
HONEYWELL

11t. xT TT TIr~ 1 V .1 '-' ~~ "-'" LJ

PL/I LANGUAGE
SPECIFICATION

SOFTWARE

SUBJECT

MULTICS

PUT LANGUAGE
SPECIFICATION

A Semi-formal Definition of the Multics PUT Language

SOFTWARE SUPPORTED

Multics Software Release 8.2

SPECIAL INSTRUCTIONS

This manual supersedes the previous edition, Rev. 1, dated January 1974, which
superseded: Rev. 0, dated July 1972, The Multics PUI Language Specification
(1969), and A Users Guide to the Multics PUI Implementation (October 1969).

Includes update pages issued as Addendum A in October 1977,
Addendum B July 1978, Addendum C July 1979, Addendum D, Sep
tember 1979, and Addendum E in March 1981.

ORDER NUl\1BER

AG94-02 July 1976

Honeywell

PREFACE

This reference manual contains detailed information for users of the Multics
PL/I language. Contained herein are exact answers to detailed questions concerning
the syntax and semantics of PL/I. Additional information useful to the Multics
PL/I programmer is found in the following documents:

Multics PL/I Reference Manual - Order No. AH83

Multics Programmers' Manual (MPH):

MPM Reference Guide - Order No. AG91

MPM Commands and Active Functions - Order No. AG92

MPH Subroutines - Order No. AG93

MPH Peripheral In,eut/Output - Order No 0 AX49

MPH Subsystem Writers' Guide - Order No. AK92

The Multics PL/I Reference Manual provides an introduction to Multics PL/I,
furnishes guidance for writing a Hultics PL/I program, and explains the relationship
between Multics PL/I and the run-time environment supplied by the Multics system.

The MPM Reference Guide describes in general terms the functions and features
of the Multios system; for example, representation of FL/I data.

The MPH Commands and Active Functions contains descriptions of the commands
in the cOiiiiiiand repertoire and the active functions available to the Mul tics
system.

The MPH Subroutines contains descriptions of the subroutines available on
the system.--

The MPH Peripheral Input/Output contains descriptions of commands and
subroutines used to perform perlpheral I/O. This manual includes the commands
and subroutines that manipulate tapes and disks as IIO devices as well as such
special-purpose communications IIO as binary synchronous operations.

The MPM Subsystem Writers' Guide contains such detailed descriptions as the
the exact layout of a PL/I activation record (stack frame), the internal format
of a PL/I area, and the calling sequence generated for a PL/I call. Most users
will not require the extent of detail contained in this volume.

The ~ Communications Input/Output contains descriptions of commands dnd
subroutines used to perform communlcations I/O. This manual includes information
on terminal types.

Significant Changes in AG9~ , Revision 2 , Addendum E

This list of changes includes only those changes made to AG9~ Addendum E
that were accompanied by changes to the Multics ?L/I implementation.

1. Clarification (manual only) of operand conversion for the exponentiation
operator.

3/81 iii AG9~E

I Section 1

I

I
I

I

Section 2

Section 3

Section 4

3/81

CONTENTS

Introduction • • . • . • . • •
1.1 Language ••••.•
1.2 Method of Definition.
1.2.1 Meta-Language
1.2.2 Syntax Expressions.
1.2.3 A Formal Definition of the Meta-Language.
1.3 Warning ••.•••

Structure of a PL/I Program
2.1 External Procedure •...
2~2 Blocks and Block Structure.
2.3 Groups
2.4 Multiple Closure of Groups and Blocks
2.5 Statements •.•••.•
2.5.1 Statement Prefixes ...
2.6 Lexical Syntax of PLII •
2.6.1 Identifiers •....
2.6.2 Literal Constants
2.6.2.1 Bit-string Constants.
2.6.2.2 Character-String Constants •
2.6.2.3 Arithmetic Constants
2.6.3 Isubs
2.6.4 Delimiters, Blanks and Comments
2.7 Compile-Time Macros
2.7 Include Macro
2.7.2 Page Macro •..
2.7.3 Skip Macro ••..

Dynamic Behavior of a PL/I Program .
3.1 Flow of Control
3.2 A Multics PL/I Program.
3.3 Dynamic Block Structure
3.3.1 Block Activation
3.3.2 Environment of a Block Activation
3.4 Flow of Control Within a Block Activation
3.5 Local and Nonlocal Goto Statements .
3.6 Inter-Block Flow of Control
3.5.1 3eg1u Bluck~
3.6.2 Procedures
3.6.3 On Units ••

Data of PL/I • • . .
4.1 Data Types ••.
4.1.1 Representation of Data
4.1.2 Constants
4.1.3 Variables••
4.1.4 Data Types of Expressions and Functions
4.1.5 Arithmetic Data .••...
4.1.6 String Data
4.1.7 Locator Data.
4.1.8 Area Data .•.•••
4.1.9 Label Data ••
4.1.10 Format Data
4. 1 • 1 1 En try Da t a
4.1.12 File Data •.
4.2 Aggregates of Data •.
4.2.1 Arrays of Scalars
4.2.2 Structures •••••
4.2.3 Arrays of Structures.
L\.3 Storage of Data •
~.3.1 Packing and Alignment of Variables
4.3.1.1 Packing and Alignment of Scalar Variables
4.3.1.2 Packing and Alignment of Structures ••••
4.3.1.3 Packing and Alignment of Arrays
4.3.1.4 Sign types ••••.••
4.3.2 Storage Classes
4.3.2.1 Allocation of Storage
4.3.2.2 Automatic Storage
4.3.2.3 Static Storage •••••••.
4.3.2.4 Controlled Storage ••
4.3.2.5 Based Storage
4.3.3 St6rage Shari~g ..••
4.3.3.1 Storage Sharing by Parameters •
4.3.3.2 Storage Sharing by Based Variables ••

iv

Page

1-1
1-1
1-1
1-2
1-2
1-3
1-4

2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-4
2-5
2-5
2-5
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-9.1

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3~3
3-3
3-3
3-4
3-4

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-10.1
4-11
4-11
4-11
4-11
4-12
4-12
4-13
4-14
4-14

AG94E

Section 5

3/81

CONTENTS (cont)

4.3.3.3
4.3.3.4
4.3.3.5
4.3.3.6

Storage Sharing by Defined Variables
Isub Defining • • •.•
Simple Defining
String Overlay Defining

Declarations • • •
5.1 Scope of a Declaration •••
5.1.1 Internal Scope
5.1.2 External Scope. •
5.2 Establishment of Declarations
5.2.1 Declare Statements. •
5.2.1.1 Defactoring of Declare Statements
5.2.1.2 Multiple Attributes. • ••
5.2.1.3 No~alization of Levels •
5.2.2 Expansion of the Like Attribute
5.2.3 Establishment of Explicit Declarations
5.2.3.1 Declare Statements
5.2.3.1.1 Declarations of Scalars
5.2.3.1.2 Declarations of Arrays
5.2.3.1.3 Declarations of Structures
5.2.3.2 Label Prefixes
5.2.3.2.1 Format Constants
5.2.3.2.2 Label Constants
5.2.3.2.3 Entry Constants
5.2.4 Establishment of Contextual Declarations
5.2.5 Contextually Derived Attributes
5.2.6 Establishment of Implicit Declarations
5.3 Completion of Attribute Sets
5.3.1 Default Statement
5.3.2 Evaluation of Default Statements
5.3.2.1 Special Cases of the Default Statement
5.3.3 Language Default Rules
5.4 Syntax and Semantics of Attributes
5.4.1 Aligned
5.4.2 Area.. •
5.4.3 Automatic
5.4.4 Based
5.4.5 Binary.
5.4.6 Bit
5.4.1 Builtin
5.4.8 Character
5.4.9 Complex
5.4.10 Condition
5.4.i1 Constant
5.4.12 Controlled
5.4.13 Decimal.
5.4.14 Defined.
5.4.15 Dimension
5.4.16 Direct
5.4.17 Entry •
5.4.18 Environment
5.4.19 External
5.4.20 File
5.4.21 Fixed
5.4.22 Float.
5.4.23 Format
5.4.21f Generic
5.4.25 Initial
5.4.26 Input
5.4.27 Internal
5.4.28 Irreducible
5.4.29 Keyed.
5.4.·30 Label
5.4.31 Like ••
5.4.32 Local.
5.4.33 Member
5.4.34 Honvarying •••••
5.4.35 Offset ••••
5.4.36 Options ••
5.4.37 Output •
5.4.38 Parameter.
5.4.39 Picture
5.4.40 Pointer ••
5.4.41 Position
5.4.42 Precision
5.4.43 Print.
5.4.44 Real
5.4.45 Record •
5.4.46 Reducible
5.4.41 Returns·.

v

Page

4-15
4-16
4-16
4-19

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-4
5-6
5-6
5-6
5-6
5-6
5-1
5-1
5-7
5-7
5-8
5-9
5-10
5-10
5-11
5-12
5-13
5-13
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-17
5-11
5-11
5-17
5-18
5-18
5-18
5-18
5.-18
5-19
5-19
5-20
5-21
5-21
5-21
5-22
5-22
5-22
5-23
5-24
5-21f
5-24
5-24
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-21
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-29
5-29

AG94E

I

I
I

Section 6

Section 7

I

Section 8

3/81

CONTENTS (cont)

5.4.48 Sequential
5.4.48a SIgned
5.4.49 Static
5.4.50 Stream .•
5.4.51 Structure.
5.4.52 Unaligned
5.4.52a Unsigned
5.4.53 Update
5.4.54 Variable •••••
5.4.55 Varying ••.
5.5 Attribute Consistency

Reference~ • • • • • • • • . • .
6.1 Simple References
6.2 Subscripted References .
6.3 Cross-Section References r

6.4 Structure Qualified References.
6.5 Reference Resolution and Ambiguity.
6.6 Locator Qualified References
6.7 Function References .•....••.••
6.8 Built-in Function References •
6.9 Generic References. ••.
6.10 Parameters and Arguments
6.10.1 Argument Passing By-value or BY-I ~ference
6.10.2 Argument Conversion and Promotio~ .•..
6.10.3 Asterisk and Constant Extents of Parameters.
6.10.4 Storage of a Parameter
6.11 Reducibility of Functions

Expressions .•.••.... • •
7.1 Evaluation of Expressions .•••.
7.1.1 Evaluation of Primitive Expressions •..••
7.1.2 Evaluation of Prefix Expressions.
7.1.3 Evaluation of Infix Expressions
7.1.4 Order of Evaluation ...•.•
7.1.5 Optional Evaluation .•...•
7.1.6 Expression Evaluation and Conditions.
7.2 Formal Syntax of Expressions •..•••
7.3 Operators•.•.....••
7.3.1 Arithmetic Operators
7.3.1.1 Operand Conversion for Arithmetic Operators
7.3.1.2 Results of Arithmetic Operators
7.3.i.2.i ?r~fix Opera~ion~
7.3.1.2.2 Infix Operations ...•.
7.3.1.2.3 Exponentiation •...•.....••••
7.3.2 Bit-string Operators••..••.••
7.3.2.1 Operand Conversion for Bit-string Operators
7.3.2.2 Results of Bit-string Operators
7.3.3 Concatenate Operator•.
7.3.3.1 Operand Conversion for Concatenation ••..
7.3.3.2 Result of Concatenation •.•.••••••
7.3.4 Relational Operators•.....
7.3.4.1 Operand Conversion for Relational Operators.
7.3.4.2 Types of Comparison •..••...•.••
7.3.4.3 Results of Relational Operators

Conversion of Data Types • • . . . • .
8.1 Contexts That Force Conversion
8.2 Conversion Rules .•.....
8.2.1 Pointer to Offset Conversion ••
8.2.2 Offset to Pointer Conversion
8.2.3 Character-String to Arithmetic Conversion
8.2.4 Character-String to Bit-String Conversion
8.2.5 Bit-String to Arithmetic Conversion
8.2.6 Bit-String to Character-String Conversion
8_2.7 Arithmetic to Character-S~ring Conversion
8.2.8 Arithmetic to Bit-String Conversion ••
8.2.10 Arithmetic Type, Base and Precision Conversion
8.2.11 Format Controlled Conversion
8.2.11.1 Fixed-Point Format ••••••
8.2.11.1.1 Fixed-Point Input Conversion
8.2.11.1.2 Fixed-Point Output Conversion.
3.2.11.2 Floating-Point Format ••••••
8.2.11.2.1 Floating-Point Input Conversion.
8.2.11.2.2 Floating-Point Output Conversion
8.2.11.3 Complex Format ••••••••
8.2.11.4 Character-String Format ••..
8.2.11.5 Bit-String Format ••••.•.
8.2.11.5.1 Bit-string Input Conversion.
8.2.11.5.2 Bit-string Output Conversion.

vi

Page

5-29
5-29.1
5-29.1
5-29.1
5-29.1
5-30
5-30
5-31
5-31
5-31
5-31

6-1
6-2
6-2
6-2
6-2
6-3
6-4
6-4
6-6
6-6
6-7
6-7
6-8
6-8
6-8
6-8

7-1
7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-8
7-8.1
7-8.1
7-9
7-9
7-9
7-10
7-10
7-10
7-11

8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-5
8-5
8-6
8-8
8-9
8-9
8-9
8-9
8-10
8-10
8-11
8-12
8-12
8-14
8-14
8-14.1

AG94E

Section 9

Section 10

Section 11

Section 12

3/81

CONTENTS (cont)

8.2.11.6 Picture Format ••.•..•.
8.2.12 Picture Controlled ConverSion.

Page

8-14.1
8-15

8.2.12.1 Syntax of Pictures •.......•.••
8.2.12.2 Character Picture Conversion

8-15
8-17

8.2.12.2.1 Character Picture Editing. 8-17
8-17
8-17

8.2.12.2.2 Character Picture Encoding
8.2.12.3 Fixed-Point Picture Conversion
8.2.12.3.1 Fixed-Point Picture Editing. 8-17
8.2.12.3.2 Fixed-Point Picture Encoding •.•...
8.2.12.4 Floating-Point Picture Conve~sion •
8.2.12.4.1 Floating-Point Picture Editing

8-19
8-20
8-20

8.2.12.4.2 Floating-Point Picture Encoding

Promotion of Aggregate Types • • • • . .
9.1 Contexts That Force Promotion
9.2 Types of Promotion •..•.
9.3 Promotion Rules •...••.

Conditions, Signals and On-Units .•..
10.1 Conditions and Condition Names
10.2 Condition Prefixes
10.3 Signals and On-units
10.3.1 Restrictions •....
10.4 PL/I Conditions ..•
10.4.1 Area Condition
10.4.2 Conversion Condition
10.4.3 Endfile Condition •
10.4.4 Endpage Condition •.
10.4.5 Error Condition •••.
10.4.6 Finish Condition
10.4.7 Fixedoverflow Condition.
10.4.8 Key Condition ••..•.
10.4.9 Name Condition
10.4.10 Overflow Condition.
10.4.11 Record Condition ••.....•••
10.4.12 Size Condition •.
10.4.13 Storage Condition ••
10.4.14 Stringrange Condition
10.4.15 Stringsize Condition •.

8-21

9-1
9-1
9-1
9-2

10-1
• 10-1
• 10-1

10-2
10-3

• 10-4
10-4
10-5

· . 10-5
• • 10-5
• • 10-6

• •• 10-6
• 10-6
· 10-6
• 10-7
• 10-7

• • 10-7
10-7

• 10-8
• • 10-8
• • 10-8

• 10-9 10.4.16 Subscriptrange Condition
10.4.17 Transmit Condition ••.
10.4.18 Undefinedfile Condition
10.4.19 Underflow Condition
10.4.20 Zerodivide Condition •
10.4.21 Hultics and Programmer

•••••• 10-9
• • ~ • • 10-9

• •• 10-9
.10-10

Defined Conditions • 10-10

Input/Output • • • • •
11.1 Data Sets ••••••...
11.1.1 Stream Data Sets
11.1.2 Record Data Sets
11.2 File Values and File-state Blocks ••
11.3 Opening a File
11.4 Closing a File ••••.
11.5 Conditions and Files

Syntax And Semantics of Statements •
12.1 The Allocate Statement
12.2 The Assignment Statement
12.3 The Begin Statement.
12.4 The Call Statement

· • • • 11-1
11 ... 1
11-1

• 11-1
• • 11-1

• • • 11-3
• 11-5

• • 11-6

••••• 12-1
• 12-1

12-2
• • 12-5

• •• 12-6
• • 12-6 12.5 The Close Statement •.

12.6 The Declare Statement •
12.7 The Default Statement ..
12.8 The Delete Statement

• ••••• 12-6

12.9 The Do Statement
12.10 The End Statement
12.11 The Entry Statement
12.12 The Format Statement.
12.13 The Free Statement.
12.14 The Get Statement •
12.15 The Goto Statement.
12.16 The If Statement ••
12.17 The Locate Statement.
12.18 The Null Statement ••
12.19 The On Statement ••••••••••
12.20 The Open Statement ••
12.21 The Procedure Statement
12.22 The Put Statement •••••
12.23 The Read Statement •••.•••••

• ••• 12-8
• • 12-8

• 12-9
• • 12-12

• ••• 12-13
• • 12-14
• • 12-18

• 12-19
• 12-24

12-24
• • 12-25

• 12-26
12-26

• ••• 12-28
• 12-29

12-30
• • 12-34

12.24 The Return Statement • • • ~ •• • • 12-36.1

vii AG94E

I

I
I

I

Section 13

I

I

3/81

CONTENTS (cont)

Page

12.25
12.26
12.27
12.27a
12.28

The Revert Statement •
The Rewrite Statement
The Signal Statement

The Stop Statement
The Write Statement

12-37
•. 12-37

12-38
•• 12-39

12-40

BuU t-In Functions • • • • • 13-1
13.1 String BuUt-in Functions. . 13-2
13. 1. 1 After. • 13-2
13.1.2 Before • • •••• e • 13-2.1
13. 1. 3 Bit. • • • • • 13-3
13.L4 Bool •••••••• 13-3
13.1.4a Byte. • • • • • • • • • • • • 13-3
13.1.5 Character. • • • • • • • • • • • • 13-3.1
13.1.6 Collate. • • • • • • • • 13-4
13.1.6a Collate9. • • • • • • • • • • 13-4
13.1.7 Copy 13-4
13. 1 .8 Decat. • • • • •. 13-4
13. 1.9 High • • • • . • 13-5
13.1.9a High9 •. 13-5
13.1.10 Index • • • • . • 13-5
13.1.11 Length. • • • • • . 13-5
13. 1. 12 Low . . . • • . . . • 13-6
13.1.12a Ltrim. • • 13-6.1
13.1.12b Maxlength. • • 13-6.1
13. 1. 12c Rank . 13-6. 1
13.1.13 Reverse • . . • 13-6.2
13.1. 13a Rtrim. . 13-6.2
13.1.14 Search. . .. 13-6.2
13.1.15 String. . • • •. • 13-7
13.1.16 Substr • . 13-1
13.1.17 Trarrslate . . . • . . ••••... 13-1
13.1.18 Verify •.••.•••..•.••••••. 13-8
13.2 Arithmetic Built-in Functions. • 13-8
13.2. 1 Abs... . • . • • . • . • • • . . 13-8
13.2.2 Add. • . 13-9
13.2.3 Binary . • . • . • • • • • . 13-9
13.2.4 Ceil .. 13-9
13.2.5 Complex. • • • • 13-10
13.2.6 Conjg. • 13-10
13.2.1 Decimal. • . 13-10
13.2.8 Divide • 13-10
13.2.9 Fixed.. •.••• 13-11
13.2.1Q Flc~t • • • • • • • • •• 13-11
13.2.11 Floor ••••. . .. 13-11
13.2. 12 Imag. • 13-12
13.2.13 Max • 13-12
13.2.14 Min . • • • . • . 13~12
13.2.15 Mod •. • .••••••••.. 13-13
13.2.16 Multiply. • 13-13
13.2.17 Precision ••••. . • • . • •. 13-13
13.2.18 Real. • • • . •. 13-14
13.2.19 Round . • • •. . 13-14
13.2.20 Sign. • • . . •. 13-15
13.2.21 Subtract. • . •••..• 13-15
13.2.22 Trunc . • • • . . . • • 13~15
13.3 The Mathematical Built-in Functions .••. 13-16
13.4 The Array Built-in Functions .•••••. 13-18
13.4.1 Dimension. 13-18
13.4.2 Dot.. ..•.• . .•• 13-18
13.4.3 Hbound 13-18
13.4.4 Lbound ..••• . •. 13-18
13.4.5 Prod • • •••. 13-19
13.4.6 Sum. • . • • • • . . • • • ••• 13-19
13.5 Condition Built-in Functions .• 13-19
13.5. 1 Onchar ••••••• . . 13-20
13.5.2 Oncode • • • • • • • 13-20
13.5.3 Onfield '0 • • • 13-20
13.5.4 Onfile •• 13-20
13.5.5 Onkey. • 13-20
13.5.6 Onloc. • • 13-20
13.5.7 Onsource •• • • • • • • • • • • 13-21
13.6 Miscellaneous Built-in Functions ••• 13-21
13.6.1 Addr ••• 13-21
13.6.2 Addrel ••.•..• 13-21
13.6.3 Allocation • • • • • • • • •• 13-21
13.6.4 Baseno • • • •• • ••••• 13-21
13.6.5 Baseptr .•• 13-25
13.6.5a Clock ••••••••• 13-25
13.6.5b Codeptr • • • • 13-25

viii AG94E

Appendix A

Index

3/81

CONTENTS (cont)

13.6.6 Convert •••
13.6.6a Currentsize
13.6.1 Date
13.6.8 Empty ••••
13.6.8a Environmentptr
13.6.9 Lineno
13.6.10 Null.
13.6.11 Nullo
13.6.12 Offset ••
13.6.13 Pageno.
13.6.14 Pointer
13.6.14.1 The Standard Definition of
13.6.14.2 The Nonstandard Definition
13.6.15 Rel
13.6.16 Size ••.••
13.6.11 Stac •••.••
13.6.11a Stacq ••..
13.6.11b Stackbaseptr
13.6.11c Stackframeptr
13.6.18 Time ••.
13.6.19 Unspec.
13.6.20 Valid
13.6.20a Vclock

Pointer ••
of Po inter

Page

13-26
13-26

• 13-26
13-26
13-26.1

• • 13-26.1
13-26.1

• 13-26.1
· • 13-26.1
· • 13-27

13-27
13-27
13-27
13-28
13-28

• • 13-28
· • 13-28

13-28
13-29

• • 13-29
· • 13-30

•.••.. 13-30
13-30

Differences Between Hultics PL/I and Standard PL/I • A-1

i-1

ix AG94E

I

SECTION 1

INTRODUCTION

This document is a semi-formal definition of the language supported by the Multics
?L/I compiler. The document is intended to be used as a reference manual by
programmers who need exact answers to detailed questions concerning the syntax
and semantics of Multics PL/I. In keeping with that purpose, the document defines
the language in an analytic rather than a synthetic manner; Le., it explains
the meaning of programs, but does not describe how to construct programs.

1.1 Language

The Multics PLII language is a dialect of the American National Standard Programming
Language PLII, ANSI X3.53-1976; it also conforms to International Standards
Organization standard 6160-1979. Refer to Appendix A for a description of the
two differences between standard PL/I and Multics PL/I. The languages are so
similar that nearly all Multics PL/I programs are valid programs in standard
PL/I.

1.2 Method of Definition

The language is defined using a formal meta-language to define the syntax and
prose to describe the semantics. Although this is a semi-formal definition,
both the syntactic and semantic descriptions are reasonably precise and complete.

Example:

<based attribute>:: = based((<locator re.ference»]

When the prose refers to a <based attribute) or a <locator reference>, these
terms appear exactly as they do in the syntax rule. When a keyword appears in
prose, it is enclosed in quotes to distinguish it from the text; for example,
"based" and "float."

Terms defined in prose are underlined when defined and not underlined thereafter.
Examples are provided to aid understanding but are not intended to be comprehensive
or definitive. All examples are clearly set off from the rest of the text as
shown by the example on this page. Within examples where empty space might be
misleading, » denotes a blank.

3/81 1-1 AG94E

*

1.2.1 Meta-Language

The syntax of the PL/I language is defined by a set of syntax rules expressed in
a formal notation derived from Backus-Naur Form. Each syntax rule describes a
character-string o'r pattern of characters that constitutes a syntactic construct
of the PL/I language. The complete set of syntax rules describes all syntactically
correct PL/I programs.

Example:

<skip option)::: skip(<expression»]

In this example, <skip option> is a notation variable that represents the
character-string described by the syntax expression on the right of the definition
symbol"::: ". "skip" is a notation constant c.t.at represents an actual occurrence
of the character-string "skip." <expression> is a notation variable defined by
another syntax rule. [and] are brackets that indicate that the parenthesized
<expression> is optional. The brackets are symbols of the meta-language, they
are not part of the <skip option>.

Readers familiar with formal grammars should note that these syntax rules are
designed to aid presentation of both syntax and semantics. Therefore, constructs
like multiple closure of <group>s and <block>s and the balancing of "then" and
"else" keywords of <if statement>s are not described by the syntax rules, but
are described in prose.

Readers not familiar with formal descriptions of syntax should not be concerned
if they do not fully understand the formal ism. They are urged to compare exampl es
against the syntax rules and from time-to-time consul t the descript ion of the
formalism given in the following section.

1.2.2 Syntax Expressions

A syntax expression conSists of operators, notation variables, notation constants,
braces { } and brackets []. The operators have a property known as precedence
that determines the order in which the syntax expression is interpreted. Operators
wi th higher precedence are interpreted before operators wi th lower precedence.
Braces and brackets have the effect of parentheses and force the interpretation
of their contents as subexpressions.

The operators of the meta-language in order of decreasing precedence are:

Repetition X ••• Denotes one or more
occurrences of X.

Juxtaposition X Y Denotes an occurrence of X
followed by an occurrence of Y.

Alternation XlY Denotes an occurrence of
X or Y but not both.

3/81 1-2 AG94E

Brackets and braces define the order of expression interpretation. Brackets
also indicate that the syntax described by their enclosed subexpression is
optional.

[X J Denotes zero or one occurrence of X.

{AIB}C Denotes an A or a B, followed by a C.

E.xample:

AlBIC

describes any of the following three strings:

ABC

Example:

describes either of the following two strings:

AC BC

Example:

[AlB]C

describes any of the following three strings:

AC BC C

Example:

AB[C] ..•

describes any string beginning with AB followed by zero or more occurrences of
the letter C.

AB ABC ABCCCC

Example:

A B •••

describes any string beginning with A and followed by one or more occurrences of
the letter B.

AB ABB ABBBBB

Example:

AB ...

describes any string consisting of one or more occurrences of AB.

AB ABAB ABABABAB

1.2.3 A Formal Definition of the Meta-Language

Syntax:

<meta-language>::: <syntax rule> ..•

<syntax rule>::: <notation variable>:::<blank>
<syntax expression>

1-3 AG94

<syntax expression>::: <sequence>:
<sequence>l<syntax expression>

<sequence>::: <unit>l<unit><sequence>

<unit>::: <notation variable>l<notation constant>:<unit> ... :
l<syntax expression>lll<syntax expression>l ---

<notation variable>::: «meta-letter>
[<meta-letter>l<blank>I-] .. . L

<meta-letter>::: alblcldle:flglh:iljlklllmlnlolplqlrlsltlul
vlwlxlylz

<blank>::: a blank space

<notation constant>::: Any string of ASCII characters not
containing a <blank>. If the string is one of the
following, it must be underlined to distinguish it
from symbols of the meta-language.

{ } [] I "- < > •••

A <blank> is required between any adjacent <notation constant>s in a <sequence>.

1.3 Warning

PL/I, like most other programming languages, is a language in which it is
possible to write programs whose meaning is undefined. Furthermore, it is not
practical to always detect such programs either during compilation or during
execution.

Because of the large number of constructs in PL/I, it is
inadvertently write a pfogram whose meaning is undefined.
advised to learn the exact rules for using each coa$truct, and
carefully consider the warning given in this section.

very easy to
Programmers are

are advised to

Only those strings described by <external procedure> are syntactically valid.
All others violate the syntactic constraints specified by the syntax rules and
are in error.

When the description of a language construct specifies a constraint either by
means of syntax rules, by specifically enumerating the constraints as is done in
Section 12, or by giving the constraint in the description of the semantics, the
constraint has the following meaning:

A program that violates the constraint mayor may not be compiled by the
Multics PL/I compiler. If compiled, it mayor may not execute. If
executed, it mayor may not produce consistent results in the current or
future versions of the implementation.

Constraints are given by the syntax rules or are stated clearly in the prose.
In the prose, two descriptive methods are used: either the constraint is
specifically described as an error or the words "must", "cannot", or
"restricted" are used to imply the constraint.

Examples:

It is an error to refer to the value ...

The program is in error if

N must not be

1-4 AG94

A <read statement> cannot contain

The value of q is restricted

This document explicitly states the circumstances in which the order of
evaluation of expressions or statement parts is a well defined property of the
language and when it is not. When the order is said to be unspecified or
undefined, any program that depends on the order is in error.

1-5 AG94

SECTION 2

STRUCTURE OF A PL/I PROGRAM

2.1 External Procedure

A PL/I oro gram consists of one or more <external procedure>s together with their
operating environment.. An <external procedure> is a <procedure> that is not
contained within another <procedure>. An <external procedure> is the largest
syntactic construct of the language and serves as the unit of input to the
Multics PL/I compiler.

The set of <external procedure>s that constitute a program is determined during
execution of the program as described in Section 3.

Syntax:

<external procedure>::: <procedure>

2.2 Blocks and Block Structure

The most important syntactic construct of the language is the <block>. It
delimits the scope of names and is the major unit that determines the flow of
control during program execution. Refer to Section 3 for a discussion of the
flow of control and ~o Section 5 for the scope of names.

Syntax:

<block>::: <procedure>l<begin block>

<procedure>::: <procedure statement>
[<procedure component>] ... <end statement>

<begin block>::: <begin statement>
[<block component>] ... <end statement>

<procedure component>::: <block component> I <entry statement>

<block component>::: <block>l<group>l<declare statement>l
<default statement>l<format statement> I
<independent statement>

The full syntax and semantics of each <statement> are given in Section 12.

All of the text of a <begin block>, except the <label prefix>s of the <begin
statement> and the <closure label> of its <end statement>, is contained in the
<begin block>.

Example:

A: begin

end A;

2-1 AG94

The text shown with lines is contained in <begin block> A.

All of the text of a <procedure>, except the <label prefix>s of its <procedure
statement> and each of its <entry statement>s and the <closure label> of its
<end statement>, is contained in the <procedure>.

~xample:

A: procedure

B: entry

end A;

The text shown with lines is contained in <procedure> A.

The text contained in <block> A, but not contained in any other <block>
contained in A, is immediately contained in <block> A.

Example:

P: procedure;

Inner: procedure;

E: entry;

B: begin;

end;
end;

end;

In this example, P is an <external procedure> that contains the <procedure>
Inner. Inne~ has a seconda~y ent~y E, and Inne~ contains a <begin block> B. B
is contained in Inner and P, and is immediately contained in Inner.

2.3 Groups

A <group> is a programming device used to determine the flow of control during
program execution.

Syntax:

<group>::= <iterative group>l<noniterative group>

<iterative group>::= <iterative do>
[<block component>] ... <end statement>

<noniterative group>::= <noniterative do>
[<procedure component>] ... <end sta:ement>

The effect of <group>s on the flow of control is discussed in Sections 3 and 12.

Examples:

A: do;

end;

2-2 AG94

B: do i : 1 to 10;

end;

In this example, the text from A to "end;" is a <noniterative group) and the
text from B to "end;" is an <iterative group).

2.4 Multiple Closure of Groups and Blocks

The syntax of a <group) or <block> requires that the <group) or <block)
terminate with an <end statement>. Since <group>s and <blcck>s may be nested,
it is possible for several <end statement>s to immediately follow each other.

Example:

a: begin;
b: begin;

c: begin;

end;
end;

d: end;

The syntax of an <end statement) allows an optional <identifier> to follow the
keyword "end."

Syntax:

<end statement)::: «prefix)]end[<closure label)];

<closur~ label)::: <identifier>

The <closure label) provides a means of terminating more than one <group) Qr
<block> with a single <end statement>. The following example is equivalent to
the previous example.

Example:

a: begin;
b: begin;

c: begin;
d: end a;

An <end statement> with a <closure label> terminates all preceding <group)s and
<block>s including, but not exceeding, the nearest <group> or <block) whose
first <statement> has a <label prefix> that is the same <identifier) as the
<closure label).

The program
prefix> on
statement>.

is syntactically incorrect if the <closure label> is not a <label
a preceding <begin statement>,· <procedure statemen t>, or (do

2-3 AG94

2.5 Statements

Syntax:

<statement>::: <declarative statement>:
<dependent statement>:<independent statement>

<dependent statement>::: <format statement>:
<entry statement>:<procedure statement>:
<begin statement>:<do statement>:<end statement>

<independent statement>::: <allocate statement>:
<assignment statement>:<call statement>:
<close statement>:<delete statement>:
<free statement>:<get statement>:
<goto statement>:<if statement>:
<locate statement>:<null statement>:
<on statement>:<open statement>:
<put statement>:<read statement>:
<return statement>:<revert statement>:
<rewrite statement>:<signal statement>:<stop statement>:
<write statement>

<declarative statement>:::<declare statement>l<default statement>

The syntax and semantics of each <statement> are given in
effect of <declarative statement>s on the· establishment of
described in Section 5.

Section 12. The
declarations is

All <statement>s are executable, although the execution of a <declarative
statement> or <format statement> has no effect.

The <dependent statement>s control input/output, define entries to <procedure>s,
and form <procedure>s, <begin block>s, and <group>s in accordance with the
syntax rules in paragraphs 2.2 through 2.4.

2.5.1 Statement Prefixes

Syntax:

<prefix>::: [<condition prefix>J ... [<label prefix>] ...

<condition prefix>::: «prefix name>[,<prefix name>] ...):

<label prefix>::: <declared name>[<prefix subscript>]:

<prefix subscript>::: ([+l-]<decimal integer»

<declared name>::: <identifier>

A <label prefix> names
<label prefix>.

a <statement>. Any <statement> may be labeled by a

A <condition prefix> is a means of controlling the type of error checking that
is to occur during execution of the <statement>. The <prefix name> must be one
of the names given in paragraph 10.2, where conditions are fully described. A
<condition prefix> cannot appear on a <declare statement>, <default statement>,
or <entry statement>.

7/78 2-4 AG94B

Example:

L: a- : b+c;
A (3): x : y+z;
(zerodivide): p : q/r;
(overflow,size): T': t : s+';

In this example, L:, A(3): and T1: are <label prefix>s, whereas (zerodivide):
and (overflow,size): are <condition prefix>s.

The smallest syntactic construct of the language is called a <lexeme>.
Sequences of <lexeme>s form <statement>s, that in turn form the <group>s and
<block)s of an- <external procedure).

Syntax:

<lexeme>::: <identifier>;<literal constant)l<isub>:<delimiter>

2.6.1 Identifiers

An <identifier> is used as a keyword or as a <declared name). A keyword is an
<identifier> used within the language to identify <statement>s or components of
<statement>s. In Multics PL/I, keywords consist entirely of lower case letters.

Syntax:

<identifier>::: <letter>«letter>:<digit>l :$] •••

<letter>::: A:S:C:DIEIF:G:H:r:JIKILIMIN10\P\QiRiSiTiUiViWiX;
Y:Zlalblcld:elf:glhliljlklllmlnlolplqlr:sltlulvlwlx:y:z

<digit)::: 01112131415:6171819

In Multics PL/I, an <identifier> cannot be more than 256 characters long. Refer
to the Multics PL/I Reference Manual for a discussion of the signif.icance of a
"$" in an <lden'fiITeF~used'-as-an-eiternal name.

Examples:

Capital
i
X
declare
tag7
ioa
may$day

2~6.2 Literal Constants

A <literal constant) is a <lexeme) denoting an arithmetic or string v~lue.

Syntax:

<literal constant>::: <bit-string constant>l
<character-string constant>l<arithmetlc constant>

2-5 AG94

I

I

The character-string used to represent a <literal constant> in Hultics PL/I
cannot be mOre than 256 characters long, including quotation marks and final "b"
character, if any.

2.6.2.1 Bit-string constant~

A <bit-string constant> denotes the bit-string value formed by converting the
characters contained within quotes to bits according to the following table and
then concatenating that value to itself N-l times, where N is the value of the
<decimal integer>. N must be greater than O.

<character>

a
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
Other

Bit Value for <character>
by <radix factor>

b,bl

a
1

b2

00
01
10
11

b3

000
001
010
all
100
101
110
1 11

b4

0000
0001
0010
0011
0100
0101
0110
all 1
1000
1001
lOla
101 1
1100
1101
1 1 10
1 1 1 1

Note: -- indicates that the corresponding <character> is invalid for this
<radix factor>.

Syntax:

<bit-string constant>:::
[«decimal integer»]"«character>l ..• "<radix factor>

<radix factor>::: {b:bl :b2lb3lb4}

In Multics PL/I, the value of an expanded <bit-string constant) cannot be more
than 253 oi ts lonog.

A null bit-string value is denoted by ""b.

Examples:

"01011"b
"l"b
""b
"02!17"b3
"Oe5"b!l
(3)"1"b

Th& last example is equivalent to "111"b.

11/77 2-6 AG9!1A

This page intentionally left blank.

3/81 AG94E

<binary constant>::: <binary number>[<scale type><exponent>]b[p]

<binary number>::: <binary integer>[.[<binary integer>]]:
.<binary integer>

<binary integer)::: <binary digit> •••

<binary digit>::: 0;1

The <exponent> of a <binary constant> is written as a <decimal integer) and
denotes a power of two. The <exponent> of a <decimal constant> denotes a power
of ten.

The arithmetic value denoted by an <arithmetic constant> must lie within the
range allowed by the maximum precision supported for the data type and base of
the constant. See paragraph ~.1.5 for a precise description of the range of
values supported for each data type and base.

For definitions of "p", "e", "i",' and "f" in an <arithmetic constant>, see I
Section 5.2.6.

Examples:

3/81

47
101b
25.7
10.30
07.20
10.2~e3
12.1e+5
101.101e+5b
25i

.3
lp
lbp
lbpi
8.64f10
1f18b

2-7.1 AG94E

2.6.2.2 Character-String Constants

A <character-string constant> denotes the character-string value formed by replacing
all double quotes by a single quote, removing the containing quotes, and concatenating
the value to itself N-l times, where N is the value of the <decimal integer>. N
must be greater than zero.

Syntax:

<character-string constant>::: [«decimal integer»]
"[<character>] ••• "

<character>::: ""I Any ASCII character except a quote

In Multics PL/I, the value of an expanded <character-string constant> cannot be
more than 254 characters long.

A null character-string value is denoted by""

Examples:

"abc"
"This is a character-string constant"
(25)" "
""
"he said, ""I don't know"""

2.6.2.3 Arithmetic Constants

An <arithmetic constant> denotes an arithmetic value of a given type, base,
mode, and precision. The type, base, mode, and precision are known as <attribute>s
of the constant and are normally determined by the syntax of the constant.
Refer to Section 5 for a discussion of the declaration of constants.

Syntax:

11177

<arithmetic constant>::: <real constant>: <imaginary constant>

<imaginary constant>::: <real constant>i

<real constant>::: <decimal constant>:<binary constant>

(decimal constant>::: <decimal number>[<scale type><exponent>J
[p]

<decimal number>::: <decimal integer>[.[<decimal integer>]]:
.<decimal integer>

<decimal integer>::: <digit> •••

<digit>::: 0:1:2:3:4/5:617:8:9

<scale type)::: elf

<exponent>::: [+l-]<decimal integer>

2-7 AG94A

2.6.3 ~

An <isub> is a <lexeme> used only in a <subscript> of a <base reference> of a
<defined attribute>. Its semantics are described in paragraph 4.3.3.4.

Syntax:

<isub>::: <decimal integer>sub

Example:

5sub

2.6.4 Delimiters, Blanks and Comments

The <identifier>s, <arithmetic constant>s, and <isub>s of an <external procedure>
are separated from one another by one or more <delimiter>s.

Syntax:

<delimiter>::: <graphic delimiter>:<space>:<comment>
<macro>:<bit-string constant>:
<character-string constant>:"<picture>"

<space>::: <blank>:<newline>:<tab>:<newpage>

<blank>::: ASCII blank character

<newline>::: ASCII newline character

<tab>::: ASCII horizontal tab or ASCII vertical tab

<newpage>::: ASCII newpage character

<comment>::: /* ASCII characters except an asterisk
followed by a slash */

There is no restriction on the length of a <comment> or on the number of <space>s
used as a <delimiter>.

The higher level syntax rules do not indicate where <space>s, <comment>s, and
<include macro)s can be used. They can be freely used between any two <lexeme>s.
Wh@r~ th~ high-level ~ynt~~ rul~~ shc~ t~c adja~ent <identifier>s, <arithmetic
constant)s, or <isub)s, at least one <space) or <comment> is required to separate
them.

Examples:

3/81

a+b+7
do i : 1 to 10j
do i : 1 to/. upper limit I/iO;
declare a bit(19),b pointer;
/. This is a comment */

2-8 AG94E

2.7 Compile-~ ~

<macro>::: <include macro>l<page macro>l<skip macro>

2.7.1 Include Macro

Syntax:

<include macro>::: ~include<sp~ce> .••
{<identifier>:<character-string constant>};

The compiler replaces each <include macro> with the contents of the segment
whose name is formed by appending ".incl.pl1" to the <identifier> or
<character-string constant>. The segment is searched for by using the "translator"
search list, which has a synonym of "trans". (See the add search paths command
in the MPM Commands and Active Functions manual.) --

The replacement of <include macro>s is performed during the application of the
lex ical-level syn tax rul es and, consequentl y, has no effec t on the high-level
syntax rules. The replacement is performed from left-to-right.

After the replacement is performed, the scan resumes at the beginning of the
included text; therefore, the included text may contain <include macro>s. The
text that results from the expansion of all <include macro>s must be a valid
<external procedure> as described by the syntax rules. Refer to the Mul tics
PL/I Reference Manual, Order ~o. AM83 for a discussion of segments and segment
names.

Example:

declare p pointer;
~include Tj
declare f fixed;

becomes

declare p pointer;
declare 1 record, 2 field1, 2 field2;
declare f fixed;

Where "declare 1 record: 2 field1; 2 field2;" is the contents of a
name is "T.incl.pI1".

Syntax:

<page macro>::: %page((<decimal integer»];

segment

The effect of the <page macro> is to continue the listing of the source program
on a new page.

The compiler deletes each <page macro> from the text of the program, so it has
no effect on the meaning of the program.

Let N be the value of <decimal integer>. If <decimal integer> is not specified,
let N be 1. The <page macro> inserts N newpage characters into the listing.

3/81 2-9 AG94E

I

~.1.3 Skip Macro

Syntax:

<skip macro>::= ~skip((<decimal integer»];

The effect of the <skip macro> is to continue the listing of the source program
after inserting one or more blank lines.

The compiler deletes each <skip macro> from the text of the program, so it has
no effect on the meaning of th~ program.

Let N be the value of <decimal integer>. If <decimal integer> is not specified,
let N be 1. The <skip macro> inserts N newline characters into the listing.

3/81 2-9.1 AG94E

SECTION 3

DYNAMIC BEHAVIOR OF A PL/I PROGRAM

3.1 Flow of Control

A PL/I program is executed by a processor, or control, that follows a path
through the program known as the ~ £! control.

The program determines the flow of control by the use of <goto statement>s, <if
statement>s, <call statement>s, <function reference>s, <begin block>s, and
<group>s. A program cannot control the real time rate at which it is .executed
and it cannot create multiple paths for control to follow simultaneously.

3.2 A Multics PL/I Program

A PL/I program is a set of <external procedure>s and their operating
environment. The set of <external procedure>s that constitute a program in
Multics PL/I is dynamically determined by the execution of the program. When an
<external procedure), A, is first referenced within a process or run unit, it
becomes part of the program. Subsequent calls to A, or to any entry of A:
invoke the <external procedure> incorporated in the program by the first
reference to A. Refer to the Multics PL/I Reference Manual for a brief
discussion of Multics dynamic linking and name resolution.

Throughout this document, a Multics process, exclusive of con~ained run units,
is considered to be a single PL/I program and a control. The control begins
executing the program when the process is created. A process is either in a
state of execution or is waiting to be executed. A waiting process is blocked.
The process may be blocked at the discretion of the operating system or as a
result of explicit calls to Multics procedures. The blocking of a process has
no effect on the subsequent execution of the process except to delay its
execution in real time.

A Multics run unit, which is a separate environment similar to, but contained
in, a process, ~lso considered to be a single PL/I program and a control. A
process may cause a run unit to be activated; its execution resumes upon
termination of the run unit.

When a process or run unit terminates, all files opened during its execution,
and remaining open, are closed, unless termination is due to partial destruction
of the process or run unit, or unless termination is due to exhaustion of
process resources.

7178 3-1 AG94B

3.3 Dynamic Block Structure

3.3.1 Block Activation

A <block> is activated when control enters the <block>. It remains active until
control returns from the <block>. At least one <block> is always active, the
first one that control entered. Since <block>s may' be nested and <procedure>s
may call each other, several <block>s may be active. The order in which the
<block>s were activated determines the dynamic relationship between the
<block>s.

If control passes from an active <block> A to <block> B, A is said to be the
dynamic predecessor of B, and B is the dynamic descendent of A.

A block activation is a given activation of a given <block>. An activation
recora-is a unlt of storage allocated for a block activation. This unit of
storage contains information needed by control in order to execute the
<statement>s in the <block> and is the place where all automatic variables
declared in the <block> are allocated. Refer to paragraph 4.3.2.2 for a
discussion of storage allocation for automatic variables. Label, format, and
entry values contain as part of their value a pointer to an activation record.
Refer to' paragraph 4.1 for a discussion of data types.

3.3.2 Environment of a Block Activation

Every block activation has a parent pOinter. A parent pointer is a pointer to
an activation record of a <block>'s immediately containing <block>. Since
<external procedure>s have no containing <block>, their parent pointer is null.

When control references automatic variables, defined variables, parameters,
label constants, format constants, or entry constants declared in a containing
<block>, control must know wh~ch of several possible activation records of the
containing <block> it is to reference. The parent pointer of a block activation
pOints to th~ correct activation record of its immediately containing <block),
When a reference is made from within a <block> through several containing
<block>s, the parent pOinter of each <block> points to the correct activation
record of its immediately containing <block>.

Example:

P: procedure;

7/78

declare A fixed automatic;
declare I entry external static;
if first invocation then I = Inner; else call Ej
call F; -

Inner: procedure;

A = Ai2;

3-2 AG94B

Assume that P calls F, and F calls P, then P calls E, and E calls I. The order
of block activations is P,F,P,E,I. When I references A, it must select the
correct activation record of P so that it can reference the correct instance of
A. In this case, the correct activation record of P is the first activation
record'of P, because it was that activation that created the entry value I by
assigning the internal entry constant Inner to I.

The parent pOinter of an activation of a <begin block>, other than <begin
block>s used as <on unit>s, is a pointer to the most recent activation record of
the <block> that immediately contains the <begin block>. Because a <begin
block> cannot be invoked except by the <block> which immediately contains it,
the activation record pointed to by the parent pointer is also the immediate
dynamic predecessor of the <begin block> activation.

The parent pointer of a <procedure> block activation is
pointer part of the entry value used to invoke the
paragraph 4.1.11 for a discussion of entry data.

the activation record
procedure. .Refer to

The parent pOinter of an activation of an <on unit> is a pOinter to the
activation record of the block activation that established the <on unit>. See
paragraph 3.6.3 for a discussion of <on unit>s and the flow of control.

7/78 3-2.1 AG94B

This page intentionally left blank.

7/78

The flow of control within a block activation proceeds from <statement> to
<statement> in the order in which the <statement>s appear in the text of the
<block>, except as influenced by actions of a <statement>.

The order in which the components of a <statement> are evaluated is defined in
Section 12 where the syntax and semantics of each type of <statement> are
defined. The order of evaluation of <expression>s is given in Section 7.

The flow of control within a <group> is specified by the <do statement> which
begins the <group> and by <statement>s within the <group>.

A <goto statement> transfers control to any labeled <statement> within the
<block> by referencing a name declared by a <label prefix> appearing on any
<statement>, other than a <format statement>, <entry statement>, or <procedure
statement>, within the <block>.

A <goto statement> also transfers control to a <statement> within the current
block activation if it references a label variable or label-valued function that
identifies a <statement> within the <block>, but only if the activation record
pointer part of the label value points to the current block activation record.
Refer to paragraph 4.1 for a discussion of data types.

3.5 Local and Nonlocal Goto Statements

A <goto statement> that transfers control to another <statement> within the same
block activation is known as a local goto. A <goto statement> that transfers
control to a <statement> in--i--dynamically preceding block activation is a
non10cal ~£to. It is an error for a <goto statement> to attempt to transfer
control to a <statement> within an inactive <block>.

3.6 Inter-Block Flow of Control

3.6.1 Begin Blocks

Control enters a <begin block> by passing through the <begin statement> which
heads the <block>. Control returns from a <begin block> by passing through the
<end statement> that terminates the <block>, or by the execution of a <return
statement> or a nonlocal goto. A <begin block> cannot be invoked by <function
reference>s or <call statement>s. A <label prefix> on a <begin statement>
defines a label constant, not an entry constant.

When control returns from a <begin block> by execution of the <end statement>,
it returns to the dynamically preceding <block>; which is always the <block>
immediately containing the <begin block>. Execution continues with the
<st·atement> following the <end statement).

If a <return statement> within a <begin block> is executed, it returns control
to the dynamic predecessor of the most recent <procedure> block activation.

3-3 AG94

I

I

I

Example:

X: procedure;
begin;

begin;
return;
end;

end;
end;

Execution of the <return statement> in this example returns control to the block
activation that invoked X.

3.6.2 Procedures

Control enters a <procedure> when one of its entries is invoked by a <function
reference) or <call statement). Control returns from the <procedure) by the
execution of a <return statement>, the execution of the <end statement) which
terminates the <block>, or by the execution of a nonlocal goto.

~xecution of the <statement) which invoked the <procedure) is incomplete if the
<procedure) returns via a nonlocal goto. Such incomplete executions are in
error only if the invocation resulted from the evaluation of an <initial
attribute) or <extent expression> of an automatic or defined variable, and only
if control returned to the <block> in which the variable was declared. Refer to
paragraph 4.3.2.

A <procedure> invoked as a subroutine by a <call statement) cannot return
control by the execution of a <return statement) that contains a <return value).

A <procedure) invoked as a function by a <function reference) must return
control by the execution of a <return statement> containing a <return value), or
it must return by the execution of a nonlocal goto.

If control reaches a <procedure statement>, except as a result of an invocation
of the <procedure>, it passes around the <procedure> "and continues with the
execution of the <statement>·following the <procedure).

3.6.3 On units

Syntax:

<on statement>::: [<prefix>]on<condition list>[snap]<on unit>

<on unit>::: <begin block>:<independent statement>:system;

<condition list>::: <condition name>[,<condition name>] ••.

The execution of an <on statement> causes the <on unit> to be established, but
does not cause execution of the <on unit>. An established <on unit) is
associated with the block activation that contains the <on statement>.

Control enters an established <on unit> when one of the conditions identified by
the condition list is signalled. A condition is signalled by the execution of a
<signal statement> or by detection of the condition during program execution o

Control ·returns from an <on unit> by the execution of a nonlocal goto or when
control reaches the end of the <on unit>. An <on unit> consisting of an
<independent statement> behaves as if it were a <block>, and the execution of an
<on unit> is effectively a block activation. The parent pOinter of an
activation of an <on unit> is a pointer to the activation record of the block
activation that established the <on unit>. A complate discussion of conditions
is given in Section 10.

11/77 3-4 AG94A

SECTION 4

DATA OF PL/I

4.1 Data Types

4.1.1 Representation of Data

Each value is a member of only one set of values called its data~. The data
type of a value determines how that value is stored within the computer, and
determines which operations can be performed on the value.

The internal representation of data is not defined by the language and no
feature of the language, except the "unspec" and nonstandard Multics built-in
functions, depend on it. Refer to the Multics PL/I Reference Manual, I
Order No. AM83, and to the MPH Reference Guide, Order No. AG91, for a
description of the internal representation of PL/I data.

Only arithmetic and string values have an external character-string
representation defined by PL/I. The external representation of arithmetic and
string data is a string of characters formed according to the syntax rules given
in paragraph 2.6.2 for <literaL constant>s, or produced by arithmetic tb
character-string conversion as described in Section 8.

4.1.2 Constants

A constant is a value that cannot change during program execution. A constant
is either a <literal constant> or a named constant. A <literal constant> is a
constant whose lexigraphical representation in the text of an <external
procedure> denotes its value. <bit-string constant>s, <character-string
constant>s, and <arithmetic constant>s are <literal constant>s and are defined
in"paragraph 2.6.2. A named constant is a constant whose value is represented
in the text of an <external procedure> by a <reference> to a <declared name>
declared with the <constant attribute>. Label, format, entry, and file
constants are named constants. Refer to Section 5 for a discussion of
declarations.

4.1.3 Variables

A variable is a named object capable of representing different valuEs all having
the same data type. Because variables are restricted to representing values of

°a given data type, they are characterized by their data type and are referred to
as: bit-string variables, fixed-point variables, etc.

Since values are stored in variables, a variable must own sufficient storage to
contain any value that it may represent. A variable's storage is its generation
of storage. Section 4.3.2 describes how storage is allocated for variables.

7/79 4-1 AG94C

4.1.4 . Data Types of Expressions and Functions

Although <literal constant>s and <reference>s are simple forms of <expression>s,
throughout this section we will use expression to denote either an infix
expression or a prefix expression as described in Section 7.

Expressions and functions are restricted to computing values of a given data
type.

The data type of the values of an expression is determined by the rules of
expression evaluation given in Section 7 and by the rules of data type
conversion given in Section 8. The data type of the values returned by a
function is determined by the <returns attribute> specified in the declaration
of the function. In the following sections, functions are described as having a
data type. This is a convenient way of referring to the data type of the values
returned by th~ function. Refer to Section 5 for a discussion of declarations.

4.1.5 Arithmetic Data

An arithmetic value is either a fixed-point value or a floating-point value.
The data type of an arithmetic value is .completely specified by four properties:
The mode, which may be complex or real, the base, which may be binary or
decimal, the ~, which may be fixed-point or floating-point, and the
precision.

The precision of a fixed-point value is (p,q), where p is the total number of
binary or decimal digits in the number, and q is a scale factor g~v1ng the
location of the implied decimal or binary point. A positive scale facto~ means
that the point is located q places to the left of the rightmost digit. A
negative scale factor means that the point is located q places to the right of
the rightmost digit. Thus, a fixed-point value can be considered to be the
implied product of an integer of p digits times b**-q, where b is the base of
the value, (10 or 2).

The precision of a floating-point value is (p), where p is the minimum number of
binary o~ decimal digits that are to be maintairted in the mantissa. A
floating-point value consists of a mantissa and an exponent. In Multics PL/I, a
binary floating-point value has a mantissa that is a binary fraction, f, whose
absolute value is (1/2)1f<1 or is zero, and whose exponent, e, is an integer
whose value is -12~ie1127. The binary floating-point value is f*2**e. A
decimal floating-point value has a mantissa that is an integer, m, whose value
is in the range ±«(10**p)-1), and an exponent, e, that is an integer whose value
is -)28iei127. The decimal floating-point value is m*10**e.

In Multics PL/I, the precision of floating-point binary data is restricted to no
more than 63 binary digits. The precision of fixed-point binary data is
restricted to no more than 71 binary digits, and the precision of decimal data,
either fixed-point or floating-point, is restricted to no more than 59 decimal
digits. The scale factor is restricted to -128iq~127.

When necessary to avoid loss of significant digits, a decimal floating-point
value is normalized such that the most significant digit of the mantissa is
nonzero. A binary floating-point value is always normalized as a binary
fraction whose most significant digit is nonzero, unless the entire value is
zero. The overflow condition occurs when a computation or conversion develops a
floating-point value whose exponent exceeds 127, and the underflow condition
occurs when a computation or conversion develops a floating-point value whose
exponent is less than -128. Refer to Section 10 for a discussion of conditions.

The rules of PL/I arithmetic are such that computations on fixed-point values
produce true arithmetic results, except for fixed-point division which truncates
low order digits. Computations on floating-point values produce floating-point
results· that preserve at' least the most significant p digits of the true
ari thmetic resul t. Refer to Section 7 for a discussion of PL/I ari thme'tic.

4-2 AG94

Arithmetic variables and arithmetic-valued functions are declared with the <fixed
attribute> or the <float attribute>, a <binary attribute> or a <decimal attribute>,
a <real attribute> or a <complex attribute>, and a <precision attribute> as
described in Section 5.

4.1.6 String Data

A string value is either a bit-string value or a character-string value. A
bit-string value is a sequence of bits, and a Character-string value is a sequence
of ASCII characters.

The number of characters or bits in the value is the current len~th of the
string value. A bit-string value with no bits is a null blt-stnng, and a
character-string value wi th no characters is. a null character-string.

A string expression or string-valued function can yield string
lengths differ each time the expression or function is evaluated.
either always a bit-string or always a character-string.

values whose
The value is

String variables, however, have a maximum length that is determined when storage
is allocated for the variable. A nonpictured string variable is declared ' .. i th
either the <varying attribute> or the <nonvarying attribute>. These <attribute>s
determine the way that string values are assigned to string variables. String
variables and string-valued functions are declared wi th either the <bi t attr ibute> ,
<character attribute> or <picture attribute> as described in Section 5.

A variable declared with a <picture attribute> is a pictured character-string
variable. It differs from nonpictured character-string variables only 1n the
way values are assigned to it and in the way its values are converted. A
function declared to return a pictured value returns a character-string value.
That value differs from other character-string values only in the way it is
converted. The length of a pictured character-string value can not exceed 64
characters.

Refer to Section 8 for a discussion of conversion. Refer to paragraph 2.6.2.1
for the syntax of a <bit-string constant> and to paragraph 2.6.2.2 for the

.syntax of a <character-string constant>.

4.1.7 Locator Data

A locator value identifies a generation of storage of a variable. A locator is
analogous to, but not necessarily the same as, a machine address. A locator can
identify the storage of any variable, regardless of its data type or its relationship
to its containing aggregate. The null locator value is a unique value that does
not identify a generation of storage7 It can ~ssigned to locator variables
and can be used in locator comparison.

A locator loses its validity when the generation of storage it identifies is
freed. Such locators do not automatically receive the null locator value.

It is an error to use an invalid or null locator as a <locator qualifier> in a
<reference> to a based variable. Refer to paragraph 6.6 for a discussion of
<locator qualified reference>s.

A locator datum has no <literal constant> representation in the text of an
<external procedure>, but the null locator value is returned by the null built-in
function.

There are two types of locator data in PL/I: pOinter data and offset data.

3/81 4-3 AG94E

A pointer value identifies a generation of storage within any storage class. In
addition to the situations described previously in this section, a pointer value
is invalid when it is used as a <locator qualifier> or in a comparison operation

I wi thin a process other than the process that created it. If a pointer value is
created within a run unit, it may only be used within that run unit.

An offset value identifies the storage generation of a based variable allocated
within an area variable. An offset value is a relative locator value identifying
the generation of storage with respect to the area variable in which the generation
is allocated.

An ofrse~ value is valid when used in any Hultics process or run unit that also
has valid access to the area variable.

Locator variables and locator-valued functions are declared with the <pointer
attribute> or <offset attribute> as described in Section 5.

4.1.8 Area Data

An area value is a generation of storage in which based variables can be dynamically
all~ed by the execution of an <allocate statement>. In Hultics PL/I, an area
has a size that is the number of 36-bit words occupied by the generation. The
amount of space available within an area in Hultics PL/I and the amount occupied
by each generation allocated within an area are given in the HPH Subsystem
Writer's Guide.

Areas maintain their validity when accessed in a Hultics process other than the
process in which they were c-reated. In order for the process to access the
generations allocated within an area, offset locator values must be used because
pointer values are invalid when used in a process other than the process that
created them.

Area variables and area-valued functions are declared with an <area attribute>
as described in Section 5.

4.1.9 Label Data

A label constant identifies a <statement> wi thin the text of an <external procedure>.

An <identifier> 1s declared as the name of a label constant by appearing as a
<declared name> in a <label prefix> on any <statement> other than an <entry
statement>, <procedure statement> or <format statement>. Refer to Section 5 for
a discussion of declarations.

A label constant is transformed into a label value each time it is referenced
during program execution. A label valueri';" t"fiir'ifore, always derived from a
label constant. A label value identifies the same <statement> as the label
constant from which it was derived, but it also pOints to an activation record.
The activation record pointed to by a label value is determined when the label
constant is transformed into a label value.

When a label constant is transformed into a label value by the evaluation of a
<reference> in the same <block> in which the label constant is declared, the
activation record pointer as·signed to the label value points to the activation
record of the current block activation.

7/78

When a label constant is transformed into a label value by the evaluation of a
<reference> in a <block> contained within the <block> in which the label
constant is declared, the activation record pOinter assigned to the label value
points to the first activation record of the declaring <block> found by
following the parent pointer of the block activation making the transformation.
Refer to paragraph 3.3 for a discussion of block activation and the parent

·pointer. .

A label value retains its validity only as long as the block activation record
that it points to remains active. It is an error to reference a label value
that has lost its validity.

Both the <statement> identification and the activation record pOinter values of
a label value are used in label value comparison. Two label values compare
equal only if they identify the same <statement> and the same activation record.

Label variables and label-valued functions are declared with the <label
attribute> as described in Section 5.

4.1.10 Format Data

A format constant identifies a <format statement> within the text of an
<~xternal procedure>.

An <identifier> is declared as the name of a format constant by appearing as a
<declared name> in a <label prefix> on a <format statement>. Refer to Section 5
for a discussion of declarations.

A format constant is transformed into a format ~ each time it is referenced
during program execution. A format value is, therefore, always derived from a
format constant. A format value identifies the same <format statement>
identified by the format constant from which it was derived, but it also points
to an activation record. The activation record pointed to by a format value is
derived in the same manner as that of a label value.

A format value retains its validity only as long as the activation record that
it points to remains active. It is an error to reference a format value that
has lost its validity.

Both the <statement> identification and the activation record pOinter values of
a format value are used in format value comparison. Two format values compare
equal only if they identify the same <statement> and the same activation record.

Format variables and format-valued functions are declared with the <format
attribute> as described in Section 5.

4.1.11 Entry Data

An entry constant identifies an entry point to a <procedure>. An external entry
constant identifies an entry point of an <external procedure> and an internal
entry constant identifies an entry point of a nested <procedure>.

An <identifier> is declared as the name of an entry constant by appearing as a
<declared name> in a <label prefix> on an <entry statement> or <procedure
statement>. External entry constants that identify entry pOints into other
<external procedure>s must be declared by a <declare statement>.

4-5 AG94

An entry constant is transformed into an entry value each time it is referenced
during program execution. An entry value is, therefore, always derived from an
entry constant. An entry value identifies the same entry point as the entry
constant from which it was derived. but it also points to an activation record.
If the entry value identifies an external entry point the activation record
pointer is null. If the entry value identifies a~ internal entry pOint the
activation record pOinter is determined when the entry constant is transformed
into the entry value.

When an internal entry constant is transformed into an entry value by the
evaluation of a reference in the same <block> in which the entry constant is
declared, the activation record pointer assigned to the entry value points to
the activation record of the current block activation.

When an internal entry constant is transformed into an entry value by the
evaluation of a <reference> in a <block> contained within the <block> in which
the constant is declared, the activation record pointer assigned to the entry
value points to the first activation record of the declaring <block> found by
following the parent pointer of the block activation making the transformation.
Refer to paragraph 3.3 for a discussion of block activation and parent pOinter.

It is an error to invoke an internal <procedure> with an entry value that points
to an activation record that has been freed. The most co~mon circumstance in
which this occurs is when an internal entry constant is assigned to an entry
variable by an activation of the <block> in which the entry constant was
declared, and control returns from the block activation that made the
assignment. Subsequent use of the entry variable to invoke the internal entry
is an error because the activation record pointed to by the entry value was
freed by the return.

Both the entry point and the activation record pOinter values of an entry value"
participate in entry value comparison. Two entry values compare equal only if
they identify the same entry point and the same activation record.

External entry constants, entry variables and entry-valued functions are
declared with the <entry attribute> as described in Section 5.

4.1.12 Fire Data

A ~ ~ identifies a file-state block. A file cpnstant always identifies
the same file-state block, but a file variable can identify any file-state
block. A file-state ~ is a composite value that defines the relationship
between the program and a data set.

A program has as many file-state blocks as it has file constants. A file value
can be assigned to a file variable and functions can return file values. File
description attributes can only be declared for file constants because they are
properties of the file-state block and not properties of the file value.

A file-state block includes:

1. File description attributes.
2. The open/closed status.
3. Line size.
4. Page size.
5. Page number and line number.
6. The column position.
7. Record designators and stream position.
8. A data set designator (title).

The components of a file-state block may change during program execution as the
relationship between the program and the data set changes.

4-6 AG94

A file-state block identifies a data set by the value of the title or data set
designator. The value is set when a file is opened and remains unchanged until
the file is closed. It is possible for a given file-state block to identify
several data sets during program execution; but in any given opening, the
file-state block identifies a single data set.

File constants, file variables, and file-valued functions are declared with a
<file attribute> as described in Section 5. Refer to Section 11 for a
discussion of input/output and a more detailed description of file-state blocks.

4.2 Aggregates of Data

Each of the data types discussed in paragraph 4.1 is the data type of a scalar
value. An aggregate value is a set of scalar values stored as an ordered
sequence. An aggregate value is either an array of scalar values, a structure
containing scalar and/or aggregate values, or an array of structure values.

Named constants, variables,
values.

functions, and expressions can have aggregate

The data type of an aggregate value is the ordered set of data types of its
scalar components. The aggregate ~ of- an aggregate variable, named constant,
or function value is the dimensionality and array-extents specified by the
<dimension attribute> and the structuring specified by the <level>s used in its
declaration. The <level>s are adjusted so that they are minimal and each
array-extent is given by H-L+1, where L is the lower <bound> and H is the upper
<bound>. Refer to Section 5 for a discussion of <level>s and <bound>s.

The aggregate type of an expression is the dimensionality, array-extents, and
structuring determined by the rules of expression evaluation given in Section 7
and by the rules of aggregate promotion given in Section 9.

The aggregate type of a <reference> to a structure variable contained in an I
<assignment statement> containing a <by-name option>, but not contained in a
<locator qualifier>, <subscript>, or <argument list> is determined according to
the rules given in paragraph 12.2.

4.2.1 Arrays of Scalars

An array of scalars is an n-dimensional set of scalar values that all have the
same data type. The scalar components of an array are elements of the array,
and are identified by their position within the array by subscripts. For
example, The (i,j)th element of a two-dimensional array is in the ith position
of the 1st dimension and the jth position of the 2nd dimension. Refer to
paragraph 6.2 for a discussion of <subscripted reference>s.

The elements of an array are stored as an ordered sequence in row-major order.
This means that when the elements are accessed in the order in which they are
stored, the rightmost subscript varies most rapidly and the leftmost subscript
varies least rapidly.

Named constants,
scalars as values.

7/79

variables, functions, and expressions can have array~ of
Only named constants and variables can be subscripted.

4-7 AG94C

This page intentionally left blank.

7/79 AG94C

The array-extent of each dimension of an array variable is determined when
storage for the array variable is allocated·. The array values assigned to the
variable must have the same aggregate type as the variable, that is they must
have the same number of dimensions and the same array-extents as the variable
had when it was allocated.

All array values yielded by a given expression or function have the same number
of dimensions, but the array-extent of each dimension may, in some cases, change
from one evaluation to the next.

7/79 4-7.1 AG94C

4.2.2 Structures

A structure is a hierarchically ordered set of ' scalar a~d aggregate values that
do not necessarily have the same data type. The im~ediate components of a
structure are members of the structure and are ordered frem left to right. The
outermost structure is the major structure, and nested structures are
su·bstructures.

Variables, functions, and expressions can have structure values, but only the
me~bers of variables can be referenced by name. Members of structure variables
are referenced by <stru~ture qualified reference>s as described in paragraph
u.4.

The hierarchical order of a structure variable or function value is specified by
means of <level>s similar to the section numbers used in this manual. The
outermost structure is known as the level-one structure, its members are known
as level-two members. If one of the level-two members is a SUbstructure, its
members are level-three members, etc.

All structure values assigned to a structure variable must have the same
aggregate type as the variable. All structure values yielded by a given
expression or function have the same aggregate type, except that the
array-extent of each dimension may, in some cases, change from one evaluation to
the next.

4.2.3 Arrays of Structures

An array of structures is an n-dimensional set of structure values each of which
has identical structuring and identical data types. The elements of an array of
structures are known by their position within the array and are referenced with
subscripts as are elements of arrays of scalars. Like the elements of an array
of scalars, the elements of an array of structures are stored in row-major
order.

Variables, functions, and expressions can have arrays of structures as values.
Only t~e elements of variables can be subscripted.

All array of structure values yielded by a given expression or function have the
same aggregate type, except that the array-extent of each dimension may, in some
cases, change from one evaluation to the next.

4.3 Storage of Data

4.3.1 Packing and Alignment of Variables

The <aligned attribute> and the <unaligned attribute> are declared for scalar
and aggregate variables as described in Section 5. The precise effect of the
<aligned attribute> and the <unaligned attribute> on the packing and alignment
of a variable's values in storage is not defined by the language, but the rules
governing the use of these <attribute>s are designed to ensure that programs
using them will run correctly in different implementations of PL/I on different
computers. In the discussion that follows the effects of these <attribute>s on
the packing of data in Multics PL/I are described.

Packed and unpacked are terms that describe the representation of values and the
efficiency of access of values. Packed and. unpacked are not <attribute>s and
cannot be used in declarations.

4-8 AG94

An arithmetic, nonvarying string, or pointer variable declared with the
<unaligned attribute> is a packed scalar variable. An aggregate variable
consisting entirely of packed scalar and packed aggregate variables and declared
with the <unaligned attribute> is a packed aggregate variable.

An arithmetic, nonvarying string, or pointer variable declared with the <aligned
attribute> is an unpacked scalar variable. Varying string, offset, entry,
label, file and area variables are unpacked scalar variables regardless of which
alignment attribute they are declared with.

An aggregate variable containing an unpacked scalar or unpacked aggregate
variable, or an aggregate variable declared with the <aligned attribute> is an
unpacked aggregate variable. Therefore, an unpacked structure can contain both
packed and unpacked members, but a packed structure consists entirely of packed
members.

4.3.1.1 Packing and Alignment of Scalar Variables

A packed scalar variable occupies the mlnlmum number of bits necessary to
represent its values. If a packed scaler variable is declared with the I
<unsigned attribute>, no storage is used to store its sign. An unpacked scalar
variable is stored in such a way as to facilitate access to its values. In
Multics PLII, unpacked variables are aligned on word or multiple-word
boundaries, and occupy an integral number of words.

Example:

declare A fixed binary precision(8) unaligned;
declare 8 pointer unaligned;
declare C fixed binary(38) aligned;
declare D pointer aligned;

In Multics PLII, both A and 8 are packed scalar variables. A occupies 9 bits of
storage and 8 occupies 36 bits. 80th C and D are unpacked scalar variables,
each occupies 2 words of storage and each is aligned on an even storage address.

4.3.1.2 Packing and Alignment of Structures

A packed structure, which is not a packed array of structures, contains no
unused bits between its members except those bits necessary to make
character-string, decimal arithmetic, or pictured values begin on 9-bit byte
storage boundaries. A packed structure is aligned on a 9-bit byte storage
boundary if any of its members are so aligned.

An unpacked member of a structure is aligned on a storage boundary that
facilitates access to the member and occupies an integral number of words of
storage. An unpacked structure is aligned on a storage boundary that is the
maximum boundary required by any of its members and occupies an integral number
of words. A packed member of a structure begins on the next bit or 9-bit byte
following the previous member.

Example:

declare 1 S,
2 A bit(6) unaligned,
2 8 ~haracter(3) unaligned,
2 C bit(8) aligned,
2 D bit(18) unaligned;

In Multics PL/I, S is an unpacked structure because it contains an unpacked
member C. S occupies 90 bits of three words; the first 6 are occupied by A, the
next 3 are unused, the next 27 are occupied by 8, the next 36 are occupied by C,
and the last 18 are occupied by D. The remaining bits of the third word are
unused.

7178 4-9 AG948

4.3.1.3 Packing and Alignment of Arrays

A member of a dimensioned structure is an array whose dimensionality is that
given by its own <dimension attribute>, if it has one, and that supplied by the
<dimension attribute>s of all containing structures. If a dimensioned structure
contains more than one member at the same structuring level, those members are
interleaved arrays because the storage for their elements is interleaved.

Example:

declare 1 S(3),2 A,2 8;

The elements of A and 8 are interleaved as follows:

A(l) 8(1) A(2) 8(2) A(3) 8(3)

An unconne~ted array is an array whose elements are separated from one another
in storage by other values. An interleaved array is an unconnected array. A
defined array, a parameter array and an array cross-section may also be
unconnected arrays. Isub defining is discussed in paragraph 4.3.3.4 and
cross-paragraph references are described in paragraph 6.3.

Example:

declare A(3,3);
declare 8(3) defined(A(lsub,lsub);

The array cross-section A(*,2) and the defined array 8 are both unconnected
arrays because their elements are separated from each other by other elements of
the array A.

A connected array is an array whose elements are not separated from one another
in storage by other values. A connected array of packed scalar elements
contains no unused storage bits between its elements.

Example:

declare A(5) character(2) unaligned;

In Multics PL/I the array A is a packed connected array and occupies 90 bits of
storage.

A connected array of packed structures contains no unused storage between its
elements except those bits necessary to make character-string, decimal
arithmetic, and pictured values begin on 9-bit byte storage boundaries.

A packed unconnected array of scalars contains no unused storage between its
elements, except the storage occupied by the other variables.

A packed unconnected array of structures contains no unused storage between
elements, except for the storage occupied by other variables and the storage
necessary to ensure that contained character-string, decimal arithmetic, and
pictured variables begin on 9-bit byte boundaries.

An element of an unpacked array of scalars or structures begins on a storage
boundary that facilitates access to the element and occupies ~n integral number
of words of storage.

7/78 4-10 AG94B

4.3.1.4 Sign Types

Real arithmetic data may be stored in variables with or without a sign. The
sign ~ of a variable determines whether or not it includes a sign. If the
variable is declared with the <unsigned attribute>, its sign type is unsigned;
otherwise, if the variable is arithmetic, its sign type is signed. If the
variable is not arithmetic, it has no sign type. The sign type of a variable
affects the amount of storage it occupies only if it is packed.

7/78 4-10.1 AG94B

This page intentionally left blank.

7/78 AG94B

4.3.2 storage Classes

4.3.2.1 Allocation of Storage

A generation of storage is an ordered sequence of bits of sufficient length to
represent all of the values within the range p~rmitted by a variable's data
type. Each variable is declared with one of the following storage class
attributes: the <automatic attribute>, <static attribute>, <based attribute>,
<controlled attribute>, <parame~er attribute>, or <defined attribute> as
described in Section 5.

A storage class is a mechanism for allocating and freeing generations of storage
for a variable. Because each variable has a single storage class, variables are
characterized by their storage class ahd are referred to as: automatic
variables, based variables, etc.

Components of a structure are allocated
allocated. A generation of storage
generation of storage for each of its
component of a structure is freed only
structure is freed.

when their containing major structure is
for a structure variable contains a

members. A generation of storage for a
when the storage of its containing major

The allocation of a generation of storage for a variable consists of performing
the following steps in the indicated order.

1. Evaluate each <extent expression> specified in the variable'S declaration
and convert its v?lue to a real, fixed-point, binary, integer.

2. Determine the amount of storage required by examlnlng the data type, sign I
type, alignment <attribute>s, and the evaluated extents from step 1.

3. Allocate a generation of storage of sufficient size. If the variable being
allocated is not based, associate the newly allocated generation with the
name of the variable. If the variable being allocated is based, assign a
locator value that identifies the newly allocated generation to the locator
~ariable given by the <set option> of the <statement> that caused this
allocation to occur.

4. If the variable is an area, set it to the empty state.

5. If the variable being allocated is based, assign each evaluated extent to
the variable identified by its <refer option>, if it has one.

6. Evaluate each <initial attribute> specified in the variable.'s declaration
and assign initial values to the newly allocated generation.

4.3.2.2 Automatic Storage

A generation of storage is allocated for each automatic variable declared in a
given <block> each time the <block> is activated. The generation is allocated
in the block activation record as described in paragraph 3.3.1. The block
activation record is freed when the block activation for which it was allocated
is deactivated. Recursive activation of a <block> has the effect of stacking
generations of the <block>'s automatic variables.

The <extent expression>s and <initial attribute>s of an automatic variable can
contain <expression>s whose values are computable upon block activation. A
value is computable upon block activation if it can be computed without
referencing any automatic or defined variable declared in the <block>.

7/78 4-11 AG94B

I

I

I

The <extent expression>s are
Subsequent references to the
evaluated extents.

4.3.2.3 Static Storage

evaluated and stored in the
generation of the automatic

activation record.
variable use these

A single generation of storage is allocated for each static variable at or
before the time that the variable is first referenced within the process or run
unit. The generation remains allocated until termination of the process or run
unit.

Static variables must have constant <extent expression>s and <initial
attribute>s because they may be allocated prior to block activation.

Internal static variables are variables whose scope has been declared internal
by the use of an <internal attribute>. Multics PL/I allocates these variables
at compile time.

External static variables are va~iables whose scope has been declared external
by the use of an <external attribute>. External static variables are allocated
when they are first referenced within a process or run unit. Refer to Section 5
for a discussion of scope, and to the Multics PL/I Reference Manual for a
discussion of external storage allocation.

4.3.2.4 Controlled Storage

A generation of storage is allocated for a controlled variable when an <allocate
statement> containing an <allocation> containing an <allocation reference> that
identifies the controlled variable is executed. The generation is allocated in
"system storage". Refer to paragraph 12.1.

The most recently allocated gen~ration of a <free reference> that identifies the
controlled variable is executed. All generations of controlled storage not
explicitly freed by the execution of a <free statement) are freed upon process
or run unit termination. Refer to paragraph 12.13.

The <extent expression>s and <initial attribute>s of a controlled variable can
contain <expression>s whose values are computable without depending on any value
of the same controlled variable. No <extent expression> or <initial attribute>
of any member of a controlled structure can depend on the value of any scalar
component of the same major structure.

The evaluated extents used to allocate a given generation of a controlled
variable are saved with the generation. These extents are used whenever a
reference is made to the generation. The <extent expression> specified in the
variable's declaration are not reevaluated for each reference to the controlled
variable. If multiple generations are allocated for a given variable, they are
stacked such that a reference to the controlled variable always references the
most recently allocated generation. When that generation is freed, the next
most recently allocated generation becomes the current generation.

4.3.2.5 Based Storage

A generation of storage is allocated for a based variable when an <allocate
statement> containing an <allocation> containing an <allocation reference> that
identifies the based variable is executed. If the <allocation> contains an <in
option> or derived <in option>, the generation is .allocated in the storage of
the area variable specified by the <in option>; otherwise, the generation is
allocated in "system storage". Refer to paragraph 12.1.

7/78 4-12 AG94B

A generation of an explicitly allocated based variable is freed when a <free
statement> cont3ining a <freeing> containing a <free reference> containing a
<locator qualifier> that identifies the generation is executed. Freeing the
storage of an area frees the storage of all generations allocated within the
area. Generations of based storage allocated within _ "system storage" and not
explicitly freed by the execution of a <free statement> are freed upon process
or run unit termination. Refer to section 12.13. .

The program is in error if the generation identified by the <locator qualifier>
contained in the <freeing> contained in the <free statement> used to free the
generation was not allocated by the execution of an <allocate statement>
containing an <allocation> containing an <allocation reference> that identified
a based variable of identical aggregate type, data type, sign type, alignment, I
and extents.

The program is also in error if the generation being freed was allocated in an
area and the <freeing> contains an <in option> that does not specify the same
area. Similarly, the program is in error if the generation was allocated in
"system storage" and the <freeing> contains an <in option>.

A based variable is a description of a generation of storage, but no generation
is ever directly associated with the name of the based variable. The specific
generation of storage accessed by a <reference> to a based variable is specified
by a locator-valued <expression> used as a <locator qualifier> in a <locator
qualified reference>. Refer to paragraph 6.6.

Syntax:

<locator qualified reference>::: <locator qualifier>-~
<based reference>

Example:

P->R

P identifies a generation of storage whose data type, sign type, alignment,
extents, and aggregate type are described by R.

If the value of P was derived from the evaluation of an "addr" or nonstandard
Multics built-in function, the generation is an equivalenced ~ generation.
Refer to paragraph 4.3.3.2.

If the value of P was derived from the execution of an
<locate statement>, or <read statement> containing a
generation is an explicitly allocated based generation.
4.3.2.1.

<allocate statement>,
<set option>, the
Refer to paragraph

Equivalenced based generations are freed when the generation to which they are
equivalenced is freed. Explicitly allocated based generations are freed as
described in paragraph 4.3.2.1.

The <extent expression>s in the declaration of a based variable are evaluated
for each <reference> to the based variable. It is the programmer's
responsibility to ensure that these <extent expression>s accurately describe the
extents of the generation referenced by the based variable.

The <extent expression>s and <initial attribute>s of a based variable can
contain <expression>s whose values are computable without depending on any
values of the ~ame generation of the based variable. No <extent expression> or
<initial attribute> of any member of a based structure can depend on the value
of any scalar component of the same major structure generation, except for the
dependencies expressed by a <refer option>.

The <refer option> allows the extent value used by references to the based
variable to be defined by the generation being referenced. The <refer option>
can only be used in the <extent expression)s of members of based structures.
Such structures are self-defined structures.

7/78 4-13 AG94B

I

I

I

Syntax:

<extent expression>::: <expression>[<refer option>]

<refer option>::: refer«reference»

Constraints:

Evaluation of the <expression> must yield a scalar value suitable for conversion
to a fixed-point, binary, real integer. It must also be suitable for conversion
to the data type of the variable identified by the <reference> in the <refer
option>.

The <reference> in the <refer option> must identify a preceding scalar component
of the same major structure that contains the <refer option>.

The variable identified by the <reference> in the <refer option> must not be
dimensioned, and thus cannot have any inherited dimensions.

The <reference> in the <refer option> cannot be a <locator qualified reference>.

Example:

declare 1 S
2 K
2 A

based,
fixed,
char(N refer(S.K)); _

The explicit allocation of a generation of S by the execution of an <allocate
statement> causes N to be evaluated to determine the required amount of storage.
The storage is allocated and the value of N is assigned to P->S.K where P
identifies the generation.

A <locator qualified reference> to S.A uses the value of S.K as the length of
S.A.

Example:

P->S.A Q->S.A

This example shows two generations of S.A, each identified by a unique locator
value. l.rle lengr,n of r,ne I~rst generation of S.A is P->S.K, whlle the length of
the second generation of S.A is Q->S.K.

4.3.3 Storage Sharing

The ~anguage provides three mechanisms for sharing a generation of storage among
two or more variables.

1. parameters
2. based variables
3. defined variables

All of these mechanisms require that the variables that share a generation of
storage have identical data types, sign types, and alignment <at~ribute>s. This
requirement ensures that the variables have identical storage representations.

All three mechanisms provide techniques for sharing a generation of storage that
is contained in an aggregate generation without having to share the entire
aggregate. For example, scalars can be mapped onto array elements or members of
structures, etc.

A variable declared with a <picture attribute> is considered to match only
variables declared with equivalent pictures. Two pictures are equivalent if
they are translated into identical <normal pictures> as described in paragraph
o '"
0.0:::.10::: •

7/78 4-14 AG94B

P = addr(A(3));

P->S is a valid <reference> to A(3), and P->S.X is a valid <reference> to
A(3) .X.

4.3.3.1 Storage Sharing by Parameters

The discussion of argument passing in paragraph 6.10 describes argument passing
by-value and by-reference. When a variable is passed by-reference to a
parameter, the variable and the parameter refer to the same generation of
storage and thus share that generation.

Example:

call feX); f: proc(Y);

During the block activation of f caused by the execution of "call fCX);", X and
Y both refer to the same generation of storage.

4.3.3.2 Storage Sharing by Based Variables

Since the locator value identifying a generation of a variable in any storage
class can be derived by the use of the addr built-in function, it is possible
for a based variable tu be effectively equivalenced to a generation in any
storage class.

Example:

declare A automatic;
declare B based;
P = addr(A);
?->B = 7;

The value of A after execution of the last <assignment statement> is seven.

It is also possible for several based variables to be referenced using the same
locator value, thus effectively equivalencing all of those based variables to
the same generation of storage.

Example:

Q->X Q->Y Q->2

In this example, the based variables X, Y and Z are equivalenced to the'
generation of storage identified by Q.

If the referenced generation and the based variable used to reference it satisfy
the criteria for simple defining given in paragraph 4.3.3.5, the based variable
can access the generation. In this case, the data type, sign type, alignment,
aggregate type, and extents must match.

Example:

7/78

declare 1 A(5),
2 X,
2 Y;

declare 1 S based,
2 X,
2 Yj

4-15 AGgo4B

If the referenced generation and the based variable used to reference it satisfy
the criteria for string overlay defining given in paragraph 4.3.3.6, the based
variable can access the generation. In this case, the data types must match,
except that pictured data and nonpictured character-string data types are
considered to match. The aggregate types do not have to matche

Example:

declare A(S) character(l);
declare B character(S) based;
P = addr(A);
P->B = "abcde"

The last <assignment statement) in this example sets the array A to the value
"abcde". The first element of the array has the value "a" and the last element
has the value "en.

A based structure decla~ation may be used as a description of a portion of the
referenced generation without describing the entire generation. If the
generation does not meet the criteria for string overlay defining as described
in paragraph 4.303.6, the based structure must match the referenced generation
from left-to-right up to and including all members contained within level-two of
the item being referenced.

Example:

declare 1 5,
2 A,
2 S,
3 c,
3 0,
2 E,
etc

P = addr(S)j

declare 1
2
2
3
3

T based,
A,
S,
C,
O· ,

declare 1 X based,
2 A,
2 S,
3 C;

A <reference) to P->T.B.C is a va~1a (reference) to S.B.C, but a <reference) to
P->X.B.C is not valid because the declaration of X does not describe all of the
level-two substructure S.B.

A based variable cannot access the storage of an unconnected array_

A based variable cannot access the storage of a parameter, except during the
block activation to which the storage was passed as an argument. For example,
it is an error to take the "addr" of a parameter and assign the resulting
locator value to static storage and subsequently, in another block activation,
use the locator value.

4.3.3.3 Storage 'Sharing by Defined Variables

The purpose of the <defined a~tribute) and the <position attribute> is to map a
defined variable onto a gen&~ation of storage of another variable. Three types
of mapping are possible:

simple defining
isub defining
string overlay defining

4-16 AG94

Syntai:

<defined attribute>::= {defined:def}<base reference>

<base reference>::= «reference» :<reference>

<position attribute>::= {position:pos}[«position»]

<position>::= <expression>

The <extent expression>s of a defined variable are evaluated upon block
activation and saved in the block activation record. Consequently! they must
satisfy the criteria given in paragraph 4.3.2.2 for the extents of automatic
variables.

Since a defined variable is associated with the generation identified by its
<base reference>, it is never allocated and has no <initial attribute>.

The variable identified by the <base reference> cannot be a defined variable or
named constant.

The <defined attribute> cannot be specified
specified for a structure, it maps the entire
storage identified by the <base reference>.

for members of structures. When
structure onto the generation of

Both the extents of the defined variable and those of the base variable, are
used to determine if the subscriptrange, stringrange or stringsize condition has
occurred. Refer to Section 10.

The <expression>s contained in the <base reference> are evaluated for each
reference to the defined variable. Any <reference>s in the <base reference> are
resolved in the <block> in which the defined variable is declared. Refer to
Section 6 for a complete discussion of <reference> resolution and evaluation.

4.3.3.4 Isub Defining

Isub defining allows an array to be defined onto another array by means of a
programmer-defined mapping between the elements of the defined array and its
base array.

The <defined attribute> specifies isub defining if the <base reference> contains
any <isub>s in its <subscript>s.

A <subscripted reference> to an element of an isub-defined array is mapped into
a <subscripted reference> to the base array by replacing each <isub> in the
<base reference> with the ith <subscript> used in the <subscripted reference> to
the defined variable. There must be an <isub> for each dimension of the defined
variable or the program is in error. Each <subscript> is converted to a binary
integer before replacing an <isub>.

Example:

declare A(3,3);
declare 8(3) defined(A(1sub,1sub));

The array B is a three element array whose elements constitute the diagonal of
the array A. A <reference> to 8(K) is equivalent to a <reference> to ACK,K).

An unsubscripted <reference> to anisub-defined array is equivalent to a
cross-section <reference> in which all <subscript>s are asterisks.

7/78 4-17 AG94B

I
I

I
I

Example:

declare A(3,3);
declare 8(3) defined(A(lsub,lsub»);

A <reference> to 8 is equivalent to a <reference> to 8(*) which :s equivalent to
a <reference> to the array formed by the elements -A(l ,1), A(2,2) and AC3,3).

The <position attribute> cannot be used with isub defining.

The data type, sign type, alignment <attributes>s, string <length>, and <area
size> of the defined array must be identical to the data type, sign type,
alignment <attributes)s, string <length>, and <area size> of the base array. If
the defined variable is a structure, the structuring of the defined variable and
the base variable must be identical, and the data types, sign types, alignment
<attribute)s, and extents of all members of the definep variable must be
identical to the data types, sign types, alignment <attribute>s, and extents of
their corresponding members in the base structure.

4.3.3.5 Simple Defining

Simple defining allows a defined variable to share the storage generation
referenced by the <base reference>. The data type, sign type, alignment
<attribute>s, string <length>, and <area size> of the defined variable must be
identical to the data type, sign type, alignment <attribute>s, (string length>,
and <area size> of the generation identified by the <base reference>. If the
defined variable is a structure the structuring of the defined variable and the
base variable must be identical, and the data types, sign types, alignment
<attribute)s, and extents of all members of the defined variable must be
identical to the data types, sign types, alignment <attribute>s, and extents of
their corresponding members in the base structure.

The <defined attribute> specifies simple defining when there are no <isub>s
given in the <base reference>, no <position attribute> specified, and the
attributes and extents of the defined variable match those of the base variable
as described in the previous paragraph.

A <subscripted reference> to a simple-defined array is mapped into a
<subscripted reference> to the base array by replacing the jth asterisk in the
(base reference> with the jth <subscript) used in the <subscripted reference> to
the defined array_ There must be as many asterisks in the <base reference> as
there are <subscript>s in the <subscripted reference> to the defined array or
the program is in error. Each <subscript> is converted to a binary integer
before replacing an asterisk.

Example:

declare A(3,3);
declare 8(3) defined(AC*,2));

A <subscripted reference> to BCK) is mapped into a <subscripted reference> to
ACK,2) .

An unsubscripted <reference> to a simple-defined array variable is equivalent to
a cross-section <reference> to the defined array v2~iable in which all of the
<subscript>s are asterisks.

Example:

declare AC3,3);
declare B(3) defined(A(~,2));

The <reference> B is equivalent to B(*), which is equivalent to a <reference> to
the array formed from the elements A(i ,2), A(2,2), and A(3,2).

7/78 4-18 AG94B

4.3.3.6 String Overlay Defining

String overlay defining allows a string variable (aggregate or scalar) to be
defined onto the storage of another string variable (aggregate or scalar) such
that the defined variable occupies all or part of the storage occupied by the
base variable. The <position attribute> specifies the relative position within
the storage of the base variable that the defined variable occupies.

There are two types of string overlay defining: bit-string and character-string.
Bi t string overlay defining allows a bit-string variable to share storage of
another bit-string variable while character-string overlay defining allows a
character-string variable to share storage with another character-string variable.

The <position attribute> specifies bits when used for bit-string defining and
characters when used for character-string overlay defining.

If the criteria for isub defining or simple defining are not met, the crlceria
for string overlay defining must be satisfied or the program is in error.

The defined variable and the base variable meet the criteria for string overlay
defining when the defined variable and the base variable identified by the <base
reference> are both unaligned nonvarying string scalars or aggregates of unaligned
nonvarying string scalars all having the same type (bi t or character). The
aggregate types of the defined variable and the base variable need not match.
For the purpose of string overlay defining pictured character-string variables
are considered to have the same data type as nonpictured character-string variables.
The generation of storage identified by the <base reference> must not be smaller
than the defined variable.

It is an error to use the <position attribute> in isub or simple defining. If
it is omitted from string overlay defining, a position value of one is assumed.
It is also an error to use an asterisk in the <base reference> of the <defined
attribute> in string overlay defining.

The <expression> in the <position attribute> is evaluated for each <reference>
to the defined variable. -

Let i be the value of the <expression> in the <position attribute>. Let b be
the <base reference>. Let n be length(stringCb». Let d be the <reference> to
-the defined variable. Let j be length(string (d) }. The following inequal i ty
must be satisfied: O~i-l~j+i-l~n.

Example:

declare A(S) character(2) unaligned;
declare B definedCA),

2 X character(S) unaligned,
2 Y picture"99999" unaligned;

A <reference> to B.X is a <reference> to the first two and one half elements of
A and a <reference> to B.Y is a ~reference> to the last two and one half elements
of A.

3/81 4-19 AG94E

SECTION 5

DECLARATIONS

An <identifier> may be used as a keyword or as the ~ of a" variable, named
constant, built-in function, generic function, or condition. A given
<identifier> can be used both as keyword and as a name. The meaning of a name
is determined by a declaration of the name. Each declaration is established in
a <block> and is accessible throughout a region of the program known as the
scope of the declaration or the scope of the name.

5.1 Scope of a Declaration

The scope of a name is the <block> in which it is declared and all contained
<block>s in which the name is not redeclared. Refer to Section 2 for a
discussion of program structure.

Note that the above definition of scope does not strictly apply to declarations
of members of structures. Refer to paragraph 6.4 for a discussion of the scope
of member's names.

A name cannot be declared more than once in a given <block>, except as the name
of a structure member. No two members of a structure can have the same name. A
declaration that violates either of these constraints is a multiple declaration
and is an error.

5.1.1 Internal Scope

A declaration
whose scope is
declared and
redeclared.

containing the <internal attribute> is the declaration of a name
internal. The name is known only in the <block) in which it is
all contained <block)s, except those <block>s in which it is

5.1.2 External Scooe

A declaration containing the <external attribute) is the declaration of a name
whose scope is external. The name is known in all <block>s in which the same
name is declared with the <external attribute> and in all contained <block>s,
except those <block>s in which it is redeclared with the <internal attribute>.
All declarations of an external name must have equivalent <attribute set>s, and
all such declarations refer to the same generation of storage, the same
constant, or the same condition.

5-1 AG94

5.2 Establishment of Declarations

This paragraph describes the transformations made to the text of an <external
procedure> during compilation in order to establish complete declarations for
all names and <literal constant)s used in the <external procedure>. The
transformations are made in this strict order:

1. Each <procedure statement) that has more than one <label prefix) is
transformed into a <procedure statement) followed by a sequence of ~entry
statement)s. Each <procedure statement) or <entry statement> thus
generated has one <label prefix) and have identical <parameter list>s and
<procedure option)s.

~ach <entry statement) that has more than one <label prefix> is transformed
into a sequence of <entry statement>s each of which has one <label prefix>,
and all <entry statement>s have identical <parameter list>s and <entry
option>s.

2. Each <get statement> that has no <file option) and no <string option> is
given a <file option) of the form:

file(sysin)

Each <put statement> that has no <file option> and no <string option) is
given a <file option> of the form:

file(sysprint)

Each <copy option> without a <reference> is given a <reference> of the
form:

sysprint

3. Each <declare statement> is defactored as described in paragraph 5.2.1.1.

4. Each <like attribute> is expanded as described in paragraph 5.2.2.

5. Declarations are established for all names, <literal constant>s and
<descriptor>s. These declarations are derived from <declare statement>s,
<label prefix>s, <parameter descriptor>s, <returns descriptor>s, <literal
constant>s, and <simple reference>s to undeclared names.

6. The <attribute set> of each declaration is completed by evaluating <default
statement>s7 by applying the language default rules, and by creating
<parameter descriptor>s and possible <returns attribute> for each entry
declaration produced by a <label prefix>.

7. Each declaration is validated as described in paragraph 5.5.

5.2.1 Declare Statements

Each <declare statement> is processed by the compiler and behaves like a <null
statement> when executed.

Syntax:

<declare statement>::: [<label prefix>] ••• {declareldcl}
<declaration list>;

<declaration list>::: <declaration component>
[,<declaration component>] ...

(declaration component>::: [<level>]{<declared name> I
«declaration list»}[<attribute set>]

5-2 AG94

<declared name)::: <identifier)

<attribute set)::: <attribute) ...

<level)::= <decimal integer)

5.2.1.1 Defactoring of Declare Statements

Each <declare statement) is transformed into a <de factored declare) by
performing the following steps in the indicated order:

1. Copy the <level) that appears immediately to the left of the innermost
parenthesized <declaration list) to a position immediately to the left of
each <declared name) in that <declaration list).

2. For each <declared name) in that <declaration list), if the <declared name)
is immediately followed by an <attribute set), copy the <attribute set)
that appears immediately to the right of the innermost parenthesized
<declaration list) to a position immediately to the right of the <attribute
set) immediately following the <declared name); otherwise, copy the
aforementioned <attribute set) to a position immediately to the right of
the <declared name).

3. Remove the <level) and the <attribute set) from the innermost parenthesized
<declaration list) and remove its parentheses. If any parenthesized
<declaration list)s remain, repeat these steps.

The program is in error if the defactoring of a <declare statement) produces a
<statement) whose syntax is not described by that given below for a <defactored
declare).

Syntax:

<defactored declare)::: [<label prefix)] ... {declare:dcl}
<defactored declaration)[,<defactored declaration)] ... ;

<defactored declaration>::: [<level)J<declared name)
[<attribute set)]

<attribute set)::: <attribute) ...

<level)::: <decimal integer)

<declared name)::: <identifier)

The syntax of each <attribute) is given in paragraph 5.4.

Example:

declare «a,b pointer)automatic)internal;

is equivalent to:

declare a automatic interna·,
b pointer automatic internal;

Example:

declare 1 s, 2(a,b) pointer;

is equivalent to:

declare 1 s, 2 a pointer, 2 b pointer;

7/78 5-3 AG94B

5.2.1.2 Multiple Attributes

A given <attribute> may occur more than once in an <attribute set> only if all
but one such occurrence consists solely of a keyworde If the syntax of the
<attribute> requires anything other than a simple keyword, the <attribute>
cannot occur more than once in a given <attribute set>.

Example:

declare A entry entry(float),B bit(l) bit(1);

The declaration of B is in error while the declaration of A is valide Both are
examples of poor programming style.

The example given in paragraph 5.3.2 on the use of the <default statement> shows
how multiple occurrences of a given <attribute> can be useful.

5.2.1.3 Normalization of Levels

If a <defactored declaration> has a <level> greater than one, the preceding
<defactored declaration> must have a <level>. If a <defactored declaration> has
a <level> equal to one, either it must have a <like attribute> or it must be
followed by a <defactored declaration> with a <level> greater than its own.
These constraints ensure that a <defactored declaration> with a <level> is
either a structure or a member of a structure, and that all major structures
have a <level> of one.

A declaration is a level-one declaration if it is not a declaration of a member
of a structure. A variable is a level-one variable if it is not a member of a
structure.

After defactoring is complete and structuring is established, <level>s are
normalized so that the <level) of each structure member is one greater than the
<level> of its immediately containing structure. Refer to paragraph 5.2.3.1.3
for a description of structure declarations.

Example:

declare 1 S, 4 A, 3 B, 3 C;

is normalized to:

declare 1 S, 2 A, 2 B, 2 C;

5.2.2 Expansion of the Like Attribute

Syntax:

<like attribute>::= like<like reference>

<like referenc~>::=· <identifier>[.<identifier>] •.•

The <like attribute> is a macro-attribute expanded by the compilero It is
replaced by a copy of the declarations of all of the memb~rs of the structure
identified by the <like reference>.

The <like reference> is resolved as if it were a <simple reference> or a
<structure qualifi.d reference>. It must identify a structure declared in a
<block> that contains the ~like reference>. Refer to Section 6 for a discussion
of <reference>s.

5-4 AG94

Within a given <block>, all <like reference>s are resolved before any <like
attribute>s are expanded. This ensures that the order in which the declarations
are processed by the compiler does not affect the resolution of <like
reference>s. The program is in error if the structure identified by the <like
reference> was produced by the expansion of a <like attribute> or if it was
declared with a <like attribute>. Refer to Section 6 for a discussion of
<reference>s.

Example:

declare
declare
begin;
declare
declare

A.2 Ct 3 E,3 F;
D , 2 C, 3 G", 3 H;

A like D;
B like A.C;

Because the <like reference>s of the <begin block> are resolved before any <like
attribute>s in the <begin block> are expanded, the <like reference> A.C is
resolved to refer to the declaration of A in the outer <block> and the result of
the <like attribute> expansion is:

declare 1 A,2 C,3 G,3 H;
declare 1 B,2 E,2 F;

The only <attribute>s copied by the expansion of the <like attribute> are those
<attribute>s that were explicitly specified in the declaration of the members of
the structure identified by the <like reference>. No inherited <dimension
attribute>, <aligned attribute> or <unaligned attribute> is copied. Since
expansion occurs before <attribute>s are supplied by default, <attribute>s
supplied by default are not copied.

Example:

. declare S(5) based,
2 A bit (1) ,
2 B(7) pointer;

declare T like S auto;

The expanded declaration of T is:

declare 1 T auto,
2 A bi t (1) ,
2 B(7) pointer;

A <defactored declaration> containing a <like attribute> must have a <level> and
cannot be followed by a <defactored declaration> whose <level> is greater than
its own. This constraint ensures that expanSion of a <like attribute> produces
<defactored declaration>s of all members of the structure.

Any <level>s copied by the expansion of a <like attribute> are adjusted so that
they are normalized with respect to the <level> of the <defactored declaration>
containing the <like attribute>.

Example:

declare X, 2 Y, 2 Z;

declare S, 2 R, 3 T like X;

The expanded declaration of T is:

declare 1 S, 2 R, 3 T, 4 X, 4 Y;

5-5 " AG94

5.2.3 Establishment of Explicit Declarations

5.2.3.1 Declare Statements

After <declare statement>s have been defactored and <like attribute>s have been
expanded, a single declaration is established for each <declared name> in each
<declare statement>. These declarations are established in the <block> that
immediately contains the <declare statement>. The <attribute set> of each
declaration contains only those <attribute>s explicitly specified in the
<defactored declaration>. Such declarations are known as explicit declarations.

5.2.3.1.1 Declarations of Scalars

A <defactored declaration> that is neith~r an array declaration as described in
paragraph 5.2.3.1.2 nor a structure declaration as described in paragraph
5.2.3.1.3 is a declaration of a scalar variable, scalar constant, builtin
function, generic function, or condition name.

5.2.3.1.2 Declarations of Arrays

If the <attribute set> of a <defactored declaration> contains a <dimension
attribute> the <declared name> is declared as an array whose dimensionality and
<bound>s are given by the <dimension attribute>.

Members of dimensioned structures are arrays whose dimensionality and <bound>s
include the dimensionality and <bound>s given in their own <dimension
attribute>, as well as those inherited from their containing structures. Unless
the member has its own <dimension attribute>, the member acquires the
dimeo8ionality and <bound>s of its ccnt~ining structures, but does not acquire
the <dimension attribute> for the purposes of later <default statement>
evaluation.

Examples:

declare A(10,10);
declare 1 S(10),2 X(10),2 Y;

X and A are ten-by-ten two-dimensional arrays, while Sand Yare ten element
one-dimensional arrays. A <default statement> whose <predicate> contained the
keyword "dimension" would apply to the declarations of A, S and X, but not to Y.

5.2.3.1.3 Declarations of Structures

A <defactored declaration> is a declaration of a structure if it has a <level>
and is followed by one or more <defactorec declaration>s whose <level>s are
greater than its own. The <structure attribute> may be explicitly written in
the <attribute set> of a structure"declaration, but the declaration must also
have a <level> and must be followed by one or more <defactored declaration>
whose <level> is greater than ·its own.

A <defactored declaration> with a <level> greater than one is a member of the
nearest <defactored declaration> to its left, whose <level> is less than its
own. The <member attribute> may be explicitly written in the <attribute set> of
a member declaration.

5-6 AG94

· .

Example:

declare 1 S,2 A,2 B;

is equivalent to:

declare 1 S structure,2 A member,2 B member;

5.2.3.2 Label Prefixes

An explicit declaration is also established for each <declared name> that
appears in a <label prefix>. The declaration is established in the <block>
immediately containing the <label prefix>. The <declared name> appearing in the
<label prefix> of an <entry statement>, <procedure statement>, or <begin
statement> is declared in the <block> that immediately contains the <procedure>
or <begin block>. The declarations produced by <label prefix>s on the <entry
statement>s or <procedure statement> of an <external procedure> are established
in an imaginary outer <block> that contains the <external procedure>.

Example:

A: proc;
B:

H:

c: proc;
D:
E: entry;
F:
G: ~C;

I: end A;

The names B,C,E,H,1 are declared in <procedure> A, and since they are not
redeclared in <procedure> C, their scope inbludes both A and C. The names D,F,G
are declared in <procedure> C and their scope is <procedure> C. The name A is
declared in an imaginary outer <block> and its scope includes both <procedure>s
A and C.

5.2.3.2.1 Format Constants

A <declared name> appearing in a <label prefix> of a <format statement> is
declared in the immediately containing <block> with the <format attribute>,
<constant attribute>, and <internal attribute>.

The <label prefix> of a <format statement> cannot contain a <prefix subscript>.

5.2.3.2.2 Label Constants

A <declared name> appearing in the <label prefix> of any <statement>, other than
an <entry statement>, <procedure statement>, or <format statement>, is declared
with the <label attribute>, <constant attribute> and the <internal attribute>.
If the <label prefix> contains a <prefix subscript>, the declaration is given a
<dimension attribute> of the form (L:H) where L is the lowest <prefix subscript>
used in any occurrence of this name in a <label prefix> within the <block> and H
is the highest <prefix subscript) used in any occurrence of this name in a
<label prefix> in the <block>. In Multics PL/I, a label constant array cannot
have more than one dimension.

5-7 AG94

C;xample:

A: begin;
L(l): __

L(-2): __

L(4): __

end A;

L is declared in <block) A as a label constant array with a lower <bound) of -2
and an upper <bound) of 4.

It is an error to reference any element of a label constant array that is not
defined by a <label prefix).

5.2.3.2.3 Entry Constants

A <declared name) appearing ~n a <label prefix) of
<procedure statement) is declared in the immediately
<entry attribute) and <constant attribute)s, either
the <external attribute), and, optionally, with
<reducible attribute) or <irreducible attribute).

an <entry statement) or
containing <block) with the
the <internal attribute> or

the <returns attribute),

The <returns attribute)
attribute) are copied from
<external attribute) is
statement) or <procedure
procedure); otherwise, the

and the <reducible attribute) or the <irreducible
the <entry statement) or <procedure statement). The
supplied if the <label prefix> appears on an <entry
statement) defining an entry to an <external

<internal attribute> is supplied.

After <default statement)s have been evaluated and the language default rules
applied to all declarations, a set of <parameter descriptor>s (pl,p2, ... ,pn) is
created for each entry declaration produced by a <label prefix). The <parameter
deSclipto~>s ale const~ucted by examining the declaration of c~ch p~r~mete~ of
the entry. A <parameter descriptor> p(k) produced by this examination contains
all of the <attribute)s of the kth parameter in the <parameter list) of the
<entry statement) or <procedure statement), except the <variable attribute) and
<parameter attribute).

The <label prefix) of an <entry statement) or <procedure statement) cannot
contain a <prefix subscript>.

After <default statement)s have been evaluated and the language default rules
applied to all declarations, the <returns attribute) of each declaration
produced by a <label prefix) is copied onto the <entry statement) or <procedure
statement> for use during execution of <return statement)s in that <procedure>.
The original <returns attribute), if any, on the <statement> is replaced by this
copy.

Example:

P: procCa) returns(pointer);

declare a pointer;

Inner: proc(x) returns(bit(1»;

declare x pointer;

end;
end;

5-8 AG94

The <label prefix> Inner produces a declaration equivalent to:

declare Inner entry(pointer) returns(bit(l)) internal;

The declaration is established in the <external procedure> P.
p~efix> P produces a declaration equivalent to:

declare P entry(pointer) returns(pointer) external;

The <label

The declaration is established in an imaginary outer <block> that contains the
<external procedure> P.

5.2.4 Establishment of Contextual Declarations

Any name not explicitly declared by a <declare statement> or <label prefix> is
contextually declared if it appears in any of the following contexts. Unless
otherwise noted, the declaration is established in the <external procedure>.

1. Area: An undeclared name is contextually declared with the <area attribute>
and the <variable attribute> if it appears as the <reference> of an <in
option> or <offset attribute>·.

2. Builtin: An undeclared name is contextually declared with the <builtin
attribute> if it appears followed by an <argument list> and is one of the
names listed in Section 13. If it is not listed in Section 13 and it
appears with an <argument list> or as the <entry reference> of a <call
statement>, the program is in error~

3. Condition: An undeclared name is contextually declared with the <condition
attribute> if it appears as a <condition name> in a <signal statement>,
<revert statement>, or <on statement>.

4. File: An undeclared name is contextually declared with the <file attribute>
and the <constant attribute> if it appears as the <reference> of a <file
option> or <copy option> of an input/output <statement>, or as the
<reference> of an input/output <condition name>.

5. Parameter: A name not declared, except as a structure member, in the
<block> in which it is used in a <parameter list> is declared with the
<parameter attribute> and <variable attribute>. The declaration is made in
the <block> immediately containing the <parameter list>.

6. Pointer: An undeclared name is contextually declared with the <pointer
attribute> and the <variable attribute> if it appears as the <locator
qualifier> of a <based attribute> or <locator qualified reference>, or if
it appears as the <reference> in a <set option>.

5.2.5 Contextually Derived Attributes

Contextual declarations acquire <attribute>s .:hich depend on the context that
produced the declaration. Any additional <attribute>s are supplied later when
<default statement>s are evaluated and the language default rules applied.

Explicit declarations do not acquire any <attribute>s, other than the <parameter
attribute>, from the usage of the name in one of the above mentioned contexts.
The <attribute>s of an explicit declaration are acquired when the declaration is
established and when defaults are supplied.

An explicit declaration of a name, other than a member of ~ structure, is given
the <parameter attribute> if it appears in a <parameter list> of the <procedure>
in which it is declared.

5-9 AG94

5.2.6 Establishment of Implicit Declarations

A name that is neither explicitly nor contextually declared is implicitly
declared in the <external procedure> with no attributes.

Each <descriptor> appearing in an <entry attribute> or
implicitly declared in the <block> in which the
established.

<returns attribute> is
entry declaration is

Each <literal constant> is implicitly declared in the <block> that immediately
contains it and is given the <constant attribute>. Declarations of <bit-string
constant>s are given the <bit attribute>. Declarations of <character-string
constant>s are given the <character attribute>. Declarations of <arithmetic
constant>s are given the <float attribute> if they contain an e, and are given
the <fixed attribute> if they contain an f. They - are given the
<complex attribute> if they contain an i; otherwise, they are given the
<real attribute>. The rest of their <attribute>s are supplied by <default
statement>s and by the language default rules. Note that <default statement>s
are not applied to <bit-string constant>s or <character-string constant>s.
Also, <default statements> are not applied to <arithmetic constants> containing
E·

5.3 Completion of Attribute Sets

Unless a declaration was produced by a <declare statement> that explicitly
provided all <attribute>s, the declaration has an incomplete <attribute set>.
The <attribute set> of each declaration is completed by performing the following
steps in the indicated order:

1. If the declaration contains a <precision attribute> containing a <scale
factor>, the <fixed attribute> is given to the declaration.

2. If the declared item is a member of a structure and has neither the
<aligned attribute> nor the <unaligned attribute>, the <aligned attribute>
and <unaligned attribute> of its immediately containing structure are given
to the declaration. If the immediately containing structure does not have
el~ner of these <attribute>s, the members of the structure acquire one of
the alignment <attribute>s from the application of defaults as described in
steps 4 and 5.

3. If the declared item is a member of a structure, it is given the <member
attribute> and the <internal attribute>. If it is a structure, it is given
the <structure attribute>. If the item has a <dimension attribute> or
<precision attribute> without a keyword, the keyword is supplied.

4. Beginning in the <block> of declaration, all <default statement>s are
evaluated in the order in which they appear in the <block>. When all
<default statement>s in a given <block> have been evaluated, the <default
statement>s in the immediately containing <block> are evaluated in the
order in which they appear in that <block>. This process is continued
until the <default statement>s of the <external procedure> have been
evaluated.

5. The language defaults are supplied by evaluating the <default statement>s
listed ir paragraph 5.3.3 as if they were written in a <block> containing
the <external procedure>.

6. Each entry
<parameter
the entry.

7/78

declaration produced by a <label prefix> is given a set of
descriptor>s derived from the declaration of the parameters of

5-10 AG94B

If the entry declaration contained a <returns attribute>, its < returns
descriptor> was processed by step 4 as if its <block> of declaration was
the <block> that immediately contained the <entry statement> or <procedure
statement> from which the declaration of the entry was derived. This ensures
that the <attributes> of the <returns descriptor> are those that apply to
the inner <block>, not the <block> in which the entry declaration was made.

7. The declaration of each <arithmetic constant> that does not have either the
<decimal attribute> or <binary attribute> is given the <decimal attribute>,
unless ~t contains a b, in which" case it is given the <binary attribute>.
If it has neither the <fixed attribute> nor the <float attribute>, it is
given the <fixed attribute>.

If the declaration of an <arithmetic constant) does not have a <precision
attribute>, it acquires the <precision attribute> obtained by converting
the source precision to the base and type specified by its <attribute set>.
The ~ precision of an <arithmetic constant> is the number of digits in
the mantissa, including leading and trailing zeros. If the
<arithmetic constant> does not contain a <scale type> of e, it has a
<scale factor) of j-k, 'where j is the number of fractional digits in the
mantissa, or 0 if there are none, and k is the value of the exponent, or 0
if there is none. Refer to paragraph 8.2.10 for a discussion of the conversion
rules.

8. Any declaration that has the <area attribute> and does not have an <area size>
is given an <area size> of 1024. Any declaration that has the
<character attribute> or <bit attribute> and does not have a <length> is
given a <length> of 1.

Note that although file description attributes can be added to a declaration by
a <default statement>, the file description attribute sets are not fully completed
until program execution and that they depend on how the file is opened. Refer
to paragraph 11.3 for a discussion of file opening. The file description attributes
are: input, output, update, record, stream, sequential, direct, keyed, print,
and environment.

5.3.1 Default Statement

The (default statement) enables the programmer to determine what (attribute>s
shall be supplied to declarations whose <attribute set>s are incomplete. It
allows <attribute>s to be supplied on the basis of the <attribute>s already
acquired or on the basis of the spelling of the declared name.

Syntax:

1/19

<default statement>::: [<label prefix>J ••• {defaultidft}
{systemlnonel<user defaults>};

<user defaults>::: «predicate»{errorl<attribute set>[,~attribute set>] ••• }.

<attribute set>::: <attribute> •••

<predicate>::: <predicate one>:
<predicate>l<predicate one>

<predicate one>::: <predicate two>:
<predicate one>&<predicate two>

<predicate two>::: <predicate three>:A<predicate two>

<predicate three>::: (predlcate»:<attrlbute keyword>:
<range>

5-11 AG94C

<range>::: range(*):range«identifier»:
range«letter>:<letter»

<attribute keyword>::: <identifier>

An <attribute keyword> must be the keyword or abbreviated keyword used to designate
any <attribute> except the <like attribute>. Keywords and abbreviated keywords
are equivalent.

The <like attribute> cannot be applied by a <default statement> because <like
attribute>s are expanded before the application of <default statement>s.

5.3.2 Evaluation of Default Statements

Each <default statement> is evaluated by the compiler and behaves like a <null
statement> when executed.

A <default statement> is evaluated by evaluating its <predicate> and if the
<predicate> is true with respect !2 a given declaration, copying the <attribute
set>s specified 6'Y"t1le"(default statement> in left-to-right order into the <attribute
set> already acquired by the declaration.

Just as it is possible to write an inconsistent <attribute set> in a <declare
statement>, it is possible to produce a declaration with an inconsistent <attribute
set> by the use of a <default statement>. The <predicate> of a <default statement>
should be sufficiently selective to avoid applying default <attribute>s to
declarations that should not receive them. The Mul tics PL/! compil er copies
each <attribute set) of a <default statement> in left-to-right order into the
<attribute set> already acquired by the declaration. If the compiler detects
inconsistencies between the <attribute>s in an <attribute set) about to be copied
and these already acquired by the declaration, it does not copy the <attribute
set> into the declaration. If all <attribute set>s specified by a <default
statement> are inconsistent with those already acquired by the declaration, the
compiler issues a warning diagnostic. Refer to paragraph 5.5 for a precise
definition of attribute consistency •

. A <predicate> yields a value of "true" or "false" when applied to a declaration.
The infix operator "I" yields a value "true" only if either or both of its
operands are "true". The infix operator "&" yields a value "true" only if both
of its operands are "true". The prefix operator "A" yields a value "true" only
when its operand is "false".

Each <attribute keyword> or <range> operand of the <predicate> yields a "true"
or "false" value with respect to a given declaration. An <attribute keyword>
yields a "true" value only if the declaration contains the <attribute> identified
by the <attribute keyword>. A <range> operand yields a value "true" only if the
declaration 1s a declaration of a name whose spelling satisfi~s the <range>
o~erand.

An exception exists for options; options is not considered to yield "true" if
"constant" was specified.

3/81 5-12 AG94E

A <range> operand of the form range(*) is satisfied by any name. A <range>
operand of the form range«identifier» is ·satisfied only by names which begin
with the same sequence of characters as the <identifier> given in the <range>
operand. A <range> operand of the form range«letter>:<letter» is satisfied
only by names whose first letter is in the English alphabetical sequence between
and including the first and second <letter>s. The first <letter> must occur in
the alphabet before the second <letter> or both must be the same letter.

Note that declarations of <literal
<returns descriptor>s never satisfy a
are not declarations of names.

7/79

constant)5, <parameter descriptor>s or
<range> operand because such declarations

5-12.1 AG94C

This page intentionally left blank.

7/79 AG94C

Example:

default{bit) bit(l);
default(fixed) binary(1S);
declare b biteS), f entry() returns(bit):
declare a fixed;

is equivalent to:

declare b biteS) bit(l), f entry() returns(~it bit(1»;
declare a fixed binary(15);

Note that the declaration of b is an invalid declaration.

Example:

default(range(*)&A(automaticlbasedlccntrolledldefinedl
parameterlmemberlgenericlbuiltinlcondition:constant»
internal static;

declare a pointer;

is equivalent to:

declare a pointer internal static;

The interested reader may wish to study the language defaults as expressed by
the <default statement>s given in paragraph 5.3.3.

5.3.2.1 Special Cases of the Default Statement

A <default statement> of the form:

default system;

causes the language defaults to be applied as if the set of <default statement>s
given in paragraph 5.3.3 were written at this point in the <procedure>.

A <default statement> of the form:

default none;

causes no further defaul ts to be supplied either from <defaul t statement>s remaining
in the program or by the application of language defaults.

A <default statement> of the form:

default «predicate» error;

causes any declaration within the scope of the <default statement) for which the
<predicate) is true to be considered in error. The Multics PL/I compiler issues
a diagnostic for each such declaration.

S.3.3 Language Default Rules

Entry Defaults

default (returnslreduciblelirreducibleloptions) entry;
default (entry&-reduc1ble) irreducible;

File Default

7/78

default(inputloutputlupdatelstreamlrecordlpr1ntlkeyed:direct:
sequentiallenv1ronment) file;

5-13 AG9JJB

Arithmetic Defaults

defaultCA(characterlbitlpointerloffset:areallabellformatlentry:filel
fixed:float:picture:binaryldecimal:real:complexl .
builtin:generic:condition:constant» fixed binary real;

default«real:complex)&A(picture:float:constant» fixed;
default«binary:decimal)&A(floatlconstant» fixed;
default«fixed:float)&A(complex:constant» real;
default«fixedlfloat)&A(decimallconstant» binary;
default(fixed&binary&Aprecision&Aconstant) precision(17,O);
default(fixed&decimal&Aprecision&Aconstant) precision(7,O);
default(float&binary&Aprecision&Aconstant) precision(27)j
defaultCfloat&decimal&Aprecision&Aconstant) precision(10);

String Default

default«characterlbit)&ACvarying\constant» nonvarying;

Scope and Storage Class Defaults

default«entry: file)&(automatic:based: static: parameter :
definedlcontrolledlmember:alignedlunaligned:
initial) variable;

default«entry:file)&range(*)&Avariable) constant;
default(A(constant:builtin:generic:condition)&range(*))

variable;
default(Cfile:entry)&range(*)&constant&Ainternal) external;
default(condition) external;
default(Aexternal&range(*» internal;
default(variable&external&Acontrolled) static;
default(variable&A(basedlcontrolledlstatic:defined:parameter:

member» automatic;

Storage Mapping Defaults

default«characterlbitlpicturelstructure)&A(aligned:constant»
unaligned;

default(A(constant:builtin:generic:unaligned» aligned;
default «fixed:float)&Aunsigned) signed;

Example:

declare i fixed;
declare j float;
declare aj
declare X external;
declare E entry returns(fixed);

After application of the language defaults, these declarations are:

3/81

declare i fixed binary real precision(17,O)
aligned variable automatic internal signed;

declare j float binary real precision(27)
aligned variable automatic internal signed;

declare a fixed binary real precislon(17,O)
aligned variable automatic internal signed;

declare X fixed binary real precision(17,O)
aligned variable static external signed;

declare E entry constant external irreducible
returns(f1xed binary real precisionC17,O) aligned signed);

AG94£

5.4 ~yntax and Semantics of Attributes

The <attribute>s described in this section are used in <attribute sets> of
<declare statement>s, <default statement>s, <descriptor>s, and in <open
statement>s to describe variables, constants, functions and conditions. The
discussion of each <attribute> assumes that <attribute set>s have been
completed. See paragraph 5.3 for a discussion of <attribute set> completion.
In the discussion of each <attribute>, ~ refers to a declaration of a name, a
<parameter descriptor>, or a <returns descriptor>.

The description of each <attribute) gives constraints that apply to the
<attribute>. Section 5.5 gives a concise syntax that shows which <attribute>s
can and must app~ar in th~ same completed <attribute set).

5.4.1 Aligned

Syntax:

<aligned attribute)::: aligned

The <aligned attribute) is used in an implementation-defined manner to influence
the representation of values in storage. In Multics PL/I, aligned data is
allocated on a word or multiple word storage boundary, and the amount of storage
is an integral number of words.

When a generation of storage is to be shared or accessed by more than one name,
all names used to access the generation must have the same alignment
<attribute>. Refer to paragraphs 4.3.1 and 4.3.3.

5.4.2 ~

Syntax:

<area attribute>::: area[«area size»]

<area size)::: <extent expression):-

<extent expression)::: <expression)[<refer option)]

<refer option)::: refer«reference»

An item declared with the <area attribute) represents area values whose size is
given by the <area size).

Evaluation of the <expression) of an <extent expression) must yield a scalar
value suitable for conversion to a fixed-point, binary, real, integer. If the
<refer option> is given the value of the <expression) must also be suitable for
conversion to the data type of the variable identified by the <reference> in the
<refer option>.

If the item ha~ the <static attribute>, the <area size) must be an unsigned
<decimal integer). If the item has the <parameter attribute) or is part of a
<descriptor), the <area size> must be an unsigned <decimal integer) or an
asterisk. If the item does not have the <parameter attribute> or is not part of
a <descriptor), the <area size) cannot be an asterisk. If the item does not
have the <based attribute), it cannot contain a <refer option>. Refer to
paragraph 4.3.2.5 for a discussion of based storage and the <refer option).

5-15 AG94

5.4.3 Automatic

Syntax:

<automatic attribute)::: automaticlauto

A name declared with the <automatic attribute) is a variable whose storage class
is automatic. Refer to paragraph 4.3.2 for a discussion of storage classes.

5.4.4 ~

Syntax:

<based attribute>::: based[«locator qualifier»]

<locator qualifier)::: <reference)

A name declared with the <based attribute) is a variable whose storage class is
based. Evaluation of the <locator qualifier) must yield a scalar locator value.
If the <locator qualifier) is omitted, all <reference)s to the based variable
except, <allocation reference>s or the <reference>s of <refer option)s, must be
<locator qualified reference)s as defined in paragraph 6.6. All <reference>s to
based variables without locator qualification, except <allocation reference)s or
the <reference)s of <refer options), are implicitly qualified by the <locator
qualifier>. Refer to paragraph 4.3.2 for a discussion of storage classes, and
to paragraph 6 for a discussion of <reference>s.

5.4.5 Binary

Syntax:

<binary attribute);;: binaryibin

An item or <literal constant> declared with the <binary attribute) represents a
binary arithmetic value or values.

5.4.6 Bit

Syntax:

<bit attribute>::: bit[«length»]

<length>::: <extent expression>l·

<extent expression>::= <expression>[<refer option>]

<refer option>::= refer«reference»

An item or <literal constant> declared with the <bit attribute> represents a
bit-string value or values.

If the item also has the <varying attribute>, the <length> is the maximum number
of bits that the item can represent; otherwise, it is the number of bits in each
value that the item represents. Refer to paragraph 4.1 for a discussion of data
types.

The <length) must satisfy the constraints g1ven In paragraph 5.4.2 for <area
size>.

5-16 AG94

5.4.7 Builtin

. Syntax:

<builtin attribute>::: builtin

A name declared with the <builtin attribute> must be one of the names listed in
Section 13. Such a name represents a function whose definition is an intrinsic
part of the PL/I language.

5.4.8 Character

Syntax:

<character attribute>::: {characterlchar}[«length»]

<length>::: <extent expression>:.

<extent expression>::: <expression>«refer option>]

<refer option>::: refer«reference»

An item or <literal constant> declared with the <character attribute> represents
a character-string value or values.

If the item also has the <varying attribute>, the <length> is the maximum number
of characters that the item can represent; otherwise, it is the number of
characters in each value that the item represents.

The <length> must satisfy the constraints given in paragraph 5.4.2 for <area
size>.

5.4.9 Complex

Syntax:

<complex attribute>::: complexlcplx

Unless it also has a <picture attribute>, an item or <literal constant> declared
with the <complex attribute> represents a complex arithmetic value or values.
If the item has a <picture attribute>, it represents character-string value or
values as described in paragraphs 4.1 and 5.4.39.

5.4.10 Condition

Syntax:

<condition attribute>::: conditionlcond

A name declared with the <condition attribute) is a <condition name>. Refer to
Section 10 for a discussion of conditions.

5-17 AG94

5.4.11 Constant

Syntax:

<constant attribute>::: constant

A name declared with the <constant attribute> is a named constant. A <literal
constant> is always declared with the <constant attribute>. Constants cannot be
assigned values during program execution.

5.4.12 Controlled

Syntax:

<controlled attribute>::: controlledlctl

A name declared with the <controlled attribute> is a variable whose storage
class is controlled. Refer to paragraph 4.3.2 for a discussion of storage
classes.

5.4.13 Decimal

Syntax:

<decimal attribute>::: decimalldec

An item or <literal constant> declared with the <decimal attribute> represents a
decimal arithmetic value or values.

5.4.i4 Defined

Syntax:

<defined attribute>::: {definedldef}<base reference>

<base reference>::: «reference»I <reference>

A name declared with the <defined attribute> is a variable whose generation of
storage is identified by the <base reference>. Refer to paragraph 4.3.3.3 for a
discussion of storage sharing through the use of defined variables.

5.4.15 Dimension

Syntax:

<dimension attribute>::: [<dim key>][«bound>[,<bound>] ..•)]

<dim key>::: dimensionldim

<bound>::: {[<extent expression>:]<extent expression>}'.

<extent expression>::: <expression>[<refer option>]

<refer option>::: refer{<reference»

5-18 AG94

If the <dim key> is omitted, the <dimension attribute> must be the first
<attribute> in the <attribute set> of a <descriptor>, <declare statement> or
<default statement>, and the parenthesized list of <bound>s cannot be omitted.

An item declared with the <dimension attribute> represents array values. If
only one <extent expression> is given, let L be 1 and let H be the <extent
expression>; otherwise let L be the first <extent expression> and let H be the
second <extent expression>. The number of elements in the dimension is H-L+l,
where H must be greater than or equal to L.

If the item has the <static attribute>, each <bound> must be an optionally
signed <decimal integer).

If the item has the <parameter attribute> or is part of a <descriptor>, each
<bound> must be an optionally signed <decimal integer> or an asterisk~

If the item does not have the <parameter attribute> or is not part of a
<descriptor), it cannot have an asterisk <bound>.

If the name does not have the <based attribute>, the <extent expression> cannot
have a <refer option>.

Evaluation of the <expression> in an <extent expression> must yield a scalar
value suitable for conversion to a fixed-point, binary, real, integer. If a
<refer-option> is given, the value of the <expression> must also be suitable for
conversion to the data type of the variable identified by the <reference> in the
<refer option>.

If a completed <attribute set) contains a <dimension attribute>, it must contain
exactly one <dimension attribute> with a parenthesized list of <bound>s.

5.4.16 Direct

Syntax:

<direct attribute>::: direct

A file constant declared with the <direct attribute> causes the file-state block
that it identifies to be opened with the <direct attribute>. A file-state
block with the <direct attribute> selects the records of its associated data set
by means of character-string valued keys. Refer to Section 11 for a discussion
of input/output.

5.4.17 ~

Syntax:

<entry attribute>::: entry[([<parameter descriptor list>])]

<parameter descriptor list>::: <parameter descriptor>
(,<parameter descriptor)] ••.

<parameter descriptor>::: <descriptor>

<descriptor>::: <level>[<attribute set>]1
[<level>]<attribute set>

<attribute set>::: <attribute> •••

An item declared with the <entry attribute> represents entry values.

5-19 AG94

If the <parameter descriptor list> is omitted, an entry value represented by the
.item is invoked only when it is identified by the <entry reference> of a <call
statement> or when it is identified by the <entry reference> of a <function
reference> with a null <argument list>.

An <entry attribute> of the form "entry()" is equivalent to an <entry attribute>
of the form "entry", except that the former is a complete <attribute> ~nd the
latter is an incomplete <attribute>. The significance of this difference is
shown in paragraph 5.2.1.2 and paragraph 5.3.2.

A <parameter desc~iptor list> does not restrict the values that may be
represented by the item. A <parameter descriptor list> is significant only when
an entry value represented by the item is invoked.

The <parameter descriptor list> must produce a declaration for each <parameter
descriptor> that is equivalent to the actual declaration of each parameter in
the entry invoked by each invocation of the entry values represented by this
item. Such declarations are equivalent only if they contain exactly the same
<attribute set>s, except that the <parameter descriptor> cannot have: the
<parameter attribute> or <internal attribute>.

An <attribute set> of a <descriptor> must be consistent. An <attribute set> of
a <descriptor> is consistent only if it can be transformed into a <descriptor
set> as described in paragraph 5.5.

A <descriptor> of a structure has exactly the same syntax as a <de factored
declaration> of a structure variable, except that it has no name. Its members
are declared exactly like the members of a structure variable, except that they
have no names.

Example:

declare F entry(1,2 fixed,2 pointer,1,
2 bit(1),2 bit(4),(10,10) pointer);

The entry F has three parameters. The first is a structure containing an
integer and a pointer. The second is a structure containing two bit-strings,
and the third is a ten-by-ten array of pointers.

5.4.18 Enyironment

Syntax:

<environment attribute>::: {environment:env}[(interactive): (stringvalue)]

A file constant declared with an <environment attribute> causes the file-state
block that it identifies to be opened with the <environment attribute>.

If a completed <attribute set> contains an <environment attribute>, it must
contain exactly one <environment attribute> with a parenthesized keyword which
may be "interactive" or "stringvalue."

A file-state block with an <environment attribute> specifying "interactive"
causes the execution of each <put statement> that references the file to finish
its output by writing a linemark. This form of <environment attribute> is
normally used when the data stream attached to the file-state block is an
interactive device used for both input and output.

5-20 AG94

If a file-state block has an <environment attribute> specifying "stringvalue,"
the execution of a <read statement>, <rewrite statement>, or <write statement>
is affected as follows. If a <read statement> has an <into option) referencing
a scalar variable with the <character attribute> and the <varying attribute),
the complete record in the file is treated as a character-string value and is
assigned to the variable by a normal string assignment. If a <rewrite
statement> or <write statement> has a <from option> referencing a scalar
variable with the <character attribute) and the <varying attribute>, the record
placed in the file will be a character string that is equal to the current value
of the variable. If a <read statement> has an <into option> referencing a
scalar variable with the <bit attribute> and the <varying attribute>, the
complete ~ecord in the file is treated as a bit-string'value and is assigned to
the variable by a normal string assignment. If a <rewrite statement> or <write
statement) has a <form option> referencing a scalar variable with the <bit
attribute> and the <varying attribute), the record placed in the file will be a
bit string that is equal to the current value of the variable. This form of the
<environment> attribute is useful for processing a file containing strings of
different lengths, especially when the file was not created using PL/I record
output.

5.4.19 External

Syntax:

<external attribute>::: externallext

A name declared with the <external attribute> has external scope and is known in
all <block)s in which the same name is declared with the <external attribute>
and in all contained <block>s, except those <block>s in which the name is
redeclared with the <internal attribute>. All declarations of an external name
must have equivalent <attribute set>s, and all such declarations refer to the
same generation of storage, the same constant, or the same condition.

5.4.20 ~

Syntax:

<file attribute)::: file

An item declared with the, <file attribute> represents file values.

Syntax:

<fixed attribute>::: fixed

An item or <literal constant> declared with t~e <fixed attribute> represents a
fixed-point arithmetic value or values.

5-21 AG94

5.4.22 ~

Syntax:

<float attribute>::: float

An item or <literal constant> declared with the <float attribute> represents a
floating-point arithmetic value or values.

5.4.23 Format

Syntax:

<format attribute>::: format

An item declared with the <format attribute> represents format values.

5.4.24 Generic

Syntax:

<generic attribute>::: generic[«alternative list»]

<alternative list>::: <alternative>[,<alternative>] ...

<alternative>::: <entry reference>when([<selector>])

<entry reference>::: <reference>

<selector>::: <arg selector>[,<arg selector>] ...

<arg selector>::: *![<level>]<attribute set>!
<level>[<attribute set>]

<attribute set>::: <attribute> .••

A name declared with a <generic attribute> is
variables and entry constants. Refer to
<reference>s to generic names.

the name of a set of entry
paragraph 6.9 for a discussion of

If a completed <attribute set> contains a <generic attribute>, it must contain
exactly one <generic attribute> with an <alternative list>.

The <attribute>s used in an <arg selector> are restricted to the <attribute>s
allowed in a <parameter descriptor> as described in paragraph 5.4.11, except
that these two additional rules apply:

All <extent expression>s must be asterisks.

The <precision attribute> has an extended syntax that permits a range of
preciSion values to be specified.

<precision attribute>::: [prec1sion!prec]
«low prec>[:<h1gh prec>][,<low scale>
[:<high scale>]])

Both <low prec> and <high prec> must be <decimal integer>s and the value of
<low prec> must be less than the value of <high prec>~ Both <low scale>
and <high scale> are optionally signed <decimal integer>s and the value of
<low scale> must be less than the value of <high scale>. Note that this
extended form of the <precision attribute> is only permitted in an <arg
selector> of a <i~~eric attri~ute>.

5-22 AG94

5.4.25 Initial

Syntax:

<initial attribute>::: {initial:init}[<initial list>]

<initial list>::: «initial item>[,<initial item>] ...)

<initial item>::: <factor><initial list>:
[<factor>J<initial value>:«expression»

<initial value>::: [+:-:~]<literal constant>:
[+i-]<real constant>{+;-}<imaginary constant>:
[+:-:~]<reference>:*

<factor>::: «expression»

If a completed <attribute set> contains an <initial attribute>, it must contain
exactly one <initial attribute> with an <initial list>.

If the declaration also has the <static attribute>, the <factor> must be a
<decimal integer>, the <initial item> must not be «expression», and the
<initial value> must be <literal constant>s or <reference>s to the null and
empty built-in functions.

Evaluation of the <factor> must yield a scalar arithmetic or string value. The
value of the <factor> is converted to a real, fixed-point, binary integer whose
value must be greater than zero. Evaluation of each <expression> or <reference>
in the <initial value> or <initial item> must yield scalar values.

An <initial attribute> provides an ordered sequence of scalar values that are
assigned to the scalar components of each generation of the variable when the
generation is allocated. Note that the elements of an array are stored in
row-major order and that the scalar values of the <initial attribute> are
assigned to the elements in row-major order. Refer to Section 4 for a
discussion of array storage and allocation.

The program is in error if the number of elements in the array is not equal to
the number of scalar values given in the <initial attribute>. It is also in
error if a scalar variable is declared with an <initial attribute> that
specifies more than one value.

An asterisk <initial value> causes the scalar variable to which it applies to
not be initialized.

During compilation of an <external
are applied before any high level
<character string constant> or a
parenthesized <decimal integer> is
in paragraph 2.6.

procedure>, the lexical level syntax rules
syntax rules are applied. Consequently, a

<bit string constant> beginning with a
expanded into a single constant as described

Example:

declare x(5) bit(5) initial«5)"1"b);

is equivalent to:

dec]pre x(5) bit(5) initial("11111"b);

To set all 5 elements of the array to all ones we must write:

declare x(5) bit(5) initial«5)(5)"1"b);

or:

declare x(5) bit(5) initial«5)(1)"11111"b);

7/78 5-23 AG94B

5.4.26 Input

Syntax:

<input attribute>::= input

A file constant declared with the <input attribute> causes the file state block
that it identifies to be opened with the <input attribute>.

It is an error to execute a <write statement>, <locate statement>, <rewrite
statement>, <delete statement>, or <put statement> whose <file option>
identifies a file-state block that has an <input attribute>. Refer to Section
11 for a discussion of input/output.

5.4.27 Internal

Syntax:

<internal attribute>::= internalllnt

A name declared with the <internal attribute> has internal scope and is known
only in the <block> in which it is declared and all contained <block)s, except
those <block>s in which it is redeclared.

5.4.28 Irredugible

Syntax:

<irreducible attribute>::= irreducible:irred

An item declared with the <irreducible attribute> represents entry values. When
an entry value represented by a name declared with an <irreducible attribute> is
invoked, it is assumed to designate an" irreducible entry as described in
paragraph 6.11.

An <irreducible attribute> does not restrict the entry values represented by the
item; its only significance is to force the entry values represented by the item
to be invoked once for each evaluation of an <entry reference> in a <call
statement> or <function reference> 0

5.4.29 Keyed

Sy~tax:

<keyed attribute>::: keyed

G file constant declared with the <keyed attribute> causes the file-state block
that it identifies to be opened with the <keyed attribute>. A file-state block
with the <keyed attribute) may select the records of it~ associated data set by
means of character-string valued keys. Refer to Section 11 for a discussion of
input/output.

5-24 AG94

5.~.30 Label

Syntax:

<label attribute>::: label

An item declared with the <label attribute> represents label values.

5.4.31 Like

Syntax:

<like attribute>::: like<like reference>

<like reference>::: <identifier>(.<identifier>] •••

The <like attribute> is a macro-attribute and is fully described in paragraph
5.2.2. The <like attribute> cannot appear in a <default statement>, in a
<descriptor>, or in a <generic attribute>.

5.4.32 Local

Syntax:

<local attribute>::: local
I

An item declared with the <local attribute> represents either label values or
format values.

When a name declared with the <local attribute> is referenced during evaluation
of a <goto statement>, its value must be a label value derived from a <label
prefix> immediately contained in the same <block> that imm~iately contains the
declaration of the name.

When a name declared with the <local attribute> is referenced during evaluation
of a <remote format>, its value must 'be a format value derived from a <label
prefix> immediately contained in the same <block> that immediately contains the
declaration of the name.

A <local attribute> does not restrict the values represented by the item, except
when the item is referenced by a <goto statement> or <remote format>.

5.4.33 ~~

Syntax:

<member attribute>::: member

An item declared with the- <member attribute> must be a member of a structure as
described in paragraph 5.2.3.1.3.

5-25 AG94

I

I

5.4.34 Nonvarying

Syntax:

<nonvarying attribute)::: nonvaryinglnonvar

An it~m declared with the <nonvarying attribute) represents string values that
all have the same length. The length is given by the <length) specified in the
<bit attribute) or <character attribute).

5.4.35 Offset

Syntax:

<offset attribute>::: offset[«reference»)]

An item declared with the <offset attribute) represents offset values.
Evaluation of the <reference> must yield a scalar area.

5.4.36 Options

Syntax:

<options attribute>:::
options{(constant) I «option specification)[,<option specification>] ...)}

<option specification>::: {variablelnon quicklsupportlmainlseparate static
I packed_decimal} - -

The <options attribute> is used to provide nonstandard information about
variables and entry values. Unless the keyword "constant" is specified, an item
declared with an <options a~tribute> represents entry values.

When an entry value represented by a name declared with the <options attribute)
with the keyword "variable" is invoked, it is assumed to designate a nonstandard
Multics entry that requires full run-time argument descriptions. An entry is
nonstandard if it accepts a variable number of arguments or allows a given
argument to have different <attribute)s each time the entry is invoked.
Standard PL/I <procedure>s described by this document never need this
<attribute>. The Multics Programmers' Manual identifies all Multics entries
that must be declared with the <options attribute> specifying "variable."

An <options attribute) specifying "variable" does not restrict the entry values
represented by the item; its only significance is to force all invocations of
the entry values represented by the item to have complete run-time argument
descriptions as required ~y nonstandard Multics entries.

If a <procedure statement> or <entry statement) contains an <options attribute>
specifying "variable", that <statement) identifies a nonstandard Multics entry
requiring complete run-time argument descriptions.

If the <procedure statement> heading an <external procedure> contains an
<options attribute> specifying "support", that <external procedure> is
considered to be a Multics runtime support <procedure>. This <option
specification> should only be used by systems programmers; its use affects error
messages printed by Multics. The keyword "support" may only be used with an
<options attribute> that is contained in the <procedure statement) heading an
<external procedure>.

7/79 5-26 AG94C

The <options attribute> may specify the keyword "non quick" if it is contained
within a <begin statement> or within a <procedure statement> that does not head
an <external procedure>. This <option specification> forces the compiler to
obtain a new stack frame for the program when the <block> headed by the
aforementioned <procedure statement> or <begin statement> is activated. If this
<option specification> is not used, the compiler may attempt to have this
<block>'s activation record share the stack frame of another <block>.

If the <procedure statement> heading an <external procedure> contains an
<options attribute> specifying "main", and the program is running within a run
unit, that <external procedure> is considered the main <procedure) of the run
unit. Since this only affects the semantics of the <return statement) and <end
statement>, this <option specification) should be used only to identify the
first non-system <procedure) of the run unit when it is important to affect the
semantics of the aforementioned <statement)s. The keyword "main" may be used
only with an <options attribute> that is contained in the <procedure statement>
heading an <external procedure).

If the <procedure statement) heading an <external procedure) contains an
<options attribute) specifying "separate static", the compiler produces an
object segment with a static section separate from the linkage section. Since
this degrades the efficiency of the object code, this <option specification)
should be used only with prelinked subsystems. The keyword "separate static"
may be used only with an <options attribute) that is contained in the <procedure
statement) heading an <external procedure>.

If the <procedure statement) heading an <external procedure) contains an
<options attribute) specifying "packed decimal", the compiler prints no warning
message for using unaligned decimal (packed decimal) variables. Otherwise a
warning message is printed if unaligned decimal variables are used. Release 25
of the compiler allocates unaligned decimal variables by packing 2 digits per
byte. Previous releases of the compiler allocated unaligned decimal at only 1
digit per byte. Specifying "packed decimal" in the <options attribute)
identifies <external procedure)s designed to be compiled with Release 25 or
later release of the compiler. In a future release, the need to specify
"packed decimal" in an <options attribute> on a <procedure statement> to I
suppress this warning' will be eliminated.

7/79 5-26.1 AG94C

This page intentionally left blank.

7/79 AG94C

The <options attribute> may specify the parenthesized keyword "constant" for
items that are not entry values. Specification of "constant" causes the
variable to be allocated in the text section of the object segment. The
completed <attribute set> of a variable for which "options(constant)" has been
specified must contain the <internal attribute>, the <static attribute>, and
either the <initial attribute> or the <structure attribute>. If the latter is
true, all nonstructure members of the structure must contain the <initial
attribute>. Except for its allocation, the variable is treated semantically as
any other internal sta~ic variable. It is an error to change the value of a
variable for which "options(constant)" has been specified during execution of a
program.

If the <options attribute> is contained within a <procedure statement> or I
<begin statement>, one or more <option specification>s must be specified.

If a 'completed (attribute set> contains an <options attribute>, it must contain
exactly one <options attribute> with either the parenthesized keyword
"constant", or with a parenthesized list of one or more <option specification>s.

5.4.37 Output

Syntax:

<output attribute>::: output

A file constant declared with the <output attribute> causes the file-state block
that it identifies to be opened with the <output attribute>. It is an error to
execute a <read statement>, <get statement>, <rewrite statement>, or <delete
statement> whose <file option> identifies a file-state block that has an <output
attribute). Refer to Section 11 for a discussion of input/output.

5.4.38 Parameter

Syntax:

<parameter attribute)::: parameteriparm

A name declared with the <parameter attribute> must appear as a parameter in a
<parameter list> of the <procedure> in which it is declared.

5.4.39 Picture

Syntax:

<picture attribute>::: {picturelpic}["<picture>"J

An item declared with the <picture attribute> represents character-string values
whose conversion to arithmetic values or other character-string values is
controlled by the <picture>. Refer to paragraph 8.2.i2 for a discussion of
picture controlled conversion and the syntax of <picture>s.

If a completed <attribute set> contains a <picture attribute>, it m4st contain
exactly one <picture attribute> with a <picture>.

11/77 5~27 AG94A

I

5.4.40 Pointer

Syntax:

<pointer attribute>::: pOinterlptr

An item declared with the <pointer attribute) represents pointer values.

5.4.41 P~~~~

Syntax:

<position attribute>::: (positionlpos}[«position»]

<position>::: <expression>

A name declared with the <position attribute> must be a defined variable
suitable for string overlay defining as described in paragraph 4.3.3.6.

If a completed <attribute set> contains a <position attribute>, it must contain
exactly one <position attribute> with a <position>.

5.4.42 Precision

Syntax:

<precision attribute>::: [<precision key>][«precision>
[,<scale factor>])]

<precision key>::: precisionlprec

<precision>::: <decimal integer>

<scale factor>::: [+l-]<decimal integer>

An item declared with the <precision attribute> represents arithmetic varues.

If the <precision key> is omitted, the <precision attribute> must immediately
follow either the <fixed attribute>, <float attribute>, <binary attribute>J
<decimal attribute>, <real attribute>, or the <complex attribute> .. If the
<precision key> is omitted, the remaining part of the <attribute> must be given.
If the <scale factor> is present, the item must have the <fixed attribute> and
not the <float attribute>.

The <precision> specifies the number of digits that is sufficient to express all
values represented by this item. The <scale factor> defines the position of the
decimal or binary point. The point is located k digits to the left of the
rightmost digit when the <scale factor> is positive, and -k digits to the right
of the rightmost digit when the <scale factor> is negative, where k is the value
of the '<scale factor> and must be in the range -128<k<127. The <precision> is
restricted to a nonzero value < 59 if the item has the <decimal attribute>, to a
nonzero value < 71 if the- item has the <binary attribute> and the <fixed
attribute>, and to a nonzero value < 63 if the the item has the <binary
attribute> and the <float attribute>:

When the <preCision attribute> is used in a <generic attribute>, it has an
extended syntax as shown in paragraph 5.4.24.

If a completed <attribute set> contains a <precision attribute>, it must co~tain
exactly one <precision attribute> with a <preCision>.

5-28 AG94

5.4.43 P~int

Syntax:

<p~int attribute>::: print

A file constant decla~ed with the <print attribute> causes the file-state block
that it identifies to be opened with the <print attribute>. A file-state block
with the <print attribute> writes data into its data stream as if it were a
p~inte~. Refer to Section 11 for a discussion of input/output.

5.4.44 ~

Syntax:

<real attribute>::: real

Unless it also has a <picture attribute>, an item or <literal constant> declared
with the <real attribute> represents a real arithmetic value or values. If the
item has a <picture attribute>, it represents character~string values as
described in paragraphs 4.1.6 and 5.4.41.

5.4.45 Record

Syntax:

<record attribute>::: record

A file constant declared with the <record attribute> causes the file-state block
that it identifies to be opened with the <record attribute>. A file-state block
with the <record attribute> can only be attached to a record data set ~nd cannot
be attached to a stream data set. Refer to Section 11 for a discussion of
input/output.

5.4.46 Reducible

Syntax:

<reducible attribute>::: reduciblelred

An item declared with the <reducible attribute> represents entry values. When
an entry value represented by a name declared with a <reducible attribute> is
invoked, it is assumed to designate a reducible function as described in
paragraph 6.11.

A <reducible attribute> does not restrict the entry values represented by the
item, its only significance 1s to possibly reduce the number of invocations of
the entry 7alues represented by the item.

5-29 AG94

5.4.47 Returns

Syntax:

<returns attribute)::: returns[([<returns descriptor)])]

<returns descriptor)::: <descriptor)[,<descriptor)] ...

<descriptor)::: <level)[<attribute set)]:
[<level>]<attribute set)

<attribute set)::: <attribute) ...

An item declared with a <returns attribute) represents entry values. An entry
value represented by a name declared with a <returns attribute) cannot be
invoked by the execution of a <call statement>.

A <returns attribute) does not restrict the entry values represented by the
item, its only significance is to limit the invocation of such entry values to
the evaluation of <function reference>s.

The <extent expression>s that appear in a <returns descriptor> must be <decimal
integer>s or asterisks. If given as <decimal integer)s, the extents of all
values returned by the function are the same. If given by asterisks, each
invocation of the· function can return a value whose extents may differ from the
previous invocation.

The <varying attribute>, <nonvarying attribute>, <aligned attribute), and
<unaligned attribute> can appear in a <returns descriptor>. The use of these
<attribute>s in a <returns descriptor> provides optimization information to the
compiler but has no effect on the semantics of the language.

The <returns descriptor> must produce a declaration that is identical to the
declaration produced by the <returns descriptor> of the <returns attribute)
written on the <procedure statement> or <entry statement> invoked by each
invocation of the entry values represented by the item.-

An <attribute sat} of a <doscriptc~> must be consistent. An <attribute set> is
consistent only if it can be transformed into a <descriptor set> as described in
paragraph 5.5.

If a completed <attribute set> contains a <returns attribute>, it must contain
exactly one <returns attribute> with a <returns descriptor).

5.4.48 Sequential

Syntax:

<sequential attribute>::: sequential:seql

A file constant declared with the <sequential attribute> causes the file-state
block that it identifies to be opened with the <sequential attribute>. A
file-state block with the <sequential attribute> selects the records of its
associated data set in the order in which the records are recorded, unless the
file-state block also has the <keyed attribute> in which case the input/output
<statement> may supply a character-string valued key that is used to select a
record from the data set. Refer to Section " for a discussion of input/output.

5-30 AG94

5.4.48a Signed

Syntax:

<signed attribute>::: signed

The <signed attribute> is a nonstandard <attribute> and its use makes programs
dependent on Multics PL/I. The <signed attribute> influences the representation
of values in storage. A signed arithmetic variable always contains storage to
represent the sign of its value.

If a generation of storage is to be shared or accessed by more than one name,
and one of those names is declared with the <signed attribute>, then none of the
other names may be declared with the <unsigned attribute>.

5.4.49 Static

Syntax:

<static attribute>::: static

A name declared with the <static attribute> is a variable whose storage class is
static. Refer to paragraph 4.3.2 for a discussion of storage classes.

5.4.50 Stream

Syntax:

<stream attribute>::: stream

A file constant declared with the <stream attribute> causes the file-state block
that it identifies to be opened with the <stream attribute>. A file-state block
opened with the <stream attribute> can be attached only to a stream data set and
cannot be attached to a record data set. Refer to Section 11 for a discussion
of input/output.

5.4.51 Structure

Syntax:

<structure attribute>::: structure

An item declared with the <structure attribute> must be a structure as described
in paragraph 5.2.3.1.3.

7/78 5-30.1 AG94B

This page intentionally left blank.

7/78 AG94B

5.4.52 Unaligned

Syntax:

<unaligned attribute)::= unaligned:unal

The <unaligned attribute) is used in an implementation-defined manner to
influence the representation of values in storage. In Multics PL/I, unaligned
nonvarying bit-string values, unaligned binary arithmetic values, or unaligned
pOinter values are aligned on bit boundaries. Unaligned nonvarying
character-string or decimal arithmetic values are aligned on 9-bit byte
boundaries.

When a generation of storage is to be shared or accessed by more than one name,
all names used to access the generation must have the same alignment
<attribute). Refer to paragraphs 4.3.1 and 4.3.3.

5.4.52a Unsigned

Syntax:

<unsigned attribute>::= unsigned:uns

The <unsigned attribute> is a nonstandard <attribute> and its use makes programs
dependent on Multics PL/I. The <unsigned attribute) influences the
representation of v~lues in storage. A packed unsigned arithmetic variable does
not contain storage to represent the sign of its value. An unsigned variable
may store only nonnegative values.

If a generation of storage is to be shared or accessed by more than one name,
and one of those names is declared with the <unsigned attribute>, then all of
the other names must be declared with the (unsigned attribute>.

7178 5-31 AG94B

5.~.53 Update

Syntax:

<update attribute>::: update

A file constant declared with the <update attribute> causes the file-state block
that it identifies to be opened with the <update attribute>. It is an error to
execute a <get statement> or <put statement> whose <file option> identifies a
file-state block that has an <update attribute>. Refer to Section 11 for a
discussion of input/output.

5.4.54 Variable

Syntax:

<variable attribute>::: variable

A name declared with the <variable attribute> is a variable.

5.4.55 Varying

Syntax:

<varying attribute>::: varying:var

An item declared with the <varying attribute> represents string values whose
lengths may be any value, k, such that O~k~n, where n is the <length> specified
in the <bit attribute> or <character attribute>.

5.5 Attribute Consistency

To check the consistency of a completed <attribute set> consider the <attribute
set> to be an ordered set of keywords formed by removing all parenthesized and
auxiliary parts of each <attribute>. Replace any abbreviated keyword by its
full keyword and replace all multiple occurrences of a given keyword by a single
)ccurrence of the keyword. Let the order of the keywords be the order implied
by these syntax rules. For- this discussion, consider the options keyword to
apply to the <options attribute> with one or more <entry value options>
specified.

If the resulting ordered set of keywords is not described by these syntax rules,
it is an inconsistent set and the program is in error. If it is desc~ibed by
these syntax rules and the constraints are satisfied, it is a consistent set.

Because file description attributes may be supplied during file opening as
described in paragraph 11.3, an <attribute set> containing one or more file
description attributes is considered a consistent set even though its file
description attributes are only a subset of those described by <consistent fi~e
description>. If the file description attributes of an <attribute set> are not
a subset of those described by <consistent file description>, the <attribute
set> is an inconsistent set.

The validity of <expression>s, <reference>s, or <decimal integer>s that are part
of an <attribute> are not conside~ed when determining the consistency of an
<attribute set>. Constraints of, that type are described in paragraph 5.4 where
the semantics of each (attribute> are given.

5-32 AG94

Each <literal constant set> must be produced by the declaration of a <literal
constant> and each <descriptor set> must be produced by the declaration derived
from a <descriptor>. A <named constant set>, other than an external entry
constant or file constant, must be produced by a declaration derived from a
<label prefix>.

Syntax:

7/78

<consistent attribute set>::= <conditi~n set>:<builtin set>:
<generic set>l<literal constant set>:
<named constant set>l<descriptor set>:
<variable set>

<condition set>::= external condition

<builtin set>::= internal builtin

<generic set>::= internal generic

<literal constant set>::= {<arithmetic>:bit:character}
constant

<named constant set>::= internal label constant[dimension]:
internal format constant:<scope><entry>constant:
<scope>file<consistent file description>constant

<descriptor set>::= <data type><alignment>[dimensionJ[member] [<sign type>] I
<variable set>::= variable<data type><alignment>[dimension]

<scope class>[initial] [<sign type>]

<data type>::= <arithmetic>:<string>:<entry>lstructure[likeJ:
pointer:offset:area:label[local]:format[locaIJ\file

<arithmetic>::: {fixedlfloat}{binaryldecimal}{real:complex}
precision

<string>::= picture[real:complex]:
{bitlcharacter}{varying:nonvarying}

<entry>::: entry[options]
{reducible returnslirreducible[returns]}

<alignment>::= alignedlunaligned

<scope>::: internal:external

<scope class>::: automatic internal:based internal:
static<scope>:controlled<scope>:parameter internal:
defined internal[position]:member internal

<consistent file description>::: <stream description>:
<record description>

<stream description>::: stream{input:output[print]
[environment]}

<record description>::: record{inputloutputlupdate}
{<sequential description>l<direct description>}[environment]

<sequential description>::: sequential[keyed]

<direct description>::= direct keyed

<sign type>::: signedlunsigned

5-33 AG94B

Constraints:

An <attribute set> of a member of a parameter structure or defined structure
cannot have an <initial attribute>.

An <attribute set> containing the <parameter attribute> or the
<defined attribute> may not contain an <initial attribute>.

An <initial attribute> cannot be given in the <attribute set> of a structure.

An <attribute set> containing the <signed attribute> must contain either the
<fixed attribute> or the <float attribute>.

An <attribute set>· containing the <unsigned attribute> must contain the <fixed
attribute>, the <binary attribute>, and the <real attribute>.

7/78

Note: The <options attribute> is consistent with entry unless "constant"
is specified, in which case it is consistent with static internal.

5-34 AG94B

SECTION 6

REFERENCES

The value and storage of a variab~e, the value of a named constant, the value
returned by a function, or the condition identified by a condition name is
represented in the text of an <external procedure> by a <reference> to a
declared name. A declaration establishes the meaning of a name within a given
region of the program known as the ~ of the declaration. Refer to Section 5
for a discussion of declarations and scope.

A <reference> is resolved by finding the declaration to which it refers. A
<reference> is evaluated by locating the generation of storage or value
represented by the declared name. A <reference> is resolved by the compiler and
is evaluated during program execution.

Syntax:

<reference>::: <simple reference>:
<subscripted reference> I
<structure qualified reference>:
<locator qualified reference>:
<function reference>

The meaning of a <reference) depends on the syntax of the <reference), the
<attribute>s of the declared name and the context in which the <reference>
occurs.

Evaluation of a (reference> that identifies a variable either: yields a
generation of storage of the variable, yields the current value stored in a
generation of storage of the variable, or yields an identification of the
variable's declaration. A (reference) yields a value unless it occurs in one of
the following contexts:

In the following contexts, a <reference) yields a generation of storage:

1. A <target) of an <aSSignment statement).

2. An <index) of a <multiple do).

3. An argument, passed by-reference, by a <call statement) or <function
reference>.

4. An argument to the "addr" built-in function, unless it identifies an
unallocated controlled variable.

5. A <reference> in a <string option> of a <put statement).

6. A <free reference) of a <free statement).

7. A <reference) in a <pseudo-variable>, other than a <pageno pseudo).

8. A <reference) in a <set option>, <in option>, <into option), <from option)
or <key to option>~

9. A <target) of a <get item> in a <get statement) or a <get data ref) in a
<get statement).

6-1 AG94

10. A <reference> in a <refer option> evaluated as the target of the assignment
of its evaluated extent.

In the following contexts, a <reference> is only an identification of its
declaration and yields neither a value nor a generation of storage:

1. An <allocation reference> in a <allocate statement> or <locate statement>.

2. An argument of the "size" or "allocation" built-in function, or the first
argument of the "convert" built-in function.

3. A <reference> to an unallocated controlled variable used as an argument to
the "addr" built-in function.

Except in these contexts, it is an error to reference a variable whose
generation of storage has not been allocated. It is always an error to
reference the value of a variable if no value has been assigned to the variable.
Refer to paragraph 4.3.2 for a discussion of storage allocation.

The order of evaluation of the components of a <reference> is undefined and any
program that depends on the order is in error.

A <reference>, R, contained in a declaration of X is resolved in the <block>
that immediately contains the declaration of X, and is evaluated when X is
referenced or allocated. R is evaluated as if it were referenced in the <block>
that immediately contains the <reference> to X or caused the allocation of X.

A <reference>, R, to a defined variable, X, whose <base reference> contains
isubs or asterisks is mapped as described ~n paragraph 4.3.3.4 or 4.3.3.5 during
evaluation of R. Any <reference>s in the <subscript>s of R are resolved in the
<block> that immediately contains R, but all <reference>s in the <base
reference> are resolved in the <block> that immediately contains X. R is
evaluated in its immediately containing <block>.

6.1 Simple References

Syntax:

<simple reference>::= <identifier>

6.2 Subscripted References

Syntax:

<subscripted reference>::= <identifier>«subscript>
[,<subscript>] ..•)

<subscript>::= <expression>:.

Each <expression> must be a scalar valur: suitable for conversion to a
fixed-point, binary, real, integer as described in Section 8. The number of
<subscript>s must be equal to the number of dimensions declared for the name.
Refer to paragraph 4.2 for a discussion of array data, and to paragraph 5.4.15
for a description of the <dimension attribute>.

6-2 AG94

6.3 Cross-Section References

A <subscripted reference> containing one or more asterisk <subscript>s is a
cross-section <reference>. It is a <reference> to the array formed by the
planes, indicated by asterisks, of the array identified by the reference. The
number of dimensions of the array is the number of asterisks in the reference.

A cross-section <reference> containing only asterisk <subscript>s is equivalent
to a <reference> to the entire array.

Cross-section <reference>s, other than those equivalent to a <reference> to the
entire array, are usually <rererence>s to unconnected arrays. As such they
cannot be used as the argument to the "addr" built-in function and cannot be
passed as arguments to array parameters, unless the parameters are declared with
asterisk bounds. Otherwise, a cross-section <reference> can be used any place
in a program that an array <reference> is permitted. Refer to paragraph 4.3.1.3
for a discussion of unconnected arrays.

Multics PL/I requires that parameters that receive unconnected arguments be
declared with asterisk bounds~ Henceforth in this document, the word "array"
should be taken to include array values of cross-section <reference>s.

Example:

declare A(7,5), B(5,10), C(5);

A(I,·) : B(*,3)+C(*);

This <statement> computes a one-dimensional array of five values by adding the
values of the 3rd column of B to the values of C and then assigns them to the
Ith row of A. Note that a <reference> to C(*) is equivalent to a <reference> to
C.

6.4 Structure Qualified References

The name of a member of a structure can have a scope which overlaps another
declaration of the same name. To resolve ambiguity of <reference>s to such
names, the <reference> must be qualified by <containing reference>s to one or
more of its containing structures. Refer to paragraph 4.2 for a discussion of
structure data and to paragraph 5.2.3.1.3 for a description of structure
declarations.

Syntax:

<structure qualified reference>:::
{<containing reference>~} ••• <member reference>

<containing reference>::: (simple reference> I
<subscripted reference>

<member reference)::: (simple reference>i
<subscripted reference)

Examples:

A.B.C
X(I).Y.Z(5,K)
NODE.ELEMENT

The rightmost <reference> identities the variable being referenced. It is
contained within the _struct~re identified by the immediately preceding
<containing reference), which in turn is contained within the structure
identified by the immediately preceding <containing reference), etc.

6-3 AG94

The rightmost <reference> is said to be ~ qualified if it is qualified by a
<containing reference> to each of its containing structures. A name declared at
level n in a substructure has n-1 <containing reference>s if it is fully
qualified. A <simple reference> or simple <subscripted reference> to a name
declared by a level-one declaration is considered a fully qualified <reference>
to that name. A fully qualified <reference> is never ambiguous.

The rightmost <reference> is said to be partially qualified if it has fewer
<containing reference>s than it has containing structures.

The <subscript>s used in a <structure qualified reference> do not have to appear
immediately following the names to which they are to apply. As long as the
order of the <subscript>s is preserved, the <subscript>s may be moved to the
left or the right and written after any of the names in the <reference>. Use of
this feature obscures the meaning of a program and should be avoided.

The number of <subscript>s must equal the number of dimensions of the referenced
name including all inherited dimensions.

Example:

declare 1 S(3),
2 A(4),
2 Bj

A <subscripted reference> to A must contain two <subscripts>, and <subscripted
reference>s to S or B must have one <subscript>.

Asterisk <subscript>s may be used to refer to cross-sections of arrays of
structures or array structure members.

Example:

declare 1 S(3),
2 A(4),
2 B;

declare i A,
2 Y(5);

The following are all valid cross-section <reference>s:

S(K) .A(*) S(*).A(*) S(*) .B S(*)

6.5 Reference Resolution and Ambiguity

A declaration is applicable to a <structure qualified reference> if it is a
declaration of a structure member some or all of whose containing structures
have the same names and the same order as the <containing reference>s of the
<structure qualified reference>. A declaration is applicable to a <simple
reference> or <subscripted reference> if it is a declaration of the name given
in the <simple reference> or <subscripted reference>.

Ref(;;~'ences are resolved by looking for an applicable declaration in the <block>
that immediately contains the <reference>. If no applicable declaration exists
in that <block>, the next containing <block> is searched until a <block>
containing an applicable declaration is found. The <reference> is in error if
no applicable declaration exists in a containing <block>.

If only one applicable declaration exists in the <block> containing the first
applicable declaration, the <reference> identifies that declaration. However,
if the <block> contains more than one applicable declaration, the <reference>
must be a fully qualified <reference) to one of the declarations in that
<block>, and is resolved to identify that declaration. If it is not a fully
qualified <reference> to one of the declarations in that <block>, the
<reference> is ambiguous and in error.

6-4 AG94

The presence or absence of <subscript) lists or <argument list)s does not affect
the resolution of <reference)s and cannot resolve otherwise ambiguous
<reference>s:

6.6 Locator Qualified References

Syntax:

<locator qualified reference)::: <locator qualifier)-~
<based reference)

<locator qualifier)::: <reference)

<based reference>::: <Simple reference):
<subscripted reference):
<structure qualified reference)

The <locator qualifier) must be a <reference) to a scalar locator variable or
scalar locator-valued function. Its value identifies a generation of storage
whose data and aggregate type are described by the declaration identified by the
<based reference). Refer to paragraph 4.3.2.5 f~r a full discussion of based
variables.

It is an error to use a <locator-qualifier) to qualify a <reference) to a
nonbased variable. Implicit qualification derived from the <based attribute) or
explicit qualification by an arrow operator is required for all <reference)s to
based variables except the <allocation reference) of an <allocate statement> or
<locate statement), and the <reference) of a <refer option).

Examples:

P->X
S.ITEM(I,J)-)TABLE.ENTRY
F(X+Y)-)GAMMA(K)
HEAD-)LIST.NEXT-)LIST.VALUE

The last example shows a based <locator qualified reference), HEAD-)LIST.NEXT,
used as the <locator qualifier) of LIST. VALUE.

6.7 Function References

The evaluation of a <function reference) results in the invocation of an entry
value. The value of the <function reference) is the value returned by the
invoked entry.

The syntax of a <function reference) differs from that of a <subscripted
reference) only when the <function reference) has multiple or empty <argument
list)s. In order to recognize a <function reference) with a single, nonempty,
<argument list), the compiler examines the <subscripted reference). If the
declared name identified by the <subscripted reference) has no dimensions, the
(subscripted reference) is a <function reference); otherwise, it is a
<subscripted reference). '.

A <structure qualified reference> containing two or more <subscripted
reference)s is examined to determine if it is a <function reference). If the
declared name identified by the <structure qualified reference) has n dimensions
then the leftmost n <subscript>s are considered part of the <structure qualified
reference), and any other parenthesized lists must follow the rightmost name.
If a parenthesized list follows the <structure qualified reference) it is an
<argument list) of tha <function reference). Arguments and <subscript)s cannot
appear in the same parenthesized list.

6-5 AG94

Syntax:

<function reference>::: <entry reference><argument list>

<entry reference)::: <reference)

<argument list)::: ([<expression)[,<expression)] ...])

Evaluation of the <entry reference) must yield a scalar entry value. A
<function reference) is distinguished from a <reference) to an entry value by
the presence of an <argument list). The <argument list) is empty only if the
entry has no parameters.

Examples:

declare F entry() returns(ptr);
declare G entry(fixed) returns(bit(l»;

A <reference) to F is a <reference) to the entry value of F and is not a
<function reference). A <function reference) to the value returned by the
invocation of F is written as F(). Similarly a <function reference) to G is
written as G(K) while a <reference) to the entry value of G is written as G.

Since the entry value may itself be a <function reference), it is possible to
have multiple <argument list)s.

Example:

declare F entry(ptr) returns(entry{fixed) returns(float»;

A <reference) to F(P)(I) is a <function reference) which returns a
floating-point value. A <reference> to F(P) is a <function reference) which
returns an entry value. A <reference) to F is a <reference) to the entry value
of F and does not invoke F.

The entry value may be any <reference) including <locator qualified reference)s
and <structure qualified reference)s with or without <subscript)s. The only
restriction on the <reference) is that it must yield a scalar entry value.

Example:

declare F(5,6) entry(fixed,fixed) returns(ptr);

A <reference) to F(I,J) is a <reference) to the entry value of the (I,J) element
of the array F. A <reference) to F(I,J)(K,L) is a <reference) to the pOinter
value returned by the invocation of the (I,J) element of the array F.

Example:

declare 1 S,2 B(N),3 E entry() returns(char{*»;

A <reference) to S.B(I).E or any equivalent <reference) such as S.B.E(l),
S(l).B.E, or S.E(l), are all <reference)s to the entry value of E and are not
<reference)s to the value returned by E. S.B(l).E(), S.B.E(l)(), or S(l).B.E()
are <function reference)s that invoke E.

The declaration of an entry variable or constant must contain an <entry
attribute) giving <descriptor)s ~f all parameters, and a <returns attribute)
describing the return value if the entry is to be invoked as a function. Refer
to Section 5 for a discussion of declarations.

6-6 AG94

6.8 Built-in Function References

A built-in function is an intrinsic part of the PL/I language. All <reference)s
to built-in function names are <function reference)s in that they refer to the
value returned by the function. A built-in function name has no entry value and
cannot be used in contexts that require entry values. Built-in functions that
take no arguments may be referenced with or without an empty <argument list>.
Refer to Section 13 for a complete discussion of all built-in functions.

6.9 Generic References

If the name identified by an <entry reference) in a (function reference) Or in a
<call statement) is declared with a <generic attribute), the <entry reference>
is a generic reference. The compiler transforms a generic reference into an
<entry reference> to one of the entries specified by the <generic attribute>.
The proper entry is selected by matching the <alternative>s specified by the
<generic attribute) against the arguments of the generic reference. For
descriptive convenience the syntax of th~ <generic attribute> is repeated here.
Refer to Section 5 for a discussion of declarations.

Syntax:

<generic attribute)::: generic[«alternative list»]

<alternative list>::: <alternative)(,<alternative>] •••

<alternative>::: <entry reference)when([<selector>])

<entry reference)::: <reference)

<selector>::: <arg selector>(,<arg selector>] •••

<arg selector)::: ·l«level>]<attribute set>:
<level)«attribute set)]

<attribute' set>::: <attribute> ...

The <arg selector>s of the leftmost <alternative) are matched against the
arguments of the generic reference. An asterisk <arg selector> matches any
argument; otherwise, an <arg selector> only matches an argument if the argument
has every <attribute> found in the <arg selector>. The argument's precision is
considered to match the <argo descriptor> only if it lies within the range
specified by the <precision attribute> given in the <arg selector>. An asterisk
<extent expression> is considered to match any <extent expression> of the
argument.

A structure parameter of a generic entry must be represented by a set of two or
more <arg selector>s containing <level>s. In this case, the set of <arg
selector>s must satisfy the constraints on <level>s given for <descriptor>s of
an <entry attribute> in paragraph 5.4.17. If an <arg selector> does not
represent a structure parameter, it cannot have a <level>.

A structure argument matches a set of <arg selector>s with <level>s only if the
structure and each member of the structure match the corresponding <arg
selectc:'> in the set. If all <arg selector>s of an <al ternati ~re> match the
arguments of the generic reference, the generic'reference is transformed into an
<entry reference> to the <entry reference> given by that <alternative>;
otherwise, the next <alternative> is tried. The program is in error if no
<alternative> matches the generic reference. A generic reference with no
arguments is transformed into the leftmost <alternative> that has no <arg
selector>s.

6-7 AG94

Example:

declare F generic(F1 whenCbinary,pointer),
F2 when(decimal,pointer));

declare F1 entry!fixed binary,pointer) returns(fixed);

declare F2 entry(fixed decimal,pointer) returns(fixed);

declare X fixed binary, Y pointer;

A = F(X,Y);

In this example, the generic reference F(X,Y) is transformed into the <function
reference> Fl(X,Y).

6.10 Parameters and Arguments

An argument is an <expression> used in the <argument list> of a <call statement>
or <function reference>. A parameter is a name declared in the invoked
procedure and used by the invoked <procedure> to reference an argument. The ith
argument in an <argument list> corresponds to the ith parameter specified in the
·<parameter list> of the invoked entry. The correspondence between an argument
and a parameter lasts until the block activation that established the
correspondence is deactivated by a <return statement> or nonlocal goto.

6.10.1 Argument Passing By-value or By-reference

When an argument is passed by-value, it is evaluated and assigned to a unique
generation of storage in the calling <procedure> and that generation is
associated with the parameter. Since the generation of storage associated with
the parameter is not the generation occupied by the original argument,
assignments of values to the parameter by the invoked procedure do not affect
the value of the argument in any way. Similarly, changes made to the value of
the original argument; while the block activation created by the invocation of
the entry is still active, do not affect the value of the parameter.

When an argument is passed by-reference, its generation of storage is associated
with the parameter. The parameter thus shares the same generation of storage as
the original argument and either can be used to assign values to the generation.

An argument is passed by-reference only when it is a <reference> to a variable
whose <attribute>s and extents match the <attribute>s and extents declared for
the parameter. The following <attribute>s must match:

7/78

<fixed attribute>, <float attribute>, <binary attribute>, <decimal
attribute>, <real attribute>, <complex attribute>, <precision attribute>,
<bit attribute>, <character attribute>, <picture attribute>, <pointer
attribute>, <offset attribute>, <area attribute>, <label attribute>,
<format attribute>, <entry attribute>, <file attribute>, <varying
attribute>, <nonvarying attribute>, <aligned attribute>, <unaligned
attribute>, <signed attribute>, <unsigned attribute>.

The <parameter descriptor li~t> of an <entry attribute> and the <reference>
of an <offset attribute> are not involved in the matching process.

Attributes not included in the above list are not considered in the
matching operation, but if the argument is an array, then the <dimension
attribute> of the parameter must give the same dimensionality as the array
argument.

6-8 AG94B

It is an error to pass an unconnected array by-reference to a parameter declared
with constant extents.

If an argument is a <reference> to a variable that does not match the parameter,
it cannot be passed by-reference and is passed by-value. A <literal constant>,
a <reference> to a named constant, a <reference> enclosed in parentheses, and a
<reference> to an isub-defined array (not scalar elements of an isub-defined
array) are considered <expression>s and are passed by-value.

6.10.2 Argument Conversion and Promotion

The evaluation of an argument passed by-value includes the conversion and
promotion necessary to force it to conform to the data type and aggregate type
of the parameter. If the argument cannot be converted or promoted to conform to
the parameter the program is in error. Refer to Sections 8 and 9 for
discussions of conversion and promotion.

6.10.3 Asterisk and Constant Extents of Parameters

A parameter may be declared with either constant or asterisk extents. (An
extent is an array <bound>, string <length>, or <area size». If a parameter is
declared with asterisk extents the asterisks are replaced by the extents of the
argument that corresponds to the parameter. This replacement occurs each time
the parameter is associated with an argument and holds only so long as the
parameter remains associated with the argument.

For the purpose of determining whether an argument is to be passed by-value or
by-reference, an asterisk extent is considered to "match" any extent of the
argument.

An array parameter that corresponds to an unconnected array argument must be
declared with asterisk bounds. (Most cross-section <reference>s refer to
unconnected array values.)

If a parameter is declared with constant extents, only arguments that have
identical constant extents are considered to match the parameter.

6.10.4 Storage of a Parameter

Since the generation of storage associated with a parameter is always supplied
by its corresponding argument, parameters have no <initial attribute> and are
never allocated a generation of storage. The scope of a parameter is always
internal to the <block> in which the name appears as a parameter.

It is an error to reference a parameter that is not associated with an argument.

6.11 Reducibility of Functions

If each invocation of an entry produces no Side-effects, returns a value that
depends only on the values of the arguments passed to that invocation, and
invokes only reducible functions, the entry is a reducible function. A
side-effect is any change in the value of any variable, file-state block, or
data set known outside of the invoked entry or any of its dynamic descendents.
Any entry that is not reducible is irreducible.

6-9 AG94

During evaluation of an <expression> the order of evaluation of <reference>s to
irreducible functions is not defined, but each such <reference> is evaluated. A
<reference> to a reducible function might not be evaluated if the compiler
detects thac such an evaluation would yield the same value as some previous
evaluation. A <reIerence> to a reducible function might be evaluated before the
<statement> in which it is written is executed, but a <reference> to an
irreducible entry is always evaluated during the execution of the <statement> in
which it is written. Refer to paragraph 5.4 for a discussion of the <reducible
attribute> and <irreducible attribute>.

6-10 AG94

SECTION 7

EXPRESSIONS

There are three kinds of <expression>s: primitive expressions, prefix
expressions and infix expressions. A orimitive expression is a <reference> or a
<literal constant>, a orefix expression is a prefix operator preceding one
operand, while an infiA expression is an infix operator between two operands.

An operand is .one of the three kinds of <expression>s.

The value yielded by an <expression> has a data type and an aggregate type.
Since <expression>s always yield values of the same data type and aggregate
type, except for changing array-extents, they are characterized by their data
type and aggregate type, and are referred to as: scalar <expression>s, array
<expression>s, scalar pointer <expression>s, etc.

The data type of an <expression> is one of the data types described in paragraph
4.1, and the aggregate type is one of the aggregate types described in paragraph
4.2.

7.1 EYaluation of Exoressions

7.1.1 Eyaluation of Primitive Expressions

Since primitive expressions contain no operators, their evaluation consists
solely of evaluating a <reference> or a <literal constant>.

The aggregate type and data type of the value yielded by evaluation of a
primitive expression are determined by the declaration of the name identified by
the <reference> or the declaration of the <literal constant>. If the primitive
expression is a <function reference>, the aggregate type and data type are the
aggregate type and data type of the value returned by the function.

The value yielded by evaluation of a primitive expression is the value of the
variable or constant identified by the <reference> or <literal constant>. If
the primitive expression is a <function reference>, the value of the evaluated
primitive expression is the value returned by the function.

7.1.2 ~valuatiQn of Prefix Expressions

The evaluation of a prefix expression consists of:

1. The evaluation of the operand.

2. The conversion of the value of the evaluated operand to the data type
required by the operator. If the operand is an aggregate, each scalar
component is converted to the required data type.

7-1 AG94

3. The application of the operator to the converted value of the operand. If
the operand is an aggregate, the operator is applied to each ,scalar
component of the aggregate.

The result of the evaluation of ~ p~efix expression is a value whose aggregate
type is the aggregate type of the evaluated operand. The data type of each
scalar component of the result is the data type of the corresponding scalar
component of the converted operand.

7.1.3 Evaluation of Infix Expressions

The evaluation of an infix expression consists of:

1. The evaluation of both operands.

2. The promotion of the two operands to the highest common aggregate type as
described in Section 9.

3. The conversion of the operands to data types acceptable to
If the operands are aggregates, corresponding scalar
converted to the required data types.

the operator.
components are

4. The application of the operator to the converted values of the promoted
operands. If the operands are aggregates, the operator is applied to each
pair of corresponding scalar components of the operands.

The result of the evaluation of an infix expression is a value whose aggregate
type is the common aggregate type of the promoted operands. The data type of
each scalar component of the result is determined by the data types of the
corresponding scalar components of the converted and promoted operands.

7.1.4 Order of Evaluation

The order of evaluation of an <expression> is determined by the precedence of
the PL/I operators and by the parenthesization of subexpressions.

Within a pair of parentheses, operators are evaluated according to their
precedence. Operators of higher precedence are evaluated before operators of
lower precedence.

Operators of equal precedence are evaluated from left-to-right, except for the
exponentiation and prefix operators which are evaluated from right to left.

The precedence of PL/I operators is:

Highest
*.
* I

prefix + prefix-

infix + infix-

Lowest

I I
I I

= = < ~< > ~> <= >=
&

The order of <expression> evaluation is determined by the precedence of
operators and by parenthesization. However, within these constraints, the order
of evaluation is not defined. A program that depends on any of the following is
in error and the results of its execution are not defined:

1. The order in which operands are promoted to higher aggregate types.

7-2 AG94

2. The order in which operands are converted to different uata types.

3. The order in which the scalar components of aggregate operands are
converted and operated upon by infix or prefix operators.

4. The order in which <basic expression)s are evaluated.

5. The frequency with which a reducible <function reference) is evaluated. An
irreducible <function reference) is evaluated once for each occurrence of
the <function reference) in the text of an <external procedure) except as I
explained in 7.1.5.

7.1.5 Q~1~~~~ Evaluation

If the result of an operator can be determined without evaluation of one or more
of its operands and no operand contains irreducible <function reference>s, the
operands are not necessarily evaluated.

A program that depends on the full evaluation of all operands is in error and
the result of its execution are undefined. Similarly, a program that depends on
an operand not being evaluated is in error.

The f9110wing are invalid:

if p=null : p->x=5 then
if x=O : y/x then

If the value of an <expression) or <reference) does not depend on the value of a I
contained <function reference>. then that <function reference) is not
necessarily evaluated.

7.1.6 Expression Evaluation and Conditions

The <on statement> and <condition prefix) allow a program to detect and respond
to various states of the executirrg program known as conditions. Refer to
Section 10 for a full discussion of conditions, signals and <on unlt)s.

In general, the order in which conditions are detected and the frequency with
which they occur are not defined. This is due to the fact that the order of
<expression) evaluation is not strictly defined.

Conditions that are signalled during <expression) evaluation cause the
evaluation to be suspended and control to enter an <on unit>.- In most cases,
the program is in error if the <on unit) returns control to the point where the
condition was detected. Refer to the description of each condition in paragraph
10.4 to see if a particular <on unit> can return control.

An <on unit) entered as a result of a condition signalled during <expression)
evaluation cannot access variables that are assigned values by the interrupted
<statement). Similarly, the <on unit) cannot assign a value to any generation
of storage accessible at the pOint where the signal occurred, nor can it
allocate or free such a generation.

Example:

on zerodivide begin;

.
end;

etB = 0;
e = AlB + AlB

11/11 1-3 AG9141

In this example:

1. the value of C is not defined upon entry to the <on unit).

2. if the <on unit) does a normal return the result of the program is
undefined, regardless of whether or not the <on unit) assigned a new value
to B.

3. the number of times the zerodivide condition is signaled is not defined,
but at least one will be signalledo

7.2 E~!~ Syntax of Expressions

The syntax given in this section defines the precedence of operators and an
order of evaluation of <expression)s. The actual order of evaluation may differ
from the order expressed by these syntax rules only in the following cases:

1. If the result of an operator can be determined without the evaluation of
one or more of its operands, and no operand contains an irreducible
<function reference), the operands need not be evaluated.

2. The order of evaluation of the <basic expression)s contained within an
<expression) is not defined.

Syntax:

<expression)::= <expression seven):
<expression)l<expression seven)

<expression seven)::= <expression six):
<expression seven)&<expression six)

<expression six)::= <expression five):
<expression six){=:A=:~IA~:~::~:A~:~=}<expression five)

<expreS6ion five)::= <expression four):
<expression ftve>ll<expression four)

<expression four)::= <expression three):
<expression four){+:-}<expression three)

<expression three>::: <expression two):
<expression three){-;/}<expression two)

<expression two)::: <basic expression):<simple expression):
<parenthesized expression):<expression one)

<expression one)::: {<basic expression):
<parenthesized expression)}··<expression two)

<simple expression)::: {+I-IA}<expression two)

<parenthesized expression)::= «expression»

<basic expression)::: <reference>l<literal constant>l<isub)

Note that an <isub) is valid only in <expression)s that are part of the <base
reterence> ot a <defined attribute).

7-4 AG94

7.3 Operators

7.3.1· Arithmetic Operators

The prefix arithmetic operators are:

+ plus
minus

The infix arithmetic operators are:

+ add
subtract

• multiply
/ divide
•• exponentiate

7.3.1.1 Operand Conversion for Arithmetic Operators

Ari thmetic operators require arithmetic operands and force conversion of their
operands. The conversions are performed according to the rules given in Section
8, and the target for the conversions is given by the following rules:

1. A character-string operand, X, is converted to an arithmetic value, X',
. where the data type of X' is the data type that a fixed-point, decimal,
real value of precision (59,0) would have been converted to, had it appeared
in place of X.

2. A bit-string operand, Xt is converted to an arithmetic value, Xt, where the
data type of X' is the data type that a fixed-point, binary, real value of
precision (71,0) would have been converted to, had it appeared in place of
X.

3. If the operands of an arithmetic infix operator differ in mode, base, or·
type, the operands are converted to the target mode, base, and type given
by the following rules. *'

3/81

Th~ target attributes are: compl ex, if the modes differ; bi nary, if the
bases differ; and floating-point, if the types differ; otherwise, the target
has the common mode; base; or type. The precision of the two operands may
differ without causing any conversion. If a conversion occurs due to a
difference in mode, base or type, the precision of the converted operand is
given by the rules in paragraph 8.2.10.

The exponentiation operator is an exception to these rules. See Section
7.3.1.2.3.

Example:

declare A character(S), B float binary(27);

C = A+B;

In this example, A is converted as if it were a real, fixed-point, decimal,
integer of precision (59,0). The target mode is real, the target base is
binary, and the target type is floating-point. Because B already has the
target attributes, it is not converted, but A is converted to a real,
floating-point, binary value of precision (63).

7-5 AG9ltE

7.3.1.2 Results of Arithmetic Operators

After" the operands have been converted, the operation is performed. The result
is an arithmetic value whose type, base, mode and precision are determined by
the converted operands and the operator as described in the following sections.

A decimal floating-point result of precision (p) contains only the most significant
p digits of the true arithmetic result rounded at the Cp.l)th digit.

A binary floating-point result of precision (p) contains the most significant n
digits of the true arithmetic result, where n is 27 if p<27 and n is 63 if p>27.
When the final result of the evaluation of an <expression> is assigned to a
variable or to a generation of storage to be passed as an argument, n significant
digits are stored if the target is unpacked, but p significant digits are stored
if the target is packed. In the latter case, excess low order digi ts are truncated.

The precision rules of fixed-point operations are such that no high order digits
of the true arithmetic result are lost. Unless the operation is division or the
result precision has reached the limits of the machine (59 for decimal or 71 for
binary), no low order digits of the true arithmetic result are lost. In the
latter case, the precision rules given below indicate exactly when low order
digits are lost.

7.3.1.2.1 Prefix Operations

The prefix operators plus and minus yield a result having the type, base, mode
and precision of the converted operand. The value of the resul t of a plus
operator is the value of the converted operand. The value of the result of a
minus operator for a real operand is the value of the converted operand with its
sign reversed. The value of the result of a minus operator for a complex operand
is the value of the converted operand with the signs of the real and imaginary
parts reversed.

7.3.1.2.2 Infix Operations

If the operation is exponentiation, see Section 7.3.1.2.3.

If the converted operands are floating-point values, the result is a floating-point
value. The base and mode are the common base and mode of the converted operands,
while the precision of the result is the greater of the precisions of the two
operands.

If the converted operands are fixed-point values, the resul t depends on the
o~erator and th~ ~onve~ted ~pe~and~ ~e d~sc.ibc~ by th~ fullowing:

lI8t

Let N be 71 if the common base is binary and let N be 59 if the common base
is decimal.

Let (p,q) be the precision of the first operand, and (r,s) be the precision
of the second operand.

If the operation is addition or subtraction the result is a fixed-point
value whose base and mode are the common base and mode of the converted
operands. The precision of the result is:

(min(N,max(p-q,r-s).max(q.s).l),max(q,s»

The value of the result 1s the sum or the difference of the two operands.

1-6 AGC]4£

If the operation is multiplication, the result is a fixed-point value whose
base and mode are the common base and mode of the converted operands. The
precision of the result is:

(min(N,p+r+1),q+s)

The value of the result is the product of the two operands.

If the operation is division, the result is a fixed-point value whose base
and mode are the common base and mode of the converted operand s. The
precision of the result is:

(N,N-p+q-s)

The value of the result is the quotient of the first operand divided by the
second. If the quotient exceeds the precision of the result, the least
significant digits of the quotient are truncated to form the result. Note
that the result always has the maximum precision allowed by the common
base, and that as many fractional digits are preserved as is allowed by the
machine. Use of these values as operands of other fixed-point computations
can easily lead to situations that produce the fixedoverflow or size conditions.

Example:

1/3+25

This example produces fixedoverflow because the division yields 0.333 ••. 3
and when the addition aligns the decimal points, the sum exceeds the limit,
N, of the machine.

The divide built-in function described in paragraph 13.2.8 can be used to
control the precision of the result of fixed-point division.

1.3.1.2.3 Exponentiation

For the exponentiation operator, determine the target attributes and convert the
operands as follows:

If the first operand is fixed-point, let (p,q) be its preclslon. Let N be 71 if
the base of the first operand is binary, and let N be 59 if the base of the
first operand is decimal.

1. If the first operand is fixed-point, the second operand is a fixed-point
(real constant) with a scale factor of zero, the value, E, of the second
operand is positive, and (p*1)*E-1<N, then the result is fixed-point with
the base and mode of the first operand. The precision of the result is:

(p+1)*E-·1 ,q*E)

No conversion is performed on the operands.

3/81 1-1 AG94E

•

2. If the second operand is real, fixed-point, with precision (r,O), and case
1 does not apply, then the result is floating-point with the base and mode
of the first operand. The first operand is converted to floating-point.
The precision of the result is the precision of the converted first operand.
No conversion is performed on the second operand.

3. If neither case 1 nor case 2 applies, then the result is floating-point.
The base and mode of the result are determined according to the target
attribute rules in section 7.3.1.1. The operands are converted to the
target mode, base, and type. The preciSion of the result is the greater of
the preciSions of the converted operands.

The result of the exponentiation operation is normally a machine-dependent
approximation to X raised to the power Y, where X is the first operand and Y is
the second operand. However, there are cases for which X·*Y is defined as
follows:

If X

If X

If Y

and Yare real values:

If ;«0 and neither case 1 nor case 2 above applies, the error condition is
signalled •

If ;(=0 and y~o, the error condition is signalled.

If X=O and DO, the result is o.

If X>O and Y=O, the result is 1.

is complex and Y is real:

If X=O and Y)O, the result is o.

If X=O and Y~O, the error condition is signalled.

If X~O and Y=O, the result is 1.

is a complex value:

If X=O, the real part of DO, and the imaginary part of Y=O, the result is
o.

If X=O and if the real part of Y<O or the imaginary part of Y~O. the error
condition is signalled.

If X~O and Y=O, the result is 1.

1.3.2 Bit-string Operators

3/81

complement
inclusive or

&: and

1-8 AG94E

7.3.2.1 Operand Conversion for Bit-string Operators

Bit-string operators require bit-string operands and force conversion of their
operands to bit-strings according to the rules given in Section 8. The lengths
of the converted operands are defined by the following rules: .

A character-string operand is conv~rted to bit-string of the same length as
the character-string.

An arithmetic operand is converted to a bit-string whose length is defined
in paragraph 8.2.8.

7.3.2.2 Results of Bit-string Operators

The Fesult of the complement operator is a bit-string value whose length is the
length of the converted operand. The result value is the complement of the
value of the converted operand (each 1 becomes a 0, and each 0 becomes a 1).

The bit-string infix operators produce a bit-string value whose length is the
maximum of the lengths of the two converted operands. Prior to evaluation of
the operator, the shorter operand is effectively padded on the right with zero
bits until it is the length of the longer operand. Each bit of the result is
developed by performing the indicated logical operation on the corresponding
bits of the two operands. The following table defines the logical operations
for a given bit.

3/81 7-8.1 AG94E

This page intentionally left blank.

3/81 AG94E

First Second Result Result
Operand Operand of And of Or

1 0 0 1
1 1 1 1
0 0 0 0
0 a 1

7.3.3 Concatenate Operator

The concatenate operator is II. It is an infix operator that yields either a
bit-string or character-string.

7.3.3.1 Operand Conversion for Concatenation

If both operands are bit-strings, no conversion occurs and the result is a
bit-string; otherwise, the result is a character-string and both operands are
converted to character-strings according to the rules given in Section 8. The
lengths of the converted operands are defined by the following rules:

An arithmetic operand is converted to character-string according to the
conversion rules given in paragraph 8.2.7.

A bit-string operand is converted to a character-string whose length is the
length of the bit-string.

7.3.3.2 Result of ConcatenAtion

The result is a string whose type is the common type of the converted operands
and whose length is the sum of the lengths of the converted operands.

The value of the result is the converted value of the first operand concatenated
with the converted value of the second operand.

7.3.4 Relational Operators

The relational operators are:

= equal
= not equal

< less than
"'< not less than
<= less than or equal

) greater than
"'> not greater than
>= greater than or equal

7-9 AG94

7.3.4.1 Operand Conversion for Relational Operators

Comparison is performed between values of the same data type. If the operands
are of different types, they are converted according to the following rules:

If either operand is arithmetic or declared with a <numeric picture), the
operands are converted as if the operator were an arithmetic infix operator.

If one operand is a character-string and the other is a bit-string, the
bit-string· is converted to a character-string whose length is that of the
bit-string.

If one operand is an offset value and the other is a pointer value, the offset
value is converted to a pointer value.

All conversions are performed according to the rules given in Section 8. No
other conversions are performed.

7.3.4.2 Types of Comparison

Comparison is defined for all data types except area data. Except for those
cases given in paragraph 7.3.4.1, both operands must be of the same data type.

Character-string, bit-string, and real arithmetic values may be compared using
any relational operator. Complex arithmetic, label, format, entry, pOinter,
offset, and file values can only be compared using the equal and not equal
operators.

Arithmetic values and character-string values declared with a <numeric picture)
are compared algebraically.

Character-string values, other than those declared with a <numeric picture), are
compared by extending the shorter operand to the length of the longer operand by
padding the shorter on the right with blank characters. The two strings are
then cornpar~d from left-to-right using the ASCII collating sequenoe as giveu ~n
the MPM Reference Guide.

Bit-string values are compared by extending the shorter operand to the length of
the longer operand by padding the shorter on the right with zero bits. The two
operands are then compared from left-to-right with 0 comparing less than 1.

Label values compare equal only when they identify the same <statement) and the
same block activation record. Refer to Section 3 and paragraph 4.1. Note that
a label value that identifies a <label prefix) on a <null statement~ does not
compare equal to a label value that identifies any other <statement>.

Format values compare equal only when they identify the same <statement) and the
same block activation record. Refer to Section 3 and paragraph 4.1.

Entry values compare equal only when they identify the same entry and the same
block activation record. Note that multiple <label prefix)s on an <entry
statement> or <procedure statement> do not produce entry values that compare
equal because each <label prefix> results in the creation of a unique <entry
statement).

Pointer values compare equal only when they identify the same generation of
storage, or when they are both null.

7-10 AG94

Offset values compare equal when they identify the same generation of storage in
a given area. They also compare equal if they identify generations of storage
in two different areas whose entire history of allocation and freeing is
identical. Two areas have identical histories only if one has been assigned to
the other and no subsequent allocate or free operations were performed on either
area, or if identical sequences of allocate and free· operations have been
performed on the areas. Two offset values also compare equal when they are both
null.

A locator, pOinter or offset, value identifying a generation of a structure
variable or area variable does not necessarily compare equal to a locator value
identifying tne first member of the structure or first generation allocated in
the area. A locator, pOinter or offset, value identifying a generation of an
array or array of structures does not necessarily compare equal to a locator
value that identifies the first element in the array. Programs that depend on
such comparisons are in error.

File values compare equal only if they identify the same file-state block.

7.3.4.3 Results of Relational Ooerators

Relational operators compare the values of their operands and yield a bit-string
of length ·1. The value of the result is "1"b if the relationship is true;
otherwise, the value of the result is "onb.

7-11 AG94

SECTION 8

CONtERSION OF DATA TYPES

As defined in Section, 4, a data type is a set of values. Each value is a
member of only one such set. A value conforms to a data type if it is a member
of that set. If a value does not conform to the data type required by the
context in which the value appears, it is converted to the required data type.
If conversion from the original data type to the required data type is not
defined, the program is in error.

~.1 Contexts That Force ConverSion

Each of these contexts forces values to be converted. The resultant data type
is called the target ~ ~.

1. The value of the <expression> of an <assignment statement> is converted to
a value that conforms to the data type of the <target> of the <aSSignment
statement>.

2. The value of an argument of a <function reference> or <call statement> is
converted to conform to the data type given in the corresp~nding <parameter
descriptor> of the entry declaration.

3. The value of an argument to a built-in function is converted to conform to
the data type required-by the function. Since some built-in functions are
generic and others do not allow conversion, some built-in functions do not
convert their arguments. Refer to Sections 13 for a description of
built-in functions.

4. The operands of an operator are converted to conform to a data type
determined by the operator. Infix operators convert their operands to a
data type determined by the unconverted data types of both operands. Refer
to Sections 7 for the rules used to determine the target data type for
operand conversion.

5. A value of a <subscript>, <pagesize option>, <linesize option>, <skip
option>, <line- option>, <area size>, string <length>, <ignore option>,
<pOSition>, or array <bound> is converted to a fixed-point, binary, real,
integer.

6. The value of a <locator qualifier> is converted to a pOinter value.

7. The value of a <string option> of a <get statement> is converted to a
character-string.

8. The value of a <key option> or <keyfrom option> is converted to a
character-string.

9. The value of a <title option> is converted to a cbaracter-string.

10. A value placed in an output data stream by a <put statement> is converted
to a character-string.

8-1 AG94

11. A value extracted from an input data stream by a <get statement> is
converted to conform to the data type of the list element to which it is
assigned. If the conversion is controlled by a <data format>, the
character-string value from the data stream is first converted to the data
type specified by the <data format) and is then converted to the data type
specified by the list element to which it is assigned.

12. The values of all <expression>s in a <format specification list> are
converted to fixed-point, binary, real, integers.

13. The value of a <return value) is converted to conform to the data type
given in the <returns attribute) of the <entry statement) or <procedure
statement) whose execution created the current block activation.

14. The value of the <expression> in an (if statement) is converted to a
bit-string.

15. The value of a <while expression> is converted to a bit-string.

16. Each value assigned to the <index> of a <multiple do) is converted to
conform to the data type of the <index>.

17. The value of the <expression>-in an <extent expression> is converted to
conform to the data type of the <reference> in the <refer option) of the
<extent expression>.

18. The value of the <expression> in an <extent expression> is converted to a
fixed-point, binary, real, integer.

19. The value of each <expression> in a <substr pseudo> is converted to a
fixed-point, binary, real, integer.

20. The value of a <factor> in an <initial attribute> is converted to a
fixed-point, binary, real, integer.

21. The value of an <initial value> in an <initial attribute> is converted to
conform to the data type of the variable of which it is an initial value.

8.2 Conversion Rules

The language defines the following kinds of conversion:

Pointer to offset
Offset to pointer
Character-string to arithmetic
Character-string to bit-string
Bit-String to arithmetic
Bit-String to character-string
Arithmetic to character-string
Arithmetic to bit-string
Arithmetic mode conversion
Arithmetic type, base, and precision conversion
Format controlled conversion
Picture controlled conversion

No conversions are defined for label, entry, format, file, or area data.

8-2 AG94

~.2.1 Pointer to Offset Conversion

A pointer value identifying a generation of a based variable allocated within an
area, A; is converted to an offset value identifying that same generation. In
order for the conversion to occur, either the offset must have been declared
with an <offset attribute> containing a <reference> that identifies A, or the
conversion must have resulted from a <reference> to the "offset" built-in
function whose second argument was A.

8.2.2 Offset to Pointer ConverSion

An offset value identifying a generation of a based variable' allocated within an
area, A, is converted to a pOinter value identifying that same generation. In
order for the conversion to occur, either the offset must have been declared
with an <offset attribute> containing a. <reference> that identifies A, or the
conversion must have resulted from a <reference> to the "pointer" built-in
function whose second argument was A.

8.2.3 Character-String to Arithme~ig ConverSion

If the target has any of th& type, base or
<attribute>s ar. taken from the set: fixed,
precision is omitted and the target is fixed-point
target is 71. If the target precision is
floating-point binary, the target precision'is 63.
omitted and the target is' fixed---or floating-point
is 59.

mode omitted, the missing
decimal, real. If the target
binary, the precision of the
omitted and the target is
If the target precision is

decimal, the target preciSion

If the string is a null string: or contains only blank characters, the value of
the result is zero.

If the string is not null or all. blank, it must be described by:

<valid string>::: [<blank) •••]<numeric constant>[<blank> ••.]

<numeric constant>::: [+I-]<arithmetic constant> I
[+l-·]<real constant'>{+I-} <imaginary constant>

If the string is not null,. blank, or described by this syntax, the conversion
condition occurs.

The character-string value is converted to its intrinsic arithmetic value. That
value is then converted to conform· to the type, base, mode and preCision of the
target.

During the conversion from character-string to arithmetic, the converSion, size,
overflow or underflow conditions may occur. The conversion condition occurs
when the character-string. is invalid as previously described. The size
condition occurs when the target data. type is fixed-point and its preCision is
insufficient to represent all of the integral digits of the converted value.
The underflow, or overflov conditions occur when the target data type is
floating-point and the value- ia too small or- too large to be represented. Refer
to Sections 10 for a. full discussion of conditions.

Examples:

Character-string

"5.63"

"If
"10e"

Result

5 or 5.63 depending
on the target
o
conversion' condition

B-3 AG94"

d.2.4 ~haracter-String to Bit-String Conversion

Let X be the string to be converted.

If X is a null character-string, it is converted to a null bit-string, X';
otherwise, it is converted to X', where Xt is a bit-string of length n, where n
is the length of X. For k:l,2 .•• ,n, the kth bit of xt is a if the kth character
of X is 0, and the kth bit of Xt is 1 if the kth character of X is 1. If the kth
character of X is neither a nor 1, the conversion condition occurs.

If no target length is given, the result is xt.
If the target length is greater than n, Xt is extended on the right with zeros
until it is the length of the target. The result is the extended value of X'.

If the target length is less than n, the stringsize condition occurs. If the
<on unit> returns to the point where the condition was detected, the result is
formed by truncating the rightmost n-m bits of X', where m is the length of the
target.

Examples:

Character-string

"10 11"
If"

Result

"1011"b
""b
conversion condition

d.2.5 Bit-string to Arithmetic ConverSion

If the target has any of the type, base or mode omitted, the missing
<attribute>s are supplied from the set: fixed, binary, real. If the target
precision is omitted and the target is fixed-point binary, the precision of the
targst is 71. If tha ta~gst prsc1=ion is cmittsd and ths target is
floating-point binary, the target precision is 63. If the target precision is
omitted and the target is fixed or floating-point deCimal, the target precision
is 59.

If the string is a null string, the value of the result is zero.

If the string is not a null string, the rightmost bit of the bit-string is
considered to be the units position of an unsigned binary integer of precision
n, where n is the length of the string. The value of that integer is then
converted to conform to the type, base, mode and preCision of the target. If
the target is fixed-point and has insufficient precision to represent the
integral digits of the value, the size condition occurs.

Examples:

Bit-String

"101"b
""b
"OOOOOOO"b

Result

5
o
o

8-4 AG94

8.2.6 Bit-string to Character-String Conversion

Let X be the bit-string to be converted.

If X is a null bit-string, it .is· converted to a null character-string xt;
otherWise, it is converted to Xf, where X' is a character-string of length n,
where n is the length of X. For k:l,2, ... ,n, the kth characte~ of X' is 0 if·
the kth bi t of X is 0 and the kth character of X' is t if the kt·h bi t of X is 1.

If no target length is given, the result is X'.

If the target. length is greater than n, X' is extended on the right .. with blanks
until i~ is the length of the target. The result is the extended value of xt.
If the target length ia less than n, the stringsize condition occurs. If the
<on unit> returns to the point where the condition was detected, the result is
formed by truncating the' rightmost n-m characters of X f J where m is the length
of the target.

Examples:

8i t.-String

IIl01"b
IItlb

Result

tll01 "'
""

8.2.7 Arithmetic to Charagter-String ConverSion

Let X be· the arithmetic: ·value·t:Q._be' converted-.

If the~ base- of X is: decimai, let. x i be X; otherwise, convert X to X t·, where the
type and: mode: of X' are- the: type and. mode of X, and. the: base of X' is. decimal.
The preciSion of X' ia given by th~ rules for base conversion described in
paragraph 8.2.10.

Let the preciSion of Xt -· be (p) if the type' of X' is' floating-point, and let.
(p,q) b~ the precision of X' if the type of X' 1S fixed-point. Let an
intermediate result, S, ba defined as a character-string whose valua is
determined br the' following:

If the mode· of X.' is~ complex'" S is. formed by converting the- real part of X' to a
string~ S1, and converting th~ imaginary part of X' to a string, S2, as if they
~ere real numbers. If the- imaginary part of Xf is 2,0, 5 is formed by:

S1 : : "+" : : S2'

OtherWise, S is formed by:

S 1 : : 32.

Before- concatenation t. an iii ii' is appended to, 52 and all leading blanks in S2 are·
removed by shifting the- nonblank oharacters of 52 to the left and filling th~
vacated character position& with blanks~

Example::

beco~es

AG9~

The following rules describe the conversion of X' when its mode is real:

If the type of X' is floating-point, the value of S is the value produced by
converting X' under control of a picture of the form:

"-9.v(p-l)ges999"

If the type of X' is fixed-point, the value of S is given by one of the
following three cases:

For q=O, the length of S is p+3 and its value is the value of X' converted
under control of a picture of the form:

"(p+2)-9v"

For p>q>O, the length of S is p+3 and its value is the value of X'
converted under control of a picture of the form:

"(p-q+l)-9.v(q)9"

For q<O or q>p, the length of S is p+3+k, where k is the number of digits
necessary to represent the value of q with no leading zeros. To form the
result S, let Sf be the value of X' converted under control of a picture of
the form:

Tt(p)_9vf(_q) "

Let E be the value of -q converted under control of a picture of the form:

"s(k)9"

The result S is formed by S'I l"f"1 IE.

Refer to paragraph 8.2.12 for' a discussion of picture controlled conversion.

If the target length is not given, the result is S.

Let n be the length of S and let m be the target length.

If m~n, m-n blanks are appended to the right"of S to form the result.

If m<n, the stringsize condition occurs. If detection of the condition is not
enabled or if the <on unit> returns control to the point where the condition was
detected, the rightmost n-m characters of S are removed to form the result.

Examples:

Type of X' Precision of X,I Value of X' Result

float (4) 0)JO.OOOe+OOO
float (4) 1.23)Jl.230e+OOO
fixed (4,0) 0)J ts)J tHnS 0
fixed (4,0) 25)J l'HHS ts 2 5
fixed (4,2) ° iStstsO.OO
fixed (4,2) -12.34 is-12.34
fixed (4,-2) ° iStststsOf+2
fixed (4,-2) 123000 iS1230f+2
fixed (5,6) ° iStstststsOf-6
fixed (5,6) -.01 ,,10000f-6
fixed (3,3) a tso.ooo
fixed (3,3) -.01 -0.010

7/79 8-6 AG94C

Let X be the. arithmetic value to be converted.

Let X' be a real, fixed-point, binary value of precision (p,O), where p is given
by the following:

Attributes of X

binary fixed (r,s)
dec imal fixed (r, s)
binary float (r)
decimal float (r)

Value of p.

min{71,max(r-s,O»
min{71,max{ceil«r-s)·3.32),O»
min(71.r)
min(71,ceil(r·3.32»

The functions "min~t "max" and "ceil" are described in Section 13.

The value of X' is the absolute value of the real part or x.
The si.ze cond i tion occurs if the preclslon of X' is such that it cannot

. represent the integral digits of the real part of X.

Let S be a bit-string of length p whose value is the string of binary digits
that represent the value of X'.

If the target length is not given, the result is S.

Let n be the target length.

If n~p,.n-p zero bits are appended to the right of"S to form the result.

If n<p, the stringsize condition occurs. If the <on unit> returns control to
the point where the condition' was detected ,the rightmost p-n bits of S are
removed to form the resul t.

Examples.:

Value of X Valu& of X' Precision of X.' Result

5 5 (14·,0) "0101"b
-14 14 (14,0) "0100"b
0.7 0 (4,0) "0000 lib
.7 0 (0,0) "Ub
Olb 1 (2,0) "Ol"b

8.2.9 Arithmetic Mode Conversion

If a complex value is converted to a real value, the result is the real part or
the complex valu~.

If a real value· is converted to a complex value, the result is a complex value
whose real part is the unconverted real value: and whose imaginary part is zero.

If the· tc.se, type-.· or precision or- th8'! converted value· is. not that of the target,
it is- .converted' to conforta" to the- target according. to the rules for base-, type-,.
and precision conversion~

Examples::

5+21-
5;

becomes
becomes:'

5
5+01

8-T AG94-

8.2.10 Arithmetic Type, Base and Precision Conversion

Let X be the arithmetic value to be converted. If the type of X is fixed-point,
let Cp,q) be the precision of X; otherwise, let (p) be t~e precision of X.

Let the result X' have the type and base of the target. If the type of the
target is not given, let X' have the type of X. If the base of the target is
not given, let X' have the base of X. If the precision of the target 1S given,
let the precision of X' be the precision of the target; otherwise, the precision
of X' is given by the following table:

Attributes of X Attributes of X' Precision of X'

fixed binary fixed binary (p,q)
fixed decimal fixed binary (min(ceil(p*3.32)+1,71),

ceil(q*3.32»

float binary fixed binary (p,O)
float decimal fixed binary (p,O)

fixed binary fixed decimal (min(ceil(p/3.32)+1,59),
ceil(q/3.32»

fixed decimal fixed decimal (p,q)
float binary fixed decimal (min(ceil(p/3.32)+1,59),0)
float decimal fixed decimal (p,O)

fixed binary float binary (min(p;63»
fixed decimal float binary (min(ceil(p*3.32),63»
float binary float binary (p)
float decimal float binary (min(ceil(p*3.32),63»

fixed binary float decimal (min(ceil(p/3.32),59»
fixed decimal float decimal (min(p,59»
float binary float decimal (min(ceil(p/3.32),59»
float decimal float decimal (p)

The value of X' is the
cases, the value of X'
from the base of X, the
the base of X' differs
point, while truncation

value of X converted to the data type of X'. In most
is the same value as X, but if the base of X' differs
value of X' is an approximation to the value of X. If

from the base of X, rounding occurs if X' is floating
occurs if X' is fixed point.

The overflow or underflow condition occurs if X' is floating-point binary and X
is a decimal number too large or too small to be represented by binary
floating-point. The size condition occurs if X' is fixed-pdint and has
insufficient precision to represent the integral digits of the value.

Examples:

7/79

Attributes of X

fixed decimal prec(7,O)

fixed binary prec(17,O)

float decimal prec(10)

float binary prec(27)

Attributes of X'

fixed binary prec(25,O)

fixed decimal prec(7,O)

float binary prec(34)

float decimal prec(9)

8-8 AG94C

8.2.11 Format Controlled Conv!~~~

Format controlled conversion occurs only when a <get statement> or <put
statement> containing a <get edit> or <put edit} is executed.

When a <format specification> is used to control conversion from a
character-string, it 1S described as input conversion, and when it is used to
control conversion to a character-string, it is described as output conversion.

The result of an input conversion is assigned to a list element and,
consequently, is converted to conform to the data type of the list element.
Refer to Section 12 for the syntax and semantics of <statement>s.

8.2.11.1 Fixed-Point Format

Syntax:

<fixed-point format>::= f«w}[,<d>[,<k}]])

<w>::= <expression}

<d}::= <expression}

<k}::= <expression}

Evaluation of the width, <w->, the' decimal location, <d}, and the scale factor,
<k>, must yield scalar arithmetic or' string. values that are converted to real
binary integers. Le~~, ~ and k b& the converted values. Both wand d must be
nonnegative.

8.2.11.1.1 Fixed-Point In~_£.onvers1on

Let S b. th. character-string to b. converted to the result X. The length of S
is w.

If w=O or S is a string of all blanks, the: result is a real, fixed decimal 0 I .. :,"
with precision 1 and scale O.

If w'£O and 5 is not all blanks, 5 must be described by:

[<blank}] ••• [+ ;-l<decimal number> [<blank}] •••

The string, 5, is converted to a fixed-point, decimal, real number p Xi whose
value, V, and precision, (p,q), are determ'ined as follows:

V is the value' of the integer represented by 5. The decimal. point, if any,
is ignored for this purposa.

p 1s the number or digits in 5.

q is calculated as j-k where:

j i:r the- number or digi.ts in S: following the- decimal point, if one
occurs; 0'- J is' the' valu~ of d', if it appears; or- j is', O.

k is" given by the-- <fixed-point format},· or is' zero.

The- value' of" q' must: be in the- range- -128~q~12i.

The- result' is; I.,

11/7; 8-9t

I Otherwise, the conversion condition occurs. The value of the onsource built-in
is s. Th~ value of the onchar builtin is the leftmost character in S that does
not meet the syntax for fixed-point input conversion e

Examples:

Value of S Format Result

~1.2" f(5) 1.2
~~HHH f(5) 0
-7}nnS f(5) -7
~10.5 f(5,2) 10.5
~100V f(5,2) 1 .00
~~~H1 f(5,0,2) 700 
)S100H f(5,1I,-2) .0001 

8.2.11. 1.2 ~-Point Output Conversion 

Let X be the value to be converted to the result string S. The length of S is 
w. If d is omitted, let d be zero. If any expression in any of the following 
<picture>s is negative, the size condition occurs. 

If w=O, S is a null s~ring. 

If d=O and X<O, let s be' min(59,w-l). The value of S is the value of X 
converted under control of a <picture> of the form: 

"(w-s-l)b(s-1)--9v" 

If d=O and X>O, let s be min(59,w). The value of S is the value of X converted 
under control of a <picture> of the form: 

"( w-s) b( s-l ) z9v" 

If d~O and X<O, let s be min(59,w-2). The value of S is the value of X 
c..onverted under control of a <picture> of the form: 

"(w-s-2)b(s-d-l)--9.v(d)9" 

If d~O and X)O, let s be min(59,w-l). The value of S 1s the value of X 
converted under control of a <picture> of the form: 

"(w-s-l)b(s-d-l)z9.v(d)9" 

Although the- description of <fixed-point picture> editing in paragraph 
8.2.12.3.1 specifies that low order digits are truncated when the conversion is 
performed for a <fixed-point picture>, the remaining low order digit is rounded 
if it is followed by a digit> 5. If k is given, the conversion to decimal 
performed by the <fixed-point picture> effectively multiplies the decimal value 
X' to be edited into the picture by 10**k. 

Note that the scaling performed by a <fixed-point format> effectively multiplies 
the value being converted by a power of ten for both input and output 
conversions. It differs from the scaling performed by the <picture scale 
factor> which effecti~ely multiplies by a power of ten for input and divides by 
a power of ten on output. Refer to paragraph' 8.2.12. 

The result is. S. 
" 

11/77 8.-10 



Examples: 

Value- of" X 

7.5 

° -3 
3.5 

° -7.5 
12 

Format 

f(5,2) 
f(5,2) 
f(5,2) 
f(5 ) 
f(5) 
f(5 ) 
f(5,0,2) 

8.2.11.2 Floating-Point Format 

Syntax: 

<floating-point format>::: e«w>C,<d>C,<s>]]) 

<w>::= <expression> 

<d>::: <expression> 

<s>::= <expression> 

Result 

.s7.50 

.sO.OO 
-3.00 
.sH~nS4 
.sHHHO 
.sHH-8 
.s1200 

Evaluation of the width, <w>, th. decimal location, <d>. and the number of 
significant digits, <s>, must yield scalar arithmetic or string values that are 
converted to real binary integers. Let w, d and s be the converted values. All 
three values. must be nonnegative. If given, w, d, and s must satisfy 0<s~59, 
s~d~O. w>O. 

8.2.11.2.1 Floating'-Point Ine~t:.£0nversion· 

Let S be the character-string to b& converted. to the result X. The length of S 
is w. 

If w=O or S ia a str~ng or all blanks, th& result is a real, fixed. decimal ° I.·.·. 
with precision 1. 

If w~O and S is not all blank. S must be- described by: 

[<blank>] ••• [+:-]<decimal number> 
[{[e]{+\-}\e}<decimal integer>][<blank>] ••• 

The string, S, is converted to a floating-point, decimal, real number, X; 
mantissa, f, exponent, e, and precision, p, are determined as follows: 

whose 

p is the number of digits in the <decimal number>. 

f is, the integer value of the <decimal number>, ignoring the decimal paint, 
if any. 

e is: calculated as k-q where: 

k. is t"he value of' the- (decimal integer> or' is zero. 

q is; the;. number of digits. following the' decimal, point in S, if one:
appears;' or q is .. the-- value.- of d,.. if it is given; or' q is; zero. 

The value of' e'must be- in' the range< -128~ei12T. 

The- resul tis: X._ 

1t/71 8--1t 

I~ 



I Otherwise, the conversion condition occurs. The value of the onsource built-in 
is S. The value of the onchar builtin is the leftmost character in S that does 
not meet the syntax for floating-point input conversion. 

Examples: 

Value of S Format Result 

lHHS~nS e(5.3) 0 
1 .3e7 e(5,3) 1 .3e+7 
12345 e(5,3) 12.345e+0 
-52+4 e( 5) -52 e Oe+4 
~nS5~n~ e(5) 5.0e+0 

8.2.11.2.2 Flo!~~~g-Point Output Conversion 

Let X be the value to be converted to the result string S. The length of S is 
w. 

If s is omiw~ed, let s be d+1. If d is omitted, let d be p-1 and let s be p. 
where p is the precision of X after conversion to a floating-paint, decimal, 
real number according to the rules given in paragraph 8.2.10. 

The value of S is determined by one of the following cases: 

If w=O, S is a null string. 

If d<s and d~O and X<O, the value of S is the value of X converted under control 
of a <picture) of the form: 

"(w-s-7)b(s-d)-9.v(d)ges999~ 

If d<s and d~O and X>O, the value of S is the value of X converted under control 
of a <picture> of the form: 

It ( w- s-6 ) b ( s-d-l ) z9 • ; ( d) 9 e s9 99" 

If d=O and X<O, the value of S is the value of X converted under control of a 
<picture) of the form: 

II (w-s-6) b( s) -9 ves999" 

If d=O and X)O, the value of S is the value of X converted under control of a 
<pic ture) of-the form: 

If (w-s-5) b( s-1 ) z9ves999" 

If d=s and d~O and X<O, the value of S is the value of X converted under control 
of a <picture> of the form: 

If ( w-d-8 ) b- •• v ( d) 9 es999" 

wi th the r esul ti ng 11 •• 11 repl aced by "0.". 

If d=s and d~O and X>O, the- valu.e' of S is the vaJ.ue of X converted under control 
of a <picture> of the; form': 

with thr resulting replaced by "0 .. "_ 

11/77 8-12 AG94A 



If the leading expression in any of the preceding <picture>s is negative, th& 
siz& condition occurs. 

The' resul t is S. 

Examples: 

Value of X 

7.5 
-7.5 
75 
o 
.008 

8.2.11.3 Complex Format 

Syntax: 

Format 

e(11,3} 
e(11.3} 
e(11,3) 
e(11.3} 
e ( 1 1 ,2, II·) 

Result 

~7 .500e+OOO 
-7.500e+OOO 
~7 • 500e+OO 1 
~O • OOOe+OOO 
~80 c OOe-004 

<complex format>::: c«format part>(,<format part>]) 

<format part>::: <picture format>:<fixed-point format>: 
<floating-point format> 

If only one <format part> is given, it is used to controL the conversion of both 
the real and imaginary parts of the complex number'. If two <format part>s are 
given, the first controls the conversion of the real part of the complex number 
and the second controls the· imaginary part of the complex number. The 
conversions of the two parts are performed independently as described for. real 
numbers in this section. 

If a <form~t part> ia a <picture format>. the <picture> must be a <numeric 
picture>. 

Note that an "in does not appear in th~ character-string representations of 
complex numbers processed. by a <complex format>. 

Examples: 

Value· Format Input Result 

~tS3J/SJ/S2 c( f( 3) ) 3+2i 
-2 115J/SJ/S 1 c ( f( 3 t 1 ) , f ( 3 ) } -.2+1i 

Value- Format. Output Result 

5+21 c(f(3» lSJ/S5WM2 
5.2-3. 1 i c( f(lI, 1) ,f(5,2» »5.2-3.10 

8.2.11.~ Character-String Format 

Syntax: 

<character-string fOnllat>:::= a[ «w» 1 

<w>: : = <expression> 

Kvaluatiorr of'" <w>- must yield a~ scalar' arithmetic; or'" str;.ng value- that is: 
converted to. real binary' integ·ers.. Let w.. be: th~ converted value·. If specified 
w. must, be>- nonnegati,ve· •. 

For input.· conver.aion, w·· must. be- giv-en-. No conversion is performed' and the" 
result: is: a~ character-stringr of length' w. 

11/7T 8-11 AG94A~ 



I 

• 

For output conversion, let X b~ the value to be converted to the result string 
5. It is converted to a character-string, 5', according to the rules given in 
section 8.2. If w is not given, the result is 5'. If w is given, let n be the 
l.ength of 5'. If n~w, the- result is 51 with w-n blanks appended to its right. 
If n>w, the stringsize condition occurs. If detection of the condition is 
disabled or if the <on unit> returns to the point where the condition was ~ 
detected, the rightmost n-w characters are removed from S' to form the result. ~ 

Examples: 

Value Format Input Result 

lUStsts a(4) "tHStsts .. 
ts2$5 a(4) "ts2.S" 

Value· Format Output Result 

"abc" a abc 
"abc" a(4) abc~ 

"" a(4) ~~tsts 

8.2.11.5 Bit-string Format 

Syntax: 

<bit~string format>::: <radix factor>[«w»] 

<radix factor>::: {blb1Ib2Ib3Ibq} 

<w>::: <expression> 

Evaluation of <w> must yield a scalar arithmetic or string value that is 
converted to real binary integers. Let w be the converted value. If specified, 
w must be nonnegative • 

8.2.ii.5.i Bit-string Inpu~-f22!!~ 

For input conversion, w must be specified. Let 5 be the character-string of 
length w that is to be converted. S must be described by the following: 

«blank) ••• ]«character) ••• ][<blank) ..• J 

The <character>s in the above description must come from the <character>s in the 
table in paragraph 2.6.2.1 corresponding to the specified <radix factor>. If S 
does not satisfy this syntax and constraint, the conversion condition occurs. 
Let S' be S with all of its leading and trailing blanks removed and let n be the 
length of S I • 

Let m be 1 if the· <radix factor> is "b", or the number in the <radix factor> 
otherwise. If S' is a null character-string, it is converted to a null 
bit-string, R; otherwise, it is converted to R, where R is a bit-string of 
length m.n. For k:1,2, ••• ,n, bits k·m-m.l, •.• ,k-m are obtained from t.he table 
1n paragraph 2.6.2.1. If the- ktb character of S is invalid, the conversion 
condition occurs. 

11/71 8-14· AG94k 



Examples: 

Value 

010 
.stUS 
000 
.sUS 
~07 
cd5 

Format. 

b(3) 
b(3) 
b(3) 
b(3) 
b3(3) 
b4(3) 

8.2.11.5.2 ~string Output Conversion 

Input Result. 

"010"b 
.... b 
"000 "b 
"l"b 
"100000111"b 
"110011010101"b 

For output conversion, w· is optional. Let: X be the value- to be converted to the 
resulting character-strin~ S.. X is converted to a bit-string, S, according to 
the rules given .in paragraph 8.2. Let n be· the length of S. Let m be the 
number specified in the <radix factor) or 1 if no number was specified. Let 
n'=n. If n is not a multiple of m, let n' be the next higher multiple of m, and 
extend S by appending n'-n zero bits to the right of S. Let K=n'/m. If w is 
not specified, let w be K. 

B is converted to a character-string S of length w as follows. If S is a null 
bit-string it is converted to a null Character-string Sj otherWise, it is 
converted to S, where S is a character-string of length K. For i~1,2' ••. fKt 
bits i-m-m.1, ••• ,i*m are converted to· the ith character by using the table in 
paragraph 2.6.2.1. 

If w is greater than K, S is extended on the right with blanks until 1ts length 
is w·. 

Ir K is greater than w, the' stringsize condition occurs. If the <on unit> 
returns to the point where- the:condi tion was detected, the resul t is formed by 
truncating the rightmos~ K-~ characters of S. 

Examples: 

Value Format. Output Result 

"00 "b b 00 
"l"b b(~) HUnS 
"lib b{~ ) lIM)nS 
"10101"b b3(3) 52)1 
"11111"b b4(2 ) F8 

8.2011.6 Picture F~rmat 

Syntax: 

<picture format>::: p"<picture>" 

Fer input conversion, the character-string to be converted by a <picture format> 
must b'e a valid string as defined' in paragraph 8.2.12. If this' constraint is 
llut satisfied,. the' conversion condition occurs.. For- val.id str-ings, no actual. 
conversion occurs and th~ resul t of input. conversion is the orig1na~ 
character-string. 

11/17' 8-14." AG94A:o 



This page i~tentionally left blank. 

"/77 AG94A 



Note that for input conversion the result of the format controlled conversion is 
considered a pictured value and is converted as such when it is assigned to the 
list element. 

For output conversion, let X be the value to be converted to the pictured string 
S. X is converted to S as described in the next section. 

8.2.12 Picture Controlled Conversion 

The following sections describe the conversion that occurs when a ~alue is assigned 
to a pictured variable or output through a <picture format> as editing. The 
conversion that occurs when a pictured value is converted to an aritfimetlc value 
is described as encoding. 

The pictured character~string value described by a <picture> consists of n 
characters, where n is the number of <picture char>s in the <normal picture> 
excluding any "v", "k", or <picture scale factor>, but including all <insertion 
character>s. 

The resul t of editing is a pictured Character-string of length n whose value is 
determined by the <picture>. !he result of encoding is a decimal arithmetic 
value whose type and preCision are determined by the <picture>. If the encoded 
value does not conform to the data type of the target, the encoded value is 
converted to conform to the target. 

The character-string value to be encoded must be a valid string. A valid htrin~ 
is one of the strings that could have been produced by edi t·ing va~t roug 
the <picture>, except that the set of strings acceptable to the <mantissa field> 
of a <floating-point picture> is the set of strings that could have been produced 
by editing. values through the <mantissa field> as if it were a < fixed-point 
picture>. 

If a pictured variable or function value is declared with the <complex attribute>, 
the encoding and editing operations are performed on the real and imaginary 
parts of the complex values as if they were real numbers. The single <picture> 
is effectively a pair of identica~ <picture>s. 

8.2.12.1 Syntax of Pictures 

Syntax; 

<picture)::: {(<decimal integer»]<picture- char>} ••• 
«picture scale factor)] 

<picture char>::: alblcldlelklrlslvlxlylzISI91.1-1.: ,1/:* 

<picture scale factor)::: f«(.l-]<deeimal integer» 

This syntax describes all valid <picture)s, but is too permissive in that it 
also describes many invalid <picture>s. In order to describe only valid <picture)s, 
<picture>s lJIust be translated into <normal picture>s. This translation is 
accomplished by copying each <picture char> k times, where k is the value of the 
parenthesized <deCimal integer> that immediatel y precedes the < picture char>. 
If no such parenthesized <decimal integer> appears, the <picture char> is not 
repeated. If k:O, the <picture char> is removed. 

Example: 

3/81 

(5)9Y(2)9 
(3)-9.(4)9 
(0)-99 

becomes 
becomes 
becomes 

99999v99 
---9.9999 
99 

8-15 AG94E 



Normalized pictures must be described by the following syntax as amended by the 
discussion of <insertion character>s that follows below: 

Syntax: 

<normal picture>::: <character picture>l<numeric picture> 

<character picture>::: [9 ••• ]{alx}[alxI9J ••• 

<numeric picture>::: {<fixed-point picture> I 
<floating-point picture>}«picture scale factor>] 

<picture scale factor>::: f{[.I-J<decimal integer» 

<fixed-point picture>::: <fixed field>l<drifting field> 

<fixed field>::: <digit positions>(s:.:-J($Jl 
<dIgit posltions>($](s:.I-): 
(s:.:-]<dIglt positions>($): 
(sl.I-]($]<dIgit positions>: 
($)(sl.l-]<digit positions>l 
($)<digit positIons>(sl.:-]l 
<digit positions>($]{crldb}\ 
($]<dIglt positions>{crldb} 

<digit positions>::: <dIgits>(v«digits>J]\ 
v<dIgIts>; 
z ••• [<dIgits>][v«digits>]]: 
[z ••• lv z ••• : 
' ••• «digits>](v«digits>]]: 
[· ••• lv·' ••• 

<drifting field>::~ <drifting 3ign>($]: 
[$]<drifting sign>: 
<drifting dollar>(sl.~-]: 
(s;.:-]<drifting dollar>: 
<drifting dollar>{crldb} 

<drifting sign>::: <slgns>[<digits>l[v[<digIts)]]: 
s ••• v s ••• I+ •.. v + ••• ;- ••• v - ••• 

<driftIng dollar)::: r $ •• ~«digits)J(v[<dIgIts>]]:$ ••• v $ ••• 

<digits)::: {9Iy} ••• 

<signs>::: s s ••• I ••••• 1- - ••• 

<floatIng-point picture>::: <mantissa field> 
(elk}<exponent field) 

<mantissa field)::: [sl.l-]<digit positions> I <drifting sign> 

<exponent field)::: [sl.I-]{[9][9]91[z][9]9ICz][zl91[z][z]z} 

If a <picture) can be translated into a <character picture> by expanding all 
repeated <picture char)s, or into a <numeric picture) by expandIng all repeated 
<picture char>s and removIng all <insertion character>!, it is a valid <picture>; 
otherwise, it is not valid and the program 1s in error. 

<insertion character>::: .1 ,l/lb 

Although the presence of <insertion oharacter>s 1s described informally and not 
by syntax rules, they are part of the <fixed-point picture> or <floating-point 
picture> and occupy positions 1n the pictured character-string value described 
by the <picture). 

8-16 AG9" 



8.2.12.2 Character Picture C2!!!!~!.Cl! 

A <character picture> can contain only "9", "a" or "x" <picture char>s and it 
must contain at least one "a" or "x". 

8.2.12.2.1 fh!r!~!~-f~cture Editing 

Let X be the value to be edited into the pictured character-string P. 

X is converted to a character-string value X' according to the rules for the 
conversion to character-string given in paragraph 8.2. The value of Xt is then 
edited into the pictured character-string as follows: 

Let n be the length of P and let m be the length of X'. If m(n, Xt is extended 
on the right by n-m blanks. If m>n, the- stringsize condition occurs. If 
detection of the condition is disabled o~ if the <on unit> returns control to 
the point where the condition was detected, the last m-n characters of X' are 
ignored. 

The value of P is the leftmost n characters of the extended value of Xt. 

For k=1,2, ••. ,n, the kth character of X' is checked for conformance to 
<picture char) and is assigned to the kth character position of P. 
characters 110","1", ••• ,"9" or blank conform to a "9" <picture char). 
characters "an ,l1b l1 , •.. ,"zl1 or I1A","B", ••• ,"Z" or blank conform 
<picture char). Any character conforms to an "x" <picture char). 

the kth 
Only the 

Only the 
to an "a" 

If any character of X' does not conform,_ the conversion condition occurs. The 
value of P is not defined when this condition occurs. 

Examples: 

Value of X' 

abc 
123 
1e2 

Picture' 

aaa 
x99 
x99 

8.2.12.2.2 Character Picture Encoding 

abc 
123 
conversion 
condition 

The pictured character-string value is converted to an arithmetic value 
according to the rules for character-string to arithmetic conversion given in 
paragraph 8.2.3. 

8.2.12.3 Fixed-Point Picture Conversion 

A <fixed-point picture> cannot contain a "k", "e", "a" or "x" <picture char>. 

There are two kinds of <fixed-point picture>s, < fixed field> pictures and 
<drifting field> pictures. 

AG94, 



I 

8.2. 12.3. 1 Fixed-PoinLf.!.~'!r.e" Editing 

Let X be the value to b~ edited into the pietured character-string, ~. 

X is converted to a fixed-point, decimal, real, value, Xt, of preclslon (n,m), 
where (n,m) is determined according to the rules for <fixed-point picture} 
encoding given in paragraph 8.2.12.3.2. 

If this precision is insufficient to retain 
decimal point, the size condition occurs. 
are truncated. 

all digits to the left of the 
If fractional digits are lost, they 

The value of X' is converted to a character-string by the following: 

Let 0 be the string of n decimal digits that represents the absolute value 
of X'. 

Let P be a copy of th~ <normal picture> with the "v" and the <picture scale 
factor>, if any, removed. Let N be the number of <picture char>s in P, let 
j be 1, and let zero suppression be off. 

For k:l.2 •..•• N, select the kth <picture char> from P and perform the 
action indicated for this <picture char>. If the kth <picture char> in the 
original <normal picture} is a "v" and zero suppression is on and Ir~o, 
turn zero suppression off before performing the action indicated for the 
kth <picture char> of P. 

s If X'<O, replace the usn with a "-Hi otherwise, replace it with a "+". 
If additional liS" characters remain, replace each of them with a "z" 
and turn zero suppression on. 

+ If 1'<0, replace the "+" with a blank; otherwise. it remains 
unchanged. If additional "+" characters remain, replace each of them 
with a "ZU and turn zero suppression on. 

If X'(O, the "_" is unchanged; otherwise, replace it with a blank. If 
additional "_" characters remain, replace each of them with a HZ" and 
turn zero suppression on. 

$ Leave this character unchanged. If additional "$" characters remain, 
replace each of them with a "z" and turn zero suppression on. 

9 Replace the "9" by the jth digit of 0 and turn zero suppression off. 

y 

Let j be j+1. 

Turn zero suppression off. If the jth digit of 0 is a zero, replace 
the "y" by a blank; otherwise, replace the ny" by the jth digit of D. 
Let j be j+l. 

z If this is the first HZ" and it occurs to the left of the "v" in the 
original <normal picture>, turn zero suppression on. If zero 
suppression is on and the jth digit of 0 is a zero, replace the "z" by 
a blank; otherwise. turn zero suppression off and replace the "z" by 
the jth digit of D. Let j be j+l. 

• If this is the first "." and it occurs to the left of the "v" in the 
original <normal picture>, turn zero suppression on. If zero 
suppression is on and th& jth digit of 0 is a zero, leave the "." 
unchanged; otherwise, turn' zero suppression off and replace the- "." by 
th~ jth digit of D. Let j be j+l. 

c The' next <picture char> must be an "rtf. It· X' (0, leave both the "0" 
and the- "r" unchanged; otherwise, replace them by two blanks. 

d The· next <pictUre char) iiiU5t be' a tlb". If X r <0, leave both the IS dIS 
and the "b" unchanged; otherwise, replac::e them by two blanks. 

11/77" 8-18: AG94A 



If zero suppression is on and the previous character in P is now an 
"*", replace the "," by an "*~. If zero suppression is on and the 
previous character in P is not an "*", replac& the "," by a blank. If 
zero suppression is off, leave the "," unchanged. 

/ Process like a comma. 

Process like a comma. 

b Process like a comma, except when zero ~uppression is off replace the 
"b" by a blank. 

Before obtaining the result, the longest subfield contained within a <drifting 
sign) or <drifting dollar> satisfying this syntax: 

{+l-l$}<blank> ••• 

has its first and last characters interchanged. 

If no digits were edited into P, set P to all blanks. The result is the 
character-string P. 

Examples~ 

Value of X Picture Result 

5.2 99v99 0520 
5.2 99.99 00.05' 
5.2 9.9.99 0.0.05 
5.2 sssv99 ~+520 
5.2 sssv.99 ~+5 .20. 
5.2 --v.99 ~iS5.20 
5.2 +++v.99 ~+5.20 
-5.2 sssv.99 iS~5.20 
-5.2 ---v.99 ~-5.20 
-5.2 +++v.9~ iSiS5.20 
-5.2 $$$v.99cr ~iS$5.20cr 
5.2 $$~v.99cr ~iS$5.20iSiS 
5.2 zzzvzz ~iS520 
.01 zzzvzz ~iSt501 
0 zzzvzz_ is is is is is-
1234 z,zzzv 1 ,234 
900 Z,zzzv ~t5900 

8.2.12.3.2 Fixed-Point Picture Encoding 

Let X be the pictured character-string value to be encoded and let (n,m) be the 
precision of the encoded value, I, where (n,m) are determined as follows: 

If the <fixed-point picture> is a <fixed field), 
<picture char)s- in the <digit positions> 
character>s or th& "v". Let m be the number of 
(digit positions> following &ne RV n and 
character>s. If the "v" is omitted, m=O. 

let n be 
excluding 

<picture 
excluding 

the number of 
any <insertion 
char>s in the 
any <insertion 

If tbe <fixed-point picture> is a <drifting field>, let n be the number of 
<picture char>s in the <drifting sign> or- <drifting dollar> excluding: the 
first- sign of a <drifting sign>, the first "$" of a <drifting dollar>, any 
<ins~rtion char->s-, and the "v" .. Let Dr be the number of <picture char>s ~n 
the (drifting sign> or'" <drifting dollar> following the- "v" and excluding 
any <insertion character->s'. If the "v'" is omitted, m=O. 

The resulting- values of nand m must satisfy' The relationship m~ni59 or the
program,; is in error-. 

8-19 AG94 



I 

I 
I 
I 

If the <picture> has a <picture scale factor>, m is chqnged to m-q, where q 
is the value of the <picture scale factor>. The final value of m must be 
in the range -128~m~127. 

Let D be the string of decimal digits contained within X. If D is a null 
string, let Df be zero; otherwise, let Df be the decimal integer represented by 
D. To form the result, Y, let the absolute value of Y be D' and let the sign of 
Y be minus if X contains a "-", ncr" or "db"; otherwise, the sign of Y is plus. 
The data type of Y is fixed-point, real decimal, of precision (n,m). 

The value of Y is the result of encoding X. 

Examples: 

Value of X Picture 

12,345 zz,zzz 
123456 zz,zzz 
iHS~900 zz,zzz 
15~5.00 zZZV.zz 
15155.00 zZZ.zz 
kS-5.00 sssv.99 
15+5.00 sssv.99 
15-5.00 ---v.99 
15+5.00 ---v.99 
kS+5.00 +++v.99 ' 
15-5.00 +++v.99 
kSlS$5.2 $$$9v.9 
rnHS5.2 $$$9v.9 
12.23cr zzv.99cr 
12.23kS~ zzv.99cr 

8.2.12.4 Floating-Point Pictur~·Conversion 

A <floating-point picture> consists of two 
mantissa and one describing the exponent. A 
contain an "a" or "x" <picture char>_ 

8.2.12.4.1 Floating-Point Picture Editing 

Result 

12345 
program in error 
900 
5.00 
500 
-5.00 
5.00 
-5.00 . 
program in error 
5.00 
program in error 
5.2 
program in error 
-12.23 
12.23 

subfields, one describing the 
<floating-point picture> cannot 

Let X be the value to be edited into the pictured character-string P. 

·X is converted to a floating-point, decimal, real value, X' of precision (n), 
where (n) is determined according to the rules for <floating-point picture> 
encoding given in paragraph 8.2.12.4.2. 

If a <picture scale factor> is specified for P, the value of X' is changed to 
X'*10**-k, where k is the value of the <picture scale factor>. 

If digits are lost by this conversion, the least significant remaining digit is 
rounded if it is followed by a digit ~5. 

The absolute value of the mantissa of X' is re~resented as a fixed-point, 
decimal, real number, D, of precision(n,n) adjusted to lie in the range 
(1/10)<f<1, or is zero. The exponent is adjusted to reflect that fact that the 
mantissa is adjusted. The exponent is zero if X' is zero. 

7178 8-20 AG94B 



Consider the <mantissa field> to be a <fixed-point picture> and the mantissa of 
X' to be a fixed-point, decimal, real value of precision (n,m), where nand m 
are given by the rules for <fixed-point picture> encoding given in paragraph 
8 • 2 • 1 2 • 3 • 2 . Ed itt hem ant iss a 0 f X' in t 0 a cop y 0 f t"h e < man tis sa fie I d > as i f 
it were a <fixed-point picture>. Let M be the result of this edit operation. 

Adjust the exponent of X' to reflect the location of the "v" or implied "v" 
within the original <mantissa field>, and then convert it to a fixed-point, 
decimal, real num~er of precision(3,O). Edit the adjusted and converted 
exponent into a copy of the <exponent field> of the <floating-point picture> as 
if the <exponent field> were a <fixed-point picture>. Let E be the result of 
this edit operation. 

If the <floating-point. picture> contained a "k", the result is M:: E. If the 
<floating-point picture> contained an "e" and E is all blanks, the result is 
M: :"~": :E. If the <floating-point picture> contained an "e" and E is not all 
blanks, the result is M: l"e": :E. 

Examples: 

Value of X' 

5.2 
5.2 
5.2 
5.2 
5.2 
-5.2 
-5.2 
-5.2 
-5.2 
1234.5 
-5.2 

Picture 

9v.99ks99 
9v.99k-99 
9v.99k+99 
9v.9ges99 
9v.9ge9 
s9v.9ge9 
+9v.9ge9 
-9v.9ge9 
---v. ges9 
9,999v.e9 
---v.---es99 

Result 

5.20+00 
5.20i500 
5.20+00 
5.20e+00 
5.20eO 
-5.20eO 
i55.20eO 
-5.20eO 
-52.0e-1 
1,235.eO 
-52.000e-01 

8.2.12.~.2 Floating~Point Picture Encoding 

Let X be the pictured character-string value to be encoded, and let (n) be the 
precision of the encoded value, Y', where (n)·is determined as follows: 

If the <mantissa field> is a <qrifting sign>, n is the number of <picture 
char>s in the <drifting sign>, excluding the "v", the first sign character, 
and any <insertion character>s. 

If the <mantissa field> 
<picture char>s in the 
<insertion character>s. 

is not 
<digit 

a <drifting 
positions>, 

sign>, n is the 
excluding the "v" 

number of 
and any 

Let m be the number of <picture char>s in the <mantissa field> following 
the "v", but excluding any <insertion character>s. 

The resulting values of nand m must satisfy the relationship m~n~59 or the 
program is in error. 

Let D be the string of decimal digits contained in X. If D is a null string, 
let Dr be zero; otherwise, let D' be the absolute value of the decimal integer 
represented by D. To for~ the result, Y, let Y be a real, decimal, fixed-point 
value of precision (n,m) whose absolute value is given by D' and whose sign is 
minus if the first N characters of X contain a "_", and is otherwise plus. 

Let I be the value derived by encoding the <exponent field> of X as if it were a 
<fixed-point picture>. Let I' be I+s, where s is the value of the <picture 
scale factor>, if there is one, or is 1. 

The result, Y', is a floating-point, de~imal, real, value of precision (n) whose 
value is Y*10··I'. 

7/78 8-21 AG94B 



Examples: 

Value of X Picture Result 

1 ,234.56+0 9,999.v99ks9 1234.56eO 
ii16900.00+4 z,zzz.v99ks9 900.00e4 

I 
16-1.234eOO --9.v99ge99 -1.234eO 
161616161616 9v9999k9 program in error 

7/78 8-22 AG94B 



SECTION 9 

PROMOTION OF AGGREGATE TYPES 

As defined in paragraph 4.2, an aggregate type is the dimensionality, 
array-extents and structuring of a set of scalar values. A value conforms to an 
aggregate type if it has the dimensionality, array-extents and structuring 
specified by the aggregate type. When a value does not conform to the aggregate 
type required by the context in which the value appears," it is promoted to tne 
required aggregate type. If promotion from the original aggregate type to the 
required aggregate type is not defined, the program is in error. 

9. 1 Contexts That Force Promoti"on 

1. The value of the <expression> of an <assignmene statement> is promoted to 
conform to the aggregate type of the <target> of the. <aSSignment 
statement>. 

2. The value of an argument of a <function reference> or <call statement> is 
promoted to conform to the aggregate type of the corresponding <parameter 
descriptor> of the entry declaration. 

3. Operands of infix operators are promoted to the higher of their two 
aggregate types. 

4. The value of a <return value> is promoted to conform to the aggregate type 
specified by the <returns attribute> of the <entry statement> or <procedure 
statement> whose execution created the current block activation. 

5. The arguments of certain built-in functions are promoted to the highest 
aggregate type of all the given arguments. Refer to Section 13 to see 
which built-in functions force promotion, and which arguments are promoted. 

6. The <expression>s of a (substr pseudo> are promoted to the highest common 
aggregate type of the operands of tha <substr pseudo>. 

All of these contexts supply the dimensionality and structuring of the resultant 
aggregate type. All contexts, except the <argument list> context and the 
<return value> context, supply the array-extents of the result. If a <parameter 
descriptor> or a <returns descriptor> specifies asterisk array-extents, the 
resultant aggregate has an array-extent of one in each dimension; otherwise, 
the constant array-extents of the <parameter descriptor> or <returns descriptor> 
supply the array-extenta of the result. 

Example: 

declare t entry(dimensionC*) fixed); 

cal~ r(5); 

In this example, the scalar 5 is promoted to a one-dimensional array of one 
element whose value is 5. 

9-1 AG94 



9.2 Types of Promotion 

The language defines promotion from: 

scalar to array 
scalar to structure 
scalar to array of structures 
structure to array of structures 

The word "promotion" implies a ranking of aggregate types, and the promotion of 
the operands of infix operators utilizes this ranking. The aggregate types are 
ranked as follows: 

array of structures 
array or structure 
scalar 

9.3 Promotion Rules 

highest 
equal 
lowest 

1. Scalars become arrays by forming an array whose elements each have the 
scalar value. 

2. Scalars become structures by forming a structure whose members each have 
the scalar value. 

3. Scalars become arrays of structures by forming an array of structures whose 
scalar components each have,the scalar value. 

4. Structures become arrays of structures by forming an array of structures 
whose array elements each have the value of the structure. 

An array cannot be promoted to a scalar, to an array of different dimensionality 
or extent, nor can it be promoted to a structure or to an array of structures. 
However, since the <bound>s of an array valued (expression> are always 
normalized, arrays of identical extents and dimensionality, but with differing 
<bound>s can be used in any of the contexts that force promotion without causing 
promotion to occur. Refer to paragraph 4.2 for a discussion of array <bound>s 
and normalization. 

Example: 

declare A(5),B(4),C(2,2); 

In this example, there are no valid promotions between A, Band C. 

A structure cannot be promoted to a scalar, to a structure of different shape, 
nor can it be promoted to an array. It can be promoted to an array of 
structures. However, since <level>s are normalized, structures of identical 
shape, but with differing <level>s can be used in any of the contexts that force 
promotion without causing promotion to occur. Refer to paragraph 4.2 and 
paragraph 5.2.1.3 for a discussion of the normalization of <level>s. 

Example: 

declare 5,2 A,2 B; 

declare T,2 X,3 Y,3 Z; 

In this example, there are no valid promotions between T and S, but X and Shave 
identical structuring and consequently have identical aggregate type. (Their 
adjusted <level>s are equal.) 

9-2 AG94 



The fact that two aggregates may map into equivalent patterns of values in 
storage has no affect on the rules of aggregate promotion. 

Example: 

declare A(3); 

declare 1 S,2 X,2 Y,2 Z; 

In some implementations, A and S may map into storage in the same manner, but 
their aggregate types are not compatible and cannot be promoted to a common 
aggregate type. 

9-3 AG94 





SECTION· 10 

CONDITIONS, SIGNALS AND ON-UNITS 

10.1 Conditions and Condition Names 

A condition is a state of the executing program. A condition name is a name 
that identifies a condition. For example, division by zero is a condition 
identified by the condition name "zerodivide". The language defines a set of 
condition names each of which identifies a specific condition which can be 
detected during program execution. The complete list of PL/I conditions is 
given in paragraph 10.4. 

10.2 Condition Prefixes 

The <condition prefix> is an optimization/debugging feature that allows the 
programmer to disable or enable the· detection of some of the PL/I conditions. 

Syntax: 

<condition prefix>::= «prefix name>[,<prefix name>] ••• ): 

<prefix name>::: <disabled condition>l<enabled condition> 

<enabled condition>::: {conversionlconvil {fixedoverflowlfofl}: 
{overflowlofl}lsizel {stringrange:strg}l {stringsizelstrz}l 
{subscriptrangelsubrg}: (underflowlufl}l {zerodividelzdiv} 

<disabled condition>::: {noconversionlnoconv}: {nofixedoverflowl 
nofofl}: (nooverflowlnoofl}lnosize:{nostringrange:~ostrgJl 
{nostringsizelnostrzll{nosubscriptrangelnosubrg}i 
{nounderflowlnoufl}: {nozerodividelnozdiv} 

A <condition prefix> is in error if it contains a <disabled condition> and an 
<enabled condltion> that identify the same condition. 

The region of an <external procedure> affected by a <prefix name> is known as 
the scope of the <prefix name>. The scope of a <prefix name> specified in a 
<condition prefix> attached to a <begin statement> or <procedure statement> is 
all <statement>s contained in the <block> defined by the <begin statement> or 
<procedure statement>, except <statement>s or <block>s that lie within the scope 
of another <prefix. name> identifying the same condition and contained in the 
same <'Jlock>. 

The scope of a <prefix name> specified in a <condition prefix> attached to a 
<state~ent> othe~ than a <begin statement> o~ <~rocedure statement> is 
restricted to that <statement> and does not include any <block>s or <statement>s 
that are part of an <if statement> or <on statemen~>. The scope of a <prefix 
name> specified in a <condition prefix> attached to a <do statement> is 
restricted to the (do ~tatement> and does not include the <group> beaded by th~ 
<do statement>. 

A <cond~tion prefix> attached. to a (foriat statement> controls the detection of 
conditions· resulting from tne evaluation of the <format specification list>, but 

10-" AG94. 



I 

has no effect on the detection of conditions resulting from the execution of the 
<get statement> or <put statement>. 

A <condition prefix> cannot be attached to a <declare statement> or <default 
statement>. Any <reference>s or <expression>s in a <declare statement> or 
<default statement> are part of the declarations of one or more names. When a 
name is referenced during the execution of a <statement>, the <condition prefix> 
that applies to that <statement> is used to control the detection of conditions 
during evaluation of <reference>s and <expression>s in the declaration of the 
name. 

The detection of all PL/I conditions is enabled unless it has been explicitly 
disabled. The detection of a condition is said to be disabled for all 
<statement>s that lie within the scope of a <prefix name> that identifies the 
condition with a <disabled condition> namev 

If a condition occurs during the execution of a <statement> within the scope of 
a <condition prefix> that has disabled detection of the condition, the program 
is in error and the results of further execution are undefined. 

The imaginary outer <block> that contains an <external procedure> has a 
<condition prefix> of the form: 

(nosize,nostringsize,nostringrange,nosubscriptrange): 

This establishes a default <condition prefix) that applies to the entire 
<external procedure>. 

10.3 Signals and On-units 

When a condition is detected the condition is signalled. A signal causes a 
<block> activation of the <on unit> most recently established for the condition. 
The execution of a <signal statement> also signals a condition and has the same 
effect on the flow of control as the detection of a condition. The execution of 
a <signal statement> affects the values of some condition built-in functions as 
described in paragraph 12.27. 

An <on un~&~ ~s a <begin block) or <independent statement> executed when a· 
condition is signalled. An <on unit> is established by the execution of an <on 
statement> and is reverted by the execution of a <revert statement> or by 
termination of the block activation that established it. 

Each block activation is capable of establishing a single <on unit> for each 
condition. If a block activation attempts to establish a second <on unit> for a 
given condition, the second replaces the first. Each block activation is 
capable of reverting only those <on unit>s that it established. If a block 
activation attempts to revert an <on unit> which it did not establish, the 
<revert statement> behaves like a <null statement>. Refer to Section 12 for the 
syntax and semantics of the <on statement>, <signal statement>, and <revert 
statement>. 

Example: 

L1: on zerodivid. go to A; 

begin; 
L2: on zerodivide go to B; 

L3: on zerodivide· go to C; 

revert zerodivide; 
Al"lrI· ,. ...... , 

7/79 10-2 AG94C 



Statement L1 establishes an <on unit> of "go to A" for the zerodivide condition. 
Statement L2 establishes a new <on unit> of "go to an for the same condition, 
and because L2 is part of a different block activation, its <on unit> does not 
replace that established by L 1. It is effectively stacked on top of the <on 
unit> established by L1. Statement L3 ~eplaces the <on unit> established by L2 
because L2 and L3 are <statement>s in the same block activation. The <~evert 
~statement> ~everts the <on unit> established by L3 and causes the <on unit> 
established by L1 to be the cur~ent <on unit> fo~ the condition. 

If no <on unit> has been established for a condition and the condition is signalled, 
a default <on unit> is invoked which performs the default action described for 
that condition in paragraph 10.4. A default <on unit> is explicitly established 
by an <on statement) of the form: 

on <condition list> system; 

An <on unit> is invoked as if it were a <procedure>. When control reaches the 
end of the <on unit> it returns to the pOint where the condition was detected. 

10.3.1 Restrictions 

The program is in error and the results of continued execution are undefined if 
an <on unit> invoked for any of the following conditions returns to the point 
where the condition was detected. 

area (if caused by assignment) 
error 
fixedoverflow 
overflow. 
size 
storage (if caused by stack overflow) 
stringrange 
subscriptrange 
zerodivide 

If a condition is signalled during evaluation of an <expression>, but not during 
execution of an irreducible function invoked by the <expression>, and the responding 
<on unit> returns to the point where the condition was signalled, then the <on 
unit> must not- have allocated, freed, or assigned a value to any generation of 
storage known at the point-where' the condition was signalled. 

This effectively means that conditions are considered to be unexpected side 
effects of <expression> evaluation and their <on unit>s cannot change the values 
of variables being used by the interrupted <block> unless the <on unit> executes 
a <goto statement> to return to the interrupted <block>. 

An <on unit> invoked as a result of a condition detected during evaluation of a 
<statement> cannot access the value of a variable whose value is changed by the 
execution of the <statement>. 

Example: 

on zerodlvide begin; 
X = A; 

A = a/c; 

go to trouble; 
end; 

The value of A is not defined upon entry to the <on unit> and, therefore, cannot 
be accessed by the <on unit>. Programs which access such values are in error 

7/78 10-3 AG94B 

I 



and the resul ts of continued execution are undefined. This example would be 
valid ir it were rewritten as follows: 

on zerodivide begin; 
A = X; 

A = SIC; 

go to trouble; 
end; 

This example is now valid because the <on unit> does not access the value of Ai 
it only accesses the generation of storage of A. 

1004 PL/I Conditions 

In the following discussion, a <reference> is understood to be a <reference> to 
a file value. Refer to Section 11 for a description of the relationship between 
file values, file-state blocks, and data sets. 

In the following discussion, error output is understood to be the Multics 
error~output IIO switch. 

Although the description of each condition states when the condition occurs, the 
following conditions may occur anytime during execution of the program: 

underflow 
overflow 
fixedoverflow 
zerodivide 
size 
stringsize 
storage 
area 
error 

These conditions occur when the compiled code or any of its supporting subroutines 
exceed one or more of their limitations or when they detect an error. Execution 

·of a valid program does not normally cause these unexpected conditions to occur. 

10.4.1 Area Condition 

Syntax: 

<area condition name)::= area 

This condi tion occurs when an <allocate statement> attempts to allocate a generation 
of a based variable in an area whose size is insufficient to contain the generation, 
or when an <assignment statement> assigns an area to an area whose size is 
insufficient to contain the aSSigned area. If an <on unit> returns to the point 
where the condition was detected and the condition was signalled by the execution 
of an <assignment statement>, the program is in error. If the cond1 tion was 
signalled by the execution of an <allocate statement>, the allocation is retried 
including reevaluation of the <in option> of the <allocation>. Unless the <on 
unit> has freed sufficient storage in the area or caused the value of the <in 
option> to change to an area that has sufficient storage, the cond1 tion will 
occur again. 

The default <on unit> writes a comment on error_output and Signals the error 
condition. 

3/81 10-4 AG94E 



10.4.2 Conversion Condition 

Syntax: 

<conversion condition name>::: conversionlconv 

This condition occurs when an invalid character-string or character-pictured I 
value is converted to an arithmetic or bit-string value. Refer to Section 8 for 
a discussion of character-string conversion. 

Just before the condition is signalled, the current values of the onsource and 
onchar built-in functions are pushed down and the value being converted is 
assigned to ~onsource". The leftmost character for which the" conversion failed 
is assigned to "onchar". If the conversion is being performed by stream 
input/output, the current value of the onfile built-in function is also pushed 
down and the current file name is assigned to "onfile". Refer to Section 11 and 
paragraph 13.5. 

If an <on unit> returns to the point where the condition was detected, the 
conversion is retried using the value of the current generation of "onsource". 
Unless the <on unit> has assigned a new value to the "onsource" or "onchar" 
pseudo-variable, the condition will occur again. 

The default <on unit> writes a comment on error_output and signals the error 
condition .. 

10.4.3 Endfile Condition 

Syntax: 

<endfile condition-name>:- :=: endfile( <reference» 

This condition occurs when a <get statement) or <read statement> attempts to 
read past the end of the data set attached to the file-state block identified by 
the file value of the <reference>. 

Just before the condition is Signalled, the current value of the onfile built-in 
function is pushed down and the current file name is assigned to "onfile". If 
the file-state block identified by the file value of the <reference> has the 
<keyed attribute>, the current value of the onkey built-in function is also 
pushed down and the current key value is assigned to "onkey". Refer to Section 
11 and paragraph 13.5. 

Repeated attempts to read past the end of the data set cause the condition to be 
signalled for each attempt. If an <on unit> returns to the point where the 
condition was detected, control returns to the <statement> following the <get 
statement> or <read statement>. 

The default <on unit> wri tes a. comment on error_output and si gnals the error 
condition. 

10.4.4 Endpage Condition 

Syntax: 

<endpage condition name>::~ endpage«reference» 

Let linenumber and pagesize be control values of the file-state block identified 
by the value of the <reference>. 

7/78 10-5 AG94B 



This condition occurs when a <put statement> places a linemark into the data 
stream and the newly updated linenumber equals the pagesize+1. 

If the condition occurred as the result of an attempt to write data, then on 
return from the <on unit>, the data is written. If the condition occurred 
because of the evaluation of a <line option>, <line format>, <skip option>, or 
<skip format>, then on return from the <on unit>, the format or option is 
ignored. 

Just before the condition is signalled, the current value of the onfile built-in 
function is pushed down and the current file name is assigned to "onfile". 
Refer to Section 11 and paragraph 13.5.4. 

When endpage is signalled, the linenumber is one greater than the pageslze. 
During the execution of the <on unit> or after return from the <on unit> without 
a <page option> or <page format> having been evaluated, the linenumber may 
increase indefinitely. However, evaluation of a <line option> or a <line 
format> that would have caused the endpage condition does not cause the 
condition, but instead writes a pagemark into the output stream. 

The default <on unit> places a pagemark into the data stream, resets the 
linenumber to 1, and returns to the point where the condition was detected. 

10.4.5 Error Condition 

Syntax: 

<erro~ condition name>::: error 

This condition is signalled by the default <on unit>s for several conditions. 
It is also signalled by the mathematical built-in functions as described in 
paragraph 13.3 and by the exponentiate operator as described in Section 7. 

If an <on unit> attempts to return to th& point where the condition was 
signalled, the program is in error and the results of continued execution are 
undefined. 

lne default <on unit> writes a comment on error output and returns to the 
Multics command processor. If the start command is- typed on the console, then 
control returns to the point where the condition was signalled, but the program 
is in error and the effects of continued execution are undefined. 

10;~.6 Finish Condition 

Syntax: 

<finish condition name>:: = finish 

I This condition occurs when the process or run unit has attempted to terminate. 

*. The default on-unit returns to the point where the condition was detected. 

If process o~ run unit termination results from partial destruction of the 
proces~ o~ run unit, or exhaustion of process resources, the signal mayor may 
not occur and the correct execution of the <on-unit> mayor may not occur. 

7/78 10-6 AG94B 



10.4.7 Fixedoverflow Condition 

Syntax: 

<fixedoverflow condition name>::: fixedoverflow:fofl 

This condition occurs when the result of a binary fixed-point computation 
exceeds 71 binary digits. If an <on unit> returns to the point where the 
condition was detected, the program is in error and the results of continued 
execution are undefined. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.8 Key Condition 

Syntax: 

<key condition name>::: key«reference» 

This condition occurs when a <key option> specifies a key value that does not 
identify any record in the data set attached to the file-state block identified 
by the by the file value of the <reference>. It also occurs when a <key from 
option> specifies a key value that identifies a record that already ex~ts in the 
data set. 

Just before the' cond~tion is signalled, the currentreeord and nextrecord values 
of the file-state block are set-to undefined values, and the current values of 
the "onfile" and "onkey" built-in functions are pushed down and the current file 
name is aSSigned to "onfile" and the current key value is aSSigned to "onkey". 
Refer to· Section 11 and paragraph 13.5. 

If an <on unit> returns to the point where the condition was detected, control 
returns to the <statement> following the- <statement> that caused the condition 
to occur. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.9 Name Condition 

Syntax: 

<name condition name>::: name«reference» 

This condition occurs when a stream data set is being processed by a <get 
statement> containing a <get data>. It occurs if the stream contains a (basic 
reference> that does not identify a variable whose scope of declaration includes 
the <get statement>, or if the stream contains a <basic reference> that 
identifies a variable that is not identified by a <get data ref> specified by 
the <get data>. 

Just before the condition is signalled, the current value of the "onfield'" and 
"onfile" built-in functi·ons are pushed down and the current file name is 
aSSigned to "ontile"-. The character-string extracted from the data stream by 
the <get statement> is assigned to the "onfield" built-in function. Refer to 
paragraphs 12~14 and 13.5. 

If an <on unit~ returns to the pOint where the condition was detected, 
processing' continues with the next input field. in the stream. 

10-7 AG94· 



The default <on unit) writes a comment on error_output and returns to the point 
where the condition was detected. 

10.4.10 Overflow Condition 

Syntax: 

<overflow condition name)::: overflowlofl 

This condition occurs when the result of a floating-point computation has an 
exponent that exceeds 127. If an <on unit) returns to the pOint where the 
condition was detected, the program is in error and the results of continued 
execution are undefined. 

The default <on unit) writes a comment on error_output and signals the error 
condition. 

10.4.11 Record Condition 

Syntax: 

<record condition name)::: record«reference») 

This condition occurg when a <read statement) reads a record that is not equal 
to the size of the variable specified by the <into option). 

Just before the condition is signalled, the current value of the "onfile" 
built-in function is pushed down and the current file name is aSSigned to 
"onfile". If the file-state block identified by the file value of the 
<reference> has the <keyed attribute> the current value of the "onkey" built-in 
function is also pushed down and the curr~nt key value is assigned to "onksy". 
Refer to Section 11 and paragraph 13.5. 

If an <on unit> returns to the point where the condition was detected, execution 
continues as described in paragraph 12.23. 

The program is in error and the results of continued execution are undefined 
unless the variable is a valid left part of the record, or the record is a valid 
left part of the variable. In the former case, excess data in the record is not 
input. In the later case, only the left part of the variable receives a value. 
A 'variable or record is a valid left part of another variable or record if and 
only if their generations of storage conform to the rules given in paragraph 
4.3.3.2 for the sharing of storage by based variables. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.12 Size Condition 

Syntax: 

<size- condition name>:::: size 

This condition occurs when a, value is converted to a fixed-point target valua, 
and the- target's precision and scale factor does not provide sufficient digits 
to the left of the decimal or binary point to represent the integral digits of 
tha converted value. 

The size condition also occurs when the result of a decimal fixed-point 
computation exceeds 59 decimal digits. 

10-8 AG94 



The condition also occurs during format controlled output conversion when the 
output field described by a <fixed-point format> or a <floating-point format> is 
insufficient to hold the converted value. Refer to paragraphs 8.2.11.1.2 and 
8.2.11.2.2. 

The condition also occurs when a negative value is assigned to a target whose I 
declaration contains the <unsigned attribute>. 

If an <on unit> returns to the point where this condition was detected, the 
program is in error and the results of continued execution are undefined. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.13 Storage Condition 

Syntax: 

<storage condition name>::: storage 

This condition occurs when the Multicsstack segment is about to overflow, or 
when the "system storage" used to allocate controlled and based variables is 
full. 

If the Multics stack segment is about to overflow, the Multics "stack" condition 
is signalled. Its default <on unit> signals the PL/I storage condition. In 
this case, the <on unit> for the storage condition cannot require more than four 
pages of stack storage. If the <on unit> returns to the pOint where the 
condition was detected, the program is in error and the results of continued 
execution are undefined. Refer to the Multics Programmers' Manual. 

If the condition was signalled-because "system storage" was full and the <on 
unit) returns to the point where the condition was detected, the allocation is 
retried. Unless the <on unit> has freed sufficient storage in "system storage", 
the condition will occur again. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.14 Stringrange Condition 

Syntax: 

<stringrange condition name>::: stringrangelstrg 

This condition occurs when the substr built-in function or <substr pseudo> 
specify a substring that is not completely contained in the string value that 
appears as the first argument of the stlbstr reference. If an <on unit> returns 
to the point where the condition was detected, the program is in error and the 
results of continued execution are undefined. 

The default. <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.15 Stringsize Condition 

Syntax: 

<stringsize condition name)::= stringsizelstrz 

7/78 10-9· AG94B 



This condition occurs when a value is converted to a string target value and the 
target's generation of storage is insufficient to contain the string value. If 
an <on unit) returns to the point where the condition was detected, the string 
value is assigned to the target from left-to-right until the target is full and 
any excess characters or bits are truncated. 

The value of the target is undefined at the time the condition is signalled. 

The default <on unit) returns to the point where the condition was detected. 

10.4.16 Subscriptrange Condition 

Syntax: 

<subscriptrange condition name)::: subscriptrange:subrg 

This condition occurs when the value of a <subscript> exceeds the <bound>s of 
the dimension to which it applies. If an <on unit> returns to the point where 
the condition was detected, the- program is in error and the results of continued 
execution are undefined. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.11 Transmit Condition 

Syntax: 

<transmit condition name>::: transmit«reference» 

This condition occurs when data cannot be reliably transmitted between the data 
set attached to the file-state block identified by the file value of the 
<reference> and one or more of the values specified in a <get statement>, <put 
statement>, <read statement>, <write statement), <rewrite statement> or <locate 
statement>. 

The value of any datum whose transmission caused the condition is undefined. 

Just before the condition is signalled, the current value of the nonfile n 

built-in function is pushed down and the current file name is assigned to 
"onfile n • If the file-state block identified by the file value of the 
<reference> has the <keyed attribute> the current value of the "onkey" built-in 
function is also pushed down and the current key value is aSSigned to "onkeyn. 
Refer to Section 11 and paragraph 13.5. 

If an <on unit> returns to the point where the condition was detected, control 
returns to the <statement> following the <statement> that caused the condition 
to occur.· 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.18 Undefinedfile Condition 

Syntax: 

<undefined file condition name>::: {undefinedfile:undf} 
«reference» 

10-10 AG94 



This condition occurs when an attempt to open a file-state block is 
unsuccessful. If an <on unit> returns to the point where the condition was 
detected and the <statement> being executed is an <open statement>, execution 
continues with the evaluation of the next <opening> of the <open statement>. If 
an <on unit> returns control to the point where the condition was detected and 
the <statement> being executed is not an <open statement>, the file must have 
been opened by the <on unit>. If it is not yet open, the error condition is 
signalled. Just before the condition is signalled, the current value of the 
"onfile" built-in function is pushed down and tha current file name is assigned 
to !ionfile". 

The default <on unit> writes a comment on error_output and signals the error 
condition •. 

10.4.19 Underflow Condition 

Syntax: 

<underflow condition name>::~ underflowlufl 

This condition occurs when the result of a floating-point computation has an 
exponent less than -128. The result of the computation is set to zero before 
the condition is signalled. If an <on unit> returns to the point where the 
condition was detected, execution continues using a value of zero. 

The defaul-t <on unit> writes a c.omment on error_output and returns to the poi-nt 
where the condition waa detected. 

10.4.20 Zerodiyide Condition. 

Syntax: 

<zerod~vide condition name>::~ zerodividelzdiv 

This c.ondition occurs when the divisor of a fixed-point or floating-point 
computation is' zero. If an <on unit> returns to the point where the condition 
was detected, the program is in error and the results of continued execution are 
undefined. 

The default <on unit> writes a comment on error_output and signals the error 
condition. 

10.4.21 Hultics and Programmer Defined Conditions 

Syntax: 

<programmer defined condition name>::~ 
{conditionlcond} «identif1er»I <identifier> 

Any <identifier> not used to designate a PL/I condition and not otherwise 
declared in the <block>, except as the name of a structure member, can be 
declared as a condition and used to designata a- programmer defined condition. 
Programmer- defined conditions behave' just like other-- PL/I conditions, except 
that tha only way' they are· signalled is by the- execution of a <signal 
statement>. Refer to Section. 5- for- a discussion of declarations and the 
<condition attribute) •. 

The Hultics operating system defines a number' of conditions that are not 
included in the set of PL/I conditions. These conditions are considered to be 
programmer- defined conditions and behave as such, except that they may be 

10-11 AG94 



signalled by the Multics operating system or by the execution of a <signal 
statement>. Refer to the "Multics Programmers' Manual". 

The default <on unit> writes a comment on error_output and calls the Multics 
command processor. If the "start" command is typed dontrol returns to the point 
where the condition was signalled. 

10-12 AG94 



SECTION 11 

INPUT/OUTPUT 

11 . 1 Data Sets 

A data ~ is either a stream data set or a record data set. 

11.1.1 Stream Data Sets 

A stream ~ ~ is an ordered sequence of data characters and .control 
characters. A control character is a pagemark or linemark. A data character is 
any ASCII character, other than those used as control characters. A linemark is 
an ASCII new line character. A pagemark is an ASCII new page character. The 
effects of these control characters on the I/O mechanism are discussed in 
paragraph 11.2. 

Stream data sets are operated upon be- tha execution of <get statement>s and <put 
statement>s as described in section 12. 

11. 1 .2 Record Data Sets 

A record data m..- is a set of discrete- records each of which'- is the internal 
representation of a PL/I value. The Multics system supports two kinds of record 
data sets: sequential data sets and indexed sequential data sets. A sequential 
da ta set i.s an ordered sequence of records without keys. An indexed sequential 
data~ is an ordered sequence of records each identified by a unique key. A 
~ is a character-string whose maximum length is 256 characters. 

Records of a sequential data set are in chronological order; that is, the order 
in which they were written. Records of an indexed sequential data set are in 
key order, that is record x precedes record y if and only if the key of x is 
less than the key of y. 

Record data sets are operated upon by the 
<write statement>s, <rewrite statement>s, 
statement>s as described in Section 12. 

11.2 File Values and File-stata Blocks 

execution 
<delete 

of: <read 
statement>s 

statement>s, 
and <locate 

A ~ value identifies a file-state olock. A file constant always identifies 
the same file-stat& block, but a file, variable can identify any file-state 
block. A file-state ~,. sometimes called a ~, is a composite value that 
describes the relationship between the p.rogram and a data set. 

A· program- has as- many file-state-' blocks as it has file- constants e. The file 
description attributes declared. for- a, file- constant are really properties of the
file-sta·te· block~, 

;. 
11-1 AG94· 



I 

A file-state block consists of: 

1. Name of the file-state block. (filename) 
2. A data set designator. (title) 
3. Current record designator. (currentrecord) 
4. Next record designator. (nextrecord) 
5. Stream position designator. (streamposition) 
6. Initial file description attributes. (initialdescription) 
7. Current file description attributes. (filedescription) 
8. Input buffer. 
9. Output buffer. 

10. Open/closed status. 
11. Current line size. (linesize) 
12. Current page size. (pagesize) 
13. Current column position. (columnposition) 
14. Current line number. (linenumber) 
15. Current page number. (pagenumber) 
16. External/internal status. 

The parenthesized names are used throughout this document to denote the 
components of a file-state block. The meaning of each value is discussed below: 

The filename is a varying character-string of maximum length 32 that is the name 
of the file-state block. The <declared name> of the file constant that 
identifies the file-state block is the filename. 

Example: 

declare f file constant; 

The file-state block identified by the file value of f has a filename of "f". 

The title is a character-string that is used as a Multics I/O attach description 
as described in paragraph 11.3. 

Th~ currentrecord is either null or it designates a record in the data set 
designated by title. 

The nextrecord is either null or it designates the next record in the sequential 
data set designated by title. Each time that the value of currentrecord is 
changed, the value of nextrecord is updated. When the currentrecord has been 
set null by the execution of a <delete statement> as described in paragraph 
12.8, the nextrecord is used to find the next record of a sequential data set. 

If the <get statement> or <put statement) contains a <string option> instead of 
a <file option>, data stream is understood to be the string value identified by 
the <string option); otherwise, it is understood to be the data set associated 
with the file. 

The streamposition is either null or it designates the current character in a 
stream data set. 

The initialdescription is the set of file description attributes declared 
the file constant whose value identifies this file-state block. 

Example: 

declare f file stream input; 

for 

In this example, the initial fila description attributes are "stream" and 
"input". 

Tha filedescription is the set of attriHutes that describe the data set. It is 
formed when the file-state block is opened as described in paragraph 11.3. 

The input buffer is used to support the execution of <read statement>s 
containing a <set option> and is described in paragraph 12.23. 

7/79 11-2 AG94C 



The output buffer is used to support the execution of the <loaate state~ent> and 
is described in paragraph 12.17. 

The open/closed status indicates whether the file-state block is open or closed. 
Initially it is closed. 

The linesize is the maximum number of data characters that may be written 
between linemarks in a data stream attached to a file-state block that has the 
<stream attribute> and <output attribute>. During stream output a linemark is 
output whenever a character is to be output and columnposition = linesi~e+l. 
Linemarks are also output by evaluation of <skip option>s, <skip format>s, <line 
option>s and <line format>s. They can also be output as a result of evaluating 
a <column format). RefeF to Section 12. 

The pagesize is the maximum number of linemarks that may b& written between 
pagemarks in a data stream attached to a file-state block that has the <print 
attribute> without causing the endpage condition to occur. During output on a 
file that has the <print attribute>, the endpage condition is signalled whenever 
linenumber = pagesize + 1. The default <on unit> for the endpage condition 
writes a pagemark. 

The columnposition is the number of data characters input or output since the 
last linemark plus one. In other words, it is the column into which the next _ 
character will be written, or the column from which the next character will be 
read. The input or output of a linemark sets the columnposition to 1. 

The linenumber is 
pagemark plus. one. 

a count of the- number of linemarks output since the last 
Tha output of a pagemark sets the linenumber to 1. -

The oagenumber is a count of the pagemarks output since the file was opened plus 
one. The initial value of pagenumber is 1. Note that pagenumber can be set by 
the <pageno pseudo> described in paragraph 12.2. 

The external/internal, status indicates the scope of the file constant whose 
value identifies this file-state block .. 

11.3 Opening a File 

A file is opened by performing the following steps in the indicated order: 

1. Form the- filedescription by forming the union of the initialdescription and 
the <opening attribute>s supplied by the <statement> performing the 
opening. The following table gives the '<opening attribute>s for all 
input/output <statement>s capable of opening a file. 

Statement 

<get statement> 
<put statement> 
<read" statement> 
<write statement> 
<rewrite statement> 
<locate statement> 
<delet~ statement) 
<open statement> 

Opening Attributes 

stream input 
stream output 
record input* 
record output it' 
record update 
record, output 
record update 

. <opening attributes> 
given in <statement> 

• If the initialdescription specifies an <update attribute>, the (input 
attribute> or <output attribute> is not one of the <opening attribute>s 
deduced from a <read statement> or <write statement>. 

2. Augment tha filedescription with the <attribute>s 
<attribute> already in tha description. 

11-1 

implied by any 

AG94 



Attribute 

direct 
keyed 
print 
sequential 
update 

Implied Attribute 

record keyed 
record 
stream output 
record 
record 

3. If, after supplying implied <attribute>s, the filedescription is missing 
one of the following required <attribute>s, the required <attribute> is 
supplied by default. 

Required Attributes 

streamlrecord 
input\output\update 
sequentialldirect 

Default 

stream 
input 
sequential (if record) 

I 4. If the filename is "sysprint" and the file-state block is external and the 
filedescription contains the <stream attribute> and the <output attribute>, 
augment the filedescription with the <print attribute>. 

5. The filedescription must now be a set of <attribute>s described by the 
following syntax: 

<consistent file description>::: <stream description>: 
<record description> 

<stream description>::: stream{inputloutput[print] 
[environment(interactive)]} 

<record description>::: record{inputloutputlupdate} 
{<sequential description>l<direct description>} 
[environment(stringvalue)] 

<sequential description>::: sequential[keyed] 

<direct description)::: direct keyed 

6. If the filedescription contains the <print attribute> and the opening is 
belng performed by the execution of an <open statement> and the <opening> 
contains a <pagesize option>, pagesize is set to the converted value of the 
<pagesize option>; otherwise, it is set to a default value that depends on 
the device or data set to which the stream is attached. If the stream is 
attached to a terminal, pagesize is set to infinity, thereby preventing an 
endpage condition from occurring; otherwise it is set to 60. 

If the opening is being performed by the execution of an <open statement> 
and the <opening> contains a <pagesize option>, the filedescription must 
contain the <print attribute>. 

7. If the filedescription contains a <stream attribute> and an <output 
attribute>, and the opening is being performed by the execution of an <open 
statement> and the <opening> contains a <linesize option>, linesize is set 
to the converted value of the <linesize option>; otherwise, it is set to a 
default value that depends on the Multics IIO System attachment. If the 
Multics IIO switch is attached to a terminal, linesize is set to the 
current linesize of the terminal; otherwise, it is set to 132. 

If th& opening is being performed by the execution of an <open statement> 
and the- <opening) contains a <linesize- option>, the filedescription must 
contain the <stream attribute> and the <output attribute>. 

8. If the opening is being performed by the execution of an <open statement> 
and the <opening) contains a <titl& option>, let t be the converted value 
of the <title option>; otherwise, t is defined by the following: 

7/79 

If the filename is "sysin" and tne filedescription contains the 
<stream attribute> and <input attribute>, let t be- "syn_ user_input". 

11-4 AG94C 



If the filename is "sysprint" and the filedescription contains 
<stream attribute> and <output attribute>, let t 
"syn_ user_output". 

If neither of these t:..vo cases applies, let t be "vfile_ filename ll
• 

the 
be 

The character-string t is passed as an attach description to the Multics 
I/O system. Refer to the Multi~s PL/I Reference Manual, for a complete 
description of the relationship between the Multics PL/I language and the 
Multics I/O system. 

9. If the filedescription contains an <output attribute>, any eXisting data 
set designated by the title is normally deleted and a new data set 
conforming to the file description is created. 

If the filedescription contains an <input attribute> or <update attribute>, 
the data set designated by the title is checked for conformance with the 
filedescription. The following table shows all valid filedescriptions for 
each type of data set. 

Data Set 

stream 

sequential 

indexed sequential 

File Description 

stream input 

sequential record{inputlupdate}l 
stream input 

sequential 
record{inputlupdate}[keyed]l 
record direct keyed{inputll:lpdate} 

10. If the filedescription contains a <stream attribute>, the columnposition is 
set to one. If it also contains the <print attribute>, the linenumber and 
pagenumber are set to on&~_ If it contains the <stream attribute> and the 
<input attribute>, then the streamposition is set to the first character in 
the data stream. 

If the filedescription contains the <record attribute> and does not contain 
the <output attribute>, nextrecord is set to designate.the first record in 
the data set. 

In all other cases, the 
streamposition are nUll. 

values of currentr:-ecord, nextrecord or 

11. If steps 1 through 10 were successfully performed, the open/closed status 
is se.t "open"; otherwise-, the undefined file condition is signalled. 

11.4 Closing a File 

A file is closed by performing the following steps in the indicated order: 

1. If there is an output buffer, a new record is created in the data set and 
the cortent of the buffer is written as the value of the new record. If 
there is an evaluated key ·associ.ated with the buffer, it is associated with 
the new record as its key. If any record in the data set already has thi~ 
key, the key condition is signalled. 

7/78 

If the file- does not have- the <keyed attribute>, the- new record is appended 
to the end. of the- data set; otherwise-, the- new record is inserted into its 
prope~ place within the- data set as determined by its key. After the 
record is written, th. output buffer is freed~ An output buffer exists 
when the- last output operation on the file was the ~xecution of a <locate 
statement>. 

11-5 AG94B 

I~ 



2. If there is an input buffer, it is freed. 
the last input operation on the file 
statement> containing a <set option>. 

This circumstance occurs when 
was the execution of a <read 

3. If the data set was attached by the execution of a PL/I input/output 
<statement>, the Multics I/O system is called to detach the data set. 

4. The open/closed status is set Hclosed". 

Files are closed by the execution of a <close statement>, upon normal 
termination of a process or run unit, or by the Multics command: close file. 

If process termination results from partial destruction of the process or 
exhaustion of process resources, the files open in that process, and in 
contained run units, mayor may not be closed. The same applies to run unit 
termination. 

Note that if a process terminates without closing a file, the contents and state 
of the data set designated by that file are undefined. 

11.5 Conditions and Files 

Several of the conditions described in Section 10 are detected during the 
execution of input/output <statement>s. Each I/O condition name contains a 
<reference> to a scalar file value. The file value identifies a file-state 
block and effectively qualifies the condition name. An endfile condition for 
file f is a different condition from an endfile condition for file g. Refer to 
Section 10 for a full discussion of conditions. 

Example: 

on endfile(f) begin; en&; 

on endfile(g) begin; end; 

Execution of the <statement>s in this example 
for ~~dfile O~ file f, the othe~ fo~ endfile en 

establishes two <on unit>s, one 
~;,~ ~ 
4 •• ~ 5' 

It is important to realize that the I/O conditions are qualified by the file's 
state block, not by the <reference> used in the condition name. 

Example: 

declare f file variable, g file constant; 

f = g; 

on endfile{f) begin; end; 

on endfile(g) begin; end; 

Execution of the second <on statement> in this example 
established by the execution of the first <on statement> 
identify the same file-state block. 

7/78 11-6 

reverts the <on unit> 
because f and g both 

AG94B 



SECTION 12 

SYNTAX AND SEMANTICS OF STATEMENTS 

Throughout this section, whenever the execution of a <statement> is described, 
the evaluation of its options and parts as if the option or part were present is 
described. Such descriptions are not to be taken as an indication that the 
described option or <statement> part is required; only the syntax and 
constraints indicate whether or not an option is required. 

12.1 The Allocate Statement 

Syntax: 

<allocate statement>::: [<prefi~>]{allocate:alloc} 
<allocation>(,<allocation>] ... ; 

<allocation>::: <allocation reference> 
{ «in option> J [<set' opX;,ion)]: 
«set option)][<in option>]} 

<in option>::: in«reference» . 

<set option)::: set«reference» 

<allocation reference)::: <ident~fier> 

Constraints: 

Each <allocation reference> must identify a level-~ne based or controlled 
variable. 

Evaluation of the <reference> in a <set option> must yield a generation of 
storage of a scalar locator variable. 

Evaluation of a <reference> in an <in option> must yield a generation of storage 
of a scalar area variable. 

If the <allocatLon reference> of an' <allocation> identifies a controlled 
variable, the <in option> and <set option> must be omitted. 

If ttle <allocation reference> of an <allocation> identifies a based variable and 
the <set option) is omitted, the based \ariable must be declared with a <ba~ed 
attrit~te> containing a <locator qualifier>. In that case, the <locator 
qualifier> is used as a <set option> and it must satisfy the constraints 
specified for the <set option>. 

If the <set option> or derived <set option> of an <allocation> identifies an 
offset variable, th~ <in option> must be present or ~he offset variable must 
have been declared with ~n <offset attribute> containing a <reference>. In the 
latter case, the <refe~~nce> is used as the <in optio~>t and it must satisfy th& 
constraints specified for the <in option>. 

12-1 



I 

If the <set option> or derived <set option> identifies a pOinter variable and 
the <in option> is omitted, a default area called "system storage" is supplied 
as the <in option>. 

Semantics: 

An <allocate 
left-to-right. 

statement> is executed by evaluating its <allocation>s from 
Each evaluation consists of performing one of the following: 

1. If the <allo·cation reference> identifies a controlled variable, a new 
generation of the controlled variable is allocated in "system storage". 
The newly allocated generation and its evaluated extents are stacked on the 
previous generation and its extents. References to the variable reference 
the newly allocated generation and references to the extents of the 
variable reference the extents of the newly allocated generation. The 
<initial attribute>s of the controlled variable's declaration are evaluated 
in an unspecified order and initial values are assigned to the newly 
allocated generation. 

2. If the <allocation reference> identifies a based variable, a new 
generation of the based variable is allocated in the area identified by the 
<in option> and a locator value that identifies the generation is assigned 
to the variable identified by the <set option>. The <initial attribute>~ 
of the based variable's declaration are evaluated in an unspecified order 
and initial values are assigned to the newly allocated generation. Before 
initialization, the value of the <expression> of each <refer option> is 
assigned to the variable identified by the <reference> of the <refer 
option>. 

If insufficient storage exists within the area identified by the <in option>, 
the area condition occurs. If insufficient storage exists within "system 
storage", the storage condition occurs. Refer to paragraph 10.4 for a 
discussion of the area and storage conditions. Refer to paragraph 4.3.2 for a 
discussion of storage classes and storage allocation. 

Examples: 

allocate X set(P); 

allocate X,Y,Z; 

allocate X inCA) set(P),Y in(B) set(Q); 

12.2 The Assignment Statement 

Syntax: 

7/79 

<assignment statement>::: [<prefix>J<target>[,<target>J •.• 
=<expression>[,<by-name option>J; 

<target>::= <reference> I <pseudo-variable> 

<pseudo-variable>::: <string pseudo> I <substr pseudo> I 
<unspec pseudo> I <pageno pseudo>l<real pseudo> I 
<imag pseudo> I <onchar pseudo> I <onsource pseudo> 

<string pseudo>::: string«reference» 

<substr pseudo>::: substr«reference>, 
<expression>[,<expression>]) 

<unspee pseudo>::: unspec«reference» 

<pageno pagenc«referenae» 

12-2 AG94C 



<real pseudo>::: real«reference» 

<imag pseudo>::: imag«reference» 

<onchar pseudo>::: onchar[()] 

<onsource pseudo>::: onsource()] 

<by-name option>::: by name 

Constraints: 

I 

If the <expression> is a <reference> to a scalar character-string or bit-string 
variable, the generation of storage identified by that <reference> cannot 
overlap the generation of storage identified by any of the <target>s if the I· 
generation of storage identified by the <target> starts to the right of th~ 
start of the generation of storage identified by the <expression>. Refer to . 
paragraph 4.3.3 for a discussion of storage sharing. 

Because of compiler optimizations, if the <expression> is a <reference> to the 
string, substr, or unspec built-in functions, and the first argument of the 
<reference> is a <reference> to a variable, the <expression> is considered to be 
a <reference> to a.generation of storage, and the constraint in the previous 
paragraph appli~s. 

Evaluation of the <expression> cannot: allocate, free, or assign a value to any 
<target>, or any generation of storage identified by any <reference> contained 
within any <target>; i.e. <subscript>s, etc. 

Evaluation of the <reference> in a <string pseudo> must yield a generation of 
storage of a scalar or' aggregate string variable suitable for string-overlay 
defining as described in paragraph 4.3.3.6. 

Evaluation of the- <reference>· in a <substr pseUdo> must yield a generation of 
storag.or a scalar or aggregate string variable. If any scalar component of 
the variable was declared with the· <varying attribute), that component must 
currently have a value. 

Evaluation of the <expression>s in a <substr pseudo> must yield scalar or 
aggregate arithmetiO or string values. If either <expression> yields an 
aggregate value, its aggregate type must not be higher than the aggregate type 
of the <referenc~) of the <substr pseudo>. 

Evaluation of the <reference> in an <unspee pseudo> must yield a generation of 
storage of a scalar or aggregate variable whose storage is connected. 

Evaluation of· the <reference> in a <pageno pseudo> must yield a s~alar file 
value. 

Evaluation of the <reference> in a <real pseudo> or <imag pseudo> must yield a 
generation of storage ~f a scalar or aggregate complex variable. 

If evaluation of the <expression> yields an area value, it must be a scalar area 
value and each <target> must be a <reference> to a scalar area variable. 

I<ff the. <assigfnment statement> contains a <by-name option), it may contain no II ... ' ...•. 
unctlon re erence>s yielding non-scalar values unless they are contained 

inside a <locator qualifier>, a <subscript>, or an <argument list>. This 
prohibits the use of structure- or array-valued procedure functions and built-in 
functions when the <by-name option) is specified. 

1/79· 12-3 AG94C 



This page ,intentionally left blank. 

7/79 AG94C 



I If the <assignment statement) 
any <pseudo-variable)s, and all 
a:rays of structures. 

contains a <by-name option>, it may not contain 
<target)s must be <reference)s to structures or 

Semantics: 

If evaluation of the <expression) yields an area, let A denote that area and 
assign A to each <target) taking them from left-to-right. If the size of a 
target area is insufficient to contain A, the area condition occurs. A target 
area must be large enough to contain all generations currently allocated in A 
and must be large enough so that each generation can be allocated in the target 
area with the same offset as it had in A. 

If the <assignment statement) contains a <by-name option>, the following steps 
are performed: 

7/79· 

1. For each <target> in the <assignment statement) and for each 
<reference> to a structure contained in the <expression> but not 
contained within a <locator qualifier), <subscript), or <argument 
list>, create a list of names of all non-structure members of the 
referenced structure or contained substructures. Each member's name 
includes the names of its contained structures up to but not including 
the name of the structur~ identified by the structure <reference). 

2. Form the intersection of the lists created in step 1 and call the 
resulting list the by-name-parts-list. If the by-name-parts-list is 
empty, treat the <assignment statement) as a <null statement). This 
means that only names that are contained in all <target>s and all 
appropriate <reference>s in th& <expression) will be assigned. 

3. Determine the' aggregate-type for each <target) and for each 
<reference> to a structure contained in the <expression> but not 
contained in- a <locatoF---_qualirier), <subscript>, or <argument list) by 
the following method: 

4. 

a. Each <reference> is a structur. or array of structures depending 
on its: <declaration> and <subscripts), if any. 

b. Th. structur~ or array of structures mentioned in step a contains 
one non-structure member for each name in the by-name-parts-list. 
Each member acquires dimensions from two sources: its own 
<declaration>, and th& <declaration> of every containing 
structur. that is an array .. 

Perform the assignment using the new aggregate-types according to the 
following rules for assignment. 

12-3. 1 AG94C 



I If evaluation of the (expression> does not yield an area, an (assignment 
statement> is executed as if it were replaced by a set of simple (assignment 
statement>s of the form: 

v = E; 
11 = V; 
T2 = V; 

1n = V; 

where E is the (expression> and V is a variable whose aggregate type and data 
type are the aggregate type and data type of the (expression>. 11,12, •.• ,Tn are 
the (target>s of the original <assignment statement> taken from left-to-righte 
If Tj is an arithmetic variable, a bit-string variable, or a pictured variable 
defined by a (numeric picture>, and E is a pictured value defined by a (numeric 
picture>, the value of E is encoded to an arithmetic value as described in 
Section 8. In that case, the data type of V is the data type of the encoded 
value. 

The rewritten (assignment statement> is evaluated by performing the following 
steps in the indicated order: 

1. E is evaluated and its value is assigned to V. 

2. For j = 1,2, •.• ,n: the value of V is promoted to a value that 
conforms to the aggregate type of Tj, the promoted value is converted 
to conform to the data type of 1j, and the promoted and converted 
value V' is assigned to Tj. The value of V is unaffected by these 
promotions and conversions. Refer to Sections 8 and 9 for a 
discussion of conversions and promotions. 

If Tj is an aggregate character-string or bit-string variable, the scalar 
components of V' are assigned tQ~he corresponding scalar components of Tj using 
the following rules for scalar string assignment. 

If Tj is a scalar pictured character-string variable, V' is edited into Tj as 
described in paragraph 8.2.12. 

TI' T; ;C! ~ O"'~''''!III'' ""''''M .... ;.1''!10 ... ''1 .. ,,~ ""L.. ...... ___ ., __ ---.:--
__ • ..; .......... w"Ww .... w., .... "',.a}J ... "'-""''-''I ... '"'' ""*'''QI CI"'-vC:::;l -~ ... , ,&,1.1.& or bi t-st.ing variable, """It: 

the-length of V', and let m following rules apply to the assignment. Let n be 
be the declared length of Tj. 

1. If Tj is varying and n<m, assign V' to Tj and set the current length 
of Tj to n. 

2. If Tj is nonvarying and n<m, extend V' to 
m-n blanks (if Tj is character) or zeroes 
the extended value to Tj. 

the right by concatenating 
(if Tj is bit) and assign 

If n)m, truncate the rightmost n-m 
assign the truncated value to Tj. 
length of Tj to m. 

characters or bits from V' and 
If Tj is varying set the current 

4. If n=m, assign V' to Tj and if Tj is varying set the current length of 
Tj to m. 

If the (target> is a <string pseudo>, the promoted and converted value i~ 
assigned to the generation of storage identified by the <reference> as if it 
were the generation of storage of a nonvarying scalar string variable. 

7/79 12-4 AG94C 



When one or more operands of a <pseudo-variable>, other than a <string pseudo>, 
is an aggregate, the operands are promoted to the highest common aggrega~e type. 
The promoted and converted value V' is assigned to the <pseudo-variable> by 
assigning the corresponding scalar components in an unspecified order as 
described in the following paragraphs: 

If the <target> is a <substr pseudo>, the values of the <expression>s are 
converted to fixed-point, binary, real, values of precision (24,0). Let i 
be the converted value of the first <expression> and let j be the converted 
value of the second <expression). If the string variable identified by the 
<reference> is declared with the <varying attribute> let n be the current 
length of the string variable value; otherwise, let n be the evaluated 
string length extent associated with the variable's generation of storage. 

If the second <expression> is omitted, let j be n-i+1. If (0<i-1<j+i-1<n) 
is not satisfied, the stringrange condition occurs. If detection of the 
condition is disabled, the program is in error and the results of continued 
execution are undefined. 

If the inequality is satisfied, the promoted and converted value is 
assigned to the string variable beginning with the ith character or bit and 
continuing through the (i+j-1)th character or bit if j-:O; otherwise if I 
j=O, all characters or bits of the string are unmodified. All other 
~haracters or bits of th~ string are unmodified. 

If the <target> is an <unspec pseudo>, the generation of storage of the 
<reference> is treated as a scalar bit-string variable and the promoted and 
converted value V' is assigned to i~. 

If the <target> is a <pageno pseudo>, the promoted and converted value V' 
is assigned to the pagenumber value of the file-state block identified by 
the file value of the <reference> of the <pageno pseudo>. The file-state 
block must be open and must have the <print attribute>. 

Ir the <target> is a <real pseudo>, 
assigned to the real part of the 
<reference> of. the <real pseudo>. 

the promoted and converted value V' is 
complex variable identified by the 

If the <target> is an <imag pseudo>, the promoted and converted value V' is 
assigned to the imaginary part of the complex variable identified by the 
<reference> of the <imag pseudo>. 

If the <target> is an <onchar pseudo>, the promoted and converted value V' 
is assigned to the current generation of "onchar", which must not be the 
initial generation. Refer to paragraph 10 and paragraph 13.5. 

If the <target> is an <onsource pseudo>, the promoted and converted value 
V' is assigned to the current generation of "onsource", which must not be 
the initial generation. Refer to Section 10 and paragraph 13.5. 

Examples: 

1/79 

A,B,C :. 0; 

string(S) :. "new value"; 

substr(X,i+5,K-5),W = II IZ; 

A - B+C; 

A :. B+C, by name; 

o =- B+C, by name; 

Not~ tha~ th& action or. the previous two <statement>s is not necessarily 
the sam~ as that of the- following <statement>: 

A,D. = B+C, by name; 

12-5 AG94C 



I 

I 

12.3 The Begin Statement 

Syntax: 

<begin stat~ment)::: [<prefix>]begin«options attri~ute)J; 

Semantics: 

A <begin statement> defines the beginning of a <begin block). If executed by 
the flow of control, it causes a block activation of the <begin block>. Refer 
to Section 3 for a discussion of block activation and to Section 2 for the role 
of the <begin statement) in determining the structure of a <begin block}. 

Because a <label prefix> on a <begin statement) produces a declaration of a 
label constant rather than a declaration of an entry constant, a <begin block> 
cannot be invoked by the execution of a <call statement) or evaluation of a 
<function reference). The <options attribute) may only specify the keyword 
nnon_quick" (see 5.4.36. 2E!!.~~:!). 

Example: 

begin; 

12.4 The Call Statement 

Syntax: 

<call statement>::: «prefix>]call<entry reference> 
[<argument list>]; 

<argument list>::: ([<expre;sion>[,<expression>J ••. J) 

<entry reference>::: <reference> 

Constraints:' 

Evaluation of the <entry reference> must yield a scalar entry value. 

The <entry statement> or <procedure statement) identified by the value of the 
<entry reference> cannot have a <returns attribute>. 

The number of <expression)s in the <argument list> must be equal to the number 
of <identifier)s in the <parameter list> of the <entry statement> or <procedure 
statement> identified by the value of the <entry reference>. 

Semantics: 

A <call statement> is executed by evaluating the <entry reference> and all 
<expression)s in an undefined order. The entry identified by the value of the 
<entry reference> is inVOked and each <expression> in the <argument list) is 
associated with the corresponding parameter in the <parameter list) of the 
invoked entry. Refer to paragraph 6.10 for a discussion of argument paSSing. 
and refe~ to Section 3 for a discussion of block activation. 

Examples: 

calL alpha(A,B,C); 

calL beta ( ) ; 

call gamara; 

11/7T 12-6 



12.5 The Close Statement 

Syntax: 

<close statement>::: [<prefix>]close<file option> 
(,<file option>] ... ; 

<file option>::: file«reference» 

Constraint: 

~valuation of each <reference> must yield a scalar file value. 

Semantics: 

A <close statement> is executed by evaluating its <file option>s in an 
unspecified order. For each <file option>, let f denote the file-state block 
identified by the value or the <reference>. If f is closed, take no further 
action for this <file option>; otherwise, close f as described in paragraph 
1 1 .4. 

E.xample: 

close file(f), file(q); 

12.6 The Declare Statement 

Syntax: 

<declare statement>::: [<label prefix>} •.. {declareldcl} 
<declaration list>; 

<declaration list>::: <declaration component> 
[,<declara.tion component>] ••• 

<declara.tion component>:!: [<level>] {<declared name>: 
. {<declaration list»}[<attribute set>]· 

<declared name>::~ <identifier> 

<attribute set>::: <attribute> •• ~ 

<level>::: <4ecimal integer> 

Semantics: , 

Execution of a <declare statement> causes control to pass to the <statement> 
following the <declare statement~. 

A <declare statement> establishes a declaration for each <declared· name> and is 
fully described in Section 5. 

Examples: 

declare (a bit,. b fixed~ c pointer) internal static; 

declare r S, 2 A, Z B; 

12-1 AG9'4· 



12.7 The Default Statement 

Syntax: 

<default statement>::: [<label prefix>] ... {defaultldft} 
{system:none:<user defaults>}; 

I <user defaults>::: «predicate»{errorl<attribute set)[,<at~ribute set)] ... } 

<attribute set>::: <attribute> ... 

<predicate>::: <predicate one>\ 
<predicate>l<pred~cate one> 

<predicate one>::: <predicate two> \ 
<predicate one>&<predicate two> 

<predicate two>::: <predicate three>l~<predicate two> 

<predicate three>::: «predicate»\ <attribute keyword>: 
<range> 

<range>::: range(*)\range«identifier»\ 
range«letter>:<letter» 

<attribute keyword>::= <identifier> 

Semantics: 

Execution of a (default statement> causes control to pass to the <statement> 
following the (default statement>. 

A (default statement> supplies <attribute>s to declarations with incomplete 
<attribute set>s, and is fully described in Section 5. 

Example: 

default (variable & range(c» character(1); 

12.8 The Delete Statement 

Syntax: 

<delete statement>::: [<prefix>Jdelete 
{<file option>[<key optiGn>JI 
[<key option>J<file option>}; 

<file option>::: file«reference» 

<key option>::: key«expression» 

Constraints: 

Evaluation of the <reference> in the <file option> must yield a scalar file 
value. 

Evaluation of the <expression> in a <key option> must yield a scalar string or 
arithmetic valua. 

7/79 12-8 AG94C 



Semantics: 

A <delete statement> is executed by performing the following steps in the 
indicated order: 

1. Evaluate the <file option> and the <key option> in an unspecified order. 

Let f denote the file-state block identified by the value of the <file 
option>. 

Convert the value of the <exp~ession>. in the (key option> 
character-string. 

to a 

2. If f is closed, open it as described in paragraph 11.3. After f is opened, 
it must have the <update attribute>. If a <key option> is specified, f 
must have the <keyed attribute>. 

3. If a <key option> is specified, set the currentrecord of f to designate the 
record identified by the converted value of the <key option>. If no such 
record exists in the data set attached to f, signal the key condition. 

If a <key option> is specified and f has the <sequential attribute>, set 
nextrecord to designate the record following the new current record. If no 
next record exists, set nextrecord null. 

If no <key option> is specified, currentrecord must not be null. 

4. Delete the record designated by currentrecord and set currentrecof"d null. 

Examples: 

delete file(f) key(k); 

delete file(g); 

12.9 The Do Statement 

Syntax: 

'-

<do statement>::: «prefix>]{<noniterative do>1 
<iterative do>} 

<noniterative do>::: do; 

<iterative do>::: {<do while>:<multiple do>}; 

<do while>::: do while«while expression» 

<while expression>::: <expression> 

<multiple d6>::: dO<index>:<control>[,<control>] ••• 

<index>::: <reference> \ <pseudo-variable) 

<control>::: <single loop> I <repeat control> I 
<fortran control> 

<single loop>::: <expression>[while«while expression»] 

<repeat control>::= <tirst>repeat<thereafter) 
(while«while expression»] 

<first>::: <expression> 

<thereafter>::: <expression> 

12-~ AG94-



<fortran control>::: <start>{to<limit>[by<increment>]I 
by<increment>[to<limit>]}[while«while expression»] 

<start>::: <expression> 

<limit>::: <expression> 

<increment>::: <expression> 

Constraints: 

Evaluation of all <expression>s must yield scalar values. 

If an <index> is a <reference>, evaluation of the <reference> must yield a 
generation of storage of a scalar variable whose data type is other than area. 

If an <index> is a <pseudo-variable>, it must satisfy the constraints given in 
paragraph 12.2 for the <target> of an <assignment statement> and it must be a 
scalar . 

. The data types of the values of the <single loop>, <first>, <thereafter> and 
<start> must be such that they can be assigned to the <index>. 

If a <fortran control> contains a <limit>, evaluation of the <index> or the 
<limit> cannot yield complex arithmetic values. 

The <index> of a <multiple do> containing one or more <fortran control>s must 
have a data type such that the <index> and each <increment> can form an 
<assignment statement> of the form: 

<index> = <index> + <increment>; 

Control cannot transfer from a <statement> outside of an <iterative group> to a 
<statement> that is a <block component> of an <iterative group>. Refer to 
Section 2 for the syntax of a <group>. 

Note that the scope of a <condition prefix> of a <do statement> is limited to 
the <do $tatem~nt) ~nd doe~ not include the <group> he~ded by th~ (do 
statement>. 

Semantics: 

A <do statement> is executed by selecting the applicable case and performing the 
steps for that case in the indicated order. 

Case (The <do statement> is a <noniterative do» 

1. Transfer control. to the <statement> following the <do statement>. 

2. Whenever control reaches the <end statement> that ends the <group>, 
transfer control to the <statement> that follows it. 

Case (The <do statement> is a <do while» 

1. Evaluate the <while expression> and convert its value to a bit-string. If 
all bits are 0, transfer control ~o the <statement> following the <end 
statement·> that ends the <group>; otherwise, transfer control to the 
<statement> that 'follows the <do statement>. 

2. Whenever control reaches the <end statement> that ends the <group>, goto 
step 1 of this case. 

12-10 AG94 



Case (The <do statement> is a <multiple do» 

1. Evaluate the left-most <control> by selecting the applicable case and 
performing the steps for that case in the indicated order. When a step 
calls for the evaluation of the next <control> and no more <control>s 
remain, transfer control to the <statement> following the <end statement> 
that ends the <group>. When a step calls for the evaluation of the next 
<control> and one or more unevaluated <contr.ol>s remain, evaluate the 
left-most unevaluated <control> by selecting the applicable case and 
performing the steps for that case in the indicated order. 

Case (The <control> is a <Single loop» 

1. ASSign the value of the <expression> to the <index> by evaluating an 
<aSSignment statement> of the form: 

<index> = <expression> 

2. If the <control> contains a <while expression>, evaluate the <while 
expression> and convert its value to a bit-string. If all bits are 0, 
evaluate the next <control>; otherWise, perform the next step of this 
case. 

3. Transfer control to the <statement> following the <do statement>. 

4. Whenever control reaches the <end statement> that ends the <group>, 
evaluata the next <control>. 

Case (The <control> is a <repeat control» 

1. Let V be the actual text of <first>. 

2. Let Index be a variable whose data type is the data type of <index> 
and whose generation --of storage is the generation identified by 
<index>. ' 

3. ASSign a value' to Index by executing an <aSSignment statement> of the 
form:. 

Index = V; 

4. If th~ <repeat control> contains a <while expression>, evaluate the 
<whila expression> and convert its value to a bit-string. If all bits 
are 0, evaluate the next <control>; otherWise, perform the next step 
of this case. 

5. Transfer control to the <statement> following the <do statement>. 

6. Whenever control reaches the <end statement> that ends the <group>, 
let V be the actual text of <thereafter>, and go to step 3 of this 
case. 

Case (The <control> is a <fortran control» 

1. Perform the next three steps in an undefined order. 

2 •. If <limit> is given, evaluate it an let the value be L. 

3. If <increment> is given, evaluate it and let the value be, I; 
otherwise, let I be 1. 

4-. Let Index be a variable whose data type, is the data type~ of' <index> 
and whosei generation of storage is· the generation identified by 
<inde-x> •. 

12-1 t AG94-



5. Assign the <start> to Index by executing an <assignment statement> of 
the form: 

Index = <start>; 

.6. If the <fortran control> does 
otherwise, let S be 0 if 
otherwise, let S be 1. 

not contain a limit, let S be 1; 
I~O and Index>L, or if I<O and Index<L; 

7. If S is 0, evaluate the next <control>; otherwise, perform the next 
step of this case. 

8. If the <fortran control> contains a <while expression>, evaluate the 
<while expression> and convert its value to a bit string. If all bits 
are 0, let W be 0; otherwise, let W be 1. If the <fortran control> 
does not contain a <while expression>, let W be 1. 

9. If W is 0, evaluate the next <control>; otherwise, transfer control to 
the <statement> following the <do statement>. 

10. Whenever control ~eaches the <end statement> that ends the <group>, 
assign the <index> a new value by executing an <assignment statement> 
of the form:. 

Index =- Index + I; 

11. Go to step 6 of this case. 

Examples: 

do; ••• end; 

do i : 1 to 10; end; 

do X = a,b,c,d; end; 

do X =- 1 to -5 by -1 while(a<b) ; ... end; 

do P :- Head _ ................ (D _" ... __ +- \ ..... ~, _('0 ... __ •• ",. 
~ "' .......... '" \ .. -, ..... A ... I "u ....... \ ~ -1.&'-& ...... I , 

--....I _ 
l:UU; _ 

12.10 The End Statement 

Syntax: 

<end statement>:::- [<prefix>]end«closure label>]; 

<closure label>::: <identifier> 

Constraint: 

The <closure label> must be a- <declared name> that appears in a <label prefix> 
of a preceding <do statement>, <begin statement>, or <procedure statement>. 

Semantics:. 

The effect of a <closure label> is described in paragraph 2.4. 

An- <end statement> denotes the end- of a <group> t <begin block>, or <procedure> 
as described in Section Z5 

When the- flow of control executes an <end statement> that denotes the end of a 
<procedure>, the effect is as if a <return statement) without a <return value> 
had been executed. 

12-12 AG94 



When the flow of ~ontrcl executes an <end statement> that denotes the end of a 
<begin block>, the current block activation is terminated and the preceding 
block activation b~~o~es th~ current block activation. Control is transferred 
to th& <statement> following the <end statement>. 

The effect of executing an <end statement> that denotes the end 0: a <group> 
depends on the <do statement> th~t heads the <group>. Refer to paragraph 12.9. 

Examples: 

P: procedure; 

do while(x<y); 

end P; 

12.11 The Ent~y Statement 

Syntax: 

<entry statement)::; <label prefix> ... entry 
[([<parameter list>])][<entry option)] ... ; 

<entry option)::: <return~ attribute):<~edu~ible attribute>: 
<irreducible attribute)l<options attribute> 

<paramete~ list)::: <identifier>[,<identifier>] ••• 

Constraints: 

Each <identifier> in the <parameter list) must identify a level-one variable 
declared in the- immediately containing <block). 

If control passes to the <entry statement> by the execution of a <call 
statement), the <entry statement) cannot have a <returns attribute). 

If control passes to the <entry statement) by the evaluation of a <function 
reference>, the <entry statement) must have a <returns attribute). 

The number of <identifier)s 1n the <parameter list) must equal the number of 
<expression)s in the <argument list) of the <call statement) or <function 
reference) that invoked this entry_ 

An <entry statement) cannot have both a <reducible attribute> 
<irreducible- attribute>. 

and an 

An <entry statement> containing a <returns attribute> must have exactly one
<returns attribute>' .,ith. a:. <returns descriptor->. 

No <label prefix> can contain a <prefix subscript>. 

The- (options. attribute> may only specify the keyword- "variable-_. 

12-11. lG94 



, ., 

Semantics: 

An <entry statement> denotes an entry to a <procedure). When control is 
transferred to the entry by the evaluation of a <function reference> or the 
execution of a <call statement>, a new block activation of the <procedure> 
occurs and the arguments of the <function reference> or <call statement> are 
associated with the parameters in the <parameter list>. Refer to paragraph 
3.3.1 for a discus3ion of block activation and refer to paragraph 6.10 for a 
description of arguments and parameters. 

If control reaches an <entry statement> as a result of completing the execution 
of the preceding <statement>, control is transferred to the <statement> 
following the <entry statement>. 

Because the <label prefix> of an <entry statement> results in the declaration of 
an entry constant rather than a label constant, a <goto statement> cannot 
transfer control to an <entry statement>. 

Example: 

E: entry(A,B) returns(bit(1»; 

In this example, E is an entry whose invocation results in a bit-string value. 
The entry requires two arguments which are associated with the parameters A and 
B. 

12.12 The Format Statement 

Syntax.: 

<format statement>::: [<condition prefix>] ••• 
<label prefix> ••• formate < format specification list»; 

<format specification list>::: <format specification> 
[ , < format spec ification> ] ••• 

<format specification>::: [<iteration factor>]<format item>! 
"'.: ~ .... __ ~ ~ .... _ #> __ .... _~ I '" #> ..... __ • ... .. _ ... .; 4"~ ... .,. • .;..... ,.; ........ , 
' .......... 1 "'''''''''''11 ... ca ... ""',, \ ,..,,,,,,1 &UCilV ..,..,"'iiio,.., ..... 'WCiiilV ... VII ...... ..,"'" 

<iteration factor>::: <decimal integer>l«expression» 

<format item>::: <data format> I <control format>: 
<remote· format> 

<data format>::: <real format> I <complex format> I 
<bi t-string format> I <character-string format): 
<picture format> 

<real format>:::: <fixed-point format>: < floating-point format> 

<fixed-poi~t format>::: f«w>[,<d>[,<k>]]) 

< floating-po in t. format):: = e( < w> [ ,<c:f> [ , < s> ] ] ) 

<complex format>:::: c( < format part> [ ,< format part>]) 

<toraaat part>:: = <picture format> I 
<tixed-point foraat> ; <tloating-point tormat> 

<picture- tOMlat>::: p·<plcture>'" 

<bit-string, tormat>::: <radix tactor>[«w»J 

<radix: factor>: :.= {b; bl; b2; b31 b4} 

11/11' 12'-14; 



<character-string format>::: a(<w»] 

<w>::: <expression> 

<d>::: <expression> 

<k>: : =. <expression> 

<s>::: <expression> 

<remote format>::: r«reference» 

<control format>::: <column format>:<x format>: 
< page format>: <skip format>: <line format> 

<column format>::= {column:col} «expression» 

<x format)::: x«expression» 

<page format>::: page 

<skip format>::: skip(<expression»] 

<line format>::: line«expression>} 

Constraints: 

evaluation of all <expression>s must yield scalar arithmetic or string values. 

If the <format statement> is controlling the execution of a <get statement), 
each <bit-string format> and each <character-string format> must contain a <w>. 

Evaluation of the <reference> in a <remote format) must yield a scalar format 
value. 

Each <format specification list> must contain at least one <data format> or 
<remote format>. 

Semantics: 

The <format statement> controls the execution of a <get statement> or <put statement> 
containing a <get edit> or <put edit>. Each time the <get statement> or 
<put statement> transmits a value to or from the data_ stream it passes control 
to the. <format specificatiOn--list>. 

The <format i teiii)S- of a <format specification list> are evaluated from 
left-to-right. When control encounters a <format specification> containing an 
<iteration factor>, the <iteration factor) is evaluated and converted to a 
fixed-point, binary, real, integer, n. A <format specification> containing an 
<iteration factor> is used n times. If n < 0, the program is in error. If 
n : 0, the < format- specification> is ignored. If the <format specification) is 
a parenthesized < format_ specification list>, the- entire list is used n times. 

Each time control passes to a <format specification list) all <format item>s 
between the last used <forma.t item> and the next <data format> are evaluated, 
then the next <data format) item is evaluated and used to control the conversion 
of the value being transmitted to or from the data stream. 

If control reaches a <remote format>, the <reference> is evaluated to yield a 
format value. The <format specification list> contained in the <format statement> 
identified by the format- value is invoked as if it were a <procedure). When 
control returns from the <format statement>, the next <format item> is evaluated. 

If control reaches the end of the outermost <format specification list> of a 
<get statement) or <put statement> and one or more values remain to be transmitted 
to or from the data stream, control passes to the beginning of the 
<format specification list>. 

11/7; 12-15 AG94A 



If' control reaches the end of the outermost <format specification list> in a 
<format statement> and one 01'" more values remain to be transmitted to or from 
the data stream, control returns to the <remote format> that invoked the 
<format statement>. 

If control reaches a <format statement> as a result of normal execution of the 
preceding <statement>, control is transferred to the <statement> following the 
<format statement>. 

Because the <label prefix> on a < format statement> is declared as a format constant, 
it is not possible to transfer control to a <format statement> by the execution 
of a <goto statement>. 

Throughout the following discussion of the semantics of <format item>s, file is 
understood to be the flle-state block identified by the file value of the <reference> 
of the <get statement> or <put statement> being controlled by the <format statement>. 

Linesize, pagesize, columnposition, pagenumber and linenumber designate values 
in the file. Advancing an input data stream or placing characters in an output 
data stream affect these values as described in Section 11. 

If the <get statement) or <put statement> contains a <string option> instead of 
a <file option>, data stream is understood to be the string value identified by 
the <string option); otherwise, it is understood to be the data set identified 
by the title of the file. 

If the <get statement> or <put statement> contains a <string option> it is an 
error to attempt to evaluate a <page format>, <skip format>, or (line format>. 

A <column format> is evaluated by evaluating its <expression> and converting the 
value of the <expression> to a flxed-point, binary, real, in.teger, K; K must be 
greater than zero. The following cases describe the effects of the <column 
format> on the data stream: 

If K < eolumnposi tion and the file has the < input attribute>, the data 
stream is advanced to the next linemark. It is then advanced K-l characters 
and columnposition is set to K. If a linemark is encountered befor.e the 
Kth character, the stream is positioned to the character following this 
linemark and columnposition is set to one. 

If K < columnposition and the file has the <output attribute>, a linemark 
and K-l blanks are placed into the data stream and columnposition is set to 
K. -. 

If K > columnpositlon and the· file has the <input attribute>, K-columnposition 
characters are ignored and the columnpositlon is set to K. If a linemark 
is encountered before the Kth character, the stream is positioned to the 
character following the linemark and columnposition is set to one. 

If K ) columnposi tion and K > linesize and the file has the <output attribute>, 
a linemark is placed into the data stream and columnposition is set to one. 

If K > columnposition and K < linest'ze and the file has the <output attribute>, 
K-columnposi tion blanks are placed into the data stream and columnposition 
is set to K. 

An <x format> is evaluated by evaluating its <expression) and converting the 
value of the <expression) to a fixed-point, binary, real, integer, K; K must be 
greater than or equal to zero. If the data stream is being input, the next K 

I characters of the stream are ignored. If the end of the data stream is encountered 
on the first character, signal the endflle cond !tion. If the end of the data 
stream is encountered after the first character, signal the error condition. If 
the' data stream is being output, K blanks are placed into the stream. The 
effect of linemarks in the input or linesize on the output is that described for 
<data format)s in this section. 

3/81 12-16 AG94E 



& <pag& format> is evaluated by placin& a pagemark into th& data stream, setting 
the linenumber and columnposition to one, and adding one to the pagenumber. The 
prog.ram is in error if the file does not contain the <print attribute>. 

A <skip format> is evaluated by evaluating its <expression> and converting the 
value of the <expression> to a fixed-po.int, binary, real, integer, K. If the 
<expression> is omitted, let K bel. If the file does not have the <print 
attribute>, K must be greater than zero; otherwise, it must be nonnegative. 

If the file contains the < input attribute>, advance the data stream until K 
linemarks have been encountered. The stream is positioned to the character 
following the Kth linemark and the columnposition set to one. If the end of the 
data stream is encountered during the scan, signal the endfile condition. 

If the file has the <output attribute> and linenumber>pagesize, place K linemarks 
into the data stream. 

If the file has the <output attribute> and pagesize}linenumber, place 
min(K,pagesiz~l-linenumber) linemarks into the data stream. If 
K>pagesize+l-linenumber, signal the end page condition. In all cases of output, 
each linemark sets columnposition to one and adds one to linenumber. 

If K:O, an ASCII carriage-return character is placed into the data stream- and 
columnposition is set to one. The effect is to reposition the output stream 
back to the beginning of the current line such that additional output will 
overprint, but not replace, data already on the line. Hote that overprinting 
will only occur if the device on which the stream is printed obeys the carriage-return 
control character. 

A <line format} is evaluated by evaluating its <expression> and converting the 
value of the <expression> to a fixed-point, binary, real, integer, K. If K < 0, 
the program is· in error. If K : linenumber and columnp.osition = 1, nothing is 
pI aced in the data stream and no file control values are changed. If K > 
pagesize or K < linenumber J pagesize-linenumber+ 1linemarks are written and the 
endpage condition is signalled, unless linenumber > pagesize+l. In the latter 
case, a pagemark is written into the data stream. - If K > linenumber and K < 
pagesize, K-linenumber linemarks are placed into the data stream. The linenumber 
is set to K and the columnposition is set to one. The program is in error if 
th. file does not contain the <print attribute>. 

A· <data format> is evaluated by evaluating its (expression>s and converting 
their values to fixed-point, binary, real, values of preciSion (17 ,O). If the 
data stream is being input...,.... let w be the converted value of <w> or the number of 
characters described by the <picture format>. The next w characters of the data 
3tream are converted according. to the rule5 for format controlled input conversion 
given in paragraph 8.2.11. If the end of the data stream is encountered on the I 
first character of the w characters, signal the endfile condition. If the end 
of the data stream· is encountered after the first character, signal the error 
condition. The converted value is then assigned to the current target of the 
<get edit>. 

If the data stream is being output, the current output value is evaluated and 
converted according to the rules for format controlled output conversion given 
in paragraph 8.2.11. The converted value is then placed into the data stream. 

If during input, the field of characters to be converted contains one or more 
linemarks, the linemarks are ignored, except that each linemark causes the 
columnposition to be set to one. 

If during output, the converted value does not fit onto the current line, let w 
be the number of characters to be output and let n be linesize-columnposition+1. 
The leftmost n characters are placed into the data stream, followed by a linemark. 
Let m be the number of characters remaining to be output, (w-n). If m < linesize, 
the remaining characters are placed into the data stream and columnposition is 
set to m+1. If m > linesize, let n be linesize. n characters are placed into 
the data stream followed by a linemark, m is set to m-n and the process is 
repeated until m < linesize. The remaining characters are output as described 
above for m ~ linesize. 

3/81 .12-17 AG94E 



Examples: 

get ed1t(a,b,c)(r(F»; 

F: format(e( 14,2) ,F( 10) ,a(S»; 

put ed1t(x,y,z){r(Fl»; 

r1: format(page,a,skip(3),2 e(14,1)}; 

12013 The Free Statement 

Syntax: 

<free statement>::: C<pref1x>]free(freeing>[,<freeing>1.o.; 

<free1ng)::: (fre~ reference>«io option>] 

<in option)::: in«reference» 

<free reference>::: <reference> 

Constraints: 

Evaluation of a <reference> in an <in option) must yield a generation of storage 
of a scalar area variable. 

Evaluation of the <free reference> must yield a level-one generation of storage 
of a based or controlled variable. 

The <in option> must be omitted if the (free reference> identifies a controlled 
variable 01'" if the generation of storage yielded by evaluation of the <free 
reference> is allocated in "system storage". 

Standard PL/I requires that the < in option> be present if the generation 0 f 
storage is not allocated in "system storage", but Multics PL/I does not require 

. the <in option> in this case. 

If the <in option> is present, the generation of storage yielded by evaluation 
of the <free reference> must be' allocated in the area identified by the <in 
option). 

Semantics: 

The (free reference>s and <in option>s of all <freeing>s are evaluated from 
left-to-rlght. 

rreeing a generation of storage makes any values represented in it undefined. A 
program that attempts to access a freed generation is in error. 

rreeing a generation of a controlled variable makes the previously allocated 
generation the current generation. Refer to Section 4 for a discussion of storage 
classes and allocation. 

Examples: 

free· X; 

free· y inCA); 

12-18 AG94 



12.~4 The Get Statement 

Syntax: 

<get statement>::: [<prefix>]getl<file get>:<string get>f; 

<file get>::: <file get option> ••• 

<file get option>::: <file option>l<copy option>! 
<skip option>l<get list specification> 

<file option>::: file«reference» 

<copy option>::: copy(<reference»] 

<skip option>::: skip[«expression»] 

<get list specification>::: <get list>l<get data>:<get edit> 

<get list>::: list«get item>(,<get item>] .•• ) 

<get item>::: <target> I «get item>[,<get item>] ..• <list do» 

<list do>::: <multiple do> 

<target>::: <reference>l<pseudo-variable> 

<get data>::: data(<get data ref>[,<get data ref>] ..• )] 

<get data ref>::: <simple reference>! 
<structure qualified reference> 

<get edit>::: edit<get edit'pair> ••• 

<get edit pair>::~ «get item>(,<get item>] ••• ) 
«format speCification list» 

<string get>::: <string get option> ••• 

<string get option>::: <string option>l<copy option>! 
<get list specification> 

<string option>::: string«expression» 

Constraints: 

Evaluation of a <get item> or <get data ref> must yield a generation of storage 
of an arithmetic or string variable. 

Evaluation of the <reference> in the <file option> or <copy option> must yield a 
scalar file value. 

Evaluation of the <string option> and <skip option> must yield scalar arithmetic 
or string values. 

A <file get) must contain either a <skip option> or a <get list specification>, 
or both. 

A <file get> canno.t contain more. than one <file option), one <copy option>, one 
<skip option) and one <get list specification). 

A <string get) must have exactly one <string option) and exactly one <get list 
specification) and may have- one <copy option>. 

A <structure qualified reference> in a <get data ref) cannot contain any 
<subscript)s. 

12.-19 AG94 



A <get data ref) cannot identify a based variable, unless the variable was 
declared with a <based attribute) that contained a <locator qualifier). 

A <get data ref) cannot identify a defined variable whose <base reference> 
contains one or more <isub>s or asterisks. 

If the <expression> in the <string option> is a <reference> to a variable, 
execution of the <get statement> cannot allocate, free or assign a value to the 
generation of storage identified by the <reference). 

Note that if neither a <file option> nor a <string option> is given in a <get 
statement>, the compiler supplies a <file option> of the form: 

file(sysin) 

Also note that a <copy option> with no <reference> is given "sysprint" as its 
<reference>. Refer to Section 5 for a discussion of the effect of these 
compiler supplied options on the establishment of declarations. 

Semantics: 

If the <get statement> contains a <file option>, it is executed by performing 
the following steps in the indicated order: 

1. Evaluate the <file option> and any <skip option> or <copy option> in an 
unspecified order. Let f denote the file-state block identified by the 
value of the <file option>. Let cf denote the file-state block identified 
by the value of the <copy option>. 

Convert the 
integer, K. 
be one. 

value of the <skip option> to a fixed-point, binary, real, 
If the <expression>' is omitted from the <skip option>, let K 

2. If f is closed, open it as'described in paragraph 11.3. After f is open, 
it must have the <stream attribute> and <input attribute>. 

3. 

4. 

5. 

If cf is closed, open it as described in paragraph 11 .3. After cf is open, 
it must have the <stream attribute> and <output attribute>. 

If the <skip option> is present, evaluate it as described for a <skip 
format) in paragraph 12.12. 

A <get list) is evaluated by performing the following steps in the 
indicated order: 

5a. Establish the next list item as described in step 8. If the list item 
is a scalar, consider it to be the next target. If the list item is 
an aggregate, consider each of its scalar components to be a target 
taking the el.ements of arrays in row-maj'or order and the members of 
structures in left-to-right order. For each scalar target, T, perform 
steps 5b through 5d. 

5b. Scan the data stream to find the next non<space). If the end of the 
data stream is encountered, signal the endfile condition. 

5c. Select the applicable case: 

Case (the. current character is a comma) 

If' the last operation on this file was the execution of a <get 
list> and its scan was stopped by a <space>, go to step 5b; 
otherwise, ignore this targete 

12-20 AG94 



7/78' 

Case (the current character is not a comma or a quote) 

Scan to find the next <space> or comma, and let S be the string 
of all characters scanned, except the <space> or comma that 
stopped the scan. If the end of the data stream is encountered 
during the scan, stop the scan but do not signal the endfile or 
error condition. 

Assign S to the target, T. 

Case (the current character is a quote) 

Scan to find the next single quote, and let S1 be the string of 
all characters scanned, except linemarks. If the end of the data 
stream is encountered during the scan, signal the error 
condition. 

Scan to find the next <space> or comma, and let S2 be the string 
of all characters scanned, except the <space> or comma that 
stopped the scan. If the end of the data stream is encountered 
during the scan, stop the scan but do not signal the endfile or 
error condition.-

Let S be S 1 : : S2 • 

Select th~ applicable case: 

Case (S does not satisfy the syntax for <valid field» 

Rais~ the conversion condition. 

Case (3 satisfies the syntax for <valid bit-field» 

Let 5' be the string 3 with the trailing <radix factor) 1',,:','_ 

removed, the leading and trailing single quote removed, and 
each contairied double' quote replaced by a single quote. Let 
n be th& length gf S'. 

I~ the <radix factor> is "b", let m be 1; otherwise, let m 
be the same as the number in the <radix factor>. 

If S' is a null character-string, convert it to a null 
bit-string, R; otherwise, convert it to R, where R is a 
bi t-string of length m*n. For . k= 1 ,2, •.• ,n, bi ts 
k*m-m+--1 , ._ •. ,k*m are obtained from the table in parag'raph 
2.6.2.1. If the kth character of S' is invalid, the 
conversion condition occurs. 

Assign the bit-string R to the target T. 

12-21 AG94B 



This page intentionally left blank 

7/78 



I 

3/81 

Case (S satisfies the syntax for <valid character-field» 

Let S' be the string S with the leading and trailing single 
quotes removed, and each contained double quote replaced by 
a single quote. 

Assign S' to the targe~, T. 

<valid field>::: <valid bit-field>: 
<valid character-field> 

<valid bit-field>::: <valid character-field><radix factor> 

<radix factor>::: {blb1:b2Ib3Ib4} 

<valid character-field>::: "<character> ••• " 

<character>::: ""I 
Any ASCII character except quote 

<space>::: ASCII blanklASCII tabllinemark 

5d. After step 5c is complete, the current character is the character 
following the <space> or comma, unless the end of the data stream has 
been reached. In the latter case, the end of the stream will be 
detected when the next scan is performed. The conversion or stringsize 
condi tion can result from each conversion or assignment performed by 
step 5c. Refer to Section 10. 

12-21 •. 1 AG94E. 



6. A <get data> is evaluated be performing the following steps in the indicated 
orde .... 

6a. Scan to the the next non<space>. If the end of the data stream is 
encountered during the scan, signal the end file condition. If the 
current character is a comma, repeat the step. If the current character 
is a semicolon, transfer control to the <statement> following the <get 
statement>. If the current character is an equals, let K be a null 
string and go to step 6c. 

6b. Scan to find the next equals or semicolon. If the end of the data 
stream is encountered during the scan, signal the error condition. If 
the scan was stopped by a semicolon, transfer control to the <statement> 
following the <get statement>; otherwise, let K be the string of all 
characters scanned, except linemarks and the equals that stopped the 
scan. 

6c. Scan to find the next non<space>. If the end of the data stream is 
encountered during the scan, signal the error cond i tion. Let S3 be 
the string of all characters scanned, except linemarks. 

Modify the scanning rules described in step 5c so that where they scan 
to find a comma or <space>, they now scan to find a semicolon, comma, 
or <space>. Scan using the modified step 5c to obtain a string S. Do 
not perform the assignments to T described in step 5c. 

6d. If N does not satisfy the syntax for <stream reference>, or if N 
cannot b~ resolved such that it identifies a variable whose scope of 
declaration includes the <get statement>, or if H is improperly 
subscripted, signal the name cond i tion wi th (N I I":" I IS 3: IS) as the 
value of the "onfield" built-in function. Refer to paragraph 10.4 and 
13.5 N may contain <space>s between any of the <lexeme>s of <stream 
reference>, just as if <stream reference> were written in the text of 
an <external procedure>. 

<stream reference>::= «identifier>«subs>].] ••• 
<identifier>«subs>J 

<subs>::: ([+I-]<decimal integer> 
[,[+I-]<decimal integer>] ••• ) 

6e. Let T be the variable identified by N. Assign S to T using the appropriate 
assignment rule from step 5c. 

If the'last character scanned was a semicolon, transfer control to the 
<statement> following the <get statement>; otherwise, go to step 6a. 

1. A <get' edit> is evaluated be performing the following: 

1a. For each <get edit pair> taken from left-to-right. perf o MIl steDs 7b 
ana (c. ifnen the last <get edit pair> has been evaluated, transfer 
control to the <statement> following the <get statement>. 

7b. Establish the next list item as as described in step 8. If the list 
item is a scalar, consider it to be the next target. If the list item 
is an aggregate, consider each of its scalar components to be a target 
taking the elements of arrays in row-major order and the members of 
structures in left-to-right order. 

7c. For each target, pass control to the to the <format specification 
list). The evaluation of the <format specification list> causes the 
data stream to be scanned and a value assigned to the target. Refer 
to paragraph 12.12 for a description of the evaluation of a <format 
specification list>. 

12-22 AG94 



tl. To evaluate a <get list> or <get edit> to obtain the next list item perform 
the following steps in the indicated order: 

oa. If there is no current <get item>, let the current <get item> be the 
leftmost <get item>; otherwise, let the current <get item> be the next 
<get item>. If no more <get item>s remain, transfer control to the 
<statement> following the <get statement>. 

8b. If the current <get item> is a <target>, evaluate the <target> as if 
it were the <target> of an <aSSignment statement> and make the 
evaluated <target> the current list item. 

8c. If the current <get item> is a parenthesized list of <get item>s 
containing a <list do>, consider the entire construct to be a do group 
of the form: 

<multiple do><get item>(,<get item>] .•• end; 

Evaluate the do group as if it were a true <group>. Each <get item> 
is evaluated by performing step 8b or 8c. When control reaches the 
end of the <group>, evaluate the next <get item>. 

Each ASCII tab character encountered during scanning of the data stream sets 
columnposition to the next higher value in the sequence: 11,21,31, ... 

Each linemark encountered during scanning of the data stream sets columnposition 
to one. 

If a pagemark or carriage return character appears. in an input stream, it is 
ignored. 

During execution of a <get statement) containing a <copy option>, all characters 
and linemarks in the input data stream, from the first to the last character or 
linemark scanned, ar&- placed into the copy data stream attached to cf. 

The copy data stream is a normal output stream. and. behaves as such with respect 
to linemarks, linesize, linenumber-, etc. 

If the <get statement> contains a <string option>, it is executed by performing 
the following: 

Evaluate the <string option> and the <copy option> in an unspecified order. 
Convert the value of the <string option> to a character-string and let the 
character-string value be the data stream. For purposes of evaluating the 
<get list speCification>, consider columnposition to be defined with an 
initial value of one. 

Let cf be the file-state' block identified by the value of the <copy' 
option>. If cf is closed, open it as described in paragraph 11:3. After 
of is opened ~t must have the <stream attribute> and the <output 
attribute>. 

Evaluate the <get list specification> as described in steps 5, 6 or 7. If 
this evaluation would signal the name or endfile conditions, the error 
condition is signalled instead of the name or endfile condition. The value 
of "anfield" is not set when the error condition is signalled instead of 
the name condition. 

Example: 

get file(Input) skip list(A,B,C,(X(i) do i ~ 1 to 10),D); 

Execution of this.- <statement>· causes the data· stream identified by "Input" to be 
advanced past the next, linemark; three values are obtained. and assigned to A, B 
and C; the'; <list do> is evaluated and ten values are obtained and assigned to 
X( 1) ,XC 2) , ••• ,XC 10) ; finally a, value: is. obtained and assisned to D. 

12-23 AG94 



Example: 

get string(S) edit(A) (p"zzzvgg n ); 

Execution of this <statement> evaluates S and converts it to a character-string. 
The converted value is then encoded to an arithmetic value under control of the 
<picture>, and the encoded value is then. assigned to A. 

Example: 

get file(F) data; 

Execution of this <statement> advances the data stream identified by F and may 
assign values to any variable whose scope of declaration includes this 
<statement>. The assignment only occurs if the data stream contains "X = Vn , 
where X is a reference to the variable and V is a constant. This <statement> 1s 
extremely expensive because it causes a large symbol table to be included into 
the compiled program. Use of the <statement> is a poor programming practice 
because one cannot tell by reading the <statement> what effect its execution has 
on the state of the executing program. 

Example: 

get data(X,Y,Z); 

Execution of this <statement> advances the data stream· identified by "sysin" and 
may assign values to X,Y, or Z, or any combination of X, Y and Z. This 
<statement> is not quite as expensive or dangerous as the previous example, but 
it is to be avoided if "get list(X,Y,Z)" could be used instead. 

12.15 The Goto Statement 

Syntax: 

<goto statement>::: [<prefix>]{gotolgo to}<reference>; 

Constraint: 

Evaluation of tbe <reference> must yield a scalar label value whose block 
activation pOinter identifies the current block activation record or the 
activation record of a dynamic predecessor of the current block activation. 
Refer to paragraph 3.3.1 for a discussion of block activation. 

Semantics: 

If the· label value identifies a <statement> within the current block activation, 
control transfers to that <statement>. 

If the label value identifies a <statement> within a block activation that is a 
dynamic predecessor of the current block activation, the current block 
activation and all predecessors up to, but not including the block activation 
identified by the label value are terminated. The block activation identified 
by the label value then becomes the current block activation and control 
transfers to the <statemf'~t> identified by the label value. 

It the block activation identified by th~ label value is no longer active, the 
program is in error and the results or continued execution are undefined. 

Example: 

goto· L( 2) ;: 

12-24 AG94· 



12.16 The If Statement 

Syntax: 

<if statement>::: [<prefix>]if<expression><then clause> 
[<else clause>] 

<then clause>::: then<executable unit> 

<else clause>::~ else<executable unit> 

<executable unit>::: <independent statement> I <group> I 
<begin block> 

Constraints: 

Evaluation of the <expression> must yield a scalar arithmetic or string value. 

Note that the sCOP& 
include its <executable 
<prefix>. 

of the <condition prefix> of an <if statement> does not 
unit>s. Each <executable unit> may have its own 

Semantics! 

An <if statement> is executed by performing the following: Evaluate the 
(expression> and convert its value to a bit-string B. If any bit of B is a 1, 
execute the <then clause>; otherwise, execute the <else clause> if it is 
present. In al~ cases, pass control to the <statement> following the <if 
statement>. 

Note that th& syntax rules do not show the pairwis& relationship between "then" 
and "else" keywords. An <else clause> is always paired with the preceding (then 
clause>. 

Examples: 

if x < y 
then if a:b 

then re turn ; 
else go to L; 

In this example, the <else clause> belongs to the second <if statement>. If it 
is to belong to the first <if statement>, it must be written as: 

if X < y 
then if a=b 

then return; 
else; 

else go to L; 

The <null statement> is used as the <executable unit> of the first <else clause> 
to produce the desired effect. 

12.17 The Lgcate Statement. 

Syntax: 

<locate statement>:::: [<pref1x>]locate<allocation reference> 
<locata option> ••• ; 

<allocation' reference>::= <identifier> 

<locata" option>: : =, <f1le option) I <set. opt1on> I 
<key from option> 

12-25 AG94 



<file option>::: file«reference» 

<set option>::: set«reference» 

<keyfrom option>::: keyfrom«expression» 

Constraints: 

NO <locate option> may appear more than once and the <file option> must be 
present. 

Evaluation of the <reference> in the <file option> must yield a scalar file 
value. 

Evaluation of the <reference> in the <set option> must-yield a generation of 
storage of a scalar pOinter variable. 

Evaluation of the <kay from option> must yield a scalar arithmetic or string 
value. 

The <allocation reference> must identify a level-one based variable. 

If the <set optionA is omitted, the variable identified by the <allocation 
reference> must have been declared with a <based attribute> that contained a 
<locator qualifier>. That <locator qualifier> is taken as the <set option> and 
must satisfy the constraints of the <set option>. 

Semantics: 

A <locate statement> is executed by performing the following steps in the 
indicated order: 

1. Evaluate the <locate opiton>s and the <allocation reference> in an 
unspecified order. 

Let f denote the file-state block identified by the value of the <file 
option>. 

If f is not open, open it as described in paragraph 11.3. After f is 
opened, it must have the <record attribute> and either the <output 
attribute> or the <update attribute>. If the <keyfrom option> was 
specified, f must have the <keyed attribute>, and if f has the <keyed 
attribute> the <keyfrom option) must be specified. 

2. It there is an output buffer associated with f, create a new record in the 
data set and write the content of the buffer as the value of the new 
record. If there is an evaluated key associated with the buffer, it is 
associated with the new record as its key. If any record in the data set 
already has this key, signal the key condition. If currentrecord is not 
null, and f has both the <keyed attribute> and the <sequential attribute>, 
and the key is not greater than the key of the record designated by 
currentrecord, signal the key condition. 

If f has the <keyed attribute>, create the new record in its prtiper 
position within the data set as determined by its key; otherwise, append 
the new record to the end of the data set. After the record is written, 
free the buffer and set currentrecord to designate the new record. 

3~ Allocate a generation of storag~ for the variable identified by the 
<allocation reference> by executing an <allocate- statement> of the form: 

allocate x set(p); 

where x is tha variable identified by the <allocation reference> and p is 
the pOinter give~ in the <set option>. Associate this generation of storage 
with f as its output bufrer~ Only the execution of another output 
operation on f or the closing of f causes the buffer to be written into the 
data set as a new record. 

12-26 AG9~ 



4. 11" f has the <keyed attribute>, convert the value 01" the' <key1"rollt option> 
to a character-string and associate it with the output buffer as its key. 

Examples: 

locate X set(p) file(f); 
p->X : 7; 
locate X set(p) file(f); 
p->X = 10; 
close fUe( f) ; 

This example writes two I'"ecords into the data set attached to f. The first 
contains a 7 and the second contains a 10. The first I'"ecord is not written 
until the second <locate statement> is executed and the second I"ecord is not 
written until the <olose statement> is executed. 

12.18 The Null Statement 

Syntax: 

<null statement>::: [<prefix>J; 

Semantics: 

Execution of a <null statement> has no effect on the program. It is used primarily 
as a convenient way of writing an <else clause> 01'" <on unit> that takes no 
aotion. 

Note that a label value identifying a <null statement> does not compare equal to 
a label value, identifying any other <statement>. 

Examples: 

on endpage(f); 

if' a : b 
then if" c : b 

then go to Ll; 
else; 

else go to L2;- '_, 

12.1' Th~On Statement 

Syntax: 

<on statement>::: «preflx>Jon(condition list>[snapJ<on unit> 

<on unit>::: <independent statement> I <begin block>lsystem; 

<oondition list>::: <condition name>(,<condition name>J ••• 

Each <condition name> is one of the <condition name>s given in paragraph 10.4. 

Constraints: 

An <on unit> consisting of an <independent statement> cannot be an <if statement>, 
<on statement>, <revert statement>, or <return statement>. 

An <on unit> oonsisting of a <begin block> cannot have a <return statement> 
contained wi thin the <begin block>, unless it is contained wi thin a <procedure> 
contained within the <begin block>. 

11/7i 12-2; AG914A 

" 



An <independen~ statement> or <begin block> used as an <on unit> cannot have a 
<label prefIx>. 

Note that the scope of a <condition prefix> on an <on statement> does not include 
the <on unit>. 

Semantics: 

The <on unit> is effectively translated into a <procedure> of the form: 

P: procedure; <on unit> end; 

where P is a unique name created by the compiler. The <condition name>s in the 
<condition list> are evaluated in an unspecified order. For each condition 
identified by the <condition list>, execution of an <on statement) causes the 
<procedure> P to be established as the current <on unit> for. this condition.. If 
this block activation has previously established an <on unit> for this condition, 
the previously established <on unit> is reverted. 

When the condition identified by the <condition name> is signalled, the most 
recently established <on unit> for that condition is executed. The signal is 
effectively a call to the <procedure> P. 

I· If the keyword "snap" is given, a Mul tics debugging command is called just prior 
to the invocation of the <on unit>. In an interactive process, the Mul tics 
probe command is called. In an absentee process, the Multics trace stack command 
is called. Refer to the Multics PL/I Reference Manual. -

If the <on unit> consists of the keyword ~system", the default <on unit> for the 
condition is considered to be the <on unit> of this <statement>. 

Refer to Section 10 for a full discussion of conditions, signals and <on unit>s. 

Example: 

on endpage(f) put page list("Page Header"); 

12.20 The Open Statement 

Syntax: 

(open statement>::: [<prefix>Jopen(open1ng>(,(opening>J ••• ; 

<opening>::: <open1ng option> ••• 

<opening option>::: <fl1e option>:<title option>: 
<linesize option>:<pagesize opt10n>: 
<opening attribute> 

<opening attribute>::: <input attribute>:<output attribute>: 
<update attribute>:<record attribute>: 
<stream attribute>:<print attribute>: 
<direct attribute>l<sequential attribute>: 
<keyed attrlbute>l<environment attribute> 

<fl1e option>::: fI1e«rererence» 

<title option)::: title«expression» 

<linesize· option>::: linesize«expression» 

<pagesize· option>::: pagesize«express10n» 

Constraints: 

Evaluation of the <rererence> in each <rile option> must yield a scalar rUe 
value. 

3/81 12 .. 28 AG9.!' 



Evaluation of the <expression> in a <pagesize option>, <linesize option>, or 
<title option> must yield a scalar arithmetic or string value. 

Each <opening> can contain 
<pagesize option) and one 
<opening attribute>s. 

only one 
<linesize 

<file option>, one <ti~le option), one 
option>. It may contain any number of 

Each <opening> must contain a <file option>. 

Semantics: 

An <open statement> is executed by evaluating its <opening>s from left-to-right. 
For each <opening> perform the following steps in the indicated order: . 

1. Evaluate the <file option> and any <title option>, <linesize option> and 
<pagesize option> in an unspecified order. 

Let f denote the file-state block identified by the value of the <file 
option>. 

If a <title option> is specified, convert its value to a character-string. 

If a <pagesize option> or <linesize option> is specified, convert their 
values to fixed-point, binary, real values of precision (17,0). 

2. If f is already open, perform no further action for this <opening>; 
otherwise, open f as described in paragraph 11.3. 

Examples: 

open file(f) pagesize(20) linesize(SO) 
ti tIe ("v file:...., >udd)database>my file") ; 

open file(messages) keyed up-date record; 

open file(g) input stream environment(interactive); 

open file(f),. file(g); 

12.21 The Procedure Statement 

Syntax: 

<procedure statement>::=«condition prefix») .•. <label prefix> ..• 
{procedure:proc}[([<parameter list»»)«procedure option» ••• ; 

<procedure option>::= <returns attribute>:recursive: 
<reducible attribute>:<irreducible attribute>:<options attribute> 

<parameter list>::= <identifier>[,<identifier>] ... 

Constraints: 

Each <identifier> in the <parameter list> must identify a level-one variable 
decl~red in the <procedure> headed by this <procedure statement>. 

No (label prefix> can contain a <prefix subscript>. 

If control passes to the (procedure statement> by the execution of a <call 
statement>~ the (procedure statement> cannot hav~ a (returns attribute>. 

lf control passes to the (procedure statement> by the evaluation of a (function 
reference>" the <procedure statement~ must have a (returns attribute>. 

7/78~ 12-29, AG948 



I 

The number of <identifier>s in the <parameter list> must equal the number of 
<expression>s in the <argument list> of the <call statement> or <function 
reference> that invoked this entry. 

A <procedure statement> cannot contain both a <reducible attribute> and an 
<irreducible attribute>. 

A <procedure statement> containing a <returns attribute> must have exactly one 
<returns attribute> with a <returns descriptor>. 

The <options attribute> may not specify the keyword "constant". The <options 
attribute> may specify "support", "separate static", O~ "packed decimal" only if 
the <procedure statement> heads an <external procedure>: The <options 
attribute> may specify "main" only if the <procedure statement> heads an 
<external procedure> and does not contain a <returns attribute>. 

Semantics: 

A <procedure statement> heads a <procedure> and denotes an entry to the 
<procedure>. When control is transferred to the entry by the evaluation of a 
<function reference> or the execution of a <call statement>, a new block 
activation of the <procedure> occurs and the arguments of the <function 
reference> or <call statement> are associated with the parameters in the 
<parameter list>. Refer to paragraph 3.6.2 for a discussion of <procedure> 
activation and refer to paragraph 6.10 for a description of arguments and 
parameters. 

If control reaches a <procedure statement> as a result of completing the 
execution of the preceding <statement>, control is transferred to the 
<statement> following the <end statement> that ends the <procedure>. 

Because the <label prefix> of a <procedure statement> results in the declaration 
of an entry constant rather than a label constant, a <goto statement> can never 
transfer control to a <procedure statement>. 

Standard PL/I requires that recursive <procedure>s contain the keyword 
"recursive" in their <procedure statement>. Multics PL/I considers all 
<procedure>s recursive. For c~mpatibility with standard PL/I, it accepts the 
keyword. 

Example: 

P: procedure(A,B,C) returns(pointer); 

In this example, P is an entry to the <procedure> headed by the <procedure 
statement>. Invocation of P results in a pointer value. The entry requires 
three arguments that are associated with the parameters A, B, and C. 

12.22 The Put Statement 

Syntax: 

7/79 

<put statement>::: [<prefix>]put{<file put>:<string put>}; 

<file put>::: <file put option> ••• 

<file put option>::: <file option>:<skip option>: 
<line- option)<pag~ option>l<put list specificatton) 

<file option>::: file«reference» 

<skip option>::: skip[«expression»] 

<line option>::: line«expression» 

<page option)::: page 

12-30 AG94C 



<put list specification>::: <put list>:<put data>l<put edit> 

< put list>"::: list ( < put item> ( , < put 1 tem> ] ••• ) 

<put item>::: <expression>; 
«put item>[,<put item>] ••• <list do» 

<list do)::: <multiple do> 

<put data)::: data(<put data item>(,<put data item>] ••• )] 

<put data item>::: <reference> I 
«put data item>(,<put data ltem>] ••• <list do» 

<put edit)::: edit<put edit pair>Q~~ 

<put edit pair)::: «put item>(,<put item>] ••• ) 
«format specification list» 

<string put)::: <string option><put list specification): 
<put list specification><string option) 

<string option)::: string({<reference):<pseudo-variable)}) 

Constr ain ts: 

Evaluation ofa <put item> or <put data item> must yield an arithmetic or string 
value. (As a nonstandard extension, evaluation of a <put item) or <put data 
item> may yield any type of value except an area value unless the item is 
contained in a <put edi~ pair>.) 

Evaluation of the <reference> in the <file option> must yield a scalar file 
valu&. 

Evaluation of the'- <expression)" in- a- <line' option) or <skip option) must yield a 
scalar arithmetic or string value-. 

Evaluation of th~ <string optioh) must yield a generation of storage of a scalar 
character-string variable. 

Evaluation of a <put data item> or a <put item) must not identify the same 
generation of storage as the <string option>. 

A <put data item) cannot identify a- defined variable whose <base reference> 
contains- one- or more <isub>s or asterisks. 

If the <skip option> is given in a <file put>, th& <line option> or <page 
option) cannot also be given. 

Note that if neither a <file option> nor a <string option> is given, the 
compiler supplies a <fil~ option) of the form: 

file(sysprint) 

Refer to Section 5 for a discussion of the effect of this compiler-supplied 
option on the establishment of declarations~ 

Semantics: 

In the' following steps, the· phrase "place- a linemark into the data stream" 
includes the' action of incrementing- linenumber by one' and setting columnposition 
to one as if a <skip format) were being evaluated at that. point.. The
<skip. format) is- described in paragraph 12.12. 

'1/77 12-31' AG94A. 

f_'_ 

I 



If the <put statement> contains a <file option>, it is executed by performing 
the following steps in th~ indicated order: 

1. Evaluate the <expression>s or <reference>s immediately contained in the 
<file option>, <skip option> and <line option> in an unspecified order. 

Let f denote the file-state block identified by the value of the <file 
option>. 

Convert the value of the <skip option> to a fixed-point, binary, integer, 
k. If the <expression> is omitted from the <skip option>, let k be one. 

Convert the value of the <line option> to a fixed-point, binary, integer, 
j. 

2. If f is closed, open it as described in paragraph 11.3. After f is open, 
it must have the <stream attribute> and <output attribute>. If the <page 
option> or the <line option> is given, f must have the <print attribute>. 

3. Evaluate any <page option>, <line option>, or <skip option> as if it were a 
<page format>, <line format>, or <skip format> as described in paragraph 
12&12. If both a <page option> and a <line option> are given, the <page 
option> is evaluated before the <line option>. 

4. If f has an <environment attribute> specifying "interactive", place a 
linemark into the data stream after the <put list specification> has been 
evaluated. 

5. A <put list> is evaluated by performing the following steps in the 
indicated order: 

Sa. Establish the next list item as described in step 8. If the list item 
is a scalar, consider it to be the next output value. If the list 
item is an aggregate, consider each of its scalar components to be an 
output value, taking the elements of arrays in row-major order and the 
members of structures in left-to-right order. For each scalar output 
value, perform steps 5b through 5f. 

5b. If the output value is an arithmetic or string value, convert it to a 
character-string according to the conversion rules given in Section 8. 
Otherwise, convert the output value to a character-string by using a 
nonstandard Hultics routine. Let S be the converted character-string 
value. 

If the original output value was a bit-string, enclose S in quote 
characters and append a "b" to the end of S. 

Ir the original output value was a character-string, including a 
pictured character-string, and f does not have the <print attribute>, 
enclose S in quote characters and replace each contained quote by a 
pair of quotes; otherwise, do not modify 5. 

Let S· be the final converted value to be output and let n be the 
length of 5'. 

5c. If f has the <print attribute> and columnposition is not one or a 
multiple of ten plus one, place an ASCII tab character into the data 
stream and set columnposi tion to the next- higher value in the sequence 
'-1;21,31,.- •• , unless this action would cause columnposition to exceed 
11nesize-; in tha-t. case--, place a linemark into the data stream~ 

5d'. Ie n>(llnes1ze-columnposltlon+l) &. columnposit1on"":1, place a: linemark 
into, the- data stream'. 

5e. Place S.' into the- data stream' using linemarks. to split 5', when 
necessary, as descr'ibed for <data: format>- output in paragraph 12.12. 

Sf. Place- a single blank into the data stream. 

AG94A, 



6. A <pu~ data> 1s evaluated by performing the following steps in the 
indicated. order:' 

6a. If the <put data> has no <put data item>s, create a list of <put data 
item>s containing a <reference> to every level-one variable whose 
scope of declaration includes the <put statement>, but exclude any 
variables that violate one or more of the constraints given above. 
The order of the <put data item>s in the list is unspecified. 

6b. Establish the next list item as described in step 8. If the list item' 
is a scalar, consider it to be the next output value. If the list 
item is an aggregate, consider each of its scalar components to be an 
output value, taking the elements of arrays in row-major order and the 
members of structures in left-to-right order~ For each scalar output 
value, perform steps 6c. through 6i. 

6c~ Form the character~string representation of a fully qualified 
<reference> to the output value with each <subscript> written as a 
<decimal integer> with an optional minus sign. The <reference> 
contains a single optional <subscript list> following the rightmost 
<identifier>, and contains no blanks. 

Examples: 

s . A. S.( 1 , 4, -2 ) 

X(S) 

W.Q 

R 

6d. If f has the· <print· attribute> and columnposi tion is not one or a 
multiple of ten plus one, place an ASCII tab character into the data 
stream and. set· colum·n.posi tion to the next higher value in the sequence 
11 ,21 ,31 , .••• , unless thLs action would cause columnposi tion to exceed 
linesiz.. In that cas~ place a linemark into the data stream. 

6e·. Let R be the character-string formed in 
character-string S consisting of: 

step 6c. Form a 

RI I "_n· .. -
Let V be the character-string representation of the list item, as it 
would be' produced by execution of a <put I ist> for a file not 
containing' the <print attribute>. Let n be the· length of Sf and let m 
be the length of V. 

6f. If n>(linesize-columnposition+') & columnpositionA':1, place a linemark I ... · 
into the d~ta stream. 

6g. Place S into the data stream using linemarks 
necessary, as described for <data format> output 

to split S, when 
in paragraph 12.12. 

6h. If m>(linesize-columnposition+l) & columnposition~;:l, place a linemark I., .... 
into the data stream •. 

6i. Place V into the data stream using linemarks to split V, when 
necessary, as' described. for- <data format> output. in paragraph 12.12. 

6j. If this is th~ last scalar output value to be output by this execution 
of the <put. statement>, place a semicolon into the data stream; 
otherwis&, plac~ a singl~ blank into the data stream. 

T. A <put. edit> is evaluated. by performing the following: 

Establish the, next: list item', as: described in" step 8. If the list. item is a. 
scalar", consider it to be- the next output value'. If the' list item is an 
aggregate', consider each or its scalar components to be an output value',. 

11/77 12-33 AG94At 



taking the elements of arrays in row major order and th~ member OJ 
structures in left-to-right order. For each output value pass control tc 
the <format specification list>. The evaluation of a <format specificatior 
list) causes the output value to be converted and placed into the date 
stream. Refer to paragraph 12.12 for a description of the evaluation of c 
<format specification li~t>. ~ 

8. To evaluate a <put list>, <put data> or <put edit> to obtain the next list 
item, perform the following steps in the indicated order: 

8a. If there is no current <put item>, let the current <put item> be thE 
leftmost <put item> or <put data item>; otherwise, let the current 
<put item> be the next <put item> or <put data item>. If no <put 
item>s or <put data item>s remain, transfer control to the <statement) 
following the <put statement>. 

8b. If the current <put item> is an <expression> or <reference>, evaluate 
it to obtain its value. Let the obtained value be the current list 
item. 

8c. If the current <put item> is a parentheSized list of <put item>s or a 
parenthesized list of <put data item>s, consider the entire construct 
to be _a do group of the form: 

<multiple do><put item>[,<put item>] ... end; 

Evaluate the do group as if it were a true <group>. Evaluate each 
<put item> by performing steps 8b or 8c. When control reaches the end 
of the <group>, evaluate the next <put item> or <put data item>. 

If the <put statement> contains a <string option>, it is executed by performing 
the following: 

Evaluate th~ <string option> as if it were the <target> of an <assignment 
statement>. The evaluat-i-,on must yield a generation of storage of a scalar 
character-string variabl~. 

Let th~ generation of storage yielded by evaluation of the <string option> 
be the data stream, S. For purposes of evaluating the <put list 
specification>, consider columnposition to he defined with ~n initial value 
of one-, and consider linesize to be defined with an initial value that is 
the length extent associated with the generation of storage of S. 

Evaluate th. <put list specification> as described by steps 6. 7 and 8. 

When the last output value has been placed into the data stream by this 
<put statement>, the current length of S is defined as n, where n is 
columnposition-l. Let m be the length of the generation of S. If n<m and 
S is nonvarying, m-n blanks are used to fill the remaining characters of S. 
If S is varying and n<~, the current length of S is defined as n. If n>m, 
the error condition is-signalled before the (m+l)th character is placed 
into the data stream. 

Example: 

put file(f) page listCA,B,C,(XCi) do i=l to 10),0); 

Execution of this <statement> causes the data stream identified by f to contain 
a pagemarkj followed by the values of A, Band C; followed by the values of 
X(l), X(2), ••• ,X(10); followed by th~ val~e of D. Each value begins on a 
columnposition that is a multiple of ten plus one. Linemarks are inserted to 
split th. strea. into lines of linesiz. characters each. 

12-34 AG94 



Example: 

put str-1ng(S) edtt(A.B)(a(10),p"99v99 1t ); 

Execution of thia <statement> causes th& values of A and a to be converted to 
character-strings under control of the <format specification list>. The 
resulting string of 14· characters is the nev value of S. 

Example: 

put file(F) data; 

Execution of this <statement> causes the value of every level-one variable whose 
scope of declaration includes the <put statement> to be output into the data 
stream identified by F. Each value has the form X:V~ except the last which has 
the form has X=V; where X is a <reference> to the variable whose value is given 
by V. This <statement> is extremely expensive' because it causes a large symbol 
table to be included into the compiled program. 

Example:. 

put data(A,B(I),C); 

Execution of this <statement> causes the' following to be placed into the data 
stream identified by "sysprint". 

where 5 is the· current value· of A, 2 is the·· current value of B( I) , lOis the 
current value of I, and 7 is the current value of C. 

12.23 The Read Statement 

Syntax.: 

<read statement>::: [<prefix>]read<read. option> ••• ; 

<read option>::% <file option>:<receiver~:<key spec> 

<file option>::~ file«reference» 

<receiver>::: <into option>:<set option>:<ignore option> 

<into option>::: into«reference» 

<set option>::: set«reference» 

<ignore option>::: ignore«expression» 

<key spec)::: <key option>l<keyto option> 

<key option)::: key{<expression» 

<key to option>::: keyto«reference» 

CQnstraints:' 

Evaluation of the- <re.f"erence·> in the, <file option> must yield a scalar fil&
value'. 

Evaluation of an <into option> must. yield a generation of connected. storage. 

Evaluation of a <set option> must yiel~ a generation of storag& or a scalar 
pointe~ variabl~~ 

12-35 AG94 



I 

Evaluatiori of an <ignore option> or <key option> must yield a scalar arithmeti< 
or' string value. 

Evaluation of a <key to option> must yield a generation of storage of a scalar 
character-string variable. 

A <read statement> must contain 
<receiver> • 

exactly one <file option> and exactly 

A <read statement> can contain only one <key spec>, but if the <receiver> is ar 
<ignore option>, the <read statement> cannot have a <key spec>. 

Semantics: 

A <read statement> is executed by performing the following steps in thE 
indicated order: 

1. Evaluate all <read option>s in an unspecified order. 

Let f denote the file-state block identified by the value of the <filE 
option>. 

Convert the value of th& <expression> in the <key option> 
character-string. 

to 

Convert the 
fixed-point, 
than zero. 

value of 
binary. 

the <expressio~> in the <ignore option> to a 
integer, k. The converted value, k, must be greater 

2. If f is closed, open it as described in paragraph 11.3. After f is open, 
it must have the <input attribute> or' the <update attribute>. If f has the 
<stream- attribute>, go to step 10. Otherwise, if a <key option> is given, 
f must hav~ the <keyed attribute>, and if f has the <direct attribute>, a 
<key option> must be given. 

3. Fre~ any input buffer associated with- f. This circumstance occurs when the 
previous input operation on f was the execution of a <read statement> 
containing a <set option>._ 

4.. If an < ignore option> is specified, set currentrecord to designate the 
(k-i)th record following the record deSignated by nextrecord. Signal the 
endfile condition if the value of k would position currentrecord off the 
end of the data set. 

If a <key option> is specified, set the currentrecord of f to designate the 
record identified by the converted value of the <expression> in the <key 
option>. If no such record exists in the data set attached to f, signal 
th~ key condition. 

If no <key option> or <ignore option) is specified, set 
the valu& of nextrecord. If nextrecord is null, 
condition. 

currentrecord to 
signal the endfile 

5. If f has the <sequential attribute>, set nextrecord to designate the record 
followin& the new current record. If there is no next record, set 
nextrecord- null. 

6~ If a <key to option> is specified, assign the key associated with the 
current record to the variabl& identified by the <reference> given in the 
<key to option>. 

11/77 12-36 AG94A 



7. I, an <into option> is specified. assign a copy of the current record to 
th~ variabl~ ~dentified by the <into option>. If the file-st~te block has 
an <environment attribute> specifying "stringvalue". and the variable, X, 
referenced by the <into option> is a scalar variable with the <varying 
attribute>, perform th~ assignment by executing an assignment statement of 
the form: 

x :. R; 

where R is the record treated as stringvalue.. If this assignment would 
raisa the <strlngsize condition>, raise <record condition> instead. 
Otherwise perform the assignment by executing an <assignment statement> of 
the form: 

unspea(X) ~ unspec(R); 

Where X is the variable referenced by the <into option> and R is the 
record. 

If length(unspec(R»-=length(unspec(X», signal the record condition. On 
return from the <on unit>, complete the assignment as if the length of R 
and the length of X were· the minimum of the lengths of X and R. 

8. If a <set opt·ion> is specified, allocate a generation of storage of 
sufficient size to hold a copy of the 'current record in "system storage l

' 

and associate the generation with f as its input buffer. Assi~n a copy of 
the current ~ecord to this buffer and assign a pointer value identifying 
th. record in the buffer to the generation of storage identified by the 
<reference> given in the <set option>. 

9. Transf~r control to the <statement> following the <read statement>. 

10. The' <read statement> must not contain a <key spec> and must contain an 
<into option> which contains a <reference> to a scalar character-string 
variable •. 

1 1 • 
..--........ 

If the data stream is positioned at. the end of the· data stream, 
end file condition. 

12. Scan· to find the next linemark t and let S be- the string of all characters 
scanned, except the linemark that stopped the scan. If the end of the data 
stream is encountered during the· scan, stop the scan but do not signal the 
endfile or error condition. Otherwise-, position the data stream to the 
character following. the linemark and set col umnposi tion to 1. 

13. Let T b& th& character-string variable referenced by the <into option>. 
Assign S to T. rr this assignment would raise- the <stringsize condition>, 
raise- <record condition> instead .. 

Examples: 

read~ file( f) into(X) ; 

read fi1e(g) set( p); 

read file( s) 18nore(n); 

read. flle(h) key(r) 1nto( x) ; 

read. fl1e( f) set( p) 
.. 

keyto( y); 

ll/TT 



This page intentionally left blank. 

11/71 AG94A 



[ 

12.24 The Return Statement 

Syntax: 

<return statement>::: [<prefix>]return[«return value»]; 

<return value>::: <expression> 

Constraint: 

If the <return value> is omitted, the current procedure block activation must 
have been created by the execution of a <call statement>. If the <return value> 
is present, the current procedure block activation must have been created by the 
evaluation of a <function reference>. 

Semantics: 

If the program is executing within a run unit, and the current procedure block 
activation is the first activation of a <procedure> headed by a <procedure 
statement> containing an <options attribute> specifying the keyword "main", the 
effect is as if a <stop statement> had been executed. 

If the <return value> is omitted, a <return 
terminating the current procedure block activation 
the <statement> following the <call statement> 
current procedure block activation. The preceding 
current block activation. 

statement> is executed by 
and transferring control to 

whose execution created the 
block activation is the new 

If the <return value> is present, a <return statement> is executed by evaluating 
th~ <return value> and promoting its value to conform to the aggregate type 
specified in the <returns attribute> of the <entry statement> or <procedure 
statement> used to enter the current procedure block activation. The promoted 
value is converted to conform to the data type specified in ,the <returns 
attribute). The promoted and converted value is the value of the <function 
reference) whose evaluation-created the current procedure block activation. The 
current procedure block activation is terminated and control returns to continue 
evaluation of "Gne <statement> containing the <function reference>. The 
preceding block activation is the new current block activation. 

Refer to paragraph 3.3.1 for a discussion of block activation and to paragraphs 
8 and 9 for discussions of conversion and promotion. 

Examples: 

return; 

returnCa+b) ; 

7/78 12-37,",1 AG94B-



12.25 The Revert Statement 

Syntax: 

<revert statement>::: [<prefix>]revert<condition list>; 

<condition list>::: <condition name>[,<condition name)] ... · 

Constraint: 

Each <condition name> must be one of the <condition name>s given in paragraph 
10.~. 

Semantics: 

A <revert statement> is executed by evaluating the <condition name>s in an 
unspecified order. For each of the specified <condition name>s, revert the 
associated <on unit> if it was established by the current block activation. 
Refer to Section 10 for a full discussion of conditions. 

Examples: 

revert endpage(f); 

revert underflow, overflow; 

12.26 The Rewrite Statement 

Syntax: 

<rewrite statement>::: [<pr~fix>]rewrite<rewrite option) ... ; 

<rewrite option>::: <file option>l<key option):<from option> 

<file option>::: file«reference» . 
<key optibn)::: key«cxprs?sion>} 

<from option>::: from«reference» 

Constraints: 

A <rewrite statement> must contain exactly one <file option) and cannot contain 
more than one <key option> or more than one <from option>. 

Evaluation of the <reference> in the <file option> must yield a scalar file 
value. 

Evaluation of the <key option> must yield a scalar arithmetic or string value. 

Evaluation of the <from option> must yield a generation of connected storage. 

7/78 12-38 AG94B 



Semantics: 

A <rewrite statement> is executed by performing the following steps in the 
indicated order: 

1. Evaluate the <rewrite option)s in an unspecified Grder. 

Let f denote the file-state block identified by the value of the <file 
option>. 

Convert the value of 
character-string. 

the <expression> in the <key option> to a 

2. If f is closed, open it as- described in paragraph 11.3. After f is opened, 
it must have the <update attribute>. If a <key option> is specified, f 
must have the <keyed attribute>. 

3. If a <key option> is specified, set the currentrecord of f to designate the 
record identified by the converted value of the <key option>. If no such 
record exists in the data set attached to f, signal the key condition. 

If a <key option> is specified and f has the <sequential attribute>, set 
nextrecord to designate the record following the new current record. If 
there is no next record, set nextrecord null. 

If no <key option) is specified, currentrecord ~ust not be null. 

4. If the fi~e-state block has an <environment attribute> specifying 
" s tringvalue", a <from option) is specified, and the variable, X, 
referenced b~ the- <fro~ option) is a scalar variable with the <varyin~ 
attribute>, then replace the record designated by the current record with a 
string equal to th& current value of X. 

If a- <from option> is s.pectfied, and the preceding paragraph does not 
apply, replace th& record designated by currentrecord with a copy of the 
var"iable identified by the (reference) in the- <from option). If f does not 
have- the <keyed attribute>- and the size- of the variable is not equal to the 
size of the record designated by currentrecord, signal the record 
conditi6n. If control returns from the <on unit>, transfer control to th~ 
(statement) following the <rewrite statement>. In that case, the record 
designated by currentrecord remains unchanged. 

If no <from option> is specified, there must be an input buffer associated 
with f. This input buffer will be present only if the last input operation 
on f was the execution of a <read statement> containing a <set option). 
When a <from option) is not speCified, replace the record designated by 
currentrecord with a copy of the record in the input buffer. 

Examples: 

rewrite file(f) from(x); 

rewrite file(g) from(x) key(y); 

12.27 The Signal Statement -

Syntax: 

<signal statement)::= «prefix>] signal <condi tion :"arne>; 

Constraint: 

The- <condition nam&> must be' one- of the <condition na~e)s d::fined in paragraph 
10.4. 

7/78 12-39 AG9lJS-



Semantics: 

If detection of the condition identified by the <condition name> is disabled, 
transfer control to the <statement> following the <signal statement>; otherwise, 
perform the following actions in the indicated order: 

1. For the conditions listed below, stack the current values of their 
as~ociated built-in functions and assign the built-in function the default 
value shown below. 

Condition 

conversion 
conversion 
name(f) 
key(f) 

*endfile(f) 
*transmit(f) 
*record(f) 

Builtin Function 

onsource 
onchar 
onfield 
onkey 
onkey· 
onkey 
onkey 

Value 

null string 
blank 
null string 
null string 
null string 
null string 
null string 

• Only set to this value when f has the <keyed attribute>. 

2. Signal the condition. A signal for condition, c, causes the most recently 
established <on unit> for c to be invoked as a <procedure>. Refer to 
Section 10 for a full discussion of conditions and signals. 

Examples: 

signal condition(x); 

signal zerodivide; 

12.27a The Stop Statement 

Syntax: 

I <stop statement>::: [<prefix>Jstop; 

Semantics: 

If the program is executing within a run unit, execution of the program is 
terminated by performing the following steps: 

1. Rais. the <finish condition>. 

2. Terminate all block activations. 

3. Close all open files. 

4. Terminate the run unit. 

If the program is not executing within a run unit, the system condition 
command abort 1s signalled. The standard system action for command abort is 
to return control to the Hultics command processor in such a way that-the 
remainder of the current command line 1s executed. 

7/79· 12-40 AG94C 



12.28 The Write Statement 

Syntax: 

<write statement>::: [<prefix>]write<write option> ••. ; 

<write option>::: <file option>l<from option>: 
<keyfrom option> 

<file option>::: file«reference» 

<from option>::: from«reference» 

<keyfrom option>::: keyfrom«expression» 

Constraints: 

Evaluation of the <reference> in the <file option> must yield a scalar file 
value. 

Evaluation of the <expression> in the 
arithmetic or string value. 

<keyfrom option> must yield a scalar 

Evaluation of the <from option> must yield a generation of connected storage. 

A <write statement> must contain exactly one <file option> and exactly one <from 
option>. It cannot contain more than one <keyfrom option>. 

Semantics: 

A <write statement> is executed by performing the following steps in the 
indicated order: 

1. Evaluate the <write option>s--- in an unspecified order. 

Lee f denote the file-state block identified by the value of the <file 
option>. 

Convert the value of the 
character-string. 

<expression) in the <keyfrom option) to a 

2. If f is closed, open it as described in paragraph 11.3. After f is opened, 
if it has the <stream attribute>, then go to step 9; otherwise, f must have 
the <record attribute>. It cannot have the <input attribute>. If it has 
the <update attribute>, ie must also have the <keyed attribute>. If the 
<keyfrom option> is specified,. f must have the <keyed attribute>; if f has 
the <keyed attribute>, the <keyfrom option> must be specified. 

3. 

7/78 

If an output buffer is associated with f, create a 
set and write the content of the buffer as the value 
an evaluated key is associated with the buffer, 
record as its key. If any record in the data set 
signal the key condition. 

If f has the <keyed attribute>, create the new 
position within the data set as determined by its 
the new record to the end of the data iet. 

new record in the data 
of the new record. If 

associate it with the 
already has this key, 

record in its proper 
key; otherwise, app~nd 

Afte~ the record is written, free the output buffer. 
exists when the previous output operation on f was 
<locate statement>. 

An output buffer 
the execution of a 

12-41 AG94B 



4. If the <keyfrom option> is specified and the data set already contains a 
record whose associated key is the converted value of the <keyfrom option>, 
signal the key condition. If currentrecord is not. null, and f has both the 
<keyed attribute> and the <sequential attribute>, and the converted value 
of the <keyfrom option> is not greater than the key of the record 
designated by currentrecord, signal the key condition. 

5. If f has the <keyed attribute>, create the new record in its proper 
position within the data set as determined by its key; otherwise, append 
the new record to the end of the data set. If the variable, X, referenced 
by the <from option> is a scalar variable with the <varying attribute>, and 
if the file-state block has an <environment attribute> specifying 
"stringvalue", the record is a string equal to the current value of X. 
Otherwise, the record is a copy of the content of the generation identified 
by the evaluated <from option>. 

6 .. Associate the converted value of the <keyfrom option> with the new record 
as its key. 

7. Set currentrecord to designate the new record and set nextrecord to 
designate the record following the new record if one exists. If no such 
record eXists, set nextrecord null. 

8. Transfer control to the <statement> following the· <write statement>. 

9. f must have the <output attribute>. The <write statement> must not have a 
<keyfrom option> and must have a <from option> that references a scalar 
character-string variable. 

10. Let the variable referenced by the <from option> 
length(S)<=linesize-columnposition+l, place the value of S 
stream; otherwise, signal the <record condition>. Upon 
<on unit>, place substr(S,l,linesize-columnposition+l) 
stream. 

. .... -...... 

be S. If 
into the data 
return from the 

into the data 

11~ Place one linemark into the data stream, set columnposition to one, and add 
on~ to linenumber. If linenumber = pagesize+l, then signal the 
<endpage condition>. 

Examples: 

7/78 

write file(f) from(x) keyfrom(y); 

write file(g) from(x); 

12-42 AG94B 



SECTION 13 

BUILT-IN FUNCTIONS 

The functions described in this section ar. an intrinsic part of the 
language. Functions marked with ~ are not part of standard PL/I but are 
supported by Multics PL/I. For descriptive convenience the built-in functions 
are grouped into six classes. 

1. String Built-in Functions. 

after collate index reverse verify 
before +collate9 length +rtrim 
bit copy low +search 
bool decat +ltrim string 

+byte high +maxlength substr 
character +high9 +rank translate 

2. Arithmetic Built-in Functions. 

abs decimal max real 
add' divide- min round 
binary fixed mod sign 
ceil. float multiply subtract 
complex. floor precision trunc 
conjg imago 

3. Mathematical. Built-in Functions. 

acos cos exp sind 
asin cosd log sinh 
at an cosh 10g10 sqrt 
atand erf 10g2 tan 
atanh erfc sin tand 

tanh 

4. Array Built-in Functions. 

dim hbound prod sum 
dot. lbound 

5. Condition Built-in Functions. 

anahar cnfield onkey onsource 
oneode onfile onloe 

1/79- 13--1 AG94C 



I 
I 
I 

6. Miscellaneous Built-in Functions. 

addr +convert +nullo +stackbaseptr 
+addrel +currentsize offset +stackframeptr 
allocation date page no +stacq 

+baseno empty pointer time 
+baseptr +environmentptr +rel unspec 
+clock lineno +size valid 
+codeptr null +stCic +vclock 

To fa"cilitate the description of the built-in functions, each function is 
described in terms of one or more examples. Built-in functions are referenced 
with a <("unction reference> as described in paragraph 6.8. If a function allows 
a variable number of arguments, the examples show all possible forms of the 
<function reference>. Unless the description of a specific function states 
otherwise, all arguments can be <expression)s. 

13.1 String Built-in Functions 

When a description of a function indicates that its argument is to be converted 
to a character-string, the conversion occurs as if the argument were an operand 
of the "::" infix operator. If the argOment is to be converted to a bit-string, 
the conversion occurs as if the argument were an operand of the "I" infix 
operator. Refer to Sections 7 and 8. 

Unless the description or a specific function states otherwise, the function can 
be invoked with scalar or aggregate arguments. When invoked with one or more 
aggregate arguments, all arguments are promoted to the highest common aggregate 
type as if they were operands of an infix operator. Refer to Sections 7 and 9. 

'--

13. 1 • 1 After' 

Example-: . 

after(S,C) 

5 and C ar~ converted to 5' and Ct. If both Sand C are bit-strings, S' and C' 
ar~ bit-strings; otherwise, S' and C' are character-strings. 

If S· is a bit-string, th~ result R is a bit-string; otherwise, R is a 
Character-string. 

If C' doe~ not occur as a substring within 5', or if 5' is a null string, R is a 
null string .• 

If C' is a null string, R is St. 

If C' is a substring withi~ Sf, let i be the position within 5' of the rightmost 
character or bit of the leftmost substring C', and let n be the length of 5'. 

If l=n, R is a null string. 

It i(n, R' is substr(S·· ,1+1). 

1178 13-2 AG94B 



_13.1.2 ~ 

Example: 

before{S,C) 

Sand C are converted to S' and C'. If both Sand C are bit-strings, S' and C' 
are bit-strings; otherwise, S' and C' are character-strings. 

If S' is a bit-string, the result R is a bit-string; otherwise, R is a 
character-string. 

If S' or C' is a null string, R is a null string. 

If C' is not a null string and does not occur as a substring within S', R is S'. 

It C' is a substring within S', "let i be the position within S' of the first 
character or- bit of the leftmost substring C'. 

If i:1, R is a null string. 

If i>l, R 1s substr{S',l,i-l). 

---~ 

3/81 13-2.1 AG94£ 



This page intentionally lett blank. 

3/81 AG94E 



13.1.3 Bit 

Example: 

biteS) or bit(S,L) 

L is converted to L', where L' is a fixed-point, binary, real value of precision 
(24,0). L' must be a nonnegative scalar value. 

If L is given, S is converted to a bit-string of length Lt. 

If ~ is not given, S is converted to a bit-string S' as described in paragraph 
13. 1 • 

The result R is a bit-string whose length is the length of S' and whose value is 
the value of St. 

13.1.4 Baal 

Example: 

bool(X,Y,W) 

x, Y and ~ are converted to bit-string values X', 
is 4 bits. The shorter of X' or Y' is extended 
until it is the length of the longer string. 

Y' and W'. The length of W' 
on the right with zero bits 

The result R is a bit-string. 

If both X' and Y' are- null string~, R is a null string. 

If Xf and yt ar~ not nulL strings, the length of R is the common length of X t 

and Y'. The kth bit of R is given in the following table. Ml, M2, M3 and M4 
are· the four bits of ~'. 

X'k 

o 
o 
1 
1 

1 3. 1 • 4 a By t e· 

Example: 

byte(X) 

Y'k' 

o 
1 
o 
1 

Rk 

Ml 
M2 
M3 
M4 

byte is a nonstandard built-in function and its use makes programs dependent on 
Multics PL/I. 

X is converted to Xt, where- X' is a fixed-point, 
precision (9,0). X' must b& a nonnegative value. 

Th& result R is a character-~tring of length 1. 

Th~ valur of R is substr(collate9(),Xt.l,1). 

1119 13-3 

binary, real, value of 

AG94C' 



This page intentionally left blank. 

7/79 AG94C 



13.1.5 Character 

Example: 

character(S) or character(S,L) 

L is converted to 
precision (24,0). 

L', where L' is a fixed-point, binary, real, 
L' must be a nonnegative scalar value. 

If L is given, S is converted to a character-string, S', of length L'. 

value of 

If L is not given, S is converted to a character~string S' as described in 
paragraph 13-. 1 • 

The result R is a character-string whose length is the length of S' and whose 
value is the value of S'. 

The character built-in function has two names: character and char. 

7/1~ 13-3.1 AG94C 



Example: 

collate() or collate 

The result 1s a character-string of length 128 that consists of 
characters in the Hultics ASCII character set in a~cending order. 
ASCII character set is defined in the "Multics Programmers' Manual". 

Exaaaple: 

collate9() or collate9 

the set of 
Th~ Hultics 

The result is a character-string of length 512 that consists of the set of 
characters in the Hultlcs Extended Character Set in ascending order. The 
Hultlcs Extended Character Set is defined in the MPH Reference Guide, Order 
No. AG91. 

13.1.1 £2.2I 

Example: 

copy(S·.N) 

N is converted to N'. wher-e Nf'"---- is a fixed-point, binary, real, value· of 
precio51on (2_,0) .. Nt must be a nonnegative scalar value-. 

It S. 105 a bit-string, it Is converted to . a bit-string S'; otherwise l it is 
converted to a character-string 5'. 

The resul t R is·a string of the- same type as 5 ' .• 

It N' = ORis a null string. If N' = 1, the ~alue of R is S'. It N' ) 1. the 
value at h is the valu~ of S' concatenated with itself N'-l times. 

13.1.8 Decat 

Example: 

decat(S,C,X) 

X is converted to 8. bit-string; x.' of' length 3. 

If" both 5 and C are· bit-strings, they are converted to bit-strings, Sf and e'; 
. otherwise,. they are converted to chsi-acter·-strings S' and C'. 

11/77 13-4, AG94A 



The result R is a .string of the salD& type as S'. The' value of R is given by the 
following: 

If c' is a null string, the value of R depends on X t as shown in the table 
below: 

X' R 

000 A null- string 
001 Sf 
010 A null string 
011 Sf 
100 A null string 
101 S' 
110 A null' string 
111 S I 

Ir C' is not a null string, and C' is not a substring of Sf, the value of R 
depends. on X' as shown in the tabl~ below: 

Xf R 

000 A null string 
001 A null string 
010 A null string 
011 A null string 
100 S f-

10l Sf 
110 Sf 
111 S' 

If C' is' not a null string, and C' is a. substring' of S', the value: of R depends 
on X' as- shown- in the- table below.: 

X' 

000-
001 
010 
all 
100 
101 
110 
111 

13 .. 1.9· High 

Example: 

high(H} 

R·f" 

A~ null_ str'ing 
after (S' ,C' ) 
C:' 
C f: ~ after (S' ie' ) 
before(S' ,C' ) 
before(S',C')llafter(S',C') 
before(S' tC'}: IC' 
S' 

N- is· converted to N', where N' is- a fixed-point, binary, real, value- of 
precision (24, a). H' must be:- a, nonnegative- scalar- value$ 

The result R is a string of PAD charac.ters o.f length N'.. A PAD character is the 
highest: character in the: Hulties ASCII character set as, defined in "The Hulties: 
Programmers' Hanual ft-. 

11/1T AG94A· 



13.1.9a Hlgh9 

Example: 

hlgh9(N) 

N is converted to N't where N' is a fixed-point, binary, real, value of 
precision (24,0). N' must be a nonnegative scalar value. 

The result R is a string of characters of length N', all of whose bits are 
one-bits. This is the highest character in the Hultics Extended Character 5et 
as- described in the "Hul tics Programmers' Manual. tf 

13.1.10 Index 

Example": 

indexeS,C> 

If both 5 and C are bit-strings they are converted to the bit-strings 5' and C'; 
otherwise, they are converted to the character strings 5' and ct. 

The result- R is a fixed-point, binary. real, value of precision (24,0). 

If either 5' or c' is a null string or if C' is not contained as a substring 
wi thin S· t R is zero; otherwise, R is the posi tion wi thin 5' of the first 
characte~ or bit of the leftmost substring C' • 

13.1.11 Lengt!!. . . -.... -

Example: 

'1.anat.h{ ~) 
- - .. - g. - -- • - ~ 

If 5 is a bit-string, it i~ converted to a bit-string S'; otherwise, it is 
converted to a character-string 5'. 

The result R is a fixed-point, binary, real, value- of precision (24.0) e 

The value of R is the- length of 5'. 

13.1.12 h2.!! 

Ex_pIe: 

low(N) 

N is: converted to Nt, where N' is a fixed-point, binary, real, value of 
p.rec1s1on~ (24, Q) ., Nt must. be a. nonnegative:- scalar value- .. 

The result R 1s: a string of' NUL characters' of length N'.. A NUL character is the
lowest character in the' Multlcs ASCI! character set, as defined in the "Multics 
Progr_ers' ManuaL. II' 

1'111T 13-6-



13 .. 1 .. 1 2a 1:!!:.!.!! 

Example: 

ltrim(3,C) or ltrim(3) 

ltrim is a nonstandard built-in function and its use makes programs dependent on 
Hultics PL/I. 

3 and C ar~ converted to the character-strings 3' and C'. If C is omitted, the 
value of C' is a single blank characte~. The result R is a character-string. 

To determine the value of R, let n be the length of S'. 

If n is zero then R is the null character-string. Otherwise~ tor k~1t2, ••• ,n, 
the kth character of 3', 3'k, is tested to se. if it occurs iri C'. Let m be the 
first value of k for which the test fails; or if the test succeeds for all 
values of k, m:n+l. 

The, length of the result R is l:n-m+l. For k:l ,2, ••• ,1, Rk:3'k+m-l. 

13.1.12b Maxlength 

Example: 

maxlength(3) 

maxle~gth is a nonstandard built-in function and its use makes programs dependent 
on Hultics PL/I. 

If 3 is a bit-string, It is converted to a bit-string S'; otherwise, it Is 
converted to a character-string 3'. 

Tha- result R is a fixed-point binary, real value of precision (24,0). 

Th. value- ot. R' is- the lIaxillWl length of S'. 

NOTE: The' maxlength built-in function differs frollt the length built-in 
function onl~ when '3 is a varying bit-string or a varying 
character-strin~~ In all other cases both built-in functions return 
the>: same iesult". 

13 .. 1. 12c Rank, 

Ex_ple: 

rank(X) 

rank is a nonstandard built-in function and its use makes programs. dependent on 
Multics PL/I. 

X must be a character-string of length 1. 

The- result R is a fixed-point, binary, real, value-of precision (9,0). 

The value- or R is· index (collate9 () , X )-1. 

T11fJ,. 13-6 .. 1 AG94C 



13.1.13 Reverse-

Example: 

roeverse(S) 

If S is a bit-string, it is converted to a bit-string S'; otherwise, it is 
converted to a character-string S'. 

The result R 1s a string whose type and length are the type and length of S'. 
The kth bit or character in R is the (n-k+l )th bit or character in S', where n 
1s the length of S', and k=1,2, ••• ,n. 

13.1.13a !lli! 

Ex_ple: 

rtrlm(S,C) or rtrimCS) 

The rtrim function is a nonstandard built-in function and its use makes programs 
dependent on Hultics PL/t. 

Sand C are converted to the character-strings Sf and C'. If C is omitted, the 
value of C' is a single blank character. The roesult R is a character-string. 

To determine the value of R, let n be the length of St. For k=n,n-l, ••• ,l, the 
kth character of S', S' k, is tested to see if it occurs in C'. Let m be the 
first value- of k for which the test fails; or if the test succeeds for all 
values of k, m=O. 

The length of the result R is l=m. For k=l ,2, ••• ,IB, Rk=S'k. 

Ex_ple: 

search(S,C) 
-~--

I: The- search function is a nonstandard buil t-ln function; 1 ts use makes programs 
dependent on Hultics PL/t. 

S a~d C are converted to the character-strings S' and C'. 

The result R 1s a fixed-point, binary, real, value of precision (2~,O), 

I If Sf is a null string, R 1s zero; otherwise to determine the value of R, let n 
be the length of S'. For k=1,2, ••• ,n, the kth character of S' 1s tested to see 
if 1t occurs in C'. R is the first value of k for which the test succeeds; or 
if no character of Sf occurs in Ct, R is zero. 

3/81 13-6.2 AG9~E 



13.1.15 String: 

Example: 

string(S) 

S must be an arithmetic or string scalar value, or it must be an aggregate of 
string data sui table for use in string overlay defining as described in paragraph 
~.3.3.6. 

If S is a" scalar, other thao a bit-string. it is converted to a character-string 
S'; otherwise, let S' be S. 

Th~ result R is a string whos~ type and valu~ are the type and value of S'. If 
S' i$ an aggregate, the type of R is the type of the components of S', and the 
value" of ? is the concatenation of all scalar components of Sj. 

13.1.16 ~ 

Example: 

substr(S,I,J) or substr(S,I) 

I and J' are converted to I' and J', where I' and J' are fixed-point, binary, 
real, values of precision(24,0). 

If" S is a bit-string, it is converted to a bit-string S'; otherwise, it 1s 
converted to a character-string S'. 

The- resul t R is' a string of the same' type as S'. 

To determine the value of R, let 1=1' and, -if J is giVen, let j=J f; otherwise, 
let j=n-i~1, where n is the length of S'. 

If (0<i-1<j.i-1<n) is not satisfied, the stringrange condition occurs. Unless 
. detection-of" the condition has been enabled the program is in error and the 
results of-continued. execution are undefined. 

If' the' inequali ties ar&< satisfied, R is a string of length j. The kth character 
or- bit of R is the- (i.k-l)"t"h...character- or bit of Sf. 

13. 1.17 Translate' 

Example: 

translate(S,T) or translate(S,T,X) 

S, T and X are· converted to the character-strings Sf, T' and Xt. If X is I 
omitted, Xt is the- value of collate9(). If T' is shorter than Xt, it is padded 
on th~ righ~ with blanks until, it 1s the length of Xt. 

The- result R is a character-string of the length of S'. 

Let n be the- length of S'. For k=1,2p •• ,n, determine Rk by the following: 

Let i be given" by index(X' ,S'k). If 1=0, Rk=S'k; otherwise, Rk is the- ith 
character- of T". 

11/7T 13-1 



13e1.18 Verify 

Example: 

verify(S,C) 

Sand C are converted to the character-strings S' and C'. 

The result R 1s a fixed-point, binary. real, value of precision (24,0). 

If S' is a null string, R is zero; otherwise to determine the value of R, let n 
be the length of St. ror k=',2, ••• ,n, the kth character of S' is tested to see 
if it occurs in C'. R is the first value of k for which the test fails; or if 
every character of S' occurs in C', R is zero. 

13.2 Arithmetic Built-in runctions 

When the description of a specific function requires that its arguments be converted 
to the "common" type, base and mode, they are converted as if they were operands 
of the infix operator ".". 

When the description of a specific function requires that a Single argument be 
converted to arithmetic type, the argument is converted as if it were an operand 
of the prefix operator ".". Refer to Sections 7 and 8 for a discussion of 
conversion. 

Unless the description of a specific function states otherwise, the function can 
be invoked with scalar or aggregate arguments. When invoked with one or more 
aggregate arguments, all arguments are promoted to the highest common aggregate 
type as if they were operands of an infix operator. Refer to Sections 7 and 9. 

Each function is described as operating on scalar values and yielding a scalar 
result. When given aggregate arguments, the function is applied to corresponding 
scalar components of the promoted aggregate arguments and produces the corresponding 

. scalar component of the aggregate result. The order of evaluation of the scalar 
components is not defined. The result is an aggregate of the same aggregate 
type as the promoted aggregate arguments. 

Ex_ple: 

X must be an arithmetic or string value. 

X is converted to X'. The type, base, mode and preciSion of X' are given in 
paragraph 13.2. 

The result R has the type and base of X'. 

Th. mode of R is real. 

If the type of X' is fixed-point and the mode of X' is complex, the precision of 
R is: 

(min(N,p+l),q) 

where N is 71 if the base of X' is binary and 59 if the base of X' is decimal, 
and (p,q) is the precision of X'. 

3/81 13-8 AG94E 



Otherwise, the precision of R is the precision of X'. 

If X' is complex, the valu~ of R is the positive square root of x**2+y**2, where 
x and yare the real and imaginary parts of X'. 

If Xf is real, the value of R is X' if X'>O; otherwise, it is -X'. 

13.2.2 AWl 

Example: 

add(X,Y,P) or add(X,Y,P,Q) 

X and Y 
integer>s. 

must be arithmetic 
Q may be signed. 

or string values, and. P and Q must be (decimal 

No conversion or promotion is performed for P or Q. X and Yare converted to Xt 

and yt, where the type, base and mode of X' and Y' are the common type, base and 
mode as defined in paragraph 13.2. 

If the common type is fixed-point and Q is not given, Q is assumed to be zero. 
If the common type is floating-point, Q must not be given. Q must be in the 
range -128~~127. 

If the common base is decimal, let N be 59. If the common base is binary and 
the common type is fixed-point, let N be 71. If the common base is binary and 
-the common type- is floating-point, let N be 63. P must be less than or equal to 
N. 

The result R haa the common type,. base and mode. 

If R is floating·..point, its-, precisi.on is' (P); otherwise-, it is (P,Q). 

The, value of R i$ 1'+Y' •. 

13.2.3 Binary. 

Example: 

binary(X) or binary(X,P) or- binary(X,P,Q) 

X must be an arithmetic' or- string- value', and P and Q must be <decimal integer)s. 
Q may be- si gned • 

No conversion or promotion is· performed for P or Q. If P or P and Q are given, 
they are the precision of the result. If the result is floating-point, P cannot 
exceed 63; otherwise, P cannot exceed 71. If the result 1s floating-point, Q 
cannot be given. If P, but not Q, is. given and the result type is fixed-point, 
Q. is. assumed to be zero. If given, Q must be'1n the range -128~~127. 

The result is formed by' converting X to a binary arithmetic value according to 
the: conversion rules given' in paragraph 8.2. If p' or P and Q are given they are 
the target precision; otherwise, the target precision 1s determined by the 
conversion rules' o~ paragraph 8.2.10. 

The' binary built-in function has two names: binary and bin. 

13-9. AG94-



13.2.4 ~ 

Example: 

ceil(X) 

X must be an arithmetic or string value. 

X is converted to X'. The type, base, mode and precision of X' are given in 
paragraph 13.2. The mode of X' must be real~ 

The result R has the type, base and mode of X'. 

·If the type of R.is fixed-point, the precision of R is: 

(min(N,max(p-q+1,1»,O) 

where N is 71 if X' is binary and N is 59 if X' is decimal, and 
precision of X'. 

(p,q) is the 

If the type of R is floating-point, the precision of R is the precision of X'. 

The value of R is the smallest. integer ~ X'. 

13.2.5 Complex 

Example: 

complex(X,Y) 
- '---... 

X and Y must be arithmetic or string values. 

X and Yare converted to X' and I', where the type, base and mode of X' and I' 
are the common type, base and mode' as defined in paragraph 13.2. The common 
mode must be real. 

The result R is a complex value whose type and base are the common type and 
base. 

If the type of R is fixed-point, the precision of R is: 

(min (N ,max (px-qx, py-qy) +max ( qx, qy) ) ; max( qx', qy) ) 

where N 
binary. 

is 59 it the base' of R is decimal and N is 71 if the base of R is 
(px,qx) is the precision of Xf and (py,qy) is the precision of I'. 

If the typ~ of R i~ floating-point, the precision of R is: 

min(N,max(px,py» 

where px is the precision of If and py is the precision of I'. If the base of R 
is binary, N is 63; otherwise N is 59. 

The result R is a complex value whose real part is X' and whose imaginary part 
is yt. 

The complex built-in function has. two names: complex and cplxe 

13-10 AG94· 



13.2.6 ~ 

Example: 

conjg(X) 

X must be an arithmetic or string value. 

X is converted 
paragraph 13.2. 

to X'. The type, base, mode and precision of Xf are given in 
The mode of Xf must be complex. 

The result R has the type, base, mode and precision of X'. 

The value of R is the conjugate of xr. The conjugate of a complex number is the 
complex number' with the sign of its imaginary part reversed. 

13.2.7 Decimal 

Example: 

decimal(X) or decimal(X,P) or'decimal(X,P,Q) 

X must be an arithmetic or string value, and P and Q must be (decimal integer)s. 
Q may be signed. 

No conversion or- promotion is performed for P or Q. If P or P and Q are given, 
they are the precision of tha. result'. P cannot exceed 59. If the result is 
floating-point, Q. cannot be given. It P, but not Q, is given and the result 
type is fixed-point, Q is assumed to be. zero. If given, Q must be in the range 
-12t;~~ 127. . -... ..... -
The- result. is. f.ormed by converting X to a. decimal. arithmetic value according to 
the· conversion', rules given in paragraph' 8.2., If P or P and Q are· given, they 
are the target precision; otherwise', the target precisi.on is determined. by the· 
con version: rules' of paragraph 8.2. • 

The decimal, built-in function has two names: decimal and dec. 

13.2.8 Diyide 

Example: 

divide(X,Y,P) or divide(X,Y,P,Q) 

X and Y 
integer)s .. 

must be- arithmetic 
Q may be- signed. 

or string values, and P and Q must be (decimal 

No conversion or promotion is performed for P or Q. X and Yare converted to X' 
and Y', where' the type, base and' mode of X t and Y f are the common type, base and 
mode as defined in paragraph 13.2. 

If the common type is fixed-point and Q is not given, Q is assUlDed~o be zero. 
If the' common type- is floating-pOint, Qc must not, be given.. Q must be in the 
range -128~~121. 

If the commOQ' base' is. decimal, let tf. be 59. It the common base- is binary and 
the- common type is fixed-point" let N· be: 7'. If the' common. basa. is binary and 
the: common type-' 1s floating-point" let N;, be-: 63., P must, be-: less than or equal to 
N. 

The result R has; thei common typ.e, base- and mode'. The- preCision of R is. (P, Q) or-
(P). 

13-11 AG94. 



If Y' = 0, the zerodivide condition occurs. Unless detection of the condition 
has been enabled, the program is in error and the results of continued execution 
are undefined. 

R is the value of X'/Y'. 

13.2.9 iln£ 

Example: 

fixed(X) or fixed(X,P) or fixed(X,P,Q) 

X must be an arithmetic or string value, and P and Q must be <decimal integer>s. 
Q may be signed. 

No conversion or promotion is performed for P or Q. If P or P and Q are given, 
they are the precision of the result. If the result is decimal, P cannot exceed 
59 and if the result is binary, P cannot exceed 71. If P is given and Q is not, 
the precision of the result is (P,O). Q must be in the range -12tSi,Qi,127. 

The result is formed by converting X to a fixed-point arithmetic value according 
to the conversion rules given in paragraph 8.2. If P or P and Q are given, they 
are the target precision; otherwise, the target precision is determined by the 
conversion rules of paragraph 8.2. 

13.2.10 f.l..2s1. 

Example: '---

float(X) or float(X,P) 

X must be an arithmetic o~ string value and P must be a <decimal integer). 

11U cOflver::sion or promotion 1s performed for P. If the base of the result is 
binary, P must not exceed 63; otherwise, P must not exceed 59. 

The result is formed by converting X to a floating-point arithmetic value 
according to the conversion rules given in paragraph 8.2. If P is given, it is 
the target precision; otherwise, the target precision is determined by the rules 
of paragraph ~.2. 

13.2.11 lli.2J! 

Example: 

floor(X) 

X must be an arithmetic or string value. 

X is converted..:.to I'. The- type, base, mode and precision of X' are given in 
paragraph 13.2. The mode- ot X' must be real. 

The' result R has the type,- base and mode- of If e-

If the type or R is fixed-point, the precision of R is: 

(min(N,max(p-q+l,l»,O) 

where N is 71 it X' is binary and- N is 59 if X i is decimal, and (p, q) is the 
precision of Xf. 

13-12. AG94 



If the type of R is floati~g-pointf the precision of R is the precision of Xr. 

The value of R is the largest integer that is i X'. 

13.2.12 lY.& 

Example: 

imag(X) 

X must be an arithmetic or string value. 

X is converted 
paragraph 13.2. 

to xt. The type, base, mode and precision of X' are given in 
The mode of xt must be complex. 

The result R has the- type, base and precision of X I but its mode is real. 

The value of R is the imaginary part of X'. 

13.2.13 MiA 

Example: 

max(Xl,X2., ••• ,Xn) 

Each Xj must be an arithmetic or string value and n must be greater than 1. 

Each Xjis converted to X' j, where: X' j has- the common type, base and mode of the 
gi yen. arguments. The" common mode must· be· real. 

The- result R has, the common' type, base and mode. 

If the common type is fixed-point, the precision of R is: 

(min(N,max(p1-q1, ••• ,pn-qn)+-
max(q1, ••• ,qn», max(ql, ••• ,qn» 

where N is 71 if' the common base is binary and N is 59 if the common base is 
decimal. (pj, qj) is the' preCision of X' j. 

If the common type is floating-point, the precision of R is: 

max(pl, ••• ,pn) 

where pj is the precision ot X'j. 

The value of R is the maximum value of' X'l, X'2, .•. , X'n. 

13.2.14 WJL 

Example: 

min(ll ,12, ••.• ,Xn) 

Each Xj must: be an: arithmetia or' string value" and' n must be greater- than 1. 

Eaclr XJ is converted to X':j, where X r j has the common type, base- and mode. of the 
given arguments. The' common mode must, be-real. 

13-13 AG94-



The result R has the common type, base and mode. 

If the common type is fixed-point, the precision of R is: 

(min(N,max(pl-ql, ... ,pn-qn)+ 
max (q 1 , ••• , qn) ), max (q 1 , ••• ,qn) ) 

where N is 71 if the common base is binary and N is 59 if the common base is 
decimal. (pj,qj) is the precision of X'j. 

If the common type is floating-point, the precision of R is: 

max ( p 1 , ••• , pn ) 

where pj is the precision of X'j. 

The value of R is the minimum value of X'l, X'2, •• c , 

13.2.15 Mod 

Example: 

mod(X,Y) 

X and Y must be arithmetic or string values. 

X and Yare convert-ed to X' and Y', where the type, base and mode of X' and Y' 
are the common type, base and mode as described in paragraph 13.2. The common 
mode must be real. 

The result R has the common type.., base and mode. 

If the common type is fixed-point, the precision of R is: 

(min(N,py-qY+max(qx,qy»,max(qx,qy» 

_where N i~ 71 if tha common base is binary ana N ~s ,y it the common base is 
decimal. (px,qx) is the precision of X' and (py,qy) is the precision of Y'. 

If the common type is floating-point, the precision of R is: 

max(px,py) 

where px is the precision of X' and py is the precision of Y'. 

If Y' = 0, R is I'; otherw1~e, R is I'-Y'*floor(X'/Y'). 

13.2.16 Multiply 

Example: 

multiply(X,Y,P) or multiply(X,Y,P,Q) 

I and Y must be arithmetic 
integer)s. Q may be signed o. 

or string values, and P and Q must be. <decimal 

No conversion or promotion is performed for P or Q. I and I are converted to I' 
and' Y', where the type, base and mode· of X' and I' are the common type, base and 
mode- as defined in paragra.ph 1302 •. 

If the common type' is fixed-point and Q is not given, Q is assumed to be zero. 
If the common type is float1ng=pc1nt, Q must not be given. Q must be in the 
range -1~85.Q~ 127. 

13-14 AG94 



If the the common base is decimal, let N be 59. If the 
binary and the common type: is fixed-point, let N be 71. 
binary and the common type is floating-point, let N be 63. 
or equal to N. 

the common base is 
If the common base is 

P must be less than 

The result R has the common type, base and mod-e. The precision of R is (P, Q) or 
(P)' 

The value of R is X'*Y'. 

13.2.17 Precision 

Example: 

precision(X,P) O~ precision(X,P,Q) 

X must be an arithmetic or string value, and P and Q must be <decimal integer>s. 
Q may be signed. 

~o conversion or promotion is performed for P or Q. 

X is converted to X', where the type, base, mode and precision of X' are 
determined as follows: 

If X is arithmetic the type, base and mode- of Xf are the type, base and mode of 
X. 

If X is a character~string, the type of X' is fixed-point, the base is decimal 
and the mode is real. 

If X is- a bi t-string-, the: tYP«:t of X' is fixed-point t the base is binary and the 
mode is real.. ............,-

The precision of' X' is' (P,Q) if' It is fixed point.; and is P if Xf is floating 
point~ 

If the type of X' is fixed-point and Q is not given, Q is assumed to be zero. Q 
must be in the range -128i~127. If the type of X' is floating-paint, Q cannot 
be· given~ 

If the base of xt is decimal, P cannot greater- than' 59. If the base of X' is 
binary and the- type is fixed-point, P cannot be greater than 71; while if the 
type of X' is floating-paint, P cannot be greater than 63. 

The result R has the type, base, mode and precision of X'. 

The value of R is the value of X'. 

The precision built-in function has' two names: precision and prec. 

13.2.18 .bil. 

real(I) 

X must be: an arithmetic or- string value. 

X. is'' converted to X' I where the· type, base, mode and. precision of' X' are· gi.ven 
in paragraph 13.2. The mode at X' must be complex. 

13-15 



The result R has the type, base and precision of X' but its mode is real. 

The value of R is the real part of X'. 

13.2.19 Round 

Example: 

round(X,K) 

X must be an arithmetic or string value, and [ must be an opeionally signed 
<decimal intege~>. 

No conversion or promotion is performed for K. X is converted to Xt, where the 
type, base, mode and precision of X' are given in paragraph 13.2. 

The result R has the type, base and mode of X'. 

If X' is fixed-point, the precision of R is: 

(max(1,min(p-q+1+K,N»,K) 

where N is 71 if the base of X' is binary and N is 59 if the base of X' is 
dec~mal, and (p,q) is the precision of X'. 

If X' is floating-point, K must be. greater than zero, and the precision of R is: 

(min(K,N» 

where N is 59 if X' is decimal and N is 63 if X' is binary. 

The val.ue of R is: 

sign(X')*floor(abs(X')*(b**n)+O.S)/{b*·n) . 
where b is 2 if the base of X' is binary, and b is 10 if the base of X' is 
d6oiwal. If the type of Xi is fixed-poine, n=K; otherwise, n=[-e, where e is 
the exponent of X'. 

If the mode of X' is complex, R is the value of X' with its real and imaginary 

parts rounded as described above for real numbers. 

13.2.20 ~ 

Example: 

sign (X) 

X must be an arithmetic or string value. 

X is converted to X', where the type, base, mode and precision of XI are given 
in paragraph 13.2. The mode of XI must be realm 

The- result R is a fixed-point, binary, real. value of precision (17,0). 

If X' < 0, the value of R is -·1. 

If xt. = 0, the value of R is O. 

If X' > 0, the value of' R 1s + 1 • 

13-16 AG94-



13.2.21 Subtract 

Example: 

subtract(X,I,P) or subtract(X,I,P,Q) 

X and I must be 
<decimal integer>s. 

arithmetic or string 
Q may be' signed. 

values, and P .and Q .must· be' 

No conversion or promotion is performed for P or Q. X and I are converted to X' 
and I', where the type, base, and mode of X' and I' are the . common type, base 
and mode as defined in paragraph 13.2. 

If the- common type is fixed-point and Q is not given, Q is assumed to be zero. 
If the- c.ommon type is floating-point then Q must not be gi ven. Q must be in the 
range' -128~Qi127. 

If the' common base is deCimal, let. N be 59. If the common base is binary and 
the- common type· is fixed-point, let N be 71. If the- common base is binary and 
the common type is floating-point, let N be 63. P must be less than or equal to 
N. 

The result R has the common type', base and mode. The preCision of R is (P,Q) or 
(P) • 

The- value- of R is' X·, -I' • 

13.2.22 Trunc 

Example: 

trunc.(X) 

X must, be- an ari thmetic 0,.. string, valutt'. 

X is converted' to X' t where· the' type·, base" mode· and precision of X tare given 
in paragraph' 13.2. The mode- of X' must be' real. 

The type, base' and mode of the- result~ R are the type, base and mode of X'. 

If the- tyP& o~ Xl is fixed-poin~, th. preCision of R is: 

(min(~,max(p-q+l,l»,O) 

where N is 71 if X' is binary and' N is 59· if' X' is decimal, and (p, q) is the· 
precision of X'. 

If the type of X' is floating-paint, the precision of R is the precision of X'. 

If X' < 0, th~ valu~ of R is ceil(X~). 

Ir X' ~ 0, th. value of R is floor(X'). 

13.3 Th. Mathematic.al Bu!l t--in' Functions: 

All arguments- to mathemat!ca,l bu11t-in functions must, be-- ar1 thmetic or string 
values. They are-- converted. to· floating-point. values~ as- described below: 

Let X b. the argument and let; X'" be- tb .. converted: argument. 

IG9., 



If X is a bit-string, X' is a real binary floating-point value of precision 63. 
If X is a character-string, X' is a real decimal floating-point valua of 
precision 59. 

If X is floating-point. X' has the base, mode and precision of X. 

If X is fixed-point, X' has the base and mode of X, but its precision is: 

min(N,p) 

where' p is the precision of X, and N is 59 if X' is decimal or N is 63 if X' is 
binary. 

The result R is a floating-point value that has the base, mode and precision of 
X' • 

If the- built-in function has two arguments', X and Y, convert them as above to X' 
and Y'. In add i tion, if one a f the' converted arguments is dec imal and the other 
binary. convert the dec imal argument to binary. Let p be the precision 0 f X' 
and r be the, precision of Y'; then the resul t R has the common base and mode of 
X' and Y' and the precision max(p,r). 

The mathematical built-in functions of Hultics PL/I are designed to produce 
accurate results for- binary arguments. If the converted argument X' is decimal, 
it is converted to binary and its precision is set to 63 binary digits. The 
function is evaluated and the resul t is converted back to decimal. If the 
precision of Xf was greater than 21, the accuracy of the result will be 
approximately 20 decimal digits. 

Unless the description of a specific function states otherwise, the function can 
be invoked with scalar' or aggregat& arguments. When invoked with one or more 
aggregate arguments, all arguments are promoted to the highest common aggregate 
type- as if they were operands of an infix operator. Refer to Sections 7 and 9. 

Each function is described as operating on scalar values and yielding a scalar 
result. When' given aggregate arguments, the function is applied to 
corresponding scalar components of the promoted aggregate arguments and produces 
the corresponding scalar component of the aggregate resul t. The ,order of 
evaluation of the- scalar compon@nt.~ :i ~ not defined.;. The res!.!l t is an aggregate 
of the same aggregate type as the promoted aggregate argument. 

The table below lists all of the mathematical built-in functions and gives the 
error conditions and value returned by each function. If one or more of the 
listed error conditions occurs during, the evaluat.ion of one of the functions, 
the error condition is signalled. Note that other computational conditions may 
also be signalled as described in Section 10. 

When reading the table, let a, complex argument X be de,fined as Y1+i·Y2. 

11/1; 13-18 AG94A 



Function 
Reference 

TABLE OF MATHEMATICAL BUILT-IN FUNCTIONS 

Argument. 
Mode 

Value-
Returned 

Error
Conditions 

~-~~------~------------------~--------------------~-~-~----------aco:s( x) real arccos 1n radian:s 
O~aco:s(x)~pi 

x>1 
x<-1 

---.-~ .. -------------------... ----------..... --------------------------------
asin( x) real arcsin in radians 

-(pi/2)~asin(x)~(pi/2) 
x>1 
x<-l 

----------------~---~--------------------------------------------atan( xl real 

complex 

atan(y,x) both real 

arctan(x) in radians 
-(pi/2)<atan(x)«p1/2) 
-i-atanh(i§x) x=+11 

for x>O 
for y>O 
for' y>O 
for y(O 
for y<O 

arctan(y/x) x=y=O 
&: x=O p1/2 
&: x<O pi+arctan(y/x) 
&: x=O -pi/2 
&: x<O -pi+arctan(y/x) 

-----------------------------------------------------------------atand(x) real arctan(x) in degree:s 
-90<atand( x) <90 

-----------------------------------------------------------------atand(y,x) 

atanh(x) 

cos(x) 
x in radians 

cosd(x) 
!. in degrees 

co:sh ( x) 

erf( x) 

erfc(x) 

both real (180/pi)·atan(y,x) 

real 
complex 

real. 

complex 

real. 

real. 
complex: 

real. 

real. 

arctanh(x) 
(10g«1+x)/(1-x»)/2 

cosine(x) 

cosine(y1)·cosineh(y2) 
-i·~ine(yl)*sineh(y2) 

aoa.ine(x) 

cos1neh(x) 
cosineh(yl)·cosine(y2) 
+i*sineh(yl)*sine(y2) 

1 - erf( x) 

x=y=O 

: x: > 1 
x=+1 

---~~--------~--~----... --------~--~-------------~~----------------exp(x) 

10g(x) 

real 
complex 

real. 
complex 

1n( x) 
In( x) =. w~ 

where- w = u+i*v 
and -pi(V<DL --

x<O 
x:O 

-----~-.-------.~---... -.---.. -------.-. .. -...... ---.... ~-.. ~-------------~--... ----------.. 
10810(x) real.. 10, baae' 10 or x-~ x<O 

---~-~~-----~~~~~~-~~----~---~~-~-~-~-~~---~--~ 
lo,Z(x) reaL 

ain(x) real. 
£. ill" r'ad'1ans 

s1nd( xl real. 
!:_ in. degrees: 

11/77 

10C bas ... 2 0 r' x 

sine( x) 

ai"e( 11) ··cos1neb( y2) 
+1.'-cosine(yl)-sinen(y2) 

x<O' 

---------~-...... ~-...---...... ~.-.~ 
sine(x) 

I 

AG94& 



This pag. intentionally lett blank. 

11/71' 



sinh(x) real 
complex 

sineh(x) 
sineh( y 1) .cosine( y2) 
+i-cosineh(y1)·sine(y2) 

-..-~ .. ..-.------.-.--~-....-.-... -----~-.... --...-......---... ---.. ---... --..-.-... -.. --------.---------------. 
. sqrt( x) real 

complex' 
17. 

..rx = w· 
where- w = u+i·v 
and either u>O, 01'" 

u=O and v~O 

x(O 

_._---------_._-----------........ --............. _----_ ... _.--_.-. ........... _----------------
tan(x) 
x in rad ians· 

tand(x) 
! in degrees 

tanh(x) 

real. 

complex 

real. 

real 

complex' 

tangent( x) 

tangent(x) 

tangent( x) 

hyperbolic~ 
tangent ot: x 
hyperbolic 
tangent of x 

.. ----... -_ ... _-.... ------..... _-_ ..... ------------------.-._-_._----------......... ------_ ... .-. 

111fT 



13.4 The Array B~ilt-in Functions 

13.4.1 Dimension 

Example: 

dimension(X,H) 

X must be an array value and N must be a scalar arithmetic or string value. 

N is converted to HI, where NI is a fixed-point, binary, real, value of 
precision (11,0). 

The program Is in error if X has less than NI dimensions, or if NI is less than 
one. 

The result R is a fixed-point, binary, real, value of preC1Slon (24,0) whose 
value is the number of elements in the N'th dimension of X. 

The dimension built-in function has two names: dimension and dim. 

T3.4.2 Dot 

Example: 

dot(X,Y,?) or dot(X,Y,P,Q) 

X and Y must be one dimensional arrays of arithmetic or string values, and P and 
Q must be <decimal integer>s. Q may be signed. 

"--
X and Yare converted to X' and Y', where- X I and Y' are the common type, base, 
and mode as defined in paragraph 13.2. The precision of XI and Y' is (P) or 
(P,Q). 

If' t.he COiiiiiiOii type is fixed-point. and Q is not ~J.v~n, Q i;j a;j;jumeu t.o be ~ero. 
Q must be in the range -128<Q<127. If the common base is decimal, let N be 59. 
If the common base is binary-and the co_on type is fixed-point, let N be 71. 
If the common base is binary and the common type is floating-point, let N be 63. 
p mus~ be less than or equal to N. 

The result R is a scalar arithmetic value whose type. base, mod~ and precision 
are the type, base, mode and precision of X'. 

The valua of R is: 

n 
C, X' [ i ] • Y' [ r -11+ i ] 
i::II.: 

wher~ (m:n] are th& bounds of X' and [r:s] are the bounds of Y'. The program is 
in error if n-II+1 ~ s-r+1. 

13.~.3 Hbounct 

Exa.ple: 

hbound(X,N) 

X mus~ be an array valu.and N mus~ be' a· scalar arithmetic or string valueo 



~ is converted to N', where N' is a fixed-point, binary, real, value of 
precision (24,0). 

The program is in error if X has less than N' dimensions, or if Nt is less than 
one. 

The result R is a. fixed-point, binary, real, value of precision (24,0) whose 
value is the upper bound of the N'th dimension of X. 

13.4.4 Lbound 

Example: 

lbound(X,N) 

X must be an array value and N must be a scalar arithmetic or string value. 

N is converted to N', where N' is a fixed-point, binary, real, value of 
precision (24-, 0) • 

The program- is in error>' if X has less- than N' dimensions, or if N' is less than 
one. 

The result R is a fixed-point, binary, real, value of precision (24,0) .whose 
value is the lower- bound of the N'th dimension of X. 

13.4.5 ~ 

Example: 

prod(X) 

X must be' an array of" arithmetic or string- values. 

X is converted to X' as if it was an operand of'the prefix operator "+". If Xf 
is a fixed-point value with precision (p,O) it is converted to a fixed-point 
value, I, of- the' same~ base and mode, but with precision (N,O), where N is 71 if 
the base is binary and N is' 59 if the- base· is decimal. 

If X' is not a fixed-point valu~ of precision (p,O) it is converted to a 
floating-.point value II that has the basa and moda of X'. The preci.sion of I is 
min(N,p), where N is 5~ if-X' is- decimal or N is 63 if X' if binary. 

The result R is an arithmetic scalar whose: type, base, mode, and precision are 
those of I. 

The valu& of R is: 

X ( 1 )' .. X ( 2) r .. ••• .: X ( n) t 

13.4.6 __ 

Example: 

sum(I) 

X must, b8". an array o~ arithmetic or string, values. 

X is: converted: to X· as;, if- it was aa operand or- the; prefix operator "+". 

AG94 



The result R is an arithmetic scalar value whose type, base and mode are the 
type, base and mode of X'. 

If X' is fixed-point of precision (p,q), the precision of R is (N,q), where N is 
71 if the base of R is binary and N is 59 if the base of R is decimal. 

If X' is floating-point, the precision of R is the precision of X'. 

The value of R is: 

X(O' + X(2)' + ••• + X(n)' 

13.5 Condition Built-in Functions 

The condition built-in functions access values that are set by the signalling of 
certain conditions. They are best understood if they are considered external 
controlled variables that are allocated and assigned values by the signalling of 
a condition. 

When one of the conditions that sets the value of a condition built-in function 
is signalled, the old value of the function is stacked or pushed down until 
control returns to the pOint where the signal was made. Control is considered 
to have returned if the <on unit> entered by the signal returns to the block 
activation making. the signal, or to any of its dynamic predecessors. 

The effect of this mechanism is to properly stack the values of these built-in 
functions. For example, if the conversion condition occurs in an <on unit> 
entered by a signal of the conversion condition, the values of "onchar" and 
"onsource" are stacked and the condition is signalled again. On return from the 
second activation of the <on, unit>, the, old values of "onchar" and "onsource" 
are restored and the execution of the first activation Qf the <on unit> is 
resumed. 

Since the initial value of each of these functions is a null-string, except for 
"onchar" which is a blank, and "oncode" which is zero, these are the values 
returned by the functions when they are invoked by a block activation that is 
not an <on unit> or a dynamic descendent of an <on unit> whose signal set the 
value.' . 

13.5.1 Onchar 

Example: 

onchar() or onchar 

The value returned by this function is a single character set by the occurrence 
of the conversion condition as described in paragraph 10.4.2, or is a blank. 

13.5.2 Ongode 

Example: 

oncode() or oncode 

The value returned by this function is a fixed-point, binary, real number of 
precision (17,0). The value- indicates the I reason why the condition was 
signalled. Because- the run-time subroutines that support the execution of PL/I 
programs are subject to modification and improvement, the list of error code: 
values is subject to change and is not published in this document. If a program 

13-22. AG94, 



is expected to run on other implem~ntations of PL/I or on future versions of 
Multics PL/I, the program logic must not depend on the val~e returned by this 
built-in function. 

13.5.3 Onfield 

Example: 

onfield() or onfield 

The value returned by this function is a character-string set by the occurrence 
of the name condition as described in paragraph 10.4.b, or is a null string. 

13.5.4 Onfile 

Example: 

onfile() or onfile 

The value returned by this function is the filename for which the conversion, 
name, endfile, transmit, record, key, endpage, or undefinedfile condition was 
signalled, as described in Section 10, or is a null string. 

13.5.5 ~ 

example: 

onkey() or .onkey 

The value returned by this function is the Character-string key of the record 
for which the/endfile, transmit, record or key condition was Signalled, as 
described in Section 10, or is a null string. 

13.5.6 Dnloc 

Example: 

onloc() or onloc 

The value returned by this function is a character-string that identifies the 
entry point used to enter the most recent <procedure) bloek activation that is a 
dynamic predecessor of the most recent <on unit) activation. If no <on unit> 
activation exists, the function returns a null string. 

13.5.7 Onsource 

Ex~mple: 

onsource() or onsource 

The value returned by this function is the value set by the occurrence of the 
conversion condition as described in paragraph 10.4.2, or is a null string. 

13-23 AG94 



I 

13.6 Miscellaneous Built-in Functions 

13.6.1 Addr 

Example: 

addr(X) 

X must be a <reference> to a variable whose storage is connected, as described 
in paragraph 4.3.1.3. 

If X is a <simple reference> that identifies an unallocated, level-one, 
controlled variable, the result is a null pointer; otherwise, the result is a 
scalar pointer that identifies the generation of storage referenced by X. In 
the latter case, the evaluation of X must yield a generation of storage. 

13.6.2 Addrel 

Example: 

addrel(X,I) 

Addrel is a nonstandard built-in function and its use makes programs dependent 
on the data representation of Multics PL/I. 

X must be a scalar pointer value and I is converted to If. If I is a 
bit-string, I' is a scalar bit-string of length 18; otherwise I' is a scalar 
fixed-point, binary, real value of precision (18,0). 

The result R is a scalar pointer value whose ring number and segment number are 
the ring and segment numbers of X and whose word offset is g~ven by the sum of 
the word offset of X and the value of I. The bit offset of R is zero. 

13.6.3 Allocation 

Example: 

allocation(X) 

X must be a <reference> to a level-one controlled variable. 

The result R is a scalar, binary, fixed-point, real number of precision (17,0). 

The value of R is the number of generations of X currently allocated. If no' 
generations are allocated, the value of R is zero. 

The allocation built-in function has two names: allocation and allocn. 

13~6.4 Baseno 

Example: 

baseno(X) 

Baseno is a nonstandard built-in function and its use makes programs dependent 
on the representation of pOinter values in Multics FL/I. 

7179 13-24 AG94C 



X must be a scalar pointer value. 

The result R is a bit-string of length 18 whose value is the bit-string 
representation of the segment number part of X. 

13.6.5 Baseptr 

Example: 

baseptr(I) 

Baseptr is a nonstandard built-in function and its use makes programs dependent 
on the representation of pointer values in Multics PL/I. 

I is converted to I'. 
18; otherwise I' is 
(18,0). 

If I is a bit-string, I' is a scalar bit-string of length 
a scalar, fixed-point, binary, real value of precision 

The result R is a scalar pointer value whose ring number is the current ring, 
whose segment number is I, and whose offsets are zero. 

13.6.5a Clock 

Example: 

clock or clock() 

Clock is a nonstandard built-in function and its use makes programs dependent on 
Multics PL/!. 

The result R is a fixed-point, binary, real value of precision (71,0). 

The value of R is the number of microseconds since 0000 hours January 1, 1901, 
Greenwich mean time. 

13.6.5b Codeptr 

Example: 

codeptr(X) 

Codeptr is a nonstandard built-in function and its use makes programs dependent 
on Multics PL/I. 

X must be an entry, label, or format value. The result R is a pointer value. 
If X is an entry value, then R is a pointer to the entry point identified by X. 
If X is a label value, then R is a pointer to the <statement> identified by X. 
If X is a format value, then R is a pointer to the <format statement> identified 
by X. 

7179 13-25 AG94C 

I 



13.6.6 Convert 

Example: 

convert(X,Y) 

Convert is a nonstandard built-in function. 

X must be a <reference> to a scalar variable and Y must be a scalar value. 

Y is converted to Y' I where the data type of l' is the data type of X, and the 
value of Y' is the value of Y converted according to the rules for conversion 
given in Section 8. 

The result R has the data -type and value of Y'. 

13.6.6a Currentsize 

Example: 

currentsize(X) 

Currentsize is a nonstandard built-in function and its use makes programs 
dependent on the internal representation of data in Multics PL/I. 

X must be an unsub~cripted <reference> to a level-one variable. 

The result is a fixed-point, binary, real number of precision (19,0) whose value 
is the number of 36-bit words occupied by the generation of storage obtained by 
evaluating the reference X. Note that when X is a reference to a based variable 
with <refer option>s, this function returns a value that depends on the 
<reference> contained in the <refer option>, not on the <expression> in the 
<extent expression>. 

13.6.7 Date 

Example: 

date() or date 

The result R is a character-string of length 6. 

The value of R is: 

YYMMDD 

where YY is the year, MM is the month, and DO is the day. 

Example: 

empty() or empty 

The result R is an empty area value. 

7/78 13-26 AG94B 



13.6.8a Environmentptr 

Example: 

environmentptr(X) 

Environmentptr is a nonstandard built-in function and its use makes programs 
dependent on Hulties PL/I. 

X must be an entry, label, or fQrmat value. 
record pOinter of X. 

13.6.9 Lineno 

Example: 

lineno(X) 

X must be a scalar file value. 

The result R is the activation 

If X does not identify an open file-state block with the <print attribute>, the 
program is in erro~. 

The result R is a scalar, fixed-point, binary, real number of precision (35,0). 

The value of R is the linenumber of tha file-state block identified by X. 

13.6.10 Null. 

Example: 

nullC) or null 

The result is a null pOinter value. 

13.6.11 ~ 

Example: 

nullo() or nullo 

Nullo is a nonstandard built-in function. 

The result is a null offset value. 

9/79 13-26.1 AG94D 



13.6.12 Offset 

Example: 

offseteX,Y) 

X and Y must be scalar values. X must be a pointer value and Y must be an area 
value. 

Unless X identifies a generation of storage within Y, the program is in error. 

The result R is an offset value that identifies the generation of storage 
identified by X. 

9/79 13-26.2 AG94D 



13.6.13 Pageno 

Example: 

pageno(X) 

X must be a scalar file value. 

If X does not identify an open file-state block with the <print attribute) the 
program is in error. 

The result R is a scalar, fixed-point, binary, real number of precision (35,0). 

The value of R is the pagenumber of the file-state block identified by X. 

13.6.14 Pointer 

Example: 

pointer(X,Y) 

The painter built-in function is a generic function with two entirely different 
meanings that depend on the data types of X and Y. 

13.6.14.1 The Standard Definition of Pointer 

X must be a scalar offset value and Y must be a scalar area value. 

Unless X identifies a generation of storage within Y, the program is in error. 

The result R is a pOinter value that identifies the generation of storage 
identified by X. 

13.6.14.2 The Nonstandard Definition of Pointer 

The use of the nonstandard definition of the pointer function makes programs 
dependent on the representation of pointer values in Hultics PL/I. 

X must be a scalar pointer value and Y is converted to Y'. If Y is a I 
bit-string, Y' is a scalar bit-string of length 18; otherwise, Y' is a scalar, 
fixed-point, binary, real value of precision (18,0). 

The result R is a pointer value whose ring number and segment number are the 
ring and segment numbers of X and whose word offset is given by Y. The bit 
offset is zero. 

The program is in error if X and Y do not satisfy the argument constrairi~s of 
one of the two definitions of the function. 

The pointer built-in function has two names: pointer and ptr. 

7/79 13-27 AG94C 



13.6. 15 Hel 

Example: 

rel(X) 

Rei is a·nonstandard built-in function and its use makes programs depend on the 
representation of pointer values in Multics PL/I. 

X must be a scalar pointer value. 

The result h is a bit-string of length 1~ whose value is the word offset portion 
of X. 

13.6.16 Size 

Example: 

size(X) 

Size is a nonstandard built-in function and its use makes programs depend on the 
internal representation of data in Multics PL/I. 

X must be a <simple reference> to a level-one variable. 

The result is a fixed-point, binary, real number of precision (24,0) whose value 
is the number of 36 bit words necessary to allocate a generation of storage for 
X. Note that when X is a based variable with <refer option>s, this function 
returns a value that depends on the <expression> contained in the <extent 
expression>, not on the <reference> contained in the <refer option). 

Example: 

stac(X,Y) 

Stac is a nonstandard built-in function and its use makes programs depend on the 
Multics hardware. Coordination of Multics processes should be done by calls to 
Multibs locking primitives as described in the "Multics Programmers' Manual". 

X must be a scalar pOinter value and Y must be a scalar bit-string of length 36. 

If the 36 bit word addressed by the pointer is zero, the value of Y is assigned 
to that word; otherwise, no .assignment is made. 

The result R is a bit-string of length 1. 

If the assignment of Y to the location identified by X was made, the value of R 
is "l"b; otherwise, it is "Dub. 

The testing of X and the assignment of Y to X is an indivisible operation of the 
Multics hardware. 

13-28 AG94 



13.6.17a Stacq 

Example: 

stacqCL,A,Q) 

Stacq is a nonstandard built-in function and its use makes programs dependent on 
Multics PL/I. 

L must be a <reference> to an aligned scalar bit-string variable of length 36. 
A and Q must be bit-strings of length less than or equal to 36. The result R is 
a bit-string of length 1. 

If L equals Q, the value of A is assigned to L, and the value of R is "1"b; 
otherwise, no assignment is made and the value of R is "O"b. 

The testing for equality between Land Q and the conditional assignment of A to 
L is an indivisible operation of the Multics hardware; refer to the description 
of the stacq instruction in the Multics Processor Manual, Order No. AL39. 

13.6.17b Stackbaseptr 

Example: 

stackbaseptr() or stackbaseptr 

Stackbaseptr is a nonstandard built-in function and its use makes programs 
dependent on Multics PL/I. 

Stackbaseptr returns a pOinter to the base of the current <block>'s stack 
segment. 

13.6.17c Stackframeptr 

Example: 

stackframeptr() or stackframeptr 

Stackframeptr is a nonstandard built-in furiction and its use makes programs 
dependent on Multics PL/I. 

Stackframeptr returns a pointer to the stack frame containing the activation 
record of the current <block>. 

13.6.18 Time 

Example: 

time() or time 

The value returned by the function is a character-string of length 12 whose 
value is: 

HHMMSSFFFFFF 

where HH i5 the hour, 00 to 23; MM is the minute, 00 to 59; SS is the second, 00 
to 59; and FFFFFF is the microsecond, 000000 to 999999. 

7/78 13-29 AG94B 



13.6.19 Unspec 

Example: 

unspec(X) 

X must be a <refer~nce>. to a variable. 

The result R is a bit-string whose length and value depend on the data type, 
aggregate type, and value of X. The value of R is the internal representation 
of X. 

13.6.20 Valid -
Example: 

valid(X) 

X must be a <reference> to a scalar pictured value. 

The result R is a bit-string of length 1. 
character-string value of X can be edited into the 
otherwise, the value of R is "O"b. 

13.6.20a Vclock 

Example: 

vclock or vclock() 

Its value is "1"b if 
<picture> declared for 

the 
Xi 

Vclock is a nonstandard built-in function and its use makes programs dependent 
on Multics PL/I. 

The re~ult R is a fixed-point, binary, real value of precision (71,0). 

The value of R is the number of microseconds of virtual CPU time used by the 
calling process. 

7/78 13-30 AG94B 



APPENDIX A 

Differences Between Hultics Pl/I and Standard Pl/I 

This appendix lists all known deviations of the Hultics Pl/I language from 
the American National Standard Programming Language PL/I, ANSI X3.53-1976, as of 
March, 1981. I 

The features that are marked with a + are not detected by the -check_ansi 
control argument of the pll command. 

reatures of the Standard Hot in Hultics Pl/I: 

1. The tab option and tab format item. 

2. The "tn, "in, and "r" picture characters. 

3. The every and some built-in functions. 

reatures Restricted in HUltics Pl/I: 

3/81 

1. Only one <prefix subscript> is permitted in a <label prefix>. 

2. The <condition name>s defined by the language are reserved such that a 
user-defined condition cannot have the same name as a language defined 
condition. 

3. A <condition name> cannot have internal scope~ 

q~ The <extent>s of static variables must be <decimal integer>s, and the 
<expression}s in the <initial attribute> of Ii! static variable are 
restricted to optionally Signed <literal constant>s, pairs of real and 
imaginary signed <Ii teral constant>s, or the null and empty built-in 
functions. 

5. The <label prefix) of a < procedure .statement), <entry statement>, or 
<format statement> cannot contain a <prefix subscript>. 

6. The string built-in function requires that its argument be a scalar, 
or an aggregate of packed bit-string or packed character-string data. 

7. The al ignment attributes of two structures must match if the two structures 
are to share storage. 

8. All <condition prefix>s of a statement must precede any <label prefix>s 
of the statement. 

90 An area variable cannot be used as the (index) of a {do statement>. 

A-l AG9I.JE 



I 
I 

10. Defined variables whose <defined attribute> contains <isub>s or asterisks 
cannot be input or output by a <get statement> or <put statement> that 
specifies data-directed transmission. 

11. File constants cannot have the <dimension attribute>. 

12. If the <expression> of an <assignment statement) is a <reference> that 
identifies a scalar string variable, then no <target> of the 
<assignment statement) can identify a generation of storage that overlaps 
the generation of storage of the string variable, unless it is exactly 
the same generation or unless the generation of the <target> does not 
start to the right of the generation of the string variable. 

13. An unconnected array cannot be passed to an array parameter declared 
with constant extents; asterisk extents must be used. 

14. When an array is defined onto another array by simple defining, the 
<base reference) must contain an asterisk for each dimension of the 
defined array. 

15. The pointer value yielded by "addr" of' a parameter is valid only so 
long as the block activation to which the corresponding argument was 
passed is still active. 

16. The standard allows an array of scalars to be promoted to an array of 
structures, but Hultics PL/I does not allow this promotion. 

17. A Simple or isub defined variable must have extents that equal the 
corresponding extents of the base variable on which it is defined. 
The standard allows such extents to be less than or equal to the 
extents of the base variable. 

18. In structure promotion of the f'orm s=r or s+r, Hultics PL/I requires 
that the aggregate type of' each member of s match the aggregate type 
of the corresponding member of r. The standard performs aggregate 
promotion for each member that does not match. 

19. The dot built-in function requires that the precision of its result be 
given in the function reference. 

20. Both the <ignore option> and a <key spec) cannot be given in the same 
<read statement>. 

21. If a completed <attribute set> contains a <position attribute>, that 
< pOSition attribute> must contain a < posi tion>. The standard has a 
syste. default of 1. 

22. The min and max built-In functions must have at least two arguments; 
the standard allows them to have one argument. 

23. rt dfi item nas the (parameter attribute> or Is part of a <descriptor>, 
the <extent expression> must be an unsigned <decimal integer>. 

Features Implemented at Variance with the Standard: 

+ 1. The <bound>s of an evaluated array expression are always normalized 
such that each lower <bound> is one and each upper <bound> is the 
number of elements in the dimension. 

+ 2. A mismatch between the alignment attributes of a structure and a structure 
parameter descriptor causes the argument to be passed by-value, rather 
than by-reference. The standard ignores the alignment attributes of 
structures. 

3/S1 A-2 AG94E 



+ 3. The stringsize condition is disabled by default in Mul tics PL/I, but 
enabled by default in standard PL/I. 

Extensions: 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1. An <identifier} can contain the special character "$", and in the case 
of external names, this character has additional semantics. 

2. 

., 
~. 

It. 

5. 

6. 

7. 

8. 

9. 

10. 

11 • 

12. 

13. 

Varying strings can be used in simple or isub defining • 

The base variable identified by a <defined attribute> can be a based 
variable. 

Host restrictions on the <refer optIon> are removed. 

S~veral new built-in functions are implemented. 

The <local attribute> is allowed in all <descriptor}s. 

If the current position of a file is well defined, a <key option> is 
not needed in a <delete statement> or <rewrite statement} operating on 
a direct fUe. 

New records can be written into a keyed sequential update file. (The 
locate statement may be used for this purpose.) 

Partially qualified references are allowed in stream input scanned by 
data-directed input. 

An <in _option} is not required in a <free statement} when freeing a 
generation of storage allocated in an area. 

The "recursive" keyword is never required in a <procedure statement>. 

The <unspec pseudo> and un spec built-in function allow aggregate 
arguments. 

ASSignments and infix operations can be performed on two arrays of 
unequal <bound>s if the number of dimensions is equal and the number 
of elements in each dimension of one array is equal to the number of 
elements in the corresponding dimension of the other array. 

+ 14. A replication factor in a <picture> can be zero, indicating that the 
<picture char> to which it applies is to be d~lated from the 
<normal picture> produced by translation of the <picture>. 

15. A name declared with the <environment attribute} will acquire the 
<file attribute> by 39plication of the language default rules. A name 
declared with_ the (options attribute) will acquire the <entry attribute} 
by application of the language default rules unless the parenthesized 
keyword "constant" is specified. The standard gives no defaults for 
these cases. 

+ 16. Hultics PL/I allows a <column format} to be used by a <get statement} 
or <put statement} containing a <string option}. 

+ 17. When an array is passed as an argument to an array parameter which has 
different <bound>s but equal extents, the standard says that the program 
is in-error. Hultics PL/I assigns the argument to an array temporary 
whose <bound>s are equal to the <bound>s of the array parameter. 

3/81 A-3 AG94E 



+ 18. A <picture scale factor> is allowed for floating-point <picture>s. 

19. The <reducible attribute> and <irreducible attribute>s are allowed. 

+ 20. No delimiter is required between the keywords "picture" or "pic" and 
the quoted <picture> in a <picture attribute>. No delimiter is required 
between the letter "p" and the quoted <picture> in a <picture format>. 

21. Any data type except area is allowed in put list and put data. 

+ 22. ASCII tab characters in an input data stream get special treatment. 

23. The <options attribute> with the parenthesized keyword "constant" 
specified may be used wi th any computat ional variab Ie containing the 
<static attribute> and the <internal attribute>. 

24. <default statement>s may appear in any block. 

+ 25. A <returns attribute> of the form returns () is permitted. (Of course 
<returns descriptor>s must then be supplied during default processing.) 

26. The pointer built-1n function may take a pointer as its first argument 
and any computational expression as its second argument. 

27. The fixed and float built-in functions may take as few as one argument. 
(The standard requires two arguments.) 

28. The <read statement> and the <write statement> may be used with stream 
data sets to read and write a line, respectively. 

29. The <unsigned attribute> and <signed attribute>s are allowed. 

+ 30. A <programmer-defined condition name> may be an <identifier>. 

+ 31. ASCII newline characters, horizontal tab characters, vertical tab 
characters, and newpage characters are delimiters. 

+ 32. The <member attribute>, <structure attribute>, and <parameter attributes> 
are allowed in the <attribute set> of a <default statement>. 

3/81 AG94E 



INDEX 

This index contains every (notation variable> defined by the syntax rules. It 
also contains every underlined term defined in prose, as well as a few general 
terms not defined in prose. For each (notation variable> the only sections 
listed in the index are those in which the (notation variable> is defined. Note 
that definitions are sometimes repeated to aid understanding and reduce the 
number of cross-references. 

abs built-in function 
13.2.1 Abs 13-8 

acos built-in function 
13.3 The Mathematical Built-in Functions 13-18 

activated 
See block activation 

activation record 
See block activation 

add built-in function 
13.2.2 Add 13-9 

addr built-in function 
13.6.1 Addr 13-24 

addrel built-in function 
13.6.2 Addrel 13-24 

after built-in function 
13.1.1 After 13-2 

aggregate type 
4.2 Aggregates of Data 4-7 
4.2.1 Arrays of Scalars 4-7 
4.2.2 Structures 4-8 
4.2.3 Arrays of Structures 4-8 
4.3.2.5 Based Storage 4-12 
4.3.3.2 Storage Sharing by Based Variables 4-15 
4.3.3.6 String OVe~lay Defining q-19 
6.10.2 Argument Conversion and Promotion 6-9 
7. Expressions 1-1 
9. Promotion of Aggregate Types 9-1 
9.1 Contexts That Force Promotion 9-1 
9.2 Types of Promotion 9-2 
9.3 Promotion Rules 9-2 
12.2 The Assignment Statement 12-2 
12.24 The Return Statement 12-37.1 
13.2 Arithmetic Built-In Functions 13-8 
13.3 The Mathematical Built-In Functions 13-17 

aggregate value-
See aggregate type 

(aligned attribute> 
5.4.1 Aligned 5-15 

<alignment> 
5.5 Attribute Consistency 5-32 

<allocate statement> 
k.brf 
12.1 The Allocate Statement 12-1 

<allocation) 
12.1 The Allocate Statement 12-1 

allocation 
3.3.1 Block Activation 3-2 
3.6.2 Procedures 3-4 
4.3.2.1 Allocation of Storage 4-11 
11.3.2.2 Automatic Stor-age' 11-11 
11.3.2.3 Static Storage 4-12 
4.3.2.4 Controlled Storage 4-12 
4.3.2.5 Based Storage 4-12 

3/81 

5.4.25 Initial 5-23 
10.4.1 Area Condition 10-4 
10.4.13 Storage Condition 10-9 
12.1 The Allocate Statement 12-1 
12.13 The Free Statement 12-18 
12.17 The Locate Statement 12-25 
13.6.3 Allocation 13-24 

i-1 AG94£ 



I allocation built-in function 
13.6.3 Allocation 13-24 

<allocation reference> 
12.1 The Allocate Statement 12-1 
12.17 The Locate Statement 12-25 

I allocn built-in function 
13.6.3 Allocation 13-24 

<alternative> 
5.4.24 Generic 5-22 
6.9 Generic References 6-7 

<alternative list> 
5.4.24 Generic 5-22 
6.9 Generic References 6-7 

<any nonquote> 
12.1~ The Get Statement 12-19 

applicable declaration 
5.5 Reference Resolution and Ambiguity 6-4 

<area attribute> 
5.4.2 Area 5-15 

<area condition name> 
10.4.1 Area Condition 10-4 

<area size> 
5.4.2 Area 5-15 

area value 
~.1.8 Area Data 4-4 
5.4.2 Area 5-15 
7.3.4.2 Types of Comparison 7-10 
8.2 Conversion Rules 8-2 

.<arg selector) 
5.~.2- Generic 5-22 
6.9 Generic References 6-7 

argu.ent 
4~3.3.1 Storage Sharing by Parameters 4-15 
5.4.17 Entry 5-19 
6.5 Reference Resolution and Ambiguity 5-4 
6.7 Function References 6-5 
6.8 Built-In Function References 6-7 
6.9 Gener1c References 6-7 
6.10 Parameters and Arguments 5-8 
6.10.1 Argument Passing By-value or By-reference 6-8 
6.10.2 Argument Conversion and Promotion 6-9 
6.10.3 Asterisk and Constant Extents of Parameters 6-9 
6.10.4 Storage of a Paraaeter 6-9 
8.1 Contexts That Force Conversion 8-1 
9.1 Contexts That Force Promotion 9-1 
12.4 The Call Statement 12-6 
12.11 The Entry Statement 12-13 
12.21 The Procedure Statement 12-29 

<argu.ent list> 
6.7 Function References 6-5 
.12.4 The Call Statement 12-6 

<arithmetic> 
5.5 Attribute Consistency 5-32 

<arithmetic constant> 
2.6.2.3 Arithmetic Constants 2-7 

arithmetic operators 
7.3.1 Arithmetic Operator~ 1-5 

arithmetic value 
2.6.2.3 Arithmetic Constants 2-1 
4.1.5 Arithmetic Data 4-2 
5.4.5 Binary 5-16 
5.4.9 Complex 5-17 
5.4.13 DeCimal 5-18 
5.4.39 Picture 5-27 
5.4.44 Real 5-29 
7.3~1~1 Ope~and Conversion for Arithmetic Opa~ators 7-5 
7.3.1.2 Results of Arithmetic Operators 7-6 

3/81 

7.3.4.2 Types of Comparison 7-10 
8.2.3 Char-acter-String to Arithmetic Conversion 8-3 
8.2.5 Bit-String to Arithmetic Conversion 8-4 

i-2 AG94E 



8.2.7 Arithmetic to Character-String Conversion 8-5 
8.2.8 Arithmetic to Bit-String Conversion 8-7 
8.2.10 Arithmetic Type, Base and Precision Conversion 8-8 
8.2.12 Picture Controlled Conversion 8-15 

<array> 
5.5 Attribute I )nsistency 5-32 

array of scalars 
4.2.1 Arrays of Scalars 4-7 
4.3.1.3 Packing and Alignment of Arrays q-tO 
9.2 Types of Promotion 9-2 
9.3 Promotion Rules 9-2 

array of structures 
4.2.3 Arrays of Structures 4-8 
4.3.1.2 Packing and Alignment of Structures 4-9 
4.3.1.3 Packing and Alignment of Arrays 4-10 
9.2 Types of Promotion 9-2 
9.3 Promotion Rules 9-2 

array-extent 
~.2 Aggregates of Data q-7 
See aggregate type 

as in built-in function 
13.3 The Mathematical Built-in Functions 13-18 

<assignment statement> 
12.2 The Assignment Statement 12-2 

atan built-in function 
13.3 The Mathematical Built-in Functions 13-18 

atand built-in function 
13.3 The Mathematical Built-in Functions 13-18 

atanh built-in function 
13.3 The Mathematical Built-in Functions 13-18 

< attribute> 
Although this <notation variable> 1s not formally 
defined by a syntax rule, <attribute} must be 
one of the <attribute>s defined in section 5.4 (p 5-15) 

<attribute keyword> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

<attribute set) 
5.2.1 Declare Statements 5-2 
5.2.1.1 Defactoring of Declare Statements 5-3 
5.3.1 Default Statement 5-11 
5.4.17 Entry 5-19 
5.~.24 Generic 5-22 
5.4.47 Returns 5-30 
6.9 Generic References 6-7 
12.6 The Declare Statement 12-7 
12.7 The Default Statement 12-8 

<automatic attribute> 
5.4.3 Automatic 5-16 

automatic storage 

base 

4.3.2.1 Allocation of Storage 4-11 
4.3.2.2 Automatic Storage 4-11 

4.1.5 Arithmetic Data 4-2 

<base reference> 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
5.4.14 Defined 5-18 

base variable 
4.3.3.3 Storage Sharing by Defined Variables 4-16 

<based attribute> 
5.4.4 Based 5-16 

<based reference> 
6.6 Locator Qualified References 6-5 

based storage 

3/81 

4.3.2.1 Allocation of Storage 4-11 
4.3.2.5 Based Storage 4-12 

i-3 

I 

AG94E 



I 
baseno built-in function 

13.6.4 Baseno 13-24 

baseptr built-in function 
13.6.5 Baseptr 13-25 

<basic expression> 
7.2 Formal Syntax of Expressions 7-4 

I before built-in function 
1381.2 Before 13-2.1 

<begin block) 
2.2 Blocks and Block Structure 2-1 

<begin stateaent) 
12.3 The Begin Statement 12-6 

I bin built-in function 
13.2.3 Binary 13-9 

<binary attribute) 
5.4.5 Binary 5-16 

I binary built-in function 
13.2.3 Binary 13-9 

<binary constant) 
2.6.2.3 Arithmetic Constants 2-7 

<binary digit> 
2.6.2.3 Arithmetic Constants 2-7 

<binary integer) 
2.6.2.3 Arithmetic Constants 2-7 

<binary n_ber> 
2.6.2.3 Arithmetic Constants 2-7 

"<bit attribute) 
5.11.6 Bit 5-16 

I bit built-in runction 
13.1.3 Bit 13-3 

<bit-string constant) 
2.6.281 Bit-String Constants 2-6 

<bit-string format) 
8.2.11.5 Bit-String Format 8-14 
12.12 The Format Statement 12-14 

<blank) 
1.2.3 A Formal Definition of the Meta-Language 1-3 
2.6.4 Delimiters, Blanks and Comments 2-8 

<block) 
2.2 Blocks and Block Structure 2-1 

block activation 

3/81 

3.3.1 Block Activation 3-2 
3.3.2 Environment of a Block Activation 3-2 
3.4 Flow of Control Within a Block Activation 3-3 
3.5 Local and Nonlocal Goto St"atements 3-3 
3.6.1 Begin Blocks 3-3 
3.6.2 Procedures 3-4 
3.6.3 On Units 3-4 
4.1.9 Label Data 4-4 
4.1.10 Format Data 4-5 
4.1.11 Entry Data 4-5 
4.3.2.2 Automatic Storage 4-11 
4.3.3.2 Storage Sharing by Based Variables 4-15 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
6.10 Parameters and Arguments 6-8 
1.3.4.2 Types of Comparison 1-10 
10.3 Signals and On-Units 10-2 
12.3 The Begin Statement 12-6 
12.4 The Call Statement 12-6 
12.10 The End Statement 12-12 
12.11 The Entry Statement 12-13 
12.15 The Goto Statement 12-24 
12.19 The On Statement 12-21 
12:21 The Procedure Statement 12-29 
12.24 The Return Statement 12-37.1 
12.25 The Revert Statement 12-38 
13.5.6 Onloc 13-23 

AG94E 



<block component> 
2.2 Blocks and Block Structure 2-1 

blocked 
3.2 A Multics PL/I Program 3-1 

bool built-in function 
13. 1 • 4 So 0 1 1 3 - 3 

<bound> 
5.4.15 Dimension 5-18 

braces 
1.2.2 Syntax Expressions 1-2 

brackets 
1.2.2 Syntax Expressions 1-2 

built-in functions 
6.8 Built-In Function References 6-7 
13. Built-In Functions 13-1 

<builtin attribute> 
5.4.7 Builtin 5-17 

<buU tin set> 
5.5 Attribute ConSistency 5-32 

<by-name option> 
12.2 The Assignment Statement 12-2 

by-reference 
4.3.3.1 Storage Sharing by Parameters 4-15 
6.10.1 Argument Passing By-value or By-reference 6-8 
6.10.3 Asterisk and Constant Extents of Parameters 6-9 

by-value 
4.3.3.1 Storage Sharing by Parameters 4-15 
6.10.1 Argument Passing By-value or By-reference 6-8 
6.10.2 Argument Conversion and Promotion 6-9 
6.10.3 Asterisk and Constant Extents of Parameters 6-9 

byte built-in function 
13.1.4a Byte 13-3 

<call statement> 
12.4 The Call Statement 12-6 

ceil built-in function 
13.2.4 Ceil 13-10 

char built-in function 
13.1.5 Character 13-3.1 

<character> 
2.6.2.2 Character-String Constants 2-6 

<character attribute> 
5.4.8 Character 5-17 

character built-in function 
13.1.5 Character 13-3.1 

<character picture> 
8.2.12.1 Syntax of Pictures 8-15 

<character-string constant> 
2.6.2.2 Character-String Constants 2-6 

<character-string format) 
8.2.11.4 Character-String Format 8-13 
12.12 The Format Statement 12-14 

clock built-in function 
13.6.5a Clock 13-25 

<close statement> 
12.5 The Close Statement 12-7 

<closure label> 
2.4 Multiple Closure of Groups and Blocks 2-3 
12.10 The- End Statement 12-12 

codeptr built-in function 
13.6.5b Codeptr 13-25 

3/81 i-5 

I 

I 

I 

I 



I 

collate built-in function 
13.1.6 Collate 13-4 

collate9 built-in function 
13.1.6a Collate9 13-4 

<column format> 
12.12 The Format Statement 12-14 

columnposi tion 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.12 The Format Statement 12-14 
12.1~ The Get Statement 12-19 
12.22 The Put Statement 12-30 

<comllent> 
2.6.~ Delilliters, Blanks and Comments 2-8 

<collplex attribute> 
5.4.9 COllplex 5-17 . 

I complex built-in function 
13.2.5 Complex 13-10 

<complex format> 
8.2.11.3 Complex Format 8-13 
12.12 The Format Statement 12-14 

<condition attribute> 
5.4.10 Condition 5-17 

<condition list> 
12.25 The Revert Statement 12-38 

(condition name> 

12.19 The On Statellent 12-21 

I 

10.4 PL/! Conditions 10-4 

12.25 The Revert Statement 12-37.1 
. 12.21 The Signal Statement 12-39 

condition name 
10.1 Conditions and Condition Names 10~1 
10.4 PL/I Conditions 10-4 

(condition prefix> 
2.5.1 Statement Prefixes 2-4 
10.2 Condition Prefixes 10-1 

(condition· set> 
5.5 Attribute Consistency 5-32 

conditions 
2.5.1 Statement Prefixes 2-4 
3.6.3 On Units 3-4 
4.1.5 Arithmetic Data 4-2 
4.3.3.3 Storage Sharing by Defined Variables ~-16 
5.4.10 Condition 5-17 
7.1.6 Expression Evaluation and Conditions 7-3 
8.2.3 Character-String to Arithmetic Conversion 8-3 
10.1 Conditions and Condition Names 10-1 
10.2 Condition Prefixes 10-1 
to.3 Signals and On-Units 10-2 
10.4 PL/I Conditions 10-4 
10.4.21 Hultics and Programmer Defined Conditions 10-11 
11.5 Conditions and Files 11-6 
12.19 The On Statement 12-27 
12.25 The Revert Statement 12-38 
12.21 The Signal Statement 12-39 
13.5 Condition Built-In Functions 13-22 

conforms 
8. Conversion of Data Types 8-1 
9. Promotion of Aggregate Types 9-1 

I conjg built-in function 
13.2.6 Conjg 13-11 

connected 

3/81 

4.3.1.3 Packing and Alignment of Arrays 4-10 
4.3.3.2 Storage Sharing by Based Variables 4-15 
6.3 Cross-Section References 6-3 
6~'OQ3 Asterisk and Constant Extent~ of Parameters 6-9 
12.2 The Assignm~nt Statement 12-2 
12.23 The Read Statement 12-35 
12.26 The Rewrite Statement 12-38 

i-6 AG94E 



12.28 The Write Statement 12-41 
13.6.1 Addr 13-2~ 

<consistent attribute set> 
5.5 Attribute Consistency 5-32 

<consistent file description> 
5.5 Attribute Consistency 5-32 
11.3 Opening a File 11-3 

<constant attribute) 
5.4.11 Constant 5-18 

constants 
2.6.2 Literal Constants 2-5 
2&6.2.1 Bit-String Constants 2-6 
2.6.2.2 Character-String Constants 2-6 
2.6.2.3 Arithmetic Constants 2-7 
~.1.2 Constants ~-1 
4.1.9 Label Data 4-4 
4.1.10 Format Data 4-5 
~.1.11 Entry Data ~-5 
4.1.12 File Data 4-6 
4.2.1 Arrays of Scalars 4-1 
5.2.6 Establishment of Implicit Declarations 5-10 
5.3 Completion of Attribute Sets 5-10 
5.3.2 Evaluation of Default Statements 5-12 
5.3.3 Language Default Rules 5-13 
5.4.11 Constant 5-18 
7. Expressions 7-1 
7.1.1 Evaluation of Primitive Expressions 7-1 
11.2 File Values and File-State Blocks 11-1 
11.5 Conditions and Files 11-6 

contained 
2.1 External Procedure 2-1 
2.2 Blocks and Block Structure 2-1 
5.1 Scope of a Declaration 5-1 

.<containing reference> 
6.4 Structure Qualified References 6-3 

<cohtr~l> 
12.9 The 00 Statement 12-9 

control 
See flow of control 

control character 
11.1.1 Stream Data Sets 11-1 
12.12 The Format Statement 12-14 

<control format) 
12.12 The Format Statement 12-14 

<controlled attribute> 
5.4.12 Controlled 5-18 

controlled storage 
4.3.2.1 Allocation of Storage 4-11 
4.3.2.4 Controlled Storage ~-12 

<conversion condition name> 
10.4.2 Conversion Condition 10-5 

conversion rules 
7.3.1.1 Operand Conversion for Arithmetic Operators 7-5 
7.3.2.1 Operand Conversion for Bit-String Operators 7-8 
7.3.3.1 Operand Conversion for Concatenation 7-9 
7.3.4.1 Operand Conversion for Relational Operators t-10 
8.2.1 Pointer to Offset Conversion 8-3 
8.2.2 Offset to Point~r Conversion 8-3 
8.2.3 Character-String to Arithmetic Conversion 8-3 
8.2.4 Character-String to Bit-String Conversion 8-4 
8.2.5 Bit-String to Arithmetic Conversion 9-4 
8.2.6 Bit-String to Character-String Conversion 8-5 
8.2.7 Arithmetic to Character-String Conversion 8-5 
8.2.8 Arithmetic to Bit-String Conversion 8-7 
8.2.9 Arithmetic Mode Conversion 8-7 
8.2.10 Arithmetic Type, Base and Precision Conversion 8-8 
8.2.11 Format Controlled Conversion 8-9 
8.2.12 Picture Controlled Conversion 8-15 

convert built-in function 
13.6.6 Convert 13-26 

3/81 i-7 

I 
AG94E 



I copy built-in function 
13. 1 .7 Copy 13-4 

<copy option) 
12.14 The Get Statement 12-19 

cos built-in function 
13.3 The Mathematical 

cosd built-in function 
13.3 The Mathematical 

cosh built-in function 
13.3 The Mathematical 

cplx built-in function 
13.2.5 Complex 13-10 

cross-section 

Bull t-in 

Bull t-1n 

Built-in 

Functions 13-18 

Functions 13-18 

Functions 13~18 

4.3.1.3 Packing and Alignment of Arrays 4-10 
6.3 Cross-Section References 6-3 
6.4 Structure Qualified References 6-3 
6.10.3 Asterisk and Constant Extents of Parameters 6-9 

current length 
4.1.6 String Data 4-3 
12.2 The Assignment Statement 12-2 
12.22 The Put Statement 12-30 

currentrecord 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
11.4 Closing a File 11-5 
12.8 The Delete Statement 12-8 
12.17 The Locate Statement 12-25 
12.23 The Read Statement 12-35 
12.26 The Rewrite Statement 12-38 
12.28 The Write Statement 12-41 

tocurrentsize built-in function 
13.6.6a Currentsize 13-26 

<d> 
8.2.11.1 Fixed-Point Format 8-9 
8.2.11.2 Floating-Point Format 8-11 
12.12 The format Statement 12-14 

data character 
11.1.1 Stream Data Sets 11-1 
11.2 Fil~ 'alue3 ana File-gta~e Blocks 11-1 
12.14 The Get Statement 12-19 

< data format> 
12.12 The Format Statement 12-14 

data set 
4.1.12 File Data 4-6 
li.i.1 Stream Data Sets 11-1 
11.1.2 Record Data Sets 11-1 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
11.4 Closing a File 11-5 

<data type> 
5.5 Attribute Consistency 5-32 

data typct-

3/81 

4.1.1 Representation of Data 4-1 
4.1.3 Variables 4-1 
4.1.4 Data Types of Expressions and Functions 4-2 
4.1.5 Arithmetic Data 4-2 
4.1.6 String Data 4-3 
4.1.1 Locator Data 4-3 
4.1.8 Area Data 4-4 
4.1.9 Label Data 4-4 
4.1.10 Format Data 4-5 
4.1.11 Entry Data 4-5 
4.1.12 File Data 4-6 
4.2 Agsregates of Data 4-1 
4.3.3 Storage Sharing 4-14 
5.4.2 Area 5-15 
5.4.6 Bit 5-16 
5.4.8 Character 5-17 
5.4.17 Entry 5-19 
5.4.20 File 5-21 
5.4.21 Fixed 5-21 
5.4.22 Float 5-22 

i-8 AG94E 



5.4.23 Format 5-22 
5.4.30 Label 5-25 
5.4.35 Offset 5-26 
5.4.39 Picture 5-27 
5.4.40 Pointer 5-28 
5.4.51 Structure 5-30.1 
6.10.2 Argument Conversion and Promotion 
1.3.4.2 Types of Comparison 1-10 

6-9 

8. Conversion of Data Types 8-1 

da~e built-in function 
13.6.7 Date 13-26 

dec built-in function 
13.2.7 Decimal 13-11 

decat built-in function 
13.1.8 Decat 13-4 

<decimal attribute> 
5.4.13 Decimal 5-18 

decimal built-in function 
13.2.7 Decimal 13-11 

<decimal constant> 
2.6.2.3 Arithmetic Constants 2-1 

<decimal integer> 
2.6.2.3 Arithmetic Constants 2-1 

<decimal number> 
2.6.2.3 Arithmetic Constants 2-1 

declaration 
5. Declarations 5-1 
6. References 6-1 

<declaration component> 
5.2.1 Declare Statements 5-2 
12.6 The Declare Statement 12-7 

(declaration 11$t> 
5.2.1 Declare Statements 5-2 
12e6 The Declare Stat~=~iit 12-7 

<declar~ statement> 
5.2.1 Declare Statements 5-2 
12.6 Th~ Declare Statement 12-7 

<declared name> 
2.5.1 Statement Prefixes 2-4 
5.2.1.1 Defactoring of Declare Statements 5-3 
5.2.1 Declare Statements 5-2 
12.6 The Declare Statement 12-7 

(defactored declaration> 
5.2.1 Declare Statements 5-2 

<defactored declare> 
5.2.1.1 Defactoring of Declare Statements 5-3 

default rules 
5.2 Establishment of Declarations 5-2 
5.2.5 Contextually Derived Attributes 5-9 
5.2.6 Establishment of Implicit Declarations 5-10 
5.3 Completion of Attribute Sets 5-10 
5.3.3 Language Default Rules 5-13 
11.2 File Values and File-State Blocks 11-1 

<default statement> 
5.3.1 Default Statement 5-11 
5.3.2 Evaluation of Default Statement 5-12 
12.7 The Default Statement 12-8 

<defined attribute> 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
5.4.14 Defined 5-18 

<delete statement> 
12.8 Th~ Delete Statement 12-8 

<delimiter> 
2.6.4 Delimiters, Blanks and Comments 2-8 

3/81 i-9 

I 
I 

I 

AG94E 



<descriptor> 
5.4.17 Entry 5-19 
5.4.47 Returns 5-30 

<descriptor set> 
5.5 Attribute ConSistency 5-32 

<digit> 
2.6.1 Identifiers 2-5 
2.6.2.3 Arithmetic Constants 2-7 

<digit positions) 
8.2.12.1 Syntax of Pictures 8-15 

(digits) 
8.2.12.1 Syntax of Pictures 8-15 

I dim built-in function 
13.4.1 Dimension 13-20 

<dim key> 
5.4.15 Dimension 5-18 

<dimension attribute> 
5.4.15 Dimension 5-18 

I dimension built-in function 
13.4.1 Dimension 13-20 

<direct attribute) 
5.4.16 Direct 5-19 

direct data set 
11.1.2 Record Data Sets 11-1 

<direct description> 
5.5 Attribute Consistency 5-32 
11.3 Opening a File 11-3 

. disabled (condition) 
10.2 Condition Prefixes 10-1 

<disabled condition) 
10.2 Condition Prefixes 10-1 

I divide built-in function 
13.2.8 Divide 13-11 

<do statement> 
~2.9 The Dc gtQt~_cnt 

{do while> 
12.9 The Do Statement 12-9 

I dot built-in (unction 
13.4.2 Dot 13-20 

(drifting dollar) 
8.2.12.1 Syntax of Pictures 

<drifting field) 
8e2 .. 12.1 Syntax of Pictures 

<drifting sign) 
8.2.12.1 Syntax of Pictures 

dynamic descendent 

8-15 

8-15 

8-15 

3.3.2 Environment of a Block Activation 3-2 

dynamic linking 
3.2 A Multics PL/I Program 3-1 

dynamic predecessor 
3.3.1 Block Activation 3-2 
3.3.2 Environment of a Block Activation 3-2 
3.6.1 Begin Blocks 3-3 

editing 
8.2.12 Picture Controlled Conversion 8-15 

elements 

3/81 

4.2.1. Arrays of Scalars 4-7 
4.2.3 Arrays of Structures 4-8 
4.3.1.3 Packing and Alignment of Arrays 4-10 
4.3.3 Storage Sharing 4-14 
5.-.25 Initial 5-23 
9.3 Promotion Rules 9-2 

i-10 AG94E 



<el3e clau3e> 
12.16 The If Statement 12-25 

empty built-in function 
13.6.8 Empty 13-26 

<enabled condition> 
10.2 Condition Pref1xe3 10-1 

enabled condition 
10.2 Condition Pref1xes 10-1 

encoding 
8.2.12 Picture Controlled Conversion 8-15 

<end 3tatement) 
2.~ Multiple Closure of Group3 and Blocks 2-3 
12. fO The End Statement 12-12 

<endf1le condition name> 
10.4.3 Endfile Condition 10-5 

<endpage condition name> 
10.4.4 Endpage Condition 10-5 

<entry> 
5.5 Attribute Consistency 5-32 

<entry attribute> 
5.~.11 Entry 5-19 

entry constant 
See entry value 

<entry option> 
12.11 The Entry Statement 12-13 

<entry reference> 
5.4.24 Generic 5-22 
6.1 Function References 6-5 
6.9 Generic References 6-1 
12.4 The Call Statement 12-6 

<entry 3tatement) 
12~11 The Entry Statement 12-13 

entry value 
3.3.2 Environment of a Block Activation 3-2 
4.1.11 Entry Data 4-5 
5.4.11 Entry 5-19 
5.4.28 Irreducible 5-24 
5.4.36 Options 5-26 
5.4.46 Reducible 5-29 
6.1 Funct10n References 6-5 
6.8 Built-In Funct10n References 6-1 
6.9 Generic References 6-1 
1.3.4.2 Types of Comparison 1-10 
12.4 The Call Statement 12-6 

<environment attribute> 
5.4.18 Environment 5-20 

environmentptr built-in function 
13.6.8a Environmentptr 13-26.1 

equivalenced based generation 
4.3.2.5 Based Storage 4-12 

erf built-in function 
13.3 The- Mathematical Built-1n Functions 13-18 

erfc built-in function 
13.3 The Mathematical Built-1n Functions 13-18 

<error condition name> 
10.4.5 Error Condition 10-6 

error output 
TO.4 PL/I Conditions 10-4 

established 
3.6.3 On Unit3 3-4 
10.3 Signals and On-Units 10-2 

evaluate 
6. References 6-1 
7. Expre33ion3 7-1 

3/81 i-11 

I-

I 

I 

AG94E 



<executable unit> 
12.16 The If Statement 12-25 

I exp built-in function 
13.3 The Mathematical Built-in Functions 13-18 

explicitly allocated based generation 
4.3.2.5 Based Storage 4-12 

<exponent> 
2.6.2.3 Arithmetic Constants 2-7 

exponent 
4.1.5 Arithmetic Data 4-2 
7.3.1.2.3 Special Cases of Exponentiation 7-7 
8.2.11.2.1 Floating-Point Input Conversion 8-11 
882.11.2.2 Floating-Point Output Conversion 9-12 
8.2.12.4 Floating-Point Picture Conversion 8-20 
10.4.10 Overflow Condition 10-8 
10.4.19 Underflow Condition 10-11 

<exponent field> 
8.2.12.1 Syntax of Pictures 8-15 

<expression> 
7.2 Formal Syntax of Expressions 7-4 

expression 
1.2.2 Syntax Expressions 1-2 
1.2.3 A Formal Definition of the Meta-~anguage 1-3 
3.6.2 Procedures 3-4 
4.1.4 Data Types of Expressions and Functions 4-2 
7.1.1 Evaluation of Primitive Expressions 7-1 
7.1.2 Evaluation of Prefix Expressions 7-1 
7.1.3 Evaluation of Infix Expressions 7-2 
7.1.4 Order of Evaluation 7-2 
7.1.6 Expression Evaluation and Conditions 7-3 
7.2 Formal Syntax of Expressions 7-4 

. <expression five> 
7.2 Formal Syntax of Expressions 7-4 

<expression four) 
7.2 Formal Syntax of Expressions 7-4 

<expression one> 
7.2 Formal Syntax of Expressions 7-4 

<expression seven> 
7.2 Formal Syntax of Expressions 7-4 

<expression six) 
7.2 Formal Syntax of Expressions 7-4 

<expression three) 
7.2 Formal Syntax of Expressions 7-4 

<expression two> 
1.2 Formal Syntax of Expressions 7-4 

<extent expression> 
4.3.2.5 Based Storage 4-12 
5.4.2 Area 5-15 
5.4.6 Bit 5-16 
5.4.8 Character 5-17 
5.4.15 Dimension 5-18 

<external attribute> 
5.4.19 External 5-21 

<external procedure> 
2.1 External Procedure 2-1 

external scope 
5.1.2 External Scope 5-1 

<factor> 
5.4.25 Initial 5-23 

file 
See file-state block 

<file attribute> 
5.4.20 File 5-21 

<file get> 
12.14 The Get Statement 12-19 

3/81 i-12 AG94E 



<file get option> 
12.1Q The Get Statement 12-19 

< file option> 
12.5 The Clo3e Statement 12-1 
12.8 The Delete Statement 12-8 
12.1~ The Get Statement 12-19 
12.17 The Locate Statement 12-25 
12.20 The Open Statement 12-28 
12.22 The Put Statement 12-30 
12.23 The Read Statement 12-35 
12.26 The Rewrite Statement 12-38 
12.28 The Write Statement 12-41 

<file put> 
12.22 The Put Statement 12-30 

<file put option> 
12.22 The Put Statement 12-30 

file value 
See file-3tate block 

file-state block 
4.1.12 Fj e Data 4-6 
5.4.18 Environment 5-20 
5.4.18 Environment 5-20 
5.4.32 Local 5-25 
5.4.31 Output 5-27 
5.4.Q3 Print 5-29 
5.4.45 Record 5-29 
5.4.ug Scqu~ntial 5-30 
5.4.50 Stream 5-30.1 
5.4.53 Update 5-32 
7.3.Q.2 Types of Comparison 7-10 
11.2 File Value3 and File-State Blocks 11-1 
11.5 Conditions and Files 11-6 
12.2 The A33ignment Statement 12-2 
12.5 The Close Statement 12-1 
12.8 The Delete Statement 12-8 
12.12 The Format Statement 12-14 
12.1~ The Get Statement 12-19 
12.11 The Locate Statement 12-25 
12.20 The Open Statement 12-28 
12.22 The Put Statement 12-30 
12.23 The Read Statement iz-35 
12.28 The Write Statement 12-41 
13.6.9 Lineno 13-26.1 
13.6.13 Pageno 13-27 

filedescription 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 

filename 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
13.5.4 Onfile 13-23 

<fini3h condition name> 
10.4.6 Finish Condition 10-6 

< first) 
12.9 The Do Statement 12-9 

<fixed attribute> 
5.4.21 Fixed 5-21 

fixed built-in function 
13.2.9 Fixed 13-12 

<fixed field> 
8.2.12.1 Syntax of Pictures 8-15 

<fixed-point format> 
8.2.11.1 Fixed-Point Format 8-9 
12.12 The Format Statement 12-14 

<fixed-point picture) 
8.2.12.1 Syntax of Pictures 8-15 

<fixedoverflow condition name> 
10.4.7 Fixedoverflow Condition 10-1 

<float attribute) 
5.4.22 Float 5-22 

3/81 i-13 

I 

AG94E 



I float built-in function 
13.2.10 Float 13-12 

<floating-point fo~mat> 
8.2.11.2 Floating-Point Fo~mat 8-11 
12.12 The Fo~mat Statement '2-1~ 

<floating-point pictu~e> 
8.2.12.1 Syntax of Pictu~es 8-15 

floo~ built-in function 
13.2.11 Floo~ 13-12 

flow of control 
3.1 Flow of Control 3-1 
3.3.1 Block Activation 3-2 
3.3.2 Environment of a Block Activation 3-2 
3.4 Flow of Control_Within a Block Activation 3-3 
10.3 Signals and On-Units 10-2 

<format att~ibute> 
5.4.23 Format 5-22 

format constant 
See fo~mat value 

<fo~mat item> 
12.12 The Fo~mat Statement 12-14 

<format pa~t> 
8.2.11.3 Complex Fo~mat 8-13 
12.12 The Format Statement 12-14 

<fo~mat specification> 
12.12 The Format Statement 12-14 

<format speCification list> 
12.12 The Format Statement 12-14 

<format statement> 
12.12 The Format Statement 12-14 

format value 
4.1.10 Format Data 4-5 
5.4.23 Format 5-22 
5.4.32 ~ocal 5-25 
12.12 The Format Statement 12-14 

<fortran control> 
12.9 The Do Statement 12-9 

<free reference> 
12.13 The Free Statement 12-18 

<free statement> 
12.13 The Free Statement 12-18 

<freeing) 
12.13 The Free Statement 12-18 

<from option) 
12.26 The Rewrite Statement 12-38 
12.28 The Write Statement 12-41 

fully qualified 
6.4 Structure Qualified References 6-3 

<function reference) 
6.1 Function References 6-5 

generation of storage 

3/81 

4.1.3 Variables 4-1 
4.1.1 ~ocator Data 4-3 
4.1.8 Area Data 4-4 
4.3.2.1 Allocation of Storage 4-11 
4.3.2.2 Automatic Storage 4-11 
4.3.2.3 Static Storage 4-12 
4.3$2.4 Controlled Storage 4~12 
4.3.2.5 Based Storage 4-12 
4.3.3 Storage Snaring 4-14 
6. References o-t 
0.10.1 Arguaent Passing By-value or By~reference 6-8 
6.10.4 Storage of a Parameter 6-9 
10.4.15 Strings1ze Condition iO-9 
12.1 The Allocate Statement 12-1 
12.2 The Assignment Statement 12-2 
12.9 The 00 Statement 12-9 

AG94E 



12.13 The Free Statement 12-18 
12.17 The Locate Statement 12-25 
12.22 The Put Statement 12-30 
12.23 The Read Statement 12-35 
13.6.1 Addr 13-2~ 
13.6.12 Offset 13-26.1 
13.6.14.1 The Standard Definition of Pointer 13-27 

<generic attribute> 
5.4.24 Generic 5-22 
6.9 Generic References 6-7 

generic reference 
6.9 Generic References 6-7 

<generic set> 
5.5 Attribute Consistency 5-32 

<get data> 
12.1~ The Get Statement 12-19 

<get data ref> 
12.14 The Get Statement 12-19 

<get edit> 
12. 14 The Get Statement 12-19 

<get edit pair> 
12.14 The Get Statement 12-19 

<get item> 
12.14 The Get Statement 12-19 

<get list> 
12.14 The Get Statement 12-19 

<get list specification> 
12.14 The Get Statement 12-19 

. <get statement> 
12.14 The Get Statement 12-19 

<goto statement) 
12.15 The Goto Statement 12-24 

<graphic delimiter> 
2.6.4 Delimiters, Blanks and Comments 2-8 

<group> 
2~3 Groups 2-2 

hbound built-in function 
13.4.3 Hbound 13-20 

high built-in function 
13.1.9 High 13-5 

high9 built-in function 
13.1.9a High9 13-6 

<identifier> 
2.6.1 Identifiers 2-5 

<if statement> 
12.16 The If Statement 12-25 

<ignore option> 
12.23 The Read Statement 12-35 

imag built-in function 
13.2.12 Imag 13-13 

< imag pseudo> 
12.2 The Assignment Statement 12-2 

<imaginary constant> 
2.6.2.3 Arithmetic Constants,2-7 

immediately contained 
2.2 Blocks and Block Structure 2-1 

<in option> 
12.1 The Allocate Statement 12-1 
12.13 The Free Statement 12-18 

< incl ud e macro> 
2.7 Include Macro 2-9 

3/81 i-15 

i 

AG94E 



<increment> 
12.9 The Do Statement 12-9 

<independent statement} 
2.5 Statements 2-4 

<index> 
12.9 The Do Statement 12-9 

I index built-in function 
13.1.10 Index 13-6 

infix arithmetic operators 
7.3.1 Arithmetic Operators 7-5 

infix expression 
4.1.4 Data Types of Expressions and Functions 4-2 
7. Expressions 7-1 
7.1.3 Evaluation of Infix Expressions 7-2 

<initial attribute> 
5.-.25 Initial 5-23 

<initial itell) 
5.4.25 Initial 5-23 

<initial list) 
5.4.25 Initial 5-23 

<initial value> 
5.4.25 Initial 5-23 

initialdescription 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 

<input attribute) 
5.4.26 Input 5-24 

.1 nput buffer 
11.2 File Values and File-State Blocks 11-1 
11.4 Closing a File 11-5 
12.23 The Read Statement 12-35 
12.26 The Rewrite Statement 12-38 

input conversion 
8.2.11 Format Controlled Conversion 8-9 
12.12 The Format Statement 12-14 

<i"e.p~i~" ~h~_~_~ __ ' 
~ __ .. __ • ___ •• __ ..... a U_V";;" _ 

8.2.12.1 Syntax of Pictures 8-15 

interleaved array 
4.3.1.3 Packing and Alignment of Arrays 4-10 

internal 
5.1.1 Internal Scope 5-1 

<internal attribute> 
5.4.27 Internal 5-24 

<into option> 
12.23 The Read Statement 12-35 

irreducible 
6.11 Reducibility of Functions 6-9 

<irreducible attribute> 
5.4.28 Irreducible 5-24 

<isub> 
2.6.3 Isubs 2-8 

isub defining 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
4.3.3.4 Isub Defining 4-17 

item 
5.4 Syntax and Semantics of Attributes 5-15 

<iteration factor> 
12.12 The Format Statement 12c14 

< iterative do) 
12.9 The Do Statement 12-9 

3/81 i-16 AG94E 



<iterative group> 
2.3 Groups 2-2 

<k> 

key 

8.2.11.1 Fixed-Point Format 8-9 
12.12 The Format Statement 12-14 

11.1.2 Record Data Sets 11-1 

<key condition name> 
10.4.8 Key Condition 10-7 

<key option> 
12.8 The Delete Statement 12-8 
12.23 The Read Statement 12-35 
'.2.26 The Rewrite Statement 12-38 

<key spec> 
12.23 The Read Statement 12-35 

<keyed attribute> 
5.4.29 Keyed 5-24 

keyed sequential data set 
11.1.2 Record Data Sets 11-1 

<keyfrom option> 
12.17 The Locate Statement 12-25 
12.28 The Write Statement 12-41 

<key to option> 
12.23 The Read Statement 12-35 

keyword 
2.6.1 Identifiers 2-5 

<label attribute> 
5.4.30 Label 5-25 

label constant 
See label value 

<label prefix) 
2.5.1 Statement Prefixes 2-~ 

label value 
3.4 Flow of Control Within a Block Activation 3-3 
4.1.9 Label Data 4-4 
5.4.30 Label 5-25 
7.3.4.2 Types of Comparison 7-10 
12.15 The Ooto Statement 12-24 

lbound built-in function 
13.4.4 Lbound 13-21 

<length> 
5.4.6 Bit 5-16 
5.4.8 Character 5-17 

length built-in function 
1).1.11 Length 13-6 

<letter> 
2.6.1 Identifiers 2-5 

<level> 
5.2.1 Declare Statements 5-2 
5.2.1.1 Defactoring of Declare Statements 5-3 
12.6 The Deolare Statement 12-1 

level-one 
4.2.2 Structures 4-8 
5.2.1.3 Normalization of Levels 5-4 

<lexeme> 
2.6 Lexical Syntax of PL/I 2-5 

<like attribute> 
5.2.2 Expansion of the Like Attribute 5-4 
5.4.31 Like 5-25 

<like reference> 

3/81 

5.2.2 Expansion of the Like Attribute 5-4 
5.4.31 Like 5-25 

i.17 

I 

I 

AG94E 



<limit> 
12.9 The Do Statement 12-9 

<line format) 
12.12 The Format Statement 12-1q 

<line option} 
12.22 The Put Statement 12-30 

linemark 
5.4.18 Environment 5-20 
10.4.4 Endpage Condition 10-5 
11.1.1 Stream Data Sets 11-1 
11.2 File Values and File-State Blocks 11-1 
12.12 The Format Statement 12-14 
12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 

I lineno built-in function 
13.6.9 ~ineno 13-26.1 

linenumber 
10.4.4 Endpage Condition 10-5 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.12 The Format Statement 12-1q 
12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 
13.6.9 ~ineno 13-26.1 

linesize 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.12 The Format Statement 12-14 
12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 

<linesize option} 
12.20 The Open Statement 12-28 

<list do> 
12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 

<literal constant> 
2.6.2 ~lteral Constants 2-5 

<literal constant set) 
5.5 Attribute Consistency 5-32 

<local attriouee> 
5.4.32 ~ocal 5-25 

local goto 
3.5 ~ocal and Monlocal Goto Statements 3-3 

<locate option> 
12.17 The ~ocate Statement 12-25 

<locate statement) 
12.17 The ~ocate Statement 12-25 

locator data 
4.1.7 ~ocator Data q-3 

<locator qualified reference> 
q.3.2.5 Based Storage q-12 
6.6 ~ocator Qualified References 6-5 

<locator qualifier} 
4.3.2.5 Based Storage 4-12 
6.6 Locator Qualified References 6-5 

log built-in function 
13.3 The Mathematical Built-in Functions 13·18 

10g10 builtein function 
13a3 The Mathemataical Built-in Functions 13-18 

10g2 built-in function 
13.3 The Mathematical Built-in Functions 13-18 

low built-in function 
13.1.12 Low 13~6 

I ltrim built-in function 
13.1.12a Ltrim 13-6.1 

3/81 i-18 AG94E 



lIajor structure 
4.2.2 Structures 4-8 
4.3.2.1 Allocation of Storage 4-11 
4.3.2.5 Based Storage 4-12 

<mantissa field> 
8.2.12.1 Syntax of Pictures 8-15 

max built-in function 
13.2.13 Max 13-13 

lIaxilllUBI length 
4.1.6 String Data 4-3 
5.4.6 Bit 5-16 
5.4.8 Character 5-17 
5.4.34 Nonvarying 5-26 
5.4.55 Varying 5-32 

maxlength built-in function 
13.1.12b Maxlength 13-6.1 

<member attribute> 
5.4.33 Member 5-25 

(member reference> 
6.4 Structure Qualified References 6-3 

members 
4.2.2 Structures 4-8 
4.3.1 Packing and Alignment of Variables 4-8 
4.3.2.1 Allocation of Storage 4-11 
4.3.3 Storage Sharlng 4-14 
5.1 Scope of a Declaration 5-1 
5.2.2 Expansion of the Like Attribute 5-4 
6.4 Structure Qualified References 6-3 

<meta-language> 
1.2.3 A Forlllal Definition of the Meta-Language 1-3 

. <meta-letter> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

lIin built-in function 
13.2.14 Min 13-13 

lIod built-in function 
13.2.15 Mod 13-13 

mode 
2.6.2.3 Arithmetic Constants 2-7 
4.1.5 Arithmetic Data 4-2 
7.3.1.1 Operand Conversion for Arithmetic Operators 7-5 
7.3.1.2 Results of Arithmetic Operators 7-6 
8.2 Conversion Rules 8-2 

multiple declaration 
5.1 Scope of a Declaration 5-1 

<mul tiple do> 
12.9 The Do Statement 12-9 

multiply built-in function 
13.2.16 Multiply 13-15 

name 
5. Declarations 5-1 

(name condition name> 
10.4.9 Hame Condition 10-7 

named constant 
4.1.2 Constants 4-1 

<named constant set> 
5.5 Attribute Consis~ency 5-32 

<newline> 
2.6.4 Delimiters, Blanks and Comments 2-8 

nextrecord 

3/81 

11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.8 The Delete Statement 12-8 
12.23 The Read Statement 12-35 
12.26 The Rewrite Statement 12-38 
12.28 The Write Statement 12-41 

i-19 AG94E 

I 

I 

I 
I 

I 



<noniterative do> 
12.9 The Do Statement 12-9 

<noniterative group> 
2 • ..3 Groups 2-2 

nonlocal goto 
3.5 Local and Nonlocal Goto Statements 3-3 

<nonvarying attribute> 
5.~.34 Nonvarying 5-26 

<normal picture> 
8.2.12.1 Syntax of Pictures 8-15 

<notation constant> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

<notation variable> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

null bit-string 
2.6.2.1 Bit-String Constants 2-6 
4.1.6 String Data 4-3 
8.2.4 Character-String to Bit-String Conversion 8-4 
8.2.6 Bit-String to Character-String Conversion 8-5 

I null built-in function 
13.6.10 Null 13-26.1 

null character-string 
2.6.2.2 Character-String Constants 2-6 
4.1.6 String Data 4-3 
8.2.4 Character-String to Bit-String Conversion 8-4 
8.2.6 Bit-String to Character-String Conversion 3-5 

null locator value 
4.1.7 Locator Data 4-3 
13.6.10 Null 13-26.1 

<null statement> 
12.18 The Null Statement 12-27 

nullo built-in function 
13.6.11 Nullo 13-16.1 

<numeric constant) 
8.2.3 Character-String to Arithmetic Conversion 3-3 

<nume~i! ~!c~u~e>. ~ 
0 • ..::. IC. I .:lynt.ax 01 Pict.ures 8-15 

<offset attribute> 
5.4.35 Offset 5-26 

I offset built-in function 
13.6.12 Offset 13-26.1 

<on statement> 
3.6~3 On Units 3-4 
12.19 The On Statement 12-27 

<on unit> 
3.6.3 On Units 3-4 
12.19 The On Statement 12-27 

I onchar built-in function 
13.5.1 Onchar 13-22 

< onchar pseud 0> 
12.2 The Assignment Statement 12-2 

oncode built-in function 
13.5.2 Oncode 13-22 

onfield built-in function 
13.5.3 On field 13-23 

onfile built-in function 
13.5.4 Onfile 13-23 

onkey built-in function 
13.5.5 Onkey 13-23 

onloc built-in function 
13.5.6 Onloc 13-23 

3/81 i-20 ACi94E 



onsource built-in function 
13.5.7 Onsource 13-23 

<onsource pseudo> 
12.2 The Assignment Statement 12-2 

<open statement> 
12.20 The Open Statement 12-28 

<opening> 
12.20 The Open Statement 12-28 

<opening attribute> 
11.3 Opening a File 11-3 
12.20 The Open Statement 12-28 

(opening option> 
12.20 The Open Statement 12-28 

operand 
7. Expressions 7-1 
7.1.4 Order of Evaluation 7-2 
7.1.5 Optional Evaluation 7-3 
7.3.1.1 Operand Conversion for Arithmetic Operators 7-5 
7.3.2.1 Operand Conversion for Bit-String Operators 7-8 
7.3.3.1 Operand Conversion for Concatenation 7-9 
7.3.4.1 Operand Conversion for Relational Operators 7-10 

operators 
1.2.2 Syntax Expressions 1-2 
7. Expressions 7-1 
7.1.4 Ord~r of Evaluation 7-2 
7.2 Formal Syntax of Expressions 7-4 
7.3.1 Arithmetic Operators 7-5 
7.3.2 Bit-String Operators 7-8 
7.3.3 Concatenate Operator 7-9 
7.3.4 Relational Operators 7-9 

<options attribute> 
5.4.36 Options 5-26 

<output attribute> 
5.4.37 Output 5-21 

output buffer-
11.4 Closing a File 11-5 
12.17 The Locate Statement 12-25 
12.28 The Write Statement 12-41 

output conversion 
8.2.11 Format Controlled Conversion 8-9 
12.12 The Format Statement 12-14 

<overflow condition name> 
10.4.10 Overflow Condition 10-8 

packed aggregate variable 
4.3.1 Packing and Alignment of Variables 4-8 

packed scalar variable 
4.3.1 Packing and Alignment of Variables 4-8 
4.3.1.1 Packing and Alignment of Scalar Variables 4-9 

packed structure 
4.3.1 Packing and Alignment of Variables 4-8 
4.3.1.2 Packing and Alignment of Structures 4-9 
4.3.1.3 Packing and Alignment of Arrays 4-10 

<page format> 
12.12 The Format Statement 12=14 

<page option> 
12.22 The Put Statement 12-30 

pagemark 
11.1.1 Stream Data Sets 11-1 
11.2 File Values and File-State Blocks 
12.12 The Format Statement 12-14 
12.22 The Put Statement 12-30 

pageno built-in function 
13.6.13 Pageno 13-27 

<pageno pseudo> 
12.2 The Assignment Statement 12-2 

3/81 i-21 

11-1 

I 

I 

AG94E 



pagenumber 
11.2 File Values and File-State Blocks 11-1 
12.2 The Assignment Statement 12-2 
12.22 The Put StateNent 12-30 
13.6.13 Pageno' 13-27 

pagesize 
10.4.4 Endpage Condition 10-5 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.12 The Format Statement 12-14 

<pagesize option> 
12.20 The Open Statement 12-28 

parameter 
4.3.1.3 Packing and Alignment of Arrays 4-10 
4.3.3 Storage Sharing 4-14 
4.3.3.1 Storage Sharing by Parameters 4-15 
4.3.302 Storage Sharing by Based Variables 4-15 
5.2.-4 Establishment of Contextual Declarations 5-9 
5.2.5 Contextually Derived Attributes 5-9 
5.4.41 Position 5-28 
6.10 Parameters and Arguments 6-8 
6.10.1 Argument Passing By-value or By-reference 6-8 
6.10.2 Argument Conversion and Promotion 6-9 
6.10.3 Asterisk and Constant Extents of Parameters 6-9 
6.10.4 Storage of a Parameter 6-9 
8.1 Contexts That Force Conversion 8-1 
9.1 Contexts That Force Promotion 9.1 
1204 The Call Statement 12-6 
12.11 The Entry Statement 12-13 
12.21 The Procedure Statement 12-29 

<parameter attribute> 
5.4.38 Parameter 5-27 

<parameter descriptor} 
5.4.17 Entry 5-19 

<parameter descriptor list> 
5.4.17 Entry 5-19 

<parameter list> 
12.11 The Entry Statement 12-13 
12.21 The Procedure State.ent 12-29 

parent pointer 
3.3.2 Environment of a Block Activation 3~2 
3.S.3 Cu Units 3-~ 
4.1.9 Label Data 4-4 
4.1.10 Format Data 4-5 
4.1.11 Entry Data 4-5 

<parenthesized expression> 
7.2 Formal Syntax of Expressions 7-4 

partially qualified 
6.4 Structure QualifIed References 6-3 

<picture> 
8.2.12.1 Syntax of Pictures 8-15 

<picture attribute> 
5.4.39 Picture 5-27 

<picture char> 
8.2.12.1 Syntax of Pictures 8-15 

<picture format> 
8.2.11.6 Picture Format 8-14 
12.12 The Format Statement 12-14 

<picture scale factor> 
8.2e12.1 Syntax of Pictures 8-15 

pictured character-string 
4.1.6 Str1ng Data 4-3 

<pointer attribute> 
5.4.40 POinter 5-28 

I. pointer built-1n function 
13.6.14 Pointer 13-27 

3/81 i-22 AG94E 



<position> 
~.3.3.3 Storage Sharing by Defined Variables ~-16 
5.~.41 Position 5-28 

<position attribute} 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
5.4.41 Position 5-28 

prec built-in function· 
13.2.17 Precision 13-16 

<precision> 
5.4.~2 Precision 5-28 

precision 
4.1.5 Arithmetic Data ~~2 
5.3 Completion of Attribute Sets 5-10 
5.4.24 Generic 5-22 
5.4.42 PreCision 5-28 
6.10.1 Argument Passing By-value or By-reference 6-8 
7.3.1.1 Operand Conversion for Arithmetic Operators 7-5 
7.3.1.2 Results of Arithmetic Operators 7-6 
8.2.3 Character-String to Arithmetic Conversion 3-3 
8.2.5 Bit-String to Arithmetic Conversion 8-4 
8.2.7 Arithmetic to Character-String Conversion 8-5 
8.2.8 Arithmetic to Bit-String Conversion 8-7 
8.2.9 Arithmetic Mode Conversion 3-7 
8.2.10 Arithmetic Type, Base and Precision Conversion 8-8 
8.2.11 Format Controlled Conversion 8-9 
8.2.12 Picture Controlled Conversion 8-15 
10.4.12 Size Condition 10-8 

<precision attribute> 
5.4.24 Generic 5-22 
5.4.~2 Precision 5-28 

preciSion built-in function 
13.2.17 Precision 13-16 

< precision key> 
5.4.42 Precision 5-28 

<predicate> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

< predicate one> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

<predicate three> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

<predicate two> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

<prefix> 
2.5.1 Statement Prefixes 2-4 

prefix arithmetic operators 
7.3.1 Arithmetic Operators 7-5 

prefix expression 
4.1.4 Data Types of Expressions and Functions 4-2 
7. Expressions 7-1 
7.1.2 Evaluation of Prefix Expressions 7-1 

< prefix name> 
10.2 Condition Prefixes 10-1 

<p~efix subscript> 
2.5.1 Statement Prefixes 2-4 

primitive expression 
7. Expressions 7-1 
7.1.1 Evaluation of Primitive Expressions 7-1 

<print attribute> 
5.4.43 Print 5-29 

<procedure> 
2.2 Blocks and Block Structure 2-1 

<procedure component> 
2.2 Blocks and Block Structure 2-1 

3/81 i-23 

I 

AG94E 



<procedure option> 
12.21 The Procedure Statement 12-29 

<procedure statement> 
12.21 The Procedure Statement 12-29 

process (a Multics process) 
3.2 A Multics PL/I Program 3-1 
4.1.7 Locator Data 4-3 
4.1.8 Area Data 4-4 
4.3.2.3 Static Storage 4-12 
4.3.2.4 Controlled Storage 4-12 
4.3.2.5 Based Storage 4-12 
11.4 Closing a File 11-5 
13.6.20a Vclock 13-30 

I prod built-in function 
13.4.5 Prod 13-21 

program 
2.1 External Procedure 2-1 
See process 

<programmer defined condition name> 
10.4.21 Multics and Programmer Defined Conditions 10-11 

<pseudo-variable> 
12.2 The Assignment Stater lent 12-2 

ptr built-in function 
13.6.14 Pointer 13-27 

<put data> 
12.22 The Put Statement 12-;0 

<put data item> 
12.22 The Put Statement 12-30 

<put edit> 
12.22 The Put Statement 12-30 

<put edit pair> 
12.22 The Put Statement 12-30 

<put item> 
12.22 The Put Statement 12-30 

<put list> 
12.22 The Put Statement 12-30 

<put list specification> 
12.22 The Put Statement 12-30 

< put statement> 
12.22 The Put Statement 12-30 

<radix factor> 
2.6.2.1 Bit-String Constants 2-6 
8.2.11.5 Bit-String Format 8-14 
12.12 The Format Statement 12-14 
12.14 The Get Statement 12-19 

<range> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

rank built-in function 
13.1.12c Rank 13-6.1 

< read option> 
12.23 The Read Statement 12-35 

<read statement} 
12.23 The Read Statement 12-35 

<real attribute> 
5.4.44 Real 5-29 

real built-in function 
13.2.18 Real 13-16 

<real constant> 
2.6.2.3 Arithmetic Con~tants 2=7 

< real format> 
12.12 The Format Statement 12-14 

3/81 1-24 AG94E 



<real pseudo> 
12.2 The Assignment Statement 12-2 

<receiver> 
12.23 The Read Statement 12-35 

<record attribute> 
5.~.45 Record 5-29 

<record condition name> 
10.4.11 Record Condition 10-8 

record data set 
5.4.45 Record 5-29 
5.4.50 Stream 5-30.1 
11.1 Data Sets 11-1 
11.1.2 Record Data Sets 11-1 
11.3 Opening a File 11-3 

<record description> 
5.5 Attribute Consistency 5-32 
11.3 Opening a File 11-3 

reducible 
5.4.28 Irreducible 5-24 
5.4.46 Reducible 5-29 
6.11 Reducibility of Functions 6-9 
7.1.4 Order of Evaluation 7-2 
7.1.5 Optional Evaluation 7-3 

<reducible attribute> 
5.4.46 Reducible 5-29 

<refer option} 
4.3.2.5 Based Storage 4-12 
5.4.2 Area 5-15 
5.4.6 Bit 5-16 
5.4.8 Character 5-17 
5.4.15 Dimension 5-18 

<reference> 
6. References 6-1 

reI built-in function 
13.6.15 ReI 13-28 

relational operators 
J.~.4 Relational Operators 7-9 

<remote format} 
12.12 The Format Statement 12-14 

<repeat control> 
12.9 The Do Statement 12-9 

resolved 
6. References 6-1 
6.5 Reference Resolution and Ambiguity 6-4 

<return statement> 
12.24 The Return Statement 12-37.1 

<return value) 
12.24 The Return Statement 12-37.1 

<returns attribute) 
5.4~47 Return~ 5-30 

<returns descriptor> 
5.4.47 Returns 5-30 

reverse built-in function 
13.1.13 Reverse 13-6.2 

<revert statement) 
12.25 The Revert Statement 12-38 

reverted 
10.3 Signals and On-Units 10-2 
12.19 The- On Statement 12-27 

<rewrite option) 
12.26 The Rewrite Statement 12-38 

<rewrite statement) 
12.26 The Rewrite Statement 12-38 

3/81 i-25 AG94E 

I 
I 

I 



I round built-in function 
13.2.19 Round 13·17 

row-major order 
4.2.1 Arrays of Scalars 4-7 
4.2.3 Arrays of Structures 4-8 

5.4.25 Initial 5-23 
12.14 The Get Statement 12.19 
12.22 The Put Statement 12-30 

I rtrim built-in function 
13.1.13a Rtrim 13-6.2 

run unit 

<s> 

3.2 A Multics PL/I Program 3-1 
4.1.7 Locator Data 4-3 
4.3.2.3 Static Storage 4-12 
4.3.2.4 Controlled Storage 4-12 
4.3.2.5 Based Storage 4-12 
11.4 Closing a rile 11-5 

8.2.11.2 rloating-Point Format 8-11 
12.12 The Format Statement 12-14 

scalar value 
4.1 Data Types 4-1 
4.2 Aggregates of Data 4-7 
4.2.1 Arrays of Scalars 4-7 
9. Promotion of Aggregate Types 9-1 
9.3 Promotion Rules 9-2 

<scale factor> 
5.4.42 Precision 5-28 

scale factor 
4.1.5 Arithmetic Data 4-2 

.<scale type> 
2.6.2.3 Arithmetic Constants 2-7 

<scope> 
5.5 Attribute Consistency 5-32 

scope 
2.2 Blocks and Block Structure 2-1 
5.1 Scope of a Declaration 5-1 
5.1.1 Internal Scope 5-1 
5.'.2 E~te~~~l Sccp~ 5-1 
6. References 6-1 
6.4 Structure Qualified References 6-3 
10.2 Condition Prefixes 10-1 
10.4.9 Name Condition 10-7 
11.2 rile Values and File-State Blocks 11-1 

<scope class> 
5.5 Attribute Consistency 5-32 

I search built-in function 
13.1.14 Search 13-6.2 

segment number 
13.6.2 Addrel 13-24 
13.6.4 Baseno 13-24 
13.6.5 Baseptr 13-25 
13.6.14.2 The Nonstandard Definition of Pointer 13-27 

segments 
2.7 Include Macro 2-9 

<selector> 
5.4.24 Generic 5-22 
6.9 Generic References 6-7 

self-defined structure 
4.3.2.5 Based Storage 4-12 

<sequence> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

<sequential attribute> 
5.4.48 Sequential 5-30 

sequential data set 
11.1.2 Record Data Sets 11-1 
11.2 File Values and File-State Blocks 11-1 

3/81 1-26 



<~equential description> 
5.5 Attribute Consistency 5-32 
11.3 Opening a File 11-3 

<~et option} 
12.1 The Allocate Statement 12-1 
12.17 The Locate Statement 12-25 
12.23 The Read Statement 12-35 

side-effect 
6.11 Reducibility of Functions 6-9 
7.1.4 Order of Evaluation 7-2 
7.1.6 Expres~ion Evaluation and Conditions 7-3 
10.3.1 Re~trictions 10-3 

sign built-in function 
13.2.20 Sign 13-17 

sign type 
4.3.1.4 Sign Types 4-10.1 

<signal statement> 
12.27 The Signal Statement 12-39 

signalled 
3.6.3 On Units 3-4 
10.3 Signals and On-Units 10-2 

<signed attribute) 
5.4.48a Signed 5-30.1 

<sign~> 
8.2.12.1 Syntax or Pictures 8-15 

simple defining 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
4.3.3.5 Simple Defining 4-18 

<simple expres~ion> 
7.2 Forma~ Syntax of Expressions 7-4-

<simple reference) 
6.1 Simple- References 6-2 

sin built-in function 
13.3 The Mathematical Built-in Functions 13-18 

sind built-in function 
13.3 The Mathematical Built-in Fu~ctions 13-18 

<single loop> 
12.9 The Do Statement 12-9 

sinh built-in function 
13.3 The Mathematical Built-in Functions 13-18 

size built-in function 
13.6.16 Size 13-28 

<size condition name> 
10.4.12 Size Condition 10-8 

<~kip format} 
12.12 The Format Statement 12-14 

<skip option} 

snap 

12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 

12.19 The On Statement 12-27 

source precision 
5.3 Completion of Attribute Sets 5-10 

<space} 
2.6.4 Delimiters, Blanks and Comments 2-8 
12.14 The Get Statement 12-19 

sqrt built-in function 
13.3 The Mathematical Built-in Functions 13-18 

stac built-in function 
13.6.17 Stac 13-28 

stacq built-in function 
13.6.17a Stacq 13-29 

3/81 i-27 

i 

I 
I 

AG94E 



I 
stackbaseptr built-in function 

13.6.17b Stackbaseptr 13-29 

stackframeptr built-in function 
13.6.17c Stackframeptr 13-29 

<start) 
12.9 The 00 Statement 12-9 

<statement) 
2.5 Statements 2-4 

<static attribute) 
5.4.49 Static 5-30.1 

static storage 
4.3.2.1 Allocation of Storage 4-11 
4.302.3 Static Storage 4-12 

<stop statement> 
12.21a The Stop Statement 12-40 

storage class 
4.3.2.1 Allocation of Storage 4-11 
5.4.3 Automatic 5-16 
5.4.4 Based 5-16 
5.4.12 Controlled 5-18 
5.4.49 Static 5-30.1 
12.1 The Allocate Statement 12-1 

storage class attributes 
4.3.2.1 Allocation of Storage 4-11 

<storage condition name> 
10.4.13 Storage Condition 10-9 

<stream attribute) 
5.4.50 Stream 5-30.1 

. stream data set 
5.4.45 Record 5-29 
5.4.50 Stream 5-30.1 
10.4.9 Name Condition 10-1 
11.1 Data Sets 11-1 
11.1.1 Stream Data Sets 11-1 
11.2 File Values and File-State Blocks "., 

<stream description) 
5.5 Attribute Consistency 5-32 
11.3 Opening a File 11-3 

<stream reference> 
12.14 The Get Statement 12-19 

streamposltion 
4.1.12 File Data 4-6 
11.2 File Values and File-State Blocks 11-1 

<string> 
5.5 Attribute Consistency 5-32 

I string built-in function 
13.1.15 String 13-7 

<string get} 
12.14 The Get Statement 12-19 

<string get option> 
12.14 The Get Statement 12-19 

<string option) 
12.14 The Get Statement 12-19 
12.22 The Put Statement 1~·30 

string overlay defining 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
4.3.3.6 String Overlay Defining 4-19 
5.4.41 POSition 5-28 
13.1.15 String 13-7 

<string pseudo> 
12.2 The Assignment Statement 12-2 

<~tring put) 
12.22 The Put Statement 12-30 

3/81 i-28 AG94E 



string value· 
2.6.2.1 Bit-String Constants 2-6 
2.6.2.2 Character-String Constants 2-6 
4.1.1 Representation of Data 4-1 
4.1.6 String Data 4-3 
5.11.6 Bit 5-16 
5.11.8 Character 5-17 
5.4.9 Complex 5-17 
5.4.34 Nonvarying 5-26 
5.4.55 Varying 5-32 
7.3.2.2 Results of Bit-String Operators 7-8 
7.3.4.2 Types of Comparison 7-10 

<stringrange condition name> 
10.4.14 Stringrange Condition 10-9 

(stringsize condition name> 
10.4.15 Stringsize Condition 10-9 

structure 
4.2 Aggregates of Data 4-7 
4.2.2 Structures 4-8 
11.2.3 Arrays of Structures 4-8 
4.3.1 Packing and Alignment of Variables 4-8 
4.3.2.1 Allocation of Storage 4-11 
4.3.2.5 Based Storage 4-12 
4.3.3 Storage Sharing 4-14 
5.2.2 Expansion of the Like Attribute 5-4 
5.2.3.1.3 Declarations of Structures 5-6 
5.4.33 Member 5-25 
5.4.51 Structure 5-30.1 
6.4 Structure Qualified References 6-3 
6.5 Reference Resolution and Ambiguity 6-4 
7.3.4.2 Types of Comparison 7-10 
9.2 Types of Pro.otion 9-2 
9.3 Promotion Rules 9-2 

<structure attribute> 
5.4.51 Structure 5-30.1 

<structure qualified reference> 
6.4 Structure Qualified References 6-3 

<subs> 
12.14 The Get Statement 12-19 

<subscript> 
6.2 Subscripted References 6-2 

subscript 
4.2.1 Arrays of Scalars 4-7 
4.2.3 Arrays of Structures 4-8 
4.3.3.3 Storage Sharing by Defined Variables 4-16 
4.3.3.4 Isub Defining 4-17 . 
4.3.3.5 Simple Defining 4-18 
6.2 Subscripted References 6-2 
6.3 Cross-Section References 6-3 
6.4 Structure Qualified References 6-3 
6.5 Reference Resolution and Ambiguity 6-4 
8.1 Contexts That Force Conversion 8-1 
10.2 Condition Prefixes 10-1 
10.3 Signals and On-Units iO-2 
10.4.16 Subscriptrange Condition 10-10 
12.14 The Get Statement 12-19 
12.22 The Put Statement 12-30 

<subscripted reference> 
6.2 Subscripted References 6-2 

<subscriptrange condition name> 
10.4.16 Subscriptrange Condition 10-10 

substr built-in function 
13.1.16 Substr 13-7 

<substr pseudo> 
12.2 The Assignment Statement 12-2 

substructure 
11.2.2 Structures 4-8 
4.3.3.2 Storage Sharing by Based Variables 4-15 
6.4 Structure Qualified References 6-3 

subtract built-in function 
13.2.21 Subtract 13-18 

3/81 i-29 

I 

I 
AG94E 



I sum built-1n function 
13 • 4 .6 Sum 13 -2 1 

<syntax expression> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

< syntax rule> 
1.2.3 A Formal Definition of the Meta-Language 1-3 

<tab) 
2.6.4 Delimiters, Blanks and Comments 2-8 

tan built-1n function 
13.3 The Mathematical Buil t-in Functions 13-18 

tand built-1n function 
13.3 The Mathematical Buil t-in Functions 13-18 

tanh built-in function 
13.3 The Mathematical Bull t-in Functions 13-18 

<target) 
12.2" The Assignment Statement 12-2 
12.1~ The Get Statement 12-19 

target data type 
8.1 Contexts That Force Conversion 8-1 
8.2.3 Character-String to Arithmetic Conversion 8-3 

<then clause> 
12.16 The If Statement 12-25 

<thereafter> 
12.9 The Do Statement 12-9 

I time built-in function 
13.6.18 Time 13-29 

title 
4.1.12 File Data 4-6 
8.1 Contexts That Force Conversion 8-1 
11.1.1 Stream Data Sets 11-1 
11.1.2 Record Data Sets 11-1 
11.2 File Values and File-State Blocks 11-1 
11.3 Opening a File 11-3 
12.12 The Format Statement 12-14 
12.20 The Open Statement 12-28 

< t1 tIe option> 
12.20 ihe Open Statemen~ 12-28 

translate built-in function 
13.1.17 Translate 13-7 

<transmit condition name> 
10.4.17 Transmit Condition 10-10 

true with respect to 
5.3.2 Evaluation of Default Statements 5-12 

I trunc built-in function 
13.2.22 Trunc 13-18 

type 
4.1.5 Arithmetic Data 4-2 

<unaligned attribute> 
5.4.52 Unaligned 5-31 

unconnected array 
4.3.1.3 Packing and Alignment of Arrays 4-10 
4.3.3.2 Storage Sharing by Based Variables 4-15 

<undef1nedfile condition name> 
10.4.18 Undetinedfile Condition 10-10 

<undertlow condition name) 
10.~.19 Underflow Condition 10-11 

<unit) 
1.2.3 A Formal Detinition ot the Meta-Language 1-3 

unpacked aggregate variable 
4.3.1 Packing and Alignment of Variables 4-8 

unpacked scalar variable 
4.3.1 Packing and Alignment of Variables 4-8 

3/81 i-30 AG94E 



<unsigned attribute> 
5.4.52a Unsigned 5-31 

unspec built-in function 
13.6.19 Unspec 13-30 

<unspec pseudo> 
12.2 The Assignment Statement 12-2 

<update attribute> 
5.4.53 Update 5-32 

<user defaults> 
5.3.1 Default Statement 5-11 
12.7 The Default Statement 12-8 

<valid bit-field> 
12.14 The Get Statement 12-19 

valid built-in function 
13.6.20 Valid 13-30 

<valid char-acter-field> 
12.14 The Get Statement 12-19 

<valid field> 
12.14 The Get Statement 12-19 

<valid string> 
8.2.3 Character-String to Arithmetic Conversion 8-3 

variable 
2.6.1 Identifiers 2-5 
4.1.3 Variables 4-1 
5.4.54 Variable 5-32 
6. References 6-1 

<variable attribute> 
5.4.54 Variable 5-32 

<variable set> 
5.5 Attribute Consistency 5-32 

<varying attribute> 
5.4.55 Varying 5-32 

vclock buIlt-in function 
13.6.21 Vclock 13-30 

verify built-in funotion 
13.1.18 Verity 13-8 

<w> 
8.2.11.1 Fixed-Point Format 8-9 
8.2.11.2 Floating-Point Format 8-11 
8.2.11.4 Character-String Format 8-13 
8.2.11.5 Bit-String Format 8-14 
12.12 The Format Statement 12-14 

<while expression> 
12.9 The Do Statement 12-9 

<write option> 
12.28 The Write Statement 12-41 

<write statement> 
12.28 The Write Statement 12-41 

<x format> 
12.12 The Format Statement 12-14 

<zerodivide condition name> 
10.4.20 Zerodivide Condition 10-12 

3/81 i-31 

I· 

I 

I 

I 

AG94E 





HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE I1ULTICS PL/I LANGUAGE SPECIFICATION 
(INCLUDES ADDENDA A,B,C,D AND E) 

ERRORS I~J PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments wiii be investigated by appropriate technical personnel 
and action will be taken as reauired. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. 0 

FROM: NAME ---------------------------------------------
TITLE _____________________________ ___ 

COI\IIPANY -----------. 
AOORESS ______________________________________ _ 

ORDER No.1 AG94-02 

DATED I JULY 1976 

OATE _____________ _ 



PLEASE FOLD AND TAPE-
NOTE: Uo S. Postal Service will not deliver stapled forms 

1111I1 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES I 



Together, we can find the answers. 

Honeywell 

U.S.A.;H~~~~iJr;f~'r'~~~a~ra~~,:~ 02154 
canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

U.K.: Great West Rd., Brentfor~, Middlesex TWa 90H Italy: 32 Via Pirelli, 20124 Milano 
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo 

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

42039, 1 C1a5, Printed in U.S.A. AG94-02 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06.0
	02-06.1
	02-07.1
	02-07
	02-08
	02-09.0
	02-09.1
	03-01
	03-02.0
	03-02.1
	03-02.2
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07.00
	04-07.01
	04-07.1
	04-08
	04-09
	04-10.0
	04-10.1
	04-10.2
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12.0
	05-12.1
	05-12.2
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26.0
	05-26.1
	05-26.2
	05-27
	05-28
	05-29
	05-30.0
	05-30.1
	05-30.2
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08.0
	07-08.1
	07-08.2
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14.0
	08-14.1
	08-14.2
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03.00
	12-03.01
	12-03.1
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21.00
	12-21.01
	12-21.1
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37.00
	12-37.01
	12-37.1
	12-38
	12-39
	12-40
	12-41
	12-42
	13-01
	13-02.0
	13-02.1
	13-02.2
	13-03.00
	13-03.01
	13-03.1
	13-04
	13-05
	13-06.0
	13-06.1
	13-06.2
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18.0
	13-18.1
	13-18.2
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26.0
	13-26.1
	13-26.2
	13-27
	13-28
	13-29
	13-30
	A-01
	A-02
	A-03
	A-04
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	i-16
	i-17
	i-18
	i-19
	i-20
	i-21
	i-22
	i-23
	i-24
	i-25
	i-26
	i-27
	i-28
	i-29
	i-30
	i-31
	i-32
	replyA
	replyB
	xBack

