
SUBJECT

MULTICS REPORT WRITER
REFERENCE M~~UAL

Description of the Multics Report Writer

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

GB63-00 January 1985

Hone~ell

PREFACE

This manual describes the Multics Report Writer which was developed from the LINUS
report writer. The Multics Report Writer provides the capabilities to utilize formatted data
extracted from sources other than Multics Relational Data Store data bases. The only user-visible
change is the default page length which was changed from 66 to 0, resulting in unpaginated reports
by default.

This manual presupposes some basic knowledge of the Multics system, and does not attempt
to provide information covered in either of the following two manuals: NEW USERS'
INTRODUCTION TO MULTICS - PART I and PART II, Order No. CH24 and CH25
respectively.

This manual contains references to the MULTICS PROGRAMMER'S REFERENCE
MANUAL (Order No. AG91) -- referred to in this text as "Programmer's Reference Manual",
the MULTICS SUBROUTINES and I/O t~ODULES <Order No. AG93) -- referred to as
"Subroutines Manual", and the MULTICS LOGICAL INQUIRY and UPDATE SYSTEM
REFERENCE MANUAL (Order No. AZ49) -- referred to as "LINUS Manual".

The manual is divided into several sections which are outlined below.

Sections 1 and 2
contains overview and tutorial information which should be read by anyone intending to
use the Report Writer directly, to produce formatted reports.

Section 3
contains overview and tutorial information on the subroutine interface to the Report
Writer. This section should be read by anyone who intends to write a Multics subsystem
that includes the Report Writer.

Section 4
contains descriptions of Report Writer requests. This section should be read by anyone
intending to use the Report Writer.

Section 5
contains descriptions of Report Writer subroutine entrypoints.

Section 6
contains descriptions of Table Manager subroutine entrypoints.

Section 7
contains a PL/I example that uses the subroutine interface to the Report Writer.
Sections 5 and 6 should be read by anyone who intends to write subsystems that include
the Report Writer.

The information and specifications in this document are subject to change without notice.
This document contains information about Honeywell products or services that may not
be available outside the United States. Consult your Honeywell Marketing Representative.

©Ho~eywell Information Systems Inc., 1985 File No.: lL13 GB63-00

Section 1

Section 2

Section 3

Report Writer System
System Overview

Basic Operation . . .
Formatting Options ..
Requests

Default Report Elements
Page Layout and Titles
Separators
Folding and Width . .
Alignment

Optional Report Elements
Editing
Headers/Footers
Column Titles .
Active Requests .
Page Breaks . . .
Excluding Columns
Ordering of Columns
Grouping
Outlining
Totals and Subtotals
Counts and Subcounts
Separators and Delimiters
Embedded Control Lines and Hyphenation

Full Page Formatting ...

Report Writer Tutorial
General Report Options-l
Specific Column Options .
General Report Options-2

Special Editing of a Report .
Saving a Report and Resetting Options
Restoring a Saved Report

General Column Options . . .

Subroutine Overview and Tutorial
Creating An Invocation . .
Data Table Retrieval

Data Tables
Defining A Table
Row Information Structure

Subsystem Table Manager Procedure
The Row Value Buffer
create_table Entrypoint

iii

CONTENTS

1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-8
1-8
i-8
1-8
1-8
1-9
1-9

2-1
2-4
2-6
2-16
2-24
2-27
2-28
2-30

3-1
3-1
3-3
3-6
3-6
3-6
3-7
3-7
3-8

GB63-o0

Section 4

Section 5

Section 6

Section 7

Index

Figure 3-1

get_row Entrypoint ..
delete_table Entrypoint
get_query Entrypoint

Data Conversions
Report Preparation
Report Formatting
Destroying An Invocation

Report Writer Request Descriptions
column_value, clv
display, di
display _builtins, dib
list_format_options, lsfo ..
restore_f ormat_options, rsf 0 •

save_format_options, svfo
set_format_options, sfo

Report Writer Subroutine Description
report_writer_

convert_and_move_row
create_invocation
define_columns
destroy _invocation ...
set_report_ wri ter _inf 0 _ptr
set_ table_manager

Table Manager Subroutine Description
table_manager$crea te_tab Ie
table_manager &delete_table
table_manager$get_query
table_manager$get_row .

Display Employee PL/1 Example
Main Procedure
Table Manager

create_table entry
delete_table entry
get_row entry ...

Internal Procedures ..
create_invocation
destroy_invocation
initialize

Declarations

Creating an Invocation

iv

•• *

3-8
3-9
3-9
3-10
3-11
3-11
3-11

4-1
4-2
4-3
4-8
4-9
4-13
4-13
4-15

5-1
5-2
5-2
5-3
5-4
5-7
5-7
5-8

6-1
6-2
6-2
6-3
6-4

7-1
7-1
7-2
7-2
7-2
7-2
7-4
7-4
7-6
7-7
7-8

i-I

I LLUSTRAT IONS

3-2

GB63-00

Figure 3-2
Figure 3-3
Figure 3-4

Selecting A Table
Displaying the Data
Destroying an Invocation

v

3-4
3-5
3-12

GB63-OO

SECTION 1

REPORT WRITER SYSTEM

The Multics Report Writer (MRW) system is a generalized report writing facility that is
included in a number of application subsystems. Utilizing this facility a user can:

1. create formatted reports

2. change and examine report layouts

3. save report layouts

4. restore report layouts

The MRW provides an end-user-oriented subsystem request interface, and a programmer
subroutine interface. Facilities are provided for application subsystems to use the
terminal-oriented end-user interface to control the report writing process entirely from a
program, or to use a combination of the two interfaces.

SYSTEM OVERVIEW

The MRW produces formatted reports from data that is viewed as a table. Through this
facility the user can control:

• page width and length

• page breaks

• page, group, and row headers/footers

• counts, subcounts, totals, and subtotals

• hyphenation of overlength values

• reordering and excluding selected columns

• duplicate suppression

• column alignment, editing, folding, separators, titles, and widths

• sorting on one or more columns

• directing the report to the terminal, a file, or an io switch

• horizontal and vertical scrolling through the report

The MR W is designed to serve the needs of the casual and experienced user. A casual user can
have a default report layout provided by the system, while an experienced user can precisely
define the report layout.

1-1 GB63-o0

Basic Operation

The MRW retrieves rows of information from a table and produces a formatted output
report. The rows retrieved are specified through a mechanism provided by the subsystem which
uses the report writer (e.g., in the LINUS subsystem, the input_query and translate_query
requests are used to select the table of interest).

Formatting Options

A formatted report is produced under the control of "formatting options." Formatting
options consist of a name (for identity) and a set value. An example of a formatting option is:

-page_width 80

where -page_width is the name of this option and "80" is the set value associated with the name.
Formatting options which deal with columns require an "option identifier" to uniquely identify
the column. For example, to set the width of a column, an identifier is needed to determine which
column the width is to be set for. Identifiers can be given as the number of the column in the
query, the name of the column, or a star name which is matched against the column names.
Examples of formatting options with identifiers are:

-width salary 10
-folding 3 fill
-alignment ** center

The formatting options are grouped into the following classifications:

general report options
control the overall characteristics of a report. They are assigned default values when the
application subsystem is first invoked. but can be changed by the user at any time. These
values are retained for the entire session. General report options consist of:

-de 1 imi ter
-format_document_controls
-hyphenation
-page_footer_value
-page_header_value
-page_length
-page_width
- tit i e_l i ne
-truncation

general column options
control the overail characteristics of the columns, such as examining the value of certain
columns to determine if a page break is to be generated. They are assigned default values
for every new query. but can be changed by the user at any time. These values are
retained only during the current query (i.e., until the next new query is generated).
General column optiohS consist of:

-column_order
-count
-exclude
-group
-group_footer_trigger
-group_footer_value
-group_header_trigger

1-2 GB63-00

=out 1 i ne
-page_break
-row_footer_value
-row_header_value
-subcount
-subtotal
-total

specific column options
control the characteristics of one specific column. They are assigned default values for
every new query, but can be changed by the user at any time. These values are also
retained only during the current query (i.e., until the next new query). These formatting
options require an identifier to determine which column the particular option applies to.
Specific column options consist of:

-al ignment
-editing
-folding
-separator
-title
-width

The values of formatting options are listed and set through the list_format_options and
set_format_options requests. These requests take control arguments which are the names of the
formatting options. For example, to determine the current page width, enter:

1 ist_format_options -page_width

and to change page width, enter:

set_format_options -page_width 71

A concept of "active" options is employed to make the system easier to use and to provide
flexibility. For example, if a novice user does not set page headers, then no reference is made to
them. If a user defines a page header, it then becomes active and appears in the output of the
various reporting requests. If a user decides to eliminate a previously set page header, that is, by
invoking the "set_format_options -page_header_value -default", it reverts back to the
"inactive" state. This concept reduces the number of options listed when the user invokes the
list_format_options request with no control arguments. The page_header_value is not listed if
set to its default value as previously described.

Specific column options are active at all times, whereas general column options and general
report options are active only when their value is set different from the original default value.
For example, if the page_width is assigned its default value by the system, or is reverted to by the
user, it is not active. The moment that it is changed to a value different from its default, it is
considered active.

Requests

A number of requests are available for use in the creation of reports. Following is a brief
summary of the report requests (refer to Section 4 for a detailed discussion of all requests):

column_value
returns the value of the specified column for the current row, previous row, or the next
row.

1-3 GB63-00

display
retrieves selected data, creates a report, and displays the information or writes it to a file
or an io switch.

display _builtins
returns the current values for requested built-ins.

list_f ormat_options
displays the names and values of formatting options.

restore_f ormat_options
restores saved report layouts.

save_format_options
saves current values of formatting options for future use.

set_f ormat_ options
changes/sets report formatting options.

DEFAULT REPORT ELEMENTS

Page Layout and Titles

A page consists of a title line followed by as many rows as fit on the remainder of the page.
The default title line is made up of one or more column titles. one column title for each column on
the page. The column title is the column name as selected through the application subsystem. The
row is made up of one or more columns, all concatenated together to form the row. The page
width is 79 character positions and the page length is 66 lines, with 3 of these lines, at the top and
bottom, reserved for margins.

Separators

A separator is provided for each column value and each column title. The default separator is
two blanks placed between each pair of column titles and column values. The last column title or
column value of a row has no separator.

Folding and Width

If when formatting a report, report elements do not fit within the defined width. '!folding"
takes place. Folding can occur in two different ways: "truncation" and "filling". Truncation
means that the value is truncated to the defined width and the last displayable character is
replaced by the truncation character(s) (normally "*"). Filling means that portions of the value
are moved down to the next line(s), allowing the newly formatted value to appear within its
defined width. The format_document_ subroutine (described in the Subroutines Manual) is used
to provide filling of overlength values, and format document controls can optionally be supplied
to provide greater control over the filling action. Filling takes place when a value is wider than its
display width; when the value contains vertical tabs characters, horizontal tab characters,
backspace characters, or newline characters; or when the alignment mode is set to "both". When
column values do not have editing requests associated with them, the value is trimmed first (i.e.,
before the test for filling is done). Character and bit data types have trailing blanks trimmed, and
all other data types have leading and trailing blanks trimmed.

1-4 GB63-00

The default width for a column value is derived from the columns selected through the
appiication subsystem. The width chosen is the exact number of characters needed to contain the
value after it is converted from the subsystems internal data type. to character format. via PL/I
conversion rules. \vnen the default width is used. the column value always fits, but this width can
be reduced by the user. The reduction of the column width can cause folding to occur. Column
folding can be set to "fill" or "truncate" and proceeds as described above. The default for column
values is "fill."

The concatenation of all column values and separators (used to determine row value) can
cause row folding to occur. This happens when the resulting row is wider than the defined page
width. In this case. columns which appear on or to the right of the right page boundary are moved
down to the next line(s). The corresponding titles are moved so that they appear directly over the
columns. Columns whose widths are greater than the page width are automatically reduced to the
page width.

Alignment

The alignment for column values is derived from the data type of the column, as defined by
the application subsystem that uses the MRW. Character and bit strings default to
"left-alignment." decimal data with a non-zero scale defaults to "decimal-point-alignment," and
all other data types default to "right-alignment." The user can set the alignment of individual
columns to left, right, center. both, or decimal-point-alignment.

The alignment for a column title is center (i.e .• the title is centered within its defined width).

The alignment for a title line or a row is left (i.e., the title line or row is placed against the left
page boundary).

OPTIONAL REPORT ELEMENTS

A number of optional features (for greater control over report appearance) are available for
more sophisticated report formatting. These optional features are:

• editing

• headers/footers

• column titles

• active requests

• page breaks

• excluding columns

• ordering of columns

• grouping

• outlining

• totals and subtotals

• counts and subcounts

1-5 GB63-OO

• separators and delimiters

• embedded control lines and hyphenation

Editing

Editing can be specified for any column value, and is provided by subsystem active requests
and Multics active functions. The report column_value request is used to pass the value to other
active requests, and the returned value is then folded and aligned as described above (see "Folding
and Alignment"). The MRW does not strip a level of quotes from the editing request; the first
time quote-stripping occurs is when ssu_$evaluate_active_string subsystem utilities procedure is
invoked. Editing of column values is not provided by default.

Headers/Footers

A header or footer is a character string provided by the user. The character string can
contain active requests, be made up of more than one "portion," and consist of more than one
line. A delimiter character is used to separate the different portions of a header or footer. The
delimiter character default is "!", but can be changed by the user. The header /footer can consist
of a left, right, and center page portion.

Evaluation of a header/footer is a two-part operation that proceeds in the following
manner: first, the header /footer is divided into its portions based on the delimiter character; and
second, active requests are evaluated. Quote-stripping is not done by the MRW during these two
operations~ the first time quote-stripping occurs is when the ssu_$evaluate_active_string
subsystem utilities procedure is invoked. The MRW display_builtins active request can be used to
obtain built-ins like the current page number in a header /footer, and the MRW column_value
active request can be used t<? obtain the value of a column.

A header or footer can be made up of a left, right, and center page portion. These portions
are determined by the delimiter characters. The portions are aligned to the left, right, and center
of the page. Folding on headers/footers proceeds independently for each part. Portions of a
header or footer (left, right, or center) with zero length are redistributed to other portions whose
lengths are not zero. For example, if the page header contained only a center portion as:

! !Sample Center Portion!!

the text would be centered on the page. but would have the full page width available for the text.
Similarly, a left portion or right portion only is aligned to the left or right of the page, but has the
full page width available for placement of its text. Two exceptions to this action are when the
header or footer has a left, right, and center portion, and the left or right portion has a zero
length. For example:

!left part!center part!!

or

"!center part!right part!

In both cases the left or right part of the page is unavailable for placement of text (i.e., the space is
not redistributed to the other two portions).

If redistribution of the available page width is not desired, the placement of a single blank
into a portion prevents the redistribution from taking place because the portion has a length
greater than zero. For example:

1-6 GB63-00

reenter Part!

Headers and footers can be defined for a page, group, and a row. The first row that appears
on the page is available for the page header, and the last row that appears on the page is available
for the page footer. The first row of a group is available for the group header, and the last row of
a group is available for the group footer. The current row is available for use in the row header
and row footer.

Column Titles

A column title is a character string that is placed above its associated column. The display
width available for the title is inherited from its parent column, along with the folding action. If
the title is exactly the same number of characters as the display width. it is placed without any
folding or alignment action. If the title is shorter, it is centered within the display width. If the
title is wider, it is truncated or fined, depending on its parent column's setting.

Active Requests

Active requests are used in headers/footers to substitute values into the header /footer at the
time the report is being formatted. For example, the Multics date active function can be used to
provide the current date as part of the header or footer.

Active requests are also used to provide editing for column values which become part of the
row value. For example, the subsystem execute request and the Multics picture active function
can be used to provide editing features such as dollar signs and commas.

The user specifies subsystem active requests through the construct" [name STR] fI, where
name is the name of the desired active request and S,{R is any argument(s) required by the active
request. Multics active functions are invoked via the subsystems [execute] active request. They
are specified by the user throug..h the construct [execute name STR] , where name is the name of
the Multics active function and STR is any argument(s) required by the active function. The
active function/request is evaluated and its returned value is substituted into the original string
before folding and alignment take place.

Page Breaks

Page breaks can be set to occur when the value of one or more columns change. The
occurrence of a new value in the column(s) being examined closes out the current page and a new
page is started. The new row which caused the page break is not made available until the start of
the next page. This allows the page footer to access the correct row (the last row on that page).

Excluding Columns

Columns selected through the subsystem can be excluded from the row value. Through use of
the [column_value] active request, the column value can be obtained for placement elsewhere on
the page. For example, a user may exclude the display of a column that is being used to determine
when to generate page breaks, and place the value of the column in the page header with the
column_value active request.

1-7 GB63-00

Ordering of Columns

Columns appear on the page in the order they were selected through the subsystem. This
order can be changed by the user without having to go back and select a different order through
the subsystem.

Grouping

One or more columns can be used to define a "group" of rows based on the values of these
columns. The named columns make up a major to minor hierarchy and can be used in conjunction
with the outlining. page break, subtotal, and subcount features.

Outlining

One or more columns can have duplicate values suppressed. If the value of the current
column is the same as the previous value, then its display is suppressed unless it is the first line on a
new page.

If any named column is a member of the group of columns defined via the grouping feature,
it and any columns more major in the hierarchy are outlined. A change in value of anyone
column displays all values of columns lower in the hierarchy in addition to the changed column.
An exception is the first line on a new page, when duplicate values are never suppressed.

Totals and Subtotals

Totals and subtotals can be specified for columns. The totals and subtotals are placed directly
under the associated columns.

A column subtotal is generated when the value of the column(s) the subtotal is associated with
changes. The subtotal can be associated with one or more columns. Several subtotals can be
specified. each associated with different columns. Subtotals can be "reset" or "running." A
column total is generated after the last input row is processed.

The width. alignment, folding, and editing request for a total or subtotal is inherited from its
parent column. During the generation of atotal or subtotal, the column_value request returns the
value of the total or subtotal, rather than the column value. When the parent column is excluded
from the page, the total or subtotal associated with it is also excluded. An exception to this rule is
when all of the columns have been excluded. They are provided in this case to produce reports
containing some combination of subcounts, subtotals, counts, and totals only.

Counts and Subcounts

Counts and subcounts can be specified for columns, and function as described above under
"Totals and Subtotals." A count or subcount counts occurrences of values, whereas a total or
subtotal accumulates values.

Separators and Delimiters

The separators used to separate column values and column titles from each other can be set
to any string of displayable characters by the user. The delimiter character used to delimit the
different portions of a header ffooter can also be set by the user.

1-8 GB63-00

Embedded Control Lines and Hyphenation

The MRW uses the format_document_ subroutine (refer to the Subroutines Manual) to
"fill" overlength text. A user can embed format document controllines in text to achieve greater
control of the fining action. A user can also specify that hyphenation of words should be
attempted when filling overlength text.

FULL PAGE FORMATTING

The MRW system formats a full page before any output is provided. It operates in this
fashion because it is sometimes necessary to back up on a page and defer report elements to the
next page so that associated report elements remain on the same page. A full page with all report
elements present is outlined in the following diagram.

Formatted Page

PAGE HEADER

TITLE BLOCK

DETAIL BLOCK_l ~ expanded in diagram below

DETAIL BLOCK_N

PAGE FOOTER

Detail Block

GROUP HEADER

ROW HEADER

ROW VALUE

SUBTOTAL BLOCK

I SUBCOUNT BLOCK

TOTAL BLOCK

COUNT BLOCK

ROW FOOTER

GROUP FOOTER

1-9 GB63-o0

All of the defined report elements are optional, but at least one must be present or a
zero-length page results. A zero-length page is treated as an error and the report formatting is
terminated.

Backing up on a page is accomplished through a detection and prevention method, and
proceeds as follows:

1. The page header, if present, is processed first. If the page header does not fit on the
page, it is treated as an error and the report formatting is terminated. The formatted
page header can fill the complete page if no other report elements are defined.

2. The title line, if present, is processed next. If the title line does not fit on the page, it is
treated as an error and the report formatting is terminated. The formatted title block
can fill the complete page if no other report elements are defined.

3. The detail block is processed next. A detail block can be made up of a group header. a
row header, a row value, a subtotal block, a subcount block, a total block, a count block,
a row footer, and a group footer. These different elements are treated as one unit and
must all appear on one page or the detail block is deferred to the next page. If any of
these elements are defined, then at least one detail block must fit on the page or it is
treated as an error and the report formatting is terminated. The formatted detail block
can' fill the complete page if no other report elements are defined.

a. The group header, if present, is processed first. If the current row is the first row of
the report, or if the column associated with the -group_header_trigger option has
just changed with the current row, the header is generated. If the group header does
not fit on the page, the detail block is deferred to the next page, provided one detail
block is already placed on the page.

b. The row header, if present, is processed next. If the row header does not fit on the
page, the detail block is deferred to the next page, provided one detail block is
already placed on the page.

c. The row value, if present, is processed next. If the row value does not fit on the
page, the detail block is deferred to the next page, provided one detail block is
already placed on the page. The editing requests associated with any columns are
evaluated before an attempt is made to place the row value on the page. If the row
value is deferred to the next page for any reason, the editing requests associated with
the columns are evaluated again when the row value is processed on the next page.
This is necessary to ensure that obtained values, such as the page_number display
built-in are correct. For users who are doing calculations based on accumulations,
this could produce incorrect calculations. That is, the value of a row could be
accumulated more than once. The previously _processed_row display built-in
provides a mechanism to ensure this does not happen. If the value of this built-in is
true, a user doing accumulations would not add in the current row value as it was
already added in when the editing requests for the row were processed the first time.

d. The row subtotal, if present, is processed next. If subtotal generation is necessary,
and the row subtotal does not fit on the page, the detail block is deferred to the next
page, provided one detail block is already placed on the page. The editing requests
associated with any subtotals are only evaluated when subtotal generation is done,
and proceed as described above under "row value" editing requests evaluation. The
previously _processed_row display built-in also functions as described above.

1-10 GB63-o0

e. The row subcount, if present, is processed next It proceeds as described above
under row subtotal (item d).

f. The row total. if present. is processed next. If total generation is necessary, and the
row total does not fit on the page, the detail block is deferred to the next page,
provided one detail block is already placed on the page. The editing requests
associated with any totals are only evaluated when total generation is done, and
proceed as described above under "row value" editing requests evaluation. The
previously _processed_row display built-in also functions as described above.

g. The row count, if present, is processed next. It proceeds as described above under
row subtotal (item d).

h. The row footer, if present, is processed next If the row footer does not fit on the
page, the detail block is deferred to the next page, provided one detail block is
already placed on the page.

i. The group footer, if present, is processed last. If the current row is the last row of
the report, or the column associated with the -group_footer_trigger option is about
to change with the next row, the footer is generated. If the group footer does not fit
on the page, the detail block is deferred to the next page, provided one detail block
is already placed on the page.

4. The page footer, if present, is processed last. If the page footer does not fit on the page,
the last detail block on the page is removed and the page footer is processed again.
Active requests found in the footer are evaluated again to ensure correct processing of
display built-ins like current_row_number. If the page footer still does not fit, another
detail block is removed from the page and the footer is evaluated again. This process
continues until the footer fits, or there are no more detail blocks to remove from the
page. The first detail block that appears on the page is never removed, and if its removal
is necessary to provide a fit for the page footer, it is treated as an error and report
formatting is terminated.

1-11 GB63-00

SECTION 2

REPORT WRITER TUTORIAL

This section consists of report writer examples organized into a sample user session. An
application subsystem called "display_employee" was constructed for these examples, and a
complete listing of it can be found in Section 6. User-typed lines and lines displayed by the
system are shown together in the example. To differentiate between these lines, an exclamation
mark (0 precedes user-typed text. This is done only to distinquish user text from
system-generated text; it is not to be included as part of the input line. Also, a "carriage return"
(moving the display mechanism to the first column of the next line, called a newline or NL on
Multics) is implied at the end of every user-typed line. Line numbers are also included in the
examples for purposes of commentary immediately following the example.

Note: Because of page constraints in this document, certain character strings of data used
in examples may not match exactly the information as seen on a user's terminal.
That is, the character strings in examples may be folded or multiple-lined, whereas
the actual interactive (live) session may display the same information on a single line
or multiple lines with different line breaks than shown here. Additionally, some
blank lines have been removed in the examples for space consideration. In most
cases this can be recognized by the reader. For example:

55 display_employee: display -page 1

59 (system display)

Only one space is used to separate the lines, but the line numbers to the left of the
lines imply there are actually three spaces here.

In other cases, lines have purposely been skipped or eliminateo ecause of changes
made while developing the examples.

Following is a list of request and control argument abbreviations used in the tutorial
examples. They are included here for the purpose of saving the reader from referring to other
sections of the manual if a term is unfamiliar. The list includes only those abbreviations used
within this section.

REQUEST ABBREVIATIONS

clv

dib
e
ec
1 s
lsfo
pr
q
rsfo

2-1

d:splay
display_builtins
execute
exec corn
list-(Multics command level)
list format options
print (Multlcs command level)
quit
restore_format_options

GB63-OO

This page intentionaliy left blank.

2-2 GB63-00

sfo
svfo
w

set_format_options
save_format_options
write

CONTROL ARGUMENT ABBREVIATIONS

-al -alignment
-co -column order
-dm -del imi ter
-ed -editing
-ex -exclude
-fdc -format_document_controls
-fold -folding
-gft -group~footer_trigger
-gfv -group_footer_value
-ght -group_header_trigger
-ghv -group_header_value
-gr -group
-hph -hyphenation
-kr -keep_retrieval
-krp -keep_report
-nr -new_retrieval
-of -output_file
-or -old_retrieval
-orp -old_report
-out -outl ine
-pb -page_break
=pfv -page_footer_value
-pg -page
-phv -page_header_value
-p1 -page_length
-pw -page_width
-rfv -row_footer_value
-rhv -row_header_value
-rs -reset
-sep -separator
-stt -subtotal
-tc -truncation
-td -temp_dir
-t1 -title_l ine
-tt -total
-ttl -title
-wid -width

2-3 GB63-00

GENERAL REPORT OPTIONS-l

1 display_employee

5 display_employee: lsfo -dm -fdc -hph -pfv -phv -pl -pw -tl -tc

-delimiter

-format_document_controls

-hyphenation

-page_footer_value

-page_header_value

-page_length

-page_width

- tit 1 e _ 1 i ne

-truncation

7 display_employee: sfo -pw

8 display_employee: lsfo -pw

-page_ width

9 display_employee: sfo -pw

10 display_employee: lsfo -pw

-page_ width

0

II! If

"off"

"off"

"0"

"79"

"on"
11*"

"0"

-default

"79"

2-4 GB63-00

line 1
Invoke display _employee.

Hne 5
List the names and values of specified report formatting options. All of the
displayed values in this case are "default" values. These options are the "general
report options." They remain in effect across the entire subsystem session. For
example, if the page width is changed, it remains at this new value until it is explicitly
changed back, or until the subsystem session is terminated.

-dm n!"

-fdc "off"

-hyphenation

-pfv "n

-phv 'ttl

-pI "0"

-pw "79"

-tl I·on"

-tc "*"

lines 7-10

'·off"

character used to delimit portions of header/footer.

used when filling over length character strings. If "off."
ignore embedded controls.

used when filling overlength character strings. If "off," do
not attempt to hyphenate words.

footer placed at bottom of each page.

header placed at top of each page.

length of each formatted page (number of lines).

width of each formatted page (number of character positions).

prin t the title line.

character that indicates truncation has occurred.

Set page width, list page width, reset page width, and list page width once again.

2-5 GB63-o0

SPECIFIC COLUMN OPTIONS

The following example looks at "specific column options." These options are always listed
and are assigned new default values each time a new set of columns are selected.

1 display_employee:
6 -alignment age

-alignment city
-alignment fami ly
-a 1 ignment job
-alignment name
-alignment salary
-alignment sex
-alignment state

14 -editing age
-editing city
-editing fam i 1 Y

-editing job
-editing name
-editing salary
-editing sex
-editing state

22 -folding age
-folding city
-folding fami ly
-folding job
-folding name
-folding salary
-folding sex
-folding state

30 -separator age
-separator city
-separator fami ly
-separator job
-separator name
-separator salary
-separator sex
-separator state

38 -title age
-title city
-title fami 1y
-title job
-title name
-title salary
-title sex
-title state

46 -width age
-width city
-width fami iy
-width job
-width name
-width salary

lsfo
"right"
"left"
"left"
"right"
"left"
"decimal 8"
"1 eft"
"left"

II f ill "
"f i 1 1 "

"f i 11 "

"f i 11"

"f i 11 "
tlf; 11"
IIf i 11 "

"f ill"

"age"
"city"
"fami 1y"
"job"
"name"
"salary"
"sex"
"state"
"5"
"13"

" 1 "

"5"

"10"

"10"

2-6 GB63-QO

-width sex " 1"

S3 ~width state 11"'"
"

line 1
List the names and values of the column options.

lines 6-13
System display -- the alignment option specifies how a value is to be aligned within
its display width.

• Character and bit strings default. to left-alignment.

• Decimal data with a non-zero scale defaults to
decimal-poin t-alignmen t.

• All other data types default to right-alignment.

lines 14-21
System display -- the editing option provides additional editing for column values.
(Default is no editing)

lines 22-29
System display -- the folding option specifies the action taken when the column
value exceeds the display width for the column. (Default is fill)

lines 30-37
System display -- the separator option specifies the character string that separates
the specified column fiom the following column. (Default is two blanks)

lines 38-45
System display -- the title option specifies the character string to be placed at the
top of the page above the column. (Default is the column name)

lines 46-53
System display -- the width option specifies the display width of the detail line of
the column. (Default is the number of characters needed after conversion to
character format)

2-7 GB63-00

The following examples look at a report utilizing the available specific column options.

55 display_employee: sfo -pl 66; di -pg 1

59 name job salary age s f st City

e a at

x m e

y

66 abel 1 14555.01 36 m s ak juneau

67 abel 1 2 13000.01 55 f m az phoenix

68 abernathy 3 12500.01 61 m d ca fresno

69 abodoura 5 12900.01 61 m m ca sacramento

70 aboe 4 10201.01 41 f s ca los angeles

71 abraham 6 15000.01 25 f d ca san diego

72 abrahms 7 14300.01 35 m s ca san francisco

(45 data 1 i nes)

118 baker 12000.10 71 m s i 1 springfield

line 55
Set page length to 66 and display page 1. Data is retrieved and formatted by default
parameters.

Note: Multiple report writer requests can be included in a single request line
by utilizing the request termination character (;) between requests.
Any number of requests may be included on a line using this format.

lines 59-118
System display

2-8 GB63-OO

120 display_employee: lsfo -wid state
-width state "2"

123 display_employee: sfo -wid state 5

125 display_employee: di -pg 1

129 name job salary age s f state city

e a
x m

y

136 abel 1 14555.01 36 m s ak juneau
137 abel 1 2 13000.01 55 f m az phoenix
138 abernathy 3 12500.01 61 m d ca fresno
139 abodoura 5 12900.01 61 m m ca sacramento
140 aboe 4 10201.01 41 f s ca los angeles
141 abraham 6 15000.01 25 f d ca san diego
142 abrahms 7 14300.01 35 m s ca san francisco

. (45 data lines)

188 baker 12000.10 71 m s i 1 springfield

line 120
List the width value of the "state" column.

lines 123-125
Set the width value for state column to "5" from its default value of "2", and display
page 1.

lines 129-188
System display -- note the difference in the state column header on line 129 from
that displayed on lines 59-61. .

2-9 GB63-o0

190 display_employee: lsfo -wid 8
-width city "13"

193 display_employee: sfo -wid 8 10
195 display_employee: di -pg 1

199 name

206 abel

207 abel 1

208 abernathy

209 abodoura
210 aboe
211
212 abraham
213 abrahms
2~4

job

1

2

3

5

4

6

7

(37 data 1 ines)

252
253
254
255
256
257
258

arnold

ashman

ashworth
aSin
auburn

line 190

22

23

24

1

:2

salary

14555.01

13000.01

12500.01

12900.01

10201.01

15000.01
14300.01

18210.01

12400.01

9301 .01
15100.01
13101.01

age s f state
e a

x m

y

36 m s ak
55 f m az
61 m d ca
61 m m ca
41 f s ca

25 f d ca
35 m s ca

53 f d pa

52 m s tn

61 f m tx
51 m d tx
70 f s vt

List the width value of column 8 (city)

lines 193-195

city

juneau
phoenix
fresno
sacramento
los
angeles
san diego
san
fra:1cisco

philadelph
;a
chattanoog
a
austin
dallas
rutland

Set the width value of the 8th column to "10" from its default vaiue of ~;i3", and
display page 1.

lines 199-258
System display -- note the difference under the city header (lines 210-214) from
that displayed on lines 140-142. Also notice the not-so-pleasant breakup of lines
252-255. This is an example of column "filling."

2-10 GB63-00

260 display_employee: sfo -wid 8 -default;lsfo -wid name

-width name "10"

263 display_employee: sfo -wid name 7 -fold name truncate
265 display_employee: di -pg 1

269 name job salary age s f state city

e a
x m

y

277 abell 2 13000.01 55 f m az phoenix

278 aberna* 3 12500.01 61 m d ca fresno

279 abodou* 5 12900.01 61 m m ca sacramento

280 aboe 4 10201.01 41 f s ca los angeles

(47 data lines)

328 baker 12000.10 71 m s il springfield

line 260
Set the width value of column 8 (city) to its default value (13) and list the width value
of the name column.

lines 263-265
Set the width value of the name column to "7", truncate the data listed under the
name column. and display page 1.

lines 269-279
System display -- note the difference under name header (lines 278-279) from that
displayed on lines 208-209.

2-11 GB63-00

330 sfo -sep ** " I "
332 display_employee: di -pg 1

336 name job salary age s I f I state city
e I a I
x I m I

I I
I 1 I
I y I

343 abel 1 I 14555.01 36 I m I 5 I ak juneau
344 abell 2 I 13000.01 55 I f I m I az phoenix
345 aberna* 3 I 12500.01 61 I m I d I ca fresno
346 abodou* 5 I 12900.01 61 I m I m I ca sacramento
347 aboe 4 I 10201 .01 41 I f I 5 I ca los angeles

(47 data lines)

395 baker 1 I 12000.10 I 71 I m I 5 I i 1 I springfield

lines 330-332
Set the column separator value to "<SP> I <SP>" from its default value of <SP><SP>
(two blanks), and d~splay page 1.

lines 336-395
System display -- note that the columns have shifted to the right because the
separator was increased to three character positions. Previous example separators
were only two character positions.

2-12 GB63-00

397 display_employee: sfo -a1 age left -ed salary -prompt

398 Enter -editing salary.

399 [e pic $zz,zz9v.99 [clv salary]]
IIAA ! "vv

402 display_employee: di -pg 1

406 name job salary age I s I f I state city

I e I a I
I x I m I
I I I
I I 1 I
I I y I

413 abel 1 $14,555.01 36 I m I s I ak juneau
abel 1 2 I $13,000.01 55 I f I m I az phoenix I

aberna'" 3 I $12,500.01 61 I m I d I ca fresno I
abodou* 5 I $12,900.01 61 I m I m I ca sacramento

(48 data lines)

464 baker 1 I $12,000.10 I 71 I m I s I i 1 I springfield

line 397
Set alignment value for age column to itleft" from its default value of "right," and
invoke the editing option with prompt.

lines 399-402
Edit request, termination, and display page 1.

lines 406-464
System display -- note that the information under the age column is now aligned to
the left of the column and the data under the salary column contains the "$" and ","
characters.

2-13 GB63-OO

466 display_employee: lsfo -ttl **
-title age "age"
-title city "city"
-title fami ly "fam i 1 y"
-title job " job"
-title name "name"
-title salary "salary"
-title sex "sex"
-title state "state"

476 display_employee: sfo -al age -default;sfo -ttl (1 2 3 4 567 8) -prompt
477 Enter -title name.
478 NAME
479

480 Enter -title job.
481 JOB

482

483 Enter -title salary.
484 SALARY
485

486 Enter -title age.
487 AGE
488

489 Enter -title sex.
490 SEX
491

492 Enter -title family.
493 FAMILY
494
495 Enter -title state.
496 STATE
497

498 Enter -title City.
499 CITY
500

502 display_employee: di -pg

506 NAME JOB SALARY

1

abel 1 $14,555.01
abell 2 $13,000.01
aberna* 3 $12,500.01

(49 data 1 i nes)

565 baker 1 I $12,000.10

2-14

AGE

36
55
61

71

I S I F STATE CITY
I E I A

I X I M

I I I

I I L

I I Y

I m s I ak juneau

I f m I az phoenix

I m d I ca fresno

m I s I i 1 springfield

GB63-00

line 466
List the title values of all columns.

lines 476=502
Set the title value for all columns to new values (in this case, all have been changed
from lowercase to uppercase), and display page 1.

lines 506-565
System display -- note that the column header values on line 506 are different from
that displayed on line 406.

2-15 GB63-Q0

GENERAL REPORT OPTIONS-2

The following examples look at the "general report options" and are an extension to the
example shown above under "General Report Options-I."

1 display_employee: sfo -pl 26

3 display_employee: di -pg 1

7 NAME JOB SALARY AGE I S I F I STATE CITY

I E I A I
I X I M I
I I I I
I I L I
I I y I

abel 1 I $14,555.01 36 I m I s I ak juneau

abel 1 2 I $13,000.01 55 I f I m I az phoenix

aberna* 3 I $12,500.01 61 I m I d I ca fresno

(9 data 1 ; nes)

27 agee 14 I $30,900.01 I 70 I m I s I hi I honolulu

lines 1-3
Set the page length value to "26" from its previously set value of "66" (see line 55
above), and display page 1.

lines 7-27
System display -- note that the report length has decreased. There are now 20 text
lines and three "margin lines" at the top and at the bottom of the page. When the
report is sent to a file (for later printing), these six margin lines are put in the report
by the line printer software. This produces the same page format. whether viewed at
a terminal or on hardcopy.

2-16 GB63-00

29 display_employee: sfo -phv -prompt

30 Enter -page_header_value.

31 ![e date]!Sample Report![e time]!

32 ~ : ! :

33

35 display_employee: di -pg 1

39 04/29/83 Sample Report

NAME JOB SALARY AGE I S I F I STATE CITY

abel

abell

aberna*

1 I $14,555.01

2 I $13,000.01
3 I $12.500.01

(7 da ta 1 i nes)

58 adkins 11 I $20.700.01 I

line 29

I E I A I
I X I M I

I I I

36 I m
55 I f

61 I m

I
I

L I
Y I

s I ak

m I az
dl ca

75 I m I m I fl

Set the page header vaiue when prompted by the system.

line 30
System display -- prompt

lines 31-35

juneau

phoenix

fresno

I key west

Set page header to contents of lines 31-32 (two header lines), terminate, and display
page 1.

lines 39-58
System display -- note that a page header (line 39) is now included as part of the
report. This two-line page header reduces the page content of the report (i.e., the
report now consists of 18 data lines whereas the previous example contained 20
lines). The page header fills the entire page width, but the column values do not. If
the page width is set to zero, the display request calculates the page width to be an
exact fit (Le., contains ali of the column values and separators).

10.26

2-17 GB63-Q0

60 display_employee: sfo -pw 0

62 display_employee: di -pg 1

66 04/29/83 Sample Report

NAME JOB SALARY AGE S

E
X

abel 1 I $14,555.01 36 m

abel 1 2 I $13,000.01 55 f

aberna* 3 I $12,500.01 61 m

(7 data lines)

I F

I A

I M

I I

I L

I Y

I s

I m

I d

I
I
I
I
I
I

I
I
I

STATE

ak

az

ca

CITY

juneau

phoenix

fresno

10:26

85 adkins 11 I $20,700.01 I 75 I m I m I fl I key west

lines 60-62
Set the page width value to "0" from its default of "79," and display page 1.

lines 66,85
System display -- note that the page header is now centered over the columns.
Setting the page width to zero has one disadvantage: when set to some positive
integer and a column width exceeds the page width, that column width is reduced to
the page width. For example, if the page width is set to 80 and the width for a
column is set. to 1024, the column width is reduced by the display request to 80. The
reduction of a column display width does not take place when the page width is set to
zero.

2-18 GB63-o0

87 display_employee: sfo -pfv -prompt

88 Enter -page_footer_value.

89 !!! !

90 ! i- Page [dib page_numberj -! !

91

93 display_employee: di -pg 1

97 04/29/83 Sample Report 10:26

NAME JOB SALARY AGE S I F I STATE CITY

E I A I
X I M I

I I
I L I
I y I

abel 1 I $14,555.01 36 I m I s I ak juneau

abell 2 I $13,000.01 55 I f I m I az phoenix

aberna* 3 I $12,500.01 61 I m I d I ca fresno

abodou* 5 , $12,900.01 61 I m I m I ca sacramento

aboe 4 I $10,201 .01 41 I f I s I ca los angeles

abraham 6 I $15,000.01 25 I f I d I ca san diego

abrahms 7 I $14,300.01 35 ! m I s I ca san francisco

acee 8 I $12,700.01 34 , f , m , co denver
114 aeord 9 I $10,500.01 41 I m I d I ct hartford

116 - Page 1 -

line 87
Set the page footer value when prompted by the system.

line 88
System display -- prompt

lines 89-93
Set the page footer to contents of lines 89-90 (two footer lines). terminate. and
display page 1.

lines 97-116
System display -- note that a page footer (line 116) is now included as part of the
report. This two-tine page footer reduces the page content of the report by another
two lines (now 16 lines of data between header and footer).

2-19 GB63-OO

118 display_employee: sfo -pl 66;di -pg 1

122 04/29/83 Sample Report 10:26

NAME JOB SALARY AGE 1 S 1 F 1 STATE CITY

I E 1 A I
I X I M I
I 1 I I
I I L I
I I y I

abel 1 I $14.555.01 36 I m I s I ak 1 juneau

abell 2 I $13.000.01 55 I f I m I az .1 phoenix

aberna* 3 I $12.500.01 61 I m 1 d I ca I fresno

(45 data lines)

179 azer 5 I $12.600.01 44 I m I 5 I va I norfork

181 - Page 1 -

line 118
Set the page length to 66 lines from its previous setting of "26" (see line 1 of this
example set).

lines 122-181
System display -- note that the page now consists of 66 lines (3 blank margin lines at
top and bottom and 60 lines of report).

2-20 GB63-00

183 display_employee: sfo -tc <MORE>;di -pg 1

187 04/29/83 Sample Report 10:26

189 NAME JOB SALARY AGE I S I F STATE CITY

I E I A

I X I M

I I !

I i L

194 I I Y

abel 1 I $14,555.01 36 I m I s ak juneau
abell 2 i $13,000.01 55 I f I m az phoenix

198 a<MORE> 3 I $12,500.01 61 I m I d ca fresno
199 a<MORE> 5 I $12,900.01 61 I m I m ca sacramento

aboe 4 I $10,201.01 41 I f I s ca los angeles

(43 data lines)

244 azer 5 I $12,600.01 44 I m I s I va I norfork

246 - Page 1 -

line 183
Set the truncation value to "<MORE>" from its previous default value of "*," and
display page L Refer to line 263 in the "Specific Colurnn Options" eX~'Ilple (above)
where the width value of the name column was set to "7" and the folding option. with
truncation (Default = *), was turned on for the name column.

lines 187-246
System display -- note the different truncation of the name column values (lines
198-199) from that displayed in the earlier example identified above (lines 278-279).

2-21 GB63-OO

This page intentionally left blank.

2-22 GB63-00

248 display~employee: sfo -tl off;di -pg 3

252 04/29/83 Sample Report 10:26

254 c<MORE> 3 I $12,501 .01 76 I m I m I ca san francisco
cummins 4 I $10,100.01 78 I f I d I co denver
cutchin 5 I $12,600.01 62 I m I s I ct hartford

(52 data lines)

309 goodwyn I 15 I $12,400.01 39 I f I d I ct I hartford

311 - Page 3 -

313 display_employee: sfo -tl on

line 248
Set the title line value to "off" from its previous default value of "on," and this time
display page 3. Turning the title line off inhibits the column header or title display
from that displayed in the previous example (lines 189-194).

line 313
Set the title line value to "on." This restores the display of column header or title
lines.

2-23 GB63-00

Special Editing of a Report

The following example shows how to utilize a user-defined exec_com and interact with the
editing request.

1 display_employee: sfo -wid sex 6 -ed sex "[ec sex_lookup [clv sexl]"
3 display_employee: .. ted
4 ! a

5 &version 2
6 ! &trace off
7 &if &[e equal m &1]
8 &then &return male
9 &else &return female

10 \f
11 w sex_lookup.display_employee
12 q

14 display_employee: di -pg 1

18 04/29/83 Sample Report 10:26

20 NAME JOB SALARY

27 abel 1 I $14,555.01

28 abel 1 2 I $13,000.01
a<MORE> 3 I $12,500.01

(45 data 1; nes)

75 azer 5 I $12,600.01

77

AGE SEX

36 male
55 female
61 male

44 I male

- Page 1 -

2-24

I F

I A

I M

I I

I L

I y

I s

I m
I d

I s

STATE

ak
az
ca

va

CITY

juneau
phoenix
fresno

I norfork

GB63-00

line 1
Set the width of the sex column to "6" from its previous default value of "1," and
prepare for special editing of the sex column data.

lines 3-12
Invoke the ted editor, append the following exec_com data (lines 5-9) into the ted
buffer, terminate append mode, write the buffer to permanent storage, and quit the
ted editor.

line 14
Display page 1.

lines 18-77
System display -- note the change in width of the sex column (line 20) from that
displayed in the previous example (line 189) and the change of data by the exec_com
(m = male and f = female).

2-25 GB63-OO

This page intentionally left blank.

2-26 GB63-QO

Saving a Report and Resetting Options

The following example shows how to save a report after it is in the desired format.
Additionally, the example shows how to reset all options and revert the report back to its original
formal.

1
2

5

64

line 1

line 2

display_employee: svfo EXAMPLE-1.fo.display~employee;sfo -rs
display_employee: sfo -pl 66;di -pg 1

name job salary age s f st city
e a at
x m e

y

abel 1 14555.01 36 m s ak juneau
abell 2 13000.01 55 f m az phoenix
abernathy 3 12500.01 61 m d ca fresno
abodoura 5 12900.01 61 m m ca sacramento
aboe 4 10201.01 41 f s ca los angeles
abraham 6 15000.01 25 f d ca san diego

(46 data 1 i nes)

baker 12000.10 71 m s ; 1 springfield

Save the current values of format options as a subsystem exec_com
(EXAMPLE-lofo.display _employee) which can be restored later with the
restore_format_options request. Then reset all options to their default values.

Set page_length (-pI) to 66 lines, and display page 1.

lines 5-64
System display -- note that the report has reverted back to its original format (i.e .• it
is now the same as the first example in this sample user session).

At this point you may wish to terminate the display_employee session by entering:

65 display_employee: q
66 (Multics ready message)

2-27 GB63-00

Restoring a Saved Report

The report saved in the previous example may be recalled at will. Assuming you want to have
the report printed, then the following sequence of events must be set up:

3 ! display_employee

4 display_employee: rsfo EXAMPLE-1

5 display_employee: di -nr -pg 1

9 04/29/83 Sample Report 10:26

NAME JOB SALARY AGE SEX I F I STATE CITY

I A I
I M I
I I I
I L I
I Y I

abel 1 I $14,555.01 36 male s I ak juneau
abell 2 I $13,000.01 55 female m I az phoenix
a<MORE> 3 I $12.500.01 61 male d I ca fresno
a<MORE> 5 I $12,900.01 61 male m I ca sacramento
aboe 4 i $10,201.01 41 female s i ca ios angeles

(43 data 1 i nes)

azer 5 I $12,600.01 44 I male s I va norfork

69 - Page ~ -

71 display_employee: di -of example-1

2-28 GB63-00

lines 3-4
Ser up for restoring the saved format options.

line 5
Display page 1 of the report as a verification (i.e., is this the desired report?).

lines 9-69
System display -- note that the report is restored to its original condition (Le.,
restored to the same format as that shown in the example under "Special Editing of a
Report" above).

line 71
Write the complete formatted report to permanent storage in the user's working
directory with pathname of "example-I".

The full report (example-I), along with the saved format options segment
(EXAMPLE-l.fo.display_employee) now resides in the user's working directory and may be
dprinted or retained in permanent storage at the user's discretion.

2-29 GB63-OO

GENERAL COLUMN OPTIONS

The following examples look at the "general column options. n These options remain in effect
only for the duration of the current set of columns. Every time a new set of columns is selected,
new default values are assigned. The options are listed (through use of the list_format_options
request) when their value is different from the default. or when asked for by name.

1 display_employee: lsfo -co

2 -column_order "name job salary age sex family state city"

4 ! display_employee: sfo -co 8 7 1 2 3 4 5 6;di -pg 1

8 04/29/83

CITY

juneau
phoenix
fresno

STATE

ak

az

ca

(45 data lines)

norfork I va

67

line 1

Sample Report

NAME

abel

abel 1

a<MORE>

I azer

JOB SALARY

1 I $14,555.01

2 I $13,000.01
3 I $12,500.01

5 I $12,600.01 I

- Page 1 -

List the current names and order of the report columns.

line 4
Reorder the sequence of report columns, and display page 1.

lines 8-67

AGE SEX

10:28

I F

I A
I M
I I

I L
I Y

36 rna 1 e I s

55 female I m
61 male I d

44 I male I s

System display -- note that the column order has been changed from that displayed
in the previous example.

2-30 GB63-o0

This page intentionally left blank.

2-32 GB63-00

74 display_employee: lsfo -ex
75 -exclude

77 display_employee: sfo -ex age job;di -pg 1

81 04/29/83 Sample Report

STATE CITY NAME SALARY

ak juneau abel $14,555.01
az phoenix abell $13,000.01
ca fresno a<MORE> $12,500.01

(45 data lines)

10:31

SEX I F I

I A
I M I

I I

I L

I y

male I s
female I m
male I d

va I norfork I azer $12,600.01 I male I s

140 - Page 1 -

line 74
List columns currently excluded from the report.

line 75
System display -- the response is "", meaning that no columns are currently
excluded.

line 77
Exclude the age and job columns, and display page 1.

lines 81 ~ 140
System display -- note that the age and job columns have been excluded from the
report (i.e., the report now consists of six columns of data instead of the eight
previously included).

142 display_employee: sfo -ex "";lsfo -ex
143 -exclude

Execution of line 142 restores the age and job columns previously excluded by execution of line
77. Line 143 is the system display indicating that no columns are currently excluded.

2-33 GB63-00

The next few examples look at the "group" option which is used in conjunction with other
requests. This option is used to define a "group" of rows based on the content of one or more
columns.

145 display_employee: lsfo -gr
146 -group

148 display_employee: sfo -gr state city sex;lsfo -out
149 -outl ine

151 display_employee: sfo -out sex;di -sort state city sex -pg 1 ,2

155 04/29/83 Sample Report 10:33

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I y

ak juneau bambry 10 I $11 ,501 .01 66 female I d
gaskins 6 I $14,700.01 31 I s
justin 2 I $12.000.01 78 I m

(16 data 1 i nes)

az phoenix abell 2 I $13,000.01 55 female I m
c<MORE> 22 I $18,300.01 38 I d
june 18 I $10,900.01 73 I s

(12 data 1 i nes)

tucson monaco 20 I $12.300.01 30 female I d
nevitte 15 I $12.300.01 77 I s
pauley 10 I $11,600.01 56 , m

201 n<MORE> 5 I $12,400.01 57 male I m
ordeman 1 I $15,200.01 21 i d

ca fresno bane 13 I $15,200.01 50 female I m

(6 data 1 ; nes)

a<MORE> 3 I $12,500.01 61 male I d
c<MORE> 23 I $12,400.01 53 I s
jupiter 19 I $ 4,100.01 47 I m

214 - Page 1 -

2-34 GB63-00

This ends the first page of the report (refer to line 151 that set up a two-page display). The second
page of the report immediately follows the commentary describing the setup for page 1.

line 145
List the columns currently set for grouping purposes.

line 146
System display -- no current grouping set.

line 148
Set grouping for columns (state, city, and sex), and list the columns currently set as
candidates for duplicate suppression.

line 149
System display -- no current outline set.

line 151
Set the outline column value to "sex." The outline option is used to suppress
duplicate columns. Outlining is done when the value of a column is the same for the
current row as it is on the previous row. Outlining is never done when it is the first
row of a new page. The example sets outlining for the sex column. The sex column is
the most minor column in the group and therefore an columns more major have
outlining done also. The second request on the line invokes display (with sort) of
pages 1 and 2. First the data has to be sorted so that use of this option can be further
described in later examples.

2-35 GB63-00

This page intentionally left blank.

2-36 GB63-00

The following example is page 2 of the report invoked by the second request on line 15l.

04/29/83 Sample Report 10:33

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I
I L

I y

ca fresno leeland 14 I $32,800.01 77 male I d
m<MORE> 9 ! $10,200.01 32 I 5

mcclung 5 I $13,100.01 71 I m
m<MORE> 1 I $14,100.01 26 I d
monger 21 I $12,600.01 61 I 5

los angeles aboe 4 I $10,201.01 41 female I 5

(37 data 1 i nes)

san diego abraham 6 I $15,000.01 25 female I d
c<MORE> 2 I $13,000.01 44 I 5

kang 22 I $19,201.01 23 I m
levy 18 I $10,800.01 66 I d
m<MORE> 13 I $14,800.01 71 1 5

mccrary 8 I $13,000.01 25 I m

- Page 2 -

2-37 GB63-00

Sorting is done completely within the report writer. The values must all be retrieved from
the subsystem before sorting can be done. When display is invoked without control arguments,
the system defaults to a new retrieve on each invocation. The next two examples show how this
retrieve can be kept and then recalled.

216 display_employee: di -sort state city sex -kr -pg 2

220 04/29/83 Sample Report 10:34

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

ca fresno leeland 14 $32,800.01 77 male I d
m<MORE> 9 I $10,200.01 32 I s I

mcclung 5 I $13,100.01 71 I m
m<MORE> 1 I $14,100.01 26 I d

monger- 21 I $12,600.01 01
I s I I

234 los angeles aboe 4 I $10,201.01 41 female I s

(37 data 1; nes)

san diego abraham 6 $15,000.01 25 female I d
c<MORE> 2 $13,000.01 44 I s
kang 22 $19,201.01 23 I m
levy 18 $10,800.01 66 I d

m<MORE> 13 $14,800.01 71 I s
mccrary 8 $13,000.01 25 I m I

279 - Page 2 -

2-38 GB63-OO

line 216
Sort the state. city. and sex columns; then display page 2. In addition, keep the
results of the retrieve.

lines 220-279
System display.

The sorted data is now retained for future use (see -kr on line 216). Future display requests may
now re-call the kept data (i.e., the amount of system time required after execution of line 216
until the report is displayed can be minimized in future displays).

281 display_employee: di -kr -or -pg 2

The display results (provided by execution of line 281) would be an exact copy of that provided in
lines 220-279 above, except that the time required to produce the report is less.

2-39 GB63-00

Outlining can also be done on columns which are not a member of the group. For example:

283 ! display_employee: lsfo -out
-outline "sex"

286 display_employee: sfo -out sex fam; 1 y
288 display_employee: di -kr -or -pg 1,2

292 04/29/83 Sample Report 10:36

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I y

ak juneau bambry 10 I $11 ,501 .01 66 female I d
gaskins 6 I $14,700.01 31 I s
justin 2 I $12,000.01 78 I m

(16 data 1 i nes)

az phoenix abell 2 I $13,000.01 55 female I m
c<MORE> 22 I $18,300.01 38 I d
june 18 I $10,900.01 73 I s

(12 data lines)

tucson monaco 20 I $12,300.01 30 female I d
nevitte 15 I $12,300.01 77 I 5

pauley 10 I $11,600.01 56 I m
338 n<MORE> 5 I $12,400.01 57 male I

ordeman 1 I $15,200.01 21 I d
ca fresno bane 13 I $15,200.01 50 female I m

(6 data 1 ines)

a<MORE> 3 I $12,500.01 61 male I d
c<MORE> 23 I $12,400.01 53 I 5

jupiter 19 I $ 4,100.01 47 I m

351 - Page 1 -

2-40 GB63-00

line 283
List the columns currently set as candidates for duplicate suppression.

line 286
Set the outline column value to "sex" and "family." (Refer to additional description
regarding outlining in the commentary of line 151 above.)

line 288
Display page 1 and 2 using the data retrieved during the previous invocation (-or),
and keep the retrieved data (-kr) from this execution for use in subsequent
invocations of the display request.

lines 292-351
System display -- note that the family entry for line 338 is blank indicating duplicate
suppression of "m" which would normally have displayed (see line 201 above).

Page 2 of the report is not shown.

2-41 GB63-OO

The size of a retrieved table can cause a process directory quota overflow when working with
large tables. The -temp_dir control argument for the display request allows the user to provide a
directory for the retrieved table where enough quota is available. The -temp_dir argument can
only be used when requesting a new table.

353 display_employee: di -or -kr -td [e wd] -pg 1

354 display_employee (display): Warning: The temp_dir

>udd>Demo>display_employee won't be used.

line 353
Display page 1 using the data retrieved during the previous invocation (-or), and
keep the retrieved data (-kr) from this execution utilizing the temporary directory
"wd".

line 354
System display -- warning message because a new retrieval was not requested (i.e.,
-old retrieval was used).

Page 1 of the report is not shown. It would be an exact duplicate of that shown in lines 292-351
above.

356 display~mployee: oi -kr -to [e wd] -pg 1 -sort state

city sex

line 356
Display page 1 using a new retrieval, keep the retrieved data for future use, and
utilize "wd" for a temporary directory.

Page 1 of the report is not shown. It wouid be an exact duplicate of that shown in lines 292-351
above.

2-42 GB63-o0

To verify that the working directory (wd) was in fact used for the temporary directory, enter:

358 display_employee: e ls

359 Segments = 224, Length = 353
360
361 rew o !BBBJNHFGnQJX1w.temp.0565

(data lines)

369 r w
370 r w

o !BBBJNHFGmXFcFB.RW.table
EXAMPLE-1.fo.display_employee
sex_lookup.display_employee 371 r w

line 358
Escape out of display _employee and list the current contents of the working
directory.

lines 359-371
System display --lines 359-369 outlines the areas used for the temporary directory.
Note that line 370 is associated with an .earlier example where the contents of a
report was saved (refer to "Saving a Report and Resetting Options"), and line 371
identifies the segment which contains the exec_com used to change "m" and "f" to
"male" and "female" for the sex column (refer to "Special Editing of a Report").

375 display_employee: lsfo -pb
376 -page_break

378 display_employee: sfo -pb state;di -kr -or -pg 1,4

lines 375-378
is a request to list the current columns that are candidates for new page breaks, and
line 376 says there are no current candidates. The following four examples show
full-page representations of the results of the requests in line 378 (set page break
value to "state" and display pages 1 through 4).

2-43 GB63-00

04/29/83 Sample Report 10:39

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

ak juneau bambry 10 I $11 ,501 .01 66 female I d
gaskins 6 I $14,700.01 31 I 5

just i n 2 I $12,000.01 78 I m
macleod 22 I $18,500.01 43 I d
manuel 18 I $10,000.01 33 I 5

m<MORE> 13 I $14,900.01 67 I m
m<MORE> 8 I $13,000.01 77 I d
nesline 4 I $10,100.01 27 I 5

ord 24 I $ 9.200.01 34 I m
abel 1 I $14,555.01 36 male I s
cooke 21 I $12,100.01 34 I m
jones 16 I $13,000.01 21 I d
ledger 11 I $21,900.01 27 I 5

maclure 7 I $14,700.01 53 I m
m<MORE> 3 I $12.100.01 71 I d
mead 23 I $12.700.01 29 I s
mol loy 19 I $ 4,300.01 22 I m
nevling 14 I $32,500.01 63 I d
paul 9 I $10,300.01 73 I 5

(10 bl ank 1 ines)

- Page 1 -

2-44 GB63-00

04/29/83 Sample Report 10:40

STATE CITY NAME JOB SALARY AGE SEX I F

I A
I M I

I I

I L

I Y

az phoenix abell 2 $13·,000.01 55 female m
c<MORE> 22 $18.300.01 38 d

june 18 $10,900.01 73 s
lednar 13 $15,000.01 71 m
m<MORE> 8 $12,600.01 37 d
m<MORE> 4 $10,800.01 68 s
meadow 24 $ 9,800.01 52 m
bander 11 $21,100.01 70 male s
geist 7 $14,600.01 21 m
kane 3 $12,300.01 58 d
maclin 23 $12,500.01 79 s
manzo 19 $ 4,200.01 74 m
mccoy 14 $31,300.01 67 d
meagher 9 $10,500.01 52 s
dupu;s 12 $12,000.00 28 Y

tucson monaco 20 $12,300.01 30 female d

nevitte 15 I $12,300.01 77 s
pauley 10 I $11,600.01 56 m
n<MORE> 5 I $12,400.01 57 male
ordeman 1 I $15,200.01 21 d

14" blank ' .: --- \ \ IV I I fit::::.)

- Page 2 -

2-45 GB63-OO

04/29/83 Sample Report 10:40

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

ca I fresno bane 13 I $15,200.01 50 female m

I george 8 I $12,100.01 44 d

I kang 4 I $10,000.01 76 s

I mac1ure 24 I $ 9,700.01 47 m

I marcey 20 I $12,600.01 71 d

I mccrary 15 I $12,500.01 53 s

I meakin 10 I $11,600.01 51 m

I a<MORE> 3 I $12,500.01 61 male d

I c<MORE> 23 I $12,400.01 53 s

I jupi ter 19 I $ 4,100.01 47 m

I 1ee1and 14 I $32,800.01 77 d

I m<MORE> 9 I $10,200.01 32 s

I mcc1ung 5 I $13,100.01 71 m
m<MORE> t'f-. .. .II .. ,....,.... ,..... ..

;j) 1"'+, IVV.VI 26 d

monger 21 $12,600.01 61 s
los angeles aboe 4 $10,201.01 41 female

cowes 24 $ 9,500.01 58 m
justin 20 $12.900.01 34 d
1eestma 15 $12,300.01 69 s
m<MORE> 10 $11,400.01 52 m
m<MORE> 6 $15,000.01 26 d

(10 data lines)

mealey 1 1 $21,600.01 36 I d
nevitte 7 $14,900.01 39 I s
orf 3 $12,400.01 70 I m

sacramento barrett 15 $12,800.01 65 female I s
9i 11 10 $11,800.01 47 I m I
keene 6 $14,100.01 54 I d
m<MORE> 2 $12,200.01 54 s
marcy 22 $19,700.01 45 m
m<MORE> 18 $10,900.01 62 d
means 13 $14,300.01 46 s
newcomb 8 $12,300.01 36 m
or1aens 4 $10,300.01 41 d
a<MORE> 5 $12,900.01 61 male m
c<MORE> $14,300.01 50 d
kane 21 $12,400.01 24 s
leonard 16 $12,900.01 25 m
macnabb 1 1 $21,500.01 68 d
mccoy 7 $14,000.01 77 s

- Page 3 -

2-46 GB63-00

04/29/83 Sample Report 10:40

STATE CITY NAME JOB SALARY AGE SEX I F
i A-I

I M

I I

I L

I y

ca sacramento meakin 3 I $12,900.01 maie m I I I

monson 23 I $13,000.01 40 d
newman 19 I $ 4,200.01 68 s
payne 14 I $30,400.01 30 m

san diego abraham 6 I $15,000.01 25 female d
c<MORE> 2 I $13,000.01 44 s
kang 22 I $19,201.01 23 m
levy 18 I $10,800.01 66 d
m<MORE> 13 I $14,800.01 71 s
mccrary 8 I $13,000.01 25 m
mealey 4 I $10,700.01 71 d
montano 24 $ 9,300.01 22 s
newton 20 $13,100.01 24 m
peacock 15 $12,500.01 76 d
b<MORE> 16 $12,310.01 63 male m
keener 7 $14,000.01 62 I s
m<MORE> 3 $12,400.01 63 I m
m<MORE> 23 $12,600.01 38 I d
m<MORE> 19 $ 4,000.01 22 I s
mecham 14 $30,400.01 23 I m
newhall 9 $10,300.01 21 I d I
o<MORE> 5 $12,900.01 27 I s

san francisco baur 18 $10,100.01 79 female I d

(8 data 1 ines)

abrahms 7 $14,300.01 35 male I s
c<MORE> 3 $12,501.01 76 I m
katz 23 $12,500.01 58 I d
1 ibin 19 $ 4,000.01 29 I s
macnair 14 $31,300.01 70 I m
mccory 9 $10,500.01 52 I d
means 5 $12,900.01 60 I s
monte $15,300.01 31 I m
nguyen 21 $12.700.01 53 ! d
parce 16 $12,900.01 68 I s

santa cruz nevl i ng 6 $14,400.01 37 female I d
orend 2 $12,900.01 72 I s
newcomb 16 $12,400.01 72 male I m
paulson 1 1 $21,100.01 49 I d

- Page 4 -

2-47 GB63-00

This page intentionally left blank.

2-48 GB63-00

Now we will experiment with column subtotals and totals. A subtotal specification is given in the
form of one or more "triplets." A triplet is given as the column to be sub to taled , followed by the
column whose value change should generate the subtotal. and optionally followed by "reset" or
"running" to indicate what type of subtotal is desired. Reset is the default. In the following
example, lines 1-8 are intentionally left blank.

9 ! display_employee: sfo -rhv 1111 -rfv

11 display_employee: lsfo -stt

12 -subtotal

14 display_employee: sfo -stt salarY,state,reset

line 9
Set row header and row footer values to "default."

lines 11-14
List current value for SUbtotal, and set up new value.

The subtotal inherits its width, editing request, etc. from the parent column. The width of the
salary column must be increased or the subtotal is folded. and a larger picture is needed to edit it
through. The age and job columns are left at their present width so the filling of numbers can be
seen later when the numbers become large enough.

2-49 GB63-OO

16 display_employee: lsfo -wid salary

17 -width salary "10"

19 display_employee: sfo -wid salary 14
21 display_employee: lsfo -ed salary
22 -editing salary "[e pic Szz,zz9v.99 [clv salary]]"

24 display_employee: sfo -ed salary "[e pie $zz,zzz,zz9v.99 [clv salary]]"

26 display_employee: lsfo -a1 salary
27 -alignment salary "decimal 8"

29 display_employee: sfo -a1 salary decimal 12
31 display_employee: di -nr -kr -sort state city sex -pg 1,4

35 04/29/83

STATE CITY

ak juneau

(15 data 1 i nes)

64 ak

(30 blank lines)

NAME

bambry
gaskins
justin

paul

Sample Report

JOB

10
6

2

9

$

$

$

SALARY

11 ,501 .01
14,700.01
12,000.01

$ 10,300.01

$ 262,056 . 19

95 - Page 1 -

AGE

66
31
78

73

SEX

10:42

I F

I A
I M

I I

I L

I Y

female I d

I s
I m

I s

I
I

2-50 GB63-o0

lines 16-29
List current value for width. editing. and alignment of the salary column,
and set up new values.

line 31
Display pages 1 through 4 of the report. starting with a new retrieval. sorting the
report as indicated to get back into the full format.
and keep the retrieval for re-use.

lines 35-281
System display -- note the inclusion of subtotals in the salary column
(total by state -- see lines 64, 127. and 276). The remaining three
pages of the report follow.

2-51 GB63-OO

97 04/29/83 Sample Report 10:42

STATE CITY NAME JOB SALARY AGE SEX I f

I A

I M

I I

I L

I Y

az phoenix abel 1 2 I $ 13.000.01 55 female I m
c<MORE> 22 I $ 18,300.01 38 I d

(13 data 1 ines)

tucson monaco 20 I $ 12,300.01 30 female I d

nevitte 15 I $ 12,300.01 77 I 5

pauley 10 I $ 11.600.01 56 I m
n<MORE> 5 I $ 12,400.01 57 male I
ordeman 1 I $ 15,200.01 21 I d

I -------------- I
127 az I $ 272.700.19 I

(31 blank 1 i nes)

157 - Page 2 -

159 04/29/83 Sample Report 10:42

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I 1

I L

I V

ca fresno bane 13 ! $ 15.200.01 50 female I m

(14 data 1 ines)

los angeles aboe 4 j $ iO.20; .01 41 female !
cowes 24 I $ 9,500.01 58 I m

(17 data 1 ines)

sacramento barrett 15 $ 12,800.01 65 female I s
gill 10 $ 11.800.01 47 I m

(12 data 1 ines)

I mccoy 7 I $ 14.000.01 I 77 I I s

219 - Page 3 -

2-52 GB63-o0

221 04/29/83 Sample Report 10:43

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I y

ca sacramento meakin 3 I $ 12,900.01 71 male I m i

monson 23 I $ 13,000.01 40 I d
newman 19 I $ 4,200.01 68 I s
payne 14 I $ 30,400.01 30 I m

san diego abraham 6 I $ 15,000.01 25 female I d
c<MORE> 2 I $ 13,000.01 44 I 5

(16 data 1 ines)

san francisco baur 18 $ 10,100.01 79 female I d
gnandt 13 $ 14,700.01 60 I s

(17 data lines)

santa cruz nevl i ng 6 I $ 14,400.01 37 female I d
orend 2 I $ 12,900.01 72 I s
newcomb 16 I $ 12.400.01 72 male I m
paulson 1 1 $ 21,100.01 49 I d

-------------- I
276 ca $ 1 ,281 , 323 . 94 I

(4 blank 1 i nes)

281 - Page 4 -

2-53 GB63-OO

The following example shows how to get subtotals for multiple columns in addition to more than
one subtotal per column.

1 display_employee: sfo -stt -prompt
2 Enter -subtotal.
3 age,sex salary. sex job,sex age, city salary,city job,city age,state
4 ! salarY,state job,state
5 !

7 ! display_employee: di -or -kr -pg 1 .3

11 04/29/83 Sample Report 10:43

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

ak juneau bambry 10 I $ 11,501 .01 66 female I d
gaskins 6 ! $ 14.700.01 31 I s
justin 2 I $ 12.000.01 78 I m
macleod 22 I $ 18,500.01 43 I d
manuel 18 I $ 10,000.01 33 I s
m<MORE> 13 I $ 14.900.01 67 I m
m<MORE> 8 I $ 13,000.01 77 I d
nesline 4 I $ 10,100.01 27 I s
ord 24 I $ 9,200.01 34 I m

I -------------- I
30 107 I $ 113,901 .09 456 female I

abel 1 I $ 14,555.01 36 male I s

(5 data 1 ines)

mead 23 $ 12.700.01 29 I 5

mol loy 19 $ 4,300.01 22 I m
nevling 14 $ 32,500.01 63 I d

paul 9 $ 10,300.01 13 I 5

-------------- I
43 ak juneau 124 $ 148,155.10 429 male I

46 ak juneau 231 $ 262,056.19 885

49 ak 231 $ 262,056.19 885

(22 blank lines)

71 - Page 1 -

2-54 GB63-00

line 1
Request to set columns for sub totaling, with prompt.

line 2
System display --prompt.

lines -3-5

l' '7 J.me;

Set column values to be subtotaled, and terminate the prompt.

Display pages 1 through 3.

lines 11-195
System display -- the display of pages 2-3 follow.

2-55 GB63-00

73 04/29/83 Sample Report 10:43

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

az phoenix abell 2 I $ 13,000.01 55 female I m
c<MORE> 22 I $ 18,300.01 38 I d
june 18 I $ 10,900.01 73 I s
lednar 13 I $ 15,000.01 71 I m
m<MORE> 8 I $ 12,600.01 37 I d
m<MORE> 4 I $ 10,800.01 68 I s
meadow 24 I $ 9,800.01 52 I m

I -------------- I
91 I $ 90,400.07 394 female I

bander 11 I $ 21,100.01 70 male I s
geist 7 I $ 14,600.01 21 I m
kane 3 I $ 12,300.01 58 I d
maclin 23 I $ 12,500.01 79 I s
manzo 19 I $ 4,200.01 74 I m
mccoy 14 I $ 31,300.01 67 I d
meagher 9 I $ 10,500.01 52 I s
dupuis 12 I $ 12,000.00 28 I y

I -------------- I
phoenix 98 i $ 118,500.07 449 male

I --------------
phoenix 189 I $ 208,900.14 843

tucson monaco 20 I $ 12,300.01 30 female I d
nevitte 15 I $ 12,300.01 77 I s
pauley 10 I $ 11,600.01 56 I m

I -------------- I
45 I $ 36,200.03 163 female I

n<MORE> 5 I $ 12,400.01 57 male I
ordeman I $ 15,200.01 21 I d I

I -------------- I
az tucson 6 I $ 27, 60.02 78 male I

I --------------
az tucson 51 I $ 63,800.05 241

I --------------
az 240 I $ 272,700.19 1084

(10 bl ank 1 i nes)

133 - Page 2 -

2-56 GB63-00

135 04/29/83 Sample Report 10:44

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I y

ca fresno bane 13 I $ 15,200.01 50 female I m i

george 8 I $ 12,100.01 44 I d
kang 4 I $ 10,000.01 76 I s
maclure 24 I $ 9,700.01 47 I m
marcey 20 i $;2,600.01 71 I d I
mccrary 15 I $ 12,500.01 53 I s
meakin 10 I $ 11,600.01 51 I m

I -------------- I
94 I $ 83,700.07 392 female I

a<MORE> 3 I $ 12,500.01 61 male I d
c<MORE> 23 I $ 12,400.01 53 I 5

jupiter 19 I $ 4,100.01 47 I m
leeland 14 I $ 32,800.01 77 I d
m<MORE> 9 I $ 10,200.01 32 I 5

mcclung 5 I $ 13,100.01 71 I m
m<MORE> 1 I $ 14,100.01 26 I d
monger 21 I $ 12,600.01 61 I 5

I -------------- I
fresno 95 I $ 111,800.08 428 male I

I --------------
fresno 189 I $ 195,500.15 820

105 angeles aboe 4 I $ 10,201 .01 41 female
cowes 24 I $ 9,500.01 58 m
just i n 20 I $ 12,900.01 34 d
leestma 15 I $ 12,300.01 69 5

m<MORE> 10 I $ 11,400.01 52 m
m<MORE> 6 I $ 15,000.01 26 d
meagher 2 I $ 12,600.01 67 5

monroe 22 I $ 18,900.01 42 m
newhall 18 I $ 10,000.01 30 d
pavlov 13 I $ 14,000.01 24 5

I --------------
134 I $ 126,80"1.10 443 female

barker 14 $ 32,800.01 78 male I d

(7 data 1 i nes)

195 - Page 3 -

2-57 GB63-o0

This page intentionally left blank.

2-58 GB63-OO

To see how the totals feature works. the last page of the report must be examined. The example
eliminates page breaks to cut down on the number of pages generated.

197 display_employee: sfo -tt age salary job
199 display_employee: sfo -pb

Just as retrieved data can be re-used, so can formatted reports. The last few pages will be
examined, but display will be asked to keep the formatted report. It will use the previously
established temp_dir to place the copy of the formatted report.

2-59 GB63-OO

201 display_employee: di -kr -or -krp -pg 33,$

04/29/83 Sample Report 10:52

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

vt rutland parnell 1 I $ 14,400.01 59 male I m

I -------------- I
vt rutland 92 I $ 133,200.09 466 male I

I --------------
vt rutland 218 I $ 246,511.18 992

I --------------
vt 431 I $ 478,511.36 1866

wa seattle aziz 6 I $ 14,100.01 75 female I
freitag 2 I $ 13,000.01 66 I d
johnson 22 I $ 18.900.01 25 I 5

maclean 18 I $ 10.000.01 74 I m
m<MORE> 13 I $ 14.000.01 67 I d
m<MORE> 8 I $ 12,600.01 72 I 5

m<MORE> 4 I $ 10,200.01 67 1 0 m
neff 24 I $ 9,100.01 65 I d
olnei 1 20 I $ 12,100.01 49 I s

I -------------- I
117 I $ 114,000.09 560 female I

collier 16 I $ 13,000.01 62 male
janick 1 1 I $ 20,200.01 50 m
latter 7 I $ 15,300.01 55 d I
m<MORE> 3 I $ 12,400.01 66 s
m<MORE> 23 I $ 12,500.01 43 m
mcrorie 19 I $ 4,000.01 40 d
mock 14 I $ 30,100.01 22 5

nei 11 9 I $ 10,800.01 47 m
patel 5 I $ 12,000.01 24 d

I --------------
seattle 107 I $ 130,300 .. 09 409 male

I --------------
seattle 224 I $ 244,300.18 969

(13 data 1 i nes)

- Page 33 -

2-60 GB63-00

04/29/83 Sample Report 10:52

STATE CITY NAME JOB SALARY AGE SEX I F

I A

i M

I I

I L

I y

wa walla walla bahn 7 I $ 14,900.01 55 male I d
freuh 3 I $ 12,900.01 76 I s
jones 23 I $ 12,800.01 36 I m
macleod 19 I $ 4,200.01 60 I d
manion 14 I $ 32,400.01 68 I s
m<MORE> 9 I $ 10,700.01 68 I m
mittal 5 I $ 12,000.01 43 I d
negri 1 I $ 15,200.01 68 I s
oong 21 I $ 12,000.01 70 I m

I -------------- I
wa walla walla 102 I $ 127,100.09 544 male I

wa walla walla 220 $ 236,301 . 18 929

I --------------
wa 444 I $ 480,601.36 1898

wi green bay ba; ley 8 $ 12,410.01 25 female I s
fyock 4 $ 10,801.01 47 I m
june 24 $ 9.210.01 "'''7 d .. ,
m<MORE> 20 $ 12,800.01 35 i s I

mann 15 $ 13,000.01 52 I m
m<MORE> 10 $ 12,000.01 51 I d
mock 6 $ 14.800.01 78 I s
nei 11 2 $ 12,200.01 30 I m
onofiro 22 $ 18,800.01 77 I d

-------------- I
111 $ 116.021 .09 442 female I

(1 1 data 1 ines)

I --------------
green bay 103 I $ 132,200.09 473 male

green bay 214 $ 248.221 . 18 915

racine c<MORE> 20 I $ 12,500.01 20 female I s
johnson 15 I $ 12.410.01 61 I m
ledford 10 I $ 11.200.01 63 I d
maclin 6 I $ 14,200.01 25 I s

- Page 34 -

2-61 GB63-00

04/29/83 Sample Report 10:53

STATE CITY NAME JOB SALARY AGE SEX I F

I A

I M

I I

I L

I Y

wi racine m<MORE> 2 I $ 12,600.01 35 female I m
m<MORE> 22 I $ 18,700.01 38 I d
moldt 18 I $ 10,200.01 67 I s
n<MORE> 13 I $ 14,400.01 71 I m
patton 8 I $ 12,100.01 27 I d

I -------------- I
114 I $ 118,310.09 407 female I

baker 9 $ 12,000.10 43 male I m
gardner 5 $ 12,300.01 29 I d
jupiter 1 $ 14,301 .01 41 I s
m<MORE> 21 $ 12,600.01 32 I m
mansour 16 $ 13, 100.01 46 i a
mcclung 1 1 $ 21,100.01 39 I s
modl in 7 $ 14,300.01 60 I m
nelson 3 $ 12,400.01 70 I d
o<MORE> 23 $ 12,800.01 62 I s

-------------- I
wi racine 96 $ 124,901 . 18 422 ma1e I

I --------------
wi racine 210 I $ 243,211.27 829

I --------------
wi 424 I $ 491,432.45 1744

==============
12279 $13,766,244.12 48952

(10 blank 1 i nes)

- Page 35 -

2-62 GB63-00

Now that the report appears correct, it can be written (saved) to a file. -old_report will be
specified so that display uses the previously formatted report.

203 display_employee: di -orp -of SAMPLE_REPORT -kr

The complete report (SAMPLE_REPORT) now resides in the user's working directory and can be
dprinted at will. The -keep_retrieval control argument was specified in order to continue this
session, but could have been eliminated if the user was terminating the session after saving this
report.

2-63 GB63-o0

Now we will experiment with generation of a report utilizing the group footer I header and
left/right trim operations.

1

3

5

7

display_employee:

display_employee:
display_employee:
display_employee:

sfo -rs
sfo -pw

sfo -ex
sfo -gft

60 -tl
1 2 3
ei ty

off -pb state
4 5 6 7 8 -gr state
-ght eity

9 display_employee: sfo -gfv -prompt -ghv -prompt
10 Enter -group_footer_value.
1 1 ! ! ! !

12
13 Enter -group_header_value.
14 !City: [elv eity)!!!

15 ! ! ! !

16

18 display_employee: sfo -phv -prompt -pfv -prompt
19 Enter -page_header_value.
20 lState: [elv state)!!!
21 ! ! ! 1

22

23 Enter -page_footer_value.
24 ! ! ! !

25 !!- Page [dib page_number] -!!

26

28 display_employee: sfo -rhv -prompt
29 Enter -row_header_value.

eity

30 Employee [e rtrim [elv name)) is [e ltrim [ely age]] years old and
earns [e pie $z9,999v.99 [elv salary])!!!

31

33 display_employee: di -or -kr -sort state eity salary -pg 1,3

37 State: ak

39 City: juneau

40 Employee mol loy is 22 years old and earns $ 4,300.01
Employee ord is 34 years old and earns $ 9,200.01

Employee manuel is 33 years old and earns $10,000.01
Employee nesline is 27 years old and earns $10.100.01
Employee paul is 73 years old and earns $10,300.01

(1 2 da tal i nes)

Employee ledger is 27 years old and earns $21,900.01
Employee nevling is 63 years old and earns $32,500.01

(37 blank lines)

97 - Page 1 -

2-64 GB63-00

lines 1-5

line 7

Resets all options (i.e., restore the report back to its originai format), set page width
to 60, turn title line "off," set the page break to "state," exclude all 8 columns of the
report, and group the report by nstateH and ~~city."

Sets the group footer/header trigger to "city."

lines 9-16
Sets the group footer value to a blank line (!!!!) and the group header value to "City:"
(left-justified).

lines 18-26
Sets the page header value to "State:" (left-justified), the page footer (2 lines) to
contain a blank line om), and the second footer line to n_ Page X _n.

lines 28-31
Sets the row header value to read (left-justified and trimmed):

Employee X is X years old and earns $X

line 33
Invokes display, using the sort sequence "state city salary."

lines 37-225
System display -- notice that the top of each page (lines 37. 101, 165) indicate a
report by state (ak, az, ca). Additionally, the report is sorted by city, where:

ak - juneau (line 39)
az - phoenix (line 103)

- tucson (line 121)
ca - fresno (line 167)

- los angeles Oine 185)
- sacramento (line 207)

and finally employees are listed in ascending salary order.

The remaining two pages of the report follow.

2-65 GB63-00

101 State: az

103 City: phoenix

Employee manzo is 74 years old and earns $ 4,200.01
Employee meadow is 52 years old and earns $ 9,800.01

Employee meagher is 52 years old and earns $10,500.01
Employee mcclowsky is 68 years old and earns $10,800.01
Employee june is 73 years old and earns $10,900.01
Employee dupuis is 28 years old and earns $12,000.00
Employee kane is 58 years old and earns $12,300.01
Employee maclin is 79 years old and earns $12,500.01
Employee macmahon is 37 years old and earns $12,600.01
Employee abel 1 is 55 years old and earns $13,000.01
Employee geist is 21 years old and earns $14,600.01
Employee lednar is 71 years old and earns $15,000.01
Employee corcoran is 38 years old and earns $18,300.01
Employee bander is 70 years old and earns $21,100.01
Employee mccoy is 67 years old and earns $31,300.01

121 City: tucson

161

Employee pauley is 56 years old and earns $11,600.01
Employee monaco is 30 years old and earns $12,300.01
Employee nevitte is 77 years old and earns $12,300.01
Employee neubauer is 57 years old and earns $12,400.01
Employee ordeman is 21 years old and earns $15,200.01

(33 blank lines)

- Page 2 -

2-66 G~3~O

165 State: ca

167 City: fresno

Employee jupiter is 47 years old and earns $ 4,100.01

Employee maclure is 47 years old and earns $ 9,700.01
Employee kang is 76 years old and earns $10,000.01
Employee macmannis is 32 years old and earns $10,200.01

Employee meakin is 51 years old and earns $11,600.01
Employee george is 44 years old and earns $12,100.01
Employee costello is 53 years old and earns $12,400.01
Employee abernathy is 61 years old and earns $12,500.01
Employee mccrary is 53 years old and earns $12,500.01

Employee marcey is 71 years old and earns $12,600.01
Employee monger is 61 years old and earns $12,600.01
Employee mcclung is 71 years old and earns $13,100.01
Employee meadoows is 26 years old and earns $14,100.01
Employee bane is 50 years old and earns $15,200.01
Employee leeland is 77 years old and earns $32,800.01

185 City: los angeles

Employee cowes is 58 years old and earns $ 9,500.01
Employee newhall is 30 years old and earns $10,000.01
Employee aboe is 41 years old and earns $10,201.01
Employee giannoti is 45 years old and earns $10,900.01
Employee macmillan is 52 years old and earns $11,400.01
Employee leestma is 69 years old and earns $12,300.01
Employee katz is 70 years cild and earns $12,400.01
Employee orf is 70 years old and earns $12,400.01
Employee marcus is 62 years old and earns $12,600.01
Employee meagher is 67 years old and earns $12,600.01
Employee mccory is 54 years old and earns $12,700.01
Employee justin is 34 years old and earns $12,900.01
Empioyee pavlov is 24 years oid and earns $14,000.01
Employee macmahon is 57 years old and earns $14,800.01
Employee nevitte is 39 years old and earns $14,900.01
Employee
Employee
Employee
Employee

mccormick
monroe is
mealey is
barker is

is 26 years
42 years old
36 years old
78 years old

old and earns $15,000.01
and earns $18,900.01
and earns $21,600.01
and earns $32,800.01

207 City: sacramento

225

Employee newman is 68 years old and earns $ 4,200.01
Employee orlaens is 41 years old and earns $10,300.01

(12 data 1 ines)

- Page 3 -

2-67 GB63-OO

229 display_employee: q
230 (Multics command level - ready message)

This concludes the sample user session.

2-68 GB63-00

SECTION 3

SUBROUTINE OVERVIEW AND TUTORIAL

This section provides an overview of the report_writer_ subroutine, including examples
organized to provide a tutorial on using the subroutine. The report_writer_ subroutine
entrypoints are documented in reference material format in Section 5. A PL/I coded example
that uses report_writer_ is in Section 6.

Application subsystems that utilize the report writer do so by interfacing through the
report_writer_ subroutine and the subsystem utilities subroutine (ssu->. The report_writer_ and
ssu_ provide the necessary subroutine entrypoints for an application subsystem to include the
report writer with an minimal amount of coding.

Note: Refer to the Programmer's Reference Manual and the Subroutines Manual for ssu_
reference material and subroutine description.

CREATING AN INVOCATION

The application subsystem creates a report writer invocation through the
report_writer_$create_invocation entrypoint. Prior to creating a report writer invocation, the
application subsystem must have created an ssu_ invocation through the ssu_$create_invocation
or ssu_$standalone_invocation entrypoints. All information specific to the application
subsystem is supplied to the ssu_ and report_writer_ entrypoints. After creating the invocation,
all of the report writer functions described in Section 1 are available to the application subsystem.

The application subsystem provides a procedure that does the actual retrieval of data from its
source data file. This procedure is called the application's "table manager" program, and is called
by report_writer_ when rows are needed to format the report. The table manager procedure is
described in detail under "Data Table Retrieval" below.

The following diagram (Figure 3-1) shows the relationship between the subsystem.
report_writer_. and the table manager.

3-1 GB63-o0

report_data COMMAND
I , The user types a command to invoke a data reporting

application subsystem.

The application creates an SSll_ invocation to process
user requests.

report_ writer_$create_invocation The application creates a report writer invocation.
I ,

Figure 3-1.

The report writer calls SSll_ to define the report writer
requests which are available within the subsystem.

The report writer calls ssu_ to define where info
segments are located for the report writer requests.

When the report writer returns, the application adds
the standard ssu_ requests after those of the report
writer, for use within the application subsystem.

It also adds the info segments for the standard SSll_

requests.

The application calls the ssu_ listener to read and
process request lines typed by the user.

Creating an Invocation

The initial step in using report_writer_ is to call the create_invocation entrypoint. This
entrypoint takes the name of the table manager procedure from the calling Multics subsystem and
an ssu_ info pointer as input parameters. and passes back a pointer to the report_writer_ specific
inf 0 structure if the invocation can be created. This returned report_writer _ info poin ter is saved
and passed as the first parameter to every report_writer_ entrypoint to uniquely identify this
specific invocation of report_writer_. If the invocation cannot be created, the code and error
message parameters supply the reason for the failure to create. The following code fragment
shows an example usage of this entrypoint.

call report_writer_$create_invocation ("my_table_manager",
ssu_info_ptr, report_writer_info_ptr, code, message);

if code A= 0
then call ssu_$abort_l ine (sci_ptr, code, message);

If the table manager procedure name parameter is blank, the create_invocation entrypoint
obtains the name of the subsystem via the ssu_$get_subsystem_name subroutine and uses this for
the table manager procedure name.

3-2 GB63-00

This entrypoint calls ssu_$get_info_ptr to obtain the info pointer for the application
subsystem. It is passed as the first parameter to the table manager procedure in the calling
subsystem, so that the table manager can access its own info structure and perform operations
(refer to "Subsystem Table Manager Procedure" below for additional information).

The report_writer_ also calls ssu_$get_ec_suffix. Any saved report layouts processed by
save_format_options, or restore_format_options must have the fo.ec_suffix name, where
ec_suffix is the suffix returned by ssu_.

DATA TABLE RETRIEVAL

The application subsystem provides the selection of a table through its own choice of
methods. For example, the LINUS subsystem provides the selection of a table through the
input_query and translate_query requests.

Before a table has been selected (e.g., by issuing application-provided requests), the requests
that deal with format options allow references to general report options, but do not allow
references to general or specific column options. When the application subsystem has selected a
table, it calls a report_ writer_ entrypoint to describe the selected set of columns to the report
writer, and report_writer_ generates a default report layout based on these column descriptions.
After calling this entrypoint, the requests that deal with format options allow references to
general and specific column options.

Althoilgh the data selected by the user can come from several different sources (e.g., from
several different relations within a MRDS data base), the data that the user eventually sees is
considered to be a table made up of one or more columns, that must contain at least one row. This
tabular data that. the user sees is the same retrieved data table discussed in Sections 1 and 2.

3-3 GB63-OO

The following diagram (Figure 3-2) shows the relationship between the subsystem,
report_writer_, and the table manager.

select REQUEST
I

• CLOSE FILES
I

• OPEN FILES
I
I
I Note:
I
I

I
I ,

The user types an application-provided request to
identify the data to be displayed .

The select request closes files associated with the
previous select request.

The select request opens the files containing the data
just selected.

Some applications may find it more convenient to open and close files
in its table manager procedure, at the beginning and end of the data
retrieval operation. Other applications may find it more convenient to
open files when the application is first invoked, and close files as the
application is being terminated.

report_ wri ter _$def ine_ columns The select request structures the selected data as a
table. Each row of the table contains one or more
column values. The select request informs the report
writer of the name and data type for each column.

Figure 3-2. Selecting A Table

The application subsystem provides a table manager procedure that prepares for data
retrieval. does the actual retrieving of individual rows, and terminates the data retrieval. The
report writer calls the subsystem's table manager create_table entrypoint when requested to do a
new retrieval. the delete_table entrypoint when requested to delete the retrieval (via
display _discard_retrievan, and the get_row entrypoint to retrieve each row of the table during
the formatting process. After each get_row operation, report_writer_ takes the data returned
from the table manager procedure and places it into an internal location. The sorting of the
retrieved data table is done by report_writer_ using its own internal copy. The multi-pass
formatting, where several passes over the retrieved data table are necessary, is also done by
report_writer_, on its own internal version of the retrieved data (i.e., the get_row entrypoint is
only called once for row number I, regardless of the number of passes over row 1 that are
necessary to format the report).

In the case of a subsystem like LINUS, the create_table begins a new data retrieval from
MRDS, get_row gets a single row through the dsl_$retrieve subroutine, and delete_table
accomplishes whatever cleanup is necessary after the retrieval is completed.

3-4 GB63-00

The following diagram (Figure 3-3) shows the relationship between the subsystem,
report_writer_, and the table manager.

set_format_options REQUEST
I
I
I
I
I
t

display REQUEST
I
t

The user types a report writer request to
specify how the selected data should be
formatted when it is displayed. This includes
setting page formats as well as column
formats.

The user types a report writer request to sort
and display the selected data.

The report writer's display request calls an
application-provided table manager
entrypoint to setup for retrieving the
selected table rows, and to retrieve the first
row.

The application's table manager calls a report
writer routine to convert the fields of a table
row in to character strings, storing the
converted strings in the display request's row
value buffer.

Note: Depending on the application, this call is not always necessary (refer to
"The Row Value Buffer", "Create_table Entrypoint", and "Get_row
Entrypoint" descriptions below for an alternate way to accomplish this).

report_ wri ter _$convert_and_move_row
I
t

nISPLA Y ROUTINE
I

•

The display request calls the table manager to
retrieve the remaining rows of the table.

The table manager converts and stores each
retrieved row into the row buffer.

The display request then sorts and displays
the retrieved data .

The display request calls the table manager to
clean up after all table rows are retrieved.

Figure 3-3. Displaying the Data

3-5 GB63-OO

Data Tables

Reports are created using data which is viewed as a table. The table is made up of one or more
columns, and contains one or more rows. No table is defined upon invocation of the
report_writer. The selection of any particular table is done by the application subsystem. Until a
table is defined, the report_ writer_ standard requests do not allow references to any specific or
general column options and a report cannot be formatted.

DEFINING A TABLE

After a table is selected by the application subsystem, its select request calls the
report_writer_ define_columns entrypoint to inform report_writer_ that a set of columns has
been selected. After this call, the standard requests allow references to general and specific
column options, and make possible the formatting of reports.

The entrypoint is called with the report_writer_ info pointer as the first parameter and a
pointer to the row_info structure as the second parameter. See "Row Information Structure"
below for a code fragment initializing this structure and the define_columns entrypoint
description in Section 5 for a description of the structure. The code and message parameters
reflect any errors that occur during execution.

If the define_columns entrypoint was previously called with a valid set of columns, and some
user action results in there being no current set of columns defined, the define_columns
entrypoint should be called again with a null pointer to the row_info structure. This causes
report_writer_ to delete its information on the previously defined set of columns. Until this is
done, reporl_writer_ considers the old set of columns valid.

The following code fragment illustrates its usage when the application subsystem wishes to
define a set of columns.

call report writer $define columns (report_writer_info_ptr,
row_info_ptr,-code, message);

if code "'= 0
then call ssu_$abort_l ine (ssu_info_ptr, code, message);

The next code fragment illustrates its usage when there is no defined set of columns.

call report_writer_$define_columns (report_writer_info_ptr,
null, code, message);

if. code "'= 0
then call ssu_$abort_line (ssu_info_ptr, code, message);

ROW INFORMATION STRUCTURE

The row information structure provides report_writer_ with all of the information about the
table needed produce a default report layout, do data conversions, and produce reports. This
structure is documented in the define_columns entrypoint in Section 5. The calling program
allocates this structure, sets the version number, and fills in the names and descriptors arrays. All
other elements of this structure are filled in by the define_columns entrypoint.

The following code fragment shows a portion of a program that uses MRDS, allocates and
initializes the row_info structure, and calls report_writer_ to define a set of columns.

call dSl_$get_attribute_list (data_base_index, relation_name,
work_area_ptr, mrds_attribute_l ist_structure_version,

3-6 GB63-00

if code A= 0
then ca 11 ssu_$abor t_l i ne (sc i _ptr, code, "Get t i ng data base at tr i butes. 11) ;
row_info_init_number_of_columns

= mrds attribute i ist.num attrs in view;
allocate ro~_info in (work_area) set-(row_info_ptr);
row_info.version = ROW_INFO_VERSfON_l;
do loop = 1 to row_info_init_number_of_columns;

row info.column (loop) .names
- = rtrim (mrds attribute 1 ist.attribute (loop) .model_name);

row info.column (loop) .descriptors
- = mrds_attribute_l ist.attribute (loop) .user_data_type;

end;
call report writer $define columns (report_writer_info_ptr,

row_info_ptr,-code, m~ssage);
if code "= 0
then call ssu_$abort_l ine (ssu_info_ptr, code, message);

Subsystem Table Manager Procedure

The retrieval of data from the source file is the responsibility of an application provided
program (called the "table manager" procedure) which is specified when the invocation is created.

- The table manager procedure is called by report_ writer_ during the formatting process when data
to produce the report is needed, and at the beginning and end of the data retrieval process.

When the invocation is created, report_writer_ tries to find the entrypoints create_table,
delete_table, get_row, and get_query. The last entrypoint is optional, but the first three
entrypoints must be present in the table manager procedure or the invocation is not created.
When the mandatory entrypoints are called by report_writer_, they are passed two parameters.
The first parameter is the Multics subsystem's info structure pointer which is used by the table
manager procedure to reference data items in its info structure necessary to perform its function.
The second parameter is an error code which is used to report any errors back to report_writer_.
The optional entrypoint is passed these same parameters as the first and last parameters, with the
same usage. The second and third parameters are filled in by the table manager procedure if
execution completes successfully. The second parameter points to the data selection query used to
select the current table, and the third parameter is the query's length.

THE ROW VALUE BUFFER

The row value buffer is the location where the table manager procedure places the row value
after it is extracted from the source data file. The maximum row value length supported by
report_ writer_ is the number of characters that fit in one Multics segment. When the
report_writer_$define_columns entrypoint is called with a row_info structure, elements within
the structure that deal with the row value buffer are filled in by repor!_ writer_. The
row_info.value_ptr is the pointer to the row value buffer, and its length can be found in
row_info. value_length. The row_info. column array contains the index into the buffer where
each column value is expected to be found by report_writer_, and the column length. Each
column within the buffer is treated as a non-varying, unaligned character string.

The declarations in the include file rw_row_info.incl.pU provide two methods to access
column values. The include file contains the following declaration for the entire row value:

3-7 GB63-o0

declare row_value char (row_info.value_length)
based (row_info.value_ptr);

The following code fragment uses this declaration and the PL/I substring operation to access the
column values within the row.

do loop = 1 to row info.number of columns;
ca 1 1 i oa (11"·':;11, subs t r (;:ow - va 1 ue,

row-info.column (loop) .indexes,
row=info.column (loop) . lengths));

end;

The include file also contains the declarations:

declare row_value_as_an_array (row_info.value_length)
char (1) based (row_info.value_ptr);

declare column value
char (row_info.column. lengths

(row info.current column number»
based (addr (row value as-an arr~y

(row info.column.lnd;xes
(row_info.current_column_number»» ;

The next code fragment uses these declarations to access the column values.

do row_info.current_column_number = 1 to
row info.number of columns;
ca 11 i oa (1IAa"~ co 1 umn_ va 1 ue) ;

end;

CREATE TABLE ENTRYPOINT

The create_table entrypoint of the application's table manager is called by report_writer_
when a new set of retrievals are requested. The table manager procedure may open files, perform
initialization, etc. when this entrypoint is called. It also retrieves the first row from its source
data file, and moves the row value into the row value buffer. If the source data file contains only
character data type columns, the values can be moved directly into the row value buffer. If the
source data file contains other data type columns, the report_writer_ en trypoint
convert_and_move_row can be called to move the row value into the buffer with data
conversions. (Refer to "Data Conversions" below for more information on this entrypoint and to
the "get_row Entrypoint" for additional information on moving a row value into the row value
buffer without data conversions.)

If the create_table entrypoint finds the source file empty when retrieving the first row, it sets
the code to rw_error_$no_data. This is treated as an error by report_writer_, and the setup and
creation of the report is terminated. The report_writer_ calls ssu_$abort_line with
rw_error_$no_data, and the user of the application subsystem is provided with the following
message:

subsystem (display): No data was found that satisfied the search.

3-8 GB63-00

GET ROW ENTRYPOINT

The get_row entrypoint is called by report_ writer_ to retrieve a single row from the source
file and move it into the row value buffer. It is called to retrieve each row except the first row
(i.e., the first row is returned by the create_table entrypoint). If an end-of -file is discovered by
the table manager procedure when the retrieval of the row is attempted. the code should be set to
errof_table_$end_of_info. This-indicates a normal end-of-file and report_writer_ does not call
the get_row entrypoint again until a new set of retrievals is requested. via the create_table
en trypoin t.

The following code fragment shows an example of a structured file containing fixed position,
unaligned non-varying character data type columns. The record is read directly into the row
value buffer because it is identical to what report_writer_ is expecting.

calli 0 x $ rea d r ec 0 r d (i 0 c b p t r, row i n f 0 • val u e p t r ,
row=info.value_length,-(O), cod;_parameter);

return;

The next code fragment shows an example of a structured file containing fixed position
character data type columns, which are a mixture of varying, non-varying, aligned, and
unaligned. The record is read into the structure. and is moved into the row value buffer to end up
with unaligned, non-varying column values placed in their correct positions within the row value
buffer.

declare 1 employee al igned,
2 number char (8) varying,
2 street char (64) varying,
2 city char (32) varying,
2 s ta te char (2) una 1 i gned,
2 zip code char (5) una 1 i gned;

call iox $read ;ecord (iocb ptr, addr (employee),
currents ize (employee) -.;'~ 4, (0), code_parameter);

if code_parameter A= 0
then return;
row_info.current_column_number = 1;
column_value = employee.number;
row_info.current_column_number = 2;
column_value = employee. street;
row_info.current_column_number = 3;
column_value = employee.city;
row_info.current_column_number = 4;
column_value = employee. state;
row_info.current_column_number = 5;
column_value = employee.zip_code;

DELETE TABLE ENTRYPOINT

The delete_table entrypoint is called by report_writer_ when the processing of the report is
completed. The table manager procedure may close open files, free allocated variables, etc. when
this entrypoint is called.

3-9 GB63-OO

GET -QUERY Efo/TRYPOINT

The get_query entrypoint is called by report_writer_ when the report_writer_
save_format_options request is invoked with the -query control argument. This specifies to
save_format_options that the data selection requests should be saved along with the report layout.

This entrypoint is optional, and if not found in the table manager procedure when the
report_writer_ invocation is created, the save_format_options request calls ssu_$abort_line with
the code error_table_$unsupported_operation.

The data selection requests are dependent on the application subsystem, and should contain
whatever subsystem requests are necessary to reselect the current table. The requests are saved in
a subsystem exec_com, along with other requests that set the current report format. A subsequent
restore_form at_options request invokes the exec_com and exeCutes these requests to reselect the
table and restore the current report format. An example of a query specific to the LINUS
subsystem is:

input_query -force -brief -terminal_input
select * from employee

translate_query

If any ampersands are found within the query that would be interpreted by exec_com when
the report layout is restored, they are protected by save_format_options with double ampersands
before being placed in the saved report layout file. In the case of a subsystem like LINUS. a
portion of a select statement that looked like:

& name = "Smith"

would be saved as:

&& name = "Smith"

The save_format_options request also provides an exec_com &version statement and
&attach input lines statement, placed prior to the query and format option request lines.

The entrypoint is called with the calling subsystem info structure pointer as the first
parameter. The second parameter is a pointer to a segment where the table manager procedure
places the query. The third parameter is for the length of the query in characters, and is set by the
table manager procedure. The fourth parameter is a standard error code, and is set to zero if the
get_query entrypoint succeeds. If the get_query entrypoint fails, it sets this parameter to a
standard error code to indicate the reason for the failure.

Data Conversions

The report_writer_ convert_and_move_row entrypoint can be called by the table manager
procedure to have values converted from the original source file data types, to non-varying,
unaligned character strings. The converted values are moved into the row value buffer as part of
the conversion process.

The following code fragment shows how a record from a structured file can be placed in the
row_ value buffer when the record contains a mixture of data types. The record is read into a
structure, an array of pointers is set to point to the structure elements that make up the column
values in column order, and the convert_and_move_row entrypoint is called to perform data
conversions and place the converted column values into their correct positions within the row

3-10 GB63-o0

value buffer. In the example, the column order is, employee. number, employee. assignment.
employee. salary, and employee. age.

declare 1 employee al igned~
2 number char (8) varying,
2 salary fixed dec (7,2) unal igned,
2 age fixed dec (2) unal igned,
2 assignment fixed bin;

dec 1 are va 1 ue ptrs (4) ptr;
call iox $read record (iocb ptr, addr (employee),

currentsize (employee)-~'{ 4, (0), code_parameter);
if code_parameter A= 0
then return;
value ptrs (1) = addr (employee.number);·
value-ptrs (2) addr (employee.assignment);
va 1 ue - ptrs (3) = addr (emp 1 oyee. sa 1 ary) ;
value-ptrs (4) = addr (employee.age);
call report_writer_$convert_and_move_row

(report_writer_info_ptr, value_ptrs);

Note that in some cases, the table manager might use only a few of the structure elements as
table columns, or might read records from two or more data files and merge them into a single
table row, with columns coming from several data files.

REPORT PREPARATIOK

A default report layout is provided for each selected set of columns as described in Sections 1
and 2. The listing of formatting options is done through the list_format_options request
described in Sections I, 2, and 4. If the appliction subsystem provides a request level interface,
the user can type the list_format_options request. If the application subsystem does not provide a
request level interface, it must utilize the ssu_$evaluate_active_string entrypoint to obtain the
value of a format option. The restore_format_options, save_format_options, and
set_format_options requests can be invoked in the application when a user types these requests,
or the application can use ssu_$execute_string or ssu_$execute_line to invoke these requests on
the user's behalf.

REPORT FORMAITING

The display, display _builtins. and column_value requests provide for the formatting of a
report. The display request is invoked in the user typing display, or the application subsystem
calling the ssu_$execute_line or ssu_$execute_string to invoke these requests on the user's behalf.
The display _builtins and column_value requests are normally accessed by including references to
them in the values of format options which are set through the set_format_options request, but
can also be accessed durin.g report creation by the application subsystem through the
ssu_$evaluate_active_string entrypoint.

DESTROYING AN INVOCATION

The application subsystem destroys a report writer invocation with the
report_ wri ter _$destroy _in voca tion en trypoin 1.

3-11 GB63-00

The following diagram (Figure 3-4) shows the relationship between the subsystem.
report_writer_. and the table manager.

quit REQUEST
I

•
report_writer _$destroy _invocation

I ,
"ssu_$destroy _invocation

I

• CLOSE FILES

Figure 3-4.

The user types the standard ssu_ qui t request to exit
the application .

The quit request causes the ssu_ request line listener to
return to the main procedure of the application.

The application calls to destroy the report writer
invocation.

The application calls to destroy the ssu_ invocation.

The application closes files associated with the final
set of selected data.

Destroying an Invocation

The last step in using report_writer_ is to call the destroy_invocation entry point. This
entrypoint takes the report_writer_ info pointer as its only parameter. If the pointer is nUll, the
call is ignored. The following code fragment illustrates its usage.

3-12 GB63-00

SECTION 4

REPORT \VRITER REQUEST DESCRIPTIO~~S

This section contains a description of the MRW requests. Each request description contains
the name (including the abbreviated form, if any), discusses its purpose, and shows correct usage.
Notes and examples are included where necessary for clarity.

The following list summarizes the MRW requests.

column_value, elv
returns the value of the specified column for the current row, previous row, or next
row.

display, di
retrieves selected data, creates a report, and displays the information or writes it to a
file.

display _builtins, dib
returns the current values for requested built-ins.

list_format_options, lsfo
lists the names and values of format options.

restore_format_options, rsfo
restores saved report layouts.

save_format_options, svfo
saves current values of format options for future use.

set_format_options, sfo
changes/sets report format options.

The remainder of this section contains a detailed description of each request.

4-1 GB63-00

column_value

Request: column_value, elv

This request returns the value of the specified column for the current row, previous row, or
next row. It can only be used as an active request. It is used within a formatted report produced
by the display request to obtain the value of a column. It is an error to use this request anywhere
except in a header I footer or editing string within a report produced by the display request.

USAGE AS AN ACTIVE REQUEST

[elv eolumn_id {-eontrol_args}]

where:

1. column_id
specifies which column value is to be returned. It can be given as the name of the
column or the number of the column as selected through the subsystem.

2. control_args

NOTE

can be chosen from the following:

-curren t_TOV;'!, -CTVl

returns the value of the named column for the current row. (Default)

-def aul t STR
returns the character string STR when there is no previous row, or when there is no
next row. (Default value for STR is "" if this control argument is not provided.)

-next_row, -nrw
returns the value of the named column for the next row. If there is no next row, the
string u" is returned unless changed by the -default control argument.

-previous_row, -prw
returns the value of the named column for the previous row. If there is no previous
row. the string "" is returned unless changed by the -default control argument.

When a subtotal is being generated, the column_value request returns the value of the
subtotal. rather than the value of the column. An editing string for a column like" [pic $99v.99
[clv salary]] ", would edit the value of the salary column through the picture active request for
every row. When a subtotal is being generated, the value of the salary subtotal is edited through
the picture active request. This behavior also applies to subcounts, counts, and totals, in addition
to subtotals.

EXAMPLES

[e 1 v fooJ

[e 1 v 3J

4-2 GB63-OO

column_value

[clv faa -previous_row]

[clv foo -next row -default NULL]

Request: display, di

This request retrieves selected data, creates a report, and displays it on the terminal or sends it
to a file or an io switch.

USAGE

di {-control_args}

where control_args can be chosen from:

Note: The following list identifies all control arguments grouped by function.

CONTROLLING WARNING MESSAGES
-brief
-long

DISPLAYING PAGES AND PORTIONS OF PAGES
-all
-character _posi tions
=page

DATA RETRIEVAL INITIATION AND TERMINATION
-discard_retrieval
-keep_retrieval
-new _retrieval
-old_retrieval

REPORT INITIATION AND TERMINATION
-discard_report
-keep_report
-new_report
-old_report

SORTING RETRIEVED DATA
-sort

CONTROLLING REPORT OUTPUT
-extend
-output_file
-output_switch
-truncate

display

4-3 GB63-o0

display

VIDEO SYSTEM SCROLLING FUNCTIONS
-enable_escape_keys
-enable_function_keys
-scroll
-set_key
-window

MULTI-PASS REPORT FORMATTING
-passes

TEMPORARY STORAGE SPECIFICATION
-temp_dir

-all, -a
displays all pages of the report. This argument is incompatible with the -pages
control argument. (Default)

-brief, -bf
suppresses warning messages.

-character_positions STRI {STR2} , -chpsn STRI {STR2}
where STRI and STR2 define the left and right character positions of a vertical
section of the report. STRI must be given and defines the left margin position to
begin from. STR2 is optional, and if not given, defaults to the rightmost character
position of the report If this control argument is not given. the entire page is
displayed.

-discard_report, -dsrp
deletes the report on termination. (Default)

-discard_retrieval, -dsr
deletes retrieved data on termination. (Default)

-enable_escape_keys, -eek
specifies the use of escape key sequences, rather than the function keys and arrow
keys on the terminal, for scrolling functions. This is the default if the -scroll
control argument is given and the terminal does not have the necessary set of
function keys and arrow keys (see -enable_function_keys). (In the following
description, the mnemonic "esc-" means the escape key on the termina1.) The
following escape key sequences are used if this control argument is given, or the
terminal lacks the necessary set of keys:

FUNCTION NAME

forward
backward
left
right
help
set_key
set_scroll increment
quit
redisplay

KEY SEQUENCE

esc-f
esc-b
esc-l
esc-r
esc-?
esc-k
esc-i
esc-q
esc-d

display

4-4 GB63-00

display

start_of_report
0-1 "of ,. CU'"'''' +
"-11,,",_""1_1 ""'",.,"",

multics mode
gete

-enable_function_keys, -efk

esc-s
esc-e
esc-m
esc-g

specifies the use of terminal function keys and arrow keys for scrolling functions.
This is the default when the -scroll control argument is given and the terminal has at
least nine function keys and four arrow keys. (In the following description, the
mnemonic fN means function key N, where N is the number of the function key.
The mnemonic down_arrow means the down arrow key, up_arrow means the up
arrow key, left_arrow means the left arrow key, and right_arrow means the right
arrow key. The following key sequences are used if this control argument is given
and the terminal has the necessary set of keys:

-extend

FUNCTION NAME

forward
backward
left
right
help
set_key
set_scroll increment
quit
redisplay
start_of_report
end_of_report
multics_mode
goto

KEY SEQUENCE

down arrow
up_arrow
left arrow
right_arrow
fl (function key)
f2
f3
f4
f5
f6
f7
f8

.f9

appends the report to an existing file rather than replacing it if the -output_file
control argument is used. (Default is to truncate an existing file if this control
argumen t is not provided.)

-keep_report, -krp
keeps the report on termination. This control argument is necessary in order to use
-old_report on subsequent invocations of display.

-keep_retrieval, -kr
keeps retrieved data to allow re-use on subsequent invocations of the display
request. Previously retrieved sorted data retains the sort order.

-long, -lg
displays warning messages when a control argument such as -old_retrieval is used
and the data from a previous retrieval is not available. (Default)

-new_report, -nrp
creates a new report (Default)

-new _retrieval, -nr
begins a new retrieval. (Default)

display

4-5 GB63-00

display display

-old_report. -orp
uses the report created in the previous invocation. Use of this control argument
requires that -keep_report be used in the prior invocation of display.

-old_retrieval. -or
uses data retrieved during the previous invocation. Use of this control argument
requires that -keep_retrieval be used in the prior invocation of display.

-output_file path, -of path
where path is the name of the file which contains the formatted report. If this
control argument or -output_switch is not given, the report is displayed on the
terminal. This argument is incompatible with the -output_switch control argument.

-output_switch switch_name. -osw switch_name
where switch_name is the name of a switch to be used to display the report. If this
control argument or -output_file is not given, the report is displayed on the
terminal. It is an error to use this control argument if the named switch is not
already open and attached when display is invoked. This argument is incompatible
with the -output_file control argument.

-page STR. -pg STR; -pages STR, -pgs STR
where SIR is a blank-separated list of pages (N N) or comma-separated page ranges
where STR is a blank-separated list of pages (N N) or comma-separated page ranges
(N.N). Page ranges can also be given as N. or "N.$" which means from page N to the
end of the report, or simply $ which means the last page. This argument is
incompatible with the -all control argument.

-passes N, -pass N
where N is the number of times the report is to be formatted. No output is produced
until the last formatting pass of the report. (Default value for N is 1)

-scroll
specifies scrolling the report according to key sequences read from the terminal.
Only terminals supported by the Multics video system can use the scrolling feature.
If the -window control argument is not used, the -scroll argument creates a
uniquely named window for the display of the report. The user_i/o window is
reduced to four lines and the remaining lines are used for the uniquely named report
display window. The minimum size for this window is five lines, so the user_i/o
window must be at least nine lines before invoking display, unless the -window
con tro 1 argument is used.

-set_key STR, -sk STR; -set_keys STR. -sks STR
specifies that the named scrolling functions are to be set to the provided key
sequences. STR is a blank-separated list of one or more scrolling function names
and key sequences, given as:

function_name key_sequence 000 {function_name key-sequence}

The function names can be chosen from the set described under
-enable_escape_keys or -enable_function_keys control arguments. The key
sequences can be given as the actual sequences or mnemonic key sequences. The
provided mnemonics can be:

4-6 GB63-o0

display

fN

esc~ or escape-

ctl-x or control-x

down arrow

up_arrow

left arrow

home

where N is the number of the des ired
function key

corresponds to the escape character

correspods to the character sequence
generated when the control key is held
wh i 1 e a 1 so press i ng the character
named by "X"

corresponds to the down arrow key

corresponds to the up arrow key

corresponds to the right arrow key

corresponds to the home key

display

-sort STRs {-ascending I -descending} {-case_sensitive I
-non_case_sensitive), -sort STRs {asc I -dsc} -cs I -ncs}

where STRs are the names of columms or numbers corresponding to the position of
the columns as selected through the subsystem. It can be followed by -ascending or
-descending. and -case_sensitive or -non_case_sensitive. (Default is -ascending
and -case_sensitive.)

-temp_dir dir_name, -td dir_name
specifies that the given directory be used for storing the retrieved data, saving the
report if -keep_report is used, and sorting workspace if -sort is used instead of the
process directory. This temporary directory continues to be used until another new
temporary directory is requested. A new temporary directory can only be specified
when a new retrieval and new report are requested.

-truncate, -tc
replaces the contents of the existing file if the -output_file control argument is
used. (Default is to truncate if the -extend control argument is not provided.,

-window STR, -win STR

EXAMPLES

di

specifies that the window named by STR be used for the display of the report. This
argument is only meaningful when the -scroll argument is also used. If this control
argument is used, the window named by STR must be attached and open under the
video system, and it must be at least five lines high.

di -output_file foo

di -keep_retrieval -sort bar -descending -non_case_sensitive

di -keep_retrieval -keep_report -of fool -character_positions 1 132

4-7 GB63-00

display display _builtins

di -old_retrieval -old_report -of foo2 -character_positions 133 260

di -pages 1 3 12,19 58,$ -output_switch foo

di -sort foo -descending bar -non_case_sensitive

Request: display _builtins, dib

This request returns the current value of the built-in named by STR. It can only be used as an
active request. It is used within a formatted report produced by the display request to obtain the
current value of the specified built-in. It is an error to use this request anywhere except in a
header I footer or editing string within a report produced by the display request.

USAGE AS AN ACTIVE REQUEST

[d i b STR]

where STR ~an be anyone of the following built-ins:

curren t_pass_num ber
the number of the current pass. The number begins with 1 and is incremented by 1
for each additional formatting pass over the report.

curren t_row _num ber
the number of the current row of the report.

first_row
true if the current row is the first row of the report, or false if it is not the first row
of the report.

last_page_num ber
the number of the last page of the report, or "0" if it is the first pass over the report.

. After each formatting pass, the number is updated with the number of the last page.

last_pass
true if this is the last formatting pass of the report, or false if this is not the last pass
of the report

last_row
true if the current row is the last row of the report, or false if the current row is not
the last row of the report.

last_row _number
the number of the last row of the table, or "0" if it is the first pass over the report.
After the first formatting pass the number is set to the number of the last row,

page_number
the number of the current page of the report.

4-8 GB63-00

display _builtins

previously _processed_row
true if the current row was processed on the preceding page but the row value would
not fit and had to be deferred to the current page, or false if this is the first time the
curren t row is being processed.

Request: list_format_options, lsfo

This request lists the names and values of individual report formatting options, all report
formatting options, or the active report formatting options. As an active request, it returns the
value of the single specified format option.

USAGE

lsfo -control_arg -OR- lsfo -format_option_args

USAGE AS AN ACTIVE REQUEST

[lsfo -format_option_arg]

where:

1. control_args
can be chosen from the following:

-active, -act
specifies that only the active formatting options are to be listed. (Default) "help
formattin~options.gi" is typed for more information on active formatting options.
This control argument is incompatible with -all and the format option arguments.
If -active and -all are both given, the last one supplied is used.

-all, -a
specifies that all formatting options are to be listed. This control argument is
incompatible with -active and the format option arguments. If -all and -active are
both given, the last one supplied is used.

2. format_option_args
can be one or more of the f oHowing:

GENERAL REPORT OPTIONS

-delimiter. -dm
displays the character used to delimit the different portions of a header or footer.

-format_document_controls, -fdc
displays the interpretation of embedded format document controls when filling
(on), or the treatment of embedded controls as ordinary text (off).

4-9 GB63-00

-hyphenation, -hph
displays hyphenation where possible for overlength values (on), or no hyphenation
(off).

-page_footer_ value, -pfv
displays the page footer placed at the bottom of each page.

-page_header_ value, -phv
displays the page header placed at the top of each page.

-page_length, -pI
displays the length of each formatted page given as the number of lines.

-page_width. -pw
displays the width of each formatted page given as the number of character
positions.

-title_line, -tl
displays printing of the title line (on) or the suppression of the title line (off).

-truncation, -tc
displays the character or characters used to indicate truncation.

GENERAL COLUMN OPTIONS

-column_order. -co
displays the order of columns in the detail line.

-count, -ct
displays the columns which have counts taken on them.

-exclude, -ex
displays the columns to be excluded in the detail line.

-group, -gr
displays the columns used to group a number of rows based on their values.

-group_footer_trigger, -gft
displays the columns which can cause the generation of the group footer.

-group_footer_ value, -gfv
displays the group footer placed after each group of rows.

-group_header_trigger, -ght
displays the columns which can cause the generation of the group header.

-group_header_value, -ghv
displays the group header placed before each group of rows.

-outline, -out
displays the columns which can duplicate suppression.

4-10 GB63-00

-page_break, -pb
displays the columns which can cause a break to a new page.

-row~footer_ value, -rfv
displays the row footer placed after each row value.

-row_header_ value, -rhv
displays the row header placed before each row value.

-subcount, -set
displays the columns that have subcounts taken on them.

-subtotal, -stt
displays the columns that have subtotals taken on them.

-total, -tt
displays the columns that have totals taken on them.

SPECIFIC COLUMN OPTIONS

In the following descriptions, column_id means the column name, the number of the
column selected through the subsystem, or a star name which is matched against the column
names.

NOTES

-alignment column_id, -al co1umn_id
displays the alignment mode within the display width for the specified column.

-editing column_id, -ed column_id
displays the editing string for the specified column.

-folding column_id. -fold column_id
displays the folding action taken when the column value exceeds the display width
for the specified column.

-separator column_id, sep column_id
displays the character string that separates the specified column from the column in
the detail line which immediately follows it.

-title column_id, -ttl column_id
displays the character string that is placed at the top of the page above the specified
column.

-width column_id, -wid column_id
displays the display width in the detail line for lhe specified coiumn.

Ref er to the description of the set_f ormat_options request for a complete list of the
default values for the format options and a discussion of their allowed values. When used as an
active request, only one format_option_arg can be specified.

4-11 GB63-OO

EXAMPLES

lsfo

lsfo -all

lsfo -width 1 -al ignment salary

lsfo -page_width -title ** -page_length

4-12 GB63-00

restore_f ormat_options save_format_options

Request: restore_format~options, rsfo

This request restores the saved report layout specified by path. Only the formatting options
found in the saved report layout have their values changed.

USAGE

rsfo path

where path is the pathname of the saved report format to be restored. If path does not contain an
fo.ec_name suffix. one is assumed. The ec_name is specific to the subsystem which is using the
report writer. and the ec suffix for the subsystem is substituted here by the report writer.

NOTES

Refer to the save_format_options request for detail on the content of the saved report
format.

EXAMPLES

rsfo sample_display_format

rsfo another_display_format.fo.lec

Request: save_format_options, svfo

This request saves the current values of format options as a subsystem exec_cern. The saved
format can be restored with the restore_format_options request. The file is saved by utilizing a
suffix of fo.ec_name where ec_name is substituted by the subsystem's ec suffix by the report
writer. Individual format options. active format options. or all of the format options can be
saved. The requests used to select the set of columns through the subsystem can also be saved.

USAGE

svfo path {-format_option_args} {-control_args}

where:

1. path is the pathname of the segment that contains the saved format. If path does not
have an f o.ec_natne suffix. one is assumed.

2. format_option_args
refer to the set_format_options request for a complete description of the format
option arguments. Each format option named has its value saved in the exec_com
specified by path. These arguments are incompatible with the -all and -active
control arguments.

4-13 GB63-00

sa ve_f ormat_options

GENERAL REPORT OPTIONS

-delimi ter, -dm
-format_document_controls, -fdc
-hyphenation, -hph
-page_footer_value, -pfv
-page_header_value, -phv
-page_length, -pI
-page_width, -pw
-title_line, -t1
-truncation, -tc

GENERAL COLUMN OPTIONS

-column_order, -co
-count, -ct
-exclude, -ex
-group, -gr
-group_footer_trigger, -gft
-group_footer_ value, -gfv
-group_header_trigger, -ght
-group_header_value, -ghv
-outline, -out
-page_break, -pb
-row_footer_value, -rfv
-row_header_ value, -rhv
-subcount, -set
-subtotal. -stt
-total, -tt

SPECIFIC COLUMN OPTIONS

-alignmen t, -a1
-edi ting, -ed
-folding, -fold
-separator, -sep
-title, -ttl
-wid th, -wid

3. contro1_args
can be one or more of the following:

-active, -act
specifies that only the active formatting options are to be saved. (Default) "help
formattin!Loptions.gi" is typed for more information on active formatting options.
This control argument is incompatible with the format option arguments and the
-all control argument. If -active and -all are given, the last one supplied is used.
(Default)

-all, -a
specifies that all formatting options are to be saved. This control argument is
incompatible with the format option arguments and the -active control argument.
If -all and -active are given, the last one supplied is used.

4-14 GB63-00

save_format_options

-query
sJ)P-cifies that the subsystem query request used to select the columns is to be saved.
A restore_format_options on the saved format also restores and makes the saved
query current.

EXAMPLES

svfo report_layout

svfo report_layout -all

svfo report_layout -query

svfo report_layout -page_ header - value -page_ footer value -
svfo report_layout -page_ header _value -width salary

svfo report_layout -width ,'c,'c -page_ footer value -

Request: set_form at_options, sfo

This request sets individual report format options to user-specified or default values. and/or
all formatting options to default values.

USAGE

where:

Note: The option value given for any format option ar.gument can be the control
arguments -default or -prompt. If -default is given for the value, report
writer sets the value of the format option to the system default. If -prompt is
given for the value, report writer prompts for the value with the prompt string
"Enter FORMAT_OPTION_NAME. fl. A line consisting of the single character
"." terminates the prompted input mode. To suppress display of the prompt
string, use the -brief control argument.

1 J! __ ".,+ __:_""'" ~_ _

.1... 1 Vll114L_UpLIUll_41 ~

can be one or more of the following:

GENERAL REPORT OPTIONS

-delimiter CHAR, -dm CHAR
CHAR is the character used to delimit the different portions of a header or" footer
and can be set to any printable character. (Default value for CHAR is !)

4-15 GB63-00

-format_document_controls SIR, -fdc STR
STR determines if the format_document_ subroutine is to interpret format
document control lines when filling overlength text. STR can be set to on, meaning
format_document_ interprets control lines in the text and provides special filling
actions based on the embedded control lines. (Default value for STR is off, meaning
format_document_ does not check for control lines embedded in text.)

-hyphenation SIR, -hph STR
the value of -hyphenation determines if hyphenation is to be attempted when filling
overlength character strings. STR can be set to "on," specifying that hyphenation is
to be attempted. (Default value for SIR is off, meaning no hyphenation is
attempted.)

-page_footer_value SIR, -pfv STR
STR is the page footer placed at the bottom of each page. The page footer can
consist of more than one line, and each line can have a left, right. and center
portion. The individual portions of each line are delimited by the delimiter
character. Active requests found in the footer are evaluated and their return value
is placed into the footer before folding and alignment takes place. Portions of a
footer with zero length have their space on the page redistributed to the other
portions whose lengths are not zero. For example, if the page footer contained only
a center portion:

!!Sample Center Portion!!

the text is centered on the page and has the full page width available for the text.
Similarly, a left portion or right portion only is aligned to the left or right of the
page and has the full page width available for placement of text. Two exceptions to
this action are when the footer has a left, right, and center portion, and the left or
righ t portion has a zero length, such as:

!left part!center part!!

or

!!center part!right part!

in which case the left or right part of the page is unavailable for placement of text
(i.e., the space is not redistributed to the other two portions). If the redistribution
of the available page width is not desired, the placement of a single blank into a
portion such as tt!<SP>!Center Part!<SP>!" prevents the redistribution from taking
place because each portion has a length greater than zero. (Default value for STR is
.m, meaning there is no page footer provided by default.)

-page_header_ value SIR, -phv SIR
STR is the page header placed at the top of each page. Refer to the description of
-page_footer_ value for the content of a header. (Default value for STR is "",
meaning there is no page header provided by default.)

-page_length N, -pI N
N is the length of each formatted page given as number of lines. N can be given as
"0" or any positive integer. 0 means the report is not to be paginated and is created
as one continuous stream. (Default value for N is 0)

4-16 GB63-00

-page_width N, -pw N
N is the width of each formatted page given as the number of character positions. N
can be given as "0" or any positive integer. 0 means the page_width is always set by
report writer to be the exact width needed to contain all of the columns specified in
the query. If N is greater than zero and the width for any column exceeds N, the
width of the column is automatically set to N. (Default value for N is 79)

-title_line SIR, -tl SIR
SIR determines if a title line is to be printed. SIR can be set to "off" to inhibit the
printing of the title line. (Default value of SIR is on, meaning a title line is printed
at the top of each page.)

-truncation SIR. -tc STR
SIR determines the character(s) to be used to indicate truncation of some value.
SIR can be set to any sequence of printable characters. (Default value for STR is *)

GENERAL COLUMN OPTIONS

-column_order column_list, -co column_list
column_list determines the order in which columns appear in the detail line.
column_list can be set to a list of column names or numbers. Columns missing from
this list are placed after' the columns which appear in the list. That is, if five
columns were selected and the column_order value is given as "3 2", the complete
order would be "3 2 1 4 5". (Default value for column_list is the list of columns
from the query, in the order supplied, meaning that the columns appear in the exact
order as they appear in the query.)

-count column_list, -ct column_list
column_list determines the columns for which counts are generated. column_list
can be set to a list of column names or numbers. Counts are generated after the last
detail line. If a count is requested on a column that is excluded, the count is also
excluded from the page. An exception to this rule is when all columns are excluded.
Counts are provided in this case to allow reports consisting of some combination of
counts, subcounts, totals, and subtotals only. (Default value for column_list is "",
meaning no columns have counts generated.)

-exclude column_list, -ex column_list
column_list determines if any of the columns selected in the query are excluded
from the detail line. column_list can be set to a list of column names or numbers.
(Default value for column_list is "", meaning no columns are excluded.)

-group column_list, -gr column_list
column_list determines the grouping of a number of rows based on the values of one
or more columns. column_list can be set to a list of coiumn names or numbers. The
column or columns named in the list become a hierarchy of columns. Ihe first
column named is the major column. and the last column named becomes the minor
column. The hierarchy of columns can be used with the outline, page_break, and
subtotal options described below. (Default value for column_list is "", meaning no
group of rows is defined.)

-group_footer_trigger column_list, -gft column_list
column_list determines when to generate the group footer. column_list can be set

4-17 GB63-OO

to a list of column names or numbers. The columns which appear in this list must
also appear in the column list associated with the -group option. If the -group
option is set to a new value, columns which are eliminated from the column_list are
also eliminated from the -group_footer_trigger column_list When any of the
columns specified in the column_list are about to change with the next row, the
group footer is evaluated. The group footer is always evaluated after the last row of
the report. (Default value for column_list is "". meaning no group footer triggers
are defined.)

-group_footer_value STR, -gfv STR
STR is the group footer placed after each group of rows when any of the columns
associated with the -group_footer_trigger option changes. Refer to the description
of -page_f00 ter_ value above for the content of a header /footer. (Default value
for STR is "", meaning there is no group footer defined.)

-group_header_trigger column_list, -ght column_list
column_list determines when to generate the group header. column_list can be set
to a list of column names or numbers. The columns which appear in this list must
also appear in the column list associated with the -group option. If the -group
option is set to a new value, columns which are eliminated from the column_list are
also eliminated from the -group_header_trigger column_list. When any of the
columns specified in the column_list have just changed with the current ro .. \', the
group header is evaluated. The group header is always evaluated before the first row
of the report. (Default value for column_list is "", meaning no group header
triggers are defined.)

-group_header_value STR, -ghv STR
STR is the group header placed before each group of rows when any of the columns
associated with the -group_header_trigger option changes. Refer to the description
of -page_footer_ value above for the content of a header /footer. (Default value
for STR is "", meaning there is no group header defined.)

-outline column_list, -out column_list
column_list determines if duplicate values in a column are to be suppressed.
column_list can be set to a list of column names or numbers. If the value of a named
column is the same as its previous value, then the value is suppressed unless it is the
first line of a new page. (Default value for column_list is "", meaning no columns
have duplicate values suppressed.)

If any of the named columns are a member of the "group" of rows defined by the
group option, then it, and all of the columns more major in this group, are outlined.
A change in value of anyone column displays all columns lower in the hierarchy in
addition to the column that changed. An exception is the first line on a new page, in
which case duplicate values are never suppressed.

-page_break column_list, -pb column_list
column_list determines when page breaks are generated. column_list can be set to a
list of column names or numbers. The columns specified in the list are examined,
and when their values change, a new page break is generated. If any of the named
columns are a member of the "group" of rows defined via the group option, then it,
and all columns more major in the group, are examined for page breaks. (Default
value for column_list is "", meaning that no columns are examined for page breaks.)

4-18 GB63-00

-row_footer_value STR. -rfv STR
STR is the row footer placed after each detail line. Refer to the description of
-page_footer_ value (above) for the content of a footer. (Default value for STR is
nn. meaning that no row footer is provided.)

-row_header _value STR. -rhvSIR
SIR is the row header placed before each detail line. Refer to the description of
-page_footer_value (above) for the content of a header. (Default value for STR is
"", meaning that no row header is provided.)

-subcount subcount_spec, -set subcount_spec
subcount_spec determines what columns subcounts to generate. when they should
be generated. and what type of subcount is generated. (Default value for
subcount_spec is "", meaning that no subcounts are generated for any columns.)

subcount_spec can consist of one or more blank-separated "triplets." The syntax of
a triplet is:

column_l,column_2{reset I running}

where:

column_1
is the name or number of the column for which a subcount is generated.

column_2
is the name or number of a column whose value is examined to determine when
to generate the subcount. When the value of the column being examined
changes, the subcount is generated. If this column is a member of the group of
rows defined via the group option, it, and all columns more major in the ~l oup,
are examined for subcount generation.

reset I running
indicates the type of subcount desired. If reset is selected, the subcount counter
is reset to 0 each time a subcount is generated. If running is selected, the
subcount is not reset to O. If a subcount is requested on a column that is
excluded, the subcount is also excluded from the page. An exception to this rule
is when all columns are excluded. Subcounts are provided in this case to allow
reports consisting of some combination of counts, subcounts, totals. and
subtotals only. (Default is reset)

-subtotal subtotal_spec. -stt subtotal_spec
subtotal_spec determines what column subtotals to generate, when they should be
generated, and what type of subtotal is generated, (Default value for subtotal_sppJ.:
is "". meaning 'no subtotals are generated for any columns.)

subtotal_spec can consist of one or more blank-separated triplets. The syntax of a
triplet is:

column_l,column_2{,reset I running}

where:

4-19 GB63-o0

column_l
is the name or number of the column for which a subtotal is generated.

column_2
is the name or number of a column whose value is examined to determine when
to generate the subtotal. When the value of the column being examined
changes, the subtotal is generated. If this column is a member of the group of
rows defined via the group option, it, and all columns more major in the group,
are examined for subtotal generation.

reset I running
indicates the type of subtotal desired. If reset is selected, the subtotal counter is
reset to 0 each time a subtotal is generated. If running is selected, the subtotal is
not reset to O. If a subtotal is requested on a column that is excluded, the
subtotal is also excluded from the page. An exception to this rule is when all
columns are excluded. Subtotals are provided in this case to allow reports
consisting of some combination of counts, subcounts, totals, and subtotals only.
(Default is reset)

-total column_list, -tt column_list
column_list determines what column totals to generate. (Default value for
column_list is "''. meaning no totals are generated for any columns.)

column_list can be set to a list of column names or numbers. Totals are generated
after the last detail line. If a total is requested on a column that is excluded, the total
is also excluded from the page. An exception to this rule is when all columns are
excluded. Totals are provided in this case to allow reports consisting of some
combination of counts, subcounts. totals, and subtotals only.

SPECIFIC COLUMN OPTIONS

In the following descriptions, column_id means the column name, the number of
the column in the query, or a star name which is used to match column names.

-alignmen t column_id STR, -al column_id STR
column_id specifies which column the alignment applies to and STR is the
alignment mode. STR can be set to center, left, right, both. or decimal N. The
default value for STR depends upon the type of column selected. Character and bit
strings default to left-alignment, decimal data with a non-zero scale defaults to
decimal-point-alignment, and all other types default to right alignment. For
decimal-point-alignment, the decimal alignment position within the display width
is given a default value. This alignment position can be changed by specifying the
value as "decimal N", where N is the character position within the display width
where the decimal point is aligned. The alignment mode "both" specifies that the
column value is aligned to the leftmost and rightmost character positions within its
display width. Text is padded by insertion of uniformly distributed whitespace if
necessary.

-editing column_id STR, -ed column_id STR
STR specifies the additional editing to be done to the column value before it is
placed on the page and column_id specifies which column the e.diting applies to.

4-20 GB63-00

Multics active functions and subsystem active requests are normally used to provide
additional editing. For example, the editing value:

[e pic $99,999v.99 [column_value salary]]

places commas and dollar signs in the salary column. (Default value for STR is "",
meaning additional editing is not done.)

Refer to the column_value request for a description of usage.

-folding column_id STR, -fold column_id STR ,
STR determines what type of action occurs when a column value exceeds its display
width and column_id specifies which column the folding applies to. STR set to
truncate means that the value of the column is truncated to fit in the display width
and the truncation character(s) are placed at the end of the value to indicate that
truncation occurred. (Default value for STR is fill, meaning portions of -the value
which exceed the display width are moved down to the next line(s) until a correct fit
is obtained.)

-separator column_id SIR, -sep column_id STR
SIR separates a column from the next one following it and column_id specifies
which column the separator applies to. Ihe last column on a line does not have a
separator. SIR can be any sequence of. printable characters. (Default value for SIR
is "<SP><SP>")

-title column_id SIR, -ttl column_id STR
STR is the title placed above the column at the start of each page if the title_line
option is set "on" and column_id specifies which column the title applies to.
(Default value of SIR is the name of the column. If the title is not the same number
of characters as the display width of the column, the title is centere.d within the
display width for its associated column. If the value of title is wider than the display
width of the column, it is filled or truncated to obtain a correct fit, depending on
the folding action of the parent column.)

-width column_id N, -wid column_id N
N determines the display width for a column and column_id specifies which column
the width applies to. N can be set to any positive integer. (Default value for N is the
number of character positions needed to contain the value, after conversion from
the subsystems data type, to character format.)

2. control_args
can be chosen from the following:

-brief, -bf
specifies that the prompt string for values is not to be displayed. If the -brief and
-long control arguments are both entered on the request line, the last one supplied is
used.

-default
specifies that report writer set the value of the format option which immediately
precedes this control argument to the system-supplied default.

4-21 GB63-OO

NOTES

-long, -lg
displays "Enter FORMAT_aPTIaN_NAME" prompt string for values when the
-prompt control argument is provided. (Default) If the -brief and -long control
arguments are both entered in the request line, the last one supplied is used.

-no_reset, -nrs
specifies that formatting options are not to be reset to system default values.
(Default is that only user-specified options can be changed.) If the -reset and
-no_reset control argument are both entered in the request line, the last one
supplied is used.

-prompt
specifies that report writer prompts for the value of the format option which
immediately precedes this control argument. A prompt string is written before the
prompting action unless the -brief control argument is used. A line consisting of
the single character "" terminates the prompted input mode.

-reset, -rs
specifies that all formatting options are to be reset to system default values before
the values are changed for any other format options specified in the request line. If
-reset and -no_reset are both entered in the request line, the last one supplied is
used.

-string STR, -str STR
enters STR as a format option value when STR begins with a hyphen.

At least one format option argument or the -reset control argument must be specified.
Format option arguments and control arguments can be mixed freely in the request line, but a
control argument cannot be placed between a format option name and a format option value. For
example:

sfo -page_width 80 -reset

is a valid request, but

sfo -page_width -reset 80

is not valid. If a value is to be set that begins with a hyphen, the -string control argument must be
given before the value, to distinguish it from control arguments and format option arguments.

EXAMPLE

sfo -width 1 25

sfo -title emp_name "Employee Name"

sfo -reset -page_width 80 -page_length 60

sfo -page_footer_value "!!-[display_builtins page_number]-!!"

4-22 GB63-OO

sfo -page_header_value -prompt
Enter page_header_vaiue.
! [execute date]!SAMPLE REPORT! [execute time]!
I

•• • • ! ! !

! !--Page [display_builtins page_number]--!!

sfo -exclude exchange extension -width area code 12

sfo -editing area code "[e format 1 ine AajAa-Aa [column value area_code]
[column value ~xchange] [colum~_value extension]]11 -

4-23 GB63-00

SECTION 5

REPORT WRITER SUBROUTINE DESCRIPTION

This section contains the description of the report_ writer_ subroutine and its functions,
presented in alphabetic order. The description contains the name of the subroutine, discusses the
purpose of the subroutine, lists the entry points. and describes the correct usage for each entry
point. Notes are included for clarity.

5-1 GB63-00

report_writer _
convert_and_move_row

Name: report_writer_

The report_writer_ subroutine provides a programmer interface to the MRW system.
Through it, application subsystems can include generalized report writing capabilities, with a
minimal amount of coding required by the subsystem developer. The following entrypoints are
provided:

convert_and_move_row
called to have a row value converted from differing data types and moved into the row
value buffer.

create_invocation
called to create a report_writer_ invocation.

define_columns
called to inform report_writer_ that a set of columns are available for usage.

destroy _invoca tion
called to destroy a report_ writer_ invocation.

set_report_ writer_info_ptr
called to have the report_writer_ standard requests use the supplied report_writer_ info
pointer (for subsystems that have more than one report_writer_ invocation present in
the one subsystem (ssu_) invocation).

set_table_manager
called to have report_writer_ use the specified table manager procedure for this
report_writer_ invocation.

Entry: convert_and_move_row

This entry converts a row of differing data types to a row of character string values and
places it in the row value buffer.

USAGE

declare report writer Sconvert and move row entry (ptr, U:) ptr);
call report_wrTter_Sconvert_and_move_row (report_writer_info_ptr,

value_ptrs) ;

ARGUMENTS

report_ wri ter _inf 0 _ptr
is the pointer to the report_writer_ info structure returned by the create_invocation
entrypoint. (Input)

value_ptrs
is an array of pointers that point to the individual column values that are to be
converted. (Input)

5-2 GB63-00

NOTES

report_writer _
create_invocation

The number of pointers in the array must be equivalent to the number of columns defined in
the table. Refer to "Data Conversions" in Section 3 for a code fragment which shows the usage of
this subroutine.

Entry: create_invocation

This entry creates a report_writer_ invocation. It adds the standard report_writer_ request
table and the standard requests info segments directory at location 99999 (see Notes).

USAGE

declare report_writer_$create_invocation entry (char(*), ptr, ptr,
fixed bin (3S), char U:) vary i ng) ;

call report_writer_$create_invocation (table_manager_name,
sci_ptr, report_writer_ptr, code, message);

ARGUMENTS

ta ble_manager _name
is the name of the table manager procedure for the application subsystem that is creating
the report writer invocation. If the name is blank, report_writer_ obtains the name of
the application subsystem via the ssu_$get_subsystem_name subroutine and uses this as
the table manager procedure name. Entry variables are constructed by report_ writer_
using the name of the table manager procedure. {Input}

sci_ptr
is the ssu_ info pointer returned to the application subsystem when the ssu_ invocation is
created. If this parameter is nUll, the report_ writer_ invocation is not created. (Input)

report_ wri ter _inf 0 _ptr
is the pointer to the report_writer_ info structure. This pointer is passed as the first
parameter to every other report_writer_ entry. (Output)

code
is a standard error code. If this is non-zero the invocation could not be created.
(Output)

message

NOTES

if code is non-zero, this parameter contains the reason why the invocation could not be
created. Declaring this argument as "character(128) varying" provides an area large
enough to contain any returned error message. (Output)

The table manager procedure is a program supplied by the application subsystem to manage
data retrieval from its source data file. The report_writer_ creates entry variables of the form
"table_manager_name$XX", where XX are the entries that must be available in the table manager

5-3 GB63-00

report_writer _
create_invocation define_columns

procedure. The required entries are create_table. delete_table. and get_row. The optional entry
is get_query. See "Subsystem Table Manager Procedure" in Section 3 for additional information.

The report_writer_ request tables provide a mechanism to include all of the report_writer_
standard requests (the default when an invocation is created). or selected individual
report_writer_ requests. The request table "report_writer_request_table_$standard_requests" is
used by the report_writer_$create_invocation entrypoint in a call to ssu_$add_request_table to
add the report_writer_ standard requests to the subsystem's set of requests. If the standard
requests are not required, the subsystem should call ssu_$delete_request table with this as a
parameter, after the call to report_writer_$create_invocation. The report_writer_ standard
requests are: column_value, display. display_builtins, list_format_options,
restore_format_options, save_format_options, and set_format_options. The other request
tables defined to allow the addition of single requests are
report_ writer_request_table_$XXX_request, where XXX is the short name of the request. These
can be chosen from: elv, di, dib, lsfo. rsfo, sfo, and svfo.

The report_writer_info_dirs_ data segment provides a mechanism to include the directory
containing the info segment for a request. The report_writer_info_dirs_$standard_requests is
used by the report_writer_$create_invocation entrypoint in a call to ssu_$add_info_dir, to add
the info directory containing the info segments for the standard requests. If the standard requests
are not required, the subsystem should call ssu_$delete_info_dir with this as a parameter, after
the call to report_writer_$creat.e_invocation, The other data it.ems defined to allow the addition
of directories which contain the info segment for a single request are
report_writer_info_dirs_$XXX_requests, where XXX is the short name of the request. These
can be chosen from: elv, di, dib, lsfo, rsfo, sfo, and svfo.

Entry: define_columns

This entry is used to inform report_writer_ that a set of columns have been selected. All
specific and general column options have new values assigned based on the newly selected
columns.

USAGE

declare report_writer_$define_columns entry (ptr, ptr,
fixed bin (3S), char U') vary i ng) ;

call report_writer_$define_columns (report_writer_info_ptr,
row_info_ptr, code, message);

ARGUMENTS

report_ wri ter _inf o_ptr
is the pointer to the report_writer_ info structure returned by the create_invocation
entrypoint. (Input)

row_info_ptr
is a pointer to the row_info structure described in the include file rw_row_info.incl.pU
(See "Notes" below,) If this pointer is nUll. any previously defined specific and general
column option values are deleted, and the only operations allowed are to general report
options until this entry is called again with a valid row_info pointer. (Input)

5-4 GB63-00

code

report_ writer_
define_columns

is a standard error code. If this code is non-zero the values of any previously defined
specific and general columns options will remain unchanged. (Output)

message
if code is non-zer-e this parameter will contain the reason for the failure-; Declaring this
argument as "character(128) varying" provides an area large enough to contain any
returned error message. (Output)

NOTES

The row_info structure declared in the include file rw_row_info.incl.pU is listed below,
followed by a description of the members of this structure.

declare 1 rqw_info aligned based (row_info_ptr),

2 version char(8) unaligned,

where:

version

2 value_ptr ptr,

2 value_length fixed bin(21),
2 number_of_columns fixed bin,

2 current_column_number fixed bin,

2 column (row_info_init_number_of_columns

refer (row_info.number_of_columns»,

3 names char(128) varying,

3 descriptors bit(36),

3 lengths fixed bin(21),

3 indexes fixed bin(21);

speciiies to report_writer_ that the application subsystem is using a particular version of the
structure. The only version currently supported by report_writer_ is version 1. The value of
ROW_I NF 0_ VERSION_l, declared in the same include file, should be assigned to
row_info. version by the subsystem. (Input)

value_ptr
is filled in by report_writer_ and points to the buffer where the row value is placed by the
application subsystem's table manager procedure or the
report_writer_$convert_and_move_rowentrypoint See "The Row Value Buffer" in Section
3 for additional information. (Output)

value_length
is filled in by report_writer_ and is the length of the buffer for the row value. This is set to
the exact number of characters needed to contain the row value after conversion from
internal data types to the non-varying, unaligned character data types report_writer_ uses.
l,",llt-~Ht-\ ,_ t'w .. ,

number_of_columns
is filled in when the application subsystem allocates the row_info structure, by setting the
variable row_info_init_number_of_columns to the number of columns that should be
present in the table, before the allocate statement is executed. (Input)

current_column_number
is set to zero by report_writer_ and can be used by the application subsystem's table manager

5-5 GB63-00

report_writer _
define_columns define __ colurnnns

procedure to place individual column values into the row value buffer. See "The Row Value
Buffer" in Section 3 for additional information. (Output)

names
are filled in by the application subsystem, and are the names of the individual columns.
These names must not contain whitespace because of the request line syntax of the
report_writer_ standard requests. (Input)

descriptors
are filled in by the application subsystem. They are standard data type descriptors for the
column data as it appears in the source file that the subsystem's table manager retrieves from.
In many cases they describe columns that are not non varying, unaligned character data types,
and report_writer_ must convert the column values to nonvarying character strings. It uses
these data descriptors to do data conversion. See "Data Conversions" in Section 3 for
additional information. It also uses these descriptors when generating default report column
widths, column alignment modes, etc.

H a descriptor is completely zero, the column is assumed by report_writer_ to be a
non varying, unaligned character string. In this case, the lengths field is used to determine the
length in characters of the column. The descriptor is then set by report_writer_ to a
nonvarying, unaligned character descriptor and its size portion is set to the value found in the
lengths field.

Refer to the Programmer's Reference Manual, for a description of Multics standard data
type descriptors. Refer to the include files "arg_descriptor.incl.pll" and
"std_descriptor_types.incl.pll" for structures and named constants to set descriptors.
(Input/Output)

lengths
are filled in by report_writer_, and each is the number of characters needed to contain the
column value after conversion from any supported data type to nonvarying, unaligned
character format In the case where the descriptor is completely zero, lengths are set by the
caller. The report_writer_ examines the value of this field to determine the length in
characters for the column. See "The Row Value Buffer" in Section 3 for additional
information. (Input/Output)

indexes
are filled in by report_writer_, and each is the index into the row value buffer for a
particular column. See "The Row Value Buffer" in Section 3 for additional information.
(Input)

There are also three variables defined in this include file to provide a convenient method to
access the row_value buffer. A description of these variables follow.

row _value variable
provides a method to refer to the complete row value. Its declaration is:

declare row value char (row info.value length)
based (row info.value ptr); -- -

A PL/I program to set the row value completely blank could use the PL/I statement:

row_va 1 ue = II II;

row _ value_as_an_array variable
provides a method to refer to any single character within the row value. Its declaration
is:

5-6 GB63-00

report_ writer_
set_report_ writer _info_ptr

declare row value as an array (row info.value length)
char(l) based (row_info.value_ptr); -

A PL/I program to set the 15th character within the row_value to a blank could use the
PL/I statement:

row_value_as_an_array (15) = II II;

column_value variable
provides a method to refer to a complete column value. Its declaration is:

declare column value
char (row info.column. lengths

(row info.current column number))
based (addr (row value as-an array

(row info.colu;n.lndexes
(row_info.current_column_number)))) ;

A PL/I program to set all of the columns to blanks could use the PL/I code fragment:

do row_info.current_column_number = 1 to row_info.number_of_columns;
column_value = II II;

end;

Entry: destroy_invocation

This entry destroys a report_writer_ invocation.

USAGE

declare report_writer_$destroy_invocation entry (ptr);
call report_writer_$destroy_invocation (report_writer_info_ptr);

ARGUMENTS

report_ wri ter _inf 0 _ptr
is the pointer to the report_writer_ info structure. If this pointer is nUll, the call is
ignored. This pointer is set to null after the invocation is destroyed. (Input/Output)

Entry: set~report_ writer ~info_ptr

This entry is used by complex subsystems that require more than one report_writer_
invocation to be present in the subsystem invocation. It takes the caller provided report_writer_
info pointer and places it in an internal location associated with the sci_ptr. When the next
report_writer_ standard request is invoked, it uses the new report_writer_ info pointer now
associated with its sci_ptr parameter.

5-7 GB63-OO

report_writer _
set_report_ writer _info_ptr

USAGE

declare report writer Sset report writer info ptr entry (ptr, ptr,
fixed bin(35)~ cha~(*) va~ying);- -

call report writer Sset report writer info ptr
(report_writer_info_pt~, sCi_ptr, ~ode, message);

ARGUMENTS

report_ wri ter _inf 0 _ptr
is the pointer to a report_writer_ info structure. This pointer becomes the
report_writer_ info pointer that is passed to the report_writer_ standard requests.
(Input)

sci_ptr
is the pointer to the ssu info structure returned to the subsystem by the
ssu_$create_invocation entrypoint. (Input)

code
is a standard error code. If this code is non-zero, the current report_writer_ info
pointer remains in effect. (Output)

message

NOTES

if code is non-zero this parameter contains the reason for the failure. Declaring this
argument as "character (128) varying" provides an area large enough to contain any
returned error message (Output)

The most common type of subsystem using report_writer_ is one where there is only one
report_writer_ invocation present in the one subsystem invocation. If a subsystem requires more
than one report_writer_ invocation to be present in the one subsystem invocation, call the
report_writer_$create_invocation as many times as required, saving the returned report_writer_
info pointer after each call. This entrypoint is then called with the desired report_writer_ info
pointer before any of the report_writer_ standard requests are used. The call to this entrypoint
ensures that the correct report_writer_ info pointer is used by the report_writer_ standard
requests.

Entry: set_table_manager

This entry is used by complex subsystems that require more than one table_manager
procedure to be used in a report_writer_ invocation. It takes the caller provided table_manager
name and creates entry variables to the expected entrypoints. (See the
"report_writer_$create_invocation entrypoint" for more information on the table_manager
procedure.) After this entrypoint is called, the next invocation of the report_writer_ display
request uses this new table_manager procedure.

5-8 GB63-o0

, Irt A"'~
U'::>~1.3C

report_ writer_
set_table_manager

declare report_writer_$set_table_manager entry (ptr, char(*),
fixed bin (35);; char (i') vary j ng) ;

call report_writer_$set_table_manager
(report_writer_info_ptr, table~manager_name, code, message);

ARGUMENTS

report_ wri ter _inf 0 _ptr
is the poin ter to the report_ wri ter _ inf 0 structure returned by the
repor.t_writer_$create_invocation entrypoint (Input)

table_manager_name
is the name of the new table_manager procedure. (Input)

code
is a standard error code. If this code is non-zero, the current subsystem table_manager
procedure remains in effect (Output)

message

NOTES

if code is non-zero, this parameter contains the reason for the failure. Declaring this
argument as "character (128) varying" provides an area large enough to contain any
returned error message. (Output)

The most common type of subsystem using report_ writer_ is one where there is only one
table_manager procedure required for the one report_writer_ invocation. If a subsystem wishes
to switch between different table_manager procedures within one report_writer_ invocation,
this entrypoint should be called with the name of the new table_manager procedure. The call to
this entrypoint results in the new table_manager procedure being called the next time the
report_writer_ display request is used.

5-9 GB63-OO

SECTION 6

TABLE MANAGER SUBROUTINE DESCRIPTION

The table_manager procedure is written by the application programmer, and is part of the
application that uses report_writer_. The table_manager procedure is responsible for retrieving
rows from the source data file (or files) that the application wishes to use in formatting the
report.

At specific times during the retrieval operation, report_ writer_ calls the table_manager
procedure to accomplish certain tasks. At the beginning of the retrieval, report_ writer_ calls the
create_table entrypoint of the table_manager procedure to prepare for data retrieval and to
retrieve the first data row. Each time another row is needed during the formatting operation,
report_ writer_ calls the get_row entrypoint of the table_manager procedure. After the retrieval
is complete, report_ writer_ calls the delete_table entrypoint of the table_manager procedure.
These three entrypoints must be present in the table_manager procedure, or the
report_writer_$create_invocation entrypoint refuses to create a report_writer_ invocation.

There is an optional entrypoint in the table_manager procedure which can be provided by
applications that support user selected data retrieval. An example of this type of application is
the LINUS subsystem. LINUS provides a query statement that allows users to choose the data of
interest to them. When the report_writer_ save_format_options request is invoked with the
-query control argument, report_writer_ tries to find this optional entrypoint in the applications
table_manager procedure. If this entrypoint is not present, report_writer_ prints an error
message stating that the operation is not supported. If the entrypoint is present, report_writer_

. calls it to obtain the requests which the user typed to select the data currently being retrieved.
These requests are saved, along with the report layout, in an exec_com segment A subsequent
restore_format_option request identifying the exec_com causes these requests to be executed.
The execution of these requests results in the same data being selected and the same format
options set, so that the report can be produced at a later time.

The following paragraphs describe the table_manager procedure en trypoints. Detail is
provided on how the report_writer_ declares the entrypoints, and how the report_writer_ calls
the entrypoints. The parameters passed to these entrypoints by report_ writer_ are also explained.

6-1 GB63-00

table_manager$create_table table_manager$delete_table

Entry: table_manager$create_table

This entry is called by report_writer_ when the display request is invoked with the
-new_retrieval control argument (Default). It performs any initialization required to perform
its data retrieval function. It then retrieves the first row from its source data file, and places it in
the row_value buffer.

USAGE

declare table rnanager$create table entry (ptr, fixed bin(3S»);
call table_rnanager$create_table (info_ptr, code);

ARGUMENTS

info_ptr
is the pointer to the application's info structure that is passed to the
ssu_$create_invocation entrypoint by the application when the ssu_ invocation is
created. (Input)

code

NOTES

is a standard Multics error code. If this entry finds the source data file empty when the
retrieval of the first row is attempted, it sets this code to rw_error_$no~data. If this
entry executes successfully it sets this code to zero. If this entry encounters any other
problem during execution, it sets the code to indicate what the source of the problem is.
(Output)

The application's info structure must contain the row_info_ptr passed to
report_writer_$define_columns. This points to the row_info structure, which in turn points to
row_value buffer. table_manager$create_table must move the first row of data into this
row_value buffer, either by a PL/I assignment or substr pseudovariable, or by calling
report_writer _$convert_and_move_row.

Entry: table_managerSdelete_table

This entry is called by report_writer_ when the formatting of the report is completed. After
the iast data row is retrieved, it performs any termination steps required by the application.

USAGE

declare table_rnanager$delete_table entry (ptr, fixed bin(3S»;
call table_rnanager$delete_table (info_ptr, code);

ARGUMENTS

info_ptr
is the pointer to the application's info structure that is passed to the

6-2 GB63-OO

table_manager$delete_table

ssu_$create_invocation entrypoint by the application when the ssu_ invocation is
created. (Input)

code
is a standard Multics error code. If this entry executes successfully it sets this code to
zero. If this entry encounters any problem during execution, it sets the code to indicate
what the source of the problem is. (Output)

Entry: table_manager$get_query

This entry is called by report_ writer_ when the save_format_options request is invoked with
the -query control argument. It returns to report_writer_ the requests needed to select the data
currently being displayed, so that these requests can be saved along with the report layout. If the
application does not support user requests to select data, this entrypoint should not be provided.

USAGE

declare table_manager$get_query entry (ptr, ptr,
fixed bin (21), fixed bin (35)) ;

call table_manager$get_query (info_ptr, query_segment_ptr,
query_length, code);

ARGUMENTS

info_ptr
is the pointer to the application's info structure that is passed to the
ssu_$create_invocation entrypoint by the application When the SSll_ invocation is
created. (Input)

query _segmen t_ptr
is the pointer to a segment provided by report_writer_, where the data selection requests
are placed by this entrypoint. (Input)

query _length
is the length in characters of the returned data selection requests. This entrypoint sets
the length to let report_ writer_ know how many characters are being returned. (Output)

code

NOTES

is a standard Multics error code. If this entry executes successfully it sets this code to
zero. If this entry encounters any problem during execution, it sets the code to indicate
what the source of the problem is. (Output)

The data selection requests are dependent on the application, and should contain whatever
requests are necessary to select the data currently being displayed. These requests are executed
from within a subsystem exec_com when the saved report layout is restored by the report_writer_
restore_format_options request. An example of data selection statments specific to the LINUS
subsystem follows.

6-3 GB63-o0

table_manager$get_query table_manager$get_row

input_query -force -brief -terminal_input
select * from employee

translate_query

If any ampersands are found within the data selection requests that would be interpreted by
exec_com when the report layout is restored, they are protected by save_format_options with
double ampersands before being placed in the saved report layout file. In the case of a subsystem
like LINUS, a portion of a select statement that looked like:

& name = "Smith ll

would be saved as:

&& name = "Smith ll

Entry: table_manager$get_row

This entry is called by report_writer_ when a row is needed during the formatting of the
report. It retrieves a row from its source data file and places it in the report_writer_ row value
buffer. .

USAGE

declare table_manager$get_row entry (ptr, fixed bin(35));
call table_manager$get_row (info_ptr, code);

ARGUMENTS

info_ptr
is the pointer to the application's info structure that is passed to the
ssu_$create_invocation entrypoint by the application when the ssu_ invocation is
created. (Input)

code

NOTES

is a standard Multics error code. If this entry executes successfully it sets this code to
zero. If this entry encounters an end-of -file on the source data file, it sets this code to
error_table_$end_of_info. If this entry encounters any other problem during
execution, it sets the code to indicate what the source of the problem is. (Output)

The application's info structure must contain the row_info_ptr passed to
report_writer_$define_columns. This points to the row_info structure, which in turn points to
row_value buffer. table_manager$get_row must move the first row of data into this row_value
buffer, either by a PL/I assignment or substr pseudovariable, or by calling
report_ writer _$convert_and_move_row.

6-4 GB63-00

SECTION 7

DISPLAY EMPLOYEE PL/l EXA~1PLE

The sample user session in Section 2 was done using the PL/I program shown on the
following pages. This PL/I program uses the report_writer_ and ssu_ subroutines to construct an
application subsystem that includes the standard ssu_ and report_writer_ requests. Line numbers
are included in the program listings for purposes of commentary.

MAIN PROCEDURE

2

3

4

5

6

7

8

9

display_employee: proc;

ca 1 1 in i t i ali ze ;
on cleanup call destroy_invocation;
message = create_invocation (code);
if code A= 0
then call com_err_ (code, "display_employee", message);
else call ssu_$l isten (sci_ptr, null, (0»;

call destroy_invocation;

return;

lines 1-9
This is the main procedure that is invoked when a user at the terminal types
display _employee. Line 2 calls an internal procedure to initialize the state of the
program. Line 3 establishes a cleanup handler that calls destroy_invocation if the
cleanup condition is signalled. Line 4 creates the display _employee invocation. Lines 5
and 6 check the error code and display the code and message if non-zero. Line 7 reads
request lines from the terminal if the code is zero. Line 8 destroys the display _employee
invocation.

7-1 GB63-OO

TABLE MANAGER

create_table entry

10 create_table: entry (
1 1

12

13

14

15

16

17

18

19

20

21

based_info_ptr_parm, /* input: points to based_info structure */
code_parm); /* output: success or failure */

call dsl_$retrieve (based_info.data_base_index,
"-range (e employee) -select e", based_employee, code_parm);

if code_parm = 0
then call report_writer_$convert_and_move_row (

based_info.report_writer_info_ptr, based_info.value_ptrs);
else if code_parm = mrds_error_$tuple_not_found

then code_parm = rw_error_$no_data;

return;

delete_table entry

22 delete_table: entry (

23

24

25

26

based_info_ptr_parm, /* input: points to based_info structure */
code_parm); /~ output: success or failure */

0;

return;

27 get_row: entry (
28 based_info_ptr_parm, 1* input: points to based_info structure */
29 code_parm); 1* output: success or failure */

30

31

32

33

34

35
36

37

38

based_info_ptr based_info_ptr_parm;
call dsl_$retrieve (based_info.data_base_index,

"-another", based_employee, code_parm);
if code_parm = 0
then cal' report_writer_$convert_and_move_row

based_info.report_writer_info_ptr, based_info.value_ptrs);
else if code_parm = mrds_error_$tuple_not_found

then code_parm = error_table_$end_of_info;

return;

7-2 GB63-00

lines 10-38
These are the table manager entries called by report_writer_ to start and stop the data
retrieval, and to get rows. When they are called they are given a new stack frame, so they
use the based_info structure to access the first stack frame's automatic variables. Lines
10 to 21 create a new table, and are called when the report_writer_ display request's
-new_retrieval control argument is used. Line 14 retrieves the first tuple from dsl_, and
line 17 calls a report_writer_ entry to convert the row to characters and move it into the
row_value buffer, if the retrieval was successful. If not successful, lines 19 and 20 return
rw_error_$no_data if the relation was empty, or the dsl_ error code if it was anything
else.

lines 22-26
This is the entrypoint called by report_writer_ after the completion of the report. It
does not have any operations to perform, so it just sets the code to zero and returns.

lines 27-38
This is the entrypoint called by report_writer_ to retrieve a row of data from the source
file and move it into the row value buffer. It retrieves the tuple from dsl_. and calls a
report_writer_ entry to convert the row and move it into the row value buffer if the
error code is zero. If the code is non-zero it replaces the mrds_error_$tuple_not_found
code with error_table_$end_of_info, and returns any other dsl_ error code back to
report_ wri ter_.

7-3 GB63-OO

INTERNAL PROCEDURES

create_invocation

39 create_invocation: proc (

40
41

42 declare
43 declare
44 declare

45

46
47
48
49

50
51
52
53
54

55
56
57
58

59
60
61
62

63
64
65
66
67
68
69
70

71
72
73
74
75
76
77

/* output: success or failure */
returns (char (256) varying); /* output: reason for the failure */

ci_loop fixed bin;
ci_message char (256) varying;
code_parm fixed bin (35) parm;

cOde_parm = 0;

call dsl_$open ("employee_data_base",
info. data_base_index , EXCLUSIVE_RETRIEVE, cOde_parm);

if code_parm A= 0
then return ("Unable to open employee_data_base.");

call dSl_$get_attribute_list (info.data_base_index, "employee",
work_area_ptr, mrds_attribute_list_structure_version,
mrds_attribute_list_ptr, code_parm);

if code_parm A= 0
then return ("Unable to get the list of attributes for employee.");

call ssu_$create_invocation ("display_employee". "1.0",
based_info_ptr, null, "", sCi_ptr, code_parm);

if code_parm A= 0
then return ("Unable to create the ssu_ invocation. ");

call report_writer_$create_invocation ("", sCi_ptr,
info.report_writer_info_ptr, code_parm, ci_message);

if code_parm A= 0
then return (ci_message);

call ssu_$add_request_table (sci_ptr,
addr (ssu_request_tables_$standard_requests), 100000, code_parm);

if code_parm A= 0
then return ("Unable to add the ssu_ standard requests.");
call ssu_$add_info_dir (sci_ptr, ssu_info_directories_$standard_requests,

100000, code_parm);
if code_parm n = 0
then return ("Unable to add the ssu_ info directories.");

row_info_init_number_of_columns = mrds_attribute_list.num_attrs in_view;
allocate row_info in (work_area) set (row_info_ptr);
row_info.version = RDW_INFD_VERSIDN_1;
do ci_loop = 1 to row_info_init_number_of_columns;

row_info.column (ci_loop).names
= rtrim (mrds_attribute_list.attribute (ci_loop).model_name);

row_info.column (ci_loop).descriptors

7-4 GB63-00

78 mrds_attribute_'ist.attribute (cl_1oop).user_data_type;

79 end;

80 call ~eport~writer_$define_columns (info.report_writer_'nfo_ptr.
81 row_info_ptr. code_parm. ci_message);
82 if code_parm A= 0

83 then return (ci_message);

84 info.employee_ptr = addr (employee);
85 info.value_ptrs (1) addr (emp 1 oyee . name) ;

86 info,value_ptrs (~) addr (emp 1 oyee . j ob) ;

87 info.value_ptrs (3) addr (employee. salary);

88 info,value_ptrs (4) addr (emp 1 oyee . age) ;

89 info.vaiue_ptrs (5) addr (employee.sex);

90 info.value_ptrs (6) addr (employee.family);

91 info.value~ptrs (7) addr (employee. state);

92 info.value_ptrs (8) addr (employee.city) ;

93 return ("");

94 end create_invocation;

lines 39-90
This is the internal procedure that creates a display _employee invocation. Lines 46 to 49
open the data base that is expected to be in the user's working directory, and pass back an
error message and code if the data base cannot be opened. Lines 50 to 54 have dsl_ fill in
the mrds_attribute_list structure, and pass back an error message and code if the
attribute list cannot be obtained. Lines 55 to 58 create an ssu_ invocation and pass back
an error message and code if there is a faiiure. Lines 59 to 62 create a report_writer_
invocation, and pass back an error message and code if there is a failure. Lines 63 to 70
add the standard ssu_ requests and info directory. Lines 71 to 79 allocate the row _inf 0

structure and fill in the version number, and names and descriptors arrays. Lines 80 to
83 call a report_writer_ entry to inform it that a set of columns have been selected,.
passing back an error message and code if there is a failure. Lines 84 to 92 fill in the
value_ptrs array to locations in the employee structure that dsl_ retrieves the row into.
This is necessary so that the create_table and get_row entrypoints reference the
automatic employee structure in the main procedures stack frame. Line 93 returns a
zero length error message indicating a normal execution.

7-5 GB63-00

destroy _invocation

95 destroy_invocation: proc;

96 declare di_code fixed bin (35);

97 if info.data_base_index ~= 0
98 then call dsl_$close (info.data_base index, di code);

99 call report_writer_$destroy_invocation (info.report_writer_info_ptr);

100 if mrds_attribute_'ist_ptr ~= null

101 then free mrds_attribute_list in (work_area);

102 if row_info_ptr A= null

103 then free row_info in (work_area);

104 call ssu_$destroy_invocation (sci_ptr);

105 return;

106 end destroy_invocation;

lines 95-106
This is the procedure called to destroy a display _employee invocation. It closes the data
base if open, destroys the report_ writer_ invocation, frees the mrds_attribute_list
structure if it was allocated, frees the row _inf 0 structure if it was allocated, and destroys
the ssu_ invocation.

7-6 GB63-o0

initialize

107 initialize: proc;

i08

109

110

111

112

113

null;

oased_info_ptr = addr (info);

info.data_oase_index = 0;

info.report_writer_info_ptr

info.value_ptrs (*) = null;

sCi_ptr = null;

mrds_attribute_list_ptr = null;

114 row_info_ptr = null;

115 work_area_ptr = get_system_free_area_ ();

116 return;

117 end initialize;

lines 107-117
This is the procedure called to initialize for a display_employee invocation. It sets the
info pointer to point to its own info structure; sets other pointers and the data base index
to initial values so the destroy_invocation entrypoint can execute correctly; and sets the
work_area_ptr to the area used for allocations.

7-7 GB63-OO

DECLARATIONS

118 declare EXCLUSIVE_RETRIEVE fixed bin(35)

119 declare

120 declare
121 declare

122 declare

123 declare

124 declare

125 declare

126 declare

127 declare

128 declare
129 declare

130 declare
131 declare

132 declare

133
134
135
136
137

138
139
140

internal static options (constant) init(3);

addr builtin;
1 based_employee 1 ike employee based (based_info,employee_ptr);
1 based_info 1 ike info based (based_info_ptr);

based_info_ptr ptr;
based_info_ptr_parm ptr parm;

cleanup condition;
code fixed bin(35);
code_parm fixed bin(35) parm;
com_err_ entry() options(variable);
dsl_$close entry() options(variable);
dsl_$get_attribute_list entry (fixed bin(35),

char(*), ptr, fixed bin, ptr, fixed bin(35»;
dsl_$open entry() options(variable);
dsl_$retrieve entry() options(variable);
1 employee aligned,

2 name char(10) unaligned,
2 job fixed decimal(2,0) unaligned,
2 salary fixed decimal(7,2) unaligned,
2 age fixed decimal(2,0) unaligned,
2 sex char(1) unaligned,
2 family char(1) unaligned,
2 state char(2) unaligned,
2 city char(13) unaligned;

141 declare error_table_$end_of_info fixed bin(35) ext statiC;
142 declare get_system_free_area_ entry() returns(ptr);
143 declare 1 info aligned,
144 2 data_base_index fixed bin(35),
145 2 report_writer_info_ptr ptr,
146 2 employee_ptr ptr,
147 2 value_ptrs(8) ptr;
148 declare message char(256) varying;
149 declare mrds_error_$tuple_not_found fixeq bin(35) ext static;
150 declare null builtin;
151 declare report_writer_$convert_and_move_row entry (ptr, (*) ptr);
152 declare report_writer_$create_invocation entry (char(*),

153 declare

154 declare

155 declare
156 declare

157 declare

158 declare

ptr, ptr, fixed bin(35), char(*) varying);
report_writer_$define_columns entry (ptr, ptr,
fixed bin(35), char(*) varying);
report_writer_$destroy_invocation entry (ptr);

rtrim builtin;
rw_error_$no_data fixed bin(35) ext static;
ssu_info_directories_$standard_requests char(168) external;
sCi_ptr ptr;

159
160
161

declare
declare
declare

ssu_$add_info_dir entry (ptr, char(*), fixed bin, fixed bin(35»;
ssu_$add_request_table entry (ptr, ptr, fixed bin, fixed bin(35»;
ssu_$create_invocation entry (char(*), char(*),
ptr, ptr, char(*), ptr, fixed bin(35»;

162 declare ssu_$destroy_invocation entry (ptr);
163 declare ssu_$l isten entry (ptr, ptr, fixed bin(35»;

7-8 GB63-o0

164 declare ssu_request_tables_$standard_requests bit(36) aligned external;

165 declare sys_info$max_seg_size fixed bin(35) ext static;
166 declare work_area area (sys_info$max_seg_size) based (work_area_ptr);

168 %include mrds_attribute_list;

170 end display_employee;

lines 118-170
These are the declarations for the display _employee procedure.

7-9 GB63-o0

Even though the columns are re-ordered (line 4 above). the user must still set and list them in the
selected order sequence. For example:

69 display_employee: sfo -wid 8 -default;lsfo -wid 8

-width city " 13"

Although city appears on the page first (i.e .. left column in above example), the column is still
column 8.

71 display_employee: sfo -co 7 8;lsfo -co

72 -column_order "state city name job salary age sex family"

Notice that all columns were not named in the -column_order request above (line 71) and that the
system defaults all names (line 72). Future displays of the report will have the columns reordered
to 7 8 1 2 3 4 5 6 un til changed by the user.

2-31 GB63-OO

see exclamation mark

see semicolon
abbreviations

MRW (Multics Report Writer)
basic operation 1-2
exclamation mark 0) 2-1
format options 1-2

active options 1-3
general column 1-2

also see "user session'·
general repqrt 1-2

also see "user session"
specific column 1-3

also see "user session"
formatting

full page 1-9
MRW

see abbreviations
overview 1-1
report elements

. default 1-4
alignment 1-5
f ofdiqg and width 1-4
page layout and titles 1-4
separators 1-4

optional 1-5
active requests 1-7
column tItles 1-7
counts and subcounts 1-8
editing 1-6
embedded controls and hyphenation
excluding columns 1-7
grouping 1-8
headers/footers 1-6
ordering of columns 1-8
outlining 1-8
page breaks 1-7

1-9

i-I

INDEX

requests (cont.)
separators and delimiters 1-8
totals and subtotals 1-8

report writer
overview and tutorial 3-1

creating an invocation 3-1
data taole retrieval 3-3
destroying an invocation 3-11
report formatting .. pO 3-11
report preparation 3-11

subroutine description 5-2
convert and move row 5-2
create fnvocation 5-3
define- columns 5-4
destroy invocation 5-7
set_rewrt_ wri ter _inf 0 _ptr 5-7
set_table_manager 5-8

requests
column value 4-2
display -4-3
display builtins 4-8
list format options 4-9
restore format options 4-13
save format options 4-13
set_format_options 4-15

semicolon (;) 2-8
subroutine (rep0I:t_writer_)

see report_ wn ter_
table manager

suoroutine description 6-1
user session 2-1

control argument abbreviation 2-3
display' employee PL/I example 7-1
general column options 2-30
general report options-l 2-4
general report op.tions-2 2-16
request abbreviations 2-1
res~oring a saved report 2:-28 .
savmg a report and resettmg optIons
special editmg of a report 2-24
specific column options 2-6

2-27

06/20/85

LU
Z
...J

l!)
Z
o
....J
<!
I
::J
U

I
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

I

MULTICS REPORT WRITER
REFERENCE ~.1ANUAt

ERRORS IN PUBLICATION

SUGGESTiONS FOR iMPROVEMENT TO PUBliCATiON

Your comments will be investigated by appropriate technical personnel
and action wiii be taken as required. Receipt of ail forms will be D
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME __ _

TITLE _________________________ _

COMPANY ---------
ADDRESS _________________________ ___

ORDER No.1 GB63-00

DATED I JANUARY 1985

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I

I
I
I
I
I
I

4
..J

<.:)
Z
o
..J
~
~
~
u

I
I
I
I
I
I ~
I -l

I <.:)

I Z
~o
I ~
I a
I a
I ~

I
I
I
I
I
i
I
I
I

I
I
I
I
I
I
I
I
I
I UJ

I Z
I -'
I <.:)
. 2

........:0
I ~
I 0

I a
I u..

I
I
I
I
I
I
I
I
I ,
I
I
I

~

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.w. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

43151, 7.5C785, Printed in U.S.A. GB63-00

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	GB2-31
	i-1
	replyA
	replyB
	xBack

