 at 13-B):
Reset word count register (Ul45-1 at 12-C)

(g) 1If (IREG2:IREG3:FIXORFLT-), then goto execution begin
MPBST -~ store data currently on MPPBUS

(a) Clock word count register (Ul45-9 at 13C);
Activate a word input clock

(b) If last word, transfer operand from input register to
A or B registers.

i. Clear word count register (Ul45-1 at 13-C)

ii. If load A/B has A enabled (Ul41-9 at 14-B HIGH),
load A register via ARGCKI (U131-8,9 at 14-B).
ARGCKI;
1f (PBUS55 XOR PBUS54)LOW, ARGZERO+ (A=0) activated
(U152-8 at 15-B)
If FIXFLOAT+ disable INREGEN
enable FPCONSTANT+, FPCONSTANT-
Toggle load A/B register to enable B (Ul41-8 at 14-B
high)
If (IREG2:FIXORFLT-), go to execution begin control
state (Ul44-1,2,3,4,5,6 at 15-B)

(HP 1000 M/E/F-SERIES ERD)

IB -51

IB -52

Floating Point Processor

iii. If load A/B register has B enabled (Ul41-8 at

14-B HIGH)

Load B registers, activate BRGCKI (Ul21-8,9 at
14-B)

BRGCKI: If (PBUS55 XOR PBUS54) low, activate
BRGZERO+ (U152-1,2,3,4,5,6 at 15-B) to indicate

B=0

Load exponent into BEXP

If FIXORFLOAT-, load operand into BMAN

go to execution begin control state
(U141-1,2,3,4,5,6 at 15-B)

3.2 MPP Interface and FPP Instruction Register (Figures III-6 and III-7)

The floating point processor communicates to the CPU across the
microprogrammable processor port (MPP or microport). The microport operations
are directed by CPU microcode. The microcode may reside in four places: CPU
base set ROMs, wuser control store ROMs on the Firmware Accessory Board,
Firmware Expansion Module, or the Writeable Control Store Board. The
microport consists of sixteen bidirectional tristate data lines and nine
control signals. The nine control signals include an address bit (PLRO), a
synchronization timing signal (PP5), five control signals driven by the CPU
(PIRST, PP2SP, MPBST, MPBEN and PPISP), and two tristate signals driven by
external processors (NSTOV and MPPCNDX) which in this case would be the
floating point processor.

4.0 IMPLEMENTATION OF ADDITION AND SUBTRACTION

Addition and subtraction are in the execution group one type as shown in
Figure ITII-8. By the completion of the 1load operand sequence the A registers
hold the augend in addition or minuend in subtraction. The B registers hold
the addend in addition and the subtrahend in subtraction. Addition and
subtraction undergo swamp check, exponent equalization, ALU cycle, mantissa
overflow check and rounding in the execution group one sequence. After that
sequence they proceed to the termination section. Table III-1 summarizes the
addition and subtraction sequence and indicates the control states that are
active at each step.

5.0 IMPLEMENTATION OF FIX TO SINGLE/DOUBLE INTEGER

The third operation within the execution group one is fix to single or double
integer. At the end of the loading sequence, the floating point operand is in
the A-register and a floating point constant 1s in the B exponent (refer to
para. 3.l.1). This operation flows through a subset of the execution group
one control states. Table 1III-2 lists the operation sequences that fix
undergoes and the signals which control these sequences (Figure III-9).

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

THE MPP AND FPP ARE CONNECTED BY A 3M 50-WIRE RIBBON CABLE 18 INCHES LONG.

MPP
FRONT PANEL

PROCESSOR PORT BUS

FPP
CONTROL BOARD

1. CONTROL SIGNALS +5
% 1200
cC
De e PP2SP E_)o
748240 PP1SP 1950 748132
PP5
MPBST
MPBEN
IRST
rr PLRO
>y
745240 745240
Qq MPPCND _F STOV—, A
MPP N 7as241
2. DATA LINES
ALU BOARD
cussus [¢ (TRISTATE BUS) INPUT REGISTER
DATA L
P5
DE | 745374 MPBST | .
_? 745374
OUTPUT REGISTER
CPU S-BUS d
G 745241 a D
MPBEN
DE | 745374

3. FPP INSTRUCTION REGISTER

+5

%1209
{C

T MPBEN®PLRO

CONTROL BOARD
INSTRUCTION REGISTER

/8 D

{>¢ PIRST

745240

Figure III-6.

g

MPPCND
1958

o

/

748273

745132

D

=V

Q

CK

(HP 1000 M/E/F-SERIES ERD)

74874

MPP to FPP Simplified Circuit Diagram

IB -53

Floating Point Processor

P5 [P P2 |P3 pa |p5 [Pt
1. INSTRUCTION LOAD \ CLOCK MPPIO BUS DATA INTO FPP IN-
PIRST STRUCTION REGISTER AT THE TRAILING.
EDGE OF P5 OF THE MICROINSTRUCTION
P8) 4 \ THAT HAD IRCM OP CODE.
\
2. CPU INDICATES THAT THE INSTRUC-
TION IS AN FPP OPERATION / FPP STARTS THE INSTRUCTION CUR-
PP2SP ___| RENTLY HELD IN ITS IR, FPP ASSERTS ITS
. BUSY FLAG, MPPCND, AND LOCKS ITS IR.
MPPCND \}
3. CPU SENDS AN OPERAND WORD TO
THE FPP ACROSS THE MPPIO BUS
MPBST ___{ cLock MPPIO DATA INTO EPP INPUT

REGISTER AT TRAIL EDGE OF P5 OF
PP1SP \ / MICROINSTRUCTION THAT HAS MPPB
STORE OP CODE.

PP5 A /
~™~—
4. CPU SENDS LAST OPERAND WORD
To FPP MPBST / _ FPP BEGINS EXECUTION.
PP1SP \ —”/////
h S
5. FPP INDICATES OPERATION FPP ENABLES INSTRUCTION REGISTER.
COMPLETED PPEND /
/" '_\
6. CPU RETRIEVES RESULTANT / T~
OPERAND WORD / FPP ENABLES OUTPUT REGISTER ON
MPBEN _ MPPIO BUS; FPP ENABLES INPUT
REGISTER.
PP1SP \ A
7. RESET FPP PP1SP \
MPBST
MPBEN

Figure III-7. FPP Communication Timing Diagram

(HP 1000 M/E/F-SERIES ERD)

IB -54

Floating Point Processor

EXECUTION
BEGIN

S~

SWAMP DETECT

SEQUENCE
(AEXP—BEXP) >N (AEXP7§§XW> (BEXP—AEXP) >N
SWAMP BEXP—-AEXP)> SWAMP
?
AEXP>BEXP AEXP=BEXP AEXP < BEXP
‘ ?
EXPONENT
EQUALIZATION
A |_—" SEQUENCE
SHIFT BMAN RIGHT SHIFT AMAN RIGHT — |
(AEXP—BEXP) PLACES (BEXP—AEXP) PLACES
ALU
/SEQUENCE
AMAN=AMAN:BMAN
MANTISSA
OVERFLOW
SEQUENCE i"“-_‘~\~
YES MANTISSA
OVERFLOW
?
NORMALIZATION
A | __—SEQUENCE
SHIFT AMAN RIGHT SHIFT AMAN LEFT —
INCREMENT EXPONENT DECREMENT EXPONENT
SWAMP
IS AMAN NO SEQUENCE
ROUND
OO e NORMALIZED
\ ‘
\\\\ IF ADD, RESULT=B
\\\\\‘\ IF SUB, RESULT=-B
HOULD AMAN
BMAN IS SET TO
ALLO’S, LSB = 1 BE ROUNDED
SWAMP l EXPONENT
SEQUENCE UNDERFLOW
| __— sequence
RESULT = A OVERFLOW EXPONENT UNDERFLOW“”””//”‘
OVER/
UNDERFLOW
EXPONENT ?
OVERFLOW
SEQUENGE == A NO \
| PBUS-1's PBUS = 0'S
SET CPU OVFL SET CPU UNFL
VT
TERMINATION
LOAD A,B.C & OUTPUT | .g———"""" SEQUENCE
REGISTERS WITH RESULT
7700-548

Figure III-8.

(HP 1000 M/E/F~SERIES ERD)

Addition and Subtraction Sequence Flowchart

IB -55

1B -56

Floating Point Processor

Table III-1.

State Machine

Sequence for Add/Subtract

ACTION

CONTROLLING SIGNALS

CONTROL STATES

12740-60002
SCHEMATIC REFERENCE

2a.

7a.

. Load operands into A,B

registers

. Check for swamp condition

If swamp, go through swamp
sequence

. 1t exponents differ, equalize
exponents

. Add/subtract mantissas

. If mantissa overflow, correct
mantissa overflow

. It result not normalized,

normalize it
. If result needs rounding,
round it
If rounding caused mantissa
overflow, correct it
. If exponent overflow or under-

flow occurred, result equals
over/underflow constant

. Loadfinal result in all registers

ARGCKI, BRGCKI

EXEC1 +

SWAMP + (high if swamp condi-
tion exists)

EXPEQUAL - (low if exponents
are equal)

EXPEQUAL +.FIXOP

MOVFL + (high if mantissa over-
flow exists)

ANORMLZD + (high if AMAN is
not normalized)

ANORMLZE +, MOVFL -,
ROUND -, ROUNDEN +

MOVFL + (high if mantissa over-
flow exists)

EXPOVUFN - (low if exponents
OK), EXPOVFL+ (high if over-
flow), EXPUNFL+ (high if under-
flow)

TERMCTL4 — (goes to clock of all
registers)

Operand load sequence

SWPDELAY(1,2,3,4)

SWAMP (1,2,3,4)

EQUALCTL (1.,2,3)

ALUDELAY (1,2,3,4,5)
MOVFCLT (1,2,3,4)

NORMPREP (1,2),

NORMCTL (1,2,3)

ROUND DECISION (1,2)
ROUND CONTROL, ALUDELAY
(1,2,3.4,5)

MOVFLCTL (1,2,3,4)
OVER/UNDERFLOW DECISION

OVERFLOW
UNDERFLOW

TERMCTL (1,2,3,4)

Page 51

Page 52-21-B

Page 52-22-C

Page 52-22-B

Page 52-23-B

Page 52-24-B

Page 52-24-B and C

Page 52-25-B
Page 52-25-C,-23-B

Page 52-24-B

Page 52-25-B
Page 52-25-A
Page 52-25-D

Page 52-26-B

Table III~-2.

State Machine Sequence for Fix to Single/Double Integer

ACTION

CONTROLLING SIGNAL

ACTIVE CONTROL STATES

12740-60002
SCHEMATIC REFERENCE

. Load operand into A register

. Load Fix constant (15/31) into

BEXP

. Go through swamp delay

sequence

. If AEXP <0, go to underflow

. IfAEXP >BEXP, go to overflow

. It AEXP #BEXP, equalize

exponents

. If results needs rounding,

round it

Load final result in all registers

ARGCKI

BRGCKI
EXEC1+

FIXOP ++EXPSIGN(sign of AEXP,
high if AEXP <0)

FIXOP +AGTB —(high if AEXP>
BEXHP)

EXPEQUAL —(high if exponents
differ)

FIXSGO — high if P bus (39-0)
is not all zeros
FIXDBO — high if P bus (23-0)
is not all zeros

TERMCTL4 —(goes to clock of all
registers)

Operand load sequence

Operand load sequence

SWPDELAY (1,2,3,4)

UNDERFLOW

OVERFLOW

EQUALCTL (1,2,3)

ROUND DECISION
ROUND CONTROL,
ALUDELAY (1,2,3,4,5)

TERMCTL (1,2,3,4)

Page 51

Page 51

Page 52-21-B

Page 52-25-D

Page 52-25-A

Page 52-22-B

Page 52-25-B
Page 52-25-C
Page 52-23-B

Page 52-26-B

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

EXECUTION
BEGIN

FIX OPERAND IN AMAN, AEXP
CONSTANT IN BEXP

SINGLE INTEGER CONSTANT =15
DOUBLE INTEGER CONSTANT = 31

UNDERFLOW YES 7 |5 AEXP <0
?
) SWAMP DETECT
UNDERFLOW
SEQUENCE AEXP > 15/31 YES OVERFLOW
?
Yy
RESULT=0
EXPONENT
L- EQUALIZATION
L—] SEC‘IJUé—N%‘,E
AEXP = BEXP /
?
\ 4
YES SHIFT AMAN RIGHT
INCREMENT AEXP
OVERFLOW
SEQUENCE
IS A(65) = | AND
ROUND A(39-0)/
SEQUENCE A(23-0)#0 v
?
YES RESULT =215-1/
\ 231.1; SET
CPU OVERFLOW
INCREMENT A(55-40)/
A(55-24)

TERMINATION

/ SEQUENCE
LOAD A,B,C & OUTPUT

REGISTERS WITH RESULT

Figure III-9. Fix to Single/Double Integer Sequence Flowchart
(HP 1000 M/E/F-SERIES ERD)

IB -57

IB -58

Floating Point Processor

5.1 Fix/Float Constant

In fix instructions, the floating point operand 1is equalized against a
constant in BEXP. In float instructions the integer in AMAN and constant in
AEXP and BEXP undergo normalization. During the loading sequence the fix or
float constant has to be loaded into AEXP and BEXP, even if an accumulator
operation (IR(3) equals 1) is specified. Thus, the constant is enabled on the
exponent P-bus from the time of PP2RS+ if the operand 1is in the accumulator,
or from ARGCKI+ if the operand comes from the CPU. The loading sequence for
float always includes the sequence for BRGCKI which loads the constant into
BEXP. The constant is loaded into AEXP at the execution begin contol state.

6.0 IMPLEMENTATION OF FLOAT FROM SINGLE/DOUBLE INTEGER (Figure III-10)

Since the float from single or double integer is the simplest of all of FPP’s
operations, 1t is not included in the execution group one or group two
operations. During the loading sequence the integer operand is loaded into
AMAN and constant is loaded into AEXP and BEXP.

From the execution begin state control passes to the normalization sequence,
unless AMAN is already normalized. AMAN is shifted left while AEXP and BEXP
are decremented until the contents of AMAN are normalized (AMAN(55) does not
equal AMAN(54)). At this point or 1if AMAN originally was normalized, control
passes to the round decision state, exponent overflow or underflow decision
state and on to the termination sequence. Note that float performs no
rounding. Also, exponent overflow or underflow can not occur during float
since the input operand is a sixteen bit or thirty-two bit integer. Thus,
float effectively goes from normalization to termination.

The state machine called EXEC I, depicted on schematic 12740-60002 page 52,
fully controls the sequence of events for addition, subtraction, fix and
float. Figure III-11 combines the flow of these operations in one flowchart.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

EXECUTION

FLOAT BEGIN
START

AMAN HOLDS SINGLE/DOUBLE INTEGER
AEXP AND BEXP HOLD INTEGER CONSTANT
SINGLE INTEGER CONSTANT =15

DOUBLE INTEGER CONSTANT =31

_
IS AMAN
NORMALIZED >0
1/////,
NORMALIZATION ___|
SEQUENCE YES
SHIFT AMAN LEFT
DECREMENT EXPONENT
TERMINATION LOAD A,B,C & OUTPUT
SEQUENCE REGISTERS WITH RESULT

Figure III-10. Float From Single/Double Integer Flowchart

(4P 1000 M/E/F-SERIES ERD)
IB -59

Floating Point Processor

EXEC2 CONTINUED
FLOAT, MPEND
DVEND

EXEC1 START
ADD SUB FIX

EXP SUB MODE
EXP COUNT UP
MAN SHIFT RT
MAN ALU ADD/SUB
P BUS-ALU

CLEAR CNDLA/B

EXPONENTS

?

CLK SHIFT RT
CLK COUNT UP

o
Lt
MAN ADD/SUB

DISABLE ROUND

CLEAR B REG

MANTISSA
OVERFLOW
?

SHIFT RIGHT SHIFT LEFT
COQUNT UP COUNT DOWN

ROUND
ENABLED
?

YES

l

OVER/
UNDERFLOW
OVERFLOW UNDERFLOW
?
OVERFLOW UNDERFLOW
P BUS MAX P BUS ZERO
SET OVERFLOW ALU MODE~AOR B SET OVERFLOW
P BUS ALU

]

7700535

Figure

IB -60

SET LOAD A,B,C
CLOCK A,B,C
LOAD OUT MXR
SET FPBSY HI

I1I-11. Execution

Flowchart

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

SCHEMATIC SUMMARY III-2 (Figure III-12)
I. Execution Begin to Termination for ADD/SUB/FIX

Mode control states prior to Execution Begin control state:
CRGOEN+ low

MNTSO high (add AMAN to BMAN)

ARGSO high and ABRGS1 high - AMAN is in load condition
CRGSO high and CRGS1 high - C-register is in load condition
EXPCNTUP+ high = count up

EXPLD- low

EXPALUSO- low, EXPALUS1- low, and EXPALUS2- low causes AEXP-BEXP
INREGEN+ high:

l. input register drives P-bus
2. A mantissa, B mantissa, AEXP, BEXP, C mantissa,
registers all set to load condition

3. mantissa ALU set to add, exponent ALU set to subtract
4. exponent registers set to count up

II. Execution Begin (ADD, SUB, or FIX)

MALUEN+ high mantissa ALU drives P-bus

INREGEN+ input register enable low

FPCONSTANT- fix/float constant enable high

EXPALUEN- low exponent ALU drives P~bus
Thus, ALU’s drive the P-bus

ITI. EXECl State Machine

SWPDELAY (1,2,3,4) - Swamp detect delay
SWPDELAY(l): ABRGS1 (A/B mantissa register S1) low
shift right mode
EXPLD- (exponent load) high
If subtract: MNTSO (mantissa ALU mode S0) low, (AMAN-BMAN) on
P-bus
SWPDELAY (2,3,4) provide delay

SWPDELAY4 actions:
clock AGTBZERO:(A>B or B=0)

If SWPDELAY4 (SWAMP-:ABZERO-):FIX(AGTB- OR EXPSIGN-):EXPEQUAL-
then go to EQUALCTL(1)

If SWPDELAY4 :FIX:AGTB, then go to OVERFLOW

If SWPDELAY4 :FIX:EXPEQUAL, then go to ROUND DECISION

If SWPDELAY4 :EXPEQUAL:FIXOP:ABZERO-, then go to ALU CYCLE

If SWPDELAY4 :(SWAMP or ABZERO+):FIX, then go to SWAMP

If SWPDELAY4 :AGTBZERO:FPSUB, then set SWAMPSBGTA+

(HP 1000 M/E/F-SERIES ERD)

1B -61

soI3BWAYDS paeog Toxjuo) jo Axewung (g JO ¢ 399ys) ZI-III =2an31i

Floating Point Processor

(HP 1000 M/E/F-SERIES ERD)

S-00LL
AOLSN 13534 OL 44 138 8e500
SNg-d dX3 HVITO U3z 180 X1
oL NV "dX3 138 X
0aN3aiAId 180 Xid
SN8-d SIAIHA NYIWD "0 A8 AN (# DIN) S5
VSSILNVI O Hv31d ND823IX3
MOT493aNN 0u3Z 195 X1
198 Xi4
I D3N dX3V t# DaN) 9Sv
X1
A1AdMS
soLN .
o a £ELN S118 NVIAY X14 LON ‘aNnoy
g T g H3IMO1 V31D 20—
z _ 10809 d *INVW g NI vzin | €
Zd3HJWHON 118 aNNOY 318YN3 sI° 9z EHin LQHYND'dOAID
1710N7V 010D 8 r
ZNOISIO3A ONNOY LY
annoy
734NN LNINOJX3
81110
QZTNHONY
£1LOWHON
° -0snad
L2 -T4A
_ an 0T %1 1n aNn T
cuw:n_ > oS:o o%:o M_:M. meA 6|° “fzr 4 %40 o, S T R £sin ZdIHJNHON
i £l v 6 8|6 2l al 6
v £ z 1
NOISIO30 ONNOY
(v>8 HO
()" bdWVMS
‘94 1Nd1NO 'dX3ad ‘dX3aV HO P1LOT4AON
‘NVIND ‘NVINE ‘NVIWY ND8J3X3
avo1 0L 3"vd3dd d09OvId
AQY3H GNDddIN 3MVIN
74A0 LNINOJX3 (57110N1Y
b ATGAMS Y0 £1101vN03
HO PATAdMS)
*vND3dX3 * X1d4
1
SY31S193H
1NdLNO ‘dx3a/v soLn
VSSILNVIN 2/8/Y o a " | 1€ 50 5L <dXaV ‘Xid
NI 17ns3y avol 6 zL g YATAdMS
9z
—
AOLSN 13S3H OL 44 138
SN8 d DNIAIHA WOHH ou3z %%mm_u_mﬁﬁ
SH3151934 1V 318vsIa

MOT4H3N0

IB -64

Floating Point Processor

soTjewaydg paeog Toijuo) Jo Axewwng (€ FJO g 3I99YS) ¢I-III 2an3tg

Q3ZITYWHON
LONY
dX38/v LNIW3HO3Q LE500LL
1437 NVAY LdIHS e |z
£zIn
9
oza%__w_www vvin yen voin jzi . L Q3ZITYWHON LON V
'a3ZITYWHON S z sl 1L 6 OY3Z LONSNd d
SI NVWVY 41 . . . 8 gen o fe
L 74A0 VSSILNVIN LON
NOILVZITVINHON Zt
dX38'dX3V LNIWIHONI
L1HOIH NYAYVY Ld4IHS
MOT4HIAO VSSILNVIN
v<a
NOISIo3a vsLn vELN vELN vELN MO14H3NO ‘8NS'dNYMS
61 8L v 1DESINYMS
aNnoy 0 a D a o a o a VSSILNVI
0109 6 (4381 v z € z
aNnNoH
v £ z 1 +1VN03dX3
ans/aav
YATAdMS
300N
4N LNNOD OL dX38/V L3S +1vYN03dX3
"LHOIY LdIHS OL ans/aav
(MOT14H3ann) 3JA0W 934 NVWV 13S €1107vN03
(2119 010D
‘MO -0SNdd di
Y —
T 3710A2 N1V ELLN
NOILVHVd3dd NOILVZITVYWHON
8|0 X14 LON 8
aav oL N1y yen voLn z vELn vaLn zi| veun fet vin zi| vein jeL pELN
VSSILNYW L3S o a o a o a 51° 9z —1° ¢ 51° g o a 510 @
NN 9l m S 9) g v ¢ z .
6z z L
T4AOW 138§ Ld3HdWHON OLO9 XI4 LON I 3dow avoT 0L SK3LsIo3
] VSSILNVIN 8 ANV V L
'NDISLOND () S5V 41 NOgoax3 NOISI23a ANNOH 010D Xid 41 SSILNVA 3s
HSAAW L3S JA0OW LH 141HS {(—0SN8 d) 0 =SNd d 41 XO03HD
AdW NVWY NI LTINS3H N1V avoT
138 01 NVWV 133
an3Aia
dOAdW
ANIAJN
YWHILAW

IB -63

(HP 1000 M/E/F-SERIES ERD)

AOLSN 13S3H Ol 44 138
SN8-d dX3 HVY31D
01NV 'dX3 L3S

Floating Point Processor

SOT3lPWAYDS paeog Toajuo) Jo Airwuwng

* (¢ 30 ¢ 39°ys) ¢I-III 2an314

8€5-00LL

0yY3Z19a Xid
qaa Xid

(# o3N) Gv

0d3Z 7198 XId
198 Xid

DaN) SSy

X14 LON ‘aNNOY

Ladvno’doAia

AdZINHONY
€TLOWHON

vsN
0 a I|AXN €SN
8

0 aN3alAia

SN8-d SIAIHA NYWD ‘0 >m_>§

VSSILNVIN O HV31D ND823IX3

MOT4H3ANN

93N dX3V

X4

o _ PATAIMS

g tein SLI8 NVIAY
] 4 8 H3IMO HVY3D A0 j
_ "INV 8 NI vzLn
Le +0SN8 d o a cLin
ZdIUJNHON 118 ANNOY I7aVYN3 3 z
171907V OLOD 8
ZNOISI03d ANNOY LY
annod
74NN LNINOdX3
81110
m w
vzin T viin
zon g| ¢on 9N riin D a Z 95N oL a z
a o} a mwSA 8
z1° e o v 6 e Tel° 2l g 31 6
[€ z L
NOISI23a ANNOH
‘OH 1Nd1NO ‘dX38 ‘dX3v
'NVIND ‘NYINE ‘NVINY ND893X3
avo1 OL 3Hvd3yd doovid
AQV3Y ANOddN INVIN
74A0 LN3INOdX3
YATAdMS
L
s431s193d
1Nd1NO ‘dX38/v soLN

VSSILNVIN O/8/V
NI 17NS3d avol

0 d

9C

AOLSN 13834 OL 44 138
SN8 d ONIAIHA WOYHd
SHILSIDIH 17V 378VSIA

MOT4H3IN0

1€ HO Gl <dX3V 'Xid

YATQdMS

0OH3Z A8 3AIAIQ
ND9823X3

-0sNad
-14AOW
*QTWHONY
Zd3"HdWHON

(v>8 40
()" PdNVMS
H0 ¥11074AONW

(§7L0NV
"0 £1107vN03
HO YATAdMS)

*vND3IdX3 * Xid

(HP 1000 M/E/F-SERIES ERD)

IB -64

Floating Point Processor

EQUALIZATION CYCLE (Figure III-13)

EQUALCTL1 ACTIONS:
If AGTBZERO- (A>B or B=0) then BRGCK, CKBEXP

If AGTBZERO-, then ARGCK, CKAEXP, ROUNDCLOCK

EQUALCTL3 actions:
If FIXOP:EXPEQUAL, then go to ROUND DECISION
If FIXOP-:EXPEQUAL, then go to ALU CYCLE
If EXPEQUAL-, then go to EQUALCTLI

ALU CYCLE
ALUDELAY1 actions:

Set ABRGS1 (AMAN,BMAN register mode Sl) high - prepare to
load

ALUDELAYS5 actions:
ARGCK load ALU result in AMAN
PBUSOCLK if P-bus = 0, then make PBUSO- low
If FIXOP, then go to ROUND DECISION
I1f FIXOP-, then go to NORMPREP(1)

Delay for Overflow, Zero Mantissa P-bus, A Normalized

NORMALIZATION PREPARATION
NORMPREP1 actions:
Set ABRGS1 (AMAN,BMAN register mode S1) high
Set ARGSO (AMAN register SO) low — prepare to shift AMAN
left
If DIVOP: (ARG55 XOR QUOTSIGN), then set MOVFL+ mantissa
overflow at 32-D
NORMPREP2 actions:
Set DIVSH, MPYSH
Enter CLEARBCTL (clear BMAN, set MNTSO high)
If MOVFL+ high, then go to MANTISSA OVERFLOW
If ANORMLZD+:PBUSO-:MOVFL-, then go to ROUND DECISION
If ANORMLZD-:PBUSO~:MOVFL-, then go to NORMALIZATION
If PBUSO low, then go to UNDERFLOW

SWAMP (Figure III-14)
SWAMP1 actions:
Clear EXPALUSO, EXPALUS1, and EXPAULUS2 exponent ALU zeroes
P-bus
Make EXPLD- (exponent register load) low

SWAMP4 actions:
If AGTBZERO+ (A>B or B=0), then CKBEXP (BEXP=0)
and clear BMAN
If AGTBZERO- (B>A OR A=0), then CKAEXP (AEXP=0)
and clear AMAN

(HP 1000 M/E/F-SERIES ERD)

IB -65

Floating Point Processor

If SWAMPSBGTA+ (SWAMP, SUBTRACT, B>A), then
set EXPALUSO, S1, S2 high (AEXP IOR BEXP mode)
go to MDEXPCTL4 (delay and exponent load)
and go to ALU CYCLE (complement BMAN)

If SWAMSBGTA+ (not SUBTRACT or A>B),
then go to round decision

(HP 1000 M/E/F-SERIES ERD)

IB -66

Floating Point Processor

IN ADD OR SUBTRACT, THE OPERANDS' EXPONENTS MUST BE EQUAL, BEFORE THEIR MANTISSAS CAN BE ADDED OR SUB-
TRACTED. IN THE EXPONENT EQUALIZATION PROCESS, THE SMALLER OPERAND'S EXPONENT IS INCREMENTED UNTIL IT
EQUALS THE OTHER EXPONENT. WITH EACH INCREMENT, THE ASSOCIATED MANTISSA IS SHIFTED ONE PLACE TO THE RIGHT. IN
FIX OPERATIONS, BEXP IS LOADED WITH A CONSTANT, AND THEN THE OPERAND, WHICH IS IN A, GOES THROUGH THE

EQUALIZATION PROCESS.

SCHEMATIC REFERENCE
D-12740-60002 PAGES 52 AND 54

SWPDELAY4+ 12 22.B, 41-B, 42-B
A* 1 o]
N 2 3 U35
B 13 6 12 D 4 9 7
— U106
U176 U184 ARGCK
_|8 P1-23
a
(o)
1 281 Ues >
EXPEOUAL-I ROUNDCLOCK
P3—20
A* = FIXOP(EXPSIGN +
AGTB+ - EXPEQUAL-
B* = SWAMP+ - FIXOP- - o 10 8
ABZERO- _ 8 11 CKAEXP
2 a| u7s ue6 P11
AGTBZERO- D Q
= us2 IN THIS EXAMPLE, A IS
BEING EQUALIZED.
SWPDELAY4+ —2 ek G
o CONTROL BOARD
ARITHMETIC BOARD
AEXP(7-4) AEXP(3-0)
U32 u4a2
cLOCK cLock
b ¢c 8 A DC B A
BEXP(7-4) BEXP(3-0)
U33 u4a3
CKBEXP CLOCK CLOCK
@b ¢c 8 a Qb ¢c B A

L—

A3 Ao A Ap B3z B2 B Bp

U34

54-B, 65-C

—

SCHEMATIC REFERENCE
D-12740-60001 PAGE 55

A3 A2 A1 Ag B3 Bz By Bg

u44

2 3
1] use

EXPEQUAL-

Figure III-13.

(HP 1000 M/E/F-SERIES ERD)

P3—41

Exponents Equal Detection Circuitry

IB -67

Floating Point Processor SCHEMATIC REFERENCE 12740-60001-55

THE SWAMP CONDITION EXISTS WHEN AEXP-BEXP > SWAMP CONSTANT.
IN ADDITION, THE RESULT IS THE LARGER OPERAND.
iIN SUBTRACT, IF A IS GREATER THAN B, A IS THE RESULT, BUT IF B IS GREATER THAN A, —B IS THE RESULT.

ACTIVE SWAMP
OPERATION PRECISION SIGNAL CONSTANT Fqq-F7 FgF5F4 F3FgFqFg
A>B
SINGLE (32 BIT) 2WDOP+ 24 0001 1000
EXTENDED (48) 3WDOP+ 40 0010 1000
DOUBLE (64) 4WDOP+ 56 0011 1000
A<B
SINGLE (32) 2WDOP+ -24 1110 1000
EXTENDED (48) 3WDOP+ -40 1101 1000
DOUBLE (64) 4AWDOP+ -56 1100 00
SWAMP+=Fyq1 + { SWAMPCONSTANT > (AEXP-BEXP) } l TIE HIGH
3wWDOP (¥) Fq4
+Fqq - =
11+ { SWAMPCONSTANT < (AEXP-BEXP) } JWDOP (DF 17
F7
AEXP(11-8) BEXP(11-8) AEXP(7-4) BEXP(7-4) AEXP(3-0) BEXP(3-0)
A11A10AgAg By1B10BgBg A7 Ag Ag Aq B7 Bg Bs Bg A3 Az A1 Ag B3 B2 By Bg
u2s uss u4s
Fq1 F10 Fg Fg F7 Fe F5 Fa F3

A3 A2 A1 Ag B3 B2 By B

A3z Ap A1 A B3 B B1 B
3 A2 A1 A0 3 B2 P1PBQ u26
U24 OUTPUTS INPUTS
INPUTS .A<B A>B A>B A=B A<B
A=B OUT A>B A=B A<B l

‘ 3WDOP (DF 11
3WDOP
/ LOW IF {AEXP-BEXP) > 128

2woopr (D Fyqq
2WDOP
' D
7700-539

12 swAmP
P3—47

AN

Fy1 - {S<DIFF}

Figure III-14. Swamp Detection Circuits
(HP 1000 M/E/F-SERIES ERD)

IB -68

Floating Point Processor

MANTISSA OVERFLOW CYCLE (Figures III-15 and 16)

MOVFLCTL]1 actions:
Set ABRGS1 (AMAN/BMAN register mode S1) low
Set ARGSO (AMAN register mode SO) high - prepare to shift
AMAN right
Set EXPCNTUP+ high - prepare to increment exponent

MOVFLCTL3 actions:
ARGCK -~ shift AMAN right
CKAEXP - increment AEXP
CKBEXP -~ increment BEXP
ROUNDCLOCK shift lowest bit into round circuit

MOVFLCTL4 is delay
Go to ROUND DECISION

NORMALIZE CYCLE (Figure III-17)

NORMCTLL actions:
ARGCK -~ shift AMAN left
CKAEXP, CKBEXP - decrement exponents
ROUNDCLOCK - shift round register left

NORMCTL3 actions:

If ANORMLZD+ low, go to NORMALIZE cycle
If ANORMLZD+ high, go to ROUND DECISION

ROUND DECISION CYCLE (Figure ITII-18)
ROUND DECISION(1) - clock round control flip-flop

ROUND DECISION(2) actions:
If ROUND- low, go to ALU CYCLE, increment AMAN
If ROUND- high, go to exponent over/underflow decision

EXPONENT OVER/UNDERFLOW DECISION (Figure III-19)
If EXPOVFL+ high, go to OVERFLOW
If EXPUNFL+ high, go to UNDERFLOW
If EXPOVUNFL- low, go to TERMINATION

EXPONENT OVERFLOW

Set MALUEN+ (mantissa ALU output enable) low
Set OVERFLOWB- (OVERFLOW buffer) low

let P-bus float high (P-bus[55-1]1=1, EXPSIGN=0)
Set CPUOVFL- (CPU overflow latch) low

go to TERMINATION

(HP 1000 M/E/F-SERIES ERD)

IB -69

Floating Point Processor

MANTISSA OVERFLOW CASES

1. DURING ADDITION, ALU MODE CONTROL S0 =
HIGH
a. BOTH OPERANDS POSITIVE, ALU RESULT
NEGATIVE
A55 LOW, B55 LOW, ALU55 HIGH

b. BOTH OPERANDS NEGATIVE, ALU RESULT
POSITIVE
A55 HIGH, B55 HIGH, ALU55 LOW

(As5 (+) B55) * (A5 (%) ALUSS)
2. SUBTRACTION, ALU MODE CONTROL SO = LOW

a. 1ST OPERAND POSITIVE, 2ND OPERAND NEGA-
TIVE, ALU RESULT NEGATIVE
A55 LOW, B55 HIGH, ALUS5 HIGH

b. 1ST OPERAND NEGATIVE, 2ND OPERAND POSI-
TIVE, ALU RESULT POSITIVE
A55 HIGH, B55 LOW, ALU55 LOW

(ass () Bss) * (55 (&) ALUSS)

«* MANTISSA OVERFLOW = [(AS5 +B55) (1) S0 1" [
(A55 (+) B55 ALUSS) |

ALU MODE CONTROL SO

RESET ‘———1

B REGISTER BIT 55 N E ‘ >§ >

A REGISTER BIT 55

ALU BIT 65 >§ >
L4

ALU RESULT CLOCK

D

PS
D Q

ck G
CLK

Figure III-15. Mantissa Overflow Cases

(HP 1000 M/E/F-SERIES ERD)

IB -70

MANTISSA OVERFLOW —
(ACTIVE LOW)

LTIE HIGH

Floating Point Processor

WHEN THE MANTISSA OVERFLOWS DURING AN ALU CYCLE, IT MUST BE CORRECTED IN THE MANTISSA OVERFLOW SEQUENCE.
THIS SEQUENCE SHIFTS THE AMAN REGISTER TO THE RIGHT ONE PLACE DURING WHICH THE SIGN OF THE MANTISSA IS
REVERSED. ALSO, THE EXPONENT WHICH IS HELD IN AEXP AND BEXP IS INCREMENTED.

3 8 ROUND CLOCK
uss -
P3—20
SCHEMATIC REFERENCE: D12740-60002
PAGES 52, 53, 54
24-B,32-C,42-A,B,C, 44-A,B
2 8 CKAEXP
ue6 >
P1-12

NORMPREP2+ 2

[3 1 2 3
U203 3 ID Q 2 D a 19 D Q 5
1
18 4

U134 U134 U134 2| e 8 CKBEXP _
P1—16
MOVFL*]——«
6 +
4 [yss EXPCNTUP+
P1—6
ALUS5 13, ")
_ 3
P1-47 -————12) 1 | w33 2 D 8 9 U355
6 15 ABRGS
ALUDLYS- a u13 Ua4 u46
6 3 6 14 P1—41
MDALUDLY4- 5| u33 ck @
o]
MNTSO 2, 3 . u3s
2 7 ARGCK
BRG55 10 ! D U106 >
’ 5\ 8 13 P1-23
9 ’
] u3s
] 3 17
ARG 55B
N ~J 10 [s 9 ARGS0 _
P1—42
CONTROL
BOARD
ARITHMETIC
BOARD 9 SCHEMATIC REFERENCE:
S0 AMAN(55-52) D12740-60001, PAGE 51
10 |4 11-B
M | coek Y72
1
HIGH — CLEAR
R QA
MOVFL+| L 2: 3 2 15
P1—11
1
[arcss

7700-540 l_ P1-20

Figure ITII-16. Mantissa Overflow Circuits

(HP 1000 M/E/F-SERIES ERD)

IB-71

Floating Point Processor

IF A RESULTANT MANTISSA IS NOT NORMALIZED, IT MUST GO THROUGH THE NORMALIZATION SEQUENCE. THIS SEQUENCE
SHIFTS THE A MANTISSA REGISTER LEFT UNTIL ARG55 > ARGS55. THE RESULTANT EXPONENT, WHICH IS IN BOTH AEXP AND

BEXP, IS DECREMENTED WITH EACH SHIFT.

(PBUS = ZERO) PBUSO- 13

(MANTISSA OVERFLOW) MOVFL- 11

NORMALIZATION

D-12740-60002 PAGES 52, 53 AND 54

o Q
+ 1 9 14] 2 |15 2 3
NORMPREP?2 12 5'a A 5
1
U144 U134 ul44
)
a
SCHEMATIC REFERENCE: 2[e 8 ROUNDCLOCK
24-C, 31-D, 42-AB,C P3-20
SHIET ROUND REG. LEFT
3 8 CKAEXP
U66
P1—12
ANORMLZD+
DECREMENT EXPONENT
3 8 CKBEXP
u76
P1—16
u3s
{J//117
3 9 NB
U106
13 |/7
ARGCK
SHIFT AMAN LEFT P1-23

CONTROL BOARD

ARITHMETIC BOARD

LOW

HIGH

—0

SCHEMATIC REFERENCE:
D-12740-60001 PAGE 51, 11-B

7700-541

1B -72

HIGH

Figure III-17.

S0 AMAN(55-52)

$1
cLOCK
CLEAR

QA QB

745194
u72

-

rAHG54

LP1—22

rARGSS

(HP 1000 M/E/F-SERIES ERD)

Normalization Circuits

LP1 —-20

Floating Point Processor
ROUND CIRCUITS USED IN ADD AND SUBTRACT.

THE ROUND REGISTER HOLDS 3 GUARD BITS AND SETS UP THE STICKY BIT. ALL SHIFT OPERATIONS ALSO SHIFT THIS REGISTER
WHEN AMAN OR BMAN IS SHIFTED TO THE RIGHT, THE APPROPRIATE LSB IS SHIFTED INTO THE ROUND REGISTER. IN SUBTRACT
OPERATIONS WHERE B IS BEING EQUALIZED, ONCE A “1” HAS BEEN PASSED TO THE ROUND REGISTER, THE BITS SHIFTED INTO
THE ROUND REGISTER ARE COMPLEMENTED.

ROUND = ARGS55 + GUARD1 + ARG55 » GUARD1 « (GUARD2 + GUARD3 + STICKY)

GUARD1 « (ARG55 + GUARD2 + GUARD3 + STICKY)

GUARD1 + (ARG55 « GUARD2 + GUARD3 + STICKY)

ug7

SCHEMATIC REFERENCE: 2 12 6 oy |12
D12740-60001, PAGE 54 u36

Y 6 ARG16
14
6 e
: U3 2 15
. uss | 5 6w 4 ARG32

ARGOO

s

PARTIAL PRODUCTOr u46 1 -
3 L 3 BRGOO
2 I
PARTIAL PRODUCT1} 7] 2 -
3
1 BRG16
213|467 o Lt L
R A B C D cC B A | B
ARGSO >—{So D BRG32
9 |10 11 ol
ABRGS1 =>—] S1 063 L < IREGO P1-39
ROUNDCLOCK —>—{ CLOCK —<” IREG1 P1-41

CLEAR
QA B C D < EQUALA+ P1-14
15[14] 13|12 ROUND
REGISTER
6
u97 ONE’'S
DETECT

FLIPFLOP

CLEARROUND- ~, ¢ 5 5
P3—19 -

as| u27
u1e
| - SUBEQB+
MPYGUARD3 | < P1-27
8 ROUND-
P3—42
ARG55-I
7700-542 _]

Figure III-18. Round Circuits
(HP 1000 M/E/F-SERIES ERD)

IB -73

Floating Point Processor

IN THE STANDARD 8 BIT EXPONENT CASE, WHERE INSTRUCTION REGISTER BIT 7 IS ZERO, THE EXPONENT IS OUT OF RANGE
WHEN EXP(10-7) # EXP(11). ON THE OTHER HAND, WHEN INSTRUCTION REGISTER BIT 7 IS ONE, THE EXPANDED EXPONENT IS
OUT OF RANGE WHEN EXP(10) » EXP(11), IN BOTH CASES, THE OUT OF RANGE E

AND UNDER FLOWED IF EXP(11) IS ONE.

XPONENT OVERFLOWED IF EXP(11) IS ZERO

BRGZERO+ 4
SCHEMATIC REFERENCE:
DIVOP+ 5 u143\ D12740-60002-52
EXECBGN 6 DISABLE ALL REGISTERS
- : FROM DRIVING P-BUS
FIXOP - AGTB+- EXPEQUAL- 2 —\ 12 o OVERFLOW ACTIVATE OVERFLOW TO
SWPDLY4+ 3 |uias U143 D Q DRIVE P-BUS (55) AND
/ Jasea EXP(11-7) LOW
EXPOVFL+ 1 U105 SET FLIPFLOP TO DRIVE
CPU OVERFLOW
TERMPREPCTL+ 12 13 u143\
IREG7 2 3 1 _J 10}
EXPIOOVFL- @o——ﬁ OVERFLOW STATE
1 Y U3s
U133
b/ 18 CLEARC-
EXPUNFL+ 6 8 CLEAR C REGISTER
PBUSO+ 10 ,
8 -
g3 NORMPREP2+ 9] ur3s U133 215 o4 UNDERFLOW C REGISTER DRIVES P BUS
14 74564 |
FIXOP++« EXPSIGN 2 u105 6 UNDERFLOW+
_ IF PBUSO-, SET CPU
SWPDLY4+ 3 @"— Q OVERFLOW REGISTER
6 o]
EXECBGN+ L UNDERFLOW STATE
DIVOP+« BRGZERO+ 11
EXEC2+ 12| u133
ABZERO+ 13
CONTROL BOARD
ARITHMETIC BOARD
EXPALU (11-7)
SCHEMATIC REFERENCE
uzs D12740- 60001 PAGE 55
52-B
F11 F1g Fg Fg
AEXP (11-7) 12111] 9] 8 5
1 EXPUNFL+
14
» B2 A L6 [expovunFL-
Qc Qg B4 P1—5
9 EXPOVFL+
12 13 Bo A<s | [P1—g
u13 h
Ls . 812 18] a3 ur2
) D
. A7
12
Aq
10) EXP100VFL+
EXPALU%]» Ao I P1-43
7700-543

IB-74

Figure III-19.

(HP 1000 M/E/F-SERIES ERD)

Exponent Overflow/Underflow

Floating Point Processor

EXPONENT UNDERFLOW

Set MALUEN+ (mantissa ALU output enable) low

Set CRGEN+ (C register output enable)
clear C register, exponent ALU SO, S1, S2
P-bus = all zeroes

Set CPUOVFL- (CPU overflow latch) low
go to TERMINATION

TERMINATION

TERMCTL1 actions:
Set ABRGS1, ARGSO high - prepare to load AMAN and BMAN
Set CRGSO, CRGS1 high - prepare to load CMAN
Set EXPLD- low - prepare to load AEXP and BEXP
Reset CLEARA’s - clear lower bits of A
Set MPPCND flip-flop low (FPP ready)

TERMCTL4 actions:
ARGCK - load result in AMAN
BRGCK - load result in BMAN
CRGCK - load result in CMAN
CKAEXP - load result in AEXP
CKBEXP -~ load result in BEXP
TERMLOAD - load result in OUTPUT register

7.0 OVERVIEW OF EXEC2 OPERATIONS - MULTIPLICATION AND DIVISION

The second group of FPP operations are multiplication and division. Since the
multiplication and division process are sequences of shift or arithmetic
cycles, they share the same control state machine, called EXEC2, which is
depicted on schematics 12740-60002 page 53. Their operations follow the
standard loading sequence, meaning that the A and B registers are loaded
according to instruction register bits (3,2). At the completion of the
loading sequence control passes directly from the execution begin control
state to the multiplication/division initialization state at schematics
12740-60002-53-32-B. Control remains in the EXEC2 state machine until
multiplier/quotient counter signals that the mnultiplier scan has completed or
that a sufficient number of quotient bits have been formed. From the EXEC2
state machine control passes to the normalization preparation states of the
EXECl state machine. In the EXECl section a product or quotient may be
normalized, adjusted for mantissa overflow or rounded. As with all FPP
operations, if the exponent is over or under range, the overflow or underflow
constant results. The final result is loaded into all registers during the
termination sequence.

The previous paragraph summarizes the flow from the loading sequence through
to the termination sequence. The following paragraphs are devoted to the
operations within the EXEC2 state machine. Refer to Schematic summaries III-3
and I11I-4.

(HP 1000 M/E/F-SERIES ERD)

IB -75

IB -76

Floating Point Processor

8.0 IMPLEMENTATION OF THE MULTIPLICATION PROCESS

The limit of the multiplication operation takes place with the EXEC2 phases of
operation. It is in the EXEC2 section that the multiplication process
multiplies the operand’s mantissas and sums their exponents. While the
mantissas undergo multiplication, the EXEC2 multiply/divide exponent control
sequence sets the exponent ALUs to the A plus B mode and loads the resulting
sum into AEXP and BEXP. Note that the FPP multiply algorithm dictates that
(AEXP + BEXP +1) should be the product exponent. The carry input to the least
significant ALU bit is high to form the +1 of the exponent sum. Note that
this carry input is also high during division while the ALUs are in the
subtract mode, so that two’s complement subtraction is performed. Since this

carry input is used only in these two cases, it is tied high through a pull-up
resistor.

During multiplication, control flows from the execution begin state to the
multiplication/division initialization state at control board schematic page
-53-31-A. At this point the multiplicand occupies the B register and the
multiplier mantissa resides in CMAN. AMAN 1is cleared, in order to initialize
the partial product to zero. Multiplication is a process of shift and
arithmetic cycles whose sequence depends on bits of the multiplier which is
scanned from the least significant to the most significant bit. The decision
on which type cycle, shift or arithmetic, to perform next depends on a history
bit and the two bits currently in the two least significant bit positions of
the multiplier. The first decision is formed during the initialization state.
Also, at this state the multiplier is shifted right one place to prepare for
the second decision. As the multiplier is one position ahead of the partial
product, the next cycle decision can always be performed during the current
cycle. Figure ITI-20 shows the decision circuits and Figure III-21 displays
the actions at each state in the EXEC2 group. The following paragraphs
discuss only the events that require additional explanation in facilitating
the understanding of the hardware design.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor
THESE CIRCUITS CONTROL THE SEQUENCE OF ALU AND SHIFT CYCLES THAT MAKE UP MULTIPLICATION. THE DECISION TO DO
AN ALU OR SHIFT CYCLE IS BASED ON THE CURRENT TWO LEAST SIGNIFICANT BITS OF THE MULTIPLIER AND A HISTORY BIT. THE
C REGISTER HOLDS THE MULTIPLIER, WHILE THE PRODUCT IS DEVELOPED IN THE A REGISTER.

ALGORITHM TRUTH TABLE

C, C, H NEXT H OPERATION
0 0 O 0 SHIFT
o o0 1 0 ADD
o 1 0 0 ADD
o 1 1 1 SHIFT
1 0 0 0 SHIFT
1 0 1 1 SUBTRACT
t 1 0 1 SUBTRACT
11 1 1 SHIFT

C, IS THE BIT CURRENTLY IN THE LSB POSITION OF THE MULTIPLIER

C, IS THE BIT JUST LEFT OF THE LSB IN THE MULTIPLIER

SHIFT OPERATION = HC, + HC, =H (&) Co
ALU OPERATION =H () C,
ADD = ALU - C;

SUBTRACT = ALU - C/'
NEXT H = C,Co + CoH + C,H

TEXT REFERENCE: THE LOGIC OF COMPUTER ARITHMETIC BY IVAN FLORES CH. 10.

-
MPYDIV INITIAL~

EXECBGN-]———

—

5
~ 4
MPYDIV SHIFT CTL1—]——— 6
1 U122 1
MPY CKC1-

_ 2
MPY CKcz-}————
9
SCHEMATIC REFERENCE: 10| u73
12740-60002—53
34-C,D " 4;L HISTORY BIT REGISTER
u73 8 2 5 H
1,12,13 73 5 a
MPYC1 ~ Us3
P3—5 u73 3 cKk @ 6 H
us1 ;
2 3 1
ALU/SHIFT DECISION
. 0l REGISTER
8 9

P3—3 o~ 13| v43 12 [MADsB
MPYCO — u43 b Q | MPY'ALU cvoLE

Usa 10 us3

U43 LLH PRy [weysH
" | MPY SHIFT CYCLE
13? 9 8
u33 MPYADD-
C,*: C,!S CONNECTED 10

INSTEAD OF C, , SINCE
C, HAS BEEN SHIFTED
INTO THE C, POSITION

12 11
13| soo MPYSUB-

AT THE TIME ALU MODE
CONTROLS ARE ACTIVATED.

NORMPREP2—]———1—_
! 3
2 | V206]
MPYOP+

Figure III-20. Multiplication Decision Circuit

(HP 1000 M/E/F-SERIES ERD)

IB -77

Floating Point Processor

OTIBWAYDS S$91BIS T0I3U0) IPTATQ/LTATITOR

(20009-0%.21)

*(z 30 1 3°2Y§) 1Z-III °Ins1g

YvS-00LL

NOISIO3a 408Nns NI aasn .mévms HOLw1'3diAIg)
H3LNNOD LNIWIHI3A

118 AHOLSIH 1X3IN HOLY"

(8NS/QAV HO L41HS) NOISIO3A d09NS LXIN HOLY

(A0 41°L337T) AdW 31 LHDIH Y31S1D3H ANNOY L4 IHS

JA0W 1337 1JIHS OL
NYWD 8 NVNV 13S :AIQ St

3A0W LHOIH

1d41HS OL NVIAD BNVIAY 13S
VSSILNVIA ¥ HV31D :AdIN 41
13S34 SI 118 AHOLSIH
31viS V0T NI SI -aldXx3a

300W avOol Ol 44 3GOW H3ILNNOD 138

3AOW LNNOD
NI SH31S1934
AININOLX3 1LNd

dX38 - 4X3V = Ala
L+dX38+dX3V=AdIN :LTNS3IH

dX38 ANV dX3V NI
17INS3d dX3 avol

(A1Q 41 “14371) AdW 31 LHOIH SYSSILNVIN O GNY V 1IHS NDE03X3

0 # H3LNNOD ANV

"HSAIQ "dOAIQ

‘TILOL4HSaW

LWHILAW 010D ‘0=Y1IND ANV HSAIQ 4
L719NTVAW 010D ‘8sava 4i ”

L111014HSAW OLOD ‘dOAId ANV HSAIQ 41 712 zsn 0 # HILNNOD ONV

(3710A2 NTV) LTLONTYAW OLOD ‘GSAVI A4 260 5 1o 95 26N ["HSAdW ‘dOAdW

(3TOAD L4IHS) L TLOLIHSAW OLOD ‘dOAJIW ANV HSAJA 41 al3; vzn . 9 ‘Z1LD14HSAN

v
z 8 €
\ 0 # HILNNOD ANV
"HSAdW ‘SNIVAN
3710AD L4IHS
942 300W aaV- NV dX3
LHOIH 3 LIIHS ‘AdW 41
10H1NOD LNINOJX3 o
—~— 9]%
P
zon

a o]
LI V] 0 # dO aNZ
oNSQ o zan ANV ‘0 # ONdO 151
5 2 Z c g0 a7 ‘N983IX3
5155, &N "3AIAIQ HO ATdILINW

CRED i B z og
9 5

NIV dO8NS AIQ 1SL DIV

H3ILNNOD avol

118 AHOLSIH M3N HO1v1
3T0AD NIV HO L4IHS HO4

H31S193Y NOISI103a HO1V7

3A0W INNOD NI HILNNOD

3JA0OW advO07 NI UILNNOD

(HP 1000 M/E/F-SERIES ERD)

IB -78

L]

IB -79

(4P 1000 M/E/F-SERIES ERD)

Floating Point Processor

(Z0009-0%L21)
571eWeYdg S°31BIS T0IIU0Y OPFATA/ATATITMH * (T Jo ¢ 399us) T¢-III 2In31d
1HOIY FHL 01 S30V1d Z SHIXINdILTNW SvS00LL
JHL Ag O3 L14IHS 34V S11NS3H NIV "INVYW LVHL OS ASAVIN HO HSAJW
$=L17SAA ‘ATdILTNW NI 0#HLND NIHM 310N HO HSAIQ S3ITdW! HSAID
LVHL OS ‘3AILOV S| HSAIQ
aen NOILYHIdO AdIN ONIHNA :HSAIQ
0=H1IND
o a ° =z £1L0nTvan \
LdIUdWHON 010D al s Jer o N 22N zzn e AdN 5
s{° 9z o|® 9z Z|° 9 3 8| zen 0-41ND
v ¢ z v a Z11OL4HSAW
S 3aiAIg .
SNIVAW
- V VSSILNVIN 3V
SNErd 3AIEa MY e o 39N3IND3S NOILYNINHIL
WOY4 LN3ILOND avOT :AId 4 JAIAIQ/ATLILTNN (LN3ILOND)
SN8 d SIAIHA NVIND :AIQ S
LHOIY SH31SID3Y DT UANION OLOS
ANNOY ‘NVIND ‘NVINV LJIHS ‘AdI 41 \3AILDY LON S| PWHILAW 31
MOT4H3IAO VSSILNVIN HY31D
3JI0AD
nv 0 # Y3ILNNOD
‘gsQVIN ‘SNIVAN
LWHY31aW OLOD ‘0 = HIND 3l
17LONTVAWN OLOD ‘0#YLND ‘8SAVIN I 0 o] Z
1TLOLdHSAN OLOD ‘0#HLND ‘HSAJW dI 9|7zen crn 9] zvn zon 9N zl asava
a a a o a O a n .
z 1s|° zL z |9t 1] st s Al Y Z11014HSAN
g v £ z !
L
0 # H3ILNNOD ’‘dSAVW
avol ‘Z1LOL4HSAW
0L 3a0OW
NVIY 13S
TV e H3LNNOO LNIWIHIIA
3JQOW L1 L4IHS—>NVIWV :AIQ dI H3LNNOD LN3W3HO3A 119 AHOLSIH MaN HOLV
JQOW LY LATHS>NVINY :AdIN dI 118 AHOLSIH LX3N HOLV1 (L4IHS SAYMV)
‘934 193130 T4A0 "LNVIN HOLV] NOISI?3d d08NS LX3AN HOLV NOISID3A 408NS LX3AN HOLV
NVWY NI SLT1NS3H NV avo'l 1Y NVIND L141HS 14934 ANNOY L4IHS
:0# HLND 18 AdW di "1 NVIND L4IHS ‘AdW I

IB -80

Floating Point Processor

The multiplication process is a sequence of shift and arithmetic cycles. A
shift cycle consists of only two control states, so that consecutive shifts
can occur only 50 nanoseconds apart. In order to prepare for these short
shift cycles AMAN is set to the shift right mode at execution begin and at the
end of ALU cycles. Since AMAN already is in the shift right mode, the shift

cycle merely clocks this right shift via the signal MDSHIFTCTL-. This signal
also decrements the counter.

Arithmetic cycles consist of five control states, since it takes up to 125
nanoseconds to complete a 56 bit addition or subtraction. Arithmetic cycles
combine an ALU operation and a shift operation. Besides forming a new partial
product through the ALUs, the arithmetic cycle shifts the partial product to
the right twice through multiplexers, shifts the multiplier twice and
decrements the counter twice. The multiplier shifts and counter decrements
are accomplished by the signal MPYCKCl-, which is active at the first
arithmetic cycle state, and the signal MPYCKC2- which is active during the
third state. As AMAN 1is always in the right shift mode during shift cycles,
the arithmetic cycle signal MDALUCTL2- must switch AMAN to the load mode.
During the fifth state the partial product is loaded into AMAN, and AMAN is
switched back to the right shift mode. The shift and arithmetic cycles are
shown In great detail in Figure III-21l.

The multiply/divide counter at 12740-60002-53-36~C signals the end of the
product forming process when the entire multiplier has been scanned. This
counter is decremented each time the multiplier is shifted. It is loaded
during the initialization state with the binary values of 0010 0111, 0011 0111
or 0100 0111 depending on whether a 24, 40 or 56 bit multiplier is used. As
an example examine the 24-bit case; the upper four bits counter is decremented
to 0001 after eight counts and 1s decremented to 0000 after sixteen more
counts. At the 0000 0000 point CNTZERO+ and CNTZERO- become active and
prevent control from entering the shift or arithmetic cycle. Instead, control
passes to the multiply/divide termination sequence. Also, CNTZERO causes the
mantissa ALU multiplexers to switch mode in order to select not the twice
shifted ALU results, but the ALU results directly.

The product forming process always terminates with an arithmetic cycle, since
the multiplier sign bit differs from the most significant mantissa bit at this
final arithmetic cycle. The counter will equal 2 or 1. If it equals 1, the
product must not be shifted twice through the ALU multiplexers. When the
uppermost three bits of the multiplier are 0.10 or 1.0l, the final arithmetic
cycle starts with the counter equal to two. The arithmetic cycle performs the
usual multiplicand addition or subtraction and shifts the partial product and
multiplier twice to the right. The second shift (MPYCKC2-) will zero the
counter. At the end of this cycle, control passes from MDALUCTL5 to the
multiply/divide termination sequence. The first state of this sequence
activates the signal MPYEND+. MYPEND+ causes control to pass from the EXEC2
state machine to the EXECl state machine at the normalization preparation
sequence. From this point the product may be normalized and checked for
rounding and exponent overflow or underflow.

The second multiplication termination case concerns the other set of

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

multipliers whose most significant bits are 0.11 or 1.00. In this case, the
next to the last cycle is a shift cycle which occurs when the counter equals
2. Since the final cycle is an arithmetic cycle where the counter equals one,
the partial product should be shifted once only not twice as in other ALU
cycles. The signal MPYCKCl- at the first state of the arithmetic cycle zeros
the counter. The CNTZERO signal changes the ALU multiplexers select input to
pass the unshifted version of the partial product to the P-bus. At this point
the P-bus holds a partial product which should be shifted once to the right.
Note from the schematic page 53-34~B that from the third arithmetic state
control passes to both the fourth arithmetic state, and since the counter is
zero, also passes to the second state of the multiply/divide termination
sequence. The arithmetic cycle state loads the partial product into AMAN
(MPYCKC) and the EXEC2 termination state shifts the partial product to the
right (MDTERM4). Since MDTERM4- shifts AMAN, control state MDTERM5 is used
for delay before control passes to the EXECl group. In this case, MPYEND+ is
active at the same time MDTERM4- 1is active, which prevents control from
passing to the normalization preparation states until the fifth state of the
termination sequence when DIVEND+ is active (see U163-2,3,4,5,6 at page
52-21-D).

Occasionally, mantissa overflow occurs during the partial product forming
process., The mantissa overflow detection circuits on page 53-32-D handles the
overflow in two ways. First of all, 1if it occurs during an arithmetic-double
shift cycle, PBUS56 1loads the proper sign bit into the partial product. On
the other hand, in the -1 times -1 case, mantissa overflow occurs in the final
arithmetic cycle where only one shift takes place. In this case the signal
MOVFL+ causes the proper sign bit to be shifted into AMAN(55). The -1 times

-1 case 1is the only case where the product coming out of EXEC2 is already
normalized.

During the product formation process, rounding information is set up 1in two
ways . During shift cycles partial product bits are routed from the
appropriate least significant bit position of AMAN through multiplexers to the
right shift input of the round register. On the other hand, during arithmetic
cycles, the appropriate two least significant bits of the ALUs are loaded into

the first two guard bits of the round register. These circuits are summarized
in Figure III-22.

(HP 1000 M/E/F-SERIES ERD)

IB -81

Floating Point Processor

DURING MULTIPLY ALU RESULTS ARE SHIFTED TWO PLACES TO THE RIGHT. THUS, IN ORDER TO MAINTAIN PROPER GUARD BITS,
THE TWO LEAST SIGNIFICANT BITS OF ALU RESULTS ARE MULTIPLEXED INTO GUARD1 AND GUARD2 AT THE SAME TIME SHIFTED
ALU RESULTS ARE LOADED INTO AMAN.

IN DIVISION, THE QUOTIENT IS ROUNDED UP IF GUARD1 IS “1". THE LAST QUOTIENT BIT FORMED, WHICH IS THE BIT TO THE RIGHT
OF THE LSB, IS LOADED INTO GUARD1 WHEN THE QUOTIENT IS TRANSFERRED TO THE A REGISTER.

SCHEMATIC REFERENCE:

D12740-60001-54 - LAsPT10|vco—
44-A,B,C -3
8 10 r
ut7 | o LALUOO
13
2C3
12
2 {av 2 [}LUW
1
2 d 26 AL
10
745153 0 —_———‘[ALU32
Ue2
3
3ials5 (6| 7 ; 13 1C3 z—[m_um
9 DA B C D EN ——CK::]————— 1Y 2]
1
AT GUARD —d 16 1 —f———————+ ALU17
ABRGS1 >4 BIT REGISTER o8
ROUND- ~, " 745194 ———1
CLOCK 1 ctock u63 B A rALU33
P3—20 —CO CLEAR q 214 L
A B C D
15 l1al13 iz <" IREGO P1-39
~<<_IREG1 P1—41
fo) < MALUEN-
2
D
U106
3 |6
anc%] ck @
CLEAR-
ROUND-
P3—19 _J
12 10
8 ROUND-
9 | Use P3—42
Aness--I

7700-546

Figure III-22. Round Circuits Devoted to Multiplication and Division
(HP 1000 M/E/F-SERIES ERD)

IB -82

Floating Point Processor

SCHEMATIC SUMMARY III-3
MULTIPLY - EXPLANATION OF EXEC2 STATE MACHINE
Schematic Reference: D-12740-60002 page 53
Execution begin control state status:

Clear A - A-register is zero

ARGSO high, ARGS1 low - A-register is in shift right mode
CRGSO high, CRGS! low - C-register is in shift right mode
MPY CNTR load FF is in load state

History register 1is reset

EXPLD- Exponent registers are in load state

Multiplication initialization control state actions:

Clock history bit register - lst multiplier decision

Clock shift/ALU decision register - lst multiplier decision
Enter exponent add and load sequence

Load multiplier counter

Enter MDEXPCTLI

MDEXPCLT1 control state actions:
MPYCKCINIT: clock C-reg; C is one bit ahead of A
Make EXPALUSO high : exponent ALU is in add mode
Enter MDSHFTCL2: Note lst cycle decision has been made.

EXPONENT CONTROL
MDEXPCTL2 control state actions:
Make counter load FF in count enable state

MDEXPCTL5:
CKAEXP - Load exponent ALU results into AEXP
CKBEXP - Load exponent ALU results into BEXP

MDEXPCTL6:
Make EXPLO- high; exponents are in count mode

If MPYSH, enter MDSHIFTCTL1 (shift cycle)
If MADSB, enter MDALUCTL1 (ALU shift cycle)

MULTIPLY - SHIFT CYCLE

MDSHIFTCTLIL:
Shift A & C mantissas right
Shift round register right
Clock next cycle decision (shift or add/sub)
Clock new history bit
Decrement counter

(HP 1000 M/E/F-SERIES ERD)

IB -83

Floating Point Processor

MDSHIFTCTL2:

If MPYSH, enter MDSHIFTCTLI
If MADSB, enter MDALUCTLI

MULTIPLY - ALU CYCLE

MDALUCTLI:
Activate MPYCKCl- Shift C mantissa right
Clock next SUBOP decision - note decision is always to shift
Clock next history bit
Decrement counter

MDALUCTL2:
Make ARGSO and ABRGS1 high - prepare AMAN to load
MDALUCTL3:
If not CNTZERO- high, then shift C mantissa right via
MPYCLKC2

If CNTZERO+ high, then go to MDTERM2
Clock next cycle decision
Clock next history bit

Decrement counter

MDALUCTL4:
Load ALU results into AMAN
Clock mantissa overflow register
Make ABRGS!l low - put AMAN in shift right mode via MPYSHIFTRT-

MDALUCTLS:
If CNTZERO- high and MPYSH, then enter MDSHIFTCTLI
If CNTZERO- high and MADSB, then enter MDALUCTL!
If CNTZERO- low, enter MDTERMI

MULTIPLY - TERMINATION OF

MDTERM1:
If MDTERM4 is not also active, go to NORMPREPI

MDTERM4:
Preset mantissa overflow register
Shift AMAN right
Shift round register right

MDTERM5:
End of multiply or divide, go to NORMPREP1

Counter = zero:

MPYSLT- goes high = Make MPLXR’s on ALU board pass data from
ALU straight thru to P-bus

(HP 1000 M/E/F-SERIES ERD)

IB -84

Floating Point Processor

End of multiply, most significant bits of multiplier are 0.1l or
1.00:
At last cycle counter = 1 at MDALUCTLI.
MDALUCTLL clock decrement - counter goes to 0. Control
passes into both MDALUCTL3 and MDTERMCM2. Since counter = o,
MPYSLT- is high and causes ALU results to pass straight thru
multiplexer. At MDALUCTL4 ALU results are loaded into AMAN,
and AMAN goes to the shift right mode. MDTERM4 clocks the
required right shift to AMAN. If there 1s a mantissa
overflow at MDALUCTL4, the proper sign bit gets shifted into
AMAN. Since multiply takes care of its own mantissa
overflows, it should never enter MOVFLCTLl. For this reason,
MDTERM4 clears mantissa overflowe.

9.0 IMPLEMENTATION OF THE DIVISION PROCESS (Figure ITII-23)

Since division is similar to multiplication in that is a process of arithmetic
and shift cycles, it also is executed in the EXEC2 state machine. At the
execution begin point, the A register holds the dividend and the B register
holds the divisor. During the division process the divisor is repeatedly
added to or subtracted from the quantity in AMAN. The arithmetic results,
which which become the new partial remainder, are loaded into AMAN. The
multiply/divide initialization state loads the counter with the proper value
to form a 24, 40 or 56 bit quotient. The initialization state also latches
the value of the sign of the end quotient in U25, the quotient sign register.
The quotient sign is the Exclusive-OR function of AMAN (55) and BMAN (55).

From the initialization state control passes to the exponent sequence. The

exponent sequence computes the difference between the exponents, AEXP-BEXP,
and loads this value into both AEXP and BEXP.

(HP 1000 M/E/F-SERIES ERD)

IB -85

Floating Point Processor

IN DIVISION, THE QUOTIENT IS FORMED THROUGH SEQUENCES OF ALU AND SHIFT CYCLES WHICH ARE CONTROLLED BY THE
CIRCUITS BELOW. NOTE THAT THE NEXT CYCLE DECISION CANNOT BE DETERMINED UNTIL THE PARTIAL REMAINDER OF THE

CURRENT CYCLE IS FULLY FORMED.
SCHEMATIC REFERENCE: 12740-60002-53, 32-C,D

o
ALUSS 9, 8 12 9
P1-47 7~ 10 Ui4 D a
AT THE END OF DIVISION, LASTDIVCO-
— " u13 1S LOADED INTO GUARD1
MDALUCTL4+ CK
_ 1
o CRGOEN+ | 71 vea LASTDIVCO-
P1-3
ARG53 5 Q >
A
P1-24) 6 2 5 DIVCO 4| U43
ARGS4 4) u2s D Q .
P1-22 u23 u43 > E1|!§2
—I 3 s DIVSH 3
MDSHFTCTL1+ cK @
] 2| uas 74851
je)
BR 10 u64
G55 \ 8 13 7 9
P1-21 9 u2s 8
J 10| U6 DIVSUB-
u3s
ARGES 17N3 12 11
P1-20]/ 13 | U6 DIVADD-
13
Q 11 s
12 9 12
D Q 7 5
al MOVFL-
1 n| Y2 u13
1
MPYDIVINITIAL- CK —|6
] E—
QUOTIENT © RS
SIGN REGISTER 11 1T
] 9 AT THE END OF DIVISION
DIVOP+ :
| ™ IF THE QUOTIENT HAS THE
- WRONG SIGN, CORRECT THE
| SIGN IN THE MANTISSA
NORMPREP1+
1700.547 " OVERFLOW SEQUENCE

Figure III-23. Division Sequence Decision Circuits
(HP 1000 M/E/F-SERIES ERD)

IB -86

Floating Point Processor

The decision rules for entering an ALU cycle or a shift cycle are much simpler
for division than for multiplication. In summary, perform a shift cycle until
the partial remainder 1is normalized, then do an ALU cycle. At the
initialization state the dividend is already normalized, since it is a valid
FPP operand, and the first division cycle executed is an arithmetic cycle. At
the initialization state the arithmetic/shift cycle decision register points
to the arithmetic cycle, since its reset 1is controlled by the NOR function of
DIVOP- and NORMPREP2+. Thus, from the initialization state control passes to
the arithmetic cycle.

During this first arithmetic cycle the divisor is added to or subtracted from
the dividend. The arithmetic cycle results, which become the current partial
remainder, are loaded into AMAN. Thus, each arithmetic cycle wipes out the
previous partial F OFFnder, which by the way was the original dividend in the
first cycle. The quotient bit in arithmetic cycles 1in the Exclusive-NOR
function of ALU55 and AMAN(55). Since the quotient bit depends on the sign of
the ALU results, the quotient bit is latched at the same time (MDALUCTL4) the
new fully formed partial remainder is loaded into AMAN. Every arithmetic
cycle is followed by a shift cycle which shifts the new quotient bit into CMAN
and shifts the new partial product left. The arithmetic cycles include a
shift cycle, and require 175 nanoseconds.

Another function that the shift cycle following the arithmetic cycle performs
is to latch the decision of what cycle to execute next. The MDSHIFTCTL] state
which shifts the partial remainder in AMAN left, also latches the Exclusive-OR
function of AMAN(54) and AMAN(53) into the next decision register. If
AMAN(54) equals AMAN(53) then a shift cycle is executed next. Otherwise, the
next cycle is an arithmetic cycle. The function of shift cycles is to
normalize the partial remainder. In shift cycles, the quotient bit is merely
the Exclusive-NOR function of the signs of the partial remainder and divisor
which are always accessible. Thus, the new quotient bit is shifted into CMAN
at the same time the partial product is shifted 1left. Therefore, a shift
cycle shifts in a new quotient bit, shifts the partial product, latches the

decision as to the next cycle type, and decrements the counter, all within 50
manoseconds.

During the division process, AMAN is either in the load mode or shift left
mode, and CMAN is always in the shift left mode. Quotient bits are shifted
into the least significant bit of CMAN, which is CMAN(32), CMAN(16) and
CMAN(0) for single, extended and double precision operations, respectively.
The multiplication/ division counter is loaded with the proper value to form a
24, 40 or 56 quotient. Note that the first quotient bit is entered in the
least significant bit position and then is shifted left all the way to the
sign bit position. The all zero condition of the counter forces the division
process to end.

However, before the signal CNTZERO has time to shut down the division process,
one extra quotient bit is formed. This extra bit called LASTDIVCO- is used in

division’s rounding decision. It is loaded into the first guard bit at state
four of the multiply/divide termination sequence.

(HP 1000 M/E/F-SERIES ERD)

IB -87

IB -88

Floating Point Processor

When the counter 1s =zeros, the signal CNTZERO becomes active. As 1in
nmultiplication, control then passes to the multiptication/ division
termination sequence. This sequence routes the quotient from CMAN to AMAN.,
For instance, DIVIERMl causes CMAN to drive the quotient on the P-bus.
MDTERM4 loads the quotient into AMAN, Now that the quotient resides in AMAN,
it can be subject to sign correction, mantissa overflow, and rounding. Note
that at DIVEND control passes from the EXEC2 termination sequence to the
normalization preparation sequence in EXECl.

The mnormalization preparation sequence examines the sign of the quotient
mantissa, AMAN(55), which 1is formed during the first arithmetic cycle of
division. If the magnitude of the divisor mantissa is less than the dividend
mantissa, the first arithmetic operation successfully reduces the dividend.
An indication of successful operation is if the partial remainder has the same
sign as the dividend. If the divisor and original dividend have the same
sign, the successful quotient bit is a one, and unsucessful quotient bits are
zero. Conversely, the successful quotient bit for divisors and dividends of
different signs is a zero. This first quotient bit ends up in the sign
position. If the first cycle 1s successful the quotient will not have the
proper sign. The correction to the quotient sign is handled as a case of
mantissa overflow. The sign of the quotient is checked during NORMPREP1, and
if it is wrong, the mantissa overflow detection register is reset to activate
MOVFL+. See schematics 12740-60002 page 53-32-D and Figure 1III-23 for these
circuits. Thus, in the mantissa overflow sequence the proper sign is shifted
into the mantissa quotient, and the exponent 1s incremented. Also, the bit
from the LSB of the quotient is shifted 1into the first guard bit of the round
register.

After the normalization preparation sequence the quotient goes through the
mantissa overflow sequence if it has the wrong sign, or it may go through
normalization. There is only one case in division where the quotient has to
be normalized: mantissa 1/2 divided by -1 resulting with -1/2 or in binary,
1.1000. Remember that in the multiply/divide termination sequence one extra
quotient bit was loaded into the first guard bit. In this case, where the
quotient 1is normalized (shifted) 1left, the extra quotient bit should be
shifted into the 1least significant bit position of AMAN. However, since the
extra quotient bit 1in this case is zero, and since the bits to the right of
the LSB position of AMAN are cleared during execution begin, zero is shifted
into the LSB of the quotient. Thus, in the case of 1/2 divided by =1, the
result of -1/2 is properly normalized to -1.

Once the quotient mantissa has the proper sign and is normalized, 1t may be
rounded. Division has its own rounding rules. Namely, if the first guard bit
of the quotient is a one, then the quotient is rounded. This first guard bit
receives the extra quotient bit developed at the multiply/division termination
sequence. Also, during the mantissa overflow sequence the LSB of AMAN may be
shifted into the first guard bit. The rounding decision is based on the first
guard bit contents at the time of the round decision states. As in other
floating point operations, rounding may cause mantissa overflow which would
have to be corrected in the mantissa overflow sequence.

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

After the rounding process, the quotient exponent is checked to see if it is
in range. If it 1s not 1in range, the final quotient is the overflow or

underflow constant. In any case, the final quotient is loaded into the A, B,
C and output registers.

(HP 1000 M/E/F-SERIES ERD)

IB -89

Floating Point Processor

TABLE III-3. SUMMARY OF DIVISION

DIVISION - LOAD SEQUENCE:
Schematic Reference 12740-60002, page 53

The first operand is the dividend which is loaded into A
mantissa and exponent. During the division process A holds
the partial remainder. The second operand is the divisor
and is loaded into B mantissa and exponent. The contents
of B mantissa do not change during the division process.
The C register will hold the developing quotient.

Execution begin control state:

Set A & C mantissa registers to shift left mode

MDY/DIV initialization:
Load MPY/DIV counter
Set ALU/SHIFT decision register to ALU (DADSB high)
Load quotlent sign register with [A(55) XOR B(55)]

Exponent sequence: Load (AEXP-BEXP) into both exponent registers

Division decision equations: Text reference; The Logic Of
Computer Arithmetic by Ivan Flores, chapter 13.

lI. Decision to go to shift cycle or ALU cycle
If A(55) is not equal to A(54), do ALU cycle, DADSB
activated

If A(55) is not equal to A(54), do shift cycle, DIVSH
activated

Since a shift operation accompanies every cycle, the FPP
bases its decision on (A(54) XOR A(53)) before the shift.

2. Decision to add or subtract divisor from partial product
during ALU cycle.

(A(55) XOR B(55)):

If one (A(55) is not equal to B(55)), then ADD, DIVADD-
activated

If zero (A(55)=B(55)), then SUBTRACT, DIVSUB- activated

3. Quotient bit determination, DIVCO

Next quotient bit = (ALU(55) XOR B(55)) during ALU operation
= (A(55) XOR B(55)) during shift operation

4. Carry out division until one extra quotient bit is formed
(held in LASTDIVCO), but is not shifted into C.

(HP 1000 M/E/F-SERIES ERD)

IB -90

Floating Point Processor

MDTERMINATION SEQUENCE:
Route the quotient from the C register to the A
mantissa register. Load LASTDIVCO into the first guard
bit of the round register.

If the sign of A does not equal the quotient sign, then go
through mantissa overflow sequence.

If the first guard bit is a one, then go through the

rounding sequence. After rounding, check for mantissa
overflow.

If the exponents overflowed or underflowed, go through that
sequence.

TERMINATION SEQUENCE:
Load result in all registers. Set ready/busy FF to ready.

SCHEMATIC SUMMARY III-4

DIVISION - EXPLANATION OF EXEC2 STATE MACHINE
Schematic reference 12740-60002 page 53

PWRST- : Exponent ALU is in subtract mode.

Execution begin control state actions:
Set ARGSO low, ABRGS1 high, CRGSO low, CRGS1 high - A & C
mantissa registers are in shift left mode

MPY/DIV counter load flip-flop (U41-8,9,10,11; U83-8,9,10)
in load state

Exponent register in load state (EXPLD- is low)

MPY/DIV Initialization state:

Set DADSB/DIVSH decision register (U23-1,2,3,4,5) to DADSB
(ALU cycle)

Clock quotient sign register (U23,10,11,12,13) to equal
A(55) XOR B(55)

Clock loading of MPY/DIV counter (U11,U21)

Enter both MDEXPCTLl and MDEXPCTL2

After MDEXPCTL1, pass to ALU cycle, since first divide
cycle is always ALU

MDEXPCTL2:

MPY/DIV counter load flip-flop (U41-8,9,10,11; U83-8,9.10)
in count state

MDEXPCTL5:
CKAEXP, CKBEXP - clock exponent difference into AEXP, BEXP

(HP 1000 M/E/F-SERIES ERD)

IB-91

Floating Point Processor

MDEXPCTL6:
Set exponent register to count mode (EXPLD- low)

MDSHIFTCTL2=-:
When coming from MDEXPCTLL, the first divide
decision is to go thru ALU cycle, so that this
state acts as delay. Otherwise, this state forms
the decision point for entry into an ALU subcycle
or a shift subcycle.

DIVISION - SHIFT CYCLE

MDSHIFTCTLL:
CRGCK- shift CMAN left while shifting in new quotient bit.
ARGCK- shift AMAN (which holds partial remainder) left
ROUNDCLOCK- shift round register left (meaningless in
divide, since round register should = 0 in divide)
Clock division decision register (U23-1,2,3,4,5,6) to
activate DADSB (ALU subcycle) or DIVSH (shift cycle)
1f DADSB is active:
MNTSO high (mantissa ALU add), 1f A(55) is not equal to
B(55)
MNTSO low (mantissa ALU sub), if A(55)=B(55)
Decrement MPY/DIV counter (Ul11,U21)

MDSHIFTCTL2:
If DIVOP:DIVSH:CNTZERO-, enter shift cycle
If DADSB, enter ALU cycle
If DIVSH:CNTZERO+, enter divide termination

DIVISION - ALU CYCLE

MDALUCTLI1:
ARGSO and ABRGS1 high, set AMAN to load mode

MDALUCTL4:
ARGCK: Clock ALU result into AMAN
Clock mantissa overflow register (U13-1,2,3,4,5,6)
DIVSHIFTLT-: ARGSO low - set AMAN to shift left mode
Clock quotient bit register

MDALUCTLS5:
If CNTZERO-:MPYSH (in divide, MPYSH always active) enter

shift cycle
If CNTZERO+, enter MPY/DIV termination sequence
DIVIDE TERMINATION SEQUENCE

MDTERM1:
DIVTERM1l-: MALUEN+ low, CRGOEN+ high - CMAN register drives P-bus

(HP 1000 M/E/F-SERIES ERD)

IB -92

Floating Point Processor

CRGOEN+ enables LASTDIVCO (last quotient bit)

CRGOEN- lowers CRGSO (CMAN is not in load mode)

ARGSO and ABRGS1 high - AMAN & round register are in load
mode

MDTERM4:

ARGCK: load P-bus data (quotient) in AMAN register

ROUNDCLOCK: load LASTDIVCO (last quotient bit) in round
register

CRGOEN+: CMAN does not drive P=bus

MALUEN+: mantissa ALU drives P-bus

MIDTERM4~ used on Schematic page 52 at Ul63-4 in multiply,
meaningless in divide

MDTERM2: go to normalization preparation sequence

(4P 1000 M/E/F-SERIES ERD)

1B -93/-94

50 -4——————CIRCUIT SIDE ——% 2

50 -st——————CIRCUIT SIDE ——» 2

49 ~————COMPONENT SIDE ——— 1

49 «————COMPONENT SIDE ——— 1

HLIYY ddd

o

(TG

S
S
o
<
o M?..
- Yo
— o~
— @
—
—
—
——
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
J .
wow
+
[+
=
h 4
<t
0
w
~
2
[$]

¥

e[e |

ein (G 5] sin h aln
IS — Lo g

[wd [[

%[¢ [=

32

=)

[y

= ¢ [

[JIE

G

= %

in AM— vn A —

e d [

N
Nm_ svn h _‘33
<t

_
_
_
|
_

<
-~ 6N £€an S
Lan ﬁCA‘—\ A _ ﬂ _ n

o XS

IN]
w

o. _.—Nm w

o =2 =3 [=

Gl =g

[8] =0 g | an (|

vin

35|

sLn

10
e

[\¢] s w
_ 18n wu_ z8n A — £8n m_ ven Nmﬁ sn (] _ww: A — s (8
[x]
o
160 8 zen 6N ven (8 sen (J° 96N n 8
S S 16 8
— totn Am_ zoln n _ goin A— voLn hn_ soLn oLn soin (8
[&] o - (8]
3
< 90Ln
u
& v] 2 ‘]
L 3 zLn €1n un (81 sun aLLn un (3
_ LzLn ww ﬂ uuSh _ szin h _ vzin mm— seLn 9zLn zin
n
[
1510 3 zen se1n 2| sn (F %€Ln sin (2
o e o Q
~N o« <
_ Loin ﬂm_ zvin m _ Ean A— voLn Am_ swin (] ovLn A — win Am
©
o
_ LsLn 2] zin M._ £510 _ vaLn MF ssin (|2 < Josin — win (S
o b o 5 o
© [~ (=1
ﬁ LoLn mm— z91n A _ goLn h_ vaLn Amﬁ soLn A1_ 991N N _ 90 N%
[
Ln by zL BN v, 8 6L = 9in win (8
B n an (8 n 8
-4 [t
_ 181N n%_ NmSN _ £8LN Aﬁ v8LN Aw_ s8Ln At_\ 981N m _ 810 m
o
~ © 2 =)
_ 6Ln Aw_ Nﬁzm _ 61N m _ veLNn ww_ s6Ln A 961N 610 m%
bt R12
_
10zn gl < z0zn (= sozn (| vozn o — sozn 2. 90zn Lozn 2
ol « o L= o
(=23
o

C26 +

C27+

49 <4——— COMPONENT SIDE ——» 1
CIRCUIT SIDE

49 ~4———COMPONENT §IDE ——» 1
50 ~————CIRCUIT SIDE ————»2

49 ~———COMPONENT SIDE——» 1
50 ~——————CIRCUIT SIDE ———»2

FPP Arithmetic Card Assembly 12740-60001

IB -95

FPP Arithmetic Card Assembly Parts List (12740-60001) Sht. 1 of 3

1TEM

REFERENCE
DESIGNATOR
IFIRST SiX1

PART DESCRIPTION

PARENT
OPTION

PART NUMBER

COMmP.
OPTION

QUANTITY PER

03

IB -96

01C26,27

OO0 1=7

01R1S

OIR12,14

00R1=9

oou1s

0HU17,56

n1u27,61

01U106

00Ues

o1uee,10
02uU187,1

01U136,1

0036

01U86,10

196

CapP

120UF 10%

TERM=STUD SGL

SCR

RES

RES

PIN

TAP 4=-40x,31

1.0k 8% ,25

147 14,125

GRV ,062X%,25

NTWK RES 9Xik

IC

1C

' S7,

IC

IC

IC

Ic

SN7417N

SNT4S0ON

67

SN74S10N

SN74S74N

SNT4S86N

SN74S5153N

8,147,157,167

97

IC
37

IC

IC

SN74S133N

SNT4SS1IN

SN748260N

T¢126,156,176

IC

T4L 8194

0180=2145

0360~1682

0624<0077

0683-1025

0698=-3438

1480=0116

1810-0275

1820~0618

1820=0681

1820~0685

1820=0693

1820=0694

1820=0998

1820~1130

1820~-1158

1820«1275

1820=-1276

L

L

U

»

7

27

FPP Arithmetic Card Assembly Parts List (12740-60001) Sht. 2 of 3

REFERENCE
DESIGNATOR PART DESCRIPTION
(FIRST SIX)

ITEM PARENT comp. |L

OPTION PART NUMBER OPTION g QUANTITY PER

1820=1276
01u73,82,83,92,93,
03 102,103,112,113,122
0S| 123,1/32,133,142
07 143,152,153,162,163
09 172,173,182,183
11 192,193,202,20%

IC SN748257N 1820=~1301 U 14
01U75,85,9%,105,115,
03 125,135,145,155,165
05| 175,185,195,205

IC SNT743194N 1820=1304 U 4
01U6e3,72p 117,177

IC SN748182N 1820=1305 U 5
C1US3,54/,99,64,65

1C SNT74S151N 1820-1319 U 1
oopde

IC SN7488SN 1820=1321 U 5
o112, 24[,26,34,44

IC SN74S02N 1820=-1322 u 3
001iS2,77,87

IC SN74S30N 1820~1323 U 1
ooute?

IC SN748169N 1820=-1455 L) 6
01u22,23,32,33,42,43

SN748299N 1820~1457 Ul 7
01U76,96|, 116,146,166,
03 186,206

IC SN74S381IN 1820=1458 U 17
01U25,35,45,74,84,94

03 104,1/14,124,134,144
0S| 154,1/64,174,184,194
07 204

ICSNT48241N 1820=1624 U 3
01u13,37),51

IC SN748S240N 1820~-1633 U 4
01U16,47,97,207

IC SN748374N 1820=1677 U 10
o1u21,31,41,71,91,111%,
03131,151,171,191

IC SN74L8374PC 1820=1997 v 8

IB -97

IB -98

FPP Arithmetic Card Assembly Parts List (12740-60001) Sht. 3 of 3

1TEM

PART DESCRIPTION

PARENT
OPTION

PART NUMBER

COMP.
OPTION

QUANTITY PER

01

01

01Uty &t
03161,18

01Ck1

Q0Ck?

»101,128,141,
1,201

DIODE SILICONE

LED=V SEN

EXTRACTOR PC
BRACE=PC BOARD
ASSY=COMP SEW
BOARD~ETCHED

VT870 TEST ADAPT
FIXTURE

ICABLE ASSEMELY
FIXTURE

1820~1997

1901-0463

1990~0581

5040=6009
5040=6058
12740=64001
12740-80001

ET13472

ET13472-6002

ENGINEERING RESPONSTBILITY gl serin | B-12740 -&oeo, -51)
Gmary i

s S F FFTP PF ' E T S REvisons arrmoveo | oave
ECRN (N (TR [e E3) BT SEET [z [e3 B | PEDRANN WIiTH HD CHG, Fa L7 m
163, 3 & |Pee- ZE-EBT - FRZcEE <7Ees [784%) o] £~ | piel
D |CiARIFIEDS swA. f,-;l""m ‘-“—&—ﬂ‘%'?‘
& |PCO-22-57H2, U076, 96 WERE 7425299 [,b]’ Z 4/2{,
p)
1 '«bl}n*m% GI8INY N R fogf < © TRISTATSE /se >
MPP Bus< > bk QLR SEEN A4S P Buos
TRISTATE 1513 12 E [NEEE] NEEE 716|454 716|514 3(21]o 3[2[1]o
131417 18 817]4]3 13{mjiy| 18 8 {714]3
_ A 65 Dy 22 | il["D87 65
P3-25 wWilek > K 7415374 7445374 K 7405374 ! 047317537#
P3- by INREGEN-[B>— 1% 08 vel 1 loe vl e TUI01
- - 5 —q Q432! 988765 Bsy 2
121 15] /6 6|52
19 | ;_?‘665‘1 2 g 12419 8] 12 REEE ; 2]6|5|2 BBk ; i2)is)i6} 19
. -> > 432 87 65 ERS
P3-24 WIOEN P 0:974:)75’374 - 74U3137b —os 7, 5;574 @f;"eu;sw
le ~ n It vol ek
@edekoTrR [6> 87% s Dy3 2 o8 765 o432
817(4|3 3 lr7{ /8 8[7[4]13 sbekz]/8
Pi-26 pPBssy < |—
P3-8 ¢cLEAR A — 34 {sle [7 3l415le [7 3 sle [7 3 (4l516 _[7 @AKGsS@
— 9 AB co L 9| ABCD L 9| A cp L 9| £ D L
Pl- 4Z ARGSO (-4 o S50 o AbBc
AB;C, ol [>— <) SI94 ol LS 194 Dg 746594 Eéf 7545 194
Pl-4k ek vz uly usz ek w92 ek vio2
o f - ‘
Pi-23 ARGCK @-l 2 V66 “Ppep % asep —qcle @y 8 D e Y sco
Pi- Il MOVFL -+ Dwg 2 13lelz 75 T} 312 PG Tz [sTla]z
PI- 20 ARG 55 4] —{Z2>akg40
pi-22 ARGSY <]
Pl-2u4 ARG 53 < |- usle |7 Buple 7 slulsle (= slalsle 5 —~2] Br 439G
slzo Bc D L D L : 9 Be D w BC D [
BRGSO IED/__' ol T4LSIO 30 7415194 1450 7428104 50 2uis 194
P3-lty BRGCK [1-4 ek UT3 I3 ves ek US3 cx vlto3
AP ;
P3-ll CLEARB~[1,2>—r AL s e %pcp et @up e o L <
PI-2i BRGS5 [>~ £ ez EREL D 2] pslalplz 2 FsT=]3]2 vs7 7> se G0
" ZoJe T
71911 |3 6 |18 21t HE I 6 gl 2 e 7]el) i6)18] 2| # 7 [ol: |5 6l 7 745240
A3424) Ao By B2B,Be s 43 A28, Ao B3 B, B Bo A3 Az Ay Ao B, 82650 73 A1 A Ao B35, 5, 8o <J-4] RounpEN + PI-28
P3-48 MNTSO4[E>— 50 745381 S0 745381 550 74538 flso 745381 74500
MNTS1 [:s‘ U 6le, B 2lg, ok ArY U0k {H|FIXSGL+P3-18
7 7 2
PI-47 ALUSS ~ °2 ®@ ©2 ® e ® 2 o
F321 0 cug P F3210 CNGg P 3210 cNGP F3 F2 Fi Fo cdd P
AR5 |;s|/g|m TZ["[s[&]/5‘]15]14 \Y

HAGER Ils 13y

2047,3 AOBE r;l;;lw /4/

PI-37 pBESE LpLae Bus(EED

MPYSLTB <2]———szw ’-Ll l 1 {Z> ALv 4o
RI-5—, e 5%'3 0l 3 |]"J" s [elBluiel l:lﬂ 5 Rtz AREARAAE {2> acvu

P3-2|MPYSLT— NS Ay 32 1 By3 2 | HAg 32 1By 350 1{Ae 32 1843 21 1[A4 18432 1

-2 L[> V3TV T4szal |0 745257 ° 745257 > 745257 s 745257

v2o7 U775 u8s uU9os vios

- 2 18] 5] - /5] . /s
P3- 39 MALOEN + 545240 oF v, % Y432 dQoE Y4 3 2.4 PE Y4 3 24
MALVEN — 21917 [+ 12074 ZTel7 % orar

PI-25 PB 555)

crRG 39 @D
157:3:,/4 s sl e |18 8 |7|31e |4 ;;416‘.5 @
Pl-46 cRE S0 I I @A A BcD E FqH L 1| @a A B CcL E FgRr L
4 650 [1-4,5> nle’ 74 5299 74 299 B3 745299 745299
Pl- 48 cRGs! [ud—T 2k UTe u76 2l VG VYA
P3-40 CRGCK e oe < Qu 4 e oc 9 <H
pPI-35 CLEARC- :>——I W ye 3 7 l" Z3A

ZJ; [7— @CQGQO

P3-45CRGOEN-[1-5>

b
-]

FLOATING POINT

PROC, ARITH HEWLETI'EPACKARD
P4 . .
Pl

02117-6000| 127406~ go00!

NEXT ASSEMBLY PART NUMBER

— D -|2740>6000/-5/J

FiNiSH l SCALE

STOCK NG. 3240-0004 PRINTED ON DIERO NO. 1020-10 CLEARMRINT FADEOUT + SHEET ’ oF ‘

Page IB -99/-100

TG RESrONSEILY O [D-12740 -gooo!
H 2 2 O E3 S O O 33 T,* & | o In [z [+ [i® sTYM REVISIONS APPROVED DATE
is 17 1@ [® |25 |27 |=, (33 A3 |38 a2 |43 PBZ 2 AW, T 7] HE, N} .=]
| = o3 % pfp?o_«sse:v o a:/: ac'e = @77 #&1_ %ﬂ
5 | CiARIFIED bwg. 'DI 7 T |
= PC0-22-57%2; UI6 WERE 74L5299 o/ {T::l‘ P Z?m
| 9] oo W
dTE!STATE im| i AR AN S I
MPP BUS \ 1511312 151312 NGEE] nfiolole 76|54 76514 32(1{0 3200 TRISTATE \\
P Bus
3141]18 8l714 3|18 8111413
H[oB765 D4 22 | [58765 T4 32
P3-27 waick [D>k 24Ls 374 740537y Ck 7425374 7hLS37L
! l'u 21 vizl 1{oE. Uil Uikl
= 3 1
P3-ty INREGEN-[1 >0, 92 @4 321 9765 Q542
12119 . 9jelsiz HEEE 12)isi6] 1o 12psjie}is slolsie o b1z 12[15]ied 1
P3-28W20EN -] 88765 Q4 32 | #8765 34 324
W > 0 74 &3 74 374 oe 74" ¢ 37% 74 S 374
/" t ek w3y Ul
@=D) ckoTR [> “0g7¢5 2432, “H287(s 2,33,
8 7143 131718 871413 1311718
P3-35 BYTezoed - > [
{Z> 426 32
Are 390 <_}———ry 3lelsle [7 zlelsle [sllsle & Lsle = < 3]AR523 GIB)
- n 950AEC1> L 9 B ¢ D L 9| A BepD L 9 ABCD L
Pi- 42 AQRQ 5:@ Az, TweLs 19 70 2? 74 LS 194) :Io THLE194 10 2,0 THLS 19y
Pi=4uABRG 51 (10> Aok vne ee uize Heg w132 ek Ul42
Pl- 23 ARG CK Cledy g ¢ o “e@BcD 4% pep e e o
P3 -9 cLeara smaLE-D—l 2 [spps]z [z~ [=fu]Blz [2 Dsfu]sliz 12 ps ez — 3> ARG 24
ae® 426 40 >——T— | —
P3-7CLRA3ZO~
> ABEPEE sl sl 1 el 7 <ZJer623 GO
9 A Bcp 9 ABc o L 9 ABcp L 3 BC D L
(E30BrGS0[6 >— ,oslo 7415 154 JdZ[O 741519 ,312‘,’ T4 LS 154 /ozlo Th LS 194
P31t BRGCK[1 >— ek w3 Yok U123 fex U133 tew Uy
P31 CLEARB-[| > ee o e, q ‘get, @, et , @
- r¥4BcD RABcD R ABcD ¢ ABECD
(EDBRG 40 [T kRS = PE — m:r . i T [T>8raz4
: > e
- | a e
P3-@cLr 32-[2,2> [T S AR alsl 13 olre|2[7])il |3 682 |« nbdi s ARHE: 745240
[AsA2ho IETES A3 Ay g B38,B Bo 3 2241 Ao ;6,5 B A3 424 Ao B3 526, 5, ———<_]FIxDBL+ P3-22
P3-48 MNTSO [I-> S0 =19 4538 Slso 45381 fleo 745381 5
' . 74 53B1 P 74538 6 7 3 74500 <17%] RoonoDEN +(EH D)
%0 MNTS [6> S Ui Sy vizy = Uiy N Uty
s, sz ® L P @ 5> Atvz3
LI gy OS— F3210 cnep Fz210 cugrP Fa210 cuge F3RAf cngp 17> aw32
w5 e TR MG l,ﬂ,gl/q AOEE [15[/3‘[14« HARE GEE L Bue
< &6 > LAC v -—65C
e Atvyol 1 >] 3 —e 3> Awvzy
; : I L
Cied Atuw 1> l A[i |s[2[3ole 2]/4L/ 51?575‘105 Y , win | s[zEhole3 l/z,]u I;Eé/; WA (3> atves
P M 42 2184321 1{A43 218,321 Ay321B432) Ag2 21 By3 21
mevsiTp-[1 >— S5 45257 & 245257 s 745257 5" 745257 5
" viis /s viIzs s U135 e Ui4s ’9{7 765240
Qo Macven- [> Of v, 30 OF v, 35, 0EY, 34 OE Y, 3, s$uuy
2o 714 129} 7|4 12]9]774 12[9]7 |4 74524«0{ @Beqﬂ
<&]zwporP PI-29
Cﬁ$39<l! <32 lerg23G@ID)
16 |7lsle] sbsiu 16 [18 I |7lsle| slists)re ['
ITdaABe D £ FGH L 1], @A AB CD EFGH L
Pi- I
P:_:;zgaso@% B0 74 5299 74 5299 950 74 s299 745 299
G651 ::9—’ ’;_K Uil viGe 132 ” Ulk G e
P3-40 cRGCK [re>— cly oe @u Ly o ou
Pl-35 CLEA?C-@—] T 02 g [7 EE [77
CRG4o [T > (3> creze
P3-45CRrGOEN = [I->
P3- 15 cLRC32-[2,>—)
Pi-y1 IREG) [mo>— . ' ' '
P1 -39 IeE60 @——I
- weo+[3
Pi-34piveo + [23> PEx]]’ FLOATING POINT
Divco -<4&4 | 7‘Q'5 PROC. ARITH. HEWLETI‘EPACKARD
746240 L TITLE
! 17-6 o | -
B 72 6000 1240-40001
e — e — D 12740 -G0001-5
SHEET , GF,

3T0CK NG 21800004 PRINTED ON DIEFO NG, 17010 CLEARPRINT FAGEGUT *

Page IB -101/-102

y
ENGINEERING RESPONSIBILITY gl sepia 7] | D- 12740 -6000/-5-
o 1 2 3 4 6 8 9 11 2 4 15 sYM REVISIONS APPROVED DATE
% |17 © 21 |224823 |25 [28 [90 |32 Pe 183 PR B | REDR AWK WITH NO CHG. (L] s 17T 7RF
= 1 O =7 VAR ek Ml AN 77
CO-22 - &, /68 WA S297 Z :
o B e o) e w377
2rons MR 29y RS =] ool
TRISTATE
Mee BU5<—_\/LT BEEIR GREIA GEE NEEE 7TE5% 716[5 % HEOE 3[Z]]0
TRIS mn—'@sus
1310|1718 8l7luls /317118 812143
I/ D& s D A D8 5 D4y 2
P32-29 Wil k[>— 2] 125 ‘72%‘3” K 733’1374 L8374
| viGl v visl
P3 -l IHFEGE”—@——"“_COE037 65 q 9, 3721 [05@3 765 Bsy 2
1245116) 19 5l6l5]2 o16]s|2 2lisle] 19 /2]rs\ief 19 | 9 [6l512 216512 12lisr6l 19
I #8765 Ry 3 2 X8765 dy3 2
P3-30 W30En-[> o 74’ € 374 %4 & 374 e 74 o3 74 5314
" uisi visl " vzl utT!
@zD) CKOTR [2> Kpg 765 Dy32. £pg 7 65 Dyz2
8171« BATE 817|413 3114li7)/8
P3-36BYTE3OEN —[>
4 > ARG IG
3julsle [7 3l4lsl6 |7 34|56 7 3lzisle | @Azqzﬂ
- 9 A BeD L 5 ABCD L 3eo Bc D L Seo 2¢c D L
Pl-42 ArGso ®_—_—755‘o 7ULS194 ,050 7415194 nlgy T4 LS 194 12 ; T4LS 194
Pl-yupBrgat [2 >—T ey vs2 o 5[2 viee ul2y U172 //I o vis2
PI-23ne6ck 2o 9% %Bc D detg gy e ¢ e o Lo sco
P3-6CL RADOUBLE - lz 1513) 12 |2 |ispalizliz 12 JsulBlz BREEBE 7> 42605
@eBarg 24 [2 >— '
P3-u CLRALB-[5> o
> 3l4]sle]7 | EALILICEE, 345le 5 zlelsle [7 41BRGO7 GO
AEG,ZBG) A Bc D L] A BcoD o]’ 9 BC D L 9 ABcpD L
(&20BRGs0 [2 >— o S0 so / o
Gso 1920 740519 02, 7uLs 194 wle, T4Ls 194 ole) T4LS194%
P3-1y BRGCK [2> Mew L I53 Mep vie3 Ll ey vi73 Llek vias
dec et fdee L, o
P3-12 cLRB32-[>— R 84 BecD R YUpe D R B D g% gco
(220 BrG 24 DZ [Z 5 /jla 12 G IEIA 12 15sndi3] iz To |s|win]iz @ BRGOB .
P3-10 cLRE4B-[2> —ZBIE AL 19 (3 telele & r7liof 112 AL RENE o824
Azhy A Ap B; BB B, AZ A Ay B3 B,8 B, A3k A Ao 838,88, 5/’3/’2"1 4 B3 8,68,
P3-48 MNTSO (% Sleo 745381 Siso 745381 fso 74538] s0 745381
4 4
@20 MuTSI [Z> “ls) ulisy tiel e SEL vI74 £1s viey —— &> aLvir
2 52 52
° F © = F o @? F321 0 u@? F3EA A ®? — &> ALule
52623@_—_— 210 ¢cNG P 32 cH G 3 N g 3 F2F Fo cng
RBOBE]/s]/5|u 2liTa]é [’5\’3\"* iz[ne 18 TA 3% CUOEREEE
&6_>LAC BUS
Ay (2> 1— — JQ ALvo®
L Ltuo
Atves [2>— |/4|// EREHAL Jg«L BARARE Al e el |sEIBYolels &> arves
- 1[Ay 37218, 3 2 | 1[Ag3a 2 18,32 43 2 1By 321 ! I By
(1D tpvsire-[27 s 7452"57 7452457 S 745257 S 74s257
/s uliss s vies /5 vi7s /5] -
(1 c) Maven-{ 2 >~ OF vy 3 72 OF vy 3 2 € Y, 33 OF Y, 3 2
AR 2[6[71% 12[9}7]4 1219171« 4 BRG &
[“7ez40 12>
A
vu7 J-4] ROUNDEN+ PI-38
4 5
“ —
-3y
24500 "5l 3wpoP PI-3
CRG23 L2 % crg 07@ED
<+ le 7156l 14 stisiglio[18 e |713le)m slidulielr8
N QA ABCD EFGH L Il.@xAB e D EFGH L
-4 CR 2 15,
Pi-4b CRG $0[Z > 820 74 ©299 74 5299 1812° 74 <299 74 5299
PI- 48 crG st [2> :32 X UIb6 vieo 15?.,,(UG viee
P3-40 crGek [> Ly e o tlp pe au
]
(Z1D) ¢LRC32 :>—-| e & 7 e f 7 28> cRrG608
@eD crg 2 [2>

P3-45 CRGOEN-[2>
P3-13 crreye-[_>—I ‘ ‘ . 15

(Zip) bWWee +l >
- 2_ FLOATING POINT
PRoC. ARITH HEWLETTEPACKARD
» 02117-6000| -
. = e rsszumr L A0 60001
s e D -12740 -6000/ -53
SHEET ' OF ,

700K MO 3280.0004 FAINTED N DIEFG NG 1030.10 CLEARPRINT FADEOUT *

Page IB -103/-104

ENGINEERING RESPONSIBILITY [sePia 7] | D-12745 -Gooss ol
CIN £ 2 E 6 Ol F) i 15 Y™ REVISIONS VED DATE
% |17 e 23 | |29 [0 [32 [3358 [* z_ S 23 7 m
35 |45 [61 @ L l | B H:‘f52—‘75¢7/a§4z“q25 WAS74.5299,DATE 7 ?f ,ﬁ B
C | PR0-22-4888, ERRORS CoeR (/EEE\ Zok 1/7)3% R
LD PEO-22-540B APDRIL RIS (7537)) Lo TREES
5 BuUS U & [CLARIFIED DWG. J/ o 275
gus <> T dda "]Wj ® BUS v " E;
e BLS ; A 56 x Ik REsiSToR PUIL UPS s TLECES
i Q T T A 1 ’] 233 3n _
15141312 : v5§|4|3 mo]g's‘ Hpg|s, 8) o p" f‘ RN 3. [§10-0278
! : 1 ; | T ~ S 5 -
; ' . | 2 ' 6 U27V4, —— SUBEQB+ Pi-27 & T 3)
P i L ‘ . 6 5 < 21U196 N2
134748 ’ P 3‘7413‘ L s2a0\ g, 7s10 o
[P | i Pl
P3-31 CKIwd [>— 8765 —t 3321 i I TR
g f U201 7415374 | V20! 7415374 | S 3 o b
P34y NREGEN- {3 > d0Eq 5 : %z i gg . 1
15169 i /52 Mamcd
12]1518) | slels2 ECEEEN 1215 ‘ LARGES o ;
cketr [> LeSer e | %321 <3 arce 23 - ?
- : L1YP 74 5374 ; et : 22R3ER ? 5
P3-32 W40EN- > 1 %D 765 — 2] ARe32 o FERRS ' 3
' | 87413 e ‘ |3I14 —s] T 0 6
: ! : ‘ o | RE00 2 ‘ 10%\.!!76 6 ! 124uy127 \, 8 > FixoBd -
i ; | | o j i <3] BRete E] 475260 ez / - orte
= : ‘ t + BRG32 = S all o
] i ; = 3 " F3IRR3% i =
i i : | 15) 13
’ | TT T %200 <] cauaLA+ pi-ig 6] [l
| i . _ai 7 . ; : _
+?5 SN] o7 <a.l] IREG! PI-4 g ; I
ARGOS - 3 o | - I
ge 3 2] 3ldsle| ROL 50 2] 314 L 7[9 <2L] 1RECH Pi-3 Y3¥3» 5
ARGSO [20 S RABCDL = %SORABCDL cgi?_l—‘*[ALUOO 0 3333 o
¢
ABRGSI T2 > s 74Lsi9a e P %aLsios sy G2 —<2] awe 20 | 7
T2 [: " .
ARGCK 3 > [9CRG e p R & 5 g] g0 PRecole —<3] aLusz pa% : o] I Fxse-
CLRA4R-! 2 . EREE ‘g%i 15}4[1312 IBREE s[e 1 v Fﬂ il 5 %gi—H‘—{ALUOI 153 === PE=17
— EE) 1. 3 7|1y C22—
ARGE7 -3 s SloRf0igcp b o< |-L| o Q%__,—@ ALUI7 R 3
5 Ol 245 #5240 [o — 3] ALuz , S |
LR J Clk U63 745194 1? Al ye2 24 1 i
$67 15 IR 214 7asis3 25 I
BROG8 [3 Ve [t T - 0
, 2 3l4isie| 7] |so<é 2| 3lalsld 7 Blazz o 5
5R650 [—— SEoFDisco ¢ AT hpco L REEE: 0
nik 7405194 Tk Y203 spa ‘ 2% SEAN e . z .
BRGCK 3 > — “4ctrg, OO o aRq, 27 l : SHuse 9 > PBUSG -
— .) - P3-37
CLRB48 ~ _3_/———[| a2 so== | | 1312 22 415133
BRGO7 3 - : e . ua7 | CLEARROUND — (H--——— | == =i T 0
< T R ‘ _!8 o2, L N Rt 5 53533 % b o
: 40)
I - 2 ROUNDCLOCK 32 1 { 3 1 U106
. N 1 P3~20 33 ! 'Rs ;s
. S 26Tz <] LasTowvep - 34 3
1749 113 168 2| 4 1719 1| 3] 16]18] 2 74500 PI-3 35 .
3210 B3z 10 Az21 0 B3z 0| ! e ® % 76290
MNTSO+ 3 256 5150 ? ~] Aress e S333 ? Bo 12
nTer T2 6lsi U9 ! 6lsi U204 i 37 T T ‘ ver,
2 7152 745381 ! 7ls2 74538 > RouND- Pzg2 33,2 } s
i[; Fazio0 Qée ‘ ’ ‘g | — i
IARD! R :
LOCK AHEAD : GEEENEEL ’ —> 18 Y Y R !
CARRY BUS | | : @ LACCIN 4) RN
Ll 42 U IR f
P —] 4wpor pi-33 &2 1 n i
ALU 3 ‘ - ‘
ps >] _ —J-4 ROUNDEN+ PI-38 45
ALugs [3 : q N
go 3> |4|“52|Em 3 l4|l]52|§!66 F ac I3y PR
A B, [A I, &
faz21%3z 1|A3321%22. ALUO! a7 — i
MPYSLTB{3 >— B |Sc U9 7asas? ;, s o U205 ms257 E a5 -+ 6\ usa™ 6 j
MALUEN -3 >————— B4OE y ' | T VPR —[ALUOO 49 S]s260 , ;
BEGE : 2574 ' PB5SL [> 20 N !
1 R EE |
I o fxsqer 1> 3 PT‘“E i %
; 745240 Z
ul 53 T 3 UB6 \ 5
CRGER [3 > ‘ 5 54 - 13]<260
5NG |55]
OVEl -
CRESO D—_L I 7]|3 &l 5)s] 411@ |81 PR,_FQOW i ——
,
CRGS! R aBCD EFGH L ; 2
CROCK [Bo—— | g U206 U206 ’ - S -
B - 74 s200 74 529 - |
CLRC48-[3 > G G J
8] 2T 3 P3-38 PWRST-
crog? <3} Tl PBSOCLK g [FLOATING POINT
CRGOEN— D | P‘_ZB AR[T HMET 1C HEWLEI’TEPACKARD
RIS TiTLE
[- -
4 IS 127308, 0211780001 |, 1240 60001
o - sene D -12740 -6000-5:
A

Page IB -105/-106

Al i 52 i 53 v hq ' 55 o1e)

ENGINEERING RESPONSIBILITY [g] semin [] - /.27949 »/om/ -S53)
on IZ 3 4 6 8 9 1 2 [1a |15 -rm REVISIONS DATE
6 [17 i 27 22473 |25 [29 |30 [5: 38 [4; A & 27/
o ™ . Gl %] 11 B |50 TP EO0e -FRECRE SORRETEE (78e8) iy 44 |il)z
Felons ,g.}43 Q gfglb C | CLARIFIED Bwi @///u; ggﬁ
TR{ STRTE
w25 > 15 w3142 0TS TEEE o0) ‘05 oo ‘W‘ELW vWIL 02| O ez
PTAE EAppsy > . i |
D ~ . i 31 7(4] 3 13 #l il
PR ERPLRL T - ! _‘L el l 1,4 OF |7,f s D"}ij/l W 5374
Py iy [T N — =
s ' >] zz g "LEQ”E /{ lele/ A
PRsts X7 Er - 5116119
o | ‘ S] ? Sl CE R ui @ A
,ﬂ 3.5 |8 : j ¢4 2]
@&4Dcrem "o 1 \l Q(‘Q, : i, 65 Q‘i} 27
polly) H w3/ #5374
-7 WSO N - > 10£ i 0;_{ : | Dy 32
[433 e ' EEZE # ; ¢ ; 8747
: 7 3 iz H ' i -
T -@e] - —
\ﬁ 4402 o : . T
Sl = | T
5 b ; ‘
l /3 543 10} 454 'S
ok c?fr ST S | | 9 /Dgfbb CEA LT 5 5 | ‘
R T 9% : —— ‘ IS 2 Nup w42 | ! R2-2 41
e Eerit cpe . + ulp ——— ' 169 z S _ (‘ :
Tt Ceaexe T Sy e —— ; ; e sab T % esp ; L T
N i Sl ol 77 Pl - : O CEEER L | /:’j’ PCE /4“7 ‘ | | wi M
4 ‘ — ¥ c - I ’011 : I —
E 720 O 2 A | [ipd & 54 3 4 543 i
i<l @l (2 Gl e 43 | . S CFDCEA f | 947 bCEA R2-3 111
- VOoRTA ! —‘,Zq% % ;” P D ?Lﬁ,, us3 ‘ Vlgp w43 : ‘ VY
Pt sewroe[> s i = = SNy _— 20 0, 347 T B
-l meve ¢ - g .
. g“’” 1:(135;'/ il . 159 g3 4 ‘T 112 1 Pl
PI-g EXPi] ‘ ; Dl
! A E > | L P
138 1 W_@ M {rs
P17 EXPUNFL 4 : {‘”\———o 7% 3 }Wg)
UL \ A Y) -]
110§ B v @ D kL I E
-9 Evrovee < Z 8 ‘ i | _7 l — : ‘ l < %K /
’ }{S (s 3| w14 0l 7] /513 o] ;
_3] 1 ‘ i 7 ‘ T 3 S B sz A5 A A, B BB & 173 Qzﬁ 338 5 : » 6 . LS
e
4|2) ! : % 12 Y{i 74524/ - A us/ s UK usss W#/A JACTAL us/ ”
Eh L s M w47 || A=8_hE 4f 48] 48 _p5_4e8 i i sl | F| |
Pl st i3 iz Ehot2 | e L 6] 432 o] A3 IW | 5
; ‘) E :
| o R A B EE i 5240 5 RA A BRER] & Vol %A% l
] ‘ Gls 74538/ : e — b 745328/
v o T j oo s — » E g 4 L e |
=18 EXPALST | 52 5 FF [,ﬂ_ z RAEFR Lyl P BAF A i
; : 2] 9,8 | g 2| 1] 9] 8 /4] ; /‘KT/B 12095 |
PI-17 A>S— < ' : ‘ 1 : H £ @ iz I
! P o (g 500 4 |
; : o2 27z G 74500 C
1 H -,
Pi-4o ciERA - > — i || 52 ' 3 3 |
i
; 153l IJ el a
: ; ns Rk B, B3 5,8 8, q\jW , e
: [V24 s ‘5) szl [Myl9 ﬁ‘r 1> cveaver rrwy
i ___A-Bour A»4s 4 ALA4 B 588 oK
b PRE THEFE U26 i
j 4.8 A>B /b8 A-B ABY |
) v HEEEET | :
i [N N ;
P3-23 EXPALVEN - 745057
¢ 5{URp®
45240 !
e 14 ve l?)ZJ uz27 2 H T T e e > SwiamP P3-47
53 P g 5 74310
B O >
-3 SkiboP [3 — 745240 .
e — o
I .
3) 65 ;
p1-29 2wpor[Z : : : ‘,bq
74580 - : .

—XPONENT

| e ARITHMETIC
LR Eﬁﬁﬂ Q2i17- o001 12740 -4 000 |

PART NOM!

- | rine D -2740 -60001-55]
STOCK NO 7200-5004 PRINTED ON DIEPO NO 1020-'0 CLEARPRINT. rnnxcur5 [’ 5 2 , 5 3 + 5 4 ? - 5 5 T 56 E ' 2 l

Page 1B -107/-108

HEWLETTEPACKARD

al b a2 b 832 v 84 4 85 4 318
ENGINEERING RESPONSIBILITY gl sera) [D-]127%0 -Goro) -6
e N 2]3 4 6 8 8 11 12 Tia is ™ REVISIONS APPROVED DATE
16 [17 19 21 |2, 23 J25 |29 |30 [32 38 [43 ﬂ_ A S /55‘0&»
il Is—kZ TEC T T [11 |Z |7 BBG. ERROC CORRELTED 778%%) Vhted |
C | CLARIFIED bwag. G,/w%'f 4‘?,5 ,4
CONNECTOR PI__ CONNECTOR P3 _ MPP_BUS
| J2-4a7 MPPBOO
z Jz-45 MPPBO!
3 o Mpyed = J2-43 | meopoz A
4 s - 2h B~ Y J2-39 MPPBOS)
5 EXPOVUNE = . 2% 1 \/Q Je-37 MPP8 o4 BUS @ /
[EXPLIITYPY 3 LLRA DovBLE - 5 J2-35 Mppgo5~ 56 ‘ l : B i - J “L‘ J N o! T
T — ~ SN) w g 98 8 & N ol o S O ~_°p'>
7 FYP yMIE, 2 __%DQ U233 meeBob 9 dﬁ 3 e el %E o o g e al = b e i
B 2 b y D (A V£ K 4 O A o D 3 o
8 - gpsl . —E > Vel QeD)cResp Lo > T g 5| & &8 I & &R 2 8 o e 3 S
= QLR A SinlglE ~ == J2-21 123808, ! ! | i | Tl ! : ! i
__ExeevFe B S i | mocBo8 &) > : ; ;
\Z jx_:fuu el CLRBYT - ;D J2-23 mprEos . croze 12 i | | ! ‘ | i l | Lo
W move - AR B —/' J2-49 g0 @eDcregs (3> ‘ 6. | [i ' i »—' ‘ In Ol -j !6
5z- - Po8/ 3\4]5 '3z|2_|11|0 31456 Z12liia 31456 13h2lniol 3]4ls| e HEECEEEE
R e cerb sz 2 > ve-sSp_meeell PI-3¢ IREGO [4 > 14 i P i ‘ 1413 o — 14z o ‘ 1435 o Cos Al
13 ExpALYSY B ccze 4= J-iB | mpeBiz L3 3210 dae210 22 0 —55210 200 Sz 10 “Baio; S1R22 10 Fr2s O ,
) “ {2 P Pl-41 IREGI |4 > B u47 =8 uis? ———le ue7? =8 UI8? —B 245153 |
14 ___ zdvsedat 386 ¢ 7 Ja-15| MrPBiz —I’S-re 745153 1% %3 R “S153 =G 7sis3 | E»{ uigy 797 {
15 ExPAvS2 i (RC3Z - 3 Jz-1?7 MEPEI4 | 26 oy Y 20 oy o 25 5y ;
{5 > > — T \V,
1 CREBEXP 5> FIXDBE - & Ja-19l___ _mPosisT 7 9 7| 9 2 9 7
17 AGT R — _ :::I FIXSGf — < : }l i
! EyFens THl __F/_vf_ézé+_4'j) p———— .
e LY — ClEARROLMD= T
2C ARG S 7 RothDCLotk i
BREESE _ mPIT= S . j
5; ﬁ:5 ErzvEC - =5 Pi-46 CRGSO 1> 2 3aslel 7 B
— et] ——faRkes {7 >] =Y A
2 >, ZAf - = — -4 SO VA B
.63 45 G LK ——'"@ _ ExPALOZA [jf > Pi-48 CRGSI 1 i {S! g ,
24 ARG 53 / w,lDE,,}/- D P3-40 CRGCK [:q/\,_ rtg . S|
25 PBS55 . WEMK + 7> 3.0
6 PEss¥ - 1302
27 @ we ek + —)
P N — [> aiprid P3-3
o p—LL 122 SH T BRI
29 2uboP + wsmekt = {> wmprit P3-s
20 FPDBL + 3> ui3oEM- = BE‘G5¢ "
Y = D
31 2 WDOP + WA AEF !
22 W5 OEN~ _é; __L#Dﬂ{-__{::> MATS| O / LOOK AHEAD CARRY BUS
35 mdbobm [___ﬁ_/_li_@_k_i—_D X # mmwho;ql N oy m%ml o [oc 0\‘5‘500 o S oldls) Lu=io
24 21V Cp — ExPoEAI— < Sudadomidy dajolal opldd oo oarﬁ!a oajor| ojajon oalon [
i H P
35 CLEARC — — B_’Eiof’f 2 ‘ l { i t ’ }
36 TERM 106D — EYTE 30EM- 5 e i i ! i & I :]
27 PBSSD — PEusd — " | | 1 i i { .
38 mewspedl e [T 7:25;0— ce1 Y mot-opes i 314l 15| lsls 61 4l 12 vmsLsJe slal 2] 1alslsle 3laf 1f2 [“]J;F g
39 et g -m MBLLL — { 3 - = 5 -
3 ljeRFuwu crb Lk 60%"' P' CZPL P3 i Gb%el P| GZPZGS%‘ %%GHT G2Pz (’3% Cb% Gk | Gz% 63%‘\ _
. B D 5
4401 S L/ 2 oo 2 LACCIN [3> ey WS sz Bl Uss 745182 Bley US4 7asiez Bl yeq 745182 ;
L — EREAE Y @20 i G P G P) \ t
a2 s 2ol — —< cr2 7 1890-058! I L S S SRy %% % duroa S Gurour 1% Qut our |
7 | T - H
43 erpipoveL- £p czwsm/w'—z> Pl | ENE 121l ol 7 ENNEEERE 12‘ 0] 7 :
44 ABRG St l-‘—l—jf> INREL g1) — E’> \ —
45 FPPISP— T ceGozp/— S —_—
46 CRG SC /#‘> i
47 ALUSE < SUlAMP o+ < s : — - —
ag (263) g TS -y P 172 3 104 1PS “ |
o I i 3L4 112] 14his|s] e [+
E— — 170
90— ———‘Lﬁ%——mD i J; i 3 %857 5255
Ble, us3
745182
Cy Oy &
{21 G
‘91"125-? (75> . +5 —
5, cr-21,23-28 | ”
Jon e o] = o
SR ROWE 120, AN = @ 7
20V % LOLuF !
107 /'\IO% 1ooV l
';2;;7,2?,;7; N> Ji-3 EXTCK
o
” - ', ’ - 8 -
5% P36 TERMLOAD- > B FLOATING POINT
—_— : HEWLETT PACKARD
- PI-45 FPPISP-] W ARITHMETIC E "
Tl L
£ 12740 -booo}
S [p— PanT NovaEn
TR D -12740 €0001-56

STOCK NG 9260-900 PRINTES ON DIEPO NO 1020-10 CLEARPRINT FADEOUT 6 I T 6 2 ? 63 * 64 ' 1 6 5 T b b SHEET ‘ of l
Page IB -109/-110

2 <«—CIRCUIT SIDE ——» 50 2
1 ~——e=COMPONENT SIDE ———— 49

IRCUIT SIDE

1 -4———COMPONENT SIDE ———»-49

adl || 1T

b +690
e a ag 83
Xea Xva g9 g < &
< @ < X
w
z0 G0 60 19 y10 1D 029
aAYa AYA \J avYa 7\-
<] 0O @
S| IS8 8 E g1 |8
L] 1L
W
80
N V] N1 V] zalaYs
wn '} 0 n n w0
5 3 8 K 5 3 5
=]
U R LI L
vea —
« = <
SUIS) [B] (3] (3] [s] |3
=1
19 %)) 0L €10 910 6LD
™ ™ [v} 3] [
S8 18] |8 (8] (8] |8
AYa
~ aUa aoa
S a2V o ﬁcj ﬁ:\.
8118 8 N
8 g =) =) m =}
p=}
]
5 L1 o L__J
£ N z1o S0 810
r AvYa ~ M\ 7‘ 7
- & s -
o =] —
: g HEENEEE
v} o ———
mm 1 o —
Ba gl |s |
E] 3
g o
[
QM 10H.LNOD ddd J

BTN

6y ~——30IS LNINOJWOI— |
0% 3diS LINDHID z

uss

(=3

[vss ¢8 [¢

|U82<

N
L= ¢

[t
~N
o

(=2 (=3

j (4]

13
b4
Q
o
629 1€9 YED LED
ava a2l aVa a2
2 2 8 8
5 5 5 5
aVa a2l avalavYa
8 el gl |
5 = 5 S
N\ a’ala"a 7\1
3 3]
5 SEHBE
L | L) B)
voia
829 0£0 £€0 9£9
M 2 aVa
g |z]|g] ¢
5 5 5 5
N\ ﬁ/\u
o ~N o o
g = o it
p=] =] =] 2
£20 2€0 GED
- 5 & 8
) 5 5
B —
— =
5

Lume 23

[we?

U144

NS+
i3

50 2 ~«————— CIRCUIT SIDE———» 50
1 ~«———COMPONENT SIDE ———» 49

£v0 ﬁﬂvvwf
8 8
5 5
) 20)

[\ ﬁf\n

2

5 |8
2

M\
3 |2
=] b=l

>

g
nss (3
utes (%
[&]

KX

E14<t
I U172 (

[
(=3

Lum qg
| v a

(3

I
IR IS I

| U151 <§

Lo p| AV

(45 &\\\m

080

(o

U175

AV TE]

u174

@
<
o

U173

l U1832

80

2 5
5 5
G 953
A (oA
8 8

12
N\ j J
8 £
5 B

uU1s4
| U194 i

o
o]
[3]
2]
w
©

[od =3

-
I
3]
3
S

®

©
3
o

[[(2

U204 <

~
0
Q

EEX.

c61

13

LTV

6y ~——3QS LNINOJWOD——~ |
0s 341S LINJYI Z

FPP Control Card Assembly - 12740-60002

IB-111

IB-112

FPP Control Card Assembly Parts List (12740-60002) Sht. 1 of 3)

iTEM

REFERENCE

(FIRST SIX!

DESIGNATOR

PART DESCRIPTION

PARENT

OPTION PART NUMBER

COMP.
OPTION

nQr—

QUANTITY PER

01

01

01

00

01

00

01

01

01
03
05
07

01
03
05

00

01

00

0160=2055

0160=3448

0180=2145

0360=-1682

0624=0077
1480=-0116

1810-0271

1810-0275

1810-0386

1813=-0119

1820-0681

IC

u7S,83,94,
U112,125,136,162,166
u181,185,187,203

U15'361“1l

CAP ,01UF
C1-%8

CAPACITOR ,00Q1MF
Ce1l

CAP 120UF 10%
C59,60

TERM=STUD SGL
El1=~16

SCR TAP 4ed0x,3]

PIN GRV ,062X,25

NTwK KES 9x200
R 1

NTWK RES 9x1K
R3,

NE TWORK-RES SIP
R

OSCILLATOR 4QMHZ
U200

IC SN74S00N
U16,33,51,54,55,74

102,110,

SN74S10N
S6,63,92,

USS, 155,156,172,
U1T76,195,196,

IC SN74S11N
usdy

IC SN74S20N
Ueé,34,,122,142,

IC SN74S40N
uae

IC SN74Se64N

1820-0685

1820-0686

1820~0688

1820-0690

1820-0691

S8

16

20

13

12

FPP Control Card Assembly Parts List (12740-60002) Sht. 2 of 3

REFERENCE
DESIGNATOR
FIRST SIX;

1TEM

PART DESCRIPTION

PARENT
OPTION

PART NUMBER

QUANTITY PER

01u73,11
03 143,1

05U183,1

3,123,132,133
51,153,163,173
86

IC SN74S74N

01U13,23,31,32,42,

0352,53,

72,82,105,111,

05(114,12(1,124,131,141,
07(144,152,154,161,164,
091171,18/4,194,204

IC SN74S8e6N

01u14,25,197

O1u14¢,

IC SN74S8153N

IC SN748174N

01jJ145,202

IC SnN748133N

V1UaAS, 46/, 106

1C SNT74S51H

01U12,43,103,115

0tu7t

IC SN74S13&N

IC SN748132N

01u192,201

0lled,40,

IC SN74S02N
104,205

IC SN74830N

01U44,66(076,85,96

01Ué5,11

IC SN74S08N
6,126,135,

03U175,206,207,

01U30

01U11,21

o1uel

01035,91

IC SN74LS13N

IC SN748169N

’

IC SN74273IN

ICSN74S8241N
0191

1620-0691

1820-0693

1820=-0694

1820-0998

1820=1076

1820~1130

1820-1158

1820~-1240

1820=-1307

1820=1322

1820=-1323

1820«1367

1820=-1415

1820=1455

1820-1461

1820=-1624

U

25

IB-114

FPP Control Card Assembly Parts List (12740-60002) Sht. 3 of 3

ITEM

REFERENCE

PARENT

COMP.

01

TEST FIXTURE

NO DESIGNATOR PART DESCRIPTION OPTION PART NUMBER OPTION é QUANTITY PER
FIRST SiX C

IC SN74S240N 1820=1633 U 7
01U61,64,93,101,165,
03 18,193

IC SN74S374N 1820=1677 U 4
olueerelr 134,174

DIODE SILICONE 1901=0463 1] 1
01CR1

LED=V SEN 1990=0581 7] 1
00CKe2

WIKE JUMPERS 8159=0005 D 1
0101

EXTRACTOR PC 5040=6009 W 2

RRACE=PC ROARD 5040=6058 W 1

PC RD=ETCHED 12740=80002 w 1

DI370 TEST ADAPI ET13472 1 0
01| TEST FIXTURE

CABLE ASSEMBLY ET13a72-6002 1 0

A

(J

i 2 L3 y 14 J o) l 5
ENG INEER! PONSIB sep) = = -5,
Zem L I 0 8 G A 0 a8 O G R A
_‘ERMLTI_A‘I 2 > & [i7 |18 |8 [0 |27 ENED 3z (43 -
= B‘Y'KRMCI'L\— A Tq R = = B REVISEL = REDRAWH W‘m
== 7, gle - C |FEeT B p7e- 4bo. CGl- pave cove
CLO(‘K; ‘_"/ + >) P’csa- 22-4886- ERROR CORRECTED. Ly 42 7/”/”
o (184y) ey 4l |
p ofe ’
P»;;Qz__ozus-\‘— D Vo2 v22 . & | AD. U2z (5374 (,,,,4517 EETE
cpour B> ST B (> Proaser GER g ey gog wee > vere et | s — vy
@ r 5> INSTRCK+
D A p— ‘I 5> OYFLRS —
gz @ N I 11_1 > ANITIALIZE T1-30

———{23p> PwrsT2-

—{ 2> FePes +

—zu3> PwrsT- P3-38 ZT» As)6E)

Ll_5> PP2RS +
EXECUTION R3
Begin () IKWVT"G
H { > 11-306
23 > EXE L BGN —
{2,3> EXEcBGN + A (4D

EXECBGNE +

CLRABGN —

FLOATBGN - (4)1C

PWRONPP(- Pl-45

{16200+

ABZERO —

BRGZERO +

AGTB BERO -
TIEVPRPI
ARGk~
1!,11,£ @ e
__n@—l_ ARGCKI +
: B BRGCK!I—
l BRGCcKI +
FLOAT + [c[Tp - 3 e
= &1 3153 S — > J1-39 mraize 3~
G3D leEqr [5>— 2oty g |1 — [T ExPINCK P3-33
o1
G irege[5> = T B =
@D cr | Bﬁ:_l - e3> a3 mwmanzee -
(Z3B) FIxoR FLT- |5|4 - e
EED)reeez | i >WITNEK P3-25 ~
T 5> N ‘F;?\f’m > W2iNeK P3-27 -
(EEDF PcoNSTeR+[5> aali35) S W3INeK P3-29
~=oa iz N} P3-31
FLOATSGLY (S| 4> 0 ""73 5 v > w4 iNck P3
(B3B)FLoATDBL+ | 5 > nlY . +{ > exPUINEN-PI-I8
= - tui3h > WIOEN-P3-24
INREGEN-{ 5 > 4 2968 P ol
INREGENH[5> =D —> wzoen-P3-28
Dpid ,
PP2RS2 |- : ,—ob&g»—’;@i‘g, — > w30EN-P3 -30
V136 % — {" > wyoeNn-P3-32
W - f _ Pl- —
il iy ~0bBl -0598 l:> WESOEN ! 32
iin
1" uvq
:us::\«é 2l T o > ExPoEN-P3-34
% iz BG 'S Vots
1RG00 [5>— | “oe8s LA > BYTE 20EM- P3-35
IRGoI [53> D BYTE 30EN -P3-36
FlxoP+ 52k I
.
|
s
PI-I7 AGTB-[2> ey -
=a
PBUs st > i
A L‘)3 D 12740 FLOATING
’;?'U,Slgsg & 77132 Tff/”T conTeoL HEWLETI‘EPACKARD

SEE KARDEY

NEXT ASSEMBLY

12740 -40002

PART NUMBER

FINISH ~~ | SCALE

D -12740-60002-51]

STOCK NO 5280.0004 PRINTED ON DILFG NO. mx.T 1..».,." Faveour

‘b SHEET 'cr]

Page 1B -115/-116

2.1 | -
22] 22 v 24 | 20 | 26
_ S N D TR T
=i Arroven | oae
CAVES =l e [(Ea [T [PR FIa 3 ECED] ey = Al
1 = A - = CLE. - = N
o emiin N . 2D =N ARBCTL ICAY.] 163, = o3 Z PEVISES § AFELAG (o’ T L @
Lot ,ifhvz— ALUOLY B~ NORMPREP L+ NORMPREPZ 4+ MovFLETL 3~ R c Pco- 1)14,5 BG .ERRORS CORRECTE S /
Ta3a e (1844 F st Jity,
Gy i
@ @ é’qj @) @) MOVELCT L= @ @ D | CLARIFIED Dwg ’14’4@ Tt
de®) NS ==
NORMPRE P1— NORMPREP 2~ EXPOVFL+
BRGZEROH | > T P! Exppl(%%vrl_q. oo
DvoP4 | > |
A ol - »
2l {13) L
0]
18 S 00 4 s
&
u vl msﬁszqa A
Ay OVERFLOW
4 15 ! couDiITION
MOVFL+ | 3 > l
374
—
AZCﬁTB«k{ 2 > 1.5 > OvERFLOW—~
MOVFL — [3 >
—
kswe o L 7
&2 - mrae B —< Pz
I 9
B 4 I 250k 5
rwz%:‘(§+c] 5;2@ > @ DIAGOP 4+
SWPDLV)@ f
EEY-S) 4 '
5 [s v
n9s 153
4 sio 6 sty NORMIALIZE !
_PREPRIRATION —————{if >TERMCTL-
Bl seeer- e3> [@RIT-VRE-1-9}
SWP DELAY l
4 GAuALZE |, -
Exetir ol &) ! 5% 5374
28 ; I
;z{'j‘% D\Q] :] 2‘33 SD‘Q’%‘;DZQ "‘piqi upéQé DZG 1
e VB gV, JZ Seo DLV s I L R U 62 TEaecTLA
g 537) %e
@D e &l S S a4 s S
46A TERMINATION
. oNTRAL
CLocK 2 4_ —
— | ~|--m|an|TissA overFLOW coune |ommmT over oo g(z
Y Flow TERMLOAD—
() PI-3¢
CEY 183|564 "_:F_‘ (— DECISION S241 l5ag
(wen)
] Frxor+ [Esb— :i:D z g2 B 2 i3 5 |
: 3 500 YL
9 13 V18> . B~ 3564 o~ EAL,Aﬁ
Su”j,’ZE 4 s64 s B B PAM BR) ———J=xeqg-
m —a
exPsign [> | u <Z34 poe+
Pi-08 —- *“—;gz u@ | J 2
Zm
AGTE — > 6y - 1 | L quarD)
PI-17 g S0, l i T s6k 53] j T ses 5 Pi- 15
expequal-{__ > QDQ‘ /[z] 3 7] i (o3 fs s2aolvigs L—— JROUND-
P34l 17{22 13]Va3 . PwrsT-] | %) see [Fxor— Pi-4z
7564 1 N P -
0 1" > af RO UNDEN =
- R i} 5364 ony . Vo —{«> [EY
o| Firor- gz . o e [camezur [
M gyl o D
5 ANRYIN sSwame itz o | " ——— D CLEARROUHD -
cwamp o] | 9 seh | ~|RounD| conTrOL- o P3.19
+D 4 i S vby 5| b gl ! |
P3-47 $00 4 D& s " B4 =rEcseN-
10 Zoo 7% g SCk So8
4
_@,— 240 MALIZATION IR
374 S374 7o (AL
1
AGQTBZERD- T[> 3 e ARGSSB ¥
L= L8 | I
—] FEPsUB
s e (i8>] B
103 PWRST 2~
EXECBGMATTRS. ° 4 ‘
-m ‘.'g} @PWES\‘;_
1 v3s
|N\T|A|_\7_Ea® °] Z% Elf CL;?_ES%‘—_
DIVEMD@ 2\“‘; 4 [————-—————IL_Q\uuoegnaw,
MOTERM4- =
gy 3 sén JL_5>u~oEerow+
4 T FIfDBS. -
pSiiris \ UNDER FLow
] stuc@ Zluib3 O !l"; '(51 _f] cONDITION
™ PPt [S B S6t cixsgd- Emsglt FIEDBL+ TEXPUNFLY cipcw 4 | LD
P3-17 HERUG= 2N L2
) L.
Gz 133 =)
Bve co+[S[3— ! 2 r; - o & ER i
-ISGBZBEEO ED BEI%;L 13 sé4) O sWwamMea H e 3 @ [\) EXECUTION
5240 SWAMPSBGTA + SwWAMSI— SWANM DA — ANOEMLZ D + PBUSO- FPPRS+ NORMCTLI— CONTROL HEWLE”I'I‘EPACKAHD
+8 415 G3D P3-37 CisA) Eaall e
12| aBzeeoy<lSF—— &) 3-3 LY SEE CAOOEY 370 -conat
B NEXT ASSEMBLY paRT NOMBER
p— Lms D-i2740-60002-5;2
4 24 - o5 7 56 Co

$TOCK NO. 5260-0004 PAINTED ON DIXPO 40, 1620-15 JLEARFRINT FADEOUT

22 I

23

Page IB -117/-118

=) ! 22 | 22 v 34 22] 20
ENGINEERING RESPONSISILITY Lol seria) D- /12740 -60002- 53)
(23p) -2 R PR e T N GO R L I L O) pom pep—— I erovED 2”25
VTN) l“> N (A (T (- = 333 |38 = |+ -
HT — ol % " il B\ FELISED £ Frihawn s
sévé/AI;dPsBGTA-H_g\ rﬁ 4> MPYCKRCINIT | < | Feo-72.48b6 - 20%0% corRetTen (857] | @v % A
wtyonw - D 2] Ceilacd i) 78 125F7
INITALIZATION so0 . 4> MDEXPCTL 5—
EXECB K g _WAL___ _?n_‘ V103
G2’ 8 = 2 3 & -
Exec2 5515l > 0% CEp vl {7 > mosxecTi 6 - FED)
ju8z véz PIXA uT2
780 _(iy Am 1 vto3
AR ZERO 1] D> 2 ek ez, = A
v o Fore $374 [S37t 13Y 574 '
%Gk)| 240
GZQLC‘“B 1[’/ {7 - . vei
() - 3 _ -~
e esre- [T EELE . Lo > monwemas o2
& g r— (7> mevekez -
[eNTEN- l 3 -
L mPYor+] £ 225 7> MPYSHFTET -
2
8 -
— 4rA Divor 4 ,_,%{@’ 4> DivsHFTLT -
<k - [pwrsT 2
MDLSH I FT CTE = L D“ MDALLUCTL A (ZTAY)
; Maos3 |
MPYDP+ MPYSH_L 19 & @ SEiCY
M| 12 [2 45> AR (SE)
o DV TERW T =
IGED) 5 ! ‘;5; é —{ 2> mevenp
DivorP+ |92 = g ’
%) 2
1 3)
DWSH | ; 31ty 21D, (AR ST
. T 24,55 MO TERNA -~
: £NT 2E RO =
5 MDSHFT‘CTLZ] J i D 1z DIVEND + B
f AR PADSH J* vz
- 510 374
=
T TieurP 1
Mm;us-p}— D)VSH} ~
— G > mPyekci-
MPYoP-[5
CHTzslzo-}
- e
+—{PwesT2-
i
— TR > MPYSLT=
2 soo P3-2
| Soo]
L 4
vizz\ 6
[suErery cke2-} i
CNTZERD {.]____‘ in MPY =
C 2 | 'hEDADSB 4 & < 5| 1Rgor (53A) =
V exeeci+ 52> —.@0222 v i} {MDA_LJ(_T_4+ EXECBGN—@ s -
S R —{ewva <) ie6i-GID
ARG5S R o
pl-24 > Joee 4043 75| 3woor (53R
DIVOP-[Z > u : 4 see 3551 -
@. Toad) vy > Diveo +
NORNMPRER 24— $5) Pi-34
3" <02 2 ” MPyYel > - o GDcsgi . ALEE
_ i P3-05 < PcB A
ARG 54 Vo22) 2 12[Fs]9 LASTDIVC @ - CNTLD LD Lo
P —> oy 12> 5,; > r= J ’ZJ/D S:J(:Z‘; »—;u/p vl
. s86 e P ;K - C; 2i69
Pl-47 ALUSS > NW 2 71T out 9% 7 cour
o) 3 | 1§ |is o] 15
- UE% en 2 T [
2 so0 TEN
BRGSS W 21 g 800 irend |
p1-21 > Vi s pg qu;[. vie [%> bvsuvs - r;SPcho > {MADSB [enTzero -
RG S5 NG e
Fi-30 > Lty o & >vwapo- ~ ek v
\Nr\'lAqua@ 13 500 ZAA " C240 T
1 NORM PREPZ.— @ MPYOP+
crGoen+[5> -+ > AL2D+ o
e— - 23) &> urve
N3 5 —— { MPYADD -
M T[> ik coz % { > PBss56 P13y z]
D sgée v v33 &> MPrsus - r
137 so0o0 K : 3 | et
S8 i
12, -
)@ 7 > MOVFL i
ny +
ALUDLVES = “ & { 2> MoVFL
IDLVE = T @ PI-11
25 5200 MULTIPLICATION AND »
DIVISION CoNTROL HEWLE‘H‘EPACKARD

mcﬁum.:zcw@———l

Eaa

MDALUCTL 4 _]_<

@ ARG 55B+

TITLE

VARDE Y.

NEXT ASSEMBLY

12740 -4000 2

PART NUMBER

D —12740—60002-@

FINISH SCALE

$TOCK NO. 8280:0004 PRINTED ON DIERO NO. m:u-n%;rau!mr rangouT

33

34

35 |

suEET | OF !

3b
Page 1B -119/-120

4]
J il 22 v .
P2-1,2,34 > e 42 |
3 . Ry E? TnGINEERING RESFONSIOILITY Ll s) W RERT
| I DN PR CR T £ 7 g Tz e |5 = - 60002~
si-800 . o e I ol L A 0 A Wl B el Lol s
co3=x L e34e36 ‘ R ot 2 -
cét c38-¢61 01 pE TRl TP2 TP TRy t901- 0463 = I | £ |Erzro 2 R20%ns PR T L
opF hov J & | Peo-22- 4886 - 220 RS coRvETTES [TBET]] 7| /7' i
i D | LA ETPTED Dwg. Gl ‘L)
PZ-17,°5)1520, [> v ‘ v T 1990 - 0581 r = 5 AR
27, 28,29, 30,4516 %comMau ce-z ABRGS| @
Pl- b
A T2 [Lver
sS40
ARGekI-|) > 6,7,!0,51 REGISTER clLocks okt (TA) A
dz=RmALuoy 2|3 EOUALACK_J; 7 ack
DA vs— 23> 72] Lo (3B
(R B MDLSHIFTETL u‘} 3] 166 v3s 21l
Z88; [3 MDALLIC TLA— 2 2
BB, MOTERMS. 2 ; 6133 73 ARGCK
= (24D [z 2 NORMCT Li— :L—/ |s2y41 pP1-23 Lock3
ZaA, [Z>MovELCTL =~ ry Gahd
_| @@@®recmionn- [2>—0 ! I crods ZSD
208 P3-50 ZLB)
PwesT-[1Z5> L3 SYSTEM CLOCKS
@LEARECN.— P 6l B
4 ek e ow 1 5
= L RSTZ|
ETA 2| V36 \ g SwebLy—~| 2 7
GeB,, pvere ->— H 520 mcgscgg ALunLvE-(Z3E 2> 4 Aso
MPYcKe2=[3 > 2 GEDMPYSHETRT [B> 2T o ‘I
! (FEA) mpawicTiz- [3 ; 1 - > argsy’
gw»\mcﬁbf cas 3> It ! i 21332] P/-GM. MPYADD-@
2] 5 5"2 ’_@E [2 >——ove cTli= G2D)pwavo-[3 > MNTS @
Bl seusa + = @D—————D PBUSOCLK ELES —RMcTTT — [2 > o od
Pl-liy 2 M Pi-28 i
AgTpaEro-[1]2] e l; 5; B
owoniad 2 48y ps\ B DIVSHETLT MPYSUBH%
cAl=) 3la 2 LT=12 DIVSUB—
T e] $30 ROGuB Lok yprmpRERI- -[2 >
Equg;zu-p{ 2 ! MANTISSA ALU CONTROL
T2 A
INITVALZE D—_—___ I
O SA s . s
= 5
FPeuB+{s]2> is) CLRABGN~[T >
>A 4 oo % o CRGSO
> v Su0 Begek | . 500
o5 + i 94 / P3ore J PI- 4G FixoP— 2
SuBE@B - : !
(EZBDIVo P { : 87
P27 S240 Bek pvo® £ 5> k4 ° 2% , 598 «
2 oo FP CONSTANT [5 > 13y CLEARAGD—
cLonTBGN -1 > 6 @EBEXECBGNB+[1 >—1 P P34
de2> 4 AEXP FLoaT+ 5!
1 (3 RrGoEN-[5 >
Mmg\gg_cn_s-@ oo 6 —— >ceres) FIx0P+[5[12> CLRADOUBLE —
@) izl Y cKAEXP Pi- 48 T@\—m P3-6
s 22 P Yo AZ-E'/B
z T\
| E3BMPYoPr + FLOATDBL-@__ e[> cLesra3z-
$ so0 P3-7
r 1,590 FIXS6L+[E[2>—
Cl FrxorpLT-[5]> [
FLOATSGL+[S[T> c
seG ekl +[1 > i3 > PE;ASINGLE_ ~
- A
I3 MavFLCTLY ~ |] o,
RGCK"D——'— = 12 BEXP d B ,3@0 > creara-
EQUALBCK —| »] 3wpoP - 4 so0 Pz -8
I
V76 2 o2 5
P CKBEXP NORMPRES) — | BRGCKI +|—)o- 6
3] 20 Bi-16 Yo c, I ies) (> ctearpus-
: 2WDOP :) S—— | P3-10
] 4§ $09
T nl.)s ¢
_ PWRST2 - 1z 5 cLEAR
swaMe 1] — J 9{v26B\ 8 CLEARBCT —-} 12 ?73‘4—1253Z
- i3
[TERAEDS 220 FP ConsTanT-[5 >— 23 4)2
v SC . e [clea
PWR S0 > B - —
e } z e P3-1
e | (2]
swaMB 4= | 2 L _%lvzeA\ & 2 38
[e=3Y 27 4 o _ J MDEXPLTL 6-[3 > 1} sz EXDLD - i :&' { > cLearc 48-
S L >Ewee z o | g P3-13
So8 1z
| REGISTER MODE CONTROL UNDERFLow £ [> ceenr csz-
T CONDITION '\ i3 508 P3_15
~ ™ cteare-
D Pl-35
EXPALUSI REGISTER CLEAR LOGIC D
SNVAME —E, Pio13 .
Gzo 4
| E—
t 3 ROUNDEN — [Z >
ecenre-[2 2[vés)2 Szo
508 EXPONENT ALU CONTROL Clocks AND
Y 3 D MODE CONTROLS HEWLETTEPACKARD
MPYCKCINITA ExXPALUSO b3
L3> P10 SEE KAKDEX 12746 - 6000
STOTK NG, $280.0004 FRINTED ON DIERG N0 mn.zr.rmm Faptour NEXT AvsEeLY PART “‘-’"“E"a z
1 23 T vl | ecnse D -12740-60002-54,
LU J
r 45 46 BHEET ' or,

Page IB -121/-122

.-

~
S| j o2 | o3 y 4 25] RIS
ENGINEERING RESFONSIBILITY [seein 7] | D-/2740 -60002-55
T FFFTFFPFTFPFT FFF e eeveons Areoves |_oaTe
{1 > Irg00 i Gl L S = R S R
L3> e = il i B\ REVISED £ T2 ERA a7 lezz7m |
7 tRGgot C | CLARIFIED DWG, \’D//ﬁ tﬁ/j{,-g I
u M = e T e e >
2e a2 > 2wpop PI-29 | Gt ol oa "DaTE Gote. o ma L e Wy {2";}50
= 1322 8 L 3 CEA
viot %}5 3> REGI-(B2C
2 8 9 -
—~ I_QOS“ - 1624 —58> 3wooP Pi31
- 18 19 -163 8 132
J2-47 wmpePmds [>— > q 1 Gl B {> tesgo PI1-39 .
(N -
T2-45 MPPEROS 17 @w ,7'\'2' @ 4w poP PI-33 - OR SwD OP ~
J > 35
273 8 v 5
6
Vsl '——{-ﬂ’a > IREg102FIX Pl-G
4 _o6BI
Te-u3MPPBOZ [> Yo g} [T> irss2
T2-39 MPPBO3 [> P {1> 1=es3
{ 1> I1REGH
T2-37MPPEOL [> o 2 % ———{2%> FPsUB+
7 A I SLs {3 > mpvor-
T2-35MPPROS [> — — . Tlp @ 3> owor B
T2-33MPPROG [> 4o @ zsa
~ 2N\ FixoP- (ZiC
J2-25 MPPRIT > 2o O >
ck el
" uiot
4 6 DIAGOP+
| % —12>
7NG3 T mP (D e EEE
(5B iNsTRCLE [T > 38 MPYOP+ (21D (AIB 4B
% NG 23> Divor + DA Gw @Ec
»n Z1633
v)3“ 9, EXEC 2+
1115(- 0681 T 2 B
7z o2 2,5 EXEC] +
7| 685
3 -
1 7 5
3 218’ -0681
TN\ 2,5 FIRSGL + P3-18
240 z e
gubl ;]%)Ok |, 4> FLOATSGL +
B2 w5, £/ 1322 o
P> T
o 5%;3 - 112,(;- FLOAT + (U1C o 21
ust : vl @ FLoaTDBL -
5 o068 |13 rd { I > FloaTpBL + -
Y93 Ze
- ‘:’s 5 12> Fivor+ (E8C)
s s TN 2 [Z > FxpBL+ P3.22 '
, b ise AB2ERD +[1_>
vig2 ~1633
NG e —{_> FPosL P30 PBUSH - [2>
b33 o 1372 _@ EINoRFLT - oS
@ \REG 7 UNDERFLOW +
ol N >
Pl1-7 EXP L+}|2 j C
UNDERFLOW -7 > -1367
v\ 8
EZCB) DIVTERMI - SIS [3> CRGOEN +
CBEA) PWRST-[TZ3> & > CcRGoEN~ P3-4s
EeBE wx E< 3 > cruave—
[oza.! A ovFLRS=[T > 7
77— 1367 __{> MALVEN +
(eh) ExEcBGN —[}|22 r, P3-39
@P\NE’ON pel—| I >
ovee Flow- [Z >
{ > overrrowB- PI-4o
12 5 "
185)
! EGEN +
ZBpreesa+ [T 281
(5APP2RS+ (I
D I > INREgen — P3-44
= > ExPALUEN — P3-23]
[~
. 5 @ FPCONSTANT~ P3- 43
D
(léB)AEGCK!+D 72{;_—‘?; o
—068¢ % FP coNSTANT +
D |27L'O FLOAT“JC]‘ HEWLETTEPACKARD
POINT CONTROL
-
CONSTCK
{T> FP K+ (e ZARDEY. 12740 -boc02
NERT ATSEMBLY PART AGHBER
i D-12740 -6oo002-55
'$TOCK NO. 3180-0004 PRINTED ON DIERO NG. mao~|5|1lm-mm ‘FADEGUT * 5 4 5 5 6 6 SHEET rot 1]

Page IB -123/-124

+— o

SIGNAL NAMES AND DESCRIPTIONS

T
.

|
APPENDIX A |
I

A.0 CONTROL BOARD 12740-60002

SIGNAL DESCRIPTION

2WDOP 32 bit single precision operation
P1-29

3WDOP 48 bit extended precision operation
P1-31

4WDOP 4 or 5 word operation
P1-33

ABRGS1 A and B mantissa register mode control Sl
Pl-44

ABZERO+ A or B is equal to zero or is not normalized
ABZERO- A or B is equal to zero or is not normalized
AEXPICK 1load operand into AEXP from input register

Pl-12
AGTB- A 1s greater than B

P1-17
AGTBZERO- A is greater than B or A equals zero
ALU55 bit 55 of the ALU outputs

P1-47

ALUDLY2- Delay state 2 in ALU cycle
ALUDLY5~ Delay state 5 of ALU cycle
ANORMLZD+ A mantissa 1s normalized (AMAN(55) not = to AMAN(54))

ARG53 A mantissa register bit 53
P1-24
ARG54 A mantissa register bit 54
P1-22
ARG55B+ A mantissa register bit 55, buffered
P1-20
ARGCK A mantissa register clock
P1-23
ARGCKI+ Load operand into A mantissa register from input
register
ARGCKI- Load operand into A mantissa register from input
register
ARGSO A mantissa register mode control SO
P1-42
BEXPCK B exponent register clock
P1-16
BRG55 B mantissa register bit 55
P1-21

(HP 1000 M/E/F-SERIES ERD)

IB A-1

IB A-2

BRGCK
P3-14
BRGCKI+
BRGCKI-
BRGZERO+
BYTE20EN-
BYTE30EN-
CLEARA-
P3-8
CLEARA32-~
P3-7
CLEARA48-
P3-4
CLEARB-
P3-11
CLEARB32-
P3-12
CLEARB4 8-
p3-10

Floating Point Processor

B mantissa register clock

Load operand into B-regester from input register
Load operand into B-register from input register
B mantissa 1is equal to zero or is unnormalized
enable output register bits 31-24

enable output register bits 15-8

Clear A mantissa register bits 55-0

Clear A mantissa register bits 31-0

Clear A mantissa register bits 15-0

Clear B mantissa register bits 55-0

Clear B mantissa register bits 31-0

Clear B mantissa register bits 15-0

CLEARBCTL-Clear B mantissa register control state

CLEARC-
P1-35
CLEARC32-~
P3-15
CLEARC4 8~
P3-13

Clear C register bits 55-0
Clear C register bits 31-0

Clear C register bits 15-0

CLEARROUND- Clear round circuits

P3-19

CLOCK1,2,3,4 Buffered internal 40MHz clock

P3-50
CLRABGN-

Clear excess A mantissa bits at execution begin

CLRADOUBLE- Clear A mantissa register bits 23-0

P3-6

CLRASINGLE~ Clear A mantissa register bits 39-0

P3-9
CPUOVFL-
CRGCK

P3-40
CRGOEN+
CRGOEN=-

P3=45
CRGSO

P1-46
CRGS1

P1-48
DIAGOP+
DIVADD-
DIVCO+
DIVEND+
DIVOP+
DIVOP-

CPU overflow - set the CPU overflow flipflop
C register clock

C register output enable
C register output enable

C register mode control SO
C register mode control Sl

Diagnostic operation - used in pretest

Add divisor to partial remainder in ALU cycle
Current quotient bit inverted

End of division, go to normalization preparation
Division is being performed

Division is being performed

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

DIVSHFTLT- Shift partial remainder and quotient left
DIVSUB- Subtract divisor from partial remainder in ALU cycle
DIVTERM1l- Division termination sequence control state 1
EQUALA+ Equalize A - A is less than B

Pl-14
EQUALCTL1+ Equalization control state 1
EXECl+ Execution group 1 = Add, Subtract, Fix
EXEC2+ Execution group 2 = Multiply, Divide
EXECBGN+ Execution begin, operands are loaded
EXECBGN- Execution begin, operands are loaded
EXP100VFL- Exponent is beyond 10 bit range

P1-43

EXPALUEN~ Exponent ALU enable; exponent ALU drives P-bus
P3-23

ExPALUSO Exponent ALU mode control SO
P1-10

EXPALUS1 Exponent ALU mode control Sl
P1-13

EXPALUS2 Exponent ALU mode control S2
P1-15

EXPCNTUP+ Exponent registers count up/down mode control
P1-6

EXPEQUAL- A exponent equals B exponent
P3-41

EXPINCK Load exponent from MPP bus to input register
P3-33

EXPLD-~ Exponent register parallel load mode control
Pl-4

EXPOEN- Enable exponent output register bits 7-0
P3-34

EXPOVFL+ Exponent has overflowed
P1-9

EXPOVUNFL~ Exponent is not in 8 bit range
P1-5

EXPSIGN Sign of output of exponent ALU
P1-8

EXPUINEN- Upper exponent (bits 11-8) input register enable
P1-18

EXPUNFL+ Exponent has underflowed
Pl-7

FIXDBO+ If high, P-bus bits 23-0 equal zero
FIXDBO- If low, P-=bus bits 23-0 equal zero

P3-16
FIXDBL+ Fix to double integer operation is actilve
P3-22
FIXOP+ If high, fix to integer is in operation
FIXOP- If low, fix to integer is in operation

FIXORFLT- Fix or float 1s in operation
FIXSGO- P bus bits 39-0 equal zero
P3-17
FIXSGL+ Fix to single integer is in operation

(HP 1000 M/E/F-SERIES ERD)

IB A-3

IB A4

Floating Point Processor

P3-18
FLOAT+ If high, float is in operation
FLOAT- If low, float is in operation

FLOATDBL+ Float from double integer is in operation
FLOATDBL- Float from double integer is in operation
FLOATSGL+ Float from single integer is in operation
FPCONSTANTEN+ Fix/float constant enable on to P-bus
FPCONSTANTEN- Fix/float constant enable on to P-bus

FPCONSTCK Clock the load of the fix/float constant
FPDBL+ Fix or float double integer is in operation
P1-30

FPPRS+ Reset FPP

FPSUB+ Subtract is in operation

GUARD1 First guard bit of round operation
P1-19

INITIALIZE Connector Jl external initialization signal
J1-31

INITIALIZE2 Connector Jl external initialization signal
J1-33

INITIALIZE3 Connector Jl external initialization signal
J1-39

INREGEN+ Input register output enable

INREGEN- Input register output enable

P3-44

INSTRCLK Load MPP data into instruction register clock

IREGO Instruction register bit 0 buffered
P1-39

IREGL Instruction register bit 1

IREGIORFIX Instruction register bit 1 set or fix operation
P1l-41

IREG2 Instruction register bit 1

IREG3 Instruction register bit 2

IREG6 Instruction register bit 6

IREG7 Instruction register bit 7

IRGOO Instruction register bit O

IRGOlL Instruction register bit 1

IRST Instruction register store - MPP control signal
J2-31

LASTDIVCO Last quotient bit developed
MALUEN- Mantissa ALU output enable

P3-39
MDALUCTL2- Multiply/divide ALU cycle control state 2
MDALUCTL4- Multiply/divide ALU cycle control state 4
MDEXPCTL4~ Multiply/divide expomnent sequence control state &4
MDEXPCTL5- Multiply/divide exponent sequence control state 5
MDSHFTCTL- Multiply/divide shift cycle control state 1

MDTERN4- Multiply/Divide termination sequence control state 4
MNTSO Mantissa ALU mode control SO

P3-48
MOVFL+ Mantissa has overflowed

Pl1-11

(HP 1000 M/E/F-SERIES ERD)

MOVFL~-
MOVFLCTL1-
MOVFLCTL3-
MPBEN

J2-41
MPBST

J2=27
MPPBnn

J1
MPPCNDX

J2-9
MPYADD-
MPYCO

P3-3
MPYC1

P3-5
MPYCKC1l-
MPYCKC2~-
MPCKCINIT=-
MPYEND+
MPYOP+
MPYSHFTRT-
MPYSLT-

MPYSUB-

NORMCTLI-
NORMPREP 1+
NORMPREP 1~
NORMPREP 2+
NORMPREP2-
OVERFLOW+
OVERFLOW-
P1-40
OVFLRS-
PBUSO-
P3-37
PBUSOCLK
P1-28
PBUS54
P1-26
PBUS55
P1-25
PBUS56-
P1-37
PLRO-
J2-29
PP1SP
J2~11
PP2RS
PP2SP

Floating Point Processor

Mantissa has overflowed

Mantissa overflow sequence control state 1
Mantissa overflow sequence control state 3
MPP enable control signal, send data to CPU

MPP store control signal, store MPP data
MPP data bus bit nn
MPP conditional signal, FPP ready/busy signal

Add multiplicand to partial product in ALU cycle
Current least significant bit of multiplier

Current next to least significant bit of multiplier

First clock to shift C in multiply’s ALU cycle
Second clock to shift C in multiply’s ALU cycle
Multiply’s clock initial operation decision
End of multipliation, go to normalization preparation
Multiplication is in operation
Shift multiplier and partial product right
Shift ALU output twice to the right through
mul tiplexer
Subtract multiplicand from partial product in ALU
cycle
Normalization sequence control state 1
Normalization preparation sequence control
Normalization preparation sequence control
Normalization preparation sequence control
Normalization preparation sequence control
Overflow control state
Overflow control state

state
state
state
state

NN

Reset FPP’s CPU overflow flipflop
P-bus bits 55-0 are zero

Clock P=bus equal to zero register

P-bus bit 54

P-bus bit 55

P-bus bit 56, inverted

CPU latch register bit 0, inverted

MPP special control signal 1; qualifies MPBEN, MPBST

PP2SP received, prepare for FPP operation
MPP special control signal 2; initates operation

(HP 1000 M/E/F-SERIES ERD)

IB A5

IB A-6

J2-7
PP5
J2-3
PWRON+
P2-25
PWRONPP1-
PWRST-
P3-38
PWRST2-
ROUND-
P3-42
ROUNDCLOCK
P3-20
ROUNDEN+
P1-38
ROUNDEN-
STOV-
J2-1
SUBEQB+
P1-27
SWAMP+

P3-37
SWAMP1-
SWAMP4+
SWAMP4—~
SWAMPSBGTA+
SWPDLY1+
SWPDLY1-
SWPDLY4+
TERMTCTL1-
TERMCTL4~
TERMLOAD~-

P1-36
TIEUPI
UNDERFLOW+
UNDERFLOW-
WIINCK

P3-25
WI1OEN

P3-24
W2INCK

P3-27
W20EN-

P3-28
W3INCK

P3-29
W40EN-

P3-30
W4INCK

P3-31

Floating Point Processor

CPU clock phase 5 timing signal
Power supply voltage is up

Power on or PPISP reset
Power on, PPlSP reset or PP2SP reset

Power on, PPISP reset or PP2SP reset
Result should be rounded

Round register clock
If high, enable rounding ciruits

If low, enable rounding circuits
MPP control signal to set CPU overflow flip-flop

Subtract and equalize B is in operation

Swamp condition-exponents are too far apart to
be equalized

Swamp sequence control state 1

Swamp sequence control state 4

Swamp sequence control state 4

Swamp condition and subtract and B is greater than A
Check exponents for swamp condition control state 1
Check exponents for swamp condition control state 1
Check exponents for swamp condition control state 4
Termination sequence control state 1

Termination sequence control state 4

Termination sequence control load all registers clock

Tie up to +5 volts

If high, underflow control state
If low, underflow control state
Clock input register bits 55-40
Enable output register bits 55-40
Clock input register bits 39-24
Enable output register bits 39-32
Clock input register bits 23-8

Enable output register bits 23-16

Clock input register bits 7-0

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

W4OEN- Enable output register bits 7-0
P3-32

W50EN- Enable exponent output register bits 15-8
P1-32

A.1 ALU BOARD 12740-60001

SIGNAL DESCRIPTION

2WDOP 32 bit single precision operation
P1-29

3WDOP 48 bit extended precision operation
P1-31

4WDOP 4 word or 5 word operation
P1-33

ABRGS1 A and B mantissa registers mode control Sl
Pl-44

AEXPCK A exponent register clock
P1l-12

AGTB~- If low, A is greater than B
P1-17

ALUnn ALU output bit nn

ALU55 ALU output bit 55
P1-47

ARGnn A mantissa register bit nn

ARGCK A mantissa register clock
P1-23

ARGSO A mantissa register mode control SO
P1-42

BEXPCK B exponent register clock
P1-16

BRGnn B mantissa register bit nn

BRGCK B mantissa register clock
P3-14

BRGSO B mantissa register mode control SO

BYTE20EN- Enable output register bits 31-24
P3-35

BYTE30EN- Enable output register bits 15-8
P3-36

CKOTR Output register clock

CLEARA- Clear A mantissa bits 55-0
P3-8

CLEARA32- Clear A mantissa bits 31-0
P3-7

CLEARA48- Clear A mantissa bits 15-0
P3-4

CLEARB- Clear B mantissa bits 55-0
P3-11

(HP 1000 M/E/F-SERIES ERD)

IB A-7

IB A-8

CLEAB32
P3-12
CLEARB4 8-
P3-10

CLEARC-
P1-35
CLEARC32-
P3-15
CLEARC4 8-
P3-13

Floating Point Processor

Clear

Clear

Clear

Clear

Clear

CLEARROUND- Clear

P3-19

B mantissa
B mantissa
C register
C register

C register

bits 31-0

bits 15-0

bits 55-0

bits 31-0

bits 15-0

round circuits

CLRADOUBLE~ Clear A mantissa register bits 7-0

P3-6

CLRASINGLE- Clear A mantissa register bits 23-0

P3-9
CRGnn
CRGCK

P3-40
CRGOEN-

P3-45
CRGSO

P1-46
CRGS1

P1-48
DIVCO-

P1-34
EQUALA+

Pl-14
EXPIOOVFL+

P1-43
EXPALUEN-

P3-23
EXPALUSO

P1-10
EXPALUS1

P1-13
EXPALUS 2

Pl-15
EXPCNTUP+

P1-6
EXPEQUAL-

P3-41
EXPINCK

P-33
EXPLD-

Pl-4
EXPOEN-
EXPOVFL+

P1-9
EXPOVUNFL-

C register
C register

C register
C register

C register

bit nn
clock

output enable
mode control SO

mode control Sl

Current quotient bit inverted

Equalize A

Exponent is beyond 10 bit range

Enable exponent ALU to drive P bus

Exponent ALU mode control SO

Exponent ALU mode

control S1

Exponent ALU mode control S2

Exponent register

A exponent equals

count up/down mode control

B exponent

Clock exponent input register

Exponent register load mode control

Enable output of exponent register bits 7-0
Exponent has overflowed

Exponent is beyond 8 bit range

(HP 1000 M/E/F-SERIES ERD)

Floating Point Processor

P1-5
EXPSIGN Sign of exponent ALU results
P1-8
EXPUINEN- Enable upper exponent input register bits 11-7
P1-18
EXPUNFL+ Exponent has underflowed
P1l-7
EXTCK External clock to FPP
J1-3
FIXDBO- P bus bits 23-0 are zero
P3-16
FIXDBL+ Fix to double integer 1is in operation
P3-22
FIXSGO- P bus bits 39-0 are zero
P3-17
FIXSGL+ Fix to single integer is in operation
P3-18
FPCONSTANTEN- FEnable fix/float constant on exponent P-bus
P3-43
FPDBL+ Fix/float double integer is in operation
P1-30
GUARD1 First guard bit of round register
P1-19
INREGEN- Enable input register to drive P-bus
P3-44
IREGO Instruction register bit 0
P1-39
IREGL Instruction register bit 1
Pl-41
LACnn Look ahead carry bus nn
LACCIN Look ahead carry circuits carry input
MALUEN+ Enable mantissa ALU to drive P-bus
MALUEN- Fnable mantissa ALU to drive P-bus
P3-39
MNTSO Mantissa ALU mode control SO
P3-48
MNTS1 Mantissa ALU mode control Sl
MPPBIOnn MPP I/0 bus bit nn
J2
MPYCO Current least significant bit of multiplier
P3-3
MPYC1 Current next to least significant bit of multiplier
P3-5
MPYSLT=- Shift ALU output twice to the right through
multiplexer
P3-21
MPYSLTB- Shift ALU output twice to the right buffered
OVERFLOW- Overflow control state
P1-40
PBUSO P bus bits 55-0 are equal to zero
P3-37

(HP 1000 M/E/F-SERIES ERD)

1B A-9

Floating Point Processor

PBUSOCLK P-bus zero detect register clock

P1-28
PBUSnn P-bus bit nn
PBUS56- P-bus bit 56 inverted
P1-37
PWRONPP1- Power on or PPISP reset to FPP
P1-45
PWRST- PP2SP reset power on or PPISP reset to FPP
P3-38
ROUND- Result should be rounded
P3=-42
ROUNDCLOCK Round register clock
P3-20
ROUNDEN+ Enable round circuits
P1-38
SUBEQB+ Subtract and equalize B
P1-27
SWAMP+ Swamp condition-exponents are too far apart to
be equalized
P3-37
TERMLOAD- Termination sequence load all registers clock
P1-36
W1INCK Input register bits 55-40 clock
P3-25
WI10EN- Enable output register bits 55-40
P3-24
W2INCK Clock output register bits 39-24
P3-27
W20EN- Enable output register bits 39-32
P3-28
W3INCK Clock output register bits 23-8
P3-29
W30EN- Enable output register bits 23-16
P3-30
W4INCK Clock input register bits 7-0
P3-31
W40EN~ Enable output register bits 7-0
P3-32
W50EN= Enable exponent output register bits 15-8
P1-32

(HP 1000 M/E/F-SERIES ERD)

IB A-10

I I l
| FPP/MPP SIGNAL LINES | APPENDIX B [
I | |

FPP CONNECTOR J2
ALL EVEN PINS OF J2 ARE GROUNDED.

NSTOV
PP5 - P5 OF THE CPU CYCLE

MPPIO 11

PP2SP - INITIATE FPP OPERATION
MMCND - FPP BUSY

11 PP1SP ~ FPP RESET AND QUALIFIER

13 MPPIO 12

15 MPPIO 13

17 MPPIO 14

19 MPPIO 15

21 MPPIO 8

23 MPPIO 9

25 MPPIO 7

27 MPPIO - STORE DATA

29 PLRO - L-REGISTER O, FPP ADDRESS
31 PIRST - INSTRUCTION REGISTER STORE
33 MPPIO
35 MPPIO
37 MPPIO
39 MPPIO
41 MPBEN - READ DATA
43 MPPIO
45 MPPIO
47 MPPIO
49 MPPIO 1

O~ W

WU

oo rrN

The port accomodates two external processors which are individually
addressed by latch register zero high or low.

(4P 1000 M/E/F-SERIES ERD)

1B B-1/B-2

+ +
I |

CURRENT REQUIRED | APPENDIX C |I
l

The current required by the FPP control and arithmetic boards is:

TYP RMS MAX

ARITHMETIC @5V 7.5A 9.75A 11.0A

CONTROL @5v 3.6A 5.16A 6.0A

(HP 1000 M/E/F-SERIES ERD)
IB C-1/C-2

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	101
	103
	105
	107
	109
	111
	112
	113
	114
	115
	117
	119
	121
	123
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	C-01
	C-02

