
SOURCE DEBUGGING AND PROCESS ENVIRONMENT

COURSE CODE: F21

STUDENT HANDBOOK

FSO ISSUE DATE! JULY 1981

hONEY\~ELL INFORMATION SYSTEf1S
M~lRK~TT11~IG ~D' lu'r~TTnN I.. I , L. I 1 L. . " .. ; I .I. \..: 1

Copyrighe (£)
Honeywell Information Systems, Inc.

The information contained herein is the exclusive property of Honeywell
Information Systems, Inc., except as otherwise indicated, and shall not
be disclosed o~ rep~oduced, in whole or in part, without explicit written
authorization rrom the company. The distribution or this material outside
the company may occur only as authorized.

?~inted in the United States of America
All rights reserved

Topic I

Topic II

Topic I TT

Topic IV

Topic V

Topic VI

CONTENTS

Debugging programs on Multics •..
Types of programming Errors . . •
List of Debugging Tools •...•
Other programming and Debugging Tools •
Source-Level Debugging.
Object Level Debugging •••••

Page

• 1-1
• 1-1
• 1-5
· 1-6

· . 1-8
~ .. 1-10

SOURCE LEVEL DEBUGGING - AN INTRODUCTION TO THE
pro be COf-.1MAND. • • . . • 2-1

The probe Environment · 2-1
A Sample Program ..••.......••.
SCENARIO ONE: FUNDAMENTAL probe •

• 2-4
• 2-11

Scenario Two: More probe.
Breaking Program Execution. • . • . .••
3cenario three: Simple Break Processing
\dditional Sreak Control.

· • 2-17
• • 2-25

· 2-29

?robe Odds and Ends . . • •
2-36
2-54

Othe~ Source-Level Debugging Commands
;he trace Command • . • • • • . •
:nteraction of the Control Arguments.
Tracing Example One

3-1
3-1

· 3-5
3-6

Other trace Control Requests ..•.
Trace Example Two.. • . • • . . .
The display pllio error Command

· . 3-11
. . . 3-14

A display pllio error Example •.

Advanced probe Requests ••••....•.
Introduction. •. • •••.
Scenario I - More probe .Control •
Control of Output Processing•.•
3cenario III - Program Manipualtion .
Scenario IV - probe Variables ...

MULTICS USER RING RUNTIME STRUCTURES.
:ntroduction. • •••
Supervisor Segments .

· . 3-20
3-21

4-1
• 4-1
· 4-2

· . 4-7
· . 4-9

· 4-14

· 5-1
• 5-1
· 5-3

The Stack Segment - stack n • . • . • 5-6
The area.linker Segment .- ... 5-11

Getting Space for Program Variables . 5-23

~ULTICS DYNAMIC LINKING . . • . . .
Introduction .•.••.

iii

· • 6-1
· 6-1.

F21

Topic VII

Topic VIII

Appendix A

CONTENTS (con't)

Page

Multics Compiler Conventions•.. 6-8
Mutlics Operating System Support. . 6-11
The Linker - Phase I $ • • • 6-13
The Linker - Phase II e ... e • ~ e • • 6-19
By-products of Dynamic Linking. e & • & 6-36

The Multics programming Environment e • 7-1
Destruction of the programming Environment 7-1
Error Recovery Techniques .. • 7-8

Other Useful Debugging Tools • 8-1
list external variables . • • • • . • • • • . 8-1
list-external-variables •. $ • • • • • 8-1
reset external variables. . . 8-2
reset-external-variables. 8-2
delete external variables 8-3
delete-external-variables . • 8-3
print Eind map.-. e 8-4
print-bind~map •.• e .. • •• 8-4
print-link-info c 8~5
print~link-info, plio 8-5
resolve linkage error '3-7
reslve linkage error, rle • . 8-7
trace stack . : . . • . .. 3-8
trace:stack, ts•.... j-8

Debugg i ng Tool s . .
area status .
area status ..

· . ;-1
• • A.-l
· . A-l

• A-2
ccp ..

cancel cobol program.
cancel:cobol:program,
create area
create area
create-data segment .
create-data-segment, cds.
cumulative page trace . . .
cumulative:page:trace,cpt .

A-2·

cv _ptr _ . • • • • • .
cv pt r . • •
delete-external variables.
delete-external-variables .
display cobol run unit.
display-cobol-run-unit, dcr •
display-pllio-err-.•••

· A-4
A-4

• e • • A--:J
· • A-5

• • • • e • A-6
• .~-6
• A-9
• A-9

• • A-l2
• A-12

• • • • • A-13
• A-13
• A-14

• • • • • • A-14 display-pllio-err, dpe.
dump segment.
dump-segment, ds ...
io call

II • • • e e e • • • • A~ 15

io-call, io ..
list external variables .

iv

· A-IS
e .. A-18
• " A-IS

• .~-3l

F2l

Appendix W

..

CONTENTS (con' t)

list external variables .
'i~~-~om~ ~o~~o~~~
~ • ..., t'" '::1

list:temp=segments. 0

page~trace "
page trace, pg t ..
print bind map.,
print-bind~map~
print-link-info e " ..

print-link-info, pliel
print-linkage usage e

print-linkage-usage, plu •.
probe-••• -
probe, pb • .." .
profile ...
profile.
reset external variables.
reset-external-variables.
resolve linkage error •
resIve linkage error, rle ..
r un cobol .. • -:-
run-cobol, rc ..
set-fortran common. .
set:fortran:common, sfc ..
set_system_storage.
set_system_storage.
set user storaae. _ _ oJ

set user storage.
stop cobol run.
stop:cobol=run, scr
trace
trace . •
trace stack ..
trace:stack, ts e

Workshops.
Wo rkshop One ..
Workshop Two.
Workshop Three.

v

Page

• A-31
• " A- 3 2

• A-32
• " • A- 34

... A-34
g A-36

• .. A-36
.. ... A-37

A-37
• .. A-39

• • • • A-39
• • • • A-40

.. .. • • • A-40
• A-76
· A-76
· A-79
.. A-79
• A-80
· A-80
· A-81
.. A-81
· A-84
.. A-84
• A-86

• • .~-86
.. A~88

• • A-S8
· A-90
· A-90

· • A-91
· • A-91

.. A-I02
· • ~.-l02

· W-l
· W-l
• W-IO
· W-13

F21

TOPIC I

Debugging programs on Multics • e •

Types of Programming Errors •••
List of Debugging Tools

• • • e • 1-1

Other programming and Debugging Tools •
So urce-Level Debugg ing.. • •• .. •
Obj ect Level Debugg ing. • • • •

1-i

.. • • 1-1
1-5

.. 1-6
1-8

.. .. 1-10

Topic I DEBUGGING PROGRAMS ON MULTICS Topic I

OBJECTIVES:

Upon completion of this topicr students should be able to:

1. Describe the methods used to find and correct syntactical
errors.

2. Describe the methods used to find and correct semantic
errors.

3. List some of the more common source-level debugging toolsw

4. Outline, in general terms, the concepts of source-level
debug9ing as opposed to object-level debugging.

Multics 1-1 F21

TYPES OF PROGRAMMING ERRORS

m TWO KINDS OF ERRORS (BUGS) COMMONLY OCCUR IN PROGRAMS

I SYNTAX ERRORS

I TYPING ERRORS

I MISUSE OF A LANGUAGE STATEMENT

. I SEMANTIC ERRORS

I SPECIFYING THE WRONG DATA

I USING DATA INCORRECTLY

I ATTEMPTING TO REFERENCE MORE DATA THAN IS PRESENT

I PERFORMING INVALID OPERATIONS ON THE DATA

I PERFOPJ1ING AN INCORRECT SEQUENCE OF OPERATIONS ON THE DAT .. ~.

Not To Be Reproduced 1-1 F21

TYPES OF PROGRAMM~NG ERRORS

B SYNTAX ERRORS

I CAN BE DETECTED BY

J PROOFREADING THE PROGRAM

I COMPILING THE PROGRAM AND OBSERVING THE ERROR DIAGNOSTIC
MESSAGES

I CAN BE CORRECTED BY

I EDITING THE SOURCE PROGRAM TO CORRECT THE ERRORS (DIAGNOSED
BY THE COMPILER OR FOUND DURING PROOFREADING)

I RECOMPILING THE SOURCE

I REPEATING THIS PROCESS UNTIL NO MORE ERRORS ARE DIAGNOSED

Not To Be Reproduced 1-2 F21

TYPES OF PROGRAMMING ERRORS

~ SEMANTIC ERRORS

I CAN BE DETECTED BY

I PROOFREADING THE PROGRAM

I INSERTING TEMPORARY STATEMENTS IN THE PROGRAM SOURCE TO PRINT
INFORMATION ASOUT DATA VALUES, FLOW OF CONTROL, ETC.

I ARE INTERMEDIATE DATA VALUES CORRECT?

I DOES THE POINT OF EXECUTION FLOW THROUGH THE PROGRAM IN
THE EXPECTED WAY?

I RUNNING THE PROGRk~ AND OBSERVING

I WHETHER OR NOT THE PROGRAM RUNS .TO COMPLETION

I DOES THE PROGRAM GO rN~O A LOOP?

I DOES AN UNEXPECTED ERROR CONDITION OCCUR WHICH HALTS
PROGR~~ EXECUTION?

I WHETHER OR NOT THE PROGRAM PRODUCES THE EXPECTED RESULTS

I DOES THE PROGRAM PRODUCE CORRECT OUTPUT DATA?

I DOES THE PROGRAM DIAGNOSE INCORRECT INPUT DATA?

I CAN 8E CORRECTED BY

I IDENTIFYING THE POINT OF ERROR

I EDITING THE SOURCE PROGRAM TO CORRECT THE ERRORS

I RECOMPILING THE SOURCE

Not To Be Reproduced 1-3 F21

TYPES OF PROGRAMMING ERRORS

I REPEATING THIS PROCESS UNTIL THE PROGRAM OPERATES CORRECTLY

Not To Be Reproduced 1-4 F21

LIST OF DEBUGGING TOOLS

m MAJOR TOOLS FOR DIAGNOSING

I SYNTAX ERRORS

I THE COMPILERS

I pll

I cobol

I fortran

I SEMANTIC ERRORS

I SOURCE-LEVEL DEBUGGING TOOLS

I probe

I trace ret",d~,v-((c... l \ .s

I ni~nl~v nl1_i~ prrnr
---l:'"--.l l:'"--I\.-- -----

- f'\-

I OBJECT-LEVEL DEBUGGING TOOLS

I debug

I trace stack

I dump_segment

I print_ link info -
I print_ bind _map

I display_component_name

I print_linkage_usage

Not To Be Reproduced 1-5 F21

OTHER PROGRAMMING AND DEBUGGING TOOLS

I FILE MANIPULATION TOOLS

I io call

I print_ attach table -
I close file

I vfile status

I vfile_adj ust

I adjust_bit_count

I set bit count

I EXTERNAL REFERENCE MANIPULATION TOOLS

I resolve_linkage_error

I list external variables

I delete external variables

I reset external variables

I set fortran common

I create data _segment -
I error_table_compiler

I COBOL RUN UNIT TOOLS

I run cobol

I display_cobol_run_ unit

I stop_cobol_run

I cancel cobol _prog ram -

Not To 8e Reproduced 1-6 F21

OTHER PROGRAMMING AND DEBUGGING TOOLS

I GENERAL RUN UNIT COMMANDS

I run

I SEARCH RULE AND DYNAMIC LINKING TOOLS

I

I add search rules

I delete search rules
hv ... -;'

I where

I list ref names

I initiate

I terminate

I terminate refname

I terminate_segno

AREA MANIPULATION TOOLS

I area status

I create area

I set user _storage

I set sYstem sto raq e _ __ J

I list_temp_segments

Not To 3e Reprod uced 1-7 F21

SOURCE-LEVEL DEBUGGING

m SOURCE-LEVEL DEBUGGING ALLOWS THE PROGRAMMER TO

I DISPLAY PROGRAM SOURCE STATEMENTS

I GIVEN A STATEMENT LABEL

I GIVEN A LINE NUMBER

I DISPLAY THE VALUE OF PROGRAM DATA VARIABLES

I GIVEN THE NAME OF THE VARIABLE

I DISPLAY THE VALUE OF PROGRAM DATA VARIABLES

I GIVEN THE STORAGE LOCATION AND DATA FORMAT OF THE VARIABLE

I DISPLAY THE DECLARATION OF A PROGRAM VARIABLE

I DISPLAY THE LIST OF (USER RING) ACTIVE PROGRAMS

Not To 8e Reproduced 1-8 F21

SOURCE-LEVEL DEBUGGING

m SOURCE-LEVEL DEBUGGING ALLOWS THE PROGRAMMER TO

I SET BREAKPOINTS BEFORE OR AFTER STATEMENTS

I TO INTERRUPT NORMAL FLOW OF EXECUTION

I TO INTERROGATE THE STATE OF THE EXECUTING PROGRAM

I TO CHANGE THE VALUE OF PROGR&~ DATA

I TO ALTER THE FLOW OF EXECUTION THROUGH THE PROGRAM

I TO CONDITIONALLY PERFORM ANY OF THESE FUNCTIONS

I ONLY IF A PROGRA.f.1 DATA VALUE MEETS SOME CONDITION

I REPEATEDLY WHILE A PROGRAM DATA VALUE MEETS SOME CONDITION

I TRACE CALLS TO A PARTICULAR PROGRAM

I CALL PROGRAMS WHICH EXPECT NON-CHARACTER ARGUMENTS

Not To Be Reproduced 1-9 F21

OBJECT LEVEL DEBUGGING

Ii OBJECT-LEVEL DEBUGGING TOOLS ALLOW THE PROGRAMMER TO

I PERFORM MOST SOURCE-LEVEL DEBUGGING FUNCTIONS, PLUS

I CHANGE THE VALUE OF PROGRAM DATA VARIABLES

I GIVEN THE STORAGE LOCATION AND DATA FORMAT OF THE VARIABLE

I DISPLAY PROGRAM SOURCE STATEMENTS

I GIVEN A LOCATION IN THE PROGRAM OBJECT SEGMENT

r DISPLAY AND CHANGE THE VALUE OF MACHINE INSTRUCTIONS COMPILED TO
EXECUTE A SOURCE STATEMENT

I DISPLAY THE FORMATTED CONTENTS OF

I THE PROGRAM ACTIVATION HISTORY SEGMENT (THE STACK)

I AREA SEGMENTS

Not To Be Reprod uced 1-10 F21

OBJECT LEVEL DEBUGGING

z OBJECT-LEVEL DEBUGGING TOOLS ALLOW THE PROGRAMMER TO

I DISPLAY AND CHANGE THE CONTENTS OF ANY SEGMENT

I GIVEN ITS PATHNAME

I GIVEN ITS REFERENCE NAME

I GIVEN ITS SEGMENT NUMBER

I WHEN THE USER HAS ADEQUATE ACCESS TO PERFORM THE REQUESTED
OPERATION

I DISPLAY AND CHANGE THE CONTENTS OF HARDWARS REGISTER IMAGES

Not To Be Reproduced 1-11 F21
(End Of Topic)

TOPIC II

SOURCE LEVEL DEBUGGING - AN INTRODUCTION TO THE
probe COMMANDQ e 0 8 .. • • • • • • 2-1

The probe Environment. .. D Q ... 2-1
A Sample Prog ram. • • 0 • c> Q 2-4
SCENARIO ONE: FUNDAMENTAL probe e • 2-11
Scenario Two: More probe. • .. 2-17
Breakinq Proqram Executio~. • • • • • • • • • 2-25
Scenario three: Simple Break Processing • 2-29
Additional Break Control. • ••••• 2-36
Probe Odds and Ends • • • • . • • • •• e 2-54

2-i

Topic II SOURCE-LEVEL DEBUGGING (PROBE) Topic II

OBJECTIVES:

Upon completion of this topic, students should be able to:

1. Use the appropriate PL/1 compiler control arguments to enable
probe to function on an object segment.

2. Describe the different situations under which probe may be
invoked.

3. Debug a program using the following probe requests:

sou r ce (s c)

va 1 ue (v)

symbol (sb)

quit (q)

help

stack (sk)

4. Manipulate breakpoints in a program using the following probe
requests:

position (ps), status (st)

be for e (b), aft e r (a) 7 res e t (r)

continue (c), continue_to (ct), step (s)

S. Use the probe builtin functions.

Multics 11-1 F21

THE PROBE ENVIRONMENT

I FUNCTIONS AS A SUBSYSTEM FOR PROGRAM RECOVERY

I DRIVEN BY INTERACTIVE REQUESTS

I LONG AND SHORT FORMS AVAILABLE

I REQUEST DELIMITER IS EITHER NEW LINE OR SEMI-COLON

I WORKS BEST WITH COMPILER GENERATED SYMBOL TABLE

I CURRENTLY AVAILABLE FOR COBOL, FORTRAN, AND PL/I

I USE -table OPTION

I MAY ALSO USE -short table OPTION

r 07:47 0 .. 159 43

pl1 check back issues -sv2
PL/I 26a - -
r 07:48-3.391 221

probe check back issues
probe: Cannot get statement map for this procedure.
r 07:48 0.108 31

pl1 check back issues -sv2 -tb
PL/I 26a - -
r 07:48 3.486 217

probe check back issues
Using check:back=issues (no active frame). -('0\ (!)r-. !:;"f\G\L
source
check back issues:

proc;
quit
r 07:49 0.173 21

Not To Be Reproduced 2-1 F21

THE PROBE ENVIRONMENT

I MAY BE INVOKED FROM SEVERAL SITUATIONS

I AFTER AN UNHANDLED CONDITION (READY LEVEL NOT EQUAL TO ONE)

I AT READY LEVEL ONE WITH NO PROGRAM SPECIFIED 10 ~ 'f..c...--...~{l J,A ~~

I AT READY LEVEL ONE WITH PROGRAM SPECIFIED

ott. (0 Illl~ [il (9 h
s;.NO,f

I IMPLICITLY AT A PREVIOUSLY SET 8REAKPOINT

I MANAGES TWO IMPORTANT PIECES OF INFORMATION

I SOURCE POINTER

I FR&~E OF PROGRAM (ONLY IF ACTIVE)

I BLOCK OF CODE WITHIN PROGRAM·

I LINE OF CODE WITHIN PROGRAM

I BASED UPON MANNER OF INVOCATION

I CONTROL POINTER

I LAST INSTRUCTION EXECUTED

I BASED UPON MANNER OF INVOCATION

I USUALLY AT BREAKPOINT, FAULTING INSTRUCTION, OR FIRST
INSTRUCTION IN BLOCK

~ USES A PERMANENT DATA BASE FOR OPERATION

Not To Be Reproduced 2-2 F21

THE PROBE ENVIRONMENT

I LOCATED AT >udd>(user project]>(user name]>[user name] eprobe

I CONTAINS PATH NAMES OF PROGRAMS WITH BREAKPOINTS SET IN THEM

I IS REFERENCED BY probe WHENEVER

I A BREAKPOINT IS ESTABLISHED OR FREED

I A BREAKPOINT IS ENCOUNTERED WHILE A PROGRAM IS RUNNING

I IF THIS DATA BASE IS DELETED, probe LOOSES INFORMATION ABOUT
BREAKPOINTS

I IF probe COMPLAINS ABOUT A "seg_fault" THE DATA SASE MAY BE
DELETED

I probe CANNOT FREE ANY BREAKPOINTS THAT HAVE BEEN PREVIOUSLY
SET

I TO FREE ANY "LOST" BREAKPOISTS, ONE MUST RECOMPILE THE
AFFECTED PROGRAM

Not To Be Reproduced 2-3 F21

A SAMPLE PROGRAM

m THE EXAMPLE FOR THIS COURSE

I IS WRITTEN IN PL/I

I IS FAIRLY WELL STRUCTURED

I IS EASY TO READ IF YOU ALREADY KNOW A FORTRAN OR COBOL RELATED
LANGUAGE

I HAS SOME BUGS IN IT

I WILL 3E USED IN THE DEBUGGING SCENARIOS THAT FOLLOW

~ot To Be Reproduced 2-4 F21

A SAMPLE PROGRAM

II THE FOLLOWING PROGRAM IS SUPPOSED TO'

I KEEP TRACK OF BACK ISSUES OF MAGAZINES OF A SMALL COMPANY

I EACH RECORD CONTAINS THE NUMBER OF ISSUES LEFT IN STOCK, HOW
MANY ARE REQUESTED FOR SHIPPING, AND THE CURRENT COST OF
PURCHASE

I PRINT OUT A SUMMARY OF THIS DATA

I ACCEPT TWO INPUT STRINGS

I 80TH IN THE FORM OF volume:number

I SPECIFY THE FIRST AND·LAST ISSUES TO BE SUMMARIZED

I PRINT OUT EACH RECORD AND CALCULATE RUNNING TOTALS

Not To Be Reproduced 2-5 F21

= THE PROGRAM

check back issues:
prOCi

A SAMPLE PROGRAM

/**
* declarations for check back issues *
* and its subroutines- *
**/

del back issues file;
del (first issue, last issue) char (12);
del (first-issue deiim~ last issue delim) fixed bin (24);
dcl index builtin; --
del substr builtin;
del number of issues fixed bini
dcl issue fixed bin;
dcl 1 issue record,

2~current inventory fixed bin (17),
2 pending-requests fixed bio (17),
2 cost of-issue fixed dec (8,2);

del total number pending fixed bin;
dcl total-number-stocked fixed bioi
del total-stock value fixed dec (8,2)i
del (current volume, current number) fixed bin;
dcl (last issue num, first issue num) fixed bin;
del (sysin, sysprint) file; -
del (first issue volume, last issue volume) fixed bin;
del colon internal static options (constant)

char (1) aligned init (":");

open file (back_issues) keyed sequential input;

/***
* get number of the first and last issues *
* the user wants to check. the form is *
* volume:number. this routine will split *
* the ~omponents up into is~u7_volume *
* and issue number, and position to that *
* record in-the file. *
***/

put list ("from (specify vol:num): ");
get list (first issue) i
put list ("to (ipecify vol:num): ");
get list (last_issue) i

~ot To Be Reproduced 2-6 F21

A SAMPLE PROGRAM

first issue delim = index (first issue, colon);
last lssue aelim = index (last issue, colon);
first issue volume = -

substr-(first issue, 1, first issue delim);
last issue volume; --

-substr (last issue, 1, last issue delim);
first issue num =- --

substr-(first issue, first issue delim);
last issue num = - --

-substr (last_issue, last_issue_delim);

call position file (first issue_volume,
first_issue_num)i

number of issues =
(6*last issue volume ~ last issue num) -
(6*first_issue~volume + first_issue_num)i

do issue = 1 to number of issues;
call print_record-();

end;

call print_summary ();

close file (back_issues);

return;

/*********************************
* begin support subroutines *
*********************************/

print_record,:
proc () i

/**
* this subroutine obtains the next record *
* from the back issues file, calculates *
* some totals, and outputs the current *
* record in a formatted form. *
**/

call get_record ()i

total number pending =
total number pending +
issue-record7pending requests;

total number stocked = -
total number stocked +
issue-record:current inventory;

total stock value = -

Not To Be Reproduced 2-7 F21

A SAMPLE PROGRAM

total stock value +
(issue record.current inventory*
issue_reco rd. cost_ of_Issue) ;"

put skip edit ("volume",
current volume,
If number1T' ,

current number,
If stocked: If ,

issue record.current inventory,
"outs~anding request~:",
issue record.pending requests,
"cost-of this issue: 7 ,
issue_record.cost_of_issue,
II • ")

(r (output format 1))
file (sysprint); -

return;

output format 1:
- fo rrna t. (a (6), x (I), f (3 ,0) I X (1) ,

a(6), x(l) I f(3,O) I skip (1), x(ll),
a(8), x(l), f(6,O) I x(l),
a(21), x(l), f(6,O), x(l),
a(19), x(l) I p"$$$,$$9v.99", a(l));

end print_record;

position file:
proe (first_vol, first num)i

/***
* this subroutine positions the back issues *
* file to the record specified by the *
* first issue specifier given by the user *
* at the beginning of the program. to *
* position to the record, we simply read *
* records we don't want and do nothing with *
* them. *
***/

del (fir s t _ vol, fir s t _ n urn) fix ed bin i

do while (first vol> current volume);
call get_record (); -

end;

do while (first num > current number);
call get_record (); -

end;

Not To Be Reproduced 2-8 F21

A SAMPLE PROGRAM

return,

end position_file,

get_record: proc (j;

del key char (8);

1***
* this subroutine reads a record from the *
* back issue file into the issue record. *
* the other necessary information, vol *
* and num of the issue, was stored in *
* the record's key_ we must extract this *
* from our internally declared key and *
* place it in the globally available *
* current volume and current number vars *
***/

read file (back issues)
into (issue record)
key to (key);

current volume = substr (key; 1, 4);
current-number = substr (key,S, 4);

return;

end get_reco rd ;

print summary:
- proc ();

I**************~***********************
* a simple subroutine, all this *
* does is print out the totals *
* calculated by the print record *
* subroutine. - *
**************************************/

put skip (2)
edit ("number of issues stocked:",
total number stocked,
"number of requests pending:",
total number pending,
"total stock-value:" I

total stock value,
".") - -
(r (output format 2))
file (sysprint); -

Not To 8e Reproduced 2-9 F2l

A SAMPLE PROGRAM

output format 2:
- format (a(25), x(l), f(6,O), skip (1) I

a(27), x{l), f(6,0), skip (1) I

a(18), x(I), p"$$$,$$9v.99", a(l));

end print_summary;

Not To Be Reproduced 2-10 F21

SCENARIO ONE: FUNDAMENTAL PROBE

~ SOME PRIMARY probe REQUESTS

I THE source REQUEST

I PRINTS SOURCE STATEMENTS

'9' USAGE: i

source

sc

source <number of lines>

sc <number of lines>

" I EXAMPLES:

source 7

sc 3

I THE value REQUEST

I DISPLAYS THE VALUE OF A SINGLE VARIABLE, AN EXPRESSION, OR
SECTION OF AN" ARRAY

I USAGE:

value <expression)

v <expression>

value <array cross section>

v <array cross section)

Not To Be Reproduced 2-11 F2l

SCENARIO ONE: FUNDAMENTAL PROBE

I EXAMPLES:

value x

value array (1:5)

value strl~mem2.elem

v ptrl -> some based var

v ptr2 -> really_big.meml.comp (2).z

I SPECIFYING THE EXPRESSION FOR THE value REQUEST

I MADE FROM PROGRAM VARIABLES, CONSTANT VALUES AND probe
DEFINED FUNCTIONS

I PROGRAM VARIABLES MUST APPEAR EXACTLY AS THEY WERE TYPED
IN YOUR PROGRAM

loop_counter (PL/I)

VECT(l) (FOaTRAN)

data-part (COBOL)

I CONSTANTS SHOULD 8E IN A FORM ACCEPTABLE TO YOUR PROGRAM

-99

3.2e5

"abcde"

'STRING'

I probe MAINTAINS A SET OF BUILTIN FUNCTIONS THAT RETURN
VALUES TO YOU

addr - RETURNS THE ADDRESS OF ITS ARGUMENT

addrel - RETURNS AN ADDRESS RELATIVE TO THE SPECIFICATION
OF ITS ARGUMENTS

baseptr - RETURNS THE ADDRESS OF THE 8EGINNING OF A
SEGME~T

length - RETURNS THE LENGTH OF A 3IT OR CHARACTER STRING

Not To Be Reproduced 2-12 F21

SCENARIO ONE: FUNDAMENTAL PROBE

maxlength - RETURNS THE MAXIMUM ALLOWED LENGTH OF A STRING

null - RETURNS A SPECIAL INVALID ADDRESS

octal - RETURNS THE MACHINE REPRESENTATION OF ITS ARGUMENT

pointer - RETURNS AN ADDRESS BASED UPON ITS ARGUMENTS

reI - RETURNS THE ADDRESS WITHIN A SEGMENT INTO WHICH ITS
ARGUMENT POINTS

segno - RETURNS THE NUMBER OF THE SEGMENT INTO WHICH ITS
ARGUMENT POINTS

substr - RETURNS A PORTION OF A CHARACTER OR BIT STRING

unspec - RETURNS THE BINARY REPRESENTATION OF ITS ARGUMENT

I AN EXPRESSION CAN CONTAIN OPERATORS

I FOUR DEFINED WITHIN PROBE

ADDITION - USE A PLUS SIGN (+)

SUBTRACTION -"USE A MINUS SIGN (-)

MULTIPLICATION - USE AN ASTERISK (*)

DIVISION - USE A SLASH (/)

I ORDER IS MULTIPLICATION AND DIVISION, THEN ADDITION AND
SUBTRACTION

I ORDE~ MAY BE OVERRIDDEN WITH PARENTHESES

I THE symbol REQUEST

I SHOWS YOU THE DATA TYPE OF A PROGRAM VARIABLE

I USAGE:

symbol <name of variable>

sb <name of variable>

Not To Be Reproduced 2-13 F21

SCENARIO ONE: FUNDAMENTAL PROBE

I EXAMPLES:

symbol x

sb HYPTN

I THE quit REQUEST

I CAUSES YOU TO LEAVE PROBE

I USED TO GET BACK TO COMMAND LEVEL

I USAGE:

quit

q

~ THE SCENARIO

I THE PROGRAM BLOWS UP

I PROBE IS USED TO ASSESS THE DAMAGE

Not To Be Reproduced 2-14 F21

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SCENARIO ONE: FUNDAMENTAL PROBE

r 12:54 0.155 21

check back issues

from (specify vol:num) :1:1
to (specify vol:num):2:1

Error: conversion condition by >udd>MEDmult>F21>doodle>bad
\ccbiScheck back issues1540 (line 48) -
onsource = Tl:",-onchar = ":~
Invalid character follows a numeric field.
system handler for error returns to command level
r 12:54 0.273 52 level 2

probe
Condition conversion raised at line 48 of check back issues
\c(leve17).

source
first issue volume =

substr (first_issue, 1, first_issue_delim);

value first issue delim
first issue-delim-=2

value first issue
first issue-="1:1 II

value substr (first_issue, 1, first_issue_delim);
"l : ..

symbol first issue volume
fixed bin (17) automatic

Declared in check back issues

v substr (first_issue,
Itl"

1, first issue delim - 1);

I q
I r 07:03 0.591 210 level 2
I
I
I
I
I

rl
r 07:03 0.045 9

Not To Be Reproduced 2-15 F21

SCENARIO ONE: FUNDAMENTAL PROBE

I TECHNIQUE

I INVOKE probe - IT TELLS YOU WHAT HAPPENED

I FIND THE STATEMENT AT WHICH THE PROGRAM DIED

I CHECK ALL THE VARIABLES IN THAT STATEMENT

I NOTE-THE IMPLICIT CONVERSION

I THE SUBSTR BUILTIN WAS THE CULPRIT

~ YOUR TURN

I WHAT WAS THE PROGRAMMER TRYING TO DO WITH THE SU~STRING BUILTIN?

I HOW WOULD YOU CHANGE THE PROGRAM SO THAT THE IMPLICIT CONVERSION
SUCCEEDS? I \ _

r .. ~s.;c q,"t\\~"- d-
~ \.r\ I \

I ARE THERE ANY OTHER STATEMENTS WHERE THIS CONDITION MAY HAPPEN?

Not To Be Reproduced 2-16 F21

SCENARIO TWO: MORE PROBE

m AS ERRORS ARE FOUND THEY ARE FIXED

I MODIFY THE SOURCE ONLY

I RECOMPILE INTO NEW OBJECT

I CLEAN UP ANY FILES THAT MAY HAVE BEEN LEFT INCONSISTENT

I I
I I
I qedx I
I rcheck back issues~pll I
I 48 - - I
I first issue volume = I
I .+1 I
I substr (first_issue, 1, first_issue_delirn); I
I s/)/ - l)/p I
I substr (first_issue, 1, first issue delim - l)~

I w I
I q I
I r 07:55 0.549 88 I
I I
I pll check back issues -tb -sv2 I
I PL/I 26a - - I
I r 07:55 3.317 83 I
I I
I r 07:55 0.049 8 I
I I
I close file back issues I
I r 07: 58 0.082 23 I
I I
I I

a RUN THE NEW PROGRAM

I BE AWARE OF NEW PROBLEMS

Not To Be Reproduced 2-17 F21

SCENARIO TWO: MORE PROBE

I MAKE SURE THE OLD PROBLEM IS FIXED

I LOOK FOR ANY EFFECTS YOUR CHANGE MAY HAVE ON OTHER PORTIONS OF
THE PROGRAM

check back issues

from (specify vol:num) :1:1
to (specify vol:num) :1:4

Error: conversion condition by >user dir dir>MEDmult>F2l>do
\ccdle>bad cbi$check back issuesl551 (line 50)
onsource =-ul:", oncEar =-":"
Invalid character follows a numeric fielde
system handler for error returns to command level
r 07:58 0.367 34 level 2
probe
Condition conversion raised at line 50 of check back issues
\c (level 7).
source

last issue volume =
-subst~ (last issue, I, last_issue_delim);

From Pandolf.MEDmult 05/19/81 0759.6 mst Tue:
The handbooks came in today. I have them if you want to see
\cthem ..
sm Pandolf.MEDmult good, be there later
probe: Unknown request. "sm"

m SOME INVALUABLE REQUESTS

I THE list~requests REQUEST

I LISTS ALL THE ALLOWED REQUESTS IN probe

I USAGE:

list requests

lr

Not To Be Reproduced 2-18

I
I
I
I
I
I

F21

SCENARIO TWO: MORE PROBE

list_requests

Summary of probe requests:

after, a
args
before, b
call, cl
continue, c
con tinue_ to, ct

declare, dcl
display, ds
execute, e

goto, g
halt, h
help
if

input switch, isw
language, lng
let, 1
list help, lh
list-builtins, lb
list-requests, lr
list:variables, lsv

modes, mode
output_switch, osw
pause, p
position, ps

quit, q

reset, r
source, sc
stack, sk
sta tus, st
step, s
symbol, sb

use
value, v
where, wh

while, wI

Set a breakpoint after the specified statement.
print argument list for procedure.
Set a breakpoint before the specified statement.
Call a subroutine.
Continue after a breakpoint.
Resume execution from last breakpoint and stop

at specified statement:
Create a probe variable.
Display storage in various formats.
Execute a Multics command line, usually

within a break request.
Continue execution at a specified statement.
Halt ands re-enter probe.
Print info files for probe requests.
Execute probe requests based on specified

cond i tion.
Set the I/O switch used for probe input.
Display or set the current language.
Change the value of a variable.
List the available info topics ~or probe.
Print a summary listing of all probe builtins.
Print a summary listing of the probe requests.
Print type and value of one or more probe

variables.
Set probe operation modes.
Set the I/O switch used for probe outputc
Reset the current breakpoint and halt.
Move the probe pointer to a new location

and display the source.
Leave probe and return to Multics command

level.
Reset breakpoints.
Display source of program.
Display the stack.
Display the status of breakpoints.
Execute one statement and halte
Display information about the specified

symbol.
Move the probe pointer to a new location.
Print the value of a variable or expression.
Display the current values of the probe

pointers.
Execute probe requests while condition

is true ..

Type "help" for more information.

Not To Be Reproduced 2-19 F21

SCENARIO TWO: MORE PROBE

I THE help REQUEST

I USAGE:

help

help <request>

help <feature>

I EXAMPLES:

help

help quit

help EXPRESSIONS

I THE execute REQUEST

I ALLOWS A MULTICS COMMAND TO 8E PROCESSED WHILE STILL IN probe

I USAGE:

execute <command line>

e <command line>

I EXAMPLES:

execute "pwd II

e "list *.pll"

Not To Be Reproduced 2-20 F21

SCENARIO TWO: MORE PROBE

I USING THESE REQUESTS

help execute
09/27/79 The " execute"

Syntax: execute STRING

request.

The conten ts
\ccessor.

of STRING are passed to the Multics command pro

I
I
I
I
I
I
I
I
I

This request is chiefly useful in break request list,
\ce the more

becausel
I

convenient escape to the Multics command processor is
\cailable

not av I

then.

The user can pass an arbitrary line to the Multics command p
\crocessor
by preceeding it with " •• " on a new line.

Examples (6 lines)" More help?no
execute sm Pandolf.MEDmult good, be there later
probe (execute): The Multics command lines must be enclosed
\c in quo tes.
e "sm Pandolf.MEDmult good, be there later"

Not To Be Reproduced 2-21

I
I
I
I
I
I
I
I
I
I

F2l

SCENARIO TWO: MORE PROBE

I FINISHING UP THE CURRENT ERROR

source
last issue volume =

-substr (last issue, I, last issue delim);
value substr (last_issue, 1~ last_issue_delim)
"l:"
sb last issue volume
fixed bin (17) automatic

Declared in check back issues
quit
r 08:10 2.508 492 level 2

qedx
rcheck back issues.pll
50,51p- -

last issue volume =
.+1

substr (last~issue, 1, last_issue_delim);
s/)/ - 1)/p

substr (last_issue, 1, last issue delim - 1);
52,55p

first issue num =
substr-(first issue, first_issue_delim);

last issue num = -

53s/)/ +
-substr (last_issue, last_issue_delim);

l)/p

555/)/ + 1)/p
substr (first_issue, fir5t~issue_delim + 1);

substr (last_issue, last issue delim + 1);
w
q
r 08:12 0.423 80 level 2

pll check back issues -sv2 -tb
PL/I 26a - -
r 08:13 3.524 141 level 2

rl
r 08:15 0.046 29

close file back issues
r 08:15 0.051 21

Not To Be Reproduced 2-22 F21

SCENARIO TWO: MORE PROBE

a ADDITIONAL USE OF FUNDAMENTAL PROBE REQUESTS

I SOME USEFUL INFORMATION ABOUT A FAILURE WILL COME INDIRECTLY
FROM THE probe DIALOGUE

I NOTE THE USE OF value IN THE NEXT WINDOW

check back issues

from (specify vol:num) :1:1
to (specify vol:num) :1:4

I
I
I
I
I
I
I

Error: illegal procedure condition by >user dir dir>MEDmult I
\c>F2l>doodle>bad cbiSprint recordl675 (line-98)- I
(while in pl1 ope?ator real-to real tr) I
referencing stack_416503 (in process dir) I

r 08:15 0.369 42 level 2

pb
Condition illegal procedure raised at line 98 of print_recor
\cd (level 8). -
sc

total stock value =
total stock value +
(issue record.current inventory*
issue record.cost of lssue);

v issue record.cost of issue --
cost 01 issue = 5 - -

v issue record.current inventory
current inventory = 23

v total stock value
total stock value = (invalid decimal data)
symbol total stock value

fixed dec (8,2) automatic
Declared in check back issues
value octal (totaT stock value)
040040040040040040040040040
r 08:19 0.234 33 level 2

r1
r 08:19 0.037 2

Not To 8e Reproduced 2-23

I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

F21

SCENARIO TWO: MORE PROBE

qedx
rcheck back issues.pll
Idel total stock valuel
del total stock value fixed dec (8,2);
s/;1 init-{O);/p

I del total stock value fixed dec (8,2) init (0);
I w
I q
I. r 08:20 0.207 24
I
I 011 check back issues -sv2 -tb
I PL/I 26a -
I r 08:21 3.461 233
I
I close file back issues
I r 08:22 Ocl07 69
I

I THE illegal procedure CONDITION ITSELF EXPLAINED LITTLE ABOUT
THE ERROR -

i THE PL/I STATEMENT WAS TOO COMPLEX TO QUICKLY DETERMINE THE
IMMEDIATE CAUSE

I THE value REQUEST UNCOVERED THE "FACT THAT ONE VARIABLE HAD
INVALID DATA

I BECAUSE OF THIS THE VALUE OF total stock value WAS
UNPRINTABLE

I THE octal BUILTIN FUNCTION ALLOWED US TO LOOK AT THE DATA
THAT WAS THERE REGARDLESS OF THE DATA TYPE

I THE PRESENCE OF SPACES (OCTAL 040) INDICATED THAT THE
VARIABLE WAS NEVER INTIALIZED (TO OCTAL 060)

Not To 8e Reproduced 2-24 F21

BREAKING PROGRAM EXECUTION

§II BREAKPOINTS

I AT TIMES, THE PROGRAMMER DESIRES TO VIEW INTERMEDIATE PROGRAM
VALUES

lONE OPTION IS TO PLACE I/O STATEMENTS IN THE SOURCE PROGRAM

I COSTS TOO MUCH IN TERMS OF RECOMPILES

I STILL PROVIDES NO WAY TO SUSPEND THE PROGRAM

I LET THE DEBUGGER DO IT

I RECOMPILING NOT NECESSARY TO CHANGE DEBUGGING BEHAVIOR

I THE PROGRAM MAY BE SUSPENDED OR CONTINUE ON AFTER PRINTING
OUT SOME DIAGNOSTIC

§II PROBE IMPLEMENTATION

I REVOLVES AROUND THE "BREAKPOINT"

I A LIST OF ONE OR MORE probe REQUESTS TO BE PERFORMED WHEN A
STATEMENT IS REACHED

I LIKE A SMALL PROGRAM FOR EACH STATEMENT

I MODIFIABLE AT WILL BY THE PROGRAMMER

I probe BREAKPOINTS CAN BE SPECIFIED TO BE EXECUTED EITHER BEFORE
OR AFTER AN EXECUTABLE STATEMENT

Not To Be Reproduced 2-25 F21

BREAKING PROGRAM EXECUTION

I BEFORES AND AFTERS ARE SEPARATE BREAKS, AND BOTH WILL SZ
EXECUTED IF ENCOUNTERED CONSECUTIVELY

I COBOL COMPILER RESTRICTIONS LIMIT COBOL PROGRAMS TO THE USE
OF BREAKPOINTS BEFQRE THE STATEMENT ONLY

s BREAKPOINT REQUESTS

T
1. THE before REQUEST

I USAGE:

before <line>

b <line>

before <line>: « request 1 ist»

b <lIne>: «request list »

I EXAMPLES:

before

before 50

~~~~~.~~(ValUe ~alue y) ==:> 
before: value camp-val 

I NOTES: 

I IF NO LINE NUMBER IS SPECIFIED, THE CURRENT LINE IS 
ASSUMED 

I IF ONLY ONE REQUEST IS DESIRED AT THE BREAK, THEN THE 
PARENTHESES MAY BE OMITTED 

I IF NO REQUEST IS SPECIFIED, THEN A "halt" REQUEST IS 
ASSUMED, CAUSING THE PROGRAM TO STOP AND PROBE TO 8E 
ENTERED 

Not To Be Reproduced 2-26 F21 



BREAKING PROGRAM EXECUTION 

I THE stack REQUEST 

I NOT SPECIFICALLY A BREAK REQUEST 

I DISPLAYS LIST OF ALL PROGRAMS THAT HAVE NOT FINISHED YET 

I ALLOWS YOU TO SEE HOW FAR YOUR PROGRAM HAS RUN 

I SHOWS RELATIONSHIPS BETWEEN PROGRAMS 

I MORE ON STACKS LATER 

I USAGE: 

stack 

sk 

stack <amount> 

sk <amount> 

stack <first frame, amount> 

sk <first frame, amount> 

I EXAMPLES: 

sk 

stack 4 

sk 12,3 

I THE position REQUEST 

I POSITIONS TO AND PRINTS A SPECIFIED SOURCE STATEMENT 

Not To Be Reproduced 2-27 F21 



BREAKING PROGRAM EXECUTION 

I USAGE: 

posi tion < label> 

ps <+,-line> 

ps <line> 

ps <"string"> 

I EXAMPLES: 

position do label 

ps +3 

ps -4 

ps 68 

ps II i=5" 

~S /t"-=.s/ 

Not To Be Reproduced 2-28 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

m LET'S RETURN TO OUR EXAMPLE 

check back issues 

from (specify vol:num):l:l 
to (specify vol:num):1:4 

volume 1 number 1 
stocked: 23 outstanding requests: o cost 

\c of this issue: 
$5.00. 

volume I number 2 
stocked: 30 outstanding requests: 2 cost 

\c of this issue: 
$3.00. 

volume I number 3 
stocked: 27 outstanding requests: o cost 

\c of this issue: 
$3.00. 

Error: size condition by >user dir dir>~EDmult>F21>doodle>b 
\cad cbi$print summaryl1255 (li~e 1~3) 'I 
Precision of target insufficient for num8er of integral digi I 
\cts assigned to -it. 
system handler for error returns to comm~nd level 
r 08: 23 0.420 40 level -2 

Not To Be Reproduced 2-29 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

I 
probe I 
Condition size raised at line 193 of print_summary (level 8 ) e I 

I 
I 
I 
I 
1 

I 
! 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

source 

stack 
15 
14 
13 
12 
11 
10 

sc 

9 
8 
7 
6 
5 
4 
3 

put skip (2) 
edit ("number of issues stocked:", 
total number stocked, 
"number of requests pending:", 

,total number pending, 
"total stock-value:", 
total_stock_value, 
n .. II ) 

(r (output format 2)) 
file (sysprint) i -

simple command processorl12265 
command processor 111070 
abbrev T5336 -
release stackl10031 
unclaimed signal127064 
wall14436-
walll4407 
print summary (line 193) 
check-back issues (line 70) 
simpli comiand processorl12i65 
command processor 111070 
abbrev T5336 -
listen-ll0031 
project start up 141747 
user_inTt_admTn_T42452 (aIm) 

put skip (2) 
edit ("number of issues stocked:", 
total number stocked, 
"number 0 f .r equests pend ing : " , 
total number pending, 
" to tal stoc k ~ val ue :" , 
total stock value, 
Ile ll ) - -

(r (output format 2)) 
file (sysprint) i -

v total number stocked 
total number stocked = 4.30337e9 
posi tTon If total number stocked =" 

total-number-stocked = 
total number stocked + 
issue-record7current inventory; 

before 
Break set before line 95 
quit 
r 08:27 0.968 317 level 2 

Not To Be Reproduced 2-30 

erro r I 
size I 

I 
I 
I 
I 
1 

F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

I THE PROGRAM WILL NOW STOP BEFORE LINE 95 IS REACHED 

I probe IS AUTOMATICALLY INVOKED 

I THE REQUEST LIST IS PROCESSED 

I IN THIS CASE, WE ARE PLACED AT probe REQUEST LEVEL 

I IF THE halt REQUEST WAS NEITHER IMPLICITLY NOR EXPLICITLY 
STATED, EXECUTION WOULD CONTINUE WITH LINE 95 

rl 
r 08:27 0.041 10 

close file back issues 
r 08:28 0.049 17 

check back issues 

from (specify·vol:num) :1:1 
to (specify vol:num)~1:4 

Stopped before line 95 of print_record. (level 8) 
source 

total number stocked = 
total number stocked + 
issue-record:current inventorYi 

v total number stocked -
total number stocked = 4.30337e9 
symboT total-number stocked 

fixed bin (17) automatic 
Declared in check back issues 
q 
r 08:30 0.441 115 

I TECHNIQUE: 

Not To Be Reproduced 2-31 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

I NOTE THE CONDITION: size 

I RESULT TOO BIG TO BE PLACED IN TARGET STORAGE LOCATION 

I DISAGREES WITH THE WAY THE PROGRAMMER THOUGHT TO USE IT 

I FIND OUT WHERE THE VARIABLE IS ASSIGNED 

I SET BREAKPOINT THERE 

I LOOK AT VALUE OF VARIABLE AT THAT STATEMENT 

I THE VARIABLE HAD A RANDOM VALUE IN IT 

I IT WAS NOT INITIALLY SET 

I THIS CARRIED THROUGH UNTIL IT BLEW UP AT THE OUTPUT 
FORMATTING 

Not To 3e Reproduced 2-32 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

qedx 
rcheck bQ~k issues.pll 
/dcl total number stocked/ 
del total number stocked fixed bin; 
s/;/ init~(O);/p-
del total number stocked fixed bin init (0); 
w 
q 
r 08:30 0.256 30 

pll check back issues -sv2 -tb 
PL/I 26a - -
r 08:31 3.549 III 

close file back issues 
r 08:31 OQ057 8-

check back issues 

from (specify vol:num) :1:1 
to (specify vo1:num) :1:4 

volume 1 number 1 
stocked: 23 outstanding requests: 0 cost of 

this issue: 
$5.00$ volume 1 number 2 

stocked: 30 outs~anding requests: 2 cost of 
this issue: 

S3.00. volume 1 number 3 
stocked: 27 outstanding requests: 0 cost of 

this issue: 
$3~00. Error: size condition by 

>user dir dir>MEDmult>F21>doodle>bad cbi$print summaryl1304 
(line-193) Precision of target insufficient for number of 
integral digits assigned to it. system handler for error 
returns to command level 
r 08:32 0.467 22 level 2 

Not To 8e Reproduced 2-33 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

Ii YOUR TURN 

I THIS LOOKS LIKE THE SAME ERROR. IS IT? HOW DO YOU KNOW? 

I LIST THE STEPS YOU WOULD TAKE TO RESOLVE THIS ERROR. 

~ot To Be Reproduced 2-34 F21 



SCENARIO THREE: SIMPLE BREAK PROCESSING 

~.------------------------------------------------------------~ I 

I 
pb 
Conditlon size raised at line 193 of print_summary (level 8)0 
sc 

put skip (2) 
edit ("number of issues stocked:", 
total number stocked, 
"number of requests pending:", 
total number pending, 
ii to taT stock-val ue: Ii 1 

total stock value, 
".") - -
(r (output format 2») 
file (sysprint); -

v total number stocked 
total number stocked = 80 
v total number pending 
total number pending == 4.30337e9 
v total stock value 
total stock value = 286 
sb total number pending 

fixed bln (17)-automatic 
Declared in check back issues 

I q 
I r 08:"33 0.386 79 level 2 
I 
I qx 
I rcheck back issues.pl1 
I /dcl total number pending/ 
! dcl total number p~nding fixed bin; 
I s/;/ init-(O);/p-
I dcl total_number_pending fixed bin init (0); 
I w 
I q 
I r 08:34 0.216 35 level 2 
I 
I pll check back issues -tb -sv2 
I PL/I 26a - -
I r 08:34 3.462 219 level 2 
I 
I rl 
I r 08:34 0.040 6 
I 
I close file back issues 
I r 08:35 00042 7-
I 
I 

Not To Be Reproduced 2-35 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

F21 



ADDITIONAL BREAK CONTROL 

s MORE REQUESTS 

I THE after REQUEST 

I SETS UP A BREAKPOINT AFTER A GIVEN STATEMENT IN A PROGRAM 

I OPERATES EXACTLY LIKE THE before REQUEST 

I USAGE: 

after 

a 

after <line>: «request list» 

a <line>: «request list» 

I EXAMPLES: 

after 

after 100 

a 50: (value Xi value y) 

I THE status REQUEST 

I LISTS BREAKPOINTS YOU HAVE SET IN YOUR PROGRAMS 

I USAGE: 

sta tus 

st 

status <program name> 

st <program name> 

status <line in current program> 

Not To Be Reproduced 2-36 F21 



ADDITIONAL BREAK CONTROL 

st <line in current program) 

status -all 

st -all 

status * 

st * 

I EXAMPLES: 

sta tus 

status at 50 

status other-prog 

status -all 

I NOTES: 

"status -all" LISTS ALL BREAKS SET 

"status *" LISTS THE NAMES OF PROGRAMS WITH BREAKS SET 

AN OPTIONAL CONTROL ARGUMENT OF "-long" IS ALLOWED, WHICH 
PRINTS THE PROBE REQUEST LIST ASSOCIATED WITH THE BREAKPOINT 

I THE continue REQUEST 

I ALLOWS THE PROGRAMMER TO RESUME THE PROGRAM AFTER A BREAK 
THAT INVOKED probe 

I USAGE: 

continue 

c 

I EXAMPLES: 

continue 

c 

Not To Be Reproduced 2-37 F21 



ADDITIONAL BREAK CONTROL 

~ BACK TO THE SCENARIO 

check back issues 

from (specify vol:num) :1:1 
to (specify vol:num) :1:4 

volume 1 number 1 
stocked: 23 outstanding requests: 

$5.00. 
volume 1 number 2 

stocked: 30 outstanding requests: 
$3.00. 

volume 1 number 3 
stocked: 27 outstanding requests: 

53.00. 

number of issues stocked: 80 
number of requests pending: 2 
total stock value: $286.00. 
r 08:36 0 .. 264 7 

0 cost 

2 cost 

0 cost 

I A NEW PROBLEM: NOT ENOUGH RECORDS PRINTED OUT 

of this issue:1 
I 
I 

of this issue:1 
! 
I 

of this issue: I 
I 
I 
I 
I 
I 
I 
I 
I 

I WITH NO CONDITION SIGNALLED, BREAKPOINTS ARE THE ONLY WAY TO 
GET INTO PROBE WHILE THE PROGRAM IS RUNNING 

I WITHOUT SETTING TOO MANY SREAKS, ATTEMPT TO STOP THE PROGRAM 
AT APPROPRIATE PLACES AND LOOK AT LOOP VALUES 

Not To Be Reproduced 2-38 F21 



ADDITIONAL BREAK CONTROL 

I 
I 
I probe check back issues 
I U5ing check-back-issues (no active frame) & 

I ps "do issue" -
I do issue = 1 to number_of_issues; 
I b 
I Break set before line 66 
I quit 
I r 08:39 0.342 137 

check back issues 
tram (specify vol:num) :1:1 

to (specify vol:num) :1:4 
Stopped before line 66 of check back 

v number of issues 
number of issues = 3 

ps II number of issues :" 
number of issues = 

issues. (level 7) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(6*last issue volume + last issue num) -
(6*first_issue_volume + first_issue_num); 

I v last issue volume 
I last issue volume = 1 

v last issue num 
last issue num = 4 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

v first issue volume i v first issue num 
first issue volume = 1 
first-issue-num = 1 

posi tion +2 
call print_record (); 

after 
Break set after line 67 

continue 

Not To Be Reproduced 2-39 F21 



ADDITIONAL BREAK CONTROL 

volume 1 number 1 
stocked: 23 outstanding requests: 0 cost 

SS.OO.Stopped after line 67 of check back issues. 
v is-:"s·ue 
issue = 1 

1 c 
I 
I volume 1 number 2 
I stocked: 30 outstanding requests: 2 cost 
I S3.00.Stopped after line 67 of check back issueso 

v issue 
I issue = 2 
I c 
I 
I volume 1 number 3 
I stocked: 27 outstanding requests: 0 cost 
I S3.00.Stopped after line 67 of check back issues. 
I v issue 
I issue = 3 
I sta tus 
I Break exists after line 67 in check back issues 
I Break exists before line 66 in check back issues 
I c 
I 
I 
I number of issues stocked: 80 
I number of requests pending: 2 
I total stock value: $286.00 ... 
I r 08:46 1.185 380 
I 

I TECHNIQUE: 

I IDENTIFY THE LOOP THAT PRINTS THE RECORDS 

of thi s issue: I 
(level 7) I 

I 
I 
I 
I 
I 

of thi s issue: I 
(level 7) I 

! 
I 

of th i 5 i 5S ue : I 
(level 7) I 

I 
I 
I 
! 

I SET A BREAK WITHIN THE LOOP AND CHECK THE LOOP VARIABLE 

I LOCATE THE STATEMENT AT WHICH THE LOOP VARIABLE WAS 
INCORRECTLY SET 

I FIX THE SOURCE 

Not To Be Reproduced 2-40 F21 



ADDITIONAL BREAK CONTROL 

I 
I qedx 

rciAeck back issues"pll 
/number of issues/ 

I 
I 
I 
I 

del number~of issues fixed bin; 
II 

I number of issues = 
f s/$1 1 +/p 
I number of issues = 
I w 
I q 
I r 09:09 0.270 80 
I 
I pll check back issues -sv2 -tb 
I PL/I 26a - -
I r 09:10 3.668 234 
I 
I check back issues 
I from (specify vol:num): 1:1 
I 
I to (specify vo1:num):1:4 
! 
f 'volume , 

J. 

1 + 

I 
I 
I 

1 number 
stocked: 

\cof this issue: 
$SeOO. 

23 outstanding requests: 

I volume 1 number 
stocked: 

\cof this issue: 
I 
I 
I 
I 
I 
I 
I 

$3.00. 
vo 1 urne 1 number 

stocked: 
\eof this issue: 

$3 .. 00. 
I volume 1 number 

stocked: I 
I \cof this issue: 
I $3.00. 

2 
30 outstanding requests: 

3 
27 outstanding requests: 

4 
20 outstanding requests: 

I 
I 
I 
I 
I 

number of issues stocked: 
number of requests pending: 

100 
3 

I 
I 

total stock value: $346.00. 
r 09:10 0.362 ·28 

Not To 8e Reproduced 2-41 

o cost 

2 cost 

o cost 

1 cost 

I 
I 
! 
I 
I 
I 
I 
I 
I 
I 
I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

F21 



ADDITIONAL BREAK CONTROL 

I LOOKS GOOD; NOW TEST IT WITH DIFFERENT DATA. 

check back issues 
from (specify vol:num): 2:1 

to (specify vol:num) :3:1 

volume 1 number 1 
stocked: 23 outstanding requests: 0 cost of this issue: 

$5 .. 00. 
volume 1 number 2 

stocked: 30 outstanding requests: 2 cost of this issue: 
$3.00. 

volume 1 number 3 
stocked: 27 outstanding requests: 0 cost of this iss ue: 

$3.00. 
volume 1 number 4 

stocked: 20 outstanding requests: 1 cost of this issue: 
$3.00., 

volume , number 5 ..J.. 

stocked: 40 outstanding requests: 0 cost of this issue: 
$3 .. 00. 

volume 1 number 6 
stocked: 35 outstanding requests: 4 cost of this issue: 

$3 .. 00. 
volume 2 number 1 

stocked: 30 outstanding requests: 2 cost of this issue: 
$3.00. 

number of issues stocked: 205 
number of requests pend.ing: 9 
total stock value: $661.00. 
r .. 09:13 0.443 96 

Not To Be Reproduced 2-42 F21 



ADDITIONAL BREAK CONTROL 

m ONE MORE BREAK CONTROL REQUEST 

I THE continue to REQUEST 

I 

I 

I 

I 

CAUSES probe TO CONTINUE EXECUTING, BUT ONLY UNTIL LINE 
SPECIFIED 

USAGE: 

continue to <line> 

ct <line> 

EXAMPLES: 

continue to 75 

ct +1 

NOTES: 

THE FIRST EXAM]SE RESUMES EXECUTION OF THE PROGRAM AND STOPS 
IN probe AT LINE 75 OF THE PROGRAM 

THE SECOND EXAMPLE RESUMES EXECUTION, BUT STOPS BEFORE THE 
NEXT STATEMENT (I.E. EXECUTE ONE STATEMENT); SEE THE step 
REQUEST LATER 

Not To Be Reproduced 2-43 F21 



ADDITIONAL BREAK CONTROL 

probe check back issues 
Using check-back-issues (no active frame). 
position position file 
position file: -

proc (first_vol, first_num)i 
a 
Break set after line 129 
sta tus 
Break exists after line 129 in check back issues 
q 
r 09:20 0.311 120 

check back issues 
from (speclfy vol:num): 2:1 

I to (specify vol:num) :3:1 
1St 0 ppe d aft e r 1 in e 129 0 f po sit ion _ f i 1 e. (1 eve 1 8) 
I v first vol 
I first vol = 2 
I v first num 
I first num = 1 
I . ps +3-
I end; 
I a 
I Break set after line 146 
I continue to 132 
I probe (continue to): Using line 144 of check back issues 
I d 1 f T' f ..... ·· ;:'1 (1-'-. S top p e 0 e 0 r e J. 1 n e 14 4 0 _ po ~ 1 t 1 0 n _ ... 1 e. , eve .J. 8) 
I sc 
I 
I 

do while (first vol> current_volume); 
v first vol -t 

first vol = 2 
v current volume 
current volume = 4~30337e9 
sb current volume 

fixed bin-(17) automatic 
Declared in check back issues 
q 
r 09:25 0.831 265 

Not To 8e Reproduced 2-44 

instead. I 
I 
I 
I 
I 
I 
I 

F21 



ADDITIONAL BREAK CONTROL 

qedx 
rcheck back issues.pll 
/del (current volume/ 
dcl (current volume, current_number) fixed bin; 
s/;/ init (OTi/P 
del (current_volume, current_number) fixed bin init (0); 
w 
q 
r 09:27 0.288 83 

pll check back issues -sv2 -tb 
PL/I 26a - -
r 09:27 3.520 230 

close file back issues 
r 09:28 0.044 48 

Not To Be Reproduced 2-45 F21 



ADDITIONAL BREAK CONTROL 

check back issues 
from (specify vol:num) :2:1 

to (specify vol:num) :3:1 

volume '" number 2 L, 

stocked: 36 outstanding requests: 1 cost of this issue: 
$3.00. 

volume 2 number 3 
stocked: 46 outstanding requests: 7 cost of this issue: 

$3.00. 
volume 2 number 4 

stocked: 31 outstanding requests: o cost of this issue: 
$3.00. 

volume 2 number 5 
stocked: 36 outstanding requests: o cost of this issue: 

$3.00. 
volume 2 number 6 

stocked: 33 outstanding requests: 1 cost of this issue: 
$3.00. 

volume 3 number 1 
stocked: 47 outstanding requests: 5 cost of this issue: 

$3000. 
volume 3 number 2 

stocked: 50 outstanding requests: 4 cost of this issue: 
$3 .. 00. 

number of issues stocked: 279 
number of requests pending: 18 
total stock value: $837.00. 
r 09:28 0.395 30 

» TWO MORE BREAK REQUESTS 

I THE reset REQUEST 

I DELETES SPECIFIED BREAKPOINTS 

(RESET BEING A HARDWARE TERM FOR TURNING A SWITCH OFF) 

Not To Be Reproduced 2-46 F2l 



ADDITIONAL BREAK CONTROL 

I USAGE: 

reset 

r 

reset < location> 

r < loca tion> 

reset <program name> 

r <prog ram name> 

reset -all 

r -all 

reset * 

r * 

I EXAMPLES: 

reset after 75 

reset 

reset other-prog 

r * 

I NOTES: 

THE "reset *" and "reset -all" ARE IDENTICAL: THEY BOTH 
DELETE ALL BREAKPOINTS IN ALL PROGRAMS 

I THE step REQUEST 

I EXECUTES ALL THE INSTRUCTIONS UP TO, BUT NOT INCLUDING, THE 
NEXT STATEMENT 

I USAGE: 

step 

Not To Be Reproduced 2-47 F21 



s 

I EXAMPLES: 

step 

s 

I NOTES: 

ADDITIONAL BREAK CONTROL 

ACTS JUST LIKE EITHER OF THE FOLLOWING: 

continue to +1 

before +l:(reset; halt) 

IS DEFINITELY MORE CONVENIENT 

Not To Be Reproduced 2-48 F21 



ADDITIONAL BREAK CONTROL 

pb check back issues 
Using check back issues (no active frame) 0 

ps posi tion-file-
posi tion fire: 

proc (first_vol, first_num)i 
a 
Break set after line 129 
q 
r 09:30 0.247 98 

check back issues 
from (speclfy vol:num): 2:1 

to {specify vol:num):3:1 
Stopped after line 129 of position_file. (level 8) 

sk 8,2 
8 
7 

position file (line 129) 
check back issues (line 58) 

sc 
position file: 

proc (first_vol, first num); 

step 
Stepped before line 144 of position_file. (level 8) 

sc 
do while (first_vol> current_volume); 

ps "return" 
return; 

b 
Break set before line 152 

Not To Be Reproduced 2-49 F21 



ADDITIONAL BREAK CONTROL 

status 
Break exists before line 152 in check back issues 
Break exists before line 144 in check-back-issues 
Break exists after line 129 in check back Issues 

reset 144 
Break reset before line 144 in check back issues 

continue 
Stopped before line 152 of position_file. (level 8) 

v current volume 
current volume = 2 

v current number 
current number = 1 

q 
r 09:39 1.492 420 

Not To Be Reproduced 2-50 F21 



ADDITIONAL BREAK CONTROL 

I TECHNIQUE 

I DETERMINE THAT CORRECT NUMBER OF RECORDS ARE BEING PRINTED 
OUT, BUT THAT THE STARTING POINT IS INCORRECT 

I DECIDE THAT THE PROGRAM "position file" IS THE PROCEDURE THAT 
SETS THE STARTING POINT 

I SET BREAKpOINTS WITHIN iiposition_file i; TO CHECK THE SETTING 
OF THE STARTING POINT 

I SEE THAT "position_file" POSITIONS TO THE FIRST DESIRED 
RECORD 

I CONCLUDE THAT "print_record" DOES NOT HAVE TO READ THE FIRST 
RECORD 

Not To Be Reproduced 2-51 F21 



ADDITIONAL BREAK CONTROL 

I 
I 
I 
I 
I 
I 

qx 
rcheck back issues.pll 
/call get record/ 

-call get_record 
I i 

()i 

I if have used record then 
I \f 
I /return/ 
I 
I -1 
I' 
I a 
I 
I \f 
I a 

\f 

return; 

have used reco rd 

I 
I 
I 
I 
I 
I 

/position file/ 
po sit ion f i 1 e : 
/return/-

I -1 
I 
I a 

return; 

I have used record = "Q"b; 
I 
i \f 

,I In/dcl/ 
I del back issues file; 
I i 

= "1"b; 

! del have used record bit (1) aligned; 
I \£ 
I w 
I q 
I r 09:43 0.637 104 
I 
I pll check back issues -sv2 -tb 
I PL/I 26a - -
I r 09:43 3.814 183 
I 

Not To Be Reproduced 2-52 F21 



ADDITIONAL BREAK CONTROL 

close file back issues 
r 09:43 0.050 2"9' 

check back issues 
tram (specify vol:num) :2:1 

to (specify vol:num):3:l 

volume 2 number 1 
stocked: 30 outstanding requests: 

$3.00. 
volume 2 number 2 

stocked: 36 outstanding requests: 
$3 .. 00. 

volume 2 number 3 
stocked: 46 outstanding requests: 

$3.00. 
volume 2 number 4 

stocked: 31 outstanding requests: 
$3 .. 00. 

volume 2 number 5 
stocked: 36 outstanding requests: 

$3 .. 00. 
vo 1 urns 2 number 6 

stocked: 33 outstanding requests: 
$3.00 .. 

volurne 3 number 1 
stoc ked: 47 outstanding requests: 

$3.00. 

number of issues stocked: 259 
number of requests pending: 16 
total stock value: $777.00 .. 
r 09:44 0.459 14 

Not To Be Reproduced 2-53 

I 

I 

2 cost of this issue: ~ 

I 
I 

1 cost of this issue: I , 
, 

7 cost of this issue: , 
I 
I 

0 cost of this issue: I , 
, 

0 cost of this issue: I 
I 
I 

1 cost of this issue: I , 
I 

5 ·cost of this issue:' 
I 
I , 
I 
I 
I 
I 

F21 



PROBE ODDS AND ENDS 

m A FEW MORE COMMANDS 

I THE halt REQUEST 

I CAUSES PROBE TO BE ENTERED AT BREAKPOINT EXECUTION TIME 

I USAGE: 

halt 

h 

I EXAMPLES: 

halt 

h 

I NOTES: 

ONLY USEFUL IF NOT EXECUTING IN PROBE ALREADY 

A BREAKPOINT SET IN THE FORM OF ~aftern IS REALLY 
"after: hal t" 

I THE pause REQUEST 

I ACTS LIKE THE halt REQUEST, BUT ALSO RESETS THE BREAKPOINT 

I USAGE: 

pause 

p 

Not To Be Reproduced 2-54 F21 



PROBE ODDS AND ENDS 

I EXAMPLE: 

pause 

p 

I NOTES: 

LIKE THE halt REQUEST, IS ONLY USEFUL AT A BREAKPOINT 

the BREAKPOINT ~after:pause~ IS EQUIVALENT TO ~after: 
(halt;reset) " 

I THE list_builtins REQUEST 

I LISTS THE BUILTIN FUNCTIONS AVAILABLE FROM WITHIN probe 

I USAGE: 

list builtins 

Ib 

I EXAMPLES: 

list builtins 

Ib 

I THE list_help REQUEST 

I LISTS ALL THE HELP FILES AVAILABLE THROUGH THE probe "help" 
REQUEST 

I USAGE: list_help 

Ih 

Not To 8e Reproduced 2-55 F21 



PROBE ODDS AND ENDS 

I EXAMPLES: 

list help 

lh 

NOTES: 

YOU CAN GET MORE THAN JUST HELP ON THE REQUESTS: 
DESCRIPTIONS ARE ALSO PROVIDED FOR THE ARGUMENTS TO probe 
REQUESTS 

~ SPECIFYING LINES 

I SEVERAL PROBE REQUESTS ACCEPT LINE NUMBERS AS THEIR ARGUMENTS 

I before 

I after 

I reset 

I sta tus 

I SPECIFICATION OF A LINE CAN TAKE ON MANY FORMS 

I ABSOLUTE LINE NUMBER 

5 

, "" J.uu 

4-21 

I RELATIVE EXECUTABLE STATEMENT 

+1 

Not To Be Reproduced 2-56 F2l 



PROBE ODDS AND ENDS 

+50 

-5 

I USING LABELS 

get_record 

place ( 3 ) 

somewhere,4 

$100 

I SPECIAL SYMBOLS 

$c 

$ c, 7 

$b 

$ b, 3 

Not To Be Reproduced 2-57 F21 



TOPIC III 

Other Source-Level Debugging Commands •• 
The trace Command ••••• __ ••••• 
Interaction of the Control Arguments. 
Tracing Example One ••••••• 

.. • 3-1 
• • .. 3-1 

3-5 
• • 3-6 
• • 3-11 Other trace Control Requests ••• 

Trace Example Two • • • • • • • 
The display p11io error Command 
A display p11io error Example. 

• • • • 3-14 
• • • • • • • 3-20 

• 3-21 

3-i 



Topic III SOURCE-LEVEL DEBUGGING (TRACE) Topic III 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Add and remove procedures to and from the trace table. 

2. Modify the tracing of a particular procedure in the trace 
table. 

3. Use the trace command to perform metering on selected 
procedures. 

4. Monitor recursion of selected procedures. 

Multi cs 111-1 F21 



THE TRACE COM~~ND 

m trace COMMAND 

I SOURCE-LEVEL, PROCEDURE-CALL MONITOR 

I CAN BE USED WITH PROGRAMS WHICH DO NOT HAVE SYMBOL TABLES 

I CAPABILITIES INCLUDE 

I PRINTING ARGUMENTS AT PROCEDURE ENTRY AND/OR EXIT 

I EXECUTING A MULTIGS COMMAND LINE AT PROCEDURE ENTRY AND/OR 
EXIT 

I STOPPING (8Y CALLING THE COMMAND PROCESSOR) AT PROCEDURE 
ENTRY AND/OR EXIT 

I CONTROLLING THE FREQUENCY AT WHICH TRACING MESSAGES ARE 
PRINTED 

I WATCHING UP TO 16 STORAGE LOCATIONS FOR CHANGES .AT SVERY 
PROCEDURE ENTRY AND/OR EXIT 

I LIMITATIONS 

I ONLY EXTERNAL PROCEDURES COMPILED BY PL/I OR FORTRAN CAN BE 
TRACED 

I ONLY USER-RING PROCEDURES CAN BE TRACED, NOT SUPERVISOR OR 
GATE PROCEDURES 

Not To Be Reproduced 3-1 F21 



I 

THE TRACE COMMAND 

I A PROCEDURE IN A BOUND SEGMENT CAN BE TRACED ONLY IF ITS. 
ENTRY POINT HAS BEEN "RETAINED" IN THE BOUND SEGMENT 

USAGE 

trace -control _args 

OR 

trace procedure_ names 

OR 

trace -control _args procedure_names 

I procedure names GIVE THE PATHNAME OR REFERENCE NAME OF A 
PROCEDURE-ENTRY POINT TO 8E TRACED 

Jirectory_path>entryname 

directory_path>entryname$entry_point_name 

~eference name 

~eference_name$entry_point_name 

I control args CONTROL THE TRACING FUNCTIONS PERFORMED ON THE 
TRACED PROCEDURE 

I OPERATION 

I trace COC:~TS 

I HOW MANY TIMES A PROCEDURE IS CALLED (N = NUMBER OF CALLS) 
IN THIS PROCESS SINCE COUNTERS WERE LAST RESET 

I HOW MANY TIMES A PROCEDURE IS MONITORED WHILE A PREVIOUS 
ACTIVATION STILL EXISTS (R = RECURSION DEPTH) 

Not To Be Reproduced 3-2 F2l 



THE TRACE COMt'I-AND 

I OPERATION (Continued) 

I trace MONITORS A PROCEDURE CALL 

I WHEN NAND R MEET CERTAIN CRITERIA 

I BY PRINTING MONITORING MESSAGES 

Call N.R of PROCEDURE from CALL ING_P ROC , ap=244II746. 

Return N.R from PROCEDURE. 

I BY OPTIONALLY PRINTING PROCEDURE ARGUMENTS BEFORE ENTRY OR 
AFTER EXIT 

I BY OPTIONALLY GOING TO Multics COMMAND LEVEL OR INVOKING A 
USER-SPECIFIED PROCEDURE BEFORE ENTRY OR AFTE~EXIT 

I MONITORING CRITERIA 

I ARE STORED IN A TRACE CONTROL TEMPLATE (TCT), AN IN~ERNAL 
STATIC DATABASE IN THE PROCESS DIRECTORY 

I FOR EACH TRACED PROCEDURE ARE 
FASHIONED AFTER THE TCT 

STORED IN 

I IN THE TCT ARE PRINTED BY 

trace -template 

I ARE SET 8Y GIVING A trace COMMAND WITH THE FOLLOW:NG 
control_args: 

-first F, -ft F 
MONITOR WHEN F<=N 

-last L, -It L 
MONITOR WHILE N<=L 

-every E, -ev E 
MONITOR EVERY Eth CALL (WHEN mod(N,E)=O) 

-before B 
STOP BEFORE ENTERING PROCEDURE IF SA=O AND mod(N,B)=O 
AND mod(N,E)=O 

-after A 
STOP AFTER EXITING PROCEDURE IF A"=O AND mod·(N,A)=O 
AND mod (N , E) =0 

Not To Be Reproduced 3-3 F21 



THE TRACE COMMAND 

-argument AG, -ag AG 
mod(N,AG)=O 

mod(N,E)=O 

-in PRINT ARGUMENTS ONLY BEFORE ENTRY 

-out PRINT ARGUMENTS ONLY AFTER EXIT 

-inout 
PRINT ARGUMENTS BEFORE ENTRY AND AFTER EXIT 

-depth Df -dh D 
MONITOR ONLY IF R<=D AND GOVERNING IS OFF 

-return value {onloff}, -rv {on\off} 
PRINT FUNCTION RETURN VALUE AFTER EXIT 

-govern {onloff}, -gv {onloff} 
DISABLE RECURSION DEPTH CHECKING; INSTEAD, PRINT THE 
CALL MESSAGE ONLY WHEN THE RECURSION DEPTH REACHES A 
NEW MAXIMUM. ALSO, STOP WHEN RECURSION DEPTH IS A 
MULTIPLE OF 10 & A NEW MAXIMUMG 

-meter {onloff}, -mt (on\off} 
DISABLE MONITORING AND ENABLE PERFORMANCE METERING OF 
THE TRACED PROCEDURES 

Not To Be Reproduced 3-4 F2l 



INTERACTION OF THE CONTROL ARGUMENTS 

trace a fil'S't 5 -last 12 ."".ry 2 ob6fore 3 -argument 4 
• 

CAL.LS OF tt 
(N) 0000 ® 

MONITOR EVERY 
2nd CALL 
(-every 2) 

STOP BEFORE 
EVERY 3rd CALl.. 
(iF iT'S MONrrOREO} 
(-befora 3) 

PRINT INPUT 
ARGUMENTS EV-ERY 
4th CALL (I FIT'S 
MONITORED) 
(-argument 4) 

Not To Be Reproduced 

• 

• 

3-5 

6.1 10.3 '~4 

, 
1 

, 
6 1., I-

8 12 

F21 



TRACING EXAMPLE ONE 

1 fact: procedure (n) returns (fixed dec (12)); 
2 d cIT n, f, r) fix ed dec (l 2) ; 
3 if n <= 1 tnen r = 1; 
4 else do; 
5 f = fa c t ( n~ 1) ; 
6 r :: f * n; 
7 end; 
8 return (r)i 
9 end fact_i 

1 factorial: procedure; 
2 dcl result fixed dec (12); 
3 del fact entry (fixed dec '12)) returns (fixed dec (12)); 
4 del n fixed dec (12)i 
5 dcl cleanup condition; 
6 del (sysin, sysprint) file; 
7 open fi1e(sysin) stceam input, 
8 f i Ie (syspr int) str earn output 
9 env(interactive); 

10 on cleanup close file (sysin), file (sysprint); 
11 get file (sysin) list (n); 
1 2 do wh i 1 e (n > = 0); 
13 result:: fact {n'i 
1 4 put f i 1 e (3 Y s P r i n t) 1 i s t (r e suI t) ; 
15 get file (sysin) list (n); 
16 end; 
17 close file (sysin), file (sysprint) i 
18 end factorial; 

Not To Be Reproduced 3-6 F21 



TRACING EXAMPLE ONE 

1 p11 fact 
2 PL/I 
'1 r 1720 1.381 21.776 148 .,; 

4 
5 pl1 factorial 
6 PL/I 
7 r 1720 0.964 1.332 36 
8 
9 factorial 

10 3 
11 6 
12 4 
13 24 
14 5 
15 120 
16 6 
17 720 
18 10 
19 3628800 
20 -1 
21 r 1721 0.303 0.342 18 
22 

Not To Be Reproduced 3-7 F21 



TRACING EXAMPLE ONE 

23 trace -template 
24 first: 1, last: 9999999999, every: 1, 
25 h~ff"\"'.o. n_ ;:!ft-.o,... n _ ;:!"'("1~. n _ n.ont-h! qqqqqqqqqq-...,-----. v , -- -- - . v , --j-. v , - -I:" -_ •• -----------r 
26 mete r: off, govern: off, return value off 
27 r 1721 0 .. 067 0.,042 6 
28 
29 trace -arguments 1 -out -return value on 
30 r 1721 0.,038 0.002 1 
31 
32 trace fact 
33 r 1721 0.155 0.506 22 
34 

i 35 facto rial i 
I 36 5 N,R I 
I 37 ·Ca11 1.1 of fact from factorial1235, ap = 24415254 I 
1 38 Call 2.2 of fact- from fact 143, ap = 24415600 I 
I 39 Call 3.3 of fact- from fact-I 43 , ap = 24416120 I 
I 40 Call 4.4 of fact- from fact- 143, ap = 24416440 I 
I 41 Call 5.5 of fact from fact- 143, ap = 24416760 1 
1 42 Return 5 .. 5 from fact I 
I 43 ARG 1 @ 24416750 = T I 
1 44 ARG 2 @ 244\6740 = 1 I 
I 45 Return 4.4 from fact I 
1 46 ARG 1 @ 24416430 = "'2 I 
I 47 ARG 2 @ 24416420 = 2 I 
I 48 Return 3.3 from fact l-I 

\ 49 ARG 1 @ 24416110 = 3' ! 
I 50 ARG 2 @ 24416100 = 6 
I 51 Return 2.2 from fact 
I 52 ARG 1 @ 24415570 = 4' 
I 53 ARG 2 @ 244\5560 = 24 
I 54 Return 1.1 from fact 
I 55 ARG 1 @ 24415144 = 5 
I 56 ARG 2 @ 24415140 = 120 
I 57 120 
I 58 -1 
I 59 r 1721 0.395 1.632 47 
I 60 
I 

Not To Be Reproduced 3-8 F21 



61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 

TRACING EXA~~LE ONE 

trace -every 3 
r 1722 0.021 0.000 0 

trace fact 
r 1722 0.024 0.000 0 

factorial 
10 
Call 6.1 of fact from factoriall235, ap = 24415254 
Call 9.2 of fact from fact 143, ap = 24416100 
Call 12.3 of fact from fact 143, ap = 244\6720 
Call 15.4 of fact from fact-\43, ao = 24417540 
Return 15.4 from fact ~ -
ARG 1 @ 24417530 = 1-
ARG 2 @ 244\7520 = 1 
Return 12.3 from fact 
ARG 1 @ 24416710 = 4-
ARG 2 @ 24416700 = 24 
Return 9.2 from fact 
ARG 1 @ 244\6070 = 7 
ARG 2 @ 24416060 = 5040 
Return 6.1 from fact 
ARG 1 @ 244\5144 = To 
ARG 2 @ 24415140 = 3628800 

3628800 
-1 
r 1722 0.210 0.002 1 

Not To Be Reproduced 3-9 F21 



TRACING EXAMPLE ONE 

89 trace -status fact 
90 fact : 
01 N = 

, ~ .., .. ... -' 
92 R = 0, max R = 0 
93 F = 1 
94 L = 9999999999 
95 E :; 3 
96 B :: a 
97 A :: 0 
98 AG = 1 (o) 
99 D = 9999999999 

100 return value 
101 
102 r 1722 0.052 0.000 0 
103 
104 trace -status * 
105 15.0 fact 
106 r 1723 0.027 0.000 0 
107 
108 trace -reset fact -status fact 
109 fact : 
110 N :: 0 
111 R = o , max R = 0 
112 F = 1 
113 L = 9999999999 
114 E = 3 
115 B = 0 
116 A- = 0 
117 AG = 1 (0) 
118 D = 9999999999 
119 return value 
120 
121 r 1723 0 .. 055 0.006 2 
122 
123 factorial 
124 4 
125 Call 3.1 of fact from fact 143, ap = 24415560 
126 Return 3.1 from fact 
127 ARG 1 @ 24415550 = "2 
128 ARG 2 @ 24415540 = 2 
129 24 
130 -1 
131 r 1724 0.103 0.000 0 
132 

Not To Be Reproduced 3-10 F21 



OTHER TRACE CONTROL REQUESTS 

I OTHER trace CONTROL ARGUMENTS 

I CONTROL THE GENERAL OPERATION OF trace 

I INCLUDE 

I 

-status procedure name, -st procedure name 
PRINTS THE TRACE CONTROL PARAMETERS AND COUNTERS FOR THE 
NAMED PROCEDURE 

-status *, -st * 
LISTS THE PROCEDURES BEING TRACED, THEIR INVOCATION 
COUNTS AND RECURSION DEPTHS 

-reset orocedure name, -rs procedure_name 
ZEROES THE INVOCATION COUNT OF THE GIVEN PROCEDURE 

-off procedure name 
STOPS MONITORING THE GIVEN PROCEDURE; PROCEDURE REMAINS 
IN TRACE TABLE AND COUNTING OF INVOCATIONS CONTINUES, 
HOWEVER 

~on procedure name 
RESUMES MONITORING THE GIVEN PROCEDURE 

-remove procedure_name, -rm procedure_name 
STOPS TRACING THE GIVEN PROCEDURE, DELETING ALL COuNTERS 
FOR THE PROCEDURE 

THE orocedure name OPERAND FOLLOWING CONTROL ARGUMENTS MUST 
HAVE· THE FORM: 

entryname 

entryname$entry_point_name 

reference name 

* 

THE CONTROL ARGUMENT APPLIES TO ALL TRACED PROCEDURES WHEN * 
IS GIVEN 

Not To Be Reproduced 3-11 F21 



OTHER TRACE CONTROL REQUESTS 

133 trace -off fact 
134 r 1724 0.022 0.000 0 
135 
, '"J ~ ~-----: -" l.';)O .\..01,.; I...UL, J.O.J. 

137 12 
138 479001600 
139 ~l 

140 r 1725 0.072 00000 0 
141 
142 trace -on fact 
143 r 1725 0.025 0:000 0 
144 
145 facto rial 
146 2 
147 Call 18.1 of fact from fact 143, ap = 24415420 
148 Return 18.1 from fact 
149 ARG 1 @ 24415410 = 1 
150 ARG 2 @ 24415400 = 1 
151 2 
152 -1 
153 r 1726 0,,055 0 .. 000 0 
154 
155 trace -status * 
156 18.0 fact 
157 r 1726 0.028 0:000 0 
158 , 
15.9 trace -remove fact I 

I 160 r 1726 0.027 0.002 1 
1- 161 
I 162 trace -status * 
I 163 trace: Trace table is empty. 
I 164 r 1727 00036 0.000 0 
I 165 

166 factorial 
167 10 
168 3628800 
169 -1 
170 r 1727 0.070 DGOOO 0 

Not To Be Reproduced 3-12 F21 



OTHER TRACE CONTROL REQUESTS 
I OTHER trace CONTROL ARGUMENTS 

I CONTROL THE GENERAL OPERATION OF trace 

-brief, -bf 
SHORTENS THE MONITOR MESSAGES 

-long, -lg 
PRINTS LONGER MONITOR MESSAGES AGAIN 

-io switch switch name, -is switch name 
- PRINTS MONITOR MESSAGES ON THE NAMED I/O SWITCH, WHICH 

MUST 8E ATTACHED & OPENED FOR STREAM OUTPUT 

-execute command line, -ex command line 
EXECUTES THE COMMAND LINE WHENEVER A PROCEDURE IS 
MONITORED 

-stop proc procedure name, -sp procedure name 
CHANGES THE PROCEDURE CALLED TO STOP BEFORE ENTRY OR 
AFTER EXIT TO THE GIVEN PROCEDURE 

I CONTROL PERFORMANCE MONITORING 

I 

-meter {anI off} , -rot {ani off} 
STARTS/STOPS METERING OF TRACED PROCEDURES 

-total; -tt 
PRINTS PERFORMANCE MEASUREMENTS AND CLEARS THE METERING 
STATISTICS 

-subtotal, -stt 
PRINTS PERFORMANCE MEASUREMENTS BUT DOES NOT CLEAR THE 
METERING STATISTICS 

ruu ....... fA c..o~~c..V\~ 
WATCH STORAGE LOCATIONS FOR CHANGES AS PROCEDURES ARE TRACED 
AND STOP IF THE LOCATIONS CHANGE 

-watch location, -wt location 
WATCHES THE ONE WORD LOCATION. UP TO 16 LOCATIONS CAN 
8E WATCHED AT ANY TIME. location HAS THE FORM: 

segment_number I offset 

-watch off, -wt off 
TURNS OFF THE WATCH FACILITY 

Not To 8e Reproduced 3-13 F21 



TRACE EXAMPLE TWO 
.. 1 . ! .. print ttepll 1 . 

2 tt: proc; 
3 dcl ioa entry options (variable); 
4 dcl d$ external static; 
5 del mod builtin; 
6 del cleanup condition; 
7 on cleanup begin; 
8 counter = 0; 
9 call ioa ("counter initialized back to zero."); 
10 gato bottom, 
11 end; 
12 dcl counter fixed bin internal static init (0); 
13 counter = counter +1; 
14 c a 11 i 0 a ( " • • Po. i", co un t e r) ; 
15 if mod (counter, 5) = 0 then d$ = counter; 
16 call tt; 
17 bottom: 
18 end tt; 
19 
20 
21 ! trace -ft 5 -last 12 -every 2 -before 3 -argument 4 tt 
22 ! trace -status tt 
23 tt: 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

N 
R 
F 
L 
E 
B 
A 

AG 
D 

~ 

= 
= 
= 
= 
:: 

= 
= 
= 

0 
o , max R = 
5 
12 
2 
3 
0 
4 
9999999999 

34 ! trace -template 

0 

35 first: 5, last: 12, every: 2, before: 3, after: 0, args: 4, 
36 depth: 9999999999, meter: off, govern: off, return value off 
37 ! tt 
38 ., .1 
39 • e 2 
40 ... 3 
41 ., .. 4 
42 ... 5 
43 Call 6.1 of tt from tt1113, ap = 24415476 
44 trace: stop before 
45 ! hmu 
46 
47 Multics MR6.5+, load 32.0/150GOi 40 users 
48 Absentee users 0/4 
49 
50 ! start 
51 •• 6 
52 •. 7 
53 Call 8.2 of tt from tt1113, ap = 24416156 
54 No arguments. 
55 •• 8 
56 •• 9 
57 Call 10.3 of tt from tt1113, ap = 24416636 

Not To Be Reproduced 3-14 F21 



TRACE EXAMPLE TWO 
58 •• 10 
59 •• 11 
60 Call 12.4 of tt from ttl113, ap = 24417316 
61 No arguments. 
62 trace: stop before 
63 ! sr 
64 .,,12 
65 •• 13 
66 .. " 14 
67 .. ,,15 
68 e .. 16 
69 " .17 
70 .. ,,18 
71 . .,19 
72 ... 20 
73 QUIT 
74 ! trace -status tt 
75 tt: 

N = 282 
R = 4, max 
F = 5 
L = 12 
E = 2 
B = 3 
A = 0 

AG = 4 

R = 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

D = 9999999999 

86 ! release -all 

0 

87 counter initialized back to zero. 
88 Return 12.4 from tt 
89 Return 10.3 from tt 
90 Return 8.2 from tt 
91 Return 6.1 from tt 
92 ! trace -status tt 
93 tt: 

N = 282 
R = o , max R = 
F = 5 
L = 12 
E = 2 
8 = 3 
A = 0 

AG = 4 

94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 

D = 9999999999 

! .1 tracerev 

0 

105 b tracerev trace -ft 1 -It 9999999999 -ev 1 -before 0 
106 -after 0 -ag 0 -dh 9999999999 -mt off -gv off -wt off 
107 -return value off 
108 ! tracerev tt 
109 ! trace -st tt 
110 tt: 
III 
112 
113 
114 

N =: 

R = 
F = 
L = 

282 
o , ~ax R = , . 
9999999999 

Not To Be Reproduced 

0 

3-15 F21 



TRACE EXAMPLE TWO 
ll~ . E = 1 
116" B = 0 
117 A = 0 
118 AG = 0 
119 D = 9999999999 

N = 
R = 
F = 
L = 
E = 
B = 
A = 

AG = 
D = 

Not To Be Reproduced 3-16 F21 



TRACE EXAMPLE TWO 
172 Call 1.1 of tt from command_processor~13304 (read list) , 

24414600 -ap = 
173 ... 1 
174 Call 2.2 of tt from tt1113, ap :: 24415056 
175 • .2 
176 Call 3.3 of tt from tt1113, ap = 24415376 
177 $ c 3 
178 Call 4.4 of tt from ttll13, ap = 24415716 
179 • ,,4 
180 Call 5 .. 5 of tt from tt1113, ap :: 24416236 
181 • .. 5 
182 trace _print_: 357iO :: 000000000005 
183 Call 6.6 of tt from tt1113, ap = 24416556 
184 • ,,6 
185 Call 7.7 of tt from tt1113, ap = 24417076 
186 

• c> 7 
187 Call 8.8 of tt from tt1113, ap :: 24417416 
188 · .. 8 
189 Call 9.9 of tt from tt1113, ap :: 24417736 
190 • .9 
191 Call 10.10 of tt from tt1113, ap = 244110256 
192 trac e: stop before 
193 ! trace -brief tt 
194 ! start 
195 ., .10 
196 trace nrint : 35710 :: 000000000012 
197 Call Tiell of tt 
198 · .. 11 
199 Call 12.12 of tt 
200 • s 12 
201 Call 13.13 of tt 
202 ... 13 
203 Call 14.14 of tt 
204 • • 14 
205 Call 15.15 of tt 
206 · .15 
207 trace print : 35710 :: 000000000017 
208 Call 16,,16 of tt 
209 · .. 16 
210 Call 17.17 of tt 
211 • .17 
212 Call 18.18 of tt 
213 • .. 18 
214 Call 19.19 of tt 
215 • .19 
216 Call 20.20 of tt 
217 trace: stop before 
218 1'"'1 Tt,. r-" 

",V.J.k 

219 1 trace -watch off ~r 1..-

220 sr 
221 ready 
222 r 1842 9.009 21.098 724 level 2 I 51 
223 
224 sr 
225 • .20 
226 Call 21.21 of tt 
227 • .21 

Not To Be Reproduced 3-17 F21 



TRACE EXAMPLE TWO 
228 Ca.ll 22.22 of tt 
229 •• 22 
230 Call 23.23 of tt 
231 •• 23 
232 Call 24.24 of tt 
233 .... A 

e 0 ~q 

234 Call 25.,25 of tt 
235 0025 
236 Call 26.,26 of tt 
237 ., 026 
238 Call 27.27 of tt 
239 " .,27 
240 Call 28 .. 28 of tt 
241 ... 28 
242 Call 29 .. 29 of tt 
243 .. e 29 
244 Call 30 .. 30 of tt 
245 trace: stop before 
246 QUIT 
247 ! rl -all 
248 coun ter initialized back to zero 0 

249 ! trace -st tt 
250 tt: 
251 N = 30 
252 R = o , max R = 30 
Z53 F = 1 
254 L = 9999999999 
255 E = 1 
256 a ~ 0 
257 A = 0 
258 AG = 0 
259 D = 9999999999 
260 govern 
261 
262 ! trace -govern off tt 
263 ! trace -st tt 
264 tt: 
265 N = 30 
256 R = o I max R ~ 30 
267 F = 1 
268 L = 9999999999 
269 E = 1 
270 B = 0 
271 A = 0 
272 AG = 0 
273 D = 9999999999 
274 
275 ! trace -reset tt 
276 ! 'trace -st tt 
277 tt: 
278 N = 0 
279 R = o , max R = 30 
280 F = 1 
281 L = 9999999999 
282 E = 1 
283 B = 0 
284 A = 0 

Not To Be Reproduced 3-18 F21 



TRACE EXAMPLE TWO 
AG = 0 285 

286 D = 9999999999 . 

~ot To Be Reproduced 3-19 F21 



THE DISPLAY PLIIO ERROR COMMAND 
'lD d'~spl'ay pll·~~o, error .. COMMAND 

••• ' - •• ,--=-=' •• ;. '.. ,,' 

I PRINTS ADDITIONAL INFORMATION ABOUT THE MOST RECENT ERROR 
CONDITION SIGNALLED BY THE PL/l INPUT/OUTPUT FACILITY 

I USAGE 

OR 

dpe 

I PL/l I/O ,ERROR CONDITIONS INCLUDE 

I endfile 

T key ~ 

1 name 

I recor: 

I transm it 

I undefi ned f il e 

Not To Be Reproduced 3-20 F21 



A DISPLAY PL1IO ERROR EXAMPLE 

1 write file: procedure; 
2 
3 dcl f file record output; 
4 d c 1 r e c 1 c ha r ( 1 0) , 
5 rec2 char (30) varyingj 
6 dc1 cleanup condition; 
7 
8 
9 on cleanup close file (f)i 

10 open file (f); 
11 
12 reel = "ABCDEfghij"; 
13 write file (f) from (reel); 
14 
15 
16 
17 
18 
19 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

rec2 = "abcdeFGHIJ"; 
write file (f) from (rec2) i 

close file (f); 

read file: 

del f file record input; 
del sysprint file; 
del reel char (10); 
dcl (cleanup, endfile) condition; 

on cleanup close file (f), file (sysprint); 
open file (f), 
file (sysprint) output stream env (interactive) j 

12 on endfile (f) go to DONE; 
13 do while ("l"b); 
14 read file (f) into (reel) i 
15 put file (sysprint) list (reel) i 
16 end; 
17 
18 DONE: 
19 close file (f) I file (sysprint); 
20 
21 end read_file; 

Not To 8e Reproduced 3-21 

I . 
I 
I 
I 
I 
I 
I 

F21 



I 
I 1 
I 2 
I 3 
I 4 
I 5 
I 6 
I 7 
I 8 
I 9 
I 10 
I 11 
I 12 
! 13 
I 14 
I 15 
I 16 
I 17 
I 18 
I 19 
I 20 
I 21 
I 22 
I 23 
I 24 
I 25 
I 26 
I 27 
! 28 
I 29 

30 
31 
32 
33 
34 
35 
36 
.... .., 
.) I 

A DISPLAY PLlIO ERROR EXAMPLE ".-. 

pll read file -table 
PL/I -
r 1033 1.353 37.579 272 

pll write file -table 
PL/I ~ 

r 1034 00767 40e527 287 

read file 

Error: undefinedfi1e condition 
by >udd>F19d>Friedman>read filell77 (line 9) 

occurred while doing I/O on file f 
File cannot be opened: call to iox $open fails. 
system handler for error returns to command level 
r 1034 0.169 5.250 74 level 2, 16 

Error on file f, status code: Entry not found~ 
Title: vfile f 
Attributes: input notkeyed record sequential 
Permanent attributes: input record 
Error in opening or closing f 
r 1035 0.069 1.470 37 level 2, 16 

probe 
Condition undefinedfile raised at line 9 of read file. 
source 

open file (f), 
f i 1 e (s y s p r i n t) 0 u t put s t ream en v (i n t era c t i v e) ; 

quit 
r 1035 0.126 5.726 97 level 2, 16 

release 
r 1035 0.028 0.328 17 

Not To 8e Reproduced 3-22 F21 



~ DISPLAY PLIIO ERROR EXAMPLE 

38 write file 
39 
40 Error: undefinedfile condition 
41 by >udd>F19d>Friedman>write filel133 (line 10) 
42 occurred while doing I/O on file f 
43 File cannot be opened: 
44 input and output attributes conflict. 
45 system handler for error returns to command level 
46 r 1035 0.140 3.660 60 level 2, 16 
47 
48 dpe 
49 
50 Error on file f 
51 Title: vfile f 
52 Attributes: Input output record 
53 Permanent attributes: input output record 
54 Error in opening or closing f 
55 The output attribute conflicts with the input attribute. 
56 r 1036 0.061 1.190 34 level 2, 16 
57 
58 new proc 
59 r 1037 0.184 8.372 91 
60 
61 write file 
62 r 1037 00376 6e532 80 
63 
64 read file 
65 
66 Error: undefinedfile condition 
67 by >udd>F19d>Friedman>read filel177 (line 9) 
68 occurred while doing I/O on file f 
69 File cannot be opened: 
70 input and output attributes conflict. 
71 system handler for error returns to command level 
72 r 1038 0.627 25.122 192 level 2, 16 
73 
74 new proc 
75 r 1039 0.236 4.830 69 
76 

Not To Be Reproduced 3-23 F21 



I 
I 77 
I 78 
L 79 
I 80 
I 81 
I 82 
I 83 
I 84 
I 85 
I 86 
I 87 
I 88 
! 89 
I 90 
I 91 
I 92 
I 93 
I 94 
I 95 
I 96 
I 97 
I 98 
I 99 
I 100 
I. 101 
I 102 
I 103 
! 104 
I 105 
I 106 
I 107 
I 108 
I 109 
I 110 
I III 
I 112 
I 113 
I 

~ DISPLAY PLIIO ERROR EXAMPLE 

read f il e 
ABCDEfghij 

... .'. 

Er ro r: record cond i tion 
by >udd>F19d>Friedman>read~fileI24l (line 14) 

occurred while doing I/O on file f 
"read into{XX)": 

record in data set larger than variable XXo 
Type "start" to continueo 
Data will be truncated to record ' s length. 
system handler for error returns to command level 
r 1039 0.887 25.244 219 level 2, 16 

dpe 

Error on file f, status code: Record is too long. 
Title: vfile f 
Attributes: open input notkeyed record sequential 
Permanent attributes: input record 
Last i/o operation attempted: read into 
r 1040 0$106 3e540 59 level 2, 16 

probe 
Condition record raised at line 14 of read file. 
source 

read file (f) into (recl)i 
v reel 

"\000\000\000 
abcdeF" 
quit 
r 1041 Oe368 11.650 192 level 2, 16 

start 
\000\000\000 
abcdeF 
r 1041 0.11~ 3.492 59 

Not To Be Reproduced 3-24 

.. I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
I 

F21 



A DISPLAY PL1IO ERROR EXAMPLE 

114 print attach table £ 
115 f - - (not attached) 
116 r 1041 0.069 1.640 40 
117 
118 io call attach f vfile f 
119 r 1041 0.080 30306 57 
120 
121 io open f sequential input 
122 r 1042 0.087 3.422 58 
123 
124 io read length f 
125 io call: len=10. 
126 r 1042 0.039 0.006 2 
127 
128 io read f 10 
129 io call: 10 characters returned. ABCDEfghij 
130 r 1042 0.077 1.980 44 
131 
132 io read length f 
133 io ca117 1en=34. 
134 r 1042 0.032 1.332 36 
135 
136 io read f 40 
137 io call: 34 characters returned. \000\000\000 
138 abcdeFGHIJ\400*\400\OOO\OOO\000write file 
139 r.l042 0.050 1.980 4~ -
140 
141 io (close detach) f 
142 r 1043 0.045 2.162 46 

Not To Be Reproduced 3-25 F21 
( End 0 f To pic) 



TOPIC IV 

Advanced probe Requests ~ e e e 0 0 • 

Introductione ~ • e c 0 ~ 0 e • 

Scenario I - More probe Control 0 

Control of Output Processing •••• 
Scenario III - Program Manipualtion 

4-i 

e 4-1 
o .. 4-1 

o 4-2 
" ., 4-7 

e • e 4-9 



To pi c rv ADVANCEu PROBE REGUESTS Topic IV 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1a Use the following probe requests to good advantage: 

t1ulties 

modes 

if 

language (lng) 

display (ds) 

gO t 0 (g) 

where (wh) 

use 

call (cl) 

declare (del) 

list_variables (lsv) 

IV-1 F21 



INTRODUCTION 

m MORE ABOUT probe 

I MOST DEBUGGING CAN BE DONE USING THE TECHNIQUES DESCRIBED IN 
CHAPTER TWO 

I THE REQUESTS DESCRIBED HERE GIVE THE USER MUCH MORE CONTROL OVER 
".,u'C" nnl"'lot:" t:"1I..l~r"T"nf"l"'TM1:"T"" 
.I. J.J.,I,;,o J:" n.vu~ WJ.'t'l.l. n.Vl.'U-U • .;oJ.'t .. 

I THE CONTROL CAN BE THOUGHT OF AS COVERING DIFFERENT ASPECTS OF 
probe 

I CONTROL OF THE INTERACTION 

I modes 

I .~ 
1J.. 

I language 

I display 

I CONTROL OF PROGRAM USAGE 

I goto 

I where 

I use 

I call 

I CONTROL OF PROBE VARIABLES 

I declare 

I list variables 

Not To Be Reproduced 4-1 F2l 



SCENARIO I - MORE PROBE CONTROL 

z NEW REQUESTS 

I THE modes REQUEST 

I ALTERS THE WAY probe INTERACTS WITH THE PROGRAMMER 

I USAGE: 

modes 

mode 

modes <mode type> <mode value> 

mode <mode type> <mode value> 

I EXAMPLES: 

modes prompt on 

modes orompt string .. -
mode value_separator " is equal to " 

I NOTES: 

SUPPORTED MODES ARE: 

error_messages, em 

qualification, qf 

value_print, vp 

value_separator, vs 

prompt 

prompt_string 

Not To Be Reproduced 4-2 F21 



SCENARIO I - MORE PROBE CONTROL 

I THE language REQUEST 

I ALLOWS THE PROGRAMMER TO LET probe INTERACT IN DIFFERENT 
DIALECTS 

I USAGE: 

language 

lng 

language < language> 

Ing <language> 

r EXAMPLES: 

language 

1ng 

language fortran 

I NOTES: 

THE LANGUAGES CURRENTLY SUPPORTED ARE pll, fortran, AND cobol 

I THE goto REQUEST 

I GIVES BETTER ERROR PROCESSING CONTROL 

I USAGE: 

goto < 1 ine> 

g < 1 ine> 

I EXAMPLES: 

goto SO 

9 1-23 

Not To Be Reproduced 4-3 F21 



SCENARIO I - MORE PROBE CONTROL 

9 $c 

g $b+2 

I NOTES: 

I A TRICKY RQUEST TO USE 

I COMPILER OPTIMIZATION MAY NOT LET THE goto PERFORM AS IT 
SEEMS IT SHOULD 

I DEFINITELY MORE DEPENDABLE THAN COMMAND LEVEL start 

I THE SCENARIO - BACK TO OUR PROGRAM 

Not To Be Reproduced 4-4 F21 



SCENARIO 1 = MORE PROBE CONTROL 

r 13:57 0.332 51 

check back issues 
~ from (specify vol:nurn) :l~l 

to (speei-fy vol:num) :2:1 

Error: conversion condition by 
>user dir dir>'PSOEP>Pandolf>wkd>check back issues\540 (line 48) 
on so u r c e ;; II 1 : ", 0 n c h a r :::: ": II -

Invalid character follows a numeric fie1d& 
system handler for error returns to command level 
r 13:57 0.469 44 level 2 

pb 
Condition conversion raised at 
line 48 of check back issues (level 7). 
modes prompt true -
probe: language 
Current language is PL/I 
probe: sc 

first issue vol~~e = 
substr-(first issue, I, first_issue_delim); 

probe: modes prompt false ~ 
modes prompt on 
probe: modes prompt off 
v substr (first issue, 1, first_issue_delim) 
"1:" -
let fi rst issue volume:::: "1" 
v first issue volume 
first issue volume:::: 1 
q 
r 14:01 0.431 61 level 2 

Not To Be Reproduced 4-5 F21 



SCENARIO I - MORE PROBE CONTROL 

start 

Error: conversion condition by 

I 
I 
I 
I 

>user dir dir>FSOEP>Pandolf>wkd>check_back_issuesI540 
onsource ~ "1:", onchar = If:" 

(line 48}1 

Invalid character follows a n~~eric field. 
system handler for error returns to command level 
r 14:01 0~257 8 level 2 

pb 
Condition conversion raised at 
line 48 of check back issues (level 7). 
v first issue delim 
first issue delim = 2 
let fIrst issue delim = 1 
v substr (first-issue, 1, first_issue_delim) 
"I" -
q 
r 14:03 Oe244 1 level 2 

start 

Error: conversion condition by 
>user air dir>PSOEP>Pandclf>wkd>check back issuesl540 
onsource -= "1:", onchar = ":" 
Invalid character follows a numeric field. 
system handler for error returns to command level 
r 14:03 0.235 0 level 2 

pb 

(1 ine 

Condition conversion raised at line 48 of check back issues 
(level 7) •. 
v substr (first_issue, 1, first_issue_delim) 
n 111 
gato $c 

Error: conversion condition by 
>user dir dir>PSOEP>Pandolf>wkd>check_back_issuesI550 (line 
50) 
onsource = "2:", onchar = ":" 
Invalid character follows a n~~eric field. 
system handler for error returns to command level 
r 14:05 0.348 2 level 2 . 

Not To Be Reproduced 4-6 

i 
I 
I 

II !"'I , ! 
~O) I 

F21 



~ONTROL OF OUTPUT PROCESSING 

THE PREVIOUSLY DESCRIBED value REQUEST CAN BE USED TO DISPLAY A 
NAMED STORAGE LOCATION 

r THE display REQUEST 

I SHOWS ANY ACCESSIBLE LOCATION ON ONE OF FOUR FORMS 

I USAGE: 

display <address> <format> <count> 

ds <address> <format> <count> 

I EXAMPLES:. 

display var-one octal 2 

ds 260114430 pointer 1 

ds tmp_strng ascii 12 

I NOTES: 

FOUR MODES ARE AVAILABLE 

octal, 0 

ascii, a, character, ch, c 

instruction, i 

po i ~ t e r, p t r, its 
cocJe 

Not To Be Reproduced 4-7 F21 



CONTROL OF OUTPUT PROCESSING 

I THE SCENARIO 

r 14:56 0.325 16 

check back issues 
from (specify vol:num): 1~1 

to (specify vol:num) :1:4 

Error: illegal procedure condition by " 
>user dir dir>FSOEP>Pandolf>wkd>check back issues$print recordl675 
( line - 9 6 ) - - - -
(while in pll operator real to real tr) 
referencing stack_416363 (in process dir) 

r 14:56 1.145 34 level 2 

pb 
Condition illegal procedure raised at 
line 96 of print_record (level 8). 
sc 

total stock value = 
total stock value + 
(issue record.current inventory* 

"issue ~ecord.cost of Issue); 
v cost of issue - - -
cost of lssue = 5 

v current inventory 
current inventory = 23 

v total stock value 
total stock value = (invalid decimal data) 
v octal (total stock value) J 
040040040040040'040040040040 "7 u'" \",l,,~"( \ .. e 
V unspec (total stock value) 
"00010000000010~00000~100000000100000000100000000100000000 
100000000l00000000100000"b 
display total_stocK_value a 8 

d i spl ay to tal stock val ue 0 2
J

'2 "'- c:>!'J S 
040040040040-040040040040 

q 
r 14:59 0.928 72 level 2 

Not To Be Reproduced 4-8 F21 



,.SCENA,RIO.:ill :'.,.PROGRAM, MA,N.I.PUAL.T,ION 

II MORE TOOLS 

I THE where REQUEST 

I THIS REQUEST TELLS THE PROGRAMMER THE VALUES OF probe's TWO 
DEBUGGING POINTERS 

I USAGE: 

where 

wh 

where <po in ter) 

wh <po in ter) 

I EXAMPLES: 

where 

wh sc 

where control 

I NOTES: 

THE TWO POINTER SPECIFICATIONS ARE: 

source, sc 

control, ctl 

THE position AND use REQUESTS CHANGE THE VALUE OF THE SOURCE 
POINTER 

I THE use REQUEST 

Not To Be Reproduced 4-9 F21 



SCENARIO III - PROGRAM MANIPUALTION 

I MOVES THE SOURCE POINTER 70 A NEW LOCATION 

I UNLIKE THE position REQUEST, TRIS DOES NOT DISPLAY THE FINAL 
LOCATION 

I USAGE: 

use 

use <absolute line number> 

use <relative line number> 

use level <number> 

use <program name> 

use <character string> 

I EXAMPLES: 

use 

use level 5 

use 138 

use foo 

use +3 

use Jlvl = 5" 

I NOTES: THIS REQUEST CANNOT BE USED WITHOUT THE TABLE OPTION 

I THE call REQUEST 

I INVOKES ANOTHER PROGRAM JUST AS IF IT HAD SEEN A SUBROUTINE 
CALL 

I USAGE: 

call <program name> «parameters» 

Not To Be Reproduced 4-10 F21 



.. SC~.~ARI.O .... I I I .. ~.:. .. ~RaGp.AM. MANIE?UALTION ,,;. 

I EXA..MPLE: 

call my_prog (argl, arg2) 

call com err (code, "from probe") 

I NOTES: 

probe PERFORMS VALUE CONVERSION AS PART OF THE CALL 

Not To Be Reproduced 4-11 F21 



SCENARIO III, - PROGRAM MANIPUALTION 

I THE NEXT EXAMPLE 

pb check back issues 
Using check back issues (no active frame) e 

ps get record -
get record: proc (); 
a: (sk;halt) 
Break set after line 153 
q 
r 15:25 0.745 236 

check back issues 
from (speclfy vol:num): 1:1 

to (specify 
9 
8 
7 
6 
5 
4 
3 
2 , .. 

vol : n urn) : 1 : 4 
get record (line 153) 
print record (line 88) 
check-back issues (line 65) 
simple command processorl12265 
command processor 111070 
abbrev T5336 -
listen-II0031 

~ 

process overseer 140055 
user inTt admin T42452 (aIm) 

Stopped 
where 

after line 153-of get_record. (level 9) 

i line 153 in get record (level 9j 
I Control at line-lS3 of get_record. 
I use level 8 
I sc 
! call get record (); 
I use level 7 -
I where 
I line'65 in check back issues (level 7) 
I Control at line 153 of get_record. 
I sc 
I call print_record ()i 
I value issue 
I issue = 1 
I c 

Not To 8e Reproduced 4-12 F21 



SceNARIO. l-:t! _ :': P.BOORAM~ MANl:PUALTIO~_ 

vol ume 

\cof this 
$5.00. 
8 
i 
6 
5 
4 
3 
2 
1 

1 number 1 
stocked: 23 outstanding requests: 

issue: 
9 get record (line 153) 

print recora (line 88) 
check-back issues (line 65) 
simple command processorl12265 
command processor 111070 
abbrev T5336 -
listen-II0031 
process overseer 140055 
user inTt admin T42452 (aIm) 

Stopped 
v issue 

after line 153-of get_record. (level 9) 

issue = 2 
v number of issues 
number 01 issues = 3 
quit 
r 17:12 1.216 128 

Not To Be Reproduced 4-13 

I 
I 

o costl 
I 
I 
I 
I 
I 
I 

F21 



SCENARIO IV - PROBE VARIABLES 
-' ----- ---------

» MANAGING YOUR OWN VARIABLE5 

I probe ALLOWS THE PROGRAMMER TO SET UP VARIBLES KNOWN TO PROBE 
ONLY, BUT AVAILABLE FOR USE DURING ALL OF probe's PROCESSING 
(BREAKPOINTS, ETC.) 

I ALMOST LIKE HAVING A PLII INTERPRETER 

I THE declare REQUEST 

I USAGE: 

declare <name) <type) 

del <name) <type) 

I EXAMPLES: 

del TOTPCT real 

del sum-calc comp-6 -force 

I NOTES: 

THREE DATA TYPES ARE SUPPORTED: 
r \ ~t) \,... ,,-;; 

fixed, integer, int, comp-6 

float, real 

pointer, ptr 

USE THE -force CONTROL ARGUMENT TO REDEFINE A PROBE VARIABLE 
----------------__ w ____ ~ __ 

IF A probe VARIABLE IS THE SAME NAME AS A PROGRAM VARIABLE, 
PREFIX THE probe VARIABLE WITH A PERCENT SIGN 

~ -._------------

Not To Be Reproduced 4-14 F2l 



SCENARIO .lY . .::. PROBE. VARIABL.ES 

I THE list variables REQUEST 

I LISTS THE NAMES, DATA TYPES AND VALUES OF probe VARIABLES 

I USAGE: 

list variables 

, ---~;:,v 

I EXAMPLES: 

list variables 

Isv 

I ONE MORE REQUEST 

I THE if REQUEST 

I CONDITIONALLY EXECUTES A SET OF probe REQUESTS 

I USAGE: 

if <conditional> «request list» 

I EXAMPLES: 

if a=b : (value a; halt) 

if varl = 4.56 : let var2 = 0 

I NOTES: 

CURRENT IMPLEMENTATION ALLOWS FOR ONLY SIMPLE EXPRESSION 
EVALUATION; USE THE help REQUEST TO CHECK ON NEW DEVELOPMENTS 

THE USE OF RELATIONAL OPERATORS IN THE EXPRESSION DEPENDS 
UPON THE LANGUAGE SPECIFIED TO probe 

Not To Be Reproduced 4-15 F21 



·SCENARIO IV.- PROBE VARIABLES 

(E.G. PL/I USES =, FORTRAN USES .eq.) 

~ot To Be Reproduced 4-16 F21 



.. " S<;.ENAR,lO· .. g·"::;I.PRQ8E . .vA~IABLES. "'. 

I ~~N EX.~MPLE 

r 17:16 0.122 4 / 
pb check back issues/uf'ng check back issues (no active 
frame) • Tps get record get recf,rd: proc (); declare 
t~mes~get_recora_calle fixed/~ist_variables 
tlmes get record called fixed 0 a:(let 
~imes:~et:record:cal~~d_=_~im~s_g:t_record_called + ti~all 
loa ("get record called --1 times", /1 
times_get_record_called);) Break set after line 153 q(r 
17:20 0.390 85 

check back issues 
tram (specify vol:num) :1:1 
to (specify vol:num) :1:4 get_record called 1 times 

volume 1 number 2 
stocked: 30 outstanding requests: 2 cost of 

thi s issue: 
$3.00.get_record called 2 times 

volume 1 number 3 
stocked: 27 outstanding requests: 0 cost of 

this issue: 
$3.00.get_record called 3 times 

volume 1 number 4 
stocked: 20 outstanding requests: 1 cost of 

thi s issue: . 
S3.00.get_record called 4 times 

volume 1 number 5 
stocked: 40 outstanding requests: 0 cost of 

this issue: 
S3.00. 

number of issues stocked: 117 
number of requests pending: 3 
total stock value: $351.00. 
r 17: 21 0.660 61 

Not To Be Reproduced 4-17 F2l 



SCENARIO·IV - PROBE VARIABLES 

I THE let REQUEST 

I ASSIGNS THE VALUE OF ~N EXPRESSION TO A GIVEN VARIBLE 

I USAGE: 

let variable = expression 

let cross section = expression 

I EXAMPLES: 

let a = 5 let array (2,i) = a - 5 let substr (alpha,2,3) = 
"abc" 

Not To Be Reproduced F21 



SCENARIO ,!y.,::' PRO,BE VARI_ABLES·~. 

r 18:08 0.156 4 

pb check back issues Using check back issues (no active 
frame) e -ps git record get recor~: pr;c (); ps "return" 

return; -

b: if current volume=last issue volume: if 

I 
I 

current number~last issue num :call ioa_ ("just positioned 
_~ , ~~_~A~~~~~~ ~~~~~~n, ~ 
~v ~a~~ ~~~~~~~ ~~~v~~ J 

I 
I 
I 
I 
I 
I 
I 

Break set before line 175 
list variables 
times get record called fixed 4 
let tlmes-get record called = 0 
q - - -
r 18:11 0.386 50 

I check back issues 
I from (specify vol:num): 1:3 
I 

i\ .~,' ~ .. ~~ .. ~;~. ~~:~S:~. r~·. ~.~t:.Y\~~.l ; ::,~. :;:.~ .... 
f ; tJbl'ume . r'0' nuinb'e r .. ' .4' 0 . 
I stocked: 20 outstanding requests: 
I this issue: 
I $3.00. volume 1 number 5 
I stocked: 40 outstanding requests: 
I th is iss ue : 
I S3.00.just positioned to last desired record 
I 
I volume 1 number 

stocked: 
th i sis s ue : -

$3.00. volume 
stocked: 

this issue: 

6 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

35 outstanding requests: 

2 number 1 
30 outstanding requests: 

$3.00. 

number of issues stocked: 
number of requests pending: 

125 

total stock value: $375.00. 
r 18:11 0.795 24 

7 

Not To Be Reproduced 4-19 

1 cost of 

o cost of 

4 cost of 

2 cost of 

F21 



SCENARIO IV - PROBE VARIABLES 

I 
pb check back issues I 
Using check back issues (no active frame) 0 I 
ps get record - I 
get record: proc ()i I 
a: -(let times get record called = times_get_record_called + 1; I 
v times oet record-called) I 
Break set after 1 {ne 153 . I 
q I 
r 18:13 0.245 2 I 

check back issues 
from TspecTfy vol:num): 

to (specify vol:num) :1:6 
1 
2 
3 
4 

volume 4 

1:3 

1 number' 
stocked: 20 '~utst~riding requests: 

issue: 
$3.00.5 

volume 1 number 5 

1 cost of .this 

stocked: 40 outstanding requests: 0 cost of this 
issue: 

$3.00.6 just positioned to last desired record 

volume 1 number 6 
stocked: 35 outstanding requests: 4 cost of this 

issue: 
$3 .. 00.7 

volume 2 number 1 
stocked: 30 outstanding requests: 2 cost of this 

issue: 
$3 .. 00. 

number of issues stocked: 125 
number of requests pending: 7 
total 'stock value: $375.00. 
r 18:14 1.105 6 

Not To Be Reproduced 4-20 

I 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 

- I 
I 

F21 



pb check back issues 
Using check back issues (no active frame) 0 

st 
Break exists after line 153 in check back issues 
Break exists before line 175 in cheCK bacK issues 
ps 153 
get record: proc (); 
st at 153 
Break exists after line 153 :let times get record called; 
times_get_record_called + 1; v times_get_record_called 

a: (let times get reco rd called = t mes get reco rd call ed + 
l;call ioa ("~et ~ecord ~alled Ad t mesT , - - . 
times get record called» 
Break-set-after Tine 153 
ps 1 
check back issues: 

proci 
a 

.I ,:~r; .~~~,:"s.e;;: ,~.ft.~.t;'.,:.l ~n~ ': :J... ~;- :,.,,,.'.-":" .... ~.~ ... 
, .' a: le.t. _times get: r.eco rd~_called = 0, 
,j"Sr'ea:k' set afte',-iine' i-:'" ,." .' .... 
I q 

r 18:17 0.450 2 

Not To Be Reproduced 4-21 
(End Of Topic) 

F21 



TOPIC V 

MULTICS USER RING RUNTIME STRUCTURES. • 5-1 
Introduction. • • • • • II 0 .. 5-1 
Supervisor Segments •••••• 0 0 • • 5-3 

" • 5-6 The Stack Segment - stack n 
The area.linker Segment .-•. • e • II _ 5-11 

Getting Space for Program Variables • 5-23 

5-i 



Topic V MUL TICS USER-'RING RUNTIME STRUCTURE'S Topic V' 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Describe some of the ways 
inadvertently destroyed. 

in which processes can be 

~ T'\ ____ .: L... _ + L... _ ~ •• __ + .: _ _ _ _ ~ + 10.. _ ~ _, 1 ....... .: _ _ _ ... _ _ _ _ _ .-1': ___ + ....... u 

~. u.:'!:)\.r.LU.:' "".:' TUII\.".LUII!:) UT "".:' l"U.LJ.UW.LII~ rru\...:'!:)!:)_U.Lr.:'\.."uroT 

segments: 

dse9 

kst 

pds 

stack_1 - stack_7 (as appropriate) 

: :~t: un f; ~·~·.~~,e ~ ~.·l·i ~~~~ r,~ 

3. Describe the format of the following structures: 

linkage offset table (LOT) 

internal static offset table (ISOT) 

4. Name the sections of a standard Multics object segment and 
give the functions of each. 

Multics V-1 F21 



INTRODUCTION 

m INTRODUCTION 

I THERE IS NO CENTRALIZED LOCATION FOR ALL PROGRAM SUPPORT TABLES 
AND DATA IN MULTICS 

I NATIVE MULTICS USES 
INFORMATION 

SEVERAL SEGMENTS TO MANAGE RUNTIME 

I MOST ARE FOUND IN THE PROCESS DIRECTORY 

I THE PROCESS DIRECTORY IS CREATED FOR A USER AT LOGIN TIME 

I IT IS PART OF THE HIERARCHY, JUST AS THE HOME DIRECTORY IS 

I IT IS. GIVEN A SHRIEK NAME. AS ITS IDE~TITY 

I THESE TABLES ARE MODIFIABLE 8Y PROGRAMS IN A PROCESS 

I THEIR MISUSE IS THE MAIN CAUSE OF PROCESS FAILURE 

ot To Be Reproduced 5-1 F21 



· .INrRODl]CT!.O~ 

r 04:38 0 .. 163 1 

pd 
>process dir dir>!BXNCwXCBBBB8BB 
r 04:38 0'.044 0 

cwd [pd] 
i r 04:38 0.047 0 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
.1... 
I 
I' 
I 
I 
I 

list 

Segments = 7, Lengths = O~ 
rew 
rew 
rew 
re 

o IBBBJLFKcGzxlDq.temp.0326 
o !BBBJLFKcGxPLpJ.area.linker 
o stack 4 
o pit .-
o pds 
0... kS.1;.. : 
O. ~seg. 

r 04:38 0.196 0 

Not To Be Reproduced 5-2 

I. 
I 
I 
I 
I 
I 

F21 



SUPERVISOR SEGMENTS 

» dseg 

I DESCRIPTOR SEGMENT 

I RESIDES IN RING 0 

I USED BY THE HARDWARE TO CALCULATE MEMORY ADDRESSES 

I IS NOT ACCESSIBLE TO THE USER 

~ kst 

I KNOWN SEGMENT TABLE 

I RESIDES IN RING 0 

» IS NOT ACCESSIBLE TO THE USER 

I IS USED INDIRECTLY BY VIRTUAL MEMORY OPERATIONS 

I IS AN ARRAY OF BLOCKS, EACH BLOCK CONTAINING INFORMATION 
ABOUT EACH SEGMENT THE PROCESS IS CAPABLE OF REFERENCING 

Not To Be Reproduced 5-3 F21 



SUPgRVISOR SEGMENTS 

I FOR A SEGMENT TO BE USED IN A PROCESS (E.G. PRINTED, 'EDITED, 
EXECUTED) IT MUST HAVE AN ENTRY IN THE kst 

I IF A SEGMENT HAS AN ENTRY IN THE kst IT IS CONSIDERED "KNOWN" 

m pds 

I PROCESS DATA SEGMENT 

I RESIDES IN RING 0 

. I CONTAINS "MANY .THINGS THE, SUPERVISOR. WANT'S TO ,KNOW ~OiJT" .:iO~R ... ,~ .. ':·PRcicE~S'$; , ...... ,... . - .... -' ,.. ~ _. _. -' '. . 

I YOUR PROCESS ID 

I YOUR USER ID 

I PROCESSOR INFORMATION FOR FAULT AND CONDITION PROCESSING 

I RING INFORMATION 

I MORE 

I NOT ACCESSIBLE TO THE USER 

Not To Be Reproduced 5-4 F21 



SUPERVISOR SEGMENTS 

KSTE FOR SEG 344 
SEGz..1ENT 
342 SEG 343 

I ."("'0".. ..... Foa : L\.w_,::" SEG 342 
! SEGi-lENT 

I 
I 341 I SEG 341 , 
1 
I KSTE FOR SEG 340 ! 
I-~G"-'TT I ~~ -.. :lL~·~ . 

340 
SEG 337 i 

~ 
~ 

0'" I 
I SEG 336 I 
f I t 

kst dseg 

{ 
I .J:<'~ UT T DATA I - . .w I 

I Fl'.ULT DATA 
I , 

FilcULT DATA 
f 

-r -j 

I \ ! i 

I 

f I I T -r DAT_n. CELLS 
J I 
0 I r I 

: ' I , ! i 

pds 

Not To Be Reproduced 5-5 F21 



THE 5T,ACK' ,SEG~'iENT. - STACK N 

II USER STACK 

I FUNCTION 

I IS THE BACKBONE OF THE MULTICS PROGRAMMING ENVIRONMENT 

I USED TO DEFINE THE REST OF THE PROGRAMMING ENVIRONMENT 

I THE STACK IS DIVIDED INTO TWO FUNCTIONAL PARTS 

I AT THE BEGINNING OF THE STACK IS THE STACK HEADER 

I AT SOME POINT INTO THE STACK SEGMENT (DEPENDING ON THE STACK 
ITSELF) ACTIVATION FRAMES WILL BE FOUND 

I EACH FRAME CONTAINS I~FORMATION ABOUT VARIABLES OF A 
CURRENTLY ACTIVE (CALLED, BUT NOT YET RETURNED) PROGRAM 

I THE SIZE OF THE STACK IS NOT PREDICTABLE, BECAUSE AS PROGRAMS 
ARE CALLED AND RETURN THE STACK WILL GROW AND SHRINK 

Not To Be Reproduced 5-6 F21 



TO NEXT 
FRAME 

NULL 
POINTER 

Not To Be Reproduced 

THE STACK SEGMENT - STACK N 
.~ .. ' 

~---:l 
STACK ~. 
FRA!1E I 

~TACK 
FRAME 

STACK 
HEADER 

TO FIRST FRAl1E 

5-7 

FaINTER 
TO LINKS 

POINTER 
TO PROGRP ..... ~! 

LINKS 

POINTER 
TO PROGR..;;!1 

F21 



· THE" STACK SEGMENT - STACK N'" 
~ .~ 

~ THE LINKAGE OFFSET TABLE 

I IS USED BY THE DYNAMIC LINKER AND BY PROGRAMS TO FIND THEIR 
LINKAGE INFORMATION 

I IS QUITE SIMPLY AN ARRAY OF ONE WORD ADDRESSES SHOWING WHERE 
VARIOUS LINKAGE SECTIONS ARE 

I TO FIND OUT WHERE THE LINKAGE INFORMATION FOR A PROGRAM (CALL 
IT foo), FIRST OBTAIN ITS SEGMENT NUMBER 

I COUNT UP THAT MANY WORDS FROM THE BEGINNING OF THE LOT AND 
THE WORD AT WHICH YOU ARRIVE CONTAINS THE ADDRESS OF foo'S 
LINKAGE INFORMATION 

't ""'THE' ,",' to~: HAS"'> 'AN "tiiITIAL' SIiE: 'OF 512 WORDS AND is ACTUALLY 
OVERLAID UPON THE BEGINNING OF THE STACK 

~ THE I~TERNAL STATIC OFFSET TABLE - THE ISOT 

I THE ISOT CONTAINS ONE WORD ADDRESSES OF THE STATIC SECTIONS OF 
ALL THE ACTIVE PROGRAMS 

I IT TOO IS AN ARRAY OF THESE ADDRESSES 

I TO FIND THE LOCATION OF SOME PROGRAM'S STATIC SECTION, ONE 
COUNTS UP ITS SEGMENT NUMBER WORTH OF WORDS AS IN THE LOT 

Not To Be Reproduced 5-8 F21 



THE STACK SEGMENT - STACK N 

I THE SIZE OF THE ISOT IS ALSO 512 WORDS LONG AND IT IS FOUND 
RIGHT AFTER THE LOT ON THE STACK 

I BECAUSE OF THE LOT AND ISOT, THE FIRST STACK FRAME USUALLY 
BEGINS RIGHT AFTER THE ISOT 

Not To 8e Reproduced 5-9 F21 



THE STACK"SEGMENT -'"'STA'CK N 

I J '~.' .... • 'w •• t ..... ,;· 

FIRST 
S'lACK 
FRAl-'lE 

ISOT 

(--.J ___ --...,....-

Not To Be Reproduced 

_EO INTER 
POINTER 

POINTER 
j;iOIN'l'~R 

POINTER 
POINTER 

POINTER 
P..DTNTER 

POINTER 

POINTER 
POINTER 
POINTER 
POI:~TER 

POJ;NTER 

POINTER 
POINTER 

Pr'I T\l'T'"R 'R 

POIL'TTER 

5-10 

i 

J 

j 

I 
; 

F21 



THE AREA.LINKER SEGMENT 

m THE SOMBINED LINKAGE AREA 

I AS WILL BE SEEN IN DYNAMIC LINKING, SOME INFORMATION FROM AN 
OBJECT SEGMENT NEEDS TO BE COPIED OUT INTO A WRITEABLE AREA 

I THE COMBINED LINKAGE AREA IS ONE OF THE r~o AREAS THAT HOLD THIS 
COPIED DATA 

I THE COMBINED LINKAGE AREA IS A PL/I TYPE AREA - A MANAGED POOL 
OF STORAGE FOR ALLOCATING AND FREEING DATA 

I HISTORICALLY THE COMBINED LINKAGE AREA WAS A PHYSICALLY SEPARATE 
AREA APART FROM OTHER RUNTIME AREAS. 

". -.:: '. 

I NOW IT IS JUST A ii SYNONYM" FOR THE are"a.1 inker 

T 
.L THEREFORE THE WHOLE 

COMBINED LINKAGE AREA 

a THE COMBINED STATIC AREA 

CAN 8E THOUGHT OF ~.S THE 

I MODIFIABLE STATIC DATA IS MAPPED OUT IN THE OBJECT SEGMENT WHEN 
IT IS CREATED, BUT NEEDS TO BE MODIFIED 

I TO PREVENT THE MODIFICATION OF THE OBJECT ITSELF, THE STATIC 
DATA TEMPLATE IS COPIED FROM THE OBJECT TO THE COMBINED STATIC 
SECTION (COMBINED BECAUSE IT IS COMBINED WITH THE STATIC 
SECTIONS OF OTHER PROGRAMS) 

Not To Be Reproduced 5-11 F21 



., 

.Z\DDR ADDR 

j 
ADDR f .\i)DR 

J 
: 

J ADDR ADDR 

0 0 

o 

Not To Be Reproduced 

, THEAREA'.LINKER' SEGMENT 
._, --'_.,------- ---~ 

FREE 
BLOCKS 

ADDR ADDR 

ADDR .~DOR 

I ADDR ADDR 

SIZE HWM 

VERSION 
TWO 
AREA 

.1 ADDR 

i 
~ AQ9R I tV"'DO i . 1) ~~ 

I A!JDR 

, 
i ADDR 

~ 
$ 

I FIRST LG.BK. 

5-12 

t , 

I 
i 

F21 



THE AREAeLINKER SEGMENT 

I THE COMBINED STATIC AREA IS AGAIN A PL/I TYPE AREA 

I THE COMBINED STATIC AREA IS ANOTHER SYNONYM FOR THE area.linker 
SEGMENT 

m THE REFERENCE NAME TABLE - THE RNT 

I THE REPOSITORY FOR A SET OF ATTRIBUTES CALLED REFERENCE NAMES 

I A REFERENCE NAME IS AN ATTRIBUTE OF A SEGMENT FOR PROGRAMMING 
PURPOSES 

,r A REFERENCE NAME E~ISTS ONLY, WITHIN A PROCESS - IT IS NOT 
PERMANENT" ' 

I IT IS A SYNONYM FOR' A SEGMENT THAT IS THE OBJECT OF A SEARCH 

r IT MAY OR MAY NOT SE RELATED TO THE ACTUAL NAME OF THE 
SEGMENT 

I IT IS CREATED IMPLICITLY OR EXPLICITLY 

'I WHEN A PROGRAM IS CALLED IT IS' GIVEN A REFERENCE NAME 

I WHEN THE RING 0 initiate PROGRAM IS CALLED (THROUGH A 
GATE, OF COURSE) 

I THE RNT ALSO MAINTAINS THE ASSOCIATION BETWEEN A REFERENCE NAME 
~~D THE SEGMENT NUMBER OF A SEGMENT 

Not To Be Reproduced 5-13 F21 



• TH.E '. AREA ~.L IN.KEB. i ,SE.G·MENT,,~, 

I THE RNT IS IN THE FORM OF A RATHER INVOLVED SERIES OF LINKED 
LISTS 

I THE RNT IS DEFINED BY A HEADER WHICH CONTAINS TWO HASH 
TABLES, ONE FOR SEGMENT NUMBERS AND ONE FOR REFERENCE NAMES 

I EACH ENTRY IN THE RNT IS IN TIvO LINKED LISTS - A REFERENCE 
NAME LIST AND A SEGMENT NUMBER LIST 

I THE RNT RESIDES IN THE MIDDLE PORTION OF THE area.linker SEGMENT 

I IT MANAGES ITS OWN AREA IN THIS SEGMENT 

~m " THE USER' FREE"'AREA .. 

I USED FOR ALLOCATING CONTROLLED A~:J SOME BASED VARIABLES, FOR 
FORTRAN ,COMMON AND FOR COBOL DATA 

I OBVIOUSLY, BY NOW, IT IS A PL/I AREA 

I THE USER FREE AREA ALSO IS A "SYNONYM" FOR THE area.linker 
SEGMENT 

I TO RUN A PROGRAM THE USER MUST 

I CREATE AN OBJECT SEGMENT ACCEPTABLE TO THE MULTICS LINKERS 

I CALL THE PROGRAM 

Not To Be Reproduced 5-14 F2l 



COMBINED S'l'A!IC AREA 

THE AREA.LINKER SEGMENT 
'----~----~----- -------~ 

S!ACK 
SYSTEM FREE AREA 

(get_sys t:em_f1:'ee_ares.) 

REGIS'IEl!S J 
~_~I_N_c.. _~I_S_~~~Y_l I BASED DAtA- l IN A..~ AREA 

... t:::J ASSIGNED LINKAGE AREA .. (hcs_$assign_linkage) , 
INnR.'lAL 
S'l'AT!C 
SECTION ~ 

c 
·0 

M 
B 
! ......... 

IS01' ~, 
I 

p._1) . 

I 

,p 

~, LOT 'I 1 
I 

1 I 
~ 

.... STACK 
HEADER -

..... -
~ 

.' 

I ::X'l'. STA'l'IC & 

I COMMON BLOCKS-
?ER PROCESS 

~fDII ~+411 I I L!NKAGE .----J CON'I'ROLLED 

1: ;1 1~_S_E_C:_I_ON_ ...... 1 ' r------, I' '-_!_N_TE_RN_AL_----'I 
~ ~~ ON"'.\. t" N COBOL 
ro.. -"'- RUN UNI'!' 2 ... INFO ... ~ COBOL PROGRA..."! I 
E ~ ! r:-:co~b::::o:i"l-_ c;::o~n;-;:c-;=~o 11_-;:d!;a-;c:';a _:l:;:C:-_-;t'1-4-4--aa.L:-~=~~:.J1 I I OAT A I 

A ~ex_t ____ Ip....-;E-""--'il !-t--;------, ~ I 
~ I ~ I' ?rog IP3~!-~-- i /1 B~~OA~lA- I 

I I I ~ 
DIRECTORY 

1 ?ATHNAMES ... 

I BASED DAtA-
IN AN AREA 

.... .. 

I ., 
d 

tEX'l'ERNAL 
.... I DATA I CO N1'RO L 

.' !NFO , 
I 

CONTROLLED 
I EX'l'ERN_A_L_ .... 

I BASED DATA-
I IN r /0 3UFFER 

I ... ext ., 
prog • I 1 

I 
... ! 

OBJECT 
PROGRAM 

PI EX'!'ERNAL STATIC I 
AND COMMON aLOCKS-I PERMANENT ! 

prog.pll ... 
1 

.,.. 
SOURCE ext: 

PROGRk"f 

prog 

Not To 8e Reproduced 5-15 

l 

I 

u 
S 
E 
R: 

F 
R 
E 
E 

A 
I R 

E 
A 

F21 



:t 

THE AREA .LINKER SEG.MENT ,'- --....------ .... ----

! FROM ANOTHER PROGRAM 

call prog$entry (); 

I OR, BY INVOKING IT AT COMMAND LEVEL 

prog$entry 

I THE COMMAND LEVEL INVOCATION DOES NOT CALL IN THE DYNAMIC 
LINKER, WHILE THE CALL STAEMENT MAY 

I THE OBJECT SEGMENT FUNCTIONS TO 

I PROVIDE INSTRUCTIONS AND DATA IN THE MACHINE'S LANGUAGE 

I INSTRUCTIONS ARE CURRENTLY IN L68 MACHINE CODE 

I THE DATA IS PROVIDED FOR THE MULTICS LINKER, PRELINKER, 
BINDER, AND DEBUGGERS 

COMPOSED.OF 7' S'ECTrONS 

I TEXT SECTION 

I DEFINITION SECTION 

I LINKAGE SECTION TEMPLATE 

I STATIC SECTION TEMPLATE (OPTIONAL) 

I SYMBOL SECTION 

I OBJECT MAP 

I OBJECT MAP POINTER 

Not To 8e Reproduced 5-16 F21 



013JIl(7 ~(JG~~r 
. " .. TRE--AREA u LINKER S c.GMENT 

I TEXT SECTION 

I PURE PART OF AN OBJECT PROGRAM 

I CONTAINS: 

I INSTRUCTIONS (NO SELF-MODIFYING INSTRUCTIONS) 

I ENTRY SEQUENCES 

I READ-ONLY DATA 
fe(/A£,ve {>ei~tO\;' 

I ' DEFINITION SECTION 

I NONEXECUTABLE, READ-ONLY SYMBOLIC INFORMATION 

I USED FOR DYNAMIC LINKING 

I USED FOR SYMBOLIC DEBUGGING 

I CONTAINS 

I DEFINITIONS 

I OFFSETS OF NAMED ENTITIES IN TEXT AND OTHER SECTIONS 

I DEFINITION HASH TABLE (OPTIONAL) TO EXPEDITE THE LINKER'S 
SEARCHES 

I SYMBOLIC NAMES OF EXTERNAL REFERENCES 

Not To Be Reproduced 5-17 F21 



I LINKAGE SECTION TEMPLATE 

I INITIAL CONTENTS OF THE IMPURE, NONEXECUTABLE PART OF A 
PROGRAM 

I USED FOR DYNAMIC LINKING 

I CONTAINS 

I UNSNAPPED LINKS TO EXTERNAL REFERENCES 

I DATA ALLOCATED ONCE PER-PROCESS (INTERNAL STATIC DATA) 

I COPIED INTO COMBINED LINKAGE AREA IN THE PROCESS DIR WHEN 
OBJECT SEGMENT IS FIRST REFERENCED 

Not To Be Reproduced 5-18 F21 



THE AREA.LINKER SEGMENT 

I STATIC SECTION TEMPLATE 

I THE INITIAL CONTENTS OF IMPURE, NONEXECUTABLE DATA FOR OBJECT 
PROGRAM 

I DATA IS 

I ALLOCATED ONLY ONCE PER PROCESS 

I INITIALIZED ONLY ONCE PER PROCESS 

I USUALLY INCLUDED AS PART OF LINKAGE SECTION UNLESS THE 
-separate static CONTROL ARGUMENT IS USED WHEN COMPILING THE 
PROGRAM -

I COPIED INTO COMBINED STATIC AREA IN PROCESS OIR WHEN OBJECT 
SEGMENT IS FIRST REFERENCED 

Not To Be Reproduced 5-19 F21 



THE AREA~LINKER SEGMENT 

I SYMBOL SECTION 

I IS PURE 

I CONTAINS INFORMATION NOT BELONGING IN OTHER SECTIONS 

I USED FOR SYMBOLIC DEBUGGING 

I USED FOR OBJECT PROGRAM STATUS COMMANDS (SUCH AS pli) 

I INFORMATION DOCUMENTING CREATION OF OBJECT PROGRAM 

I RELOCATION INFORMATION 

I SOURCE S~MBOL NAMES AND STORAGE LOCATIONS (PRESENT ONLY IF 
-table OPTION SPECIFIED) 

I NOTE: IN TSE CASE OF BOUND OBJECT, THIS SECTION MIGHT 8E 
FURTHER STRUCTURED INTO A THREADED LIST OF VARIABLE LENGTH 

- SYMBOL BLOCKS' . . ~ . 

Not To Be Reproduced 5-20 F21 



THE AREA.LINKER SEGMENT 

I OBJECT MAP 

I DEFINES THE LOCATION (OFFSET) AND LENGTH OF OTHER SECTIONS 

I DEFINES OBJECT SEGMENT FORMAT 

I SINGLE (UNBOUND) OBJECT PROGRAM, OR 

I SEVERAL OBJECT PROGRAMS, BOUND TOGETHER 

I OBJECT MAP POINTER 

I AN IS-BIT OFFSET IN THE UPPER HALF WORD OF THE LAST WORD IN 
THE OBJECT SEGMENT 

I GIVES LOCAT!ON OF OBJECT MAP, RELATIVE TO BASE OF OBJECT 
SEGMENT . 

I FOUND USING THE BIT COUNT 

Not To Be Reproduced 5-21 F21 



Not To Be Reproduced 

THE- AREA.LINKER" SEGMENT 

TEXT 
SECTION 

DEFINITIONS 

L:r:~KJ(GE 

SECTION 

STATIC 
SECTION 

SYMBOL 
SECTION 

OBJECT ~.AP 

5-22 F21 



THE AREA .. LINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

z CONSTANTS 

I CONSTANT DATA VALUES, KNOWN ONLY TO ONE PROGRAM 

I DECLARATION 

I PL/l: del con fixed bin internal static options(constant) 
initial(3); 

I COBOL: CONSTANT SECTION. 
77 CONi PIC IS 99; VALUE IS 3 • 

. I FORTRAN: par~me~er.con=3 

I LOCATION 

T 
J. IN THE SECTION OF 

I ALLOCATED AND INITIALIZED 

THE PROGRAM 

I ONCE BY THE COMPILER, WHEN THE SOURCE PROGRAM IS COMPILED 

I FREED 

I NEVER 

Not To Be Reproduced 5-23 F21 



THE AREA".LINKER· SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

~ INTERNAL STATIC 

I PER PROCESS DATA, KNOWN ONLY TO ONE PROGRAM 

I DECLARATION 

I PL/l: declare is internal static; 

I FORTRAN: save is 

I LOCATION 

I IN" INTERNAL" STATIC SECTION OF PROGRAM,' \-iHICH. IS THEN COPIED 
: TO' [un'i que] " • are a • lin K e r 

I NOTE: SUCH VARIABLES CAUSE THE SIZE OF THE OBJECT TO GROW 

I ALLOCATED AND INITIALIZED 

I FIRST TIME OBJECT SEGMENT IS CALLED IN THE PROCESS BY COPYING 
OBJECT'S LINKAGE SECTION (OR SEPARATE STATIC SECTION) 

I FREED 

I WHEN PROCESS TERMINATES, OR WHEN OBJECT SEGMENT IS EXPLICITLY 
TERMINATED (terminate COMMAND) 

Not To Be Reproduced 5-24 F2l 



THE AREA~LINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

Ii AUTOMATIC 

I PER PROGRAM-ACTIVATION DATA, KNOWN ONLY TO ONE PROGRAM 

I DECLARATION 

I PL/l: declare a automatic; 

I FORTRAN: automatic a 

I LOCATION 

I "ALLOCATED" -IN STACK FRAM.E WHEN FRAME IS PUSHED 

I ALLOCATED AND INITIALIZED 

I EACH TIME PROGRAM IS CALLED 

I FREED 

I WHEN PROGRAM RETURNS 

Not To Be Reproduced 5-25 F2l 



·THE AREA';LINKER'SEGMENT" -",. ~ ... ' "'. ~ .. ~. ". . 

GETTING SPACE FOR PROGRAM VARIABLES 

~ EXTERNAL STATIC - PER PROCESS 

I PER PROCESS DATA, SHARED BETWEEN PROGRAMS, STORED IN TEMPORARY 
SEGMENTS IN THE PROCESS DIRECTORY 

I DECLARATION 

I PL/l: declare e external static; 

I FORTRAN: common b,c 
common /e/b,c 

I LOCATION 

I ALLOCATED IN USER FREE AREA 

I ALLOCATED AND INITIALIZED 

I WHEN FIRST REFERENCED 

I FREED 

I WHEN PROCESS TERMINATES, 
reset external variables AND 
COMMANDS) 

Not To Be Reproduced 5-26 

OR EXPLICITLY (SEE 
delete external variables 

F21 



THE AREA.LINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

m EXTERNAL STATIC - PERMANENT 

I PERMANENT DATA, SHARED 8ET~EEN PROGRAMS, STORED IN USER-SUPPLIED 
SEGMENTS 

I DECLARATION 

I PL/l: declare ext$ external static, 
ext$e external static; 

I FORTRAN: common /ext$/b,c 
common /ext$e/b,c 

I LOCATION 

I IN PERMANENT SEGMENT ext, FOUND BY LINKER (USING OBJECT 
SEARCH RULES) 

I SEGMENT MUST EXIST PRIOR TO EXECUTION 

I ALLOCATED AND INITIALIZED 

I WHEN SEGMENT ext IS CREATED 

I FREED 

I EXPLICITLY BY DELETING THE CONTAINING SEGMENT 

Not To Be Reproduced 5-27 F2l 



THE AREA.LINKER SEGMENT' .. - ............ --_ .... 
GeTTING SPACE "FOR PROGRAM VARIABLE: 

II CONTROLLED STORAGE - INTERNAL 

I EXPLICITLY-AL:'OCATED DATA, KNOWN TO ONE PROGRAM 

I PL/l: dcl c controlled inti /* int is default */ 
allocate C i 
allocate Ci 

I LOCATION 

I ALLOCATED ANt INITIALIZED 

I EXPLICITLY BY PL/l allocate STATEMENT 

I FREED 

I EXPLICITLY BY PL/l free STATEMENT· 

Not To 8e Reproduced 5-28 F21 



THE AREA. LINKER SEGMENT 
'!'.~. 

GETTING SPACE FOR PROGRAM VARIABLES 

= CONTROLLED STORAGE - EXTERNAL 

I EXPLICITLY-ALLOCATED DATA, SHARED BETdEEN PROGRAMS 

I DECLARATION 

I PL/l: declare ce controlled external; 
allocate cej 

I LOCATION 

I ALLOCATED IN USER FREE AREA IN [unique] .area.linker 

I ALLOCATED AND INITIALIZED 

I EXPLICITLY 8Y PL/l allocate STATEMENT 

I FREED 

I EXPLICITLY BY PL/l free STATEMENT 

Not To Be Reproduced 5-29 F21 



.' THE AREA .• LINKER SEGM·ENT --- ~'------~ -------
'GETT!NG SPACE FOR PROGRAM VARIABLES 

m BASED - IN AN AREA 

I EXPLICITLY-ALLOCATED DATA, KNOWN ONLY TO ONE PROGRAM, QUALIFIED 
BY A LOCATOR 

I DECLARATION 

I PL/l: dcl area area, 
b based (p) , 
p ptr; 

allocate b in (area); 

I LOCATION 

I DE~ENbs W~~kE T~~ 0S~R ~PECIFI~S THE AREA TO' ~~ (PE~HAPS ~HE 
SYSTEM FREE AREA SUPPLIED BY INVOKING get_system_free_area_) 

I ALLOCATED AND INITIALIZED 

I EXPLICITLY BY PL/l allocate STATEMENT 

I FREED 

I EXPLItITLY BY PL/l free STATEMENT 

Not To Be Reproduced 5-30 F21 



THE AREAeLINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

z BASED - NO AREA 

I EXPLICITLY-ALLOCATED DATA, KNOWN ONLY TO ONE PROGRAM, QUALIFIED 
BY A POINTER 

I DECLARATION 

I PL/l: declare b based (p) 1 

(p,pl) ptri 
allocate b; 
allocate b set(pl); 

I LOCATION 

I IN USER FREE AREA WITHIN [unique] .area.linker 

I ALLOCATED AND INITIALIZED 

I EXPLICITLY BY PL/l allocate STATEMENT 

I FREED 

I EXPLICITLY BY PL/l free STATEMENT 

Not To 8e Reproduced 5-31 F21 



THE AREA.LINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

~ BASED - IN AN I/O BUFFER 

I EXPLICITLY-ALLOCATED DATA, KNOWN ONLY TO ONE PROGRAM, QUALIFIED 
BY A POINTER 

I DECLARATION 

I PL/l: declare b based(p), f file; 
read file(f) set(p) i 
locate b file{f) set(p); 

I LOCATION 

. . 
I ·I.N. 'A~' I/O BUFF.ER .. ALLOCATED ~¥. ,PL/l, I1{ .. USER FREE ·AREA. .I.N 

(un ique'J. .. a rea.l inker .' . 

I ALLOCATED 

I EXPLICITLY BY PL/l read (WITH set OPTION) OR locate STATEMENT 

I INITIALIZED 

I BY locate STATEMENT 

I FREED 

I BY SUBSEQUENT I/O OPERATION ON THE FILE 

Not To Be Reproduced 5-32 F2l 



THE AREA.LINKER SEGMENT 

GETTING SPACE FOR PROGRAM VARIABLES 

81 COBOL DATA 

I INTERNAL STATIC-LIKE DATA, KNOWN ONLY TO ONE PROGRAM 

I DECLARE 

I COBOL: WORKING SECTION. 
77 CB PIC IS 99. 

I LOCATION 

I ALLOCATED IN USER FREE AREA 

I ALLOCATED AND INITIALIZED 

I WHEN THE PROGRAM IS FIRST CALLED 

I FREED 

I WHEN THE PROCESS OR COBOL RUN UNIT TERMINATES, OR EXPLICITLY 
(BY A cancel_cabal_program COMMAND OR A CANCEL STATEMENT) 

Not To Be Reproduced 5-33 F21 
(End Of Topic) 



TOPIC VI 

MULTICS DYNAMIC LINKING • _ .. .. .. .. ., 
Introduction ..... e .... 0 .. ., .... ., 

Multics Compiler Conventions ... . 
Mutlics Operating System Support .. 
The Linker - Phase I.. • • ., .. .. 
The Linker - Phase II • .. .. _ • e e _ • • 

By-Products of Dynamic Linking ... 

6-i 

.. .. 6-1 
• 6-1 

6-8 
.. 6-11 

• .. 6-13 
6-19 

.. 6-36 



.. 

Topic VI MULTICS DYNAMIC LINKING Topic VI 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Compare conventional linking with Multics dYnamic linking. 

2. List the functions performed by the Multics dynamic linker 

3. Trace the operation of the dYnamic linker from the time it 
first encounters an unsnapped link until it resolved the 
linkage fault. 

4. Discuss the side-effects of dYnamic linking and some of the 
dangers related to it. 

5 .. Explain what ha.ppens when binding occurs and why it can be 
used to. 5 r ea t ... a d van ta 9 e. ~ .. 

Multics VI-1 F21 



INTRODUCTION 

m LINKING 

I A LINKER IS BASICALLY A POST COMPILER 

I SYMBOLIC REFERENCES TO LOCATIONS NOT WITHIN THE OBJECT NORMALLY 
CAUSE THE TRANSLATOR TO PRINT AN ERROR MESSAGE 

I TELLING THE COMPILER OR ASSEMBLER THAT A SYMBOL IS EXTERNAL IS 
JUST A FUDGE SO THAT IT WON'T COMPLAIN 

I THE TRANSLATOR STILL CAN'T CALCULATE AN ADDRESS, SO IT BUILDS A 
STRUCTURE TELLING WHAT IT WAS LOOKING FOR 

1 '. 'r T • IS "'~ THE, 'JOB, OF ".: 1'HE LINKER :',' TO '. :'BES'OtVE ALr/' T'HE'S'E! U}i-fINKED 
~EFERENCES ' 

Not To Be Reproduced 6-1 F21 



INTRODUCTION 

CALL ~;L=====:--+-----..J 
Pi: 

c.: 7 

Not To Be Reproduced 6-2 F2i 



INTRODUCTION 

m THE TRADITION~L LINKER 

I PHILOSOPHY 

I LINKING MUST BE DONE BEFORE THE PROGRAM RUNS 

I LINKING IS ASSOCIATED WITH LOADING - PLACING THE PROGRAM IN 
MEMORY 

I ALL EXTERNAL REFERENCES MUST BE PRESENT AT LINKING TIME 

I THE LINKER PRODUCES A "LOAD UNIT" OR "BOUND UNIT" - ABLE TO 
BE PLACED IN MAIN MEMORY WITH ALL ADDRESSES RESOLVED 

I THE LOAD UNIT IS THEN RUN BY THE USER 

I LIMITATIONS 

I THE LINKER IS THE LAST STEP IN ADDRESS RESOLUTION - IF IT 
CAN'T DO IT, NOTHING CAN 

I BECAUSE TRADITIONAL LINKING IS ASSOCIATED WITH REAL MEMORY, 
ALL PROGRAMS HAVE TO BE PRESENT TO GET A SPOT IN THE BOUND 
UNIT, AND HENCE THE MEMORY 

I IF THE LINKER CAN'T RESOLVE A LINK, THE LINKING FAILS 

I CHANGING ONE PROGRAM IMPLIES LINKING EVERYTHING OVER AGAIN 

I SUBSTITUTING A PROGRAM MID-EXECUTION IS IMPOSSIBLE 

Not To Be Reproduced 6-3 F21 



INTRODUCTION 

PRE-LINKER 

~ 
Ip~ 1>\ 

CALI. fPil---..--~>l ? ,?? I . ' J;.:.r L.:.;...:J 

i 
j 

i 

/Pl:CALL[ill-...,..!<_' --~ 
J I I 
I I I 
J I 

of 

P2: 

P3: 

Not To Be Reproduced 6-4 F21 



INTRODUCTION 

m THE DYNAMIC LINKER 

r PHILOSOPHY 

I IN AN OPERATING SYSTEM WITH MANY (100' PLUS) SEGMENTS, LOADING 
AND RELOCATION BECOME PART OF THE JOB OF THE HARDWARE, NOT 
THE SOFTWARE 

I RESOLVING REFERENCES BECOMES EASIER BECAUSE THE TRANSLATOR 
GENERATES ADDRESSES RELATIVE TO THE BASE OF THE PROGRAM, AND 
HENCE THE SEGMENT 

I THE JOB OF THE LINKER HAS BEEN REDUCED TO FINDING A SEGMENT 
NUMBER AND AN OFFSET WITHIN THE SEGMENT TO COMPLETE THE 
EXTERNAL REFERENCE 

"r 'WIT.H' 'REeO'CATION' ALRE'Atrr TAKEN tAR't b't;' AND 'LINK!t{G'REDUCED TO" " 
THE 'CALCULATION' O·F 'TWO NUMBERS I LINKING CAN BE POSTPONED 
UNTIL THE' EXTERNAL REFEENCE 1'S MADE ' . 

I ALTHOUGH DYNAMIC LINKING IS POSSIBLE USING A REAL MEMORY, 
UNSEGMENTED MACHINE, THE BY-PRODUCTS OF SEGMENTATION MAKE IT 
WORTH WHILE TO IMPLEMENT 

I WITH THE DRUDGERY OF PRE-LINKING TAKEN AWAY FROM THE 
PROGRAMMER, SIHE CAN SPEND, MORE TIME WORRYING ABOUT THE 
PROGRAM, AND NOT ABOUT THE MEMORY MANAGEMENT 

I LIMITATIONS 

I EXCESSIVE USE OF DYNAMIC LINKING CAN SLOW THE OVERALL SYSTEM 
THROUGHPUT 

I BY GIVING THE JOB OF LINKING TO THE OPERATING SYSTEM, THE 
PROGRAMMER HAS LESS SAY OVER WHICH VERSION OF A PROGRAM IS TO 
BE USED 

Not To Be Reproduced 6-5 F21 



INTRODUCTION 

I ADVANTAGES 

I PROGRAMS ARE EXECUTEABLE WITHOUT ALL EXTERNAL REFERE~CES 
BEING PRESENT - ONE NEED ONLY WRITE AND DEBUG A SMALL PORTION 
AT A TIME 

I SUBSTITUTING SUBROUTINES CAN BE DONE AT RUNTIME WITH LITTLE 
EFFORT AND COST TO THE OPERATING SYSTEM 

I EXTERNAL REFERENCES THAT ARE AVOIDED BECAUSE OF TRANSFERS 
WITHIN A PROGRAM NEVER HAVE TO BE RESOLVED 

Not To Be Reproduced 6-6 F21 



INTRODUCTI'ON 

o YN lu'1 I CLINKER 

CALL l!E1--r----~)r;-=-I ??? P: I 

, PI: 
' .. ,' " .. CALI. P 2'" .: . ," ... , 

p2: 

7""' ..... ?.,.. P3 
'''. \_n~l.J 

4= I P3: I 

t I I! 

Not To Be Reproduced 6-7 F21 



MULTICS COMPILER CONVENTIONS 

m EXTERNAL REFERENCES 

I ALL STANDARD MULTICS COMPILERS GENERATE THE SAME TYPE OF LINK 
THAT RELATES TO BOTH PRELINKING (BINDING) AND DYNAMIC LINKING 

I IS A REPOSITORY FOR THE EXTERNAL ADDRESS 

I CONTAINS INFORMATION TELLING ABOUT THE NAME OF THE EXTERNAL 
REFERENCE, INTERNAL LOCATIONS, WHETHER OR NOT TO CREATE IT IF 
NOT FOUND, ETC .. 

~ THE LINK 

. I INITIAL·LY CREATED IN THE LI~;~<:AGE SECTION OF THE OBJECT SEGMENT 

lONE FOR EACH EXTERNAL REFERE 'IC E 

I IS T~O WORDS LONG 

I MAY BE UNSNAPPED 

I THE END OF THE FIRST WORD CONTAINS THE "FAULT-TRAP 2" CODE 

I THE REST OF THE LINK CJNTAINS ADDRESSES OF INFOR~ATION FOR 
THE LINKERS 

I MAY 8E SNAPPED 

I THE END OF THE FIRST WORD CONTAINS THE "ITS" CODE
INDICATES A VALID MULTICS POINTER 

Not To Be Reproduced 6-8 F21 



MULT~CS COMPJLERGONVENTIONS 

I THE FIRST HALF OF THE FIRST WORD CONTAINS THE SEGMENT 
NUMBER OF THE EXTERNAL REFERENCE 

I THE FIRST HALF OF THE SECOND WORD CONTAINS THE OFFSET 
WITHIN THE SEGMENT OF THE EXTERNAL REFERENCE 

m THE LINKAGE SECTION 

I CONTAINS ALL THE LINKS A PROGRAM NEEDS 

I IS COPIED OUT OF THE OBJECT SEGMENT BEFORE THE OBJECT IS 
EXECUTED 

·r IS MERGED INTO THE COMBINED LINKAGE· AREA· 

Not To Be Reproduced 6-9 F21 



MULTICS COMPILER CONVENTIONS 

OO()OOD i DEFS TRAP 

POINTER TO SYMBOL SECTION 

POINTER TO LINKS' ORIGIN 

UNUSED 

I LENGTH SEGNO IL?NG'"rH ...!..Ii_ _ ...... 

j .t 

LI~K j' 

~---..l. 

LI~JI< I 

Not To Be Reproduced 6-10 F21 



· MU'rLICS .. OJ?ERATIN.G: SYSTEM SUPP.ORT. 

m MANAGEMENT OF EXTERNAL REFERENCES 

I WITH FEW EXCEPTIONS, COMPUTERS EXPECT ADDRESSES TO BE IN NUMERIC 
(BINARY) FORM 

I THE MULTICS HARDWARE CURRENTLY FOLLOWS THIS ARCHITECTURE 

I THE DESIGNERS OF MULTICS DECIDED THAT IT WAS TIME TO MOVE AWAY 
FROM SOFTWARE ALSO USING NUMBERS 

I PROGRAMMERS STOPPED PROGRAMMING IN BINARY MACHINE LANGUAGE 
YEARS AGO, USING A MNEMONIC ASSEMBLY LANGUAGE 

I THE HARDWARE LOCATIONS OF DATA MAY CHANGE, aUT THE NAME WILL 
REMAIN THE SAME 

I SOFTWARE TECHNOLOGY NOW ALLOWS SYMBOLIC 
AUTOMATICALLY MANAGED CHEAPLY 

NAMES TO BE 

I MULTICS SUPPORTS SYMBOLIC (VIRTUAL) ADDRESSES FOR POTENTIALLY 
ALL THE DATA ON THE SYSTEM 

I SPECIFIED BY A TWO COMPONENT NAME IN THE FORM OF 

alpha$beta 

I alpha IDENTIFIES A SEGMENT 

I beta IDENTIFIES A LOCATION WITHIN THE SEGMENT 

Not To Be Reproduced 6-11 F21 



> MUTLICS OPERATING SYSTEM SUPPORT 

I MULTICS WORRIES ABOUT THE HARDWARE NUMBER ASSOCIATED WITH 
alpha 

I MULTICS WORRIES ABOUT THE HARDWARE NUMBER ASSOCIATED WITH 
beta 

I THE PROGRAMMER IS CONCERNED 
MANAGING THE ENTITY alpha$beta 

ONLY WITH REMEMBERING AND 

I THIS SCHEME IS IMPLEMENTED EVEN AT THE MULTICS ASSEMBLY 
LANGUAGE LEVEL 

I MULTICS MANAGES SEVERAL TABLES TO MAINTAIN THE ASSOCIATION 
BETWEEN A SYMBOLIC NAME AND ITS HARDWARE NUMBERS 

I > dseg .. > 

I kst 

I RNT 

I DEFINITION SECTION IN OBJECT SEGMENTS 

I THERE IS AN INTERPLAY AMONG THE TABLES 

I dseg AND kst CAN BE CONSIDERED AS A NECESSARY PAIR 

I dseg TELLS THE HARDWARE WHERE SEGMENTS ARE 

I kst TELLS THE SOFTWARE WHO SEGMENTS ARE 

I THE RNT LISTS ALIASES FOR SEGMENTS LISTED IN THE kst 

Not To Be Reproduced 6-12 F21 



I PROLOGUE 

I THE INSTANT A PROGRAM BEGINS TO RUN, IT HAS NOT YET MADE ANY 
CALLS 

I ITS LINKAGE SECTION WILL CONTAIN ONLY UNSNAPPED LINKS BECAUSE 
LINKS ARE NOT SNAPPED UNTIL NEEDED 

I AN ATTEMPT TO REFERENCE THROUGH ANY OF THESE LINKS WILL CAUSE 
A HARDWARE FAULT 

Not To Be Reproduced 6-13 F21 



.THE LINKER - PHASE I 

PRQ 270 7030 

PRl 110 322 

PR2 244 4420 

121 .1 0 
., . ~ 

~ 

260 13200 , 
, 

PR3 

PR4 

, 000000 I DEFS I TRAl' I 

I POINTER TO SYMB'OL SECTION I 

FRS 77 3736 POINTER TO LINKS' ORIGIN 

PR6 244 4420 UNUSED 

PR7 244 o LENGTH SEGNO !LENGTH 

LINK 

LINK 

Not To Be Reproduced 6-14 F21 



· TijE: LINKER .... , 'PHASE I' . 
.•••• -.-. =.. -.. .~ • 

. I THE FAULT HANDLER 

I A REFERENCE THROUGH A LINK IS DONE WITH HARDWARE INDIRECTION 

I ALL THE LINK DOES IS TELL THE HARDWARE WHERE TO GO FOR THE 
NEXT REFERENCE 

I USES AN ITS-PAIR 

L/ ~ ~ 

I IF THE HARDWARE FINDS THE BIT PATTERN 100110 AT THE END OF 
THE FIRST WORD OF A LINK, IT FALLS INTO A FAULT TRAP 2. 

I THE WHOLE PROCESSING UNIT IS HALTED AND THE MACHINE IS FORCED 
TO EXECUTE THE PROGRAM fim {C\~\\ \1\'~"vPT '(v)o~\)\~ 

I FROM THIS 
SUP.ERVI SOR ...... : .. 

POINT 

I THIS IS RING ZERO· 
•••••••• '. '.. • •• o. • 

ON, CONTROL IS IN THE HANDS 

I THERE IS NO WAY FOR THE USER TO INTERCEPT THIS FAULT 

OF THE 

I fim ASCERTAINS THAT THE FAULT WAS FAULT' TRAP 2 AND CALLS THE 
PROGRAM link_snap_ 

I 1 ink_snap_ IS THE DYNAMIC LINKER 

I , ink_snap FIRST VERIFYS THAT THIS IS A VALID UNSNAPPED LINK 

Not To Be Reproduced 6-15 F21 



PR4 260 

THE. LINKER - PHASE I 

13200 + ~OFFSET IN I LINKAGE SECTION 

1 

L -J'---~ ""'-r"\n., -'---A -r-",... ------. 

260 l3212 ~1~_~_u_u_l_~~ __ ~~q~O~~A~D_D_R_2 ______ ~ 
THE LINK 

Not To Be Reproduced 6-16 F21 



THE LINKER - PHASt'l . 

. ~ SEARCH FOR THE NAME 

I link snap LOOKS AT THE LINK THAT CAUSED THE FAULT AND EXTRACTS 
FROM-IT POINTERS BACK TO THE OBJECT SEGMENT 

I IN THE OBJECT, AS PART OF THE DEFINITION SECTION, ARE 

WITHIN IT THAT WE WANT 

I link snap OBTAINS THE TWO SYMBOLIC NAMES THAT MAKE UP THE 
VIRTUAL ENTRY DESCRIBING THE FAULTED LINK FROM THIS LIST OF 
SYMBOLS 

Not To Be Reproduced 6-17 F21 



· THE LINKER - PHASE I 

TEXT 

DEFINITIONS 

fTNKAGE 

SYMBOLS 

!viAP 

FAULTED LINK 
FAULTING OBJECT 

Not To Be Reproduced 6-18 F21 



, THE'LINKER - PHASE II '.'--,---

m OBTAINING THE SEGMENT NUMBER 

I A SEGMENT NUMBER DESCRIBES TO HARDWARE THE LOCATION OF A REAL 
SEGMENT; THE DYNAMIC LINKER HAS TO FIND THAT REAL SEGMENT 

I THE SEARCH RULES 

I EACH PROCESS HAS A LIST OF PLACES TO SEARCH JUST IN CASE 
LINKAGE FAULTS OCCUR (WHICH IS INEVITABLE) 

I THIS IS THE USER MODIFIABLE ATTRIBUTE OF A PROCESS CALLED 
nTHE SEARCH RULES n 

I A SPECIAL CASE: initiated segments 

I '. 'THE L'!NKE'R~ GOES' TO" THE . 'RUT: 

I IT 'Lo6K~UP 'TH~ 'NAME OF THE S~GMENT 'I~ OBTAINED DURING 
PHASE I (THE RNT IS A BUNCH OF LINKED LISTS) 

I IF THE NAME IS FOUND, THEN THE NUMBER ASSOCIATED WITH IT 
IS ASSUMED TO BE THE DESIRED SEGMENT NUMBER 

I IF THE NAME WAS NOT FOUND, THEN WE MOVE ON TO THE NEXT 
SEARCH RULE 

Not To Be Reproduced 6-19 F21 



THE LINKER - PHASE II 

+ 
~ pr 401 

~~ 

~ print I 401 

~I 

, l qedx 370 

~v 

I ~ J 1 

r l qx 370 

I 
t 

Not To 8e Reproduced 6-20 F21 



TaE LINKER -. ?HASE II 
~~ ~.~~ .. ~ .~~ 

I THE SECOND RULE IN THE SEARCH RULES IS referencing_dir 

I THIS MEANS THE LINKER WILL LOOK IN THE DIRECTORY OF THE 
PROGRAM THAT CAUSED THE LINKAGE FAULT FOR THE SEGMENT 

I ALTHOUGH THIS IS NOTHING MORE THAN THE LIST COMMAND, IT IS 
NOT AN INEXPENSIVE OPERATION 

I ITS PURPOSE IS TO CONTAIN THE GLOBAL NATURE OF THE DYNAMIC 
LINKER IN ITS SEARCH FOR THE SEGMENT 

I THIS TENDS TO ISOLATE ALL THE PROGRAMS IN A DIRECTORY INTO 
A SUBSYSTEM 

I THE DANGER OF THIS WILL BE STATED LATER 

Not To Be Reproduced 6-21 F21 



THE LINKER - PHASE II 

THE REFERENCI~.JG DIR I=~e_d~r I 

Not To Se Reproduced 

-----r---J 

FAULTING 
PROGRAM 

t 

6-22 

--I 
i 

/_1·· 
-/ 
i no onE 

\,--

F21 



'THE LINKER = PHASE II 

ONE MORE TRY: 

I THE LINKER FIGURES THAT THE USER HAS THE PROGRAM AND WILL 
LIST THE CONTENTS OF THE WORKING DIRECTORY 

I THIS ALSO TENDS TO CONTAIN THE WORKING DIRECTORY INTO A 
SUBSYSTEM OF SORTS 

I IT ALSO LETS THE USER ACCUMULATE A LIBRARY OF INTERWOVEN 
PROGRAMS 

Not To Be Reproduced 6-23 F21 



Not To 8e Reproduced 

THE LINKER - PHASE II -

'r-~-- -

6-24 

l 

"
\ 

"I 

\ stolen ) 

~ ..... / 
(COPied \ C 
\ ) \ ) 
,~ ~ 

F2l 



THE .LINK&B. ,- .. PHASE I r .. -_. '.- ---"'--

I SYSTEM LIBRARIES 

I HERE BEGINS THE BIG SEARCH 

I AGAIN, A LIST FOR EACH DIRECTORY UNTIL THE LINKER FINDS 
THE SEGMENT IN QUESTION 

I THIS CAN EASILY BECOME THE MOST TIME CONSUMING JOB OF THE 
DYNAMI CLINKER 

I IF THE SEGMENT WAS NOT FOUND IN EITHER THE RNT OR THE 
DIRECTORIES, THEN THE "linkage_error" CONDITION IS SIGNALLED 

I IF THE SEGMENT WAS NOT'F6b~D IN THE RNT, BUT WAS FOUND IN A 
DIRECTORY, ADD IT TO THE kst AND RNT 

. -,- ..... -: . ;":." l·.~··. JF .... N.Q! ....• IN /~H~ ks·t.,." .:TH$:N . THE PROGRAM ... IS ~QT· l:N: .. r-~E, ~DR~S~.~ I., • ... ' 

~ .. . SPACE OF THE PROCESS AND 'CANrT" BE" USED ,. . ,. ~. 
:. ~ . 

I AFTER ADDING THE PROGRAM INTO THE kst 'THE LINKER ALSO PLACES 
THE SEGMENT NAME INTO THE RNT 

I THE SEGMENT NAME WE OBTAINED IN PHASE ONE IS NOW A REFERENCE 
NAME 

I SUBSEQUENT SEARCHES FOR THIS NAME 8Y FUTURE PROGRAMS IS THIS 
PROCESS WILL FIND A MATCH IN THE RNT, AND HAVE AN INEXPENSIVE 
LINKAGE FAULT 

Not To Be Reproduced 6-25 F21 



THE LINKER - PHASE II 

UNUSED 

f 

L_ --1 
1 r:STE 

FOR. • 
410 

.. 
\'t 1----.....; .. 

I K3TE \ 
L, ..... EO R .' , \" 
t' 407' 

r---- \, 
1 , 

I 
1 
ii 

I r I prin t 

\ I 
1

401 J 
.. ;, 

\'~~l -'~,¥--i--------~I-----l ! prog " 1 (, 

! ! i "t~'" ....J 
I 
,qedx I 370 
i 

Not To Be Reproduced 6-26 F21 



,THE :LINKER, - PHASE I I 

m OBTAINING THE OFFSET VALUE 

I LOCATE THE DEFINITION SECTION OF THE JUST FOUND SEGMENT 

I OBTAIN THE BIT COUNT FROM THE DIRECTORY 

I DIVIDE IT BY 36 

I SUBTRACT 1 

I THIS IS THE LOCATION OF THE OBJECT MAP POINTER; USE IT TO 
LOCATE THE OBJECT MAP 

I WITHIN THE OBJECT MAP FIND THE ADDRESS OF THE DEFINITION 
SECTION 

Not To Be Reproduced 6-27 F21 



THE LINKER - PHASE II 

. (This' page intentionally. left blank) 

Not To Be Reproduced 6-28 F21 



THE LINKER - PHASE II 

I WALK THROUGH THE DEFINITION SECTION 

I THIS IS ANOTHER LINKED LIST 

I LOOK FOR A CHARACTER ON THE CHAIN THAT MATCHES THE SECOND 
NAME EXTRACTED FROM PHASE ONE. 

T 
.l. ASSOCIATED WITH 

HARDWARE CAN USE 

... ,... 
J..:;:) A OFFSET 

I THE LINKER NOW HAS ALL THE INFORMATION NECESSARY TO SNAP THE 
LINK 

s SNAPPING THE LINK 

I BACK IN THE FAULTING OBJECT SEGMENT WAS AN UNSNAPPED LINK 

I THE LINKER WILL OVERWRITE THIS INFORMATION WITH THE NEWLY FOUND 
SEGMENT NUMBER AND OFFSET 

I THE LINKER WILL PLACE BINARY 100011 IN THE LAST SIX BITS OF THE 
FIRST WORD OF THE LINK 

I THE LINK IS NOW A STANDARD POINTER - IT IS SNAPPED 

I ANY FURTHER REFERENCES THROUGH THIS LINK WILL NOT RESULT IN A 
FAULT 

Not To Be Reproduced 6-29 F21 



THE LINKER - PHASE II 

I THIS SNAPPING DOES NOT EFFECT ANY OTHER LINK WITHIN THE LINKAGE 
SECTION 

Not To Be Reproduced 6-30 F21 



THE LINKER - PHASE II 

UNSNAPPED LINK 

ADDRI 1461 ADDR2 

f 
SNAPPSD LINK 

410 

Not To Be Reproduced 6-31 F21 



THE LINKER - PHASE II 

m LOADING THE OBJECT SECTIONS 

I THE NEWLY REFERENCED SEGMENT MAY HAVE A LINKAGE AND STATIC 
SECTION OF ITS OWN THAT MUST BE LOADED INTO MEMORYY 

I THE DYNAMIC LINKER PERFORMS THE COPYING OF THE STATIC AND 
LINKAGE TEMPLATES INTO THE PROPER AREAS 

I IF THE LOT WORD CORRESPONDING TO THE SEGMENT IS EMPTY (I.E. LOT 
(SEGMENT_NUMBER) =0) THEN THE LINKER WILL COpy IT 

I GET SOME ROOM IN THE COMBINED LINKAGE AREA FOR THE LINKAGE 
SECTION 

I COPY THE LINKAGE TEMPLATE FROM THE OBJECT INTO THE SPOT IN 
THE COMBINED LINKAGE AREA 

I PLACE THE ADDRESS OF THE LINKAGE SECTION INTO THE LOT ENTRY 

I ,PERFORM THE SAME WITH THE STATIC SECTION, USING THE ISOr AND 
COMBINED STATIC AREA 

I NOTE: THE STATIC MAY BE COMBINED WITH THE LINKAGE 
INFORMATION, IN WHICH CASE THE STATIC WAS LOADED WITH THE 
LINKAGE SECTION 

Not To Be Reproduced 6-32 F21 



OBJECT SEGMENT 

r I 
TEXT 

THE LINKER - PHASE II 

COMBINED LINKAGE ARlA 
LINKAGE 

OFFSET TABLE 
(TfV1'" 
\~V ~ ) 

~--------------4~~~--~~ 
// LINKAGE ~ t----~-___f 

DEFS ./ SECTION 

"",,-_:_L_i!_L_~_r_E_~~,,, COMBINED STATIC ARE~ 
~ INTERNAL .... 

SYMBOLS 

OBJECT 
MAP 

BREAK MAP 

OBJ MAP PIR 

t ~~ STATIC 
i............ SECTION 

Not To Be Reproduced 6-33 

INTERNAL STATIC 
OFFSET TABLE 

(ISOT) 

t 
P II 

I 

I 
P Ii 

F21 



THE LINKER - PHASE II 

m INSTRUCTION RETRY 

I RETURN TO THE SCENE OF THE CRIME 

I WHEN link~snap IS FINISHED, IT RETURNS TO fim 

I fim THEN CAUSES THE INSTRUCTION THAT GENERATED THE LINKAGE 
FAULT TO 8E REEXECUTED 

I WITH THE LINK NOW SNAPPED, A FAULT WILL NOT OCCUR AND THE 
INSTRUCTION WILL FIND THE THING IT WAS LOOKING FOR 

Not To Be Reproduced 6-34 F21 



THE LINKER - PHASE II 

(This page intentionally left blank) 

Not To Be Reproduced 6-35 F21 



BY-PRODUCTS OF DYNAMIC LINKING 

m INITIATION 

I EVERY SEGMENT THAT A PROCESS WANTS TO USE MUST BE REGISTERED 
WITH BOTH THE dseg AND kst 

lese {dJ"( 0 r - ~ (J!> 

I IF A SEGMENT IS NOT REGISTERED - KNOWN - TO A PROCESS AND IT IS 
THE OBJECT OF A LINKAGE FAULT, THEN THE DYNAMIC LINKER iI/ILL MAKE 
IT KNOWN 

I THIS INVOLVES GOING TO THE kst, FINDING OUT THE NEXT FREE 
NUMBER TO USE AND ASSIGNING IT TO THE NEW SEGMENT 

I BECAUSE THIS IS PRETTY MUCH AN UNPREDICTABLE OPERATION AS FAR 
AS AVAILABLE NUMBERS ARE CONCERNED, MULTICS DOES NOT 
GUARANTEE THE CONSISTENCY OF SEGMENT NUMBERS ACROSS PROCESS 
BOUNDARIES 

~ HIDDEN DANGERS 

I THE SEARCH FOR A SEGMENT TO FULFILL THE LINKAGE FAULT CAN CREATE 
DANGERS FOR PROGRAMMERS WHO ARE NOT AWARE OF THE NATURE OF THE 
SEARCH 

I CONSIDER THE FOLLOWING SCENARIO 

I A PROGRAMMER HAS WRITTEN A SET OF PROGRAMS 

THE FIRST PROGRAM IS CALLED driver 

IT CALLS calculate total 

IT THEN CALLS ioa TO PRINT THE TOTAL OUT 

LATER (AND ALTHOUGH UNLIKELY, POSSIBLE) driver CALLS A 
PROGRAMMER PROVID&D PROGRAM NAMED formline 

Not To 8e Reproduced 6-36 F21 



BY-PRODUCTS OF DYNAMIC LINKING 

I THERE IS A SIGNIFICANT CHANCE THAT THE PROGRAMMER SUPPLIED 
formline WILL NOT EXECUTE 

I THE MULTICS SYSTEM SUBROUTINE, ioa, ALSO CALLS A PROGRAM 
NAMED formline 

IF ioa TOOK A LINKAGE FAULT WHILE CALLING formline, IT 
WOULD HAVE FOUND THE SYSTEM'S COPY USING THE referencing dir 
RULE, PLACED S NAME IN THE RNT, AND driver WOULD HAVE FOUND 
IT WHEN IT CALLED ~ - --, ! - -r:.o J: llU. ~n~ • 

I NOTE, THEN THAT IT IS POTENTIALLY DANGEROUS TO CALL PROGRAMS 
OUTSIDE THE DIRECTORY OF EXECUTION IF THE NAMES OF SEGMENTS CAN 
BE DUPLICATED ELSEWHERE 

I BINDING ALSO HELPS 

a BINDING 

I BINDING ITSELF IS A LINKING PROCESS, BUT ITS EFFECTS CAN BE FELT 
SYSTEM WIDE 

I THIS EXPLANATION WILL CONCERN ITSELF WITH ONLY THE-LINKING 
ASPECTS OF BINDING 

lONE OF THE ADVANTAGES OF DYNAMIC LINKING IS THAT UNUSED EXTERNAL 
REFERENCES WERE NOT LINKED, SAVr~G TIME 

I IF A SET OF PROGRAMS MAKE MANY CALLS TO EACH OTHER AND IT IS 
ALMOST UNAVOIDABLE THAT ALL LINKS WILL BE SNAPPED IN THE COURSE 
OF THEIR EXECUTION, THEN PRELINKING WILL 8E CHEAPER 

Not To Be Reproduced 6-37 F21 



BY-PRODUCTS OF DYNAMIC LINKING 

I EACH LINK WILL BE SNAPPED ONCE IN ITS LIFE, AS OPPOSED TO 
MANY TIMES WITH DYNAMIC LINKING 

I THE PROGRAMMER MUST GIVE UP THE ABILITY TO MAKE CHANGES TO 
OBJECT EASILY; THEREFORE BINDING SHOULD 8E DONE ONLY AFTER 
THE PROGRAMS ARE FULLY DEBUGGED 

I THE SINDER'S TASK 

I BREAK APART ALL THE SECTIONS OF ALL THE PROGRAMS TO BE BOUND 

I GROUP ALL LIKE SECTIONS TOGETHER (TEXT WITH TEXT, ETC) 

I COMBINE ALL THE LINKAGE SECTIONS TOGETHER, AND ELIMINATE ALL 
LINK DUPLICATIONS 

I 2LIMIN~TE SOME ENTRYPOINTS INTO THE PROGRAMS, TRIMMING DOWN 
THE DEFINITION SECTION 

I GENERATE ONE OBJECT MAP AND OBJECT MAP POINTER 

I A BOUND SEGMENT MAY ACTUALLY HAVE LINKS LEFT OVER THAT WERE NOT 
RESOLVED AT BINDING TIME; THEY WILL 3E HANDLED 9Y THE DYNAMIC 
LINKER WHEN NEEDED 

Not To Be Reproduced 6-38 F21 



TOPIC VII 

The Multics Programming Environment • 0 • 0 S •• 7-1 
Destruction of the programming Environment •• 7-1 
Error Recovery Techniques ••••••••• 0 7-8 

The Multics Programming Environment •••••• e 7-1 
Destruction of the Programming Environment •• 7-1 
Error Recovery Techniques ••.••••••• 7-8 

7-i 



Topi c VII MULTICS PROGRAMMING ENVIRONMENT Topic VII 

OBJECTIVES: 

Upon completion of this topic, stUdents should be able to: 

1. Discuss some of the ways in which the Multics process 
environment can be disrupted. 

I """,.-""1'",,, -""",A ,.,...,. ..... ,.1' II"''''''' ..... """8.,.-""". ..... .;,..8 "" ...... """.,.'" ...... .; ,.1-. '- u ... g \#' ~ ..... I' Y _ U I .... \., \I \.& :;;t ,. , r t \,I ~ I glunl ... I f ~ '!;;;',. '-'. ~ Yr I' .&. '- II cause a 
process to terminate abnormally. 

3. Apply preventive techniques during program development to 
minimize the number of potentiallY dangerous programming 
errors. 

Multics VII-1 F21 



uESTRUCTION OF THE PROGRAMMING ENVIRONMENT 

I SOURCE SEGMENT 

I WHEN INITIATED BY THE COMPILER, NOT GIVEN A REFERENCE NAME 

I USUALLY NOT MADE KNOWN EXCEPT BY COMPILER 

I SEGMENT USUALLY NOT KNOWN 

I DESTRUCTION UNLIKELY 

I OBJECT SEGMENT 

I SEGMENT READ-EXECUTE ONLY (EXCEPT WHEN DEBUGGER IS SETTING 
BREAKPOINTS) 

I DESTRUCTION UNLIKELY BECAUSE OF HARDWARE PROTECTION 

Not To Be Reproduced 7-1 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT ---------- -- --- ---------- ----------

m stack n SEGMENT 

I IN [pd] 

I READ-WRITE 

I INCLUDES 

I PROGRAM ACTIVATION HISTORY (STACK) 

I AUTOMATIC VARIABLES 

I STACK HEADER INFORMATION 

I INCLUDES INITIAL LOT & ISOT ALLOCATIONS 

I DESTRUCTION POSSIBLE THROUGH MISUSE OF AUTOMATIC VARIABLES OR 
BUILT-IN FUNCTIONS 

I SUBSCRIPTRANGE 

I STRINGRANGE 

I USE OF UNINITIALIZED POINTER TO BASED VARIABLE 

I SYMPTOMS 

I IF STACK HEADER OVERWRITTEN, FATAL PROCESS ERROR USUALLY 
OCCURS 

Not To Be Reproduced 7-2 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT 

I STRINGRANGE OFTEN RESULTS IN STORAGE CONDITION (out_of_bounds 
ON USER'S STACK) 

I SUBSCRIPTRANGE CAUSES AUTOMATIC DATA AND/OR PROGRAM 
ACTIVATION INFOR~ATION TO BE OVERWRITTEN, LEADING TO IMPROPER 
RESULTS AND PROGRAM OPERATION 

Not To Be Reproduced 7-3 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT -- ---

m [unique] .area.linker SEGMENT 

I IN [pd] 

I READ-WRITE AREA 

I INCLUDES 

I COMBINED LINKAGE AREA 

I LINKAGE SECTIONS 

I LOT 

I ISOT 

I -RNT 

I COMBINED STATIC AREA 

I INTERNAL STATIC SECTIONS (VARIABLES) 

I USER FREE AREA 

I EXTERNAL STATIC AND COMMON VARIABLES - PER PROCESS 

I EXTERNAL VARIABLE CONTROL INFORMATION 

I CONTROLLED VARIABLES 

I BASED VARIABLES - NO AREA, IN AN I/O BUFFER 

I COBOL VARIABLES 

I ASSIGNED LINKAGE AREA 

I BASED STORAGE-ALLOCATED THROUGH hcs_$assign_linkage 

Not To Be Reproduced 7-4 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT 

m [unique] .area.linker SEGMENT (continued) 

I DESTRUCTION POSSIBLE THROUGH 

I SUBSCRIPTRANGE 

I STRINGRANGE 

I USE OF UNINITIALIZED POINTERS 

I MISUSE OF AREA 

I FREe-!NG SAME 81\SEtJ VARIZ\gtE Tr'lICE 

I SYMPTOMS 

I IF LINKAGE SECTIONS OVERWRITTEN, IMPROPER PROGRAM OPERATION 

I IF LOT OVERWRITTEN, IMPROPER OPERATION OF ALL PROGRAMS 

I IF ISOT OVERWRITTEN, IMPROPER INTERNAL 
SUBSEQUENT DESTRUCTION OF OTHER DATA 

STATIC DATA; 

I IF RNT OVERWRITTEN; UNABLE TO FIND PREVIOUSLY-REFERENCED 
PROGRAMS 

I IF VARIABLES (OF ANY STORAGE CLASS) ARE OVERWRITTEN, IMPROPER 
VARIABLE VALUES 

I IF EXTERNAL VARIABLE CONTROL INFORMATION OVERWRITTEN, 
IMPROPER COMMUNICATION OF SHARED VARIABLES BETWEEN PROGRAMSi 
IMPROPER DATA VALUES 

Not To Be Reproduced 7-5 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT ---

I IF AREA CONTROL INFORMATION OVERWRITTEN, bad area format 
CONDITION 

Not To Be Reproduced 7-6 F21 



DESTRUCTION OF THE PROGRAMMING ENVIRONMENT 

DIRECTORIES, dseg, kst 

I NO DIRECT ACCESS TO USER FROM USER RING {RING 4) 

I DESTRUCTION UNLIKELY, SEGMENTS PROTECTED BY HARDWARE 

Not To 3e Rep~oduced 7-7 F21 



ERROR RECOVERY TECHNIQUES 

MOST ERRORS PROGRAMMING 

I ARE CAUSED BY IMPROPER SUBSCRIPTS, BAD SUBSTRING OPERANDS, OR 
POINTERS USED IMPROPERLY 

I RECOVERY FROM SUBSCRIPTRANGE AND STRINGRANGE 

RECOMPILE PROGRAMS CAUSING THESE ERRORS AND ENABLE CHECKING 
FOR THESE CONDITIONS 

I PL/l: INSERT A LINE CONTAINING 

( ____ (_s_i_z-e-,~ize, strin~ange/~criptrange): ____ 

AT THE BEGINNING OF EACH SOURCE SEGMENT, AND RECOMPILE 
WITH -table OPTION 

I COBOL: USE -runtime check AND -table CONTROL ARGUMENTS IN 
cobol COMMAND 

I FORTRAN: USE -subscriptrange AND -table CONTROL ARGUMENTS 
IN fortran COMMAND 

I RUN PROGRAMS 

I IF CONDITIONS ARE SIGNALLED, USE probe TO FI~D CAUSE 

I FIX PROBLEMS, AND RECOMPILE AS ABOVE UNTIL NO MORE CONDITIONS 
ARE SIGNALLED 

I IF NO MORE CONDITIONS ARE SIGNALLED, BUT PROGRAMMING 
ENVIRONMENT ERRORS STILL PERSIST 

I RECOMPILE WITHOUT THE CONDITION CHECKING, BUT WITH -table 
CONTROL ARGUMENT 

I PROCEED AS GIVEN BELOW UNDER "FURTHER ERROR RECOVERY" 

Not To Be Reproduced 7-8 F2l 



ERROR RECOVERY TECHNIQUES 

I IF ALL ERRORS CORRECTED, RECOMPILE WITHOUT CONDITION CHECKING 
OR -table 

~ FURTHER ERROR RECOVERY 

I bad_area_format CONDITION IN [unique] earea~linker SEGMENT 

I CAUSED BY OVERWRITING AREA CONTROL INFOR~ATION 

I STORED AT BEGINNING OF AREA 

I STORED BET~EEN SPACE ALLOCATIONS 

I RECOVERY TECHNIQUES (ASSUMES STRINGRANGE AND SUBSCRIPTRANGE 
TESTS HAVE ALREADY BEEN DONE) 

I USE area status COMMAND TO FIND FAULTY LOCATION IN AREA 

I USE durnp segment COMMAND TO PRINT AREA AROUND THAT 
LOCATIONj-RECOGNIZABLE DATA MAY LEAD TO THE CAUSE 

I USE create area AND set user storage COMMANDS TO SEPARATE 
USER FREE AREA FROM OTHER GROUPED AREAS 

I IF ERROR OCCURS NOW IN USER-SPECIFIED AREA SEGMENT, THEN 
PROBLEM' IS IN A USER PROGRAM (NO SYSTEM PROGRAMS EXCEPT 
EXTERNAL VARIABLE MANAGER USE THIS AREA) 

I USE probe TO EXAMINE ALL POINTER-QUALIFIED REFERENCES TO 
BE SURE POINTER IS SET PROPERLY 

I AFTER ·8ASE!)--JJ:ARIA.8L~S.-HA-VE---S-EEN·--FREEo;N-tiLL THEIR POINTER 
TO?_REVEN·r.r--S-UBSfQUENT REFERENCE TO FREED SPACE -_ .... -

.,-.-.'-

Not To Be Reproduced 7-9 F21 



ERROR RECOVERY TECHNIQUES 

FURTHER ERROR 

I FATAL PROCESS ERRORS (REPRODUCIBLE) 

I CAUSED BY OVERWRITING 

I STACK HEADER 

I LINKAGE OR INTERNAL STATIC SECTIONS OF CRITICAL PROGRAMS 
(iox 1 listen_, command_processor_, print_ready_msg_, 
etc.) 

I RECOVERY TECHNIQUES 

I ATTEMPT TO ISOLATE POINT OF PROCESS FAILURE TO A SINGLE 
PROGRAM STATEMENT 

I USE probe TO 

I SET BREAKS AT KEY POINTS IN THE EXECUTION OF THE 
PROGRAM 

I CONTINUE EXECUTION AS EACH BREAK IS REACHED UNTIL FATAL 
ERROR OCCURS 

I WHEN FATAL ERROR OCCURS, POINT OF FAILURE LIES AFTER 
LAST BREAKPOINT WHICH WAS REACHED 

I SET BREAKS AFTER THIS POINT TO FURTHER ISOLATE POINT OF 
FAILURE TO A SINGLE STATEMENT 

I FAILING STATEMENT MAY 8E 

I CAUSE OF ERROR 

I USING INCORRECT DATA AS RESULT OF A PREVIOUS ERROR 

I USE probe TO TRACK ORIGINAL CAUSE OF ERROR 

I USE -watch CONTROL ARGUMENT OF trace COMMAND TO ISOLATE 
THE SUBROUTINE WHICH IS DAMAGING A PARTICULAR DATA ITEM 

Not To Be Reproduced 7-10 F21 



ERROR RECOVERY TECHNIQUES 

m FURTHER -ERROR RECOVERY (continued) 

I FATAL PROCESS ERRORS (INTERMITTENT) 

I CAN BE CAUSED BY 

I 

T 
L 

UNINITIALIZED DATA VALUES 

ANOTHER PROGRAM DESTROYING YOUR PROGRAM'S DATA 

I RECOVERY TECHNIQUES 

I IN A NEW PROCESS, RUN JUST THE FAILING PROGRAM 

I IF PROGRAM OPERATES CORRECTLY, ANOTHER PROGR~~ MAY BE 
SOURCE OF ERROR 

I IF PROGRF~ FAILS 
DIFFERENT WAYS) / 
VARIABLES 

Not To Be Reproduced 

(ESPECIALLY FAILS INTERMITTENTLY OR IN 
USE probe TO LOOK FOR UNINITIALIZED 

7-11 F21 
(End Of Topic) 



TOPIC VIII 

Other Useful Debugging Tools. G 

list external variables •• 
list-external-variables e ,,&. " 

reset externaT variables •• 0 •• 

reset-external-variables. 
delete external variables. 
delete-external-variables . 
print oind map.-•••••• " •••• 
print-bind-map. • •• • ••••• 
print-l ink-info •••••••• 
print-link-info, pli. 
resolve linkage error 
reslve linkage error, rle • 
trace stack • -: 
trace:stack, ts ••• 

8-i 

.. e 8-1 
• • .. .. 8-1 

e 8-1 
8-2 

• 8-2 
• 8-3 

8-3 
• 8-4 

• • 8-4 
• • 8-5 
e " 8-5 

.. 8-7 
• 8-7 
o 8-8 
.. 8-8 



Topic VIII OTHER DEBUGGING COMMANDS Topic VIII 

OBJECTIVES: 

Upon completion of this topic, students should be able to: 

1. Manipulate external variables with the following commands: 

list_external_variables (lev) 

reset_external_variables (rev) 

delete_external_variables (dev) 

2. Find and correct problems related to linking with the 
following commands: 

3. Use the trace_stack (ts) command in conjunction with trace 
and probe to determine the state of the process when an error 
occurs. 

Multics VIII-1 F21 



list external variables 

Name: 

The list external variables command prints information about 
variables managed by the system for the user, including FORTRAN common 
and PL/I external static variables whose names do not contain dollar 
s i g n s • Th e d e fa ul tin f 0 rIO a t ion i s th e 10 cat ion and size 0 f e a c h 
specified variable e 

Usage 

list external variables names [-control_args} 

where: 

1" names 
are names of external variables, separated by spacese 

2." control args 
can be chosen from the following: 

-unlabeled common, -uc 
is the name for unlabeled (or blank) common. 

-long, -lg 
prints how and when the variables were allocated. 

-all, -a 
prints information for each 
manag ing. 

variable the system is 

-no header, -nhe 
- suppresses the header. 

Not To Be Reproduced 8-1 F21 



reset external variables 

Name: reset external variables - -
The reset external variables command reinitializes system-managed 

variables to the values-they had when they were allocatede 

Usage 

reset external variables names {-control_arg} 

where: 

Ie names 
are the names of the external variables, separated by 
spaces, to be reinitializedc 

2. control arg 
is -unlabeled common (or -uc) to indicate unlabeled (or 
block) common.-

Note 

A variable cannot be reset if the segment containing 
the initialization information is terminated after the 
variable is allocated. 

Not To Be rteproduced 8-2 F2l 



delete external variables 

Name: delete external variables 

The delete external variables command deletes from the user's 
name space specTfied variables managed by the system for the user~ 
All links to those variables are unsnapped and their storage is freedo 

Usage 

delete external variables names {-control_arg} 

where: 

10 names 
are the names of the external variables, separated by 
spaces, to be deleted. 

2.. control arg 
Is -unlabeled common (or -uc) to indicate unlabeled (or 
blank) common. 

Not To 8e Reproduced 8-3 F2l 



print bind map 

Name: print bind mao - - ~ 

The print bind map command displays all or part of 
of an object-segment generated by version number 4 
versions of the binder. 

the bind rna p 
or subsequent 

Usage 

print_bind_map path {components} {-control_args} 

where: 

1. path 
is the pathname of a bound object segment. 

2. components 
are the optional names of one or more components of this 
bound object and/or the bindfile name. Only the lines 
corresponding to these components are displayed. A 
component name must contain one or more nonnumeric 
characters. If it is purely numerical, it is assumed to 
be an octal offset within the bound segment and the lines 
corresponding to the component residing at that offset are 
displayed. A nurnerical component name can be specified by 
preceding it with the -name control argument (see below) e 

If no component names are specified, the entire bind map 
is d i spl ayed • 

30 control args' 
may be chosen from the following list: 

-long, -lg 
prints the components' relocation values (also printed in 
the default brief mode), compilation times, and source 
languages. 

-name STR, -nm STR 
is used to indicate that STR is really a component name, 
even though it appears to be an octal offset. 

-no header, -nhe 
- omits all headers, printing only lines concerning the 

components themselves. 

Not To Be Reproduced 8-4 F21 



print link info, Ell 

Name: print_Iink_info, pli 

The print link info command prints selected items of information 
for the specifIed object segrnents5 

Usage 

where: 

1. paths 

2. 

Note 

are the pathnames of object segments~ 

control args 
can be chosen from the following list. 
below .. ) 

(See "Note" 

-length, -In 
print only the lengths of the sections in pathl. 

-entry, -et 
print only a listing of the pathi external definitions, 
giving their symbolic na~es and their ~elative acd~esses 
within the segment. 

-link, -lk 

-long 

print only an alphabetically sorted listing of all the 
external symbols referenced by pathl. 

prints more info mation· when the header is pr inted ". 
Additional information includes a listing of source 
programs used to generate the object segment, the contents 
of the "comment" field of the symbol header (often 
conta ining campi 1 er options), and any unusual val ue s in 
the symbol header. 

-header, -he 
prints the header (The header is not printed by default, 
if the -length, -entry, or -link control argument is 
spec if i ed • ) 

-no header 
suppresses printing of the header. 

Control arguments can appear anywhere on the command line and 
apply to all pathnames. 

Not To Be Reproduced 8-5 F21 



print link info, Eli 

Example 

print_link_info program -long -length 

program 07/30/76 1554.2 edt Fri 

Object Segment >udd>Work>Wilson>program 
Created on 07/30/76 0010.1 edt Fri 
by Wi 1 so n . Wo r k e a 
using Experimental PL/I Compiler of Thursday, July 26, 1976 at 21:38 

Trans1 a to r: PL/r 
Commen t: map table optimize 
Source: 

07/30/76 001001 edt Fri >user dir dir>work>Wilson>s>s>program.pll 
12/15/75 1338.1 edt Mon >library dir dir>include>linkdcl.incl.pll 
06/30/75 1657.7 edt Mon >library-dir-dir>include>object info.incl.pll 
10/06/72 1206.8 edt Fri >library-dir-dir>include>source-map.incl.pll 
05/18/72 1512.4 edt Thu >library-dir-dir>include>symbo1-block.incl.p11 
01/17/73 1551.4 edt Wed >library=dir=dir>include>pll_symbol_block.incl.pll 

Attributes: re1ocatable,proce~ure,standard 

Start 
Leng th 

<ready> 

Qbj ect 
o 

11110 

Also printed is: 

Text 
o 

3450 

Oefs 
3450 

150 

Link 
3620 

36 

Severity, if lC is nonzero o 

Entrybound, if it is nonzero 0 

Text Boundary, if it is not 2e 
Static Boundary, if it is not 2. 

Not To Be Reproduced 8-6 

symb 
3656 
5215 

Sta tic 
3630 

o 

F21 



reslve linkage error, rle 

N3me 

The resolve linkage error command is invoked to satisfy the 
linkage fault after a process encounters a linkage error. The program 
locates the virtual entry specified as an argument and patches the 
linkage information of the process so that when the start command is 
issued the process continues as if the original linkage fault had 
located the specified virtual entry_ 

where virtual_entry is a Virtual entry specifier. 

Notes 

For an explanation of virtual entries, see the description of the 
cv_entry_ subroutine. 

Examples 

myprog 
Error: Linkage error by >udd>m>vv>myprogI123 
referencing subroutine$entry 
Segment not found. 
r 1234 2.834 123.673 980 level 2, 26 

rle mysub$mysub entry 
r 1234 0.802 23:441 75 level 2, 26 

start 
•.• myprog is running 

Not To Be Reproduced 8-7 F21 



trace stack, ts 

Name: trace_stack, ts 

The trace stack command prints a detailed explanation of the 
current process stack history in reverse order (most recent frame 
first) • For each stack frame, all available information about the 
procedure that established the frame (including, if possible, the 
source statement last executed), the arguments to that (the owning) 
procedure, and the condition handlers established in the frame are 
printedo For a description of stack frames, see "Multics Stack 
Segments" in Section!IV of the MPH Subsystem Writers' Guide. 

The trace stack command is most useful after a fault or other 
error condition: If the command is invoked after such an error, the 
machine registers at the time of the fault are also printed, as well 
as an explanation of the fault. The source line in which it occurred 
can be given if the object segment is compiled with the -table option. 

Usage 

trace stack {-control_args} 

where control_args can be selected from the following: 

-brief, -bf 
suppresses listing of arguments and 
control argument cannot be specified 
specified as a control argument. 

-long, -lg 
prints octal dump of each stack frame e 

-depth N, -dh N 
dumps only N frames. 

Output Format 

handlers. This 
if -long is also 

When trace stack is invoked, it first searches 
backward through the stack for a stack frame containing 
saved machine conditions as the result of a signalled 
condition. If such a frame is found, tracing proceeds 
backward from that point; otherwise, a comment is printed 
and tracing begins with the stack frame preceding 
trace stack. 

If a machine-conditions frame is found, trace stack 
repeats the system error message describing the fault. 
Unless the -brief control argument is specified, 
trace stack also prints. the source line and faulting 

Not To 8e Reproduced 8-8 F21 



trace stack, ts 

instruction and a listina of the machine registers at the 
time the error occurred. J 

The command then performs a backward trace of the 
stack, for N frames if the -depth N argument was 
specified, or else until the beginning of the stack is 
reached e 

For each stack frame, trace stack prints the offset 
of the frame, the condition name-if an error occurred in 
the frame, and the identification of the procedure that 
established the frame. If the procedure is a component of 
a bound segment, the bound segment name and the offset of 
the procedure within the bound segment are also printed. 

The trace stack command then attempts to locate and 
print the source line associated with the last instruction 
executed in the procedure that owns the frame (that is, 
either a call forward or a line that encountered an 
error) • The sour·ce 1 ine can be pr inted only if the 
procedure has a symbol table (that is, if it was compiled 
with the -table option) and if the source for the 
procedure is available in the user's working directory. 
If the source line cannot be printed, trace stack prints a 
comment explaining why. 

Next, trace stack prints the machine instruction last 
executed by the procedure that owns the current frame. If 
the machine instruction is a call to a PL/I operator, 
trace stack also prints the name of the operator. If the 
instruction is a procedure call, trace stack suppresses 
the octal printout of the machine instruction and prints 
the name of the procedure being called. 

Unless the -brief control argument is specified, 
trace stack lists the arguments supplied to the procedure 
that owns the current frame and also lists any enabled 
condition, default, and clean-up handlers established in 
the frame. 

If the -long control 
trace stack then prints an octal 
with eight words per line. 

Not To 8e Reproduced 8-9 

a rg urn en tis s pe c i f i ed , 
dump of the stack frame, 

F21 



trace stack, ts 

Example 

After a fault that reenters the user environment and 
reaches command level, the user invokes the trace stack 
command. 

For example, after quitting out of the list command, 
the following process history might appear: 

list 

Segments=8, Records=3 

rew 0 mailbox 
r w 
QUIT 

trace stack 
quit Tn ipc $blockl156 
(>system library l>bound command' loop 1156) 

No symbol table for ipe --
156 400010116100 -cmpq pr4!lO 

Machine registers at time of fault 

pro (ap) 263!4656 pll operators $operator tablel162 
(external symbol in separate nonstandard 

pr1 (ab) 
pr2 (bp) 
pr3 (bb) 
pr4 (lp) 

1031264 
14112200 
113\0 
25312250 

text section) 
scsl264 
as linkage\12200 
tc-data!O 
lBBBJGjFkPBWcNZ.area.1inkerI2250 

(internal staticlO for ipc ) 
stack 413614 -pr5 (lb) 

pr6 (sp) 
pr7 (sb) 

24413614 
244\3500 
24410 

stack-413500 -> "kcpMbLH +0000000") 
stack=410 

xO 73 xl o x2 0 x3 600000 
x4 0 xS 32 x6 3033 x7 4 
a 000000000000 q 000000000004 e 0 
Timer reg = 1746005, Ring alarm reg 

seu Data: 

'" - u 

4030 400270250011 000000000021 400270000000 000000672000 
000156000200 000154000700 002250370000 600044370120 

Co nn e c t Fa ul t (21) 
At: 270!156 ipc \156 (bound_command_1oop_1156) 
On: cpu a (#: 0) -
Indicators: "'bar 

Not To Be Reproduced 8-10 F21 



trace stack, ts 

APU Status: xsf, sd-on, Pt-on, fabs 
CU Status: rfi~ its, Eif . 
Instructions: 

4036 002250 3700 00 
4037 6 00044 3701 20 

epp4 
epp4 

2250 
pr6144,* 

Time stored: 08/02/77 1635.5 edt Tue (104541674361226602) 
Ring: 4 

Backward trace of stack from 24413500 

3500 quit ipc $blockl156 (bound command loop 1156) 
No symbol table for ipc - --

156 400010116100 -cmpq pr4110 
ARG 1: 25315704 !BBBJGjFkPBWcNZ.area .. linkerI5704 
ARG 2: 24413152 stack_4131S2 
ARG 3: 0 

2720 tty $tty get 1inel2442 (bound_iox_111546) 
No symbol table for tty 
call ext out to ipc $block 

ARG 1: 25314320 !BBBJGjFkPBWcNZ.area.linker\4320 
(internal staticl154 for find iocb) 

ARG 2: 24412660 stack_412660 ( -> "fo stuff") -
ARG 3: 128 
ARG 4: 0 
ARG 5: 0 

2400 listen $listen 1461 (bound command loop 11325) 
No symbol table for listen - --
call ext out to iox $get lIne 

- ARG 1: 1111 - -

on I'cleanup" call listen_1256 (bound_command_loop_11122) 

2100 process overseer $process overseer 1473 (bound_command_loop~1214 
No symbol table-for process overseer -
call ext out desc to listen-$listen -

- Argument list header invalid. 
on "any other" 

call standard default handler $standard default handler 3 
(external symbol in separate nonstandard text section) 

2000 user init admin $user init admin 136 (bound command loop 121676) 
No symbol table for user init-admin - - ~-

21676 700036670120 tsp4 pr7136,* alm call 
No arguments 0 

End of trace. 

Not To Be Reproduced 8-11 F21 



trace stack, ts 

r 1635 1.756 40.790 207 level 2, 9 

Not To 8e Reproduced 8-12 F21 



area status 

Name: area status 

The area status command is used to display certain information 
about an area. 

Usage 

area status area name [-control_args} 

where: 

1.. area name 
is a pathname specifying the segment containing the area 
to be looked at. 

2. control args 

Note 

can be chosen from the following: 

-trace 
displays a trace of all free and used blocks in the areao 

-offset N, -ofs N 
specifies that the area begins at offset N (octal) in the 
given segment. 

-long, -lg 
dumps the contents of each block in both octal and ASCII 
format. 

If the area has internal format errors, these are reported. The 
command does not report anything about (old) buddy system areas except 
that the area is in an obsolete format. 

Not To Be Reproduced A-I F2I 



cancel cobol program, ccp ---

Name: cancel_cobol_program, ccp 

The cancel cobol program command causes one or more programs in 
the current COBOL run unit to be cancellede Cancelling ensures that 
the next time the program is invoked within the run unit, its data is 
in its initial state e Any files that have been opened by the program 
and are still open are closed and the COBOL data segment is truncatedQ 
Refer to the run cobol command for information concerning the run unit 
and the COBOL runtime environment. 

Usage 

cancel_cobol_program names {-control_arg} 

where: 

1.. names 
are the reference names of COBOL programs that are active 
in the current run unit. If the name specified in the 
PROG-ID statement of the program is different from its 
associated namei argument, namei must be in the form 
refname$PROG-ID. 

2. control arg 

~otes 

may be -retain data or -retd to leave cne data segment 
associated with-the program intact for debugging purposes. 
(See "Notes" below.) 

The results of the cancel cobol program command and the execution 
of the CANCEL statement from within -a COBOL program are similar. The 
only difference is that if a namei argument is not actually a 
component of the current run unit, an error message is issued and no 
action is taken; for the CANCEL statement, no warning is given in such 
a case. 

To preserve program data for debugging purposes, the -retain data 
control argument should be used. The data associated witn the 
cancelled program is in its last used state; it is not restored to its 
initial state until the next time the program is invoked in the run 
unit .. 

Refer to the following related commands: 

Not To Be Reproduced A-2 F21 



cancel cobol program, ccp 
--~ 

display cobol run unit, dcr 
stop coool run, scr 
run_cobol,-rc 

Not To Be Reproduced A-3 F21 



create area 

Name: create area 

The create area command creates an a~ed and initializes it with 
user-specified area management control information. 

Usage 

create area virtual_ptr {-control_args} 

where: 

l~ virtual ptr 
Ts a virtual pointer to the area to be created. The 
syntax of virtual pointers is described in the cv ptr 
subroutine description. If the segment already exTsts~ 
the specified portion is still initialized as an area. 

2~ control args 
can be chosen from the following: 

-no freeing 
- allows the area management mechanism to use a faster 

allocation strategy that never frees. 

-dont free 
15 used during debugging to disable the free mechanism. 
This does not affect the allocation strategy. 

-zero on alloc 
Tnstructs the area management mechanism to clear blocks at 
allocation time. 

-zero on free 
Tnstructs the area management mechanism to clear blocks at 
free time~ 

-extend 
causes the area to be extensible, i~ee, span more than one 
segment. This feature should be used only for perprocess, 
temporary areas. 

-size N 
specifies the octal size, in words, of the area being 
created or of the first component, if extensible. If this 
control argument is omitted, the default size of the area 
is the maximum size allowable for a segment. 

-id STR 
specifies a string to be used in constructing the names of 
the components of extensible areas. 

Not To Be Reproduced A-4 



create data segment, cds 

Name: create_data_segment, cds 

The create data segment command translates a create data segment 
source program- (CDS program) into an object segment:- A-listing 
segment is optionally created. These results are placed in the user's 
working directory. This command cannot be called recursively. 

The source for create data segment programs is standard PL/I with 
the restriction that -the - program include a call to the 
create data segment subroutine. The create data segment subroutine 
creates a standard object segment from PL/I data structures passed to 
it as parameters. These data structures can be initialized with 
arbitrarily complex PL/I statements in the CDS program. (See the MPM 
Subroutines for a description of the create_data_segment_ subroutineo) 

Usage 

where: 

1 e pa th 
is the pa'thnarne of a CDS segment that is to be translated 
into an object segment. If patt does not have a cds 
suffix, one is asssumedG However, the cds suffix must be 
the last component of the name of the source segment. 

2.. control arg 

Note 

can be -list (-Is) to produce a source listing of the CDS 
program used to generate the data segment followed by 
object segment information (as printed by the 
print link info command described in the MPM Subsystem 
Writers' Guide) about the actual object segment created. 

Since the create data segment command invokes the PL/I compiler 
to first compile the ~DS segment, any errors that the compiler finds 
are reported by its standard technique. If any errors with a severity 
greater than 2 occur, the CDS run is aborted and an object segment is 
not created. 

Not To Be Reproduced A-5 F2l 



cumulative page trace,cpt 

Name: cumulative_page_trace, cpt 

The cwTlulative page trace command accumulates page trace data so 
that the total set of pages used during the invocation of a command or 
subsystem can be determined. The command accumulates data from one 
invocation of itself to the next$ Output from the command is in 
tabular format showing all pages that have been referenced by the 
user's process. A trace in the format of that produced by the 
page_trace command can also be obtainedG 

The cumulative page trace command operates by sampling and 
reading the system trace=array after invocation of a command and at 
repeated intervals. Control arguments are given to specify the 
detailed operation of the cumulative_page_trace command. 

The command line used to invoke the cumulative page trace command 
includes the command or subsystem to be traced as well as optional 
control arguments. 

Usage 

where: 

1.. command line 
is a character string to be interpreted by the command 
processor as a command line. If this character string 
contains blanks, it must be surrounded by quotes. All 
procedures invoked as a result of processing this command 
line are metered by the cumulative_page_trace command. 

2.. control args 
may be chosen from the following: 

-count, -ct 
prints the accumulated results, giving the number of each 
page and the number of faults for each page. 

-fl ush 
clears primary memory before each invocation of the 
command line and after each interrupt. This helps the 
user determine the number of page faults but increases the 
cost .. 

-interrupt N -int N 
interrupts execution every N virtual CPU milliseconds for 
page fault sampling. 

Not To 8e Reproduced 



Notes 

cumulative page trace,cpt 

-long, -lg 
produces output in long format, giving full pathnames. 

-loop N 
calls the command to be metered N times. 

-print, -pr 
prints the accumulated results, giving the number of each 
page referenced. 

-print linkage faults 
prints aTI accumulated linkage faults and calls to the 
hcs_$make_ptr entry point. 

-reset, -rs 
resets the table of accumulated data. If the table is not 
reset, data from the current use of cumulative page trace 
is added to that obtained earlier in the process. -

-short, -sh 
formats output for a line length of" 80. 

-sleep N 
waits for N seconds after each call to the command being 
metered. 

-timers 
includes all faults between signal and restart.-

-total, -tt 
prints the total number of page faults, the total number 
of segment faults, and the number of pages referenced for 
each segment. 

-trace linkage faults 
accumulates linkage faults information along with page and 
segment fault information. 

-trace path 
writes the trace on the segment named path using an I/O 
switch named cpt.out; cumulative_page_trace attaches and 
detaches this switch. 

At least one of three generic operations must be requested. They 
may all be combined and, if so, are performed in the following order: 
resetting the table of accumulated data, calling the command to be 
metered, applying the specified control arguments, and printing the 
results in the specified format. 

Not To Be Reproduced A-7 F21 



cumulative page trace,cpt 

The default mode of operation permits no interrupts for page 
fault sampling. If the command or subsystem to be metered will take 
more than several hundred page faults, linkage faults, or other system 
events that are indicated in the page trace array, it is recommended 
that interrupts be requested. If the user does not know a suitable 
value for the -interrupt control argument, the value recommended is 
400 milliseconds. If this figure is too large, messages indicate that 
some page faults may have been missed; a smaller value can then be 
chosen. The cost of a smaller value is high and may cause additional 
side effects. If the command or subsystem to be metered includes the 
taking of CPUT interrupts, then the -timers control argument should be 
given. This control argument causes some of the page faults of the 
metering mechanism to be included as well. 

Only one of the control arguments -print, -count, or -total may 
be given. Each of these control arguments produces printed output in 
a different format. If more than one format is desired, the command 
must be invoked once for each format. 

Examples 

The command line: 

cpt "pIl test" ~interrupt 400 -trace trace out 

calls the pll command to compile the program named test, requesting an 
interrupt every 400 milliseconds to obtain page trace information. 
Trace information is placed in a segment named trace out. 

The command line: 

cpt "list -pn >udd>Multics" -loop 2 -sleep 10· 

calls the list command twice, and sleeps for 10 seconds between calls. 

The command line: 

cpt -print 

prints the accumulated results of previous metering. 

Not To Be Reproduced "- 0 t"l.-O 



cv ptr 

Name~ CV otr 
-" 

The cv ptr subroutine converts a virtual pointer to a pointer 
valuec A virtual pointer is a character string representation of a 
pointer value. The types of virtual pointers accepted are described 
under "Virtual Pointers" below. 

Usage 

declare cv_ptr_ entry (char(*) f fixed!bin(35)) returns! (ptr); 

ptr value = cv_ptr_ (vptr, code); 

where: 

I .. vptr 

2. code 

3. ptr_ val ue 

is the virtual pointer to be converted. (Input) 
See "Virtual Pointers" below for more information. 

is a standard status code. (Ou.tput) 

is the pointer that results from the conversion. 
(Output) 

This entry point is called to terminate the segment that has been 
initiated by a previous call to cv ptr . 

Usage 

declare cv_ptr_$terminate (ptr) i 

where ptr value is the pointer returned by the previous call to 
cv ptr • tInput) 

Notes 

Pointers returned by the cv ptr subroutine cannot be used as 
entry pointers in calls to eu $gen caTI or cu $make entry value. The 
cv ptr subroutine constructs -the returned poInter to a segment in a 
way that avoids copying of the segment's linkage and internal static 
data into the combined linkage area. The cv entry subroutine is used 
to convert virtual entries to an entry value7 ~ 

Not To Be Reproduced A-9 F21 



cv ptr 

The segment pointed to by the returned ptr value is initiated 
with a null reference name. The cv ptr $terminate-entry point should 
be called to terminate this null reference name. 

Virtual Pointers 

The cv ptr subroutine converts virtual pointers that contain one 
or two components -- a segment identifier and an optional offset into 
the segment. Altogether, fourteen forms are accepted. They are shown 
in -the table below. 

In the table that follows, W is an octal word offset from the 
beginning of the segment. It may have a value from 0 to 777777 
inclusive. B is a decimal bit offset within the word. It may have a 
value from 0 to 35 inclusive. 

Not To 8e Reproduced A-IO 221 



Virtual 
Pointer 

pa th I W (8) 

pathlW 

pathl 

path 

ref nameSW 

ref nameS 

5 e 9 no 1 ~".f ( 8 ) 

segno I W 

segno I 

segno 

segno I entry_pt 

cv ptr 

Interpreta tion 

points to octal word W, decimal bit B of segment 
identified by absolute or relative pathname path. 

same as pathIW(O). 

same as pathIO(O). 

same as pathIO(O). 

points to word identified by entry point entry_pt 
in segment identified by path. 

points to word identified by entry point entrY pt 
in segment whose reference name is ref name. 

points to octal word W, decimal bit B of segment 
whose reference name is ref name. 

same as ref_name$W(O) e 

same as ref_name$O(O). 

points to octal word W, decimal bit a of segment 
~hose octal segment number is segnoc 

same as segnoIW(O). 

same as segno!O(O). 

same as segnoIO(O). 

points to word identified by entry point entry_pt 
in segment whose octal segment number is segno. 

A null pointer is represented by the virtual pointer 7777711, by -Ill, 
or by -1. 

Not To 8e Reproduced A-II F2l 



delete external variables 

Name: delete external variables 

The delete external variables command deletes from the user's 
name space specified variables managed by the system for the user. 
All links to those variables are unsnapped and their storage is freede 

Usage 

delete external variables names {-control_arg} 

where: 

1. names 
are the names of the external variables, separated by 
spaces, to be deleted. 

2. control arg 
~s -unlabeled common (or -uc) to indicate unlabeled (or 
blank) common .. -

Not To 8e Reproduced A-12 F21 



display cobol run unit, dcr 

The display cobol run unit command displays the current state of 
a COBOL run unit. The -minimal information displayed tells which 
programs compose the run unit. Optionally, more detailed information 
can be displayed concerning active files, data location, and other 
aspects of the run unit. Refer to the run cobol command for 
information concerning the run unit and the COBOL runtime environment. 

Usage 

display_cobol run unit {-control_args} 

where control_args may be chosen from the following list: 

Note 

-long, -lg 

-files 

causes more detailed information about each COBOL program 
in the run unit to be displayed. 

displays information about the current state of the files 
that have been referenced during the execution of the 
current run unit. 

-all, -a 
prints informatiod about all programs in the run unit, 
including those that have been cancelled. 

Refer _ to the following related ·commands: 

run cobol, rc 
stop cobol run, scr 
cancel_cobal_program, ccp 

Not To Be Reproduced A-13 F2l 



display pllio err, dpe 

Name: display_pllio_err I dpe 

The display pllio error command is designed to be invoked after 
the occurrence 01 an r70 error signal during a PL/I I/O operation. It 
describes the most recent file on which a PL/I I/O error was raised 
and displays diagnostic information associated with that type of 
error. 

Usage 

Example 

The command line: 

display_pllio_error 

might respond with the following display: 

Error on file afile 
Title: vfile afile 
Attributes: open input keyed record sequential 
Last i/o uperation attempted: write from 
Attempted "write" operation conflicts with file "input" attribute. 
Attempted "from" operation conflicts with file "input" attribute. 

Not To Be Reproduced A-14 F21 



dump segment, ds 

Name: dump_segment, ds 

The dump segment command prints, in octal or hexadecimal format, 
selected portIons of a segment. It prints out either four or eight 
words per line and can optionally be instructed to print out an edited 
version of the ASCII, BCD, EBCDIC (in 8 or 9 bits) I or 4-bit byte 
r epresen ta t io n. 

Usage 

dump_segment path {first} {n_words} {-control_args} 

where: 

1 e path 

2., first 

is the pathname or (octal) segment number of the segment 
to be dumped. If path is a pathname, but looks like a 
number, the preceding argument should be the -name (or 
-om) control argument (see below) • 

is the (octal) offset of the first word to be dumped. If 
.bc:h first and n words are omitted, the entire segment is 
d L:nped. 

3.. n words 
is the (octal) number of words to be dumped. If first is 
supplied and n words is omitted, 1 is assumed. 

4.. control args 
can ~e chosen from the following: 

-4bit 
prints out a translation of the octal or hexadecimal dump 
based on the Multics unstructured 4-bit byte. The 
translation ignores the first bit of each 9-bit byte and 
uses each of the two groups of four bits remaining to 
generate a digit or a signe 

-address, -add 

-bed 

prints the address (relative to the base of the segment) 
with the data. This is the defaulte 

prints the BCD representation of the words in addition to 
the octal or hexadecimal dump. There are no nonprintable 
SCD characters, so periods can be taken literally. 

-block N, -bk N 
dumps words i~ blocks of N words separated by a blank 

Not To Be Reproduced A-IS F2l 



dump segment, ds 

line. The offset, if being printed, is reset to initial 
value at the beginning of each block. 

-character, -ch, -ascii 
prints the ASCI! repr~sentation of the words in addition 
to the octal or hexadecimal dump. Characters that cannot 
be printed are represented as periods. 

-ebcdic9 
prints the EBCDIC representation of each 9-bit byte in 
addition to the octal or hexadecimal dumpc Characters 
that cannot be printed are represented by perioDSe 

-ebcdic8 
prints the EBCDIC representation of each eight bits in 
addition to the octal or hexadecimal dump. Characters 
that cannot be printed are represented by periods. If an 
odd number of words is requested to dump, the last four 
bits of the last word do not appear in the translationc 

-header, -he 

-hex8 

-hex9 

prints a header line containing the pathname t~r segment 
number) of the segment being dumped as well as the 
date-time printed. The default is to print a header only 
if the entire segment is being dumped, i.,e., r.-=:ither the 
first nor the n words arguments is specified. 

prints the dumped words 
hexadecimal digits per word 
octal digits per word. 

in hexadecimal ~ith nine 
r~ther than octal ~ith 12 

prints the dumped words in hexadecimal wit~ eight 
hexadecimal digits per word rather than 12 octal digits 
per word. Each pair of hexadecimal digits corresponds to 
the low-order eight bits of each 9-bit byte. 

-long, -lg 
prints eight words on a linec Four is the def~ult. This 
control argument cannot be used with -character, -bcd, 
-4bit, -ebcdicS, -ebcdic9, or -short. (Its use with these 
control arguments, other than -short, results i~ a line 
longer than 132 characters.) 

-name, -nm 
indicates that the following argument is a pathname even 
though it may look like an octal segment number. 

-no address, -nad 
- does not print the address. 

Not To Be Reproduced A-16 F21 



dump segment, ds 

-no header, -nhe 
- suppresses printing of the header line even though the 

entire segment is being dumped. 

-no offset, -nofs 
- does not print the offset. This is the default. 

-offset N, -ofs N 
prints the offset (relative to N words before the start of 
data being dumped) along with the data. If N is not 
given, 0 is assumed. 

-short, -sh 
compacts lines to fit on a terminal with a short line 
length. Single spaces are placed between fields, and only 
the two low-order digits of the address are printed, 
except when the high-order digits change.' This shortens 
output lines to less than 80 characters. 

Note 

Only· one of the control arguments: -ebcdic8, 
-ebcdic9, -character, -bcd, or -4bit can be specified. 

Not To Be Reproduced A-17 F21 



io call, io 

Name: io _ call, io 

The io call command performs an operation on a designated I/O 
switch .. 

Usage 

io call opname switchname {args} 

where: 

1.. opname 
designates the operation to be performed .. 

2.. swi tchname 
is the name of the I/O switch. 

3. args 
may be one or more arguments, depending on the particular 
operation to be performed. 

The opnames permitted, followed by their alternate forms where 
applicable, are: 

attach 
close 
control 
delete record, delete 
detach-iocb, detach 
destroy locb 
find ioeb 
get chars 
get-line 
modes 
move attach 

look iocb 
open 
posi tion 
print iocb 
put chars 
read key 
read-length 
read-record, read 
rewrite record, rewrite 
seek key 
write_record, write 

Usage is explained below under a 
designated operation. The explanations 
rather than alphabetically. 

separate heading for each 
are arranged functionally 

Unless otherwise specified, if a control block for the I/O switch 
does not already exist, an err~r message is printed on error_output 
and the operation is not performed. If the requested operation is not 
supported for the switch's attachment and/or opening, an error message 
is printed on error_output. 

Not To Be Reproduced A-I8 F21 



io call, io 

The explanations of the operations cover only the main points of 
interest and, in general, treat only the cases where the I/O switch is 
attached to a file or device. For full details see the descriptions 
of the iox subroutine and the I/O modules in the MPM Subroutines and 
Section V,-"Input and Output Facilities," in the MPM Reference Guidee 

Operation: attach 

io call attach switchname modulename {args} 

where: 

1.. modulename 
is the name of the I/O module to be used in the 
attachmento If modulename contains less-than ( < ) or 
greater-than (> ) characters, it is assumed to be a 
pathname, o therwi se, it is a reference name. 

2. arg s 
may be one or more arguments, depending on what is 
permitted by the particular I/O module. 

This command attaches the I/O switch using the designated I/O 
modula. The attach de5~ription is the concatenation of modulename and 
args separated by blanks. The attach description must conform to the 
requirements of the I/O module. If the I/O modulename is specified by 
a pathname, it is initiated with a reference name equal to the 
entryname. If the entryname or reference name does not contain a 
dollar sign ($), the attachment will be made by calling 
modulename$modulenameattach. If a dollar sign is specified, the entry 
point specified is called. See "Entry Point Names" in the MPM 
Reference Guide. 

If a control block for the I/O switch does not already exist, one 
is created. 

Operation: detach_iocb, detach 

io call detach switchname 

This command detaches the I/O switch. 

Not To Be Reproduced A-19 F21 



io call, io 

Operation: open 

io call open switchname mode 

where mode is one of the following opening modes, which may be 
specified by its full name, or by an abbreviation: 

stream input, si 
stream-output, so 
stream-input output, sio 
C:.Q('f11 Qnl=i ~1 inrHli-' <::rd 
..... -~.....-:.- .... ---- _ • .0£:' ........ , """'-l-

sequential-output, sqo 
sequential-input output, sqio 
sequential:update, squ 

keyed sequential input, ksqi 
keyed-sequential-output, ksqo 
keyed-sequential-update, ksqu 
~irQt""1= innl1+- ~1-
~ .. --- ...... '- ...... 4.t""''Irooodo,...f ......... 

direct-output, do 
direct:update, du 

This command opens the I/O switch with the specified opening 
mode. 

Operation: close 

io call close switchname 

This command closes the I/O switch. 

Operat~on: get_line 

i 0 c a 11 ge t _1 in e s wit c hn am e {N } { - con t r 0 I_a r g s } 

where: 

1. N 
is a decimal number greater than zero specifying the 
maximum number of characters to be read. 

2. control args 
can be selected from the following: 

-segment path {offset}, -sm path {o~fset} 

-nnl 

specifies that the line read from the I/O switch is to be 
stored in the segment specified by path, at the location 
specified by offset. 

specifies that the newline character, if present, is 
deleted from, the end of the line. 

Not To Be Reproduced A-20 F21 



-nl 

io call, io 

specifies that a newline character is added to the end of 
the line if one is not present. 

-lines 
specifies that the offset, if given, is measured in lines 
rather than characters. This control argument only has 
meaning if the -segment control argument is also 
specified. 

This command reads the next line from the file or device to which 
the I/O switch is attached. If N is given, and the line is longer 
than N, then only the first N characters are reade 

If the -segment control argument is not specified, the line read 
is written onto the .I/O switch user output, with a newline character 
appended if one is not present and -nnl has not been specifiedo 

If the -segment control argument is specified, the line is stored 
in the segment specified by path. If this segment does not exist, it 
is created. If offset is specified, the line is stored at that 
position relative to the start of the segment. This is normally 
measured in characters, unless -lines has been used. If offset is 
omitted, the line is appended to the end of the segment. The bit 
count of the segment is always updated to a point beyond the newly 
added data. 

Operation: get_chars 

io call get_chars switchname N {-control_args} 

where: 

l~ N 
is a decimal number greater than zero specifying the 
number of characters to read. 

2. control args 
can be selected from the same list as described under the 
get_line operation. 

This command reads the next N characters from the file or device 
to which the I/O switch is attached. The disposition of the 
characters read is the same as described under the oet line ooeration; 
that is, they are written upon user output if the =segment controi 
argument is not specified, or stored in a segment if the -segment 
control argument is specified. 

Not To Be Reproduced A-21 F21 



io call, io 

Operation: put_chars 

io call put_chars switchname {string} {-control_args} 

where: 

1. str ing 
may be any character string. 

2. control args 
-;::~ ... j..."" ~o'o,,",~o,:j ;: ......... '" +-1-.0 ;: ..... ",...'.7; ... ""'. 
"""-"" t..I~ ~""" .. ~"""''-o;;;;'-' ~l.V,U' '-J.J,-';;;;; J..v •• ....,T'I' • .l.4':1. 

-segment path {length}, -segment path {offset} {length}, 
-sm path {length}, -sm path {offset} {length} 

-nnl 

-n1 

specifies that the data for the output operation is to be 
found in the segment specified by pathname. The location 
and length of the data may be optionally described with 
offset and length parameters. 

specifies that a newline character is not to be appended 
to the end of the output string. 

specifies that a 
end of the output 

newline character is to be 
line if one is not present. 

added to the 

-lines 
specifies that offsets and lengths are measured in lines 
instead of characters. 

The string parameter and the -segment control argument are 
mutually exclusive. If a string is specified, the contents of the 
string are the data output to the I/O switch. If the -segment control 
argument is specified, the data is taken from the segment specified by 
path, at the offset and length given. If offset is omitted, the 
beginning of the segment is assumed. If length is omitted, the entire 
segment is output. 

If the I/O switch is attached to a device, this command transmits 
the characters from the string or the segment to the device. If the 
I/O switch is attached to an unstructured file, the data is added to 
the end of the file. The -nl control argument is the default on a 
put chars operation: a newline character is added unless one is 
already present, or the -nnl control argument is specified. 

Not To Be Reproduced A-22 F21 



io call, io 

Operation: read_record, read 

io call reaq_record switchname N {-control_args} 

where: 

1.. N 
is a decimal integer greater than zero specifying the size 
of the buffer to use. 

2.. control args 
can be selected from the same list as described under the 
get_line operation. 

This command reads the next record from the file to which the I/O 
switch is attached into a buffer of length N. If the -segment control 
argument is not specified, the record (or the part of it that fits 
into the buffer) is printed on user output. If the -segment control 
argument is specified, the record is- stored in a segment as explained 
under the get_chars operatione 

Operation: write record, write 

io call write record switchname {string} {-control_args} 

1.. str ing 
is any character string. 

2e control args 
may be selected from the same list as described under the 
put_chars operation. 

This command adds a record to the file to which the I/O switch is 
attached. If the string parameter is specified, the record is equal 
to the string. If the -segment control argument is specified, the 
record will be extracted from the segment as described under the 
put_chars operation. In either case, the -nnl control argument is the 
default: a newline character is added only if the -nl control 
argument is specified. If the file is a sequential file, the record 
is added at the end of the file. If the file is an indexed file, the 
record's key must have been defined by a preceding seek_key operation. 

Not To 8e Reproduced A-23 F2l 



io call, io 

Operation: rewrite_record, rewrite 

io call rewrite record switchname {string} {-control args} - . 

where: 

1.. string 
is any character string. 

2.. control args 
may be selected from the same list as described under the 
put_chars operation. 

This command replaces the current record in the file to which the 
I/O switch is attached. The new record is either the string 
parameter, or is taken from a segment, as described under the 
write record operation. The current record must have been defined by 
a preceding read_record, seek_key, or position operation as follows: 

read record 
current record is the last record read. 

seek key 
- current record is record with the designated kay. 

posi tion 
current record is the record preceding the record to which 
the file was positionede 

Operation: delete_record, delete 

io call delete record switchname 

This command deletes the current record in the file to which the 
I/O switch is attached. The current record is determined as in 
rewrite record above. 

Not To 8e Reproduced 



10 call, 10 

Operation: position 

where 

io call position switchname type 

type may be one of the following: 

bof 
sets po si tion to beginning of file 

eof 
sets posi tion to end of file 

for war d N, fwd N, f N 
sets position forward N records or lines (same as reverse 
N) 

reverse N, rev N, r N 

other 

sets position back N records (same as forward -N records) 

any other numeric argument or pair of numeric arguments 
may be specified, but its function depends on the I/O 
module being used and may not be implemented for all I/O 
modules. 

This command positions the file to which the I/O switch is 
attached. If type is bof, the file is positioned to its beginning, so 
that the next record is the first record (structured files); or so 
th a t th e n ex t by t e i s the fir s t by t e (un s t r uc t u red f i I e s). If type i s 
eo£, the file is positioned to its end;" the next record (or next byte) 
is at the end-of-file position. If type is forward or reverse the 
file is positioned forwards or backwards over records (structured 
files) or lines (unstructured files). The number of records or lines 
skipped is determined by the absolute value of N. 

In the case of unstructured files, the next byte position after 
the operation is at a byte immediately following a newline character 
(or at the first byte in the file or at the end of the file); and the 
number of newline characters moved over is the absolute value of N. 

If the I/O switch is attached to a device, only forward skips 
(where type is forward) are allowed. The effect is to discard the 
next n lines input from the device. 

Not To Be Reproduced A-25 F2l 



io call, io 

Operation: seek_key 

io call seek_key switchname key 

where key is a string of ASCII characters with O!~!length!~!256$ 

This command positions the indexed file to which the I/O switch 
is attached to the record with the given key. The record's length is 
printed on user_output. Trailing blanks in the key are ignored. 

If the file does not contain 
becomes the key for insertion. 
adds a record with this key. 

a record with the specified key, it 
A following write record operation 

Operation: read_key 

io_call read_key switchname 

This command prints, on user output, the key and record length of 
the next re~ord in the indexed file to which the I/O switch is 
attached. The filets position is not changed. 

Operation: read_length 

io_call read_length switchname 

This command prints, on user output, the 
record in the structured file to which the I/O 
The file's position is not changed. 

Not To Be Reproduced A-26 

length of the next 
switch is attached. 

F21 



io call, io 

Operation: control 

io call control switchname order {args} 

where: 

1. order 
is one of the orders accepted by the I/O module used in 
the attachment of the I/O switch. 

2 e arg s 
are additional arguments dependent upon the order being 
issued and the I/O module being usedo 

This command applies only when the I/O switch is attached via an 
I/O module that supports the control I/O operation. The exact format 
of the command line depends on the order being issued and the I/O 
module being used. For more details, refer to "Control Operations 
from Command Level" in the appropriate I/O module in the MPM 
Subroutines. If the I/O module supports the control operation and the 
paragraph just referenced does not appear, it can be assumed that only 
control orders that do not require an info structure can be performed 
with the io call command, as a null into otr is used. (See the 
description of the iox $control entry point and the I/O module's 
......... ... _ ..... , - - .&..': - - 1....:... 1.. 7 t L ............. I - t . -.) 
;...vn ...... v~ vtJera ... j,,\.,nl., UO:"d!on ile !WU:'l~l ;:'UoroLl lne~. 

Ooeration: modes 

io call modes switchname {string} {-control_arg} 

whe r e: 

1. string 
is a sequence of modes separated by commas. 
must not contain blanks. 

2. control arg 
may be -brief or -bf. 

The string 

This command applies only when the I/O switch is attached via an 
I/O module that supports modes. The command sets only new modes 
specified in string, and then prints the old modes on user output. 
Printing of the old modes is suppressed if the -brief control argument 
is used. 

Not To Be Re?roduced A-27 F21 



io call, io 

If the switch name is user i/o, the command refers to the modes 
controlling the user's termina17 See the I/O module tty subroutine 
description in the MPM Subroutines for an explanation Ot applicable 
modese 

Operation: find iocb 

io call find iocb switchname 

This command prints, on user outout. 
block for the I/O switch. If it-does not 
block is created. 

the location of the control 
already exist, the control 

Operation: look iocb 

io call look iocb switchname 

This command prints, on user output, the location of the control 
block for the I/O switcho If the- I/O switch does not exist, an error 
is printed. 

Operation: move attach 

io call move attach switchname switchname2 

where switchname2 is the name of a .second I/O switch. 

This command moves the attachment of the 
(switchname) to the second I/O switch (switchname2). 
switch is left in a detached state. 

Operation: destroy_iocb 

io_call destroy_iocb switchname 

first I/O switch 
The original I/O 

This command destroY7 t~e I/O switch by deleting its control 
blocko The switch must be In a detached state before this command is 
usedo Any pointers to the I/O switch become invalid. 

Operation: print_iocb 

io_call print_iocb switchname 

Not TO Be Reproduced A-28 F21 



io call, fa 

This command 
control block for 
variables .. 

prints, on user output, all of the data in the 
the I/O switch, -including all pointers and entry 

S~mmary of Operations 

Usage: io 
Usag e: 10 
Usag e: io 
Usag e: io 
Usage: io 
Usag e: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: io 
Usage: ~ ,.. .... ..., 
Usage: io 
Usage: io 

".vhere: 

1.. swi tchname 

attach switchnarne modulename {args} 
detach switchname 
open switchname mode 
close switchname 
get line switchname {N} {-control args} 
get-chars switchname N {-control args} 
put-chars switchname {string} {-control args} 
read record switchname N {-control argsT 
write record switchname {string} {~control args} 
rewrite record switchname {string} {-control args} 
delete record switchname -
position switchname type 
seek key switchname key 
read-key switchname 
read-length switchnarne 
control switchname order {args} 
modes switchname [string} {-control arg} 
find iocb switch~ame -
look-iocb switchname 
~ove-attach switchname 5witchname2 
destroy iocb switchname 
print locb switchnarne 

is the name of the I/O ~witch. 

2. modulename 
is t~e name of I/O module used in the attachment. 

3. arg s 
are any arguments accepted by the I/O module used in the 
a ttachmen t .. 

Not To Be Reproduced A-29 F2l 



4 e mode 

c: 1o.t 
..J • L'f 

6. string 

7.. type 

8.. key 

9" order 

io call, io 

is one of the following modes: 

stream input, si 
stream-output, so 
stream-input output, sio 
sequential input, sqi 
sequential-output, sqo 
sequential-input output, sqio 
sequential:update, squ 

is a decimal number. 

is any character string. 

keyed sequential input, ksqi 
keyed-sequential-output, ksqo 
keyed-sequential-update, ksqu 
direct input, di
direct-output, do 
direct:update, du 

sets the file position. It can be: 

bof 
ecf 
other 

forward N 
reverse N 

is a string of ASCII characters with O!~tlengthl~!256. 

is one of the orders accspted by the I/O module used in 
the attachment of the I/O switch. 

lOe control args 
can be chosen from the following: 

-segmen t pa th {leng th} 1 -sm pa th {leng th} 
-segment path {offset}, -sm path {offset} 
-segment path {offset} {length}, -sm path {offset} {length} 
-nn1 
-01 
-lines 
-brief, -bf 

Not To Se Reproduced A-30 F2I 



list external variables 

Name: list external variables 

The list external variables command prints information about 
variables managed by the system for the user, including FORTRAN common 
and PL/I external static variables whose names do not contain d~llar 
signs. The default information is the location and size of each 
specified variable. 

Usage 

list external variables names {-control_args} 

where: 

1., names 
are names of external variables, separated by spaces. 

2. control args 
~an be chosen from the following: 

-unlabeled common, -uc 
is the name for unlabeled (or blank) common. 

-long, -lg 
prints how and when the variables were allocated. 

-all, -a 
prints information for each 
manag ing. 

vari~ble the system is 

-no header, -nhe 
- suppresses the header. 

Not To Be Reproduced A-31 F21 



list temp segments 

Name: list_temp_segments 

The list temp segments command lists the segments currently in 
the temporary -segment pool associated with the user's process. This 
pool is managed by the get temp segments and release_temp_segments~ 
subroutines (described in the MPM~Subroutines) • 

Usage 

whe r e: 

1" names 
is a list of names identifying the programs whose temp 
segments are to be listed. 

2., control arg 
15 -all (or -a) to list all temporary segmentso If the 
command is issued with no control argument, it lists only 
those temporary segments currently assigned to some 
program. 

Examples 
e 

To list all the segments currently in the pool, type: 

1 i s t _ t e m p _ s eg men t s - a·ll 

5 Segments, 2 Free 

!888Cdfghgffkkkl.temp.0246 
!8BBCdffddfd££kl.temp.0247 
!8B8Cddffdfffhhh.temp.0253 
!8BBCdgdgfhfgfsfotemp.0254 
!B88Cvdvfgvdgvvv.temp.032l 

work 
work 
(free) 
(free) 
editor 

To list the segments currently in use, type: 

list_temp_segments 

3 Segmen ts 

!B88Cdfghgffkkkl.temp.0246 
lBB8Cdffddfdffkl.temp.0247 
!888Cvdvfgvdgvvv.temp.0321 

!lIork 
work 
ed ito r 

Not To Be Reproduced A-32 F2l 



list temp segments 

To list segments used by the program named editor, type: 

list_temp_segments editor 

1 segment 

!BBBCvdvfgvdgvvv.ternp.032l editor 

Not To Be Reproduced A-33 F21 



page trace, pgt 

Name: page_trace, pgt 

rne page crace command prints a recent history of page faults and 
other system events within the calling process. 

Usage 

where: 

1. N 
prints the last N system events (mostly page faults) 
recorded for the calling process. If N is not specified, 
then all the entries in the system trace list for the 
calling process are printed. Currently, there is room for 
approximately 350 entries in the system trace array. 

2. control args 

Output 

can be chosen from the following: 

-from STR, -fm STR 
searched the trace array for a user marker matching STR. 
If one is found, printing begins with it; otherwise, 
printing begins with the first element in the array_ 

-long, -lg 
prints full pathnames where appropriate. 
to print only entrynames. 

-no header, -nhe 

The default is 

- suppresses the header that names each column. The default 
is to print the header. 

-output switch swname, -as swnarne 
writes all output on the I/O switch named swname, which 
must already be attached and open for stream output. The 
default is to write all output on the user_output I/O 
switch. 

-to STR 
stops printing if a user marker marching 
The default is to print until the end of 
both -from and ~to are specified, the 
assumed to occur before the to marker. 

STR is found. 
the array_ If 

from marker is 

Not To Be Reproduced A-34 



page trace, pgt 

The first column of output describes the type of trace entry. An 
empty column indicates that the entry is for a page fault. The second 
column of output is the real time, in milliseconds, since the previous 
entry's event occurred. The third column (printed for page faults 
only) is the ring number in which the page fault occurred. ~he fourth 
column of output contains the page number for entries, where 
appropriate. The fifth column gives the segment number for entries, 
where appropriate. The last column is the entryname (or pathname) of 
the segment for entries, where appropriate. 

Notes 

Since it is oossible for segment numbers to be reused within a 
process, and since-only segment numbers (not entrynames or pathnarnes) 
are kept in the trace array, the entrynames and pathnames associated 
with a trace entry may be for previous uses of the segment numbers, 
not the latest ones. In fact, the entry and pathnames printed are the 
current ones appropriate for the given segment number. 

For completeness, events occurring while inside the supervisor 
are also listed in the trace. The interpretation of these events 
sometimes requires detailed knowledge of -the system structure; in 
particular, they may depend on activities of other users. For many 
purposes, the user will find it appropriate to identify the points at 
which he enters and leave~ the sUPervisor and ignore the events in 
between" 

Typically, any single invocation of a program does not induce a 
page fault on every page touched by the program, since some pages may 
still be in primary memory from previous uses or use by another 
process. It may be necessary to obtain several traces to fully 
identify the extent of pages used. 

A count value (N) and either the -from or -to control aroument 
cannot be specified in the same invocation of the page trace command. - -

Not To 8e Reproduced A-35 F21 



print bind map 

Name: print_bind_map 

The print bind map command displays all or part of 
of an object-segment generated by version number 4 
versions of the binder c 

the bind map 
or subsequent 

Usage 

print_bind map path {components} {-control_args} 

where: 

1. path 
is the pathname of a bound object segment. 

2. components 
are the optional names of one or more components of this 
bound object and/or the bindfile name. Only the lines 
corresponding to these components are displayed. A 
component name must contain one or more nonnumeric 
characters. If it is purely numerical, it is assumed to 
be an octal offset within the bound segment and the lines 
corresponding to the component residing at that offset are 
displayed. A numerical component name can be specified by 
preceding it with the -name control argument (see below) • 
If no component names are specified, the entire bind map 
is displayed. 

3. control args 
may be chosen from the following list: 

-long, -lg 
prints the components' relocation values (also printed in 
the default brief mode) 1 compilation times, and source 
languages. 

-name STR, -nm STR 
is used to indicate that STR is really a component name, 
even though it appears to be an octal offset. 

-no header, -nhe 
- omits all headers, printing only lines concerning the 

components themselves. 

Not TO 8e Reproduced A-36 F21 



print link info, pli 

The print link info command prints selected items of information 
for the specified oOject segments. 

Usage 

print_link info paths {-control_args} 

where: 

1.. paths 

2., 

Note 

are the pathnames of object segments. 

control args 
can be chosen from the following list. (See "Note" 
below .. ) 

-length, -In 
print only the lengths of the sections in pathi. 

-entry, -et 
print only a listing of the oathi external definitions, 
giving their symbolic names and their rel'ative addresses 
withi~ the segment., 

-link, -lk 

-long 

print only an alphabetically sorted listing of all the 
external symbols referenced by pathl. 

prints more information when the header is printed. 
Additional information includes a listing of source 
programs used to generate the object segment, the contents 
of the 11 commen tIt fi eld of the symbol he ad er (often 
containing compiler options), and any unusual values in 
the symbol header. 

-header, -he 
prints the header (The header is not printed by default, 
if the -length, -entry, or -link control argument is 
spec i f i ed • ) 

-no header 
suppresses printing of the header. 

Control arguments can appear anywhere on the command line and 
apply to all pathnames. 

Not To Be Reproduced A-37 F2l 



print link info, pli 

Example 

print_link_info program -long -length 

program 07/30/76 1554c2 edt Fri 

Object Segment >udd>Work>Wilson>program 
Created on 07/30/76 0010.1 edt Fri 
by Wilson.Work.a 
using Experimental PL/I Compiler of Thursday! July 26, 1976 at 21:38 

Translator: 
Commen t: 
So uree: 

07/30/76 0010.1 
1 2/1 5/75 1 338 .. 1 
06/30/75 1657 e 7 
10/06/72 1206.8 
o 5 /1 8 /7 2 1 51 2 • 4 
o 1 /1 7 /7 3 1 551 .. 4 

Attributes: 

Start 
Length 

<ready> 

Obj ect 
o 

11110 

Also printed is: 

PL/I 
map table optimize 

edt Fri >user dir dir>work>Wilson>s>s>program.pll 
edt Mon >libraryair dir>include>linkdel.inel.pll 
edt Mon >library-dir~dir>include>object_info .. incl .. pll 
edt Fri >library-dir-dir>include>source map.incl.pll 
edt Thu >library-dir-dir>include>symbol~block.incl.pll 
edt Wed >library-dir-dir>include>pll symbol blockoincl.pll 

relocatable,procedure,standard - -

Text 
o 

3450 

Defs 
3450 

150 

Link 
3620 

36 

Symb 
-,~rm"" 
':>0;:)0 

5215 

Static 
3630 

o 

Severity, if it is nonzero. 
Entrybound, if it is nonzero. 
Te x t Bo und a r y, i fit i s not 2. 
Static Boundary, if it is not 2. 

Not To Be Reproduced A-38 F21 



print linkage usage, plu 

Name: print linkage usage, plu - - - -
The print linkage usage command lists the locations and size of 

linkage and static sections allocated for the current ring. This 
information is useful for debugging purposes or for ana1ysis of how a 
process uses its linkage segments. 

A linkage section is associated with every procedure segment and 
every data segment that has definitions. 

Usage 

Note 

For standard procedure segments, the information printed includes 
the name of the segment, its segment number, the offset of its linkage 
section, and tne size (in words) of both its linkage section and its 
internal static storage. 

Not To Be Reproduced A-39 F21 



probe, pb 

Name: probe, pb 

The probe command provides symbolic, interactive aeougglng 
facilities for programs compiled with PL/I, FORTRAN, or -COBOL. Its 
features permit a user to interrupt a running program at a particular 
statement, examine and modify progr~m variables in their initial state 
or during execution, examine the stack of block invocations, and list 
portions of the source program. External subroutines and functions 
may be invoked, with arguments as required, for execution under probe 
control. The probe command may be called recursively_ 

Usage 

probe {procedure_name} 

where procedure name is an optional argument that gives the symbolic 
name of an entry to the procedure or subroutine that is to be examined 
with probe. It can take the form reference name$offset namee If no 
procedure name argument is specified, the procedure owning the frame 
in which-the last condition was raised is assumed, if o,ne exists; 
otherwise, an error is reported. 

Overview of Processing 

The probe command is generally used to examine an active program 
at points where execution has been suspended by one of the following: 

1. Breakpoint. Execution is temporarily halted at a point 
selected by the user and probe entered directly. Debugging 
requests associated with the breakpoint are automatically 
carried out and/or requests issued from the user's terminal. 
Program execution can be resumed at the point of 
interruption. 

2., Error. An error such as zerodivide or subscriptrange can 
interrupt program execution. After an error message is 
printed, a new command level is established. The user can 
then call probe to examine the state of the program. 

3. Quit signal. A run-away or looping program can be stopped 
by issuing a quit signal. A new command level is 
established and the user can call probe to determine the 
source of the problem. 

In all of these cases, variables of all storage classes 
(including automatic) are accessible. 

Not To Be Reproduced A-40 



probe, pb 

The probe command can also be used to examine a nonactive program 
one that has never been run or that has completed execution -- by 

specifying a procedure name argument in the command line. In this 
case, the user can examine static variables and the program source. 
However, the most common use is to set breaks before 3ctually running 
the program. 

A program to be debugged with probe must have a standard symbol 
table that contains information about variables defined in the program 
and a statement map that gives the correspondence between source 
statements and object code. A symbol table and statement map are 
produced for the languages supported if the -table control argument is 
given at compilation. (A program may also be compiled with the 
-brief table control argument, which produces only a statement map9 
The variables of a program compiled in this way cannot be examined 
with probe; however, the user may retrieve information about source 
statements and where the program was interrupted and also may set 
breakpoints at particular statements.) 

Information about programs being debugged is stored by probe in a 
segment in the user's home directory called Person id.probe where 
Person id is the user's log-in name. This segment is created 
automatically when needed. 

Probe Pointers 

Three internal "pointers" are used by probe to keep track of the 
program's state. They are: 

source pointer 
block pointer 
control pointer 

indicates the current source-program statement 
indicates the current block 
indicates the current control point 

These values are affected by certain probe requests. A user can, 
for example, position the source pointer to a particular statement, 
then list a portion of the source program beginning at that point. 

The block pointer serves two purposes. It identifies the 
procedure, subprogram, or begin block whose variables are to be 
examined. Further, it specifies the stack frame associated with the 
block and is used to distinguish among different occurrences of an 
automatic variable in a recursively invoked procedure. The control 
pointer marks the point at which a program is suspended. 

The initial values of these pointers are determined as described 
below. If a procedure name argument is given in the command line and 

Not To Be Reproduced A-4l F2l 



probe, pb 

if the designated program is active, the control and source pointers 
are set to the last statement executed, and the block pointer is set 
to the most recent invocation of the procedure. It the designated 
program is not active, then the control and source pointers are set to 
the entry statement, and the block pointer to the outermost block (but 
with no active frame). 

If no procedure name argument is given and the default rule 
applies (i.e., a conaition has been raised), then the procedure in 
which the condition was raised is used. The source and control 
pointers are set to the statement where the condition was raised, and 
the block pointer- to the block containing that statement. 

Similarly; when probe is entered because of a breakpoint 
encountered during the execution of a program, the source and control 
pointers are set to the statement at which the break has been set; and 
the block pointer to the block containing that statement. 

Breakpoints 

A breakpoint causes a temporary interruption of program 
execution, during which debugging operations can be pe~formed. Using 
probe requests, a user can set a" breakpoint before or after any 
statement and can associate a list of probe requests with the break. 
A break set after a statement may, in some cases, not be executed due 
to the nature of the code generated for that statement. When the 
break is encountered during execution, probe is entered and the list 
of requests interpreted automatically. These requests might, for 
example, display the value of a -variable or alter its value 
(effectively allowing source level patching of the program), tell what 
line was just executed, or cause probe to read a list of requests from 
the terminal to permit the user to interactively examine the state of 
his program. When the request list associated with the break is 
exhausted, the execution of the program is resumed from the point at 
which it was interrupted. 

The implementation of a breakpoint by probe consists of patching 
a call to the probe command into the appropriate location in the 
object seg~ent of the program. As a result, there need not be an 
active invocation of probe for a break to occur; also, breakpoints may 
be set in a program before it is run, while the program is suspended 
by another break, or before a program interrupted by a quit signal or 
error condition has been restarted. 

Not To Be Reproduced A-42 F21 



probe, pb 

Probe Requests 

A probe request consists of 
specifies the desired function 
particular request~ 

a keyword (or its abbreviation) that 
and any arguments required by the 

A series of requests may be given in the form of a reauest list. 
Here, individual requests are separated by semicolons ·or newline 
characters. 

A single request or a parenthesized request list may be preceded 
by a conditional predicate whose value determines if and when the 
requests it modifies will be executed s 

The following pages present the format and function of each probe 
request. Requests are grouped according to function. Required 
arguments are indicated for each. The syntax and semantics of generic 
arguments such as expressions, procedures, labels, and variables are 
defined under separate headings following the request descriptions. 

The follow-ing descriptions first give the name of the request and 
its abbreviated form (if any). This line is followed by the general 
format lioe(s) of the r~quest. 

BASIC REQUESTS 

1.. value, v 

value expression 
value cross-section 

The reauest "value expression" causes the value of the given 
expression to be displayed. Allowable expressions are variables, 
builtin functions such as addr and octal, and the value returned by an 
external function. The evaluation of expressions is described later 
(following the descriptions of all the requests) under "Evaluation of 
Expressions. II 

Not To Be Reproduced A-43 F21 



,-"" .. ---'" 

Examples: 

val ue vat 
val ue p - > a. b ( j) • c 
val ue add r (i) 
value octal (ptr) 
value function (2) 

probe, ~ 

The request "value cross-section" is used 
contained in a cross-section of an array_ A 
specified by giving the upper and lower bounds 
subscripts, as in: 

value array (1:5, 1) 

to display values 
cross-section is 
of one or more 

The notation 1:5 indicates the range one through five for the 
first subscriptG The example above prints array(l,l), array(2,1), 
••• , array(5,1). More than one dimension can be iterated; for 
instance, array f l:2,1:2) prints, in order, array(l,l), array(l,2), 
array(2,1), arra·.;-(2,2) .. 

2. let, 1 

let variabl~ = expression 
let cross-se:tion = expression 

This request sets the specified variable or array elements to the 
value of the expression. If the variable and the expression are of 
different data typ~~, conversion is performed according to the rules 
of PL/I. Array cross-sections are expressed as shown in the value 
request above. One array cross-section may not be assigned to 
ana ther .. 

Examples: 

let var = 2 
let array (2,3) = 1 + 1 
let p -> a.b(1:2).c = lOb 
let ptr = null 

Because of compiler optimization, the change may not take 
immediate effect· in the program, though the value request shows the 
value to be altered. 

Not To Be Reproduced A-44 



probe, pb -------- ---

3 .. call, c 1 

call procedure (argl, ••• , arg~) 

This request calls the procedure named with the arguments given. 
If the procedure expects arguments of a certain type, those given are 
converted to the expected type; otherwise, they are passed ~ithout 
conversion. The value request (see above) can be used to invoke a 
function, with the same sort of argument conversion taking place. If 
the pro c ed u r e has no a r g urn en t s , a null a r g urn en t 1 i s t , If () ", m us t be 
given. 

Examples: 

call sub ("abc~, p -) p2 -) bv, 250, addr(j)) 
call sub noargs () 
val ue fun c t ion (" 0 1 0 " b ) 

40 goto, g 

goto label 

This request transfers control from probe to the s': .~tement 
specified and initiates program execution at that point. 

Examples: 

goto label var 
goto action (3) 
goto 29 

goto $110 

goto $ c, 1 

transfer to value of label variable 
transfer to label constant 
transfer to statement on line 29 of 
cur r en t pro gram 
transfer to line with label 110 in the 
FORTRAN program 
transfer to the statement following the 
current statement 

Because of compiler optimization, unpredictable results may ~ccur 
when using this request. 

s. qui t 1 q 

quit 

This request causes a return to command level. 

Not To 3e Reproduced A-45 



probe, pb 

6.. can tinue, c 

continue 

This request restarts a program that has been suspended by a 
break. If this request is issued in any other context, probe-returns 
to its caller (generally command level). 

SOURCE REQUESTS 

I. source, sc 

so urce n 

This request displays one or more statements beginning with the 
current statement (i .e .. , the source pointer).. If n is not specified, 
one line is printed; otherwise, n lines are printede Only executable 
statements for which code has been generated can be listed; however, 
if a range of statements is requested, intervening text, such as 
comments and nonexecutable statements (for example, declarations), is 
included in the output. 

2 • po sit ion, p s 

posi tion label 
post tion +n 

This request sets the source pointer to the statement indicated 
by label or to an executable statement relative to the current 
statement as indicated by the value of n and displays it if the user 
is in long mode. If +n is given, the pointer is set forward n 
statements; if -n is given, the pointer is set back n statements. If 
no label or offset is given, the statement designated by the control 
pointer is assumed. 

Examples: 

posi tion here 

position action (3) 
posi tion 2-14 

posi tion +2 

posi tion -5 

Not To Be Reproduced 

set the source ptr to the statement 
labeled here 
to the statement labeled action (3) 
to the statement on line 14 of include 
file 2 of the program 
move forward two statements in the 
source 
move back five statements 

A-46 



probe, pb 

The position request can also be used to search for an executable 
statement that contains a specified string, using the form: 

position "string" 

The search begins with the statement following the current 
statement and continues through the program, if necessary, until the 
current statement is again reached. If a match is found, the source 
pointer is set to that statement. If the specified string contains a 
quotation mark, it must be doubled when given in the request line. 
Because statements are reordered by the compiler, the search may not 
necessarily find statements in the same order as the source listing of 
the program would indicate. 

Examples: 

posi tion "write 
posi tion "str = 
pos i tion llq+2" i 

SYMBOL REQUESTS 

stack, sk 

stack i, n -., , 
OJ.. 

(6,10) If 

111' all 
source 

locate the statement in the program 
locate str = "a 
locate and print the sta temen t 

This request traces the stack backward beginning at the ith frame 
and continuing for n frames. If i is not given, then the trace begins 
with the most recent frame and continues for n frames. If no limits 
are given, the entire stack is traced. The trace lists all active 
9rocedures and block invocations (including quick blocks) begi~ning 
with the most recent. For each block, a frame or level number is 
given, as is the name of any conditions raised in the frame. 

Examples: 

stack 
stac k 2 
stac k 3, 2 

trace the whole stack 
trace the two most recent frames 
trace the third and second frames 

Normally, system or subsystem support procedures are not included 
in the stack trace. These may be included by specifying "all". 

Examples: 

stack all 

Not To Be Reproduced 

trace the whole stack including all 
support stack frames 

A-47 F21 



stack 5,3 all 

2. use, u 

use block 

probe, pb 

trace the fifth, 
frames including 
framas 

fourth, and 
all support 

third 
stack 

This request selects the block to be used for subsequent probe 
requests. It may be specified by the name of an entry, a label, or a 
stack frame number (level i). If no block is specified, then the 
block or ig inally used (when probe was entered) is assumed. The block 
pointer is set to the specified block so that variables in that block 
can be referenced. In addition, the source pointer is set to the last 
statement executed in the block. In this way, the point at which the 
block exited can be found through use of the source request. 
Acceptable block specifications include: 

procedure name 
label -
level i 
-n 

In this context, procedure ~ame is the name of a procedure or 
subprogram entry point whose :rame is desired; its usage is 
essentially the same as if used o~ the command line. A label denotes 
the block that contains the statement identified by the label or line 
number; for instance, the label on a begin statement denotes that 
begin block. If the label's block is not active, the source pointer 
is set to the statement specified. The block specification level i 
uses the block with level number i from a stack trace; -n uses the nth 
previous instance of the current block, allowing one to mov~ back to a 
previous recursion level. If more frames are requested th~n actually 
exist, the last one found is used. 

Examples: 

use sub 

use label 

use level 
use -1 

use -999 

2 

use the block that procedure sub 
occupies 
use the block that contains the 
statement labeled label 
use the second frame in the stack trace 
use the previous instance of the 
curren t block 
use the 1 ast (old est) instanc e 



When a level is 
procedures included or 
requested. 

3. symbol, sb 

symbol identifier 

probe, pb 

specified, the last trace 
excluded) specified is used to 

mode {suppo r t 
find the level 

This request displays the attributes of the variable soecified 
and the name of the block in which its declaration is found.- If the 
size or dimensions of the variable are not constant, an attempt is 
made to evaluate the size or extent expression; if the value is not 
available, an asterisk (*) is used instead .. 

4. wher e, wh 

where source 
where block 
INhere control 

This r~quest displays the current value.of one or all of the 
pointers. Source and control give the statement number of the 
corresponding statement. 810ck gives the name of the block currently 
being used; if the block is active, its level number is also given. 
If neither source, block, or control appears, the information for all 
th r e e is g i tl en .. 

Examples: 

.. ...;here 
whe resource 

BREAK REQUESTS 

1. before, b 

before label: 
before label: 

give the value of all three pointers 
give the value of the source pointer 

request 
(request list) 

This request sets a breakpoint before the statement specified by 
label and causes the given request(s) to be associated with the break. 
If no label is given, the current statement is assumed. If no 
requests are given, a halt is assumed (see the halt request described 
below) • 

Not To Be Reproduced A-49 F21 



probe, ££ 

When the running program arrives at the statement specified, 
probe is entered before the statement is executed, and associated 
requests are processed automatically. When all requests are done, 
execution of the program resumes at the statement before which the 
break was set. A breakpoint set before a statement takes effect 
whether the statement is arrived at in sequence or as the result of a 
branch or call from some other location. 

Examples: 

before: (value var; value var2) set a break before the current 
statement to display the value of 
the variables var and var2 

before quick: value x set a break before the statement 
labeled quick 

before set a break containing the halt 
request before the current 
statement 

The request list may extend across line boundaries if necessary. 

2. after, a 

after label: 
after label: 

request 
(request list) 

This request is the same as ehe before request except that the 
break is set after the designated statemente This means that the 
request list is interpreted after the statement has been executed. If 
the statement branches to another location in the program, the 
breakpoint does not take effect; also, in some cases, the break may 
not be executed due to the nature of the code generated for the 
statement. 

Notice the distinction between two breakpoints in sequence. The 
one that is after statement x is not effective when control is passed 
to statement x+l from elsewhere. The break before statement x+l does 
take place. 

Not To Be Reproduced A-50 F21 



probe, pb 

3. halt, h 

halt 

This request causes probe to stop processing its current input 
and to read requests from the terminal. A new invocation of probe is 
created with new pointers set to the values at the time the halt 
request was executed. As part of a break request list, it enables the 
user to enter requests while a program is suspended by the break. A 
running program can be halted in this way. A subsequent continue 
request causes probe to resume what it was doing before it stopped; 
for example, finish a break request list and resume execution of the 
program. 

Examples: 

before 29: halt 

after: (value a; halt; value b) 

4. reset, r 

reset 
reset at/after/before label 
reset procedure 
reset * 

causes the program to halt at 
statement 29 and allows the user 
to enter probe requests (the 
continue request can be used to 
restart the program) 

causes the value of a to be 
printed before the program 
halts; later, after the user 
enters a continue request, the 
value of b is printed, and the 
execution of the program is 
resumed 

This request deletes breaks set by the before and after requests. 
When no argument is supplied, reset deletes the current break. With a 
label argument! breaks set before and/or after a statement are 
deleted; with a procedure or asterisk (*) argument, all the breaks in 
a specified segment or all breaks in all segments, respectively, can 
be deleted. 

Not To Be Reproduced A-51 F21 



Examples: 

5. 

reset 
reset at 34 

reset after 34 
reset sub 
reset * 

status, st 

status 
status a t/ after /befo re 
sta tus proced ure 
status * 

orobe, ~ 

delete the current break 
delete breaks set before and after the 
first statement on line 34 
delete the break set after line 34 
delete all breaks in sub 
delete all known breaks 

label 

This request gives information about breaks that have been set by 
the ·user. The scope of the requests is similar to reset except that 
status without arguments specifies all breaks in the current program 
(the program containing the statement designated by the source 
po inter) . 

Examples: 

status 

status before label 

status sub 
status * 

6 . pa use, pa 

pause 

list the breaks set in the current 
prog ram 

give the break set before the statement 
at label 

list the breaks set in sub 
list the procedures that have breaks 
set in them 

This request is equivalent to "halt; reset" in a break request 
list. It causes the procedure to execute a break once and then reset 
it. If the statement after which the break is set transfers 
elsewhere, the break does not occur and remains set until encountered 
sometime in the future or explicitly reset at some other point. 

Not To 8e Reproduced A-52 F21 



probe, ~ 

7 .. step, s 

step 

This request enables the user to step through his program one 
statement at a time. It sets a break consisting of a pause request 
after the next statement to be executed (as indicated by the control 
pointer) and resumes the execution of the program as with a continue 
request. 

MISCELLANEOUS REQUESTS 

1.. mode 

mode brief 
mode long 

This request turns the brief message mode on or 
mode, most messages generated by probe are shortened 
suppressed altogether. The default is long. 

2. execute, e 

execute "string" 

off. In brief 
and others are 

This request 
represented above by 

passes one 
11 s t ring ", to 

or more Multics command lines, 
the command processor for execution. 

3.. acknowledge 

This request causes probe to identify itself by printing "probe" 
on the terminal. It may be used I for example, t.o determine if a 
called procedure has returned. 

~ot To Be Reproduced A-53 F21 



probe, ~ 

CONDITIONAL PREDICATES 

1 e if 

if conditi~nal expression: 
if conditional expression: 

request 
(request list) 

The request or request list is executed if the conditional 
expression is true. The expression must be of the form: 

expression operator expression 

where operator can be <=, <, =, =, >, or >=. 

Example~ 

if· a < b: 1 e t p = add r (a) 

This predicate is most useful in a break request list where it 
can be used to cause a conditional halte For example, 

before: if z A= "lO"b: halt 

causes the program to stop only when z ~= "lO"b. 

2. while, wI 

while conditional expression: 
while conditional expression: 

request 
(request list) 

The request or request list is executed repeatedly as long as the 
conditional expression is true. 

Example: 

while p = null: (value p -> r.val; let p = p -> r.next) 

Not To Be Reproduced A-54 F21 



probe, .EE 

Evaluation of Expressions 

Allowable expressions include simple scalar variables, constants, 
and probe builtin functions. The Slli~ and difference of computational 
(arithmetic and string) values can also be used. 

Variables can be simple identifiers, subscripted references, 
structure qualified references, and locator qualified references. 
Subscripts are also expressions. Locators must be offsets, pointer 
variables, or constants. 

Examples: 

running total 
salaries (p -) i - 2) 
a.b(2) .c(3) 
aob.c(2,3) 
x.y -) var 

Constants can be arithmetic, string, bit, and pointer. 
Arit~metic constants can be either decimal or binary, fixed or 
floating point, real or complex. Also l octal numbers are permitted as 
a b b r ev i a t ion s for bin a r yin t eg e r s (e ego, 120 = 1 0) . 

Examples: 

-123 
lOb 
45.37 
4.73e10 
2.1-0.3i 
123456700 

Character and bit strings without repetition factors are allowed. 
Character strings can include newline characters. Octal strings can 
be used in place of bit strings (e.g., "123"0 = "001010011"b). 

Examp1 es: 

" abel' 
"quote""instring" 
"1010"b 
"01234567"0 

Not To Be Reproduced A-55 F21 



orobe, .EE 

A pointer constant is of the form: 

where the segment number and word offset must be in octal. The 
bit offset is optional but if given must be in decimal. The pointer 
constant can be used as a locator. 

21415764 
23217413(9) 

Four builtin functions are provided by probe: addr, null, octal, 
and substr. The function of addr and null is the same as in PL/I: 
addr takes one argument and returns a pointer to its argument; null, 
taking no arguments, returns a null pointer. The function octal acts 
very much like the PL/I unspec builtin function in that it treats its 
arg~~ent as a bit string of the same length as the raw data value and 
can be used in a similar manner as a pseudo-variable. However, when 
used in the value request, the value is displayed in octal. Data 
items not occupying a multiple of three bits are padded on the right. 
The substr builtin function may be used as a function or 
pseudo-variable. It takes two or three arguments. The first argument 
must be a character or bit string or a reference to the octal builtin 
function; the second and optional third arguments give the offset and 
length of the desired substring as with the PL/I substr builtin 
function. 

Note 

These builtin functions cannot be used if a program variable of 
the same name appears in the block being referenced. (For example, if 
x and octal are arrays in the same block, then octal (x(2)) becomes a 
reference to the variable octal, not the probe builtin) • 

Not To Be Reproduced A-56 F21 



probe, .E.E2 

Examples: 

For the following examples, assume that p is declared as an 
aligned pointer, i as fixed binary initial(-2) , and cs as character(8) 
initial ("abcdefgh"). 

value addr (i) 

let p = null 

value octal (i) 

val u e sub s t r (c s, 2 I 3 ) 

displays the address of i 

sets the pointer, p, to null 

displays the 
oct aI, g i v i ng : 

displays "bed" 

storage containing 
777777777776 

i in 

let substr (cs, 4, 1)="" sets cs to "abc fgh" 

Label References 

A label identifies a source program statement and can be a label 
variable or constant, a line number in source-listing format, or one 
of the following special statement designators: 

$c designates the "current statement" 
$ b des ig nat est h est a t em en ton wh i c h the ITt 0 s t r e c e n t b rea k. 

occurred 
$number designates a FORTRAN label 

An optiorial offset of the form ",~" is also allowed. 

Exampl es: 

label 
label var 
17 
3-14,2 

$b 
$ c, 1 
$100 

statement at label 
statement to which label var is set 
statement on line 17 of program 
statement 2 on line 14 of include file 

3 
statement at which last break occurred 
statement after current statement 
FORTRAN statement labeled 100 

Generally, a label can also be the name of a procedure, entry, or 
subroutine statement& 

Procedure References 

Not To Be Reproduced A-57 F21 



probe, ~ 

A procedure name is an identifier representing an entry variable 
or constant. External reference names, representing entry points not 
declared in the current block, can be used. - - --

Evaluation of Variable References 

When a variable is referenced in a request, probe first attempts 
to evaluate it by checking for an applicable declaration in the 
current block and, if necessary, in its parents. If no declaration is 
found, the list of builtin functions is searched. Finally, when the 
context allows a procedure_name, a search is made following the user's 
search rules. 

The block in which a variable reference is resolved can be 
altered by the use request that sets the current block. For example, 
if "value var" displays the value of var in the current block, then 
"use -1; value yarn displays the value of var at the previous level of 
recursiono An optional block specification is available for 
referencing variables in other blocks: 

variable [block] 

where block is the same as in the use request. Th~ use of blocks in 
this manner does not alter the block pointer. 

Examples: 

var[-l] 
abc [other block] 
xyz[39] -

n .. m[level 4] 
q (2) [sub] 

looks for the previous value of var 
looks in "other block" for abc 
looks in the block that contains line 

39 for xyz 
looks in the block at level 4 for n.m 
looks in the procedure sub for q(2) 

A block specification can be used to qualify a variable reference 
in any context the variable could be used. However, a block 
specification on a label or entry constant is ignored unless the 
relative (-n) format is used and the label or entry is itself used in 
a block specification. In such a case, it is taken to mean the nth 
previous instance of the block designated by the label or entrYi that 
is, "var[sub[-2]]" references var in the second previous invocation 
(third on the stack) of sub. 

Not To Be Reproduced A-58 F21 



probe, .Ee 

Sample Debugging Sessions 

Two extensive examples are given on the following pages to 
illustrate both how probe requests are used and how to get useful 
debugging information out of them. the first example was devised 
principally to demonstrate the application of probe requests. A 
listing of the source of the program, test, is given on the next page. 
The program has been compiled with the -table control argument (line 
1). The sample output follows with an exclamation point (1) denoting 
lines typed by the user. Unless otherwise indicated, line numbers 
referenced in the following paragraphs are from the sample output. 

The user first calls his program (line 5); noticing that it seems 
to be looping, he stops it by issuing the quit signal (line 6). After 
the user invokes probe (line 10), it responds by telling him that the 
internal function fun was executing line 38 when interrupted. Since 
the source pointer was automatically set to that line, the source 
request (line 12) causes the current source statement to be displayedc 
A statement causing an error could be displayed in a similar manner. 

1 test: procedure; 
2 
3 declare. 
4 
5 
6 
7 
8 
9 

( i, j) fix ed b i na ry , 
1 s structure based (p), 

2 num fixed binary, 
2 b (n refer (s .num)) float 

p pointer, n fixed binary, 
sysprint file; 10 

11 
12 
13 
14 
15 

n = 5; 
allocate s set (p); 

16 do i = 1 to s.numj 
1 7 s . b ( i) = fun (i, 1); 
18 end; 
19 put skip list (s.b) i 
20 
21 do j = s.num to 1 by -1; 
2 2 s • b ( j) = fun (- j! -1); 
23 end; 
24 put skip list(s.b); 
25 
26 returrl; 
27 
28 
29 fun: procedure (b , i) returrlS (float binary); 
30 
31 declare 

Not To Be Reproduced A-59 F21 



probe, ~ 

3 2 ( b , i ) fix ed bin a r Y i 
33 
34 if b = 0 
35 then return (1); 
36 else do; 
37 b = b - ii 
38 returrr--(2**b + fun (b, i)) i 
39 end; 
40 
41 end fun; 
42 

44 end test; 

Not To Se Reproduced A-60 F21 



probe, ~ 

1 pl1 test -table 
2 PL/I 
3 r 1248 3.211 28.336 280 
4 
5 test 
6 ! (quit) 
7 QUIT 
8 r 1250 5.371 6.702 52 level 2, 10 
9 

probe 10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Condition quit raised at line 38 of fun. 
source 

ret urn (2 * * b + fun (b Ii) ) i 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

stack 
11 
10 

9 
8 
7 
6 
5 

command processor 
release-stack -
uncI aimed signal 
real sdh -
return to' r iog 0 
fun - - - -
test 

4 command processor 
3 listen - -
2 process overseer 
1 user fnTt admin -

!. use level 5-
source 

s .. b ( i) = fun (i / I) i 
value s.oum 

5 
position "i = 1"; source 

do i = 1 to s.numi 
after: value i 
Break set after line 16 of test. 
quit 
r 1252 1.375 16.394 354 level 2, 10 

release 
r 1252 .126 .922 19 

test 
1 
1 
1 

45 1 
46 ! (quit) 
47 QUIT 
48 r 1252 30069 9650 25 level 2, 12 
49 
50 
51 
52 
53 

release 
r 1253 .092 .937 20 

probe test 

Not To 8e Reproduced A-51 

quit 

F21 



.... -..... 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
"'f'" 10 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 

probe, ~ 

status 
Break after line 16. 
status after 16 
Break after line 16: value i 
reset at 16 
Break reset after line 16 of test. 
position 34 
source 

if b = a 
then return (1); 

befo r.e: hal t 
Break set before line 34 of test. 
quit 
r 1255 .781 12e356 333 

test 
Stopped before line 34 of fun. 
value b 

1 
where 
Current line is line 34 of test. 
Using level 6: fun. 
Control at line 34 of fun. 
value i 

1 
c 
Stopped before line 34 of fun. 
stack 5 

8 break 
7 fun 
6 fun 
5 test 
4 command processor 

value b - -
a 

value b[-l] 
o 

value i 
1 

symbol i 
fixed binary(17,0) aligned parameter 
Dec 1 a r ed in fun. 
use test 
value i 

° reset 
Break reset before line 34 of teste 
quit 
r 1307 4.870 64.788 1544 

The stack command is then used (line 14) 
procedures were called. The output shows 

to see in what order the 
that procedure test was 

Not To Be Reproduced A-62 F21 



probe, ~ 

called from command level, 
executing, a quit signal was 
1 ev el • 

and then called fun. While 
issued and established a new 

fun was 
command 

The use request (line 26) sets the block pointer to the outermost 
block of procedure test, and the source pointer to the last statement 
executed in that block -- the statement which invoked\~he function 
fun. 

The source request (line 27) is issued to 
statement (as set above) to determine from which 
(17 or 27) fun was actually invoked. 

display the current 
line of the program 

Since the block pointer has also been set, the user can check the 
value of "s.num" with the value request (line 28) and ascertain that 
i tis as des ired. Sin c e the rei s non e w dec 1 a rat ion 0 fils. n urn" wit hi n 
the procedure fun, the declaration made in the parent block, test, is 
known and the value of Its.num" could be displayed without changing the 
block pointer as would be necessary if there were a conflicting 
declaration. 

The user decides that it is worthwhile to trace the value of i. 
Ra the r than r ecompi 1 ing hi s prog ram wi th a 11 put s ta temen t' added ina 
strategic location, probe allows him to set a break contai~ing a value 
request to accomplish the same thing. The user wants to Set the break 
after the do statement on line 16 of the program and searches for it 
with the position request (line 31). The source request is used to 
verify that the correct line was found. The after request is used to 
actually set the break (line 33). The quit request (line 35) then 
causes probe to return command level. 

To abort the suspended program test, the user invokes the Multics 
release command (line 38). If he had done this just after issuing the 
quit signal, he could not have used probe to exami~e automatic 
variables insloe the program or to determine where the program had 
been interrupted. 

The program is restarted (line 41) but now, after each execution 
of line 16, the break occurs and probe displays the value of i. 
Clearly, it is not being incremented as it should. Since this 
approach is not producing any useful information, the user aborts the 
program and tries to delete the break. The status request is used to 
tell what breaks have been set in the procedure test (line 54), and 
then (line 56) to see the probe request associated with that break. 
The break is then deleted with the reset request (line 58). If there 
had also been a "Break before 16 11

, then the request ·n reset at 15" 
would have deleted both. 

Not To 8e Reproduced A-63 F21 



probe, E.e 

The user next decides to examine fun, so he sets a break that 
will halt every time fun is invoked (lines 60 through 64). Looking at 
the listing, he sees that the first statement in fun is on line 34, so 
he sets the source pointer to that statement with the position request 
and sets a break to halt the programc To accomplish the same thing, 
nbefore 34: halt" could have been usede 

The program is called (line 69) and then halts when the break 
before line 34 is reached. The user displays band i (lines 71 and 
77) , get ti ng the val ues he expected. The whe re reque st is al so used 
(line 73) to check on the current state of things. The continue 
request (line 79) restarts fun, which calls itself recursively and 
stops again. The stack request (line 81, showing the last five 
frames) verifies that fact. The user displays the b in the current 
instance of fun (line 87, at level 7) and in the previous one (line 
89, at level 6) e Mistakenlyexpecting the bls at different levels to 
be different, he gets suspiciouso The variable i has the value 
expected (line 91), but the symbol command (line 93) shows that it is 
the wrong instance of i -- the parameter to fun, not the loop index. 
To get the correct instance, he must look in the frame belonging to 
the procedure test (line 96) and display that i (line 97). This i has 
been set to O. The user then realizes his error. The function is 
modifying its argument (the loop index i) on line 37 (line 94). When 
the user has finished debugging the program~ the reset request (line 
99) is used to delete "the currently active break (the one that just 
occurred), and the· program is aborted with the quit request (line 
101) • 

The preceding example was constructed to give a user a feeling 
for applying probe requests. The following example is taken from an 
actual debugging session using probe and illustrates several 
additional techniques available to the usere 

The program of interest is a subroutine, sort strings, that is 
supposed to sort a character array of arbitrary dimension; the array 
is passed as an argument to the subroutine. Since very large strings 
are being compared, it would be time conslli~ing to exchange the strings 
themselves. Therefore, an array of pointers to the strings (actually, 
the indices of the strings in the original array) is first sorted by a 
simple bubble sort, and the strings moved afterwards into the correct 
order. There are (at least) two bugs in the program as it appears in 
the listing. The next two paragraphs further describe the algorithm 
intended. 

A bubble sort involves making repeated passes over an input 
array, comparing adjacent pairs of values, and interchanging them as 
necessary. This moves the larger (smaller) values toward the end of 
the array. The sort only covers that portion of the array that is out 
of order (i.e., up to the element where the final exchange took place 

Not To Be Reproduced A-64 F2l 



probe, ~ 

on the previous pass -- all elements following this point are clearly 
correctly arranged). The example below illusccates how a bubble sort 
works in one casee (The hyphen delimits the end of the search.) 

Original First Pass Second Pass Third Pass 

d a a 
a c b a 
c -> b -) -) b 
b c c 
e d d d 

e e e 

In the sort strings subroutine (see source listing below), "kit 
determines the last element of the array needing to be sorted. 
Sorting continues until no exchanges occurred during the last pass 
( i . e .. , un til the t est, k < = 1, fa i 1 s). Th e "0 r d e r II a r ray con t a ins the 
indices that are actually sorted. 

The reordering method used is to 
~nen move the entire chain (a replaces 0; 
a) containing the element. For example: 

scan for unordered items and 
b replaces Ci and c replaces 

Initial Ordering Desired Order ing Movements 

1 e 3 a temp <= I / ~\ temp <- 2 ( d) \ '= J 

2 d 4 b 1 <- 3 ( a) 2 <- 4 ( b) 
3 a 5 c 3 <- 5 ( c) 4 <- temp 
4 b 2 d 5 <- temp 
5 c I e 

All elements that have been moved into the correct location are 
flagged as having been moved by setting their order values to -1. 

Source listings of the program and subroutine, named testss and 
sort strings respectively, are given below. 

I testss: procedure; 
2 
3 /* test caller for sort_strings */ 
4 
5 declare 
6 
7 
8 

i fixed binary, sysprint file, 
sort_strings entry (character(256) varying dimension(* 

9 array (6) character(256) varying initial 

Not To Be Reproduced A-65 F21 



\ c) ; 

\c do; 

\ c) = t; 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 

probe, .e.2 

"probe", "hello", "xray", "nice", "def", "abc" 

call sort strings (array) i 
do i = 1 to 6; 

end; 

put list (array (i)); 
put skip; 

end testssi 

sort_strings: procedure (strings); 

declare 

strings character(256) varying dimension(*), 
order fixed binary dimension (hbound (strings, 1)), 
temp character(256) varying, 
( i,k 1 1, t) fix ed bin a r Y i 

/* initia~ize order array */ 

do i = 1 to hbound (order, 
order (i) = i; 

end; 

/* perform bubble sort */ 

k, 1 = hbound (strings, 1); 
do while (k <= 1); 

do i = 2 to k; 
1 = i-I; 

, , . 
-, I 

if strings (order (1)) > strings (order (i)) then 

t = order (1) i order (1) = order (i) i order (i 

25 k = 1; 
26 end; 
27 end; 
28 end; 
29 
30 /* move strings into above ordering */ 
31 
32 do i = 1 to hbound (strings, 1); 
33 if order (i) .... = -1 then do; 
34 temp = strings (i); 
35 
36 /* follow chain 'til reach start again */ 
37 
38 do k = i repeat 1 while (k .... = -1); 
39 
40 

1 = order (k) i 
strings (k) = strings (1); 

Not To Be Reproduced A-66 F21 



41 
42 
43 
44 
45 
46 
47 

end; 
end; 

probe, EE 

order (k) = -1; 
end; 
strings (1) = temp; 

48 end sort_strings; 

The debugging session begins below. Again, an exclamation point 
(1) indicates lines typed by the usere 

1 
2 !(quit) 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

testss 

QUIT 
r 736 6.068 0.132 9 level 2, 10 

probe 
Condition quit raised at line 21 of sort_strings. 
source 

value k 
1 

value 1 
1 

do i = 2 to k; 

First the program testss, used to test the sort_strings 
subroutine, is called from command level (line 1). wnen no output is 
produced, the program is aborted by issuing a quit signal, and probe 
is invoked to determine where the program was looping (line 6). 

When probe is entered, it responds by giving the procedure and 
line where execution was interrupted. The source pointer is set by 
default to that line, so that the source request (line 8) may be used 
to display the text of the statement. The output does not indicate 
whether the infinite loop is occurring in the inner (do i = 2 to k) or 
out e r (d 0 wh i 1 e (k < = 1)) 1 0 0 P . Th e val u e 0 f k (1 in e 11) is 1, wh i c h 
implies that the inner loop is not being entered; the value of 1 (line 
13) is also 1 explaining why the outer loop never terminates. 

An examination of the program shows t~at k and 1 could take on 
these values if elements 1 and 2 are exchanged on a pass with k = 2; 
on subsequent passes, no exchanges are made (as the inner loop is not 
entered) I and the termination condition is never met. What is needed 
is to force 1 to be less than k on all passes unless an exchange 
actually occurs. This can be done by setting 1 = -1 before attempting 
the inner loop. 

Not To Be Reproduced A-67 F21 



14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

probe, ~ 

before: let 1 = -1 
Break set before line 21 of sort_strings. 
quit 
r 737 lQ217 3.562 97 level 2, 10 

start 

def 
hello 
probe 
abc 
xray 
r 737 0.359 0.182 0 

The probe command can be used to modify the value of variables 
either interactively or as part of a break request list. In the 
latter case, the change is made every time the program is executedc A 
breakpoint is set before the current statement (line 21 of the program 
-- the inner loop) to set the value of _1 to -1 with the before request 
(line 14). The quit request (line 16) causes a return to command 
level" and the Multics start command (line 19) restarts the program 
from whe're it was interrupted. This time output is generated. 
However, the strings are not being sorted correctly. 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

probe sor~ strings 
position "I = l";source 

do i = 1 to hbound (order, 1); 
position "i = l";source 

do i = 1 to hbound (strings, l)i 
before 
Break set before line 32 of sort_strings~ 
quit 
r 738 Oc218 0.002 14 

testss 
Stopped before line 32 of sort strings. 
symbol order -
fixed binary(17,0) aligned automatic dimension(6) 
Declared in sort strings. 
value order(1:6)-

6 
5 
2 
4 
1 
3 

One way to determine whether it is the sorting or ordering 
section of the program that is functioning incorrectly, is to stop the 
program before the ordering section and look at its input, the array 

Not To Be Reproduced A-68 F21 



probe, .E.2 

"ordere" The position request (line 28) is an attempt to locate the 
desired statement, but the source request (line 28) 1 used to check 
that the correct line has been found, shows that the wrong one was 
found. The process is repeated (line 30), and the source pointer set 
to the correct line. A break is set (line 32) to cause the program to 
"halt" at that statement and enter probe.. The driving program is 
begun once again (line 37) I and sort strings halts at the desired 
location. The symbol request (line 39) is used to check that the 
correct dimensions are being received for the array order. The value 
request (line 42) is used to display order(l) 1 .&<>, order(6). It can 
be seen that these are the correct values ("abc", in position 6, is to 
be moved to posi tion 1, etc.). 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
t::1 v ... 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

position 39; sour~e 
1 = order (k) 

after: (value ki value 1) 
Break set after line 39 of sort_strings. 
continue 

1 
6 
6 
3 
3 
2 
2 
5 
5 
1 
1 
-1 
4 
4 
4 
-1 

nice 
def 
hello 
probe 
abc 
xray 
r 740 0&602 05000 0 

It appears that the sorting code is working properly (with the 
patch in it). Therefore, the reordering of the array is failing for 
some other reasono The user then begins to trace the exchanges that 
are made. A break is set (lines 49 and 51) to display the values of k 
(the element to which the string is to be moved) and I (the element 
from which the string is to be moved) as the program is running. .:e..s 
stated previously, the effect 0= recompiling the program with a put 
statement added can be duplicated in this manner. The break is set 
after the line where both values have been determined for the 

Not To Be Reproduced A-69 F2l 



probe, .EE 

exchange. The 'continue request (line 53) restarts the program from 
where it was suspended by the break. 

The output shows that extra exchanges are taking place. When k = 
5, the next element on the chain is the first element (1 = 1), and the 
fifth element should therefore be replaced by the copy of the first 
value stored in "temp." It should not be replaced by the current 
first element (the old element 6, "abc"). Nor should the program 
continue to move the undefined element -1 into element 1. 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

probe sort strings 
reset at 39 
Break reset after line 39 of sort strings. 
before 39: if order(k) = i: ( -

let strings(k) = temp 
let order(k) = -1 
goto 42 

) 
Break set before line 39 of sort_strings. 
quit 
r 742 0.2800.966 56 

For the program to work properly, the movement through the chain 
must stop when the next element is the first (i.e., when order (k) = 
i). The saved value of the first (temp) should then be copied into 
the current element (strings(k)), and the search for additional 
unreordered elements continued. If the user were to recompile the 
program, the following code should achieve the desired effect. 

if order (i) ""= -1 then do; 
temp = strings (i); 

end; 

do k = i repeat 1 while (order (k) "'= i) i 
1 = order (k); 

end; 

strings (k) = strings (1) i 
order (k) = -1; 

strings (k) = tempi 
order (k) = -1; 

This approach may be checked before recompilation by making a 
slightly more elaborate patch than the one made previously. The probe 
command may be used to place a check for the correct terminating 
condition as the first thing in the loop on k and, if the condition is 
met, cause strings(k) to be set and the loop exited. First the break 
(containing the two value requests). previously set after the statement 
(line 78) is reset. Then a break, containing several requests and 

Not To Be Reproduced A-70 F2l 



probe, ~ 

extending across line boundaries, is set (lines 80 through 84) before 
the statement on line 39 of the program. 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 

testss 
Stopped before line 32 of sort_strings. 
reset 
Break reset before line 32 of sort_strings. 
continue 
abc 
def 
hello 
nice 
probe 
xray 
r 743 0.357 1.582 42 

probe sort strings 
status -
Break be £0 re line 39. 
Break be£o re line 21. 
status at 21 
Break be fo re 1 ine 21 . let 1 = -1 
rrlli~ 
"'l"'-'" 
r 744 0.184 1.146 72 

The program is run once again (line 88), and the break set 
between the two sections is encountered again. As it is no longer of 
any use, the reset request (line 90), assuming the default of the last 
break encountered, is used to delete the break. The continue request 
(line 92) resumes the execution" of the program. This time it works! 

The.probe command is invoked once again. This time the status 
request is used to recall the breaks set, and, hence, the changes to 
be made to the program. Two forms of the status request are used. 
Just "status" (line 102) gives a list of all breaks set in the 
program; "status at line number" (line 105) gives the text of the 
associated break request list. The user can now edit and recompile 
the program and expect it to work correctly. The remaining breaks 
need not be reset, because a recompilation has the same effect. 

Not To Be Reproduced A-7l F21 



probe, ~ 

Terminology 

active - a procedure is said to be active if its execution is 
ongoing or suspended by an error, quit signal, breakpoint, 
or calle An active procedure should be distinguished from 
one that has never been run, has completed execution, or has 
been interrupted and aborted by a Multics release command. 

automatic storage - a storage class for which space is allocated 
dynamically in a stack frame upon block invocation. As a 
result, variables of this class only have storage assigned 
to them, and hence a legitimate address and value, when the 
block in which they ace declared has an active invocation. 
PL/I variables, by default, belong to this class. FORTRAN 
variables must appear in an "automatic" statement in order 
to belong to this class. 

block - corresponds to a PL/r" procedure or begin block or FORTRAN 
program or subroutine, and identifies a particular group of 
variable declarations. . 

breakpoint - a point at which program execution is temporarily 
interrupted and probe requests executed. 

invocation when a procedure·is called recursively, it will 
appear on the stack two or more times, and will have storage 
allocated for it the same number of times. Each instance of 
the procedure on the stack is considered a separate and 
distinguishable invocation of the block. The values of 
automatic variables can be different in different 
invocations of the same block. The most recent invocation 
is the topmost in stack trace. 

level number - an integer used by probe to uniquely designate 
each block invocation (i.e., each entry in a stack trace) • 
Level one is the first (least recent) procedure invoked. 
Level number is not necessarily the same as either of the 
numbers given a fter the wo rd n 1 evel" in a read y messag e. 
The first of this pair gives the count of command levels in 
effect and gives the value n+l, where n is the number of 
programs (or groups of programs) whose execution has been 
suspended, the second gives the number of stack frames in 
existence and since the probe stack includes quick blocks, 
this number is less than or equal to the level number of the 
last command level in the stack trace. 

Not To Be Reproduced A-72 F21 



probe, .E.e 

quick block - internal procedures and begin blocks that satisfy 
certain requirements (e.g., are not called recursively, do 
not contain on, signal, or revert statements, etc.) have 
their automatic storage allocated by the blocks that call 
theme Hence, they do not actually have their own stack 
frames, but share the one of the caller. Certain system 
commands, such as trace stack, ignore these blocks. The 
probe command, however, includes them in a stack trace, and 
treats them as if they were the same as any other blocks. 
The quickness of a block may be determined from a program 
listing containing information about the storage requirement 
of the program (produced with the -symbols, -map, or -list 
contro 1 a rgumen ts) • Fo r exampl e, proced ure If quick" shares 
stack frame of external procedure "main". 

stack - if a procedure A calls another procedure Sf then the 
execution of A is suspended until 8 returns. If B in turn 
calls C, then this is an ordered list of procedure or 
subroutine calls indicating which program called which other 
program, and which will return to whiche This ordered list 
is called the "stack". In probe, a ~race of the stack may 
be displayed by use of the stack request. The list is given 
in top-down fashion with the most recently called procedure 
listed first: 

3 
2 
1 

c 
B 
A 

The numbers are level numbers. 

stack frame - when a block is invoked (that is, a procedure is 
caJ.led or a begin block is entered), storage is allocated 
for its automatic variables. The area allocated is called a 
stack frame and logically corresponds to each entry in the 
stack. 

static storage - a storage class for which space is allocated 
once per process, effectively at the time the procedure is 
first referenced. As a result, variables of this class 
always have a legitimate address and value. Regular FORTRAN 
variables, and those in a common blOCK, have static storage. 
PL/I variables must be explicitly declared. 

support procedure a system utility routine that provides 
runtime support for other procedures (e.g., the procedure 
that allocates storage as requested by a PL/I allocate 
sta ternen t) • 

Not To 3e Reproduced A-73 F21 



Summary of Requests 

after a 

before b 

call cl 

continue c 

execute e 

goto 9 

halt h 

if ( none) 

let 1 

mode (none) 

pause pa 

posi tion ps 

quit q 

reset r 

source sc 

stack sk 

status st 

step s 

symbol sb 

use u 

value v 

where wh 

while wI 

Not To 8e Reproduced 

probe, ~ 

Set a break after a statemente 

Set a break before a statemente 

Call an external procedure. 

Return from probe. 

Execute a Multics command. 

Transfer to a statement. 

Stop the program. 

Execute commands if condition is true~ 

Assign a value to a variable. 

Turn brief message mode on or 

Stop a program once. 

Examine a specified statement or locate 
a string in the program. 

Return to command level. 

Delete one or more breaks. 

Display source statements. 

Trace the stack. 

Display info rma tion about breaks. 

Advance one statement and hal t. 

Display the attributes of a variable. 

Exam ine the block specified. 

Display the value of a variable. 

Display the value of probe po inters .. 

Execute commands while condition is 
true. 

A-74 F21 



probe, ~ 

de on or offo 

pause pa .Stop a program once. 

position ps Examine a specified statement or locate a string in the 
prog ram. 

quit q Return to command 1 ev el . 

reset r Delete one or more breaks. 

source sc Display source statements. 

stack sk Trace the stacke 

status st Display information about breaks. 

step s Advance one statement and halt. 

symbol sb Display the attributes of a variable. 

use u Examine the block s pe c i f i ed . 

value v Display the value of a variable .. 

where wh Display the value of probe po inters. 

while wI Execute commands while condition is true. 

Not To 8e Reproduced A-75 F21 



profile 

Name: profile 

The profile command is a debugging tool used in conjunction with 
the -profile (-pf) control argument of the pll, fortran, and cobol 
commands. The profile command prints information about the execution 
of each statement in the PL/I, COBOL, or FORTRAN program. 

The ~profile control arg~~ent causes the compiler to generate an 
internal static table containing an entry for each statement in the 
source program; the table entry contains information about the 
statement as well as a counter that starts out at zero c The counter 
associated with a statement is increased by one each time the 
statement is executed. The profile command prints and resets these 
counters. 

Usage 

profile paths [-control_args} 

where: 

1. paths 
are the pathnames or reference names of programs whose 
counters are to be printed or reset. 

2. control args 
are selected from the following list. Control arguments 
apply to all programs whose names appear in the command 
line. 

-print, -~r 
prints the following information for each statement in the 
specified programs: 

1. line number 

2. statement number, if greater than I 

3. number of times the statement has been executed 

4. cost of executing the statement measured in number of 
instructions executed online plus the number of PL/I 
operators invoked. Each instruction and each 
operator invocation count as only one unit. 

5. the names of all the PL/I operators used by this 
statement 

6. total cost for all statements is printed at the end 

Not To Be Reproduced A-76 F21 



Note 

profile 

-brief, -bf 
omits from the statement list statements that have never 

, been executed. 

-long, -lg 
includes in the statement list statements that have never 
been executed. 

-reset, -rs 
causes profile to reset to zero all counters associated 
with theOspecified program. 

If no control arguments are given, the defaul t Gontrol arguments 
are -print and -brief. 

Example 

The PL/r prog ram shown be~ow cc '..:n ts the number 0 f occur rences 0 f 
one string in another string~ It was compiled with the -profile 
control arg1lment and executed once. Notice that 1 ine number dnd 
statement number (LINE and ST, respE:tively) of the statement in the 
then clause is the same as the line r.~mber and statement number of the 
if statement itself. 

The source code for the progr3m is: 

1 example: 
2 
3 declare 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

proc(sl,s2) i 

(sl,s2) char(*), 
( i , k) fix ed bin, 
ioa options (var iat 1e) ; 

k = OJ 
do i = 1 to length(sl) - length(s2)i 

if substr(sl,i,iength(s2)) = 52 
then k = k + Ii 

end; 

call ioa (nAd",k)i 

end example; 

Not To Be Reproduced A-77 F21 



profile 

After executing the program once and invoking the profile command 
without any control arguments, the output is: 

LINE ST COUNT COST PROGRAM 

example 

7 1 1 
8 1 5 
8 8 24 
9 7 56 
9 1 1 

11 7 14 
13 1 13+1 (call ext out desc) 
14 1 0+1 (return) - -

TOTAL 114+2 

Not To Be Reproduced A-78 F21 



reset external variables 

Name: reset external variables 

The reset external variables command reinitializes system-managed 
variables to the values-they had when they were allocated. 

Usage 

reset external variables names [-control_arg} 

where: 

1 e names 
are the names of the external variables, separated by 
spaces, to be reinitialized c 

2. control arg 
Is -unlabeled common (or -uc) to indicate unlabeled (or 
block) common. 

Note 

the 
A variable cannot be reset if 
initialization information is 

~ot To Be Reproduced A-79 

the segment containing 
terminated after the 

F2l 



reslve linkage error, rle 

Name 

The resolve linkage error command is invoked to satisfy the 
linkage fault after a process encounters a linkage error~ The program 
locates the virtual entry specified as an argument and patches the 
linkage information of the process so that when the start command is 
issued the process continues as if the original linkage fault had 
located the specified virtual entry_ 

Usage 

where virtual_entry is a virtual entry specifier. 

Notes 

For an explanation of virtual entries, see the description of the 
cv~entry_ subroutine~ 

Examples 

myprog 
Error: Linkage error by >udd)m>vv>myprogl123 
referencing subroutine$entry 
Segment not found. 
r 1234 2.834 123.673 980 level 2, 26 

rle mysub$mysub entry 
r 1234 0.802 23:441 75 level 2, 26 

start 
.•• myprog is running 

Not To Be Reproduced A-80 F21 



run cobo 1, rc 

Name: run_cobol, rc 

The run cobol command explicitly initiates execution of a COBOL 
run unit in a specified "main program". This command is not needed to 
execute COBOL object programs on Multicsi it is used to simulate an 
environment in which traditional COBOL concepts may be easily defined. 
This command cannot be called recursively_ 

Usage 

run cobol name {-control_args} 

1 • name 
is the reference name or pathname of the "main program" in 
which execution is to be initiated. If. a pathname is 
given, then the specified segment is initiated with a 
reference name identical to the entryname portion of the 
pathname. Otherwise, the search rules are used to locate 
the segment. If the name specified in the PROG-ID 
statement of the COBOL program (i.e., the entry pOln~ 
name) is d i ffe rent from the cur ren t r e fe rence name a f the 
object segment, then the name specified here must be in 
the form A$B where A is the pathname or reference name ·of 
the segment and B is the PROG-ID as defined in the 
IDENTIFICATION DIVISION of the source program. 

2. control args 
can be chosen from the following: 

-cobol_switch N, -cs N 
sets one or more of the eight COBOL-defined "external 
switches" on, where N is a number from 1 to 8 (or a series 
of numbers separated by spaces) that corresponds to the 
numbered external switch. At the outset of the run unit, 
the default setting of these external switches is off. 
(The eight external switches are defined in the Multics 
COBOL Reference Manual, Order No.!AS44.) 

-no stop run; -nsr 
- avolds establishment of a handler for the stop_run 

condition. (See IINoteslt below.) 

-sort_dir path, -sd path 
specifies the directory to be used during execution of 
this run unit for temporary sort work filese If this 
control argument is not specified, the process directory 
is assumed. 

-sort file size N, -sfs N 
is the floating point representation of 
average size in characters of the files 

Not To Be Reproduced A-81 

the estimated 
to be so rted 



Notes 

run cobo 1, rc 

during execution of this run unite This information is 
used to optimize sortinge If not specified le6 is assumed 
(i Ole", one million characters) .. 

This command enables the user to explicitly define and start 
execution of a COBOL run unit. A run unit is either explicitly 
started by the execution of the run cobol command or implicitly 
started by the execution of a COBOL object program either by 
invocation from command level or from a call by another program 
written in COBOL or another language. A run unit is stopped either by 
the execution of the STOP RUN statement in a COBOL object program or 
by invocation of the stop_cobol_run commande For the duration of time 
after a run unit is started and before it is stopped, it is said to be 
active. All COBOL programs executed while a run unit is active are 
considered part of that run unit. 

A run unit is a subset of a Multics process; it is stopped when 
the process i~ ended. Also, .when all programs contained in a run unit 
are cancell ed, the run un i tis sto pped ( re fe r to the 
cancel_cobol_program command). Only one run unit mt3Y be aGtive at any 
given time in a process; thus, the run cobol command cannot be invoked 
recursively. Additionally, if a run unit has been started implicitly 
(as described above), the run cobol command may not be used until that 
run unit has been stopped;- i.e., the run cobol command does not 
terminate a currently active run unit. 

The explicit creation of a run unit with the run cobol command 
performs the following functions: 

, 
~ .. Establishment 

which control 
of a "main program" I i.e., a program from 
does not return to the caller. The EXIT 

PROGRAM statements, when encountered in such a program, have 
no effect, as required in the COBOL definition. An 
implicitly started run unit has no "main program". The EXIT 
PROGRAM statement in all programs contained in such a run 
unit always causes control to be returned to the caller, 
even if the caller is a system program, e.g. , the command 
processor. 

2. Setting of the COBOL external switches. These switches are 
set to' off unless otherwise specified by the -cobol switch 
control arg~~ent. 

3. User control of the action taken when a STOP RUN statement 
is executed in a COBOL object program. The action normally 
taken for STOP RUN is cancellation of all programs in the 
run unit, closing any files left open. After this has been 

Not To 8e Reproduced A-82 F21 



run cobol, rc 

done, the data associated with any of the programs is no 
longer available. Thus in a debugging environment, it may 
be useful to redefine the action taken for STOP RUN. When 
the run unit is explicitly initiated with the run_cobol 
command, the STOP RUN statement causes the signalling of the 
stop_run condition for which a handler is established that 
performs the normal action described above.. If the 
-no stop run control argument is specified, the handler is 
not-established, thus allowing the user to handle the signal 
himself using other Multics commands. If the user has not 
provided a handler himself for stop_run and specifies the 
-no_stop_run control argument, an unclaimed signal results~ 

The name given in the run cobol command need not be a COBOL 
object program. It may be a program produced by any language compiler 
that provides a meaningful interface. with COBOL programs (e.ge, PL/I, 
FORTRAN) . 

Refer to the following related commands: 

disolav cobol run unit, dcr 
stop c;bol run, scr 
cancel cobol program, ccp - _. 

Not To Be Reproduced A-83 F2l 



set fortran common, sfc 

Name: set_fortran_common, sfc 

The set fortran common command allocates and initializes all 
FORTRAN common blocks referenced by the specified FORTRAN object 
segments. The maximum declared length of a common block (of all those 
found in the list of FORTRAN object segments) is used for the 
allocation and initialization e This command can therefore be used to 
guarantee that the correct common block storage is allocated and 
initialized prior to a FORTRAN run. (If the user left it to the 
dynamic linker, the first reference to the common block would cause it 
to be allocated and initialized as declared in the referencing 
program. This program might not include the necessary initialization 
information.) The set fortran common command can also be used to 
reinitialize the common blocks~ referenced by the specified object 
segments, although it will not reinitialize any local storage such as 
static or automatic variablesc 

Usage 

set.fortran common paths {-control~arg} 

whe re: 

1. paths 
are the pathnames of the FOR'rRAN object segments whose 
common blocks are to be allocated and (re) initialized .. 

2" control arg 

Notes 

can be -long (-lg) indicating that warning messages are to 
be printed. Normally, all warning messages are 
suppressed. Warnings are printed if the common block is 
already allocated with a smaller size. 

A FORTRAN object segment is either a segment created by one of 
the Multics FORTRAN compilers or is a segment created by the binder 
and contains at least one component that was created by one of the 
Multics FORTRAN compilers. 

Only common storage is affected by this command" Local variables 
are not (re) initialized. 

Common blocks without data initialization information are set to 
binary zeros. 

Not To Be Reproduced A-84 F2l 



set fortran common, sfc 

If the common block is already allocated, its contents are 
reinitialized and the prior contents are lost. 

A warning is always printed if different initialization values 
are encountered in the set of specified object segments. 

Not To 8e Reproduced A-8S F21 



set system storage 

The set system storage command establishes an area as the storage 
region in whIch normal system allocations are performed. 

Usage 

set system_storage {virtual ptr -control_arg} 

where: 

1 e vir tua 1 pt r 
is a virtual pointer to an initialized area e The syntax 
of virtual pointers is described in the cv ptr subroutine 
description: This argument must be specified-only if the 
-system control argument is not supplied. 

2 " 

Notes 

control arg 
Is -system to specify the area used 
This control argument must be 
virtual_ptr is not specified. 

for linkage sections. 
specified only if 

To initialize or create an area, refer to the description of the 
create area command. 

The area· must be set up as either zero on free or zero on alloe. 

It is recommended that the area specified be extensible .. 

Examples 

The command line: 

places objects in the segment whose reference name is free at the 
offset whose entry point name is free. 

Not To Be Reproduced A-86 F21 



set system storage 

The command line: 

uses the segment whose reference name is my_seg. The area is assumed 
to be at an offset of 0 in the segment. The segment must already 
exist with the reference name my_seg and must be initialized as an 
areae 

The command line: 

uses the segment whose (relative) 
must already exist. 

Not To 8e Reproduced A-87 

pathname is my_seg. The segment 

F2l 



set user storage 

The set user storage command establishes an area as the storage 
region in which- normal user allocations are performede These 
allocations include FORTRAN common blocks and PL/I external variables 
whose names do not contain dollar signs e 

Usage 

where: 

1. virtual ptr 
Is a virtual pointer to an initialized area. The syntax 
of virtual pointers is described in the cv ptr subroutine 
description. This argument must be specified-only if the 
-system control argument is not specified. 

2. 

Notes 

control arg . 
1S -system to specify the area used 
Th is con t ro 1 a rg umen t must be 
virtual_ptr is not specified. 

for linkage 
specified 

sections. 
only if 

To initialize or create an area, refer to t~e description of the 
create area command. 

It is recommended that the area specified be extensible. 

Examples 

The command line: 

places objects in the segment whose reference name is free at the 
offset whose entry po into name is free . 

Not To 3e Reproduced A-SS F21 



set user storage 

The command line: 

uses the segment whose reference name is my seg. The area is assumed 
to be at an offset of 0 in the segment. -The segment must already 
exist with the reference name my_seg and must be initialized as an 
area. 

The command line: 

uses the segment whose (relative) pathname is my_seg. The segment 
must already exist. 

Not To Be Reproduced A-89 F21 



stop cobol run, scr 

The stop cobol run command causes the termination of the current 
COBOL run unit. -Refer to the run cobol command for information 
concerning the run un it and the COBOL runtime env ironment .. 

Usage 

where the control arg may be -retain data or -retd to leave the data 
segments associated with the programs composing the run unit intact 
for debugging purposes. (See lINotes" below.) 

Notes 

The results of the stop_cabal_run command and the execution of 
the STOP RUN statement from within a COBOL program are identical. 
Stopping the run unit consists of cleaning up all files that have oeen 
opened d ur i ng the. execut ion 0 f the cur !:'en t r un un it, and ::nsur i ~g . t:ha t 
the next time a program that was a component of this run unit is 
invoked, its data is in its initial state. 

To maintain the 
its last used state, 

value of all data referenced in the run unit in 
the -retain data control argument should be used. 

Refer to the related commands: 

display cobol run unit, dcc 
cancel cobol program, ccp 
r un _ cob 0 1 f r C 

Not To Be Reproduced A-90 F21 



trace 

Name: trace 

The trace command is a debugging tool that lets the user monitor 
all calls to a specified set of external procedures. The trace 
command modifies the standard Multics procedure call mechanism so that 
whenever control enters or leaves one of the procedures specified by 
the user, a debugging procedure is invoked. The user can request the 
fo llowi ng: 

le Print the arguments at entry, exit, or both .. 

2., Stop (by calling the command processor) 
both. 

at entry, exit, or 

3$ Change the frequency with which tracing messages are printed 
(e.g~, every 100 calls, after the 2000th call, only if the 
recursion depth is less than five, etc.). 

4e Execute a Multics command line at entry, exit, or both. 

5. Meter the time spent in the various procedures being 
monitored. 

Use of the trace command is subj ect to the following 
restrictions: 

1. Only external procedures compiled by PL/I or FORTRAN can be 
traced. 

2. Ring 0 or gate entries cannot be traced. 

3. Incorrect execution results if 
back a fixed number of stack 
cannot be traced. 

the traced procedure looks 
frames, e.g., cu_$arg_ptr 

4. Only 100 procedures can be traced at one time. 
locations can be watched at one time e 

Up to 16 

5. The procedure being traced and the trace package itself must 
share the same combined linkage segment. 

6. A procedure in a bound segment can only be traced if its 
entry point is externally available. 

Usage 

trace [-control_args} names 

Not To 8e Reproduced A-9l F2l 



trace 

where: 

1. names 

2. 

is a pathname or reference 
entry portion of a pathname 
(See "Notes" below.) 

name. The reference name or 
is used in the trace table. 

control. args 
aoolv to the namei 
applicable, change the 
template (TCT). (See 
may be chosen from the 

arguments that follow, and, if 
current value in the trace control 
"Notes II below.) Contro 1 a rg umen ts 
following: 

-after N 
calls the command processor after calling the traced 
procedure every N times (initial valuel=!O: do not call). 

-argument N, -ag N 
prints the arguments every Nth time the procedure is 
entered (ini tial value! = 10: do not pr int) . 

-before N 
calls the 
procedure 

command processor before calling 
every N times (initial value!:!C: do 

the traced 
not call) • 

-brief, -bf 
prints a short form of the monitoring information. 

-depth N, -dh N 
monitors to the maximum recursion depth of N (initial 
value!= 10: no limit) .. 

-every N, -ev N 
monitors every Nth call (initial value!=!l). 

-execute STR, -ex STR 
executes the Multics command line specified by the string 
STR whenever the procedure is monitored (initial 
value!=! 1111: no command) • 

-first N, -ft N 
starts monitoring on the Nth call (initial value!=!l). 

-govern STR, -gv STR 

-in 

limits/does not limit the recursion level for a procedure, 
where STR can be the string on or off (initial 
value!=!off). See "Recursion Limitingll below. 

prints the arguments only on entry (initial valuel= ryes) • 

Not To Be Reproduced A-92 F21 



trace 

-inout 
prints the arguments on both entry and exit (initial 
val ue! = ! no) • 

-io switch STR, -is STR 
- changes the switch for output to the switch specified by 

STR. (See "Changing Output Switch" below.) 

-last Nt -It N 
stops monitoring after the Nth call (initial 
value!=!9999999999) • 

-long, -lg 
prints the long form of the monitoring information. (For 
use after the -brief control argument to restore the long 
fa rm. ) 

-meter STR, -mt STR 

-out 

meters/does not meter the time spent in 
where STR can be the string on or 
value!=!off). See ltMetering" below. 

the procedure, 
off (ini'tial 

prints the arguments only on exit (initial val~e!=!:1o). 

-off entryname 
stops monitoring 
remains in the 
counted. 

the spec i f i eo proced ur e. The pr aced ur e 
trace table and calls continue to be 

-on entryname 
resumes monitoring the specified procedure. This control 
argument is used after the -off control argument. 

=remove entryname, -rm entryname 
removes the specified procedure from the trace table. 
Tracing can be removed at any time. 

-reset entryname, -rs entryname 
sets the number of calls and recursion depth of the 
specified procedure to zero~ 

-return value STR, -rv STR 
prInts/does not print the return value on exit, where STR 
can be the string on or off (initial value!=!off). This 
control argument assumes the entry is a function. 

-status *, -st * 
prints the procedures being monitored and their counters. 
(See "Notes" below.) 

Not To Be Reproduced A-93 F2l 



Notes 

trace 

-status entryname, -st entryname 
prints the trace parameters and counters for the procedure 
specified by entryname. (See "Notes" below e ) 

-stop_proc path, -sp path 
changes the procedure that is called for stop requests 
from the command processor to the procedure specified by 
pathe To reset the stop procedure, issue this control 
argument wi th no path argument. 

-subtotal, -stt 
prints and does not clear the metering statistics. 

-template, -tp 
lists the trace control template. 

The procedure whose pathname is given in the command line is added 
to the trace table with the tracing parameters from the trace control 
template (TCT). If the procedure is already in the table, the 
counters are reset and the current parameters in TCT are used e 

For control arguments that affect procedures being traced, the 
argument is an entryname or an asterisk (*). If an entryname is used, 
the control 'argument applies to that procedure. If an asterisk is 
used, the control argument is applied to all entries in the trace 
table o All control arguments that affect the TCT must have a number 
argument (indicated by N above). 

Examples 

The command line: 

trace -ag 1 -inout test 

prints the arguments for test on entry and exite 

The command line: 

trace -ag 2 -in -depth 6 test 

prints the arguments for test every second time test is entered up to 
a recursion depth of six, i.e., 2, 4, 6. 

The command line: 

trace -govern on test 

Not To Be Reproduced A-94 F21 



trace 

prints the arguments of test each time test is called with a new 
maxlmum recursion depth. The trace procedure calls the command 
processor every time the recursion depth is a multiple of 10. 

The command line: 

trace -st * -tp 

lists the procedures in the trace table and prints the values of the 
trace control template. 
Message Format 

The message printed when control enters a procedure can appear in 
anyone of several formats, depending on the setting of the brief 
switch and the status of the calling procedure. If the calling 
procedure is unbound or occurs in a bound segment containing a 
bindmap, the message takes the form: 

Call 4~1 of alpha from beta!127, ap = 204110746. 

Th i sis t. h e f 0 Ij r the all 0 f pro c ed u rea I ph a, wh i chi sat r e cur s ion 
level 1. The call comes from location 127 in component beta, and the 
argument list is at 204110746. If the procedure making the call is in 
a bound segment that does not contain a bindmap, the message takes the 
fo rm: 

Call 4.1 of alpha from bound_gamma 1437 (beta), ap = 204110746. 

The name in parenthes.s may not always be available and may be omitted 
in some cases. If the user has requested the brief output mode, the 
message is shortened to: 

Call 4.1 of alpha. 

When tracing is requested for a procedure, the parameters for that 
entry are taken from the trace control template (TCT). If the user 
does not alter the values in the TCT, the initial default values are 
used (see below). The initial values in the TCT specify that every 
call should be monitored. 

Not To Se Reproduced A-95 F21 



trace 

Trace Control Template 

As mentioned earlier, the trace table entry holds a number of 
parameters for each procedure to be traced. The values of the 
parameters are determined by the contents of the TCT at the time the 
table entry is filled in. These parameters are used in conjunction 
with N (the number of calls to the traced procedure in this process) 
and R (the current recursion depth) to control when and how the 
procedure should be monitored. The execution count (N) is set to 0 
when tracing is first started and is incremented by 1 every time the 
traced procedure is called. The recursion depth (R) is set to 0 when 
tracing is first started and is incremented by I every time control 
enters the traced procedure and is decremented by 1 every time control 
leaves the traced procedure. 

only 

Let: 

D = 
F = 
L = 
E = 
B = 

A = 
AG = 

I = 

0 = 

the maximum recursion depth to be monitored (-depth) 
the number of the first call to be monitored (-first) 
the number of the last call to be monitored (-last) 
how often monitoring should occur (-every) . 
the number of times the procedure is called before trace 
stops at entry to "the traced procedure (-bafora) 
the number of times the procedure is called before trace 
stops at exit from the traced procedure (-after) 
the number of times the procedure is called before trace 
prints the arguments of the traced procedure (-argument) 
a bit that is "l"b if the tracing procedure should prin~ the 
arguments of the traced procedure when control goes into the 
traced procedure (-in) 
a bit that is "l"b if the tracing procedure should print the 
arguments of the traced procedure when control goes out of 
the traced procedure (-out) 

A call is monitored and the tracing procedure is called if, and 
if: 

F <= N <= L 
R <= D 
mod(N,E) = 0 

If AG = 0, mod(N,abs(AG)) = 0, and I = "l"b, trace prints the 
values of the arguments (if any) being passed to the traced procedure e 

All of the arguments are listed when AG < o. If AG < 0, the procedure 
is assumed to be a function and the value of the last argument is 
printed" after the procedure returns. 

Not To Be Reproduced A-96 F21 



trace 

If B = 0 and mod(N,B) = 0, the monitoring procedure prints 
"Stop" and calls the command processor (or a user-set procedure if the 
-stop proc control argument was used) c This call occurs before the 
procedure being traced has created its stack frame. 

After control leaves the traced procedure, trace prints a line of 
the fo rm: 

Return NeR from,alpha. 

,If AG A= 0 and mod(N ,abs(AG)) = 0, then all of the arguments of 
the traced procedure are printed if 0 = "l"b; otherwise, if AG < 0, 
the value of the last arg~~ent (ass~~ed to be the value of the 
function) is pr inted. 

Finally, trace c2:ls the command processor. If the -stop proc 
control argument was ;iven, a procedure set by the user is calied. 
This call occurs arter the stack frame of the procedure being traced 
has been destroyed. 

Metering 

The trace command can be used to meter the execution of a 
specified set of proceduresc If the metering feature is being used, 
trace does not call the debugging procedure when control enters a 
procedure being traced; t~stead, it determines the current time and 
the virtual CPU time used, and the number of page faults taken by the 
user's process before control enters and after control leaves the 
traced procedure. This information is used to ~ompute the real time 
and CPU time used, and the number of page faults taken by the traced 
procedure on a local and global basis G The global CPU time is the 
time spent in the procEjure including the time spent in any procedures 
that it calls .. The local CPU time does not include the time spent in 
any traced procedure called by the procedure, but it does include time 
spent in called procecJres that are not being traced. The local and 
global versions of redl time and page faults are calculated in a 
similar manner. Metering is only done when the first, last, every, 
and depth tracing conditions are satisfied. 

The control argument: 

-meter on, -mt on 

Not To Be Reproduced .~-97 F21 



trace 

sets the metering switch in the TCT; any procedures added to the trace 
table or that have their table entries updated after this argument is 
used are metered. 

The control argument: 

-meter off; -mt off 

turns off the metering switch in the TCT; any procedures currently 
being metered continue to be metered. 

The control argument: 

-total 

causes trace to print the metering sta~istics of all procedures in t~e 
ttace table. The output gives the number of calls (*CALLS), glob;l 
CPU time (GCPU) I global real time (GREP-.L) I global page ':laits (GP~"lS' 1 

local CPU time (LCPU), local real time (LREAL) I local page wai:5 
(LPWS), and the usage percentage (%USAGE) based on local CPU time, :f 
all the proceduras being metered. The metering statistics are set co 
o after they are printed. 

The control argument: 

-subtotal, -stt 

prints the same information as the -total control argument, but dc~s 
not clear the statistics. 

Not To Be Reproduced A-98 F21 



trace 

Recursion Limiting 

The control argument: 

-govern on, -gv on 

sets a bit in the TCT that causes recursion limiting to be in effect 
for any procedure subsequently added to the trace table. When the 
governing feature is used, the depth control parameter is ignored and 
trace prints the call message only when the recursion depth of the 
traced procedure reaches a new, maximum depth. Each call message has 
a recursion depth one greater than the previous call message. In 
addition, trace calls the command processor (or a user-defined 
procedure if the -stop proc control argument was used) whenever the 
recursion depth is a multiple of 10. Return messages are not printed. 
This feature enables the user to find and limit uncontrolled 
recursion; it can be very useful in finding the procedure{s) 
responsible for fatal process error. 

The control argument: 

-govern off, -gv off 

turns off the governing switch in the TCT; any procedure currently 
being governed continues to be governed. 

Watch Facility 

The trace command has an optional watch facility in which trace 
watches the contents of a set of previously specified memory cells. 
The cells are checked at every entry to and every exit from every 
traced procedure. As long as the values in the locations being 
watched remain the same, no action is taken and no tracing messages 
are printed. The tracing message is printed as soon as trace finds 
that any of the locations being watched has had its value changed~ 
This can be found either at entry to or exit from the traced 
procedure. When any value changes, the tracing message is preceded by 
lines that give the new values of all of the locations that have 
changed, and the command processor (or a user-set procedure if the 
-stop proc control argument was used) is called even if the A or B 
conditions are not met. When execution continues, the locations that 
have changed are watched with the new value being used in subsequent 
checks. This feature can be very useful in determining which of the 
user's procedures has incorrectly modified a word of storage. 

Not To 8e Reproduced A-99 F21 



trace 

The control argument: 

-watch STR, -wt STR 

causes all procedures being traced to watch for a change in the 
current contents of the memory word(s) specified by the string STRe 
This string, specifying the location; can consist of a single address 
specification or a series of address specifications separated by 
blanks and surrounded by quotes. If an address specification does not 
contain a vertical bar (I), it is taken to be an octal number giving a 
location in the stack; otherwise, it is taken to be a segment number 
and offset in octal in the standard form, e.g., segment_number \ offset. 

The control argument: 

-watch off, -wt off 

turns off the watch facility. 

The watch facility differs from other trace facilities in that 
there is a single table of locations being watched that is used by all 
procedures being traced. When the -watch control argument is 
processed, the new location(s) specified replace any locations 
currently in the watch table. There is no provision made for removing 
a single location from the watch table; the user must reissue a watch 
request that omits the location to be removed from the table. 

Command Execution 

The command execution facility of trace allows the user to 
speclLy a Multics command line to be executed whenever the trace 
debugging procedure is called. The trace procedure calls the command 
processor with the specified string after printing the tracing 
message, but before the stop request causes the command processor to 
be called. 

Not To Be Reproduced A-IOO F21 



trace 

The control argument: 

-execute str ing 

sets the execution string parameter in the TeT. Since string is a 
single argument, it must be enclosed in quotes if it contains any 
spaces. The execution parameter in the TCT is turned off if string 
has zero length (-execute "")., The following line: 

trace -ex time test 

causes trace to execute the time command before and after test is 
called .. 

Changing Output Switch 

All of the messages from the trace command that may be generated 
~hile actually monitoring procedures are normally written on the 
user i/o switch so that trace can conveniently be used with pr0ceduras 
that change the attachment of the normal switch, user output. The 
control argument: -

-io switch STR 

causes trace 
specified by 
stream_output. 

to write furthe-r monitoring output 
STR, which must already be attached 

Not To 3e Reproduced A-IOI 

on the switch 
and opened fo r 

F21 



trace stack, ts 

Name: trace_stack, ts 

The trace stack command prints a detailed explanation of the 
current process stack history in reverse order (most recent frame 
fir s t) • Fa rea c h s t a c k f ram e , a 11 a va i 1 ab 1 e i n form at ion a b out the 
procedure that established the frame (including, if possible, the 
source statement last executed), the arguments to that (the owning) 
procedure, and the condition handlers established in the frame are 
printed. For a description of stack frames, see ItMultics Stack 
Segments" in Section!IV of the MPM Subsystem Writers' Guide. 

The trace stack command is most useful after a fault or other 
error condition: If the command is invoked after such an error, the 
machine registers at the time of the fault are also printed, as well 
as an explanation of the fault. The source line in which it occurred 
can be given if the object segment is compiled with the -table option. 

Usage 

trace stack {-control_args} 

where control_args can be selected from the following: 

-brief, -bf 
suppresses listing of arguments and 
control argument cannot be specified 
specified as a control argument. 

-long, -lg 
prints octal dump of each stack frame. 

-depth N, -dh N 
dumps only N frames. 

Output Format 

handlers. 
if -long 

This 
is also 

When trace stack is invoked, it first searches 
backward through the stack for a stack frame containing 
saved machine conditions as the result of a signalled 
condition.. If such a frame is found, tracing proceeds 
backward from that point; otherwise, a comment is printed 
and tracing begins with the stack frame preceding 
trace stack. 

If a maChine-conditions frame is found, trace stack 
repeats the system error message describing the fault. 
Unless 'C.ne 
trace stack 

Not To Be Reproduced 

-brief control 
also prints the 

A-I02 

argument is specified, 
source line and faulting 

F21 



trace stack, ts 

instruction and a listing of the machine registers at the 
time the error occurred. 

The command then performs a backward trace of the 
stack, for N frames if the -depth N argument was 
specified, or else until the beginning of the stack is 
reached. 

For each stack frame, trace_stack prints the offset 
of the frame, the condition name if an error occurred in 
the frame, and the identification of the procedure that 
established the frame. If the procedure is a component of 
a bound segment, the bound segment name and the offset of 
the procedure within the bound segment are also printed. 

The trace stack command then attempts to locate and 
print the source line associated with the last instruction 
executed in the procedure that owns the frame (that is, 
either a call forward or a l.ine that encountered an 
error). The source line can be printed' only if the 
.procedure has a symbol table (that is, if it r.va~ compiled 
with the -table option) and if the source for the 
proced~re is available in the user's working directory. 
If the source line cannot be print~d, trace stack prints a 
comment explaining why. 

Next, trace stack prints the machine instruction last 
executed by the procedure that owns the current frame. If 
the machine instruction is a call to a PL/I operator, 
trace stack also prints the name of the operator. If the 
instruction is a procedure call, trace stack suppresses 
the octal printout of the machine instruction and prints 
the name of the procedure being called. 

Unless the -brief control argument is specified, 
trace stack lists the arg~~ents supplied to the procedure 
that owns the current frame and also lists any enabled 
condition, default, and clean-up handlers established in 
the frame. 

If the -long control 
trace stack then prints an octal 
with eight words per line. 

Not To Be Reproduced A-I03 

argument is specified, 
dump of the stack frame, 

F21 



card 

trace stack, ts 

Example 

After a fault that reenters the user environment :nd 
reaches command level, the user invokes the trace stack 
command. 

For example, after quitting out of the list command, 
the following process history might appear: 

list 

Segments=8, Records=3 

rew 0 mailbox 
r w 
QUIT 

trace stack 
quit Tn ipc Sblock\156 
(>system library l>bound command loop 1156) 

No symbol table for ipe --
156 400010116100 -cmpq pr4\10 

Machine registers at time of fault 

prO ( ap) 

prl ( ab) 
pr2 ( bp) 
pr3 (bb) 
pr4 (1 p) 

pr5 ( Ib) 
pr6 ( sp) 
pr7 (sb) 

263!4656 

1031264 
14112200 
11310 
253\2250 

24413614 
24413500 
244iO 

p11_operators_$operator_table!162 
(external symbol in separate nonstand 

text section) 
scsl264 
as linkagel12200 
tc-data! 0 
lSBBJGjFkP8WcNZ.area.linkerI2250 

(internal staticlO for ipe ) 
stack 4\3614 -
stack-413500 -> "kcpMbLH +0000000 11

) 

stack=410 

xO 73 xl 0 x2 0 x3 600000 
x4 0 x5 32 x6 3033 x7 4 
a 000000000000 q 000000000004 e 0 
Timer reg - 1746005, Ring alarm reg - 0 

seu Data: 

4030 400270250011 000000000021 400270000000 000000672000 
000156000200 000154000700 002250370000 600044370120 

Connect Fault (21) 
At: 2701156 ipc 1156 (bound_command_loop_1156) 
On: cpu a (~O) -
Indicators: ""bar 

'Not To Se Reproduced A-104 F2l 



trace stack, ts 

APU Status: xsf, sd-on, pt-on, fabs 
eu Status: rii, its, fif 
Instruc tions: 

4036 002250 3700' 00 
4037 6 00044 3701 20 

epp4 
epp4 

2250 
pr6144,* 

Time stored: 08/02/77 1635.5 edt Tue (104541674361226602) 
Ring: 4 

Backward trace of stack from 244\3500 

3500 quit ipc $blockl156 (bound command loop 1156) 
No symbol table for ipc - --

156 400010116100 -cmpq pr41l0 
ARG 1: 25315704 !B8BJGjFkPBWcNZearea.linkerI5704 
ARG 2: 24413152 stack 413152 
ARG 3: 0 -

2720 tty $ttv get linel2442 (bound iox 111546) 
No symbol table·for tty - -
call ext out to ipc Sb10ck 

ARG 1: 253T4320 lBBBJGjFkPBWcNZ.area.linker14320 
(internal static!154 for find locb) 

ARG 2: 24412660 stack_412660 ( -> "fo stuff") -
~",HG 

ARG 
ARG 

4: 0 
5: 0 

2400 listen $listen 1461 . (bound command loop 11325) 
No symbol table for listen - --
call ext out to iox $get ITne 

- XRG 1:"" - -
on "cleanup" call listen 1256 (bound_command_loop_!ll22) 

2100 
\c 121433) 

\c1676) 

No symbol table for process overseer 
call ext out desc to listen-S1isten -

- Argument list header invalid. 
on "any other" 

call standard default handler Sstandard default handler 3 
(external symbol in separate nonstandard text section) 

No symbol table for user init admin 
21676 700036670120 tsp4 - pr7T36,* aIm call 

No arguments. 

End of trace. 

Not To Be Reproduced A-lOS F2l 



trace stack, ts 

r 1635 1.756 40e790 207 level 2, 9 

Not To Be Reproduced A-I06 F21 



APPENDIX W 

Workshops 
Workshop One. 
Workshop Two. 
Workshop Three. 

Workshops 

W-i 

W-l 
.. W-l 
e W-IO 

W-13 



WORKSHOP ONE 

A probe Workshop 

The best (perhaps the only) way 0: learning how to use the probe 
command is by using the command in actual debugging sessions. This 
workshop provides the experience of debugging a moderately complicated 
programc The program computes and prints out the elements of a 
Fibonacci series. An F series begins as 

o 1 1 2 3 5 8 13 21 34 55 

An element of the series is calculated by adding the previous 2 
elements (for a Fibonacci series of degree 2). In the series shown 
above, the first two elements (0 and 1) are given as initial values 
and the remaining elements are then computed. 

Fibonacci series of higher degrees can also be defined by adding more 
elements to calculate the next in the series. For example, a series 
of degree 4 begins as 

o 0 0 1 1 2 4 8 15 29 56 108 

with the next element of the series calculated by adding the previous 
4 elements in the series. 

The program shown below reads two para~eters from the terminal: Fdeg 
gives the number of the highest d2qree Fibonacci series to be 
computed; count gives the number of elements to be included in each 
series. For input of 

Fd eg= 4, co un t= 7 ; 

the first seven elements (excluding the assumed initial values) of the 
Fibonacci series of degrees 2, 3, and 4 are printed. 

Now, without further ado, here are the ~rograms! There is one written 
in PL/I, and one written in FORTRAN. You can copy whichever of these 
programs you wish to debug from )'...ldd)F19>Student Ol>fib.pll (or 
.fortran) into your home directory. Note that the line numbers shown 
below are not actually a part of the sO'~rce segment. r \ "\,, 

~~\LS \ I ,\l)o -' 

\ I fso e~ 7 \NV-~()Sf 
7'\J~d I 

Not To 8e Reproduced W-1 F21 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
SO 
51 
52 
53 

WORKSHOP ONE 

fib: proci 

dcl (sysin, sysprint) file, 
Sfirst bit(l) int static init{"I"b), 

(Fd eg I co un t, i) fix ed bin, 
msg char(256) varying; 

del linesize fixed bin, 
get line length $stream entry (char (*) I fixed bin(35) 

- returns(fixed bin); 

del cleanup condition; 

/* Establish cleanup on unit to close files. */ 
/* Open input/output files, get output file line */ 
/* length to insure output lines fit on terminal.*/ 

on cleanup close file(sysin), file(sysprint); 
open file{sysin) stream input; 
open file(sysprint) stream output; 
linesize = get_Iine_Iength_$stream ("sysprintK, 0); 

/* Initialize indicator of how many series should */ 
/* be output (Fdeg) and how many items should be *1 
/* output in each series (excluding ass~med */ 
/* initial elements of each series) . *1 

Pdeg = 2; 
count = 10; 

/* Output brief instructions to the user; but */ 
/* only the first time fib invoked in each process*/ 

if Sfirst then do; 
msg = 

"Enter Fdeg and/or count, followed by a "";~" character."; 
write file(sysprint) from(msg)i 
msg = 

. "Po r example, 
Fdeg = 2, count=10;"; 

write file(sysprint) from(msg); 
msg = 

"These are the default values. To stop, enter 
Fdeg = 1; 

" . , 

end; 

write file(sysprint) from(msg); 
Sfirst = "O"b; 

put file(sysprint) 
list ("Enter data, or just a "Hi"" char: ~); 

get file(sysin) data (Fdeg 1 count); 

Not To Be Reproduced .. W-2 F21 



54 
5S 
50 
57 
56 
'5':9 
5'O? 
6-1, 
6'~ 
63 
6'4, 
65 
66 
67 " 
b8 
69 

, TO', 

71 
72" 
73 

WORKSHOP ONE 

/* Compute and output each Fibonacci series. 
/* Then get next set of input values. 

do while (Fdeg < 1); 

end; 

put file{sysprint) skip(2) data (count); 
put file(sysprint) skip; 
do i = 2 to Fdeg; 

end; 
call gen_fib (i, count); 

put file(sysprint) 
list ("New data, or just a ""in" char: 

get file{sysin) data (Fdeg,count); 

/* Close files and return. 

c los e f i 1 e ( sys in), f i 1 e ( s ys p r in t) ;, 
return; 

Not To 8~ Reproduced W-3 

*1 
*1 

") ; 

*/ 

F21 



74 gen_fib: proc (grouping, count); 
75 
76 del (grouping, count) fixed bin, 
77 /* Fibonacci series to be computed, and number */ 
78 /* of items to be computed in the series. */ 
7 9 N ( g r 0 up i n 9 ) fix ed bin ( 7 1) , 
80 /* Array of values summed to form series elements*/ 
81 result (-grouping:count-l) char(28} varying, 
82 /* Array of output values, including assumed */ 
83 /* values which begin the series~ */ 
84 r matrix (Nrows, Ncols) char(28) varying based(Pr matrix), 
85 - /* 2-dimensional overlay for the computed output */ 
86 /* values (excluding assumed values) • */ 
87 pr~matrix ptri 
88 
89 del (Icol, Irow, Ncols, Nrows, 
90 Nused cols in last row) fixed bin, 
91 Sdoes-not fit-bit{I), 
92 SPACES char(30) int static options(eonstant) init(lfii-), 
93 cycle fixed bin, 
94 /* index of series element being computed. */ 
95 formatted total oic "zzz,zzz,zzz,zzz,zzz,zzz,zz9", 
96 output total char(lOO) varying, 
97 total lixed bin(7l}; 
98 
99 

100 /* Initialize the assUL"11ed values which begin */ 
101 /* the series. All are 0 but the last, which is 1*/ 
102 
103 N(*) = 0; 
104 N(grouping-1) = 1; 
105 
106 

/* Put the assumed values in the output array. 

do cycle = -grouping to -2; 
result(cycle) = "0"; 

end; 
resu1t(cycle) = "1"; 

*/ 107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

/* Compute remaining values 
/* the output array_ 

of series, and put in */ 
*/ 

do cycle = 0 to count-I; 
total = sum (N) ; 
formatted total = total; 

end; 

Not To 8e Reproduced 

result(cycle) = ltrim(forrnatted total); 
N(mod(cycle, grouping)) = total; 

W-4 F21 



125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 

139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 

WORKSHOP ONE 

/* The output will be printed with assumed values */ 
/* preceding computed values. The computed values*/ 
/* will be printed in as many rows as possible to */ 
/* reduce the number of output lines. However, if*/ 
/* the output fits in 2 or more rows, the number */ 
/* of rows is chosen so that all columns but the */ 
/* final one are full (have Nrows values) • */ 
/* Of course, in multi-column format, all data */ 
/* must fit the terminal linesize. */ 

Pr matrix = addr(result(O)); 
Sd~es not fit = "1"b; 
do Neels ~ 20 to 1 by -1 while (Sdoes_not_fit)i 

end; 

.. _ ..... , __ "". 
I..VI..Cl.l. - -~I 

Nrows = divide(count+Neols-1, Neols, 17, O)i 
Nused eols in last row = mod(count,Ncols); 
if Nused eals-in last row = 0 then 

Nused coTs Tn last row = Neols; 
if Nused eels in last row )= Neols then do; 

end; _ 

do Icol .~ I-to Nused col s in last row; 

end; 

total = total +- - - -
length(r_matrix(Icol, Nrows))+2; 

do Ieol = Icol to Ncols; 
total = total + 

end; 
length(r_matrix(Icol, Nrows-l))+2; 

if total <= linesize then Sdoes not fit = "bUb; 

Neols = Ncols +,1; 

Not To Be Reproduced ~v-5 F21 



157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 

WORKSHOP ONE 

/* Output the values, starting with the assumed */ 
/* values, then the computed (output in columns). */ 
/* Computed values are output in right-justified */ 
/* columns. Each row (line) is formatted and */ 
/* then output. */ 

put file(sysprint) edit ("Fdeg =", grouping, 
I':") (a, f(3), a); 

put file(sysprint) edit ("(assumed beginning of series) If, 
(result(cycle) do cycle=-grouping to -1)) 
(skip, a, skip, (grouping) (a, x(l)) i 

put file{sysprint) 
edit (lI(remainder of series) ") (skip, a) i 

put file(sysprint) skip; 
do Irow = 1 to Nrowsi 

end; 

msg = "n; 
do Icol = 1 to Ncols-li 

end; 

msg = msg I I substr(SPACES, 1, 
length(r matrix(Icol,Nrows») -
length(r-matrix(Icol,Irow)); 

msg = msg I I r-matrix{Icol, Irow)i 
msg = msg I I ,,- It; 

if Irow*Ncols + Icol <= count then do; 

end; 

msg = msg ! I substr(SPACES, 1, 
length(result{hbound(result,I))) -
length(r matrix{Icol, Irow)))i 

I I - t . ("'"' 1 .,. \ msg = msg I I r_ma rlX ~co f ~row)· 

write file(sysprint) from(msg); 

put skip(2) file(sysprint); 
end gen_fib; 

end f ibi 

Not To Se Reproduced W-6 F21 



WORKSHOP ONE 

A FORTRAN VERSION 

1 logical sfirst /.true./ 
2 save sfirst 
3 
4 c Output instructions to the user, but only the first 
5 c time' fib' is invoked in each process. 
6 
7 if (.not.sfirst) goto 10 
8 print, "Enter first degree and count" 
9 print, "For example, First degree = 2, count = 10" 

10 print, "To stop, enter First degree = 1" 
11 sfirst = .false. 
12 
13 c Prompt for First degree and counte 
14 10 print, "First degree, count?" 
15 read, ifdeg, icount 
16 
17 c Stop when First degree is 1. 
18 if Cifdeg - 1) 15,15,25 
19 
20 15 print, "Count =",icount 
21 
22 c Compute and output each Fibonacci series. 
23 c Then get next set of input values. 
24 
25 do 22 i = 2,ifdeg 
26 22 call gen fib (i,icount) 
27 goto 10 -
28 
29 25 stop 
30 end 
31 
32 
33 
34 subroutine gen_fib (igrouping, icount) 
35 
36 c This subroutine actually computes the Fibonacci series. 
37 c 'iresult ' will be filled with the proper values, 
38 c wh i 1 e ; j res ul t r is a con v en i en t e qui val en t vie w 0 f 
39 c the solution which will be used for printing purposes. 
40 c The In' array holds the most recent terms to be added 
41 c together to obtain the next term in the series. 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

c 

double precision n(lO), total 
dimension iresult(30) 
dimension jresult(10,3) 
equivalence (iresult(l) ,jresult(I,l)) 

Tell him which degree of Fibonacci series this is 

print 
print,"Degree =",igrouping 

Not To 3e Reproduced W-7 F2l 



WORKSHOP ONE 

52 print 
53 
54 c Initialize the assumed values which begin the 
55 c series. All are 0 but the last, which is 
56 c 1 - also put the assumed values into the 
57 c output array 
58 
59 do 10 i = 1,igrouping-1 
60 iresult(i) = 0 
61 10 neil = 0 
62 iresult(igrouping) = 1 
63 n(igrouping) = 1 
64 
65 
66 
67 

c 
c 

compute remaining values of series, and put in 
the output array 

68 do 20 icycle = igrouping+l, icount 
69 total = ° 
70 do 15 i = 1, igrouping 
71 15 total = total + n(i) 
72 iresul t( icycle) = total 
73 20 n(mod(icycle-l,igrouping)) = total 
74 
75 c The output will be printed with assumed values 
76 c preceding computed values. The computed values 
77 c will be printed along with the assumed values 
78 c in three columns. Hence, there will always be 
79 c 'irow' rows with three values, and the last 
80 c row may have 1 2 or 3 values 
81 
82 icol = mod(icount,3) 
83 irow = icount / 3 
84 
85 do 22 j=l,irow 
86 22 print,(jresult(i,j) ,i=1,3) 
87 if (ico1) 30,30,25 
8 8 2 5 P r in t, (j res u 1 t ( i r 0 W+ ~ , i) , i = 1 , i col ) 
89 30 return 
90 end 

Not To Be Reproduced W-8 F21 



WORKSHOP ONE 

The following dialogue shows the correct operation of the PL/I version 
of the fib program. The dialogue is slightly different for the 
FORTRAN and COBOL versions, but the concept is basically the same for 
all three programs. The programs shown above may have errors which 
prevent them from generating these results. Use probe to find the 
errors. Change the source to correct 'the errors, recompile the 
program and continue testing it until it prints the results shown 
below .. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

• pll fib -table 
Df. IT .. -, -
r 2247 5.091 51.312 227 

fib 
Enter Fdeg and/or count, followed by a ";" character. 
For example, 

Fdeg = 2, count=10; 
These are the default values. To stop, enter 

Fdeg = 1; 

Enter data, or just a char: 

count= 9; 
Fdeg = 2: 
(assumed beginning of series) 
o 1 
(remainder of series) 

1 2 3 5 8 13 21 34 55 

Fdeg = 3: 
(assumed beginning of series) 
O' 0 1 
(remainder of series) 
1 2 4 7 13 24 44 81 149 

Fdeg = 4: 
(assumed beginning of series) 
o 0 0 1 
(remainder of series) 
1 2 4 8 15 29 56 108 208 

Fdeg = 4, count=9; 

New data, or just a Pi" char: Fdeg=l; 
r 2248 0.249 0.228 19 

Not To Be Reproduced W-9 F2l 



WORKSHOP TWO 

A trace Workshop 

1. Use 'trace' to monitor the value of the arguments on return from 
the system program 'expand pathname' (trace -ag 1 -out 
expand pathname ). Do you know what that program is used for? 
Issue the trace-command to list che status of the expand pathname 
trace entry (trace -status expand pathname ). Do you-know what 
those counters mean? Now issue a print command and observe what 
happens. Issue the command 'print->ldd>include>its.incl.pll' and 
see what happens. Now try the command Ids baloney'. Finally, try 
the command 'pr <>foo'. What happens? What do you think the 
fourth argument of expand_pathname_ is used for?? 

2. Now print the status of the expand pathname (trace -status 
expand pathname ). Also, list the control template for trace 
(trace- -tp). -Remove the trace entry for expand pathname and 
reset the control template to its initial form (trace -remove 
expand_pathname_ -ag 0). 

lf~oeJIWK5f.s) ~d.1/51/ 
3. Execute the following recursive program (see >udd>FI9>sl>R2.pll 

and >udd>F19>sl>R2): 

R2: proc, 
del (sysin, sysprint) file; 
del ( Ii , i ) fix ed bin; 
del R2$Seq entry (fixed bin); 

open file (sysprint) stream output env (interactive); 
P.ut file (sysprint) skip list ("Enter value .•• 1'); 
get list (n); 
call R2$Seq (n); 
.return; . 

Seq: entry (i); 

end; 

put file (sysprint) list (i); 
if i > 1 then do; 

call R2$Seq (i-I); 
put file (sysprint) list (i); 

end; 

Execute the program with a value of 5. You should get 5 4 3 2 1 2 
3 4 5. Type the command to trace this program, printing the 
argument values at input to every second call(trace -in -ag 2 
R2$Seq) • Now run R2 agai~ using the value 5 and observe what 
happens. List the trace status of R2$Seq and then turn on the 
governing facil i ty (trace -st R,2$Seq -govern on R2$Seq). The 
governing facility is used to help trap runaway recursive 
procedures. Run R2 once again, using the value 5. List the 
status of R2$Seq(trace -st R2$Seq). Note the maximum recursion 

Not To Be Reproduced W-lO F21 



WORKSHOP TWO 

level. Now 
time with an 
not really 
continue. 
Why?(Hint: 
multiple of 

lets see if we can blow it out. Run R2 again, this 
input of 12. What happened? Since our procedure is 
a runaway program, type the 'start' command to 

Did you realize that we were at command level? 
the govern facility stops on depth levels whiCh are a 
10 to give you a chance to find out what's happening). 

4G Now, stop tracing R2SSeq, and reset the template. You may first 
want to issue the command 'trace -st * _tpl to see the current 
state of affairs. Next, copy the following three simple pll 
programs, which are found in the directory >udd>Fl9>sl: 

init: proc; 
del 1 S external static, 

2 sentinel fixed bin, 
2 array (S) float; 

dcl ioa entry options (variable); 
dcl addr builtin; 

sentinel = 0; 
call ioa ("sentinel located at Ap", addr (sentinel)); 

end; 

load: proc; 
dcl sysprint file; 
dellS external static, 

2 sentinel fixed bin, 
2 array (5) float; 

dcl i fixed bin; 

open file (sysprint) stream output env (interactive); 
do i = 1 to 5; 

array (i) = 3* (i~2); 

end; 
put file (sysprint) skip (3) list (array) i 

end; 

Not To Be Reproduced W-ll F21 



print stat: proci 
dcl sysprint file; 

WORKSHOP TWO 

dcl 1 S external static, 
2 sentinel fixed bin, 
2 array (5) float; 

open file (sysprint) stream output env (interactive); 
put skip (2) list ("*sentinel location clobbered!!*"); 
put skip (1) data (S); 

end; 

Compile each of these programs. Now run init. It should tell you 
that the external static member variable 'sentinel' is located at 
some segment numberloffset. We want to use the watch facility of 
trace to find out whether any program is clobbering that location. 
Hence, issue the command to have trace watch that location (_r!~e 
~watch seg nol offset). Next, letJ s monitor the 1 load' program, 
and if anything goes wrong, let's cause the print stat program to 
be called as the' stop proc I instead of the command processo r. 
Issue the command to do this(trace ~stop proc print stat load) • 
Now run the load program and see what happens. So tar so goodl 
Now modify the load program so that it inadvertently changes the 
value of sentinel by changing the fda' statement to 'do i = a to 
5'. Recompile and run the load program. What h~ppens? The watch 
facility should have stopped your load program since the value of 
its watch lo~ation changed, and it should have called the 
appropriate 'stop 'proc ' • Did it? The watch facility is very 
useful when trying- to track down the one procedure in a group of 
procedures that is going a bit awry, or has modified some 
externally accessible error cell,etc. 

Not To 8e Reproduced W-12 F21 



WORKSHOP THREE 

On the Programming Environment: A Quiz 

1. Object segments are an essential part of the Multics programming 
environment. Name the 8 sections into which an object segment is 
divided. Describe the contents of each section in general termse 
Are all the sections always present in every object segment? If 
not, which are optional~ 

Not To 8e Reproduced W-13 F21 



WORKSHOP THREE 

2e The system maintains information about the user ring programming 
environment in 2 important segments. Can you name these 2 
segments? Briefl'y describe what kinds of data the system keeps 
in each segment. What directory are the segments located in? 
How are these segments protected from accidental damage? 

Not To Be Reproduced W-14 F21 



WORKSHOP THREE 

3. One of the most powerful features of the Multics program.m~ng 
environment is the Dynamic Linking mechanism. The programmlng 
environment uses this mechanism to find an object segment which 
is called by another program. 

Briefly name the important steps taken by the dynamic linker to 
find an obj ec t segmen t .. 

At what point during the compilation or execution of the calling 
program does dynamic linking take place? 

How 0 f ten d 0 '~3 itt a k e pIa c e? 

If one program calls an object 
(a second ob~9ct segment) calls 
are the same 3teps followed in 
the called object segment? 
differ during ~he second call? 

seament and then a second oroaram 
that same target object s~gm~nt, 

both cases to dynamically link to 
If not, how does dynamic linking 

Not To Be Reproduced W-1S F2l 



WORKSHOP THREE 

4. A fatal precess error occurs when the system decides -hat the 
programming environment can no longer operate correctly. When 
this occurs, the system takes control of the user's terminal, 
prints a brief error message, and creates a new user process. 

Under what circumstances might the system decide that the 
pf~~nProgramming environment can no longer operate? 
:~: ~,~:' r. : 

What 2 programming errors are the most common causes of fatal 
process errors? 

Briefly describe a procedure for finding the cause of a fatal 
process erro r. 

To Be Reproduced W-16 F21 



WORKSHOP THREE 

5. In chapter four 11 different classes of data (storage c~.a:sses);.' 
were discussed which can be used in PL/I, FORTRAN and/or ,COB'OL 
programs. For each class of data, describe: 

o 

o 

Where the data is stored. Give the logical ndrn~ of a 
segment, table, or area; also give the pathname of the 
segment containing the data class. 

The major characteristics of the storage class. (When the 
data is allocated, when freed, when initialized, can it be 
shared between programs, etc?) ". " .. ~ 

For example, one class of storage is: 

based storage, in an area: stored in a program-supplied area, 
such as the system free area (segment system free n in the 
process dir). Storage is known only to -1 program, is 
explicitly allocated and freed, is initialized by allocate 
or locate statements, and has a location maintained by a 
pointer or offset qualifier. 

Not To Be Reproduced W-17 



WORKSHOP THREE 

5. (Mor~. ;spa-~<e·for the answer) 
J'f": jt'~~>";';;,· .' 

{o o} 
V 
\-:·f \ 

\ _"' ... ( Happiness is Mul ting the day away ) 

\ _________________________________ 1 

No t To 8~e R~p_roduced W-18 
(End Of Topic) 

F21 


	001
	002
	003
	004
	005
	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-001
	7-002
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	8-001
	8-002
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-001
	A-002
	A-003
	A-004
	A-005
	A-006
	A-007
	A-008
	A-009
	A-010
	A-011
	A-012
	A-013
	A-014
	A-015
	A-016
	A-017
	A-018
	A-019
	A-020
	A-021
	A-022
	A-023
	A-024
	A-025
	A-026
	A-027
	A-028
	A-029
	A-030
	A-031
	A-032
	A-033
	A-034
	A-035
	A-036
	A-037
	A-038
	A-039
	A-040
	A-041
	A-042
	A-043
	A-044
	A-045
	A-046
	A-047
	A-048
	A-049
	A-050
	A-051
	A-052
	A-053
	A-054
	A-055
	A-056
	A-057
	A-058
	A-059
	A-060
	A-061
	A-062
	A-063
	A-064
	A-065
	A-066
	A-067
	A-068
	A-069
	A-070
	A-071
	A-072
	A-073
	A-074
	A-075
	A-076
	A-077
	A-078
	A-079
	A-080
	A-081
	A-082
	A-083
	A-084
	A-085
	A-086
	A-087
	A-088
	A-089
	A-090
	A-091
	A-092
	A-093
	A-094
	A-095
	A-096
	A-097
	A-098
	A-099
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	W-001
	W-01
	W-02
	W-03
	W-04
	W-05
	W-06
	W-07
	W-08
	W-09
	W-10
	W-11
	W-12
	W-13
	W-14
	W-15
	W-16
	W-17
	W-18

