SERIES 60 (LEVEL #6)
GCOS 6 MOD 400 PROGRAM
EXECUTION AND CHECKOUT

ADDENDUM A

SUBJECT
Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

Insert attached pages into Revision O of the manual dated November 1977
(see Collating Instructions). Except in completely revised Section 6, change
bars indicate new and changed information and asterisks denote deletions.

NOTE: Insert this addendum cover behind the manual cover to indicate that

£
i the manual is updated with Addendum A.
SOFTWARE SUPPORTED
This update supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD
400 software system. For any later release of MOD 400 software, see the
Manual Directory of the latest System Concepts manual to ascertain whether
this update supports that release.
ORDER NUMBER
(" ' CB21A, Rev. 0 June 1978
21004

3678
Printed in U.S.A. Honeywell

©1978, Honeywell Information Systems Inc.

COLLATING INSTRUCTIONS

Remove
iii/blank
v/vi
vii/blank
2-1/2-2
2-5/2-6
2-7/2-8
2-9/2-10
2-11/2-12
2-15/2-16
2-17/2-18
2-19/2-20
2-21/2:22
2-23/2-24
2-27/2-28
2-37/2-38
3-7/3-8
3-9/blank
5-1/5-2

6-1 through 6-11, blank
A-1/A-2

A-3/A-4

A-5/A-6

A-7/A-8

A-9/A-10

File No.: 1S23

To update this manual, remove old pages and insert new pages as follows:

Insert
iii/blank
v/vi
vii/blank
2-1/2-2
2-5/2-6
2-7/2-8
2-9/2-10
2-11/2-12
2-15/2-16
2-17/2-18
2-19/2-20
2-21/2-22
2-23/2-24
2-27/2-28
2-37/2-38
3.7/3-8
3-9/3-10
5.1/5-2
5-2.1/blank
6-1 through 6-17, blank
A-1/A-2
A-3/A-4
A-5/A-6
A-7/A-8
A9/A-10
A-11/blank

6/78
CB21A

N

o i,

g g,

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual Directory in
the latest GCOS 6 MOD 400 Systems Concepts manual (Order No. CB20) lists the current
revision number and addenda (if any) for each manual in the set.

Order
No. Manual Title

CBO1 GCOS 6 Program Preparation

CBO02 GCOS 6 Commands

CB03 GCOS 6 Communications Processing

CB04 GCOS 6 Sort/Merge

CBO05 GCOS 6 Data File Organizations and Formats

CB06 GCOS 6 System Messages

CB07 GCOS 6 Assembly Language Reference

CBO08 GCOS 6 System Service Macro Calls

CBQ9 GCOS 6 RPG Reference

CB10 GCOS 6 Intermediate COBOL Reference

CB20 GCOS 6 MOD 400 System Concepts

CB21 GCOS 6 MOD 400 Program Execution and Checkout

CB22 GCOS 6 MOD 400 Programmer’s Guide

CB23 GCOS 6 MOD 400 System Building

CB24 GCOS 6 MOD 400 Operator’s Guide

CB25 GCOS 6 MOD 400 FORTRAN Reference ’

CB26 GCOS 6 MOD 400 Entry-Level COBOL Reference

CB27 GCOS 6 MOD 400 Programmer’s Pocket Guide

CB28 GCOS 6 MOD 400 Master Index

CB30 Remote Batch Facility User’s Guide

CB31 Data Entry Facility User’s Guide

CB32 Data Entry Facility Operator’s Quick Reference Guide

CB33 Level 6/Level 6 File Transmission Facility User’s Guide

CB34 Level 6/Level 62 File Transmission Facility User’s Guide

CB35 Level 6/Level 64 (Native) File Transmission Facility User’s Guide
CB36 Level 6/Level 66 File Transmission Facility User’s Guide

CB37 Level 6/Series 200/2000 File Transmission Facility User’s Guide
CB38 Level 6/BSC 2780/3780 File Transmission Facility User’s Guide
CB39 Level 6/Level 64 (Emulator) File Transmission Facility User’s Guide
CB40 IBM 2780/3780 Workstation Facility User’s Guide

CB41 HASP Workstation Facility User’s Guide

CB42 Level 66 Host Resident Facility User’s Guide

CB43 Terminal Concentration Facility User’s Guide

In addition, the following documents provide general hardware information:

Order
No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook
ATO04 Level 6 System and Peripherals Operation Manual
AT97 MLCP Programmer’s Reference Manual

FQ41 Writable Control Store User’s Guide

6/78
iii CB21A

Rl

Ry,

CONTENTS

Section 1. Overview of Program
Execution and Checkout
Symbols Used in This Manual

Section 2. Linker
Suffix Conventions
Functions of the Linker

Creatinga Bound Unit
Resolving External References
Creating a Symbol Table
Producinga LinkMap
Functional Groups of Linker Directives. .
Specifying Object Unit(s) to be
Linked
Specifying Location(s) of Object
Unit(s) tobe Linked
Creating a Root and Optional
Overlay(s)
Producing Link Map(s)
Defining External Symbol(s)
Protecting or Purging Symbol(s)
Designating that the Last Linker
has been Entered
Loading the Linker
Entering Linker Directives
Procedure for Creating Only a Root .
Procedure for Creating a Root and One
or More Overlays
Procedure for Creating a Shareable
Bound Unit Using a High Level
Language
Obtaining Summary Information of a
Linker Session
Linker Directive Descriptions
BASE Directive
Call-Cancel Directive (CC)
COMM Directive
CPROT Directive
CPURGE Directive
EDEF Directive

.................

IN Directive
IST Directive
LDEF Directive
LIB Directive
LIB (2, 3, or 4) Directive
LINK Directive
LINKN Directive
LINKO Directive
LSR Directive
MAP and MAPU Directives
OVLY Directive
PROTECT Directive...............

24

Page
PURGE Directive 2-33
QUIT Directive 2-34
SHARE Directive 2-35
START Directive 2-35
SYS Directive 2-35
VAL Directive 2-36
VDEF Directive 2-36
VPURGE Directive 2-36
Example Illustrating Usage of the
Linker 2-37
Programming Considerations 2-38
Section 3. Program Execution 3-1
Designating Files 3-1
ASSOC Command 3-1
GETCommand 3-1
Setting Switches 3-2
MSW Command 3-2
Requesting Program Execution 3-3
Program Preparation and Execution
in the Same Task Group 3-3
Program Execution in a Different
Task Group from Program
Preparation 3-3
Using the CG and EGR Commands . 3-3
CGCommand 3-4
EGR Command 3-5
Using the SG Command 3-6
Using the LOGIN Command 3-8
Section4. Patch 4-1
Loading Patch 4-1
Submitting Patch Directives 4-2
Patching Techniques 4-2
Naming the Patch 4-2
Applying the Patch 4-2
Patch Directives 4-3
Data Patch Directive 4-3
Eliminate Patch Directive 4-5
Hexadecimal Patch Directive46
List Patches Directive 4-8
Quit Directive 4-9
Comment Directive 4-9
Section 5. Debugging Programs 5-1
Debug 5-1
Debug File Requirements 5-1
Loading the Debug Task Group 5-1
Debug Operation with MMU 5-2
Debug Directives 5-2.1
Planning Considerations 54
Setting Breakpoints 5-4
Controlling Output Using a
Breakpoint 5-4
6/78

Determining/Setting the Active Procedure for Using MDUMP 6-1
Level 5-4 Procedure For Bootstrapping
Maintaining a Trace History 5-6 MDUMP on Non-Model 23
All Registers Directive 5-6 Series Systems. 6-2
Assign Directive 5-6 Procedure For Running The
Clear All Directive 5-7 QLT And/Or Bootstrapping
Change Memory Directive 5-7 MDUMP On Model 23 Series
Clear Directive 5-8 6/20 Systems 6-2
Clear Bound Unit Directive 5-8 MDUMPHalts 6-2
Clear All Bound Unit Directive - ... 5-8 Dump Edit Utility Program 6-2
Define Directive 5-8 Dump Edit Line Format 6-3
Display Memory Directive 5-9 Physical Dumps 6-3
Dump Memory Directive 5-10 Logical Dumps 6-4
Define Trace Directive 5-10 System Summary 6-4
Execute Directive 5-11 File System Structures.......... 6-13
End Trace Directive 5-11 Task Group Structures. 6-13
Redirect Debug Output Directive .. 5-12 DPEDIT Command 6-14
GO Directive 5-12 Operating Procedure for Dump Edit . . 6-15
Conditional Execution Directive ... 5-13 MeSsagest 6-16
Print Header Line Directive 5-14
List All Breakpoints Directive 5-15
List Breakpoint Directive 5-15 Appendix A. Interpreting and Using
List All Bound Unit Breakpoints Memory Dumps A-1
Directiveo .. 5-15 Significant Locations on Memory
List Bound Unit Breakpoint Dumps, A-1
Directivecoou.... 5-16 Locations Relative to the System
Line Length Directive 5-16 Control Block or Group Control
Print All Directive 5-16 Block L A-3
Print Directive 5-17 Locations Relative to the Task
Print Trace Directive 5-17 Control Block (TCB) Pointer for the
Quit Directive 5-17 Desired Priority Level A-3
Reset File Directive 5-17 Interpreting the Contents of a DPEDIT
Set Breakpoint Directive 5-18 Dumpc.ol A-4
Set Bound Unit Breakpoint Finding the Location in Memory of
Directive 519 YourCode A4
Specify File Directive 5-20 Determining the State of Execution
Set Level Directive 5-20 of Your Code at the Time of the
Start j-mode Trace Directive 5-21 Dump A-4
Set Temporary Level Directive 5-21 Haltat Level 2 A-4
Print Hexadecimal Value User Level Active at the Time of
Directivecoo. ... 5-22 Dump A-5
Example Illustrating Usage of Debug No Level Active at the Time of
Directives . .. vveeiee i 5-22 Dump, Except for Level 63 A-5
Debugging Programs Without Using Determining Where a Trap Processed by
DeEbUZ ..\ttt 5-24 the System Default Handler Occurred
Deactivating Real-Time Clock5-24 inYourCode A-5
Finding the Location in Memory of
YourCode, A-6
Section 6. MDUMP and Dump Edit Utility Interpreting the Monitor Call Number
Programs 6-1 on Memory Dumps A-6
MDUMP Utility Program 6-1
Preparingfor MDUMP 6-1
6/78

vi ' CB21A

N

7 ﬂ?ﬂﬁ;g\

ILLUSTRATIONS

Figure

1-1. Program Execution and Checkout
Procedures...................

2-1. Schematic of Previous Example
Iustrating Usage of BASE
Directives

2-2. Link Map- Formats
2-3. Sample Link Maps
6-1. Sample Physical Memory Dump ..
6-2. Logical Dump: System Summary. .
6-3. Logical Dump: Tree of File

System Structures
6-4. Logical Dump: Task Group

Structures
A-1. Data StructureMap

vii

TABLES

Table Page
2-1. Designating File Names 2-2
5-1. Symbols Used in Debug Directive

Lines 5-3
5-2. Summary of Debug Directives, by

Function 5-5
6-1. MDUMPHalts 6-3
6-2. DPEDIT — Specific Fatal

Error Messages 6-16
A-1. Significant Locations on Memory

Dump e A-1
A-2. Summary of Executive Monitor

Calls A-7

6/78

CB2IA

gl“\

/-’n@i!i—lr‘i oy,

SECTION 2
LINKER

The Linker combines separately assembled and/or compiled object units, which can also
be called compilation units (CUs), and produces a bound unit. An object unit can only be
executed if it is first linked by the Linker. The Linker executes in either Short Address
Form (SAF) mode (2 byte-address) or Long Address Form (LAF) mode (4 byte-address). It
can create, in either mode, a SAF, LAF or SLIC bound unit. A SLIC bound unit can
execute in either LAF or SAF mode.

Object units may contain external references to symbols.! While linking object units, the
Linker resolves external references to symbols by referring to and updating a Linker-created
symbol table. A link map of defined and/or undefined symbols can be produced.

To load the Linker into memory, enter the LINKER command (see “Loading the Linker”
later in this section).

Linking is controlled by directives entered to the Linker through the directive input
device. The directive input device is the device specified in the in_path argument of the
“enter batch request” or “enter group request” command (normally, the in_path represents
a terminal). This device can be reassigned in the command that loads the Linker.

If the Linker command specifies the —PT argument, the Linker prompter character “L?”
will appear each time the Linker expects a directive.

The Linker processing can be interrupted by:

o Depressing the “QUIT”, “INTERRUPT”, or “BREAK” key on the user terminal

o Entering ACAB group-id on the operator terminal, where group-id is the two-character
group identification code associated with the group containing the task to be
interrupted. A **BREAK®** message appears on the user’s terminal when the system
interrupts the Linker. One of the commands SR (start), PI (program interrupt), UW
(unwind) or NEW-PROC may be entered at this point. SR causes the interrupted task
to resume at the point where the interrupt occurred (i.e., to continue as if no interrupt
had occurred). If a MAP or MAPU directive has been issued and the PI command is
used, the map operation is terminated at its current location and processing jumps to
the next Linker directive. The UW command causes an orderly termination of the
Linker processing (i.e., files are closed) and processing continues with some other task
in the group containing the Linker.

The NEW-PROC command causes an orderly termination of the task group and the task
group is reinitialized.

Each object unit to be processed during a single execution of the Linker must be a
variable sequential file. The input files may reside in the same directory or in different
directories. Unless specified otherwise, all of the object units are in the working directory
(see ““‘Specifying Location(s) of Object Unit(s) to be Linked” later in this section).

Only one bound unit is created by a single execution of the Linker. A bound unit may
consist of only a root, or a root and one or more overlays. The root and each overlay may
be up to 64K words (128K bytes). The root and each overlay is called a load unit; a load
unit is loaded into memory by the Loader. When you use a create group or spawn group

! An external reference is a reference to a symbol defined in another object unit as an external symbol.

6/78
LINKER 2-1 CB21A

command, or an LDBU configuration directive, to request that a bound unit be loaded, the
root is the portion of the bound unit that is loaded by the Loader. The root remains in
memory as long as there are tasks executing on its behalf, unless LDBU was specified; if
LDBU was specified, the root remains in memory until the system is reinitialized. An
overlay is loaded into memory whenever it is required. Refer to the Commands manual for a
discussion of the create group and spawn group commands, and the LDBU configuration
directive.

Each bound unit has an attribute table associated with it; an attribute table contains
information about the bound unit’s characteristics and symbol definitions. The attribute
table is loaded into memory immediately preceding the root.

SUFFIX CONVENTIONS

For input files, the Linker appends the suffix .O to each specified file name. When you
specify a file name in a link directive, do not include a suffix. The Linker does not append a
suffix to the output bound unit name specified in the system command line.

If a list file is designated (i.e., the -COUT argument is specified in the LINKER
command), the Linker does not append a suffix to the specified name; otherwise, the Linker
forms the name of its list file (Linker maps) by appending .M to the specified bound unit
name.

Table 2-1 summarizes the formation of file names.

TABLE 2-1. DESIGNATING FILE NAMES

Program Preparation

Task Input File(s) Output File(s)

Linker Omit suffix. Linker Omit suffixes. The Linker appends .M to specified
appends .0 to each bound unit file name to form the name of the list file
specified file name. if the -COUT argument was not specified in the LINKER

command. The Linker does not append a suffix to the

name designated in the -COUT or -IN directives, nor to

files named in the IN or LIB(x) directives.
FUNCTIONS OF THE LINKER

Creating a Bound Unit

The Linker produces a bound unit file whose pathname is specified in the name argument
of the LINKER command.

The bound unit comprises only a root unless an OVLY or FLOVLY directive is entered.
Each time an OVLY or FLOVLY directive is entered, the Linker initiates creation of a
nonfloatable or floatable overlay, respectively. A nonfloatable overlay is loaded by the
Loader into the same memory location (relative to the root) each time it is requested. A
floatable overlay is linked at relative O (see “BASE Directive” later in this section), and can
be loaded by the Loader into any available memory location. A floatable overlay must have
the following characteristics:

. 1. External location definitions in the overlay are not referenced by the root or any other
overlay.

. There cannot be external references between floatable overlays.

. The overlay does not contain external references that are not resolved by the Linker.

. The overlay must be linked after all desired nonfloatable overlays have been linked.

. The overlay cannot contain P+DSP references to any other overlay or the root.

. The overlay cannot contain IMA (immediate memory address) references within itself.

. There can be IMA references (with or without offsets) to locations in the root or any
nonfloatable overlay.

~N O\ bW

6/78
LINKER 2-2 CB21A

o i,

NOTE: When the lowest address of a root or overlay has been established (i.e., an object
unit has been linked), it is illegal to define a lower BASE address within that root
or overlay.

START specifies the relative address at which the root or overlay will begin executing
when it is loaded into memory by the Loader.

IST identifies the beginning of initialization code in the root.

SHARE designates that the bound unit is shareable.

SYS designates that the bound unit can be loaded into the system area as part of the
system.

LINK, LINKN and LINKO: specify which object units will be linked. The order in which
specified object units are linked, and when they are linked, is determined by which link
directive is specified.

OVLY names and assigns a number to the next nonfloatable overlay that follows, and
designates the end of the preceding root or overlay.

FLOVLY names and assigns a number to the next floatable overlay that follows, and
designates the end of the preceding root or overlay.

Call-cancel (CC) permits a COBOL program that used CALL and CANCEL statements to
call overlays by their names.

QUIT designates that the last Linker directive has been entered. Execution of the Linker
terminates after the bound unit has been created.

Producing Link Map(s)

Directives:
MAP
MAPU

A link map is written to the list file by specifying the MAP or MAPU directive. MAP
creates a map that lists both defined and undefined symbols, whereas MAPU lists undefined
symbols only.

Defining External Symbol(s)

Directives:
COMM
LDEF
VAL
VDEF
EDEF

The COMM directive defines a symbol as being labelled or unlabelled common.?

A symbol can be defined as a relative location or value by specifying the LDEF or VDEF
directive, respectively. The symbol’s definition is then put into the symbol table by the
Linker.

The VAL directive specifies a value definition at LINK time. This value is equivalent to
the difference between two external locations.

The EDEF directive permits definitions in the Linker symbol table to be made part of the
bound unit so they are available to the Loader at execution time.

2 For discussions of “common” see the appropriate language reference manual.

LINKER 2.5

CB21

Protecting or Purging Symbol(s)

Directives:
CPROT
CPURGE
PROT
PURGE
VPURGE

The CPROT and CPURGE directives, respectively, protect and remove symbols associated
with labeled and unlabeled common.

The PROT and PURGE directives, respectively, protect and remove symbols and object
unit names from the symbol table.

The protect (PROT) directive prevents certain symbols and/or object unit names from
being removed from the symbol table. Symbols are protected if they identify a specified
address or an address within a specified range; object unit names are protected if they are
equated to a specified address or an address within a specified range.

The PURGE directive removes from the symbol table unprotected symbols that define a
specified address or an address within a specified range, and/or object unit names equated to
a specified address or an address within a specified range.

The VPURGE directive removes a specified value definition from the symbol table.

Designating That the Last Linker Directive Has Been Entered

Directive:
QUIT

QUIT must be the last Linker directive entered.

If a bound unit is being created, execution of the Linker terminates after the bound umt
has been created.

If no bound unit is being created, QUIT terminates executlon of the Linker.

LOADING THE LINKER

To load the Linker, enter the LINKER command, which is described below.
After the Linker is loaded, there is a typeout to the error output file of the revision also
in the following format:

LINKER-nnnn-mm/dd/hhmm

where nnnn is a release identification, mm/dd is the month and day the Linker component
was linked, and hhmm the time (hour, minutes) at which that link took place.

FORMAT:
LINKER bound-unit-path [ctl_arg]
ARGUMENT DESCRIPTIONS:
bound-unit-path
Pathname of the relative disk bound unit file. The pathname can be simple, relative, or
absolute and must be preceded by a space. If the specified file already exists, the

existing information in the file is deleted and replaced with the new bound unit. The
bound unit pathname must be specified. It may be up to 62 characters in length.

6/78

LINKER 2-6 CB21A

N

ctl_arg
Control arguments; none or any number of the following control arguments may be
entered, in any order:

-IN path
Pathname of the device through which Linker directives will be read; can be disk,
card reader, operator’s terminal, or another terminal.

Error messages are written to the error output file. Linker error messages are
described in the System Messages manual.

Default: Device specified in the in_path argument of the “enter batch request” or
“enter group request’” command. .

When this argument is specified, the prompter character will not appear.

-PT
If the -IN argument is not specified, -PT can be specified in order to produce a
prompter character on the user terminal. A prompter character is issued only if -PT
is specified.

-COUT list-path-name
Designates the list file. The list file can be sent to a disk, another terminal, or a
printer. The list-path-name is associated with this list file. If -COUT is not specified,
the list-path-name has a default value of bound-unit-path .M.

-LAF

-SAF

-SLIC
LAF and SAF are addressing modes in one of which the bound unit is to execute;
-LAF designates long address form (two-word addresses); -SAF designates short
address form (one-word addresses); -SLIC designates that either a SAF or a LAF
machine may be used with no reassembly or link necessary. '

Default: Bound unit executed in SAF (short address form) mode.

-SIZE nn

-SZ nn
nn designates the maximum number of 1024-word (1K) blocks of memory available
for the Linker symbol table; nn must be from 1 to 32. At least 1024 words must be
available.

Default: 2K

-w
Specifies that the implicit Linker work files are to be saved.

Default: Implicit Linker work files are automatically released by the Linker upon
Linker termination..

-R
Designates that a bound unit is to be created, where all data areas defined as
common are separated from all other code. Required for shareable CU’s (object
units).

-VERBOSE
Causes all Linker directives to be printed on the list file.

-NOMAP
Suppresses the list file.

Example:

LINKER MYPROG-INA MYDISK>CNLA-COUTA>SPD>LPTO00A-SIZEA06

6/78
LINKER 2.7 CB21A

This LINKER command loads the Linker and designates the following:

~ 0o Bound unit will be a relative file named MYPROG in the working directory.
o Linker directives will be entered through disk file "MYDISK>CNL.
o List file goes to a line printer (configured as LPTO0Q), rather than to a variable
sequential file named MYPROG.M in the working directory.
o The symbol table will be a maximum of 6K words of memory.

NOTE: LPTO0 must have been previously defined in the DEVICE configuration
directive, which is described in the “Startup and Configuration Procedures”
section of the System Building manual.

ENTERING LINKER DIRECTIVES

. Linker directives are entered through the directive input device, except for the following
directives which may be embedded in assembly language CTRL statements: LINK, LINKN,
LINKO, SHARE, EDEF, and SYS.

Linker directives comprise only a directive name or a directive name followed by one or
more parameters. Each directive name may be preceded by 0, 1, or more blank spaces, If
one or more parameters are to be specified in a Linker directive, the directive name must be
immediately followed by one or more blank spaces.

Multiple directives can be entered on a line by specifying a semicolon(;) after each
directive, except for the last directive on the line.

The last (or only) directive on a line can be followed by a comment; to include a
comment, specify a space and a slash (/) after the last (or only) parameter and then enter
the comment,

If the directive input device is the operator s terminal or another terminal, press
RETURN at the end of each line (i.e., at the end of the comment, or at the end of the last
directive if there is no comment).

If an error occurs when entering a directive, an error message is written to the error
output file. Linker error messages are described in the System Messages manual. Determine
what caused the error, and then reenter the directive correctly. If multiple directives are
entered on a line and an error occurs, the error does not affect the execution of previously
designated directives. The directive that caused the error and subsequent directives on that
line are not executed.

PROCEDURE FOR CREATING ONLY A ROOT
To link object units and create only a root, load the Lmker and then enter the following

directives:
LINK }3
LINKN Links object units.
LINKO
QUIT Designates that the last Linker directive has been entered. After the

bound unit has been created, execution of the Linker terminates.
All other directives are optional.

PROCEDURE FOR CREATING A ROOT AND ONE OR MORE OVERLAYS

When creating a root and overlays, the following rules must be followed:

o The root must be created before its overlays.
o A root and all of its overlays must be created during the same execution of the Linker.

3Multiple LINK and/or LINKN and/or LINKO directives may be entered.

LINKER 2-8 CB21

e,

3

o Nonfloatable overlays must be created before floatable overlays.
o Overlays may contain references to symbols defined in the root or other overlays.
o A root or overlay can be up to 64K words of memory.

To link object units and create a root and one or more overlays, load the Linker and then
enter the following required directives:

LINK |4

LINKN Links object units that will constitute the root.

LINKO

OVLY Designates end of the root, and names and numbers the overlay that
FLOVLY immediately follows.

iiﬁﬁN Links object units that will constitute an overlay.

NOTE: An OVLY or FLOVLY directive and at least one link directive must be specified
for each overlay associated with the root.

QUIT Designates that the last Linker directive has been entered. After the
bound unit has been created, execution of the Linker terminates.

All other directives are optional.

NOTE: It is advisable to specify a MAP directive before each FLOVLY directive. The
base address of a floatable overlay is relative 0, so all unprotected symbols that
define locations will be purged from the symbol table.

PROCEDURE FOR CREATING A SHAREABLE BOUND UNIT
USING A HIGH-LEVEL LANGUAGE

A shareable bound unit (BU) is one in which the code portion resides in system memory
and can be used on behalf of one or more groups to manipulate data in that group. To
accomplish this, the following factors must be present:

1. The pure (i.e., code) portion of the bound unit must be separated from the impure
(i.e., data) portion.

2. The BU must be declared shareable.

3. Space must exist in the System pool to allow loading of the pure portion of the BU.

These factors are processed respectively as follows:

1. Using the capability to declare pure portions from impure portions (e.g., Intermediate
COBOL), specify the -R argument on the Linker command line. This will cause the
Linker to separate all those items declared as impure from the rest of the program.

2. Specify the SHARE directive for the BU at link time.

3. If both of the preceding conditions are specified, the Loader will automatically load
the pure section of the BU into the System space in memory. If not enough room
exists in the System space, the pure section will go into the group with the impure
section and will no longer be shareable.

Using the Intermediate COBOL compiler, which automatically puts data in “Local
Common™, or using the Assembly Language pseudo-operator ($LOCOMW), the capability to
share a pure code portion of a program exists. If the -R argument is specified at link time,
the resultant BU can be up to 128K (up to 64K for pure code and up to 64K for data).

4 Multiple LINK and/or LINKN and/or LINKO directives may be entered.

LINKER 2.9

CB21

No overlays are permitted in a shareable/separated BU.

When the -R argument is specified, all data which the compiler defines in common is
separated from executable code. All references in the code to this data are made via register
$B6. The data does not directly reference the code.

When the -R argument is not specified, overlays are permitted. In this case, the maximum
size of the root or of any individual overlay is 64K (including both code and data).

OBTAINING SUMMARY INFORMATION OF A LINKER SESSION

The Linker designates on the list file summary information regarding the bound unit
created during the current execution of the Linker.

The list file includes the name of the bound unit and date and time of link, the name and
revision number of each object unit linked, the name of the assembler/compiler, the
assembler or compiler error count, and the sections described below:

ROOT Name of the root.

HIGHEST OVLY Number of the last overlay® ; if there are no
overlays HIGHEST OVLY is followed by a
blank.

/NUM OF SYMS Number of symbols specified in EDEF
'directives.

SAF Type of addressing form used in the bound

LAF unit; SAF is short-address form, and LAF is

SLIC long-address form.

A SLIC bound unit may be executed in either
SAF or LAF mode.
{ROOT} Name of the root or overlay.

OVLY

BASE Base address of the root or overlay.

ST Start address of the root or overlay.

SFUI Specifies characteristics of the bound unit, as
follows:

S

Shareable bound unit.
F

Floatable overlay(s) included.
U

There are resolved or unresolved forward references between the root and overlays or
between overlays.
I

IMA addresses are present.

HIGH Highest address in the root or overlay.

*SIZE OF ROOT AND STATIC OVLYS Highest address in either the root or the
largest overlay. (Indicates the amount of
memory needed to load the bound unit.)

HI REL RCD The number of the highest relative record of
the bound unit file, (Indicates the number of
control intervals used for storage.)

LINK DONE
Designates that execution of the Linker has been successful.

5The Linker assigns numbers to overlays. The first overlay is 00; subsequent overlays are numbered sequentially in ascending
order.

6/78
LINKER 2-10 CB21A

4wﬁx

The format for this information is illustrated below:

ROOT rootname
HIGHEST OVLY number/NUM OF SYMS number

kkkkokkkkokkk

SAF
LAF
SLIC

s 3k sk ok sk sk okeok skosk ok

CMMN® :rootname BASE address ST address - HIGH = high address of data

ROOT
OVLY A
HIGH = high address of root or overlay

ook skook skok sk sk ke ok

*SIZE OF ROOT AND STATIC OVLYS = number,; ¢ HI REL RCD = number; ¢

ok sk sk ok seoskosk ks sk ok

LINK DONE

ook ook kok skskkkok

LINKER DIRECTIVE DESCRIPTIONS

Linker directives are described below, alphabetically. Some examples are provided to
illustrate directive usage.

BASE Directive

The BASE directive defines, for subsequent object units to be linked, the relative link
address within the bound unit. At load time, all addresses are relative to the beginning of
available memory (relative 0) in the memory pool of the task group. When a task group is
created, you specify the memory pool into which its bound units are to be loaded.

Unless BASE directives specify otherwise, the root will be linked, by default, at relative O,
and subsequent object units are linked at successive relative addresses. A BASE directive can
be used at any point during linking to change the relative locations of the root, overlays, or
individual object units. A floatable overlay always begins at relative 0; therefore, in a
floatable overlay, BASE can be specified only after the first (or only) LINK, LINKN or
LINKO directive. A BASE argument can specify a previously used or defined location, or
an address relative to the beginning of the available memory.

If unprotected symbols define locations that are equal to or greater than the location
designated in the BASE directive, those symbols are removed from the symbol table.

FORMAT:

b

%

X‘address’
=object-unit-name

xdef [‘ j-_l X‘offset’]
The cUrrent address.

BASE

5If —R argument is specified and common exists,
"This line is repeated for each overlay.

LINKER 2-11

7
dirname {# overlay number} BASE address ST address - {S} {F} {U }{I }

CB2i

BASE ‘
ARGUMENT DESCRIPTION

$
Next location after the highest address of the linked root or previously linked nonfloat-
able overlay.

% absolute
Highest address+1 ever used in the linked root or any previously linked nonfloatable
overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and
preceded by X. The specified address is relative to the beginning of available memory
(relative 0) in the memory pool at load time, .

=object-unit-name
Specified object unit’s base address; the subsequent root, overlay, or object unit will be
linked at the same relative address as the specified object unit, which must have already
been linked. Furthermore, the object unit name must still exist in the symbol table
(i.e., it is not purged).

xdef [{i }X‘offset’]

Address of any previously defined external symbol. If an offset is specified, it must be
a hexadecimal integer with an absolute value less than 8000 (32768 decimal).

Default:
Root—-0
Nonfloatable overlay-Next location after the highest address of the preceding root or
nonfloatable overlay ' . ' '
Floatable overlay—0

Example:

This example illustrates usage of BASE directives in a bound unit that comprises a root and
overlays. In this example, assume that the bound unit being created is going to be executed
as part of task group Al, and memory pool AA is to be used by this task group. Figure 2-1
illustrates memory pool AA’s location in memory relative to the system pool and another
pool, and the locations within that memory pool to which each object unit specified in the
following directives will be loaded.

LINKER TEXTA-COUTA>SPD>LPTO0, Designates address at which execution will begin

START TEXTEN when the root is loaded.
IST INIT Defines INIT as the beginning of initialization
code.
LINK OBJ1,0BJ2 Request that OBJ1.0 and OBJ2.0 be linked.
MAP _ Causes OBJ1.0 and OBJ2.0 to be linked, and
: prOduces"ig link map.
OVLY ABLE Designates end of the root, and that a nonfloat-

able overlay named ABLE immediately follows.
The Linker assigns the number 00 to this
overlay.

6/78
LINKER 2-12 CB21A

) i‘.‘t\

CALL-CANCEL/COMM/CPROT/CPURGE

CC (Call-Cancel) Directive

The call-cancel directive (CC) must be used when linking COBOL programs that contain
CALL/CANCEL statements that reference overlays. The Linker will place each overlay
name and its associated Linker-generated overlay number into the bound unit attribute table
so that the COBOL program can call/cancel overlays by name.

To support the CALL/CANCEL facility, the object unit ZCCEC is required. ZCCEC will
be automatically linked into the root; it requires no link directive.

The CC directive must be specified before the first LINK, LINKN or LINKO directive in
the root.

FORMAT:
CC

COMM Directive
The COMM directive defines a labelled or unlabelled “common” area of a specified size.

FORMAT:
COMM symbol, size
ARGUMENT DESCRIPTION:

symbol
Identifies the external symbol which is to be treated as common.

size
Size is specified as a 1- to 4-character hexadecimal number bound by single quotes and
preceded by the letter X (i.e., X’size’).

CPROT Directive
The CPROT directive prevents specified symbols from being removed from the common
area,
FORMAT:
CPROT symbol
ARGUMENT DESCRIPTION:
symbol
Name of the external symbol, that is to be protected. The symbol must be specified in
the COMM directive, or defined as common at the time of assembly or compilation.
CPURGE Directive
The CPURGE directive causes the Linker to remove an unprotected symbol from the
common area.
FORMAT:
CPURGE symbol
ARGUMENT DESCRIPTION:

symbol
Identifies the external symbol which is to be removed from the common area.

6/78
LINKER 2-15 CB21A

EDEF

EDEF Directive

The EDEF directive causes the transfer of a symbolic definition from the Linker to the
Loader at load time. The bound unit attribute table is part of the bound unit.

An EDEF directive can only specify a symbol that has been defined using XDEF, LDEF,

or VDEF. When EDEF is specified, the symbol’s definition must already be in the symbol
table. :
Secondary entry points of bound units, whose code is to execute under control of a task,
must be defined in an EDEF directive. This includes secondary entry points of overlays and
the root entry point when it will be explicitly used in a create group command. The start
address of the root and of each overlay is placed by the Linker in the bound unit attribute
table and does not need an EDEF definition.

If a bound unit is memory resident, symbols (entry points and references) can be defined
by EDEF so that they can be referenced by any bound unit loaded by the system. At
system configuration time, when the resident bound units are loaded using the LDBU
system configuration directive, these symbols are placed in the system symbol table. When
the Loader loads other bound units that contain unresolved references, it tries to resolve
them with the list of symbols defined for resident bound units,

If the bound unit is transient (shareable or not shareable), the symbols in.the attribute
table of the bound unit are meaningful only as definitions of secondary entry points.
Although shared bound units can be in the address space of more than one task group, the
bound unit attribute table is available to the Loader only when the bound unit is being
loaded. Unresolved references in any bound unit will be resolved only to symbols defined in
attribute tables of resident bound units.

The EDEF directive can be embedded in assembly language CTRL statements.

FORMAT:
EDEF
{ EEE }symbol
ARGUMENT DESCRIPTION:
symbol

Any external definition comprising one to six characters. The symbol must have been
defined. If the symbol was multiply defined, the first definition is used.

Example:
This example illustrates usage of EDEF directives in bound units,
LINKER MYPROG Loads the Linker. The bound unit named MYPROG

will be created on the working directory. The list file
MYPROG.M is also created on the working directory.

LINK A

LINKN B

MAP

EDEF B B is a symbol defined as an external location or value
in B.O. '

LDEF SYM,X’1234° Assigns relative location 1234 to external symbol
named SYM.

OVLY FIRST Designates end of root, and names nonfloatable

overlay that immediately follows.

LINKER 2-16 CB21

,ﬂﬂ;ﬁ\

EDEF/FLOVLY

LINK X,Y
EDEF SYM

QUIT Designates that the last Linker directive has been
entered. Execution of the Linker terminates after the
bound unit has been created.

LINKER PROG?2 -COUT >SPD> Loads the Linker; the bound unit to be created is

LPTOO -SIZE 02 named PROG2. The list file is the printer. The
symbol table is a maximum of 2K words of memory.
BASE X’2222° Subsequent object units will be loaded into memory
. starting at the relative address 2222.
LINKN W Requests that object unit W.O be linked.
MAP Produces a link map; in this map, it is determined

that object unit W.O contains an unresolved reference
to the symbol SYM, which was defined in the root of
the bound unit MYPROG.

QUIT

If MYPROG is loaded into memory via an LDBU configuration directive, when the
Loader loads PROG2 the Loader will resolve the unresolved reference in PROG2 to the
symbol SYM, which was defined in the root of MYPROG.

NOTE: An EDEF directive cannot be entered on the directive line in which the object
unit is specified. For example, if the symbol TAG is defined in object unit A, the
following directive line is not allowed:

LINK A;EDEF TAG

FLOVLY Directive

The FLOVLY directive assigns the specified name and a number to the floatable overlay
that immediately follows, and designates the end of the preceding root or overlay. The
characteristics of floatable overlays are described earlier in this section under ‘“‘Creating a
Bound Unit.”

FLOVLY must be specified as the first directive of each floatable overlay. Floatable
overlays must be linked after all desired nonfloatable overlays have been linked.

The Linker assigns a two-digit number to each overlay. Overlays are numbered
sequentially, in ascending order; the first overlay is 00.

FORMAT:
FLOVLY name
ARGUMENT DESCRIPTION:
name

Name of the floatable overlay that immediately follows. The overlay name must
comprise one to six alphanumeric characters; the first character must be alphabetic.

LINKER 2-17

CB21

FLOVLY/IN

Example:

LINKER BU Loads the Linker and designates BU as the bound
unit name,

LINK A

LINK B

MAP Produces a link map. The link map should be

referenced to determine if there are any unprotected
symbols that define locations. These symbols, if any,
will be removed from the symbol table since the
floatable overlay that immediately follows has a
default base address of 0.

FLOVLY GR Designates the end of the root (which comprises
object units A.O and B.0), and specifies that the next
overlay is a floatable overlay named GR. The Linker
assigns the number 00 to this overlay.

LINK X

LINKY

MAP

FLOVLY BR Designates the end of floatable overlay GR, and
designates that the floatable overlay that immediately
follows is named BR. The Linker assigns the number
01 to this overlay.

LINK R6

MAP

QUIT

IN Directive

The IN directive designates a different directory as the primary directory.® This directive
permits the linking of object units that are in directories other than the default primary
directory or secondary directory (if any). If the IN directive is not specified, the working
directory is the primary directory. (The secondary directory is designated in the LIB
directive.)

NOTE: The IN directive must be specified before the first LINK, LINKN or LINKO
directive that requests the linking of an object unit that is in the specified
directory.

The specified directory remains the primary directory until another IN directive is
entered. If the primary directory is changed via an IN directive and at a later time you want
the task group’s working directory to be the primary directory, you may enter the IN
directive and omit a pathname.

FORMAT:

IN [path]

*The primary directory is the first directory that the Linker searches for the specified object unit(s) to be linked.

6/78
LINKER 2-18 CB21A

miil.\

ARGUMENT DESCRIPTION: IN/IST

[path]
Pathname of the directory being designated as the primary directory. The pathname
may comprise a maximum of 64 characters. A simple, relative, or absolute pathname
may be specified (methods of designating pathnames are described in the Program
Preparation manual). If path is omitted, the working directory becomes the primary
directory. This argument may not be embedded in source code (CTRL).

Example 1:

INA*DIR>PRIM

This directive designates that “DIR>PRIM is the primary directory.
Example 2:
This example illustrates usage of the IN directive in conjunction with directives that request

the linking of object units. Assume the primary directory is the working directory, whose
relative pathname is WORK>CURR; object units X.0, Y.O, and Z.O are in the working

directory.

LINKER OUTPUT Loads the Linker; a bound unit named OUTPUT will
be created on the working directory.

LINK X Requests the linking of object unit X.0; X.0 is in the
working directory.

INA®NEW>PRIM Designates that “NEW>PRIM is now the primary
directory.

LINK A Requests the linking of object unit A.O, which is in

the primary directory. "NEW>PRIM>A.O is the
pathname of A.O, as expanded by the Linker.

LINK C Requests the linking of object unit C.O, which is in
the primary directory. “NEW>PRIM>C.O is the
pathname of C.0O, as expanded by the Linker.

IN WORK>CURR Designates that the primary directory is now the
working directory.
LINKN Y Requests the linking of object unit Y.O, which is in

the working directory. WORK>CURR>Y.O is the
pathname of Y.O, as expanded by the Linker.

MAP

QUIT

IST Directive

The IST directive identifies the beginning of initialization code in the root. Initialization
code is to be executed once only, immediately after the root is loaded. After the
initialization code is loaded, the space may be made available for overlays. The IST directive
is meaningful only when associated with an LDBU directive that specifies an initialization
subroutine table (IST). LDBU, a CLM directive, is explained in the System Building manual.

FORMAT:
{ IST } external symbol
IT

ARGUMENT DESCRIPTION:

external symbol
Symbol specified by label in IST section of LDBU.

6/78
LINKER 2-19 CB21A

LDEF
LDEF Directive

LDEF assigns a relative location to an external symbol. A symbol should be defined only
once, either as a location or as a value. When a symbol is defined, its definition is put into
the Linker symbol table so that it can be used to resolve references to the symbol during
linking, When a symbol defined as a location is no longer referenced, its symbol table entry
can be cleared by specifying the PURGE directive. PURGE has no effect if a protect
(PROT) directive was previously specified.

FORMAT:
($
%
X‘address’
LDEF < =object-unit-name
LF symbol, ’
xdef [{ +} X‘offset’]
\ # y
ARGUMENT DESCRIPTIONS:
symbol
One to six alphanumeric characters.
$

Next location after the highest address of the linked root or previously linked
nonfloatable overlay.

%
Highest addresst1 ever used in the linked root or any previously linked nonfloatable
overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and
preceded by X. The specified address is relative to the beginning of available memory
(relative 0) in the memory pool.

=object-unit-name
Specified object unit’s base address.
-xdeij’} X‘offset’]

Address of any previously defined external symbol. If an offset is specified, it must be
a hexadecimal integer with an absolute value less than 8000 (32768 decimal).

#

The current address.
Example:

This example illustrates usage of each format of the LDEF directive.

LINKER BOUND Loads the Linker and designates BOUND as the
bound unit name.

LINK A

LINK B,C

MAP

LDEF SYM,X’1234, SYM assigned relative location 1234

OVLY FIRST Designates end of root and names first nonfloatable

overlay

: 6/78
LINKER = 2-20 . : : CB21A

o

LDEF/LIB

LINK R

MAP

LDEF QUIZ=C QUIZ assigned base location of the previously linked
object unit named C.O.

OVLY SECOND

LINKN D

LINK F

MAP

LDEF NEW,SYM NEW assigned same location as the symbol SYM,
which was defined in the root; i.e., NEW is assigned
relative location 1234,

OVLY NEXT

BASE X’1300°

LINK W.X

MAP ,

LDEF ANY,$ ANY assigned next location after highest address of
the previously linked nonfloatable overlay, SECOND.

OVLY THIRD)

LINK Z

LINK Q

MAP

LDEF FIND,% FIND assigned next location after highest address of
the root or any previously linked nonfloatable
overlay. (A previous nonfloatable overlay was named
SECOND:; if it ended at location 1566 and this is the
highest address ever reached during the linking of
object units constituting this bound wunit, FIND
would be assigned location 1567.)

QUIT

LIB Directive

The LIB directive designates a directory as the secondary directory. This directory
permits the linking of object units that are in a directory other than the primary directory.
If an object unit specified in the LINK, LINKN or LINKO directive cannot be found in the
primary directory, the Linker then searches the secondary directory.

If LIB is not specified, there is no secondary directory; the Linker searches only the
primary directory.

The specified secondary directory remains in effect until the LIB directive is respecified
with a different directory name, or without any directory name.

NOTE: The LIB directive must be specified before the first LINK, LINKN or LINKO
directive that requests the linking of an object unit that is in the secondary
directory. This directive may not be embedded in source code (CTRL).

FORMAT:
LIB [path]
ARGUMENT DESCRIPTION:

[path]
Pathname of the directory being designated as the secondary directory. A simple,
relative, or absolute pathname may be specified. (Methods of specifying pathnames are
described in Section 1.) If path is omitted, no search of a secondary directory is made.

6/78

LINKER 221 CB21A

LIB/LIB(2, 3, or 4)
Example 1:

LIB DIR>SECND

This directive designates that DIR>SECND is the relative pathname of the secondary
directory.

Example 2:

This example illustrates usage of a secondary directory that contains object units W.0, Y.O,
and Z.0.

LIB DIR>SECND Designates that DIR>SECND is the relative pathhame

of the secondary directory.
LINK B Requests the linking of object unit B.O; B.O resides
' in the primary directory.
LINK A Requests the linking of object unit A.O; A.O resides
in the primary directory.
LINK W Requests the linking of object unit WO W.O resides

in the secondary directory. DIR>SECND>W.O is the
full pathname of W.0O, as expanded by the Linker.

All specified object units in the primary directory are linked first; then all specified object
units in the secondary directory are linked, and so on. To cause object units to be linked in
a specific order, the LINKN or LINKO directive must be used.

2
LIB {3; Directive
4

The LIB (2, 3, or 4) directive designates directories as the third, fourth or fifth directory.
If an object unit specified in the Linker directive cannot be found in the primary or
secondary directory, then the third directory is searched and so on.

The specified directories remain in effect until another LIB (2, 3 or 4) statement is given.

NOTE: The LIB (2, 3 or 4) directive must be specified before the first LINK, LINKN or
LINKO directive that requests the linking of an object unit that is in one of these
directories.

FORMAT:

2
LIB [3} [Apath]
4

ARGUMENT DESCRIPTION:

path
Pathname of the third, fourth or fifth directory to be searched (if LIB is specified) if
the object unit specified in a Linker directive is not found in the preceding directories.
A simple, relative or absolute pathname may be specified. If path is omitted, the
specified directory (2, 3, or 4) is removed from the list of directories to be searched by
the Linker.

6/78

LINKER 2-22 CB21A

A,

LINK
LINK Directive

The LINK directive specifies that the Linker link one or more specified object units. Each
specified object unit name is put into the link request list. The object units are linked when
the first subsequent directive other than LINK or START is encountered. When this occurs,
the Linker searches the primary directory and links the specified object units in the order in
which they were requested. If all of the object units are not found and there is a secondary
directory, the Linker searches the secondary directory and links specified object units, in
the order in which they were requested. If there is a copy of an object unit in both the
primary and secondary directory, the copy in the primary directory is linked.

The order in which object units are linked is important for the following reasons: (1) it
determines which object units will be in memory simultaneously and which object units will
overlay other object units and (2) within the root and each overlay, the first start address
encountered by the Linker (either in an END statement or a START directive) is used as the
start address for that root or overlay.

During each execution of the Linker, at least one LINK, LINKN or LINKO directive must
be entered for each root or overlay. Multiple LINK directives can be specified within a single
root or overlay. If LINK and/or LINKN and/or LINKO directives request that the same
object unit be linked more than once within a single bound unit, only the first request is
honored. '

LINK directives can be embedded in assembly language CTRL statements; the specified
object unit(s) are added to the link request list immediately following the object unit in
which they were embedded. See “LINKN Directive” and “LINKO Directive” for the order
in which object units are linked if there are embedded LINK directives and/or LINKN
and/or LINKO directives.

FORMAT:
LINK obj-unit, [,obj-unit, }...

ARGUMENT DESCRIPTION:

object-unity
Name of an object unit to be linked. An object unit name consists of one to six
characters, each of which must be an alphanumeric character or a dollar sign ($), a
period (.), or an underbar (_). If multiple object units are specified, they are linked in
the order convenient to the Linker. The first character must be a letter or dollar sign

($).
Example 1:

LINK FIRST

This directive causes the Linker to link the object unit named FIRST.O. The primary
directory is searched first; if FIRST.O is not found, the secondary directory, if any, is
searched.

Example 2:

LIB SECOND>FILE
LINK R
LINKT

The above LIB directive designates that SECOND>FILE is the pathname of the secondary
directory. In this example, object unit R,O is in the secondary directory, and object unit
T.O is in the primary directory.

The above LINK directives will link T.O before R.O, since T.O is in the primary directory.

6/78
LINKER 2-23 CB21A

LINK/LINKN
Example 3:

LINK A,B,C,D

This directive causes the Linker to link the object units named A.O, B.O, C.O, and D.O. If
the primary directory contains B.O, and the secondary directory contains A.O, C.O, and
D.0O, the object units are linked in the following order:

B.O
A.O
C.0
D.O

LINKN Directive
The LINKN directive causes object units to be linked in the following order:

1. Object units previously specified in LINK directives, and any object units requested in
embedded LINK directives. The object units are linked in the order in which they are
found by the Linker.

2. First (or only) object unit specified in the LINKN directive.

3. Object units specified in LINK and/or LINKN directives that are embedded in the
object unit linked as a result of step 2 above,

4, Additional object units, if any, specified in the LINKN directive; the object units are
linked in the order in which they were specified in LINKN, regardless of whether they
are in the primary or secondary directory. If an object unit contains an embedded
directive to link another object unit, the object unit designated in the embedded
directive is linked after the object unit that contains the embedded directive.

If directives designate that an object unit be linked more than once within a single bound
unit, only the first request is honored, unless intervening directives are specified that result
in the first linked object unit being overlays with other code at execution time.

During each execution of the Linker, at least one LINKN, LINK or LINKO directive must

be specified for each root or overlay.

Multiple LINKN directives can be specified within a single root or overlay.

LINKN directives can be embedded in assembly language CTRL statements; the specified

object unit(s) are added to the link request list immediately following the object unit in
which they were embedded.

FORMAT:
{E\I]\IKN} obj-unit; [,obj-unit,]...
ARGUMENT DESCRIPTION:
obj-unity

Name of an object unit to be linked. An object unit name must be one to six
alphanumeric characters and must not include a suffix; the first character must be a
letter or dollar sign ($). The Linker appends the suffix .O to each object unit name,
and searches for the specified object unit name, including the suffix.

Example 1:
LINKN X, W

This directive designates that the Linker link the object unit named X.0 and then link the
object unit named W.O.

6/78
LINKER 2-24 CB21A

P

i\

L

MAP/MAPU

If there are external references in both P-relative and
immediate memory address forms to an undefined
symbol, the symbol is listed twice under UNDEF.

Figure 2-2 illustrates the formats of maps generated by the MAP and MAPU directives. In
a single-word (SAF) system, each address or value is specified in four hexadecimal digits; in
a double-word (LAF) system, each address or value is specified in eight hexadecimal digits.

NOTE: The date and time at which the bound unit was created is automatically put in
the bound unit’s attribute section.

* * bound unit name LINK MAP yyyy/mm/dd hhmm:ss.s

* * START address
* * LOW address
* * HIGH address

[**$COMM address]
* % CURRENT address

* * EXT DEFS
P ZHCOMM?
P ZHREL®
* % ROOT

[P)* object unit name

[P] [2] symbo1 nameb

.

[P]* object unit name

[P][g] symbol nameb

.

* * overlay name

[P]* object unit name

[P][ré] symbo1 nameb

[P}* object unit name

[P] [g] symbol nameb

[* * COMMON

* * UNDEF

LINKER

0000 [0000]

0000 [0000]

base address of root

base address of object unit

€ or value

address

base address of object unit

address® or value

.

base address of overlay
base address of object unit

€ or value

address

.

base address of object unit

address® or value
.

>

OMITTED IF MAPU SPECIFIED

common definitions are separated on the map as well as in the bound]

unit when -R is specified

Figure 2-2. Link Map Formats

2-27

CB21

MAP/MAPU/OVLY

[P]* object unit named base address of object unit

[symbo] nameb address of most recent referencee]

. . . N

. .

. .

[P]* object unit named base address of object unit

[symbo] nameb address of most recent refer‘encee]

. .
. °

P - Protected symbol
M - Multiply defined symbol

C - Symbol defines labeled or unlabeled common

8ZHCOMM and ZHREL are reserved symbol names; they appear on every map as protected symbols.
ZHCOMM is located at unrelocatable zero. ZHREL is located at relocatable zero. When
ZHCOMM is used in an LDEF directive, the new symbol will not have the attribute of being
non-relocatable.

bThe map contains the names of all external symbols currently defined in the symbol table.

If there are external references in both P-relative and immediate memory address forms to

an undefined symbol, the symbol is listed twice under UNDEF. Each map 1line contains up to
four (SAF) or three (LAF) external symbols.

1o find a location definition, add the relocation factor at load time to the address shown
on the map. '

dA]] objects units linked are listed under UNDEF, even if they contain no unresolved references.

®Within the root or a single overlay, the latest reference to an undefined symbol need not be
in the object unit that contained the first reference to the symbol. For each undefined
symbol, the following information is given under UNDEF: name of the first object unit that
contains a reference to the designated symbol, and the relative address of the most recent
reference.

Figure 2-2 (cont.) Link Map Formats

Figure 2-3 presents sample link maps.

OVLY Directive

The OVLY directive assigns the specified name and a number of the nonfloatable overlay
that immediately follows, and designates the end of the preceding root or overlay.

OVLY must be specified as the first directive of each nonfloatable overlay.

The Linker assigns a two-digit number to each overlay. Overlays are numbered
sequentially, in ascending order; the first overlay is 00.

FORMAT:

OVLY name

6/78
LINKER 2-28 CB21A

L,

ARGUMENT DESCRIPTION:

value-definition

VPURGE

The external symbol associated with a particular value.

EXAMPLE ILLUSTRATING USAGE OF THE LINKER

LINKER TEST -COUT >SPD>LPT00

START LOC
IST INITST

LINK OBJ1
LIB “DSKO03
LINK OBJ2
OVLY ABLE

LINKN OBIJ3
LINKN OBJ4
PROT =0BIJ3

MAP
OVLY BAKER

LINKN OBJ5
LINKN OBJ6
PROT =0OBJ5

MAP
OVLY DOG

BASE =0BJ5

LINK OBJ7
MAP
OVLY FOX

BASE =0OBJ3

IN “DSKO1>MYFILE

LINKER

The bound unit will be a relative file named
TEST created in the working directory. Link
maps will be printed on the printer configured
as LPTQO0.

Defines the beginning of initialization code.
Requests that OBJ1.0 be linked.

Names secondary directory.

Requests that OBJ2.0 be linked.

Causes OBJ1.0 and OBJ2.0 to be linked,
designates the end of the root, and specifies
that a nonfloatable overlay named ABLE
immediately follows. The Linker assigns the
number 00 to this overlay.

Protects the symbol OBJ3. This symbol is
protected because a subsequent overlay may

be loaded starting at the base address of
OBJ3.0.

Requests a link map.
Designates the beginning of the nonfloatable

overlay named BAKER. The Linker assigns
the number 01 to this overlay.

Protects the symbol OBJ5.

Designates the beginning of the nonfloatable
overlay named DOG. The Linker assigns the
number 02 to this overlay.

The overlay named DOG will be loaded
starting at the address where overlay BAKER
began.

Designates the beginning of the nonfloatable
overlay named FOX. The Linker assigns the
number 03 to this overlay.

FOX will be loaded at starting address of
overlay ABLE.

Designates that the primary directory now is
the directory named "DSKO1>MYFILE.

2-37

CB21

VPURGE

LIB “DSK02>MYLIB Designates that the new secondary directory
' is named “DSK02>MYLIB; if necessary, this
directory will be searched after the primary

directory.
LINK OBJA
LINK OBJB
MAP
OVLY X-RAY A nonfloatable overlay named X-RAY

immediately follows. The Linker assigns the
number 04 to this overlay.

BASEA=0BJ5 , X-RAY will be loaded starting at the
beginning address of BAKER.

LINK OBIC

MAP

FLOVLY FLOAT Designates that a floatable overlay named
FLOAT immediately follows. The Linker
assigns the number 05 to this overlay.

LINK OBIJE)

MAP

QUIT

PROGRAMMING CONSIDERATIONS

1. While processing object units, the Linker creates a work file LNKWRK.W in the
working directory. This file is a variable sequential file. It is initially allocated with four
control intervals of 256 bytes each, but it can be expanded to the amount of space
available in the working directory. If the bound unit is large, link execution time may
be reduced by the use of preallocated files.

2. If the relative output file is preallocated, it must have the same name as that specified
in the name argument of the LINKER command, it must be a fixed, relative file, and it
must have a record size of 256 bytes.

3. If multiple object units contain labeled and unlabeled common, the object units will be
linked with common blocks appearing in the following order (-R is not specified):

a. Labeled or unlabeled common (defined in first object unit linked)
b. First object unit (including external references and definitions)

c. Labeled common (defined in second object unit linked)

d. Second object unit (including external references and definitions)
e. Object unit n

4. A root or any overlay may reference any symbol defined in any other root or overlay
including “common” symbol definitions. A common area cannot, however, be
initialized in any overlay other than the one in which it initially occurs (is made known
to the Linker). That is, a common area defined in a root or an overlay can be initialized
only in the root or overlay in which it is defined.

5. Relocation can occur during one or both of the following procedures:

a. Assembly; by specifying an ORG statement, subsequent object text within the
object unit is relocated. (See the Assembly Language Reference manual.)

b. Linking; by specifying the BASE directive, subsequent object units to be linked
within the root or overlay have a specified relative load address. (See “BASE
Directive” earlier in this section.)

6/78
LINKER 2.38 . CB21A

i,

-POOL id
id is a two-character ASCII identifier and is the name of the memory pool from
which all memory required by the spawned task group is to be taken. If specified, id
must have been defined at system building time. If not, the issuing task group’s
memory pool is used.

-ARG argarg . . . arg
Indicates that additional arguments required by the spawned task group during
execution follow. These additional arguments are passed to the lead task of the
spawned group to be used as necessary, and are substituted for parameters in the
command-in file. If used, the -ARG control argument must appear last. Refer to the
Commands manual for an explanation of the use of additional arguments.

NOTE: In any invocation of the SG command, -EFN or ECL, but not both, can be

specified. If neither is specified, -ECL is assumed and the in_ path argument
is required.

PROGRAM EXECUTION 3-7

CB21

Using the Login Command :

The login command is used to gain access to the system. The login command is entered
from any terminal not designated as a direct-login terminal or an abbreviated-login terminal.
(To determine the type of terminal he is at, the user should contact the installation
supervisor.) The login command causes a task group associated with the user’s terminal to be
spawned. Once he has access to the system, the user cannot again invoke login unless he first
issues the BYE command or the task group is otherwise terminated.

FORMAT
L [login id] [destination id] [eti_arg]
ARGUMENT DESCRIPTION:
login id-

Establishes the identity of the user who is attempting to gain access to the system.
Provides the user identification for the spawned task group. The login _id argument
consists of from one to three fields having the following meanings:

person
person.account
person.account.mode

person Name of person who may access system; can be from 1
through 12 characters. (For example, WDSMITH could be
the value for the person field.)

account Name of an account under which the user is to work; can
be from 1 through 12 characters. (For example,
JSINVENTORY could be used as the value for the account
field.)

mode Provides a further identification of the user; can be from 1
through 3 characters. (For example, VER could be used as
the value for this field.)

: 6/78
PROGRAM EXECUTION 3-8 CB21A

LN

[destination_id]

Optional argument that permits the user to login as a secondary user of an existing task
group. (It is necessary that the running task group have previously issued a request for a
secondary user terminal; the request for a secondary user terminal is entered by means of
a Request Terminal macro vall; see the GCOS6 System Service Macro Calls manual for the
format of the Request Terminal macro call.) To login as a secondary user of a
user-created applications program, the user enters the value nn, where nn is the task group
id of the task group in which the application is running. To login as a secondary user of
task group $T (Terminal Concentrator), see the Terminal Concentration Facility User’s
Guide. When destination—id is specified, no control arguments can be selected. If the
secondary login capability is not desired, then destination_id is omitted.

ctl_arg
One or more of the following control arguments can be selected:
{-PO path [id]}
-PO * id .
Used to override the default lead task and group id/pool id specifications for the task
group spawned as a result of this login procedure.

path
Pathname of the bound unit to be executed as the lead task of the spawned task
group. If this argument is omitted, the lead task is the command processor.

id
Group id/pool id of the spawned task. The group id and the pool id are represented
by the same 2-character value. If this argument is not specified, the group id is a
2-character value whose left (first) character was specified when the Listner
component was activated (the Listner is described in the Operator’s Guide) and
whose right (second) character is the next unused character in the sequence 0
through 9 and A through Z, as selected by the system.

6/78
PROGRAM EXECUTION 39 - CB21A

-HD path
Used to override the default working dlrectory specification for the task group
spawned as a result of the login procedure.

path
Pathname of the working dlrectory for the spawned task group. If this argument
is omitted, the working directory pathname is null.

-LRN n
Used to override the default maximum logical resource number (LRN) value for the
task group spawned as a result of this login procedure.

n .
Maximum LRN value to be used for the spawned task group. (The maximum
possible LRN value is 252.) If this argument is omitted, the maximum LRN value
is the highest value in the system group.

-LFNn .
Used to override the default logical file number (LFN) value for the task group
spawned as a result of the login procedure.

n
- Maximum LFN value to be used for the spawned task group. (The maximum
possible LFN value is 255.) If this argument is omitted, the maximum LFN value
is 15.
-ARG argarg . . . arg
Passes addltlonal arguments to the task group spawned as a result of this login
procedure. These additional arguments are passed to the spawned task in an
extension of the task request block, and are substituted for parameters in the
command input file. If used, the -ARG control arguments must appear last. Refer to
the Commands manual for an explanation of the use of the additional arguments.

The arguments will be substituted in the following manner:

o Argument 1 will always be null

o If the lead task is the command processor, argument 2 will be the pathname of the
user-in file (i.e., >SPD>terminal) and arguments 3 through n will be the arguments
following -ARG.

o If the lead task is not the command processor, arguments 2 through n will be those
arguments following -ARG.

, , 6/18 -
PROGRAM EXECUTION ' 3-10 ‘ CB21A -

P N

SECTION 5
DEBUGGING PROGRAMS

While a program is executing, it can be monitored by using Debug. If there is not enough
room in memory for Debug, you can monitor a program by temporarily leaving space in the
program or by using Patch to append monitor points. (See “‘Debugging Programs Without
Using Debug’ later in this section.)

DEBUG

Debug provides patching and testing facilities for application programs running under the
operating system. Debug runs as its own task group.

Program testing and error correction is performed as an interactive dialogue between the
operator and Debug. Execution of Debug is controlled by directives entered to Debug.
Addresses used with Debug are system-wide absolute memory addresses; therefore, Debug
directives are effective across task and task group boundaries. Debug directives are entered
through the device specified as user-in in the request to establish the Debug task group (i.e.,
a user-specified terminal).

The following functions can be performed using Debug:

o Define, store, and execute a sequence of directives either entered through the input
device, or referenced when a breakpoint directive or trace trap (BRK generic
instruction) is encountered in the load unit being tested.!

o Set or clear breakpoints in task code to monitor task status. (Breakpoints are described
in detail later in this section.)

o Set or clear breakpoints in bound units, to gain control of bound units as they are
loaded.

o Display, change, and dump either memory or registers; information may be printed on
a line printer, the operator terminal, or another terminal.

o Evaluate expressions.

Debug File Requirements

Debug directives stored for later execution reside in a preallocated, relative disk file
DEBUG.WORK (these directives are identified and described in Table 5-2, “Summary of
Debug Directives, by Function,” later in this section). The file DEBUG.WORK must be in
the volume major directory of the disk device referenced in the specify file (SF) directive.
(The SF directive is described later in this section.)

Loading the Debug Task Group

Debug requires a minimum memory area or pool of 2000 words in which to execute. Use
the MEMPOOL directive during initialization to create such a memory pool and to specify
the pool’s identification (see the Commands manual for details about MEMPOOL).

Example:
MEMPOOL ,AB,2000

This MEMPOOL directive creates a nonexclusive memory pool comprising 2000 words that
can be specified when the Debug task group is loaded into memory.

‘Breakpoints_and trace traps either cause a specified Debug directive line to be executed, or interrupt execution of the
task so that its status can be determined.

DEBUGGING PROGRAMS 5-1 CB21

Debug is loaded into the system as the lead task of a dedicated task group named $D. The
base level number of the Debug task group is treated as a physical level instead of a value
relative to the configured system, so that Debug may have priority over system tasks. The
Debug task group must be assigned two priority levels which are not assigned to other tasks
or task groups.

The following examples illustrate methods of loading Debug. Example 1 illustrates a
spawn group command. Example 2 illustrates a create group request and an enter group
request. The following description applies to both examples:

The Debug task group’s identification is $D, your identification is GALE.TECH, and the
base priority level of Debug is 7. Debug will use levels 7 and 8. Directives to Debug will be
entered through the operator terminal, which is identified by its pathname
>SPD>CONSOLE. The bound unit DEBUGDB will be loaded, if necessary, and execute
as the task group’s lead task.

Example 1:

Loading Debug by a spawn group command.
SG $D GALE.TECH 7 >SPD>CONSOLE -POOL AB -EFN DEBUGDB

Example 2:

Loading Debug by create group request and enter group request commands:
CG $D 7 -EFN DEBUGDB

EGR $D GALE.TECH 7 >SPD>CONSOLE -EFN

NOTE: The operator terminal is controlled by a system software component called
the operator interface manager (OIM) that provides a standard means by
which all tasks can communicate with an operator. OIM identifies the
messages sent to the operator terminal by providing the task group
identification in the prefix to each message; OIM requires you to identify all
input by task group. If you are entering Debug directives through the
operator terminal, it is recommended that you designate Debug as the OIM
default task group; otherwise, each Debug directive must be preceded by
ASDA. To designate Debug as the OIM default task group, enter the
following command at any time prior to entering the first Debug directive:

ACA:$D:

Example 3:

Loading Debug with a directive terminal, not the operator terminal:
SG $D GALE.TECH 7 >SPD>KSRO1 -EFN DEBUGDB

Debug Operation with MMU

The Debug task group is loaded in ring O, a privileged state, in order to run effectively in
a protected (MMU) system. The debugger will handle ‘030F’ traps and continue as described
below.

An error message will be displayed if the user tries to access non-virtual memory within
any debug directive, except the dump memory directive (DP). The debugger will dump as
much of the requested memory as possible. Once a non-virtual address is accessed, the rest
of the current line to be printed will be blank filled. The current non-virtual address will be
advanced to the value that is the next multiple of 1K. This procedure will continue until the
area to be dumped is exhausted or the end of memory is reached.

6/78
DEBUGGING PROGRAMS 52 , CB21A

iy,

i i,

Debug Directives

Debug directives consist of only a directive name or a directive name and one or more
arguments. Within a directive, arguments are separated from each other by one or more
spaces. Except where specified otherwise, all argument values are entered using hexadecimal
notation.

Multiple Debug directives can be entered on a single line. Each directive, except the last,
must be followed by a semicolon (;).

Press RETURN at the end of each line (i.e., immediately after the last or only directive).

Symbols used in Debug directive lines are described in Table 5-1.

DEBUGGING PROGRAMS 5-2.1

6/78
CB21A

1“\‘.

SECTION 6

MDUMP AND DUMP EDIT
UTILITY PROGRAMS

The MDUMP utility program allows a memory dump to be obtained with no requirement
that system functions be available. Thus, MDUMP may be used when it is not possible or
practical to use the dump facility of debug.

To use MDUMP, you need a disk that contains an MDUMP record on sector O, and a file
(DUMPFILE) to contain the memory dump. Use the create volume command to prepare
this disk (see ‘““Preparing for MDUMP,” below).

To dump memory to the disk file, bootstrap the prepared disk as described under
“Procedure for Using MDUMP,” below. This causes the MDUMP record to be loaded and
executed. When MDUMP terminates, an image of memory is contained in DUMPFILE. This
file can be edited and printed by means of the Dump Edit utility, described later in this
section.

MDUMP UTILITY PROGRAM

Preparing for MDUMP
Before loading a program for which a memory dump may be required, enter the create
volume command, as follows:

FORMAT:

{CREATE VOL} {-MDUMP nn}
cvV path\ _Mp nn

ARGUMENT DESCRIPTIONS:

path
Designates the pathname to the disk volume being prepared for MDUMP. The
pathname may be >SPD>sympd or >SPD>sympd>volid. If >volid is specified, the
volume label is checked. The volume must have been previously formatted via a create
volume command. (This command is described in detail in the Commands manual.)
The volume can contain other data.

{-MDUMP nn}
-MD nn
Writes the MDUMP bootstrap record to the volume specified in the path argument and
allocates a file (DUMPFILE) large enough to contain nn 4K modules to be dumped.
The value of nn should be no larger than the number of 4K modules contained in the
system being used.

Procedure for Using MDUMP
Once an executing program encounters a problem or a halt occurs, you can obtain a
memory dump by taking the following actions:

1. Bootstrap MDUMP, which then performs the memory dump to the disk file
DUMPFILE.

2. Use the Dump Edit utility program to print all or a portion of the memory dump from
the disk volume that contains MDUMP’S output.

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6-1 CB21A

Procedure For Bootstrapping MDUMP on Non-Model
23 Series Systems

To bootstrap the MDUMP bootstrap record into memory, perform the procedure listed
below, MDUMP then transfers to the disk file DUMPFILE the amount of memory image
specified in the -MDUMP argument of the create volume command.

. Mount the disk containing MDUMP on the channel to be used in bootstrapping.

. Press Stop and Clear.

. Set the P-register to 0004 ,¢.

. Enter in register B1 the initial address of the memory area into which MDUMP is to be
read. MDUMP requires one sector of the disk device type on which it is stored. The
initial address of B1 should be greater than 100, to insure that hardware dedicated
locations are not overlayed.

5. Enter in register R1 the channel number of the bootstrap device (i.e., the disk mounted

in step 1).

6. Press Load, then Execute. The bootstrap record MDUMP is read into the memory

location specified in step 4 above, and dumps the amount of memory image that fills

DUMPFILE. The dump is complete when an end-of-job halt occurs (see Table 6-1).

B0 -

NOTE: The size of DUMPFILE is limited by the capacity of the storage device. A
maximum of 120K of memory can be stored on a diskette file.

Procedure For Running The QLT And/Or Bootstrapping MDUMP On Model
23 Series 6/20 Systems

. Press STOP/STEP button.
. Press MASTER CLEAR button.
. If QLT, go to Step 5.
. Set the P register to the first location to transfer the boot prom data. Any value other
then zero (prefer 0100 hex).
. Press LOAD button.
. Press EXECUTE button.
CP will stop with P register equal to the initial value plus CA hex.
B1 register equal to 0100,4, and R1 register equal to 0400, .
7. Change R1 if different boot channel desired.
8. Change B1 if different buffer address desired.
9. Press RUN button.
10. Press EXECUTE button.

W -

N

MDUMP Halts

No messages are issued during execution of MDUMP. If a halt occurs during execution,
the contents of the P-register and R6 register must be displayed to determine the
significance of the halt, as indicated in Table 6-1.

DUMP EDIT UTILITY PROGRAM

Dumps produced by the Dump Edit utility are written to the user output file which must
be capable of receiving a 132-character line.
There are two sources of dumps:

o Files created by the previous execution of the MDUMP utility. (All or selected portions
of the file can be dumped.)

0 Main memory. (A dump of main memory allows you to determine the configuration
under which Dump Edit is executing.)

Dumps produced by dump edit may be logical (edited format) dumps or physical (image
format) dumps. Control arguments in the DPEDIT command (described later in this section)
allow you to suppress either type of dump. If these control arguments are omitted,
execution of Dump Edit produces a full logical dump followed by a full physical dump.

MDUMP AND DUMP EDIT - 6/78
UTILITY PROGRAMS 6-2 CB21A

TABLE 6-1. MDUMP HALTS

Register Contents
g P-register R6 register Condition Operator Action
A 003E, ¢a =0 End of job No operator action required.
For information only.
003E, ¢a #0 Disk error Rebootstrap MDUMP.
(R6 contains the disk status
word.)
03nn #0 Trap handler For a description of trap
error has messages, see the “Trap
occurred. Handling” section of the
Monitor and 1/O Service
Calls manual.
3 Address relative to the initial address of MDUMP as stored in memory.

Logical dumps may be produced for any release of MDT Operating System and for any
release of MOD 400 Operating System.

Physical dumps may be produced for any properly prepared dump file, regardless of the
content of the dump file.

Logical and physical dumps are printed in both hexadecimal and ASCII notation.
Duplicate lines, if any, are suppressed. Suppressed lines are designated as described
subsequently under Dump Edit Line Format.

Dump Edit Line Format
The format of a Dump Edit line for both logical and physical dumps is as follows:
3 Columns Content

2-6 For LAF: Five hexadecimal digits designating the starting address of the line of
dump information; the hexadecimal digit in print position 6 is always 0. This
forces the dump line to agree with the template printed at the heading of each
page.

3-6 For SAF: Four hexadecimal digits designating the starting address of the line of
dump information; the hexadecimal digit in print position 6 is always 0. This
forces the dump line to agree with the template printed at the heading of each
page.

7 Slash (/)

8-10 Blanks

11-91 Sixteen consecutive words; each word is represented by four hexadecimal digits
and is followed by a space.

92-95 Blanks

96-127 ASCII representation of the previous group of 16 consecutive words. A byte
that is not printable is designated by a period (.).

1-11 Blanks

94-132 Blanks
Physical Dumps

In a physical dump, the leftmost column of data (four hexadecimal digits for SAF; five
for LAF) designate real memory addresses. When the Memory management Unit (MMU) is
in use, there may be ranges of invalid virtual addresses (discontinuities) in a physical dump

(' from main memory. When an invalid virtual address is encountered, a message within the

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6-3 CB21A

physical dump contains the invalid virtual address and the next virtual address to be
attempted. Thus, when the physical dump resumes, the valid virtual address is known and
the left column continues to designate real memory addresses as if the discontinuity did not
exist.

A physical dump from an external dump file does not display invalid virtual address
messages, and the left column of addresses is an uninterrupted continuum of physical
addresses.

The physical memory dump in Figure 6-1 was produced by Dump Edit in response to the
command:

DPEDIT DMPVOL DUMPFILE -NL -TO X’720°

Logical Dumps ,

A logical dump may be tailored by selecting (or suppressing) task group information on a
group identification basis. File system information may also be suppressed. This tailoring is
obtained by the use of control arguments in the DPEDIT command.

All addresses in a logical dump are virtual addresses. The leftmost column of data (the
addresses whose contents are being shown) are always virtual addresses. This applies to
dumps of disk files as well as to dumps of main memory. For disk files, Dump Edit
calculates the virtual address in the same way as the Memory Management Unit would under
the same conditions.

The arrangement of information in a logical dump is described below and illustrated in
Figures 6-2 through 6-4.

SYSTEM SUMMARY

o Location and contents of hardware-dedicated main storage
o System Time of Dump
o Location and contents of System Control Block (SCB)
o Hardware Configuration
- Model number of central processor
- Presence (or absence) of the Commercial Instruction Processor, the Scientific
Instruction Processor, and the Memory Management Unit.
- Value of the real-time clock scan cycle
- Presence (or absence) of an operator’s terminal
- High address of virtual memory
- High address of physical memory
o Software Configuration
- Name of operating system
- Presence (or absence) of the error message library
- Size of trap save area (TSA)
Size of interrupt save area (ISA)
Number of indirect request blocks (IRBs) in IRB pool
- Presence (or absence) of the batch task group
o Batch Group Data (shown if batch group is present)
- Virtual address of beginning of background
Virtual address of the end of background
Rollout status (currently rolled out or not)
Number of completed rollout/rollin events
Size of background memory given to foreground
o Memory Pool Data!>2-3
- Pool identification
- Starting address of pool

1

1 Supplied for each memory
2 An “X” appears beside a pool name that can cause the batch group to be rolled out.
3 The pool name for the batch group is BATCH.

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6-4 CB21A

*D

8¢00 39vd

R

.
(3%

cesecepen

socesves

ceesscsne

oo

.

S x¥MVINHxxY

cecee

. x

sy

a°° g%g

ce33°

secccace

esese

€In0/50/50°

° X

-

0000
0noo
8/Jh
0000
unoo
0000
v
a°¢e9

0202
02in
0000
$Q06
inoo
0vs9
eGLR
0000
3020
0noo
0onon
0noo
0000
0noo
0000
2920
onoo
0000
0000
0000
0000
2000
0000
0000
0000
44v¢
€000
9960
veng
0000
000t
3044

gave
gave
oox

0000
LARS
0000
4100
CLASY
4510
4210
a110
4010
0ngn
0000

4

2S01/R1/S0=-01T1=00nO0W

duinq Arouwspy [eo1sAyd odwes ‘[-9 ainSiy

0000
onoo
a6dn
0noo
0000
onon
0000
1704
¥
0202
0noo
10on
0Nnon
0000
aevo
¢n3t
0000
0000
0000
0000
0000
0000
00600
vi2eo
0000
0000
0000
0000
0000
[y
vnz20
0000
3310
0000
2931
0non
ns3n
0000
0000
0000
va9ru
¥
gaye
¢OvR
¥
0noo0n
112s
ar9o0
1s1a
XA %Y
6610
6710
6110
6ntn
€631
0000

0000
nono
nyno
0nono
0000
0000
0L0y
0000
*
nzne
01no
nono
npno
vato
0358
05
nono
0000
0000
0000
0000
Npoo
nono
npno
00ngQ
00no
0000
0000
nono
0000
0000
naLe
0000
0000
0000
0000
0000
210,
aa60
0000
nase
»
2040
2040
¥
0000
0000
0000
nono
nNono
noono
0000
0000
0000,
nNo0o
0000

Bl

0000
[
£746
0oon
4000
0no0
EAJUL
0000

¥
0202
0noo
0noo
0000
0000
7S8R
£GLA
0000
0000
000N
0non
onoo
0non
gR20
0000
onon
0000
0000
0oon
0000
gran
vatro
anon
0000
0noo
91¢%0
0000
g200
0000
onoo
0000
g0y

*
gNve
¢ave

¥
0000
4906
8.2n
LST0
LP1D
LS10
L2110
LTI0
LOTO
08¢R
0noo

H

ALYO
0000
nony
0000
€346
no0o0
Tgay
0ong
¥
neone
0000
0000
1000
1044
Lv60
19R0
0ono
0000
000y
0000
0000
0000
0000
nooy
nono
0000
0000
0000
0000
0000
0000
0000
4444
0000
0000
0000
8900
vheL
0000
0000
2040
3
2040
2040
¥

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

\J

0000
0000
0ngon
0000
000n
¢ 146
o0on
/407

%
07?027
[NV
0000
[
S700
02¢R
0000
0000
0000
0000
c0po
0000
9620
0000
0000
0noo
0000
0000
0noon
9220
0000
3310
LhoR
9Ghn?
0000
3061
1000
4444
€500
0000
0000
s0vR

¥
¢ave
sayR

¥
0000
474h
6480
SS10
Shio
G510
s210
ST10
S01o0
L1110
0000

6

agean
Y090
0000
0000
0000
0000
0000
nono

¥
0ene
1000
0000
0060
3310
7588
0000
0000
000n0
0000
0000
0000
nono
0000
0000
0000
0000
0000
0000
0000
0000
0000
LYSt
£9%0
0000
0000
0000
2000
§2S6
J444
0000
2040

¥
2040
2040

¥
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
nono

Q

oroo
0000
0000
0non
0000
£146
0000
2000

x
020°?
1000
ango
0000
0000
Jven
0000
0000
onoon
0000
0onoo
hveo
0000
0000
0000
0000
0000
0000
he2n
0000
Ir90
L200
0000
0000
0onoo
6h00
0000
iaga
0000
S000
GRe8
£avR
*
gave
£ave
»
0000
433h
H.99
£s10
ghio
£s10
§210
gTi0
£010
0000
0000

8hL0/52/50=0110~1103dWN0A

LL10
0000
0000
0000
0000
npno
0000
0000

X
0e0e
0000
nono
1000
4431
02398
0000
0000
0000
0000
0000
0000
0000
noono
0000
0000
0000
0000
n000
0000
0000
4431
950
0000
0000
1310
0000
0000
nae60
fele
8070
2040

¥
2040
2040

¥
0000
0000
0000
0000
0000
0000
0000
0000
0000
r000
0000

Q

0000
0000
0000
anoon
0000
anen
0000
§Ghe

X
0207
0000
1000
0000
0000
nGHA
0000
0000
0000
0000
2azn0
0000
0000
0neo
0000
0000
0000
enan
0onoo
0000
2800
0000
0000
0000
0000
2nno
4134
0000
0no00
heos
1000
¢Nve

¢NvR
cave

0000
3030
valo
1610
inio
Isio
1210
Irin
1010
ann3
0000

S

LEEYA
1000
0000
npon
0000
0000
0000
0000

0202
0000
0000
noeno
veve
SGER!
0000
0000
0000
0000
0000
0000
0000
0000
npno
0000
0000
0000
0000
00p00
255y
£950
Vel
0000
2000
1444
1100
0000
5959
425¢
0000
2040

2040
2040

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00no

"

2000
0000
8000
0000
0000
0000
6000
onon

0202
0000
0000
0000
ubih
0359
0000
0000
0000
0720
0000
0000
0000
0000
0000
0000
0520
0000
0000
0000
2noon
0000
onopn
0000
447§
2nn2
69v0
0310
0000
05 42
1000
gaye

LavAa
gave

0000
12ah
0000
ELASY
34510
4210
4110
4010
1000
0000
0000

£

0000
0000
0000
0000
0000
3gay
6610
neone

nene
(A1)
0000
0000
Sn2s
nGRY
0000
0000

0000

0000
0000
00ng
0000
0000
0000
0000
0000
0000
0000
nooo
950
1050
aehno
000¢
§000
SEny
0000
0000
AH60
GENg
4344
2040

2040
2040

0o00
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2

9°91:¢5/0 0£/50/8l61

0000
£AG0
000
0000
0000
00gn
IRED
0202

n202
0000
000N
0ongn
enve
1031
0000
0000
3720
0noo
0onoo
0non
00060
0000
0000
3ceo
0000
00oo
onoon
0000
0000
0000

0000

0n00
RS
0000
¢00n
0000
0000
4440
896
gave

gave
¢qave

0000
0000
0000
anio
asio
azio
qtio
aoto
0000
Sveh
4444

dWNa JIVHNLS NIVW

0000
0000
0000
0000
2aro
0000
0000
0ene

0eone
450
000
0000
vern
NIgR
0000
0000
0000
0000
0000
0000
0000
N000
0000
0000
0000
0000
nooo
n0no
Si2L
aeno
0000
0000
0000
0000
0000
2500
0000
0000
0gon
2040

2040
440
*

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0

/0ag00
/02¢00
/08800
/0vV$00
/06500
/08500
/0L500
/709¢00

/0ng00
/70€¢00
/70200
/01500
/00500
/704200
/03200
/00200
/03200
/708200
/0v200
706200
/08200
/702200
/709200
/708200
/700200
/708200
/02200
/01200
/700200
/04100
/03100
/040100
/703100
/08100
/70v100
/06100
/08100
/0L100
/709100
/08100

/01100
/700100

/09000
/06000
/08000
/70L000
/709000
/05000
/00000
/02000
/702000
/01000
/00000

6/78

MDUMP AND DUMP EDIT
UTILITY PROGRAMS

CB21A

fepttsdtt 0000
ceeean zogt
vago

c0erg* ‘ 0949

*PUCWIT 61v9
1000
¥

csepeeggreTegreeeeee

g

co e

cececscs

0noo
0000
as90
0000
4590
0000
onoo
onon
9091
0000
0noo
0000
0000

*
0000
0000
0044
0no0
0000
0noo
0000
991
Lewe

onoo
1000
00N
4444
asno
onoo
0noo
L1917
onoo
/v 3/

0000
onoo
9000
0000
0000

4

6500 39vd 2GS01/81/90=01T1=00000W

349
0000
2860
nono
nono
204¢
¥

0000
06000
0000
0000
0000
noao
0000
0000
0000
nNooo
van
40
a000

X
N000
nono
nNino
/491
0000
00no
nNono
0000
0000

0000
0000
nooo
0000
0000
nono
0ono
0nono
nG00
2000

0000
n000
wehg
h009
0000

98nJ9

000N
4181
0000
2941
Q969
0000

*
0no0
1000
0200
3444
#9590
0000
0000
0non
43Int
0000
0000
onoon
261

*
0noon
0000
0060
0non
00g0
0000
0000
43nt
0ngn

0000
0000
0000
AIn0
0000
aacen
onon
vall
€100
a6

0nQo0
0non
vioon
1347
Q000

a

h20{
0000
000
0000
0000
0000

0000
0000
0000
Qont
0000
0000
nooo
00n0
0000
0000
4301
f9%6
noono

nono
nono
0000
LLTO
0000
Nono
4444
0000
0000

nNono
0000
0000
nono
§950
nooo
nooo
0000
06¢2
00no

nooo
No0o
0310
0000
390

0000
4300
s?6l1
0000
6299
4440

0000
0000
w132
0000
0no0
nayh
0onoo
§5¢?
9361
0000
0000
0000
663N

¥
0000
0000
2non
0000
0100
0000
4444
9151
0000

0000
0000
Lvst
0000
0000
LLTO
a441
00gn
0000
2981

0noo0
0000
0000
0000
0000

]

4090
0300
0000
0000
0000
0000

nono
0000
0000
0000
€950
0000
0000
nobl
0000
0000
QLpl
0000
nQ00

000y
0000
2100
1360
$9G60
4011
4444
0000
nooo

0000
0044
nooo
0000
$9G0
nooo
nono
LLTO
cHov
0000

0000
1000
a8 10
4444
Q350

v

2ron
9760
6520
0000
€206
0044

0noo0
0000
asvo
0000
0000
L10
4444
2h90
hayh
0000
oo0oo
oeo0
0000

0000
0000
§Gn2
0000
0090
0000
4444
flint
0noo0

0onon
0otroo0
K491
0000
0000
onoo
e6ln
onoo
0000
41417

anoo
0000
0000
0000
0000

6

S000
0000
0000
0000
0000
000n
¥

0000
0044
0000
0000
0000
0000
8100
0000
0000
Nono
aRvy
6930
0000

0000
0000
0002
$009

0000

0000
nNo0o
0000
0000

0000
1100
0000
0080
0no0o
0000
0000
140
0000
0000

0000
0000
Tvsl
91ty
0000

]

2000
n6SS
0000
0000
6Y99
vaqo

0000
g000
/491
0000
0000
0000
0so0n
0000
6A40
0000
0000
0000
0000

¥
0000
onoo
0000
sant
0000
0000
onon
ove9
onon

0000
0000
L7110
0000
0000
EREE
3102
onoon
0000
0ngn

0000
0000
0non
00go
gagn

QPL0/G2/8N=01T10=LTdIdnWNA

0300
0000
00L0
0000
0000
0000
¥

0000
0000
0000
1080
0000
0000
/%%
3444
0000
QLN
4201
0000
nooo

¥
0000
0000
2550
0000
2550
0000
0000
0000
noeo

0000
7000
0ono
0100
0000
4444
0009
3336
0000
q200

¥
0000
nono
2610
0000
nono

1100
0000
thoo
0noo0
EAAAY
0000

0000
0000
LL10
0000
0000
4444
0000
0000
nt 3z
0000
0000
3100
0000

¥
0000
0000
0000
0000
0000
0000
0000
0R0N
0000

0000
11oo0
0¢80
ELL A
q¢3t
4444
6310
0000
©n0oo
960

oo
[(FE]
0000
L2S89
00060

S

dung Krowspy [eo1sAyq ddwes ‘(3u0d) -9 IS

§200
2941
1100
0044
0000
0008
¥

0009
oonti
0000
Q000
0000
4444
4032
G000
0000
4601
4201
G261l
0009

X
0000
1000
0800
4444
25869
6LY0
0000
0000
0000

0000
0000
0000
0000
0000
4344
0000
0000
0ono
nooo

0000
0000
ad4l
0png
0000

b

LOUn
0000
4444
ghit
9yyo
0000

0000
0000
0090
an90
4940
4444
0000
vNgon
6691
0000
0000
0000
0non

¥
0000
0noo
0000
0000
0000
onoon
0000
0000
0000

0000
1ton
¢g009
0000
0000
0000
a|io
anoon
0000
annsg

0000
0noo
0000
g0t
0no0n

€

0000
414y
0200
0000
[VI])
00no

0000
0ong
0000
0000
0000
4444
aJ66
0000
0000
9g11
n3ng
4400
0000

nNooo
0000
0000
0y60
0000
agvn
no0o
nono
nono

ngno
0000
Gon |
0000
0000
0000
0000
AS20
4444
0000

0000
neno
1410
0000
nong

2

9°91:¢5/0 09/G60/8/61

n20/
0000
0000
gv99
1309
0000

0000
0000
gnoo
0000
0000
0000
EEA
4940
0000
0noon
0000
va00
0000

*
0000
0000
0000
0o0oen
gog0
0no0
4531
Lvgt
0000

0000
aesno
0noo
asnt
0noo
0ooon
0000
0000
LR00
0noo

0000
4444
0000
nnoo
0000

dwna 39vAnis

0000
4600
0000
0000
1000
0000
¥

0000
R100
c9nl
0000
0000
0000
§000
0000
0000
9091l
LL10
94960
0000

¥
0000
0ono
0301
nooo
0000
L2110
0000
0900
0000

0000
0000
0000
0000
0000
0000
0000
0000
aloo
0000

0000
4444
L0
6450
anag

0

tAQY

/702L00

/01200

/700,00
/04900
/03900
/704900

/01900
/709900
/05900
/00900
/0€900
/02900
/01900
/700900
/704500
/703500
/700500
/N3S00
/048600

/706500
/0800
/0LS00
/09600
/05500
/01500
/08600
/702500
/01600

/700800
/03100
/04100
/09100
/06000
/08700
/0L500
/09600
/08000
/00H00

/N2noo
/01n00
/00800
/0400
/03500

NIVW

6/78

MDUMP AND DUMP EDIT
UTILITY PROGRAMS

CB21A

6-6

SIWVEDO0Ud ALITILN
1Igd JNNd ANV dNNAW

L9

\AYA: o)
8L/9

MAIN STURAGE LumP 1978/065/30 0753:16.6
0 i c 3 4 S 6 7]

HARDWARE DEDICATED LUCATLIONS
00000/ 0000 FFFF 0000 0000 0400 0000 0000 0000 0000
00010/ 0000 43A5 0000 0000 0000 E40D 0004 0000 0000
00020/ 0000 00u0 0000 V001 0000 01ul 0000 0163 0000
00030/ 0000 0100 0000 010F 0000 0111 0000 0113 0000
00040/ 0000 0110 0u00 011F 0000 0121 0000 ¢123 0000
000507 0000 012D 0u0U O12F 0000 0131 000U u133 0000
00060/ 0000 013D 0000 013F 0000 0141 0000 0143 0000
00070/ 0000 014D 0000 014F 0000 0151 0000 0153 0000
00080/ 0000 0000 0000 0000 0000 Ul6A 000U 6678 0000
00090/ 0000 0000 0000 4D2F 000U 4EUF 0000 4EEF 0000
000A0/ 0000 GOUO 0UVOU V00O 0000 0OCO 000U 0VOUO 0000

* * x * * * * *
00100/ GFFE ©AL3 002 BAD3 OF0Z HAD3 0F02 BAD3 0F02

SYSTEM 1IME OF pUMP 1901/01/01 0007:07.0

SYSTEM CONTROL sLUCHK 00177

00170/ 0000 OFFF 3y35 2F30 332+ 3034 3133 0005 FFFC
00180/ 0000 0000 09Ro (000 6565 €000 09DL 0000 9523
0019v/ 0032 0000 0000 ULEQ 000U 0000 000U 6561 0002
001A0/ 0u00 V003 0u0u OACY9 00tl FETF 0000 0000 0000
00180/ 000U 0000 AQ33 2442 FFFE 0442 01C1 0049 0000
001Co/ 0000 SEBS 0uG3 3AFF 0002 0000 0000 00UO 0000
001D0O/ 0000 00LO 000 0000 G000 0000 06000 0000 0363

CENTRAL PHOCESSUR MUDEL: 4X OR SX

COMMERC1AL PRUCESSORr: NO

SCIENTIFIC PRUCESSOR: WO

MEMURY MANAGEWMENT Un1T I[N USE: YES

TIME (MILLI=-SEC) BEIWEEN REAL TIME CLUCK INTERRUPIS: 0032
OPERATOKR'S TEKMINAL: YES

HIGH PHYSICAL MEMURY ADDRESS: 2T7FFF

HIGH VIKTUAL MEMURY ADDRESS: 33AFF

OPERATING SYSTEM: mMOL4LO/LITY

ERRUR MESSAGE LIBrRAKY: YES

SIZe COF TwkAP SAVE AREA (WURDS): 0068

SIZE UF I1iTERrUPT SaVt AREA (WOKRDS): 0025
NUMbERk OF UNUSEL INMDIKFCT REQUEST BLOCKS: 0033

BATCH GrROUP: YES

YIRTUAL AUDRESS UF bELINNING UF BACKRGKROUND: 30000

VIRTUAL ADDKESS OF I1He END UF BACKGKOUND: 33AFF
CURKRENTLY ROLLEUTUUT: nNO

NUMBER UF CUMPLETED RULLTOUI/ROLLTIN EVENTS: 0001

MEMURY GIVEN . 10 FUREGKROUND FRUM BACKGROUND (WURLS): 0000

9

0000
0177
0105
0115
0125
0135
0145
0155
03F9
4FCF
0000

*
8AD3

000V0
0053
TFFF
uoul
19vE
0ouo
2ube

A

000V
0000
0000
0000
0000
0000
0000
0000
0voo
0000
0000

0F0e

0000
Te4A
0068
0000
0000
000V
FFFF

DUMPED[T=0110-05/25/70748

8

000Q
8380
0107
0117
0127
0137
0147
0157
4c78
S50AF
0oun

*
8AL3

0ouo
00uo
0025
G060
v3le
Voo
0000

ovov
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0F02

09bL
7012
0000
6u0U
(VY]
0000
0000

0000
1E53
0109
0119
ule9
0139
0149
v1s1
064C
5201
0000

8AD3

0000
0ouo
4E 34
vouo
1E8C
0ouo
01tE

6CUSse

3

0000
0000
0000
0000
0000
0000
0000
0000
0000
0voo
0000

*
0F0¢2

6CC3
0006
0000
0000
0003
0000
0000

Figure 6-2. Logical Dump: System Summary

N

MODY400-L110-05/18/1052 PAGE 0001

F

0000
0000
01uB
0118
[AY4.]
0148
014R
001B
00Vo
S1AB
00v0
*
8AD3

0000
84cA
09b6
vou3
SAFF
0000
0000

tecccssecessetscssvecscesasseone
S T T
tecececccscssssessssccnasssrrans
csecsccscsescssesssrssoncsssanns
TS RN

evemese/esaleed30 5000700090000

ceeXene’eeedaaat

ereSee i AL CL L E LGl T LUK
eeeMiL0...0...8,0 U0 WL TLee
cecveccnssedecForeacedlXeu b

creeeeM/eiNe N UL Pl R,

eescevsececseenrsssseansescsssoes

eeceececscsscsssesscseccsssssnsee

eeee05/03/0413,.cceccvennccccbens
B I -1, TV PO e
eeceeeH X NU, ..t

eseeecccscsescercsscscsscccsnosno

elescccancnns

P 1 . R I I

cecesscscsssesscsldViicecsccenee

SINVEO0dd ALITILN
11dd JANd ANV dNONAIN

MAIN STURAGE vump 1978705730 0753:16,6 DUMPEDIT=0110-05/2570748 LCUS6 MOL4VO-L110-05/18/10%2 PAGE 0002
(] 1 4 3 4 S 6 7 8 9 A 8 C)] 3 F
MEMURY POUL DEFINITIONS MEMURY FOULS STATUS
POOL STanT END SIZE TUTALTUNUSED MAX [MUMTUNUSEL NUMBEKTUF nNUMBER
NAME ADURESS AGUKRESS (WURLS) (WURDS) CUNTIGUUUS (WORDLS) FRAGMENTS OFTUSERS
8 0650 0AQSF 03AA0 02420 01F40 00007 00001
BATCH 30000 33A5F 03440 01C40 01C40 00001 00001
1§ x 0A0b0 0AELF oooLo oonco 0v0Co 00001 0v000
Ex x 0AEZ20 0C79F 01980 01980 01980 00001 00000 -
AB 0C7A0 P44LF 17b40 16860 16AL0 00002 00002

SYSTEM SYMBUL TABLE

BOUND UNTI SYMBUL VALUE
Z3EXEC
FILBUF FILBUF 00000
ROLLCOD

gh
o)
O
w\
O3
>

Figure 6-2 (cont). Logical Dump: System Summary

$aINONIS Eowmam AL Jo 9a1], :dun(g [edrSo] “¢-9 unSiy

P R)
93260 NOILvVION 20 HL1A43Q
¥I01H 30141435317 3INT4

A A e bl 0202 0000 0000 NOOO HYVO £8S6 0000 1060 1700 Slvp 0000 0000 0000 N0NO {000 0000 /01660
M AR 2 1 [R e 1000 0000 6R00 HuNO $R956 0000 3IS00 0000 qGeh 0000 0000 0000 0000 Inde 000N 1000 /00660
£06h0 NINTAH TOHINDGD M3IJ4Nw

SNOT /000 nphSH NQUNO 0286 SSNS 803G VYOI SG00 NISQ 113 0008 SGYR $0N0 L02a POIS /04150
6800 6800 0110 0202 0202 0202 0209 0¢nS 0GJIh 0000 0000 0000 0000 GONO £06k 0000 /03150
1010 2ph2 0000 0000 000N T0N0 0000 0000 00uN 3000 0000 0000 Lyv0 0000 932G 0000 /00160

Py

00160 NOILYIOT 20 HidAia

MINTH ANLATIHISIN 3T

ceecgttegtAdTLo N
ceeee 00Lld1°"

[EFPIEEE ecossccscs

bV R | 3INSNOI° "0 ° 6Nl 420n 0000 /K00 LROO 21Sh 0207 0202 026h In4t $63IN 4pEH 0000 0000 0000 0500 /09300

Sesceccetecccosensossessennnee 0000 0000 0000 0000 8000 0000 0000 0000 1000 000G 0000 0000 0100 0000 0000 VYU /0vIn0
b i 0000 0QIS 0000 0000 0000 0044 0044 0244 €044 0044 0044 0044 S000 0000 0000 0060 /706300
P R R R Y]
' a6dh0 NOILvI0T 20 Hldia

AJ0T8 HOL4INISIO AT A

‘ne et R 965G 0000 ORL0 0000 0N00 0000 6000 0000 0000 0010 0200 0202 0202 0202 0702 0202 /03y00
ads®* 074t 0SS 0000 0000 0000 1000 1000 0000 0000 0000 v000 0000 0000 000G 1000 0000 /08v00
sesgenee ceptee 0000 0000 0000 4636 0000 (60 0000 Shd6 0000 0000 0000 TITO vILO 139G 0000 2010 /0VYV00
¥¥XSXRENREEERNEXNENFXXXEENNEXNNEY
LYY00 NOTLYIOT 10 HIdIG

MINTE NO1d4T4ISI0 ANOLIINTQ

emcece

R 0000 0010 V3IIN T39S 0000 000D 0202 0000 0000 N000 0000 03T0 0000 00T0 3710 0000 /09v00
ceseeteet 1000 Q0TO0 0010 0000 0000 0000 0000 0000 0000 0000 0000 000V 0000 0000 0NOO 0000 /0Sv00
*°*3A1LN 0000 0000 0000 NOOO 0NO0 00ONDO 0N0O 0310 8100 4444 0010 0NO0T0 2RL0 INGP 9G6h HSSS /0nv00

J3Ix3g2° cessenes §hSh AGGH £SVS 0000 0000 0000 2000 1000 0000 0000 0000 0010 00O 0000 0NOO TUNO /70Ev00
creceecee. RN 11T b I i 0000 0000 0000 0000 0000 0000 @A6N 00NV LYY0 0000 020§ 0ghy €02 0000 0020 6000 /702v00
FYBNRERSESEXBEREYRNRYNE LYYV ENEYY
92v00 NOILvVION 10 MWidla

%3078 4014143530 31T4

sesessscese

°° 00Q@O¥°"c" 0000 0000 0000 0000 0000 0000 QA0 0000 LYYN 0000 0205 0gnh §m2S 0000 0020 6000 /702v00
ceeesscsrcseees 0000 0000 000N 0000 Q000 0000 0OEO0 Q000 0000 1000 8010 0010 0000 0000 0000 0000 /01v00

escascsaca

oo R ceesesse 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000N 0000 0000 0000 0000 0000 /00v00
A 168482 *°°°°* 000 R000 4444 00T0 0700 0292 0202 0202 0202 T¢QE £G6S £SVS 0000 N000 0000 1000 /704600
At A A 1000 0000 0000 0000 9200 0000 0000 0000 1000 0000 0000 0000 0000 92v0 0000 0000 /03600
*°*SWILSASNOTIVWHOINTTIIMAIN 0000 hSAR 0000 N0FS UhSh HMGES 66ES Indm 6hnS Than 2640 9n3In 6hIM INGh LG6S Gnip /700600
L R R R R 2 2 2
aae0do NNILlvI01 00 Hld30

: %078 HOL4IHIS IO IWNT0A

SHI0TH 4NLdINISIG INT4 ANV ANODLIIATA “IANTOA 40 3INL
4 3 a 2 q v 6] L 9 S [} € ? 1 0

€000 39vd 2501/791/50-0117-007A0W 9S039 g0£0/62/G0=0110=21Q03dWNA 9°91:§5/0 057507861 dWNA J9¥HNLS NIVW

g

6/78
CB21A

69

MDUMP AND DUMP EDIT

UTILITY PROGRAMS

SWVYD0Ud ALITILN
11ad dWNd aNV dNNdRN

01-9

vizgd
8L/9

MAIN STUKAGE DUMP

05¢E0/
052Fv/
05300/

09F 40/
09FS0u/
09k 60/
09F 70/
09F80/

09CCu/s
09CDu/
09CEv/
09CFo/
09voo0/

09C40/
09CSo0/
09Co60/
09C70/
09C80/

09BEO/
098F0/
09C00/
09C10/
09C20/

09v60/
09070/

09880/
09890/
09BA0/

v

FFOS
0voy
2020

DIREC
DEPITH

1

FFeO
vouvo
eQc0

10KRY
vl

19/8/05/30 07/53:16.6
2 3 4 S 6 7
00u0

0000
0ouo

FFou FFOO 0000 0000
0000 0000 0VU0OU 0000
2020 0211 00SY 0050

000V
0000
0021

DESCKIPTOR BLUCK
LOCATIUN 09F43

AARAKKAAKRKARKRRAKAA KR KA RRA R AR K

0003
0uoY
262V
0000
0000

0uo3
0000
0702
0000
0000

DIREC
DEPITH

vooo
0002
0020
0oeo
0oo8

0000
V100
0100
00Vo
0078

TORY
01

v000
0001
0008
0000
0000

090UV
000k
0000
0000
0000

0ouo
0000
0000
00uo
0000

9tE1
0000
0100
0voo
0uov

9Cc43
ouou
0280
0000
0000

0000
0000
FFFF
0000
0000

FllLt UVESCRIPTUR BLOCK

DEPTH 02 LOCATIUN 09CL3
AAKKKRKKAKAKKRKRARAKARKRRRAR A K &
9k41 0000 0000 0000 9F43 00U
0u0l 0000 0000 00Ul 003t 0000
0100 FFFF 2418 0078 0000 0000
0000 0000 0000 0N00 0000 VOVO
000U VOVDO 0UNO 0000 0000 0000

DESCRIPTOK BLUCK
LOCATIUN 09C43

ARKKAAAKXAKKRRRARAKRKA KKK KA AR A KA XX

0005
0000
2620
0000
0000

0003
0000
4F83
0002
0000

0001
0000

0003
0000
4F By

0000
0ou1
v020
0000
0008

0000
0100
0080
0000
V0AO

0000
0001

0000
0000
0080

090D
0012
0000
0000
0000

Apo1l
0000
0109
0000
000V

9523
0000
1370
0000
0000

0000
0no1
0008
0000
0000

0000
0000
0000
0000
0000

0000
0000
FFFF
0000
0000

FilLt UESCRIPTUR BLOCK
DEPTY 02 LOCATIUN 09BE3

AAKARRRARKAKARKIKRKARARKRRKIRARAKRR

0000 9C43
0001 0001
00A0 0000
0001 0000
9085 0000

0000
0002
0000
0000
0000

9C41
0001
0100
0000
0vov

9883
9063
1378
0000
0000

0000
0000
FFFF
60948
0000

BUFFER CONTROL
9Ad41 0000 0000
0v00 0000 000V

BLUCK 09D63
0000 0000 0000
0000 4A23 00v1

FILE DESCRIPTUR BLOCK

OEPTH 02 LOCATION 09883
EAKAARKARRRRARAAKRARKARRRRR KRR R
9BE1 0000 0000 0000 9C43 0000
0000 0000 9E03 0001 0003 0004
0100 FFFF 1418 0008 0000 0000

)

0000
00FC
0000

9CC3
0000
0000
0000
0000

0000
0000
0000
0000
0000

9BE3
0000
00600
0000
0000

0000
0000
0001
0000
0000

0000
0102

0000
0000
0003

9

VAAT
vovo
S440

0ivo
0000
0000
0ouo
0000

0900
0000
0000
0000
0000

0100
0000
Voo
00uo
Voo

0900
0000
0000
0000
0000

0005
0000

0900
0000
0000

A

0000
0vou
0000

0000
5349
0000
0100
0000

0000
SedF
0000
0100
0000

0000
4540
0000
0100
0vo0

0vov
454v
FFFD
0100
0000

0000
9A43

0000
4540
FFFD

DUMPEDIT=0110-05/25/0748

B

0000
vouvo
1830

0000
4420
0000
0108
0000

0000
4cdc
0000
01u8
00vo

0000
4ceon
0000
0108
0ovo

0000
4Cu4b
0014
olu8
0000

9A43
V100

0000
4C46
0001

0000
0000
E95¢2

0000
2020
0000
0vol
000v

0uov
4F55S
0000
0001
0000

000v
2020
0000
0001
nuoo

000v
494C
0003
0001
0000

0100
137C

0000
494C
0001

0ovo
4344
02s1

0001
2020
0000
0000
vouo

voot
5420
0000
0000
0ouvo

0out
2020
0000
vouo
0000

0001
4520
0000
0ouo
0000

0000
0000

0001
4520
0000

GCuSe

0000
5230
OvALE

0000
2020
0000
0vos
0000

0000
2020
000V
0uT76
0000

0000
2020
0000
0001
0000

0000
2020
0000
0u99
0000

0004
0000

0000
2020
0000

MOD400=-L110~-05/18/1052

F

0000
50c0
v857

0ouo
20¢0
0000
voco
0000

0000
2020
0000
0100
0000

0000
2020
00u0
0080
0000

0000
2020
0000
0to0
0000

0000
0000

0000
2020
0000

Figure 6-3 (cont). Logical Dump: Tree of File System Structures

PAGE 0004

eee ceccvecccssssesssccssecscnene

eesecesecescsccscscnccscss LORDD

eeePePoliieeIM (o 0. Reveeo

sececcceelioceccccacecscncnoarece
A 2 1)
& .

eececcssccecvssssccccensscnccssca

eececcescevsssccssrcrccccnssce

sececsssccsscccscsrcccesscrnsnnne

B e A P I A
ceessesccsceaenass s ROLLUUI

R L
cecsccccsncsccscccvecssccsascaVeo

ceeXeeeoeassncsccsrrrssevccccnscs

cescscccsefececnoccccscccccccccee
cececcccsvessccsssssbML

& .

eevesvescsescresssccsessscncravae

Y e E F R T R PR RPN

emeseccsssvecncsscesanseseroncne

eeceehiiiccreliocecveracocancanse
eesesseselioccacanncstMLFILE
UceeecceoXeooonansoeoesosnoscccnne

eesccccscccrevcccsncsessncccrsnse

eecesPiceceacceccsseceslocaccnen

[B LT

eeecccccscsesloncsccecacsacacans
eesececcnccncscessssEMLFILE

Usteeoecccocncacossccscccncsncane

SNVES0dd ALI'TLLO
1143 dNNd ANV JNNAN

119

PR

P

V1240
8L/9

MAIN STORAGE LUMP 1978705730 0753:16.6 DUMPEDIT=0110-05/25/0748 6GCUS6 MOLUYO=-L110=-0S/18/1052 PAGE 0007
v 1 ¢ 3 4 S [7 [°] 9 A B C 0 t F
TASK GrUUP STRUCTUKES FOK GLRUUP %R
tti*k*t**ﬂ**Ati*ﬂt*tt*tttqitﬂ***kﬁ
GRUUP CUNTKOL BLUCK 06CL3
06CCoO/ 0013 0082 0001 v000 CCP23 2442 0u3y 44yt 0000 6FBB 0000 oF5B8 0003 vlul 000y 6CF7 PR 1 1 I8 1V I VR T (PR N
06LDO/ 0U0Y 6EFY 0001 VOUT 0000 0DVO OUDL 0000 0000 vOuLL S/B0 000N 0000 VOUD 0OCHO VOULO eeNscooosooosovcscccecseManecccacnns
06CEV/ OU0g 0O0U0 000U VOUG 0000 VILD L3 3903 0003 3993 0003 YOv3 0000 VO0VO 00OV VOUO esescscscsncesTeceTececacsncsons
06CF 0/ 000y 0000 000U 0000 0000 UNOD 0OFC VOUD 0000 0000 0000 00UO 0000 LOUVO O0LOU 0000 ssescsccsasessacssace sescsccsse
o6LOV/ 0000 0000 000D VOO0 0000 LNLO 000V wOuUD 0000 VOLO 000V VOUO 0VU00 00V0 000U V0VO cecesesssssessssesssesssescssense
* * x * * * * * * * * * * x x *
Q06EF U/ 0000 00u0 0U0U 000F QU0 0000 0000 VOUO 0000 0OUD 0u00 VOUD 000U VOUOD 0UVDU VOUD cevesececsssscssccssssesssensocsse
V6F 09/ 000y UOUO Oubgy Q0U0 QOO0 VOOO NVOL VOUD 0000 v0U0 0UOUL UYOUD 000U vOULD 0000 V0UO ceesescscccccscsssscscsasenseans
06F10/ 0000 QO0UD OuLY VOO0 0LUOL VOLD DLOL VOULD 0000 00OUO 0VOU VOUD 000U VOULO 000U 0VO0VO eececcsseevecscsscsserercanssnne
TASK COnNTrRUL BLUCK 06F 8 DPEDILT
06F &0/ 0003 0000 9FAL 0000 6FBb L031 0000 VOUO 0000 VOU0 000V 0VOU3 3A135 UV0u3 3a13 0003 eesescselealierereeeccealecalane
06F90/ 3A15 4001 0unhy 0000 4000 0003 016L V00O 0177 v0V0 9903 ¢OUD O0A79 00ULD CUOU VOUL3 I I | e (S
06FAOQ/ 012A 00u3 0151 U000 FFFF uD0O0 0V0U oFbHB 0u00 6CL3 Gu0U VOUD 4ATT VOG0 d4AT7 VOO e¥eeolaeeoeeooUlacloeeeadoadibe,
06Fbu/ 0000 v0UD bFHB 00351 0000 7402 0000 0OUO 0UB7 0O0u0d 45AL GOu0 FFFF 0003 0u0u 2CsC P U S P A
06FCO/ 6003 00un 93F6 v0U0 0177 0000 1794 00U0 991¢ 00u0 9903 v0U0 SIDV 0V0U0 9903 v0cO WeeesooeooWeoosoooancsncesaldocnanse
06FDy/ 003k G400 ouEy OUl FFFF FFEF 0000 FFUO FFOO FFu0 FF0OSs FF20 FFOu FFu0 000U 0000 e e eectenccrssescacncea snsescne
06FEVD/ 0001 uNuo YHRL 030F 4A07 OF01 FEOU 6FS5B 0000 0001 0u0U 6FEC 0004 4143 Sdde 20¢0 eesscssedessceUleneseU..ACTB
InD wEWUEST sLUCK 04877
04a70/ 0u0y VOouLD 0Y0e V0u0 CA3B 0000 OuOu FFFF 000y b6FAA 0003 U0L3 QU0U 6CL3 0V0U 4ACR eessssnssfocescncssleccsccebosadt
VUABY/ 0008 0000 6FBo VOO0 000U FFFF 000U oF4A 0000 7063 0000 6CL3 VOOV VOOO 0002 VOULD [P U\ U S Ty S
TaSkh kEWUEST wsLUCHR 390C3
30uCo/ 0002 0003 3YR1 LOUO 4AT77 9oLt FEOUL 0LOVO 0000 00Y3 QU3 UVOLO OUDS VOVS 0V03 vVOLS P T L
300D0/ D006 4450 4bdg 4954 2020 LOVY 204D 454D 2020 0003 2p4t 4C20 0102 00u3 0uCs 0003 . UPEDIT ..=MEM ..oNL cceevees
300t0/s 0008 VO0D3 3YR1 S244 4ESe 000l FEOU 00UD 0000 V0Y2 0u03 UOEE NUO3 QOFL 0005 4357 P 4
ThAP SAVE AKEA 0dHAL
INSTRUCTIUN WHICH TkAKFPED IS AN MLL Al LOCATION 31SBE. FUNCTION CODE Is 0Rul,
InSiwuCiTums 0001 PTCOUNTER: 31590 1': sFeo4 Z: 80utl At 3158E w®3: 0009 B3: 312AS
0dSA0/ 0009 V0OF 000y 1BB7 1264 00U0 0325 w0uO 0177 v000 186k U3uF 0QU0u G0U0 Oubu SFed P J SR N | 4
04580/ 00y 0001 88Ul V003 158t 0003 159y wOU3 1¢AS ¢0y0 9503 00U0D 03EV 0000 G3EU V03 teseesssescsssreecssscessnnsnsene
0asco/ tod4bk 00U3 1¢kY 0001 0061 FFU0 0VOO GLOUVO 0000 00UD DUDY VOUD 0VOL VOWO Oubu 0000 e0ievecoePeceacecaooncnssssoosscse
V4SDO/ 0000 VOUN VUOY 0VE 0VNY VOVLD DudU VOULO 0000 v0UD 000U VCH9 0VOL VOVLD OubU 254D e e
045L 0/ D0V ZRSF 0003 12AS 00N0 Y903 0045 vOULO 0084 5989 0ude VOLO 0025 VOULO 9905 0000 [P O P RS S LTS T
04SF o/ 5100 0003 2YRS 0003 3993 G0yl 2246 VHYO 2BAT7 0000 000U 2111 0000 218D 0003 12AS Veee9coeTeee"Foetoeeoolonolonene
04600/ 6U0% 12AS 0u0OU ¢1v0 0U00 vOBYU OBG] VO0LY 0000 FFFF 000y 1DB0O 0u0y 21p0 0003 3993 teessslocsscssePeceicccanalonsde
04610/ 0un0 00Bd Nuny 1E74 0000 0N00 O0UOO 3Fee 0001 V0ol Bu0l uv0LD 6AAL 00U0 6AAB 0NY3 eececoeTeeeeee?ieeenscodoesdons
TASK CONTRUL bLUCK 06F58 tC
vb6F20/ 0003 0000 HEOY VOGG GYOU UOLO 000U (00O 0000 00U0 000U uv0u3 3A13 Y0u3 3413 0VOU3 eeeslUececacesescserscocceltonntonse
06F30/ 34138 00U0 000U V0G0 0LOU VOGO ND0OU VOU3 0003 VOUU 49FY vou3 OUVEL v0u0 OVOU VOUD Seceescecscvcossscsoloseccccsene
06F L0/ 695U YOUL 6YA7 ULNUD GUHU LODO 000U UOUD 0000 6CL3 0UOL VOLD UYABS 0000 U4ABS 0000 1)eelececaecsconcenbecceedanedoae
06FS0/ VU0V V0U0 HFSB UN30 OUDL Sdpe 0U0L VOUD 0049 vOUD dol1S VOU0 FFEFF 0LO0U3 QU0U 14d6S PSPV G P (I I T -3
06F60/ 6003 90U0 941y GOUO 0177 v0ou0 17D0 vONUO 4n2b uby0 0000 VOUO YuBU VCUD 4YEpB 0000 DeeoososoMeoseoead®eeeansonnslene

Figure 6-4. Logical Dump: Task Group Structures

SWVYIDOdd ALITILN
LIad JNNA ANV JNNdIN

¢r-9

vizdd
8L/9

MATN

Vot 70/
V6Fbu/

VUABY/
04a9yL/

07964/
07070/
07080/
07090/
070A0/
07080/

04610/
04020/
04630/
0Lolu/
04650/
040607/
V46707

301007
3vtlturs
Int2e/
30130/
30144/
50150/
30160/
30170/
50180/
301907
301Aa0/
301bU0/
301Cus
301007/
30iE0/

3000
302107
30cevus
30230/
302407/
302507/
30260/
3027/
3pebu/

SToms

sbowitep 19/8/05/30 0753:16.6 VUMPEDIT=0110-05/25/0748

u 1 I 3 4 5 6 7 8 9 A B [D £ F
187y 0051 008Y 000l 0voo FFFF 003y FFOO Frou FFOO FFOS FF20 FFOO FFU3 0000 0000
0UOs VOU0 9FAL LOUO bFBE G031 000U 0000 0U00 V0U0 OuOV V0U3 3A13 V003 3A135 0003

IND KEWUEST BLUCK 04ABS
Cuos udu0 AFKEE 00U0 0000 FFFF 000u 6F4A 0000 7003 0000 ©CL3 0000 VOUD OUOZ 0000
6FSEB U0U0 0UNU LOUO 000U VN0 0000 V0UO0 0000 CCe3 0000 U7BB 0021 0000 4A93 0000

. BAICH KEWUEST BLUCK 07063
0004 9Ou0 Ng0y 0000 UARS oLl NU0OO 0OV 0000 0004 0V0OU 7072 0000 7075 0000 VOULO
0000 7062 0u04 4228 312u 0014 SESA 5359 5335 313E S350 443E 434F 4ES3 4F4C 45¢0
202y 2020 000C SESA S359 5335 313k 4849 %320 0002 0v00 70BE 0UO00 70BF 0000 00UC
IES3 S044 345 4F4E S34F 4CuS 2020 2020 2020 ¢0e¢0 2020 2020 2020 2020 2u2v 2020
000U uv000 0UOU 0000 0000 QO00VO0 000U 00UO 0000 0000 0000 UOULO 0VOO 0OLO O0uvOU 0000
0000 0000 0yOu GOUVO 0000 0000 0000 VLOVO 0000 0000 000V 0O0VLO 0000 ©vOULD O0UOU VOVO

TrnAF SAVE AKEA Udo15

INSIRUCTIUN wHIUH TRAPPED 15 AN MCL AT LOCATIUN ObAA6., FUNLTION CODE Is 0Co8.

INSTRUCTIUN: 0001 PTCOUNTEK: 06AAB I': 3F22 Z: 8001 A: 0b6AA6 K3: 0001
0000 0084 0U0U 1ET74 000U VOO0 0UOUL 3Fee 0001 0001 8901 VOUO 6AAG VOULO 6AAB 00U3
002Y G000 9923 V000 7089 VOUO OVOUL 0VOVO 6A19 0003 0v23 00U0 4450 FFuUO 0uOU 0000
0000 0000 0000 VOUO 00NO VYOUD 000V VOVO 0000 0000 OuNu VOUYO 0000 VOVO 0VOU 0000
VO0Y 000N OLSY 0000 1925 000B 0000 U9b6 00BA 908F 0u00 18B1F 0000 1B62 0u00U 00U0
5594 00¢0 0YR6 00EO O00EF 0OUO 1B1F 0000 1862 00U3 0151 VOUD 4A7/7 1879 Gu3l 0VOEO
0002 U0uS nudC V000 0003 V1IST 00035 0OL3 0000 SD4B 0v03 00¢9 0029 0000 00035 00C3
VUOF FFHFE 0005 00DC 00OF vOUB 0VOF 0003 0003 0000 0v0U 1E74 0000 V00O 0VOU 3Fe2

WURK SPACE bLUCK 30101
NUEQ 0003 3941 4450 4544 4954 000vL 0OULY 0000 1Bs0O 0000 0OVO 2001 0001 0017 1879
0u00 V000 0001 V033 E787 0337 000V 1879 2001 003A E787 9111 0000 1879 2001 0O0SE
£787 vlsk 0u0Q 1879 0001 004S ET87 01AS 0000 1879 0u00 0000 NOO1 2001 0003 3953
0005 U1cA 0003 ul103 0005 013A 0000 0000 0000 0000 0017 2041 4450 4544 4954 2D30
3131 5020 3035 2F30 352F 3039 3132 00vE 4144 5540 5020 434F 4DSQ 4C4dS 5445 001S
0¢0y ofES3 DFCO 0100 FFCu VOFC CHCU 0015 0001 UAUO 1981 1510 2C01 0001 0AO01 1981
1518 ¢C31 000l 0Aot 1981 1513 2CoF 0001 0A01 1981 150t OF89 3V0F 0901 0F36 B8DF3
CrCO 1510 CHR3 gou3 CBCu FFC6 7C01 EB44 FFFF 0001 0803 CHCO 1465 0001 1404 AB/0
cully AF40 145+ 9KCO FFBE ARCO 145¢ 1CFB F871 FF72 17Ft 93C0 007A 93CL0 0LSL B2CO
FrBF 0004 0587 9C80 0000 0018 CCC1 o021 0F88 9CCO 02535 8DL1 0901 GO0A2 93C0 V1F1
CFCO OOAE CHCO OEAF CBBO 0000 0000 CFCO OEAC 00Ul 0506 CBCO 1418 S5C14 0001 0S04
Q93CO 14EB 95CY 0D49 82Cu FFYA 0001 0S15 93C0 0280 93CO 02C2 935C0 v2LC 93Cu 0054
935Cy yDo7 935C0 0DSC 82Cy FFBA 0040 0503 93C0 0D6B8 935C0 036A B2CyU FFB2 0002 0503
93C0 ODLA B5CO 14AE 0000 0000 0000 0OUO 0000 0000 0000 0000 0000 0000 0000 0000
000U 00U0 0000 0000 000U 00UD 0000 0000 0000 V00O 0000 VOLO 0000 0000 0000 00VO
* * * * * * * * * * * * * * *
0000 u00C 000U 0000 0000 0000 9FCO 0041 BCCO 0048 9873 1001 0381 0032 1tFF ECC3
0002 bB76 2000 FOA6 72V 090D ABCO 0U1E2 AFCO 0104 FoAb HT7EE 3EFF 39FD 1EFF 1909
BACO. 0029 9+40 0032 OFBRb 9840 002F 1983 B45C8 001F ABU4O 00LF ACEF ECL3 AF40 0018
Q3C() 00¢8 3901 0008 BBCO FFUS 93Bs bCL6 88C0 001C OFEB 9870 2507 OF81 143A 9870
2512 OFFC 9870 2503 OFF9 9870 2502 OFF6 0003 018D 0003 0000 0000 0002 7FFF 0002
TEFE 4003 00C9 0000 16CA 0000 0003 0OCA 0003 9FCO 0028 F872 BFCO FFF9 AFdy FFF9
YBCY 007 0FR3 9CCO 0020 BB71 9853 1041 BEDY 1E01 Cb91 CFCO 0018 39uD B9S7 0902
OFF3 1CUu0 2(0NY COLD DOEE C955 09ED &8L3 3904 OFFA 8755 OFBS ABCB 0007 B84e2 FFFF
R3CH 0001 0003 0232 0003 029C 0000 0000 000b 2D4E 4FSF 4C4F 4749 4341 4C20 019A

Figure 6-4 (cont). Logical Dump: Task Group Structures

GCUS6 MOVL4VO=-L110=-05/18/1052

PAGE 0008

eYeleoeoooaaeloneceecce vavccone

eeseceselecliceecennccandansinee

R 1 N I T L

Uleeoeeeoneanssenenefoceanlacdane

cesecesedecncsessscassPRIPULL.e
eePeaebol L."ZSYSS1>5PU>CONSULE
e “2SYS512HIS ceeePecePecene
>SPD>CUNSOLE
cssesevecsssccscasesctasscscsnses

secevecccsosccccccnsscrscoccnnscon

R3: 30029
P [ST SRRV [N
deeeleaPireeeeedoneat VP ..
P R N T T
UseeoeossnsecoaaaBacaBo o uh, Y 1,
eseseloececeleceecelHeeededeoennn

on

P IR 1

eeoe9AUPEDI T eencocecace sesoeel
ceeecvedeceleeaY celececneasY oo
P T - S L
eeeXesseseelocascesess ADPEDIT=0
110=-05/05/7/0912..ADUMP COMPLETE, .
eoeSececcscsccesssscssscfoncccnse
eetlecececcarensesssncseensenbae
L] e 4

eBe ceeenceReeeBReceeeZaeelee
esesnscscovecssloccesSenanececeas
O P

J R |

N T R T

PR R A R R R I R R RN

eecs0escccsscscsevsscesescscncnne

cececcscccencecshiiHeS 0200

eesVieeeeTenesncccccscse®eFecnns

e0e0)e@e2cce@e/veneceeBeccencedas
n.P

LleeePloeeePheceecensoncascnnnns

N T S 5T

A U | PR

N I TLTT R TRy P o

L}
see

cecsrosesaclUeeeieFeceeSencennaBae

eeceeeelecesccseaes=NUTLOGICAL ..

LN

- End address of pool
- Total size of pool
- Total available space
- Maximum contiguous available space
- Number of available fragments (pieces) of pool space
Number of users
o System Symbol Table
The names and values of all symbols that have an entry in the system symbol table are
displayed. Symbols are grouped according to the bound unit(s) in which they occur.

File System Structures
The logical dump displays the location and content of the following file system
structures:

o Volume Descriptor Blocks (VDBs)
o Directory Descriptor Blocks (DDBs)
o File Descriptor Blocks (FDBs)

0 Buffer Control Blocks (BCBs)

The hierarchy of these structures is indicated by the dump as shown in Figure 6-2, which
is an abridged section of a logical dump. Each block is assigned an integer that corresponds
to the level of the block in the hierarchy. The headings of all blocks are indented according
to the depth of the block. This makes it easy to see which files belong to volume major
directories and which belong to subordinate directories.

The display of the tree of file system structures may be suppressed at run-time.

TASK GROUP STRUCTURES

The logical dump displays the location and content of the following structures as shown
by Figure 6-3, which is an abridged section of a logical dump.

Group Control Blocks (GCBs)

Task Control Blocks (TCBs) for each GCB

Indirect Request Blocks (IRBs) for each TCB
Request Blocks (Group, Task, or I/O) for each IRB
Trap Save Areas (TSAs) for each TCB

File Control Blocks (FCBs) for each GCB

Work Space Blocks for each GCB

Q00000 O0

At run-time, the task group structures for any designated task group may be displayed or
the display may be suppressed.

For the system task group, IRBs (and hence also RBs) are displayed only when the file
being processed is an external dump file; i.e., the display is suppressed when the input is
from current main memory.

Work space blocks and FCBs for the batch task group are not displayed when the batch
group is rolled out.

The display of structures for each task group is preceded by a header containing the task
group identification.

Where appropriate, the header for the task control block (TCB) contains a bound unit
name.

The header for each file control block (FCB) also contains the logical file number (LFN)
of the file.

Work space blocks may also be labelled as FCBs, TCBs, or RBs if they appear as these
structures within the same task group.

The firmware-defined fields (instruction, P-counter, I, Z, A, R3, and B3) for each trap
save area (TSA) are displayed. If the instruction is a monitor call, the function code is also
displayed.

MDUMP AND DUMP EDIT , 6/78
UTILITY PROGRAMS 6-13 CB21A

Headings for task group structures are indented to show the hierarchical relationship.

For non-system task groups, the display of the group control block (GCB) is extended to
show the group’s logical file table (LFT) and the logical resource table (LRT). The LFT and
LRT begin at the end of the GCB.

In addition, a possible context of the remaining data and address registers (R1, R2, R4,
R5, R6, R7, Bl, B2, B4, B5, B6, and B7) is displayed for each trap save area. This context,
which is extracted from the work space area of the trap save area, may not be valid in all
cases, but, in general, is correct due to internal conventions of the MOD 400 Operating
System.

DPEDIT Command

The DPEDIT command ‘loads the Dump Edit utility program. Immediately after Dump
Edit begins executing, a message is issued to the error output file giving the unique version
number in the following format: DPEDIT-nnnn-mm/dd/hhmm. The message ‘“DUMP
COMPLETE?” is issued to the error-out file immediately before the execution of Dump Edit
terminates.

FORMAT:
DPEDIT [path] [ctl_arg]

ARGUMENT DESCRIPTIONS:

path!
Pathname of the memory dump file to be printed.

ctl_arg
Control arguments; zero, one, or more of the followmg control arguments may be
entered, in any order:

{—NO_LOGICAL}
-NL
No logical dump of system control structures produced.

Default: Logical dump produced.

{-NO_PHYSICAL}

-NP
No physical dump of memory produced.
Default: Physical dump produced.

{-FROM X’awldress’}2

-FM X’address’ |,

Low-memory address (up to four hexadecimal digits for SAF and five for LAF) of
area that will appear in physical dump; must be specified in hexadecimal. This must
be a real (not a virtual) address.

Default: Absolute O.

-TO X’address’
High-memory address (up to four hexadecimal digits for SAF and five for LAF) of
area that will appear in physical dump; must be specified in hexadecimal. This must
be a real (not a virtual) address.

Default: ‘High memory address of the dump file.

{-MEMORY}1
MEM
Produces a dump of main memory. If both the path argument and this argument are
specified, the path argument is ignored.

1Either the path argument or the -MEMORY ‘control argument must be specified.
21f the -FROM control argument is used in conjunction with the -MEMORY control argument, then the address that is
specified must be a main memory location whose virtual address is the same value as its real address.

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6-14 CB21A

A iy,

Default: A dump is produced of the file specified in the path argument.

{-GROUP

-GP
Requests the logical dump to contain task group-related information for the
specified group(s) only.

Default: Task group information for all groups is included in the logical dump.

}group id [group-id] . ..

NOTE: Either the path argument or the -MEMORY control argument must be specified.

Example 1:
DPEDIT ~ DMPVOL>DUMPFILE -NL -TO X’3000°

This command loads the Dump Edit utility program and requests only a physical dump of
the first 12K locations of the specified dump file.

Example 2:
DPEDIT -MEM

This command loads the Dump Edit utility program and requests a logical and physical
dump of current main memory.

Example 3:
DPEDIT -MEM -GROUP $S $D -NP -NF

This command loads the Dump Edit utility program and requests a logical dump of only the
System and Debugger groups from current main storage. This command suppresses display
of the file management structures.

Example 4:
DPEDIT ~ DUMPER>DUMP256K

By specifying a group that does not exist, (i.e., XX) this command requests an abbreviated
logical dump consisting of only the System Summary from within the specified dump file.

Operating Procedure for Dump Edit
The following steps must be performed before the Dump Edit program can be executed.

1. Mount the disk volume containing Dump Edit.

2. 1If Dump Edit is being used to print MDUMP output, mount the disk volume that
contains the memory image obtained from the MDUMP memory dump.

3. Execute Dump Edit by specifying the DPEDIT command described previously.

DPEDIT processing can be stopped at any time by depressing the “BREAK” key. A
“**BREAK**” message appears on the user’s terminal when the processing stops. GCOS 6
command may be specified at this point. If the program interrupt command (PI) or the
unwind command (UW) is specified, the end-of-processing details are automatically handled
and control returns to the command processor with a successful subtask completion status.
If the start command (SR) is specified, DPEDIT resumes processing.

When Dump Edit is used to print MDUMP output, the address mode that was in effect for
MDUMP must be used for Dump Edit; i.e., the SAF version of DPEDIT processes SAF
memory dumps; and the LAF version processes LAF memory dumps.

MDUMP AND DUMP EDIT 6/78
UTILITY PROGRAMS 6-15 CB21A

Messages

Fatal errors terminate DPEDIT processing, return control to the command processor, and
post an unsuccessful subtask completion status. Fatal errors include logical I/O errors and
physical I/O errors as well as DPEDIT-specific errors. Fatal error messages are written to the
ERROR_OUT file by the system service, Error Handler, and are described in the System
Messages manual. For convenience, fatal error messages that are specific to DPEDIT are
summarized in Table 6-2.

TABLE 6-2. DPEDIT — SPECIFIC FATAL ERROR MESSAGES

Information : Meaning
2502 ILLEGAL NUMBER OF ARGUMENTS The number of arguments specified in the DPEDIT
command is excessive.
2503 NON-NUMERIC CHARACTER IN A non-numeric character was found in a DPEDIT
NUMERIC ARGUMENT argument where a numeric argument is required.
2507 ARGUMENT NOT RECOGNIZED An argument has been specified in the DPEDIT

command which does not conform to the
defined list of control arguments.

2512 REQUIRED ARGUMENT MISSING In certain situations a DPEDIT argument may be
required. If such a situation occurs and the argu-
ment is missing, this message is produced.

2513 ADDRESS MODE INCOMPATIBILITY The address mode (SAF or LAF) of the dump file
differs from that of the executing DPEDIT utility.
2514 DUMP FILE IS INCORRECT ‘The dump file must be a BES-200 Relative file
FILE-TYPE " with no deletable records created by the CREATE_
: - VOL (CV) utility.
2515 DUMP FILE IS INCOMPLETE The dump file, when filled by MDUMP, did not

attain a successful end-of-job condition (see
Table 6-1). The dump file is therefore incomplete.

Immediately after execution of DPEDIT begins and immediately before execution
. terminates, a message is written to the ERROR_OUT file. These messages are explained in
the description of the DPEDIT command.

Informational messages that generally reflect some condition peculiar to the data within
the dump file may be interspersed with the dump information in the USER_OUT file.
These messages are designed to facilitate analysis of the dump and are listed below in
alphabetical order. A brief explanation of each message is included.

ADDRESS POINTER IS INVALID
A virtual address contained in the dump file is invalid.
BATCH GROUP IS ROLLED OUT
The background was rolled out when the memory dump was taken.
DATA NOT READABLE
Dump Edit tried to read the contents of a nonexistent location on the dump file, or an
uncorrectable read error was encountered. If this condition occurs more than five times
within a given task group, processing is terminated.
DUPLICATE FILE CONTROL BLOCK STARTING ADDRESS
The specified file control block has already been displayed.
DUPLICATE GROUP CONTROL BLOCK STARTING ADDRESS
The specified group control block has already been displayed.
DUPLICATE TASK CONTROL BLOCK STARTING ADDRESS
The specified task control block has already been displayed.

MDUMP AND DUMP EDIT ‘ 6/78
UTILITY PROGRAMS 6-16 ‘ CB21A

AR i,

P = .

DUPLICATE WORK SPACE BLOCK
The specified work space block has already been displayed.

INPUT IS NOT A MOD400 DUMP FILE
The external dump file to be processed contains a dump of an MDT Operating System.

INSTRUCTION WHICH TRAPPED IS AN MCL AT LOCATION nnnn. FUNCTION CODE

IS nnnn.

This message gives information about the associated trap save area.

INSTRUCTION: nnnn P_ COUNTER"nnnn I':nnnn Z:nnnn A:nnnn R3:nnnn B:3nnnn
This message gives information about the associated trap save area.

INVALID WORK SPACE BLOCK POINTER
A work space block was encountered that does not begin on a 32-word multiple
boundary.

LOGICAL DUMP CAN GO NO FURTHER. PHYSICAL DUMP IS SUGGESTED.
DPEDIT has determined that some operating system structure has been overwritten.
This message can appear only during a logical dump.

NO ENTRIES
System Symbol Table is empty.

NUMBER OF ALLOCATED WORK SPACE BLOCKS EXCEEDS 60
More than 60 work space blocks have been allocated for the current group control
block.

NUMBER OF BUFFER CONTROL BLOCKS EXCEEDS 25
More than 25 buffer control blocks have been allocated for the current file descriptor
block.

NUMBER OF FILE CONTROL BLOCKS EXCEEDS 40
More than 40 file control blocks have been allocated for the current group control
block.

NUMBER OF GROUP CONTROL BLOCKS EXCEEDS 40
More than 40 group control blocks have been allocated for the current configuration.

NUMBER OF INDIRECT REQUEST BLOCKS EXCEEDS 25 -

More than 25 indirect request blocks are allocated for the current task control block.

NUMBER OF TASK GROUP CONTROL BLOCKS EXCEEDS 40
More than 40 task group control blocks have been allocated for the current group
control block.

NUMBER OF TRAP SAVE AREAS EXCEEDS 10
There are more than 10 trap save areas for the current task control block.

THIS WORK SPACE BLOCK IS A FILE CONTROL BLOCK
The specified work space block has appeared previously as a file control block in this
task group.

THIS WORK SPACE BLOCK IS A REQUEST BLOCK
The specified work space block has appeared previously as an [/O-, a task-, or a
group-request block.

THIS WORK SPACE BLOCK IS A TASK CONTROL BLOCK
The specified work space block has appeared previously as a task control block.

VIRTUAL ADDRESSING DISCONTINUITY EXISTS AT VIRTUAL ADDRESS hhhh.

DUMP WILL RESUME AT VIRTUAL ADDRESS kkkk.

The virtual address, hhhh, is invalid. The physical dump from main memory will
attempt to restart at virtual address, kkkk.

VIRTUAL ADDRESSING ERROR . . . INVALID OFFSET
A virtual address has been encountered whose offset field exceeds the size field of its
virtual space segment descriptor. '

VIRTUAL ADDRESSING ERROR . .. INVALID SEGMENT
A virtual address has been encountered whose segment field designates an invalid
virtual space segment descriptor.

MDUMP AND DUMP EDIT
UTILITY PROGRAMS . 617

6/78
CB21A

Pl

e L e

APPENDIX A
INTERPRETING AND USING
MEMORY DUMPS

Memory dumps can be obtained by using Debug or Dump Edit. It is preferable to use
dumps produced by Dump Edit; they are in edited format and are much easier to interpret
(see Section 6). _

This appendix describes significant locations on memory dumps, how to interpret the
contents of locations on memory dumps, and how to use memory dumps to perform the
following procedures:

o Finding the location in memory of your code
o Determining where a trap occurred
o Determining the state of execution of your code

A trap is a special software- or hardware-related condition that may occur during the
execution of a task. Many traps are caused by an error, but a few, such as the Monitor Call,
are not. The above procedures may have to be performed if a trap message is issued. Traps
and trap messages are described in detail in the “Trap Handling” section of the System
Services Macro Calls manual.

NOTE: In this appendix, all references to memory locations and offsets are for both SAF
and LAF modes (short-address form and long-address form, respectively), and
offsets always are in hexadecimal. LAF address and offsets are enclosed within
parentheses and indicate the two-word form.

SIGNIFICANT LOCATIONS ON MEMORY DUMPS

Table A-1 describes memory locations on the dump that it may be useful to refer to
during debugging. It is assumed that you are familiar with the data structures referenced.
Brief definitions of these data structures are contained in the glossary of the System
Concepts manual. Figure A-1 illustrates a map of systems data structures.

TABLE A-1. SIGNIFICANT LOCATIONS ON MEMORY DUMP

Memory Address Meaning

0010 (0010/0011) Head of queue of available trap save areas (TSA’s).

0018 (0018/0019) Pointer to system control block (SCB). This is the key to locating all system
data structures.

0020-0023 Level activity flags for levels O through 63. Bits ON indicate which levels are

ready to execute; the lowest of these levels is the level currently executing
(i.e., the active level). The level 63 bit always is on. The clock level bit (4)
may be on, and the Debug level bit is on if the dump resulted from a Debug

DP directive.
0052-007F Trap vectors. Each trap vector is associated with a specific trap condition and
(0024-007F) points to that trap handler’s entry address. The trap vector for trap number 1

is in location 007F (7E/7F). The trap vectors for subsequent trap numbers
are in descending, contiguous, locations; i.e., the trap vector for trap number 2
is in location 007E (7C/7D).

0080-00BF Pointers to interrupt save areas (1SA’s) for levels O through 63, respectively.
(0080-00FF) A null value means there is no dedicated task (i.e.; a driver) or nondedicated
task ready to execute on the specified level.
INTERPRETING AND USING
MEMORY DUMPS A-1 CB21

Zh—o
o
[es]
S2
=
< =
Um
-
=
R
v o
Z.
o
C
]
Z
o)
>
9]

Vicgo
8L/9

ABSOLUTE LOCATION
18, (18/19)

-_-— e e e e

IRB

NEXT TCB OF GROUP

a

{

Figure A-1. Data Structure Map

5C8 3 (<6 +7) -2 (-3/-2) -1(-1)
FCB CHAIN
MAX LF F
I N I A onien] vexesn] wrvo |
‘ LFT
GCB (+0 +1) +1(+2 +3) +4 (+5/+6) +7 (+B/+C) +8 (+D/+E)
I | | I \
1
GCB -1(-1) LRT(0/+1)
L, | { lomes] [{
% 1
GCB l RCT 1
-1(-2/-1) RCT 0
CHANNEL
{ (IF DEVICE
i
“ FIRST TCB
OF GROUP
<12¢1C -1B) -D (+5/+4) -C (-13/-14) -A (-10/A) -9 (-E -D) -8(-C/-B) -7 (-A/-9) -6 (-8) -1.(-2/-1) 13A ————e
[T [L [| |l] J] fe=]
|)\
TSA +3 {+4) +6 (+8/+9)
. P
N EEE .
TCB
3uUd +5 (+8/+9) +6 (+A/+B) SAME LEVEL NEXT TSA IF NEEDED
L | Lo | (L {
|
l IRB +1(+2)
AR
L ROOT-NAME
10RB OK TRB

I

8 bk,

Locations Relative to the System Control Block or Group Control Block

SCB+3 (+6)
Pointer to first group control block (GCB)
GCB+0 (+0/+1)
Pointer to next GCB in linked list of GCB’s.
GCB+1 (+2)
Task group identification (8S is the system group; $B is the batch group). The system
will convert your user identification to non-ASCII representation.
GCB+8 (+D/+E)
Pointer to LFNO of logical file table (LFT).
GCB+7 (+B/+0) :
Pointer to LRNO of task group’s logical resource table (LRT).
GCB+4 (+5/+6)
Pointer to first task control block (TCB) of the group.
LRT-1 (-1)
Number of entries in the LRT.
LRT+0 (+0/+1)
Pointer to LRN 0’s resource control table (RCT); the RCT’s for subsequent LRN’s are

in contiguous, ascending locations (LRT+!1 points to LRN 1’s RCT). A null entry
indicates that the associated LRN is not used.

NOTE: Within an RCT, location 0 is the channel number of the resource if it
is an input/output device.

RCT-1 (-2/-1)
Pointer to task control block (TCB) for that resource. -

Locations Relative to the Task Control Block (TCB) Pointer for the Desired Priority Level

TCB-6 (-8)
Hardware-assigned priority level of the task.
TCB-12 (-1C/-1B)
Pointer to current bound unit BUD.
TCB-A (-10/-A)
Pointer to end of queue of requests for the task.
TCB-9 (-E/-D)
Pointer to start of queue of requests for the task (e.g., I/O requests for a driver).
TCB-C (-14/-13)
Pointer to the group control block (GCB) for the group to which this task belongs.
TCB-D (-15/-14)
Link to the queue of this group’s TCB’s.
TCB-7 (-A/-9)
Pointer to last TCB on that priority level.
TCB-8 (-C/-B) ,
Link to other task control blocks (TCB’s) of the same or different task groups assigned
to the same level.

INTERPRETING AND USING 6/78
MEMORY DUMPS A3 CB21A

TCB-1 (-2/-1)
Pointer to the queue of trap save areas (TSA’s) for the task. (Trap save areas are
described in detail in the ‘“Trap Handling” section of the System Service Macro Calls
manual.) If a TSA is present, the task is executing system code or a user trap; if no
TSA is present, check the program counter in the interrupt save area (ISA) portion of
the TCB to determine the tasks’s progress.

TCB+0 .
Device word, including channel number and level number. This entry is null if the task
does not drive a device.

TCB+n
Hardware ISA.

INTERPRETING THE CONTENTS OF A DPEDIT LOGICAL DUMP

This section addresses dump interpretation when the DPEDIT dump format is used.

Finding the Location in Memory of Your Code

Locate your group-id and the TCB for your bound unit (BU). The first six characters of
the BU filename are printed beside each TCB of the group.

The address at TCB-11(-1B/1A) is the start address of the BU. Calculate relative zero of
the BU by subtracting the relative start address on its link map from this address.

Determining the State of Execution of Your Code at the Time of the Dump

Dump analysis begins with gathering all relevant information: the dump itself, the console
hard-copy (f any) of the activity of a particular group (or groups), copies of the
CLM__USER and >START _UP.E files, plus any link maps.

These materials are required to understand the environment of the system represented in
the dump.

Three conditions are discussed below:

1. Halt at level 2
2. User level active at the time of dump
3. No level active at the time of dump, except level 63.

Halt at Level 2

Examination of the level activity indicators at locations 20-23 confirms that level 2 is
active. The system will force this condition to occur if either TSA or IRB resources are
exhausted (see CLM SYS directive). Note that once level 2 becomes active, other lesser
priority levels may activate but will not receive CPU time and should be ignored.

The D1 register contains an ASCII IR (4952) when IRB exhaustion has occurred.
Location 10 (10/11) is zero when TSA exhaustion has occurred.

If this symptom persists after augmenting the number of TSA/IRBs available to the
system, it is possible that either your code or the system is improperly altering the TSA/IRB
chains. To verify this, take a memory dump immediately after system startup. This allows
easy location of the TSA chains from location 10 (10/11) and the IRB chains from the first
location of the SCB. Compare this dump to one taken after all TSA/IRBs are supposedly
exhausted to verify that they really are. If the system is suspect, supply both dumps to
Honeywell if you have a maintenance contract. TSAs can also be exhausted by a recursive
trap. A recursive trap uses up all available TSAs. Adding TSAs simply allows for greater
recursion. In this instance, the system is suspect and dumps should be supplied to
Honeywell.

INTERPRETING AND USING o 6/78
MEMORY DUMPS A4 ~ CB21A.

i,

ik,

User Level Active at the Time of Dump

This often indicates a halt or software loop condition on the active level. When a level is
active, the pointer to the TCB associated with the code running is in the interrupt vector for
that level. Match the TCB pointer with the TCBs listed for the groups present in the system.
When a level is active, use the P-counter in the ISA portion of the TCB to locate the
software running at the last time this level’s context was saved. Since the system clock is
active on level 4, the P-counter in the ISA for this level is usually helpful. It is also helpful to
record the contents of R/B registers and EO when entering STEP mode at the control panel
prior to taking the dump.

No Level Active at the Time of Dump, Except for Level 63

This condition usually indicates a system failure in that all tasks have been suspended and
none are being reactivated. In this situation it is helpful to determine the conditions existing
at this time. To do this, examine all TCBs in groups other than $S group. If the TCB under
examination has not experienced a default trap condition, it may or may not have an
associated TSA. If a TSA is shown, DPEDIT will display the monitor call function code if
the trapped instruction is 0001 (monitor call generic). The function may be decoded using
the numerical listing included in this appendix.

When the system is called for a monitor function, only those registers that must be
preserved by the system are saved in the TSA workspace. The saved registers are: B7, B6,
B5, B1, RS, R4, M1, beginning at TSA location +9 (+E//F). The trap save area (TSA) is
illustrated below:

SAF LAF
0] TSAL jon

1 ! 2
2 R3 3
+3] INSTR | 4
4 z 5

5 A 6/7
+6 P 8/9
7 B3 A/B

8 RSU C/D

94 WORK 1 g/
SPACE

DETERMINING WHERE A TRAP PROCESSED BY THE SYSTEM DEFAULT HANDLER
OCCURRED IN YOUR CODE

If a trap message occurs on the operator terminal from the system default trap handler;
i.e., (id) BUname (0303zz) level, the TCB of the referenced task group may be located using
the bound unit name (BUname). In this situation, unless the TCB is subsequently
re-requested, the last two areas associated with the TCB are related to the system handling
of the trap. The first TSA following the TCB was used by the system to forceably terminate
the task request in progress when the trap occurred. Your information is found in the next
TSA associated with the TCB. It contains the hardware information described in the
previous section of this appendix, followed by a complete set of registers current when the
trap occurred. The order of the registers, beginning at location +9 (+E/F) of the TSA, is: B7,

~B6, B5, B4, B2, Bl, I, R7, R6, R5, R4, R2, R1, M1 (B3, R3, I are already in the TSA).
When the TCB has been re-requested, only this second TSA remains attached to the TCB.

INTERPRETING AND USING 6/78
MEMORY DUMPS A-5 CB21A

FINDING THE LOCATION IN MEMORY OF YOUR CODE

The three activities above may be performed without aid of the DPEDIT logical dump
presentation. The examination of TCB contents is the same once the TCB is located. Use the
following procedure to find the TCBs for your group.

1. Go to location 0018 (18/19); this location contains a pointer to the system control
block (SCB).

2. Go to location SCB+3 (+6); this location contains a pointer to the first group control
block (GCB); the first word links to other GCB’s in the system. Determine the group id
at GCB+1 (+2/+3).

3. Go to location GCB+4 (+5/+6) to determine the location of the first task control block
(TCB) of the task group.

4. Go to location TCB-12 (-1D/-1C) to determine the location of your current bound unit
descriptor (BUD).

5. Go to location BUD+G (+A/+B). This location is the relocation factor of the bound
unit; your code should start at this location.

6. To confirm that your code does start at location BUD+6 (+A/+B), go to location
BUD+5 (+8/+9); this location points to the location of the bound unit attribute section
(BAS).

7. Go to location BAS+0 to determine the bound unit’s root name; this name should be
the same file name (i.e., the same leading six characters) that you specified in the name
argument of the LINKER command.

8. If you did not find the root name for which you were looking, go to location TCB-D
(-16/-15); this location points to the next TCB of the task group. Follow through the
chain of TCB’s until you find your task’s task control block.

INTERPRETING THE MONITOR CALL NUMBER ON MEMORY DUMPS

Table A-2 is ordered numerically to facilitate identification of a monitor call function
code, and provides a brief description of each Executive monitor call.

INTERPRETING AND USING - 6/78
MEMORY DUMPS A-6 , ' . CB21A

,"“v

Monitor
Call Number
0100
0101
0102
0103
0104
0105
0106
0107
0108
0200
0202
0203
0204
0205
0207
0208
0209
0402
0403
0404
0405
0406
0500
0501
0502
0503
0504
0505
0506
0507
0508
0600
0601
0602
0603
0604
0700
0701
0703
0705
0706
0707

INTERPRETING AND USING
MEMORY DUMPS

Function Description

Wait for operation complete
Wait on request list

Test completion status
Terminate request start address not modified
Terminate request $B4 has new start address
Dequeue IRB

Post IRB

Return request block address
Locate user RCT

Request I/0 transfer

Disable device

Reset device attention

Enable device

Start error logging

Exchange error log

Get error logging information for this device
End error logging

Get memory

Get available memory

Return memory

Return partial block of memory
Status memory pool '
Request clock

Cancel clock request

Suspend for interval

Suspend until time

External date/time - convert to
External time - convert to

Get date/time

Internal date/time - convert to
Set system date/time

Request semaphore

Cancel semaphore request
Reserve resource

Release semaphore

Define semaphore

Execute overlay

Load overlay

Status overlay

Reserve area and execute overlay
Release overlay area

Release, wait on RB and recall

TABLE A-2. SUMMARY OF EXECUTIVE MONITOR CALLS

Macro Call Name

SWAIT
SWAITL
STEST
STRMRQ
$TRMRQ

$RBADD

$RQIO
$DSDV
SRDVAT
SENDV
SELST
SELEX
SELCT
SELEND
SGMEM
SGMEM
SRMEM
SRMEM
$STMP
$RQCL
$CNCRQ
$SUSPN
$SUSPN
SEXTDT
SEXTIM
$GDTM
SINDTM

$RQSM
SCNSRQ
SRSVSM
$RLSM
SDESM
SOVEXC
SOVLD
SOVST
SOVRSV
$OVRSL
$OVRCL

6/78
CB21A

TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
Call Number

070A
0700
0800
0801
0802
0803
0804
0805
0806
0900
0901
0A00
0902
0903
0AO1
0A02
0A04
0BOO
0BO1
0B02
0CO00
0Co2
0Co03
0C04
0CO0S5
0C06
0Co8
0D00
0DO03
0D04
0DO05
0DO07
0DO08
0D09
0DOA
0D0B
0EOO
OF00
0F01
1010
1015

INTERPRETING AND USING
MEMORY DUMPS

Function Description

Create overlay area

Unload overlay

User input file - read

User 6utput file - write

Command infile (read command-in file)
Error output file - write to

New user input file - redefine

New user output file - redefine

New command input - reset

Operator information message - display
Operator response message - display
Trap handler connect

Console message suppression - on
Console message suppression - off
Enable user trap

Disable user trap

Trap handler query

Read external switches

Set external switches

Clear external switches

Request task

Create task; same bound unit as issuing
Create task; different bound unit than issuing
Delete task

Spawn task; same bound unit as issuing
Spawn task; different bound unit than issuing
Command line - process synchronously
Request group

Create group

Delete group

Spawn group

Abort group request

Suspend group

Activate group

Abort group

New process

Request batch execution

Report error condition

Report error condition

Associate file

Disassociate file

A-8

Macro Call Name

SCROAT
$OVUN
$USIN
$USoUT
$CIN
SEROUT
SNUIN
SNUOUT

$OPMSG
$OPRSP
$TRPHD
$CMSUP
$CMSUP
SENTRP
SDSTRP
$TRPHD
$RDSW
$SETSW
$CLRSW
$RQTSK
$CRTSK
$CRTSK
$DLTSK
$SPTSK
$SPTSK
SCMDLN
SRQGRP
$CRGRP
SDLGRP
SSPGRP
$ABGRQ
$SUSPG
SACTVG
$ABGRP
$NPROC
$RQBAT
SRPTER
SRPTER
SASFIL
$DSFIL

6/78
CB21A

-«

LY

TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
Call Number

1020
1025
1030
1035
1040
1050
1051
1055
1056
1057
1060
1061
1062
1063
1064
1065
10A0
10AS
10BO
10C0
10D0
1110
1111
1112
1113
1114
1115
1116
1120
1121
1122
1123
1124
1125
1126
1130
1131
1140
1141
1150
1200
1201

INTERPRETING AND USING
MEMORY DUMPS

Function Description

Get file

Remove file

Create file

Release file

Rename file/directory

Open file (preserve)

Open file (renew)

Close file (normal)

Close file (leave)

Close file (unload)

Get file information

Test file I/O

Test file for input

Test file for output

Wait for file input

Wait for file output

Create directory

Release directory

Change working directory

Get working directory

Expand pathname

Read record

Read record (with key)

Read record (position = key)
Read record (position > key)
Read record (position = key)
Read record (position forward)
Read record (position backward)
Write record

Write record (with key)

Write record (position = key)
Write record (position > key)
Write record (position = key)
Write record (position forward)
Write record (position backward)
Delete record

Delete record (with key)
Rewrite record

Rewrite record (with key)
Unlock record

Read block (normal)

Read block (position to tape mark)

Macro Call Name

$GTFIL
SRMFIL
SCRFIL
SRLFIL
$RNFIL
SOPFIL
SOPFIL
SCLFIL
SCLFIL .
SCLFIL
$GIFIL
$TSFIL
STIFIL
$TOFIL
SWIFIL
SWOFIL
$CRDIR
$RLDIR
SCWDIR
$GWDIR
$XPATH
SRDREC
$RDREC
$RDREC
SRDREC
SRDREC
SRDREC
SRDREC
SWRREC
SWRREC
SWRREC
SWRREC
SWRREC
SWRREC
SWRREC
SDLREC
SDLREC
SRWREC
SRWREC
SULREC
SRDBLK
SRDBLK

CB21

TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor
Call Number
1202
1203
1204
1210
1211
1220
130A
1400
1401
1402
1403
1404
1406
140B
140C
1501
1502
1503
1504
1505
1506
1507
1509
1702
1703
1704
1B0O0

INTERPRETING AND USING
MEMORY DUMPS

Function Description

Read block (position to beginning of tape)
Read block (position on blocks)
Read block (position to end of tape)
Write block (normal)

Write block (write to tape mark)
Wait block

Set terminal characteristics

User identification

Task group person identification
Account identifier

Task group mode identification
System identification

Bound unit name

Home directory name

Task group input file name

Accept message group

Initiate message group

Receive

Terminate message group

Send

Cancel message enclosure

Count message group

Wait on message group

Cancel request for terminal

Request terminal

Release terminal

Set dial

Clock request block template - create
Clock request block template - offsets
Create file parameter block structure - offsets
File information block - create

Get file information file attributes
block - offsets

Get file information, key descriptors
block - offsets

Get file information, parameter structure
block - offsets

Get file, parameter structure block - offsets
Input/Output request block template - create

Input/Output request block template -
offsets

A-10

Macro Call Name

$RDBLK
$RDBLK
$RDBLK
$WRBLK
$WRBLK
SWTBLK
$STTY
$USRID
$PERID
$ACTID
$MODID
$SYSID
$BUID
$HDIR
$TGIN
SMACPT
SMINIT
SMRECV
SMTMG
$MSEND
$MCME
SMCMG
SMWAIT
$CANRQ
SRQTML
SRLTML
$SDL
$CRB
$CRBD
$CRPSB
$FIB
$GIFAB

$GIKDB
$GIPSB

$GTPSB
$IORB
$IORBD

6/78.
CB21A

1!‘\‘

TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS

Monitor

Call Number Function Description

Parameter structure block - generate
Request block template

Return sequence - establish
Semaphore request block - create

-- Semaphore request block template - offsets
- File information block - offsets

Task request block - create

Template task request block - offsets
Wait list - generate

INTERPRETING AND USING
MEMORY DUMPS A-11

Macro Call Name

$PRBLK
S$RBD
$RETRN
$SRB
$SRBD
STFIB
$TRB
$TRBD
$WLIST |

6/78
CB21A

i,

/

———————— - — ————— —— — — — — — — CUT ALONG LIN.

——— - — - — — —— — — — . —— — ——— — — —— — ——— —— —— C— S—

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

SERIES 60 (LEVEL 6) GCOS 6 MOD 400
TITLE | pROGRAM EXECUTION AND CHECKOUT
ADDENDUM A

ERRORS IN PUBLICATION

ORDER NO.

CB21A,REV.0

DATED

JUNE 1978

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

as required. If you require a written reply, check here and furnish complete mailing address below.

D Your comments will be promptly investigated by appropriate technical personnel and action will be taken D

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

Nr?—.—————

~

FOLD ALONG LINE

FOLD ALONG LINE

- "'""; I ity ——__'_'_"—"A_—'“—_'"————_‘/_"'“T'—__—_—_““__"1_"—“"———'—' CUT ALONG LI

