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PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by Multics system
maintenance personnel, development personnel, and others who are thoroughly
familiar with Multies internal system operation. They are not intended for
application programmers or subsystem writers.

The PLMs contain descriptions of modules that serve as internal interfaces
and perform special system functions. These documents do not describe external
interfaces, which are used by application and system programmers.

Since internal interfaces are added, deleted, and modified as design
improvements are introduced, Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous

versions, To help maintain accurate PLM documentation, Honeywell publishes a
special status bulletin containing a list of the PLMs currently available and
identifying wupdates to existing PLMs. This status bulletin is distributed

automatically to all holders of the System Programmers' Supplement to the
Multies Programmers' Manual (Order No. AK96) and to others on request. To get
on the mailing list for this status bulletin, write to:

Large Systems Sales Support
Multies Project Office

Honeywell Information Systems Inc.
Post Office Box 6000 (MS K-2§8)
Phoenix, Arizona 85005

This PLM explains and describes the subsystems and data bases involved in
the reader's understanding of the organization, goals, and design of the
software involved. This is not to say that explanations as detailed and
thorough as in more traditional PLMs do not appear. However, these discussions
are not intended to be read unless all of the Sections preceding these
discussions have been understood. It is hoped that the reader will appreciate
this approach.

This Program Logic Manual (PLM) ‘describes the internal organization of
those parts of the Multiecs supervisor responsible for implementing the Multics
virtual memory. This information is accurate as of Multics Release 5.0. The
subsystems described by this document are commonly known as page control,
segment control, and volume management.

This PLM assumes familiarity with the overall functional organization of
the Multics Operating System, and the user interface as presented in the Multics
' Manual, Order Nos. AG91, AG92, AGY3, AK92, AX49. Some familiarity

with the Honeywell 68/80 processor is assumed.

Other relevant Program Logic Manuals are:

Order No Name

ANT1 Reconfiguration
ANTO System Initialization
(© 1977, Honeywell Information Systems Inc. File No.: 2L13

AN61
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This

SECTION 1

INTRODUCTION

PLM describes the construction, modularization, operation, and

interaction of those subsystems of the Multics supervisor that implement the
Multies virtual memory. The subsystems are:

system,

9/78

Segment Control; responsible for maintaining the disk-resident images
of segments and their attributes (the VTOC), and creating and
multiplexing the Active Segment Table Entries, that allow disk-resident
segments to be accessed as part of user address spaces. Segment
control is responsible for performing physical operations (creation,
deletion, truncation, max-length setting) upon nonactive segments, and
relaying responsibility for performing these operations upon active
segments.

Page Control; responsible for bringing pages of segments in and out of
main memory and the paging device (bulk store), if present. It manages
the movement of all pages, and the assignment and deassignment of
secondary storage addresses. Page control performs services on behalf
of diverse subsystems such as traffic control (to locad and unload
processes at time of gain/loss of eligibility) and reconfiguration
(vacating memory controllers at deconfiguration time) when use or nouse
of pages of segments or frames of any kind of storage are an issue.
Page control 1is also responsible for performing physical operations
upon active segments, and implementing the main-memory sharing (page
replacement algorithm of the system).

Volume Management; responsible for the dynamic introduction and removal
o physical and logical storage system volumes from the running system.
It is also responsible for maintaining the integrity of volumes across
multiple bootlocads and crashes, and the repatriatiocn of permanent
volume-resident information in case of crash. Volume management
implements as well the 1logical volume sharing policy, and the
per-process attachment concept.

The following two subsystems, although intimately related to the storage

o]

are not described here.

Directory Control; responsible for creating, maintaining, and
interpreting the contents of directories, being branches for segments
and directories, Access Control Lists (ACLs), names, and pointers to
segment VTOC entries (VTOCEs). Directory control is accessed primarily
through the user gate (hcs ) and implicitly relies upon the services of
the other subsystems of the virtual memory, directories being simply
segments to these subsystems.

1-1 ANG61A



o) The directory and physical volume =salvager subsystems, although not
invoked during normal operation of Multics, play a critical role in
ensuring the integrity of the storage system, and automatic invocation
of these =salvagers 1is relied upon to force the truth of certain
predicates about disk contents. The Directory Salvager, a descendant
of the old Regular Salvager of systems of earlier genre than 4.0,
checks and corrects the physical structure of directory contents. The
Physical Volume Salvager reconstructs critical tables on packs that
must be developed from scratch after a fatal (ESD fails) crash, and
ensures the consistency of VTOC entries (VTOCEs).

These subsystems are logical, rather than actual, organizations of code and
data bases. Many critical and interesting programs fall into several of them
simultaneously, or none exactly. These artificial functional divisions are
created as an attempt to guide the description, and help the reader focus
attention more precisely. Therefore, this PLM is divided into three sections,
describing segment control, page control, and volume management independently.

9/78 1-2 . ANG1A



SECTION II

SEGMENT CONTROL OVERVIEW AND CONCEPTS

Segment control is that subdivision of the Multics supervisor that is
responsible for the maintenance of disk-resident segment images (VTOC entries),
and the management of active segments. A large part of segment control consists
of the mechanism necessary to activate and deactivate segments: another major
part is the buffering and reading/writing of VTOC entries. These terms will all
be clarified later.

The segment control portion of this PLM is organized in three sections:

1. . Section II, Control Overview and Concepts
2. Section III, The VTOC Manager

3. Section IV, Services of Segment Control

The plan of discourse is to lead up to Section IV. Segment control, as all
subsystems in a computer system, performs a set of services fulfilling a set of.
needs of the rest of the system. Among these services, in the case of segment
control, are the activation of segments in response to segment faults, the
truncation of segments, and the reporting of dynamic attributes of segments. 1In
order to understand the implementations of the mechanisms that perform these
services, detailed in Section IV, the overall organization and basic internal
mechanisms of segment control must be understood. These are stated in Section
IV. Included herein is a detailed breakdown of the data bases used by segment
control, the ASTE, the VTOCE, and the VTOC buffer segment, and an explanation of
locking policies used. .

The VTOC manager is a large and important part of segment control, which is

fairly well isolated. An entire chapter is devoted to its organization and
implementation.
YIOC, AND DISK-RESIDENT SEGMENT IMAGES

Since release 4.0, each segment of the Multics storage system presides on
one and only one secondary storage physical volume. This is a basic design
policy that limits the amount of damage caused by the failure of one physical
volume of the hardware on which it is mounted. For a .segment to "reside™ on a
physical volume means that all of the pages of the segment are gallocated. This
means that nonzero pages of the segment are assigned page frames (records) on
that physical volume, from which they are read, and to which they are written
when and if each such page is evicted from main memory or the paging device.

2=1 - ANG1



Therefore, each physical volume contains a complete set of segments. This set
of segments is described by the Volume Table of Contents, or VTOC of the
physical volume. The VTOC 1is an array of fixed-length elements called VTOC
Entries (VTOCEs). The VTOC is at a fixed place on each physical volume (see
disk-pack.incl.pll). Each VTOCE either describes a segment or is free,
available for later assignment to a segment. The VIOC is of fixed size, and is
created at pack initialization time.

Each segment residing on a given pack is therefore uniquely identified by
the VTOC index of its VTOCE on that pack. VTOC indices are origined at zero.
Therefore, the pair of physical volume and VTOC index uniquely identifies any
segment in the storage system hierarchy. It is this form of identification, in
the form (physical volume ID, VTOC index) that appears in directory branches.
Free VTIOC entries are chained in a list on each pack, the head of this 1list
being maintained 1in the Physical Volume Table Entry (PVTE) while the volume is
mounted or the VIOC Header of the pack when not. (The VTIOC Header is actually a
small collection of parameters such as this, kept at a fixed place on each pack.
(See disk_pack.inecl.pl1)).

Each VTOCE consists of three logical parts, which are designated as the
activation information, the file map, and the permanent information of the
segment. The activation information is all other information than the file map
that is needed to use the segment, or more technically, to activate it. It also
holds all of the information that is likely to be changed by virtue of the
segment having been active (used). Such information includes some information
implicit in the file map but expensive to determine, such as current length and
number of records used, some information necessary for checking, such as the
segment unique identifier (UID), and date-times of last modification and use.
Quota cells and accounts for directories reside in the VTOCEs of the directories
as well, among the activation information. This is because simply being active
(having inferior segments gain and lose pages) can affect this information.
Almost all of the activation information resides in the Active Segment Table
Entry (described later) while the concerned segment is active.

The file map is an array of 256 record addresses or null addresses detailing
where on the physical volume each page of the segment resides. A pull address
(not to be confused with the pulled addresses used internally by page control

(see Section V) is an 18-bit quantity, which, when appearing in a file map,
means that no record of the pack is assigned to that page of the segment, the
page logically contains gzeros, and does not count against quota wused, or the
current length of the segment. For example, when a segment is created, the file
map of its VTOCE is filled entirely with null addresses as the contents of the
segment is logically zero. Null addresses in VTOCE file maps are recognized by
their high-order bit (400000 DU) being ON. The 1lower bits are debugging
information, describing by which ageney the null address was created. (See
null_addresses.incl.pll). A record address is the address of a record of the
physical volume. All volumes are divided into key-word records, and start at
record zero. It 1is one of the design goals of page control that no record
address gver appears or is allowed to remain in a VTOCE file map unless it is
known for a fact that data from that page actually appears on the physical pack;
this eliminates the possibility of windows during which if the system crashed,
the VIOCE file map would describe a record containing wuninitialized data,

The permanent information in a VTOCE consists of attributes that are either
determined forever at segment creation time, or rarely changed. Such
information includes the unique ID pathname (array of segment unique IDs of
superior directories) access class, date/time dumped by the physical volume
dumper, and the primary segment name, placed there only for debugging and the
physical volume salvager.
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The structure of a VTOC entry in detail is spz=lled out below. The current
VTOC entry is 192 words long, consisting of three s:ctors of MSUOUO0 or MSUOUS1T
disk. Most of this entry is the file map (128 words). Thus, most accessing of
VTOCEs deals only with the activation information and a small portion of the
file map (most segments are only a few records long). Therefore, VTOCEs were
organized such that the activation information (about 20s10S words) 1is at the
beginning of the VTOCE, followed by the file map, and then the permanent
information. This makes it so that most interactions with VTCCEs deal with only
the first few (say 30s103) words. In order to take advantaze of this fact,
VTOCEs are accessed via sector-by-sector 1/0, as opposed to residing in pages of
segments. Were the latter the case, each reference to a VTOCE would require
paging in 1024 words when perhaps as few as thirty, or at most 192, were needed.
A large complex mechanism (the YTQC Manager, vtoc_man) and program exist to
manage these sector-by-sector I/0s and their buffering. However, the physical
volume salvager and other subsystems, notably BOS SAVE, prefer to deal uniformly
with pages. In the case of the physical volume salvager, this allows it to wuse
read-ahead entries in page control to optimize performance. Therefore, the VTOC
is laid out in pages, such that any VTOCE can be accessed by reading/writing a
given record, preferably by accessing it via paging, so as to leave the other
VTOCEs unaffected. This allows five and one-third VTOC -entries per page
(1024/192). Due to the possibility of having pages split across cylinders,
which would create "slow" pages, Multics does not use fractional pages at ends
of cylinders. Therefore, if VTOCEs were packed 5-1/3 per page, some VTOCEs
would not 1in fact be contiguous on the disk, eliminating the possibility (not
now realized) of single-operation I/0 in a uniform manner to transfer an entire
VTOCE. Thus, VTOCEs are packed five per page, with a 64-word unused region at
the end of each page. Each VTOCE therefore consists of three (192/64)
contiguous 64 word sectors. These sectors define three physical regions of the
VTUCE, or vtoce-parts; known as Part I, Part II, and Part III. Part I contains
the activation information and the start of the file map, Part II the middle of
the file map, and Part III the end of the file map and the permanent
information. Thus, most VTCCE transactions consist of reading or writing Part
I, 64 words, 1 sector, of some VTOCE. -

We now consider the individual items in a VTOC entry (VTOCE), with some
discussion of their significance.

del 1 vtoce based (vtocep) aligned,

(2 next_free_vtocx fixed bin (17),
iner_dmpr_thrd fixed bin (17), -

uid bit (36),

msl bit (9),
esl bit (9),
records bit (9),
pad2 bit (9),

dtu bit (36),
dtm bit (36),

1)

17
deciduous bit (1),
nid bit (1),
dnzp bit (1),
gtpd bit (1),
per_process bit (1),
pad3 bit (12),

2
2
2
2
2
2
2
2
2 ngsw bit {
2
2
2
2
2
2
2 dirsw bit (1),
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master_dir bit (1),
padd4 bit (16),

infqent (0:1) fixed bin (17),

quota (0:1) fixed bin (17),

[ACRE \ R AV \ N V)

used (0:1) fixed bin (17),

N

received (0:1) fixed bin (17),
2 trp (0:1) fixed bin (71),
2 trp_time (0:1) bit (36),

fm (0:255) bit (1v),

padé (10) bit (36),

ned bit (1),

pad7 bit (17),

cons_dmpr_thrd fixed bin (17),
dtd bit (36),

volid (3) bit (30),

n n n AT AV \V) N N

master_dir_uid bit (36),

uid_path (0:15) bit (36),

primary_name char (32),

[ACJE AC T \V ]

time_created bit (36),

n

par_pvid bit (36),

par_vtocx fixed bin (17),
branch_rp bit (18)) unaligned,

en_salv_time bit (36),
access_class bit (72),

checksum bit (36),
owner bit (36);

n NN n [ASN)V)

is meaningful only in free VTOCEs.
free VTOCE in the free VTOCE chain.

It is the VTOC index of the next
Note that -1 is the end of the

chain. In an occupied VTOCE, this field is zero.

incr_dmpr_thread
is not used.
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uid

msl

csl

records

dtu

dtm

ngqsw

deciduous

is the segment unique identifier, assigned at segment creation time.
This matches an identical field in the directory branch for the
segment. It must be zero in a free VTOCE, and =zero UID implies a
free VTOCE. This quantity is checked every time the VTOCE is used,
to check that the right VTOCE is being accessed, and that no damage
has occurred to the VIOC or the pack. Failure of the segment unique
ID (UID) to check is known as a connection failure.

is the maximum segment length, in pages. This information is put
into the SDW (segment descriptor word) of a process handling a
segment fault,

is the current length of the segment, in pages. This may be defined
as one plus the index (starting at zero) of the highest nonnull
address in the file map. The physical volume salvager computes it
this way. The most interesting property of vtoce.csl is that it
tells those reading the VITOCE whether or not they have to read Part
II, or even Part III, +to acquire the entire nonnull portion of the
file map.

is the number of nonnull addresses in the file map. Again, this is
computed by evaluating this criterion by the physical volume
salvager. This number may also be viewed as the number of quota
units consumed by the segment. When the segment is active, a
parallel quantity is maintained by page control, and periodically
updated to vtoce.records. Since there can be records that count
against quota that do not appear in the VTOCE file map yet, as they
have not been written, (see the discussion of record address above),
the statement "Records used changed from <number> to <smaller
number>" by the VTOC salvager indicates that a segment has lost
pages in this way. This number exists to avoid the necessity to
recompute it every time the segment is activated, as page control
needs it.

is the ™"file system time" (upper 36 bits of real-time clock)
recording the "date-time used" attribute of the segment. Other than
segments activated with "transparent usage" (such as by the
Hierarchy Dumper), this 1is generally the time that the VTOCE was
last updated (from the AST).

is the file-system time recording the "date-time modified" attribute
of the segment. This quantity is maintained by page control (as
aste.dtm) when the segment is active. 1It, like other activation
attributes, is updated from the Active Segment Table.

is a switeh indicating that page control should suppress checking of
quota overflow for this segment. This switch is never intentionally
turned on in a VTOCE; it is simply a reflection of an AST switch
used for certain special segments.

similarly is a reflection of an AST switch, which is never, and
cannot be explicitly turned on in a VIOCE. It marks the VTOCE of a
deciduous segment, primarily so that the physical volume salvager
may reclaim pages of such segments, A full discussion of deciduous
segments is given in the Multics Initialization PLM, Order No. ANTO.
The definition is repeated here:

A deciduous segment 1is one that is loaded by system
initialization in collections 1 or 2, is part of the global or
initializer's hardcore address space, and acquires a branch in
the hierarchy, via the program init_branches In collection 2.
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nid

dnzp

gtpd

per_process

dirsw

master_dir

infgent

quota

used

9/78

for "no incremental dump". A so-called "VTOC Attribute™ (see later
discussion of "VTOC Attributes"), restraining the physical volume
dumper from dumping this segment in an incremental dump.

for "don't null zero page". Both a "VTOC Attribute" and used for
deciduous and other special-case segments. When this segment is
active, the AST reflection of this bit (aste.dnzp) prevents page
control from detecting, and thus scheduling for deposit, pages of
zeros. A zero page of a "dnzp segment"™ 1is as good as any other
page. This is necessary for YPTW-level abs-segs"™ and <the
prewithdrawing policy (see Section VII).

for "global transparent to paging device", Prevents pages of this
segment from migrating to the paging device (bulk store subsystem).
Just about everything said for vtoce.dnzp is true for vtoce.gtpd as
well.

developed at VTOCE <creation time and at update time. If on, the
segment owning this VTOCE is either >process dir dir or a descendant
of a segment with vtoce.per_process on. P?inchal use of this bit
is to allow the physical volume salvager to discard such VTOCEs and
free the pages they claim.

identifies the VTOCE of a directory. Principally informative, it
must check with the directory switch in the branch of the segment at
activation time, or a connection failure is indicated. Biases the
physical volume salvager in favor of this segment in resolving page
conflicts.

marks the VTOCE of a master directory. This is necessary to
facilitate the redistribution of quota at directory deletion time:
the delete_vtoce program must know whether or not to pass quota back
up based on this bit. (See "Segment Deletion".)

previously count of inferior directories with quota accounts, for a
directory VTOCE, this field is now considered obsolete.

is the amount of quota assigned to the directory (must be the case
if nonzero) owning this VTOCE. Like vtoce.infqgct, vtoce.used,
vtoce.received, vtoce.trp, and vtoce.trp time, this field is
actually a two-element array, the =zeroth Tleft-hand) element for
segment quota, and the first, (right-hand) for directory page quota,
currently partially implemented.

is the amount of quota used by inferior segments and directories,
(see vtoce.quota above). It can be recomputed only by recursively
summing the vtoce.records fields of all VTOCEs for segments inferior
in the hierarchy. This 1is the number reported by hes $quota get
(the get guota command, for example) as used, it does not include
used totals of inferior accounts. Maintained for active segments by
page control, vtoce.used is derived from the ASTE. Validly nonzero
only for directory VTOCEs.
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received

trp
trp_time
File Map
fm
e nen
ned

is the sum of the gquota given to this (directory) and the
vioce.received for all inferior directories, if any. 0f course,
validly nonzero only for directory VTOCEs. This quantity is
necessary in order to determine if any quota has been delegated
below any point of the hierarchy. It is a peculiar quantity (also
true of vtoce.trp) in that it is one of two items in the VTOCE
activation information that must be read in from the VTOCE, i.e.,
cannot be derived solely from bits and fields of the Active Segment
Table, at VTOCE update time. This field, 1like vtoce.trp and
vtoc.trp_time, is only used for directcories with quota accounts,
i.e., vtoce.quota (0 or 1)# 0.

is the page-second time-record usage product for the
quota-account-owning directory that must own this VTOCE. See
vtoce.received, above.

is the file-system time at which vtoce.trp was updated; this is
always the time of a VTOCE update (see "VTOCE Updating," in Section
Iv).

is the array of packed, 18-bit null addresses and record addresses
describing which pages of the segment owning this VTOCE are
logically nonzerc, and where the images reside. The interesting
(containing other than null addresses) extent of the file map 1is
told by vtoce.csl. Those who need the file map are satisfied not to
read the particular null addresses that may appear; the differences
between the types of null addresses is solely for debugging.

for "no complete dump"™. Treated like a "VTOC Attribute". When on,
restrains the physical volume dumper, when performing a complete
dump, from dumping the segment owning the VTOCE. Among the
permanent information (in Part III) due to the relative infregquency
of complete dumps.

cons_dmpr_thrd

dtd

volid

is not used.

is the file~-system time that this VTOCE, and 1its segment, were
dumped by the physical volume dumper.

is an array of backup medium identifiers, set by the physical volume
dumper, identifying the volumes of backup medium (tape) on which the
last incremental, consolidated, and complete dumps of this segment
and its VTOCE were performed. Inspection of those volumes produces
maps giving earlier volumes, and so forth through the life of the
segment.
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master_dir_uid

uid_path

is the segment UID of the master directory against whose master
directory quota account the pages of the segment owning this VTOCE
are counted. This information is used by master directory control,
and is updated by the hierarchy salvager, if necessary, when running
in connection-checking mode.

is an array of the Segment Unique IDs (UIDs) of all directories
superior to this segment. Thus, the zeroth element of
vtoce.uid_path for every VTOCE in the system except the VTOCE of the
root (>) is the UID of the root ("777777777777"b3). The VTOCE of a
son of the root (e.g., >user_dir_dir) contains only one element, the
UID of the root, etc. The UID of the segment owning the VTOCE,
which appears among the activation information in Part I, is pot in
vtoce.uid_path. This UID path places the VTOCE exactly in the
hierarchy. It is only used explicitly by master directory control,
to identify directories that have been given master directory quota
accounts, 1in a manner insensitive to renaming of these directories.
It is checked and corrected (given that forward connection failure,
the kind described previously, does not exist), by the hierarchy
salvager when running in VTOCE~checking mode. The array
vtoce.uid_path can also be used, if assumed accurate, to determine
if a segment has no branch, no parent, or no grandparent, etc. Such
a segment, which can arise in certain crash situations and salvaging

situations, is called an orphan, and is said to suffer a reverse
connection failure. The online pack utility sweep_pv is capable of
locating and deleting such VTOCES, which can tie wup pages. (See

"Special Services for sweep_pv" in Section IV.)

primary_name

is the name appearing in the branch for the segment at the time the
segment was created. Ordinary rename operations will not update
vtoce.primary name, due to the expense of reading and writing Part
III to wupdate permanent information. The hierarchy salvager,
running in VTOCE-checking mode, however, will. The name in the
VTOCE is never seen by users. The physical volume salvager prints
it out when VTOCE problems are encountered. Since it is not
accurate, it is only a clue to the identity of the segment. As long
as the VTOCE was not freed by the physical volume salvager, the
vtoc_pathname tool may be given the volume name and VTOC index
printed out by the physical volume salvager. The BOS SST name table’
filler (SSTN) also picks up these names and puts them in the segment
sst_names_ at crash time.” Thus, it is these names that appear in
BOS dumps and FDUMPS.

time_created

par_pvid

par_vtoex

branch_rp

is the file-system time at which the VTOCE (and therefore the
segment owning it) was created. Prineipally of historical value
(sweep_pv reports it when deleting orphans).

is the physical volume ID of the volume containing the directory
containing the segment owning this VTOCE. Not transparent to
segment-moving (see "Segment Moving" below), this field is set, but
not now used.

is the VTOC index of the VTOCE of the directory containing the
segment owning this VTOCE in its physical volume. As vtoce.par_pvid
above, it is not transparent to segment moving and not currently
used.

is the relative offset of the directory branch describing this VTOCE
in its directory. Intended for debugging, it is maintained by the
hierarchy salvager operating in VTOCE-checking mode. Note that
online salvaging of a directory causes branches to move around.
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en_salv_time
is not currently used. It was intended to be the time at which lack
of reverse-connection-failure was last checked by the reverse-going
(branch-checking) mode of the physical volume salvager, since
decommissioned.

access_class ;
is the AIM access class of the segment owning this VTOCE.
checksum
currently not used.
swner

intended to be the physical volume ID of the volume on which this
segment and its VTOCE reside, this field is not used.

ACTIVE AND NONACTIVE SEGMENTS

The VTOC entry and the records designated by its file map are the permanent
record of a segment on disk. They are the entire and accurate record of the
segment when the pack is not mounted or the system is shut down. In order for a
segment to be accessed via the hardware, it must have a page table in main
memory, and much of the VTOC information, specifically the file map and
activation information, must be in main memory where page control can use it to
resolve page faults, and modify it as pages are created and zeroed. A segment
in this state 1is called an active segment. A segment not in this state is
called a nonactive segment. The repository of activation information for a
segment is the system data base, the Active Segment Table (AST). This table,
which resides 1in the System Segment Table (S3T), consists of AST entries
(ASTEs). An ASTE contains, when in use, the activation information for one
segment. Following each ASTE, part of the ASTE in some sense, although not part
of the ASTE proper, is the page table for that segment. The page table is
maintained by page control, which Uses and updates the activation information
resident in the ASTE as the segment is used. The file map is handed to page
control by placing it in the page table. :

The AST is an unpaged data base. Since it is finite, the number of AST
entries is 1limited. Currently, there are four fixed sizes, those whose page
tables can describe 4, 16, 64, and 256 pages respectively. The AST is thus
divided into four pools, whose sizes are set by the four specifications on the
SST CONFIG card, a critical system tuning parameter. Since we have just defined
activity as the state of having page table and activation information in main
memory, and this is a precondition for wuse of the segment, only active segments
can actually be addressed by the hardware. Thus, all segments must be made
active before they can actually be used. Therefore, the fixed number of AST
entries must be multiplexed among all of the segments in the hierarchy. It is
one of the prime responsibilities of segment control to multiplex this resource.
When an attempt is made to reference a segment that is not active (this is one
of the possible outcomes of a segment fault), the segment must be activated, or
made active (given an ASTE, and the activation information and file map copied
out of the VTOCE into 1it). If there are no free ASTEs of the appropriate size
available, some segment must be deactivated to free an ASTE. This deactivation
consists of making the segment ~inaccessible to user processes, evicting alil
pages of the segment from main memory and the paging device, updating the VTOCE
by copying the (possibly modified) activation information back Iinto it’?Fom the
ASTE, depositin nulled addresses (see "Address Management Policy", Section
VII), and freeing the ASTE. Once this has been done, the segment deactivated is
in the same state as one that has not been activated, and a segment fault and
subsequent activation result from an attempt to reference it. Choosing a proper
segment to deactivate is a complex issue that must choose that segment which
will probabilistically and heuristically be reactivated at the furthest time in
the future. The algorithm used to make this choice (in the program get_aste) is
described further on under "AST Replacement Algorithm" in this section.
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There are segments that are active during the entire 1life of a bootleoad;
all hardcore supervisor and all deciduous segments are this way. These segments
are used by software, such as the virtual memory control software being
described here, that are not dependent wupon the dynamic activation/deactivation
features that they implement in order to operate; similarly, the page control
software does not itself take page faults. There are segments that may not be
deactivated for 1long periods of time: such segments are the PDS (Process Data
Segment) and KST (Known Segment Table) of processes, for they become part of the
supervisor in some processes, and thus are used to implement the virtual memory
in that process. There are segments, namely the paged, nondeciduous segments of
the supervisor, and the descriptor segments of processes, that do not have
VTOCEs, but only have ASTEs. They are always active.

VIOC ATTRIBUTES

When a normal, VTOCE-owning segment 1is nonactive, the VTOCE 1is the
repository of the file map and activation information. All requests for this
data must go to the VIOCE of the segment. When a segment is active, however,
the ASTE is the only valid repository of this information.- Information such as
current segment length can change as processes store data into the segment.
Quota used can change as such operations are performed on segments 1nferior to a
given directory.

User-interface programs, and directory control, who have need to know
activation attributes must therefore go to either one of two places to get these
attributes. In order to localize this knowledge, all programs outside of
segment control that need to ascertain or set activation attributes of segments
call the procedure vtoc attributes at one of its many entry points to obtain or
set this information. ~This procedure determines whether or not the segment is
active (see "AST Hash Table and Determining Activity" below), and inspects or
modifies the appropriate data object. These attributes, which have been called
"activation attributes"™ in the context of the VTOCE, are called "VTOC
attributes" in the context of other storage-system features such as bit count,
access mode, etc. It is through this means, for instance, that hes $status long
(through the hardcore module "status") obtains current length/records used for
segments.

AST HASH TABLE AND DETERMINING ACTIVITY

Every segment that has a branch in the hierarchy (this excludes
nondeciduous hardcore segments, unpaged supervisor segments, descriptor
segments, and PRDSs) can either be active at any instant or not. A process that
attempts to use such a segment, by performing a segment fault upon it, must
determine whether or not it is active. If it is, it is a simple matter to add
an SDW {Segment Descriptor Word) describing the page table in the segment's ASTE
to the descriptor segment of that process. If not, the segment must be
activated (which may, as outlined above, entail deactivating other segments)
before an SDW can be so added. Similarly, vtoc_attributes must know whether or
not a segment is active to know where to obtain or change these parameters.
Thus, a hash table is kept, called the AST Hash Table, which locates the ASTE of
any active segment, or the fact that it is not active. This table is an array
of thread heads, kept in the internal static of the procedure search ast (in the
supervisor, this makes it a global data base as opposed to per-process internal:
static) (but also locatable from the pointer sst.asthp for debugging and dump
analysis). Each bucket starts a list (which ends in zero) of AST entries the
UIDs of whose segments have the same low six bits. Thus, given the UID of any
segment, we can find the bucket numbered by the low six bits of this UID, and
chase the thread (through the field aste.ht fp) wuntil either a =zero is
encountered (segment not active), or an ASTE whoSe field aste.uid contains the
UID we have been given, in which case this is the ASTE for that segment, and of
. course, it is active.
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The AST hash table is protected by the AST lock (see "Segment Control
Locking Policies" below). Deciduous segments are hashed into this table as soon
as they acquire branches, at which point they acquire the UID in that branch and
stay hashed in for the life of that bootload.

AST HIERARCHY

The root directory (>) cannot be deactivated. Other than that, no segment
may be active unless its parent is active. This is so because the quota account
parameters against which a segment's records-used are charged is maintained in
(is an activation attribute of) the ASTE of one of its ancestors (its parent, or
that one's parent, etc.). Another reason for requiring the activity of parents
is that date-time modified for directories is in fact date-time modified for the
last-modified segment in the subtree rooted at that directory; this allows the
hierarchy dumper to determine if a subtree need be walked by inspecting the
date-time modified of its root. Keeping date-time modified, a VTOC (activation)
attribute up to date for a straight 1lihe back +to the root, requires all
directories in that line to be active, so that page control can modify this
attribute. Thus, it is necessary that each ASTE have a pointer to its parent's
ASTE (the root has zero in this field, otherwise like all pointers in the SST
segment other than aste.strp, it is a relative offset into the SST segment).
There exists an operation called a boundsfault, wherein a segment grows, and
requires a larger ASTE. Should this happen to a directory with active inferior
segments and directories, all of the parent-pointers in the inferior ASTEs would
become wrong when the directory changed ASTEs. Therefore, a first-son-brother
thread is maintained among ASTEs, so that all inferior ASTEs can be located in
the case of a boundsfault. This technique is alsc used at segment-move time
(see "Segment Moving", below).

e N

The following is a detailed discussion of all of the fields and bits in an
ASTE (AST entry). Remember that many of thesé fields and bits are but
reflections of similar fields in the VTOCE. Such fields are marked with an (¥).

del 1 aste based (astep) aligned,

(2 £p bit (18),
bp bit (18),

infl bit (18),
infp bit (18),

strp bit (18),
par_astep bit (18),

uid bit (36),

msl bit (9), o
pvtx fixed bin (8),
vtoex fixed bin (17),

usedf bit (1),

init bit (1),

gtus bit (1),

gtms bit (1),

he bit (1),

he_sdw bit (1),
any_access_on bit (1),
write_access_on bit (1),
inhibit_cache bit (1),
explicit_deact_ok bit (1),

MO DN D ASIAS IR AV \C B \V)
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aste.fp

aste.bp

aste.infl

aste.infp

padl bit (9)
ehs bit (1),
ngsw bit (1)
dirsw bit (1),
master_dir bit (1),
pad4 bit (1),

tgsw (0:1) bit (1),
ie bit (10),

dtu bit (36),
dtm bit (36),

quota (0:1) fixed bin (17),
used (0:1) fixed bin (17),

csl bit (9)’
fmchanged bit (1),
fms bit (1),

npfs bit (1),

gtpd bit (1),

dnzp bit (1),
per_process bit (1),
pad2 bit (3),
records bit (9),

np bit (9),

ht_fp bit (18),

fmehanged1 bit (1),

pcos bit (1),

pack_ovfl bit (1),

pad3 bit (7),

ptsi bit (2),

marker bit (6)) unaligned;

is the forward pointer (rel pointer in SST segment) to the next ASTE
in the so-called "used list". There is one used list (ASTE chain)
for each pool (size) of ASTE. Free ASTEs are at the head of this
chain, others follow. ~Some nondeactivatable ASTEs are not in the
list, such as supervisor segments (including deciduous ones),
descriptor segments, and PRDSs. There are special lists for special
segments. See "AST Replacement Algorithm",

is the backward pointer to the previous ASTE in the appropriate used
list.

for "inferior 1list", is a (relative) pointer to the next ASTE in a
list of ASTEs whose segments have the same parent as the ASTE of
this segment. We will contract this terminology to say "a list of
ASTEs who have the same parent ASTE". See "AST Hierarchy" above.

This is really a "brother's list",

is a (rel) pointer to the first ASTE in the list (through aste.infl,
described above) of ASTEs of which this ASTE is the parent. Like
all ASTE lists and pointers, it is zero if there is none.
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aste.strp

is a relative pointer to the first ifrajler in the system trajler
sSegment, str_seg, =zero 1if there are none, for this ASTE. An ASTE
acquires a trailer for each SDW constructed via a segment fault,
which describes the page table in this ASTE. It facilitates
revocation of SDWs when the segment 1is deactivated, deleted, or
suffers an access change (see "Trailers and Setfaults™ below). For
nondeciduous supervisor and initialization segments, this
system-wide segment number is stored here.

aste.par_astep

aste.uid

aste.msl

aste.pvtx

aste.vtoex

aste.usedf

aste.init

is a relative pointer to the parent ASTE of ithis ASTE, if this ASTE
is for any segment in the hierarchy other than the root directory
(>). Page control uses this quantity to chase up the hierarchy to
find quota cells at page creation time, and to update aste.fms (see
below) up the hierarchy to trigger the hierarchy dumper.

*is the UID of the segment owning this ASTE. It agrees with
vtoce.uid, which must be the same as the UID in the directory
branch. Not only is this field necessary to allow the AST hash
table to be used, but is necessary to reconstruct Part I of the
VIOCE at deactivation/update time without reading it, as the UID of
the segment is among this information.

*¥is the maximum segment length in pages. An activation attribute,
attempted g¢onpections to this segment at segment fault time check
their address of reference against this quantity, and, shifted
appropriately, it is placed into the SDW constructed. (See "Segment
Fault Handling".)

is the Physical Volume Table Index (PVTX) for the mounted physical
volume on which this segment appears. See the discussion of the
Physical Volume Table in Section XIII. This number identifies a
mounted physical volume.

is the VTOC index of the VTOCE of the segment owning this ASTE on
the physical volume on which it resides. This is gotten from the
directory branch for the segment, and is used to specify the VTOCE
of the segment at deactivation/update time.

when on, differentiates an in-use AST entry from a free one. See
"AST Replacement Algorithm" below.

turned on by page control when the last page of a segment migrates
out of main memory. One of the inputs of the AST replacement
algorithm. Turned off when any page comes in. (See TAST
Replacement Algorithm" for motivation.)
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aste.gtus

aste.gtms

aste.hec

aste.hc_sdw

%#(A VTOC attribute) "global transparent usage switch"™. When this is
on, the segment is 1in "transparent usage". This means that the
date-time used in the VTOC entry is saved in aste.dtu and put back
intact at deactivation time, thus 1leaving no evidence that the
segment had been used. The hierarchy dumper causes all segments it
dumps to be activated for "transparent usage" by setting switches in
its KST. This allows the dumper to run without advancing the
date~time used of segments it dumps. Like aste.gtms and aste.dnzp
below, this segment attribute is cumulated as processes cgonnect (to
satisfy segment faults on, construct SDWs for) this segment.

*see aste.gtus above. "global transparent modified switch" causes
page control not to set the file modified switch", thus preventing
advancing of aste.dtm (date-time modified) as modification of pages
is noticed. This 1is wused principally for directories, whose
date-time modified is not the time that they were stored into, but
the time that either directory control deems that they were modified
(calls sum$dirmod) or inferior segments were modified.

is set for ASTEs of segments created by initialization (superviscr
and initialization segments) that are neither deciduous nor unpaged.
These are unthreaded and delete-at-shutdown segments. See the
Multies Injtialization PLM, Order No. AN70. This bit is prinecipally
historical.

is on for all ASTEs for segments created by initialization,
deciduous, delete-at-shutdown, or unthreaded. If aste.uid (and
therefore segment is in the hierarchy), this segment is deciduous.
Therefore, this bit reflects into the VTOCE as vtoce.deciduous. -

aste.any_access_on
aste.write_access_on

are the encacheability control bits. The following table describes
the number and access of all SDWs pointing at this segment (used
only for segments for whom SDWs are created by segment faults):

aao ¥ao
0 0 No SDWs point at this segment.
1 0 One or more SDWs describe this segment.
None of them allow write access.
1 1 Exactly one SDW describes this segment.
It allows write access.
0 1 More than one SDW describes this segment.

At least one of them allows write access.

See "Encacheability Control"™ 1later in this section.

aste.inhibit_cache

aste.ehs

prohibits the resetting of the encacheability bits to state "0O"
above upon "set acl" or "set max length" operations (setfaults).
Used for 1/0 buffer segments that are not encacheable because of IOH
access, not multiprocessor sharing. See "Encacheability Control"
and "Trailers and Setfaults" below.

is the entry-hold switch. Although many entries that may not be
deactivated are threaded out of the AST used 1lists, some segments
acquire and lose this property dynamically, such as PDSs and I/0
buffer segments. This bit is placed on for all segments in the used
lists that may not be deactivated, and causes the AST replacement
algorithm to skip this ASTE. It is also put on in all segments that
have aste.hc_sdw (see above) for consistency. It also has an effect
upon the interpretation of aste.dnzp (see below).
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aste.ngsw

aste.dirsw

*suppresses quota checking on this segment. On for all segments
that have no parent, such as supervisor segments, all initialization
and initialization-created segments, and the root. Notably, this
flag prevents page control from chasing a nonexistent parent pointer
at page creation time.

*on for a directory's ASTE. Used for metering, and at
deactivation/VTOCE update time to make decisions about quota
parameter updating.

aste.master_dir

aste.tgsw

aste.ic

aste.dtu

aste.dtm

aste.quota

%*Same as vtoce.master dir, which see.

an array, one for each kind of quota. Says that this is the ASTE of
a directory with a terminal quota account. Causes page control to
stop looking upward and check here when making a record-quota
overflow decision. Tells VTOCE updater to read in Part I in order
to get time-record product parameters in order to update them.

is the count of inferior ASTE entries. This nonzero parameter is an
input to the AST replacement algorithm (simply if nonzero). Since
aste.infp has the same information, this field is superfluous.

*is the file-system date-time used copied from the VTOCE field of
the same name. Normally, vtoce.dtu is set to the time of VTOCE
update; 1t 1is only for segments activated in "transparent usage"
(see aste.gtus above) that this field is updated, unchanged, to the
VTOCE. : ‘

is the file-system date~time-modified, initialized by reading in
vtoce.dtm at activation time. This field is advanced to the current
time every time aste.fms (see below) is seen on. This includes all
VTOCE wupdates, and whenever vtoc_attributes asks for this value.
The advanced value is set back in the VIOCE at deactivation/update
time.

*is an array (segment quobta, directory quota) with the same meaning
as vtoce.quota, the quota account values of a directory that has
one.

aste.used
*is similarly the reflection of vtoce.used. When aste.used tries to
surpass aste.quota, and aste.tqsw is on (all for segment or
directory quota consistently), a record quota overflow will ocecur.
The aste.used field, as vtoce.used, has totals for all segments (or
directories) below this point for any directory, not only those with
quota accounts.

aste.csl
#is the current length of the segment, in pages. It is maintained
by page control as the end of the segment goes up and down.

aste.fmchanged

is the "file map changed"™ bit. This bit is put on by page control
any time the state of the file map of the segment has been changed.
This happens at page allocation time and page address resurrection
time, as well as at zero detection time. The fact that address
reporting to the VTOCE is inhibited (see "Address Management Policy"
in Section PC) causes the creation of a page to trigger a VTOCE
update



aste.npfs

aste.gtpd

aste.dnzp

the "no page fault switch" causes page control not to honor page
faults on this segment, but convert them into segment faults. It is
never set except gratuitously, and is obsolete.

¥"Global transparent to paging device" causes page control not to
allow pages of this segment on the paging device. Its principal
uses are for abs-segs, where paging 1is being used to address
portions of disk as opposed to implementing segments, and as a
user-settable performance control (as a VTOC attribute).

*"Don't null zero page". Causes page control not to recognize zero
pages. See the remarks under vtoce.dnzp When aste.dnzp and aste.ehs
are on cojointly, this bit causes pc$get_file_map, which reports
file maps and activation attributes to update_vtoce, to not notice
nulled addresses, but to leave them in the page table. This
prevents the trickle update (see "AST Trickle" below) from negating
the effects of prewithdrawing PDSs (Process Data Segments) (see
"Address Management Policy" in Section VII).

aste.per_process

aste.nid

aste.ncd

#is used to get vtoce.per_process, and for metering. It also
propagates recursively.

¥for "no incremental dump". Same as VTOCE bit vtoce.nid. Tells the
volume dumper, when running an incremental dump, that incremental
backup of this segment is not to be performed.

®#for "no complete dump". Same as VTOCE bit vtoce.ned. Tells the
volume dumper, when running a complete dump, that complete dumping
of this segment is not to be performed.

aste.explicit_deact_ok

aste.records

aste.np

aste.ht_fp

Constructed from KSTE bits of all processes connected to this
segment, this bit allows the procedure demand_deactivate to
explicitly deactivate the segment 1in response to a user call to
phes_$deactivate, generally on behalf of the hierarchy dumper. Only
if all processes connecting to this segment have this bit on in the
KST does it remain on in the ASTE.

¥is the number of records (pages) used by this segment. Typically,
this quantity is loaded from VTOCE quantity. The only reason for
this quantity is its use as a user-readable VTOC attribute,
available without scanning the page table. :

Number of pages in main memory. Used solely as an input to the AST
replacement algorithm. Maintained by page control. The aste.init
field is turned on when this becomes zero.

forward pointer in the AST hash chain of ASTEs with UIDs of the same
low six bits. Zerc at end of chain. See M"AST Hash Table nd
Determining Activity" above.

aste.fmchangedl

this bit is turned on when aste.fmchanged is turned off, and turned
off by update_vtoce when the VTOCE has been wupdated. Should the
system crash between the turning off of aste.fmchanged and the
turning off of aste.fmchangedl, the presence of the latter will
signify to emergency-shutdown to reinstate the bit aste.fmchanged,
for in fact, this critical bit has been turned on and the VTOCE
possibly not updated.
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aste.pcos
page control out-of-service. Not used yet, this ©bit causes a
segment fault error with code error_table_$seg_busted when an
attempt 1is made to connect to this ASTE. This will be used to
notify users when the system has committed an error upon the
segment.

aste.pack_ovfl "

is turned on by page control when an attempt to allocate a new page
for this segment has failed. 1In this case, page control faults the
SDW for the segment, and restarts the faulf. This causes a segment
fault to occur, and the segment fault handler, noticing
aste.pack_ovfl, 1invokes the. segment mover to initiate a segment
move. (See the general discussion, "Segment Moving®™ below.)

is the page table size index, 0, 1, 2, or 3, being the index of the
AST pool to which this ASTE belongs. This and aste.marker, below,
are attributes of the ASTE even when empty.

aste.marker
always contains "02"b3, which can never be the last six bits of a
PTW (page table word). This used to be used for searching backwards
through PTWs for the end of the ASTE, but has not since ASTE
pointers began to appear in the core map. It is now 1looked at by
the AST walking 1loop of demount_pv, simply as a check that it has
not gone awry due to destroyed parameters in the SST header.

AST LISTS AND THREADS

AST entries may be threaded onto one of several 1lists, via the relative
pointers aste.fp and aste.bp, or none at all. There are seven such lists;
auxiliary lists such as the hash threads and father-son-brother 1lists are not
under consideration in this discussion. These lists are the four "used" lists,
the "init" seg list, the "temp" seg list, and the "hardcore" list. The four
"used" 1lists, as mentioned above, contain all free ASTEs and those managed by
the AST replacement algorithm. The "init" and "temp"™ seg lists receive m"init"
and "temp" segs of initialization (See Multies Initjalization PLM, Order No.
ANT0), allocated and placed there by the initialization ASTE allocator,
make_sdw. These lists are traversed at the end of initialization and the end of
each collection of initialization in order to delete these segments, deletion in
this case being tantamount to freeing of the ASTEs and the records allocated to
these segments.

The "™hardcore"™ list, which used to contain all nondeciduous segments loaded
by initialization that were not "init"™ or "temp" segments, now contains only
those that are deleted at shutdown time, for only these need be sought out.
These "delete-at-shutdown" segments are large segments that obtain record
allocations as parasites on the Root Physical Volume (RPV) instead of being
prewithdrawn against the hardcore partition. Thus, in a successful shutdown
situation, their records must be relinquished. See "Address Management Policy"
in Section VII for full details of this mechanism.

The four AST "used" lists thread all free and replaceable ASTEs of each
(pool) size. The array of four rel-pointers in aste.level.ausedp points to
either the first free ASTE in the list, if any, or the first candidate for
inspection for replacement if there are none. All of the free ASTEs are
contiguous in the list. All of the AST 1lists are double-threaded circular
lists: therefore, in the used 1lists, aste.bp of the ASTE pointed to by
aste.level.ausedp of this pool is the one that is the 1last candidate for
inspection by replacement. : S : '
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It 1is wuseful to note that all active segments in the hierarchy are in the
four used lists, except the deciduous segments, for it is known at the time
deciduous segments are created that they will never be deactivated or subject to
deactivation. The deciduous segments, therefore, have their ASTEs threaded out.

AST REPLACEMENT ALGORITHM

The AST replacement algorithm is that algorithm, implemented 1in the
procedure get_aste, that returns a free ASTE in a given pool on demand. When
there are no free ASTEs in the appropriate pool, this algorithm must select an
active 'segment for deactivation. Since activating segments is expensive, it is
advantageous to this algorithm to choose those segments to deactivate that will
cause the fewest number of reactivations per time. This is a classic example of
a demand replacement multiplexing algorithm, identical 1in purpose to page
replacement algorithms, and index register management algorithms in compiler

code generators, and the area is well covered in the 1literature. It can be
shown that the best choice of segment to deactivate is the one that will next be
used furthest 1in the future; this result follows from classic work in this
area.

Of course, it is impossible to predict, in a general-purpose computer
utility, the future use patterns. Therefore, the replacement algorithms try to
predict the future based on the past. The AST replacement algorithm under
consideration uses 1list position in the used list and number of pages in main
memory as indications of frequency and intensity of use; the more 1lightly and
less recently used, the lesser the indicated probability that the segment will
be needed in the near future. Number of pages in main memory is also an
important factor to consider in choosing a candidate for deactivation because
work (page writing) is required for the modified fraction of such pages, to
eviet them from main memory.

The following is a desceription of the AST replacement algorithm. For full
details, read the listing of get_aste. '

If there are free ASTEs of the needed size available, return the first one,
moving aste.level.ausedp at the appropriate level forward one, to make the next
(possibly free) ASTE available to the next invocation of the algorithm. This
also puts the returned ASTE in the least likely position for replacement, should
the caller of get_aste decide to leave it there. This is consistent with the
fact that the segment that will own the ASTE is now being used.

If there are no free ASTEs available, the used list at the required pool
level is circumnavigated possibly several times: essentially once to find a
segment with 0 pages in main memory, that failing, then for a segment with 1
page in main memory, then 2, ete., etc., until a number equal to the page table
size of the pool is reached. In each pass, segments with fewer than the sought
number of pages in main memory (not seen earlier because the system is moving
while all this goes on) are accepted, too. When such a2 segment is found, it is
thus, modulo the window mentioned above, one of the segments with the fewest
number of pages in main memory, in that used list. This segment is chosen for
deactivation, and deactivated via a call to the procedure "deactivate". The
newly-freed ASTE (deactivation frees the ASTE) is returned.

When the 1list-scanning settles at a particular ASTE for deactivation, the
list-head pointer aste.level.ausedp is moved up to that ASTE, and after
deactivation, to right ahead of it (as in the "some are free® case above). This
tends to give the ASTEs skipped over in the scan a property of being "rejected
for deactivation”, and thus promoted to a less likely position to be seen next
time, by virtue of this observation of "being recently used™.
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The replacement algorithm skips over ASTEs that cannot be deactivated; not
only are these the ones with aste.ehs on (see the discussion of this flag
above), but those with active inferior (directories who claim this ASTE as ASTE
of their parent). All of the various reasons for skipping and moving on cause
meters to be incremented, as well as file_system_meters (see the Multics System
Metering PLM, Order No. AN52) that displays these statisties.

There is one circumnavigation of the required used 1list done before the
"zero"™ pass: a preliminary "zero" pass is made that seeks segments with zero
pages in main memory and the flag aste.init being off. This pass also turns off
the flag aste.init when on, and all succeeding passes skip segments that have it
on. Referring back to the description of aste.init, it is seen that this Tflag
is turned n by page contrcl when a segment acquires the property of having no
pages in main memory. The effect of this policy is to allow segments that have
zero pages in main memory to survive exactly one circumnavigation of the AST
used list for that pool before being considered for replacement. This pass is
the so-called "grace lap". It is an implementation of the policy: "if a segment
just happens to have all of its pages float out of main memory, give it just one
chance to get some back 1in before Jjumping on it to deactivate it." The

file_system_meters command reports such skips as "skips init".

4ST TRICKLE

Since the AST replacement algorithm is constantly inspecting all portions
of the AST wused 1lists, the opportunity is taken in that algorithm to notice
ASTEs whose file maps have changed, and to update their VTOCEs at this time.
This reduces the loop time of the AST replacement algorithm (reported as "grace
time" by file_system_meters") to be a lower bound on the amount of time by which
a VTOCE can be out of date. This is totally a hedge against fatal crashes;
successful shutdown updates all VTOCEs of active segments. As mentioned before,
this periodic wupdate <causes the physical volume salvager to notice certain
incongruencies. Unfortunately, however, at times of 1light 1load, this 1lower
bound is rather long.

LOCKING CONVENTIONS

There 1is one lock that protects the AST data base; it is called the "AST
Lock", and is, in fact, sst.astl. It is a standard-format wait-type lock,
managed by the procedure "lock". There are special entry points, lock$lock_ast
and lock$unlock_ast to manipulate this lock, and limit knowledge of its location
and format. The event for waiting on this lock is "400000000000"Db3.

The AST lock has no cleanup mechanism; a crawlout with the AST lock 1locked
(one 1s said to "have the AST locked" in this state), detected by verify_lock,
or a process termination with the AST locked, crashes the system. The AST lock
"protects" certain activities: this means that these activities may not be done
unless the process attempting to perform them has the AST 1locked before
commencing. These activities are:

1. Deactivation

2. Updating of VTOCEs (from the AST)

3. Manipulating the AST used lists, or following them, including the
allocation and deallocation of ASTEs. .

y, Using, following, or changing the AST hash table, and thus,
determination of activity.
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5. The calling of call-side page control entries on deactivatable
segments.

6. Setfaults (see "Trailers and Setfaults" below).

The AST lock also protects against gcompletion of the following activities:
this is to say, these activities may be commenced by a process, but will not
complete until that process has (holds, i.e., locked to that process) the AST
lock.

1. Activation
2. Volume Demounting

The AST lock holds a position in the locking hierarchy gbove all directory
locks and below wired locks as the traffic control and page control locks. It
is below the VTOC buffer lock (see "VTOC Manager": "General Policies").

Since touching any nonsupervisor segment, such as a directory, can cause a
segment fault, which would 1lock the AST, no directories or user-supplied
supervisor arguments may be referenced by a process that holds the AST lock.

Note two major differences in the above policies from pre-4.0 locking
policies:

1. The parent directory lock is po longer protection against deactivation
of a segment.

2. Locked directories are peot guaranteed to remain active, and thus
cannot be locked by a process holding the AST lock.

The AST 1lock does not protect modification of VTOCEs. The directory lock
of the directory containing the branch for the segment that owns a given VTCOE
is the lock on that VTOCE if and only if the segment is pot active. Since, when
it is active, it may be deactivated at any time that a process seeking to
deactivate it has the AST locked, the AST lock protects VTOCEs only when the
segment owning the particular VTOCE is active. Thus, a procedure (such as
vtoc_attributes) seeking to modify a VTOCE must perform the following protocol:

1. Lock the parent directory. " If the segment is not active, it cannot
become active while we hold the directory lock, for a directory lock
fully protects aetivation of jits inferiors. Procedures that wish to
deal with segments and their VTOCEs in this way usually have the
directory lock locked anyway.

2. Lock the AST lock. We cannot determine whether or not the segment is
active without the AST locked, for not only is it not permissible to
inspect the AST hash table without the AST locked, but lest the AST be
locked to us, i.e., prevented from being locked by others, the segment
might be deactivated at any time, or is being deactivated as we watch.

3. Determine if the segment is active. If it is, it may be sufficient to
inspect or modify the activation attributes in the AST. Otherwise, in
the case where the segment is active and dealing with the AST will not
suffice, we must perform the modification while we have the AST
locked, otherwise, another process might be trying to deactivate the
segment, and thus engage 1in a simultaneous-update race with our
process.,

g, If we did not do so in step 3, unlock the AST and read and possibly
change and write back the VIOCE. Since it was determined that the
segment was pot active in step 3, it ganpnot become active now, as we
hold the parent directory lock, and this parent directory lock thus
protects the VTOCE.
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5. End of protocol; procedure may unlock the parent directory lock. See
also "Services of Segment Control," in Section IV for utility of this
behavior.

Note that in 4.0 and later systems, one can lock a directory without
actually touching or inspecting the directory, simply by handing the directory's
UID to the lock procedure. Thus, one can protect a VTOCE simply by inspecting
its permanent information (vtoce.uid_path) to determine the UID of its parent,
and handing this to the 1lock primitive. The procedure priv_delete_vioce
performs such machinations to delete orphans.

As mentioned above in passing, the lock on the parent directory of a
segment totally protects activation of any segment; activation cannot commence
until the activating process holds the parent directory lock.

There is a system of multiple-reader single-writer half-locks protecting
against demounting; this is covered in Sections XIII and XIV.

TRATLERS AND SETFAULTS

One major feature of Multics is dynamic access control; as soon as a
set_acl command is performed upon a segment, processes using the segment
immediately take faults. This is implemented via the frailer mechanism, and the
operations known as setfaults, implemented by the procedure of the same name.

Descriptor segments of processes contain SDWs. SDWs point to page tables,
that reside in ASTEs. When ASTEs are replaced, all SDWs that point to that ASTE
must be found, and faulted. Faulting an SDW consists of removing the bit
sdw.df, and perhaps changing other information in the SDW. Setting this bit
off, followed by a call to clear all the associative memories of the processors
of the systems (privileged_mode_ut$cam) that might contain this SDW, causes the
progcess attempting to use this SDW to take directed faukt O, which is known to
Multics as a segment fault. Since this faulting is always done by deactivation,
which has the AST 1locked, the process attempting to process the segment fault
cannot determine whether or not the segment on which the fault was taken was
even active until it can procure the AST lock, i.e., until the process doing the
deactivating has fully deactivated the segment.

Since all SDWs pointing to a given segment must be revoked (faulted to be
invalid) when a segment 1is being deactivated (or Dboundsfaulted on or
segment-moved (see "Segment Moving", below), it is more efficient to keep a list
of such SDWs, rather than search all of the descriptor segments in the system.
This list 1is called the trailer 1list of the segment, and is stored in the
segment (nondeciduous, paged, nonwired supervisor segment) str_seg. An entry in
this list is described by the include file str.incl.pli. Each entry consists of
a forward thread to the next (zero if none), the AST offset of the ASTE for the
descriptor segment of a process, and the segment number of the segment of whose
ASTE this is the trailer, in that process. The ASTE field aste.strp gives the
relative offset in str_seg of the first trailer entry of the trailer for the
segment that owns the ASTE.

Trailer entries are threaded onto the front of the 1list for an ASTE each
time the segment fault mechanism (in the procedure seg_fault) constructs an SDW
(while protected by the AST lock). The manipulation or use of the trailer
segment is protected by the AST lock. The SDWs constructed by segment-faulting
upon deciduous segments in nonhardcore rings acquire trailer entries. The SDWs
for deciduous (and all other hardcore and initialization segments) constructed
by System Initialization do not, as they cannot be and are never revoked.
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The trailer mechanism also locates all SDWs when an access change is
performed upon an active segment (as via user command). This causes segment
faults in all processes (see the description of "Segment Fault Handling" under
"Services of Segment Control"). These segment faults will cause recalculation
of access by these processes.

Needless to say, deletion of segments is a special case of the deactivation
of active segments. This causes similar setfaults actions to be performed.

Setfaults are performed via the procedure "setfaults". The entry of
greatest interest to segment control is setfaults$setfaults, which given an AST
entry, "cuts the trailer", removing all trailer entries and revoking all SDWs.
Setfaults also play a crucial role in encacheability management (see
"Encacheability Control" below.) See also "Descriptor Segment Management" under
"Service of Segment Control" for more about setfaults.

BOUNDSFAULTS

A boundsfault is the detection of a reference, by a process, to a word
outside of the legal 1limit for the segment set in the SDW in that process. If
outside of the maximum length of the segment (aste.msl), a boundsfault is
signalled (the out_of_bounds condition). If not, this is simply a reqguest to'
find a larger ASTE for the segment. This involves performing a "setfaults" on
the old one, finding a new one, updating page control data bases
(pc$move_page_table) and rethreading inferior father pointers. This operation
is described in detail under "Services of Segment Control."

SEGMENT MOVING

It is possible for a segment to try to grow by a page when there are no
more records available on the volume of its residence. If there is only one
physical volume in the 1logical volume, this causes an error to be signalled
(error_table_s$lcgical_volume_full, as a subcondition of seg_fault_error). If
however, there are other physica. volumes in the logical volume, one of which
has enough space to hold the grown segment, it is the system's responsibility to
move that segment there transparently. This operation is known as gsegment
moving, and involves a very complex interaction of page control and segment
control, and is the most involved single service of segment control. Segment
moving may also be performed on demand via the gate hphes_, on behalf of the
online pack utility sweep_pv, in order to vacate physical volumes (logical
volume compression) and volume rebalancing. The details of this operation are
given under "Services of Segment Control.™

ENCACHEABILITY CONTROL

It would seem that the most appropriate place for the description of the
policy used to manage the 68/80 cache is at this point.

The 66/80 cache is an associative memory of words from main memory in gach
68/60 Multics processor. It is a write-through cache. That is to say, no word
that the processor stores modifies a 1location in cache without modifying the
encached location of main memory.
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The fact that this cache is not transparent to the software, i.e., needs to
be managed at all is a reflection of the fact that it is in the processors (for
purpose of speed and modularity), and not in the 6000 SCU. Thus, words which a
processor fetches from cache may have their copies on main memory modified by
other processors, an IOM (or FNP6600 Communications Processor via the IOM), or a
Bulk Store Subsystem, and the processor would not be able to observe these
changes. '

The Multies cache has a novel and powerful feature known as the
encacheability of segments. This is to say that each Segment Descriptor Word
(SDW) contains a bit (sdw.cache, bit 57) whose absence prohibits the processor
port logic from loading words of that segment into the cache. Note that in
absolute mode, where no SDW is used, 2]l loaded words are eligible to be put in
the cache. Thus, there are encacheable and non-encacheable segments, with
sdw.cache "1"b and "0"b respectively. All SDWs used for a segment, be they
created via segment faulting, or via initialization, must agree on
encacheability.

For a start, all segments that are read or written by the IOM or bulk store
for any reason other than paging, are nonencacheable. This includes a finite
set of supervisor segments (e.g., tty_buf, dn355_mailbox, bulk_store_mailbox,
iom_data, etc.), and all segments used as IOI.Buffer segments (see "IOI Buffer
Segments" under "Services of Segment Control" below). For the supervisor
segments, the SDWs used are all created by initialization or copied from them.

Other supervisor segments are encacheable or not depending wupon their
"access". This "access" is the access that appears in all descriptor segments,
developed from the one created by initialization for +the initializer. Any
segment with write access 1is not encacheable; all others are. Since
segmentation restricts which segments are writeable at all, 1let alone by
multiple processors, the only supervisor segments that are writeable at all are
not encacheable. Thus, no supervisor segments may suffer the anomaly of being
modified by one CPU while still visible in the cache of another. Two important
exceptions to this rule are the PDS and PRDS created in the initializer process
by initialization, and all KSTs, PDSs and PRDSs created thereafter. PRDSs
(Processor data segments), after being initially created, are carried around by
processors from process to process. After their creation, they are referenced
by oply one processor. Since only one processor can reference a given PRDS, it
is encacheable; it is very important that it be encacheable, as it.is used as a
stack in wired and interrupt side ring zero. PDSs and KSTs are a special case
of per-process segments, described immediately below.

Any segment may be encacheable if all of the SDWs describing it allow no
write access (only read or execute). This has the same truth as for supervisor
segments as above. =~ However, if we take the same approach, we find that no
writeable segments may be encacheable. This is unduly restrictive, for some
writeable segments, such as stacks, linkage segments and KSTs, are among the
most heavily used segments. It has been discovered that any segment accessible
to only one process can be made encacheable if a simple rule is followed: any
time a process switches processors (pot the inverse), the new processor taking
up that process must totally clear its cache. This specifically means that
every processor as it switches to a new process need pot necessarily clear 1its
cache. . :

The proof of this theorem is as follows: assume a process P runs on CPU:A,
and some words of per-process segment X come into CPU A's cache. With no 1loss
of generality, assume that CPU B has no words of segment X in its cache. As CPU
A switches processes to and fro, there cannot be a problem until P runs on some
other CPU, say B. This is because, by hypothesis, P has not run on B, and since
it only has run on A, all words in A's cache are accurate, because the only
process that can modify segment X, being P, has never run, by hypothesis, on any
other CPU. When P finally runs on B, there is still no problem, because by
hypothesis, CPU B's cache contains no words of segment X. Assume now that P
modifies and fetches words from X liberally while running an B, specifically



changing words that are still in A's cache. As long as P runs on B, whether or
not other processes run in between runs of P, there is no problem, as these
wrong words appear only in A's cache, and P is running only on B. When P is run
the next time on A, the problem appears. There are words in A's cache that are
inaccurate. The solution is simple: clear the entire cache of A. Thus, it is
simple to do this every time when a process runs on a processor that is not the
last one it ran on, clear the new processor's cache. This, of course, also
fixes any potential problem when P transfers back to CPU B. Thus, are
per-process segments like PDSs and KSTs encacheable. The traffic controller
maintains the identity of the last processor on which a process ran, so the
decision to clear the cache is easy.

The computation of encacheability for all nonhardcore segments is done in a
uniform manner, in the procedure seg_fault. It will be seen that this policy
allows per-process segments to be encacheable as a corollary.

Two bits in the AST entry of a segment describe one of four possible states
with respect to the encacheability of the segment. Since only active segments
have pages in main memory or SDWs describing them, only active segments are an
issue. These states are: :

1. No SDWs describe this segment. Its encacheability is not an issue.

2. One or more SDWs describe this segment. None of them allow write
access. The segment jis encacheable.

3. Only one SDW describes this segment. It allows write access. Since
this 1is, at this time, a per-process segment by implication, as only
one process can reference it, it is encacheable.

4. More than one SDW describes this segment, and at 1least one of them
allows write access. The segment is pnot encacheable.

These bits are aste.any_accesé_on and aste.write_access_on. See the ASTE
structure breakdown earlier for the correspondence between the states above and
these bits. -

All segments, when activated, are in state 1 above. Since only active
segments have pages in main memory, the segment, when activated, has no pages in
main memory. Page control clears out of all processor caches all words of a
page being evicted from main memory (see Section VIII). Thus, a segment being
activated has none of its words in any cache of the system, allowing the
hypotheses of the preceding proof to be valid.

When any SDW, including the first, for an active segment, is created, the
seg_fault procedure changes the encacheability state of the segment by modifying
the two encacheability control bits in the ASTE of the segment. If it is moving
from an encacheable state to a nonencacheable state, then setfaults$cache is
called to revoke all of the cache bits in all of the SDWs that describe this
segment, and cause an associative memory <clear to force all processors to
recognize this bit. This special setfaults entry does not revoke the SDWs,
which would cause segment faults. This 1is not necessary here. The
encacheable/nonencacheable status of the new SDW being added is derived from the
encacheability status indicated in the ASTE.

When a system-wide setfaults is done, including a setfaults$cache, a clear
of all processor's associative memories and caches is conducted by setfaults, by
calling page$cam. When setfaults revokes all SDWs for a segment, therefore, it
resets the cache state to state (1) above, for no SDWs describe the segment and
no words of it appear in any processor's cache.
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IOI Buffer segments, and the segment used to load the FNP6600
communications processor, cannot be encacheable, as stated above, even though
they are only used in one process. Thus, at the time that they are
force-activated, (see "IOI Buffer segments" in "Services of Segment Control")
grab_aste_grab_aste_io sets the encacheability state to state 4 above, causing
all SDWs constructed for the segment to specify nonencacheability, and sets
aste.inhibit_cache on, whose sole purpose is to prevent setfaults from resetting
the encacheability state when all SDWs are revoked (e.g., a set_acl was done on
a buffer segment). This bit is reset by grab_aste$release_io.

Directories are not encacheable generally for historical reasons; they used
to be addressable outside of the segment-fault-trailer mechanism, and thus were
not subject to the policy above. Still, they are left nonencacheable, as it is
felt that the referencing patterns of directories make it more desirable to not
let them replace other segments in the cache, and thus ought to stay
nonencacheable.

The encacheability attribute of hardcore segments is supplied by the MST
generator; it is developed from the '"access" and "cache" header statements.

(See the Multics System Tools Reference Manual, Order No. AZ03.)

A limitation of the above encacheability policy is the 1lack of
recalculation of encacheability as processes vanish or terminate segments,
withdrawing their SDWs. It was felt that the class of segments that would
benefit by such recalculation was small, and the overhead of being able to do
this properly would be large.
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SECTION III

THE VIOC MANAGER

NTROD v

Critical to the operation of Release 4.0 and all 1later systems 1is the
concept of VTOC, the Volume Table of Contents, already detailed in the Segment
Control Overview and Data Bases sections. VTOCEs are not part of the virtual
memory, except when accessed by the physical volume salvager. This allows more
efficient single-sector I1/0 to be performed on the VTOCEs. In order to make
this I/0 efficient, a buffering scheme for VTOCEs and their fractions must
exist. This scheme is implemented by the VIOC manager, the procedure vtoc_man.

A1l VTOCEs are divided into three 1logical sections: the activation
information, the file map, and the permanent information. A VTOCE may also be
viewed as being divided into three physical parts, Part I, Part II, and Part
II1, as detailed earlier. Each physical subsection of a VTOCE comprising 64
words, is called a ytoce-part. The three yioce-parts comprise the VTOCE.

A1l access to VTOCEs, other than that performed by the Physical Volume
Salvager (and of course, B0OS), is performed by calling entries in vtoc_man. The
most general entries, vtoc_man$get_vtoce and vtoc_man$put_vtoce, read and write
whole VTOCEs or single vtoce-parts. Other entries free a whole VTOCE
(vtoc_man$free_vtoce), await completion of I/0 on a VTOCE (vtoc_man$await_vtoce)
and write a VTOCE to a free VTOCE, making it not free, and returning its VTOC
index (vtoec_man$alloc_and_put_vtoce). There are also "global"™ entries to the
¥TOC manager that deal with no single VTOCE: vtoc_man$cleanup_pv, called at
volume demount and shutdown time (see Section VM), and vtoc_man$stabilize,
called at ESD time to ensure consistency in the state of the VTOC manager's data
base.

The VTOC manager uses the segment vtoc_buffer_seg as a data base,
containing all variables needed in VTOC management, which are not global
parameters to a given volume. Many of the variables in the Physical Volume.
Table, (PVT), such as the heads of VIOCE free chains, and number of free VTOCEs,
are for use by the VTOC manager. The VTOC buffer segment, vtoc_buffer_seg,
contains up to sixty-four vtoce-part buffers. Each buffer, 64 words long, is
either free or contains one vtoce-part. Vtoce-parts may be from any mounted
physical volume, and no two buffers contain the same vtoce-part. There is no
free 1list of any kind. Thus, any vtoce-part of a mounted volume is either in
exactly one vtoce-part buffer or not in any. Note that a vtoce-part buffer
containing a vtoce-part of a free VIOCE is pot a free vtoce-part buffer; the
latter is one that contains pgo vtoce-part of z2ny VTOCE.

There is a table in the VTIOC buffer segment containing single word buffer
descriptors, also known as buffer control words. Each describes the status of
one vtoce-part buffer, stating which part of which VIOCE if any 1is contained
there, and other status information. The format of this control word is
described later.
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It is the goal of the VTOC manager to provide interface to VIOCEs, for
segment control programs, without these programs being aware of the buffers,
their existence or their organization. The VTOC manager must implement a buffer
multiplexing, and therefore, a sharing algorithm. The VTOC manager is unaware
of the content of VTOCEs, other than the manipulation and maintenance of the
VIOC free thread. It is also the responsibility of the VTOC manager to
interface to the disk control software to actually perform the VTOC I/0.

GENERAL POLICIES

The VTOC manager, at its lowest level, manages vtoce-parts and their
buffering. At any given entry to the VTOC manager, the vtoc buffer segment
contains a given set of vtoce-parts: in order to satisfy a request for most
calls, the requested set of vtoce-parts are either among the set in the buffers
in part, in whole, or not at all. If they are all there, this data may be used
or returned without any I/0. If the requested vtoce-parts are in part or in
whole not in the buffers, they must be brought in.

Searches and replacements of vtoce-part buffers are protected by the YTOC
Buffer Lock. This lock is standard-format wait-lock, managed by the locking
procedure "lock." Its notify event 1is "3330000xxxxx"b3, where xxxxx is one
greater than the number of vtoce-part buffers. It is higher than the AST lock.
When the VTOC manager waits for I/0, it unlocks this 1lock so as not to tie up
this resource. Therefore, vtoce-parts that were present when this I/0 was
started may not be present when the I/0 is complete, for operations invelving
more than one vtoce-part. This situation is analogous to the paging behavior of
multi-operand EIS decimal instructions: they continue to fault, with no
assurance that they will be satisfied in any given time constraint, until all
pages are found present at once. .

The policy of getting together all buffers at once (implemented via the
internal routines GET_BUFFERS_READ and GET_BUFFERS_WRITE described below) is the
implementation of a design constraint that all calls to the VTOC manager be
unitary operations with respect to volume demounting. This 1is to say, when
modifying VTOCEs, a call to the VTOC manager will cause either all requested
vtoce-parts to be modified as needed or none, given a volume demounting at any
stage of the operation. This policy allows procedures such as vtoc_attributes
to read VTOCEs and write them back via only two calls to the VIOC manager, the
second call either wholly succeeding or wholly failing. Thus, such a procedure
need not be explicitly protected against demounting. (See Section XIV for a
discussion of Demount Protection.)

Furthermore, operations to modify vtoce-parts, which write them wholesale
(the VTOC manager does not modify or inspect parts of vtoce-parts), must use the
buffers occupied by these vtoce-parts 1if there are any; were this not the case,
some vtoce-parts would have more than one buffer associated with them, and a
question of relative legitimacy would arise, as well as issues of multiple 1/0
operations on a given vtoce-part at once. Thus, this policy of only one buffer
per vtoce-part assures not only a finite small set of buffer states, but a
similar small set of states of any vtoce-part in the system with respect to the
VTOC manager.

The VTOC manager receives requests in terms of VTOCEs, with masks
specifying which vtoce-parts are being dealt with, in the "get™ and ‘"put™

entries, as well as pointers to data areas to <copy to and from. The
specification of a VTOCE is via a PVT index (the PVT is the Physical Volume
Table, the table of all mounted physical volumes) and a VTOC index. The

circumstances under which Physical Volume Table indices may validly be derived
and used are given in Section XIV of this document. It is part of that protocol
that no volume demount may complete while the demounting process does not have
the VTOC buffer lock locked. Therefore, the VIOC manager is protected against

demounting. However, procedures that call the VTOC manager are not protected
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against demounting. Therefore, the P.ii, (physical vclume ID) of the volume that
the caller expects to be dealing -/ith is passed as an argument to the VTOC
manager. If, while the VTOC buffer lock is locked, the supplied PVT index
indeed checks with this PVID (by inspecting the PVT), all is well. Every time
the VIOC buffer lock is relocked, this check must be made. If it does not, the
caller is informed that the volume being referenced was demounted
{err_table_$pvid_not_found)}. If this parameter is passed as "0"b, it means that
the caller has some other protection against demounting such as having the AST
locked.

The procedure vtoc_interrupt is the interrupt side of the YTOC manager. It
is called from the disk DIM at any time that the disk DIM processes status.
This procedure does pot lock the VTOC buffer lock. As vtoc_interrupt is called
in a wired, masked environment, in which the running process may even have the
global page table lock set (see Section XIII), were it to lock the VTOC buffer
lock, that would mean that all procedures that lock this lock, notably vtoc_man,
would have to run in masked, wired environments, which are expensive to obtain.
Thus, the interrupt side of the VTOC manager runs asynchronously. This
procedure modifies bits in the VTOC buffer control words, specifically b.os and
b.err, completely asynchronously. The rest of the VTOC manager must be prepared
for these bits to change for any buffer for which I/0 is in progress, at any
time.

Every call to the VTOC manager, other than the global call
vioc_mand$stabilize, deals with one specific mounted physical volume. A variable
is kept in the VTOC buffer segment, vtoc_buffer.unsafe_pvtx, which designates a
physical volume being processed. JShould the system crash, ESD will inspect this
field and schedule that volume for volume salvage (see Section XIV).

The individual procedures and entry points of the VTOC manager are clearly
documented in the program listing. Thus, we now provide a detailed breakdown of
the data structures of the VIOC manager, being the VTOC buffer segment and the
buffer control words therein, and describe after that the basic subroutinization
strategy of the program vtoc_man.

VTOC BUFFER SEGMENT

lock : |
is the VTOC buffer lock. It is a standard format wait-lock, whose
event ID is stored in vtoc_buffer.lock.ind.

n_buffers
is the number of vtoce-part buffers in the VTOC buffer segment. It
is computed by init_vtoc_man, from a parameter on the PARM VIB
CONFIG card.

abs_add

is the absolute address of the base (word 0) of the VTOC buffer
segment. It is contiguous 1in main memory. This allows the VTOC
manager to compute the absclute address of each buffer for calls to
the disk DIM.

event_constant
is a constant from which all VTOC buffer wait events are
constructed. This constant is "333000000000"b3. The wait event for
the completion of 1/0 in buffer number n is
vtoc_buffer.event_constant + n. For example, the wait event for
awaiting 1/0 on buffer 5 is "333000000005"b3.

current

is the current replacement pointer, a buffer index. See "VTOC
Buffer Replacement Algorithm" below.
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unsafe_pvtx
is the index in the Physical Volume Table (PVT) of the single
physical volume on which operations are in progress when the VTOC
buffer lock 1is 1locked on behalf of an operation on a specific
volume. It is inspected by Emergency Shutdown to schedule a salvage
for that volume if found nonzero, It is cleared when the VTOC
buffer lock is unlocked.

inhibit_await
is for debugging use only. When nonzero, it inhibits the feature of
awaiting successful completion of VTOC 1I/0 before addresses are
deposited (the function performed by vtoc_man$await_vtoce). This
feature is critical to the address management policy of Multics (see
"Address Management Policy" in Section VII).

mtr
is a group of meters, most of which are printed out by the
vtoc_buffer_meters tool. of particular interest are
vtoc_buffer.mtr.parts_read and vtoc_buffer.mtr.parts_write, which
are distributions of read and write requests, indexed by
combinations of vtoce-part.

Description of the VTOC Buffer Control Word, vtoc buffer.b

b.used
indicates whether or not this buffer contains a vtoce-part. If
b.used is "O"b, no other bits in the buffer control word are valid.

b.os

for "out-of-service"™ indicates that 1I/0 has been queued for this
buffer, and has not been posted (completed). This bit is turned on
by vtoc_man prior to calling the disk DIM, and turned off only by
vtoc_interrupt, asynchronously (and by vtoc_man$stabilize, called
only at ESD time). This bit and b.err, below, are the only two bits
managed asynchronously. As in page control, "out-of-service" means
"I/0 in progress", not "damaged" or "unusable".

b.op
indicates the 1last operation, or the one 1in progress, on this
buffer. Zero is read, one is write.

b.wailtsw
tells whether or not (1 equals "yes") some process is waiting for
I/0 complete on this buffer. If on, vtoc_interrupt will call the
traffic controller to notify the event constructed as described
under vtoc_buffer.event_constant. This bit also prejudices the
replacement algorithm (See "VTOC Buffer Replacement Algorithm",
below) against this buffer.

b.iogqg
Is set to "on" after a request for 1I/0 has been queued. This is
used to reduce uncertainty about whether or not I/0 completion will
be posted at ESD time. Any buffer encountered at ESD time with both
b.os and b.iog on can expect a completion posting from the disk DIM.
See the "VTOC Manager ESD Strategy" description below.

b.err
is set on asynchronously by vtoc_interrupt, at buffer I/0 completion
time if this I/0 completed with an error. When found on for a read
operation, the process that was waiting for this read to complete
notices this and returns error_table_$vtecc_ioc_err out of vtoc_man,
and frees the buffer, as it contains no good vtoce-part. For a
write request, the vtoce-part becomes "hot": this is to say that it
ie Lknown that +hise hyyffar miiat he undated to disk at some Tatar
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time, for the VTOCE on disk is known not to have these
modifications. See "Error Strategy" below.

9/78 3-4 AN61A



b.partno
tells which vtoce=-part of a VTOCE, 01, 10, or 11, resides here.

b.pvtx

is the PVT index of the mounted physical volume to which this
. vtoce~part belongs.

b.vtoex '
is the VIOC index of the VTOCE, in the VTOC of the mounted physical
volume to which this vtoce-part belongs.

There are also two internal static variables of vtoc_man: alloc_state and
select_state. These are pseudoclocks that are advanced whenever an allocation
or VTOC buffer selection, respectively, is performed. By saving and comparing
these values to their saved values, vtoc_man is able to determine whether or not
these operations have occurred during an unlocking of the VTOC buffer lock.

QRGANIZATION OF THE VTOC MANAGER

The structuring of the VTOC . manager must be comprehended in order to
understand and diagnose problems and changes in this area. A listing of
vtoc_man should be on hand to best follow this section.

The c¢ritical intermediate level subroutines are the two named
GET_BUFFERS_READ and GET_BUFFERS_WRITE. These subroutines receive the
specification of the VTOCE to be dealt with (PVT index and VTOC index) via
global program variables: a :ihree-bit vtoce-part mask is passed as an argument,
as is a return code. The function of both of these procedures is to ssec
one to three bhuffers with the requested ytoce-paris. For éféﬁﬂiig?
(GET_BUFFERS_READ) this includes performing (initiating and completing) I/0 to
read in these vtoce-parts if they are not already in the VTOC buffer segment.
For writing, this means finding buffers containing any of the  requested
vtoce-parts, if any, and allocating new buffers for those not already in the
VTOC buffer segment. 1In both cases, these routines return the indices of the
found/filled/allocated buffers via the array "A", being in A(1), A(2), A(3) for
the respective vtoce-parts, when requested. In both cases, the routines are
responsible for performing these operations consistently, which means observing
changes that happen during unlocking, and retrying the buffer-gathering when
necessary (see the "General Policies"™ discussion earlier).

These two primitives are very powerful; the implementation of
vtoc_man$get_vtoce is little more than a call to GET_BUFFERS_READ. The
implementation of vtoc_man$put_vtoce is little more than a call to
GET_BUFFERS_WRITE, copying of the data supplied into these buffers, and calls to
the WRITE subroutine to start I1/0 on those vtoce-parts. Thus we proceed to
discuss the operation of GET_BUFFERS_READ and GET_BUFFERS_WRITE.

Both routines start by establishing a retry point. If any operation causes
an unlocking, and subsequent relocking shows that buffers involved in this
operation have been replaced, the operation is restarted from this retry point
(label START in both routines.) Both routines then call the subroutine INIT, to
fill wup the array A with either -1 (vtoce-part wanted, not yet found) or gotten
or -2 (vtoce-part not even wanted), and get the minimum and maximum part number
out of 1, 2, and 3. The routine SEARCH is now called to scan the VTOC buffers.
to fill in "A™ with the indices of all found vtoce-parts (that are needed) of
this VTOCE. The value returned by this routine is the number of vtoce-parts
found. At this point, GET_BUFFERS_READ and GET_BUFFERS_W¥RITE differ.
GET_BUFFERS_READ proceeds by first selecting a new buffer and then starting a
read (subroutine READ) for each vtoce-part wanted but not found by SEARCH. The
buffer selector, SELECT_BUFFER, which implements the buffer replacement
algorithm, is careful not to disturb buffers already pointed at by "a".
GET_BUFFERS_READ then calls WAIT, to wait for any of the gotten buffers which
were, or are now, out-of-service (I/0 in progress). Since this waiting
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(performed by calling WAIT_OS on each out-of-service buffer) may unlock the
buffers, it is necessary to check that each buffer described by "A" still
contains the vtoce-part it did when put in A, This check is performed by the
routine "VANISHED", which makes precisely this check. A branch to the retry
point START 1is performed if it fails. This check is bypassed if it 1is
determined that the select pseudoclock (see above) has not moved during the
unlocking. The WAIT routine is intelligent about seeing that all buffers in A
are not out-of-service when it returns.

GET_BUFFERS_WRITE, having searched for all relevant vtoce-parts, proceeds
by calling WAIT so that they are no longer out-of-service. While this waiting
is not strictly necessary 1in the write case, it is a very conservative action.
At the end of this operation, the check for "VANISHED" and conditional branch
back to the retry point are undertaken. Then the selector, which is careful
about not disturbing buffers described by A, is <called to get buffers to
associate with those vtoce-parts that were pot found by SEARCH.

A1l the rest of the subroutines are basically support for GET_BUFFERS_READ
and GET_BUFFERS_WRITE: these and the few other subroutines will be described
below.

csyser
subroutine to crash system by calling syserr. It exists in order to
common code printing out drive identification, and set
vtoc_buffer.unsafe_pvitx to schedule a volume salvage.

CHECK_PART3
a debugging subroutine that checks the third vtoce-part for
reasonability. From times when there were problems in this area.

WAIT_OS

A lowest-level primitive to wait for the buffer specified by its
first argument to stop being out-of-service. This subroutine
concerns itself with the traffic controller wait-retry-addevent
protocol, and the 1locking and wunlocking of the VTOC buffer lock
around real waiting. The event for which it waits is described
under the description of vtoc_buffer.event_constant. The code
returned is that returned by LOCK_BUFFERS, if nonzero. See that
description below.

LOCK_BUFFERS
calls the system lock primitive lock$lock_fast to 1lock the VTOC
buffer lock. It also checks, upon every relocking, that the PVID
supplied by the caller of vtoc_man still corresponds to the PVT
index given, and that a demount has not started, nor the drive
become inoperative. The occurrence of these conditions is reflected
in LOCK_BUFFERS' return code.

UNLOCK_BUFFERS
unlocks the VTOC buffer lock, using the system unlocking primitive,
lock$unlock_fast.

VANISHED . -
Described above. Scans the array A to see if the buffers described
by "A"™ still contain the vtoce-parts of the VTOCE being processed
(in the right order), after an unlocking during which the select
pseudoclock has moved.

INIT
described above, initialized the array "A" for GET_BUFFERS_READ and
GET_BUFFERS_WRITE. -1 is wanted but not yet found or got, -2 is not
even wanted.

WAIT

calls WAIT_OS for each vtoce-part in a VIOCE being processed that is
out-of-service. Returns only when none are out-of-service.

9/78 3-6 ANG1A



SEARCH
Fills up the array A with buffer indices for all vtoce-parts needed,
by searching the VTOC buffer segment for all vtoce-parts that are
there already.

READ and WRITE
Given the vtoce-part number (part number) these routines actually
call disk control to start I/0 on the vtoce-part and buffer. These
routines set up the buffer control words, placing b.os (I/0 in

progress) on, and b.iog gpn after the return from the call to disk
control.

RECORD, SECTOR and CORE
are used by READ and WRITE to convert VTOC indices into Multies
record number and sector within that record (taking the particular
vioce-part into account), and to get the absolute main memory
address (see description of vtoc_buffer.abs_address.)

VERIFY_ERROR_FREE
is used by the vtoc_man$await_vtoce entry to wait for all
vtoce-parts of a given VTOCE to complete their I/0s, and report
whether or not all of these 1/0s were successful. The successful
completion of the I/0 for a write is a necessary prerequisite for
address deposition (see "Address Management Poliey" in Section VIiI,
and "Segment Truncation™ under "Segment Control Services"),.

SELECT_BUFFER
is used to obtain a new buffer for GET_BUFFERS_READ or
GET_BUFFERS_WRITE when a requested vtoce-part is not already in the
VTOC buffer segment. It gets a new one by replacing an old one. It
does not unlock the VTOC buffer lock in any case. In replacing an
old one, it implements the VIOC buffer replacement strategy
deseribed below. '

YTOC BUFFER REPLACEMENT STRATEGY

Free vtoce-part buffers are needed by GET_BUFFERS_READ and
GET_BUFFERS_WRITE when not all requested vtoce-parts are found in the VTOC
buffer segment. The routine SELECT_BUFFER in vtoc_man allocates buffers in an
essentially FIFQ manner. A circulating pointer (vtoc_buffer.current} marks the
next point to be inspected for Teplacement, behind this being the last one
allocated. Buffers are allocated by circumnavigating the buffer segment a very
large number of times, if necessary, until a buffer is found which is not
out-of-service or "hot" (see "Error Strategy" below), and is not a vtoce-part of
the VTOCE for whom buffers are being sought. (This prevents it from undoing its
previous work by accident). Unused buffers fall into this category, as well as
just ordinary buffers that meet these criteria. The first pass around the
buffers, in a given call to SELECT_BUFFER, buffers with b.waitsw are skipped.
These are buffers on which I/0 was completed (remember, b.os was found off), and
processes have been notified for, and will use when they get the VTOC buffer
lock. Since these are only preempted in a bad case (second pass), this is not a
performance problem. The process which comes back will find that the primitive
"YANISHED" is now true,; and will retry its buffer-gathering.

The pointer vtoc_buffer.current is advanced as each new buffer is
allocated. When a very large number of passes over the VTOC buffer segment have
failed, system operation is terminated. Note that the longer one scans, the
more 1/0 operations complete, and buffers become claimable.

3-7 ANG1



ERROR STRATEGY

We speak here of the "errors" encountered by the VTOC manager as a result
of I/0 operations completing with an error (b.err is on). The expectable
"errors" of volumes being demounted or buffers vanishing are not errors at all,
but designed features, and have been covered.

Disk errors can occur on reads and on writes, the only two operations
performed by the VTOC manager. The strategy for a failing VTOC read is simple.
If the buffer has not vanished by the time the process (or any process) which
wanted to read it, this process notices -  the error (b.err is on), frees the
buffer (so that the next call will not find it here, as it does pot contain the
vtoce-part it is supposed to, and so that the next call retries the operation),
and returns error_table_g$vtoc_io_err to its caller.

Write errors are substantially more difficult. In general, the completion
of a write operation is not waited for by any process, and there is thus in
general no process that can be relied upon to process the buffer in error. When
a buffer is posted with a write error (vtoc_interrupt issues a syserr message in
this case), the buffer concerned enters a state called "hot" (a hot buffer). It
is so called, when b.op = b.err = "1"b, because the vtoce-part in it must be
written to disk at some time before the system is shut down or the volume
demounted, and if it cannot be, the volume must be salvaged before ever being
mounted again. Furthermore, the "hot" buffer cannot be replaced, because it is
the only valid copy of that vtoce-part, because, by hypothesis, we could not
write it to disk. Thus, all calls to GET_BUFFERS_READ or GET_BUFFERS_WRITE must
find the vtoce-part in this buffer. This buffer may not be replaced, so that
vtoc_man$await_vtoce will find that the writes that were requested via
vtoc_man$put_vtoce have failed, and so that the caller will know in this case
that the VTOCE was not successfully written to disk. In this case, the usual
callers (truncate_vtoce, update_vtoce, etc.) must not deposit addresses culled
from the file map, for should the system crash before the VTOCE is written out,
those addresses find their way into some other VTOCE, and a preused address
results. (See "Address Management Policy" in Section VII, and "Segment
Truncation" under "Services of Segment Control," Section IV.) :

Every time some new caller of vtoc_man tries to issue a write on that
buffer, the error bit is turned off, and may or may not be turned on depending
on whether the operation succeeds, or fails again. Thus, each attempt to do a
put_vtocce on that vtoce-part retries the failing operation, until successful.

One last try to write ocut all hot buffers is made at volume demount time
(regular or emergency shutdown is effectively demount time for all volumes
mounted then). If this last try fails, the disk being demounted is scheduled
for salvage the next time it is mcunted. This operation i perfeormed in
vtoc_man$cleanup_pv. .

ESD STRATEGY

The basic problem of the VTOC manager at ESD time is to restart all I/0 for
buffers that are marked out-of-service, but for which the disk DIM does not
currently have I/0 under way. Since there 1is no way to determine this by
interrogating the disk DIM, heuristics are used. The idea is to restart those
and only those operations that are in this indeterminable state. If I/0 is
requeued for a buffer for which the disk DIM later posts completion, a double
posting and double I1/0, reading or writing of the wrong data will happen.
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This would be detected by vtoc_interrupt when a buffer was not out-of-service
received an 1/0 completion. On the other hand, if we do not start I/0 for a
buffer for which I/0 was pof actually pendent in the disk DIM, we would wait
forever for its completion. Since b.os being on the b.ioq being off identify
all buffers in this wuncertain state, if there are any, a wait of thirty-five
seconds is performed, for the disk DIM to post it if it 1is ever going to be
posted. If it is not posted in this time, it is declared not-to-be
out-of-service, and the 1/0 is requeued.

Emergency shutdown, as all shutdown, flushes "hot" buffers as described
under "Error Strategy" above.

N/DEALL

The VTOC manager is responsible for allocating and deallocating VTOCEs upon
request. As mentioned before, a free chain of actual free VTOCEs on each volume
is- kept threaded through them, the head of the chain being in the PVT entry for
that volume.

Deallocating VTOCEs is rather simple: a vtoce-part of zeros, with a free
thread 1logically replaces the first vtoce-part of the VTOCE being freed. The
VTOC index of this VTOCE becomes the new head of the chain in the PVT.
GET_BUFFERS_WRITE is used herein. Allocating is more complicated. It is
necessary to read the VTOCE that is designated as the head of the free chain 1in
order to get the next fr«e chain head. Since a waiting (with consequent
unlocking of the VTOC buffers. must be performed to do this, it is possible that
another process can attempt to allocate the same VTOCE as this process 1is
allocating. This is because the PVT chain head cannot be changed until this
VTOCE has been (first vtoce-part thereof) read in. Thus, the pseudoclock
"alloc_state™ 1is used every time this first phase of allocation is undertaken.
If, upon relocking, an allocating process notices that this clock has moved, the
operation is restarted. The nonmoving of the pseudoclock signifies that no
other process has attempted to allocate that VTOCE during the unlocking. The
entry vtoc_man$alloc_and_put_vtoce writes the new contents of the VTOCE out,
once it has succeeded in allocating it. This protects the allocate-and-put
primitive from demounting: if it got as far as changing the PVT thread head
(actually performed the allocation), it actually started the writes. The writes
being in progress (b.os is on) when the VTOC buffers are unlocked prevent the
volume from demounting until the writées are complete (see Section XIV). The
routines GET_BUFFERS_READ and GET_BUFFERS_WRITE are both wused to fullest
advantage in the allocate-and-put primitive.

WMAW

When a volume is being demounted (recall that both normal and emergency
shutdown are special cases of volume demounting for the entire mounted
hierarchy), vtoc_man$cleanup_pv is invoked on behalf of that volume as one of
the last stages of demounting. (See Section XIV). The vtoc_man routine makes a
final try at outputting all "hot" buffers. Then vtoc_man waits for all VTOC I/0
on the volume to <cease; it has been guaranteed that no more can start by the
setting of the bit pvte.demounting2 by demount_pv. (This bit is inspected by
all attempts to lock the VTOC buffers: see the description of LOCK_BUFFERS
above). No more VTOC 1/0 transpires on this volume; the VTOC is wupdated and
quiescent. A1l vtoce-part buffers that had contained vtoce-parts of the
demounted volume are marked as empty (free).
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SECTION IV

SERVICES OF SEGMENT CONTROL

This section describes the meaning, organization, and implementation of the
services provided by segment control to Multies. These are the functions that
control performs; its reason for being. These services are built upon
the mechanisms and data structures described earlier in this section.

segment

These are the basic services of segment control:

= W

Creating segments.
Destroying (deleting) segments.
Truncating segments.

Making segments addr:ssable by processes (satisfying segment
This involves activation and deactivation as described.

Descriptor segment management.
Handling boundsfaults.

Setting and reporting "VTOC attributes" of segments.

These are the auxiliary services of segment control:

faults).

Special-casing per-process hardcore segments (PDSs and KSTs) with

forced activations and special address management policies.

Special-casing of IOI buffer and FNP6600 Communications
bootloading segments.

Performing segment moving, both on demand and in response to
volume overflows.

Performing special services on behalf of the online pack
sweep_pVv, such as anonymous VTOCE deletion.

Supporting the hierarchy salvager,
Demand deactivation.

Shutting down segment control.

Processor

physical

utility,
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The segments above are only segments in the storage system hierarchy; the
nondeciduous hardcore segments, PRDSs and descriptor segments are created by
means external to segment control (see the Multics Reconfiguration and Multics
Initialization PLMs, Order Numbers ANT1 and AN70), and are dealt with by other
parts of the supervisor by direct interaction with page control. Such segments
have neither branches nor VTOCEs, do not count against any record quota, and are
never activated or deactivated or in any AST 1list, hash thread, or
father-son-brother chain.

Many of the top-level services of segment control (creation, truncation,
deletion) are performed by similarly-named procedures (create_vtoce,
truncate_vtoce, and delete_vtoce) in bound_vtoc_man. These deceptively named
procedures do not in general perform operations upon VTOCEs, but either upon
VIOCEs, AST entries, or some combination of the two, usually by calling page
control primitives when operations wupon ASTEs are required. It 1is these
procedures that decide where the appropriate data about the segment being dealt
with lies, and call appropriate entries to the VTOC manager when necessary.
These procedures are called by the directory control programs append, truncate,
and delentry, which create and delete directory branches, and check access and
locate branches in all cases. Thus, create_, truncate and delete_vtoce should
be thought of as create_, truncate_, and delete_segment.

The procedure vtoc_attributes falls right into this model, as an
intermediary between the directory control primitives "set" and "status”,
setting or returning the so-called VTOC attributes in either the ASTE or VTOCE
as necessary.

A1l of these primitives are called with the parent directory of the segment
under consideration locked.

Among the descriptions of the services provided by segment control will be
found a description of the VTOC wupdate function, update_vtoce. While this
function is entirely organizational, an artifact of implementaticon rather than
of services, its critical role in the segment control panorama requires that it
be described in detail in this section.

REATI F

[

Creation of segments is performed via creating VTOCEs for them, by the
procedure create_vtoce. The input parameter to this program is a complete
directory branch. The principal output parameters are a physical volume ID
(PVID) and VTOC index of a VTOCE that was created. The VTOCE creation function
is called both by append (normal creation of segments) and the segment mover,
segment_mover (See the detailed description later on in this discussion of
Segment Moving).

The principal goals of VICTE creation, as performed by create_vicece, are
these:
1. Create a local image of the VTOCE to be crecated. Fill in UID, primary

name, VTOCE permanent information, initial values of activation
information, a null (all pages null addresses) file map. Determine
the UID path and fill that in too.

2. Find an appropriate physical volume for residence of the new segment.
This must be one of the physical volumes of the logical volume that is
the sons_lvid of the directory in which the given branch appears.
Special case the rpv_only directory, ">1lv", Select the most
appropriate physical volume, as described below under "PV Selection
Algorithm™". (See Section XIV for motivation for this poliey.)

4.2 AN61



3. Invoke the VTOC manager (vtoc_man$alloc_and_put_vtoce) to allocate a
VTOCE on a selected physical volume, and write out the VTOCE
constructed in step 1 to 1it. Receive back the VTOC index of the VTOC
chosen by the VTOC manager.

4. Return to PVID of the physical volume selected by step 2 and the VTOC
index of the VTOCE selected by step 3 to the caller, who usually
places them in the branch (entry.pvid and entry.vtoex).

This function is not protected against demounting of volumes. However, nothing
it does until the call of vtoc_man$alloc_and_put_vtoce has any side effect.
Thus, should the call to vtoc_man fail because of demounting, create_vtoce will
simply go back, select another physical volume and retry, until either no more
physical volumes that are acceptable are 1left, or the 1logical volume becomes
unavailable.

When operating on behalf of the segment mover, create_vtoce does not
consider all physical volumes in the logical volume as potential candidates for
the new VTOCE, but only those not yet inspected during this segment move. (See
"Segment Moving", later in this section.)

Physical Volume Selection Algorithm

This algorithm is used by create_vtoce to find an appropriate volume for a
new VTOCE, and thus segment, being created. Its main goal is to try, when not
being invoked on behalf of the segment mover, to optimize balancing segments
over the physical volumes of a 1logical volume, without causing wundue I1/0
contention by placing many new segments in the same place.

The algorithm is to walk the chain (through pvte.brother_pvtx) of mounted
physical volumes of a mounted logical volume. The head of this chain is kept in
the 1logical volume table (LVT) (See Section XIII of this document for more
details on these data bases.) In the case of the segment mover, this chain is
walked from the last point it was at during this segment move until any
acceptable physical volume is found; in the normal case, the whole chain is
walked wuntil the “"optimal" physical volume is found. No physical volume is
acceptable in any case if it is "vacating" (pvte.vacating is on, signifying that
sweep_pv is trying to vacate this volume, or inhibit creation upon it), or has
no free records left (records left is recorded and maintained by page control in
the PVT entry). For segments that must be on the RPV (sons of the ROOT
directory (>) or sons of >lv), no volume but the RPV is acceptable. The optimal
physical volume, for all cases except per-process segments, is that which has
the highest percentage of space available, in terms of unused paging records.
This criterion, rather than absolute amount of paging space available, allows
different capacity packs to be put 1in the same logical volume and fill up
uniformly.

Per-process segments, those with entry.per_process in their branches, are
dealt with differently. This is because these segments see heavy use, and the
policy used above for other segments would place many new per process segments
in the same place, such as a new pack added to a 1logical volume, causing a
severe I/0 bottleneck on that pack. Thus, a rotating pointer through the
logical volume chain, lvte.cycle_pvtx is maintained by create_vtoce, pointing to
the next Physical Volume in the round robin that will receive the next segment
creation in that logical volume. The other acceptability criteria are still
used; rpv-only creations, those on behalf of the mover, and those for which this
round robin technique causes detectable looping (volumes seem to Dbecome
unacceptable as they are inspected) cause the non-per-process algorithm to be
defaulted to.

The significance of zero in 1lvte.cycle_pvtx is that it has either never
been used, or has cycled around to the end of the chain.
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The create_vtoce procedure operates with the knowledge that neither the
logical volume table nor the PVI thread are protected by locks, and therefore,
treats these gquantities as asynchronously variable.

DELETION OF SEGMENTS

Deletion of segments, at the segment control level, is performed by the
procedure delete_vtoce. The input parameter to this procedure 1is a directory
branch (this jimplies that the directory in which it resides is locked to this
process). There are no output parameters, other than the obligatory status
code. The segment deletion function 1is called from the directory control
program "delentry", which resolves pathname or segment number references to
segments to be deleted, locates the branch for the segment, and checks that the
caller's access is adequate to perform this deletion.

Deletion at the segment control level consists of the following main steps:

1. Make the segment inaccessible, if active, via a setfaults. Recall
that the parent directory is 1locked, and segment faults on this
segment cannot be processed by other processes until this process
releases the parent directory lock. The entry setfaults$if_active
performs exactly the flavor of setfaults needed here.

2. Truncate the segment to zero-length. The procedure truncate_vtoce
comes right into play here, almost exactly as if called by the
directory control truncate primitive. This releases all disk, bulk
store, and main memory pages occupled by the segment. No more can be
created, since all SDWs were revoked in Step 1, and the segment is
inaccessible.

3. If this is a directory with a gquota account being deleted, call the
page control quota move primitive, quotaw$mg, to relinquish its quota
to its superior. If this is any kind of a directory being deleted,
directory control has already made sure that there are no segment or
directory branches in this directory, so it has no inferiors, or
inferior segments which might count against quota. '

y, If this segment is active, deactivate it. This releases its ASTE.
All pages of the segment were released in Step 2.

5. Free the VTOCE with a call to vtoc_man$free_vtoce.
Among the fine points of delete_vtoce:

This procedure, as described, is not protected against volume demounting.
Thus, were a volume on which delete operation were under way demounted while the
delete operation was between steps 2 and 5, a truncated segment would appear the

next time this pack were mounted: whereas we desire either the original segment,
or the lack of a segment. Thus, for multistep operations such as VTOCE
deletion, a form of demounting protection known as "demount protection

brackets™, described fully in Section XIV of this document, was dsveloped.
Basically, a call to get_pvix$hold_pvtx before step 1 prevents thé volume from
being demounted, or returns the fact that it has already been demounted, before
step 1 above even begins. A call to get_pvtx$release_pvtx after step 5 releases
the volume for demounting. See Section XIV of this document to find out what
happens when a crawlout, process termination or crash happens while a process
has such a grip on a volume. Since truncate_vtoce normally also makes such
calls, a special entry to truncate_vtoce (truncate_vtoce$truncate_vtoce_delete)
is used, which avoids making such calls knowing that delete_vtoce is doing it
instead.
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The program truncate_vtoce is capable of indicating a connection failure:
this is to say the VTOCE designated by the PVID and VTOCX in the branch is
either free or contains a UID other than the one in the supplied branch. In
this case, delete_vtoce wryly notes that it is being asked to delete something
which has clearly vanished of its own accord (can happen in crashes; the
Physical Volume Salvager also sometimes creates this situation deliberately),
buries the error, and returns indicating successful completion (after releasing
the physical volume for demounting, of course).

N 10

Truncation of segments is performed by the procedure truncate_vtoce. This
procedure is invoked both by the directory-control program "truncate", which
converts pathname and segment number references to segments to be truncated into
branch pointers, and checks appropriate access, and the segment deletion
primitive already described. The inputs to this procedure are a branch pointer
(with the directory of course locked) and a page number from which to start
truncating.  For the delete case, this number is assumed zero. The only output
parameter is the error code.

Truncation may be defined as associating logical zeros with the contents of
all pages beyond a certain point in a segment. For active segments, this is
done by the page control primitive pec$truncate (which can also be used on
nonstorage-system-hierarchy segments). For nonactive segments, it is done by
freeing nonnull record addresses in the VTOCE file map, and replacing them with
null device addresses.

Among the major issues in truncation is the implementation of the address
management policy as described in Section VII of this document. The
repercussion here 1is that record addresses may not be deposited (placed in the
free storage pool for that pack, by calling pc$deposit_list) until it is known
for a fact that the VTOCE from which they were removed has been successfully
written out to disk. Were this not so, it would be possible that some addresses
might be deposited, picked up by a new segment, and written out to that VTOCE.
Then, if +the VTOCE which had the addresses originally was not yet successfully
written out, or badly written out, and the system crashed at that point, two
VTOCEs would both contain the same record address, a situation known as a
"reused address" which is a bad security violation. Thus, the primitive in the
VTOC manager, vtoc_man$await_vtoce, is provided for just the purpose of waiting
for successful I/0 completion on the writing of VTOCEs.

Another issue in truncation of segments is the updating of quota used
figures for the quota account against which the truncated segment is charged.
This involves some machination in the program truncate_vtoce to 1locate this
quota account.

The truncation of active segments is performed entirely by pec$truncate,
there is not as much as an error code in this case. Records are not deposited,
but rather, "nulled", by page control, as described in "Truncation" under "Page
Control Services" in Section IX of this document.

The basic steps of truncation are:

1. Determine if the segment is active, which involves 1locking and
searching the AST. If not, it cannot become active, (parent directory
is 1locked) so unlock the AST and proceed with step 2 secure in this
knowledge. If active, invoke pc$truncate on the segment, unlock the
AST, and return, the truncation being complete.
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2. Read in the VTOCE file map. This must be done by obtaining the first
vtoce-part, containing the current length and the first part of the
file map (also the UID: here is the check for connection failure), and
using the current length to determine which other vtoce-parts, if any,
are needed. Get them if any.

3. Begin the indivisible operation which must be bracketed by calls to
get_pvtx$hold_pvtx and get_pvtx$release_pvtx. Replace the real record
addresses in the portion of the file map being truncated with null
addresses. Save the addresses in the file map so being replaced, for
step 5.

4, Write back the VTOCE with a call to vtoc_man$put_vtoce. Write Dback
only those vtoce-parts which were read in.

5. If there were any record addresses collected in step 3, i.e., real
truncation was performed, first await the successful completion of the
VTOCE writing started by step 4, via a call to vtoc_man$await_vtoce,
and second, upon this successful completion, call pc$deposit_list upon
the collection of record addresses gathered in step 3, making them
available for use in other segments. This step (5) is skipped for
deciduous segments, as their addresses belong to the hardcore
partition, and are managed differently (See "Address Management
Policy" in Section VII).

6. End of critical section bracketed by get_pvtx calls. Find the record
quota account to which this segment's pages are charged, by activating
its parent (via a call to activate), and passing the ASTE returned by
this activation and the incremental quota change to the page control
quota cell manager, quotaw, at entry quotaw$cu.

A fine point of the truncate_vtoce function 1is the special service
performed on behalf of priv_delete_vtoce, described later along with other
auxiliary segment control services. If the "owner" field of the supplied branch
is M"7T7777777776"b3, which cannot be the UID of any directory, then this branch
is a dummy branch for an orphan VTOCE being deleted by sweep_pv. This
suppresses step 6 above, as the segment's parent may not even exist, let alone
be addressable in this process.

The special treatment of demount protection (i.e., not calling get
pvtx$release_pvtx or get_pvtx$hold_pvtx) for calls on behalf of delete_vtoce has
already been described under the description of that function.

I NG N

The most important externally visible manifestation of segment control is
that part of it which satisfies segment faults for Multiecs processes. The
technique for wusing a Multics segment, as implemented by the procedures called
through hes_$initiate, and similar, is as follows: it is called M"making a

e
segment known":

-

Use the directory portion of the pathname given to make the parent
directory of the requested segment known. When this i1s done, the
Multies virtual memory interprets hardware references to the resultant
segment number as references to that directory.

2. Search this directory for the branch that has the entry name supplied
to hes_$initiate in this call.

3. Search the KST (Known Segment Table) of this process, for a segment
that has the UID (saved in the KST) the same as the one in the branch
found in step 2. If found, the segment is already known; the index of
the KST entry is its segment number.
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4. If not found in step 3, allocate a new entry in the KST of this
process. Put in it the UID of the segment, from the branch found in
step 2, and a pointer to that branch. Both are necessary because
branches (i.e., segments) can be deleted, or simply moved around by
the on-~line Salvager. This double-check ensures the binding between
branch and segment. Again, the index in the KST of this entry is the
segment number.

These operations as described are more properly a part of Address Space
Management. The point of restating them here is that they are the preparation
in any process for segment control to add the segment to the address space of
the process, when that segment number 1is used in that process. Basically, an
attempt to use the segment number gotten in step 3 or 4 causes a segment fault,
(directed fault 0, the result of there being "no SDW", i.e., one with sdw.df =
"0"b). The segment fault handler (seg_fault, the basis of much of the following
discussion) inspects the KST entry in this process specified by the segment
number faulted upon (which is in the Appending Unit information in the SCU data
stored by the segment fault (see the Multics Processor Manual, Order No. AL39)).
The UID therein may be wused to find if the requested segment 1s active; if so,
an SDW may be constructed describing the ASTE of the segment. If not active,
the segment may be activated from information in the branch of the segment, and
then the SDW may be constructed.

Clearly, the construction and use of SDWs, as well as the interrogation of
the AST requires all kinds of locking protection, as has been described
previously. Thus, this operation of satisfying a segment fault 1s somewhat more
complicated than this. Central to these proceedings is the procedure
"activate"; before we describe activation, we first describe the functional
interface and purpose of the procedure "activate".

Significance of "activate'

The procedure "activate"™ is called with a pointer to a directory branch,
and returns an ASTE pointer for the segment whose branch was supplied, and a
status code. This statement alone 5says much about what this procedure does; it
is the contract of "activate" to make a segment active if it is not, and in
either case, return the ASTE (via a pointer) of the segment. Since a decision
about whether or not a given segment is active is not even meaningful unless the
deciding process has the AST locked, "activate" returns to its caller with the
AST locked. It had to 1lock the AST to find out whether the segment was active
in the first place, and once it was active, the usefulness of its activity is
limited to operations protected by the AST lock.

The procedure '"activate" is given a branch pointer. 1In general, branch
pointers are not valid wunless the process using them has the containing
directory 1locked. (The branch pointers in the KST are an exception to this
generalization: the UID in the K3ST entry allows them to be dynamically
revalidated every time they are used.) Thus, activate is called, and returns
with, the parent directory of the supplied branch locked to the calling process.
This fact makes the parent directory lock of a segment implicitly a protection
against simultaneous activation;  M"activate" does not unlock the parent
directory at any time.
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The operation of the procedure "activate" is thus to obtain information
from the branch given (such as the UID),(1) lock the AST, search it for that
UID, and return the found ASTE pointer 1if found, with the AST still locked. If
not found, activate proceeds to activate the segment as described under
WActivation" below.

SEGMENT FAULT HANDLER

Having set up the necessary framework for understanding of the segment
fault handler, seg_fault, we proceed to describe the action taken in response to
a segment fault.

The segment fault handler, seg_fault, is invoked by the module "fim" (fault
interceptor module, see the Multics Process and Processor Control PLM, Order No.
AN6QO) in response to a directed fault zero. As the segment fault handler
returns a zero (successful) or nonzero (error) status code to fim, so does fim
restore the machine conditions for that fault (so that the interrupted Control
Unit cycle may be retried (see the Multics Processor Manual)) or cause the
condition "seg_fault_error" to be signalled at the point at which the fault
occurred.

The basic steps of the segment fault handler are as follows:

1. Obtain the segment number faulted wupon from the machine conditions at
the time of the fault, passed by fim as a parameter. If this is in
the range of valid stack segment numbers, and pds$stacks for that
number is null, call makestack.

2. Locate the KST entry for the segment (call get_kstep). If this is the
root being faulted on, obtain its ASTE pointer (the root is always
active: aste.ehs = "1"b, and thus the ASTE need not be locked to use
this pointer) skip steps 3 to 6, lock the AST, and proceed directly
with step 7. :

3. Cbtain a valid pointer to the branch of the segment. The procedure
sum$getbranch_root_my (see the Multics Address and Name Space
Management PLM) is wused to do this; it makes the necessary validation
checks as described previously, and returns with the parent directory
locked, ensuring the validity of this pointer (as well as the
existence of the segment and a protection against another process
trying to simultanecusly activate this segment) for as long as this
process leaves that directory locked to it.

4. Obtain access, : ring-brackets, entry-bound, and other
directory-resident information about the segment from the branch. The
procedure update_kste_access is used to obtain the access mode that
will be put in the SDW to be constructed. It manages a copy of the
access mode kept in the access field of the SDW, and checks whether or
not this information is obsolete by comparing date-time-branch
modified in the branch given with a copy saved in the KST entry of the
segment. If the branch is ahead of the KST, directory control must be
called to recompute the access. Recall that this process has this
directory locked; no process is now changing the ACL of the segment.
See below. :

(1) Note that the AST must not be locked to touch directories: see "Locking
Conventions®, thus it is p
C

locked to the calling pro time of call.
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5. Check that the logical volume on which the segment resides is either
public or private and mounted to this user. Check that it is mounted
at all. logical_volume_manager$lvtep and private_logical_volume$lvx
provide these services. (See Section XIV of this document.)

6. Call "activate" to obtain an ASTE pointer for this segment, and lock
the AST to this process in so doing. As stated, this causes the
segment to be activated if not active: other segments may be
deactivated in the course of so doing.

7. The AST is now locked to this process, and we inspect the ASTE for the
segment being faulted wupon. If the referencing address is greater
than the maximum length in the ASTE, cause the segment fault handler
to return to fim (after appropriate unlockings, of course), so that an
error can be signalled. If pack overflow has been observed on this
segment (see "Segment Moving™ below), invoke the segment mover, and
return to fim with the status code returned by the segment mover.

8. Construct a trailer entry in the system trailer segment describing
this process! connection to +this segment. The fact that we are now
committed to constructing and using an SDW means that we must make a
trailer entry. See "Trailers and Setfaults"™ earlier.

9. Compute the new encacheability state of the segment based upon the
current encacheability state (see "“Encacheability Control" earlier)
and the access mode of the SDW being constructed. Directories are
generically unencacheable.

10. Build an SDW out of a page table address derived from the ASTE pointer
gotten in step 6 (or 2 for the root); mode, ring-brackets and
entry-bound derived from the information gotten in step 4 (zero ring
brackets, read-write access for any directory); and the encacheability
derived in step 9. Install this SDW in the descriptor segment, making
it liable to revccation (see "Trailers and Setfaults" earlier) when
the AST is unlocked. The process is now said to be "connected" to the
segment.

1. Assuming that the operation has progressed this far, unlock the AST
(subjecting the SDW to setfaults and the segment to deactivation) and
the parent directory (allowing access change, reactivation, or
deletion of the segment). Return "no error® to fim.

Some notes on segment fault handling:

The segment fault handler uses the SDW in the descriptor segment as an
information repository even at times when the SDW is not valid. These fields
(address, ring-brackets, and access entry-bound) are used to avoid recomputation
when the reason that the SDW was revoked did not involve changing these
quantities. For instance, if a segment is activated and deactivated several
times, revoking and re-creating SDWs in many processes, no access or
ring-bracket fields need to be changed if no set-acl or set-ring-bracket
operations have been performed on the segment. Similarly, if SDWs were revoked
because of a set-acl, set-ring-brackets or similar operation, the address in the
SDW need not be invalid (or the trailer cut; see "Trailers and Setfaults" above)
if the ASTE is not being freed.

Any time that access, ring-brackets, entry-bound, or maximum length
(segment bound) of a segment are changed, directory control calls the procedure
change_dtem to advance the "date-time-entry-modified" (entry.dtem field of the
directory branch). Saving old values and comparing to new values of this
pseudoclock can thus be used to see if an older computation of any of these
attributes has since been invalidated. This technique is used, as described in
step 4 above, to avoid expensive access recalculation 1in the case of JSDW
revocation as a result of deactivation. Similarly, the nonzero quality of the
SDW field sdw.add is used to avoid freeing and re-creating trailers in the case
of access change on an active segment. The procedure setfaults follows these
conventions when revoking SDWs, being careful not to destroy these fields of the
SDW.
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The global transparency attributes (so-called page control switches)
aste.gtpd, aste.dnzp, aste.gtus, aste.gtms, (See the ASTE breakdown earlier) are
computed from the old values and KST flags each time an SDW 1is added by the
segment fault handler. Thus, segments have these attributes in their ASTE only
if the only process that is connected to the segment requests these attributes.

The special case of segment faults on the stack segments of processes is
part of the scheme wherein stacks are automatically initialized to the necessary
contents for processes to run in the ring of that stack. These references are
noticed by the segment fault handler, which does nothing else except call the
procedure "makestack", if this has not yet been done for that ring (pds$stacks
is an array of per-ring pointers, whose null or nonnull content indicate this).
This procedure creates a stack segment, and in 1initializing it, takes a
"pecursive"™ segment fault the first time it touches it. However, it will have
changed pds$stacks for that ring to be nonnull by that time, so that segment
fault will not be one corresponding to this special case.

A critical aspect of segment fault handling is that any process can
"invoke" the segment fault handler (by taking a segment fault) any time it
touches any nonhardcore segment or directory. Since such segments can be
deactivated at any time that the AST is not locked, any reference to a
nonhardcore segment (such as user-supplied arguments) or directories is subject
to taking a segment fault at that point. Since segment faults cause directories

and the AST to be locked, any process touching user segments or directories can
lock directories and the AST as simply a result of such reference. One

implication of this statement is that a process that has a directory locked may
not touch any directory or user segment unless it has the following property: A
segment fault at that instant would result in locking only such directories that
would not cause the process (given that it has this directory locked) to violate
the 1locking hierarchy. One implication of that fact is that gvery reference to
a locked directory is subject to such a segment fault; since a segment fault
upon any directory (or segment) will cause locking of its parent, and a
directory's parent's lock is higher in the hierarchy than its own (for this very
reason) directories may be referenced without causing deadly embraces in the
case where a process has a single directory (explicitly) locked.

Another consequence of this implementation is that a directory may be
referenced with the AST locked to a process if and only if that directory can be
established as being active at the time that the AST was locked (for with the
AST locked, it, and consequently its parents, cannot be deactivated). Multics
does not now make use of this feature. However, the contrapositive of this
statement asserts that in general po directory may be touched with the AST
locked, for lest it be shown to be active at the time the AST was 1locked, the
resulting segment fault would cause a "mylock"™ on the AST (which crashes the
system), as well as an attempt to lock the (higher) lock of the parent of the
directory being faulted upon.

ACTIVATION

The most important step in segment fault handling, the connection of
processes to segments, is the activation of the segment faulted upon, in the
case where it is not active at the time the segment fault handler locks the AST.
The code for activation of segments 1is 1in the procedure "activate™, whose
interface and significance have already been described.

Activation is that action taken by activate when it finds that the segment
whose branch was passed in is fcund, under the AST lock, not to be active. )
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These are the basic steps of activation:

1. Unlock the AST, having found the segment not active. Since the parent
directory is locked, and the segment was found not active, no other
process can be attempting to activate it.

2. Get as much of the VTOCE as is necessary to obtain the entire file
map. Read the first vtoce-part to determine this; also check the UID
of this VTOCE against that in the branch to determine if a connection
failure exists; return an error if so.

3. It will be necessary to ensure that the parent of this segment 1is
active {(of course, under the AST lock), due to the regquirement that
all active segments other than the root have active parents. Once we
have threaded this segments ASTE into the inferiors list of the
parent, it will stay this way. But we must get it this way. This is
done by locking the AST, and checking the SDW for this segment to see
it has not been revoked (since the AST is locked to this process, it
now cannot be). If it has not been revoked, the SDW may be used to
find the parent's ASTE (remember that SDWs contain page table
pointers, and the page table is in the ASTE). If it has been revoked,
unlock the AST, touch the parent, relock the AST and retry this until
it is found active under the AST lock. Although a more complex
approach that does not 1involve nondeterministic retry is possible,
this action is no more nondeterministic than a process trying to
satisfy a page fault.

y, Obtain a new free ASTE for the segment being activated via a call on
the AST replacement algorithm in procedure get_aste (see "AST
Replacement Algorithm" earlier). This may involve deactivating some
other) segment (Hopefully not the parent obtained in step 3 -- see
below). :

5. Thread the ASTE gotten in step 4 into the inferior list of the parent
ASTE found in step 3. Fill in the ASTE with all of the VTOCE
"activation information" (See the discussion of the VTOCE structure
earlier), and initialize cumulated flags (aste.dnzp, aste.gtus,
encacheability, etc., see the last section) to default values.

6. Invoke page control (pc$fill_page_table), passing it the VTOCE file
map, to initialize the page table and other page control information.
Since we are activating this segment, and the parent directory is
locked, no one is trying to use this segment, or even knows it is
active or being activated, other than this process.

7. Place the UID in the ASTE (see below) and hash it into the AST hash
table.

8. Return, with the AST locked, the AST entry (as a pointer) from step 4.
Some subtleties of activation:

The nondeterministic 1looping and unlocking to obtain the parent ASTE must
be done before the obtaining of the new ASTE in step 4. CQOtherwise, the new ASTE
would be in a peculiar inconsistent state during these unlockings. Thus, we
determine the parent ASTE before getting the new ASTE. However, there is a
distinct danger that the AST replacement algorithm might choose the very ASTE of
the parent as the segment to deactivate to provide the new ASTE. Not only would
this invalidate the saved pointer to the parent ASTE, but would cause the new
ASTE to be threaded as its own parent, causing infinite looping at page control
quota management time. Thus, the bit aste.ehs (entry hold switch) is saved, and
temporarily s=t on, and restored, in the parent's ASTE, to prevent the parent
from being deactivated by the AST replacement algorithm. The same is true
during a boundsfault (see "Boundsfaults" later on).
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The UID is the last item placed in an AST entry. This is so that if the
system should crash while filling in the AST entry, emergency shutdown could use
the fact that the UID is zero as a cue to avoid invoking a VTOCE update on an
inconsistent, invalid ASTE. Normally, shutdown (emergency and regular) causes
VTOCE wupdates on all active hierarchy segments. Since the AST hash table
manager (search_ast) relies on aste.uid, it cannot be called until step 7 has
filled in this field.

DEACTIVATION

Deactivation 1is the removal of a segment from the AST, the revocation of
its "active status™. Deactivation is a simple mechanism that 1is invoked on
behalf of the AST replacement algorithm, to free an ASTE to make room for a new
one, deletion of segments (see "Deleting Segments", above) to relinquish their
AST resources, and volume demounting, to take the segment out of use and update
its)VTOCE and file map to make the disk being demounted accurate (see Section
XIv).

Deactivation, performed by the procedure "deactivate", is composed of the
following steps:

1. Check for segments which may not be deactivated, (such as those with
the flag aste.ehs on, those with no parent (hardcore) or those with
active inferiors). The demand deactivator (see "Demand Deactivation"
in this section) can cause this to occur.

2. The AST is locked as a precondition of deactivation. Totally cut the
trailer, revoking all SDWs for this segment (setfaults). No process
can now use the segment until the AST, at least, is unlocked.

3. Call page control (pc$cleanup) to remove all pages of the segment from
the bulk store subsystem or main memory, writing all modified pages to
disk (see "Services of Page Control" in Section IX), This resurrects
all assigned addresses and finds all =zero pages, nulling their
addresses (see "Address Management Policy"™ in Section VII).

4, Update the VTOCE from the now quiescent ASTE, putting final values of
file map and all activation information in the VTOCE (see "VTOCE
Updating™ below). ’

5. Thread the entry out of inferior lists, decrement parent's inferior
count, hash it out of the AST hash table.

6. Make the ASTE free. The put_aste procedure is called to do this: it

clears all fields, reinitializes the page table to debugging values,
and places the entry at the head of the appropriate used list.

VIOCE UPDATING

VTOCE updating is not strictly a service of segment control or an artifact
of its implementation; it is a necessity of the data organization and function
of Multics segmentation.
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VTOCE updating consists of observing the activation attributes and file map
of an active segment, and making the activation attributes and file map in the
VTOCE of that segment reflect any changes that have occurred since the VTOCE was
last wupdated, or the segment activated. VTOCE updating is performed routinely
every time a segment is deactivated (see "Deactivation" earlier), and when the
system is shut down (all VTOCEs of active segments are updated, for both
emergency and regular shutdown). VTOCE updating is also invoked periodically by
the AST trickle in get_aste (see the earlier discussion "AST Trickle") as
necessary, and at certain times in segment moving.

VIOCE wupdating is performed by the procedure update_vtoce, upon an AST
entry (hence the AST is always locked when this activity is performed). In the
case of trickle-initiated updates, the information updated may become invaiid
while it is being updated, but yet, it is a snapshot of some valid state of the
segment at some time. The trickle update is a hedge against a fatal crash.
Should a fatal crash occur, the pages of the segment that appear in the next
bootload, and the state of the segment as a whole, will be that state reflected
the last time the VTOCE was updated. Thus the trickle causes periodic and
regular update (except under times of very light load) of segments that stay
active a long time, and thus, do not enjoy the VTOCE wupdate performed at
deactivation. VTOCE wupdating manifests a critical facet of the system address
management policy (see "Address Management Policy, Section VII). Record
addresses reported to a VTOCE must be guaranteed to have data from the segment
owning the VTOCE, lest the system crash and "uninitialized" pages containing
other people's data appear. Furthermore, no record address may ever be freed
(added to the free pool of record addresses) unless it is guaranteed that it is
not in the VTOCE from which it was culled (See the discussion of "Segment
Truncation" earlier in this section).

The steps of VTOCE updating are few and simple.

1. Obtain, from +the VTOC manager, as many vtoce-parts as will Dbe
necessary to reconstruct the new image of those vtoce-parts that will
be changed (see below). For most segments, this is none at all, as
the first vtoce-part is usually constructable entirely from the ASTE.
(See below).

2. Call page control (pc$get_file_map) to put the latest file map (record
addresses and null addresses) in the copy of the VTOCE being prepared.
Also, get +the latest activation information from a copy ASTE handed
out by pc$get_file_map, and put this information in the copy of the
VTOCE being prepared. pc$get_file_map also returns a list of record
addresses that must be deposited once the VIOCE has been successfully
written.

3. Compute and update time-record products if this is the VTOCE of a
directory with a quota account.

4. Call the VTOC manager to write out the new copy of the VTOCE, actually
initiating its update onto disk.

5. If step 3 returned any record addresses to be deposited, first call
vtoc_man$await_vtoce to await the successful completion of the I/0
started in step 3, and second, pendent this successful completion,
call pc$deposit_list to free these addresses. Again, see the earlier
discussion "Segment Truncation".

6. Turn off aste.fmchangedl if aste.fmchanged was on in the copy of the
ASTE returned in step 2 (see below).
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It 1is quite difficult to determine which vtoce-parts have to be read by
step 1. If step 3 must be executed, the current time-record product must be
obtained, and thus, the first vtoce-part must be read. Otherwise, the first
vtoce-part can be written with information wholly derived from the ASTE, and
thus need not be read. The second vtoce-part need never be read; either it will
be filled with some record addresses and some null addresses as obtained from
the file map in step 2, or it will describe a region beyond the current length
of the segment when wupdated, and thus be invalid, and hence not written. If
parts of the file map residing in the third vtoce-part must be wupdated, this
vtoce-part must be read, as the permanent information residing there cannot be
reconstructed from the ASTE. We cannot know whether or not the third part of
the file map will have to be written until step 2 is done. Thus, we make a
guess based upon the current length of the segment at the time that step 1 1is

executed. If, wupon getting the current length, it turns out that the segment
has shrunk between steps 1 and 2, then the read was unnecessary, and nothing is
lost. If, however, we do pot read it, and the segment grows, we then read it

after we have gotten the snapshot in step 2.

The entry point pe$get_file_map turns off the "file map changed" bit in the
ASTE, aste.fmchanged. The semantics of this bit are that the file map has been
changed since the last pec$get_file_map. When segment control receives that
ASTE, with this bit on, and its file map, it is obliged to update the VTOCE.
Should the system crash, however, before this is done, but after page control
has turned off the bit aste.fmchanged, the VTOCE update performed at emergency
shutdown time will pot find the bit on, and thus not know to update the file map
in the VTOCE. Therefore, page control turns on the bit aste.fmchangedil when it
turns off aste.fmchanged; update_vtoce turns this off once it has wupdated the
VTOCE. Should ESD find this bit on in any ASTE (see the procedure demount_pv),
ESD will take its presence as an indication that +this has occurred, and
reinstate aste.fmchanged.

A file map, as reportable to a VTOCE, has changed only when addresses are
resurrected following successful writes (See "Address Management Poliey") or
when pages have become zero. However, page control turns on fmchanged when
records are allocated to a segment (at new-page fault time) even though they may
not be reportable to the VTOCE. A VTOCE, when updated in this state, will have
vtoce.records reflecting the real number of records used by the segment
(including the new ones) but the file map will not have these new addresses.
Should the system crash fatally (no ESD) before such a segment is again updated,
or deactivated, the Physical Volume Salvager will notice that records-used is
inconsistent with the file map, implying that pages have been lost in this way.

DESCRIPTOR SEGMENT MANAGEMENT

Segment control provides the service of removing descriptors (SDWs) from
descriptor segments, in addition to that of creating and installing them
(segment fault handling). Often, this service is performed on behalf of segment
control itself, such as during the deactivation of a segment, when all SDWs must
be revoked. (See the earlier "Segment Fault Handling", including the
"Deactivation" discussion therein). Although segment control, via the segment
fault handling mechanism, is the only agency in the system that constructs SDWs
for hierarchy segments (other than deciduous SDWs and PDS/KST SDWs), several
other system functions require revccation or total removal of 3DWs. All of
these functions are implemented in the procedure "setfaults". The basis of the
revocation and trailer mechanism has already been described in the "Overview and

Concepts" section (see "Trailers and Setfaults").

All procedures in directory control that change access attributes, such as
ACLs (access control lists) or access class must revoke all SDWs for the segment
whose attributes are being changed, if that segment is active. This is so that
the segment fault handler will find that date-time-entry-modified has changed,
recompute the attributes, and give the process a new SDW. Changing maximum
length or entry bound causes this same behavior.
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The entry setfaults$if_active is called with the UID of the segment to
perform such functions. Internal to this procedure, it locks the AST, hashes in
this UID to find if the segment is active, performs the setfaults if so, and
unlocks the AST.

Another service of the setfaults routine is to remove the SDW for a segment
in a given process when that process terminates the segment. This is done
because the process no longer wishes the segment to be addressable; it must be
removed from the process' address space, because the segment number will be
reused (the KST entry has been freed). It 1is necessary to invoke segment
control to remove this SDW because deleting the SDW implies removing the trailer
entry in the system trailer segment describing it (which must, incidentally, be
done under the protection of the AST lock, which protects the trailer segment).
Were this not done, a setfaults on the first segment would randomly destroy the
SDW for the next segment that that process had used with that segment number.
This entry to setfaults, setfaults$disconnect, supplied with a segment number,
also clears the associative memory of the running processor, to remove this SDW
from it should it be there. Of course, it is possible that the segment might
not be active at the time a process terminates it; in this case, there is no SDW
to revoke, but the access information kept there is cleared out. This service
is also invoked at the time a process detaches itself from a private logical
volume, to make initiated segments on it inaccessible. (See Section XIV.)

Segment control must also be invoked to destroy descriptor segments of
processes being destroyed. Each SDW in such a descriptor segment which is for a
segment still active at the time of this destruction, has a trailer entry for
the process being destroyed, which must be deleted from the trailer 1list for
that segment. The entry setfaults$deltrailer is called on each such SDW, by the
process-destruction primitive deactivate_segs (See "PDS and KST Management"
later on). Since this is done epn masse for all segments in the descriptor
segment of the process being destroyed, deactivate_segs locks the AST and calls
setfaults$deltrailer for each SDW with a nonzero "sdw.add" field. If a trailer
entry 1is not found at this time, the message "setfaults: missing trailepr"
appears and a system crash results.

A special kind of setfaults, setfaults$cache is used by the encacheability
control algorithm (see "Encacheability Control™ in "Concepts and Overview") to
revoke all SDW encacheability control bits.

All versions of setfaults ~ other than setfaults$disconnect and
setfaults$deltrailer clear the associative memories of the system to force the
changed SDWs to be noticed by the system processors. All setfaults other than
system-wide setfaults (other than setfaults$cache, setfaults$deltrailer and
setfaults$disconnect) also reset the encacheability state of the segment, as no
SDWs then describe it. (This action is inhibited by aste.inhibit_cache for IOI
buffer segments and the like: see "Encacheability Control™.)

BQUNDSFAULT HANDLING

A boundsfault is the occurrence of an attempted reference to an address
beyond the current length of a segment as defined by the SDW bounds field (not
the current number of records, etc.) If the maximum length of the segment 1is
equal to or smaller than the current page table size allocated for this segment,
then this situation is simply an error and is signalled at the point of the
faulting reference. If, however, the reference is within the maximum length of
the segment, but beyond the current page table size, then segment control must
allocate a new page table, and thus a new ASTE for this segment, being in a
larger pool. Therefore, a boundsfault (nonsignalled case) involves getting a
new ASTE and freeing an old one, and thus shares some of the flavor of both an
activation and a deactivation.
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The boundsfault handler is the procedure "boundfault". Like the Segment
Fault Handler, it 1is invoked from the fault interceptor, fim, and causes a
machine condition restart or signal depending upon the status code returned to
fim. Boundsfaults are technically a sub-case of access violation, detected by
the 68/80 processor Appending Unit during the SDW appending cycle (see the
processor manual).

The basic steps of a boundsfault are these:

1. From the segment number in the machine conditions, find the branch for
the segment, locking its parent directory when so doing (a call to
sum$getbranch_root_my, just like in the segment fault handler).

2. Lock the AST, so that the old ASTE can be found. If the segment turns
out to have been deactivated by the time we 1lock the AST, it is just
as well, as restarting the machine conditions will reactivate it.

3. Find the old ASTE via the SDW in this process (get_ptrs_$given_segno).
See step 2 for the notfound case. Get the maximum length from it
(aste.msl). 1If attempted reference is beyond this, unlock the AST and
the directory and cause the boundsfault handler to return an error,
causing "out_of_bounds" to be signalled.

g, Setfaults the old ASTE. Again, the AST 1is locked to wus, as is
necessary to perform this c¢lass of setfaults. This inhibits all
processes from referencing the segment via the old ASTE.

5. Obtain a new ASTE from get_aste, via the AST replacement algorithm.
Temporarily entry-hold the parent ASTE (which is easy to find in this
base, as the son is already active (the boundsfaulted segment, and the
parent must thus be active) while so doing, so that the AST
replacement algorithm does not accidentally deactivate the parent (See
the explanation 1in the description of the segment fault handler for
more light on this problem). The new ASTE 1s guaranteed to be in a
different pocl than the old ASTE, for that is why we are taking a
boundsfault, and thus cannot be accidentally deactivated in these
proceedings.

6. Call page control (pc$move_page_table) to move all ASTE information,
including the page table (but not the threads) from the old to the new
ASTE, and update all page control data bases necessary to move all of
the page table (see "Services of Page Control").

7. Rethread all inferior lists and parent pointers affected. If this is
a directory being boundsfaulted on, all of the father pointers of
inferior segments' ASTEs will have to be wupdated to point to the new
ASTE. This step 1s the entire reason for the existence of the
inferior 1ist in the AST.

8. Hash out the old ASTE, hash in the new, as the segment is still
active, but in a different place in the AST.

9. Deposit (put_aste), or free, the old ASTE.
10. Unlock the AST and the parent directory, and return a zero status code
to fim.

Fine points:

The most difficult part of the boundsfault operation is that performed by
page control, described in Section IX. This is a consequence of the fact that
page tables are permanently associated with AST entries.
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Very peculiar machine conditions are stored by the PTW2 prepage append
cycle used by EIS decimal instructions. This is a consequence of the design
that the computed address for the PTW2 page is developed by the Appending Unit
of the processor, and not stored as the Control Unit computed address in the
machine conditions. Therefore, both the boundsfault handler and the page fault
handler (see Section IX) must be aware of these peculiarities of the machine
conditions.

SETTING AND REPORTING ON VTOC ATTRIBUTES

As defined in Secticn II, VTOC attributes are those properties of a segment
that are stored in its VTOCE and/or AST entry, as opposed to its directory
branch and associated data structures. Typical VTOC attributes are maximum
length, current number or records used, date-time-modified, quota used, quota,
time-page product. Typical branch attributes are bit count, author, ACL, names.

Directory control primitives, available both through the gate hcs_ and more
privileged gates available to the backup system, have need to obtain this
information about segments, and set 1it. The procedure vtoc_attributes performs
all of these functions, deciding when to go to the ASTE, when to go to the
VTOCE, and which vtoce-parts to deal with.

There are a multitude of entries to vtoc_attributes, which are all either
"set" or "get" entries. All of these entries specify a segment via PVID and
VTOC index, usually derived from a branch. These entries also receive a segment
UID; this allows the segment to be searched for in the AST, and allows a check
for connection failure (as in delete_vtoce and truncate_vtoce; see the
introduction to "Segment Control Services™). All of the entries are called with
the parent directory of the segment locked, and engage in the locking/nonlocking
protocol much as given under "Locking Conventions™ in Section II.

The vtoc_attributes procedure is protected by the AST lock when modifying
attributes. This is a conservative action.

Some notes:

Whenever vtoc_attributes changes a max-length, SDWs may have to be
recalculated. Thus, setfaults$setfaults, the most powerful type, is called to
fault all SDWs, <causing all SDWs to acquire the new bounds field. Of course,
all processes using SDWs for this segment then take segment faults, which wait
for the unlocking of the parent directory by the caller of vtoc_attributes.

Whenever vtoc_attributes is asked to report date-time used and date-time
mocdified, it .updates these quantities in the AST (in the active case).
Date-time-used is always updated (the storage system considers used to mean the
same as active, in terms of date-time wused), (unless aste.gtus is on,
suppressing this), and if aste.fms is on (signifying that page control has
noticed modified pages), aste.dtm (the date-time modified in the AST) is updated
to the current clock value as well, and aste.fms turned off. This ritual is
also performed by pc$get_file_map, which reports date-time-used and
date-time-modified along with other activation information to the VTOC updater,
update_vtoce. (See "VTOC Updating" earlier).
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PDS AND K

Each new Multics process ‘i.e., other than the initializer) inherits the
entire hardcore address space from the initializer with a few exceptions. These
exceptions are the descrigptor segment, the Known Segment Jable (KST) and the
Process Data Segment (PDS) of the process, and the segment PRDS (PRocessor Data
Segment). This is to say that any reference in a hardecore program, via symbolic
link (e.g., "call setfaults$deltrailer” or "if active_hardcore_data$x = T" etc.)
refers to the same segment, when the supervisor is running in any process for
all segments with these few exceptions. This is because all of the SDWs for a
given segment number in different processes (among the SDWs of the supervisor),
are copies of each other, never changed or revoked. However, the segments of
the supervisor that belong to a particular process must in fact be different
from each other. Thus, a reference to segment 60, resulting from a 1link to,
say, pds$processid, refers to different segments in different processes.

The descriptor segment is not created or destroyed by segment control; i:
is created by the program "plm", which copies the initializer's descriptor
segment (the hardcore region) or deals with prelinked processes as appropriate,
It is not managed by segment control at all. The gontents and meaning of the
descriptor segment are, however managed by segment control, as explained
previously under "Descriptor Segment Management™ and "Segment Fault Handling".

The Processor Data Segment (PRDS), carried around from process to process
by a processor as it switches processes, is similarly not dealt with at all by
segment control, as a segment, or as a data base. Its meaning, identity, and
purpose are explained in the Multics Reconfiguration PLM, Order No. ANTI1.

The PDS and KST of a process, however, are segments in the storage systen
hierarchy, in .fact, in the process directory of the process to which thev
belong. The have VTOCEs, branches, and AST entries at times as any other

storage system segments. These segments are created by the hardcore procesy
creation program (act_proc), and deleted by the hardcore process destruction
program, using the normal directory control segment creation/deletion

pricitives, append and delentry. In this respect, these segments are peculiar
only insofar as that they are created at a validation level of zero, in the
ring-0 supervisor. The process creation primitive fills in the new PDS with all
relevant and useful information about the new process, having appended it as =&
segment to the hierarchy, and initiated it as is usual.

However, the wuse of a piece of the hierarchy as a piece of the supervisor
requires special treatment. Note that all deciduous segments are both part of
the hierarchy and part of the supervisor (examples: hes_, .sys_info,
active_all_rings_data). They, too, are in directories, have valid pathnames,
and are described by SDWs constructed by other-than-segment-fault means. These
hardcore SDWs, however, which all processes inherit, were produced by
initialization, and are not subject to revocation or destruction in any living
process. They have no trailers. Now, since these segments are part of the
supervisor, in all processes, they may not be deactivated, nor the SDWs revoked,
lest the supervisor take a segment fault while performing some operation, suct
as processing a page fault or a segment fault, which would make this cumberscme,
if not impossible. The segment-fault handling code, and all that it relies or
(virtually all of the supervisor, as may be inferred from the previous sections)
thus cannot be deactivated, nor have its SDWs revoked. There are no KST entries
or branches for such segments. They are supposed to handle segment faults, not
be subjected to them.
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Thus, those segments that will be used as part of the supervisor in a new
process must acquire something of the nature of deciduous segments; having
nonrevocable SDWs that describe nondeactivatable AST entries. When a PDS and
KST have been readied by process creation for a new process, segment control is
invoked to transform these segments into peverse deciduous segments, segments
which were created in the hierarchy and become part of the hardcore address
space. The procedure activate_segs is responsible for this.

The task of activate_segs is making a PDS and KST nondeactivatable, and

returning SDWs for them, describing the ASTEs in which they were
nondeactivatably activated. The procedure grab_aste, described below, is used
to activate them nondeactivatably. When they have been semi-permanently

activated, activate_segs returns their SDWs, with the "encacheable™ bit gn, as
explained under "Encacheability Management"™. For the PDS, a special operation
known as "prewithdrawing" is performed. This means that record addresses are
assigned to all pages of the segment, to ensure that this PDS, when used as a
ring-0 stack in the new process, never is unable tc grow a page or itself
because there 1is no meore room on the pack that it was on. The PDS cannot be
subject to segment moving, when in use by the new process, for it 1is the very
segment that the segment mover uses as a stack in that process. For the KST, we
are content to let the process terminate if this highly unusual event happens.
For the PDS, however, the system is not even able to invoke the
process~-terminating software were the PDS unable to grow, and the system loops
and/or crashes.

The prewithdrawing is accomplished as follows:

1. The segment has been forcibly activated, nondeactivatably.

2. The bit aste.dnzp is turned on, indicating that no addresses should
ever be reported by page control to update_vtoce, thus all addresses
ever assigned to this segment stay there (see "Address Management").
This bit 1is now wupdated to the VTOCE and reactivated to the ASTE
should this segment be deactivated.

3. The segment is reléased from being held active (grab_aste$release).

4, Each page is touched. This causes a device address to be assigned to
each page.

- 5. The segment is reforcibly activated. It may have been segment-moved
in step 4.

At process destruction time, simply releasing these segments from forced
activity (grab_aste$release) reverts them to their normal status.

SEMI-PERMANENT ACTIVATION (GRAB ASTE)

The procedure grab_aste is used by the PDS/KST forcible activator as
described above, and the IOM/FNP660 Communications Processor buffer facilities
as described below. It has a dual task; given a segment pointer (implying that
the segment is known in the calling process, and a length, it must activate the
segment into an ASTE capable of containing a segment of at 1least that 1length,
and while the AST is 1locked, turn on aste.ehs so that the segment becomes
nondeactivatable while the AST is unlocked, and unlock the AST and return the
AST entry pointer. Since it ensures that the segment is nondeactivatable, the
AST entry pointer is valid even after the AST is unlocked.

The steps for forcibly activating a segment into a given-sized ASTE are as
follows. The basic technique is to force the segment to be that size, and then
activate it.
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1. Locate the branch of the segment, thereby locking the parent directory
to this process. This, as 1in the segment-fault and boundsfault
handlers, is done via a call to "sum".

2. Save the word of the segment at the given 1length. Store something
nonzero into it. This may cause a segment fault, and may cause a
boundsfault. This is valid, for we do not have the AST locked, but we
do have the parent directory 1locked. The segment fault and
boundsfault handlers are both prepared to deal with a "mylock" (this
lock is locked to my process, so neither will lock it or unlock it)
situation.

3. Invoke "activate", as described under "Segment Fault Handling". This
procedure returns with the AST locked, and the segment active, and
tells us where.

4, Using the ASTE pointer gotten in step 3, turn on aste.ehs (the entry
hold switch). This means that the ASTE pointer is still valid when
the AST is unlocked.

5. Unlock the AST. The ASTE pointer gotten in step 3 is still valid, for
in step 4, the segment became nondeactivatable.

6. Restore the contents of the word changed in step 2. Remember, the
parent directory is still locked.

7. Unlock the parent directory.

8. Perform cache machinations as described below if this is
grab_aste$grab_aste_io.

9. Return the AST entry pointer gotten in step 3.

The entry grab_aste$grab_aste_io semi-permanently activates IOM and FNP6600
buffer segments (the FNP bootloading segment, IOI buffer segments). As
described under "Encacheability Control"™, these segments must be made
irreversibly nonencacheable before subjected to such use, as the processor cache
management policy cannot be cognizant of main memory changes produced by the
IOM. Thus, when called at this entry, step 8 sets the cache state to
"Non-encacheable, multiple SDWs", and sets aste.inhibit_cache so that a set-acl
operation will not change this state. It then calls setfaults$cache to revoke
all SDW cache bits, so that this nonencacheability takes effect.

The releasing entries, grab_aste$release and grab_aste$release_io, simply
turn off the bit aste.ehs, and in the 1/0 case, aste.inhibit_cache.

P L~

As described immediately above, and under "Encacheability Control",
segments to be used as I/0 buffer segments by the I1I/0 interfaces or in
bootloading the FNP6600 Communications Processor, must receive special treatment
by segment control. When actually in use as buffers or bootload segments, AST
entry pointers to these segments are saved in I/0 Interfaces data bases, and
page control performs unusual acts upon these segments which prohibit their
deactivation during such use. All of these restrictions boil down to the fact
that the segments must be semi-permanently activated, for I/0 use, as explained
above under "Semi-Permanent Activation"™. Both MCS and the I/0 interfacer deal
with grab_aste.
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SEGMENT MOVING

Segment moving is the single most involved and esoteric action performed by
segment control. A segment move is what happens when an attempt is made to grow
a segment, there is no more room on the pack, and the segment is wholesale moved
to another physical volume in the logical volume where there is room to grow,
transparently. Segment moving may also be invoked on demand, via the highly
priviieged gate hphes_, in order to move segments between packs tc rebalance
them or compress a logical volume (remove a pack from it). These online utility
operations are coordinated by the online pack utility, sweep_pv.

The essence of segment moving is that it 1is basically a creation of one
segment and a deletion of an old one, as seen by segment control and page
control. However, all of the remainder of the system, particularly directory
control and the user ring, must see no change; the new segment must replace the
old segment, and its contents, in situ. In this regard, it shares some of the
flavor of a boundsfault, where one ASTE for a segment replaces another, wholly
and entirely in the AST hierarchy (see "AST Hierarchy" in Section II).

The creation of a new segment to replace an old one involves the creation
of a new VTOCE. All of the attributes, permanent and activation attributes,
other than the file map, of the new segment must be the same as the old. The
new segment must have the same contents and unique ID as the old; thus, it is
the same segment, once the segment move is over. The directory branch must be
changed to designate the new physical volume and the new VIOC index.

Directories may be moved as well as segments. This complicates matters
only insofar as AST hierarchy threads must be reorganized in such cases.

Segment moves are provoked either by a call from the interface vacate_pv
(See "Special Services for sweep_pv" later on) or as a result of a condition
known as pack overflow (or "out of physical volume, 'Q0PV'") detected in the
segment fault handler.

Page control, upon trying to grow a page for a segment, notices that there
are no more records available on its current volume of residence. This may only
happen in response to a page fault (see Section IX). The situation requires
actions that cannot be invoked by page control, which may deal only with wired
data bases in the environment in which it handles a page fault. Therefore, it
sets on the bit aste.pack_ovfl in the ASTE, sets a fault in the page-faulting
process' SDW for this segment, and restarts the machine conditions. This causes
the process to take a segment fault. The segment fault handler (See "Segment
Fault Handler", earlier) finds the ASTE, and notices this bit, and calls the
segment mover (segment_mover). Upon return from the segment mover, the segment
has either been moved (in which case a zero status code is the result) or not
(in which case an error code, probably error_table_$log_vol_full is returned),
and the resulting error code is returned to fim to signal or restart the fault.
When the segment fault is restarted, another segment fault occurs (the segment
mover wWill have revoked all SDWs for the segment, even though page control
revoked the one in this process), and the process reconnects to the "new"
segment. When that segment fault 1is restarted, a page fault occurs and the
segment, now on a new volume, grows as intended.

The segment mover is invoked, and returns, with the AST and the parent
directory of the segment to be moved locked. It does not unlock this directory.
It locks and unlocks the AST many times during the course of the segment move.
It is passed the ASTE pointer (ensured valid by the lock) and the branch pointer
(which it may not use until the AST is unlocked) by the segment fault handler,
describing the "old ASTE".
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The most basic outline of the segment-move operation is as follows.

1. Make the old ASTE inaccessible with a "setfaults".

2. Create an ASTE (the "new ASTE") for the new segment. (It cannct be
activated, for no-one except segment mover can distinguish it from the
9ld ASTE, which is active.)

3. Call create_vtoce$createv_for_segmove (see "Segment Creation" earlier .
in this section) to create a new segment, given the branch of the old,
on some other, suitable physical volume, to create a "new VTOCE".

iy, Copy the contents of the segment as it now stands (the segment is
unambiguous; it 1is designated by the segment number faulted upon in
this process, the VIOCE, ASTE, and branch it had before the segment
mover was invoked) into the VTOCE-less, branchless, anonymous, segment
described by (defined by) this "new ASTE". This segment is on the
"new" physical volume. Null pages are not copied, to avoid
withdrawing records.

5. Copy all the activation attributes from the old ASTE to the new ASTE,
make the new ASTE describe the "new VTOCE" from step 2. Update that
VTOCE from the new ASTE. Both ASTEs and both VTOCEs now describe
identical segments with identical attributes.

6. Change the directorv brangh (remember, we have the directory locked)
to describe the pew VTQCE (i.e., change entry.pvid and entry.vtocx).

The old VTOCE is now an impostor, the new one is real. Even a crash
at this point would affirm this.

7. Unthread and unhash from the AST the old ASTE, thread in (including
AST hierarchy threads) the new ASTE, and hash it in as the valid ASTE
for the segment under consideration.

8. At this point, the move is essentially complete. The old VTOCE and
the old ASTE describe a segment that is not designated by any branch
in the hierarchy: an active orphan, not threaded into any structure in
the AST. The new VTOCE, the new ASTE, and the branch are consistent.
Truncate the segment described by the old ASTE, releasing its disk,
bulk store, and main memory resources (it is inaccessible). Free the
old ASTE (call put_aste). Free the old VTOCE (call
vtoc_man$free_vtoce).

9. The segment move 1s complete. Return to the segment fault handler or
vacate_pv.

The segment mover uses a vast artillery of complex supervisor programming
techniques. It involves many of the mechanisms described already, such as
segment/VTOCE creation/updating/truncation/deletion, and VTOCE successful-write
awaiting. It protects both o0ld and new physical volumes against demount (see

Section XIV) during critical regions. There 1is not much to be gained by a
detailed analysis of this little-used and obscure program, when the listing can
be read. The outline above indeed explains the basic flow; a few more points

will be illuminated, winich are c¢ritical to the understanding of the basic
machination of this operation.

In a situation where a physical volume has experienced pack overflow, it is
likely that the 1logical volume is near full, and all packs or many in the
logical volume are near overflow. Thus, if the normal VTOCE creation primitive
were 1invoked on behalf of the segment mover, the volume it chose (See "Segment
Creation" earlier) might in fact overflow while step 4 above was being executed.
Then the segment mover would recurse. At any rate, the segment mover jis
prepared for a pack overflow on the new physical volume during step 4, by means
of a condition handler for segment_fault error (in this case, an invalid segment
number will be the cause of the segment-fault error, although aste.pack_ovfl
will be on in the new ASTE). However, even given this, the second choice of a
physical volume, should this target pack overflow occur, cannot be influenccd by
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the fact that this first overflow occurred. Thus, segment_mover needs and has a
way of trying all physical volumes in the logical volume in sequence, walking
the logical volume PV chain (See "Segment Creation" earlier) as a coroutine with
create_vtoce. This is to say that create_vtoce is called in a 1l9oop on each
segment move, at a special entry that walks down the chain finding one
acceptable physical volume each time, until segment_mover can perform step 4
without an overflow on the "new" physical volume. A variable (corout_pvtx)
passed between segment_mover and create_vtoce$createv_for_segmove keeps track of
how far down the chain create_vtoce has gone for this segment move. If step 4
fails on every physical volume though acceptable in the logical volume, or there
are none (one criterion on acceptability is at least as many records free as the
"old segment" had PLUS the new record that started this all), the segment move
fails with error_table_$log_vol_full. Needless to say, more arcane machination
is performed when step U4 fails in order to relinguish the VTQCE gotten  in step
3, recoordinate all of the data bases and retry steps 3 and 4.

The page control entry pc_wired$write_wait is called at several points in
the segment mover. The purpose of doing this is to force all pages of zeros in
main memory to be noticed by page control, and "nulled" (see "Address Management
Policy," Section VII), to shrink the segment to its minimum possible size
(number of records). As a matter of fact, if this operation, performed upon the
original segment yields ten or more records, the pack is no longer considered to
be in an overflow state, and the segment move 1is abandoned and declared
successfully over. This cannot be the case for segments activated by vacate_pv.

The segment mover updates VTOCEs and deposits record addresses several
times; all necessary protocols about waiting for successful write completion
(calls to vtoc_man$await_vtoce) are followed.

The updating of record quota used of a directory from old to new ASTEs is
difficult, as active segments inferior to a directory being segment-moved may be
shrinking and growing.

The segment mover makes use of the segment number by which the segment
being moved was known in the running process to construct an abs-seg (see
Section VII) with which to reference the old segment; the original SDW was
removed by a setfaults call in step 1 above. The abs_seg "abs_seg" is used to
reference the segment represented by the "new ASTE". A recursive pack overflow
on this segment therefore causes an immediate seg_fault_error, as the segment
fault handler refuses to deal with hardcore segments. This causes a signal,
that is caught by step 4, and avoids getting into the segment mover recursively
although page control induced a pack overflow on the ASTE and revoked the SDW
for abs_seg 1in this case the same as a pack overflow not encountered during a
segment move.

SPECIAL SERVICES FOR sweep pv
The online pack maintenance tool sweep_pv (see the Multics Operators'

Handbook,
Order No. AM81) can be used to perform operations upon VTOCEs directly from a
highly privileged process. Among these cperaticns are: ~

1. Listing the VTOC of a pack, i.e., reporting the pathnames of the
segments owning all VTOCEs.

2. The location of all orphan VTOCEs, (see Section II), VTOCEs not
described by any branch in the hierarchy.

3. The deletion of such VTOCEs.
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g, The rebalancing of packs via demand segment moving.

5. . The vacating of packs (moving of all VTOCEs) via demand segment
moving.

The fundamental primitive used by sweep_pv is phes_$get_vtoce. This entry,
supplied a PVT index and a VTOC index, calls vtoc_man$get_vtoce to retrieve this
VTOCE, and copies it 1into the -caller's buffer. This entry is pot, in its
current implementation, protected against volume demounting; it is the  user
responsibility of the sweep_pv command not to demount volumes to which sweep_pv
is being applied.

This entry alone is enough for listing of VTOCs and orphan location. The
UID pathname in the third vtoce-part 1is wused to locate a hierarchy branch
(develop a pathname). The on-line subroutine vpn_ecv_uid_path_$ent performs this
UID path (with segment UID) to pathname conversion. This subroutine recursively
scans directories by picking them out from ring gzero. If this subroutine
indicates that either the segment UID in the VTOCE or some UID in the UID path
is not the UID of a segment/directory in the directory it claims, an orphan is
indicated.

The highly privileged gate hphes_g$delete_vtoce is used to delete orphans.
It will delete any VTOCE, be it an orphan or not. The exact description of the
act of deleting a VTOCE of a nonorphan is that a (forward) connection failure is
caused. There are no tools to cause connection failures in this manner. This
gate calls the program priv_delete_vtoce to do the work. This program locks the
parent directory; the UID of the parent directory is determined from the VTOCE
to be deleted (which 1is checked, by the way, against a UID supplied by the
caller). Note that all that is needed to lock a directory is its UID, notably
not a pointer to that directory. The AST is locked and checked to make sure
that the segment is not active; if active, it is surely no orphan, and ordinary
means (such as the "delete"™ command (see the Multics Programmers' Manual
Commands and Active Functions, Order No. AG92)) may be used to delete it. The
operation is aborted in this case, with error_table_$illegal_deactivation as an
outcome. The AST is then unlocked; a dummy branch is then created for the
segment in the stack frame of priv_delete_vtoce. It has the field entry.owner
equal to "TTTTTTTTT7776"b3, which will suppress quota movement by truncate_vtoce.
The normal program delete_vtoce (see "Segment Deletion™ and "Segment Truncation”
earlier) 1is then called, being passed the dummy branch, which has been filled
with the physical volume ID and the VIOC index in that volume. The directory is
unlocked, and the error code of the delete_vtoce command returned.

The motivation for deleting orphans is not only that the VTOCE is unusable;
the VTOCE designates pages in its file map that are unusable. The physical
volume salvager does not know that such a VTOCE is an orphan, therefore, its
pages are not recovered until the VIOCE is deleted by this means.

The priv_delete_vtoce primitive has a deep dread of accidentally deleting
something that is active. It has no qualms about deleting some VTOCE whose
segment is not active, and causing a connection failure for that segment. 1f
the UID in the third vtoce-part is correct (not damaged in some unspecified way)
the 1locking of the parent directory and AST scan ensure that the segment cannot
be active, or it will be found if it is, and the operation aborted. But, should
the third vtoce-part be damaged, AND this primitive is invoked (maliciously) on
some segment which is active (sweep_pv, of course, will pof do this) chaos will
result when that segment is deactivated into a VTOCE which some other segment
owns (reused JVTOCE syndrome). The crash message "vtoc_man: UID = 0 in a free
VTOCE" at some later time will be one of the outcomes of such behavior.
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The sweep_pv tool may also be used to force segment moves, either for the
purpose of vacating a pack or rebalancing 3 logical volume. Three primitives
are provided for this purpose.

1. The entry vacate_pv$vacate_pv, invoked via hphes_$vacate_pv, which
makes a volume unacceptable for segment creation, whether on behalf of
the segment mover or normal creation (pvte.vacating is turned on,
which is respected by create_vtoce at both entries).

2. The entry vacate_pv$stop_vacate, invoked via hphes_$stop_vacate_pv,
which reverts the state set above.

3. The entries vacate_pv$move_seg_file and vacate_pv$move_seg_set,
invoked via hphes_$pv_moeve_file and hphes_$pv_move_seg.

The vacate and vacate-stop entries are used in two ways: sweep_pv turns on
vacating (inhibits) volumes being vacated or moved from, and uses this feature
as a control to target segment moves in such operations. These features are
directly accessible to the privileged wuser via the tool inhibit_pv. (See the
Multics Operators' Handbook, Order No. AM81.)

The sweep_pv tool uses hphes_$vacate_pv and hphes_$stop_vacate_pv to
inhibit all volumes, in the physical volume chain of the logical volume on which
moves are taking place, between the beginning of the chain and the one where it
believes is best for the move to be targeted. As explained in "Segment Moving"
before, the mover finds the first acceptable volume to target a given segment
move. Thus, the T"optimizer" internal procedure of sweep_pv uses these
"vacating” bits to manipulate and corner the segment mover, to obtain a talanced
distribution of segments and pages, particularly in the case where a volume is
being vacated. The sweep_pv optimizer is baroque; read the listing for any more
detail. :

The demand segment move entries, vacate_pv$move_seg_seg and
vacate_pv$move_seg_file, are used to force segment moves on a given segment. As
explained above, sweep_pv targeted the move by manipulating "vacating" bits;
these entries specify no target volume, the source volume is wherever the
segment resides. Both these entries operate by 1locating the branch for the
segment, using either directory control or address space management primitives
as necessary, making the segment known (irrespective of the caller's access to
the segment), calling activate (see "Segment Fault Handler" for a discussion of
the significance of calling activate), and invoking the segment mover upon the
ASTE and the branch in hand. The entry to the mover is the same as the one used
by the segment fault handler: the only difference is that a referencing address
of -1 (corresponding to the address page-faulted upon which causes a segment
move) tells the mover that there is no referencing address. The segment is made
unknown)and the directory unlocked upon completion (the segment mover unlocks
the AST).

SERVICES ON BEHALF OF THE HIERARCHY SALVAGER

The hierarchy salvager, when operating in other than ‘'online-salvager'
mode, recursively walks the tree of the Multics hierarchy, walking downward to
find directory and segment branches, and returning upward to accumulate and
verify quota and quota used totals. The hierarchy salvager maintains its own
mechanisms for activating and deactivating directories to be scanned; this is
basically historical in origin, dating from the times the the hierarchy salvager
was a stand-alone subsystem. In order to perform these activations and
deactivations, the salvager must utilize the services of the VTOC manager in
order to access and update the VTOCEs of the directories being activated. When
running in "-check_vtoce" mode, the hierarchy salvager also reads, inspects,
checks and updates VTOCEs of all segments.
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The procedure "salv_check_map" in the hierarchy salvager is used by it to
read VTOCEs, calling the "get_vtoce” entry in the VTOC manager as appropriate.
This procedure maintains an array of VIOCE images, with one entry for each level
of directery (and the last level, possibly a segment at each instant) being

scanned. During the checking of the branch for each segment or directory,
performed in salvage_entry, the parameters in the VIOCE are cross-checked and
updated. This includes the primary name, UID pathname, and branch

relative-pointer in the ‘'"permanent information"™ in the third vtoce-part.
(Again, we reiterate that this checking is done for directories gl] the time,
and for segments only when the salvager is ‘"checking VTOCEs", i.e., in
"check_vtoce" mode) . When the salvager comes back up the hierarchy,
salvage_directory accumulates recursive information for inferior quota and used
figures for each directory being salvaged and includes this among the
information being checked by salvage_entry in the VTOCE for that directory. At
the end of processing each branch, the procedure "salv_truncate™ is invoked.
This procedure serves principally to write out the (possibly modified) VTOCE by
calling the "put_vtoce" entry of the VIOC manager. If invoked at an appropriate
entry, salv_truncate also frees all records claimed by the file map of the
VTOCE, thus destroying the contents of the segment. When this 1s done,
salvage_entry, which requested this service, wusually destroys the branch as
well, and salv_truncate frees the VTOCE via a call to vtoc_man$free_vtoce. This
is the hierarchy salvager's mechanism for destroying segments, used in such
cases as connection failure, totally unrecoverable directories, etc.

As stated before, the hierarchy salvager has its own mechanism for
activating and deactivating directories; it must activate directories in order
to check their contents for whatever qualities it seeks. It never activates
segments.

Since the entire processing of directories is done as part of the branch
checking for that directory, (this 1is to say that salvage_entry, the branch
processor, calls salvage_directory, the recursive directory processor, during
other branch checks), the time during which each directory need be activated is
completely contained in the time during which the VTOCE for that directory is in
the array described above (salv_datagvtoce), having been read there by
salv_check_map, and to be ‘written out by salv_truncate. The procedure
salv_activator is used to maintain a set of sixteen ASTEs, associated with the
segment numbers for page-table abs-segs salv_abs_seg 00 to salv_abs_seg_15, into
which directories are activated and deactivated from the array salv_data$vtoce
as the hierarchy salvager goes up and down the hierarchy. This number
corresponds to hierarchy depth. The program salv_activator calls the page
control entries usually used by the storage system activation and VTOCE update
functions, pe$fill_page_table and pe$get_file_map, to fill and find information
about these ASTEs. The entry pc$cleanup is also used by salv_activator, as in
normal deactivation, to finalize the state of a segment (See "Deactivation”
under "Segment Fault Handling", earlier in this section.)

It is possible that a directory grows during salvaging; in this case, pages
are withdrawn in the usual manner; the directories being salvaged reside on
whatever volume they do, and are so marked in the ASTE set up by salv_activator,
via the field aste.pvtx. The growing of pages against directories is noticed at
the time salv_activator "deactivates™ each directory, for in this case the bit
aste.fmchanged is on. The shrinking of directories by the hierarchy salvager,
which can also cause this bit to be turned on, is much more common.
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The ability to deactivate segments on explicit call is provided via the
gate phecs_$deactivate. This is available principally as a performance
optimization for the hierarchy dumper. The hierarchy dumper activates large
numbers of segments while dumping them. Since it knows that it will never use
them after dumping them, it can free its AST resources explicitly, making the
ASTEs used by these segments immediately available.

The ability to demand-deactivate segments, as this facility is called, is
provided by the procedure demand_deactivate. This procedure locks the AST,
checks if the segment specified via segment number is active (the validity of
the SDW implies that it is), and if so calls "deactivate"™ to deactivate it (or
fail if it 1is nondeactivatable; see "Deactivation™ under "Segment Fault
Handling" earlier in this section). The AST is unlocked, and the error code of
"deactivate™ returned.

The ability to demand-deactivate any segment is conditional upon the ASTE
bit, aste.demand_deact_ok. All processes that have connected to the segment
must have had a bit in their KSTEs for this segment stating that they wanted it
to be activated with this bit on. Thus, if at least one process is connected to
the segment that did pot want it to be activated with the possibility of
demand-deactivate, it may not be deactivated on demand. . This is in order to
implement the policy of the demand-deactivation facility being solely a
performance optimization for single-process use of a segment when that process
fully knows its intended usage pattern for the segment.

One view of this policy is that all activators must agree. Since "normal™®
use of a segment (via the 1linker or hes_$initiate) does not permit démand
deactivation, most shared segments (library programs, for example) cannot be
demand-deactivated. :

SERVICES AT DEMOUNT/SHUTDOWN TIME

The basic goals of demounting a physical volume are to make its contents
inaccessible and cause all of the pages and VTOCEs on that volume to contain the
latest, up-to-date information. The goals of shutdown, emergency and normal,
are the same, except that it applies to each physical volume mounted at the time
of shutdown. Therefore, shutdown is implemented as a call to demount each
physical volume present at the time of shutdown, with the exception that packs
are not unloaded.

Demounting is described more fully in Section XIV. The steps of demounting
are these, as seen by segment control:

1. Turn on pvte.being_demounted for the volume being demounted, to cause
all activation attempts after this point to fail.
2. Deactivate all segments on the volume being demounted.

3. Turn on pvt.being_demounted2 for the volume being demounted, causing
all future attempts to start VIOC I/0 to fail.

4, Await the completion of all VTOC I/0 for the volume; purge the VTOC
buffer segment of all vtoce-part buffers containing vtoce-parts of
this volume.

5. Clean up the volume, write out the label, etc. (see Section XIV).
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The first two steps stop all activations and deactivate all segments: zil
attempts to activate check the bit pvte.being_demounted under the AST lock, :zo
that any attempt to activate must either be before or after the AST locking <c¢f
step 2, and thus either have its activation reverted by step 2 or fail by virtue
of finding this bit on as the case might be.

The bit pvte.being_demounted2 is checked by the VIOC manager each time the
VTOC buffer lock is locked or relocked; this is the signal of demounting that
causes VTOCE operations to unitarily succeed or fail (see "General Policies"™ in
Section III).

The steps outlined above are conducted by the procedure demount_pv,
described in Section XIV. Step 4 is conducted by vtoc_man$cleanup_pv, in the
VTOC manager, also discussed in Section III.

The deactivate loop in demount_pv, which implements step 2, generally calls
the procedure "deactivate" to perform these deactivations; however, in the case
of a system shutdown, the critical steps of deactivation, performed by
pc$cleanup (finalizing segment state) and update_vtoce (the wupdating of the
VTOCE from the ASTE) are performed by explicit calls to these procedures. This
is to avoid dealing with possibly bad AST threads in the case of an emergency
shutdown: deactivate generally frees the AST entry being deactivated by
rethreading it (via a call to put_aste) in its used list.

The program demount_pv tries to optimize by parallel-processing of many
volumes, in the case where many are being demounted. Thus, in its scan of the
AST for deactivation, it deactivates segments on any volume that 1is being
demounted. Currently, only shutdown makes use of this feature; normal
operator-invoked demounting operates fully one volume at a time. '
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SECTION V

PAGE CONTROL OVERVIEW AND CONCEPTS

Page control is that subsystem of the Multies supervisor that is
responsible for the multiplexing of main memory, the bulk store subsystem, and
disk storage. A large part of that responsibility is the transferring of pages
of segments between all of these media and the management of the page tables of
segments. Page control is also responsible for reporting the status and file
maps of segments to segment control (see Section IV, "VTOCE Updating"), and the
filling of page tables to make segments addressable by the Multies processor.

Page control has traditionally been regarded as extremely complex and
esoteric; this attitude derives in part from the fact that it is largely coded
in Multics Assembler Language (ALM), and part from the fact that it is highly
asynchronous, maintaining the maximum possible degree of concurrency in all I/0
operations. While these concurrency policies will be fully explained, it is
assumed that the reader has some familiarity with Multics Assembler Language in
order to follow the program listings. A basic familiarity with the appending
unit operations (segmentatior and paging) of the Multies processor will also be
assumed. :

The discussion of page control is divided into seven séctions in this
manual:

Section V. Overview and Concepts, the current section, explaining basic
concepts and goals of page control. :

Section VI. Data bases, breaking down the fundamental data objects of
: page control, the PTW, the CME, the PDME, the PDMAP header,
and the free store maps in the PVTE/FSDCT.,

Section VII. The address management policy used by Multies to avoid
accidental disclosure of data by virtue of inconsistencies
and crashes.

Section VIII. The fundamental mechanisms and protocols used within page
control to support the services provided.

Section IX. The services provided by page control to Multies, explained
in terms of the mechanisms and data bases described in
Sections VI, VII, and VIII.
Section X. Peripheral services of page control.
Section XI. Quota management.
The goal of Sections V through VIII is to lead up to the descriptions of
the page control services in Section IX. However, these cannot be explained in

reasonable terms without comprehension of the information in the preceding
sections.
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BASIC GUALS AND SHEVICES OF PAGE CONTROL

The most visible and crucial service of page control is to handle page
faults. A page fault is the fault taken by the 68/80 processor when an attempt
is made to append through a page table word that indicates its page is not in
main memory. In terms of the Multics virtual memory, a page fault occurs when a
reference is made to a page of the virtual memory, a page of some segment, that
is not in main memory. It is the duty of page control to allocate a page frame
(1024-word block) of main memory, initiate the reading-in or creation of that
page of the segment into this page frame, cause the faulting process to wait for
the completion of that reading, and notify it so that it might retry the control
unit cycle (that sub-portion of an instruction that can be retried with no side
effect or regression) when that read has completed.

As part of the mechanism of allocating a main-memory page frame, it is
usually necessary to evict some page of some (possibly different) segment from
main memory, in order to acquire an unused page. Eviction of a page consists of
taking whatever action is required to make a process that might reference that
page take a page fault and start these proceedings over again for that page.
The choice of which page to eviet, or replace, is a critical
performance-oriented algorithm of the system. The subject of Page Replacement
Algorithms (PRAs) is one covered extensively in the 1literature, and of great
interest to those interested in performance. The Multics page replacement
algorithm is described fully under "Main Memory Replacement Algorithm™ in this
section.

The bulk store subsystem is an optional feature of Multics that allows
configurations having relatively small main memories to gain some of the
performance benefits of having a large main memory. Under Multics, the bulk
store is used as an intermediate-level page storage known as the paging device.
Since the average access time (time to access and transfer a page) from the bulk
store subsystem is on the order of half a millisecond, as opposed to the tens of
milliseconds for the average access time for a page on disk, it is advantageous
to the system to keep copies of heavily-used pages on the paging device instead
of on the disk. The same is true of main memory; it is advantageous to keep the
most heavily-used pages in main memory as opposed to anywhere else. The average
access time for pages, over the whole system, is the sum of the products of the
access time for each device multiplied by the relative probability of accessing
that device. Thus, it is to the system's advantage to keep copies of the most
heavily-used pages in main memory, the next-most-heavily-used on the paging
device, with all others being accessible only from secondary storage (the disk).
Hence, an arrangement known in the literature as a multilevel storage hierarchy
exists, where three different media of progressively increasing size, increasing
access time, and decreasing cost per bit transfer pages around dynamically in
order to optimize the system's average access time for a page. The strategies
for managing the paging device, i.e., the replacement decisions, are part of the
paging-device management strategy known as Page Mulfilevel (PML) in Multies,
described later in this section.

A less visible service of page control is the assignment and deassignment
of disk records. A disk record is a page-size block of secondary storage, which
does not cross a cylinder boundary, existing on a given physical volume (pack),
and described by its record address on that  pack, the zero-indexed integer
describing its position in the array of records on that pack. Record addresses
(i.e., disk records) are assigned to pages of segments the first time a page of
a segment is referenced. They are unassigned at the time that VTOC entries are
updated, which occurs most often when segments are deactivated (see Section VII,
and the glossary). Record addresses may be pulled or live at any time, while in
use in page control, describing whether the record on disk contains data from
the page of the segment, or the page of the segment is supposed to contain
Zercs. The motivation behind these strategies, and their implementation, is a
very important part of page control, and is described fully in Section VII,
“iddress Management Policy.® This particular issue also interacts strongly with
segment control; (see "VTOCE Updating" in Section IV).
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In addition to the transferring of pages between the levels of the storage
hierarchy (not to be confused with the storage system hierarchy), page control
is responsible for the maintenance of active segments. An active segment, as
fully described in Section II, is one which has a page-table in main memory.
Page control is responsible for maintaining the current length, record usage,
quota information, and most important, file maps, of all active segments. The
file map is the mapping between pages of a segment and disk records or pages of
zeros. Not only does this include dealing with segments activated and
maintained by segment control, but includes segments that have neither VTOCEs
nor branches, created by 1initialization, process creation, etc., and various
levels of abs-segs (page tables and ASTEs used for addressing secondary storage
explicitly) used all over the system. In the usual case, page control is
responsible for filling ASTEs and page tables at the time that a segment is
activated by segment control (see "VTOCE Updating," in Section IV).

Page control performs a large and complex set of auxiliary services on
behalf of the rest of the supervisor. 1In part, the need for many of these stems
from the fact that a process which takes a page fault may 1lose the processor
while waiting for it. Hence, any code that uses a per-processor resource, such
as the per-processor stack used at interrupt time, may not take page faults.
Furthermore, any code that is executed under the protection of a lock that has
been locked by looping until it becomes unlocked may not lose the processor on
which it is executing, 1lest another process try to lock that lock, and loop
potentially forever on a one-processor system, or for an indefinite time
dependent on the vagaries of the scheduler in a multiprocessor system. Thus,
many diverse portions of the supervisor have a need to avoid taking page faults
while they run. Code and data bases that are not subject to partial removing
from main memory are said to be wired, and the act of making a set of pages
wired is known as wiring, the inverse of this is known as unwiring. All of page
control is wired, to avoid taking page faults while processing page faults.
There is one special case of a page fault being taken during a page-fault, the
so-called "recursive FSDCT page fault." This 1is explained fully in Section
VIII. Thus many subsystems of the supervisor call page control to wire their
procedures, stacks, linkage sections, and data bases to. perform this class of
manipulations. Such wiring is called temp wiring. More fully, temp-wiring is
the wiring of a segment or part of a segment by reading in its pages and making
them nonremovable by the page replacement algorithm, by covenant with page
control. For some segments, like wired deciduocus segments (see the glossary,
e.g., pli_operators_) this "temp" wiring is for the 1life of the bootload.
Temp-wiring 1is as opposed to "perm wiring," which is the act of creating an
unpaged segment, i.e., one that does not have a page table, is contiguous 1in
main memory, and whose main memory location and extent are directly described by
SDWs that describe the segment. Such segments are made only by system
initialization.

One of the implications of the fact that page control itself is mostly
wired (perm-wired, as a matter of fact), is that the descriptor segment of any
process that uses page control must itself be wired, as were this not the case,
page control would take a descriptor segment page fault on the descriptor
segment it attempted to run on, hanging up the 68/80 processor in a "trouble
fault" 1loop. Furthermore, the per-process data base in which page control
stores each process' page-fault machine conditions must be wired as well. This
data base is the PDS, or Process Data Segment, of the process. This versatile
data base not only contains page control variables, but all process definition
variables, a stack for wunrestarted user-ring faults, a pathname associative
memory, and entire per-process ring-0 stack. (See "PDS and KST Management" in
Section IV for details of segment-control special-casing of this segment.) In
order to minimize the amount of this segment which must be wired, therefore, as
wiring reduces the total main memory resource available to all users, page
control and traffic control, restrict themselves to using only variables and
data areas in the first page of the PDS of a process. Similarly, all of the
SDWs needed by these two subsystems, and the supervisor as a whole, in fact, are
in the first page of the descriptor segment. Thus, the first pages of the
descriptor segment and the PDS are called the two critical process pages of each
process. Since no process can run unless its two «critical pages are wired, a
number of pages equal to twice the number of processes that can run must be
wired at all times. Since this can be a large number of pages, performance
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constants require only a subset of all processes gligible to run at any time.
The traffic controiler gives processes.eligipi}ity and taxkes it away_depending
on scneduling decisions; a process that is eligible cannot run until it is

1oaded. This 1loading consists o¢f wiring its two critical pages. Similarly,
when eligibility is taken away, a process is unloaded. The loading of processes

is jinitiated immediately at the time the traffic controller makes them eligible.
The service of loading and unloading processes for the traffic controller is an
important auxiliary service of page control.

Page control also provides services to dynamic reconfiguration; when a
syst=m contrcller is removed from the Multics configuration, all pages in page
“pames in that system controller must be evicted. This can even include wired
pages, which involves some machination. Single page frames can be deconfigured
via the operator "delmain" command (see the Multics QOperators' Handbook, Order
No. AMb1 and the Multices Reconfiguration PLM, Order No. ANT71). Page control
must evict their contents, and avoid future use of these frames. Similarly,
page control must make available main memory frames that become usable as
controllers or individual page frames are added back to the configuration.

The Input/Output Multiplexer (IUM) has a feature whereby a limited form of
protection may be used, if the I/0 requests for a given channel are constrained
to a given region of main memory. The IOM, when performing data transfers and
control word transfers for that channel, will not only relocate all addresses
found therein with respect to a per-channel "Base Register," but check these
(relative) addresses against a per-channel "Limit Register.”" These IOM features
allow the Multiecs I/0 Interfacer to allow users to construct IOM control word
lists, and perform data transfers directly to and from user segments. This
ability implies that these segments, or portions of them, must be placed
contiguously in main memory, not only being wired, but not movable for memory
reconfiguration. Such pages are called gagbs-wired. They may not be wmoved
because the IOM will have absolute addresses of regions in these pages in its
internal registers, which are not subject to manipulation by page control. The
service of abs-wiring parts of segments, also used by the FNPE60O Communications
Processor bootload software 1is another auxiliary service provided by page
control.

Another service of page control is the so-called "post-purging®™ feature
invoked by the traffic controller. When a process loses eligibility, this
function is invoked to bias the page replacement algorithm toward claiming pages
deemed "intrinsic" to that process.

Page control also manages record (or page) gquota. Maintained in active
segments' ASTEs and nonactive segments' VTOCEs, gquota must be checked, and
quota-used totals adjusted whenever pages are reated or destroyed. This

mecharniism is solely for storage system hierarchy segments; supervisor segments
have no quota checking.

BAST RGANT 10 F_PAGE NTROL

Page contrecl is said to consist of three major ides, or invoking
environments, and a few lesser ones. All actions and mechanisms in all parts of
page control must take into account the actions cf all of the "sides.”™ This

organization is also somewhat conducive to the understanding of the organization
of the actual modules. The three major sides are:

1. The page fault side: the software invoked in response to a page fault
in a Multices process, and all software invoked by it.

2. The call side: entries invoked by segment control, reconfiguration,
initialization, 1/0 management, etc., to perform all services reguired

by them of page control.
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3. The interrupt side, or done side, named after a routine in the module
page_fault. This side is called by the storage system device routines

(the disk DIM, disk_control, and the bulk store DIM,
bulk_store_control) to notify page control of I/0 operations wupon
pages that have completed. This side is peculiar in that it may be

invoked by the storage system DIMs while other parts of page control
have called these DIMs.

The minor sides of page control are those entries called by the traffic
controller; those which perform the 1loading, unloading and post-purging
services. These entries are fundamentally different from the others in that
they run on Dbehalf of the traffic controller as opposed to on behalf of the
process executing them; thus very special techniques for waiting on events,
which are not used elsewhere in page control, are used.

Page control may also be divided into the divisions "ALM page control"™ and

"PLL/TI page control." Rather than simply indicating the language in which the
particular modules are coded, this division emphasizes a fundamental division of
functional responsibility. ALM page control is the heart of the entire

mechanism. It consists of the entire path taken by a process that takes a page
fault, other than the disk DIM and those parts of the <traffic controller that
are invoked. This includes not only the actual page fault handler, but the
fundamental internal primitives that organize the reading and writing and
eviction of pages, and the implementations of the page and paging device
replacement algorithms. It also includes the logic to allocate disk records.
The programs in ALM page control are: page, page_fault, pd_util, free_store,
device_control, post_purge, page_error, evict_page, and (by some standards)
bulk_store_control, which 1s the bulk store DIM. ALM page control is sometimes
called the page control kernel.

PL/I page control —consists of all of the call-side functions: entries
invoked by segment control, including those for mass deposition (deallocation)
of disk records. It includes the entries called by reconfiguration,
initialization, I/0 management, and traffic control (other than post-purging,
which is in ALM page control). All of the programs in PL/I page control rely
upon the fundamental primitives in ALM page control to do actual deeds; most of
the logic in PL/I page control consists of determining which things have to be
done, and invoking entries in ALM page control to do them. PL/I page control
accesses ALM page control exclusively through the transfer-vector "page," which
is there to 1localize this interface. The most important program in PL/I page
control is the program "pc", which, among other functions, contains the entry
points that implement all of the services provided to segment control. The
other programs in PL/I page control are pc_wired, pc_abs, pc_contig, wired_plm,
and by some standards, disk_control which is the disk DIM. There is also
"quotaw", which handles quota cells of active segments.

Another important distinction between PL/I page control and ALM page
control is that ALM page control works on ages; the individual entries each
manipulate one page. The PL/I page control entries deal with entire segments or
regions thereof, calling ALM page control to perform operations on each page.
Other than the page-fault handler, ALM page control never gives up the
processor, or waits; PL/I page control decides on what to wait based upon a
series of calls to ALM page control, and if necessary waits. The protocols
involved in this waiting, the conventions used, and the manner of its
implementation are all described in Section VIII, "Mechanisms."

There are a set of peripheral services provided by an amorphous area of the
system, which could be considered part of page control. For instance, the
procedure wire_proc, which causes parts of procedures and their linkage sections
to be wired, simply by calling pc_wired, and freecore, which so wires itself in
order to make main memory frames available for use as they are added to the
system, either during initialization or reconfiguration. These will be dealt
with in Section X.
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PAGE TAbLE LOCK

There exists a 1lock in the SST (System Segment Table) segment, that
protects all of the actions of page control, other than the unloading of
processes and activation of segments. This lock is called the "Page Table
Lock," or the "Global Page Table Lock." A process that has succeeded in locking
this lock to itself is said to "hold the page table lock," "have the page table
lock locked," or, often, loosely, "to have the page tables locked" (although the
implication that this is solely a lock on page tables is incorrect) or even more
loosely, - "to have the page table locked."” This lock lives in the variable
sst.ptl, in the SST segment. It is of the class of locks to which a process
that has it locked may not give up the processor until it has unlocked it. This
precludes taking page faults. Because certain interrupts try to lock the page
table lock, or locks which are locked while it is locked, neither may a process
take interrupts while it has the page tables locked. No page faults may be
taken with the page table lock 1locked, and segment faults are out of the
question. As a matter of fact, any fault other than a connect or timer runout
fault taken by a process while it holds the page table 1lock will cause the
system to crash. This 1is because page control 1is not coded so as to be
interruptable at any point and salvaged or restarted. Such a recoding is a
future possibility.

All sides of page control lock the global lock. Other than on the fault
side, this is accomplished by looping on it until it becomes unlocked. The
fault side has a special protocol with the traffiec controller so that a process
which, upon taking a page fault, finds the page table lock locked, can wyait via
the traffic controller wait/notify mechanism for the lock to become unlocked.
This mechanism is explained in Section VIII. A process 1looping on the page
table 1lock, as it 1is said to be doing when looping waiting for it to unlock,
must be masked so that it may not receive interrupts, or else, as soon as it had
it locked, it would potentially take an interrupt with the global 1lock 1locked.

It is not necessary to have the global lock locked when activating a
segment; since the AST is locked, and before the AST was locked, the segment was
not active, no process other than the one performing the activation is aware
that the segment is active or being activated. Thus, no process can take page
faults or request that auxiliary services be performed upon that segment until
the activation 1s complete. Unloading similarly does not require locking the
loek, for as will be described, it involves only the turning-off of two bits
that would not otherwise be turned off.

UTLINE OF T T E PAG NTR

There are six basic data bases with which page control concerns itself.
One of these, the AST entry, is a data object, per active segment, in which
information about the segment is kept. A detailed breakdown of the AST entry is
given in Section II. Most of the fields in the AST entry are used by segment
control; many are used by page control. Those fields are so marked in the
description in Section II.

The page- table of a segment is that hardware-recognized array, pointed to
by the SDW of a paged segment, which converts any reference to that segment to
either a reference to main memory, or a page fault. The page table of a segment
is physically and - logically associated with the AST entry. The page table
consists of Page Table Words, or PTWs. Each PTW describes the status of one
1024-word page of the segment. If the "4,dl" bit is on, (ptw.df), the upper
fourteen bits describe the upper fourteen bits of the main memory address where
a reference to that page is to be resolved, the low ten bits coming from the
computed address of the 68/80 Control Unit for that reference. If ptw.df is
off, the processor takes a fault when an attempt is made to use that PTW. There
are also two regions (zones) of the PTW (7000,dl and 700,dl) intc which the
proceasor stores 1-bits when that PTW i1s used, cr a reference is made via that
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PTW which modifies the contents of the main memory frame it describes. These
bits (ptw.phu for used, ptw.phm for modified) are used to determine whether
evicting a given page will entail writing it out (if ptw.phm is zero, a good
copy exists elsewhere, and to control the page replacement algorithm. The
processor associative memory is used to help avoid storing these bits each time
such a reference is made, the copies of PTWs in the associative memory contain
copies of the ptw.phm bits, and the appearance of the PTW in the associative
memory is de facto evidence that the "used" bit (ptw.phu) need not be wupdated.

Page control uses the other fields of the PTW, as well as the "address"
field at times when the "fault®" bit (ptw.df) is off (signifying take a fault, no
access) to store control information. In particular, the bulk store or
secondary storage address of a page not in main memory is stored in the PTW in
this Tashion; when in main memory, this information 1is transferred to other
places, namely, the CME (Core Map Entry).

The core map, so-called from the days before MOS, technology became
prevalent for main memory), is an array of four-word CMEs, or core map entries.
Each entry describes the status of one page frame of main memory, including all
page control information. There is a core map entry for each page frame in the
configuration from address zero to the highest address in the configuration,
whether or not a physical controller or memory exists that contains the implied
page frame, and whether or not this page frame is available for page control's
use (for instance, it may be in the middle of a perm-wired segment). Thus, the
core map 1is an array indexed strictly by main memory address. The core map is
in the "SST" segment.

The core map entries are kept in a double-threaded circular 1list; the
(SST-relative) pointer sst.uredp describes the "head" of the list. The list is
the basis of the implementation of the main memory page replacement algorithm,
which is described later in this section. Entries for main memory frames that
have 1/0 going on are threaded out of the list, as are entries that correspond
to main memory not used for paging. Entries that correspond to main memory that
does not exist, be it deconfigured or simply not present in the configuration,
are threaded out with a thread word of "777T7T77777777"b3. The last word of a
core map entry is currently not used. ;

The paging device map resides in the SST as well, in configurations with a
paging device, directly after the core map. It consists of four word paging
device map entrjes, or PDMEs. It, too, is an array, indexed by record that
describes paging device record zero; 1f only some upper portion of the bulk
store is in use as a paging device, this pointer points below the start of the
paging device map, and possibly below the origin of the SST. This is to ensure
that this pointer always points to the virtual origin of the array. The entries
of the paging device map are similarly kept in a double-threaded circular list,
as befits the parallel problem of management of the paging device already
alluded to. Those which have been deconfigured, either by operator "delpage™
command, or the automatic deconfiguration performed by the interrupt side on
detection of bulk store error, are threaded out with a thread word of
"TTTTTTTTTTTT D3,

The first few records of the bulk store are not used as part of the paging
device; rather, the paging device map is written out from main memory to as many
of these first few records as need be to contain it, every second. This is done
as a hedge against fatal (no ESD) crashing. Should the system crash
unrecoverably, the next bootload can read the contents of the first few records
of the bulk store, and obtain the old paging device map, accurate to within a
second. As physical volumes are ggcepted (see Section XII) by that next
bootload, pages of segments on that volume are prepatriated from the old paging
device contents as their VTOCEs are processed by the physical volume salvager.
A Unique ID and page number are put in each paging device map entry to
facilitate repatriation; because of these two quantities, the second inaccuracy
of the paging device map need not be a cause for concern. Thus, the paging
device map has potentially a cross-bootload longevity. To facilitate
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interpretation of its contents, the PDMAP (as the paging device map is sometimes
called, not to be confused with sst.pdmap, which stands for paging device map
array pointer) has a four-word header, the pdmap header, describing the extents
and time of initialization (called the PDMAP time) of the paging device map.
This PDMAP time is marked in the volume labels of all physical volumes which
were part of the configuration during which that PDMAP was used; this is the key
to the mechanism (explained fully in Section VIII, under "Post-Crash PD Flush")
by which pages are repatriated as volumes are accepted. Because the first
record of the bulk store contains the first page of the PDMAP, the first PDME of
a PDMAP is not used, but contains the PDMAP header. All PDMEs that describe
records similarly used by the PDMAP image other than the first are not used at
all, and contain all zeros.

The FSDCT is a data base used by volume management (see Section XIII) to
record certain key global parameters of volume management. These all reside 1in
the FSDCT header. The remainder of the FSDCT is divided into regions, one for
each configured storage system drive. These regions contain the bit-map of free
disk records for the packs mounted on their respective drives. The parameters
governing the interpretation of that bit-map are in the physical volume table
entry for that drive. The physical volume table entry, or PVTE, is an entry in
a wired table, the PVT, which describes all parameters for a given drive and the
pack on it, wused by the storage system. (The PVT and PVT entry are described
fully in Section XIII.) Among these parameters is a relative pointer into the
FSDCT of the bit-map for that drive, and its extent, number of records still
free, etc. Needless to say, many of these parameters, including the entire
contents of the bit map, change as packs are mounted and demounted on that
drive. The algorithms used to manage this map and allocate free storage are
described in Section VIII, "Mechanisms." Some critical points relating to the
assignment and deassignment of addresses are given in Section VII "Address
Management Policy."

The letters "FSDCT" stand for "File System Device Configuration Table." 1In
light of the current storage system, this term no 1longer has any valid
connotations relative to its meaning. If anything, the PVT deserves that title;
it is strictly historical, for in older versions of the storage system, the
single large bit-map describing the entire mounted storage system was kept here.
The format of the FSDCT bit-map regions and the relevant variables to free
storage allocation are given in the detailed data base breakdowns in Section VI.

The FSDCT is not a wired data base. In a system with many drives, it can
grow Qquite large, and would constitute a substantial drain upon the main memory
resources of the system were it all wired. Therefore, it 1is used subject to
vagaries of its own dynamic paging behavior. However, one of the critical
usages of this segment is the allocation of disk addresses, which 1is performed
during page-fault handling. Since the page-fault handler may not take page
faults, there is an intrinsic difficulty in accessing this segment at that time.
A very special and intricate mechanism exists to allow the page fault handler to
simulate "recursive" page faults on the FSDCT. This mechanism is explained 1in
Section VIII wunder the heading "FSDCT Paging." Other programs with a need to
reference the FSDCT, such as the activation-time check for unprotected addresses
(those illegally marked as "free" in the FSDCT) simply reference the FSDCT 1like

o~y

any other paged segment.

Other than the FSDCT and PVT, all of the data bases of page control reside
in the segment "sst", with the alternate name "sst_seg." This segment, also
known as "the SST", for System Segment Table, is an unpaged (perm-wired)
segment, in which all AST entries, with their page tables, the core map, and the
paging device map reside. All of the page control data objects describe each
other via relative, 16-bit pointers, called "rel-pointers," or "SST-relative
pointers." The only exceptions to this rule are main memory and paging device
addresses, which are effectively indices into the core map and PDMAP arrays.

The SST also contains a large number of meters, list heads, and array
pointers. Much global page control data is stored there.
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ZERO PAGES

Multics defines all segments as containing a full segment's worth of binary
zeros when created. Rather than allocating a couple of hundred disk records and
zero them each time a segment is created, Multiecs defines a c¢lass of record
address called a pnull address which says that the page that has that address is
supposed to contain zeros. That is to say, if such a page is faulted on, page
control creates a page of zeros in main memory. Real disk addresses and paging
device addresses are assigned at various times after that, as dictated by the
address management policy {(see Section VII).

In order to keep this strategy consistent, Multics never stores pages of
zeros on disk or on the paging device. Whenever a page is to be written out of
main memory, a check is made to see if it contains all zeros. If so, the disk
address which the page has is nulled, creating a nulled or semikilled address in
the page control data bases. Like a null address, the next attempt to fault on
this page causes a page of zeros to be created in main memory. If the page is
modified to be nonzero, the address 1is resurrected, (made not nulled), which
causes a real read to happen when the page is faulted on.

The terms pull and nulled are not to be confused, although both logically
represent pages of zeros, the null address relates to no disk record; the pulled
address represents a disk record, but the contents of the page are zero, not the
contents of the disk record. HNulled address appears only in page control, never
in VTOCs or other segment control data objects.

This checking for zero pages is suppressed for segments with the "dnzp"
(Don't Null Zero Pages) attribute settable via segment control, and always true
for supervisor segments. This is wused, in general, to enforce the requirements
of the address management policies described in Section VII.

Nulled addresses which result from the discoveries of pages being zeros
ultimately get returned to the free storage pool for their volume; this is done
once it is ensured that the un-nulled address from which it -came is no longer in
any VTOCE. (See Section IV and Section VII.)

MAIN MEMORY REPLACEMENT ALGORITHM

O0f fundamental importance to any algorithm that controls the movement of
pages, and of prime interest in the description of any paging system, is the
main memory replacement algorithm, known 1in the 1literature as the "Page
Replacement Algorithm," or PRA. The Multics PRA was one of the first to ever be
implemented; the version as it exists today is a direct descendant of Corbatéd's
original algorithm (see the references at the end of the next section).

Pages are kept in a circular 1list, the core wused list, implemented by the
double thread of CMEs. A logical pointer is kept to a selected point on the
list, this being implemented by the SST-relative pointer sst.usedp. A direction
called forward or ahead is arbitrarilvy defined as the direction on the list
followed by chasing the sst-relative pointers cme.fp.
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Figure 5-1. The Clock Algorithm

The basis of the algorithm is that the pointer moves forward on demand for
page frames. It tries to approximate the "Least Recently Used," or LRU
algorithm, where the least recently used page (not page frame) is the one which
will be evicted to free its page frame. The page frame right ahead of the
pointer (the one pointed to) contains the supposedly least-recently-used page.
Going further and further down the list produces pages more and more recently
used, until the page right behind the pointer is the most recently used. Since
pages are referenced by every instruction that runs, it is impossible to thread
them to represent true recency of use. Therefore, we translate "recently used"
into "recently noticed as used." When we notice that a page has been used, we-
turn off the bit ptw.phu, in the PTW for that page, the bit via which the
hardware communicates the fact that a page has been used. Thus, this bit being
on in a given PTW indicates that the page has been used since this observation
was last made.

Therefore, when a demand is made for a frame (via a call to find_core, in
page_fault), the page at the head of the used list is inspected to see if it has
indeed been used since last inspection. If so, it is now, clearly, the page
most "recently noticed as used." Thus, the pointer moves forward, putting this
page at the tail of the used list by so doing, in keeping with its newfound

status as "most recently noticed as used." The Mused"™ bit is turned off,
pending the next inspection, and the next page is considered, until one is found
whose used bit 1is off. Such a page is clearly the one which was seen most

recently as used the furthest time in the past. This page is evicted from its
main memory frame, and the latter is now free.

The algorithm just described 1is known in the literature as the "clock"
lgorithm, as the motion of the pointer around the used list is similar to the
cti
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There are several complications to this algorithm. Most important, if a
page 1s found whose used bit is off (this would be evicted, according to the
above description) by the scan of the pointer, this eviction would require an
I/0 operation to perform, namely a write to disk or paging device. If the page
has been stored into (modified) since it was brought into that page frame, as
the information in its correct form exists only in main memory, and nowhere
else. Thus, a modifjed page whose used bit is off, takes more work to evict
than one that is not modified. Specifically, the I/0 may take an indefinite
time to complete, and the main memory request on hand must be satisfied
immediately. Therefore, the pointer skips over pages that are modified, even
though they are not wused--they will be dealt with shortly. The pointer only
stops when a page that is neither modified nor used is found--only this kind can
be evicted with no I/0. The page multilevel algorithm also complicates matters
some here,there are pages that are neither used nor modified which require 1/0
to evict, if the page multilevel algorithm wishes to migrate them to the paging
device at this time; these pages are called "not-yet-on-paging-device,"
(ptw.nypd signifies this state). This will be dealt with in the next section.

Therefore, the pointer does not stop until it finds a page that is neither
used (since last turning-off of the used bit), modified (since last writing), or
not~yet-on-paging-device. Some pages are routinely skipped, such as those that
are wired or abs-wired. Pages on which I/0 is going on are not even in the
list, and are thus not an issue. When such a page is found, it is evicted, and
the frame which it had occupied returned to the caller of find_core.

In passing over modified and not-yet-on-paging-device pages, the pointer
implicitly left work behind to be done. These pages should be evicted from main
memory, but this could not be done on the spot, as the process that needed a
page frame could be satisfied immediately with some other frame, not much worse,
and could not wait for the inleterminate completion of these writes. Therefore,
a procedure called claim_mod_core, in page_fault, exists to do the work which
the replacement algorithm decided not to do, in order to satisfy its real-time
constraint of producing a usable page-frame on the spot. It runs either at a
later time than find_core, or is called by find_core when the latter encounters

certain 1limit situations (see Section VIII). The procedure claim_mod_core
maintains a second pointer into the wused 1list, which 1is sst.wusedp (for
"writing" used-pointer). Generally, it is pointing to the same place as the

regular "usedp" clock-hand of the find_core command. However, when a demand is
made for a page~frame of main memory, find_core advances the "usedp" hand until
a freeable, evictable frame is found. Thus, the distance between the "wusedp"
hand and the "usedp"™ 1is the '"cleanup" work that must be processed by
claim_mod_core. The procedure claim_mod_core is invoked during page-fault
processing at a time to overlap its operation, which may involve substantial
computation inside the disk DIM, with the reading-in of the page necessary to
satisfy the page fault. Note +that +this reading could not begin until a
page-frame 1into which to read the page had been found, by find_core.
Claim_mod_core processes all page-frames between wusedp and usedp; those that
are not used, but modified, have writes started for them, which removes their
CMEs from the used list. In order for claim_mod_core to be able to distinguish
the used-and-modified ones from the not-used-but-modified ones, find_core avoids
turning off the used bits, leaving this for claim_mod_core. Pages
"not-yet-on-paging-device™ are migrated to the paging device, as appropriate,
until wusedp and usedp again coincide. Note that these writes are started while
no particular process 1is waiting for these writes to complete for any
reason--when these writes are complete, the interrupt side will place these page
frames at the head of the used 1list, making them excellent candidates for
eviction if and only if they have not been used while or after being written.

The interaction of find_core, the replacer, and claim_mod_core, the
purifier, may be stated as this: the replacement algorithm claims only pure
(unmodified) pages. Those that are found impure, but would have been claimed,
are left for the purifier to purify. When the purification is complete, these
pages are again candidates for replacement.
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There are a large number of call-side actions, such as deactivation and
truncation, and some ALM actions, such as the discovery of zeros by the
page-writing primitive (write_page in page_fault) that cause page-frames to
become explicitly free; these actions all aid the replacement algorithm and
simplify its task by putting these page frames at the head of the used 1list,
wherever it currently is, making these frames immediately claimable by
find_core.

The successful completion of any read operation places the CME for the
frame into which the reading was done at the tajil of the used list, as
presumedly, the reason that this read occurred is that someone wanted the page,
and thus, it is "most recently noticed as used" at the time of the completion of
the read.

PAGING DEVICE MANAGEMENT ALGORITHM (PAGE MULTILEVEL)

The management of the paging device, like the management of main memory,
involves both a strategy, and a replacement algorithm. ~In the case of main
memory, other than the replacement policy, the strategy is straightforward.
Pages are brought in on demand in response to page faults and call-side reads,
evicting other pages at the discretion of the replacement algorithm, which also
chooses when to write out pages that have been modified.

The use of an intermediate level of storage device as a paging device,
however, involves many more complex decisions. The design and history of the
decisions, with respect to the Multics Page Multilevel Policy, are given in the
paper by Greenberg and Webber cited at the end of this section. The policies
are given as they stand. : '

The paging device 1is what 1is technically called a "nonwrite through
buffer." This to say, there are copies of pages on it which are different from
the copies of the same pages on secondary storage. As a matter of fact, there
can be copies of pages on the paging device which have po copy in secondary
storage (although there will always be a secondary storage address assjigned to
such pages). This allows pages to be written from main memory to the paging
device without simultaneously writing a copy to secondary storage. (The option
to write these pages to secondary storage in this way exists, and is called
"double writing," and is controlled by the "DBLW" parameter on the PARM CONFIG
card.) If the paging device is operating in double-write mode, or were designed
as a "write-through buffer," there would be no damage caused by loss of the
paging device during a running system or a crash; pages on secondary storage
would always contain the same information, although at a higher cost to access.
The fact that modified pages exist (modified with respect to secondary storage,
that is), while avoiding the substantial expense of double-writing each page of
main memory, but causes a substantial problem of updating secondary storage,
both during normal operation and the page repatriation operation of a post-crash
bootload.

The paging device replacement algorithm is a critical part of the
management policy. It is designed to resemble the "clock™ algorithm used 1in
main memory management. However, a unique interaction with the main memory
algorithm presents itself; while the eviction of pages from the paging device
that are poit modified with respect to main memory presents no special problems
(page control data bases, namely the PTW, are updated to indicate that the page
must be fetched from paging device instead of secondary storage), the eviction
of modified pages is difficult. In order to evict modified pages, they must be
written back to the disk. This is accomplished by finding a usable page~frame
of main memory, reading the page in from the paging device, and writing it out
to the disk.
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This two-part sequence is called a Read-Write Sequence, or RWS. Were the paging
device operated double-writing all the time (write-thtrough buffer), there would
be no need for RWSs. However, the fact that the main memory replacement
algorithm demands pages of paging device, and the paging device replacement
algorithm demands pages of main memory, in order to perform RWSs, presents some
difficulty. The solution to this problem, which basically involves “"punting"
paging device migration when recursion would be created, is explained in Section
VIII.

The paging device replacement algorithm maintains a ecircular used list, as
the main memory replacement algorithm does. It is of PDMAP eniries (PDMEs), and
the head of the 1list (best candidate for replacement) is designated by the
sst-relative pointer sst.pdusedp in the SST. PDMEs that are undergoing RWS are
threaded out of the 1list. Before we discuss how pages are migrated from the
paging device, however, it is appropriate to discuss how pages are migrated %o
the paging device. This has no parallel in main memory management, as pages are
"migrated to main memory" as page faults are taken; there is no choice.

Pages are migrated to the paging device as they are evicted from main
memory. “"Migration" implies that the page does not already have a copy on the
paging device. The assumption and design is that the pages that are in main
memory, going into it, and going out of it, are the most recently used and thus
most 1likely to be wused in the near future, of all of the pages in secondary
storage. Therefore, any page just evicted from main memory is more likely to be
referenced in the near future than some page less recently evicted from main
menory, and it should be allocated a record of paging device, and written to it.
Note that this implies writing of pages from main memory that are pot different,
i.e., not modified, with respeect to their copies on disk; these are the
so-called "nypd" (not-yet-on-paging-device) pages menticned in the previous
section. The need to do this writing biases find_core against these pages,
leaving claim_mod_core to initiate the paging device update. The routine
allocate_pd in page_fault is charged with the responsibility of deciding when a
page should be migrated to the paging device or-have its "nypd" bit turned on to
postpone this action.

Some subset of the pages of the paging device are always (nearly always)
going to be in main memory. Pages are migrated at main memory eviction time
instead of reading time because there is no need to read them back, hence
"waste" paging device on them, until they are evicted. It is an assumption of
the algorithm that the paging device is substantially larger than main memory;
all of the below assumptions fail if-this is not true. A paging device smaller
than main memory can also cause the paging device replacement algorithm to hang,
as will be seen below.

The subset of the paging device, so to speak, which is in main memory, is
considered to be the "most recently used”" subset. Since the paging device is
much larger than main memory, any page found in main memory by the paging device
replacement algorithm is promoted to a "recently used,” i.e., favored status,
similar to that given to pages found with their used-bits on by find_core. No
page in main memory is ever evicted from the paging device by find_core,
although deactivation or truncation of the containing segment will indeed
perform this.

The paging device replacement algorithm is invoked at the beginning of page
fault processing, every page fault. It tries to ensure that a small, fixed
number (10) of paging device records are always free or in the process of being
freed (RWS in progress). Since it does this at the beginning of a page fault,
when it is finished, probably some paging device records will have been freed,
some already free, some started RWSs, and some finished RWSs from some previous
time (made free by the interrupt side). Thus, it is probabilistically very
likely that some records will be free during the processing of that page fault
(during which claim_mod_core may attempt to migrate pages to the paging device).
The replacement algorithm moves down the PD used list, evicting all pages not
requiring RWS, and starting RWSs for all pages modified with respect to
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secondary storage. PD records found to contain pages that are also in main
memory are rethreaded in the 1list so that they acquire the favored "recently
seen to be used" status. This action continues until ten records are free or in
RWS. There is no problem of obtaining "RWS buffer" pages here, a call being
made to find core as each such buffer is needed. Note that find_core will not
cause PD records to become allocated in so doing; find_core does not initiate
writes. Only claim_mod_core does that.

Thus, by the time claim_mod_core runs, very probably a few records will be
available into which to migrate pages, on the paging device. Now it is possible
that the page-writing primitive will find that no free records of the paging
device are available for migration. Specifically, it looks at the head of the
list, checking for the availability of this record. If this record is not
available, which will only be the case if no records could be made free by the
last run of the replacement algorithm, or there were none when it ran, an action
called a PD desperation occurs. The paging device allocator (allocate_pd in
page_fault) calls the PD Desparator, (force_get_pd in pd_util) to run down the
PD used list up to twenty steps until a claimable PD record (evictable without
RWS) is found. If this strategy fails, which it rarely does, the attempt to
migrate a page to the paging device, which was an optimization of sorts to begin
with, is abandoned, and the system continues normal operation. An RWS cannot be
initiated at this time to free up paging device; it would take an indefinite
time to complete, and waiting for it in any way would cancel whatever
optimization could be gained by migrating the page.

Pages of active segments only (or nonstorage system segments, which are
always active) are kept on the paging device. This implies the need to start
RWSs at deactivation time, but metering has shown that the number of pages of
segments being deactivated which appear on the paging device, and require RWS
are few. This scheme avoids the need for repatriation of paging device pages
every time a segment is activated. This system was used in earlier versions of
Multics, involving the "PD Hash Table" now gone.

R One type of event of note in paging device management is the so-called "RWS
abort." This occurs when a process takes a page fault on a page that happens to
be undergoing RWS. To the process taking the page fault, this is Jjust another
page fault. Page - control, however, sets a bit in the PDME (pdme.abort),
informing the interrupt side not to free the main memory frame and paging device
record, but rather to keep both around, and re-establish the residency of the
page in both main memory and on the paging device. (Until the occurrence of an
RWS abort, pages transiting through main memory in order to perform an RWS are
not considered by the rest of page control to be in main memory.)

Papers about the Multics Page Replacement Algorithm:

Corbatd, F. J.
"A Paging Experiment with the Multics System," in Ingard, In Honor
of P.M. Morse, M.I.T. Press, Cambridge, Mass., (1969), pp. 217-228

Greenberg, B. S.,
"An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory,"™ M.I.T. Project MAC Technical Report TR-127,
M.I.T. Dept. of Electrical Engineering, May, 1974

Greenberg, B.S., and Webber, S.H.,
"The Multics Multilevel Paging Hierarchy," in Proceedings of the

1975 1IEEE Intercon, Institute of Electrical and Electronic
Engineers, N.Y., 1975
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SECTION VI

PAGE CONTROL DATA BASES

In this section are discussed, bit by bit and field by field the
fundamental data objects manipulated by page control:

The Page Table Word (PTW)

The Core Map Entry (CME)

The PDMAP Entry (PDME)

. The PDMAP Header (PDMAP Header)

The FSDCT bit maps, and relevant PVTE fields.

UtEWwiN =

Also presented is a list of selected fields of the SST data base, with some
explanation of their relevancy to page control, and function.

The various data objects are interrelated via 18-bit pointers and radices
when in wuse by page control. Figures 6-1 to 6-5 at the end of the section
present the interrelationship graphically for the more important states of those
objects.

PAGE CONTROL DEVICE ADDRESS (devadd)

One quantity that crops up in PTWs, CMEs, and PDMEs is the general device
address. A device address designates a frame of main memory, a record of paging
device, or a record of disk. A device address, or devadd, has two subfields,
the address, or record address, -as befits which of the above cases is
appropriate, and the address type. The bits of the address type are exclusive,
i.e., no combinations of more than one bit are valid, and the 1last bit 1is
reserved. Such devadds appearing in a PTW can designate main memory, a record
of paging device, or a record of disk. A devadd appearing in a PDMAP entry must
designate a record of disk. A devadd appearing in a core map entry can
designate either a record of disk or a record of paging device.

Format of a "main memory address" devadd, valid only in a PTW

0 : 11 2

S L
MMMMMMMMMMMMMMMMMOOQO00 | 1000

top 18 bits of main memory address, "add type," in this case add_type.core.

'y

The main memory address designates a page frame of main memory. It is the
upper fourteen bits (MMM...MM) of that address, the remaining ten bits being an
address within the page frame. The "i1" in bit 18 signifies a main memory
address.

Format of a "paging device" devadd, valid in a PTW or CME:
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0 11 2
0 7.8 1
0000000PPPPPPPPPPP|0010

"add_type," here add_type.pd

PPP = paging device record number.

The paging device record number specifies a record of paging device. The
"1" in bit 20 signifies a paging device address.

Format of a "disk" or T"secondary storage" devadd, valid in a CME, PTW, or
PDME:

00 11 2
0 1 7 8 1
N{DDDDDDDDDDDDDDDDD}0100

"add_type," here add_type.disk

DDD = Disk record number,

The record number DDDDD is the record address of a disk record, on some
physical volume. That physical volume is identified by the PVT index in the AST
entry associated with the page table to which the PTW in which this devadd is
found belongs. If this. devadd is found in a CME or PDME, the volume is
identified by the PVT index in the AST entry associated with the page table
designated by either of these objects. If this devadd appears in a PDMAP ertry
in a post-crash PDMAP entry matches the field 1label.last_pvtx on some physical
volume whose field label.pd_time matches the "PDMAP time" of the PDMAP -in which
this PDMAP entry appears. To that volume this page will be repatriated. (This
will be explained in more detail in Section IX.)

The bit "N" above is of prime importance. 1In this disk "devadd" is the bit
"N" (for nulled) being on indicates that although this devadd is assigned to the
page in whose data bases this devadd appears, the logical contents of the page
are to be considered zeros. Either this page has never been written out or
RWSed to that device address, or was truncated, and this page awaits deposition
by the VTOCE update function. An address with this bit on is called a nulled or
semikilled address; it may never be reported to segment control for a file map,
but may only be deposited or resurrected (see Section VII, "Address Management
Policy"). These nulled addresses are not to be confused with the null addresses
used by segment control in file maps, and below. A disk address that is not
nulled is said to be 1live, meaning it definitely contains the contents of the
page to which it is assigned. Nulled addresses appear only on page control.
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There exists one more type of devadd, the so-called "null" device address,
or "null" address, not to be confused with the "nulled address" explained above.
It represents a page of zeros, as does a nulled address, but designates no page
of disk. 1Its format is as follows:

Format of a page control null address; valid only in PTWs:

(o] e Ne]
q
Co

[@} BV

]
1
!
1

BBB = debugging code.

The code BBB...B is a c¢ode placed in this devadd by the program that
generated it, describing how it became null. These codes are described in
null_addresses.incl.pll1 and null_addresses.incl.alm, which has some in their
"page control representation™ as above, and some 1in their ‘'"segment control
representation,™ as below.

Null addresses enter page control from the activation of segments, as well
as by other means. Null addresses are also reported to file maps for the VTOCE
update function. When in file maps, coming into or out of page control via
pc$fill_page_table or pec$get_file_map, page control null addresses are converted
(from or to, respectively), the format in which they appear in file maps:

Format of a segment control, or file map null address, never valid in page
control, only valid in file maps in VTOCEs:

— O O
W —

| 1BBBBBBBBBBBBBBBBB |
} |
] 1

where BBB...B is the debugging code of above.

Note that devadds in VTOCEs have pno add_type: the add_type is strictly a
page control concept. Any address 1in a VTOCE that is not a null address as
above, 1.e., has bit zero equal to zero, is a live secondary storage
address-with the contents of the associated page out on it for a fact. That is
the end result of the address management policy explained in Section VII. Such
addresses have the format: .

Format of a segment control device address, appearing only in a VTOCE file
map:

1
i
1 0DDDDDDDDDDDDDDDDDDDD
|
]

]

1

i
A

where DDD...D is a disk record address on the physical vclume on which the VTOCE
in which this address appears is found. See Section II for more information
about addresses in VTOCEs.
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PAGING DATA OBJECTS

Having described the «critical concept of a devadd, we now deseribe the
three paging data objects:

1. The PTW, representing a page of a segment, 2also being the hardware
descriptor for that page.

2. The core map entry (CME), representing a page-frame of main memory and
describing its association, if any, with any page of any segment.

3. The PDMAP entry, or PDME, describing a record of paging device, and
its association, if any, with any page of any segment.

All of these data objects reside in the SST. All of them contain devadds
as substructures. Many of these structures have fields that have different
uses, and names, depending upon other bits and their meaning. The multiple
names {e.g., cme.ptup and cme.pdmep refer to the same storage) are used in the
ALM include file. However, since this is impossible to describe in PL/I, the
PL/I include files describe structures called "mpdme," "mptw,"” “mcme" to
re-describe the structures for the alternate field names. 1In the descriptions
below, we give the "alternate” PL/I names for the alternate fields, pointing it
out when we do so with the warning "(Alternate for cme.xxx)". We give octal
masks to help those interpreting dumps. )

PTW, OR PAGE TABLE WORD

del 1 ptw based (ptp) aligned,
(2 add bit (18),

2 add_type bit (4),
2 first bit (1),
2 processed bit (1),
2 padl bit (1),
2 unusablei1 bit (1),
2 phu bit (1),
2 unusable2 bit (1),
Z nypd bit (1),
' 2 phm bit (1),
2 phul bit (1),
2 wired bit (1),
2 os bit (1),
2 df bit (1),
2 df no bit (2)) unaligned;
del 1 mptw based (ptp) aligned,
2 devadd bit (22) unaligned,
2 pad bit (14) unaligned;
0 11 2 2 2 2 2 233333 3
0 1.8 1.2 4 6 7T 9 012134 5
add add_type}f W
. i n i
r P v pjpjrfjojdidf_no
sle h p hihjefs|f
tir{0 0 uj0 d mlujd
devadd i
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ptw.add
(777777,du)

ptw.add_type

(740000,d1)

When this PTW describes main memory, ptw.add is the upper 18 bits of
the 24-bit main memory address of the main-memory page frame it
designates. This can be the case whether or not ptw.df is on; only
in the latter case is this PTW a valid hardware descriptor for the
page; all other cases cause a process to take a page fault if it
attempts to use this PTW as a hardware descriptor.

Defines which type of devadd is contained in this PTW; when it is
add_type.core, 400000,d1, the field ptw.add is valid as above. Any

- type of page control devadd can appear here.

mptw.devadd

(T77777740000)

ptw.first
(200000,d1)

ptw.er,

(Alternate for ptw.add and ptw.add_type). Describes, if this page
is in main memory, its main memory address, as a "main memory" type
devadd. If this page is pot in main memory, but is on the paging
device, then this is a paging-device type devadd. If this page is
neither in main memory nor the paging device, but has a disk record
associated with it, this is a disk_type devadd as above, including a
"nulled" bit on or off with the meaning explained. Otherwise, this
is a true "null®" page, and this is a null devadd as above. In all
cases, this devadd designates the storage device or lack thereof
from which the page will be read in or created if faulted on. A
null address or a nulled address causes the creation of a page of
zeros.

If the global switch sst.ptw_first is on, which it normally is 'not,
pc$fill_page_table turns this bit on in all PTWs of segments being
activated. This bit is turned off whenever this page 1is evicted

.from main memory. This bit being on tells the paging device

allocator pot to allocate a paging device record for this page when
an attempt 1is made to eviet it. Thus, if sst.ptw_first is on,
paging device management i1s effectively changed sc that pages get
one chance to be referenced, in any given activation, and evicted,
before being migrated to the paging device. This is desirable for
random-access applications, to avoid suboptimal use of the paging
device. An experimental feature, the flag sst.ptw_first may be set
on only by highly privileged patching.

ptw.processed

(100000,d1)

Used for two purposes. The interrupt side, when posting (telling
the rest of page control about) the completion of a page read
operation that was unsuccessful due to a device error, sets this
bit, and notifies the faulting process. The restarted process takes
the page fault over again, as the PTW has pot been made to describe
main memory (made valid as a hardware descriptor), notices this bit,
turns it off so that the next process can retry this operation, and
signals "page_fault_error" in that process. The post_purge service
of page control wuses this bit to mark a2ll PTWs found in the PDS
trace list (see Post Purge, in "Services of Page Control"). If any
attempt is made to mark any PTW that has this bit on already, the
implication is that the process has faulted on that page at least
twice during its last eligibility and this is considered to be
"thrashing™; the counter sst.thrashing is incremented. This bit is
also used by online SST analysis tools (e.g., check_sst) to perform
various marking operations on images of the SST.
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ptw.phu
(001000,d1)

ptw.nypd
(000200,d1)

ptw.phm
(000100,d1)

ptw.phul
(000040,d1)

ptw.wired
(000020,d1)

ptw.os
(000010,d1)

9/78

This bit is set to "1"b when the processor appending unit fetches
this PTW, and places it into its associative memory. This page may
be used repeatedly, but this ©bit will not be set again until that

PTW leaves the processor's associative memory, either by
replacement, or the execution of a CAMP instruction (clear PTW
associative memory). The page replacement algorithm, in

claim_mod_core, when noticing this bit and turning it off, does not
clear the system's associative memories; it counts on the fact that
some page eviction 1in the near future will. Clearing the
associative memories of the system disturbs all processes and
processors; the page replacement algorithm's approximations are not
worth that much.

(Not yet on paging device.) This bit indicates that the page has
been paged in from secondary storage, and has not yet migrated to
the paging device. Thus, the main memory replacement algorithm is
wary of evicting such pages, because it takes work (paging device
writes) to do so. This bit is only meaningful when ptw.phm (see
below) is zero for when the page has been modified in main memory,
this alone is an indication to the main memory replacement algorithm
that the page takes work to evict. Note that this bit shares a zone
with ptw.phm; it does not matter that the appending unit modifies
this zone when setting ptw.phm, as ptw.phm being on makes ptw.nypd
meaningless.

Page-has-been-modified bit. Set by the appending unit to "1"b when
a reference is made to the page described by this PTW which stores
into that page, and no PTW with the ptw.phm bit corresponding to
this PTW appears in the associative memory. Therefore, when this
bit is turned off by page control, the associative memories of the
system processors must be cleared or future modifications may not be
seen (see "write_page"™ in the "mechanisms" chapter). Such a store
also turns on the ptw.phm bit in the PTW associative memory of the
processor. Note that setting ptw.phm may affect ptw.nypd; this is a
feature (see ptw.nypd above).

"Used in quantum bit." This bit 1is used only as input to the
post-purge algorithm, which describes what to do with what pages,
for performance reasons alone, at the end of a process' eligibility.
This bit is turned on by the main memory replacement algorithm
{(claim_mod_core) every time ptw.phu is turned off, and is turned off
by the post-purge algorithm wunder certain conditions. (See
"Post-Purge" in Section IX.)

Tells the main memory page replacement algorithm that this page may

not be evicted under any circumstances, as some procedure is using
it, or will use it, which may not take page faults. Such a page is
said to be wired. Nevertheless, this page may be moved around main
memory durin reconfiguration cperations, as long as it constantly
remains accessible. (See "Eviction" in Section VIII), which is not

true for an abs_wired page. All abs_wired pages are wired.

For "out of service." When on, an I/0 operation is in progress on
this page. Does not in general, mean that the page is inaccessible,
or unusable in any way (pages are fully accessible during writes).
when this bit is on, the "devadd" of the PTW must be a main-memory
type devadd, describing a main memory address.
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ptw.df
(000004,d1)

ptw.df_no
(000003,d1)

CORE MAP

"directed fault" bit used by the hardware. When on, indicates that
this PTW is a valid hardware descriptor, mapping references to some
page of its segment 1into refercences to main memory. In this case,
the "devadd" in the PTW must be a main-memory address, as ptw.add
will be interpreted by the hardware as such. When off, a process
attempting to use this PTW via the hardware will take a page fault.
Note that processes will observe the fact that this bit has been
turned off only if any copies of this PTW in their associative
memories are cleared out; thus, all associative nmnemories of the
system are cleared when a page is evicted.

The contents of this field tell the hardware what type of directed
fault to take when ptw.df indicates that it should take a fault. 1In
Multics, this field is always set to "01"b, and thus, a directed
fault 1 is interpreted as a Multics page fault. Note that zeros in
a PTW, or an attempt to use zeros as a page table will not cause the
page fault handler to be invoked, but rather the segment fault
handler, for directed fault zero is 1interpreted as a segment fault
(as wuninitialized SDWs, which are in wunused (zero) regions of
descriptor segments, contain all zeros, specifically in sdw.df and
sdw.df_no). This generally causes the segment fault handler to
repeatedly issue the message '"seg-fault: illegal segfault on CPU A"
when it finds that the SDW contains no segment-fault condition at
all,

The Core Map is an array of Core Map Entries (CMEs), one for each page
frame of configurable main memory. It is indexed by main memory address. The
pointer sst.cmp points to the array, i.e., the CME for the frame at location’'O.
It is in the SST.

CORE MAP ENTRY (CME

del 1 cme based (cmep) aligned,
2 fp bit (18) unaligned,
2 bp bit (18) unaligned,

PPN PN DN

[AVACR SV

del

RN —

9/78

devadd bit (22) unaligned,
padding bit (2) unaligned,

io bit (1) unaligned,

rws bit (1) unaligned,

er bit (1) unaligned,
removing bit (1) unaligned,
abs_w bit (1) unaligned,
abs_usable bit (1) unaligned,
notify_requested bit (1) unaligned,
spare bit (2) unaligned,
contr bit (3) unaligned,

ptwp bit (18) unaligned,

astep bit (18) unaligned,
dblw_devadd bit (22) unaligned,
padding1 bit (14) unaligned;

meme based (cmep) aligned,
pad bit (36) unaligned,
record_no bit (18) unaligned,
add_type bit (4) unaligned;
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0 11 3
0 7 8 5
i i |
Word O | fp i bp !
i L 1
0 22 33 3
0 1.2 2 3 5
] [} [} 1
[} 1 1 1
Word 1 | devadd { flags ictrlir |
1 1 ] 1
1 1 1 1
0 11 3
0 78 5
1 1 [}
1 } ]
| ptwp i i
Word 2 ] ] astep |
i pdmep i i
! i ]
0 3
0 5
i |
Word 3 | reserved |
f H
cme.fp

(777777000000,word 0)

Forward pointer along with cme.bp, defines the position of the CME
in the core map used list, used by the main-memory page replacement
algorithm to maintain pseudo-LRU order. The rel-pointer cme.fp is
the relative offset into the SST of that CME which describes the
page frame containing the page supposedly slightly more recently

seen as used. Its field cme.bp describes this CME.

(See "Main

Memory Replacement Algorithm" in Section V.) When a page-frame is
undergoing either an I/0 operation, reading or writing a page, or

an RWS (cme.rws on), both cme.fp and cme.bp are zero,

and no other

CME, or either of the used-list pointers, sst.usedp and sst.wusedp,
designate this CME. The fields <cme.fp and cme.bp are both
"TTTT77"b3 in CMEs that designate pages that are not configured, or
are deconfigured. CMEs not part of the paging pool, but still

corresponding to real main memory, are all zeros.

cme.bp
(000600777777 ,word 0)
Back pointer. See cme.fp above.

cme . devadd
(777777740000,word 1)

A devadd as described in the beginning of this section.

when cme.ptwp (or mcme.pdmep) is nonzero. May only

paging device address, or nulled or live disk address.

is off, then this is that address to which the page

Valid only
validly be a
If cme.rws
whose PTW is

described by cme.ptwp will be written when evicted; a paging device

devadd if this page has one, otherwise a disk address.

Iif cme.rws

is on, i.e., an RWS is in progress in this main memory frame, the
contents of cme.devadd depend upon cme.io, which tells whether the
read or write half of the KWS is under way, and the paging device or

disk address resides here respectively.

cme.flags
(000000037770)

Various

n

tate flags, detailed below.
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cme.lio
{004000,d1)

cme.rws
(002000,d1)

cme.er
(001000,4d1)

Valid only if cme.ptwp (or mcme.pdmep) 1is nonzero. Tells the
direction of I/O if any is going on in this frame, off being read,
on being write. Valid as above, and at that, only if:

If cme.rws is on, tells whether a Read or Write cycle of an RWS is
in progress here.

If cme.rws 1s off, then the PTW designated by cme.ptwp must have
ptw.os on if cme.io is meaningful, in which case that page is Dbeing
read or written from this main memory frame, and cme.ioc tells which.
Basically tells the interrupt side what to do.

Valid only when mcme.pdmep is nonzero (if cme.ptwp describes a PTW,
page control is in a severe error situation. This bit being on,
when meme.pdmep is nonzero, means that an RWS is going on in this
main memory frame. The flag cme.io tells which half of the RWS;
mcme.pdmep contains the relative offset into the SST of the PDMAP
entry for the paging device record undergoing RWS. It must have
pdme.rws on, and be out of the PDMAP used 1lit. This CME must be out
of the used list.

is NOT USED.

cme.removing

(000400,d1)

cme.abs_w
(000200,d1)

is turned on b pc_abs on the call side when the main memory page
frame described by this CME is being deconfigured. It makes
find_core skip over this page, ensuring that any eviction from this
page frame is permanent until the page frame is threaded out of the
used 1list, making it totally inaccessible. (See "Main Memory
Deconfiguration Service" under "Services" in Section IX.)

Defines a page frame containing an "abs-wired™" page, or a page frame
in the process of receiving such a page. Such a page will also be
marked as "wired" in its’ PTW. Keeps find_core from trying to evict
the contents of this page, or handing it to any caller of find_core
during interim states (such as possible FSDCT pagings) during the
wiring of this page when the page frame might otherwise appear to be
free. Also informs the main memory configuration service that the
controller containing this page frame cannot be deleted. Also
informs the allocator of abs-wired main memory that this page frame
is already abs-wired, and its contents cannot be moved to make room
for abs~wired pages. (See "Abs Wiring Service"™ 1in Section IX.)

cme.abs_usable

(000100,4d1)

Says that this page frame may, if not already used so, be used for
abs-wiring, if this page frame is usable (appears in the used list
or is actually in use) at all. All page frames with cme.abs_w on
must have cme.abs_usable on. This quality of being abs-usable is a
static function of a page frame throughout a bootload. See the

Multics Recopnfigyration PLM, Order No. ANT1.

cme.notify_requested

(000040,d1)

Valid only if cme.rws 1is off, and cme.ptwp describes a CME with
ptw.os on (in which case this CME is threaded out of the used 1list,
as a page I/0 is in progress). Tells the interrupt side th=t soue
process is waiting, via the traffic controller wait/notify mechanism
for I/0 completion on this page. This bit is turned on when any
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process goes to wait for paging I/0, either on the fault side (see
"Page Fault Handling"™ in “"Services,") the call side, via the

call-side wait coordinator, device control$pwait (see "Wait
Protocols™ in "Mechanisms"), or the special wait mechanism of the
process~-loading mechanism (see "Process Loading" in "Services"). It

tells the interrupt side to invoke the traffic controller to perform
a "notify" on the event associated with this page (see "Wait
Protocols™ in Section VIII) when the I/0 on this page is complete.
If not on, no traffic control notify is performed when this I/0
completes.

cme.pd_upflag

(000020,d1)
Causes the interrupt side to rethread this CME to most recently used
position on the completion of a page write from this frame, as
opposed to the least recently used position as it normally does.

cme.contr

(000007,d1)
Not currently used. (Controller) is the port tag of the system
controller that controls the main memory described by this CME.
(See the Multics Reconfiguration PLM, Order No. AN71.)

cme.ptwp

(777777000000,word 2)
PTW pointer. Only valid when cme.rws is off. When nonzero, states
that some page of some segment is associated with this page frame.
The field cme.ptwp is the relative offset into the SST of the PTW
for that page. The page may or may not be undergoing I/0 as ptw.os
of that PTW is on or off. The page is not, however, undergoing RWS.
It is guaranteed that the "devadd" file of the PTW has a main-memory

type devadd describing the main memory page frame of this CME.

mcme .pdmep

(777777000000,word 2)
(Alternate for cme.ptwp). Only valid when cme.rws is on, which is
when there is an RWS going on ¥n this main memory frame. In this
case, mcme.pdmep is the relative offset into the SST of the PDMAP
entry of the PD record undergoing this RWS. 1In this case, the field
mpdme.cmep of that PDME would be the relative offset into the SST of
this CME.

cme.astep

(000000777777 ,word 2)
Only valid wunder the conditions wunder which cme.ptwp is valid and
nonzero. The field cme.astep will then contain the relative address
into the 3ST of the AST entry for the segment to which the page in
this main memory frame belongs.

Word 3 of the core map entry is reserved for future expansion. It is no
longer used as "cme.dblw_devadd."

PAGING DEVICE MAP

The Paging device map is an array of Paging device map entries (PDMEs), one
for each configurable record in the Paging device. It contains PDMEs for a2ll PD
records to be used by the current bootload, as specified by the PAGE CONFIG
card. The pointer sst.pdmap located the PDME for record 0 of the paging device.

It is in the SST.
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PAGING DEVICE MAP ENTRY (PDME)

del

del

9/78

1
2
2

NN DN NN NN NN NN

no NN

NN -

pdme based (pdmep) aligned,
fp bit (18) unaligned,
bp bit (18) unaligned,

devadd bit (22) unaligned,

pad2 bit (2) unaligned,

modified bit (1) unaligned,
incore bit (1) unaligned,

rws bit (1) unaligned,

used bit (1) unaligned,

abort bit (1) unaligned,

pad3 bit (1) unaligned,

flushing bit (1) unaligned,
notify_requested bit {1} unaligned,
update_only bit (1) unaligned,
removing bit (1) unaligned,
double_writing bit (1) unaligned,
pad pit (1) unaligned,

ptwp bit (18) unaligned,
pageno fixed bin (38) unal,
pvtx fixed bin (38) unal,
uid bit (36) =zligned;

mpdme based (pdmep) aligned,

save_old_pvtx fixed bin (17) unalicned,

cmep bit (18) unaligned,
record_no bit (18) unaligned,
add_type bit (4) unaligned;
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Word O

Word i

Word 2

Word 3

pdme.fp

0 11 3
0 7.8 5
i i i
I fp : bp |
1 ] I
| save_old_pvtx i cmep !
] i !
1 L 1
0 2 2 3
0 1.2 5
i i i
i devadd ! flags !
1 ] |
1 A 1
0 11 2 2 3
0 7.8 6 T 5
] 1 ] 1
] I 1 ]
i ptwp ! pageno | pvtx !
i ] 1 ]
1 1] 1 1
0 3
0 5
i |
i uid !
1 1
1 L

(777777000000,word 0)

Forward pointer in the PD used 1list., Has the relative address into
the SST of the PDME used supposedly slightly more recently than this
one. PDMEs describing records that are undergoing RWS are threaded
out: pdme.fp is =zero, and pdme.bp is reused as mpdme.cmep. PDMEs
that have been deconfigured have pdme.fp and pdme.bp both equal to
wTTTTT7T"D3. Paging device map entries in PDMAPs representing
"unflushed" paging devices, on the next bootlocad after one in which
ESD failed, have all entries either threaded out or deconfigured.
This field shares storage with mpdme.save_old_pvtx.

mpdme.save_old_pvtx-
(377777,du,word 0)

9/178

(Alternate for pdme.fp.) During a post-crash PD flush, the value of
pdme.pvtx is saved here. This 1s so that should the system crash
during the post-crash PD flush, the next bootload can put that PVT
index back in pdme.pvtx to retry the flush. The field pdme.pvtx is
set, during the post-crash flush, to the PVT index of the drive
where the volume to which the pages are being repatriated in this
bootload. The o0ld value is nccessary to identify the pack, where it
was recorded in the label at the time the volume was accepted (see
"Post-Crash PD Flush" under "Services," and Section IX.)
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pdme.bp

(000C00777777,word 0)

mpdme.cmep

Backward pointer in the PD Used list. Has the relative offset of
the PDME, in the SST, whose pdze.fp describes this pdme. Also
shares storage with mpdme.cmep. Valid only when pdme.rws is goff.

(000000777777 ,word 0)

pdme.devadd

(Alternate for pdme.bp.) Valid only when pdme.rws is on, in which
case pdme.fp should be zero and no other PDME or the PD used list
used pointer sst.pdusedp should describe this PDME. 1In this case,
an RWS is being undergone by the PD record described by this PDME,
and mpdme.cmep contains the relative address in the SST of the CME
that describes the page frame in which this RWS is taking place.
The field mcme.pdmep should point back to this PDME. Used by the
abort code in the interrupt side to locate the CME when the PDME has
been found from the PTW. See Figure 6-5.

(777777740000,word 1)

pdme.flags

Is the disk address, as a standard page control devadd, which is
associated with the page contained on the PD record described by
this PDME (valid only when pdme.used is gn). Must be a disk-type
devadd, can be nulled or 1live. Pages created in main memory,
written to the paging device, but never yet written to the disk
record which they were assigned will have a nulled devadd here (see
"pddress Management," Section VII).

(037777,d1l,word 1)

pdme.mod
(oo4000,d1)

pdme.incore
(002000,d1)

pdme.rws
(001000,d1)

pdme.used
(0004%00,d1)

pdme.abort
(000.200,d1)

Are the pdme control flags, detailed below.

Modified with respect to disk. Indicates that the page in the PD
record described by this PDME is different from the <capy of the
page, if any, on disk, and an RWS will be necessary to free this
PDME,

Is OBSOLETE. PTWs are inspected directly by the paging device
replacement algorithm.

I1f on, the record of pagihg device described by this PDME is
undergoing RWS. The CME designated by mpme.cmep contains additional
information. See the description of that field above.

Indicates, when on, that this pdme is not free, i.e., that the PD
record it describes contains some page of some segment. All fields
other than the thread word of a PDME are zeros when it 1is freed,
unlike CMEs. The bit pdme.used being off in a nonzero PDME should

b a1l AV A
oL vairlidliy OCcur.

Turned on by the fault side when this function discovers that an RWS
is in progress on the PD record that contains the page it is trying
to read in. This tells the interrupt side, upon completion of the
RWS, to connect the PTW to the main memory frame in which the RWS
was performed, thus effectively paging the page in "by virtue of
RwWS," and not to free either the page fraze or the PD record. It
alsc causes the interrupt side to notify the RWS completion event
(see "Wait Protocols™ in Section VIII) to restart the faulting
process.
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pdme.flushing

(000040,d1)
Is used by the post-crash software when repatriating a page at
volume-salvage time, after an unsuccessful shutdown. Turned on when
the RWS for this page is initiated. Function is to tell ‘the
interrupt side that this is not an ordinary RWS, and the PDME should
not be freed upon completion, but left intact so that the post-crash
repatriator {pc$flush_seg _old_pd) can determine the relative success
of the RWS by inspecting the PDME. (See "Post-Crash PD Flush™ in
Section IX.)

pdme.notify_requested

(000020,4d1)
Parallel in functicn toc cme.notify_requested. Turned on by the
call-side wait coordinator, device_control$pwait, when the call side
wants to wait for the completion of an RWS. Tells the interrupt
side to perform a traffic control "notify"™ on the RWS event for this
PDME. Note that this is always done for an RWS abort completion,
which is when the same thing happens on the fault side.

pdme.update_only
(000010,d1)
’ Is OBSOLETE.

pdme.removing

(000004,¢1)
Is wused during deconfiguration of the entire, or partial paging
device, by the operator "delpage" command. Useful only during an
RWS, it tells the interrupt side, on completion of the RWS, not to
free the PDME, but to deconfigure (delete) it. Also used internally
by the interrupt-side automatic deconfiguration code which responds
to paging device errors (see "Error Handling" in "Mechanisms").

pdme.double_writing
(000002,d1) :

Used when the paging device is being used in any of the double-write
(write-through) modes specifiable by the PARM DBLW parameter in the
CONFIG deck. This bit is turned on by the interrupt side wupon the
completion of a paging device write if it is decided that a
double-write to disk will be performed. This decision is made based
upon the number following the word DBLW on the PARM card, and the
properties of the page Jjust written. It is g9on while the
double-write (to disk) is going on. It tells the interrupt side,
upon completion of the write, that the page has been successfully
written to disk, and therefore, that the disk address in the PDME
(pdme.devadd) should be resurrected. (See "Address Management," in
Section VII.)

pdme.ptwp :

(777777000000,word 2)
Is a pointer, relative to the SST, of the PTW for the page that
resides on the PD record described by this PDME. 1In the case where
the contents of the paging device are left over from a previous
bootload, which did not shut down successfully, pdme.ptwp is zero,
until the paging device is reinitialized when it 1is successfully
flushed. The fact that this field is always nonzero during normal
operation is a reflection of the poliey that only pages of active
segments are allowed on the paging device.

pdme.pageno

(377000,d1)
Along with pdme.pvtx and pdme.uid, this field is there principally
for the post-crash PD flush done by the next bootload after a crash
in whiech ESD did not succeed. The field pdme.pageno is the page
number, relative to zero, within its segment, of the page on this
record of paging device,
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pdme.pvtx

(000377,d1)
The index in the physical volume table of the drive which contains
that pack, on which the page in the PD record described by this PDME
resides. This field is used by the interrupt side, at the mid-point
of an RWS, to identify the drive to which the RWS buffer must be
written for the write cycle of the RWS. (See "Post-Crash PD Flush,"
Section IX.)

pdme.uid

(whole word 3)
Is the wunique segment ID of the segment containing the page that
resides in the PD record described by this PDME. This is placed
here by the PD allocator, allocate_pd in page_fault, solely so that
this PDME can be "found" during physical volume salvaging of the
pack containing that page, so that this page might be repatriated at
that time.

PDMAP HEADER

The PDMAP header occupies that region of the paging device map which would
otherwise be the PDME for the first record used. Since this record is always
guaranteed to contain a copy of the first page of the PDMAP, the space is used
for the PDMAP header. (See "Post-Crash PD Flush" in Section IX for motivation
for the PDMAP header.) Other than pdmap_header.time_of_bootload, the PDMAP
header contains copies of similarly-named information in the SST.

decl pdmap_header based (pdmhp) aligned,
pd_first fixed bin (17) unal,
pd_using fixed bin (17) unal,
nrecs_pdmap fixed bin (17) unal,
pdme_no fixed bin (17) unal,

time_of_bootload fixed bin (71);

PPN -

pdmap_header.pd_first
Copy of sst.pd_first. The paging device record number or the first
record being used by this bootload; this first record is the one
containing the first record of the PDMAP.

pdmap_header.pd_using
Copy of sst.pd_using. The number of records of the paging device
usable as a paging device--includes all those in use or free. Does
not include those deconfigured or used to store the PDMAP.

pdmap_header.nrecs_pdmap
Copy of sst.nrecs_pdmap. The number of pages (1024-word lengths) in
the length of the PDMAP itself; the number of bulk store records
devoted to storing the map itself.

pdmap_header.pdme_no

Copy of sst.pdme_no. The number of elements in the PDMAP array,
including those corresponding to records in which the copy of the
PDMAP is stored on the bulk store.
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pdmap_header.time_of_bootload

The value of fsdct.time_of_bootload (always set to the clock during
collection 1 initialization) from that Multics bootload during which
this instance of the paging device map was initialized. This
quantity will not change during successive bootloads after a crash
in which ESD fails, until all pages on the paging device have been
repatriated, at which time the PD map will be reinitialized. This
quantity is written to the 1labels of all physical volumes
(label.pd_time) accepted during a bootload in whiech this PDMAP was
actively in use; this allows the post_crash PD flush to identify
those volumes to which pages need to be repatriated.

PYTE VARIABLES FOR PAGE CONTROL

The PVT, or physical volume table, 1is basically a data base of volume
management. However, it contains in its PVTEs (PVT entries) all of the
per-drive and per-mounted-pack data used by the system, specifically the
information used by the disk DIM to describe a drive, and the information used
by the disk record allocator/deallocator (free_store) of page control. All of
the following parameters are used by the disk record allocator/deallocator; the
other parameters in the PVTE are described in Section XIII. These parameters
describe the status of the bit-map of free records for that volume.
Historically, these parameters had 1lived in the FSDCT, in a region directly
preceding the bit-map, and were known as fsmap parameters. (See "Disk Record
Allocation/Deallocation" in "Mechanisms.")

pvte fsmap_rel
a relative pointer, relative to the base of the FSDCT, to the bit
map for this drive. - ‘

pvte.curwd
a relative pointer, relative to the base of the bit map for this
drive, of the next word to be inspected for free records.
pvt.wdine
2 number by which pvte.curwd is to be incremented to "roll it
around" to the beginning when it passes the end of the bit-map.
pvte.temp
: is a temporary variable used as such by free_store. This highly
unlikely place for a work variable is historiecal in origin.
pvte.baseadd
: is the record address represented by the first bit of the bit-map
for this drive. Each word represents 32 addresses, starting at that
record address. The first bit of each word is not used, nor are the
last three bits. This 1is to facilitate assembler-language
manipulation of this table.
pvte.tablen

is the number of yalid words, for the pack currently mounted on this
drive, of the bit-map.

pvte.tablen_allocation
is the number of words in the FSDCT pregiopn allocated for this drive.
This is a function of the drive, not the pack on it.

pvtw.nleft

: is the number of bits on at any time in the bit-map for this drive,
i.e., the number of records left unallocated. When zero, an "out of
physical volume" (00PV) situation has occurred,
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pvte.relct
is a counter of the number of deposits (freeings) performed since
last reset. When this number reaches 100, it 1is reset, and
pvte.curwd reset to the beginning of the free store map.

pvte.totrec
is the number of records described by the bit-map for this pack.

INQ OF LEV

The SST header, the first 512 words of the SST, contains a large number of
global variables of 1interest to the storage system in all its subsystems.
However, the large number of them which directly control every action of page
control make it mandatory to list these variables, and give their
interpretations.

sst.space
first eight words of SST. Set to "TTTTTTTTTT7T"b3 by init_sst.
Used to watch for page control bugs which might accidentally use
zero rel-pointers, and thus store data intended for somewhere else
into the first few words of the SST.

sst.post_purge_time
a cumulative total of CPU time spent in the post-purge function.
Reported by post_purge_meters.

sst.post_in_core
' a count of pages found in main memory by the post-purge function at
post~purge time. 1Indicative of working-set behavior. '

sst.thrashing ’

a count of pages found twice in a per-process page-trace list by the
post-purge function. Indicates that a process could not even keep
its working set in main memory during its eligibility.

sst.npfs_misses
is OBSOLETE.

sst.salv
is OBSOLETE.

sst.ptl
is the actual global page table lock.

sst.nused :
is the number of page-frames of main memory in use by paging, be
they wired, out of service, free, or whatever. Pages deconfigured,
not corresponding to real memory, or containing parts of perm-wired
segments are pot counted. Critical for the traffic controller's_
memory-sharing computations.

sst.ptwbase
is the absolute address of the base of the SST  segment. Used to
convert SST-relative page-table pointers into absolute addresses
suitable for use in SDWs, and vice-versa.

sst.bulk_pvtx
is the PVT index of the bulk store. The bulk store has a PVT entry,
and is therefore, in some contexts, considered a rather peculiar
type of disk. Specifically, it is that "disk"™ on which the
"pdmap_seg," the segment that is used to access and update the PDMAP
image on the bulk store, resides.

sst.astsize

is 12 decimal, the size of an AST entry.
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sst.cmesize
is 4, the size of a CME.

sst.cmp
is an ITS pointer to the base of the core map array, which is always
the CME for address zero.

sst.usedp
is a relative pointer +to the CME which is the best candidate for
replacement. This field is the "clock-hand" of the main memory page
replacement algorithm.

sst.wtet
is a count of all outstanding writes 1initiated by page control.
When this number reaches a certain threshold (a "ceiling" is then
said to have occurred) the DIMs are interrogated for completions
until this number goes down. (This is called "running the devices,"
see "Mechanisms.")

sst.startp

is OBSOLETE.

sst.removep
is OBSOLETE.

sst.double_write
is the parameter that appears on the PARM DBLW CONFIG card field, if
there is one, otherwise zero. It tells the paging device interrupt
side when, if at all, to perform double-writes, based upon its
value:

Never double write, the default.

Double write every time a PD write is done, but not process
directory pages.

Double write only directory pages.

Double write anything which has never been double-written, i.e.,
needs resurrection.

)

w N

sst.temp_w_event
is "200000000000"b, wused by wire_proc to lock the "temp-wiring"
tables. (See Section X.)

sst.root_pvtx
is the PVT index of the RPV (Root Physical Volume), on which all of
the supervisor resides, and the whole system runs during
initialization.

sst.ptw_first
if patched on, modifies paging device behavior to give all pages a
chance to be used and evicted once before migrating them to the
paging device. (See the description of ptw.first, earlier.)

sst.nolock
is OBSOLETE.

sst.x_fsdctp
is OBSOLETE.

sst.pdir_page_faults
is a meter of page faults on per-process segments. Reported by
file_system_meters.

sst.level_1_page_faults
is a member of page faults on directories and segments off of the
root. Reported by file_system_meters.

sst.dir_page_faults

is a meter of page faults on directories. Reported by file system
meters.
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sst.ring_0_page_faults

sst.rqover

is a meter of page faults taken in ring =zero. Reported by
file_system_meters.

is the value of error_table_$rqover, the error code for record quota
overflow. Put here so that the page-fault handler can use it, as it
cannot reference error_table_, the latter not being wired.

sst.pe_io_waits

sst.steps

sst.needec

sst.ceiling

sst.ctwait

sst.wired

sst.laps

sst.skipw

sst.skipu

sst.skipm

sst.skipos

sst.skipspd

sst.reads

sst.writes

9/178

is OBSOLETE.

is the number of times the main memory page replacement algorithm
(see the earlier description) passed a CME. Reported by
file_system_meters.

is the number of times the main memory page replacement algorithm
was 1invoked, i.e., a page frame was needed. Reported by
file_system_meters.

is the number of times the page replacement algorithm had to "run
the devices" because of an excess of writes queued. (See "sst.wtect"
above.) Reported by file_system_meters.

is OBSOLETE.
is a count of the number of pages temp-wired or abs-wired.

is OBSOLETE. File_system_meters computes "laps" as "steps" divided
by "nused."

is the number of times the main memory PRA skipped page frames
containing abs-wired or temp~-wired pages. Reported by
file_system_meters.

is the number of times that the main memory page replacement
algorithm passed over a page because it was recently used, and
turned off its "used" bit. Reported by file_system_meters.

is the number of times that the main memory page replacement
algorithm skipped a page because it was modified, and needed writing
out. Reported by file_system_meters.

is OBSOLETE.

OBSOLETE.

[
w

is an array by device type, metering read reguests dispatched by
device_control$dev_read for each type of device.

is an array, by device type, metering write requests dispatched by
device_control$dev_write, for each type of device.
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sst.short_pf_count
is a count of the number of times that a page fault had already been
satisfied (usually by some other process) by the time it
successfully locked the page table lock.

sst.loop_locks
is a count of attempis to lock the page table lock.

sst.loop_lock_time
is a cumulative total of CPU time spent looping on the page table
lock. It is reported by total_time_meters.

sst.pre_page_size
is OBSOLETE.

sst.post_list_size
is a count of all page trace entries processed by the post-purge
function (see Section IX). When divided by sst.post_purge_calls, it
is the average size of the post-purge list.

sst.post_purgings
is a count of all page writes started by the post-purge function,
which is an option currently not selected (see Section IX).

sst.post_purge_calls
is a count of invocations of the post-purge function.

sst.pre_page_calls
sst.pre_page_list_size
sst.pre_page_misses
sst.pre_pagings

all are OBSOLETE.

sst.wire_proc_data
is wused solely by the procedure wire_proc (see Section X,
"Peripheral Services of Page Control") to keep track of temp-wiring
requests.

sst.abs_wired_count
is a count of all page frames containing abs-wired pages.

sst.wired_copies
is OBSOLETE.

sst.recopies
is a count of the number of times that evict_page had to recopy a
page because it was modified while being copied. (See "Demand
Eviction" in Section VIII.)

sst.first_core_block
is zero.

sst.last_core_block
is the index in the core map of the highest-addressed page frame in
the configuration. Used by reconfiguration (see the Multies
Reconfiguration PLM, Order No. ANT1).

sst.tree_count
is an array of sixty-four cells, corresponding to the sixty-four
possible page-states which the post-purge function can see. It
counts how many times each was encountered. (See Section IX, "Post
Purging.")

sst.pp_meters
is OBSOLETE.
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sst.wusedp
is the "write" usedp, used by claim_mod_core to do writes and PD
migrations wuntil it is equal to sst.usedp. (See "Main Memory
Replacement Algorithm™ in Section V.)

sst.write_hunts
is the number of times that claim_mod_core was invoked to do work
postponed by find_core.

sst.claim_skip_cme )
is the number of times that claim_mod_core attempted to process a
CME which was unprocessable, i.e., was abs-wired.

sst.claim_skip_free
is the number of times that claim_mod_core passed over a CME which
was free. As the region of the 1list being processed by
claim_mod_core is directly behind usedp, this is not a good state of
affairs; that CMEs should be at the other end of the list.

sst.claim_notmod
is a meter on the number of times that claim_mod_core passed a page
that was not modified or "nypd," and thus not even interesting.

sst.claim_passed_used
is a count of times that claim_mod_core passed pages whose "used"
bits were on, turning them off on behalf of find_core.

sst.claim_skip_ptw
is a meter on the number of times that claim_mod_core passed a page
and skipped it because of the state of its PTW; usually, this means
that the page was wired.

sst.claim_writes
is a count of calls made by claim_mod_core to write out pages (if
full of zeros, the pages will not actually be written).

sst.claim_steps
is a count of core map entries processed by claim_mod_core.

sst.rws_reads_os

is a count of outstanding RWS "read" cycles (paging device read) in
progress. The RWS initiator of the paging device replacement
algorithm initiates all of the RWSs it is going to at once, and
waits for sst.rws_reads_os to become zero via "running” the bulk
store DIM. While allowing the full queueing facility of the bulk
store to be used, this ensures that the page table is not unlocked
during RWS read cycles, as page control is not prepared to handle
aborts during the read side.

sst.pd_updates
is a count of done-time PD writes started, part of the feature
described under sst.pd_writeahead.

sst.pre_seeks_failed
is a count of the number of times that find_core could not find an
acceptable (not used, not modified, not "nypd," not wired) CME in
fifteen steps, and called claim_mod_core as a result to cause more
processing, to cause completions to be noticed and zero pages to be
discovered.

sst.pd_desperation_steps
is a count of steps made by the PD desperator, which is invoked when
the PD allocator finds that the PDME at the head of the PD used list
is not «claimable. The counter of failures of the PD desperator is
sst.pd_no_free.

sst.pd_desperations
is a meter

(reported by

£ h
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sst.skips_nypd

. is a meter of times that the main memory replacement algorithm
skipped a page frame because of its ™M"not-yet-on-paging-device"

status. '

sst.pd_writeahead
is a flag used to enable an unsuccessful experiment which caused the
paging device to be updated at disk-read completion time. This flag
causes the PD allocator to inform the interrupt side to start a PD
write, as opposed to turning on ptw.nypd, which is its normal action
in this ecircumstance.

sst.pd_desperations_not_mod
is a count of the number of times that the PD desperator was invoked
on behalf of a pure page, i.e., one which is an identical copy of a
page on disk. Reported as a percentage of desperations by
page_multilevel_meters.

sst.resurrections
is a count of the number of times that a disk devadd was
resurrected, 1i.e., made non-nulled and thus reportable to segment
control, by virtue of a disk write from main memory. (See Section
VII, "Address Management Policy.")

sst.fsdet_oocore ,
is a count of "recursive" simulated pagings of the FSDCT done by the
page fault handler to satisfy a need of allocating a disk record for
the page being faulted on. (See "FSDCT Paging," Section VIII.)

sst.oopv '
(Out of Physical Volume) is the number of times that page control,
when invoked to allocate a disk record by the page fault handler,
could not, because there were no more available. The only
permissible circumstance is for a hierarchy segment, in which case,
the SDW for the segment is faulted, provoking a segment move (see
"Segment Moving" in Section IV).

sst.fsdet_ptp

is an ITS pointer to the page table of the FSDCT. This is needed by
the "recursive" page fault simulator used to access the FSDCT during
a page fault. (See "FSDCT Paging," Section VIII.)

sst.pd_resurrections :
is'a count of the number 6f times that a disk devadd was resurrected
(see sst.resurrections above) by virtue of the successful completion
of an RWS.

sst.dblw_resurrection
is a count of the number of times that a disk devadd was resurrected
by virtue of the completion of a write-through from the paging
device. (See sst.double_write.)

sst.pdflush_replaces
is a count of the number of times that the post-crash PD flush
actually chapnged a disk address in a file map by virtue of this

repatriation.

sst.pdmap
.is a pointer to the virtual origin of the paging device map array,
null if there is no paging device. Note that this pot the first
record being used, but rather, record zeros PDME, even if the place
where that would be below the base of the SST.

sst.pdhtp

is OBSOLETE.
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sst.pd_id
is the PVT index of the device (the bulk store) which is the paging
device. It 1is =zero if there is no paging device (this is pot the
case when there is an unflushed paging device). (See "Post-Crash PD
Flush," Section IX.)

sst.pdsize
is 4, the size of a PDME in words.

sst.pdme_no
is the number of elements in the PDMAP, i.e., the number of records
in the region being wused, including those being used to hold the
copy of the PDMAP itself.

sst.pdusedp
is the "clock hand" of the PD replacement algorithm. Contains the
SST-relative address of the PDME at the "best candidate for
replacement" (head) end of the PD used list. If there are any free
PDMEs, they are right there.

sst.pd_first
is the PD record number of the first record in the region of the
paging device being used, the first number on the PAGE CONFIG card.
This record number will be the one used to hold the first record of
the PDMAP.

sst.pd_map_addr
is the absolute main memory address of the base of the PDMAP in the
SST segment. This is used by the function in
check_pd_free_and_update in pd_util which invokes the bulk store DIM
every second to write out the PDMAP to the first records of the bulk
store. ‘

sst.nrecs_pdmap
is the number of records on bulk store occupied to hold the paging
device map image.

sst.pd_free
is the number of PD records either free or undergoing RWS; used by
the PD replacement algorithm to free more or start more RWSs when
this number sinks below 10.

sst.pd_using
: is the number or PD records either usable or being used to contain
pages, i.e., not those which are deconfigured or contain the PDMAP
image. When zero, this cell is an indication to all of page control
that the paging device is not enabled (may be all deconfigured, or
unflushed), and no PD migrations can or will be performed.

sst.pd_wtect
: is the total number of RWSs outstanding. The paging device
replacement algorithm will not let this number get above thirty; if
this threshold is reached, it loops "running" the DIMs until pd_wtet
goes down. (See "DIM Interface," Section VIII.)

sst.pd_writes ‘
a counter of the number of RWSs ever initiated. Reported by
page_multilevel_meters.
sst.pd_ceiling i :
the number of times sst.pd_wtet hit thirty, and the paging device
replacement algorithm had to loop.

sst.pd_skips_incore
total number of times that the paging device replacement algorithm
skipped over a PDME, rethreading it to "recently used" because it
contained a page that was also in main memory at the time. (See
"Paging Device Management Algorithm" earlier.)
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sst.pd_skips_rws
is OBSOLETE.

sst.mod_during_write
is a counter of the number of times that a page being written out
was found to have been used while being written. Indicates that the
replacement algorithm made a poor choice.

sst.pd_write_aborts
is a count of RWS aborts performed, i.e., times when a page fault
occurred on a page that was undergoing RWS. (See "Paging Device
Management Algorithm" earlier.)

sst.pd_rws_active
is OBSOLETE.

sst.pd_no_free
is a count of times that the PD Desperator failed. (See
"sst.pd_desperations™ above,)

sst.pd_read_truncates
‘is OBSOLETE.

sst.pd_write_truncates
is OBSOLETE.

sst.pd_htsize
is OBSOLETE.

sst.pd_hash_mask
is OBSOLETE.

sst.pdmap_astep
is an ITS pointer to the AST entry of the hardcore segment
"pdmap_seg," which 1is used by the call side to perform explicit
readings and writings of the PDMAP image areas on the bulk store.

sst.zero_pages
is a count of the times that write_page, the page-writing primitive,
found a page all full of zeros, and thus nulled its disk address
instead of writing it out.

sst.pd_zero_pages
is a count of times that write_page performed the above service (see
sst.zero_pages), and a copy of the page existed on the paging
device, which caused the PD record to be freed.

sst.trace_sw.pc_trace
enabled via the hardcore trace facility, and switch 34 on the
processor, causes page control to print out a large amount of
debugging information as it proceeds, mostly obsolete.

sst.rws_time_temp
is a temporary used by the RWS initiator and the interrupt side to
meter CPU time overhead of page multilevel.

sst.rws_time_start
a cumulation of CPU time spent in the RWS initiator. Printed out by
page_multilevel_meters.

sst.rws_time_done
a cumulation of CPU time spent in the interrupt side processing
RWSs. Printed out by page_multilevel_meters.

sst.pd_time_counts
is OBSOLETE.

sst.pd_time_values
is OBSOLETE.
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sst.pd_no_free_gtpd
is a meter of the number of times that the PD allocator did not
migrate a page to the paging device because it belonged to a segment
with the "Global Transparent Paging Device" attribute defined in
Section I1I. Note that the PD allocator is invoked both at read-done
time and at page-write time.

sst.pd_page_faults
is a count of page faults from the paging device. Reported as a
percentage by page_multilevel_meters.

sst.pd_no_free_first
is a count of times that the PD allocator refused to migrate a page
to the paging device because ptw.first was on, i.e., the feature
described under "sst.ptw_first" thought that the page should not be
so migrated.

sst.update_index
is used by the periodic PDMAP writer in pd_util to keep track of
which page of the PDMAP it is writing out.

sst.last_update
is the clock time at which the PDMAP was last written out. If the
current time, at the beginning of any page fault, is more than a
second past this time, it is written out again.

sst.count_pdmes
when set to 1 by patching, enables an experimental meter which
meters, into sst.buckets, the depth of PDMEs in the PDME used 1list,
at the time that they are rethreaded to the head. For the use and
significance of this type of meter, see the paper by Greenberg cited
in Section V. This meter is referred to there as the "Experiment of
webber and Snyder." Enabling this meter engenders substantial
overhead in the page-fault path, and should not be done frivolously.

sst.bucket_overflow
is a count of times that the meter described under
"sst.count_pdmes," above metered a rethreading so deep that it could
not be metered in sst.buckets.

sst.buckets
{See sst.count_pdmes.)
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SECTION VII

ADDRESS MANAGEMENT POLICY

/CTION AND NULLEL

The address management policy of Multics is that set of designs and their
implementations which manage when record addresses are assigned to pages, the
state of the relationship between the contents of each page and the contents of
any secondary storage record which may be assigned to it, and the deassignment
of secondary storage addresses from pages.

Some address management policy must exist, as this service is a necessary
one of page contrel, a service to its own internal workings. The goals of the
Multics address management policies are these:

1. No record address shall ever appear in a VTOCE unless it is known with
certainty at the time it is put there that the data in the associated
disk record is ths data from the page of the segment which has that
address as its record address.

2. No record address shall ever be made available, by placing it in the
free pool of records on its physical volume, until it is known with
certainty at the time it is so made available, that it has been purged
from the VTOCE on disk in which it resided.

3. The observance of points 1 and 2 can be shown to imply point 3, to
wit, no record address shall ever appear in more than one VTOCE of a
given physical volume at the same time, not even during any transitory
or inconsistent states. Such states shall not be allowed to exist.

L No page of data will be alleowed to be created unless a disk record is
available to be assigned to it at the time it is created (by being
faulted in).

5. The supervisor, when running in any process, shall never encounter a
condition where a supervisor data base, stack, or procedure, cannot be
grown because of lack of space on its physical volume.

6. The system must be capable of being bootlcaded without any knowledge
of which addresses are available for assignment. These maps can onily
be constructed by running software to construct them. This software
consists of paged segments, and these segments must reside somewhere.

7. The system shall not deplete its available space on any volume simply

as a result of being bootloaded, i.e., shut down and brought up
repetitively, or just running an extended or arbitrary period of time.
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The address management policy takes cognizance of the fact that the system
can crash at any time. A total power failure can cause this. When the system
has crashed in such a way that the contents of main memory are lost, or in
general, emergency shutdown does not succeed, the next bootload must make the
best of what is in the storage system hierarchy as it encounters it. Thus, it
is one of the highest goals of address management to make sure the the
instantaneous state of secondary storage, at any instant, is never such that the
next bootload will give away data by accident or place data in the wrong place.

To understand this more fully, an example must be given of address
management policy failure in the pre-4.0 storage system. The following scenario
is impossible under the current storage system.

1. Segment A contains a PL/I program. Its owner deletes it, freeing its
record addresses, but leaving the data in those pages. The directory
file map (predecessor of the VTOCE) is freed.

2. Segment B gets created. Someone types a sensitive letter into it. A
record of disk gets allocated for a page of this segment, and is
written out. It is a page that used to belong to segment A.

3. The directory page which had A's branch has not yet been written out,
as this directory is heavily used, and thus not evicted from main

memory.
by, The page of the personal letter gets written out.
5. The system crashes unrecoverably.

6. The next bootload finds segment A still there, as the page of the
directory containing the branch never got out to disk. What is worse,
one page of this PL/I program now contains a page of the personal
letter.

.

This situation is known as a reused address; due to asynchrony 1in the
updating of pages to disk, two segments claim the same record address. What is
worse, the data from the new one is in the page that is described by the file
map of the ¢ld one. It is the principal goal of the release 4.0 and later
address management policy to categorically avoid this and a whole class of
similar problems.

It can be seen that if points 1, 2, and 3 above are followed rigorously,
the scenario above can never happen. These rules serialize the deallocation and
reallocation of addresses so that any trace of any given vrecord is completely
gone from one segment before it is freed, and thus made available for use in any
other segment.

Point 1 specifically, makes it necessary to make finer distinctions between
the states of "there is no disk address associated with a page™"™ and "there is a
disk address associated with a page". These finer distinctions did not exist in
pre-4.0 versions of the storage system. Consider the case of a page of a
segment that has never been written to disk. Now surely, one must allocate a
record and associate it 1logically with that page before writing it, so there
rmust be a finite time between those two operations. There is also the entire
time during which the request to write is in the disk DIM queues, when it has
not yet been written. Consider the case of a request to "Update the VTOCE" of
the segment during this time. Should the address be reported to the VTOCE or
not? If it is, and the system crashes before the page gets out, then an address
appears in a VTOCE which denotes a record of disk with the left-over residue of
some other segment, a security problem. If not, then some finer distinction
must be made about the nature of assignment to tell when to update addresses and

when not.
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This is precisely where the concept of the pnulled, or semi-~killed device
address enters. Point 4 above implies the association of record addresses with

pages at the time that null pages are faulted into main memory. A pull page is
one that is in no way associated with any record of disk, and whose contents are
logically zero. The association of this disk record with the page is now in
that state given in the precious paragraph, where it is kpnown that it does pot
contain data from that segment, and may pot be reported to segment control. An
address in <this state is called a pulled or semi-kjlled address. It is a disk
address. It is assigned to a page, but the contents of the page are zero, and
the contents of the disk record are residue from some other segment, the
nulledness of a nulled address is encoded intrinsically in its representation.

The opposite of a pulled address is a llve address. A live address may be
reported to the VTOCE, via pc$get_file_map, at any time. Its state of being
live implies that that record of disk is known to contained data from the page
of the segment which has this live disk address as its disk record address.

The act of converting a nulled address into a live address is called
resurrection. Since an address being live means that it is known that a given

page has been written there, resurrection happens at the successful completion
of any of various disk-writing operations, namely:

1. Any page write from main memory to disk.
2. A read-write sequence (RWS) from paging device to disk.

3. A double-write, when the paging device is being used in write-through
mode (see sst.double_write in Section VI).

y, A post-crash repatriation RWS. (See Section IX, "Post Crash PD
Flush").

Live addresses can also be dynamically nulled, converting them into nulled
addresses. This happens in two cases:

1. When the page is destroyed, via truncate, which includes all cases of
segment deletion.
2. When the page is discovered to contain zeros (See "Zero - Pages” in

Section V.)

When a live address is so nulled, again, zeros become logically associated with
the page, and the address is not reportable to a file map. In this case, the
page of disk contains a residue again, in specific, the residue of an older
version of that page of that segment.

The force of the above policies is that addresses in a VTQCE, as described
in the introductory sections of this manual, have only two possible meanings:

1. A Null address: This page of this segment logically contains zeros.

2. A Record address: This page of the segment is contained in the disk
record designated. .
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Therefore, at the time that a VIOCE is updated, the many fine divisicns of
state of the page and its address must be mapped into one of these two states
for the file map being updated, depending on what action is intended for the
next bootload should the system crash irrecoverably the next instant. Thus, all
states involving nulled addresses are reported to the VIOCE as in case 1 above,
via the reporting of a null address to the file map. Now the reporting of a
null address to a VTOCE where perhaps previously there had been a live address,
is the sole precondition, acceptable to point 2 at the beginning of this
section, for depositing (freeing) a record. Thus, at the time that a file map
is reported to segment control, a list called the deposit list is also reported:
it consists of all of the nulled addresses found in the segment, for pages which
were not in main memory or on the paging device (in these cases, it would
violate point 4 to deposit their addresses). Page control's association between
the page and the disk record is broken at this time by placing a null address in
the PTW devadd field and reporting it to the file map, the logical contents of
the page remain zero, but no page of disk is associated with the segment.

Segment control holds on to this deposit 1list. It wupdates the VTOCE,
causing the addresses being deposited to be replaced by the null address gotten

above. When and only when this VTOCE write has been determined to be
successfully completed, are these addresses (the deposit 1list) handed in to
pc$deposit_list to actually be marked as usable by some - other segment. The

special entry in the VTOC manager, vtoc_man$await_vtoce, exists solely for the
purpose of waiting for successful completion of VTOCE I1I/0 for this reason. The
same action is taken when freeing a VTOCE is used as a means of invalidating its
contents, when addresses are involved. This is also done by the segment mover,
See the descriptions of "VTOCE Updating" and "Segment Truncation" for the impact
of these policies on segment control.

IMPLICATIONS OF FINTITE PACKS

Each disk pack in the current technology has a finite capacity on the order
of tens of thousands of Multics records. Each device address used by page
control and segment control is relative to some particular pack: thus the size
of these various fields 1limits, and is 1limited by, the amount of storage
available on one pack.

cach segment resides on ore and only one pack: this fact is intrinsic tc
tne interpretation of the device addresses designating records on that pack, as
they are only meaningful with respect to a pack designated by the PVT index i
the ASTE of the segment in wnose data bases they are found. (Note, however,
that segments can and do migrate automatically between packs: See Section II).

Since all pages of all segments are assumed to be zero until otherwise
known, record addresses are not actually assigned until pages are actually used.
In older versions of the storage system, address assignment happened when a page
was first evicted from main memory, and was found not to be zero. Since all
addresses were withdrawn from the same single large pool, this operation could
only fail if the entire system were out of disk, i.e., there was not one more
record available anywhere. However, since each pack now has its own pool of
free ] because there
is no place to write it 1is a serious one. Such a page would tend to become
"stuck™ in main memory until some (presumedly complex) action would be taken to
recover. An arbitrary number of such pages would tie up an arbitrary amount of
main memory. What is more, if the system chose to take a brute-force approach
to evict the page, it would have to destroy the user's data, with no particular
reason or even good method of telling him or her.

ot A s Fa : 3
ree storage, the case of a segment not being able to be evicted
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Thus, point 4 above is made. No page of data is allowed to be created
(implicitly always as zeros) in main memory, which is the only place pages get
created, wunless a vrecord is available at that time for assignment. Since it
will probably have to be written out later, it is better to find out now if no
disk 1is available. The unsatisfied page fault can be used to make the entire
segment-moving mechanism handle the problem transparently if this is done. What
is more, the nulled address concept precisely expresses the relation between the
page of the segment and the record address so assigned at this time. This
unsatisfied page fault is also critical to the implementation of the mechanism
that allows page faults on the FSDCT to be simulated by the page fault handler.

It 1is, of course, always possible that the user process might only
referenge that page, or never store anything into it but zeros. We cannot rely
on that. There 1is a potential here for interaction with access control to
ensure this, but this is not exploited at the current time.

The supervisor may not run out of physical volume space at any time. That
is to say, if it is necessary to create a page of the supervisor's stack, and
there is not a single record available on the volume on which it resides, the
system is in an unrecoverable situation. Any software which did any action at
all would have to run on that stack, and it cannot be used. Thus, all
supervisor data bases, in particular, the ring 0 stack (PDS) of each process,
must be assigned addresses at the time it is created as a normal segment, before
it is used as a ring-0 stack. This implies a cooperation of page control and
segment control. (See "PDS and KST Management™, in "Services of Segment
Control®" in Section IV). Addresses are assigned to the PDS of the process being
created by touching every page of 1it. This causes nulled addresses to be
assigned. However, since this segment is part of the storage system hierarchy,
the periodic VTOCE update of the AST Trickle (See "AST Trickle" im Section II)
would tend to deposit these addresses, as the above paragraphs have stated is
the fate of nulled addresses at VTOCE update time. In order to suppress this
depositing, the AST bit aste.dnzp, which normally suppresses nulling of the
addresses, of zero pages, or checking for them, is viewed in conjunction with
the bit aste.ehs, the "entry hold switch™ making these ASTE's semi-permanently
activated, by pc$get_file_map, to suppress reporting and making-null of these
nulled addresses.

This action of pre-assigning addresses is called prewithdrawing. All of
the supervisor data bases, such as the stack used at shutdown time, the FSD(CT,
the dirlockt_seg, the lock segment, etc., are all prewithdrawn at the time they
are created by Initialization so that the supervisor does not run out of disk in
an embarrassing place. There 1is another reason for prewithdrawing these
segments at the time that they are created: it is a consequence of points € and
7, which are now discussed.

GUARANTEED BOOTABILITY OF THE SUPERVISOR

The segments that compose the hardcore supervisor, including all data
bases, and all parts of all salvagers, must, if paged, have disk addresses
assigned. By virtue of the policies given above, these pages, as all other
pages managed by page control, must have addresses assigned at the time that
they are created.
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1lf the system has crashed without a successful ESD, then the volume map of
any volume present during that bootload will not be valid. (The volume map 1is
the disk copy of the FSDCT bit map for that volume, copied into the FSDCT when
the volume is accepted and written out when demounted). The supervisor must
have some place to allocate its own pages during the next bootload. Since no
volume map may be believed, the supervisor must in effect be booted on a volume
not present during the last bootload.

Rather than infliet this difficult operational restriction, a "special
volume" called the hardcore partition is defined on the root physical volume
(RPV) of a given hierarchy. In effect, every time the system is booted, the
supervisor is booted "cold" into the pseudo-volume of the hardcore partition.
This 1is to say that the volume map of the hardcore partition is defined to be
entirely full of "free" markings for its pages. Therefore, the supervisor may
construct the FSDCT bit-map for the hardcore partition out of "ones" for the

length of the hardcore partition. The supervisor may thus allocate pages
anywhere in the hardcore partition. (Since the bit-map is wholly fabricated,
there is in fact no volume map on disk for this region). The location and

extent of the hardcore partition are stated in the volume label of the RPV, and
are not subject to change during running of Multics (See Section XIV).

It is a corollary of the definition of the hardcore partition as a region
totally free upon bootload that all of the contents of pages in that region, of
that bootload, will be undefined (as the records are being reused) during the
next bootload. Now only two classes of segments will have pages in the hardcore
partition: supervisor segments (without branches or VTOCEs) of that bootload,
and deciduous segments (essentially supervisor segments with branches and
VTOCEs). The non-deciduous supervisor segment will not be accessible during a
subsequent bootload; all information about them was contained in their ASTEs,
and is gone. The resources consumed by them in the hardcore partition are
reused by virtue of the above definition. The deciduous segments, on the other
hand, will have pages all over them being reused by new segments. Therefore,
deciduous segments can not be used from one bootload to the next; an attempt to
activate a deciduous segment of a previous bootload causes a connection failure.
Wwhen deciduous segments are deleted, by the next bootload, their pages are not
deposited; the records in the hardcore partition are reused by the current
bootload by virtue of the definition of the hardcore partition.

A1l supervisor segments, deciduous and otherwise, are totally prewithdrawn
against the hardcore partition with very few exceptions- see below). This means
that a given hardcore partition must be capable of holding the supervisor in its
entirety, or the system will crash with an out-of-physical-volume condition
during initialization. Thus, deciduous segments' record addresses are fotally
in the hardcore partition, and all of their pages become invalid during the next
bootload. This property has been likened to the perennial defloration of flora:
that is why deciduous segments are so called.

The bit-map of the hardcore partition is used as the only free storage map
for the root physical volume, onto which the system is booted, until the middle
of collection 2, when the program accept_fs_disk$rpv runs (See Section XIV). If
the system crashed in the prior bootload, the physical volume salvager will have
been invoked before this point in the bootload to reconstruct the volume map of
the RPV, in addition to other functions. Thus, at this point in the bootload,
the real volume map of the RPV replaces the map constructed for the hardcore
partition. (No addresses in the hardcore partition should ever be deposited
after this point). Thus, all requests for new record addresses on the RPV, will
cause records to be withdrawn from the real volume map of the RPV.
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The fact that the real volume map of the RPV replaces that of the hardcore
partition means that any page withdrawn against that map by the supervisor must
ultimately be deposited, or the system will run out of disk on the RPV by virtue
of continued operation, a situation explicitly disallowed by point 7 at the
beginning of this section. Thus, if supervisor data bases grow, i.e., acquire
disk records, after the point mentioned above in initialization (the "acceptance
of the RPV volume map", the supervisor must, in order to perform a successful
shutdown, truncate these data bases and deposit these addresses to keep point 7
true. Not only is this difficult because of the need to differentiate the
hardecore-partition addresses from the ones withdrawn against the real RPV volume
map, but this systematic self-destruction of the supervisor causes any problem
in shutdown to be hard to diagnose, as the supervisor has willfully partly
destroyed itself at that time. It is also difficult to organize a supervisor
shutdown which proceeds by destroying itself. {(In fact; pre-4.0 versions of the
supervisor destroyed themself in Jjust this way, and continually had problems 1in
locating every 1last record that had to be deposited, and doing it in the right
order). Thus, the entire supervisor, with the exceptions noted below, is
prewithdrawn against the hardcore partition at the time it is created, for this
second reason.

There exists a small set of segments, called "delete_at_shutdown" segments
that are managed in complete violation of points 5 and 7. These segments are
part of the supervisor. They are data segments that are:

1. Large, and may not even be used for their full length.

2. Non-critical were the supervisor to run out of disk on the RPV were
these segments to encounter an O0PV condition.

These segments are managed this way simply to avoid having to make the hardcore
partition large enough (an issue of a few hundred records) to contain them were
they prewithdrawn against it. Thus, these segments are truncated during a
successful shutdown, contain both hardcore-partition and real-RPV-volume map
addresses, and may encounter out-of-disk conditions.

The bit slte.delete_at_shutdown, set from the MST generator
"delete_at_shutdown™ keyword makes a segment so. Such segments are kept in the
"hardcore™ ASTE list, to facilitate the truncation at shutdown time.

RPV_PARASITE SEGMENTS

There are some segments, such as the descriptor segments of all processes
except the initializer, and the PRDS of all processors other than +the Bootload
Processor, which reside on the RPV, but do not have VTOCEs or branches. Thus,
page creations for these segments withdraw against the real RPV volume map. In
the case of a normal shutdown, orderly process destruction and deconfiguration
frees these pages, assuring that the system does not run out of disk by virtue
of continued operation (point T). However, in the case of a crash, with or
without a successful emergency shutdown, these orderly destructions do not
accur, as all of the relevant processes may be in inconsistent states. Since
these "RPV parasite" segments have no VTOCEs, the deletion of process
directories performed by system answering service startup does not free their
pages. Thus, a volume salvage of the root physical volume (so-called "short
RPVS") is performed automatically after every crash. This salvage collects all
space not described by VTOCEs, making it available for reuse. This includes all
space used by RPV parasite segments.
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abs-se EXPL ADDRE NT

Many "segments"™ in the supervisor are not segments at all, but vrather
segment numbers, and possible ASTE/page tables, used for addressing main memory,

bulk store, or disk. Such "segments" are known as abs_segs. There are two
"levels" of abs-seg, the SDW-level abs-seg and the PTW-level abs-seg. An

SDW-level abs-seg 1is used by placing an SDW describing a region of main memory
(as a segment) in a position in the descriptor segment, or an SDW describing a
page table (as the page table for a segment). The extent of main memory, or the
segment described by the page-table "become™ the "segment" whose segment number
was that of the position in the descriptor segment into which the SDW was
placed.

For a PTW-level abs-seg, the SDW always describes the same page table. The
PTWs of this page table are filled in with the disk addresses of a region of
disk or bulk store (the PVT index of that drive or the bulk store (see
sst.bulk_pvtx in Section VI) 1is placed in the field aste.pvtx), and all
references to that segment "become" references to that extent of disk or bulk
store, 1i.e., the segment number's segment "becomes" that region of disk or bulk
store.

If this reminds the astute reader of the method used to access every single
segment in the Multics storage system hierarchy, that is because indeed it 1is.
The difference is solely one in orientation. For an abs-seg, the segmentation
and paging mechanism, and the implicit services of page control, are being used
as a technique to read and/or write disk. For a hierarchy segment, segmentation
and paging and the implicit services of page control and segment control are
used to make a collection of disk records "behave"™ like a segment. There is no
physical difference to the two techniques.
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SECTION VIII

MECHANISMS

The mechanisms of page contrcl are those policies, protocols, and programs
that compose the internal organization, and support the services thereof. This
section details those policies, protocols, and programs. Some policies, such as
the address management policy, and the main memory and paging device
replacement algorithms, are not manifestations of internal organization, but
rather artifacts of the services page control is called upon to perform. Such
policies have already been explained.

Those policies already described are the externally visible policies. Some
of them have become documented in the literature, and thus acquired some measure
of fame. Yet it is the policies and mechanisms explained in this section that
are little~known, but necessary to the debugging of problems, interpretation of
crash dumps, and contemplations of functional or organizational improvements to
the whole of page control

The section is divided iuto three parts:

1. Policies, protocols, and organizations.
2. Individual mechanisms.
3. Internal interfaces.

The first part describes strategies and principles in effect throughout
page control, and c¢ritical to its external interface. The second describes
particular mechanisms, that are ostensibly divorced from the explicit services,
such as the method of waiting for page faults, the '"recursive"™ FSDCT paging,
etc. The third part describes interfaces that are in effect the services of
page control for page control, such as most of the entries to the
transfer-vector "page."

POLICIES, PROTOCOLS, AND ORGANIZATIONS

Global Page Lock

All manipulations of page control data bases, with the exceptions noted
below, must be performed under the protection of the global page table lock. No
process that has the global lock locked may give away or accidentally lose the
processor on which it runs. Thus, any process that has the global lock locked
must be masked to "sys_level", and have its stack, linkages, and procedures
wired, not referencing any non-wired parameters, code, or data bases.
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There 1is no general mechanism for multiprogram-waiting on the page-table
lock. Except for processes taking page faults, all attempts to lock the page
table lock are performed by looping on it. Internal to ALM page control, this
is performed by executing:

tsx7 <{page_fault>|[lock_ptl]
or tsx7 <page_fault>||[lock_ptl_no_1lp]J

depending on whether or not the caller has set up a stack frame. This procedure
may be generally accessed as page$lock_ptl from PL/I code, yet this 1is rarely
done (only the 1loading function, wired_plm, does this), as all other PL/I
procedures that lock the global lock also wish to wire their stack frames and
mask to sys_level; this compound function, which includes calling
page$lock_ptl, is performed by the very common call:

call pmutglock_ptl (save_mask, save_ptp);

The two parameters are used in the corresponding unlock call:

call pmut$unlock_ptl (save_mask, save_ptp)

to identify the PTWs wired by the first call, and the old mask. This mask
variable has the old wired bits of the PTWs embedded in it, and is intended for
use only by pmut$unlock_ptl.

There exist calls to unlock the page table lock, these inveolve interaction
with the traffic controller in order to support the page table lock
multiprogramming feature described in the second part of this section. This
call is:

tsx7 <page_fault>|{unlock_ptl]
in  ALM page control, with the transfer vector page$unlock_ptl and
pmut$unlock_ptl having the same relation as the corresponding 1lock entries
(pmut, however, does not - use page$unlock_ptl, but rather

page_fault$pmut_unlock_ptl, a side door to the wunlock mechanism which avoids
pushing extra stack frames).

The page-fault handler, the fault side of page control, has a mechanism for
waiting, via the traffic controller, for the page table lock to unlock. The
lock_ptl routine in page_fault takes special action when invoked by the fault
side; this mechanism is explained in the second part of this section.

There are two large classes of page control manipulations that may be
performed without having the global lock locked:

1. The turning on/off of wired bits of the PTWs of supervisor or
semi-permanently activated segments. :

2. The construction or destruction of the page tables of inaccessible
segments.
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In the first case, the bit ptw.wired, used by the main memory replacement
algorithm to avoid eviction of a page, may be turned on or off at any time by
any process that is keeping track of what it is doing. Page control, operating
under the page-table lock, never turns wired bits on or off except in two cases:

1. Loading of processes' critical pages.

2. Abs-wiring of I1I/0 buffers

Thus, processes may turn on "wired" bits of PTWs for segments such as the
ring-zero stack {pmut$lock_ptl does Jjust this) without fear that page control
might be trying to turn them off. The restrictions on this type of activity is
that one must choose the segment with care: its AST entry must not be removable,
lest these PTWs vanish while being dealt with, or before having their wired bits
turned off. Thus, only supervisor segments and semi-permanently activated
segments (including PDSs of other processes than the initializer) are eligible
for such treatment. Furthermore, this mechanism is not shareable; unless some
external means is used to organize such wiring requests (such as wire_proc, see
Section X, or the I/0 Buffer Manager iobm, only segments known to be essentially
unshared may be so dealt with (limiting this almost exclusively to ring-zero
stacks (PDSs). Once wired bits are so turned on, simply touching the page whose
PTW was manipulated, bringing it into main memory, will "wire" it, since it now
may not be evicted.

Unwiring of pages so wired may be done by simply turning off the wired
bits; it was guaranteed by the preconditions of the last paragraph that the PTWs
cannot have disappeared, and no other process could have turned off the wired
bits, or worse yet, wanted them kept on. This is the method used to "unload"
processes, i.e., unwire their critical pages, without the protection of the page
‘table lock. In fact, an extension of this mechanism is used by the I/0 buffer
manager to turn off the "abs_wired" bit (cme.abs_w) in the core map entry
without the protection of the lock, for the definition of abs-wiring is that. the
page, and hence, the core map entry it is associated with, may not be moved.

The other broad class of manipulations performable without the page table
lock” locked 1is that concerning itself with segments that are inaccessible. A
segment being activated by definition has no SDWs describing it, and has no
pages 1in main memory or on the paging device. Thus, any manipulations on its
PTWs or AST entry can have no effect on any of the data bases of page control,
since no CMEs or PDMEs describe these PTWs or ASTE. A segment that has been
"finalized" by pc$cleanup (see "Services," Section IX) again has no pages in
main memory or on the paging device; since making the segment inaccessible is a
precondition for calling pc$cleanup, such a segment is in the same state, and
its PTWs may be dealt with as fitting.

There are two smaller classes of manipulations performable without the page
table lock being locked:

1. The validation of page control events by the traffic controller.

2. The depositing of addresses.

The traffic controller interacts in a close fashion with page control:to
perform Process Loading (see "Process Loading" in "Services"). Among the
quantities returned by page control to the traffic controller, when this service
1s performed, 1is a wait event. The validity of this wait event is verified
under the traffic control lock by the traffic controller, under whose 1lock all
notifications must be performed. This validation is performed by checking
out-of-service bits, the particular location of which may be inferred from the
value of the "wait event"™ (see "Wait Protocols"™ below). If these bits are not
on, it is a certainty that the event in question has already happened; if it had
not, these bits would still be on, regardless of any 1lock anywhere, and the
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traffic controller effectively proceeds with the loading operation, which is, in
effect a conservative action for the traffic controller. (The worst possible
result of such a mistake would be to retry the loading an extra time.) On the
other hand, if the bits are on, the traffic controller assumes that the event
has not happened. This is not fully correct; it may have happened already, and
a new similar event started. If any such event is in progress, a "notify" will
be forthcoming if and only if the "notify requested" bit in an appropriate PDME
or CME is on. 1In the case of the legitimate event being waited for, it always
is. In this peculiar case above, it may or may not be. The traffic controller
assumes, if the out-of-service (or RWS, as appropriate) bits are on, that a
notify will be forthcoming, and sets the process being loaded waiting on that
event., The worst possible outcome of a mistake (highly wunlikely) in this
decision would be a 90-second "notify timeout," and retry.

The depositing of addresses, i.e., the marking of bits in FSDCT bit-maps as
free 1is performed outside of the page table lock. Withdrawing is performed
under the protection of the page table lock. The latter is necessary, as were
there no 1lock protecting this withdrawing, two processes might "succeed" in
withdrawing the same address simultaneously, resulting in not only a "reused
address," but an inconsistent FSDCT and PVI. Thus, withdrawing is performed
under the lock. Depositing need not be, because no two processes can be trying
to deposit the same address at the same time, because there are no reused
addresses in the system. Each address appears at most in one place at one time.
Furthermore, no process is specifically trying to withdraw any given address.
Depositing consists of turning on a bit and inc¢rementing the free-record count,

both of which operations can be done without the protection of a lock. If the
address being freed was already free ("unprotected address," a cause for crash)
it will be free whether or not the lock is locked. If it 1is not, no other

process 1is trying to free it. One implication of the fact that depositing is
not performed under the page table 1lock is that the depositing procedure
(free_store, called only by pc) takes page fauylts in the normal fashion on the
paged, non-wired FSDCT, while other processes are so doing and the T"recursive"”
page fault simulator is accomplishing "withdraws" on perhaps the same pages.

The page table 1lock 1is 1lower in the locking hierarchy than the traffic
controller lock. It is lower than any of the locks used by the storage system
DIMs to control their data bases, and thus lower than any locks used by the IOM
manager.

It is higher than the lock used by the I/0 buffer manager, and thus higher
than any locks used by the I/0 interfacer.

It is a "wired" (per-processor) lock, and thus higher than any non-wired
(per-process) lock, such as all directory locks and the AST lock.

Wait Bvents Used by Page Control
e control uses two "waiting®™ type mechanisms:

1. Looping and retrying until some asynchronous event happens; used to

’ wait for the completion of bulk store 1/0, the clearing of the page
table lock (by other than the fault side), or the dying-down of disk
queue traffic ("running the disk DIM").

2. The wait/notify mechanism of the traffic controller.
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The first method is used where giving away the processor is impractical or
impossible, including several "worst-case™ type situations. The wait/notify
mechanism of the traffic controller is used to wait for precisely three types of
events:

1. The completion of any disk paging 1/0, i.e., disk read or writes of
pages to and from main memory for any other reason than a read/write
sequence (RWS).

B

2. The completion of read-write sequences {(RWSs).

3. The unlocking of the global page table lock, awaited only by the fault
side.

There is also the temp-wiring table used by wire_proc, among the peripheral
services of page control, but it is far removed from the internal organization
of anything else in page control. (See Section X for more on this.)

Each event for which page control waits has a 36-bit "Event ID," as must be
true of all events waited for via the traffic controller. Part of the protocols
of using the traffic controller wait/notify mechanism is that event IDs need not
be wunique over the system, and thus notifies can occur spuriously as event IDs
clash. However, event IDs generated by page control are unique within page

control. Page control, when looking at an event ID it generated can determine
with certainty what event is associated with that event ID, and whether or not
it has happened. There are three classes of event IDs corresponding to the

three types of events above:

1. A binary number in the right-hand half of a word, whose left half is
zeros, this number being bigger +than the offset in the SST of the
first ASTE (the word offset of the pointer sst.astap), is the offset
of a PTW in the SST. Such an event ID is associated with the event of
the completion of non-RWS disk I/0 for that page.

2. A binary number in the right-hand half of a word, whose left half is
zeros, smaller than the offset in the SST of the first ASTE (the word
portion of the pointer sst.astap), is the offset of a paging device
map entry (PDME). Such an event ID is associated with the event of
the completion of an RWS for that PD record.

3. The octal constant "160164153152"b3, being the ASCII for "ptlk", is
associated with the event of the unlocking of the global page table
lock.

A "PTW event" (Case 1) may be tested for having completed by the being-on
of the bit ptw.os. A "RWS event" (Case 2) may be tested for completion by the
being-on of the bit pdme.rws in the PDME designated by the numerical value of
the event 1ID. These checks mpust be made under the page table lock, via an
organized methodology explained below ("Wait Protocols™). The "PTL event" (Case
3) may be tested for having completed by inspecting the contents of the page
table lock, sst.ptl.

PTW events are also used to express the event associated with the
completion of non-RWS bulk store 1/0. However, these events never 1leave page
control and thus are never waited for via the traffic controller. Page control
"walts"™ for PTW events corresponding to bulk store I/0s by means of calling the
bulk store DIM "run"™ entry until the event has occurred.

8-5 . ANG1



KWait Protocols of Page Control

Part 1 - Waiting for a given single event - other than the PTL event
(Simplex Wait Protocol)

The methodology used in page control to wait for an event 1is strongly
dependent on which side of page control is doing the waiting. For a start, the
interrupt side never waits, or has to wait, for any event (unless loop-locking
the global 1lock is considered waiting for an event). Thus, the interrupt side
may not run the replacement algorithm, which would "wait" for disk I/0 to die
down by looping.

One must consider the code of the process-loading function a separate
"side" of page control here; it is the only function that acts on behalf of some
given process, including causing that process to wait, but 1is npever actually
called by that process.

The page control wait mechanism is not used so that page control may wait;
rather, it is used so that processes on behalf of whom page control is
performing services may be made to wait, when awaiting page control events is
necessary to the fulfilling of that service. This is to say, that when the main
memory or paging device replacement algorithms start a write or RWS
respectively, page control has no need, in general, to wait for its completion.
On the other hand, some process that is trying to drive all pages of a segment
out of main memory and paging device may well have to wait for the completion of
such a write or RWS, whether it had started it or it had already been in
progress. Similarly, a process taking a page fault must be made to wait for a
disk I/0 completion if a disk read was involved in resolving that page fault.
Thus, the procedures that implement the services of page control may often have
to wait for 1/0 completions in order to carry out these services as specified;
the mechanisms of page control never wait.

The completion-of all page control events is detected and determined by
page control. No external agencies in the system wait upon or notify page
control events. What is more, the "notify" operation for all page control
events 1is performed under the page table lock, usually by the interrupt side of
page control. The occurrence of a PTW event consists of the turning off of the
PTW out-of-service (I/0 in progress) bit. The occurrence of an RWS event
consists of the turning off of the PDME RWS (pdme.rws) bit. These events ' can
only happen under the page table 1lock. Page control does pot perform a
traffic-control notify every time a PTW event or RWS event occurs. PTW events
are notified only if the bit cme.notify requested in the CME of the main memory
frame in which the I/0 was taking place is ¢on. These notify operations take
place in the traffic controller, but under the page table lock. These
notify-requested bits are turned on when and only when page control has made the
decision that a process must wait for such an event, at such time, the
assogiated notify_requested bit will be turned on (all under the page table
lock).

The decision to make a process wait happens in three different ways,
depending on whether the decision is performed by the fault side, the call side
(other than the locading function), or the loading function. In the first two
cases, the process executing the code will be the one that waits; in the third
case it will not.
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The fault side makes the decision to wait at the end of page fault
processing, all under the page table lock. The readin of the page faulted on,
if nonnull has already been initiated (see "Services" Secticn IX, "Page Fault
Handling"). The PTW of the page faulted on is inspected. 7i the PTW indicates
that the page has already been read in (or created, in the case of zero pages),
the page fault machine conditions, and thus the faulting Control Unit cycle, and
thus the instruction, and the program that took the page fault, are restarted
(after unlocking the page table lock). If, on the other hand, the PTW indicates
that the page has not been (completely) read in, there is waiting to be done.
Since this process has the page table lock locked, and notices that the page is
not in, it does not matter whether or not the page has actually come in, i.e.,
the disk data transfer has been performed. The interrupt side, which is the
only agency that can turn off that bit ptw.os or pdme.rws, {(cause the PTW or RWS
event to occur), cannot be invoked until this process releases the page table
lock, or itself invokes the interrupt side under the page table lock. In the
case where there is waiting to be done, the subroutine read_page, invoked by the
page-fault handler, has returned the event ID of the event that must be waited
for. If the page being read in is undergoing an RWS, this is an RWS event.
Otherwise, it is a PTW event. If the page requires an allocation of a record,
and the appropriate page of the FSDCT is not in main memory, it may be an RWS
event or a PTW event for a page of the FSDCT (see "FSDCT paging" later on).

The fault side waits for the event so given to it by read_page in the
following way:

If this event is an RWS event, identify the PDME designated by the RWS
event, and turn on the abort bit. This causes an RWS abort and a notify of
that RWS event at the time the RWS completes. A branch is executed
(pxss$page_wait in the traffic controller) to wait for that event and
unlock the global lock.

If this event is a PTW event, determine whether it is for a bulk store
transfer or a disk transfer. 1If the devadd in the CME for the page frame
denoted by the PTW is a T"paging device devadd,"” it is a bulk store
transfer. Otherwise, it 1is a disk transfer unless the segment is the
"pdmap_seg," abs-seg, an abs-seg used to read the bulk store as .though it
were a disk. Then it is a bulk store transfer. If it is a disk transfer,
turn on cme.notify_requested in that CME, and go to pxss$page_wait to wait
for the PTW event. This bit will cause a notify of that PTW event when the
I/0 completes. If this is a bulk store transfer, call the "run" entry of
-the bulk store DIM, and check whether or not the PTW out-of-service bit has
gone off and call the "run" entry of the bulk store DIM in a 1loop, until
this bit has gone off. The "run"™ entry of the bulk store DIM will
interrogate the hardware status of the bulk store, and call the interrupt
side of page control, potentially causing the PTW event to occur, as its
function. Then restart the machine conditions.

RN

Bulk store transfers are not awaited via the ¢traffic control mechanism
because the transfer time of the bulk store is comparable to the overhead time
spent going through the traffic controller.

Thus, a preocess taking a page fault either restarts the machine conditions
at the end of a page fault, or goes to the traffic controller to wait for either
an RWS event or a  PTW event corresponding to a disk I/0. In either case of
going to the traffic controller to wait, a bit will have been turned .on
(pdme.abort or cme.notify_requested) which tells the interrupt side to notify
via the traffic controller. :
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When a process waits on behalf of the fault side of page control, (this
includes waiting for the 1lock, see "Traffic Controller Interface" below) no
other information is recorded about the state of that process other than the
machine conditions from the page fault that was taken, and the fact that it is
indeed waiting on behalf of the fault side of page control. When that event is
notified, the traffic controller branches to page_fault$wait_return, which does
not lock the page table lock, modify, or even inspect page control data bases in
any way, but only restarts the machine conditions of the fault. If indeed the
PTW was made to describe main memory as the interrupt side noticed an I/0
completion, and the page has not been evicted in the interim, the interrupted
machine cycle will be retried and completed. If not, another page fault will be
taken, which will again try to lock the page table lock, perhaps retry page
allocation because the FSDCT has now been paged in, or re-read the page if it
was evicted in the interim between the time the process received the notify and
the time it received the processor. The design is not to determine why the
process went to wait; the hardware (by not taking a page fault) or the changed
state of page contrecl will do that on their own.

The call side (other than the process loading function) makes the decision
to wait when it notices some page with I/0 going on, or some PD record with an
RWS going on, in a way that interferes with the contract of the entry being
called. For instance, if the entry pc$cleanup is called to ensure that no pages
of a segment are on the paging device in main memory (the caller having made the
segment inaccessible), this surely cannot be true if there are pages being
transferred into or out of main memory or the paging device; waiting for this
I/0 to complete 1is intrinsic in the contract of this entry. Similarly, the
truncate function cannot destroy pages on which I/0 is being performed, for the
interrupt side at the completion of the I/0 would have no way of telling what
had happened. Leaving some kind of mark to tell it amounts to waiting for the
I/0 to complete.

The call side waits by calling page$pwait, with the page tables locked,
passing the event ID being waited for as a parameter. Ultimately, if page$pwait
so decides, this process will be made to wait. The entry page$pwait, also known
as the call side wait coordipnator, (its code is in the module device_control)
has the following contract:

Given a page control event ID, with the page tables locked, return when the
event has occurred, with the page tables locked.

The call side wait coordinator can always decode the event ID, and by
looking at a PTW or PDME, determine if the event has happened. This is the
first thing it does (sees if ptw.os or pdme.rws, as befits the event, is off),
and if the event has occurred, it simply returns with the page table 1locked,
having fulfilled its contract. (It is sometimes the case that page$pwait will
be called with the event ID of an event that has already happened; (see
"Multiplex Wait Protocol™ below.)

If the event of interest has pot occurred, page$pwait decides how to wait
for it in the same way as the fault side; if a PTW event for either paging
device I1/0 or pdmap_seg, the bulk store DIM "run" entry is.called in a loop
until the PTW "out-of-service" bit is turned off by the bulk-store DIM's calling
the interrupt side. If this is the case, the page table lock is unlocked, and
page$pwait returns with it locked, having fulfilled its contract. If the event
is an RWS event or a disk PTW event, the bits pdme.notify_requested or
cme.notify_requested are turned on as appropriate, and control is transferred to
pxss$waitp in the traffic controller. This entry unlocks the page table lock
and waits for the event. When the event occurs, pxss$waitp branches to
device_control$pwait_return, which relocks the page table lock
(<page_fault>|{[lock_ptl_no_1lpl), and returns to the caller of page$pwait.

5
¢
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It is part of the protocol of using page$pwait that upon its return, the
event might have happened, but the page is out of service again, or that it
might have been fraudulently notified. All callers of page$pwait use it as part
of the multiplex wait strategy outlined below; implicit in this strategy is the
knowledge that these callers will retry all their operations again upon return
from page$pwait. Thus, fraudulent notifications are not a difficulty. This
situation is exactly parallel to that in which the restart of a page fault upon
return of the traffic controller when invoked by the fault side simply retries
the faulting machine cycle. No guarantee is made that it will succeed. It is
the responsibility of the page control service using page$pwait to ensure that
at most a finite number of retries will be necessary (see "Page State
Transitions™ in this section.

It is necessary that the entries used by the traffic controller to wait for
page control events on behalf of the fault side and call side (other than
process loading) wunlock the page table lock after the traffic controller has
locked its own lock. This is necessary to prevent a "lost notify" problem.
Were the page table 1lock unlocked before the traffic controller lock were
locked, the interrupt side could run in some other process, between this
unlocking and this locking in real time, and the event for which the original
process is going to wait will occur and be notified. Then the first process
will go to the traffic controller to wait for an event that has already
occurred. However, since it is necessary to have both the traffiec controller
and page table locks locked to perform a notify of a page control event, there
is no time at which this notify might come through before +the process is set
waiting and the traffic control lock unlocked.

The process loading func:ion, as stated before, causes some other process
to wait than the one in which it is running. The traffic controller has a
special mechanism for this, which will be explained under "Services" in Section
IX. The upshot of it is as follows; traffic control will call page <control :to
load a process. Since the process loading function cannot wait, it will either
return an event ID, or, by returning =zero, indicate that the process is
successfully loaded. If not successfully loaded, traffic control will set the
process being loaded ‘"waiting" on the event ID returned by page control. When
this process 1is notified, it will not be run, since it is not loaded, but
rather, traffic control will call page control to 1load the process. Page
control will either return an event ID, or the fact that the process has been
successfully loaded, etec., until the process is loaded. :

The process locading function calls page$pread (described in part 3 of this
section) to read in the process' two critical pages. This entry calls the bulk
store control "run" entry in a loop to wait out any bulk store I/0 that it
starts. Otherwise, this entry returns a PTW event for disk I1/0 that it starts,
or an RWS event if one is in progress on the page. The process-loading program,
wired_plm, (which is in bound_tc_wired, unlike all else in page control) sets
the CME or PDME notify requested bits for each event so received from
page$pread, or any PTW among those for the process c¢ritical pages that were
already (or still) being read in at this call. Such a wait event is returned to
the traffic controller with the assurance that a notify will be performed when
that happens (this is actually using a form of the multiplex wait strategy; see
that title below).

Since page control unlocks its global lock before traffic control relocks
its own lock, when the process-loading function returns to the traffic
controller, there is a window for a lost notify (see above). This is
particularly likely on three-or-more processor configurations, where a second
processor is 1likely to hold up the acquisition of the traffic controller lock
after a third has just acquired the page table 1lock. There are also some
lost-notify windows because the process-loading function is not in a position to
apply the multiplex wait protocol properly.
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It 1s certain, however, that if page control indicates that a process has
successfully been loaded, then indeed it has. To rectify this, the traffic
controller itself "validates" the nonzero event returned by wired_plm, checking
the PTW out-of-service or PDME RWS bit indicated by the wait event, as required.
If indeed, a notify was lost, the traffic controller puts that process in tne
state where yet another pass through wired_plm will be necessary to determine
whether or not the process is loaded, and if not, continue the loading.

Part 2 - Multiplex Wait Protocol

As stated before, the call side of page control does not deal with
individual pages at its external interface level. Calls are made to process
entire segments, or deconfigure extents of main memory or bulk store, etc. Al11
of the «call-side page control entries (in PL/I page control) perform services
for the rest of the system on selected groups of pages, records, or main memory
page frames. Many of these functions, as noted in the above section, must
initiate and/or await the completion of I/0 on these various entities. The call
side wait coordinator, page$pwait, is provided for this purpose.

A11 of these functions try to achieve a maximal degree of I/0 parallelism
(simultaneous 1/0 operations in progress). This is accomplished by processing
all pages, records, or frames in the set being iterated over without performing
any waiting. During this iteration, all I/0s or RW3Ss which need be started are
started. As each page or record is processed, a check is made to see if an I/0
or RWS 1is in progress for that page, whether or not it was just started. If
this pass completes with no I/0s or RWSs found, then all of the pages or records
were processed, and there is no waiting to be done, so the particular function
being performed has successfully been completed. If, on the other hand, some
I1/0 was found to be in progress, whether or not this loop had started it, the
call-side wait coordinator 1is called with the event ID of the last such
operation notified, and upon return, the entire loop retried, until successfully
repeated with no .I/0s or RWSs found. This technique 1is summarized by the
following "typical" program excerpt (see any program in PL/I page control for
real examples):

1 rt: event = 0;

2 do i = 0 to 255;

3 if ptw (i) meets-some-criterion then;

4 else do;

5 call page$typical (astep, i, tmp_event)
6 if tmp_event "=0 then event = tmp_event;
7 end;

8 end;

9 if event "=0 then do;

10 call page$pwait (event);

11 go to rt;

12 end;

The variable which is here called "event" is most often called "ind." It

is often set to -1 to indicate that nc code of the form of line 6 above has ever
set it. The call on line 5 above performs some manipulation on a page such as
starting an I1/0, or continuing an eviction, etc. Such entries, all in ALM page
control, perform state fransitions upon pages, meving them closer and closer to
the particular criterion (such as the one on line 3) which the PL/I program is
trying to force to be true. Such criteria are: "No page on this PD record" (for
PD record deconfiguration) or "Page not in main memory or on paging device" (for
deactivation-time service) or "A good copy of the page exists on paging device
or disk" (directory-unlock-time flush service, or shutdown-time main memory
flush service). Such entries into ALM page control usually return the event ID
of any I1/0 they start and do not complete, (such as page$pread, which starts
page reads). A better set yet, such as page$evict and the "typical" entry
above, not only return an event ID for any I1I/0 or RWS they start, but for any
they find in progress for that page at the time that they are invoked. Most do
not. Some (e.g., page$pwrite) never return an event ID.
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We use the term "any I1/0 or RWS" very loosely. Rather than being a generic
class of events, any particular PL/I service (and the ALM entries it calls)
might be concerned about either one or both, depending completely upon the
semantics of what is intended to be accomplished.

The sort of ALM entries described above, which move pages closer to a given
condition, all need some kind of prereguisite condition to ensure that no
process or operation will be simultaneously trying to counteract the transitions
that the LM entry is performing. For example, the function that abs-wires
portions of segments, pc_abs$wire_abs, calls page$wire_abs on each pair of
segment page and main memory frame being abs-wired together, until page$wire_abs
reports completion. Before ever calling page$wire_abs, however, pc_abs turns on
the bit cme.abs_w, (for abs_wired) for sach main memory frame in the region.
The replacement algorithm will never evict a page from a frame with this bit on.
No process can deactivate the segment, for only supervisor or semi-permanently
activated segments are eligible for abs-wiring. Similarly, the
deactivation-time service, pc$cleanup, has as part of its contract that its
caller must have made the segment being processed inaccessible; thus the
transitions performed by page$pwrite, called by pc$cleanup, will not be
counteracted.

The PL/I 1loops wusing the "multiplex wait protocol" choose one event at
random, if any have to be waited for, usually the last one encountered, and to
retry the entire iteration, for at least the page associated with this event has
changed states noticeably, whether or not other pages have changed state (they
usually will have). Similarly, the PL/I function could not possibly be complete
until that single event has happened, so it is worth waiting for it. Thus, the
choice of event for which to wait is completely arbitrary. If, in fact, an
earlier event were chosen, but some later call to ALM page control caused the
interrupt side to be invoked and cause the occurrence of this event (post the
event), the fact that this event is now invalid is of no issue, as the call ‘side
wait coordinator would discover this and return immediately, causing the loop to
be redone. (No waste occurs in having the loop redone, for indeed, some I/0
which was passed as "in progress" will now be finished, by hypothesis).

As stated above, the process-loading function attempts to use the multiplex
wait strategy. However, instead of <calling the call-side wait coordinator,
which it cannot, and branching to its head, it returps an event ID to the
traffic controller, expecting to be galled at its entry point when that event
has happened. The fact that this arrangement is not an adequate substitute for
the complete service provided by the wait coordinator is obvious from the fact
that events so returned must be revalidated by the traffic controller.

The various states of pages with respect to the ALM entries that cause
state transitions, are illustrated in the section "Page State Transitions,"
along with the names of the ALM entries or the process actions that cause these
transitions to occur.

Page control uses the services of two DIMs, or Device Interface Modules, to
manage the I/0 operations upon the bulk store and the disks. These are
bulk_store_control, the bulk store DIM, and disk_control, the disk DIM. :

Page control requires that these DIMs present a wuniform functional
interface. The semantics of this interface are one of the fundamental internal
mechanisms of page control. These DIMs are known as the "Storage System DIMs,"
to differentiate them from printer or card punch DIMs, etc., or from the
user-ring disk DIM, rdisk_.
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Page contrel requires the storage system DIMs to have three entries, read,

ite, and run. The read and write entries are invoked to request the

initiation of read and write operations. The run entry is used to request the

DIM to interrogate its hardware status, and call the page control interrupt side
if any operations have been completed.

The read and write entries are given three parameters; a device record
address, a main memory address, and a word of two flags. The disk DIM read and
write entries are also given a PVT index to identify the drive to which the
device record address is relevant. The device address and main memory address
are those to engage in the data transfer. The word of flags contains two flags,
called the interrupt and priority flags. The interrupt flag tells the DIM that
it is to call the page control interrupt side when the operation 1is completed.
The priority flag may optionally be used by the DIM to sort the requests
received by page control into priorities.

The Disk DIM ignores the interrupt flag, always calling the page control
interrupt side. The bulk store DIM does not, however. This feature is used to
write out the paging device map to the bulk store every second; as this is not
really paging 1/0 (no PTWs or CMEs are involved), page control does pot want the
interrupt side to be called upon its completion.

The DIM that receives a read or write request may perform that request in
any order it chooses with respect to other requests. A storage system DIM is
allowed to call the page control interrupt side while processing the call to
start a read or write. Specifically, it is allowed to post the completion of
the very request that it was called to perform, should this actually happen.
This implies that page control, on return from a call to a storage system DIM to
start an operation, must be prepared to find that an arbitrary number of actions
have been taken by the interrupt side during that call, including the completion
of that operation.

The bulk store DIM operates entirely under the page table 1lock. Except
when called by the Interrupt Interceptor (ii) on account of a bulk store
interrupt, it 1is always called with the page table 1locked. Bulk store
interrupts, however, happen only in the <case of a bulk store error, in the
current DIM, and the DIM itself calls to lock the page tables in each case.

The disk DIM, however, is called-with the page table lock 1locked at some
times, such as when called at the entries defined above, but not at others, as
when called by the IOM manager to process a disk interrrupt. At these times,
the call to the interrupt side of page control (via page$done) locks and unlocks
the global lock itself.

Any storage system DIM may call the interrupt side of page control when the
DIM has been invoked by an interrupt. When such an interrupt-time call is made,
the DIM must itself (or via page$done) lock the page table lock, and unlock it.

The interrupt side of page control is called by the storage system DIMs
with two parameters, a main memory address and a status code. The main memory
address is used by the interrupt side to locate a core map entry, from which all
other information (such as cme.rws, for example) may be derived. The status
code indicates the degree of success of the I/0 operation. The low bits of the
status code indicate to page control the DIMs determination of whether the
problem causing the error is an error in the device, the data path to the
device, the record of the device, or the page frame of main memory involved 1in
the attempted transfer. Page control uses this for error recovery (see "Error
Strategy" below).
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A DIM may retry an operation it has been asked to perform any number of
times; page control 1is only interested in the final outcome. What is more, a
sterage system DIM can write some page to any number of different records or
devices, as it sees fit, and when asked to read it back, read it from any (or
all) of them. It is guaranteed by page control that all such copies will be
"good." If page control detects that the page was modified when an attempt at
eviction is next made, none of them are good; if not, they all are. What 1is
more, a storage system DIM can use the main memory frame into which it is being
asked to read for any intermediate buffering, diagnostic results, etc., as long
as it contains what was asked for when the operation is posted. Page control
makes no assumptions about the contents of page frames that are out of service
on reads.

If a storage system DIM given a request to perform, finds that it has no
gueue space, it is allowed to loop intermnally awaiting the real-time completion
of I/0 requests on its devices, possibly calling the interrupt side of page
control, if that is necessary to free queue space.

A DIM is allowed to perform services for other parts of the system, as the
disk DIM does for the VIOC manager, possibly calling the page control interrupt
side when so doing. In such cases, this call must be treated like one on behalf
of an actual interrupt.

A DIM must provide a "run" entry, called only by page control with the
page-table 1lock 1locked, which checks the devices being managed for operations
that have completed, and calls the interrupt side of page control for any that
have. Such an entry must have two properties:

1. It must physically interrogate the hardware status (perhaps stored) of
its device; it cannot depend upon actual interrupts having happened to
take cognizance of I/0 completions.

2. If called in a loop, I/0 operations will be posted one by one via
calling the interrupt side of page control, until the DIMs queues hold
no more uncompleted requests.

For one -example of the use of a "run" entry, see the previous section,
where the page fault handler calls the run entry of the bulk store DIM until it
finds that the 1/0 on the faulting page has completed.

The RWS initiator (rws_ in pd_util) "runs"™ all of the DIMs (calls their
"run"™ entries, one by one, for all two of them) in a loop when more than thirty
RWSs are awailting ~completion. Thus, it 1is guaranteed that doing this
arbitrarily long will cause an arbitrary number to complete.

The paging device replacement algorithm runs the bulk store DIM to make
sure that all read cycles are finished before it is exited, and the page table
lock potentially unlocked.

The main memory replacement algorithm runs the DIMs in a loop if an excess
(curréntly 30) of uncompleted page-write I/0 requests are outstanding. (The
tool file_system_meters reports occurrences of this event.)

The traffic controller "polls page control"™ every 15 seconds, which
consists of calling page$run, which locks the page table lock, runs all the
DIMS, and unlucks the lock. This, as all run calls and all other calls, may be
used by the DIMS to perform timing-out functions and housekeeping.
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Other than calling the bulk store run entry as a substitute for traffic
control waits, no page control module other than the ALM program device_control

ever calls the storage system DIMs directly. Rather, the entries
device_control$dev_read, device_control$run and device_control$dev_write are
called. These entries, called only from the ALM page control environment (PL/I

page control never deals at this low a level), use variables in the ALM page
control environment to determine which DIM to call. This is the function, and
the origin of the name, of device control. The call-side wait coordinator also
resides here, as well as the page control code called as "page$run" which runs
the DIMs on behalf of the traffic controller polling code.

M Pa ontrol ironm

All of the ALM programs in page control, including the bulk store DIM,
share a common environment of register usage, and all share the same stack frame
while 1in the same invocation of page control. That stack frame is laid out in
pxss_page_stack.incl. alm. As can be inferred from the name, the traffic
controller shares the same stack layout, which is meant to optimize the case
where page control calls or transfers to the traffic controller; in this case,
the actual stack frame is shared.

Almost all subroutines in the ALM page control environment invoke each
other via the TSX7 instruction; there are a set of "small" subroutines that are
invoked with a TSX6 instruction. A subroutine is "small," if it calls no other
subroutines.

Any subroutine that calls any subroutine except a "small™ TSX6 subroutine
must do a "savex"; this operation, performed by the "small" TSX6 subroutine of
that name saves index register seven in a stack of saved values 1in the stack
frame. This stack is initialized by the routine init_savex. A subroutine that
has not done a "savex" returns via TRA 0,7. One that has returns by branching
to the code "unsavex," which pops the stack and returns.

All code in ALM page control, other than the bulk store DIM, runs with
pointer register 3 set to point to the base of the SST. Any code that exits the
ALM page control environment must restore it.

A11 external entries to the ALM environment, such as the page fault
handler, and the entries called by PL/I code (through the transfer vector
"page") are responsible for setting up this environment, i.e., initializing the
index register save stack and pointer register 3.

Other than these general conventions, there are conventions of dealing with
specifie data objects. When any ASTE, PDME, PTW, or CME is being dealt with in
any way, all routines expect the following index and pointer register
assignments to hold:

Qbject Register Symbolic Name
PTW Index 2 .ptw
and
Pointer Reg 2 ptw
CME Index 4 .cme
ASTE Index 3 .aste
PDME Index 1 .pdme
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The values in the index registers, are all offsets relative to the base of
the SST (pointed to by pointer register 3, symbolically "sst"). These symbolie
names are used by most code in the ALM environment to reference these registers.
Pointer register 3 also has the names "cme"™ and "ast" and "pdm" to allow
references of the following form to be made:

lda astiaste.uid,.aste

These symbolic register names may be found in the include files
page_info.incl.alm and page_regs.incl.alm.

The use of the stack variables in the ALM page control stack frame is not
systematized in any way. No person attempting to modify or maintain page
control should change any routine to use any variable that it had not previously
used unless they are familiar with every single use of that variable in ALM page
control. No attempt is made to document the usage conventions of these
variables. This can only be learned via extensive experience with ALM page
control. The only variables of any general interest are those named "devadd,"
"coreadd," "did," "errcode," and "inter." The variables "devadd,"™ ‘"coreadd,"
"did," and "inter," are the record address, PVT index, and Flag word,
respectively, passed to the storage system DIMs. Bulk store control, sharing
the same stack frame, uses them in place. The variables "coreadd™ and "errcode"
are used by the interrupt side to receive the descriptions of completed
operations. Again, the bulk store DIM uses them in place. It is also worth
mentioning the array "arg," which 1is wused by both page control and traffic
control to prepare argument lists and descriptors for any external (PL/I) ecall
that must be made from the ALM page control environment.

Error Strategy

By "error," we refer to any of the following three types of abnormal
circumstances:

1. Those resulting from user behavior (e.g., record quota overflow).
2. Those resulting from 1/0 device error.
3. Those resulting from internal software, or processor error.

The first class of error situation can hardly be considered an error
situation at all. The only "errors"™ in this class are physical volume overflow
and record quota overflow. Both of these errors are detected on the fault side;
supervisor segments are quota-inhibited (aste.ngsw is on) and prewithdrawn,
making these classes of problems impossible. Should they occur on a supervisor
or semi-permanently active segment, the system software is malfunctioning, and a
class 3 error results. Record quota is checked by the fault handler before any
quota cells are incremented; availability of physical records is similarly
checked by the record allocation function (free_store) before any data bases are
modified. Thus, recovery from either of these circumstances involves no
"backup."™ Record quota overflow is signalled by the fault side on the stack on
which the faulting process was running. This is done by moving the page fault
machine conditions to pds$signal_data, abandoning the masked/wired environment,
and transferring control to "signaller," the procedure responsible for effecting
such signalling. .
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This causes the stack history on that stack to be such that a return to the
signaller's frame causes the page fault to be retried. (This is the standard
fault-signalling, the only difference here from the common case being that a
masked, wired environment, with a stack frame on the PRDS (wired stack segment)
was abandoned.) Physical volume overflow is handled by the fault side by
marking the ASTE of the segment (aste.pack_ovfl) for which a record cannot be
allocated, setting a segment fault in the SDW for the segment implicated by the
page fault machine conditions, and restarting the fault. This causes a segment
fault to be taken. The segment fault handler locates the ASTE, sees the bit,
and invokes the segment mover, presumedly resolving the physical volume overflow
situation (see "Segment Moving" in Sections II and IV).

The class of errors produced by detected I/0 device failure is that one in
which page control policy has the greatest effect upon system behavior. Errors
are reported by the storage system DIMs (see "DIM Interface," earlier) to the
interrupt side of page control. This severely limits the actions that can be
taken at that time. Specifically, no operation that involves waiting can be
performed. Furthermore, since the interrupt side can be activated by the call
side whenever a DIM is invoked, no action that involves allocating main memory
or paging device frames is permissible, since that would involve all of this
software recursively. This <c¢lass of errors may be further subdivided into
errors in reading and errors in writing.

Errors in reading are simpler to handle, because there 1is always some
process waiting for the completion of that read. Taking whatever action is
necessary and notifying an appropriate event will cause that process to retry
that read, either via the fault side retry mechanism or the call side multiplex
wait protocol. The response to disk read errors is to turn on the bit ptw.er in
the relevant PTW, and return the PTW (otherwise) to its original state before
the read was started. Subsequent notification of the associated event causes
the fault side to retry, notice the bit, signal an error (condition
page_fault_error) (via the same fault-side signalling mechanism as is used for
record quota overflow), turning off this bit while so doing. The next retry of
that page fault causes another attempt to be made at the disk read.

Errors in reading the paging device (on other than RWS read cycles) are
much the same. However, the paging device record involved 1is dynamically
deleted by the interrupt side, because of the fact that an error was encountered
in reading it. A syserr message accompanies this action. The disk address
(possibly nulled) which was in the PDMAP entry (pdme.devadd) replaces the PD
record address (nptw.devadd) in the PTW, causing the next retry of this page
fault after the one that signals error to obtain the copy of the page on disk
(or zeros if the address in the PDME was nulled).

Errors 1in reading the paging device for the read cycle of an RWS are
somewhat like paging device errors above, although a different error message is
printed by syserr. The paging device record is dynamically deleted, and the
(possibly nulled) disk address in the PDME replaces that in the PTW. Since, by
implication, the RWS has been declared over on account of that error, and the
data on disk is thus considered implicitly "valid," the main memory frame of the
RWS is freed, and there is no write cycle. No resurrection of disk addresses is
performed in this case. Errors during RWS on behalf of the post-crash PD flush
are discussed in the consideration of that mechanism in Section IX.

Errors on writing are difficult to handle. While the optimal policy would
be to allocate a new disk or PD record, this requires manipulation of the paged
segment FSDCT, which 1is impossible at interrupt time. For the case of write
errors to the paging device, the solution is simple; the relevant paging device
record is deleted, and the {(possibly nulled) disk address from the PDME replaces
the PD address in the associated core map entry (CME). This has the effect of
forcing the replacement algorithm, or the call side, on behalf of whatever
agency is trying to see the completion of this writing, to retry writing,
accomplishing a write to disk instead. 1In effect, the page has been migrated
off the paging device.
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Errors on writing to disk are problematic in the ways stated. The action
at this time is to replace the disk address associated with the page with a null
address (page_bad_null, see null_addresses.incl.alm), freeing the main memory
frame, causing the contents of the page to become zeros. Errors on writing disk
on behalf of the write cycle of an RWS are similar; the null address
page_bad_pd_null replaces the PD address in the PTW, and hence, ultimately in
the file map. No resurrection, clearly, is performed. Again, special action is
taken for the post-crash PD flush.

The third class of errors dealt with in page control is that class of
errors indicating software malfunction. In every case, it is dangerous or
impossible to continue system operation, since further damage and wrongly
disclosed data would probably result. Included among sSuch errors are errors
found 1in locking, errors in expected states of data bases, errors in threading,
and so=-called "re-used addresses" (records marked as free that are known to be
in use, or being freed). Such errors can result only from undetected processor
or main memory malfunction, or undiscovered bugs. The effect is to crash the
system in every case. In PL/I page control, this is accomplished by calling
syserr explicitly. In the ALM environment, the routine page_error is
responsible for constructing and executing all syserr calls. There are some
entries to this routine (including those used by the bulk store DIM) that report
specific errors (such as the non-fatal read and write errors, and paging device
record deletions discussed earlier). These routines are knowledgeable about
stack variables in the ALM environment, and variable information is printed out
in their messages. There are also some entries that crash the system with a
specific message, such as that which is invoked upon discovery of a reused
address. However, the most commonly used entry is that invoked from the routine
page_fault_error in the program page_fault. This routine is invoked from the
ALM page control environment via a TSX5 to page_fault_error. It crashes the
system with the -error "fatzl page fault error at location xxxx" where xxxx is
the address (in bound_page_control) of the TSX5 instruction executed. In every
case, this type of crash is the result of software malfunction, possibly induced
by undetected hardware failure. (There is also one case of this type of crash
induced by detected hardware (processor) failure; that .in which no appending
unit c¢ycle bits are on in the page fault machine conditions, indicating
appending unit failure.)

There is also a "nonfatal page fault error"™ facility, which is very
sparsely used.

- Calls to crash the system via the program page_error call the PL/I routine
syserr via a standard call, setting up their argument lists in the array "arg"
in the page control stack frame. Part of that PL/I call is the storing of all
of the index registers and the AQ at location 40 (octal) in the stack frame of
the ALM environment; useful information about the data objects invoked in such a
crash can always be gleaned from this data.

The crash for a re-used address 1is peculiar insofar as the code that
invokes it turns on the bit pvte.vol_trouble before crashing. This action
causes the physical volume whose volume map was involved to be volume-salvaged
the next time it is accepted for storage system use.

Other than these errors, there are no possible errors in page control. No
call 'side entries, or entries to ALM page control return a status code of any
kind. No nonfatal failure is possible in the current design. However, in some
cases, s8Such as RWS failure due to I/0 error on behalf of the post-crash PD
flush, status information is conveyed back via the 1live/nulled/null status of
the address left in the PDME by the RWS interrupt side. (See the description of
this service in Section IX.)
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tack Managemen n nter ith the Tr i ontroller

Page control wuses the wait/notify facility of the Multics traffic
controller fairly heavily. The conventions for such waiting and notifying have
been discussed.

Page control does not notify any event unless some process is waiting for
it, in order to avoid the overhead of traffic control. The bits
pdme.notify_requested, cme.notify_requested, and pdme.abort fulfill the function
of specifying whether or not such notification is to be performed. All
notification is done by the interrupt side, in ALM page control (save for one
highly esoteric case during boundsfault processing; see Section IX). All
waiting is also performed by ALM page control; the primitive page$pwait serves
to perform such waiting on behalf of PL/I page control. The mechanism used by
process loading to wait has already been discussed.

The interface between page control and traffic control is streamlined to
facilitate these operations. Since the traffic controller and ALM page control
share the same stack frame layout, with variables in it allocated to each, the
interrupt side transfers directly to a special side-door entry to the traffic
controller (pxss$page_notify or pxss$rws_notify) to perform all such
notifications. The traffic controller returns to the side-door entries to the
procedure page_fault (page_fault$notify_return and page_fault$rws_notify_return)
after notifying. The event ID to be notified is passed by page control in the
cell pds$arg_1. The quantity seen in the listings as being passed in pds$arg 2
is an obsolete remnant of an o0ld device-metering mechanism. The traffic
controller operates completely in page control's stack frame in these cases.

The wait interface 1is more involved. The interface wused by’  the
process-loading function is not discussed here; this has already been treated.
The traffic control interface for waiting is always invoked by ALM page control
via a direct TRA, from either code in the end of the page ~fault handler, for
(invoking pxss$page wait) causing a process to wait on behalf of the fault side,
or from page$pwait, the call-side wait coordinator (invoking pxss$waitp). There
is also. a third entry, pxss$ptl_wait, used explicitly by the fault-side
mechanism that allows multiprogramming to wait for the page table lock. Other
than this third mechanism, these entries are entered with the page table locked
in every case, being unlocked by the traffic controller after its own 1lock ha
been unlocked (see "Wait Protocols" earlier, for the reason this is done). :

The interface invoked by the fault side, pxss$page_wait, shares a stack
frame from the PRDS with the fault side, which invoked it. The fault-side stack
frame becomes a traffic controller stack frame, on the PRDS, and is managed by
the traffic controller from that point on as a traffic controller PRDS stack
frame, as it is passed around from process to process. Entry to the traffic
controller via pxss$page_wait implies that the entire state of the invoking
process is encoded in the page fault machine conditions in pds$page_fault_data
in that process; this is to say that there is po page control stack history of
any kind in that process. Thus, when a process waiting via this mechanism is
notified, and subsequently allowed to run, the traffic controller iransfers to
page_fauit$wait_return, which does nothing more than restart those machine
conditions (including process/processor mask). Specifically, the page table
lock is not locked, nor are any page control data bases at all inspected or
modified in any way. This causes the faulting machine cycle to be restarted,
either completing successfully (if the page fault has been resolved) or taking
another page fault. ) .
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When the traffic controller is invoked to wait on behalf of the call-side
wait coordinator, a transfer to the entry pxss$waitp is effected. Again,
pds$arg_1 contains the event on which it is desired to wait, and the page table
lock is locked, to be unlocked by the traffic controller. When a process waits
via this mechanism, PL/I page control has a stack history on the PDS of the
waiting process; the stack frame that was the current stack frame of that
process contains the return pointer to the place in the PL/I program that called
page$pwait; that point must be returned to when the waiting has been finished.
There are no machine conditions; action upon return from the traffic controller
consists of transferring to that place in the PL/I program. Thus, the traffic
controller, upon completion of such waiting, transfers to the side-door into the
wait coordinator, device_control$pwait_return. Since the page table 1lock has
been unlocked, this entry relocks it via a call to the ALM page control locking
interface (page_fault$lock_ptl_no_lp), and returns to the PL/I program at the
- instruction after the call to the wait coordinator. 1In order for this poliecy to
succeed, the stack frame pointer register (Pointer Register 6) must be restarted
at the time device_control$pwait gains control, to its value at the time that
pxss$waitp gained control. Therefore, the traffic controller saves this value
in the cell pds$last_sp, which is often useful in debugging problems in this
area.

The traffic controller differentiates between the two cases above (fault
side wait, no stack history, and call side wait, PL/I PDS stack history) via the
variable pds$pc_call, zero for the first case and a positive nonzero number for
the second. The value of this variable tells it whether the state of a process
waiting for a page control event 1is embedded in the machine conditions in
pds$page_fault_data, or in its PDS stack history, as defined by the value of
pds$last_sp. This implicitly tells it whether it should transfer to
page_fault$wait_return or device_control$pwait_return.

The mechanism used to wait for the page table lock on the fault side "uses
exactly the same mechanism as used by the fault side to wait for other events.
A special entry to the traffic controller is used in this case (pxss$ptl_wait),
which performs certain manipulations as described under "Page Table Lock
Waiting®" later in this section. However, this special code soon transfers to
the code used by the fault-side to wait for all other events. Thus, it is to be
noted that the action performed upon notification of the page table lock event
is simply to retry the page fault, just like any other fault-side wait.

The variables, pds$last_sp and pds$pc_call, are used by the traffic
controller for other mechanisms ¢than page control waiting. Specifically,
pds$last_sp is used for all calls to the traffic controller for waiting (other
than those just described). The cell pds$pc_call is also used by the traffic
controller's preinitialization and shutdown wait mechanism (pi_wait) to
differentiate other wait calls than page control's from the two kinds of page
control wait already discussed; in this case, pds$pc_call is set to a pegative
value.

See Figure 8-1 for a synopsis of this mechanism.

In all cases of invocation by ALM page control, the traffic controller is
aware that the process/processor are masked to M"sys_level,"™ and all relevant
parameters are in wired storage. Thus, the traffic controller never pushes its
"extra®™ PDS frame in these cases, because it is used only to store old masks.
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The external entry to page control to lock the page table lock does not
need a stack frame; it does not push one (page$lock_ptl, using lock_ptl_no_lp in
page_fault). The external entry to unlock the page table lock, however, does,
because the traffic controller may be invoked to notify the page table lock
event. It pushes its frame, and does a full return (page$unlock_ptl, invoking
unlock_ptil, in page_fault). A special side-door is used by
privileged_mode_ut$unlock_ptl, however, to avoid pushing a frame. This
side~entry page_fault$pmut_lock_ptl, pushes a frame, and expliecitly pops it in
line before transferring privileged_mode_ut$unwire_unmask to finish the job.

Note that all side doors to page control go directly to individual ALM
programs, and not through the transfer-vector "page."

2age States

One instructive perception of page control is that of a set of finite-state
automata; one for each page, one for each main memory frame, one for each paging
device record, and one for each secondary storage record. The basic operations
of page contrecl, specifically the actions performed by ALM page control, consist
of performing state transitions upon these objects. PL/I page control, 