
SUBJECT

LEVEL 68
MULTICS ERROR MESSAGES:

PRIMER AND REFERENCE MANUAL

Description of the Multics System Error Messages, Including Troubleshooting
Information

SOFTWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

CH26-00 September 1980

Honeywell

PREFACE

The purpose of this document is to aid you in understanding errors that may
occur during use of Multics. The standard Multics error reporting mechanism is
introduced, and the meaning of error messages is explained. Possible causes of
many errors are discussed, and when applicable, methods for recovering from or
circumventing an error are presented. The majority of this document is intended
to be somewhat tutorial; the final section is included strictly as a reference.

This document is intended for use by novice users or programmers new to the
Multics programming environment. As a result, the kinds of errors covered and
the examples given have been tailored to this audience. However, some
background knowledge of the Multics environment is assumed. (For an
introduction to the Multics environment, see the New Users; Introduction to
Multics--Part I (Order No. CH24) and--Part II (Order No. CH25). In this
document, this book is referred to as the New Users' Intro.

The discussion of error conditions is divided into two parts that are
tutorial introductions to and explanations of error messages. These sections (2
and 3) contain examples of some of the most commonly occurring errors of the
particular class. Terminal scripts, along with descriptive commentaries, are
used to present typical examples of the error, the methods used to determine the
actual cause of the error, and means for recovering from the error.

We recommend at least one reading of Sections 1 to 3 to provide some
familiarity with errors that otherwise could only be obtained by a long period
of actual use. Furthermore, many errors have related causes and consequently
related methods for analysis, and since, in general, a topic is explained in
full detail only once, a thorough reading will help you see how a specific
technique or error falls into the overall scheme. Finally, you should find a
number of worthwhile hints that enable you to avoid problems in the first place.

NOTE: The listing of error messages in Section 4 is as complete as
possible based on currently available information. As further
information becomes available, updates will be published. updates
to this manual.

The reference section (4) should be useful when you encounter specific
messages and need specific information.

Section 1 is a brief introduction.

Section 2 describes errors that ANYONE might get, regardless of their level
of expertise. These include command processor errors, command errors, and error
messages that indicate system problems.

Section 3 discusses errors that only a PROGRAMMER is likely to get. These
include some of the more unusual command processor errors, most of the fault
messages, and the fatal process errors.

The information and specifications in this document are subject to
change without notice. This document contains information about
Honeywell products or services that may not be available outside the
United States. Consult your Honeywell Marketing Representative.

Q Honeywell Information Systems Inc., 1980 F i I e No.: 1 L 13

CH26-00

Section 4 is a reference section that includes an alphabetical listing of
the error messages (by long message and code) and what they are likely to mean.

The Multics Programmers' Manual (MPM) is the primary Multics reference
document.

The MPM consists of the following individual manuals:

Reference Guide (Order No. AG91)

Commands and Active Functions (Order No. AG92)

Subroutines (Order No. AG93)

Subsystem Writers' Guide (Order No. AK92)

Peripheral Ineut/Output (Order No. AX49)

Communications Input/Output (Order No. CC92)

Throughout this manual, references are made to both the MPM Commands and
Active Functions manual and the Reference Guide. For convenience, these
references will be as follows:

M PM Command s
MPM Reference Guide

The Multics operating system is sometimes referred to in this manual as
either "Multics" or "the system."

iii CH26-00

Section 1

Section 2

Section 3

Section 4

Index

CONTENTS

Introduction
Conventions

Common Error Messages For Everyone
General Preventive Suggestions .
U"'L' ,..,,, ft"I"""'Y'\~ ~ r,....",.. 0"" T"",.f... A.~"""",,_.f...,,~
l1V" VVUllUCllJU~ vetlJ W"C; ..L.IJ veil U}J'""'C:'U • • • •

Recovering from an Interruption .
Command Processor Errors
Command Errors
System Problems

Handling Execution Errors .
Damaged Segments

Page

1-1
1-3

2-1
2-1
2=2
2-2
2-3
2-7
2-12
2-12
2-16

Common Errors For Programmers 3-1
Command/Command Processor Errors (Revisited) 3-2
Execution Errors (Faults) 3-3

Alphabetical Reference to Errors 4-1

i-1

iv CH26-00

SECTION 1

INTRODUCTION

This manual is intended to be of use to all Multics users -- specifically,
the document is broken down into two tutorial sections: a nonprogrammers'
section and a programmers' section. The remainder of this manual is a reference
section for all users, listing the system error messages alphabetically and
including diagnostic information.

Multics gives you an error message:

• When you try to do something "illegal" -- it cannot be done.

• When you type in a command line that makes no sense (to the system).

Errors are often caused by a typing error, or by your losing track of what
precisely you wanted to do. Look at what you typed that caused the error, and
try again.

Where do error messages come from? A certain set of standardized messages
are shared by different situations and printed when appropriate for a particular
error. These messages are located in a place called the error_table_, which is
generally accessible to programmers.

In addition, many subsystems and other programs print error messages and
comments "on their own", incorporating and/or independent of the standard system
messages.

The error messages fall into four categories:

_ command processor errors

• command errors

• execution errors (faults)

• fatal process errors

Command processor errors include all errors that arise in the
interpretation of commands and the formation of command names and command lines.
This type of error is received by all kinds of users. A common reason for
receiving command processor errors is that the command line contains mistyped
characters or words; essentially, in some manner the line is malformed and
cannot be interpreted by the command processor.

1-1 CH26-00

Command errors are those that are detected by commands themselves; for
example, an editor reports an error when a request is issued to read a
nonexistent file. Command processor errors and command errors are intentionally
printed; that is, these user-caused errors are so common that their frequent
occurence is anticipated and the messages are planned to inform you of the
problem.

Execution errors -- hardware conditions arise during the execution of
programs. When an error of this kind (also known as a fault) occurs in your
program, you fix the error by debugging the program. ~he problem occurs
because you ran out of storage space or have damaged segments, you may have to
delete or change something, or ask for help from your supervisor or project
administrator. If double-checking reveals no problem within your program, the
cause of the error may be a system bug. When the error is caused by a system
program (this is unintentional and shows a bug in the system program or a
genuine system problem~, you are not to blame! You have not caused it by any
action on your part, and you cannot fix it Call users are susceptible to system
problems!).

Fatal process errors are usually caused by a serious bug in your program
that must be found. Fatal process errors are similar in origin to execution
errors, but cause your process to be aborted and a new process is automatically
created for you (by the way, you did not break any machinery!). Because a fatal
process error discards all the normally available debugging information, it can
be very difficult to find the cause; generally, the only way to do so is to
determine the last thing the program did before the error and examine the
statements following this point.

All the language- and subsystem-specific manuals (e.g., the Qedx Text
Editor Users' Guide (Order No. CG40) and the Fortran Users' Guide (Order~
CC70» should ~onsulted when searching for descriptions or--ranguage- and
subsystem-specific errors -- these errors are not addressed here. Multics
compilers print a list of errors when they compile a source segment. For
example, the list might indicate incorrect syntax in the source segment. This
list of errors may be graded by severity; you may judge whether to continue
compilation or halt it by issuing a quit signal. Generally, it is advisable to
let the compilation finish so that all errors are reported, and fix all errors
before trying to recompile. (An exception to this is an error such as a missing
include file.) Severe errors automatically cause compilation to cease. The
compiler prints an error message, and the system returns to command level and
prints a ready message.

When an error arises, the system may handle it in one of three ways (the
examples below show how the error message looks, but not its cause):

• For command errors and command processor errors --

Prints an error message and then a standard ready message. The form
of the ready message indicates that you are still at command level 1,
as you were before you began, e.g.:

Segment primt not found.
r 9:37. 144 55

• For execution errors and faults --

Prints an error message and then a ready message containing additional
information that shows you are at a new command level!

Error~ Attempt to divide by zero at)udd)Project)Person>program:13
(line 5)
system handler for error returns to command level
r 13:14 0.099 59 level 2

1-2 CH26-00

• For fatal process errors --

Prints an error message and creates a new process for you (effectively
logs you out and then immediately back in).

Fatal error. Process has terminated.
New process created.

(Then goes through your start_up and prints a ready message when
done.)

The above messages are in an abbreviated form. Frequently these messages
contain additional information that is specific to the case at hand.

The descriptions of how to handle these various states are described in the
sections to follow.

CONVENTIONS

The examples in this document follow certain conventions.

Technical or other unfamiliar terms are underlined when used the first
time.

Quotation marks are used to indicate the exact spelling of a word, or the
way a word or phrase should appear on a user-typed line. You do not type these
quotation marks.

Another convention (shown within examples) is the use of an exclamation
point to indicate user-typed lines. The exclamation point does NOT appear on
your terminal -- you do not type it, and Multics does not type it to prompt you.
Exclamation points appear ONLY in examples, and ONLY to show which lines you
type.

Text within angle brackets « ... » is also
explanatory purposes ONLY. They are not actually
should not type them.

used within examples for
typed by Multics, and you

A quit signal, issued when you press the QUIT, ATTN, or BREAK keys on the
terminal, is indicated by "(quit)" appearing to the left of the normal text of
the example. When a line of output is too long to be placed on a single line in
an example, it is broken at an arbitrary point and continued on the next line.

In ready messages printed by the system on the completion of a command
line, a series of four dots C ••••) replaces information, such as the time of
day, irrelevant to the example being presented. For example,
"r 13:23 0.067 67", and all other "real" ready messages appear in this document
as "r ".

Finally, many lines of input or output whose content should be obvious from
(or is irrelevant to) the example are replaced by ellipses C ...).

1-3 CH26-00

SECTION 2

COMMON ERROR MESSAGES FOR EVERYONE

When unusual circumstances prevent or interrupt completion of work, anyone
and everyone receives error messages, regardless of how long and to what extent
they use the Multics system!

The most important thing for you to remember is that no matter what the
message says (or seems to imply), YOU HAVE NOT (AND CANNOT) HURT THE COMPUTER!
(You may have even received a message that begins "FATAL ERROR ... ", which may
give you a start but is not, in fact, fatal!) Generally, at the very worst, you
may lose work that you had wanted to save. And if you lost a segment that you
had PREVIOUSLY saved, there are ways to get it back.

This section describes three kinds of errors that anyone might get: errors
that are detected by the command processor, errors detected by the commands
themselves, and those that indicate system problems.

Before entering into explanations of these types of errors, here are some
general suggestions to prevent common mistakes that generate some of these
messages, and explanations for why you may receive an error message that seems
to have no connection with an action you requested.

GENERAL PREVENTIVE SUGGESTIONS

For new users, one of the most common actions that results in an error
message is an attempt to type something WHILE Multics is printing a response to
your previous action.

If you type a command that causes output to be printed at your terminal,
ALWAYS wait for the system to finish printing before you type anything;
otherwise, the line you type may get garbled and an error results. If this
happens, type an @ sign to ensure a fresh start and retype the command on a new
line. (To make sure that the terminal output does not interfere with your input
(and vice versa), you can use an instruction to control your terminal -- see the
set_tty command in the MPM Communications Input/Output, Order No. CC92.)

There are cases where the error message you receive may seem totally
inappropriate in relation to the command you MEANT to type. This is most often
due to a typographical error or misspelling.

Another common cause of errors and confusion are abbreviations contained in
your profile segment, created with the abbrev command (see the New Users'
Intro). Once you have created abbrevs, the command processor always checks
every command line for them -- if one of your abbrevs is hidden in the command
line, it is found and expanded (sometimes when you've forgotten about it or are
not expecting it). Keeping track of all abbreviations in your profile rian help
eliminate this stumper.

2-1 CH26-00

Errors may often be caused by a garbled telephone connection between your
terminal and the computer. If there is no apparent cause for an error, reenter
the same command line again.

Another point to keep in mind is that when you type a number of commands on
a line (separated by semicolons) and one command fails, the rest of the line may
be ignored (the action specified in any succeeding command(s) may not be taken).
Whether or not this happens depends on why that command failed; and what kind of
error it produced. Tn such an instance, however, you must find out which
command failed, and reissue that command and any that followed it.

Finally, if you are at a point where every command you type causes an
error, your process is damaged and you should use either the new proc or logout
command (see the MPM Commands) to obtain a new process and get ~ourself out of
trouble. In the rare cases when your process is so damaged that these commands
fail, you will have to eit~er hang up the phone and dial in again, or, (if your
terminal is hardwired) call the operator.

HOW COMMANDS CAN BE INTERRUPTED

Often it is desirable to interrupt a command before its execution is
complete. You may discover while the command is executing that a mistake has
been made, or it may simply not be necessary to execute the command entirely.
For example, you may issue the print command (described in the MPM Commands) but
not need to see the entire segment printed. So as soon as the needed
information is printed, you could issue a quit signal, by pressing the button on
your terminal that is labeled QUIT, INTERRUPT, BREAK, or ATTN. The quit signal
causes Multics to stop wtatever it is doing and print QUIT and a ready ~essage.

The ready message
other ready messages
standard numbers:

p""::1tec
be..::ause

r 9:381.12362 level 2

after a quit s:gna: is
it contains additi~nal

slightly different from
information after the

The character string "level 2" indicates that a new command level has been
established and the interrupted work is being held on the previous level. Since
the system is at command level, that is, ready to accept more commands, you can
either continue the interrupted work or go on to something else.

Recovering from an Interruption

If the work interrupted by the quit signal is to be continued, you can
issue either the start (sr) or the program interrupt (pi) command (fully
described in the MPM Commands). The start command resumes execution of the
interrupted command from the point of interruption (but notice that if output
was being printed when you signalled quit, an arbitrary amount of output may be
lost, i.e., when it resumes printing it starts at a later point). The
program interrupt command resumes execution of the original command from a
known, - predetermined reentry point. (See the discussion of the
program interrupt command under "Handling Execution Errors" later i~ this
section~) Usually the program interrupt command is invoked when you are working
in a subsystem like qedx or read_mail and you want to interrupt printing and
remain in the subsystem. This method of resuming an interrupted command is
useful for skipping over information not needed at the time. After the QUIT
message is printed, typing the program interrupt command will return you to
request level in the subsystem. -

2-2

If, on the other hand, you do not wish to continue the interrupted work,
the interrupted command should be released before any ether commands are issued.
The release (r1) command (see the MPM Commands) releases the work interrupted
and held by the quit signal and returns the system to the previous command level
(dropping the level information from the ready message).

The first type of error described here is command processor errors.

COMMAND PROCESSOR ERRORS

Error messages from the command processor are the most basic level of error
message. It is both necessary and fairly easy for you to ~aneuver your way past
these, no matter what kind of user you are. Following is a brief explanation of
how these errors occur, and then some real examples.

The command processor, as its name implies, processes commands--that is, it
intercepts and interprets the lines you input at command level, and then calls
the appropriate program to perform the desired operation.

If the command processor determines that the command line is improperly
typed, it prints an error message on your terminal that attempts to show you
where the mistake is. Then the system waits for you to type another command.
Once the cause of the problem has been determined, you may retry the (corrected)
command.

The following example shows how a misspelled command
(mis)interpreted by the command processor. It searches for the
(segment) with the misspelled name (llprimt," intended as "print")
reports that the program cannot be found:

p rim t r e po r t
Segment primt not found;
r

name is
program

and then

If your command line includes more than one command, for example, "print
report; cwd another dir; print new," commands that appear after the point at
which the "segment ... not fcund" error occurs are ignored by the command
processor -- that is, they are not executed. Other errors that cause the rest
of the com!Tland line to be aborted are all those that begin "command processor : t!
such as "Quotes do not balar:ce," "Parenthesis do not balance," "Brackets do not
balance," "Mismatched iterotion sets," "Blank command name," and "~;ull bracket
set encountered." (The other error that has the same effect is "Entry Point XX
not found in Segment XX" -- see Section 3.)

Hhen the line is t'etyped correctly ("print report") the command processor
passes it to the print command. If all is well within the command line (e.g.,
the placement of srguments), which in thi~ case, it is, the command is executed.
(WI-J at hap pen s if::;! 1 i s not we 11 i s dis c u sse dun d e r "C 0 m man d Err 0 r s" below.)

Following are some examples of common command processor errors, including
scripts to show the method of determining the cause of the error and recovery
techniques.

2-3 :CH26-0~

SEGMENT NNNN NOT FOUND

This means that name NNNN did not match any entryname within the user's
search rules. The most common cause of the error is incorrectly specifying
(through mistyping or a misconception) the command name.

For example, suppose that you had a program called colour, but mistakenly
typed "color" when calling it:

color
Segment color not found.
r

list

Segments = 3, Length = 3.

re colour
r w colour.pl1
rew Holmes.mbx

r

colour

Here you get the error, then use the
if there is something wrong with the
command line with the corrected name.

list command (see the MPM Commands) to see
name. Finding the mistake, you retype the

PARENTHESES DO NOT BALANCE

Since parentheses have a special meaning on a Multics command line (see the
New Users' Intro), any parenthesis is interpreted as an attempt to employ that
special usage, called iteration. So, this error means simply that a parenthesis
beginning or ending an iteration set was unbalanced. For example:

create)udd>Serpent>Holmes>(output1 output2
command processor_: Parentheses do not balance.
r

What was intended was "(output1 output2)" to create two segments; the ending
parenthesis was left off. This error is handled by reentering a command line
containing a balancing parenthesis.

The problem may arise when iteration of a command is not intended. For
instance, the "send message" command which transmits its arguments to another
party: -

send message KTWise.Doc delete the files (in Holmes>old
command_processor_: Parentheses do not balance.
r

2-4 CH26-00

Here the intent was to send a message containing a parenthetical thought. If
the command line were reentered with a trailing parenthesis, two messages would
be sent. That is, KTWise would receive:

From Holmes.Serpent: delete the files in

=: delete the files Holmes>old

Notice that the first message contains the first string in the "(in Holmes>old)"
iteration set and the second message, the second string. You can avoid this
problem by enclosing the entire message in quotes:

send_message KTWise.Doc "delete the files (in Holmes)old)"
r

It is advisable to always enclose messages in
unintentionally sending someone repeated messages.

BRACKETS DO NOT BALANCE

quotes to avoid

An invocation of an active function (a procedure returning a replacement
string to be inserted into the command line) is enclosed in square brackets.
This error simply means that the command line had an unbalanced left or right
bracket:

list -pathname [pd
command processor_: Brackets do not balance.
r

The correct command
process directory.
line.

line
The

would have contained "[pdJ" to return the name of the
error can be handled by entering a corrected command

Like the case of unbalanced parentheses in the message example above, an
active function invocation (balanced brackets) in a send message command line
transmits a message containing the value of the active function. You can avoid
this problem by enclosing the message in quotes.

QUOTES DO NOT BALANCE

Quotation marks are used in a command line to delimit a single string
argument that contains special characters such as brackets, parentheses, and
spaces. The error means that the command line contained an unbalanced quote and
can be remedied by reentering the corrected command line.

trim list patients -select "city equal Somerville
command_processor_: Quotes do not balance.
r

2-5 CH26-00

In this example, the command line was intended to u~e the tri~ :ist cc~m n~
(see the WORDPRO Reference Guide, Order No. AZ98) to delete frop.! the "P2tL:i: S"
1 is t e r f i 1 e t he r e cor d s 0 f all pat i en t s res i din gin the cit Y c f So ~ e r v i ~ 1 e . h '?

argument containing the name of the city must be quoted since i~ cor,ta ns
spaces, and the trailing quote was inadvertently omitted.

LINKAGE SECTION NOT FOUND

This error occurs most frequently when you have a segment in you: directory
that has the same name as a command and is not an object segment (i.e., an
executable program).

qedx
<editing occurs here>

w who <user creates segment "who">
q
r ...

who
command processor_: Linkage section not found. who

list

Segments = 2, Lengths = 2

r w who
rew Holmes.mbx

r ...

rename who important_people. list
r ...

terminate_single_refname who
r ...

who

r ...

In the example above, the user creates a segment named "who" wi th the qe x
text editor. When she then tries to use the who command (see MPM C0~m2nd5) ~
see who is logged in to the system, the command processor finds the user s
segment instead of the segment containing the system's who command. She
recovers from this error by first renaming her segment to avoid further
occurrences of the same error, and then using the "terminate single ref:-,ame"
command (see MPM Commands) to instruct the system to forget abotlt any-seg:'en~s
it may know of by the name "who."

See also "Execution Errors" in Section 3.

2-6 CH2E-OC:

COMMAND ERRORS

These are errors detected in the processing of a command. Command errors
are not restartable; that is, after the error message indicates a problem, you
must retype the entire command line (some errors can be restarted simply by
typing "start" - see "Handling Execution Errors" later in this section). A
message is printed, followed by a ready message, and the system resumes what it
was doing (e.g., listening for commands). The cause of the error can be fixed,
and the com~and reissued.

BAD SYNTAX IN PATHNAME

~his means that a pathname (the ordered list of entrynames identifying a
segmer.t ir. the storage system) has been formed incorrectly. The cause$ of this
error are typing mistakes and an incomplete understanding of what a pathname is.
(In the latter case, see the MPM Reference Guide.)

print)udd)Serpent»Holmes)a.basic
print: Bad syntax in pathname.)udd)Serpent»Holmes)a.basic

pr:nt.)udd>Serpent>Holmes)a.basic

r:cre the:> :Jser gave a pathname wi th two ">"s next to each other. As this is
incc~-ec~ Sy~t2X, an e~rQr message was printed. The user recovered by typing
the-5crrect pattname. This error occurs if a "(" appears out of place in a
relat~ve pa~hname, that is, at any place ot~er than the beginning of the
tJ a t r' !: :;. ~:; E • F·::., rex a r:; pIe, ~_ ~l e s y m b 0 1 s pre c e din g " Stu den t ., her ear e a c c e pta b 1 e, but
the (." ~ t:' ;' ~ C -:" G i ~ g "G r e en" c au s e 5 2 n err 0 r :

~ ___ (__ (_S_t_u_d_e_n_t __ (_G_r_e_e_n_>_o __ l_t_._r_u_n_o_f __ f ____ ~
INCOiRECT ACCESS ON ENTRY

This means that you do not have the correct access to a segment to perform
a certain operation. This error can be dealt with by using the list acl (la)
command (see the MPM Commands) to determine why you have no access an~ who can
give you access. If you have access to do it yourself, use the set acl command
to set the appropriate access to the segment.

The error may arise when trying to read a segment or
reading a segment with an editor like Qedx or Emacs, or when
using the print or dprint command).

::'-7

file (e.g., when
printing a file

In the following
segment. The following
the Serpent project.

example, the user does not have "read" access to the
dialogue might occur for user McGinnis logged in under

qedx
r color.p11
qedx: Incorrect access on entry.)udd)Serpent)Holmes)color.p11
q
r

list_acl color.p11 <lists access to the segment)

r w BDLucifer.Serpent.*
r w *.SysDaemon.*

r

list acl)udd)Serpent)Holmes
sma *.Serpent.* <lists access to containing directory)

set acl color.pl1 rw <sets access for himself)
r

qedx
r color.pl1

In the above example, user McGinnis has attempted to edit segment color.p11
by reading it into a qedx buffer. The qedx command detects that he does not
have read access to the segment, and reports an error. He exits from the
editor, and by using the list acl command, finds that only one other user on the
Serpent project (BDLucifer.Serpent) has access to the file. As the entire
Serpent project has sma permission on the Holmes directory, McGinnis uses the
set acl command to give himself access to the file, and retries the qedx
request. (The list acl and set acl commands are fully described in the MPM
Commands.)

The error may also occur when attempting to write out a segment that you
are editing. In the example below, the user does not have "write" access to the
segment.

qedx
r color.pl1

<Editing changes here)

w
qedx: Incorrect access on entry.)udd)Serpent)Holmes)color.pI1
e set acl color.p11 rw <McGinnis gives himself access)
w
q
r

2-8 CH26-00

Here McGinnis tries to save a program that he has been editing, but cannot
do so because he does not have write access to the segment. He is faced with
the problem of setting the access on the segment without losing the editing that
he had done. The qedx "en request allows him to execute a Multics command line
without exiting from qedx, so he uses it to invoke the set acl command to
recover from the error. After he changes the access, he reissues the qedx write
request.

If McGinnis
what he had done
as shown below:

had been unable to change the access, he could at least save
by writing it out into another segment (giving it a new name)

e set acl color.pl1 rw
set acl: Incorrect access to directory containing entry.

>udd>Serpent>Holmes>color.p11
w color1.pl1
q

INCORRECT ACCESS TO DIRECTORY CONTAINING ENTRY

This error means that your process does not have enough access on the
directory in which a segment is (to be) catalogued to perform some operation on
it. Again, you can rectify this error by using the list acl and set acl
commands.

This error most commonly occurs while trying to:

• delete a segment (you lack modify access on the containing directory)

• change the access on a segment (lack modify access)

• move, create, or copy a segment (lack modify and/or append access)

• find out information about a segment (lack status permission).

status <BDLucifer>souls.list
status: Incorrect access to directory containing entry.

>udd>Serpent>BDLucifer>souls.list
r

list acl >udd>Serpent)BDLucifer
sma - BDLucifer.*.*
sma *.SysDaemon.*
r

list acl >udd>Seroent
sma *.Serpent.*
sma *.SysDaemon.*

r

set acl <BDLucifer s
r

status <BDLucifer>souls.list

2-9 CH26-00

Here Anyone.Serpent attempts to find out information about the segment.
The status command requires at least "s" access to the containing directory in
order to return any information, and not having it, prints an error message.
Anyone then checks the fact, and looks at her access to the parent of the
directory containing the segment to see if she can set the appropriate access
herself. She then gives herself the necessary access, and reissues the command.

SOME DIRECTORY IN PATH SPECIFIED DOES NOT EXIST

This means that a directory specified in the pathname of a segment does not
actually exist. Usually, the pathname is mistyped one or more of the
directories in the pathname may be misspelled, missing, or in the wrong order.
The best way to handle this is to verify the pathname -- ask the system!

The way to determine what directory is missing and/or the entryname of the
directory actually intended is to use the list command:

print)udd)Serpent)SHolmes)color.pI1
print: Some directory in path specified does not exist.

)udd)Serpent)SHolmes)color.pI1
r

list -pn)udd)Serpent -dr

Directories = 2.

s Holmes
sma BDLucifer

r

<list the directories contained
in Serpent)

<find out proper form of name)

print)udd)Serpent)Holmes)color.pI1

ENTRY NOT FOUND

This means that a segment specified was not found in the directory. (All
the containing directories do exist.)

This error can be handled by using the list command to see if the segment
exists under some other entryname. Use the rename or addname commands (see the
MPM Commands) as desired to change the segment's entryname or give it an
additional entryname.

2-10 CH26-00

A common cause of this error in the case of novice users is misnaming the
segment. For example, a Fortran source program must have the suffix ".fortran".
Thus if the segment "main" had been created containing the program, an error
would ensue when you try to compile a misnamed program:

qedx
! a

\f
w main
q
r

<Type program in here>

fortran main
Fortran
fortran: Entry not found. main.fortran
r

rename main main.fortran
r

fortran main

In the example above, it is important to note that the program was renamed;
if, instead, the name "main.fortran" was added to "main", the source segment
would have been destroyed when the compiler put the object code into the segment
"main".

If the name identifies a link, then another possible cause of the error is
that the segment pointed to by the link does not exist. This possibility can be
checked by listing the link ("list -link") and checking whether the target
exists. (Note that the link target may be another link, in which case the
process must be repeated.)

INSUFFICIENT ACCESS TO RETURN ANY INFORMATION

This error arises in the cases described for the above four errors when you
do not even have enough access to determine why the operation cannot be
performed. The problem is that you do not havestatus 'permission on the
directory containing a segment or, in the second case, to the directory
containing the directory containing the segment.

This error can be handled as described above by first setting access on the
containing directory. Usually, if you receive this error, you do not have
access to set the required access, and have to contact the user who controls the
directory in question.

2-11 CH26-00

ILLEGAL ENTRYNAME

This message is generated by an editor when you try to write from an editor
buffer into a segment with a malformed name. A malformed name is one which
contains special characters such as blank, tab, "/", etc., or which contains
missing components. Generally, this is a name that would make it difficult to
access the segment because of system conventions. Examples of illegal names
are:

a*b
ho/whose/
c .. d
prog.

This almost always occurs when you have given an accidental write request.
Fo r ex ampl e :

qedx
r second.fortran

<Editing done here>
w = a*b
qedx: Illegal entryname. = a*b

If you want to have a segment with a name containing such special characters,
you can write the segment with a normal name, and use the rename command to give
it the entryname containing special characters (see the MPM Commands).

SYSTEM PROBLEMS

The error messages discussed here include those that are caused by a
problem with the system that, depending on the nature of the problem, may:

• go away spontaneously, or

• require an action on your part to rectify the error.

These error messages are not your fault!

Handling Execution Errors

The errors shown in the examples below are called execution errors -- that
is, some program that is executing during the course of your work has
encountered a problem that it cannot handle and the execution of that program is
interrupted (your work stops).

2-12 CH26-00

When the error is encountered and the system suspends and holds whatever
work you were doing, it then prints an error message. That work is held at
command level one (ready to continue once the problem has been fixed); this is
reported to you as the system prints a new ready message with a higher command
level (level 2 or 3 -- when you are at level 1 the standard ready message omits
the level number). This new level is the level at which you can rectify the
circumstances that caused the error; finally you go back to the suspended work
and:

• restart it, if you have successfully handled the problem that caused
the error.

This is done by typing "startl1 or I1 sr ".

• I1throw it awayl1, that is, release the held work, and then begin anew
or do something else.

This is done by typing I1release l1 or· I1 r l". (It may sometimes be
necessary to type "release" twice, if the error recurs after the first
time. Also, if the level number in the ready message is greater than
two, use the "-all" control argument to the release command (see the
MPM Commands) to release all held work.)

There are two other system commands that you can use to recover from an
error under certain circumstances: program_interrupt (pi) and new_proc.

The program interrupt (pi) command is used when an error occurs (or quit
signal is issued) while working in an interactive subsystem (e.g., the qedx
editor or read mail). When the error occurs and you are involuntarily pulled
out of the subiystem, type "program_interrupt" to reenter the subsystem at its
request level.

This signals the program interrupt condition that is trapped by the
subsystem. If you mistakenly Issue a program interrupt command to reenter a
subsystem that does not handle the condition, or when there is no subsystem
active, the condition is reported as an error at command level:

program_interrupt

Error: program interrupt condition by program interrupt:71
(>system_library_standard>bound_command_env_) -

r level 2

If there is no subsystem active, you should issue a release command to
eliminate the program interrupt condition. If you are trying to reenter a
subsystem that does not handle program_interrupt, issue a release command and
then a start command to reenter the subsystem. (Normally, however, a subsystem
may be reentered by a start command only if it was suspended by a quit signal.)

As a last resort (other than logging out) if nothing you type works, use
the new proc command, the equivalent of logging out and immediately logging back
in. A new process is created for you -- this is the only way you can continue
if your process has been damaged (i.e., every command you type causes an error)
or if you get inexplicable errors no matter what you do!

In summary, when you receive an error of this type, you may:

• if it is within your power to correct the circumstances causing the
error, do so, and then restart the wOFk, or

2-13 CH26-00

• if the problem causing the error is out of your realm, or you simply
wish to start some other action, release the held work, or

• if neither of the above helps, create a new process.

Below are some real examples of common execution errors, and descriptions
of how you may recover from them.

The first
types of users

example shown below is a very common error
record quota_overflow.

that occurs for all

When confronted with an execution error, you can see by the format of it
that this error is a different type than the ones described so far. The others
start with the name of the command that was interrupted by the error, followed
by a colon, then the message.

This type starts with "Error:" followed by an explanation -- this error is
a system condition. When a certain condition arises the system automatically
takes over and stops execution of whatever was taking place, but saves what you
were working on, so that if you can correct the problem you can resu~e what you
were doing from where you left off.

In this particular case, record quota overflow simply means that you have
run out of storage space on the sysIem. ~ommon ca~es are when you are in an
editor and are attempting to write your work into a segment, or when moving
segments into your directory. When the error occurs, your work is suspended
(but temporarily saved) and you can usually delete some segments from your
directory (thereby making room for the new segment), then restart your work and
permanently save it (without having lost any).

You could also choose to move some segments to another directory where
there is unused quota, or, see your project administrator to increase your
quota. As long as you donTt release or log out, you can restart after getting
more quota; there is no time limit.

The example shown below, attempting to save new information, is a
particularly dangerous problem for if it cannot be corrected, the changes made
to the text or source file are lost.

2-14 CH26-00

Assume in the example that PJApple is attempting to edit an existing
segment using the qedx editor.

qedx
r text.compin

<Editing changes here>

! w <Error occurs here>

Error: record quota overflow condition by qedx:1316
(>system library standard>bound qedx)
referencIng >user dir dir>Serpent>PJApple>text.compin:4
(offset is relative to base of segment)

r level 2 <new command level>

get quota -wd <check quota here>
quota = 100; used = 100
r level 2

list <list segments to see what can be deleted to make room>

Segments = 69, Lengths = 100.

re 4 xxxx
r w a text.compin <segment is empty because error occurred here>
r w 1 xxxx.pll

r level 2

delete xxxx <delete unnecessary segment>
r level 2

get quota -wd <recheck quota>
quota = 100; used = 96
r level 2

start
w text.compin
q
r

<reenter editor>

run out of quota,
The second line

when the error
of the segment

The first line of the error message says that you have
and that it happened while you were using the qedx editor.
tells you the complete pathname of the program (qedx) in use
occurred, and the third line tells you the absolute pathname
being referenced by qedx.

When PJApple tries to save her changes to the file "text.compin", the error
occurs. To recover from the error, she takes the following steps:

1. She uses the get quota command to give the current value of the quota and
the number of records currently charged against it.

2. She uses the list command to give the lengths of the files in the directory
as well as their names.

3. She deletes the segment "xxxx" to make room to write the file in the
editor.

4. She uses the get quota command, showing that four records of storag-e have
been freed up.

2-15 CH26-00

5. She types the start command to reenter the editor, and

6. Types w (write) to save the segment.

Since she is finished editing, her final step is to quit out of the editor.
This is a temporary solution as the next time she tries to save new information,
the error will reoccur. The next step is to obtain more quota from the project
administrator.

In the following
storage, except delete
it is the source file
option is to contact
problem here is not as
lost by logging out.

compose text -of

example, PJApple can do nothing to gain additional
the compin file text.compin which is unacceptable since
needed to produce the formatted text. Thus, her only

her administrator and ask for additional storage. The
critical as in the case above, as no information would be

Error: record quota overflow condition by comp write 14611
(>system library standard>bound cg) --
referencIng >udd>Serpent>PJApple>text.compoutlO

r 1 evel 2

Damaged Segments

If a device error or system crash causes part of a segment to be destroyed,
the supervisor sets a special switch associated with the segment called the
damaged switch. An attempt to reference the contents of a segment whose damaged
switch is on causes an error with the message:

Entry has been damaged. Please type "help damaged_segments.gi".

When a damaged segment is detected, the owner of the segment should change
the ACL of the segment so that no other user can reference it, and then reset
the damaged switch using the damaged sw off command (see the MPM Commands). The
owner should then inspect the segment's- contents to determine the extent of the
damage. If the damage is easily correctable, you can simply fix the segment and
continue. Otherwise, the segment should be retrieved from the last known good
copy.

Below is an example of an attempt to edit a damaged segment:

qx
r text

Error: Segment-fault error by qedx$qxl1250
(>system library standard>bound qedx)
referencIng >udd>Project>User>textlO
(offset is relative to base of segment)
Entry has been damaged. Please type "help damaged_segments.gi".
r •.• level 2

2-16 CH26-00

The first four lines in the example tell what program you were executing when
the error occurred and other very specific information describing at what point
the error occurred; it is not necessary that you understand these lines in order
to recover from the error. To recover from this error, type "release" and then
follow the advice of the online help file "damaged_segments.gi."

2-17 CH26-00

SECTION 3

COMMON ERRORS FOR PROGRAMMERS

The errors described in this section are the sort that usually only a user
writing programs will get. Included are some (more) command processor errors,
execution errors (fault messages), and the fatal process error messages (where a
new process is created).

Generally, for any error that you may encounter at this level, if your
program has always worked before, the problem causing the error may be:

• something in the program that you recently changed (i.e., one line),
or

• in another program that is called by yours.

The best method of determining whether the problem is, in fact, a change in
your program is to compare a current copy with the next earliest edition (see
the compare_ascii command in the MPM Commands).

If you are in a situation where you keep getting many inexplicable errors,
your process may have become damaged. Errors of this type are those for which
you can see no apparent reason, for example, if exactly the same thing worked
for you before. In general, if you haven't seen the error before and cannot
find a ready explanation, there is frequently nothing you can do to fix it.
Type "new_proc n and try again.

If your process is damaged, it is usually caused by a malfunctioning
program of yours. Find the bug in your program (use the probe command -- see
the MPM Commands) and fix it; however, it wonit be possible to do so in this
process so use the new_proc command to create a fresh one.

There are several commands that give you control to translate status codes
into messages, and regulate the length of and reprint those messages.

Two commands allow you to regulate the length of the message printed and
reprint an error to a specified length and depth; these are described in the MPM
Commands. To control the amount of information printed when an error occurs,
use the change error mode (cern) command. To reprint an error that has just
occurred and for whicn a stack history has been preserved, use the reprint_error
(re) command.

One more command, the print error message command (see the Multics System
Programming Tools, Order No.-AZ03)~ prints out the standard Multics
(error table) interpretation of a specified error code. The various entries
allow -you to specify the error code in either decimal or octal and have the
output come out in either the short or long error table form.

3-1 CH26-00

COMMAND/COMMAND PROCESSOR ERRORS (REVISITED)

Entry Point XX Not Found in Segment XX

This error occurs when you call a reference name
matching that name is found in your search rules, but it
entry point called XX.

(VV'\
\ ,n.,H. I and
does not contain the

For instance, in the example below, a segment matching the reference name
"colour" is found, but it does not contain the entry point "colour." After
receiving the error message, the programmer uses the print link info command
(pli -- see the MPM Commands) to find out what entry pOints- the-program does
contain, and then retypes the corrected line.

colour
Entry point colour not found in segment colour.
r

pli colour -entry

colour

3 Definitions:

segname:
symb: 0
textl17

r

colour
symbol table
color --

colour$color

02/05/80 1540.4 est Thu

En tr y: tex t l 17

In the above example, the output printed by the print link info command shews
the "segname" (the name by which the program was known- whe~ it was compiled);
the only "entry" defined is the one called "color." So, you type the corrected
line, a command name that gives both the reference name and the entry point
name, separated by a dollar sign ($). You could also use the
resolve_linkage_error command (see "Linkage Errors" below).

Another way to correct the error would be to rename the program (both the
source and the object segments):

rename colour .•• color.==
r •...

color
r •••.

In this way, the segment now has the same entryname and entry point name and can
therefore be called as a command by giving only its entryname. (For an
explanation of the star and equals convention, see the MPM Reference Guide.)

3-2 CH26-00

The problem illustrated here occurs quite often when the program contains a
procedure with a different name than that given to the segment containing the
text of the program:

qedx
a
color: procedure;

end color;
\f
w colour.pl1
q
r

There are a number of other causes for this error, for example, the
entrypoint may have been deleted by the binder (see the bind command in the MPM
Command s) .

This error is virtually identical in cause to the "external symbol not
found" case of linkage errors. See "Linkage Errors" below for additional
examples. If the meaning of reference names versus entrynames and entry point
names is confusing, see the MPM Reference Guide.

Improper Syntax in Command Name

This error is issued when you have specified a command name that is not in
the standard form of a reference name, optionally followed by the special
character "$" and an entry point name.

Examples of correctly formed command names are:

ref name

Examples of incorrectly formatted names are:

name$ $name

More detailed information may be found in the MPM Reference Guide.

EXECUTION ERRORS (FAULTS)

This class of errors includes all hardware and software detected faults and
conditions. When an error of this sort occurs, a condition is signalled. The
condition can be handled by a user-supplied condition handler (a PL/I on unit),
or if no on unit is found (as is normally the case), the default system on unit.
The system's on unit prints an error message and invokes a new command level,
suspending the execution of the program causing the error. This new command
level is indicated by a ready message with a level number greater than one:

3-3 CH26-00

r 12:04 2:039 347 level 2

After an error has occurred, and a new command level is entered, you should
eventually do one of three things:

1. Issue a release command to terminate execution of the suspended
program. For example, a quit signal may be used to stop a runaway
program or excessive printing:

looper
(quit)

QUIT

r 1 evel 2

release
r

The release command need not be used immediately after the error
occurs; If the cause of the error is not obvious, system supplied
tools (e.g., probe) can be invoked at the new command level to
determine the cause. Whether or not this is possible, the release
command should be issued before doing any additional work (e.g.,
changing and recompiling the program) to avoid more serious and
incomprehensible errors.

2. The start command can be used to restart the program that was
interrupted. This is possible if the problem is correctable, or in
the case of an erroneous computation where the system's on unit
performs some specified action to correct the condition upon restart.
Such a correction might be to set the result of the computation, 2 **
-1000, to 0 after an underflow condition has occurred. The actions
taken by the system on unit are often specified in the error message;
if not, consult the MPM Reference Guide.

Another common practice
be looping, check the
ready message, and if
(after debugging the
execution with "start."

is to "quit" out of a program that appears to
CPU time that it has used by inspecting the
it is looping, release the suspended program
cause of the loop); otherwise, resume the

3-4 CH26-00

NOTE: quit/starting in this way may lose output directed to the terminal.
However, under certain circumstances, this may be desirable.

count
1
2

(quit)
QUIT
r •... level 2

start
6
7

(quit)
QUIT
r level 2

release -all
r

Here a program named count has been invoked. It was then stopped by a
quit signal and restarted by the start command; as a result, a few
lines of output were lost. The program was then stopped a second time
by a quit signal and aborted by the release command.

3. Issue the new proc command to get a new process. This reinitializes
all static variables, common blocks, I/O attachments, files, etc. The
use of this command is recommended when inexplicable errors occur.
Once a new proc is finished, it is advisable to retry the program with
which there is a problem. Often the problem disappears. It it
doesn't, it is likely that a program bug exists, and you should
continue to look for some other cause. The thing to remember is that
an erroneous program can cause other programs, including system
programs, to go awry.

The error messages produced for most of this class of runtime errors are in
a common format; for example:

Error: Attempt to divide by zero at >udd>Serpent>PJApple>progI13 (line 5)
system handler for error returns to command level

The first line gives the type of error ("Attempt to divide by zero"), the
pathname of the object segment causing the error C>udd>Serpent>PJApple>prog),
the offset in the program object segment of the instruction at which the error
occurred (13 octal), and, if the program was compiled with the "-table" option,
the source line number. The second line gives additional information about the
error. Here it states that a new command level will be created.

In general, an error that occurs in a system program can be traced to a
user error. (This is not to say that there are not bugs in system programs,
however it is more likely that the user did something wrong.) In the case of an
error in a system program, you should verify that you have called it properly:
that the correct number of arguments have been passed, that all documented
requirements and restrictions have been met, and that all arguments passed as
input to the system program have reasonable values.

3-5 CH26-00

When an error occurs in a system program, the location in the user program
where the system program was called is not given in the error message. This
location can be determined using the probe command (see the MPM Commands for a
complete description of the probe command).

Segment Fault

This error means that the work you are doing is calling a program that has
addressed a nonexistent segment. What has happened is that an address value
(pointer, entry, or label) contains an invalid segment number. In the message,
the line that usually shows the pathname being referenced appears as "garbage"

groups of slashes and numbers representing the nonexistent segment.

There are two general causes:
using an address value designating
deleted.

using an uninitialized
a segment after that

address datum, and
segment has been

A deleted segment may be referenced under the folIo wing circumstances:

• if the program was, at the time of the deletion, still active (its
execution suspended by a quit signal or error condition):

prog

Error: Attempt to divide by zero at)udd)Serpent)PJApple)progl24
(line 12).

System handler for error returns to command level.
r level 2

delete prog.
r .•.. level 2

start

Error: Segment-fault error by 46516
referencing\000\000\000\OOO\OOO\OOO\OOO\006?\77\216
\000\000\006\000\000\000\465\4000\000\00
\cO\000\000\200\000\OOO\OOO \OOO\264\400H\005p\000\000
There was an attempt to use an invalid segment number.
r .•.. level 2

• or if the segment is an input or output file that was not closed prior
to deleting the segment:

3-6 CH26-00

prog
(quit)
QUIT
r level 2

delete output file
r level '2

release
r

prog

Error: Segment-fault error by open uns file$put chars uns file:1036
C>system library standard>bound vfile)- - --
referencIng 345:0 --
There was an attempt to use an invalid segment number.
r 1 ev el 2

An uninitialized address value may also be caused by forgetting to
initialize the corresponding variable. (This can also cause any of the other
bad address problems described under other errors. An uninitialized pointer may
cause a worthless value to be displayed for a variable qualified by the pointer
or for the pointer itself. Most uninitialized automatic pointers point into the
stack.)

prog

Error: Segment-fault error by >udd>Serpent>PJApple>prog:327
(line 43) referencing 2348:27
There was an attempt to use an invalid segment number.
r 1 evel 2

probe
Condition segfault raised at line 43 of prog.
source

value p
2348:27

P -> data = 3;

This means that an addressing modification fault has occurred while
attempting to indirect through a pointer. Since these modifiers never appear in
PL/I pointer datums, the problem is usually uninitialized address data.

prog

Error: fault tag 1 by >udd>Serpent>PJApple>prog:14 (line 8)
referencing stack-413320 (in process dir)
Ascii data where pointer expected.
r ••.. level 2

The fact that the program was referencing
of the error indicates that the bad pointer

3-7

some data in stack 4 at the time
was an automatic value. If the

CH26-00

program had been referencing "!BBBJ----.area.linker" the bad pointer would be a
static value. The address modifier may also be encountered when trying to
execute data. In such a case, tile error message indicates that the segment
causing the error is a data segment such as the stack or the combined linkage
section.

The error fault_tag_' is often caused by an uninitialized pointer occupying
space previously filled with ASCII data (hence the second part of the error
message).

Illegal Modifier

This means that an illegal address modifier has been used. It may appear
in a pointer value or in data being executed as regular instructions.

prog

Error: illegal modifier condition by)udd)Serpent)PJApple)prog\44
(Line 18) referencing stack 4\0 (in process dir)
Possible illegal modifier in indirect chain or uninitialized pointer
r level 2

The causes of this error are identical to those of a fault tag 1/3 error.
It is also not restartable. The problem must be corrected before the program
can be run again.

Linkage Error

This error occurs when a program tries to reference an external symbol (for
example, an external program or PL/I external data) and the specified symbol is
not found. If the source of the error can be determined and the problem fixed,
the program can be restarted. Note that it is possible to "fix" a linkage error
in such a way as to cause another type of the same error to occur when the
program is restarted. A little thought will prevent this from happening;
however.

The four major subclasses of linkage errors are described below.

Segment Not Found

This means that a segment with the specified reference name was not found
anywhere in your search rules. For example, assume that procedure "prog" calls
another program, "zzzz," which for some reason cannot be found:

prog

Error: Linkage error by)udd)Serpent)PJApple)prog\20 (line 34)
Referencing zzzz$zzzz
Segment not found.
r level 2

3-8 CH26-00

The basic approach for dealing with this error is to list the directories
within which the program or data segment was thought to be. Then you can
determine which of the following four cases apply:

• the segme~t referenced really did not exist.

• the segment referenced exists, but its name was given incorrectly
(e.g., misspell~d).

• an entry (segment or link) of the correct name exists within the
search rules, but was ignored.

• the referenced segment exists in a directory not in the search rules.

The typical user who is working alone (i.e., not using programs in some
IIprivate" library) and is only using his own programs, standard system commands
and subroutines usually only has to consider the first two cases. Below is a
further description of all four.

• The segment may not exist.
For example, it may never have been created.
users is forgetting to compile the program.
example:

list

Segments = 3, Lengths = 3.

re prog
r w zzzz.fortran
r w prog.p11

r level 2

A common problem for new
Continuing with the above

Notice that there are source and object segments for prog, but only a
source segment for zzzz (zzzz.fortran). The cause of the problem
then, is that there is no object segment named "zzzz" to be found.
Compiling the program (as shown below) creates such a segment;
restarting execution causes the search for the segment to be repeated,
and this time found.

fortran zzzz
fortran
r ••.. level 2,.

list

Segments = 4, Lengths = 4.

re zzzz
re prog
r w zzzz.fortran
r w prog.pl1

r level 2

start

3-9 CH26-00

Another way to resolve this problem is the resolve linkage error
command (fully described in the MPM Commands). Using -this command,
after the new command line is typed and you receive a ready message,
type "start" to resume execution of your program.

The example below is a typical situation in which the program is
running and a linkage error is encountered. The resolve linkage error
command is issued, correcting the linkage error and allowing the
program to continue:

myprog
Error: Linkage error by >udd>m>vv>myprogl123
referencing subroutine$entry
Segment not found.
r level 2

rle mysub$mysub entry
r level 2 -

start
<myprog is running>

• No segment of the designated name may exist.
This can happen if you are confused about the name of the segment.
For example, if a PL/I program is called "subr" (i.e., subr is the
label on the procedure statement) but the program resides in a segment
of another name (e.g., subroutine), calling "subr!! from another
program causes this error. This problem can be fixed by renaming
(with the rename command) the segment (and the source segment)
containing "subr."

rename subroutine.** subr.==
r ..•. level 2

• The entry does exist but was ignored.
The cause of this problem can be a link of the correct name that
points to a nonexistent segment or a segment to which you have no
access. A nonexistent segment can be caused by the segment having
been moved or deleted or the target pathname being incorrect. This
might appear in a listing of the directory as follows:

3-10 CH26-00

list -pn)udd)Serpent)PJApple
Segs=O;Msfs=O;Dirs=O;Links=1.
r level 2,.

list -pn)udd)Serpent)PJApple -link

Links = 1.

zzzz)udd)Serpent)BDLucifer)zzzz

r level 2

initiate)udd)Serpent)PJApple)zzzz
initiate: Entry not found. zzzz
r level 2

The first list command (listing segments) shows that there are no
segments in the directory, but that there is one link. The second
list command shows the link to a segment in another directory. The
initiate co~mand is used to determine the reason why the segment
pointed to by the link was ignored in the search -- here it does not
exist. If the target pathname is incorrect in that a directory is
named incorrectly, the command error "Some directory in path specified
does not exist." would be reported. If the problem is no access, the
error would be "Incorrect access on entry."

• While a segment of the correct name may be known to exist, the
directory containing it is not in the search rules. The current
search rules may be listed with the print_search_rules command:

print search rules
initiated segments
referencing dir
working dir
)system-library standard
)system-library-unbundled
)system-library-1
)system-library-tools
)system-library-auth maint
r level 2 - -

list -pn)udd)Serpent)PJApple

In general, when it has been determined that a segment to be referenced is
outside of the search rules, one of three things can be done. The search rules
can be adjusted to include the directory containing the segment; the segment may
be initiated; or a link to the segment can be created. For example, assume that
the segment in Ques~lon is the command expand. lne search rules can be
corrected with the add search rules command. The problem could be resolved by:

3-11 CH26-00

add search rules >system library tools
- -after >system library unbundled

r level 2 - -

print search rules
initiated segments
referencing dir
working dir
>system-library standard
>system-library-unbunbled
>system=library=tools

r level 2

Here, the print search rules command has been used to show the corrected
search rules. - In the example above, the new search rule is added after
>system library unbundled rather than after working dir to avoid searching
>system-library-tools every time a command or subroutine is referenced for the
first tIme in the process. This approach is useful when the missing segment is
one of a collection of programs in the same directory (like a program library)
whose other members are also likely to be used.

The segment may also be initiated. This is useful when there is only one
program needed, and it is only good within the current process.

initiate >system library tools>expand
r level 2,.- -

A link to the program may also be created. This need only be done once,
and enables the program to be referenced without issuing additional commands at
any time in the future provided that the directory containing the link remains
within the search rules. The simplest way to ensure this is to place the link
in the directory containing the calling program itself:

link >system library tools>expand
r .••. level-2 -

where expand
>system library tools>expand
r ..•. level 2-

The "where" command gives the pathname of the segment whose reference name
is given. That is, the command prints the ·pathname of the segment that is
invoked if you call a given program. It has been used here to verify that the
link was successful.

3-12 CH26-00

External Symbol Not Found

This means that a segment matching the reference name specified was found,
but that the (perhaps implicitly) specified entry point within the segment was
not:

prog
Error: Linkage error by >udd>Serpent>PJApple>progI34 (line 38)
referencing xxxx$xxxx
External symbol not found.
r level 2

This means that the segment xxxx was found, but the external entry point
(symbol) "xxxx" was not found in the segment. In addition to trivial naming and
typing mistakes, one of the more frequent causes for the error is that the
program resides in a segment with a name different from the one used on the
procedure statement of the program. The program is then called using the
segment name:

qedx
a
tester: procedure (a);
dcl a float binary(27);
a = a ** 2;
end;
\f
w test.pl1
q
r

pl1 test -table
PL/I
r

test
Error: Linkage error by >udd>Serpent>PJApple>call testl54 (line 24)
referencing testltest -
External symbol not found.
r .•.• level 2

This problem can be eliminated by changing the name on the procedure
statement from tester to test and recompiling the program.

Linkage Section Not Found

This means that a segment of the specified name was found, but that the
segment did not have a linkage section (i.e., it is not an object segment):

prog
Error: Linkage error by >udd>Serpent>PJApple>progI43 (line 42)
referencing xxxxlxxxx.
Linkage section not found.
r ••.• level 2

3-13 CH26-00

This may occur if the name of a data or test segment was specified instead
of the name of an actual compiled program. For example, a common problem is a
source segment that is given the name of its object segment:

list

Segments = 4, Lengths = 4.

r w xxxx
xxxx.pl1

re prog
r w prog.pl1

r level 2

The list command shows the two names on the source file "xxxx.pI1". When
uxxxx~ was referenced from tne program, it was this segment that was found, but
it was not a valid object segment.

To recover from this particular error, the name must be deleted from the
segment, and the text compiled into the object program to be called. (These two
steps mus~e taken in that order.) The program can then be restarted:

delete name xxxx
r -level 2

pl1 xxxx
PL/I
r level 2

start

There is No Room to Make Requested Allocation

This means that the size of a named external data area exceeded the system
limit of 255K words. Examples of such areas are named common blocks in FORTRAN
and external names containing a "$" in PL/I. For example:

nospace: procedure;
declare bigarea$ (300000) external static fixed binary;

bigarea$ (1) = ••• ;

end;

3-14 CH26-00

Executing the above program would produced the following error:

nospace

Error: Linkage error by)udd)Serpent)PJApple)nospacel11 (line 4)
referencing bigareal
(with a create-if-not-found link)
There is no room to make requested allocation.
r level 2

When such an error occurs in a PL/I program, examine the declaration of the
external symbol and calculate the size. If it is a structure containing
elements each smaller than the limit, the structure can be broken up. For
example:

declare

extstruc$ external static,
2 a (100000) fixed bin,
2 b (100000) float bin,
2 c (100000) float bin(63);

would occupy a total of 400,000 words of storage. Member a
element; b, a single precision real value, uses one word per
double precision real value, uses two words per element. It
into two or three small structures:

declare

extstruc1$ external static,
2 a (100000) fixed binary,
extstruc2$ external static,
? l-- (1nnnnn\ .f'1 +- h';"""" ... "
"- L..I \IVVVVVj ~.J,..VCV U.L1JCll],

extstruc3$ external static,
2 c (100000) fixed binary;

uses one word per
element; and c, a

can be broken up

If the symbol being created is one
reduce the size of the array needed.
may be possible to simulate the array
of the original array.

large array, then you should attempt to
If such a reduction is not possible, it

as an array of pointers to cross sections

declare
array$ (3,100000) external static fixed binary;

would cause the error described here. This could be replaced by:

declare
array (100000) fixed binary based,
arrp (3) pointer initial

(addr (array1$), addr (array2$), addr (array3$)),
(array1$, array2$, array3$) (100000) external fixed binary;

3-15 CH26-00

with the program edited to replace all references to:

array (x, y) by arrp (x) -> array (y)

Similar problems occur in FORTRAN when very large common blocks are used.
As in PL/I, there are two cases: when there are many small members of the
common block, and when there is one very big member. In the first case, the
problem can again be dealt with by splitting up the common block:

becomes:

common Idatal a(100000), b(100000), c(100000)

common Idata11 a(100000), b(100000)
common Idata21 c (100000)

In the second case, that of one very large member, there is no method to get
around the problem that is particularly efficient. The best that can be done is
to write a function that references cross sections of the array defined in
different common blocks:

becomes:

common array (3,100000)

function array (x, y)
common Idata11 array1 (100000)
common Idata21 array2 (100000)
common Idata31 array3 (100000)

go to (1, 2 , 3) x
1 return (array1 (y))
2 return (array2 (y))
3 return (array3 (y))
end

In FORTRAN, address data problems may occur as well. One cause is passing
an array argument to a FORTRAN subroutine whose corresponding parameter is not
dimensioned. When the program references this parameter with subscripts,
FORTRAN treats 'the parameter as an entry value. For example, executing a
program of the following form:

subroutine mattran (arrin, arrout)
dimension arrout(4,4)

arrout (i,j) = arrin (j,i)

end

3-16 CH26-00

could cause an error of the form:

mattran test

Error: Segment-fault error by >udd>Serpent>PJApple>mattranl143
(line 12) referencing 327:756
There has been an attempt to use an invalid segment number.
r level 2

probe
Condition segfault raised at line 12 of mattran.
source

arrout (i,j) = arrin Cj,i)
value i; value j

1
1

value arrin Ci,j)
Probe (val ue): Cond i tion "seg faul t error" occurred at
probe print_value_:2017. PossIble invalid pointer.

symbol arrin
entry variable parameter

Here, the subroutine mattran has been called from mattran test. A segment fault
error occurs on line 12, and probe is invoked to look- for the cause of the
problem. The "source" request gives the text of the statement in which the
error occurred; "value" requests enable the user to determine wi th what variable
the program is having difficulty. Probe then indicates that "arrin" is the
problem. The "symbol" request is used to display the attributes of the
variable. The output shows that it is an entry variable and not an array at
all.

Another cause would be passing too few arguments to a subroutine. In this
case, referencing a parameter for which there is no corresponding argument may
cause a segment fault or other addressing error.

No Execute Permission

This means that your process is attempting to execute a segment to which it
does not have execute access. Upon getting this error, you should attempt to
set access (or have the access set for you by the owner of the segment) to read
and execute, and if successful, restart the program:

prog

Error: no execute permission condition by command_processor_:522
(>system lIbrary 1>bound command loop)
referencIng >udd)Serpent)PJApple)progT3
r .•.. level 2

set acl prog re
r .:-.. 1 ev e 1 2

start

3-17 CH26-00

This can occur if the access has been set incorrectly on the segment. For
instance, if a "set acl ** rw" command has been issued in the directory, or if
you had created the-object segment before compiling by using the create command.

The error can also occur when an uninitialized label or entry variable is
referenced. This particular case can be distinguished from the others by the
identity of the segment being referenced. If it is one which could be expected
to be called (e.g., in the example above, "prog" is being called), then the
problem is probably a simple access error; on the other hand, if the segment is
a data or text segment, then the problem is probably an uninitialized address
datum.

No Read/Write Permission

These mean that the process lacks the access required to read or write the
segment mentioned in the error message:

! prog

Error: no write permission condition by prog:412 (line 101)
referencing >udd)Serpent>PJApple>data seg:2
r level 2 -

The simplest cause is having failed to set or obtain the necessary access.
As with a no execute permission error above, you can attempt to set the required
access and then restart the program.

This problem may also be caused by bad address data. This case may be
distinguished from a simple access error as given above.

Not in Read/Execute/Write/Call Bracket ---- ----- ----

This means that an attempt has been made to reference an inner ring
segment. The cause is almost always bad address data:

! prog3

Error: not in write bracket condition by prog:26 (line 5)
referencing-dseg:O

r 1 evel 2

The identity of the segment being referenced can often give a clue to the
variable whose value is bad. A reference to dseg, as occurred here, usually
indicates that a packed pointer (a pointer value declared unaligned) is
uninitialized. A reference to the stack is strong evidence that an automatic
aligned pointer, label, or entry value has not been assigned a value. A
reference to the linkage section is strong evidence that a static aligned
pointer, label, or entry value has not been assigned a value.

3-18 CH26-00

Attempt to Reference Through ~ Null Pointer

This means that a null pointer has been used as a locator value qualifying
a reference to a based variable. It usually indicates a logical bug in the
program.

prog

Error: Attempt by >udd>Serpent>PJApple>prog:57 (line 23)
to reference through null pointer
r level 2

Carefully examine your program to determine how the locator (pointer or
offset) value could have a null value at the location in which the error
occurred. The variable may not be referenced with an explicit qualifier:

data instead of p1 -> data

In this case, the default qualifier e.g., based (P) is used, and you should
check its value.

probe
Condition simfault 000001 raised at line 23 of prog.
source
result = based num + 4;
symbol based num
fixed binary(17) aligned based (p)
Declared in prog.
value p

null

This error may also occur for controlled as well as based data, if a
controlled variable is referenced before it is allocated.

Simfault NNNNNN

This means that you have attempted to use a pointer with a segment number
of -1 and an octal offset of NNNNNN. The cause is use of uninitialized address
data.

NOTE: A pointer with segment number -1 and offset 000001 is a null
pointer. In such a case, the error message reads "Attempt to
reference through a null pointer" as described above. The condition
simfault 000001 is signalled explicitly only when the pointer value
is not entirely a valid null pointer (for example, it has a nonzero
bit offset).

3-19 CH26-00

Illegal Machine Operation

This means that there has been an attempt to execute an undefined machine
instruction.

prog

Error: Illegal machine operation by prog:4
Current instruction is:

000004 000000000000 0
r 1 ev e 1 2

The two most common causes of this error are: branching to a nonexistent
element of a constant label array, or using an uninitialized label or entry
value. The segment in which the error occurs can be used to distinguish the two
cases. In the former, the segment is one of those in use (in the example above
prog); in the latter, it is a data segment (stack or linkage section) or some
other unexpected segment.

Storage Condition

There are two causes of this error. First, you have attempted to allocate
more based or controlled storage than is available in the system area. This is
accompanied by the message that system storage is full:

prog

Error: storage condition by)udd)Serpent)PJApple>progl154 (line 52)
System storage for based and controlled variables is full.
system handler for error returns to command level
r level 2

Inspect the declaration of the variable being allocated. The system cannot
allocate more than 261,120 words of storage for anyone variable. If the
variable being allocated has an expression for a string length or array bound,
the value of those expressions should be checked. Often they may involve
undefined values. If all allocations are relatively small (e.g., hundreds or
low thousands of words), the problem may be that the allocation is being
repeated too many times. A check should be made for an infinite loop involving
the allocation.

Second, and most common, is that the stack has overflowed. This error is
accompanied by the message that the stack has been extended:

prog

Error: storage condition by)udd)Serpent)PJApple)progl166 (line 58)
Attempt to reference beyond end of stack. Stack has been extended.
system handler for error returns to command level
r level 2

3-20 CH26-00

This error first occurs when more than 64K words of stack space are required, or
when a reference is made past the first 64K of stack. The stack is extended to
the next 48K boundary. Depending on the cause for extending the stack, it may
be permissible to restart the program with the start command. Subsequent
storage conditions may occur if additional storage is required/referenced, and
the stack is extended in 48K increments up to a maximum length of 255K. Any
attempt to use more than that causes a fatal process error (see "Fatal Process
Errors" below).

One cause of this error is that the program is recursing too deeply (or
infinitely). This case can be verified by using probe:

probe
Condition storage raised at line 17 of file x. (Level 143)

A level number in the hundreds is a certain sign of trouble. (In fact, a
value in excess of 30 to 40 is uncommon, and can generally be regarded as a sign
of problems.) The cumulative automatic storage requirements for a moderately
recursive program (or set of programs) may also be too great. The required
storage can be determined from a compilation listing produced wi th the "-map"
option (under the heading "storage requirements for the program"). If the
storage requirements will not exceed the maximum of 208K, it is safe to restart
the program.

An excessively large stack frame size can also arise if there are automatic
variables declared with expression length or array bounds, and the expressions
reference uninitialized values. A common mistake is to make use of another
automatic variable in such an expression whether or not that variable has an
initial value specified. For example, a program containing the declaration:

declare
array (array dim) fixed binary,
array dim fixed binary automatic;

could cause the error message appearing above. A debugging session might
continue as follows:

probe
Condition storage raised at line 58 of prog.
source

call subr (...);

(Level 11)

Here probe has been used to determine where the error occurred. The source
request shows that the error occurred while trying to call another subroutine.
The reason that the error occurs at this point is that until the subroutine is
called (creating a new frame for the subroutine) the stack is not actually
extended. So you examine the program for abnormally sized variables:

symbol array
fixed binary(17,0) aligned automatic dimension(71902)
Declared in prog.

3-21 CH26-00

The symbol request gives the evaluated dimensions for the
be extremely large. (The error could appear in the same
bounds were intended.)

array, showing it to
fashion if the large

Another cause is subscripting an automatic array with a value far out of
bounds. This can be detected in PL/I programs by putting a subscriptrange
prefix on the procedure statement:

(subscriptrange):
prog: procedure;

end;

In Fortran this can be accomplished
"-subscriptrange" control argument:

'h " ,... <""'\""'" """"'.; , .; ttto"'t t""r u:y '-VlIlp.1..1. .1.115

fortran zzzz -table -subscriptrange

program ".; .. 1.-. .. 1.-._
WL vii vile:

A similar cause is a string range error; that is, the use of the substr
builtin function with out-of-range arguments. In general, this is an initial
position (the second argument) that is negative or far past the end of the
string, or a length (the third or assumed argument) that is negative or far
greater that the actual length of the rest of the string. This error can be
trapped by recompiling the program with a "stringrange" prefix on the procedure
statement.

A final cause is the invocation of a function that returns a value with
star (expression) extents. If the bounds of an array developed as the return
argument are bad, or if a bad substr expression or uninitialized character
varying string is returned, a storage condition can be raised after the called
function has returned, but before the calling program has resumed execution.
This is indicated by a storage condition occurring in a system segment. If this
is the case, there will be no other information as to what user program was
executing at the time of the error.

It should be noted that a storage condition indicating a stack overflow
("stack has been extended") does not always indicate that an error has occurred.
It is entirely possible for a recursive program or a Fortran program with many
automatic variables to require more than 64K words of stack storage. If this is
known to be the case, type "start" to continue the program's execution.

Out of Bounds Fault

This means that a nonexistent portion of a segment has been referenced by
the program. A storage condition due to a stack overflow is really an out of
bounds fault on the stack; as a result, the causes and recovery methods are
similar (see above). The most common causes include an out-of-range array
subscript or substring reference. The error is particularly common when the
data in question is a Fortran variable, either in common (occurring in a segment
in the process directory) or in a SAVE statement (occurring in the linkage
section), or a PL/I internal static variable (occurring in the linkage section),
or an external static variable (occurring in a segment in the process
directory). If the segment is the program itself, it is likely that the program

3-22 CH26-00

is referencing outside of the bounds of a label array or an internal static
array that has an initial value specified but has never been modified.

Illegal Procedure

This occurs when the hardware is requested to perform an illegal operation.
The most usual cause is uninitialized decimal data.

baddec

Error: illegal procedure condition by)udd)Serpent)PJApple)baddecI6
(line 5) referencing stack_4l3320 (in process dir)

r •.. level 2

probe
Condition illegal_procedure raised at line 5 of baddec.
source

dv = dv + 1;
symbol dv
fixed decimal(7,0) aligned automatic
Declared in baddec.
value dv
probe (value): Illegal decimal data. dv

Here probe has been used to show the source of the line at which the error
occurred. It contains a reference to a decimal variable. This is sufficient
evidence to believe that the problem is uninitialized decimal data.

Other, less likely, causes of the same error are transferring to an element
of a label array outside of the bounds of the label array, and referencing
uninitialized label or entry variables. In the former case, the location of the
error is often listed as the first line of the program; the line from which the
condition is signalled is not available. In the latter case, the location of
the error is usually in some unexpected segment.

Conversion

This means that an error has occurred in the conversion of a character
string to some other data type. This condition occurs in conversion to an
arithmetic value if the string is not a correctly formed number. It occurs in
conversion to a bit string if the source character string contains characters
other than "1" or "0":

badconv

Error: conversion condition by)udd)Serpent)PJApple)badconv:22
(line 6 onsource = "one", onchar = "0")
Illegal character follows a numeric field.
system handler for error returns to command level
r level 2

The error message gives, in addition to the location at which the error
occurred, the values of the PL/I builtin functions, onsource and onchar.
Onsource represents the character string being converted; onchar is the "(first)
character in the string that is invalid for the conversion.

3-23 CH26-00

This error can arise during implicit or explicit conversions among
variables (or the results of expressions) in the program, or during execution of
a get statement when the input is converted to an arithmetic or bit value.

Size

This condition has three causes. It occurs when the value assigned to a
fixed point datum exceeds the precision of the target -- for example, assigning
the value 9999 to a fixed binary(3) datum. The error occurs in this way only if
size checking was enabled for the statement in which the assignment was
performed by a size prefix on the statement or the procedure statement. Second,
it occurs during picture-controlled conversion, if the target field is too small
to hold the value being converted. Again size checking must be enabled. Third,
it occurs during a put list or put data statement, when the value stored exceeds
the precision decl~red for the variable, or during a put edit statement, if the
output field cannot hold the value being output. Size checking is always
enabled for put statements.

size err

Error: size condition by)udd)Serpent)PJApple)size err:136 (line 14)
Precision of target is insufficient for number of integral
digits assigned to it.
System handler for error returns to'command level
r level 2

You should be aware of a side effect of a size condition raised while executing
a put statement. A common debugging technique is to include an error on unit
within the program that dumps all the variables:

on error put data;
end;

If a size condition occurred invoking the on unit, the put data statement
within the on unit causes another size condition to be signalled when formatting
the variable for which the condition was originally signalled. The on unit is
invoked a second time, and the size condition signalled yet another time, and so
on, ad infinitum, eventually leading to a storage condition or fatal process
error.

Error Condition

An error condition is reported when an erroneous state arises in the
program, and there is no specific condition for that state. For example, this
includes use of mathematical builtin functions with arguments that are out of
range.

3-24 CH26-00

The following program illustrates a typical situation in which the error
condition is raised:

bigexp: procedure;
dcl sysprint file;
put list (exp (2345)); put skip;

end;

Executing the program causes the condition to be signalled. The system on
unit gives the reason for the specific cause of the problem, and states a fixup
to be taken if the program is restarted.

bigexp

Error: error condition by >udd>Serpent>PJApple>bigexpI53 (line 3)
exp(x), x > 88.028, not allowed

Type "start" to set result = .17014118e+39
r ..•• level 2

start
1.701e+038

r

After receiving the error, you may decide that the standard fixup is
acceptable, and restart the program as has been shown above. Notice that the
program proceeds normally to output the result as set by the action of the
system on unit.

Subscriptrange

This means that a subscript specified in an array reference is outside of
the bounds of the array. The condition is normally raised only when you have
specified that subscript range checking be performed (by placing a
subscriptrange condition prefix on a PL/I procedure statement, or compiling a
Fortran program with the -subscriptrange control argument). Such checking is
useful when there are unexplainable storage, out of bounds, or fatal process
errors.

3-25 CH26-00

subrange

Error: subscriptrange condition by)udd)Serpent)PJApple)subrange:17
(line 7).
A subscript value has exceeded array bounds.
system handler for error returns to command level
r level 2

probe
Condition subscriptrange raised at line 7 of subrange (Level 12)
source

array (i) = i;
! value i

5
symbol array
fixed binary(17,0) aligned automatic dimension(4)
Declared in subrange.

Above is an example of a subscriptrange condition. Upon receiving the
error, enter probe to determine the cause of the problem. The source request
gives the text of the line on which the error occurred (line 7). Then display
the value of i and compare it with the dimensions for the array as given by the
symbol request. Here the subscript, i, is only a little bit out of range. This
indicates a logical bug, specifically, that the program is not constraining the
value of the subscript properly. Alternatively, if the value of the subscript
were grossly out of range (for example, -72301292), this would be an indication
that the problem was that the subscript was uninitialized or assigned the value
of some (function of an) uninitialized variable.

This condition may also arise when a function that returns a dimension (*)
array is used, and the bounds of the array returned do not match the bounds of
the array to which it is assigned. For example, assume that data has dimension
(4) and that array_fun returns an array with dimension (5). Then:

data = array_fun (...);

causes a subscriptrange condition to be signalled.

Stringrange

This means that a substring of a character or bit string value as specified
by the substr builtin function is not completely contained within the string
value. Given the reference:

substr (s, i, j)

the error implies that one of two conditions is true: that i, specifying the
starting position of the substring, is less than one or greater than the current
length of the string, or that j, specifying the length of the substring, is less
than zero or greater than the number of positions included in that portion of
the string from position i to the end.

3-26 CH26-00

The stringrange condition is only raised if you have compiled the program
with a stringrange condition prefix on the procedure statement or on the
statement that uses the substr built-in function.

stringrange

Error: stringrange condition by
(line 7). A substring specified
contained in the first argument.
returns to command level.

)udd)Serpent)PJApple)stringrangel17
by substr is not completely

System handler for condition

r level 2

probe
Condition stringrange raised at line 7 of stringrange (Level 11)
source

value i
-1

substr (str, 1, i) = "an;

Fixedoverflow, Overflow, Underflow

These errors indicate that the result of a computation has exceeded the
precision or range of the machine. Fixedoverflow applies to fixed point
computations and indicates that the result is too large. It should not be
restarted.

folf

Fixed point overflow by)udd)Serpent)PJApple)folfl143 (line 27)
System handler for error returns to command level
r level 2

Overflow applies to floating point computations, and indicates that the
result is too large. Under certain conditions it may be restarted; however,
generally, it should not be restarted.

olf

Error: Exponent overflow by)udd)Serpent)PJApple)olfI160 (line 33)
System handler for condition returns to command level
r level 2

Underflow applies to floating point computations, and indicates that the
result is too small. The program is automatically restarted with the result of
the computation set to O.

unfl

Error: Exponent underflow by)udd)Serpent)PJApple)unfI1167 (line 39)
r

3-27 CH26-00

Notice that after an underflow condition the system does not enter a new
command level, but instead continues with the program. Here it has terminated
normally, returning to command level 1.

The exponent control command may be used to change the system default
action for exponent overflow/underflow.

Fatal Process Errors

In general, a fatal process error occurs when the system detects a
condition such that the process is not able to continue running. (In
particular, the system default on unit cannot be executed to interpret the cause
of the error.) The action taken by Multics in this case is to terminate the
process in which the error occurred and to create a new process for you.
Because it is a new process, there is no information available about the
programs that were running when the error occurred, the value of program
variables, etc. The only clue as to the cause of the error is the error
message.

The single most common form of a fatal process error is an out of bounds
error on the stack. The causes are the same as for a storage condition (see
above) arlslng on the stack. The message that is generated by the system
designates that a fatal error has occurred, and then gives an error message
indicating a more specific problem.

Fatal error. Process has terminated. Out of bounds fault on user's
stack.
New process created.

In the event of this kind of fatal process error, it is advisable to
recompile your program with subscriptrange and stringrange checking enabled and
try the program again. If a stringrange or subscriptrange condition then occurs
instead of the fatal process error, it is likely that the new error is the
source of the problems.

If the fatal process error recurs despite having the checks enabled, then
the cause of the problem can be just about anything. Check your access to all
programs and files that you are using to insure proper access. Also check for
the possible causes of a segment fault error. Finally, calls to system programs
should be checked to see if they conform to all documented conventions. Should
these checks fail to turn up a clue, use the probe command to set breakpoints at
various strategic points in your program to isolate the point at which the fatal
process error is occurring. Often the process has to be repeated with
additional breaks set until the location is narrowed down to a single statement.

Any of these fatal process errors
critical information in the stack or
referencing through an invalid pointer.

can be caused by a program overwriting
linkage section; most frequently by

You may see several other kinds of fatal process errors. They include:

No unclaimed signal handler specified for this process.
This means that no default on unit could be found. The possible causes
include subscript and stringrange errors, and the use of uninitialized
address data (see above).

3-28 CH26-00

Fault in signaller by user's process.
This indicates the presence of a very complex
probably involves more than one cause. Apply the
described for the other errors.

Unable to perform critical 1/0.

error condition and
methods of debugging

This means that your process was unable to perform an input or output
operation at a crucial point, for example, writing out an error message.
This indicates that the 1/0 attachments for the user input, user output,
error output, andlor user ilo 1/0 switches are causing a problem.
Consider the kinds of operations that you performed prior to the fatal
error, and determine if they conform to the documented operating
procedures.

Process terminated because of system defined error condition.
This is a catch-all message. Again, try the methods described above.

You should recall the comments about errors that vanish after a new process
is created; they apply to a fatal process error as well.

3-29 CH26-00

SECTION 4

ALPHABETICAL REFERENCE TO ERRORS

This section contains explanations (including cause, result, ahd how to
recover) of the Multics system error messages. An alphabetical listing of the
messages sorted by the long form of the printed message includes the description
of the error and the categories showing frequency of occurrence and originating
area of the system.

To find an explanation of a particular message, locate the long message in
the following alphabetical list--the description accompanies it.

Errors are broken down into three categories designating frequency of
occurrence:

• COMMON
Common errors that are encountered by all types of users.

• PROGRAMMER
Less common, but frequently encountered programming errors.

• RARE
Infrequent, specialized errors.

When possible, the errors are further classified into categories that
indicate from what area of the Multics system they originate:

.Absentee

.Access

.Archive

.Binder
eCommand Processor

eGeneral
eHardware
eI/O
eipc
eLinker

eNetwork
ePL/I
eProcess Environment
eRCP
eSearch Facility

A RFNM is pending on this IMP link.

Class: rare Type: network

.Storage System

.Subroutines

.Supervisor
etrace

This only occurs at sites running the ARPANet, and probably indicates a logic
error in the network software or a hardware failure in the network. The
failing operation will probably succeed if retried.

absentee: Attempt to reenter user environment via a call to cu_$cl. Job
terminated.

Class: common Type: absentee

This message is only seen in messages from the Initializer, where it
indicates that an absentee job has terminated abnormally, most likely by
taking a fault and trying to establish a new command level, which cannot be
done in an absentee process.

4-1 CH26-00

absentee: CPU time limit exceeded. Job terminated.

Class: common Type: absentee

This message also appears only
indicates that an absentee job has
its CPU time limit.

in messages from the Initializer, and
been terminated because it has run over

A fatal error has occurred.

Class: rare, programming

This indicates that some operation could not be performed. It is generally
used only for communication between subroutines, when it is necessary to
distinguish only between complete success and complete failure. If it ever
appears in a printed message, it should always be accompanied by explanatory
text.

A first reference trap was found on the link target segment.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged linkage section or object segment.

A logical error has occurred in initial connection.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

A new search list was created.

Class: common Type: commands

This indicates that a search list has been created (using the
set search paths or add search paths commands). This is only a warning,
since the-creation may be intentional; it may also indicate a misspelled
search list name.

A pointer that must be eight word aligned was not so aligned.

Class: rare, programming Type: subroutines

This indicates that a pointer was not aligned as expected; pointers used in
spri and Ipri instructions must be eight-word aligned.

A previously referenced item has been changed by another opening.

Class: rare Type: 1/0 system

This indicates that the described situation has occurred while manipulating a
file.

4-2 CH26-00

ACL is empty.

Class: common Type: access control

This indicates that an attempt was made to examine an empty Access Control
List (ACL). It is not strictly an error, merely a more informative way of
indicating an empty ACL than simply printing nothing.

Active process table is full. Could not create process.

Class: rare Type: Supervisor

This indicates that a new process
login or new proc time. If this
should be informed. Rare.

could not be created; it only happens at
error occurs, site maintenance personnel

An improper attempt was made to terminate the process.

Class: rare, programming Type: fatal process error

This indicates that, due to a programming error, an improper attempt was made
to terminate the user process; the process is terminated anyway.

An inter process signal has occurred.

Class: rare, programming Type: i pc_

This indicates that an interprocess signal (IPS) has been sent. You get it
when calling the hardcore ipc entries.

Archive component pathname not permitted.

Class: common Type: any command

This indicates that a command that cannot deal with
given an archi v e compo nent pathn ame (us i ng the "::"
Most commands cannot deal with archive components.

Argument ignored.

Class: common Type: any command

archive components was
syntax) as an argument.

This indicates that an extra argument has been ignored, and that the
requested operation continues.

Argument is not an ITS pointer.

Class: common Type: command

This indicates that a command or subr0utine that was expecting a pointer
argument did not receive one as expected.

Argument too long.

Class: common

A command or subroutine argument is too large. Should be self-explanatory in
the context where it is issued.

4-3 CH26-00

Attach and open are incompatible.

Class: common Type: 1/0 system

This indicates that the attach and open modes for a file
incompatible; for instance, an attempt made to open a
stream input mode.

Attachment loop.

Class: rare Type: 1/0 system

or 1/0 device are
sequential file in

This indicates that an attempt was made to create a circular set of 1/0
switches.

Attempt to access beyond end of segment.

Class: common

Should be self-explanatory in the context where it is issued.

Attempt to attach to an invalid device.

Class: common Type: 1/0 system

This indicates an attempt to use an invalidly specified 1/0 device. Check
the attachment or resource description and try again.

Attempt to create a stack which exists or which is known to process.

Class: rare, programming Type: fatal process error

This indicates an attempt to invalidly create a stack. It's really too
complicated to explain exactly what this means, but if you aren't expecting
it, then your program has done something wrong and mangled your address
space.

Attempt to indirect through word pair containing a fault tag 2 in the odd word.

Class: rare, programming Type: environment, linker

This indicates that an invalid indirection was attempted, due either to an
uninitialized pointer or a damaged linkage section.

Attempt to manipulate last or bound pointers for device that was not attached as
writable.

Class: rare Type: 1/0 system

This indicates an 1/0 error of the sort described. It is only produced by
110 modules in the obsolete (ios_) 110 system.

Attempt to modify a valid dump.

Class: rare

This only occurs when using the copy fdump command; it indicates that the
DUMP partition cannot be copied. Actually, it should never happen, and is,
in any case, only going to happen to systems programmers.

4-4 CH26-00

Attempt to read or move read pointer on device which was not attached as
readable.

Class: common Type: I/O system

This should be self-explanatory in the context where it appears. It may be
the result of attempting an I/O operation before the device or connection is
ready.

Attempt to re-copy an invalid dump.

Class: rare

This only occurs when using the copy fdump command; it indicates that the
FDUMP presently in the DUMP partition has already been copied out, and cannot
be copied again. The copy_fdump command can only be used once-with each
FDUMP.

Attempt to set delimiters for device while element
support search.

size is too large to

Class: rare Type: I/O system

This indicates an I/O error of the sort described. It is only produced by
I/O modules in the obsolete (ios) I/O system.

Attempt to set max length of a segment less than its current length.

Class: rare Type: storage system

This indicates an attempt to set the max length of a segment to a lower value
than the current length. The segment must be truncated to the shorter length
before this can be done.

Attempt to unlock a lock that was not locked.

Class: common, programming Type: subroutines

This indicates that an attempt was made to unlock a lock that was not locked.
This almost always indicates a logic error in the calling program, such as a
cleanup handler that unlocks a lock without regard to whether it was
previously locked. The lock remains unlocked.

Attempt to unlock a lock which was locked by another process.

Class: common, programming Type: subroutines

This indicates that the lock being unlocked is locked by another process.
The lock remains locked to the other process. Like lock not locked, it
usually indicates a logic error in the calling program. The lock remains
locked.

Attempt to write improperly formated bisync block.

Class: rare Type: I/O system

This indicates that an error has occurred while doing I/O on a bisync
communications line.

4-~ CH26-00

Attempt to write or move write pointer on device which was not attached as
writeable.

Class: common Type: 1/0 system

This should be self-explanatory in the context where it appears. It may be
the result of attempting an 1/0 operation before the device or connection is
ready.

Bad class code in definition.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error) and
generally indicates a damaged object segment.

Bad definitions pointer in linkage.

Class: rare Type: linker

This indicates that the linkage section has been mangled.

Bad mode specification for ACL.

Class: common Type: access control

This indicates
directory mode
mode.

that an invalid ACL mode was supplied, such as using a
for a segment or MSF, or an invalid character in an access

Bad part dump card in config deck.

Class: rare

This only occurs when using the copy_fdump command; it indicates that the
DUMP partition cannot be copied.

Bad socket gender involved in this request.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

Bad status received from IMP.

Class: rare Type: network

This only occurs at sites running the ARPANet, and probably indicates a logic
error in the network software or a hardware failure in the network. The
failing operation will probably succeed if retried.

Bad syntax in pathname.

Class: common Type: commands

This indicates that a pathname argument had invalid syntax, such as misplaced
"(" characters, or doubled "»." It can also be printed by the command
processor itself, to indicate an error with a command being invoked by
explicit pathname.

4-6 CH26-00

Bisync line did not respond to line bid sequence.

Class: rare Type: lID system

This indicates that an error has occurred while doing lID on a bisync
communications line.

Communications with this foreign host not enabled.

Class: common Type: ARPANet

This indicates ~hat the requested network connection could not be opened
because the Multics host table does not permit connection to the foreign
host. This usually indicates that the host table has not been updated yet to
reflect the existence of a new host, rather than an administrative
restriction.

Component not found in archive.

Class: common Type: commands

This indicates that the specified archive component could not be found.

Condition requiring manual intervention with handler.

Class: common Type: lID system

This indicates that some condition that requires intervention by the operator
or some other person has occurred on an lID device, such as a tape drive
dropping out of ready state or undergoing some other sort of hardware
failure. Retrying the operation may succeed.

Connection not completed within specified time interval.

Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because the foreign host did not respond in time (15 seconds). This may
indicate either a problem with the foreign host, or that the Multics NCP must
be reinitialized by the system administrator.

Current process_id does not match stored value.

Class: rare, programming

This indicates that a process id in some data base does not match the current
one; it is generally indicative of a program malfunction. It is used mostly
by the ARPANet software (only at sites that run it), where it definitely
indicates a malfunction in the network software.

Cyclic synonyms.

Class: rare Type: lID system

This indicates an attempt to create a circular lID attachment loop using the
syn_ 1/0 module.

4-7 CH26-00

Data has been gained.

Class: rare, programming

This should always be accompanied by an explanatory message describing the
situation in more detail.

Data has been lost.

Class: rare, programming

This should always be accompanied by an explanatory message describing the
situation in more detail.

Data not in expected format.

Class: rare

This indicates that a program received data in a format it could not handle.
This message should always be accompanied by some explanatory text to
describe the problem in detail.

Data sequence error.

Class: rare, programming

This should always be accompanied by an explanatory message describing the
situation in more detail.

Defective file section deleted from file set.

Class: common Type: 110 system

This indicates that, due perhaps to an error on the 110 medium, part of the
file was deleted. This happens, for instance, when a bad spot is found while
reading a tape.

Device attention condition during eof record write.

Class: rare Type: 110 system

This indicates just what it says; operator intervention is probably required.
Retrying the operation may succeed.

Device is not currently usable.

Class: common Type: 110 system

This indicates that a particular device is no longer usable, most likely due
to a hardware failure.

Device type is inappropriate for this request.

Class: rare Type: RCP

This indicates that the device type specified in a resource request is not
compatible with other parameters in the resource specification.

4-8 CH26-00

Device type unknown to the system.

Class: common Type: 1/0 system

This indicates that an attempt was made to assign an 1/0 device of a type
that is not defined at this site, or that is logically inconsistent (such as
attempting to assign a disk pack to the wrong sort of drive).

Directory irreparably damaged.

Class: rare Type: storage system

This indicates that a directory has been irreparably damaged, and cannot be
salvaged. This should never occur; if it does, contact system maintenance
personnel.

Directory or link found in multisegment file.

Class: rare Type: 1/0 system

This indicates that a multisegment file (MSF) appears to be inconsistent.
Most likely, the MSF is not really supposed to be an MSF, but rather, a
directory, and its bitcount has accidentally become set.

Directory pathname too long.

Class: common Type: commands

This indicates that the directory portion
than 168 characters long (after processing
be used.

Duplicate entry name in bound segment.

Class: rare Type: linker

of a pathname argument was more
of "<,, characters), and could not

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment. Specifically, it indicates
that the definitions section contains more than one definition with the same
name.

Encountered end-of-volume on write.

Class: common Type: 1/0 system

This indicates that an attempt has been made to write past the end of the I/O
medium (e.g., an attempt to write past the EOF mark on a tape).

End of information reached.

Class: common

This indicates that no more information is available to the calling program.
This message should always be accompanied by explanatory text to describe the
situation better, unless the meaning is very obvious from context.

End-of-file record encountered.

Class: common Type: 1/0 system

This indicates that a read operation has encountered an end-of-file record,
and that no more data is available.

4-9 CH26-00

Entry is for a begin block.

Class: rare Type: subroutines

This is returned from the symbol table utility (stu) to indicate that a
particular block is a begin block rather than a procedure.

Entry name too long.

Class: common Type: commands

This indicates that the entryname portion of a pathname argument was more
than 32 characters long and could not be used.

Equals convention

Class: common

__ 1,-. ~
111 Cl1'\.C; .;) entry name too It'"'1no. - 0 ..

Type: commands

This indicates that an equal name argument expanded into too long an
entryname (more than 32 characters), by adding components to the name.

Error in conversion.

Class: common Type: any command

This indicates that a conversion could not be performed; for instance, a
command argument could not be converted to an integer because it was not all
digits.

Executive access to logical volume required to perform operation.

Class: rare Type: storage system

An operation which requires He" access to the
segment (>lv>LV NAME.mdcs), such as creating
performed. -

logical volume access control
a quota account, could not be

Expanded command line is too large.

Class: rare Type: command processor

This message is obsolete, and should never appear.

External symbol not found.

Class: common Type: linker

This indicates that an external reference (of the form seg$entrypoint)
specified an entrypoint that does not exist in the segment found as segname.
The print_link_info command can be used to list the entrypoints in a segment.

External variable or common block is not the same size as other uses of the same
name.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates that two different subroutines in a program declare the
block or variable differently.

4-10 CH26-00

File already busy for other 1/0 activity.

Class: common Type: 1/0 system

This indicates that the specified file is in use either by another process or
by another program in the current process, and hence may not be accessed.
This may be the result of a program malfunction, in which case issuing the
new_proc command resolves the problem.

File expiration date exceeds that of previous file.

Class: common Type: 1/0 system

Explanation unavailable.

File is already opened.

Class: common Type: 1/0 system

This indicates that the specified file is already opened, and hence may not
be opened again.

File is empty.

Class: rare Type: 1/0 system

This indicates that a file, which was not expected to be empty, was.

File is not a structured file or is inconsistent.

Class: rare Type: 1/0 system

This indicates that a file is being incorrectly used or has become damaged.

File set contains invalid labels.

Class: common Type: 1/0 system

This indicates that some volume or volumes of a tape file set contains an
invalid or otherwise unacceptable label.

File set structure is invalid.

Class: common Type: 1/0 system

This indicates that the structure of a tape file set is not valid.

Foreign IMP is down.

Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because the foreign host is currently not operating.

4-11 CH26-00

Foreign host is down.

\Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because the foreign host is currently not operating.

Format error encountered in archive segment.

Class: rare Type: any command

This indicates that a command was unable to complete processing of an archive
because it either has been damaged in some fashion (and must be retrieved or
repaired) or because it is not an archive at all. Rare.

Format of IMP message was incorrect.

Class: rare Type: network

This only occurs at sites running the ARPANet, and probably indicates a logic
error in the network software or a hardware failure in the network. The
failing operation will probably succeed if retried.

1/0 in progress on device.

Class: common Type: 1/0 system

This indicates that an attempt was made to do 1/0 on a device that appears to
already be in use for some previously requested operation. This condition is
not necessarily detected by the 1/0 system itself, and may not be a correct
diagnosis of the problem, but rather an indication of confusion on the part
of the liD module.

10 device not currently assigned.

Class: rare Type: 1/0 system

This indicates an attempt to use an 1/0 device that is not now assigned to
the process.

Illegal command or subroutine argument.

Class: rare, programming Type: subroutines

This indicates that an invalid argument has been supplied to a subroutine,
and that no more specific error code is available to describe the problem.

Illegal entry name.

Class: common Type: commands

This indicates that the entryname portion of a pathname does not conform to
the standards for constructing entrynames and starnames.

Illegal format of quota account name.

Class: rare Type: storage system

This indicates that an attempt was made to create or use a master directory
quota account on a logical volume that had an improperly formatted name (not
one of Person.Project, Person.*, or *.Project).

4-12 CH26-00

Illegal initialization info passed with create-if-not-found link.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment.

Illegal procedure fault in FIM by user's process.

Class: common, programming Type: fatal process error

This message usually only appears to accompany a fatal process error message;
it indicates that the system has encountered an error condition too serious
to attempt to recover the process. Usually caused by a malfunctioning
program either overwriting or deleting the stack.

Illegal self reference type.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment.

Illegal structure provided for trap at first reference.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment.

Illegal syntax in equal name.

Class: common Type: any command

This indicates that an invalid equal name was supplied as an argument,
perhaps because it was used in the wrong argument position.

Illegal type code in type pair block.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment.

Illegal use of equals convention.

Class: common Type: commands

This indicates that the command is not equipped to deal with equal names.

Improper access class/authorization to perform operation.

Class: common Type: access control

This indicates that an operation could not be performed because the process
did not have sufficient access to perform it. It can only occur at sites
that use the Access Isolation Mechanism (AIM) for access control. Common,
but at AIM sites only.

4-13 CH26-00

Improper access on handler for this signal.

Class: rare, programming Type: subroutines

This indicates that an signal handler could not be accessed. Its original
meaning is no longer relevant, and it should never be used in new programs.

Improper access on user's linkage segment.

Class: rare Type: environment

This indicates that the linkage section could not be accessed. Its original
meaning is no longer relevant, and it should never be used in new programs.

Improper access on user's stack.

Class: rare, programming Type: subroutines

This indicates that a stack segment could not be accessed. Its original
meaning is no longer relevant, and it should never be used in new programs.

Improper access to given argument.

Class: rare, programming Type: subroutines

This indicates that an argument could not be accessed. Its original meaning
is no longer relevant, and it should never be used in new programs.

Improper mode specification for this device.

Class: common Type: 1/0 system

This indicates that an
does not exist, such
command.

attempt was made to set an 1/0 device to a mode that
as an invalid tty mode in the use of the set tty

Improper syntax in command name.

Class: rare Type: command process

This indicates a malformed command name. See description in Section 2.

Incompatible character encoding mode.

Class: common Type: 1/0 system

This indicates that an attempt was made to read or write a tape with a
character encoding mode that is incompatible with the label standard or with
the hardware itself.

Inconsistent combination of control arguments.

Class: common Type: commands

This indicates that the control arguments were
contradictory or invalid combination of operations.
this error is entirely dependent on the command
documentation of that command for details.

4-14

used to specify a
The precise meaning of
itself; refer to the

CH26-00

Inconsistent multiplexer bootload data supplied.

Class: rare, programming Type: I/O system

This indicates that a tty channel multiplexor could not be loaded because its
data is inconsistent; it will most likely occur in the Initializer process,
in response to the load_mpx operator command.

Incorrect I/O channel specification.

Class: rare Type: I/O system

This indicates that an invalid I/O channel name was supplied to a command or
subroutine.

Incorrect access on entry.

Class: common Type: commands

This message is usua~~y followed by a pathname and indicates that the process
has insufficient access to the object in order to perform the requested
operation.

Incorrect access to directory containing entry.

Class: common Type: storag~ system

This indicates that an operation, such as deletion or renaming, cannot be
performed by the user because he has insufficient access to the directory
containing the object. Use the list acl command to find out who has access,
and, if there is sufficient access,-the set acl command to change access on
the directory.

Incorrect detachable medium label.

Class: rare Type: I/O system

This indicates that the label on a disk or tape either could not be read at
all, or does not agree with the expected value.

Incorrect recording media density.

Class: rare Type: I/O system

This, generally returned from an IiO module, indicates that an attempt was
made to read a tape at the wrong density. Try another density.

Indicated device assigned to another process.

Class: rare Type: Rep

This indicates that an I/O device could not be assigned to the current
process.

Initial connection socket is in an improper state.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

4-15 CH26-00

Input ring number invalid.

Class: rare

Should be self-explanatory.

Insufficient access to return any information.

Class: common Type: commands

This indicates that the process has insufficient access to determine anything
at all about the specified entry (even whether it exists or not).

Insufficient access to use specified block size.

Class: common Type: 1/0 system

This indicates that the user is attempting to use a large block size for tape
or disk 1/0 and does not have access to the Access Control Segment (ACS) that
allows this. The user should either reduce the block size, or contact the
system administrator to request access. The ACS is)sc1)rcp)workspace.acs.

Insufficient information to open file.

Class: common Type: 1/0 system

This indicates that the 1/0 module requires more information than it has
already been given to open the file; some parameter is missing.

Insufficient quota on logical volume.

Class: rare Type: storage system

This indicates that there is not enough quota remaining on the logical volume
to create the specified directory or change its quota. The set_volume_quota
command can be used to increase the available quota.

Internal inconsistency in control segment.

Class: rare Type: 1/0 system

This indicates that an inconsistency has been detected in the control segment
for an 1/0 switch, probably due to a system program logic error. The
operation may succeed if the switch is closed and reopened, and will almost
certainly succeed after a new_proc.

Internal index out of bounds.

Class: rare Type: network

This indicates that an internal error has occurred in the ARPANet software.
It only occurs at sites running the ARPANet. It is generally indicative of
an inconsistency in the system, and must be corrected by system maintenance
personnel. The operation that failed may work if tried again.

Invalid backspace_read order call.

Class: common Type: 1/0 system

Explanation unavailable.

4-16 CH26-00

Invalid delay value specified.

Class: common Type: 1/0 system

This indicates an attempt to set invalid values for tty carriage motion
delays; some value or values is too large or negative.

Invalid element size.

Class: common Type: 1/0 system

Explanation unavailable.

Invalid logical record length.

Class: common Type: 1/0 system

This indicates that the record length is not compatible with the blocksize.
For instance, many 1/0 record formats require that the record length be no
larger than the blocksize.

Invalid mode specified for ACL.

Class: common Type: access control

This indicates an attempt to set an invalid ACL mode, such as One containing
invalid characters.

Invalid move of quota would change terminal quota to non terminal.

Class: common Type: access control

This indicates an attempt to move quota from a directory that has other
directories with quotas underneath it. It is required that all directories
superior to a directory with a quota limit (nonzero quota) also have nonzero
quotas, except for master directories. See the Reference Guide for details.

Invalid multiplexer type specified.

Class: rare

This indicates an attempt to use an invalid tty multiplexor type. It should
only occur in response to operator commands, or for systems programmers.

Invalid physical block length.

Class: common

This indicates that
length; for example,
not multiples of 4.

Type: 1/0 system

an attempt was made to do 1/0 with an invalid block
Multics cannot write tape blocks with lengths that are

Invalid project for gate access control list.

Class: common Type: access control

This indicates an attempt to set the Access Control List (ACL) on a gate
segment such that users on more than one project (not including SysDaemon)
have access to it. Only system administrators can create gate segments that
are accessible to multiple user projects. This can occur when setting-either
the ring brackets or ACL on a segment.

4-17 CH26-00

Invalid variable-length record descriptor.

Class: common Type: 1/0 system

Explanation unavailable.

Invalid volume identifier.

Class: rare Type: RCP

Explanation unavailable.

Invalid volume name.

Class: rare Type: RCP

Explanation unavailable.

Ioname already attached and active.

Class: rare, programming Type: 1/0 system

This indicates that the specified 1/0 stream is already attached, and hence
may not be attached again.

Ioname not active.

Class: rare, programming Type: 1/0 syst~m

This indicates an attempt to do 1/0
stream that is not presently in use.
obsolete (ios_) 1/0 system.

with a stream name that specifies a
This error only occurs in calls to the

Ioname not found.

Class: rare, programming Type: 1/0 system

This indicates an
nonexistent stream.
1/0 system.

Key out of order.

Class: rare

attempt to do 1/0 with a stream name that specifies a
This error only occurs in calls to the obsolete (ios)

Type: 110 system

This is a vfile error that indicates that the file was opened as keyed
sequential output (which requires that all keys be entered in ascending
order), and a key was detected to be not in ascending sequence. Open the
file with keyed sequential update or reorder the keys appropriately.

Line type number exceeds maximum permitted value.

Class: rare Type: 1/0 system

This indicates an attempt to use a tty line number that is too large.

4-18

Looping searching definitions.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment. Specifically, it indicates
that the definitions section contains more than one definition that would
satisfy the search--for ~nstance, a reference to a bound seg$name might match
both segname1$name and segname2$name, where segname1 and segname2 are two
separate segnames defined in the bound segment.

Master directory missing from MDCS.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
control segment (MDCS).

Master directory quota must be greater than O.

Class: rare Type: storage system

This indicates that an attempt was made to set the quota of a master
directory to zero or less.

Mismatched iteration sets.

Class: common Type: commands

This indicates that a command line containing parentheses, to specify
iteration, contained differing numbers of tokens in different sets of
parentheses; for example: rename (filel file2 file3) (name1 name2). The
command line is not executed.

Mount request could not be honored.

Class: common Type: RCP

This indicates that a specified tape or disk could not be mounted, for one of
several reasons: all the tape or disk drives might be in use, or offline
during unattended service; the volume might not exist, or the operator might
be unable to locate it; it might not be permitted for the current process to
access the volume.

Mount request pending.

Class: rare

Explanation unavailable.

Multics IMP is down.

Class: common Type: network

This only occurs at sites running the ARPANet. It indicates that a network
connection cannot be established because the Multics IMP hardware is not
operating.

4-19 CH26-00

Multisegment file is inconsistent.

Class: common Type: 1/0 system, commands

This indicates that a multisegment file (MSF) is inconsistent, and cannot be
used. A possible reason is missing or damaged components.

Name duplication.

Class: common Type: commands

This indicates that an attempt was made to re-use a name that already exists
in the directory. The default response for this is to either remove the name
from the entry it already refers to, if the entry has multiple names, or to
ask the user whether to delete the entry, if it has but one name.

Network Control Program encountered a software error.

Class: common Type: ARPANet

This indicates that the ARPANet software encountered an internal error. This
condition may clear itself automatically, or it may require that the system
administrator re-initialize the network software. The operation that got the
error should be retried at least once.

Network Control Program not in operation.

Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because the Multics Network Control Program is not presently operating. This
may indicate a need for it to be reinitialized; contact the system
administrator.

Network connection closed by foreign host.

Class: common Type: ARPANet

This indicates that the network connection has been closed by the foreign
host; most frequently, this indicates that the foreign host has crashed.

New offset for pointer computed by seek entry is negative.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

No 1/0 switch.

Class: common Type: 1/0 system

An attempt was made to perform an operation on a named 1/0 switch that does
not exist.

No device currently available for attachment.

Class: common Type: 1/0 system

This indicates that the requested device assignment could not be made because
all such devices are already in use.

4-20 CH26-00

No execute permission on entry.

Class: common Type: commands

This indicates that the specified operation could not be performed because it
requires that the process have execute access to the segment.

No initial string defined for terminal type.

Class: common Type: IIO system

The initial string cannot be sent to the terminal because none is defined.

No quota account for the logical volume.

Class: rare Type: storage system

This indicates that there is no quota account for this process on the
specified logical volume.

No unclaimed signal handler specified for this process.

Class: rare Type: fatal process error

This probably indicates that the stack header for the process has been
mangled by a malfuctioning program.

Number of blocks read does not agree with recorded block count.

Class: rare Type: IIO system

Explantion unavailable.

One or more of the paths given are in error.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
control segment (MDCS).

Operation not performed because of outstanding line_status information.

Class: rare, programming Type: IIO system

This indicates that a control order cannot be performed on a communications
line because there is already a line status control order pending that has
not returned results yet.

Path violates volume or account pathname restriction.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
control segment (MDCS).

Pathname already listed.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
control segment (MDCS).

4-21 CH26-00

Pathname appears more than once in the list.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
,...,...,.,+- ,...1 c;,orrmo,.,t- (MT')("~'
"-''-1''.1 ""'" ""-"...L. ~"""'O"J"""".i "'" \. L!4-"_ I.

Pathname not found.

Class: rare Type: storage system

This indicates that an inconsistency has been found in the master directory
control segment (MDCS).

Physical end of device encountered.

Class: common Type: 1/0 system

This indicates that an attempt was made to read past the end of the device
medium, such as an attempt to space past the EOF marker on a tape.

Procedure called improperly.

Class: common, programming Type: subroutines

This indicates that a subroutine or command has been called improperly, and
that there is no more specific code to describe the error. This code should
alway be accompanied by some explanatory text message to describe the problem
in more detail.

Process lacks permission to alter device status.

Class: common Type: 1/0 system

This indicates an attempt to perform an 1/0 operation on a device that the
process did not have sufficient access to; for instance, performing
privileged control orders on a tty channel.

Process lacks permission to initiate Network connections.

Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because requesting process does not have proper access to use the network.
Contact the system administrator for information about this.

Process lacks sufficient access to perform this operation.

Class: common Type: access control, storage system

An operation was attempted for
access. The operation for which
the source of the message.

which the process did not have sufficient
access is required should be evident from

Process lacks sufficient access to perform this operation.

Class: rare Type: storage system

This indic8tes that the process does not have appropriate access to the
control segments for the logical volume to perform the operation.

4-22 CH26-00

Quota account has master directories charged against it.

Class: rare Type: storage system

A logical volume quota account may not be deleted if there are existing
master directories in the hierarchy that charge against it. This can occur
spuriously if the master directory control segment (MDCS) for the volume has
been damaged; this damage can be repaired with the privileged check mdcs
command.

Record is too long.

Class: common, programming Type: storage system

This indicates that a call was made to read a record that could not be fit
into the the supplied buffer. For stream 1/0, as much of the record as would
fit is read into the buffer, and a subsequent read call will continue reading
from the first byte following the last byte read.

Record located by seek key has been deleted by another opening.

Class: rare Type: 1/0 system

This indicates that the described situation has occurred while manipulating a
file.

Record size must be positive and smaller than a segment.

Class: rare Type: 1/0 system

A call to the 1/0 system failed, for the reason described.

Record with key for insertion has been added by another opening.

Class: rare Type: 1/0 system

This indicates that the described situation has occurred, while manipulating
a file.

Relevant data terminated improperly.

Class: rare Type: 1/0 system

This probably indicates that a final delimiter or data end marker was missing
from an 1/0 record.

Request for connection refused by foreign host.

Class: common Type: ARPANet

This indicates that the requested network connection could not be opened
because the foreign host refused to connect.

Request is inconsistent with current state of device.

Class: common Type: 1/0 system

This indicates an attempt to perform an 1/0 operation that cannot be
performed due to the present state of the 1/0 device; for instance, hanging
up an already hung-up tty line.

4-23 CH2f-CQ

Request is inconsistent with state of socket.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

Requested volume not yet mounted.

Class: rare Type: 1/0 system

This indicates that the volume will probably be mounted in the near future.

Resource specification is invalid.

Class: common Type: RCP

This indicates that an RCP resource specification, such as an argument to an
Rep command, does not have valid syntax.

Reverse interrupt detected on bisync line.

Class: rare Type: 1/0 system

This indicates that an error has occurred while doing 1/0 on a bisync
communications line.

Search list is empty.

Class: common Type: environment

This indicates that an attempt was made to use or examine a search list with
no components. The search list must be reinitialized and the operation
retried.

Segment contains characters after final delimiter.

Class: rare

This indicates that an ascii segment could not be parsed because it was not
in the expected format.

Some directory in path specified does not exist.

Class: common Type: commands

This indicates that one or more of the directories in the specified pathname
does not exist as supplied (e.g., misspelled).

Specified access classlauthorization is greater than. allowed maximum.

Class: rare Type: access control

This indicates that an access class or range specification was unacceptable
for the reason described. It only occurs at sites that use the Access
Isolation Mechanism (AIM) for access control and occurs in contexts such as
Resource Control and Logical Volume (LV) management. Rare, even at AIM
sites.

4-24 CH26-00

Specified attribute incompatible with file structure.

Class: common Type: IIO system

This is a vfile error that indicates that a vfile attach control argument
was inconsistent with the file type.

Specified buffer size too large.

Class: rare Type: IIO system

This indicates that the buffer size is too big for the maximum workspace
allowed.

Specified control argument is not implemented by this command.

Class: common Type: commands

This indicates that the control argument printed in the message is not
acceptable to the command.

Specified offset out of bounds for this device.

Class: rare Type: 1/0 system

This indicates that the channel program or status queue is not fully
contained in the 1/0 INTERFACER (IOI).

Specified quota account not found

Class: rare Type: storage system

This indicates that an attempt was made to charge a master directory against
a nonexistent (misspelled, for instance) quota account. Use the list mdirs
command with -all to list all the quota accounts.

Specified socket not found in network data base.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

Specified volumes do not comprise a valid volume set.

Class: common Type: 1/0 system

An attempt was made to use a multivolume tape volume set that is invalid.

Specified work class is not currently defined.

Class: rare Type: tools

This occurs when an attempt is made to use a nonexistent workclass, generally
as a result of using the set work class command.

Supplied area too small for this request.

Class: rare, programming Type: subroutine

This indicates that a subroutine was unable to return a value or perform some
operation because the area provided was too small.

4-25 CH26-00

Supplied identifier already exists in data base.

Class: rare, programming

This should be self-explanatory in the context where it is issued.

Supplied identifier not found in data base.

Class: rare, programming

This should be self-explanatory in the context where it is issued.

Syntax error in ascii segment.

Class: rare

Should be
always be
problem.

self-explanatory in the context where it is issued.
accompanied by some explanatory text to describe

The FNP is not running.

Class: rare, programming

Should also
the specific

This indicates that an operation, such as debugging the FNP, or an operator
FNP command, could not be performed because the FNP is not running.

The NCP could not find a free table entry for this request.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

The Operator refused to honor the mount request.

Class: common Type: IIO system

This indicates that the operator declined to mount a tape or disk for the
user, possibly because it did not exist, could not be found, or was not
accessible to the user. Phone the operator for details.

The access name specified has an illegal syntax.

Class: common Type: access control

This indicates that an access name with invalid syntax (such as
Foo.Bar.Baz.Quux) was supplied to an ACL manipulation command or subroutine.

The day-of-the-week is incorrect.

Class: common Type: environment

This indicates that a dateltime string has specified both a date and weekday
name (such as "4/26/80 Wednesday"), and that the two are incompatible (that
is, that 4126/80 is not a Wednesday).

4-26 CH26-00

The event channel specified is not a valid channel.

Class: rare, programming

This indicates that an
subroutine; probably,
.uninitialized.

Type: ipc

invalid event channel name was
the variable containing the

The event channel table was full.

Class: rare Type: ipc

passed to
channel

an ipc
name is

This indicates that an attempt was made to perform an ipc operation for
which no room could be found in the ECT. This error generally results in
process termination.

The event channel table was in an inconsistent state.

Class: rare Type: fatal process error

This indicates that, due either to a user program malfunction or a system
logic error, the event channel table has become damaged. This generally
indicates that the process's linkage area has become damaged.

The initial connection has not yet been completed.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

The item specified is over the legal size.

Class: rare Type: general

This means that a data item is too large. Supplementary data should always
be included in the error message to identify the precise cause of the
problem.

There is already a record with the same key.

Class: common Type: 1/0 system

This indicates an attempt to add a record to a file that already contains a
record with the same key.

The lock could not be set in the given time.

Class: common, programming Type: subroutines

This indicates that the lock word is already locked, by an existing process,
and could not be locked in the time allowed. Possibly the other process was
running a program that malfunctioned, and failed to unlock the lock. The
lock is not locked to this process, but remains locked to the process that
already holds it.

4-27 CH26-00

The lock does not belong to an existing process.

Class: common, programming Type: subroutines

This indicates that a lock word has been found to be locked by a process that
no longer exists. In general, such a lock should be reset, and the data base
it protects should be salvaged if necessary. The lock remains locked to the
dead process,

The lock was already locked by this process.

Class: common, programming Type: subroutines

This indicates that an attempt was made to lock a lock that this process
already has locked. This may indicate a programming error in the calling
program, unless it expects that the lock may already be locked, and will not
cause it to be spuriously unlocked. The lock remains locked.

The lock was locked by a process that no longer exists. Therefore the lock was
reset.

Class: common, programming Type: environment

This indicates that a lock was found locked by a process that terminated
before unlocking it, either by terminating abnormally while performing some
operation involving the lock, or by simply failing, due to a logic error in
the program, to unlock the lock, and terminating normally. This is normally
not a serious condition, and the program that detects it simply continues
operating. It may indicate that the data base protected by the lock is
inconsistent in some fashion, but not necessarily. When this condition
occurs, the lock word is locked for the calling process.

The lock was set on behalf of an operation which must be adjusted.

Class: common Type: I/O system

This is a vfile error that indicates that an operation was interrupted while
it had part of a vfile file locked, and that the file must be adjusted (via
vfile_adjust) before anything else can be done with it.

The logical volume is already attached.

Class: rare Type: storage system

This indicates that an attempt was made to attach a private logical volume
that is already attached to the requesting process. It remains attached.

The logical volume is already defined.

Class: rare Type: storage system

This indicates that an attempt was made to redefine an existing logical
volume.

The logical volume is full.

Class: common Type: storage system

This indicates that there is no room left on a logical volume to allocate
another page (at page reference time) or another VTOC entry (at segment
creation time). This generally occurs as a seg fault error condition,
indicating that a new page could not be allocated, or-when a call is made to
create a segment.

4-28 CH26-00

The logical volume is not attached.

Class: common Type: storage system

This indicates that an attempt was made to reference a segment residing on a
private logical volume that is not attached to the requesting process.

The logical volume is not defined.

Class: common Type: storage system

This indicates that an attempt was made to reference a segment residing on a
logical volume that either does not exist, or has not been defin~d for the
bootload. This can happen when a public logical volume has been taken
offline because of disk problems or similar difficulties.

The logical volume table is full.

Class: rare Type: storage system

This indicates that there is no room in the system logical volume table to
add a new logical volume.

The ma~imum depth in the storage system hierarchy has been exceeded.

Class: common Type: commands

This indicates that an attempt was made to
deeper than is permitted in the directory
sixteen directories is permitted.

The name specified contains non-ascii characters.

Class: rare

create a
hierarchy.

segment or directory
A maximum depth of

This indicates that an attempt was made to use a name containing non-ascii
characters, which are not allowed in many contexts.

The name was not found.

Class: rare, programming Type: subroutines

This indicates that the specified name could not be found where expected.
This should always be accompanied by some further explanatory information.

The process's limit for this device type is exceeded.

Class: common Type: I/O system

This indicates that the process has reached the limit on the number of
devices of a particular type that it may be assigned at once; the
unassign resource command may be used to free up unneeded ones. This limit
is a sIte-determined parameter; contact your system administrator for
details.

4-29" CH26-00

The reference name table is in an inconsistent state.

Class: rare, programming

This indicates, most likely, that the process's linkage section has been
damaged by a malfunctioning program. A new_proc should be issu~d, ~nd the
program fixed.

The request is inconsistent with the current state of the resource(s).

Class: common Type: RCP

This indicates that the requested operation cannot be performed because it is
inconsistent with the resource state; for instance, freeing a resource that
is already free.

The requested action was not performed.

Class: rare, programming Type: subroutines

This message indicates general failure on the part of a command or
subroutine. It does not indicate any specific error condition, but rather
that a condition was encountered that could not be described more exactly by
a more specific error code.

The requested device is not available.

Class: common Type: I/O system

This indicates that the process could not be assigned an 1/0 device, possibly
because there are no devices of that type at the site, because they are all
in use or offline, or because the user does not have access to use them.

The resource is presently in use by a system dumper.

Class: rare Type: storage system

This indicates that an operation may not be
directory because the system dumper process is
condition should go away quickly, so that the
retried.

The rest of the tape is blank.

Class: common Type: 1/0 system

performed on a
presently using
operation will

segment or
it. Th i s

succeed if'

This indicates that an attempt has been made to read past the last record or
file mark on a tape, and that the rest of the tape has nothing written on it.

The ring brackets specified are invalid.

Class: common Type: access control

This indicates an attempt to set ring brackets to an invalid value, such as
one of the three values outside the range of zero to seven, or th~t the three
values do not satisfy the relation R1 < R2 < R3.

4-30 CH26--00

The signaller could not use the saved sp in the stack base for bar mode.

Class: rare, programming Type: environment

This indicates that the stack has been overwritten in such a way as to damage
it, and is usually caused by user program malfunction.

The specified access class/authorization is not within the permitted range.

The specified access classes/authorizations are not a valid range.

Class: rare Type: access control

These two messages indicate that an access class or range specification was
unacceptable, for the reasons described. They only occur at sites that use
the Access Isolation Mechanism (AIM) for access control. Iney occur in
contexts such as Resource Control and Logical Volume (LV) management. Rare,
even at AIM sites.

The specified subsystem either does not exist or is inconsistent.

Class: rare

This indicates an attempt to use a prelinked subsystem (specified by
-subsystem at login time) that is either inconsistent or nonexistent. The
subsystem is considered inconsistent if the hardcore supervisor version is
different from what it was when the subsystem was prelinked; if this happens,
the subsystem must be re-prelinked by a systems programmer.

The specified terminal type is incompatible with the line type.

Class: rare Type: I/O system

This indicates that the specified terminal type cannot be used because it is
not compatible with the type of communications line the terminal is attached
to.

The specified volume cannot be unloaded from its device.

Class: common Type: I/O system

Certain types of devices may not be unloaded, such as nondemountable disk
packs.

The time is incorrect.

Class: common Type: environment

This indicates that the time specified in a date/time string is invalid.

The year is not part of the 20th Century (1901 through 1999).

Class: common Type: environment

Multics standard date/times must be part of the 20th century, and the
supplied year was not.

4-31 CH26-00

There is already a record with the same key.

Class: common Type: 1/0 system

This indicates an attempt to add a record to a file that already contains a
record with the same key.

There is an inconsistency in arguments to the storage system.

Class: common, programming Type: storage system, commands

This indicates that a storage system subroutine was given an invalid
argument. It is used in any situation where there is no more specific error
code to describe the problem, and even (by older routines) when there is.

There is an inconsistency in this directory.

Class: rare Type~ storage system

This indicates that
salvaged. It should
should be informed.

a directory has become
never happen; if it does,

inconsistent and cannot be
system maintenance personnel

There is an internal inconsistency in the segment.

Class: common

This indicates that the segment is not an object segment, or is otherwise
unacceptable to the command.

There is no initial connection in progress from this socket.

Class: rare Type: ARPANet

This indicates that an internal error has occurred in the ARPANet software.

There is no more room in the file.

Class: common Type: 1/0 system

This indicates that the specified file is full, and that no more data may be
added to it.

There was an attempt to create a copy without correct access.

Class: rare Type: storage system

This indicates that an attempt to copy a segment with its copy switch set
failed because of incorrect access.

There was an attempt to delete a non-empty directory.

Class: rare, programming Type: storage system

This indicates that the specified directory cannot be deleted because it
still contains branches; this code is only returned by the storage system
primitive for deletion.

4-32 CH26-00

There was an attempt to delete a segment whose copy switch was set.

Class: rare Type: storage system

A segment's copy switch must be turned off before it may be deleted.

There was an attempt to make a directory unknown that has inferior segments.

Class: rare Type: storage system

This indicates that, due to a logic error in the supervisor, a directory
cannot be made unknown. A systems programmer should be contacted if this
message occurs frequently; in general, the failing operation will succeed if
retried.

There was an attempt to move segment to non-zero length entry.

Class: rare Type: storage system

This indicates an attempt to use the storage system primitives to move a
segment into another segment that already contained data.

There was an attempt to terminate a segment which was known in other rings.

Class: common Type: storage system

This indicates an attempt to terminate an inner ring segment (e.g., a
mailbox). The operation cannot be performed because it violates Multics ring
validation security.

There was an attempt to use an invalid segment number.

Class: common Type: storage system

This indicates an attempt to call a storage system primitive with a pointer
that does not correspond to any segment in the process's address space, and
therefore cannot be manipulated.

There was an illegal attempt to delete an AST entry.

Class: rare, programming Type: storage system

This indicates that, due to a logic error in the supervisor, a segment cannot
be deactivated. A systems programmer should be contacted if this message
occurs frequently; in general, the failing operation will succeed if retried,
or, failing that, if retried after a new_proc.

This entry cannot be traced.

Class: programming Type: trace

This indicates that an attempt was made to trace an entrypoint that cannot be
traced; for instance, a gate entrypoint.

This operation allowed only on master directories.

Class: rare Type: storage system

This indicates that master directory operations (e.g., set_mdir_quota) may
only be performed on master directories.

4-33 CH26-00

This operation is not allowed for a directory.

Class: common Type: commands

This indicates that an attempt was made to perform an operation that cannot
be done on a directory, such as printing or editing.

This operation is not allowed for a link entry.

Class: common Type: commands

This indicates that a procedure was used to attempt to perform an operation
on a link that may only be performed on a segment or a directory.

This operation is not allowed for a master directory.

Class: rare Type: commands

This indicates that the requested operation cannot be performed for a master
directory, such as moving quota to it, rather than using the set_mdir quota
command.

This operation is not allowed for a multisegment file.

Class: common Type: commands

This indicates that the requested operation may not be performed on a
multisegment file.

This operation would cause a reference count to vanish.

Class: rare, programming

The meaning of this error should be clear in context.

Too many ""<"" 's in pathname.

Class: common Type: commands

This indicates that a pathname argument contains too many "<" characters.
See the MPM Reference Guide for details.

Trap-before-link procedure was unable to snap link.

Class: rare Type: linker

This is issued by the binder or linker (as the code for a linkage error), and
generally indicates a damaged object segment.

UID path cannot be converted to a pathname.

Class: rare Type: storage system

This indicates that aUlD pathname was invalid. This occurs mostly when
manipulating logical volume accounts, and indicates a damaged logical volume
control segment, which can be rebuilt using the register mdir command. It
can also be given by various system analysis tools. -

4-34 CH26-00

Unable to complete connection to external device.

Class: rare Type: I/O system

This indicates that a communications channel connection could not be
established (e.g., a dial out call could not be completed).

Unable to convert access class/authorization to binary.

Unable to convert binary access class/authorization to string.

Class: rare Type: access control

These two messages indicate that an access class or range specification was
unacceptable for the reason described. They only occur at sites that use the
Access Isolation Mechanism (AIM) for access control. They occur in contexts
such as Resource Control and Logical Volume (LV) management. Rare, even at
AIM sites.

Unable to convert character date/time to binary.

Class: common Type: environment

This indicates that a date/time string could not be converted successfully
because it did not conform to the syntax described in
date_time_strings.gi.info.

Unable to process a search rule string.

Class: common Type: commands

This indicates that a search rule name, as supplied to the set search rules
command, is not acceptable (e.g., a bad keyword or nonexistent dIrectory).

Undefined preaccess command.

Class: common

This indicates an attempt to use an undefined preaccess command before
logging in (probably a misspelling).

Unrecoverable data-transmission error on physical device.

Class: common Type: I/O system

This indicates that a parity error has occurred while doing I/O to a device,
and that the operation was not successful. The operation may succeed if it
is retried.

User has deferred messages.

Class: common Type: mail system

This indicates that an interactive message could not be delivered immediately
because the recipient has temporarily deferred messages. The message will be
delivered as soon as the recipient accepts messages again.

4-35 CH26-00

INDEX

A

fixedoverflow 3-27
abbrev 2-1

attempt to reference through a null I
pointer 3-19

B

bad syntax in pathname 2-7

brackets do not balance 2-5

c

command errors 1-2, 2-7
causes 2-7

command processor errors 1-1

commands
interruption of 2-2

compare_ascii command 3-1

condition 3-3

conversion" 3-23

D

damaged segments 2-16

E

entry not found 2-10

entry point xx not found 3-1

error condition 3-24

exclamation point (!) 1-3

execution errors 1-2, 3-3
handling 2-12
see also faults

external symbol not found 3-13

F

fatal process errors 1-2, 3-28

faults 3-3
format 3-5

i-1

illegal entryname 2-12

illegal machine operation 3-19

illegal_modifier 3-8

illegal procedure 3-23

improper syntax in command name 3-3

incorrect access on entry 2-7

incorrect access to directory
containing entry 2-9

insufficient access to return any
information 2-11

interrupting commands 2-2

L

linkage error 3-8
3-13
3-13

external symbol not found
linkage section not found
segment not found 3-8
there is no room to make requested

allocation 3-i4

linkage section not found 3-13

M

manual conventions 1-2

N

new_proc command 2-13, 3-5

not_in call_bracket 3-18

not_in_execute_bracket 3-18

not_in_read_bracket 3-18

not_in_write_bracket 3-18

no_execute_permission 3-17

no_read_permission 3-18

no_write_permission 3-18

CH26-00

o

out_of_bounds fault 3-22

over flow 3-27

p

parentheses do not balance 2-4

preventive suggestions 2-1

print_error_message command 3-1

print_link_info command 3-2

program_interrupt command 2-2, 2-13

Q

qui t signal 1-3, 2-2

quotes do hot balance 2-5

R

ready message 1-3

record quota overflow 2-14

release command 2-13, 3-4

reprint_error command 3-1

resolve_linkage error command 3-2

s

segment NNNN not found 2-4

segment not found 3-8

segment-fault 3-6

simfault NNNNNN 3-19 -

size 3-24

some directory in path spec ified does
not ex ist 2-10

start command 2-2, 2-13, 3-4

storage condition 3-20

stringrange 3-26

subscriptrange 3-25

system problems 2-12

T

there is no room to make requested
allocation 3-14

u

underflow 3-27

i-2 CH26-00

I
I
I
I
r
I
I

~

,
J
I
I
I
~
I
I
I
I

I
I
I
I
I
!
I
I
I
!
I
I
I ,
I
I
J
i
I
I
I
I
I
I
I
I

(~

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

LEVEL 68
TITLE MULTICS ERROR MESSAGES:

PRIMER AND REFERENCE MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action wiii be taken as required. Receipt of ali forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM:NAME------__________________________________ ___

TITLE __ _

COMPANV ______________________________________ __

ADDRESS __ ___

ORDER NO. ~IC_H_2_6_-_0_0 ______ ~

DATED ISEPTEMBER 1980

DATE ______________ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE Will BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAilED

IN THE
UNITED STATES

I
I
I
I
I
I

F'

(.:>
2
a
.J
«
I
::>
u

I
I
I
I
I
I ~
I .J

I '):l
I Z ... g

«
o
.J
a
u.

w
Z
.J

(.:J
Z g
«
o
.J
a
u.

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
11"\ ~t... ')IY.)~ ~"" r'" A C..... Will..--.,........ "'"-t lJ,,) I 1 WI:

... -inth8· U~K~-G;e'8twisi ROad."' Br;;'tb;d:vMiddieS;~ 'TWB '9'DH ' •• .,
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

29370, 7.5C1080, Printed in U.S.A. CH26-00

	001
	002
	003
	004
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	i-1
	i-2
	replyA
	replyB
	xBack

