
(

('

SERIES 60 (LEVEL 6)

GCOS 6 MOD 400 PROGRAM
EXECUTION AND CHECKOUT

ADDENDUM A

SUBJECT

Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

Insert attached pages into Revision 0 of the manual dated November 1977
(see Collating Instructions). Except in completely revised Section 6, change
bars indicate new and changed information and asterisks denote deletions.

NOTE: Insert this addendum cover behind the manual cover to indicate that
the manual is updated with Addendum A.

SOFTWARE SUPPORTED

This update supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD
400 software system. For any later release of MOD 400 software, see the
Manual Directory of the latest System Concepts manual to ascertain whether
this update supports that release.

ORDER NUMBER

CB2IA, Rev. 0 June 1978

21004
3678
Printed in U.S.A. Honeywell

-. -. .

COLLATING INSTRUCTIONS ,--

To update this manual, remove old pages and insert new pages as follows:

Remove

iii/blank
v/vi
vii/blank
2-1/2-2
2-5/2-6
2-7/2-8
2-9/2-10
2-11/2-12
2-15/2-16
2-17/2-18
2-19/2-20
2-21/2-22
2-23/2-24
2-27/2-28
2-37/2-38
3-7/3-8
3-9/blank
5-1/5-2

6-1 through 6-11, blank
A-l/A-2
A-3/A-4
A-5/A-6
A-7/A-8
A-9/A-1O

©1978, Honeywell Infonnation Systems Inc. File No.: lSZ3

Insert·

iii/blank
v/vi
vii/blank
2-1/2-2
2-5/2-6
2-7/2-8
2-9/2-10
2-11/2-12
2-15/2-16
2-17/2-18
2-19/2-20
2-21/2-22
2-23/2-24
2-27/2-28
2-37/2-38
3-7/3-8
3-9/3-10
5-1/5-2
5-2.1/blank
6-1 through 6-17, blank
A-l/A-2
A-3/A4
A-5/A-6
A-7/A-8
A-9/A-10
A-ll/blank

6/78
CB21A

(

'-.. _>

(..

(

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual Directory in
the latest GCOS 6 MOD 400 Systems Concepts manual (Order No. CB20) lists the current
revision number and addenda (if any) for each manual in the set.

Order
No.

CBOI
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CBIO
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39
CB40
CB41
CB42
CB43

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 6/Level6 File Transmission Facility User's Guide
Level 6/Level 62 File TransmissionFacility User's Guide
Level6/Level 64 (Native) File Transmission Facility User's Guide
Level 6/Level 66 File Transmission Facility User's Guide
Level6/Series 200/2000 File Transmission Facility User's Guide
LeveI6/BSC 2780/3780 File Transmission Facility User's Guide
Level6/Level64 (Emulator) File Transmission Facility User's Guide
IBM 2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04
AT97
FQ41

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

iii
6/78
CB21A

•

(
• ' ..

CONTENTS

Page

Section 1. Overview of Program
Execution and Checkout 1-1

Symbols Used in This Manual 1-3

Section 2. Linker 2-1
Suffix Conventions 2-2
Functions of the Linker 2-2

Creating a Bound Unit 2-2
Resolving External References 2-3
Creating a Symbol Table 2-3
Producing a Link Map• 2-3

Functional Groups of Linker Directives .. 2-3
Specifying Object Unit(s) to be

Linked 2-3
Specifying Location(s) of Object

Unites) to be Linked 2-4
Creating a Root and Optional

Overlay(s) 2-4
Producing Link Map(s) 2-5
Defining External Symbol(s) 2-5
Protecting or Purging Symbol(s) 2-6
Designating that the Last Linker
has been Entered 2-6

Loading the Linker 2-6
Entering Linker Directives 2-8
Procedure for Creating Only a Root 2-8
Procedure for Creating a Root and One

or More Overlays 2-8
Procedure for Creating a Shareable

Bound Unit Using a High Level
Language 2-9

Obtaining Summary Information of a
Linker Session 2-10

Linker Directive Descriptions 2-11
BASE Directive 2-11
Call-Cancel Directive (CC) 2-15
COMM Directive 2-15
CPROT Directive 2-15
CPURGE Directive 2-15
EDEF Directive 2-16
FLOVL Y Directive 2-17
IN Directive 2-18
1ST Directive 2-19
LDEF Directive 2-20
LIB Directive 2-21
LIB (2, 3, or 4) Directive 2-22
LINK Directive " ' 2-23
LINKN Directive 2-24
LINKO Directive 2-25
LSR Directive 2-25
MAP and MAPU Directives 2-25
OVL Y Directive 2-28
PROTECT Directive 2-32

v

Page

PURGE Directive 2-33
QUIT Directive 2-34
SHARE Directive 2-35
START Directive 2-35
SYS Directive 2-35
VAL Directive 2-36
VDEF Directive 2-36
VPURGE Directive 2-36

Example Illustrating Usage of the
Linker 2-37

Programming Considerations 2-38

Section 3. Program Execution 3-1
Designating Files 3-1

ASSOC Command 3-1
GET Command 3-1

Setting Switches 3-2
MSW Command 3-2

Requesting Program Execution 3-3
Program Preparation and Execution

in the Same Task Group 3-3
Program Execution in a Different

Task Group from Program
Preparation 3-3

Using the CG and EGR Commands. 3-3
CG Command 3-4
EGR Command 3-5

Using the SG Command 3-6
Using the LOGIN Command ., 3-8

Section 4. Patch 4-1
Loading Patch 4-1
Submitting Patch Directives 4-2
Patching Techniques 4-2

Naming the Patch 4-2
Applying the Patch 4-2

Patch Directives 4-3
Data Patch Directive 4-3
Eliminate Patch Directive 4-5
Hexadecimal Patch Directive 4-6
List Patches Directive 4-8
Quit Directive 4-9
Comment Directive 4-9

Section 5. Debugging Programs 5-1
Debug 5-1

Debug File Requirements 5-1
Loading the Debug Task Group 5-1
Debug Operation with MMU 5-2 I
Debug Directives 5-2.1

Planning Considerations 5-4
Setting Breakpoints 5-4
Controlling Output Using a

Breakpoint 5-4

6/78
CB21A

Page

Determining/Setting the Active
Level 5-4

Maintaining a Trace History 5-6
All Registers Directive 5-6
Assign Directive 5-6
Clear All Directive 5-7
Change Memory Directive 5-7
Clear Directive 5-8
Clear Bound Unit Directive 5-8
Clear All Bound Unit Directive 5-8
Define Directive 5-8
Display Memory Directive 5-9
Dump Memory Directive 5-10
Define Trace Directive 5-10
Execute Directive 5-11
End Trace Directive 5-11
Redirect Debug Output Directive .. 5-12
GO Directive 5-12
Conditional Execution Directive ... 5-13
Print Header Line Directive 5-14
List All Breakpoints Directive 5-15
List Breakpoint Directive 5-15
List All Bound Unit Breakpoints

Directive 5-15
List Bound Unit Breakpoint

Directive , 5-16
Line Length Directive 5-16
Print All Directive 5-16
Print Directive 5-17
Print Trace Directive 5-17
Quit Directive 5-17
Reset File Directive 5-17
Set Breakpoint Directive 5-18
Set Bound Unit Breakpoint

Directive 5-19
Specify File Directive 5-20
Set Level Directive 5-20
Start j-mode Trace Directive ., 5-21
Set Temporary Level Directive 5-21
Print Hexadecimal Value

Directive 5-22
Example Illustrating Usage of Debug

Directives 5-22
Debugging Programs Without Using

Debug 5-24
Deactivating Real-Time Clock ~ . 5-24

Section 6. MDUMP and Dump Edit Utility
Programs 6-1

MDUMP Utility Program 6-1
Preparing for MDUMP 6-1

Page

Procedure for Using MDUMP 6-1
Procedure For Bootstrapping

MDUMP on Non-Model 23
Series Systems 6-2
Procedure For RunningThe

QLT And/Or Bootstrapping
MDUMP On Model 23 Series
6/20 Systems " 6-2

MDUMP Halts 6-2
Dump Edit Utility Program 6-2

Dump Edit Line Format 6-3
Physical Dumps 6-3
Logical Dumps 6-4

System Summary 6-4
File System Structures. 6-13

Task Group Structures. 6-13
DPEDIT Command 6-14
Operating Procedure for Dump Edit .. 6-15
Messages 6-16

Appendix A. Interpreting and Using

vi

Memory Dumps A-I
Significant Locations on Memory

Dumps A-I
Locations Relative to the System
Control Block or Group Control
Block A-3

Locations Relative to the Task
Control Block (TCB) Pointer for the
Desired Priority Level A-3

Interpreting the Contents of a DPEDIT
Dump A-4

Finding the Location in Memory of
Your Code A-4

Determining the State of Execution
of Your Code at the Time of the
Dump A-4

Halt at Level 2 A-4
User Level Active at the Time of

Dump A-5
No Level Active at the Time of

Dump, Except for Level 63 A-5
Determining Where a Trap Processed by

the System Default Handler Occurred
in Your Code A-5

Finding the Location in Memory of
Your Code A-6

Interpreting the Monitor Call Number
on Memory Dumps A-6

6/78
CB21A

•

..

ILLUSTRATIONS

f- Figure Page
1-1. Program Execution and Checkout

" Procedures : 1-2
2-1. Schematic of Previous Example

Illustrating Usage of BASE
Directives 2-13

2-2. Link Map- Formats 2-27
2-3. Sample Link Maps , 2-29
6-1. Sample Physical Memory Dump .. 6-5
6-2. Logical Dump: System Summary .. 6-7
6-3. Logical Dump: Tree of File

System Structures 6-9
6-4. Logical Dump: Task Group

Structures 6-11
A-I. Data Structure Map A-2

(

vii

TABLES

Table

2-1.
5-1.

5-2.

6-1.
6-2.

A-I.

A-2.

Page

Designating File Names 2-2
Symbols Used in Debug Directive

Lines 5-3
Summary of Debug Directives, by

Function 5-5
MD UMP Halts 6-3
DPEDIT - Specific Fatal

Error Messages "" 6-16
Significant Locations on Memory

Dump " e "" A-I
Summary of Executive Monitor

Calls .. A-7

6/78
CB21A

I
*

•

• ?

(
•
"

(

SECTION 2

LINKER

The Linker combines separately assembled and/or compiled object units, which can also
be called compilation units (CUs), and produces a bound unit. An object unit can only be I
executed if it is first linked by the Linker. The Linker executes in either Short Address
Form (SAF) mode (2 byte-address) or Long Address Form (LAF) mode (4 byte-address). It I
can create, in either mode, a SAF, LAF or SLIC bound unit. A SLIC bound unit can
execute in either LAF or SAF mode.

Object units may contain external references to symbols. 1 While linking object units, the
Linker resolves external references to symbols by referring to and updating a Linker-created
symbol table. A link map of defined and/or undefined symbols can be produced.

To load the Linker into memory, enter the LINKER command (see "Loading the Linker"
later in this section).

Linking is controlled by directives entered to the Linker through the directive input
device. The directive input device is the device specified in the in_path argument of the
"enter batch request" or "enter group request" command (normally, the in_path represents
a terminal). This device can be reassigned in the command that loads the Linker.

If the Linker command specifies the -PT argument, the Linker prompter character "L?"
will appear each time the Linker expects a directive.

The Linker processing can be interrupted by:

o Depressing the "QUIT", "INTERRUPT", or "BREAK" key on the user terminal
o Entering b.Cb.B group-id on the operator terminal, where group-id is the two-character

group identification code associated with the group containing the task to be
interrupted. A **BREAK** message appears on the user's terminal when the system
interrupts the Linker. One of the commands SR (start), PI (program interrupt), UW
(unwind) or NEW-PROC may be entered at this point. SR causes the interrupted task
to resume at the point where the interrupt occurred (i.e., to continue as if no interrupt
had occurred). If a MAP or MAPU directive has been issued and the PI command is
used, the map operation is terminated at its current location and processing jumps to
the next Linker directive. The UW command causes an orderly termination of the
Linker processing (i.e., files are closed) and processing continues with some other task
in the group containing the Linker.

The NEW-PROC command causes an orderly termination of the task group and the task
group is reinitialized.

Each object unit to be processed during a single execution of the Linker must be a
variable sequential file. The input files may reside in the same directory or in different
directories. Unless specified otherwise, all of the object units are in the working directory
(see "Specifying Location(s) of Object Unit(s) to be Linked" later in this section).

Only one bound unit is created by a single execution of the Linker. A bound unit may I
consist of only a root, or a root and one or more overlays. The root and each overlay may
be up to 64K words (128K bytes). The root and each overlay is called a load unit; a load
unit is loaded into memory by the Loader. When you use a create group or spawn group

1 An external reference is a reference to a symbol defined in another object unit as an external symbol.

LINKER 2-1
6/78
CB21A

I

command, or an LDBU configuration directive, to request that a bound unit be loaded, the
root is the portion of the bound unit that is loaded by the Loader. The root rernainsin
memory as long as there are tasks executing on its behalf, unless LDBU was specified; if
LDBU was specified, the root remains in memory until the system is reinitialized. An
overlay is loaded into memory whenever it is required. Refer to the Commands manual for a
discussion of the create group and spawn group commands, and the LDBU configuration
directive.

Each bound unit has an attribute table associated with it; an attribute table contains
information about the bound unit's characteristics and symbol definitions. The attribute
table is loaded into memory immediately preceding the root.

SUFFIX CONVENTIONS

For input files, the Linker appends the suffix .0 to each specified file name. When you
specify a file name in a link directive, do not include a suffix. The Linker does not append a
suffix to the output bound unit name specified in the system command line.

If a list file· is designated (Le., the -COUT argument is specified in the LINKER
command), the Linker does not append a suffix to the specified name; otherwise, the Linker
forms the name of its list file (Linker maps) by appending .M to the specified bound unit
name.

Table 2-1 summarizes the formation of file names.

TABLE 2-1. DESIGNATING FILE NAMES

Program Preparation
Task Input File(s) Output File(s)

linker Omit suffix. Linker Omit suffixes. The linker appends .M to specified
appends .0 to each bound unit fIle name to form the name of the list fIle
specified file name. if the -COUT argurrient was not specified in the LINKER

command. The linker does not append a suffix to the
name designated in the -COUT or -IN directives, nor to
files named in the IN or LIB(x) directives.

FUNCTIONS OF THE LINKER

Creating a Bound Unit
The Linker produces a bound unit file whose pathname is specified in the name argument

of the LINKER command.
The bound unit comprises only a root unless an OVL Y or FLOVLY directive is entered.

Each time an OVLY or FLOVL Y directive is entered, the Linker initiates creation of a
nonfloatable or floatable overlay, respectively. A non floatable overlay is loaded by the
Loader into the same memory location (relative to the root) each time it is requested. A
floatable overlay is linked at relative 0 (see "BASE Directive" later in this section), and can
be loaded by the Loader into any available memory location. A floatable overlay must have
the following characteristics:

1. External location definitions in the overlay are not referenced by the root or any other
overlay.

2. There cannot be external references between floatable overlays.
3. The overlay does not contain external references that are not resolved by the Linker.
4. The overlay must be linked after all desired nonfloatable overlays have been linked.
5. The overlay cannot contain P+DSP references to any other overlay or the root.
6. The overlay cannot contain IMA (immediate memory address) references within itself.

LINKER

7. There can be IMA references (with or without offsets) to locations in the root or any
nonfloatable overlay.

2-2
6/78
CB21A

..

•

(

NOTE: When the lowest address of a root or overlay has been established (Le., an object
unit has been linked), it is illegal to define a lower BASE address within that root
or overlay.

START specifies the relative address at which the root or overlay will begin executing
when it is loaded into memory by the Loader.

1ST identifies the beginning of initialization code in the root.
SHARE designates that the bound unit is shareable.
SYS designates that the bound unit can be loaded into the system area as part of the

system.
LINK, LINKN and LINKO specify which object units will be linked. The order in which

specified object units are linked, and when they are linked, is determined by which link
directive is specified.

OVL Y names and assigns a number to the next nonfloatable overlay that follows, and
designates the end of the preceding root or overlay.

FLOVL Y names and assigns a number to the next floatable overlay that follows, and
designates the end of the preceding root or overlay.

Call-cancel (CC) permits a COBOL program that used CALL and CANCEL statements to
call overlays by their names.

QUIT designates that the last Linker directive has been entered. Execution of the Linker
terminates after the bound unit has been created.

Producing Link Map(s)

Directives:
MAP
MAPU

A link map is written to the list file by specifying the. MAP or MAPU directive. MAP
creates a map that lists both defined and undefined 'symbols, whereas MAPU lists undefined
symbols only.

Defining External Symbol(s)

Directives:
COMM
LDEF
VAL
VDEF
EDEF

The COMM directive defines a symbol as being labelled or unlabelled common. 2

A symbol can be defined as a relative location or value by specifying the LDEF or VDEF
directive, respectively. The symbol's definition is then put into the symbol table by the
Linker.

The V AL directive specifies a value definition at LINK time. This value is equivalent to
the difference between two external locations.

The EDEF directive permits definitions in the Linker symbol table to be made part of the
bound unit so they are available to the Loader at execution time.

, For discussions of "common" see the appropriate language reference manual.

LINKER 2-5 CB21

Protecting or Purging Symbol(s)

Directives:
CPROT
CPURGE
PROT
PURGE
VPURGE

The CPROT and CPURGE directives, respectively, protect and remove symbols associated
with labeled and unlabeled common.

The PROT and PURGE directives, respectively, protect and remove symbols and object
unit names from the symbol table.

The protect (PROT) directive prevents certain symbols and/or object unit names from
being removed from the symbol table. Symbols are protected if they identify a specified
address or an address within a specified range; object unit names are protected if they are
equated to a specified address or an address within a specified range.

The PURGE directive removes from the symbol table unprotected symbols that define a
specified address or an address within a specified range, and/or object unit names equated to
a specified address or an address within a specified range.

The VPURGE directive removes a specified value definition from the symbol table.

Designating That the last Linker Directive Has Been Entered

Directive:
QUIT

QUIT must be the last Linker directive entered.
If a bound unit is being created, execution of the Linker terminates after the bound unit

has been created.
If no bound unit is being created, QUIT terminates execution of the Linker.

LOADING THE LINKER

To load the Linker, enter the LINKER command, which is described below.
After the Linker is loaded, there is a typeout to the error output file of the revision also

in the following format:

LINKER-nnnn-mm/dd/hhmm

where nnnn is a release identification, mm/dd is the month and day the Linker component
was linked, and hhmm the time (hour, minutes) at which that link took place.

FORMAT:

LINKER bound-un it-path [ctl_arg]

ARGUMENT DESCRIPTIONS:

bound-unit-path
Pathname of the relative disk bound unit file. The pathname can be simple, relative, or
absolute and must be preceded by a space. If the specified file already exists, the
existing information in the file is deleted and replaced with the new bound unit. The

I bound unit pathname must be specified. It may be up to 62 characters in length.

LINKER 2-6
6/78
CB21A

•

•

f

(.

..

LINKER

ctl_arg
Control arguments; none or any number of the following control arguments may be
entered, in any order:
-IN path

Pathname of the device through which Linker directives will be read; can be disk,
card reader, operator's terminal, or another terminal.

Error messages are written to the error output file. Linker error messages are
described in the System Messages manual.

Default: Device specified in the in_path argument of the "enter batch request" or
"enter group request" command.
When this argument is specified, the prompter character will not appear. I

-PT
If the -IN argument is not specified, -PT can be specified in order to produce a
prompter character on the user terminal. A prompter character is issued only if-PT
is specified.

-COUT list-path-name
Designates the list file. The list file can be sent to a disk, another terminal, or a
printer. The list-path-name is associated with this list file. If -COUT is ·not specified,
the list-path-name has a default value of bound-unit-path .M.

1~~1; I
l-SLIC

LAF and SAF are addressing modes in one of which the bound unit is to execute;
-LAF designates long address form (two-word addresses); -SAF designates short
address (orm (one-word addresses); -SLIC designates that either a SAF or a LAF
machine may be used with no reassembly or link necessary.

Default: Bound unit executed in SAF (short address form) mode.

-SIZE nn
-SZ nn

nn designates the maximum number of 1024-word (IK) blocks of memory available
for the Linker symbol table; nn must be from I to 32. At least 1024 words must be
available.
Default: 2K

-w
Specifies that the implicit Linker work files are to be saved.

Default: Implicit Linker work files are automatically released by the Linker upon
Linker termination ..

-R
Designates that a bound unit is to be created, where all data areas defined as
common are separated from all other code. Required for shareable CU's (object
units).

-VERBOSE
Causes all Linker directives to be printed on the list file.

-NOMAP
Suppresses the list file.

Example:

LINKER MYPROG-IN8 MYDISK>CNL8-COUT 8>SPD>LPT008-SIZE806

2-7

6/78
CB21A

I

This LINKER comptand loads the Linker and designates the following:

o Bound unit will be a relative file named MYPROG in the working directory.
o Linker directives will be entered through disk me !\MYDISK>CNL.
o List file goes to a line printer (configured as LPTOO), ratl1er than to a variable

sequential' file named MYPROG.M in the working directory.
o The symbol table will be a maximum of 6K words of memory.

NOTE: LPTOO must have been previously defined in the PEVICE configuration
directive, which is described in the HStartup and Configuration Procedures"
section of the System Building manual.

ENTERING LINKER DIRECTIVES

Linker directives are entered through the directive input device, except for the following
directives which may be embedded in assembly language CTRL statements: LINK, LINKN,
LINKO, SHARE, EDEf, and SYS. .

Linker directives comprise only a directive name or a directive name followed by one or
more parameters. Each directive name may be preceded by 0, I, or more blank spaces. If
one or more parameters are to be specified in a Linker directive, the directive name must be
immediately followed by one or more blank spaces.

Multiple directives can be entered on a line by specifying a semicolon(;) after each
directive, except for the last directive on the line.

The last (or only) directive on a line can be followed by a comment; to include a
comment, specify a space and a slash (/) after the last (or only) parameter and then enter
the comment.

If the directive input device is the operator's terminal or another terminal, press
RETURN at the end of each line (i.e., at the end of the comment, or at the end of the last
directive if there is no comment).

If an error occurs when entering a directive, an error message is written to the error
output me. Linker error messages are described in the System Messages manual. Determine
what caused the error, and then reenter the directive correctly. If multiple directives are
entered on a line and an error occurs, the error does not affect the execution of previously
designated directives. The directive that caused the error and subsequent directives on that
line are not executed.

PROCEDURE FOR CltEATING ONLY A ROOT

To link object units and create only a root, load the Linker and then enter the following
directives:

IL. INK ·1.3 LINKN
LINKO

QUIT

Links object units.

Designates that the last Linker directive has been entered. After the
bound unit has been created, execution of the Linker terminates.

All other directives are optional.

PROCEDURE FOR CREATING A ROOT AND ONE OR MORE OVERLAYS

When creating a root and overlays, the following rules must be followed:

o The root must be created before its overlays.
o A root and all of its overlays must be created during the same execution of the Linker.

3 Multiple LINK and/or LINKN and/or LINKO directives may be entered.

UNKER 2·8

• •

C821

•

o Nonfloatable overlays must be created before floatable overlays.
o Overlays may contain references to symbols defined in the root or other overlays.
o A root or overlay can be up to 64K words of memory.

To link object units and create a root and one or more overlays, load the Linker and then
enter the following required directives:

{
LINK }4
LINKN
LINKO

Links object units that will constitute the root.

{OVLY \
FLOVLYf

Designates end of the root, and names and numbers the overlay that
immediately follows.

{LINK I
LINKN f

Links object units that will constitute an overlay.

NOTE: An OVLY or FLOVLY directive and at least one link directive must be specified
for each overlay associated with the root.

QUIT Designates that the last Linker directive has been entered. After the
bound unit has been created, execution of the Linker terminates.

All other directives are optional.

NOTE: It is advisable to specify a MAP directive before each FLOVLY directive. The
base address of a floatable overlay is relative 0, so all unprotected symbols that
define locations will be purged from the symbol table.

PROCEDURE FOR CREATING A SHAREABLE BOUND UNIT
USING A HIGH-LEVEL LANGUAGE

A shareable bound unit (BU) is one in which the code portion resides in system memory
and can be used on behalf of one or more groups to manipulate data in that group. To
accomplish this, the following factors must be present:

1. The pure (i.e., code) portion of the bound unit must be separated from the impure
(i.e., data) portion.

2. The BU must be declared shareable.
3. Space must exist in the System pool to allow loading of the pure portion of the BD.

These factors are processed respectively as follows:

1. Using the capability to declare pure portions from impure portions (e.g., Intermediate
COBOL), specify the -R argument on the Linker command line. This will cause the
Linker to separate all those items declared as impure from the rest of the program.

2. Specify the SHARE directive for the BU at link time.
3. If both of the preceding conditions are specified, the Loader will automatically load

the pure section of the BU into the System space in memory. If not enough room
exists in the System space, the pure section will go into the group with the impure
section and will no longer be shareable.

Using the Intermediate COBOL compiler, which automatically puts data in "Local
Common", or using the Assembly Language pseudo-operator ($LOCOMW), the capability to
share a pure code portion of a program exists. If the -R argument is specified at link time,
the resultant BU can be up to 128K (up to 64K for pure code and up to 64K for data).

4 Multiple LINK and/or LlNKN and/or LINKO directives may be entered.

LINKER 2·9 CB21

No overlays are permitted in a shareable/separated BU.
When the -R argument is specified, all data which the compiler defines in common is

separated from executable code. All references in the code to this data are made via register
$B6. The data does not directly reference the code.

When the -R argument is not specified, overlays are permitted. In this case, the maximum
size of the root or of any individual overlay is 64K (including both code and data).

OBTAINING SUMMARY INFORMATION OF A LINKER SESSION

The Linker designates on the list file summary information regarding the bound unit
created during the current execution of the Linker.

The list file includes the name of the bound unit and date and time of link, the name and
revision number of each object unit linked, the name of the assembler/compiler, the
assembler or compiler error count, and the sections described below:

ROOT

HIGHEST OVL Y

/NUM OF SYMS

{ SAF } LAF
SLIC

{ROOT}
OVLY

BASE

ST

SFUI

S
Shareable bound unit.

F
Floatable overlay(s) included.

U

Name of the root.

Number of the last overlayS; if there are no
overlays HIGHEST OVL Y is followed by a
blank.

Number of symbols specified' in EDEF
. qirectives.

Type of addressing form used in the bound
unit; SAF is short-address form, and LAP is
long-address form.

A SLIe bound unit may be executed in either
SAF or LAF mode.

N arne of the root or overlay.

Base address of the root or overlay.

Start address of the root or overlay.

Specifies characteristics of the bound unit, as
follows:

There are resolved or unresolved forward references between the root and overlays or
between overlays.

I
IMA addresses are present.

HIGH

*SIZE OF ROOT AND STATIC OVLYS

HI REL RCD

LINK DONE

Highest address in the root or overlay.

Highest address in either' the root or the
largest overlay. (Indicates the amount of
memory needed to load the bound unit.)

The number of the highest relative record of
the bound unit file. (Indicates the number of
control intervals used for storage.)

Designates that execution of the Linker has been successful.

5The Linker assigns numbers to overlays. The first overlay is 00; subsequent overlays are numbered sequentially in ascending
order.

LINKER 2-10
6/78
CB21A

•

,/

•

/

I ..

The format for this information is illustrated below:

ROOT rootname
IDGHEST OVLY number/NUM OF SYMS number

Jr.s}
\SLIC
*********** ICMMN6 jrootname BASE address ST address - •... HIGH = high address of data 7

~~~ dirname {! overlay number} BASE address ST address - {~} {~} {~}{ ~ } 

HIGH = high address of root or overlay 
*********** 
*SIZE OF ROOT AND STATIC OVLYS = number 16 HI REL RCD = number 10 

*********** 
LINK DONE 
*********** 

LINKER DIRECTIVE DESCRIPTIONS 

Linker directives are described below, alphabetically. Some examples are provided to 
illustrate directive usage. 

BASE Directive 
The BASE directive defines, for subsequent object units to be linked, the relative link: 

address within the bound unit. At load time, all addresses are relative to the beginning of 
available memory (relative 0) in the memory pool of the task group. When a task group is 
created, you specify the memory pool into which its bound units are to be loaded. 

Unless BASE directives specify otherwise, the root will be linked, by default, at relative 0, 
and subsequent object units are linked at successive relative addresses. A BASE directive can 
be used at any point during linking to change the relative locations of the root, overlays, or 
individual object units. A floatable overlay always begins at relative 0; therefore, in a 
floatable overlay, BASE can be specified only after the first (or only) LINK, LINKN or 
LINKO directive. A BASE argument can specify a previously used or defined location, or 
an address relative to the beginning of the available memory. 

If unprotected symbols defme locations that are equal to or greater than the location 
designated in the BASE directive, those symbols are removed from the symbol table. 

FORMAT: 

BASE 

6 If -R argument is specified and common exists. 
7This line is repeated for each overlay. 

LINKER 

$ 
% 
X'address' 
=object-unit-name 

xdef [ { ~ t X'offset' ] 

# The ctll-rent address. 

2-11 CB21 



I 

I 

BASE 
ARGUMENT DESCRIPTION 

$ 
Next location after the highest address of the linked root or previously linked nonfloat­
able overlay. 

% absolute 
Highest address+ 1 ever used in the linked root or any previously linked nonfloatable 
overlay. 

address 
Hexadecimal address comprising on~ to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool at load time. 

=object-unit-name 
Specified object unit's base address; the subsequent root, overlay, or object unit will be 
linked at the same relative address as the specified object unit, which must have already 
been linked. Furthermore, the object unit name must still exist in the symbol table 
(i.e., it is not purged). . 

xdef[{~ } X'offset' ] 

Address of any previously defined external symbol. If an offset is specified, it must be 
a hexadecimal integer with an absolute value less than 8000 (32768 decimal). 

Default: 
Root-O 
Nonfloatable overlay-Next location after the highest address of the preceding root or 
nonfloatable overlay 
Floatable overlay-O 

Example: 

This example illustnttes usage of BASE directives in a bound unit that comprises a root and 
overlays. In this example, assume that the bound unit ·being created is going to be executed 
as part of task group AI, and memory pool AA is to be used by this task group. Figure 2-1 
illustrates memory pool AA's location in memory relative to the system pool and another 
pool, and the locations within that memory pool to which each object unit specified in the 
following directives will be loaded. 

LINKER. TEXT d-COUT d>SPD>LPTOO , 
START TEXTEN 

1ST IN!T 

LINK OBJ 1,OBJ2 

MAP 

OVLY ABLE 

liNKER 

Designates address at which execution will begin 
when the root is loaded. 

Defines INIT as the beginning of initialization 
code. 

Request that, OBJ 1.0 and OBJ2.0 be linked. 

Causes OBJI ~O and OBJ2.0 lobe linked, and 
producesia link map. 

Designates end of the root, and that a nonfloat­
able· overlay named ABLE immediately follows. 
The Linker assigns the number 00 to this 
overlay. 

2·12 
6/78 
CB21A 

.. . 

/' 



CALL-CANCEL/COMM/CPROT/CPURGE 
CC (Call-Cancel) Directive 

The call-cancel directive (CC) must be used when linking COBOL programs that contain 
CALL/CANCEL statements that reference overlays. The Linker will place each overlay 
name and its associated Linker-generated overlay number into the bound unit attribute table 
so that the COBOL program can call/cancel overlays by name. 

To support the CALL/CANCEL facility, the object unit ZCCEC is required. ZCCEC will 
be automatically linked into the root; it requires no link directive. 

The CC directive must be specified before the first LINK, LINKN or LINKO directive in 
the root. 

FORMAT: 

CC 

COMM Directive 
The COMM directive defines a labelled or unlabelled "common" area of a specified size. 

FORMAT: 

COMM symbol, size 

ARGUMENT DESCRIPTION: 

symbol 
Identifies the external symbol which is to be treated as common. 

size 
Size is specified as a 1- to 4-character hexadecimal number bound by single quotes and 
preceded by the letter X (i.e., X'size '). 

CPROT Directive 
The CPROT directive prevents specified symbols from being removed from the common 

area. 

FORMAT: 

CPROT symbol 

ARGUMENT DESCRIPTION: 

symbol I 
Name of the external symbol, that is to be protected. The symbol must be specified in 
the COMM directive, or defined as common at the time of assembly or compilation. 

CPURGE Directive 
The CPURGE directive causes the Linker to remove an unprotected symbol from the 

common area. 

FORMAT: 

CPURGE symbol 

ARGUMENT DESCRIPTION: 

symbol 
Identifies the external symbol which is to be removed from the common area. 

LINKER 2-15 
6/78 
CB21A 



EDEF 
ED EF Directive 

The EDEF directive causes the transfer of a symbolic definition from the Linker to the 
Loader at load time. The bound unit attribute table is part of the bound unit. 

An EDEF directive can only specify a symbol that has been defined using XDEF, LDEF, 
or VDEF. When EDEF is specified, the symbol's definition must already be in the symbol 
table. 

Secondary entry points of bound units, whose code is to execute under control of a task, 
must be defined in an EDEF directive. This includes secondary entry points of overlays and 
the root entry point when it will be explicitly used in a create group command. The start 
address of the root and of each overlay is placed by the Linker in the bound unit attribute 
table and does not need an E{?EF definition. 

If a bound unit is memory resident, symbols (entry points and references) can be defined 
by EDEF so that they can be referenced by any bound unit loaded by the system. At 
system configuration time, when the resident bound units are loaded using the LDBU 
system configuration directive, these symbols are placed in the system symbol table. When 
the Loader loads other bound units that contain unresolved references, it tries to resolve 
them with the list of symbols defined for resident bound units. 

If the bound unit is transient (shareable or not shareable), the symbols in. the attribute 
table of the bound unit are meaningful only as definitions of secondary entry points. 
Although shared bound units can be in the address space of more than one task group, the 
bound unit attribute table is available to the Loader only when the bound unit is being 
loaded. Unresolved references in any bound unit will be resolved only to symbols defined in 
attribute tables of resident bound units. 

The EDEF directive can be embedded in assembly language CTRL statements. 

FORMAT: 

{ EDEF} EF symbol 

ARGUMENT DESCRIPTION: 

symbol 
Any external definition comprising one to six characters. The symbol must have been 
defined. If the symbol was multiply defined, the first definition is used. 

Example: 

This example illustrates usage of EDEF directives in bound units. 

LINKER MYPROG 

LINK A 
LINKNB 

MAP 
EDEFB 

LDEF SYM,X'1234' 

OVLYFIRST 

UNKER 

Loads the Linker. The bound unit named MYPROG 
will be created on the working directory. The list file 
MYPROG.M is also created on the working directory. 

B is a symbol defined as an external location or value 
in B.O. 

Assigns relative location 1234 to external symbol 
named SYM. 

Designates end of root, and names nonfloatable 
overlay that immediately follows. 

2-16 CB21 

• • 

,/ 

\ 
"- / 



',to • 

I .. 
'\ 

( 

LINKX,Y 

EDEF SYM 

QUIT 

LINKER PROG2 -COUT >SPD> 
LPTOO -SIZE 02 

BASE X'2222' 

LINKNW 

MAP 

QUIT 

EDEF/FLOVLY 

Designates that the last Linker directive has been 
entered. Execution of the Linker terminates after the 
bound unit has been created. 
Loads the Linker; the bound unit to be created is 
named PROG2. The list file is the printer. The 
symbol table is a maximum of 2K words of memory. 

Subsequent object units will be loaded into memory 
starting at the relative address 2222. 

Requests that object unit W.O be linked. 

Produces a link map; in this map, it is determined 
that object unit W.O contains an unresolved reference 
to the symbol SYM, which was defined in the root of 
the bound unit MYPROGo 

If MYPROG is loaded into memory via an LDBU configuration directive, when the 
Loader loads PROG2 the Loader will resolve the unresolved reference in PROG2 to the 
symbol SYM, which was defined in the root of MYPROG. 

NOTE: An EDEF directive cannot be entered on the directive line in which the object 
unit is specified. For example, if the symbol TAG is defined in object unit A, the 
following directive line is not allowed: 

LINK A;EDEF TAG 

FLOVL Y Directive 
The FLOVL Y directive assigns the specified name and a number to the floatable overlay 

that immediately follows, and designates the end of the preceding root or overlay. The 
characteristics of floatable overlays are described earlier in this section under "Creating a 
Bound Unit." 

FLOVL Y must be specified as the first directive of each floatable overlay. Floatable 
overlays must be linked after all desired nonfloatable overlays have been linked. 

The Linker assigns a two-digit number to each overlay. Overlays are numbered 
sequentially, in ascending order; the first overlay is 00. 

FORMAT: 

FLOVLYname 

ARGUMENT DESCRIPTION: 

name 
Name of the floatable overlay that immediately follows. The overlay name must 
comprise one to six alphanumeric characters; the first character must be alphabetic. 

LINKER 2·17 CB21 



I 

FLOVLY/IN 

Example: 

LlNKERBU 

LINK A 
LlNKB 
MAP 

FLOVLYGR 

LINK X 
LlNKY 
MAP 
FLOVLYBR 

LINK R6 
MAP 
QUIT 

IN Directive 

Loads the Linker and designates BU as the bound 
unit name. 

Produces a link map. The link map should be 
referenced to determine if there are any unprotected 
symbols that define locations. These symbols, if any, 
will be removed from the symbol table since the 
floatable overlay that immediately follows has a 
default base address of O. 

Designates the end of the root (which comprises 
object units A.O and B.O), and specifies that the next 
overlay is a floatable overlay named GR. The Linker 
assigns the number 00 to this overlay. 

Designates the end of floatable overlay GR, and 
designates that the floatable overlay that immediately 
follows is named BR. The Linker assigns the number 
o I to this overlay. 

The IN directive designates a different directory as the primary directory. 8 This directive 
permits the linking of object units that are in directories other than the default primary 
directory or secondary directory (if any). If the IN directive is not specified, the working 
directory is the primary directory. (The secondary directory is designated in the LIB 
directive.) 

NOTE: The IN directive must be specified before the first LINK, LlNKN or LlNKO 
directive that requests the linking of an object unit that is in the specified 
directory. 

The specified directory remains the primary directory until another IN directive is 
entered. If the primary directory is changed via an IN directive and at a later time you want 
the task group's working directory to be the primary directory, you may enter the IN 
directive and omit a pathname. 

FORMAT: 

IN [path] 

'The primary. directory is the lust directory that the Linker searches for the specif"led object unit(s) to be linked. 

liNKER 2-18 
6/78 
CB21A 

• 

/ 



" . 

i 
"!. 

( 

ARGUMENT DESCRIPTION: IN/1ST 

[path] 
Pathname of the directory being designated as the primary directory. The pathname 
may comprise a maximum of 64 characters. A simple, relative, or absolute pathname 
may be specified (methods of designating pathnames are described in the Program 
Preparation manual). If path is omitted, the working directory becomes the primary 
directory. This argument may not be embedded in source code (CTRL). 

Example I: 

INA "DIR>PRIM 

This directive designates that "DIR>PRIM is the primary directory. 

Example 2: 

This example illustrates usage of the IN directive in conjunction with directives that request 
the linking of object units. Assume the primary directory is the working directory, whose 
relative pathname is WORK>CURR; object units X.O, Y.O, and Z.O are in the working 
directory. 

LINKER OUTPUT 

LINK X 

INA ANEW>PRIM 

LINK A 

LINKC 

IN WORK>CURR 

LINKNY 

MAP 
QUIT 

1ST Directive 

Loads the Linker; a bound unit named OUTPUT will 
be created on the working directory. 
Requests the linking of object unit X.O; X.O is in the 
working directory . 
Designates that "NEW>PRIM is now the primary 
directory. 
Requests the linking of object unit A.O, which is in 
the primary directory. "NEW>PRIM>A.O is the 
pathname of A.O, as expanded by the Linker. 
Requests the linking of object unit C.O, which is in 
the primary directory. ANEW>PRIM>C.O is the 
pathname of C.O, as expanded by the Linker. 
Designates that the primary directory is now the 
working directory. 
Requests the linking of object unit Y.O, which is in 
the working directory. WORK>CURR>Y.O is the 
pathname of Y.O, as expanded by the Linker. 

The 1ST directive identifies the beginning of initialization code in the root. Initialization 
code is to be executed once only, immediately after the root is loaded. After the 
initialization code is loaded, the space may be made available for overlays. The 1ST directive 
is meaningful only when associated with an LDBU directive that specifies an initialization 
subroutine table (1ST). LDBU, a CLM directive, is explained in the System Building manual. 

FORMAT: 

{ I~i } external symbol 

ARGUMENT DESCRIPTION: 

external symbol 
Symbol specified by label in 1ST section of LDBU. 

UNKER 2-19 
6/78 
CB21A 

I 

I 



I 

LDEF 
LDEF Directive 

LDEF assigns a relative location to an external symbol. A symbol should be defined only 
once, either as a location or as a value. When a symbol is defined, its definition is put into 
the Linker symbol table so that it can be used to resolve references to the symbol during 
linking. When a symbol defined as a location is no longer referenced, its symbol table entry 
can be cleared by specifying the PURGE directive. PURGE has no effect if a protect 
(PROT) directive was previously specified. 

PORMAT: 

{ LLDpEP} symbol, 

ARGUMENT DESCRIPTIONS: 

symbol 

$ 
% 
X'address' 
=object-unit-name 

xdef [{ ~ } X'offset'] 

# 

One to six alphanumeric characters. 

$ 
Next location after the highest address of the linked root or previously linked 
nonfloatable overlay. 

% 
Highest address+ I ever used in the linked root or any previously linked nonfloatable 
overlay. 

address 
Hexadecimal address compnsmg one to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool. 

=object-unit-name 
Specified object unWs base address. 

xdefn~} X'offset~ 
Address of any previously defined external symbol. If an offset is specified, it must be 
a hexadecimal integer with an absolute value less than 8000 (32768 decimal). 

# 
The current address. 

Example: 

This example illustrates usage of each format of the LDEP directive. 

LINKER BOUND 

LINK A 
LINK B,C 
MAP 
LDEP SYM,X'1234, 
OVLYPIRST 

UNKER. 

Loads the Linker and designates BOUND as the 
bound unit name. 

SYM assigned relative location 1234 
Designates end of root and names first nonfloatable 
overlay 

2·20 
6/78 
CB21 A 

· " 



.. . 

( 

LlNKR 
MAP 
LDEF QUIZ,=C 

OVLYSECOND 
LlNKND 
LlNKF 
MAP 
LDEF NEW,SYM 

OVLYNEXT 
BASE X'1300' 
LINKW,X 
MAP 
LDEF ANY,$ 

OVLYTHIRD 
LINKZ 
LlNKQ 
MAP 
LDEF FIND,% 

QUIT 

LIB Directive 

LDEF/LIB 

QUIZ assigned base location of the previously linked 
object unit named C.O. 

NEW assigned same location as the symbol SYM, 
which was defined in the root; i.e., NEW is assigned 
relative location 1234. 

ANY assigned next location after highest address of 
the previously linked nonfloatable overlay, SECOND. 

FIND assigned next location after highest address of 
the root or any previously linked nonfloatable 
overlay. (A previous non floatable overlay was named 
SECOND; if it ended at location 1566 and this is the 
highest address ever reached during the linking of 
object units constituting this bound unit, FIND 
would be assigned location 1567.) 

The LIB directive designates a directory as the secondary directory. This directory 
permits the linking of object units that are in a directory other than the primary directory. 
If an object unit specified in the LINK, LINKN or LINKO directive cannot be found in the 
primary directory, the Linker then searches the secondary directoryo 

If LIB is not specified, there is no secondary directory; the linker searches only the 
primary directory. 

The specified secondary directory remains in effect until the LIB directive is respecified 
with a different directory name, or without any directory name. I 

NOTE: The LIB directive must be specified before the first LINK, LINKN or LlNKO 
directive that requests the linking of an object unit that is in the secondary 
directory. This directive may not be embedded in source code (CTRL). I 

FORMAT: 

LIB [path] 

ARGUMENT DESCRIPTION: 

LINKER 

[path] 
Pathname of the directory being designated as the secondary directory. A simple, 
relative, or absolute pathname may be specified. (Methods of specifying pathnames are 
described in Section 1.) If path is omitted, no search of a secondary directory is made. 

2-21 
6/78 
CB21A 

I 



I 

I 

LIB/LIB(2, 3, or 4) 
Example I: 

LIB DIR>SECND 

This directive designates that DIR>SECND is the relative pathname of the secondary 
directory. 

Example 2: 

This example illustrates usage of a secondary directory that contains object units W.O, Y.b, 
and Z.O. 

LIB DIR>SECND 

LINKB 

LINK A 

LINKW 

Designates that DIR>SECND is the relative pathname 
of the secondary directory. 
Requests the linking of object unit B.O; B.O resides 
in the primary directory. 
Requests the linking of object unit A.O; A.O resides 
in the primary directory. 
Requests the linking of object unit W.O; W.O resides 
in the secondary directory. DIR>SECND>W.O is the 
full pathname ofW.O, as expanded by the Linker. 

All specified object units in the primary directory are linked first; then all specified object 
units in the secondary directory are linked, and so on. To cause object units to be linked in 
a specific order, the LINKN or LINKO directive must be used. 

UB m llirective 

The LIB (2, 3, or 4) directive designates directories as the third, fourth or fifth directory. 
If an object unit specified in the Linker directive cannot be found in the primary or 
secondary directory, then the third directory is searched and so on. 

The specified directories remain in effect until another LIB (2, 3 or 4) statement is given. 

NOTE: The LIB (2, 3 or 4) directive must be specified before the first LINK, LINKN or 
LINKO directive that requests the linking of an object unit that is in one of these 
directories. 

FORMAT: 

ARGUMENT DESCRIPTION: 

path 
Pathname of the third, fourth or fifth directory to be searched (if LIB is specified) if 
the object unit specified in a Linker directive is not found in the preceding directories. 
A simple, relative or absolute pathname may be specified. If path is omitted, the 
specified directory (2, 3, or 4) is removed from the list of directories to be searched by 
the Linker. 

LINKER 2-22 
6/78 
CB2lA 

· " 



if . .. 

• 
LINK 

LINK Directive 
The LINK directive specifies that the Linker link one or more specified object units. Each 

specified object unit name is put into the link request list. The object units are linked when 
the first subsequent directive other than LINK or START is encountered. When this occurs, 
the Linker searches the primary directory and links the specified object units in the order in 
which they were requested. If all of the object units are not found and there is a secondary 
directory, the Linker searches the secondary directory and links specified object units, in 
the order in which they were requested. If there is a copy of an object unit in both the 
primary and secondary directory, the copy in the primary directory is linked. 

The order in which object units are linked is important for the following reasons: (1) it 
determines which object units will be in memory simultaneously and which object units will 
overlay other object units and (2) within the root and each overlay, the first start address 
encountered by the Linker (either in an END statement or a START directive) is used as the 
start address for that root or overlay. 

During each execution of the Linker, at least one LINK, LINKN or LlNKO directive must 
be entered for each root or overlay. Multiple LINK directives can be specified within a single 
root or overlay. If LINK and/or LINKN and/or LINKO directives request that the same 
object unit be linked more than once within a single bound unit, only the first request is 
honored. 

LINK directives can be embedded in assembly language CTRL statements; the specified 
object unites) are added to the link request list immediately following the object unit in 
which they were embedded. See "LINKN Directive" and "LINKO Directive" for the order 
in which object units are linked if there are embedded LINK directives and/or LINKN 
and/or LINKO directives. 

FORMAT: 

LINK obj-unit 1 [,obj-unit2 ) ... 

ARGUMENT DESCRIPTION: 

object-unitn 
Name of an object unit to be linked. An object unit name consists of one to six 
characters, each of which must be an alphanumeric character or a dollar sign ($), a 
period (.), or an underbar (_). If multiple object units are specified, they are linked in 
the order convenient to the Linker. The first character must be a letter or dollar sign 
($). 

Example I: 

LINK FIRST 

This directive causes the Linker to link the object unit named FIRST.O. The primary 
directory is searched first; if FIRST.O is not found, the secondary directory, if any, is 
searched. 

Example 2: 

LIB SECOND>FILE 
LINKR 
LINKT 

The above LIB directive designates that SECOND>FILE is the pathname of the secondary 
directory. In this example, object unit R.O is in the secondary directory, and object unit 
T.O is in the primary directory. 

(_ The above LINK directives will link T.O before R.O, since T.O is in the primary directory. 

LINKER 2-23 
6/78 
CB21A 



I 

LINK/LINKN 
Example 3: 

LINK A,B,C,D 

This directive causes the Linker to link the object units named A.O, B.O, C.O, and D.O. If 
the primary directory contains B.O, and the secondary directory contains A.O, e.0, and 
D.O, the object units are linked in the following order: 

B.O 
A.O 
C.O 
D.O 

LINKN Directive 
The LINKN directive causes object units to be linked in the following order: 

1. Object units previously specified in LINK directives, and any object units requested in 
embedded LINK directives. The object units are linked in the order in which they are 
found by the Linker. 

2. First (or only) object unit specified in the LINKN directive. 
3. Object units specified in LINK and/or LINKN directives that are embedded in the 

object unit linked as a result of step 2 above. 
4. Additional object units, if any, specified in the LINKN directive; the object units are 

linked in the order in which they were specified in LINKN, regardless of whether they 
are in the primary or secondary directory. If an object unit contains an embedded 
directive to link another object unit, the object unit designated in the embedded 
directive is linked after the object unit that contains the embedded directive. 

If directives designate that an object unit be linked more than once within a single bound 
unit, only the first request is honored, unless intervening directives are specified that result 
in the first linked object unit being overlays with other code at execution time. 

During each execution of the Linker, at least one LINKN, LINK or LINKO directive must 
be specified for each root or overlay. 

Multiple LINKN directives can be specified within a single root or overlay. 
LINKN directives can be embedded in assembly language CTRL statements; the specified 

object unit(s) are added to the link request list immediately following the object unit in 
which they were embedded. 

FORMAT: 

{ ~~KN} obj-unitl [,obj-unit2]'" 

ARGUMENT DESCRIPTION: 

obj-unitn 
Name of an object unit to be linked. An object unit name must be one to six 
alphanumeric characters and must not include a suffix; the first character must be a 
letter or dollar sign ($). The Linker appends the suffix .0 to each object unit name, 
and searches for the specified object unit name, including the suffix. 

Example l: 

LINKNX,W 

This directive designates that the Linker link the object unit named X.O and then link the 
object unit named W.O. 

LINKER 2-24 
6/78 
CB21A 

· .. 

/ 



• 

t . .. 

( 

MAP/MAPU 
If there are external references in both P-relative and 
immediate memory address forms to an undefined 
symbol, the symbol is listed twice under VNDEF. 

Figure 2-2 illustrates the formats of maps generated by the MAP and MAPU directives. In 
a single-word (SAF) system, each address or value is specified in four hexadecimal digits; in 
a double-word (LAF) system, each address or value is specified in eight hexadecimal digits. 

NOTE: The date and time at which the bound unit was created is automatically put in 
the bound unit's attribute section. 

* * bound unit name LINK MAP yyyy/mm/dd hhmm:ss.s 

* * START address 

* * LOW address 

* * HIGH address 

[**$COMM address] 

* * CURRErn address 

* * EXT DEFS 

P ZHCor~Ma 

P ZHRELa 

* * ROOT 

[pJ* object unit name 

[pl[~] symbol name b 

0000 [0000] 

0000 [0000] 

base address of root 

base address of object unit 

addressc or value 

[p]* object unit name base address of object unit 

[p][~] symbol nameb addressc or value 

* * overlay name 

[p]* object unit name 

[p][~] symbol nameb 

[p]* object unit name 

[p][~] symbol nameb 

.. 
base address of overlay 

base address of object unit 

address C or value . 

base address of object unit 

addressc or value 

OMITTED IF MAPU SPECIFIED 

[* * COMMON 

* * UNDEF 

common definitions are separated on the map as well as in the bound] 
unit when -R is specified 

Figure 2-20 Link Map Fonnats 

LINKER 2-27 CB21 



I 

MAP/MAPU/OVLY 

[P]* object unit named base address of object unit 

[SymbOl nameb address of most recent referencee] 

0']* object unit named base address of object unit 

[SymbOl nameb address of most recent referencee] 

P - Protected symbol 

M - ~lultiply defined symbol 

C - Symbol defines labeled or unlabeled common 

aZHCOMM and ZHREL are reserved symbol names; they appear on every map as protected symbols. 
ZHCOMM is located at unrelocatable zero. ZHREL is located at relocatable zero. When 
ZHCOMM is used in an LDEF directive. the new symbol will not have the attribute of being 
non-relocatable. 

bThe map contains the names of all external symbols currently defined in the symbol table. 
If there are external references in both P-relative and immediate memory address forms to 
an undefined symbol. the symbol is listed twice under UNDEF. Each map line contains up to 
four (SAF) or three (LAF) external symbols. 

cTo find a location definition. add the relocation factor at load time to the address shown 
on the map. . 

dAll objects units linked are listed under UNDEF. even if they contain no unresolved references. 

eWithin the root or a single overlay. the latest reference to an undefined symbol need not be 
in the object unit that contained the first reference to the symbol. For each undefined 
symbol, the following information is given under UNDEF: name of the first object unit that 
contains a reference to the designated symbol, and the relative address of the most recent 
reference. 

Figure 2-2 (cont.) Link Map Formats 

Figure 2-3 presents sample link maps. 

OVL Y Directive 
The OVLY directive assigns the specified name and a number of the nonfloatable overlay 

that immediately follows, and designates the end of the preceding root or overlay. 
OVL Y must be specified as the first directive of each non floatable overlay. 
The Linker assigns a two-digit number to each overlay. Overlays are numbered 

sequentially, in ascending order; the first overlay is 00. 

FORMAT: 

LINKER 

OVLYname 

2-28 
6/78 
CB21A 

• 



.. 

.f:' 

"~ 

( 

VPURGE 
ARGUMENT DESCRIPTION: 

value-definition 
The external symbol associated with a particular value. 

EXAMPLE ILLUSTRATING USAGE OF THE LINKER 

LINKER TEST -COUT >SPD>LPTOO 

START LOC 
1ST INITST 
LINK OBJI 
LIB "DSK03 
LINK OBJ2 
OVLY ABLE 

LINKNOBJ3 
LINKN OBJ4 
PROT=OBJ3 

MAP 
OVLYBAKER 

LINKNOBJ5 
LINKN OBJ6 
PROT=OBJ5 
MAP 
OVLYDOG 

BASE=OBJ5 

LINK OBJ7 
MAP 
OVLYFOX 

BASE=OBJ3 

IN "DSKO I>MYFILE 

LINKER 

The bound unit will be a relative file named 
TEST created in the working directory. Link 
maps will be printed on the printer configured 
as LPTOO. 

Defines the beginning of initialization code. 
Requests that OBJl.O be linked. 
Names secondary directory. 
Requests that OBJ2.0 be linked. 
Causes OBJ 1.0 and OBJ2.0 to be linked, 
designates the end of the root, and specifies 
that a nonfloatable overlay named ABLE 
immediately follows. The Linker assigns the 
number 00 to this overlay. 

Protects the symbol OBJ3. This symbol is 
protected because a subsequent overlay may 
be loaded starting at the base address of 
OBJ3.0. 
Requests a link map. 
Designates the beginning of the nonfloatable 
overlay named BAKER. The Linker assigns 
the number 01 to this overlay. 

Protects the symbol OBJ5. 

Designates the beginning of the nonfloatable 
overlay named DOG. The Linker assigns the 
number 02 to this overlay. 
The overlay named DOG will be loaded 
starting at the address where overlay BAKER 
began. 

Designates the beginning of the nonfloatable 
overlay named FOX. The Linker assigns the 
number 03 to this overlay. 
FOX will be loaded at starting address of 
overlay ABLE. 
Designates that the primary directory now is 
the directory named ADSKO l>MYFILE. 

2-37 CB21 



I 

VPURGE 

LIB "DSK02>MYLIB 

LINK OBJA 
LINK OBJB 
MAP 
OVLYX-RAY 

BASE~=OBJ5 

LINKOBJe 
MAP 
FLOVL Y FLOAT 

LINKOBJE 
MAP 
QUIT 

PROGRAMMING CONSIDERATIONS 

Designates that the new secondary directory 
is named "DSK02>MYLIB; if necessary, this 
directory will be searched after the primary 
directory. 

A nonfloatable overlay named X-RA Y 
immediately follows. The Linker assigns the 
number 04 to this overlay. 
X-RAY will be loaded starting at the 
beginning address of BAKER. 

Designates that a floatable overlay named 
FLOAT immediately follows. The Linker 
assigns the number 05 to this overlay. 

1. While processing object units, the Linker creates a work file LNKWRK.W in the 
working directory. This file is a variable sequential file. It is initially allocated with four 
control intervals of 256 bytes each, but it can be expanded to the amount of space 
available in the working directory. If the bound unit is large, link execution time may 
be reduced by the use of preallocated files. 

2. If the relative output file is preallocated, it must have the same name as that specified 
in the name argument of the LINKER command, it must be a fixed, relative file, and it 
must have a record size of 256 bytes. 

3. If multiple object units contain labeled and unlabeled common, the object units will be 
linked with common blocks appearing in the following order (-R is not specified): 
a. Labeled or unlabeled common (defined in first object unit linked) 
b. First object unit (including external references and definitions) 
c. Labeled common (defined in second object unit linked) 
d. Second object unit (including external references and definitions) 
e. Object unit n 

4. A root or any overlay may reference any symbol defined in any other root or overlay 
including "common" symbol definitions. A common area cannot, however, be 
initialized in any overlay other than the one in which it initially occurs (is made known 
to the Linker). That is, a common area defined in a root or an overlay can be initialized 
only in the root or overlay in which it is defined. 

LINKER 

5. Relocation can occur during one or both of the following procedures: 
a. Assembly; by specifying an ORG statement, subsequent object text within the 

object unit is relocated. (See the Assembly Language Reference manual.) 
b. Linking; by specifying the BASE directive, subsequent object units to be linked 

within the root or overlay have a specified relative load address. (See "BASE 
Directive" earlier in this section.) 

2·3& 

6/78 
CB21A 

• 



( 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from 
which all memory required by the spawned task group is to be taken. If specified, id 
must have been defined at system building time. If not, the issuing task group's 
memory pool is used. 

-ARG arg arg ... arg 
Indicates that additional arguments required by the spawned task group during 
execution follow. These additional arguments are passed to the lead task of the 
spawned group to be used as necessary, and are substituted for parameters in the 
command-in fIle. If used, the -ARG control argument must appear last. Refer to the 
Commands manual for an explanation of the use of additional arguments. 

NOTE: In any invocation of the SG command, -EFN or ECL, but not both, can be 
specified. If neither is specified, -ECL is assumed and the in_path argument 
is required. 

PROGRAM EXECUTION 3-7 CB21 



Using the Login Command 
The login command is used to gain access to the system. The login command is entered 

from any terminal not designated as a direct-login terminal or an abbreviated-login terminal. 
(To determine the type of terminal he is at, the user should contact the installation 
supervisor.) The login command causes a task group associated with the user's terminal to be 
spawned. Once he has access to the system, the user cannot again invoke login unless he first 
issues the BYE command or the task group is otherwise terminated. 

FORMAT 

L [1o~in id] [destination id] [etLarg] 

ARGUMENT DESCRIPTION: 

login id 
Establishes the identity of the user who is attempting to gain access to the system. 
Provides the user identification for the spawned task group. The login_id argument 
consists of from one to three fields having the following meanings: 

person 

person. account 

person.account.mode 

person 

account 

mode 

PROGRAM EXECUTION 

Name of person who may access system; can be from 1 
through 12 characters. (For example, WDSMITH could be 
the value for the person field.) 

Name of an account under which the user is to work; can 
be from 1 through 12 characters. (For example, 
JSINVENTORY could be used as the value for the account 
field.) 

Provides a further identification of the user; can be from 1 
through 3 characters. (For example, VER could be used as 
the value for this field.) 

3-8 
6/78 
CB21A 



• 

I .. 

[destination_id] 
Optional argument that permits the user to login as a secondary user of an existing task 
group. (It is necessary that the running task group have previously issued a request for a 
secondary user terminal; the request for a secondary user terminal is entered by means of 
a Request Terminal macro vall; see the GCOS6 System Service Macro Calls manual for the 
format of the Request Terminal macro call.) To login as a secondary user of a 
user-created applications program, the user enters the value nn, where nn is the task group 
id of the task group in which the application is running. To login as a secondary user of 
task group $T (Terminal Concentrator), see the Terminal Concentration Facility User's 
Guide. When destination-id is specified, no control arguments can be selected. If the 
secondary login capability is not desired, then destination_id is omitted. 

ctl_arg 
One or more of the following control arguments can be selected: 

{ -PO path lid]} I 
-PO * id. 

Used to override the default lead task and group id/pool id specifications for the task 
group spawned as a result of this login procedure. 

path 

id 

Pathname of the bound unit to be executed as the lead task of the spawned task 
group. If this argument is omitted, the lead task is the command processor. 

Group id/pool id of the spawned task. The group id and the pool id are represented 
by the same 2-character value. If this argument is not specified, the group id is a 
2-character value whose left (first) character was specified when the Listner 
component was activated (the Listner is described in the Operator's Guide) and 
whose right (second) character is the next unused character in the sequence 0 
through 9 and A through Z, as selected by the system. 

6/78 
PROGRAM EXECUTION 3-9 . CB2lA 



-HD path 
Used to override the default working directory specification for the task group 
spawned asa result of the login procedure. 

path 
Pathname of the working directory for the spawned task group. If this argument 
is omitted, the working directory pathname is null. 

-LRNn 
Used to override the default maximum logical resource number (LRN) value for the 
task group spawned as a result of this login procedure. 

n 
Maximum LRN value to be used for the spawned task group. (The maximum 
possible LRN value is 252.) If this argument is omitted, the maximum LRN value 
is the highest value in the system group. 

-LFNn 
Used to override the default logical file number (LFN) value for the task group 
spawned as a result of the login procedure. 

n 
Maximum LFN value to be used for the spawned task group. (The maximum 
possible LFN value is 255.) If this argument is omitted, the maximum LFN value 
is 15. . . 

-ARG arg arg ... arg 
Passes additional arguments to the task group spawned as a result of this login 
procedure. These additional arguments are passed to the spawned task in an 
extension of the task request block, and are substituted for parameters in the 
command input file. If used, the -ARG control arguments must appear last. Refer to 
the Commands manual for an explanation of the use of the additional arguments. 

The arguments will be substituted in the following manner: 

o Argument I will always be null 
o If the lead task is the command processor, argument 2 will be the pathname of the 

user-in file (i.e., >SPD>terminal) and arguments 3 through n will be the arguments 
following -ARG. 

o If the lead task is not the command processor, arguments 2 through n will be those 
arguments following -ARG. 

PROGRAM EXECUTION 3·10 
6/78 
CB21A 

.. 

"-... / 



SECTION 5 

DEBUGGING PROGRAMS 

While a program is executing, it can be monitored by using Debug. If there is not enough 
room in memory for Debug, you can monitor a program by temporarily leaving space in the 
program or by using Patch to append monitor points. (See "Debugging Programs Without 
Using Debug" later in this section.) 

DEBUG 

Debug provides patching and testing facilities for application programs running under the 
operating system. Debug runs as its own task group. 

Program testing and error correction is performed as an interactive dialogue between the 
operator and Debug. Execution of Debug is controlled by directives entered to Debug. 
Addresses used with Debug are system-wide absolute memory addresses; therefore, Debug 
directives are effective across task and task group boundaries. Debug directives are entered 
through the device specified as user-in in the request to establish the Debug task group (i.e., 
a user-specified terminal). 

The following functions can be performed using Debug: 

o Define, store, and execute a sequence of directives either entered through the input 
device, or referenced when a breakpoint directive or trace trap (BRK generic 
instruction) is encountered in the load unit being tested. I 

o Set or clear breakpoints in task code to monitor task status. (Breakpoints are described 
in detail later in this section.) 

o Set or clear breakpoints in bound units, to gain control of bound units as they are 
loaded. 

o Display, change, and dump either memory or registers; information may be printed on 
a line printer, the operator terminal, or another terminal. 

o Evaluate expressions. 

Debug File Requirements 
Debug directives stored for later execution reside in a preallocated, relative disk file 

DEBUG.WORK (these directives are identified and described in Table 5-2, "Summary of 
Debug Directives, by Function," later in this section). The file DEBUG.WORK must be in 
the volume major directory of the disk device referenced in the specify file (SF) directive. 
(The SF directive is described later in this section.) 

Loading the Debug Task Group 
Debug requires a minimum memory area or pool of 2000 words in which to execute. Use 

the MEMPOOL directive during initialization to create such a memory pool and to specify 
the pool's identification (see the Commands manual for details about MEMPOOL). 

Example: 

MEMPOOL ,AB,2000 

This MEMPOOL directive creates a nonexclusive memory pool comprising 2000 words that 
can be specified when the Debug task group is loaded into memory. 

1 Breakpoints. and trace traps either ~use a specified Debug directive line to be executed, or interrupt execution of the 
task so that Its status can be determIned. 

DEBUGGING PROGRAMS 5-1 C821 



Debug is loaded into the system as the lead task of a dedicated task group named $D. The 
base level number of the Debug task group is treated as a physical level instead of a value 
relative to the configured system, so that Debug may have priority over system tasks. The 
Debug task group must be assigned two priority levels which are not assigned to other tasks 
or task groups. 

The following examples illustrate methods of loading Debug. Example I illustrates a 
spawn group command. Example 2 illustrates a create group request and an enter group 
request. The following description applies to both examples: 

The Debug task group's identification is $D, your identification is GALE. TECH, and the 
base priority level of Debug is 7. Debug will use levels 7 and 8. Directives to Debug will be 
entered through the operator terminal, which is identified by its pathname 
>SPD>CONSOLE. The bound unit DEBUGDB will be loaded, if necessary, and execute 
as the task group's lead task. 

Example 1: 

Loading Debug by a spawn group command. 

SG $D GALE. TECH 7 >SPD>CONSOLE - POOL AB - EFN DEBUGDB 

Example 2: 

Loading Debug by create group request and enter group request commands: 

CG $D 7 - EFN DEBUGDB 

EGR $D GALE.TECH 7 >SPD>CONSOLE -EFN 

NOTE: The operator terminal is controlled by a system software component called 
the operator interface manager (OIM) that provides a standard means by 
which all tasks can communicate with an operator. OIM identifies the 
messages sent to the operator terminal by providing the task group 
identification in the prefix to each message; OIM requires you to identify all 
input by task group. If you are entering Debug directives through the 
operator terminal, it is recommended that you designate Debug as the OIM 
default task group; otherwise, each Debug directive must be preceded by 
b.$Db.. To designate Debug as the OIM default task group, enter the 
following command at any time prior to entering the first Debug directive: 

b.Cb.:$D: 

Example 3: 

Loading Debug with a directive terminal, not the operator terminal: 

SG $D GALE. TECH 7 >SPD>KSROI -EFN DEBUGDB 

Debug Operation with MMU 
The Debug task· group is loaded in ring 0, a privileged state, in order to run effectively in 

a protected (MMU) system. The debugger will handle '030F' traps and continue as described 
below. 

An error message will be displayed if the user tries to access non-virtual memory within 
any debug directive, except the dump memory directive CDP). The debugger will dump as 
much of the requested memory as possible. Once a non-virtual address is accessed, the rest 
of the current line to be printed will be blank filled. The current non-virtual address will be 
advanced to the value that is the next multiple of lK. This procedure will continue until the 
area to be dumped is exhausted or the end of memory is reached. 

DEBUGGING PROGRAMS 5-2 
6/78 
CB21A 

.. 

/ 



, 
• , 

Debug Directives 
Debug directives consist of only a directive name or a directive name and one or more 

arguments. Within a directive, arguments are separated from each other by one or more 
spaces. Except where specified otherwise, all argument values are entered lIsing hexadecimal 
notation. 

Multiple Debug directives can be entered on a single line. Each directive, except the last, 
must be followed by a semicolon (;). 

Press RETURN at the end of each line (Le., immediately after the last or only directive). 
Symbols used in Debug directive lines are described in Table 5-1. 

DEBUGGING PROGRAMS 5-2.1 

6/78 
CB21A 





.. 

( 

SECTION 6 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 

The MDUMP utility program allows a memory dump to be obtained with no requirement 
that system functions be available. Thus, MDUMP may be used when it is not possible or 
practical to use the dump facility of debug. 

To use MDUMP, you need a disk that contains an MDUMP record on sector 0, and a file 
(DUMPFILE) to contain the memory dump. Use the create volume command to prepare 
this disk (see "Preparing for MDUMP," below). 

To dump memory to the disk file, bootstrap the prepared disk as described under 
"Procedure for Using MDUMP," below. This causes the MDUMP record to be loaded and 
executed. When MDUMP terminates, an image of memory is contained in DUMPFILE. This 
file can be edited and printed by means of the Dump Edit utility, described later in this 
section. 

MDUMP UTILITY PROGRAM 

Preparing for MDUMP 
Before loading a program for which a memory dump may be required, enter the create 

volume command, as follows: 

FORMAT: 

{CREATE VOL} {-MDUMP nn} 
CV path -MD nn 

ARGUMENT DESCRIPTIONS: 

path 
Designates the pathname to the disk volume being prepared for MDUMP. The 
pathname may be >SPD>sympd or >SPD>Sympd>volid. If >volid is specified, the 
volume label is checked. The volume must have been previously formatted via a create 
volume command. (This command is described in detail in the Commands manual.) 
The volume can contain other data. 

{-MDUMPnn} 
-MDnn 

Writes the MDUMP bootstrap record to the volume specified in the path argument and 
allocates a file (DUMPFILE) large enough to contain nn 4K modules to be dumped. 
The value of nn should be no larger than the number of 4K modules contained in the 
system being used. 

Procedure for Using MDUMP 
Once an executing program encounters a problem or a halt occurs, you can obtain a 

memory dump by taking the following actions: 

1. Bootstrap MDUMP, which then performs the memory dump to the disk file 
DUMPFILE. 

2. Use the Dump Edit utility program to print all or a portion of the memory dump from 
the disk volume that contains MDUMP'S output. 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 6-1 

6/78 
CB2lA 



Procedure For Bootstrapping MDUMP on Non-Model 
23 Series Systems 

To bootstrap the MDUMP bootstrap record into memory, perform the procedure listed 
below, MDUMP then transfers to the disk file DUMPFILE the amount of memory image 
specified in the -MDUMP argument of the create volume command. 

1. Mount the disk containing MDUMP on the channel to be used in bootstrapping. 
2. Press .§.top and CLear. 
3. Set the P-register to 0004 16. 

4. Enter in register B 1 the initial address of the memory area into which MDUMP is to be 
read. MDUMP requires one sector of the disk device type on which it is stored. The 
initial address of Bl should be greater than 10016 to insure that hardware dedicated 
locations are not overlayed. 

5. Enter in register Rl the channel number of the bootstrap device (i.e., the disk mounted 
in step I). 

6. Press Load, then Execute. The bootstrap record MDUMP is read into the memory 
location specified in step 4 above, and dumps the amount of memory image that fills 
DUMPFILE. The dump is complete when an end-of-job halt occurs (see Table 6-1). 

NOTE: The size of DUMPFILE is limited by the capacity of the storage device. A 
maximum of 120K of memory can be stored on a diskette file. 

Procedure For Running The QLT And/Or Bootstrapping MDUMP On Model 
23 Series 6/20 Systems 

I. Press STOP/STEP button. 
2. Press MASTER CLEAR button. 
3. If QLT, go to Step 5. 
4. Set the P register to the first location to transfer the boot prom data. Any value other 

then zero (prefer 0 I 00 hex). 
5. Press LOAD button. 
6. Press EXECUTE button. 

CP will stop with P register equal to the initial value plus CA hex. 
BI register equal to 0100 16 , and RI register equal to 040016 , 

7. Change Rl if different boot channel desired. 
8. Change B 1 if different buffer address desired. 
9. Press RUN button. 

10. Press EXECUTE button. 

MDUMP Halts 
No messages are issued during execution of MDUMP. If a halt occurs during execution, 

the contents of the P-register and R6 register must be displayed to determine the 
significance of the halt, as indicated in Table 6-1. 

DUMP EDIT UTILITY PROGRAM 

Dumps produced by the Dump Edit utility are written to the user output file which must 
be capable of receiving a 132-character line. 

There are two sources of dumps: 

o Files created by the previous execution of the MDUMP utility. (Allor selected portions 
of the file can be dumped.) 

o Main memory. (A dump of main memory allows you to determine the configuration 
under which Dump Edit is executing.) 

Dumps produced by dump edit may be logical (edited format) dumps or physical (image 
format) dumps. Control arguments in the DPEDIT command (described later in this section) 
allow you to suppress either type of dump. If these control arguments are omitted, 
execution of Dump Edit produces a full logical dump followed by a full physical dump. 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 6-2 

6/78 
CB21A 

/ 



, .. 
" 

( 

TABLE 6·1. MDUMP HALTS 

Register Contents 

P·register R6 register Condition Operator Action 

003E16 a =0 End of job No operator action required. 
For information only. 

003E16 a *0 Disk error Rebootstrap MDUMP. 
(R6 contains the disk status 
word.) 

03nn *0 Trap handler For a description of trap 
error has messages, see the "Trap 
occurred. Handling" section of the 

Monitor and I/O Service 
Calls manual. 

a Address relative to the initial address of MDUMP as stored in memory. 

Logical dumps may be produced for any release of MDT Operating System and for any 
release of MOD 400 Operating System. 

Physical dumps may be produced for any properly prepared dump file, regardless of the 
content of the dump file. 

Logical and physical dumps are printed in both hexadecimal and ASCII notation. 
Duplicate lines, if any, are suppressed. Suppressed lines are designated as described 
subsequently under Dump Edit Line Format. 

Dump Edit Line Format 
The format of a Dump Edit line for both logical and physical dumps is as follows: 

Columns 

2-6 

3-6 

7 
8-10 
11-91 

92-95 
96-127 

1-11 
12-93 

94-132 

Content 
For LAF: Five hexadecimal digits desigriating the starting address of the line of 
dump information; the hexadecimal digit in print position 6 is always O. This 
forces the dump line to agree with the template printed at the heading of each 
page. 
For SAF: Four hexadecimal digits designating the starting address of the line of 
dump information; the hexadecimal digit in print position 6 is always O. This 
forces the dump line to agree with the template printed at the heading of each 
page. 
Slash (/) 
Blanks 
Sixteen consecutive words; each word is represented by four hexadecimal digits 
and is followed by a space. 
Blanks 
ASCII representation of the previous group of 16 consecutive words. A byte 
that is not printable is designated by a period (.). 
Blanks 
* * * * * * * * * * * 
Blanks 

Physical Dumps 
In a physical dump, the leftmost column of data (four hexadecimal digits for SAF; five 

for LAF) designate real memory addresses. When the Memory management Unit (MMU) is 
in use, there may be ranges of invalid virtual addresses (discontinuities) in a physical dump 
from main memory. When an invalid virtual address is encountered, a message within the 

MDUMPAND DUMP EDIT 
UTILITY PROGRAMS 6·3 

6/78 
CB21A 



physical dump contains the invalid virtual address and the next virtual address to be 
attempted. Thus, when the physical dump resumes, the valid virtual address is known and 
the left column continues to designate real memory addresses as if the discontinuity did not 
exist. 

A physical dump from an external dump file does not display invalid virtual address 
messages, and the left column of addresses is an uninterrupted continuum of physical 
addresses. 

The physical memory dump in Figure 6-1 was produced by Dump Edit in response to the 
command: 

DPEDIT DMPVOL DUMPFILE -NL -TO X'720' 

Logical Dumps 
A logical dump may be tailored by selecting (or suppressing) task group information on a 

group identification basis. File system information may also be suppressed. This tailoring is 
obtained by the use of control arguments in the DPEDIT command. 

All addresses in a logical dump are virtual addresses. The leftmost column of data (the 
addresses whose contents are being shown) are always virtual addresses. This applies to 
dumps of disk files as well as to dumps of main memory. For disk files, Dump Edit 
calculates the virtual address in the same way as the Memory Management Unit would under 
the same conditions. 

The arrangement of information in a logical dump is described below and illustrated in 
Figures 6-2 through 6-4. 

SYSTEM SUMMARY 

o Location and contents of hardware-dedicated main storage 
o System Time of Dump 
o Location and contents of System Control Block (SCB) 
o Hard ware Configuration 

- Model number of central processor 
- Presence (or absence) of the Commercial Instruction Processor, the Scientific 

Instruction Processor, and the Memory Management Unit. 
- Value of the real-time clock scan cycle 
- Presence (or absence) of an operator's terminal 
- High address of virtual memory 
- High address of physical memory 

o Software Configuration 
- Name of operating system 
- Presence (or absence) of the error message library 
- Size of trap save area (TSA) 
- Size of interrupt save area (lSA) 
- Number of indirect request blocks (lRBs) in IRB pool 
- Presence (or absence) of the batch task group 

o Batch Group Data (shown if batch group is present) 
- Virtual address of beginning of background 
- Virtual addr~ss of the end of background 
- Rollout status (currently rolled out or not) 
- Number of completed rollout/rollin events 
- Size of background memory given to foreground 

o Memory Pool Data 1,2,3 

- Pool identification 
- Starting address of pool 

1 Supplied for each memory 
2 An "X" appears beside a pool name that can cause the batch group to be rolled out. 
3 The pool name for the batch group is BATCH. 

MDUMP AND DUMP EDIT 
UTILITY PROG RAMS 6-4 

6/78 
CB21A 

/ 

\ ,--_/ 



( 

'" '" '" -..... 
:0 

..... 
II' 
o 
I 
o -.... 
..J 
I 

'" o 
'3 
'::> 
o ~ 
2: 

.0 

'" .::1 .oJ 
U 
CO 

o 

~ 

'" 

• ••• + -~ •••• 
• • • • • • • • .:J • · . . . . . . . .. ....... . 
,(1) • '_0"""-4_--1 •• 
• •••••• •• % • · . . . . . . . . . . · ...... . 

I .... ,.... (!) :E X • 
• ••••• • '..JCL. · ...... . · . . . . . . . . . . 
• ~ • 'N1i''''-I::) •• . . . . ... ,:) · ...... . · ... . 

... ,., U CI) ••• 

• •••• • '>,L Z • · . . . . . . . . . . · ....... . 
I-I -40-' . 

• • 'Z • · . · ...... . 
• •• • ",,",,0 ....... 
• •••••• • IE .' 

· .. 
IU I 

•• I • 

I II % 

· . · . · . · . 
· . · . · . · . · . · . · . · . · . · . 

· . · . 

· .... 
• lS • • II 

X 0.. ••••• · ....... 
• • '3 

• • • • Z" · . . . . 
• •• 3. • • • 

• • IN •• 

· ..... 
I ••• · . 

. . . . · .. · .. 
• ..J • · .. · . · . 
• 'N · .. . · . . . . . .. .. . ... . · .. . .. . · ........ . 

• • -, X • 
• • 'X •••••• 
• •• ,.., •••• > t.!: 

· . . . . . .. 
• • at • • • •• 

• ••••••• It • · .. . 
• ••• t, • • 'U ••• · .. . . . 

• •• ..AJ ...... · .­
• • '3 ':xl 

· . . .. · .- ~ ''3 
I I •• I I • 

IU •••••• · .. · • .CQ 

. · . 
· '0 .. · .... · .. 
• ....... UJ 

'''''.oJ 
'0 · ...... · . 

• '11' 
• • .:> .x • 

· . . 
· . ·U-

I I I •• =n 
.", . 
''''''1 I • 
."" ••• ·U 

• •••• I 

• • I • 
I • IQ.. 

· . · .. • • •• e . ", . 
• • I • I ••• I' ••• c · . .. . .. · . .", · . • a · .. 

.eI) •••• 
• • .,u •• '4-

• •• • -e • ~ . ...... . 
•• ••••• I · . . ... · . . . . .. 

• • en t0o-
I • • • • • • • • 

• • • •• a •• .. . . · .. · . · . . . . . . . . . . . · . . . . 
• • I •••• 

• I •• •• _ · .. 
• I I .« 

• • • • I .« 
• • I I I I '.lIC 

I • 4: • • I 

I I to- '-LJ • 1:l5 

.", 
• ••• I • l:n 
• • I •• I .« 
• I I •••• it I I~ .. ~ 

I • )< 
,j ••• -I · ..... . . · ...... . 

• •• •• ...J 
,(1. . .. . ... 

• • • • • >­· ..... 
1. • • • · ... 
· ...... . · ...... ~ 

'" .A I • • • I 

• • I •• .. · • A 
• ••• I • 

• • ·U 
I I I • 

oo~~~~oo~=~o· ~~ uoo4~~~oOONo=oCOUoooooouc~o_~ooo o_cco~oo 

~~~-~"".-~~~ ~~ ~O~~D~~~OOO~.:>oo~.o~~~~oO~~~~~DO~~ ~JOO~~~o cc _____ oc_o<<~<<<~eo~~0400o00Cooo~oooooo~o~~oCo_o<<~<ooou co 

~~o~~~ooo~o ~~ .~o~oo~o~~~o~~o~o~o~o~~o~~~~~o~~ 4J~Oo~o~

o~ooooo~ooo ~~ ~o~~OO~OO~DO~O~OO~o~o~o~~_~~~_o~ ~-o~oo~o
00000000000 00 ~~uooooooo~oooooooooooooo~o~ooo~ o~oooooo
oooo~ooooo,:>.~~«~_uoooo~oo~oo~o~oooo~oOOODo",,~ooo«o~~ooo~o
00000000000 00 ~o~ooooooooooooooooooocooOOCOOON cuoooooo

o~~~~~~_u_o ~~ ~ooo~OWOw04000000400000~0~ooo_oc _ooocQoc
~~~-~~~~~JO ~~ ~~o~~o~~~ooooooo~,~~ooooo~~o~oo~ ~oooo~oo ow ______ ~NO.4~«~OOOwOWO_ONOCOOCO~Ooooooo~~ooooo«ooooOu 00 

.:>_oooooOO~o ~D _oo~~~_oooo~oooooooooo=oo .... oo~~o~ ~oooo~oo 

~~~o~~~~o~~ ~~ ~~~~~o~~~~~~o~~~~~~~~O~O~O~4~~~0 ~~~~~~~~ 
00000000000 00 UOO_OOQOOWOooooooeooooeooUUOCO_N o~ooccoo
ooooooooooo«~~«""~~oooooo~oooooo~oo~ooo~o,,,,~ OOOO.o~=o~o~=
O~?OOOOO"'oo 00 moo~o"'ooomoooooooooooocoommoooo~ 04000000

oe~~~~~~~~o ~~ ~OOO~O~OO~4~OCOOOO~OOOOOO~~OOOOC o~c~c~~c
o:o.:> ~~~~~~o ~~ ~OOO~o~=o~~_oooooo~~OOOOO~~OOO~~ O~OO.:>~OO
OM------UOO.44«40000e~OOO_NOOOOOONOOOOOO~~OOOOO«OOOOO~ 00
~~~~~~~O~~~ ~~ ~o~~~o~=~~oo~~~~~O~~~~~?~~D~O~O~ ono~~~~~ 

00000000000 ~~ ~oo~:ooOO~OOOOOOO~':>OOOOOoo-~ __ ooo o_O~OOO~ 

00000000000 00 oco~.oooo~oooooooooOOOCC=01l'40000'" o~ouooo~ 
OOOOOOooooo«~~«~OO~OOOO~O~O~OOooooooooo~m~~oooo«ooo~~o~~ 
00000000000 eo OOO~OOOO~OOOOOOOOCOOOOCOOOO~OOO~ 040~OCOC 

O~~~~~~~~~O ~~ ~oo~~_~O~~Wo~oooooo~ooooooo~~ooo ~O~OOOOO 
o'~_~~~~~~o ~~ '::>OO""~OoO~~.oJO~~~O~OO~O~OOOOU~~OO~ ~o_ooooo 
O _______ ~~O«44.4000~O~Q~O-ONOOOOOO~OCOOOO~OOOCO«OO~OOC 00 

~~o~~~o~~~O ~~ ~~~~~O_~~~~O~~~OOO~O~~O~OO~~OO~~ ~~~~~~oo 

00000000000 ~~ ~OU""~OOO~~OOOOOOOOO~OOOOOO'3.oJOO_O ~OOOOO~~ 
00000000000 00 OO~~OOOO~~OOOCOOOOOOCOOOOO~WCOO~ 00000000 
~O~ooooooOO«~~«~O~~OOOO~~OO~OO':>OOOooo~ooo~-OOOO«OOO~OO~~ 
00000000000 co OO~~OOOoc_ooooOO;OOOOOOOOO~C=OO'" 000:000'3 

OO~~~~~~X~C ~~ ~~~O_O~CO~~UC~OOOOOO~OOOOOUOCO-O NO~CCOOO 
OOO_~~~~~.oJO O~ ~mooDO~OOO~~o""oooooo~OOOOOqOOOO~ 00-00000 
oo---- __ ~we.~c«4~OO~COOCOO~ONOOOOOONOOOCO~OOCOO«OO~OOC 00 

~.:>OOOOOO~~o :O~ ~~oo~OOOOOOOOOOOOOOOOOOOOO~OOO~~ OO~ooooo 

o~ooooooooo ~~ ~~ ..... ~oo_OO~~OOOOOOo~oooooo~o~_ooo OO~OOOO~ 
00000000000 00 oo~Ooouoo~~OOOOOOOCOOOOOOOU~ooo~ ooooooo~ 
OOOOOOOOOOO«~~«~U_~OO_OO~~OOOOOOOOOOOOOOO"".oJOOOO«OOOooo0_ 
00000000000 00 oo~ocooooo_oooooooccOOOCOO~_OOON 00000000 

oo------~~o ~~ ~-~oo~~oooo~oo~oooooo~oooo~oc_oo ~OCo~oo~ 
OOo_~ ...... ~.ooo Q~ ~o~oo~~ooOO~OO~OOOOOODOOOO~OOOO~ ~o::lOooOO 
O~---- ___ ~O.~4«~OcOOw~OCOOOOCNOOOCOONCOOO~OOOOO«~O~cOc 00 
~.oJooooooo~o :O~ Do""oo~oOO~OOOOOOOOOOO~OOOODOOO~~ ~OOO~O~O 

00000000000 ~~ ~OL~O_~~O_~~OOO~O~OO~O~O~O~40~OO ~ooo~o-' 
Ooooooooeoo 00 OON~O_~004~~COCOocooooooeO~NcOON OCOooCo~ 
~00oooooooo«~~«~0""'~oo~oo~~""'00000000000000~40000.000':>OOOL 
OOOOOOQOOOO CO OO~~OO~OO_O~OOOOOOOOOCOOCO_NCOON ooco~oo~ 

OO_~~~~~O~O ~~ ~_OOO~N~OOO~OOOOOOOOOCOOOOC~OOOO O~OC000N 
~OOO_~~~o~o ~Q ::IO~o~U~~OOOOOOO~OOOOOOUOO':>U~':>O~~ OOOO~~OO 
OOO-----~QO.4C~~~~O_4~C¢OOOooo~ocooooruooo~_~ooc.ooCoOO 00 
OOOOOOOOO~O ~D DO~OO~~""ooooooo,:>oooooo~ooo~.ooo~ o~OOOOoo 

00000000000 ~~ ~~~DOO""~o~~""~ooooooo~oo~~o~~~ooo O'.oJOOOOO 
ocooooooooo oc cu~~oo~Oo~o~cocooocooooooo~~co~~ "'~~OCOOC 
OOOOOOOOOOO«~~.~~~~OO~OO.""""ooooooo~~OOOOOD~~oo~.o_~ooo00 
00000000000 00 o~ ..... ooo~o~ooooooooooocooooo~~ooo~ ~040000C 

~~o~OOOOOOO ~~ ~~~Oo~o~OOOOOCOCWOCOOOO~OO_~~CO~ oucooc~c 
~~OO_~",,~OOO Q~ ~~~OOOO~OOO~OOOo~o~oooo~OO::l~ooo~ ~~OOOOOO 
~~O _____ OOO.44.~~~oooe~oocooooo~oooooo~cow~OOO~.O~OOOC~o 
~~ooooooooo :om n~ooooo~OOOOO~OOOOOOOOO':>OO_~OO~~ ~OOOOOOO 

00000000000 .oJ~ ~000~00000Q~~~~0000000000004~O~0 O~=~OOOO 
00000000000 ~o o~oo~ooocc~_oeooooooOOCOOOUNC~~~ ~coooooo 
OOOOOOOOOOO«~~«~OOOOO~OOO'3~~OOOOOO~OOOOOO""'_O~""o«~OO_O~00 
000000000000 00 O~Qoe~ooooo~oooooooooooooo~~oeON ~co~ococ 

............... , .......... ", ........... 
::>:=-ooo:><:.:>oo"::!>o 
o-",,.,..:::rIJ'l..o,....COa'-C 
0000:'0"::>00000 
0000000000000 
;:'00.0:>:::>00::>:::>0 

.......... 
00 
0_ --00 
00 

............................................... , ..... , ................................................................................................................ ..... 

OO~oooooo~oooooooooooooooooooooo 
~~,....~~4~UQ~~O-N~~~~,....~~4~U~W~O-N~~ 

-----------~N~~N~N~NNN~~~NN~"" ..... """" 
0000000000000000000000000000000000 
~::>oooo~ooooooooo~::>OOOO::>OO~OO::>OOO 

.............................................. 
o.:>o~oooo 

"c,....~o,c:r:.:J:IuO 

r"\""~""""'r-t\!"I"'I"" OOOOQOOO 
000:::>0:::>00 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 6-5 

6/78 
CB21A 



' ... 
" « 
tl. 

-' 
I 

o 

"" 

· . . 
• • tc •• 
• it • • • 

, . · . . 
· . · ... · , . · u · .. · .. .... 

. . 

. . · . . .. · • .~ I · ... · .. I ••• 
D •••• 

• .3t • .. . . .. · .. · . ..J • • • ..... 
• •• • '\..,1 · . '" :::c. .:&. , 
It..,) ~ • 'U · .. .. 
. . . . . . . . . . · .. .. ....... 

· .. .. · .... . · .. · .. 
1 

· . · . · . · . · . · ... · . · .. , . , · . 
· . • .J: •• · . · . '0 .. ' 

o 0 

• 0 · ... 
··Ct • • ..... 
O. 
• 0 

. . · .. , . . · .. " . . . . · .. ~ · . . . . 
• • .:c · .. 
• ••• u · . . . 
• )( • en 

.. . , 

· ... ~ .. · . . . . . . . 
• • • • • '8 · .... ~ . ..... . .. . 

• • lX • a: · . · . . . . . · ..... . 
.> :x 

· ... · . . . . . · .. , . 
• .... 'U .... 

• J: · .... 

... . ... · .. · .... 
• • • • II · .... . , . 

I •••• . .. .. . · ... 
• oX • • 

. ... . · . . . . . . . . 
>- •• ·,.,...0·· ..... • ••••• 1:'" •• 

• .)(. •• u •• . . . . . . .. '" 
• • '0-1 '3;' • · ... ..., ....... . 

• >- • • • • • ••• 
• .-:t •••••• 
· . .. '0 · . .. ... . . 
• • ,)1( • ')( • • • • • • 

• •• "j • • ••• · . . ..... . .. ~ · ... ' . 
:~ :'. : 

• > 
• 0 

o . .. 
o 0 0 

• 0 -' 
. . , . · .......... . · . . . . . . .. . 

• • ·0 •••• 
• • • • • • • '"8 • • 
• • ~ ••••• • ·W •• · . . . . . . . 

• • • • CO • 
'..,0 . . . 

('0. •• • :» 
• X <D · . . . 

• • ,lilt 
• •• 11. 

• - IN 
''''" · ... · . . . . . 
• • .,... .::c , , 
~ · . . . . 
'.J.. • .:) .. .. 
• •• c( • • ..., . 

.:1) .. · .. 
• ·U ••• 
• ..., C( •• ., 

, .. 
• •••• til 
• • i.L. •• 1. · , . 

d oo~oo ~o~ooO~c_o ~~ooooooo OCOO~OOC~O~OO _~04NO 
j ~~~~~ ~~-~~~.n~~ ~~~~o~~~~ ~~~~~~~~~~~~~ o-u~40 
a ~ OOCOOtc~O~oo~~coo~_~oooo~oo«oooo~ooo~c~oo«oc~omo 
~ ~o~~~ -~_~~~~~o~ ~_oooo~~~ o~oo_~~~~o~oo ObDo_~ 

4 ~~4~~ ~~~~~~o~~~ ~~~~~~~~~ D~~~~~~~O~~~= ~~~Q~~ 
~ OONOO c~OOQOOCOO oQOCO~-OO O_~QOCOOOQOOC ooo~o~ 
~ ~ ~~~o~«~~~~~~~~~~«~O~~~~~~~«~4~~OO~~~~O~o«~~~~~~ 
U o~~oo 0000000000 00000_000 00_0000000000 ~oooo~ 
:.!} 

o 
I .... 

o 

o 

"" ..... 
~ 
o 
..... 

'" 

c~~oo O~40QO~OOO o~oocco~o ~ooo~ooo~~o~o oo~o~o 
~~-~~ ~-~~~~~~~~ ~~~~~~~~~ ~~~~~~oo~~~oo ~DDO_O 

o o~OCO.Uouo~O.OOC«C.Oo~o~oo«~o""O.OOo~~oOO«O~<DO:1)O 
~~O~~ ~~_~~~o~~~ ~_~oo~~~~ ~~oo_~ooo~oo~ ~O_o~o 

DOO~~ ooo~~~oooo oo~o~~o~~ ~~~OOO~O~D=Oo ooono~ 
w~woo o~00040000 oo~oc~o~o c~uoooccooooo OOOOON 

~ ~~-~~«~~~o~~~~~~«oo~~~_~o=«~~o~o.o""o.""oo«""oooo"" 
oooco oNoooooooo oo~oooooo o~_oooooo_ooo ooooo~ 

00000 Noo~~oe~oo O~~OOO~OQ ~ooo~~o#oo~oo ~~O~~O 
~~o~~ D~~~~~~~~~ ~~~o_~~~~ ft~~~~~~~o~~~~ L~~~~O 

~ ooooo.oooo~~oo~oo.o~~oOCOOQ.UCOO~~0400~OO.~~0~OQ 
~~~~~ -~~-~~=_~~ ~~~~o~~~~ ~ooo~~~~~""~~~ ~~~~oo 

~~~_o o~~~o~~~o"" ~~"'"~~_~~~ ~o~""o~oo~ooo~ o~ooo"'" 
~~~oo o~~oo~oooo oo~c~~_c~ oo~ooooo~oooo oooo~o 

« ~~-~~~~~~~o~o~~~~oo~_~~oo~«o~~oo~oo~oooo~ooo~""~
o~ooo o~oooooc~c oo~_coooc OO_OO_OCQOOOO 000000

00000 ~oONooo~oC o~~ooo~oo ocoo#u~~ooOoo o~c~~ru
~Oo~~ _o~~~oo~_~ o-~o~o~~o ~oo~~.~~oo,~o ~u~~~.

~ ooooc«~oo_ooo~oc.o~~oco~oO«00004~~_00400«~00U~O
~~~~~ _oo~~o~~o~ ~_~o~~~o::> ::>o~~~~~:::.oooo~ ~~oooo 

OD_OO o~~oo,:>o~_o oo~oo~ooo ~~o~~~~oooooo QOOOO~ 
C-400 OO_OQOOO~C coooo~ooo o~~coo_oooooo 000000 

~ ~~~oo«oo~~oo~~o:>«~ooO~OOO':>«~u4~OOO~O~O~~«O~OQOO 
oc_co o""cco~~ooo OCOC~~NCO oo.oooooooo~o .00000 

~oooo oOO~~OO~OQ ooooo~oec COOO~QOOOO~~O 4~OQ~~ 
0:>:>00 ~o~_~~o_:>~ ~4':>O:>OO~~ :>~~':>~:>~~oo~~~ ~400~O 

~ ~oeco._ooo~oo_co~o~oeo~ooo«oooo~ooooo~oo«~~oo~o 
~~~~o ':>~:>~~:>:::.~:>~ ~D':>~O_O':>O o~oooo~ooo_oo 04oo~~ 

Q~~OO ~OU0400~.O o~oo~o~~o ~o~o~~~~""_ooo 000000
oo~oo NCUO~O_ooo cooO~OI/lOO oou~o~~cooooo ooooow

o oo_~o«~o ... o~oooo~«~~oo~o~oo«~oouo~~o~~o""o«ooo~oo
00:00 ooO"'o~coooo ooooooooc oo_~o~_oooooo 000000

o,....ooc ~~o~~~wo-o 000000000 cuoo~oo~oo~oo o~o~o~
o~o~o n~~"'~~4~_O o~o~oo~""o o_~o_o""~oo~~o 0«"".""-

~ c~o~c«~oo_~w~~co~ooooooooo.ococwoo~oo_oo.ocoooc

o~o~~ ~~oo~_o~o"" o~~o~oo~o o~oo~oo~oo""oo o~o""~o

~o~~o ~~oo~~""o""o oO~~N~O_~ o;J\~~~~~~oOoo~ ~oo_~~
oo~cc ocoo~ooooo coo~~~moo ONU~OOO~ooooo OOO_.DN

• ~""~oo~oooo~o~o~o~ooo«~~ooo«~~oooo~~~oo.o«oo~o~o
00-00 oooo~ooooo ooooo~cco C ___ OON~OOO_C ~o~o_o

o~coo oooOooo~_o 000000000 oooo~~o~~uooo O.D~~O~
ooo~o .O~~~OOQ_? ooo~ooo~o OO~O;J\~o~~.ooo o~.~oo

~ O~OOQ.~oc_ooo=oo.ooo~ooooo.oooO~~O~~~~OO«04_~OC
~_ooo ~oo~oooOOO ~ooo~oooo oo~o_oo~oO~Oo o~."'"o •

- ~o~~~ o~~ooo~~o~ oo~~o~~~~ o~o~oo~~""~ooo oooo~o
~ oO~NO o~~oooo~oc ooc~cco~c cx~~ocu~ooooo CCON_O

~ =o_oo.~~u~o=~~oo«o~o~o~ooo~~~~_o~~~ooooo.=ooono
cooo~ o~ocooc_oo ooo~coeco oo __ oo~~oeo~o o~oo_o

c~c~o ;~ococQoOO O~LO~OOOO 04eoo~oooo~oo o_~oo~
:::.~~.~ ~~:::.~~~~~~:::. 04~~4~~~~ ~~~o::>~~o~~::to~ ~U4~~~

~ ooo~o.ocoooo~o~o«o~wo~cooo.ooooo~~ooocoo.oo~coo
~ ooo~"" oo~ooo~o~o a __ oa~ooo oooo~~~oo""oo"" o~ooo-

=>
~ ~~W~~ ~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~oo~~~= o~oo~~

~~-~o ¢-Qdoooooo QCO~OOWoo OD~~OOOOOQ~_O oooo~o
... 0 O~~~o~~ooo~~o~oo.ooo_ooo~~«o~_o~ooo~o~oo«oo~~oo
~ ~oo~o oooo~ooooo 000000_00 ooo-oo~ooo_oo 000000 ...
Il:.
,:;,

'" z
«
~

..............................
0::'00::>
l.LIiLO-t'\I
"",...,::t~~
00000
oo~oo

........................ ,
o~oo~~~~.:>o
:::ItJ"I..()r-a;;:(J'4..t;lUO
:z~:::t.:r~~-:z~.:f:z
0000 <:) 0000'0
000.000:::'0000

.. ,

.::>o~oo::to:»':)

-n",.,..;;:rI/l"O ,X)O'"
'.1'!.t"I./'IJ'./'to.n'J'tlrtJ't
000000000-
=>Qoooo~o::t

..

O':=O:>O'OQOQO!)~O=>

:cuOu,J.t..L.O-t'\J"''''II'.o,....
~;J\;J\~;J\~~O.DO~~~
0000000000000
':>ooooo~oooo~o

,
oo::>o.oc:t
OIJo,l\&,.O.-4N
.c4.o-~~ ••
000000)00-
0'00"::10000

MDUMPANDDUMPEDIT
UTILITY PROG RAMS 6-6

3:

6/78
CB21A

.. /

c:::a::
~O

E~
~>
""~ ~
00

~~
CIltT1

0 -~

0\
.!.J

("')0\
t:C::J
Nco .-
>

~
... ".,' ,~" ,-....

MAIN STORAGE OUMP 1978/05/30 0755:1b.b UUMPEDIT-OII0-05/2~/074A GCOSb MOO400-lI10-0S/18/10~2 PAGt 0001

0 c 3 4 5 b 7

HARDwARE DEDICATED LUCATIONS
000001 0000 FFfF 0000 0000 0400 0000 0000 0000
000101 0000 43A5 0000 0000 0000 t40D 0004 0000
000201 0000 OOuO OuOO 0001 0000 0101 0000 0103
000301 OOOu 0100 0000 OIOF 0000 0111 0000 0113
000401 0000 oliO 00 PO OllF 0000 otll 0000 Oll3
000501 0000 0120 OuOO 012F 0000 0131 0000 uI33
OOObOI 0000 0130 0000 015F 0000 0141 0000 0143
000701 0000 0140 0000 Ol4F 0000 0151 0000 01':>3
000801 0000 0000 0000 0000 0000 otbA 0000 bb7B
oooQOI 0000 0000 0000 q02F ooOu 4EoF 0000 4Et:.F
OOOAOI 0000 ooon 0000 uooo 0000 ooun OOOU oouo ,. ,.

'" '" * '" *
001001 OFFt ~AU~ O~Oc HAU3 OfOl BAD3 OFOc 8AU3

SYSTEM I IME O~ UUMP IQOl/Ollot 0001:07.0

SYST~M CONTkOL ~LuC~ 00177
001701 0000 UHf 30 ~5 IF 30 332~ 3054 3133 0005
OOIEiOI 0000 oouo n~~b 0000 b5bS UOOO UQno 0000
001901 n03~ OOUO 0000 ul~O 0000 0000 OOOu b5~1
OOIAOI OuOO 0003 OUOo OAC9 Ootl fE1F 0000 0000
001801 OOOu uOOO A033 2442 frFt 04Q2 01Cl 00~9
OOICO/ Ouoo 5EbS OvO) 5AFF 0002 0000 ooou onuo
001001 0000 uouo noou OOuo 0000 0000 0000 0000

CENIRAL P~OCESSUk ~UDtL: QX Ok 5X
CO~M~~Cl~L PRUCtSsOk: NO
SCIENTIFIl PMuCtSSO~: NO
ME~UNY MANA6E~ENT UNII IN USE: YES

II 9 A H C 0 t F

0000 0000 0000 OOOQ 0000 0000 0000 0000
0000 0177 0000 H380 0000 lE~3 0000 0000
0000 0105 0000 0107 0000 0109 0000 oloB
0000 OilS 0000 0117 0000 0119 0000 OIIB
0000 0125 0000 0127 0000 ull9 0000 ulc!!
0000 0155 0000 0137 0000 ut59 0000 OljR
0000 0\45 0000 0147 0000 0149 0000 014~
0000 OJ~5 0000 UI~7 0000 uljl 0000 0016
0000 03FQ 0000 4C78 0000 Ob4C 0000 oOUO
0000 4FCF 0000 ~OAF 0000 52lt 0000 51AB
0000 0000 0000 0000 0000 0000 0000 OouO

'" * '" *
,.

* * *
OF02 HAD) q~O~ HAU3 O~o~ ~Au3 Of 02 8AU3

FfFC OOuo 0000 oouo 09DU OOuO blC5 0000
9523 0053 7l4A oouo 7012 OOuO OOOb H4cA
0002 7FfF OubH oo~S 0000 4E54 0000 09bb
0000 0001 0000 0000 OUOO uOuO 0000 0003
0000 19uE 0000 u31b OuOO lEHC OOO~ jAfF
0000 0000 OuOu 0000 0000 0000 OOOu onoo
05b3 c456 FfFF oOUO 0000 OIEE 0000 0000

TIM~ (MILLI-StC) ~ElwEEN ~EAL TIME lLOC~ IN1E~RUPTS: 003?
OPERAIOH'S TEk~lNAL: YES
HIGH PHYSICAL MtMuRY ADDReSS: 27FfF
HIGH VlkTuAL MtMURY ADDRESS: 33AFF

OPERATING SYSTEM: ~U~aoO/LlIU

~~RUR M~S~AG~ LIH~AkY: Y~S

Srl~ UF T~AP SAvE AkEA (~UROS): 00b8
SIZE UF INTtRHUPT SAVt ARt A (wORDS): OOcS
NUMb~k UF U~U~Eu INOIkFCT REQUEST BLOCKS: 0033

BATCH G~OuP: YE~

VIRTUAL ADDRESS Uf bFbINNING uF AAC~GNOUNU: 300UO
VIRTUAL AUOHt5S Or IHt tNu UF HACKGkOUNO: 35AFF
CURRENTLY ROLLEu-uUI: NO
NUMHER uF C~MPLtrtD AuLL-UUI/NOLL-IN tVtNTS: 0001
~EMORY GIvEN.IO FuREGHOUNU FkoM BACKGkUUNU (wORUS): 0000

Figure 6-2. Logical Dump: System Summary

·
•• C •••••••••••••••• W ••••••• S •••• · ·
••••••••••• 1 ••• * ... % ••• • •••) ••• +
••• - ••• 1 ••• 1 ••• 3 ••• 5 ••• 7 ••• 9 ••• ;
••• = ••• ? •• A ••• C ••• E ••• G ••• I ••• K
••• M ••• O ••• Q ••• S ••• u ••• ~ ••• I ••••
••••••••••• J •• F ••••••• LX ••• L ••••
•••••• M/ •• N ••• N ••• O ••• P ••• H ••• W. ·
·

•••• OS/Oj/0413 •••••••••••••• L •••
•••••••• ~E ••••••• #.3kJ •• P •••••• *
.2 •••••••••••• t •••••• H.% •• N4 •••• ·
••••• 3$6 ••• fl ••• I •••••••••••••• :.

A
• •••••••••••••••• C, V ••••••••••••

--

c:::s::

E~
>-i"'C
-<> "'C z 130
PO
~~
~"'C
C/}m

o ->-i

0\ ,
00

(;)0\
i:!:'".:::J
Noo ->

MAIN STuRAG~ uUMP lq7~/0~/jO 0753:10.0 DUMPEDIT-01I0-05125/0748 beUSb MOu400-Ll10-05/1~/10~?

(j c! 3 II

MEMURY POUL DEFINIlIONS
POOL srA"T
NAME AOURtSS
u 005LO
!lATCH 30000
TS K OAOoO
EX K OAE20
All OC7AO

SYSTEM SYMBuL lABLE
!lOUND UNII SYMtlUL

Z3EXt.(
FILBUf flLHUF
HOLLCD

ENO SILl'
AI)UkESS (I'fURvS)
OAO~F 03AAO
3SASF 03A<l0
PAE1F OOOLO
O17'1F 01q~O

?<l40F 1711<10

VALUE

00000

r; b 7 ~ q A H !: o t F

M~MORY ~OULS STATUS
TuTAL -UNW:iED MAXIMUM-UNUSEu NUMbEH-uF ,~UMIII:R

(I'fOROSJ CUNlJbUUUS (I'fORUS) FHAbMI:NrS OF-USERS
O~II~O 01FIIO 00007 00001
01C<l0 01C40 00001 0000\
oooeo oODeo OuOOI Ooou/)
01 qlHI 019110 00001 OI)OUO
JbHbO IbAt;o 00002 00002

Figure 6-2 (cont). Logical Dump: System Summary

PAGE U002

,.

('" · 'U · · · . .. · · .:::> ::> · · · 0 · · 'X · '11. · · <Xl · · Q 2: · · · · .:1) · 3 ·L .. · . · · .", · • .'8 '0
LIo.I · · · · .". · · · · · .., · · · · · · · · · · · .. :n · · · · · · .:> ..J · · · · · 11. 1011 · · · · · · · · Q. ... · · · ... · · · :0

en .. · · · · .~ ;1. ,... · · · · · · · · · · " rJ) · · · · · · · · · · Z · · · · U · · '0 · ::> · · .- · · · · · · · · · · • 11. ::> :oct - . · · · · · · · ."" '-1 · :c · '" · · · · '-1 · · · · · J'I a: J'I · · .::> · · · '-'
0 Q('" · .", · · . · · - ::> ,... ... ::> · · 'Z 'Z · · '" '0 0 · · .Q · · :0 Z N .0 :::> · · · · · 'U · · . · · ... 'U U · · · · · · .::> -I 'X Q(· · · · · · L/'I -loll · · · · '-1 · · · · ct · · · · · · > · · · I ~ · · · · .:> · · 0 ,... · · · · · · · · · · >::

LIo.I · · · · · '0 · · · · Z · .::> · · ./ · · -I
I

0 Q OOCo- 0",",0_0 00.0 00,," -,,"II" _c
::> =-~O-=Q~ ~~o::>~ '" '\I ,. ::>::>:c "'" :0 ::> ::>'\1
0 ... 000000 clJ"!ooo 0"L/'I co., -00 00
X :;"010::»00 O~QO::> OI~J'\ 00- ::>::>- 0'\1

-41 .:7Qll::>:':Ioo ::>X)::t'll::> 0::>0 =>Oi.L '\1::/'-, ::>::> ~
rJ) lI'oc>ocC> <=iI'ooo Oir' 0 0o", <rCOO 00 e ::> ~Q::>ooo

::':I.J":::> __
::>,..,'" -::>::> "'::>::> ::>0

U =$000.00 Q~OOO 00/'10 ir' 0., ",co 00 = ".!) ...
COLLOOO 0,,",,0=4 000 000 00., ,,"0 U
::>O ... !)::>~ ::>"'~:>~ ::>::>'" ::>::>::0 0_'" X):>

~ Q OOu..OOO
040 __ 00_ 000 O_L/'I 00

O:;:J,J,.':):;"O ::>.J'O::>::> :>::0::0 ::>::0::0 ::>:>,. :>::0

..:>00:110= ::»0::>.0_ ::>::>0 0"" '- ::>0::> .,::0 e ecoooo OOOCL,U ,,"00 002) 0"'0 :cO ~ u ""''::::10_00,0 ~::>oo..o u::>::> ::>::>::> ::>::0::> ::>::> ...
"'000<::0 000011' "'00 000 0"'0 00 ~

oe c:::.coooc ocoee 000 c<c ... oeo "" .. ~
'" :::I':'\I'"\I::to.:> ::>::>':>0':> ::>::0::0 0::0 :0 ::0'\1 :0:0 ~ :II 1I'000QO 0001000 coo 00::> 00:0 L/'IO := 0 ~oo=o::> ':>0::>0'::> ::>::>::> ::>::>::> ::>'\1" :)'::0

~
J'I ::tQQOOO ::>0,:;'000 ::>-0 ::00'\1 -::>'" ::>pI\
'" ",C:H'\lOQO OOQCQ oeo 00_ of\ll.fl oce: Q

"
.... c ~:>..ooo:::t ::>::>:::>:::>0 :)'::>::> ... ::>." ::>:>::> ::>'"

~ '" lr 01'\1 oc: 0 ocoeu 000 0., eru.r 0,,"
0 ~

~. I c:r-oooeo ONOOO 0-0- 000 ooco LIo.IO ~ 0 .J'\O~O::>~ .:l '::t:::>:;)."\1 ::>::>::> oo·"\j ::>'\1::0 ." ..
"" ""000_0' 0"0000 000 "'00 00 00 - J'I 0·"\1 00 0 :>OO:::>f'\.I ::>0::> ,,-::>'\1 '::>""'1./'1 ::>::0 C.

0

~ I uJOoOOOO 0_000 ""0 .. 0","0 00'" 0_ .. ~ot\looQ. 00\&,100 .. 00 t'\oON CpI\c;: 00 ... JO -."..00=.;:>0 ':'0_00
... "'''' .. ~::II ""3- "'''' 0 :o7ot\tocc coocc 0-00 ,,-0'" CL/'l- oc

I LIo.I tJ)

11. '"' X u
5 0 :::r-_coc" ,...otCce 000 0«""-:::: 0 «COiJ"'; "'0/'1- .0 " -I ~~"\I?~4 C ,:a...-4:)-:> ~Q~

:)' " ::>::0 \J .:) " :;)..n ;.n 01'1'" .u" .s ... :y;, ::3'oeeoc ClOOCQ 000 U"~CLr ... «cue 0-"'0 "''' ..n~",,.:)o~ =0000 .. ~"'" ;1 .. I.i,. :> .~ J'I • .j~O 3-~0 "''' Ot 0" 0 " 0
~ :::l -00 0-.:. :)Oo.LO:> .. 0:> «'::'";);.J .fC..LJO:> 0,/'1::3'0,",,000 CCLI.,OO 000 Z«QO.;r z «oou 0_ z " .0 0.. ,:)O:.n~!)O Q.:t,~o:> .. ::>- ~ « ~ :> I.L ::> «0,::>..", ";) «

'" :::rCf"'\COO CCI.LOC 000 ~_.u..c::t "'- «000 0<> :.::-" e . .l: u ... « u~" '" u-«

'" U t\lc,.....o~o ..c«ooCC'Q "'«ceo 04.00"" 0-« .00_ uoo Q<l " io en J\o~=-oi'\l ~ .. ruo,::t:;)o <l il . .:> ,:) '\I -Iwtc O::>J'I ~;.J .. o.:>- ':>00 ..JW«
L/'I lI..oO'c_c ... «oc::_oe C[«ooe ::tJOiru.ew .:cOofrOc::..u -100 a:::> " 1i: :::> ~O""':>O-l'l 0«""=--=00 .x::.OttO::>O ..J. I.L ::>-:r

-I "
:::;0":1" ",:>0

-I " L/'I 0« uo" il'. " Ot " a:: " ,..
""' ./):),",,0::>0 .00::>00 :::l tt:>":;) ";) «'0 ::>..L :::l .0:'0 ..J:>O ::> «

0 -I ::rOLf\C>O"",, Z «""CCOIoU -'Z«-QI'\I ... «co::t000 coo ... " '" -4 I.&JOc.Oo-:::r 0 • ..:r -_00_ .ll~._..oo <l.. «~.:>~ ;1. " ","00 .l:::oo 0.. " 0 ... :::ro..nOQ:::r "':::roocc Q,:;.f\I oICu.,.O.;:r «co.:o ... co ..
..... u- " % " % .. % .. Z % " 0 0.0'0000,"" Oct.rt'lO(UOQ 04 .. <10.0 Un.; .. lf\OO UN «""olJ"l 000 U", «
,/'I Z ~«~oooo::t -.lu«::to't).:I'o 1-U«-UJO·"\I ''J):>'' 0_..0 :.I).:> « <I: 0 'J'I UO.::;:. :/)"'" " 0 '" ... a-«UOOCON CD::>«NC::~QQ :LCfC-OO ..oJ .000 .., «404 00 " Q.#OO'Oo';'J"I ..J«I/'IOO';'O -I«-=:II:>~ ::> «0-=:110 ;;) « ::0::>:0 >::::0::> ;;) " c:c. >- 0« % " il'. " r .. r " ... r «

>:: «:..J./)=>o"Oo ::> «OO..J-:>~ '-' «-0.:> .u~ .. ::>00 '.&J- « ::>./'1"1 -.::> "'- ..
"" ::> xZ «#t\Jcc·c;;o ... -ttoc.:::JOC '" 1CWCt'\.l -'Q." ooc ..;0.. « coo <rc ";'1. ..

"\I u,:)tc1l"C:>-O:>':> ;1. «;:)'O""=>_ .., .. 0::00 -.., " "":)::::a ~"'"~ ::>0::> '" ..
U O_.~OOOOO .. oo-=::roo 0 «cJ'ICC'\J iLO« oeo 0 .. oeo ra c ... 0 " w -I~« >:: « ..
a:: :cc.« eeooo . u-«co.ceu >_.0_0 000 .o~ 0_
-4 U«J\~o~;:),:> :1)':>«"0.:>./'1':>-..,) >::::> " ::>::0"\1 :::> .":) ~ ..,::>:) ::>0

0.. 0 .%0«0-010001'\.1 w "''Noo-o- 0 «coo 00<: "'0-'" ::0
L ::J-I4tJ\O-:>':::>':::>O :::. «o~::roo «O'::>"'-i ::>00 J'l3-x) ::>0
::> I " WI"
::> ""' :l. • ",,0-0000- -«0"_.,..:>:> ..&J-«'"\JOO -::0- 0 '::>0:> - ..

:I- «:::=QOOO ..J~"'Qe~oc .x.a."OON ::> <t '" 000 CO ::> ::> '" «"".;:)0""0'0&.1 «O'::>J"/OO ,.....,.utt-::»::> -.l"4.-=> 0".., ::>0
(,!) -I u «::J"COOOC lLO«OOI/'lOO OC::«OOI'\l 000 00'" 00 .. ::> :/) «

'" :> wo«
:::l ::>0« .. ~ , , " ,,
tJ) ::> «0.:>0100000 000000 .. 0::0 000 ::00" "' .. 2::a: ... OIoAJ ... O-n.. t\I"".;:rU"..o ... ",u ,,""ID 0"" ... 0_
Z ::l «~o-~C.CC CCCCC UUu ~~ - .oJ -Ill. tcQOOOOoO 010000 000 ., .. '" ..I'I"'or ~o-... 2: O~« =>'00,000- =01010';> .. 0 .. :> 00 .!) "'::>0 0 ..
E >0«

(

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6·9 CB21A

~::
MAIN SlukAGt OU~P 19/8/0~/30 0IS3:16.6 DUMPEDIT-OlI0-0S/25/0748 bCUSb MOU4QO-Ll10-0S/lij/l052 PAGE. 0004

_0 0 t!. 3 II S 6 7 0 9 A II C 0 t F
t""C:::
-3:
~"O 05,!~01 FFUj ~F~O F~Oo ~FOO 0000 0000 OOOU OOUO 0000 OAA7 OuOO 0000 0000 OOuO ~OOU UOOO ·
"'C> 052FOI 0001 uOoO 0000 0000 0000 0000 0000 0000 OOFC 0000 0000 OOUO OUOO 43411 5t!.30 30~0 •••••••••••••••••••••••••• CDNOO

~~
05~OOI 2020 t!.O~O 2u20 0211 ooSO 0050 0021 oOuO 0000 51140 0000 11130 E952 02HI OUAE. ~857 ••• p.p.! •••• 'M ••• O.R ••••• ~

80
OIRE.CIOkY OtSCklPTOk HLuCK ~c:::

~~ DI:I'IH 01 LOCA Tl UN 09F 43

rJlm 09FII01 0003 0000 qtfl 0000 9CII3 uOOO 090D 0000 QCC3 0100 0000 0000 0000 0001 0000 0000 ••••••••• C ••••••••••••••••••••••

52 09FSOI Ooou OOO? 0000 0000 Ouoo 0001 OOOE 0000 0000 0000 53119 411t!.0 2020 ~0t!.0 2020 t!.OtO •••••••••••••••••••• bID
~ 09~601 2620 OOt!.O 0)00 fFFF 0280 0008 0000 0000 0000 UOOo 0000 0000 0000 0000 OUOO 0000 II. • . .. '

U9F701 0000 0000 0000 0000 0000 0000 Ouoo OOUO ouoo oouo 0100 0lu8 OUOI 0000 000~ ooeo • •••••••••••••••••••••• ! ••••••••

09F801 0000 0008 oUOu 0000 0000 oouo 0000 0000 0000 oouo 0000 0000 0000 uOuo 0000 0000 · "
Fill uESC~IPTuR HLOC~
OI:Plt1 02 LoeA1lUN 09CL3

09CCOI 0005 uooo 9~1I1 uooo 0000 0000 9fll3 oouo 0000 u900 0000 uOOO 0000 uoul OUoo 0000 ••••• A ••••••• c .•••••..••••••••••
09COOI 0000 uloO OUOI uooo 0000 ooul 003t 0000 0000 oouo St!.QF QCQC QF55 ~Qt!.O 2020 t!.ot!.o ••••••••••••• > ••••.•• ROLLUUI
09CI:oI 0702 DIDO 0100 FFFF 2Q1ij 0078 0000 0000 0000 uooo 0000 0000 0000 0000 0000 0000 · , ..)(....................
09CFuI 0000 uouo 0000 0000 0000 onoo 0000 0000 0000 OOUO 0100 0108 0001 0000 007b 0100 • •••••••••••••••••••••••••••• V ••
091)001 0000 0078 OOOu 0000 ouno 0000 0000 0000 0000 uooO 0000 0000 0000 uOuo 0000 OOuO • •• X ••••••••••••••••••••••••••• "

'?' DIRECIOMY DI:StRlI'IO~ ijLUC~
0 OlPIH 01 LO(AlIUN 09CII3

*************.***************
09(1101 0005 0000 AOOI 0000 9523 0000 o~DO uOOO 91:1E3 0100 0000 0000 OOOu uoui 0000 0000 · "
09CSOI 0000 oOut 0000 0000 0000 0001 0012 0000 0000 0000 115QO 4C20 2020 20t!.O 2020 2020 •••••••••••••••••••• tML
09CbOl 2b20 uOt!.O 010u fFfF 1370 UOO~ 0000 0000 0000 0000 Ooou 0000 ouoo 0000 0000 oouO II. • ••••• p ••••••••••••••••••••••
09(701 0000 0000 0000 OOuO 0000 0000 0000 0000 0000 0000 0100 0106 0001 0000 0001 UOdO ..•.......•.•....••..•..•...•...•
09C801 0000 0006 OOOu 0000 0000 0000 0000 0000 0000 uooo 0000 0000 0000 0000 0000 0000

FILt U~SC~II'TUR BLOCK
01:1'1" 02 LOC A TI UN 09St:.3
*****.***********************

09tjEOI 0003 0000 9CQl 0000 91:163 0000 9CII3 0000 0000 0900 0000 0000 0000 0001 0000 0000 ••••• A ••••••• t .••••.•...•.••••••
091:11'01 0000 0100 0001 0000 9063 0001 0001 0002 0000 0000 Q~1I0 qC46 119QC 4S20 2020 t!.0t!.0 ••••••••• C •••••••••• tMLFILE
09COOI IIftj~ OOijO 0100 FFFF 1376 OOAO 0000 0000 OUOl 0000 FFFD 0014 0003 0000 0000 0000 o •••••••• X
09(101 0002 0000 0000 009A 0000 0001 0000 0000 0000 0000 0100 01u6 0001 0000 Ou99 0100
09C201 ooou OOAO OOOu 0000 0000 908S 0000 0000 0000 0000 OUOO 0000 0000 0000 0000 0000 · ,. .

I:IUFFE~ CONTROL I:ILUC~ 09063
090601 0001 0000 9AIII 0000 0000 0000 0000 0000 0000 oooS 0000 9A43 0100 0000 0004 0000 ••••• A •••••••••••••• · ••• C ••••••••
090701 0000 0001 0000 0000 ooou 0000 IIA23 Ooul 0102 0000 9AII3 0100 137C 0000 0000 0000 •••••••••••• J •••••••• C •••••• · ••••

FlLE DESCRIPTUR BLOCK
OI:Plrl 02 LOtA TlON 091lij3
~******.***************

09B801 0003 0000 9tjfl 0000 0000 0000 9CII3 0000 0000 0900 0000 0000 0000 0001 0000 0000 •....•...•.•• t ••••••••••••..••••

nO\ 091j901 0000 0000 0000 0000 9E03 0001 0003 00011 0000 0000 4~QO 4Cllo 4911C 4520 2u20 2020 ••••••••••• _ •••••••• ~MLFILE
t:c- 09tlAOI 4FB4 0080 0100 FFFF 11118 0008 0000 0000 0003 0000 FFFO 0001 0001 0000 0000 0000 u •••••••••••••••••••••••••••••••
Noi
> Figure 6-3 (cont). Logical Dump: Tree of File System Structures

..
f /

~

Sial:: _0
t:~
,...;j."

~> ,.,Z
0 0
~g >a:
al::'" Vlm

~

It' -

(")0\
0::1-
N~ ->

~\
,".'

MAIN ~TORAG~ UUMP 197~/0~/30 0755:1b.b UUMPI:()lT-Ollu-05/?~/07q8 bCUSb MOuIlOO-Lll0-05/16/l0~2 PAGE 0007

o " 3 II 5 b 7 b 'I A B L () t F

TASK GKUUP SrNUCIUkE~ fOK b~UUP)H
*************************'********

G~0UP lU~TkOL bLUC~ ObCl3
ObCCOI 0015 OOb? 0001 uOOO CC?5 ~1I1I2 0030 IIl1ul ooou oF~B OuOO bF~R 0003 u1u1

0000 uOul 5/80 uOOO Ouoo UOuO
0003 59'13 0003 uou3 OUOU uOOO
ouoo oouo 0000 OOUO OOOU uOuO
OOOU OOuO OOOU uOuo 0000 oouO

OUOu bCt 7
OCtlO uOoO
OUOu 0000
ouoo OOUO
OOOu uOUO

ObLDOI 0000 bf~U nODI uOOI 0000 uooO OOOU 0000
ObCEOI OUOO uOUO ooou uouo OOOU U9UD ou03 39o,
ObLFOI oonu OOuo DUOU 0000 0000 onoo OOFC UOuo
ObUOOI 0000 0000 ouoo uOOO oono unuo OUOO uooo

ObE.fOI
ObfO\J1
ObF I 01

ObFflOI
ObF901
ObfAOI
oMbol
ObfCOI
ObFDul
ObFE 01

0llA701
ollAROI

300COI
300DOI
300EOI

OIl~AOI
01l~1l01

OIl~COI

04~DOI
OIl~kOI

01l5FOI
040001
04bl01

Obf201
ObF 3UI
001-1101
Obf501
OoFtlOI

* * * * * *
0000 UOuO 0000 OOOF OUOO 0000 0000 oouO
OOOu UOUD nonu 0000 0000 onuo nuoo OOUO
0000 OOuO DuDU 0000 OoOu uOUO ounu UOuo

TASK CON1KUL ~LuC~

oun3 UOuO 9FAl 0000
~Al~ 1I00t nunu OOUO
012A 00u3 01~1 uouo
OOOu uOoO DF"~ u031
b005 uDuO 9JFo UOuO
003t unuo du~4 uOOI
UUOI unuo 4~"1 030F

ODFoB UPtDIT
bF8~ uOJI OUOO UOUO
4UOO oou3 01bL UOUO
FfFF uOOO OUOO oF~B
OOOU 1402 0000 UOdD
0177 0000 1794 uooo
fFFf FF~F DODO ~FuD
4AOI oFOI Ftuo bF~8

INO KE~UtSl nLUC~ 04A71
OoOd UUuO huOi uOUO CA'" 0000 Ouoo FFtF
0000 oouO bFHo uOOO OOOu fFf~ DuOO bF4A

IASK kt~UtSl OLUCR
OOO~ 0003 ~4"l unuo IIA77 oOll
0000 ~4~0 ti~44 4Q~4 2020 0004
OODi uou3 S~Kl ~2114 4tSo uOol

3uOC3
H;ou UOUO
?t)Lit) 11<;,,1)
FI:Ou uouo

TkAP SAvE Ak~A Oq~AU

* * 0000 UOuo
OOOU UOUO
0000 OOUO

0000
n117
ouoo
00R7
qql~

ffOO
0000

UOuO
0000
bCL3
OOuO
OOuO
FFuO
UOol

* * * * * * OuOO 0000 OUOU UOUO
OUDU uOOO OuOU uOUO
ouou uOUO ouou uOOO

OUoo UOOO
OuOO uooO
OOOu OOUO

oouu uou3 3AIJ
9'105 OOUO OA7q
QuOU uOUO IIA77
4~AU UO\lO Ffn
q'lO~ uOOO 5100
nOj fF~O Ffou
Ouou bFtC 00011

u003]1<15
OOuo ~uou

uOUO 4A7I
uOu3 ouOO
UOuO '1'103
FFuO OUOU
11143 5<111i!

OOu3
oOu'
0000
~CJC

UO~O

OOuO
.!0,,0

oOOu bFAA Ou03 00L3 ooOU bCl3 ouou 4A~H
Dono IOb3 OuOO beL' OUOU uOOO 0002 uOuO

ouoo U003 OuD3 OOUO OUOJ uOu5 Ou05 UOU9
2020 00u3 2U4t <lCcO 0102 uOu3 outj 0003
nODu unu? OU05 UO~E DUO] uO~l OUOj 4'~7

I~SIRt)CTlu~ ~HILH Tk~PPtD IS AN MlL AI LIICAlluN 315ijE. FUNLTID~ [DuE l~ oeul.
INSI~uCrluN: 0001 P-COUN1Ekl 315'10 I': JF~a Z: ijOul A: 31~~E M3: uOU9
IIUO~ uooF DuOU 18b7 l~ba UOdO 05?~ uOUO n177 ooun l~bF 03uF OUOu uouo OuOu iF~1I
000'1 OOUI HuOI 0003 I~AI: U003 I~qu uOu3 I"A~ uOOO 910J uOUO OJEO uOoo DJEo uP03
lDq~ 00u3 ,,,F~ DonI nObl ~Fao OUDO &000 ouOO OOUO ouOO oOUO DuOU UOUO ounu 0000
ouOO uoun ouou 0000 DUOU 0000 OuDu 00U0 nuoo uOuo OUOu uC~'1 Ouou OOuO OuOu ,,5<1D
OUOO ,,~5F 00"5 12A5 0000 ~qo3 OU4~ oouo OUH4 ~qao Oullb oOUO Ou2~ uOuO 9~05 uOOO
~100 unu! ~4"J 0003 3'195 I,nun ~~qb 0000 2~A7 uooo OUOu ~111 OU00 ~ltiD Ou05 I?A5
OuO~ 12A~ ouOu ~lbO 0000 uObq Ob01 uOal ouoO FFfF noou lOaD OuOu ~lbO OU05 3q~3
ouno on~4 Qunu IE/Q nuou unDo ouno JF~2 nODI ODul 8uOI uOuO bAAb oouO bAA~ uOu3

TASK t;DI';Ti<llt bLuCK ObF~H tC
OO()5 0000 ,,~(J~ uOOO nunu UOUIl OUOu UOuO
3A1J OOUO nunu uoon O~Ou uOUO OOOU UOu3
"45U OOuO o4AI unuo DuDU uOUO nuou uouO
dUOO 00uD bF~b u030 ounu ~4bb OUOU unuO
"u05 UOuD q~l~ DUUO 0177 UOUO 17Du uOuO

OOOu UOUO ouuu uOu3 3AI3 uOu3 31<1i uOu3
OOOi UOUO q~F~ uOu3 DUEl uOuO nuou OOuO
Ouoo bCtS OUOU OOUO IIA8~ 0000 qAR~ oouo
OU49 unuo IIbl~ uouo F~Ft uOU3 OuOu 14b5
4A2U UOOO Ouou UOuo ouRu uOuo II~E~ OOuO

Figure 6-4. Logical Dump: Task Group Structures

•••••••••• S8.0U ••• u ••• UI •••••• L.
•• N ••••••••••••••••• w •••••••••••
• q • ... 9

•••••••• U •• l •••••••••••• : ••• : •••
:.~ ••••• ~ •••• L ••• w ••••••• y ••••••
.* ••• Q •••••••• uI •• L ••••• Jw •• Jw ••
•••• U •• l •• 1 ••••••••• ~ ••••••••• ,<
dI • ~ w ••••••
• >. • • .. • .. • • • • • ... •
•••••••• J ••••• UI •••••• U ••• AClB

••••••••• 1 •••••••• u ••••••• L ••• J+
•••• u ••••••••• uJ •• f'C •• L •••••••••

•••• ~ ••• Jw ••••••••••••••••••••••
•• uPtDIT •• -ME.M •• -NL ••••••••
••• • q.~DN I ••.•••••••.....•.••• cw

Ei.)l 3l<'A5
••••••••• 0 ••• X ••• w ••• 0 •••••••• '($

.O ••••••• A ••••••••••••••••••••••
• •••••••••••••••••••••• y •••••• :toM
•• (? •••••••• E •••• V •• F ••• X ••••••
w ••• 9 ••• 9 ••• ·F l ••• ! ••.••
•••••• 1 •••••••• A •••••••••• 1 ••• C;.

••••••• T •••••• 1" •••••••• J ••• ~ •••

•••• U ••••••••••••••••••• : ••• : •••
: I
!I •. 1 ••••••••••••• L ••••• J ••• J •••
•••• u(.O •• T •••••• l •• ~ •••••••••• E
QI •••••••• w •••••• J- •••••••••• l ...

..

C::~
"All, ~T<h'.:,f_ UfO •. f-' 19/~/nS/30 0753:16.6 UUMP~OlT-Oll0-0,)/2~/0748 bCUSb MOuIl00-Lll0-0S/18/1052 PAGE 0008

:jO ,. i 3 II ') 0 7 8 " A B l D E. F

C~
~"'Cl ont-701 1 /j 7-; v l',) I 0011'1 UOol 001)0 HfF 0030 ~FuO F~Ou FFOO FF03 ~F~O FfOO fF03 OuOU UOOO .y.l ••••••••• 0 •••••••••
"'Cl~

oM /lvl DUO') UOoO 9fAI 0000 o~BH ~O31 OOOU 0000 OUOo uOOO OuOU U003 3AI3 00u3 3AI3 0003 •••••••• 0 •• 1 •••••••••••• : ••• : •••

~O
11,[i o<t:l,Ut:ST bLue" 04A/j') PO

~~ OIlA~u/ DUUo uOOO h~Rb OOUO Ouoo ~FFF (jOOu bF<lA DODO 701>3 OUoo bCC3 ouOO 0000 Ooo~ 0000 •••• U ••••••••• OJ C •• L

~"'Cl 0111>'101 b~5b UOuO ouno uuoO ooou UOoO 0000 0000 OUOO CC~3 noou u788 0021 0000 IIAq3 0000 u[••••••••••••••••• # ••••• 1 •• J •••

U'ltTJ
52 HAICH kEyutSr bLUC" 07001
~ 070bul noDs uOOO nUDu 0000 4AA~ oOLI 0000 OOuo oono 0004 0000 70/2 0000 70/S 0000 0000 •••••••• J ••••••••••••• PR •• PU ••••

070701 nooo 1002 Ou04 422f 3120 0014 5t:~A ~15q ~j3~ jl3E 5j50 4113E 4jll~ "E~3 IIr4l 1l5~0 •• 1" ••• 8.1 •• ~Z~y~51>~po>eONsuLl

070bOl 202u ~o~o nooc Sl~A ~3S~ ~13S 313t: <lR'" ~320 000;> OuOO lObE ouoo 70bF OuOO OOoC •• -ZSYSS1>HIS •••• I" ••• ~ •••••
070901 3t~j ~Oq4 3~4,) 4FuE 5jq~ <lC45 20;>0 ~O~O 2020 ~O~O 2020 ~o~o 20;>0 202n 202u ~n20 >SPO>CuNSOLE
070AOI UOOo uooo ounu 0000 0000 0000 OOOU 0000 ooou 0000 0000 0000 0000 0000 OuOO 0000 ·
0701:101 HUOO oouo Dunu 0000 0000 0000 0000 uouo 0000 0000 0000 0000 0000 uOoO Ooou UOOO ·

r"At- SAVl M<EA 0401S
I~SIO<UCTlu~ wHllH TO<Af-'PtD J~ AN MeL AT LOCATIuN OoAAh. FuNLTIO~ COuE I~ oC08.
INSTKUC1IlJf\o: 0001 P-COUNlt:k: ObAAA 1': 3F22 1: 8001 A: ObAAh .,3: 0001 R3: 3002'1

040101 oUOu OOb4 0000 lt74 OOOu UOOO ouoo 3F22 0001 0001 RuOI oOUO bAAo oOuo hAAb 0003 ••••••• T •••••• ,· •••••••• J ••• J •••
041>201 OU;>~ ooooq~23 UOOO 708~ 0000 OoOU OOuO bAI9 uo03 ou23 0000 4450 fFuO OuOO 0000 .l •••••• I" ••••••• J •••• # •• up ••••••
01l03uI 0000 0000 ouOO 0000 nuno 0000 OOOu 0000 0000 0000 Ounu onuo 0000 0000 OUOO 0000 ·
0L,b4vl 0000 onon nl~~ ooon 192~ OOOH 0000 U9bh DORA OOdF no~1l UHF 0000 1B02 0000 0000 ••••• y ••• % ••••••••••••••••• B ••••
01l0~01 ~~q~ uooo o~Po ooto OOt~ OOuO IbiF 0000 IHh2 oooj 01')1 0000 qA71 18/'1 (Jull OOtO u •••••••••••••••• B ••• Q •• Jh.Y.I ••

9' Ollooul U002 uOu5 QOUC uooo 0003 olSI OoOj vOL] 0000 SD4B 0003 OO~" 0029 0000 OOOS 00e3 ••••• L ••••• Q •••••• JH •••).) ••••••
.... \i407"1 ooo~ fl-H no as oouc OUOF 00u8 OUOF on03 0003 UOoO ouoo lEJ4 OUOO 0000 0000 JF~2 ••••••••••••••••••••••• T •••••• 1"
N

WU"~ ~PACt bLue" 30101
101001 n~Eo 000' 3~ql 44S0 qS4~ ~"S4 0000 0004 ouoo IBdO 0000 OOuo 2001 OOUI 0017 181q •••• ~AOPtDIT •••••••••••• •••••• Y

301101 OuOO uOOO 0001 OOSl E787 0337 OOOu 1879 2001 OOjA E7RJ 0111 0000 IBH ;>001 U03E ••••••• 3 ••• 7 ••• Y •• : ••••••• y .~>

30 !2!! I t ;87 u21:1~ nuoo 1819 0001 0045 f.787 0lA5 0000 lA14 Ouoo 0000 ~OOI ~Ool 0003 39';)3 ••••••• Y ••• E ••••••• y •••••• ••• 9S
3013vl DUO~ ul~A ou03 vl03 0003 013A OOOU 0000 Dono OOuo. ouI7 20<11 4450 4~qa a454 ~030 ••• * ••••••• : •••••••••• A~PtD1T-O
jOIUli1 -q31 S02D ~u3';) ~F30 3S2F 303" 3132 oouE 11111<1 S5qO 5020 434F IIU50 IIC<l5 S1I4~ 0015 110-05/0~/Oq12 •• AOUMP COMPLEtE ••
j015(Ji "euo DE';)] D~CO 0100 FFCo oOfC C8CO UOl5 0001 uAuO 19AI 1510 2COI 0001 OAOI 1q81 ... s•............. ,
-SOlhUI 151b ~C31 nuOI oAol Iq81 ISI3 ;>COf 0001 QAOI I 9 III I~Ot oFbq WOf 0'101 OFlb 8Dfl •• ,I •••••••••••••••••••• = •••• b ••
3017ul lHCU 1~10 C~P3 0003 CbCU ~Feb 7COI E81lU HFF 0001 OB03 eHeO labS 0001 140<1 A8/0 ••••••••••••••• D ••••••••• E ••••• P
~Olf\ul c'u<'O AFIIO 145f 9~CO FFHt: ~BCO t4S~ ICF8 F~71 fF72 17Ft: 93CO Ou7~ 91CO OU5U 82CO .~.- ••••••• R ••• Q.R ••••• Z ••• J ••
50 I q(,1 Frd~ uooa 0~A7 qC~O 0000 0018 CeC1 0021 Of8b 9CCO O~Sj ijDul 0~01 00A2 "jCO OIFI ••••••••••••••• 1 ••••• 5 ••••••••••
301AOI (FCO OOAE C~CO O~AF CHRO UOOO 0000 eFeo alAe uOol OSOb CBCO 1<118 SCIII 0001 05011 · \
3UlbUl 43CO I~t:~ "3Cu OOu" 82Cu FF~A 0001 u'515 q3Co 0280 "3CO 02L295CO 02lC q3Co 00511 ••••••• I ••••••••• ~ ••••••••••••• T
30lCOI Q5Cu UDb7 q,)[o o05e 8~Co FFbA 00110 0'503 "3CO oD08 qjCO 030A 82CO FFB2 0002 OS03 ••• G ••• \ ••••• ~ ••••• H ••• J ••••••••
301DOI 93CO ODCA 8SCO IQAE nooo 0000 0000 uOUO 0000 OOUO 0000 0000 0000 0000 0000 0000 ·
30 IE 01 nuoo OOUO nouo UOOO 0000 0000 0000 0000 0000 0000 0000 0000 OUOO 0000 OUOO 0000 · * .. * * * * * .. * * * * *
_~r.2001 0000 UoOO Ouoo 0000 OOOU 0000 "FCO 0041 ACCO 00u8 "873 IDOl 0381 0032 It:Ff ECCl ••••••••••••••• A ••• H.S ••••• 2 ••••
30dOl OOO~ bA1b 2LOO fOAb 7020 OqoO A8CO 0lt2 AFCO olull FOAo ~7EE 3lFF 3qfD llFf 1"0'1 ••• V, •••• - •••••••••••••• >.9 •••••
502<'u/ RACO oo~Q 9~40 0052 OtRo "8110 002F Iqb3 83C8 001F ABIIO 001F ALEF Eeu3 AFIIO 0018 •••).i.2 ••• ~.I ••••••• a ••••••• ~ ••
50~3ul Q3Co OO~8 3901 0008 B8CO FFu5 qj83 8CUh 8bCO ODIC OFEB 9810 2~07 OF81 143A 9870 ••• (9 •••••••••••••••••• P% •••• :.P
30~1I01 2~12 UF~C Q870 2503 OfF9 9870 2S02 OFtb 0003 0180 OOOj uOOO 0000 0002 7FFF 0002 X: ••• PI •••• PX •••••••••••••••••••
302Sul 7f F t uou3 00(9 0000 lbCA 0000 0003 UOCA 0003 9FCO OU28 F872 BtCO FFFq AfllO FFFq ••••••••••••••••••••• (.R ••••• il ••
30~bOI 4bCO 0027 Off\3 4CCO 0020 b871 "BS3 10111 111001 lEOI Cb'll CFeO 0018 3"oD S957 Oq02 · .. ,Q.S.A •••••••••• 9 •• w ••

nO\ 3027'~1 OFF3 ICOO 2LOQ COuD DOEE e9SS 09ED 88ul 3"04 OFFA 8153 OF85 AHC8 0007 B8112 FFfF •••• , •••••• U •••• 9 •••• 5 ••••••• B ••

~~ 3112bOI i\3CIl 0001 0003 0232 0003 O;>YC 0000 0000 OOOb ~DIlE IIF5F IICIIF 11749 43111 IIC20 019A ••••••• 2 •••••••••• -NO-LOGICAL ••

.... 00

> Figure 6-4 (cont). Logical Dump: Task Group Structures

•
«\

/'
,

\
\

"t

.(.. ..

..
- End address of pool
- Total size of pool
- Total available space
- Maximum contiguous available space

Number of available fragments (pieces) of pool space
- Number of users

o System Symbol Table
The names and values of all symbols that have an entry in the system symbol table are
displayed. Symbols are grouped according to the bound unites) in which they occur.

File System Structures
The logical dump displays the location and content of the following file system

structures:

o Volume Descriptor Blocks (VDBs)
o Directory Descriptor Blocks (DDBs)
o File Descriptor Blocks (FDBs)
6 Buffer Control Blocks (BCBs)

The hierarchy of these structures is indicated by the dump as shown in Figure 6-2, which
is an abridged section of a logical dump. Each block is assigned an integer that corresponds
to the level of the block in the hierarchy. The headings of all blocks are indented according
to the depth of the block. This makes it easy to see which files belong to volume major
directories and which belong to subordinate directories.

The display of the tree of file system structures may be suppressed at run-time.

TASK GROUP STRUCTURES

The logical dump displays the location and content of the following structures as shown
by Figure 6-3, which is an abridged section of a logical dump.

o Group Control Blocks (GCBs)
o Task Control Blocks (TCBs) for each GCB
o Indirect Request Blocks (IRBs) for each TCB
o Request Blocks (Group, Task, or I/O) for each IRB
o Trap Save Areas (TSAs) for each TCB
o File Control Blocks (FCBs) for each GCB
o Work Space Blocks for each GCB

At run-time, the task group structures for any designated task group may be displayed or
the display may be suppressed.

For the system task group, IRBs (and hence also RBs) are displayed only when the file
being processed is an external dump file; i.e., the display is suppressed when the input is
from current main memory.

Work space blocks and FCBs for the batch task group are not displayed when the batch
group is rolled out.

The display of structures for each task group is preceded 'by a header containing the'task
group identification.

Where appropriate, the header for the task control block (TCB) contains a bound unit
name.

The header for each file control block (FCB) also contains the logical file number (LFN)
of the fIle.

Work space blocks may also be labelled as FCBs, TCBs, or RBs if they appear as these
structures within the same task group.

The firmware-defined fields (instruction, P-counter, I', Z, A, R3, and B3) for each trap
save area (TSA) are displayed. If the instruction is a monitor call, the function code is also
displayed.

MDUMPANDDUMPEDIT
UTILITY PROGRAMS 6-13

6/78
CB21A

Headings for task group structures are indented to show the hierarchical relationship.
For non-system task groups, the display of the group control block (GCB) is extended to

show the group's logical file table (LFT) and the logical resource table (LRT). The LFT and
LRT begin at the end of the GCB.

In addition, a possible context of the remaining data and address registers (RI, R2, R4,
R5, R6, R7, BI, B2, B4, B5, B6, and B7) is displayed for each trap save area. This context,
which is extracted from the work space area of the trap save area, may not be valid in all
cases, but, in general, is correct due to internal conventions of the MOD 400 Operating
System.

DPEDIT Command
The DPEDIT command ,loads the Dump Edit utility program. Immediately after Dump

Edit begins executing, a message is issued to the error output file giving the unique version
number in the following format: DPEDIT-nnnn-mm/dd/hhmm. The message "DUMP
COMPLETE" is issued to the error-out file immediately before the execution of Dump Edit
terminates.

FORMAT:
DPEDIT (path] [ctCarg]

ARGUMENT DESCRIPTIONS:

path l

Pathname of the memory dump file to be printed.
ctl_arg

Control arguments; zero, one, or more of the following control arguments may be
entered, in any order:

{-NO_LOGICAL}
-NL

No logical dump of system control structures produced.

Default: Logical dump produced.

{-NO_PHYSICAL}
-NP

No physical dump of memory produced.

Default: Physical dump produced.

{-FROM X'address'}2
-FM X'address' _

Low-memory address (up to four hexadecimal digits for SAF and five for LAF) of
area that will appear in physical dump; must be specified in hexadecimal. This must
be a real (not a virtual) address.

Default: Absolute O.

-TO X'address'
High-memory address (up to four hexadecimal digits for SAF and five for LAF) of
area that will appear in physical dump; must be specified in hexadecimal. This must
be a real (not a virtual) address.

Default: 'High memory address of the dump file.

{-MEMORY}l
-MEM

Produces a dump of main memory_ Jf both the path argument and this argument are
specifie'd, the path argument is ignored.

1 Either the path argument or the -MEMORY control argument must be specified.
2 If the -FROM control argument is used in conjunction with the -MEMORY control argument, then the address that is
specified must be a main memory location whose virtual address is the same value as its real address.

MDUMP AND DUMP EDIT
UTILITY PROGRAMS 6·14

6/78
CB41A

/

(

Default: A dump is produced of the file specified in the path argument.

tg~OUP} group id [group-id] ...

Requests the logical dump to contain task group-related information for the
specified group(s) only.
Default: Task group information for all groups is included in the logical dump.

NOTE: Either the path argument or the -MEMORY control argument must be specified.

Example 1:

DPEDIT" DMPVOL>DUMPFILE -NL -TO X'3000'

This command loads the Dump Edit utility program and requests only a physical dump of
the first 12K locations of the specified dump file.

Example 2:

DPEDIT -MEM

This command loads the Dump Edit utility program and requests a logical and physical
dump of current main memory.

Example 3:

DPEDIT -MEM -GROUP $S $D -NP -NF

This command loads the Dump Edit utility program and requests a logical dump of only the
System and Debugger groups from current main storage. This command suppresses display
of the file management structures.

Example 4:

DPEDIT" DUMPER>DUMP256K

By specifying a group that does not exist, (i.e., XX) this command requests an abbreviated
logical dump consisting of only the System Summary from within the specified dump file.

Operating Procedure for Dump Edit
The following steps must be performed before the Dump Edit program can be executed.

1. Mount the disk volume containing Dump Edit.
2. If Dump Edit is being used to print MDUMP output, mount the disk volume that

contains the memory image obtained from the MDUMP memory dump.
3. Execute Dump Edit by specifying the DPEDIT command described previously.

DPEDIT processing can be stopped at any time by depressing the "BREAK" key. A
"**BREAK**" message appears on the user's terminal when the processing stops. GeOS 6
command may be specified at this point. If the program interrupt command (PI) or the
unwind command (UW) is specified, the end-of-processing details are automatically handled
and control returns to the command processor with a successful subtask completion status.
If the start command (SR) is specified, DPEDIT resumes processing.

When Dump Edit is used to print MDUMP output, the address mode that was in effect for
MDUMP must be used for Dump Edit; i.e., the SAF version of DPEDIT processes SAF
memory dumps~ and the LAF version processes LAF memory dumps.

MDUMP AND DUMP EDIT
UTILITY PROGRAMS 6-15

6/78
CB21A

Messages
Fatal errors terminate DPEDIT processing, return control to the command processor, and

post an unsuccessful subtask completion status. Fatal errors include logical I/O errors and
physical I/O errors as well as DPEDIT~specific errors. Fatal error messages are written to the
ERROR_OUT file by the system service, Error Handler, and are described in the System
Messages manual. For convenience, fatal error messages that are specific to DPEDIT are
summarized in Table 6-2.

TABLE 6~2. DPEDIT - SPECIFIC FATAL ERRORM;ESSAGES

Infonnation Meaning

2502 ILLEGAL NUMBER OF ARGUMENTS The number of arguments specified in the DPEDIT
command is excessive.

2503 NON-NUMERIC CHARACTER IN A non-numeric character was found in a DPEDIT
NUMERIC ARGUMENT argument where a numeric argument is required.

2507 ARGUMENT NOT RECOGNIZED An argument has been specified in the DPEDIT
command which does not conform to the
defined list of control arguments.

2512 REQUIRED ARGUMENT MISSING In certain situations a DPEDIT argument may be
required. If such a situation occurs and the argu-
ment is missing, this message is produced.

2513 ADDRESS MODE INCOMPATIBILITY The address mode (SAF or LAF) of the dump me
differs from that of the executing DPEDIT utility.

2514 DUMP FILE IS INCORRECT The dump me must be a BES-200 Relative me
FILE-TYPE . with no deletable records created by the CREATE-

VOL (CV) utility.

2515 DUMP FILE IS.INCOMPLETE The dump file, when fIlled by MDUMP, did not
attain a successful end-of-job condition (see
Table 6-1). The dump me is therefore incomplete.

Immediately after execution of DPEDIT begins and immediately before execution
terminates, a message is written to the ERROR_OUT file. These messages are explained in
the description of the DPEDIT command.

Informational messages that generally reflect some condition peculiar to the data within
the dump file may be interspersed with the dump information in the USER_OUT file.
These messages are designed to facilitate analysis of the dump and are listed below in
alphabetical order. A brief explanation of each message is included.

ADDRESS POINTER IS INVALID
A virtual address contained in the dump file is invalid.

BATCH GROUP IS ROLLED OUT
The background was rolled out when the memory dump was taken.

DATA NOT READABLE
Dump Edit tried to read the contents of a nonexistent location on the dump file, or an
uncorrectable read error was encountered. If this condition occurs more than five times
within a given task group, processing is terminated.

DUPLICATE FILE CONTROL BLOCK STARTING ADDRESS
The specified file control block has already been displayed.

DUPLICATE GROUP CONTROL BLOCK STARTING ADDRESS
The specified group control block has already been displayed.

DUPLICATE TASK CONTROL BLOCK STARTING ADDRESS
The specified task control block has already been displayed.

MDUMPANDDUMPEDIT
UTILITY PROGRAMS 6-16

6/78
CB21A

... ..

/'

...

, ..
"

(

DUPLICATE WORK SPACE BLOCK
The specified work space block has already been displayed.

INPUT IS NOT A MOD400 DUMP FILE
The external dump file to be processed contains a dump of an MDT Operating System.

INSTRUCTION WHICH TRAPPED IS AN MCL AT LOCATION nnnn. FUNCTION CODE
IS nnnn.

This message gives information about the associated trap save area.
INSTRUCTION: nnnn P _COUNTER"nnnn I':nnnn Z:nnnn A:nnnn R3:nnnn B:3nnnn

This message gives information about the associated trap save area.
INVALID WORK SPACE BLOCK POINTER

A work space block was encountered that does not begin on a 32-word multiple
boundary.

LOGICAL DUMP CAN GO NO FURTHER. PHYSICAL DUMP IS SUGGESTED.
DPEDIT has determined that some operating system structure has been overwritten.
This message can appear only during a logical dump.

NO ENTRIES
System Symbol Table is empty.

NUMBER OF ALLOCATED WORK SPACE BLOCKS EXCEEDS 60
More than 60 work space blocks have been allocated for the current group control
block.

NUMBER OF BUFFER CONTROL BLOCKS EXCEEDS 25
More than 25 buffer control blocks have been allocated for the current file descriptor
block.

NUMBER OF FILE CONTROL BLOCKS EXCEEDS 40
More than 40 file control blocks have been allocated for the current group control
block.

NUMBER OF GROUP CONTROL BLOCKS EXCEEDS 40
More than 40 group control blocks have been allocated for the current configuration.

NUMBER OF INDIRECT REQUEST BLOCKS EXCEEDS 25
More than 25 indirect request blocks are allocated for the current task control block.

NUMBER OF TASK GROUP CONTROL BLOCKS EXCEEDS 40
More than 40 task group control blocks have been allocated for the current group
control block.

NUMBER OF TRAP SAVE AREAS EXCEEDS 10
There are more than 10 trap save areas for the current task control block.

THIS WORK SPACE BLOCK IS A FILE CONTROL BLOCK
The specified work space block has appeared previously as a file control block in this
task group.

THIS WORK SPACE BLOCK IS A REQUEST BLOCK
The specified work space block has appeared previously as an 1/0-, a task-, or a
group-request block.

THIS WORK SPACE BLOCK IS A TASK CONTROL BLOCK
The specified work space block has appeared previously as a task control block.

VIRTUAL ADDRESSING DISCONTINUITY EXISTS AT VIRTUAL ADDRESS hhhh.
DUMP WILL RESUME AT VIRTUAL ADDRESS kkkk.

The virtual address, hhhh, is invalid. The physical dump from main memory will
attempt to restart at virtual address, kkkk.

VIRTUAL ADDRESSING ERROR ... INVALID OFFSET
A virtual address has been encountered whose offset field exceeds the size field of its
virtual space segment descriptor.

VIRTUAL ADDRESSING ERROR ... INVALID SEGMENT
A virtual address has been encountered whose segment field designates an invalid
virtual space segment descriptor.

MDUMP AND DUMP EDIT
UTILITY PROGRAMS 6-17

6/78
CB21A

...

(

APPENDIX A

INTERPRETING AND USING

MEMORY DUMPS

Memory dumps can be obtained by using Debug or Dump Edit. It is preferable to use
dumps produced by Dump Edit; they are in edited format and are much easier to interpret
(see Section 6).

This appendix describes significant locations on memory dumps, how to interpret the
contents of locations on memory dumps, and how to use memory dumps to perform the
following procedures:

o Finding the location in memory of your code
o Determining where a trap occurred
o Determining the state of execution of your code

A trap is a special software- or hardware-related condition that may occur during the
execution of a task. Many traps are caused by an error, but a few, such as the Monitor Call,
are not. The above procedures may have to be performed if a trap message is issued. Traps
and trap messages are described in detail in the "Trap Handling" section of the System
Services Macro Calls manual.

NOTE: In this appendix, all references to memory locations and offsets are for both SAF
and LAF modes (short-address form and long-address form, respectively), and
offsets always are in hexadecimal. LAF address and offsets are enclosed within
parentheses and indicate the two-word form.

SIGNIFICANT LOCATIONS ON MEMORY DUMPS

Table A~l describes memory locations on the dump that it may be useful to refer to
during debugging. It is assumed that you are familiar with the data structures referenced.
Brief definitions of these data structures are contained in the glossary of the System
Concepts manual. Figure A-I illustrates a map of systems data structures.

TABLE A-I. SIGNIFICANT LOCATIONS ON MEMORY DUMP

Memory Address

0010 (0010/0011)

0018 (0018/0019)

0020·0023

00S2-007F
(0024-007F)

0080-00BF
(0080-00FF)

INTERPRETING AND USING
MEMORY DUMPS

Meaning

Head of queue of available trap save areas (TSA's).

Pointer to system control block (SCB). This is the key to locating all system
data structures.

Level activity flags for levels 0 through 63. Bits ON indicate which levels are
ready to execute; the lowest of these levels is the level currently executing
(Le., the active level). The level 63 bit always is on. The clock level bit (4)
may be on, and the Debug level bit is on if the dump resulted from a Debug
DP directive.

Trap vectors. Each trap vector is associated with a specific trap condition and
points to that trap handler's entry address. The trap vector for trap number I
is in location 007F (7E/7F). The trap vectors for subsequent trap numbers
are in descending, contiguous, locations; i.e., the trap vector for trap number 2
is in location 007E (7C/7D).

Pointers to interrupt save areas (ISA's) for levels 0 through 63, respectively.
A null value means there is no dedicated task (Le., a driver) or nondedicated
task ready to execute on the specified level.

A-I CB21

=:z
tTl >-3 =:tTl
~~
-<'"
o~ c-s:Z
"'00
Cf.»

~
c:
Cf.)

Z o

~
1-,)

("")0\
t::c~
t 00

>

TCB

-------­sea ·3 leG ·71

[~=r--T . ur ·1 . ~

I

GCB cr--- n l

au,) +5 (+8/+9) +6 (tA/+B)

C-J-~--- -rR;~~~ I ·1
1

BAS C ROOT.NAME n n\

ABSOLUTE LOCATION

1816 (18/19)A

NEXT TCB OF GROUP

I 1

·2 (·3/·21 ·1(·1)

[FCB CHAINT. ~AX LF.N I LFN 0
IpOINTER. I

LFT

t

[---T~~

·1 (·2/·1) RCTO

!cHANNEL I }
I(lF DEVICE~ ~

TCB
SAME LEVEL {J ---J u-=r

.~
\

I 10RB O~ TRB

I I I '--__ --.J ,
IRB

[-··~T~

2-l
Figure A·1. Data Structure Map

FIRST tCB
OF GROUP

+3 1+41 +6 (+8/+9)

[-;- T INST I ~OUN;r
NEXT TSA IF NEEDED cn r- r

\

I."
"

1>

•

· ...

(

Locations Relative to the System Control Block or Group Control Block

SCB+3 (+6)
Pointer to first group control block (GCB)

GCB+O (+0/+ I)
Pointer to next GCB in linked list of GCB's.

GCB+I (+2)
Task group identification ($S is the system group; $B is the batch group). The system
will convert your user identification to non-ASCII representation.

GCB+8 (+D/+E)
Pointer to LFNO of logical file table (LFT).

GCB+7 (+B/+C)
Pointer to LRNO of task group's logical resource table (LRT).

GCB+4 (+5/+6)
Pointer to first task control block (TCB) of the group.

LRT-I (-I)
Number of entries in the LRT.

LRT+O (+0/+1)
Pointer to LRN O's resource control table (RCT); the RCT's for subsequent LRN's are
in contiguous, ascending locations (LRT+I points to LRN I's RCT). A null entry
indicates that the associated LRN is not used. .

NOTE: Within an RCT, location 0 is the channel number of the resource if it
is an input/output device.

RCT-I (-2/-1)
Pointer to task control block (TCB) for that resource.

Locations Relative to the Task Control Block (TCB) Pointer for the Desired Priority Level

TCB-6 (-8)
Hardware-assigned priority level of the task.

TCB-12 (-IC/-IB)
Pointer to current bound unit BUD.

TCB-A (-I0/-A)
Pointer to end of queue of requests for the task.

TCB-9 (-E/-D)
Pointer to start of queue of requests for the task (e.g., I/O requests for a driver).

TCB-C (-14/-13)
Pointer to the group control block (GCB) for the group to which this task belongs.

TCB-D (-15/-14).
Link to the queue of this group's TCB's.

TCB-7 (-A/-9) .
Pointer to last TCB on that priority level.

TCB-8 (-C/-B)
link to other task control blocks (TCB's) of the same or different task groups assigned
to the same level.

INTERPRETING AND USING
MEMORY DUMPS A-3

6/78
CB21A

TCB-l (-2/-1)
Pointer to the queue of trap save areas (TSA's) for the task. (Trap save areas are
described in detail in the "Trap Handling" section of the System Service Macro Calls
manual.) If a TSA is present, the task is executing system code or a user trap; if no
TSA is present, check the program counter in the interrupt save area (ISA) portion of
the TCB to determine the tasks's progress.

TCB+O
Device word, including channel number and level number. This entry is null if the task
does not drive a device.

TCB+n
Hardware ISA.

INTERPRETING THE CONTENTS OF A DPEDIT LOGICAL DUMP

This section addresses dump interpretation when the DPEDIT dump format is used.

Finding the Location in Memory of Your Code
Locate your group-id and the TCB for your bound unit (BU). The first six' characters of

the BU filename are printed beside each TCB of the group.
The address at TCB-l1(-1 B/IA) is the start address of the BU. Calculate relative zero of

the BU by subtracting the relative start address on its link map from this address.

Determining the State of Execution of Your Code at the Time of the Dump
Dump analysis begins with gathering all relevant information: the dump itself, the console

hard-copy (if any) of the activity of a particular group (or groups), copies of the
CLM_USER and >START_UP.E files, plus any link maps.

These materials are required to understand the environment of the system represented in
the dump.

Three conditions are discussed below:

1. Halt at level 2
2. User level active at the time of dump
3. No level active at the time of dump, except level 63.

Halt at Level 2
Examination of the level activity indicators at locations 20-23 confirms that level 2 is

active. The system will force this condition to occur if either TSA or IRB resources are
exhausted (see CLM SYS directive). Note that once level 2 becomes active, other lesser
priority levels may activate but will not receive CPU time and should be ignored.

The D1 register contains an ASCII IR (4952) when IRB exhaustion has occurred.
Location 10 (10/11) is zero when TSA exhaustion has occurred.

If this symptom persists after augmenting the number of TSA/IRBs available to the
system, it is possible that either your code or the system is improperly altering the TSA/IRB
chains. To verify this, take a memory dump immediately after system startup. This allows
easy location of the TSA chains from location 10 (10/11) and the IRB chains from the first
location of the SCB. Compare this dump to one taken after all TSA/IRBs are supposedly
exhausted to verify that they really are. If the system is suspect, supply both dumps to
Honeywell if you have a maintenance contract. TSAs can also be exhausted by a recursive
trap. A recursive trap uses up all available TSAs. Adding TSAs simply allows for greater
recursion. In this instance, the system is suspect and dumps should be supplied to
Honeywell.

INTERPRETING AND USING
MEMORY DUMPS A-4

6/78
CB2lA

.. •

t

" ~

(

User Level Active at tile Time of Dump
This often indicates a halt or software loop condition on the active level. When a level is

active, the pointer to the TCB associated with the code running is in the interrupt vector for
that level. Match the TCB pointer with the TCBs listed for the groups present in the system .
When a level is active, use the P-counter in the ISA portion of the TCB to locate the
software running at the last time this level's context was saved. Since the system clock is
active on level 4, the P-counter in the ISA for this level is usually helpful. It is also helpful to
record the contents of R/B registers and EO when entering STEP mode at the control panel
prior to taking the dump.

No Level Active at the Time of Dump. Except for Level 63
This condition usually indicates a system failure in that all tasks have been suspended and

none are being reactivated. In this situation it i~ helpful to determine the conditions existing
at this time. To do this, examine all TCBs in groups other than $S group. If the TCB under
examination has not experienced a default trap condition, it mayor may not have an
associated TSA. If a TSA is shown, DPEDIT will display the monitor call function code if I
the trapped instruction is 0001 (monitor call generic). The function may be decoded using
the numerical listing included in this appendix.

When the system is called for a monitor function, only those registers that must be
preserved by the system are saved in the TSA workspace. The saved registers are: B7, B6,
BS, BI, RS, R4, MI, beginning at TSA location +9 (+E//F). The trap save area (TSA) is
illustrated below:

SAF LAF

0 TSAL 011

I 2

2 R3 3

+3 INSTR 4

4 Z 5

5 A 6/7

+6 P 8/9

7 53 AlB

8 RSU C/D

9 WORK ElF
SPACE

DETERMINING WHERE A TRAP PROCESSED BY THE SYSTEM DEFAULT HANDLER
OCCURRED IN YOUR CODE

If a trap message occurs on the operator terminal from the system default trap handler;
i.e., (id) BUname (0303zz) level, the TCB of the referenced task group may be located using
the bound unit name (BUname). In this situation, unless the TCB is subsequently
re-requested, the last two areas associated with the TCB are related to the system handling
of the trap. The first TSA following the TCB was used by the system to forceably terminate
the task request in progress when the trap occurred. Your information is found in the next
TSA associated with the TCB. It contains the hardware information described in the
previous section of this appendix, followed by a complete set of registers current when the
trap occurred. The order of the registers, beginning at location +9 (+E/F) of the TSA, is: B7,

. B6, BS, B4, B2, BI, I, R7, R6, R5, R4, R2, RI, MI (B3, R3, I ate already in the TSA).
When the TCB has been re-requested, only this second TSA remains attached to the TCB.

INTERPRETING AND USING
MEMORY DUMPS A-S

6/78
CB21A

I

FINDING THE LOCATION IN MEMORY OF YOUR CODE

The three activities above may be performed without aid of the DPEDIT logical dump
presentation. The examination of TCB contents is the same once the TCB is located. Use the
following procedure to find the TCBs for your group.

1. Go to location 0018 (18/19); this location contains a pointer to the system control
block (SCB).

2. Go to location SCB+3 (+6); this location contains a pointer to the first group control
block (GCB); the first word links to other GCB's in the system. Determine the group id
at GCB+1 (+2/+3).

3. Go to location GCB+4 (+5/+6) to determine the location of the first task control block
(TCB) of the task group.

4. Go to location TCB-12 (-I D/-I C) to determine the location of your current bound unit
descriptor (BUD).

5. Go to location BUD+6 (+A/+B). This location is the relocation factor of the bound
unit; your code should start at this location.

6. To confirm that your code does start at location BUD+6 (+A/+B), go to location
BUD+5 (+8/+9); this location points to the location of the bound unit attribute section
(BAS).

7. Go to location BAS+O to determine the bourid unit's root name; this name should be
the same file name (i.e., the same leading six characters) that you specified in the name
argument of the LINKER command.

8. If you did not find the root name for which you were looking, go to location TCB-D
(-16/-15); this location points to the next TCB of the task g'-oup. Follow through the
chain of TCB's until you find your task's task control block.

INTERPRETING THE MONITOR CALL NUMBER ON MEMORY DUMPS

Table A-2 is ordered numerically to facilitate identification of a monitor call function
code, and provides a brief description of each Executive monitor call.

INTERPRETING AND USING
MEMORY DUMPS A·6

6/78
CB21A

/ ~,

... ...

TABLE A-2. SUMMARY OF EXECUTIVE MONITOR CALLS

t .. Monitor ~

Call Number Function Description Macro Call Name

0100 Wait for operation complete $WAIT

0101 Wait on request list $WAITL

0102 Test completion status $TEST

0103 Terminate request start address not modified $TRMRQ

0104 Terminate request $84 has new start address $TRMRQ

0105 Dequeue IRB

0106 Post IRB

0107 Return request block address $RBADD

0108 Locate user RCT

0200 Request I/O transfer $RQIO

0202 Disable device $DSDV

0203 Reset device attention $RDVAT

0204 Enable device $ENDV

0205 Start error logging $ELST

I 0207 Exchange error log $ELEX

0208 Get error logging information for this device $ELCT

0209 End error logging $ELEND

0402 Get memory $GMEM

0403 Get available memory $GMEM

".
0404 Return memory $RMEM

,~,

0405 Return partial block of memory $RMEM

0406 Status memory pool $STMP

0500 Request clock $RQCL

0501 Cancel clock request $CNCRQ

0502 Suspend for interval $SUSPN

0503 Suspend until time $SUSPN

0504 External date/time - convert to $EXTDT

0505 External time - convert to $EXTIM

0506 Get date/time $GDTM

0507 Internal date/time - convert to $INDTM

0508 Set system date/time

0600 Request semaphore $RQSM

0601 Cancel semaphore request $CNSRQ

0602 Reserve resource $RSVSM

0603 Release semaphore $RLSM

0604 Define semaphore $DESM

0700 Execute overlay $OVEXC

0701 Load overlay $OVLD

0703 Status overlay $OVST

0705 Reserve area and execute overlay $OVRSV

I
0706 Release overlay area $OVRSL

(0707 Release, wait on RB and recall $OVRCL

INTERPRETING AND USING 6/78
MEMORY DUMPS A-7 CB2lA

...

TABLE A·2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
Call Number Function Description Macro Call Name

I 070A Create overlay area $CROAT

0700 Unload overlay $OVUN

0800 User input me • read $USIN

0801 User output me • write $USOUT

0802 Command inflle (read comJ?and.in me) $CIN

0803 Error output me . write to $EROUT

0804 New user input me· redefme $NUIN

0805 New user output me . redefine $NUOUT

0806 New command input· reset

0900 Operator information message" display $OPMSG

0901 Operator response message· display $OPRSP

OAOO Trap handler connect $TRPHD

0902 Console message suppression· on $CMSUP

0903 Console message suppression· off $CMSUP

OAOI Enable user trap $ENTRP

OA02 Disable user trap $DSTRP

OA04 Trap handler query $TRPHD

OBOO Read external switches $RDSW

OBOI Set external switches $SETSW

OB02 Clear external switches $CLRSW

OCOO Request task $RQTSK

OC02 Create task; same bound unit as issuing $CRTSK

OC03 Create task; different bound unit than issuing $CRTSK

OC04 Delete task $DLTSK

OC05 Spawn task; same bound unit as issuing $SPTSK

OC06 Spawn task; different bound unit than issuing $SPTSK

OC08 Command line· process synchronously $CMDLN

ODOO Request group $RQGRP

OD03 Create group $CRGRP

OD04 Delete group $DLGRP

ODDS Spawn group $SPGRP

OD07 Abort group request $ABGRQ

OD08 Suspend group $SUSPG

0009 Activate group $ACTVG

ODOA Abort group $ABGRP

ODOB New process $NPROC

OEOO Request batch execution $RQBAT

OFOO Report error condition $RPTER

OFOI Report error condition $RPTER

1010 Associate file $ASFIL

1015 Disassociate file $DSFIL
'.
"'- ./

INTERPRETING AND USING 6/78
MEMORY DUMPS A·8 CB2IA

...

, TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

.. ...
Monitor
Call Number Function Description Macro Call Name

1020 Get file $GTFIL
1025 Remove file $RMFIL
1030 Create file $CRFIL
1035 Release file $RLFIL
1040 Rename file/directory $RNFIL
1050 Open file (preserve) $OPFIL
1051 Open me (renew) $OPFIL
1055 Close file (normal) $CLFIL

1056 Close file (leave) $CLFIL.

1057 Close file (unload) $CLFIL
1060 Get file information $GIFIL

1061 Test me I/O $TSFIL

1062 Test file for input $TIFIL

1063 Test file for output $TOFIL

1064 Wait for file input $WIFIL

1065 Wait for file output $WOFIL

10AO Create directory $CRDIR

lOA5 Release directory $RLDIR

lOBO Change working directory $CWDIR

lOCO Get working directory $GWDIR

10DO Expand pathname $XPATH

1110 Read record $RDREC

1111 Read record (with key) $RDREC

1112 Read record (position = key) $RDREC

1113 Read record (position> key) $RDREC

1114 Read record (position;;;;' key) $RDREC

1115 Read record (position forward) $RDREC

1116 Read record (position backward) $RDREC

1120 Write record $WRREC

1121 Write record (with key) $WRREC

1122 Write record (position = key) $WRREC

1123 Write record (position> key) $WRREC

1124 Write record (position;;;;' key) $WRREC

1125 Write record (position forward) $WRREC

1126 Write record (position backward) $WRREC

1130 Delete record $DLREC

1131 Delete record (with key) $DLREC

1140 Rewrite record $ RWREC

1141 Rewrite record (with key) $RWREC

1150 Unlock record $ULREC

(
1200 Read block (normal) $RDBLK

1201 Read block (position to tape mark) $RDBLK

INTERPRETING AND USING
MEMORY DUMPS A-9 CB21

TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
CaltNumber

1202

1203

1204

1210

1211

1220

l30A

1400

1401

1402

1403

1404

1406

140B

140C

1501

1502

1503

1504

1505

1506

1507

1509

1702

1703

1704

1800

I
INTERPRETING AND USING
MEMORY DUMPS

Function Description

Read block (position to beginning of tape)

Read block (position on blocks)

Read block (position to end of tape)

Write block (normal)

Write block (write to tape ~ark)

Wait block

Set terminal characteristics

User identification

Task group person identifICation

Account identifier

Task group mode identification

System identification

Bound unit name

Home directory name

Task group input file name

Accept message group

Initiate message group

Receive

Terminate message group

Send

Cancel message enclosure

Count message group

Wait on message group

Cancel request for terminal

Request terminal

Release terminal

Set dial

Clock request block template - create

Clock request block template - offsets

Create file parameter block structure - offsets

File information block - create

Get me information file attributes
block - offsets

Get me information, key descriptors
block - offsets

Get me information, parameter structure
block - offsets

Get file, parameter structure block - offsets

Input/Output request block template - create

Input/Output request block template -
offsets

A-1O

Macro CaD Name

$RDBLK

$RDBLK

$RDBLK

$WRBLK

$WRBLK

$WTBLK

$STTY

$USRID

$PERID

$ACTID

$MODID

$SYSID

$BUID

$HDIR

$TGIN

$MACPT

$MINIT

$MRECV

$MTMG

$MSEND

$MCME

$MCMG

$MWAIT

$CANRQ
. $RQTML

$RLTML

$SDL

$CRB

$CRBD

$CRPSB

$FIB

$GIFAB

$GIKDB

$GIPSB

$GTPSB

$IORB

$ IORBD

6/78.
CB21A

....

{
"

('

TABLE A·2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
Call Number

INTERPRETING AND USING
MEMORY DUMPS

Function Description

Parameter structure block - generate

Request block template

Return sequence - establish

Semaphore request block - create

Semaphore request block template - offsets

File information block - offsets

Task request block - create

Template task request block - offsets

Wait list - generate

A-ll

Macro Call Name

$PRBLK

$RBD

$RETRN

$SRB

$SRBD

$TFIB

$TRB

$TRBD

$WLIST

6/78
CB21A

.. ...

(
.J

" -2
:::i
l'J
2
0
...J
«
f-
::l
U

("~.I

-"' I
I
I
I
I
I
I .

HONEYWEll INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 6) GCOS 6 MOD 400
PROGRAM EXECUTION AND CHECKOUT
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 CB21A, REV. 0

DATED I JUNE 1978

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 l(as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ _

TITLE __ _

COMPANV ______________________________________ ___

AODRE~ __ _

,AO

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I
I
I
I'

LI

2"
:::i
0
2
0
...J
~
I-
~
U

I
I
I
I

•

I u.J

I 2
I ...J

I 0

--,--------------------------------- 1-3
I ~
I 6

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I u.

I
I
I
I
I
I
I
I
I
1/
I:
I,
I
I
I
I
I
I
I
I u.J

I 2

I~
I 2

---~g

Honeywell

I ~
19
I ~
I
I
I
I
I
J
I
I
I
I
I
I
I
k
f'l-. /
I
t
I
I
I
I

