Technical Reference:
Hayes® Synchronous Interface for
Applications Software

Release 1.0
March 12, 1987

Hayes Microcomputer Products, Inc.
705 Westech Drive
Norcross, Georgia 30092

Please register for updates A
You are encouraged to register with Hayes Microcomputer Products, Inc. All licensed developers will receive
updates to this specification when additions or modifications are made.

For more information, call Hayes Customer Service at 404/441-1617 (United States); 416/283-2627 (Canada);

852-5-845-9818 (Hong Kong); or 01-848-1868 (United Kingdom) or by calling Hayes Bulletin Board System at
1-800-USHAYES or 404/HIMODEM (United States) or 01-569-1774 (United Kingdom).

Notice: Hayes Microcomputer Products, Inc. (Hayes) provides the information contained in this document to you
for your convenience. Hayes does not guarantee the accuracy of the information and reserves the right to change
this document, as well as the hardware and software products, and interface specifications described herein at any
time without notice.

This document may be copied for your own use, but you cannot sell or lease the copies.

The Hayes Standard AT Command Set is proprietary to, and subject to the copyrights of Hayes Microcomputer
Products, Inc., and distribution of this document in no way represents a waiver of those rights.

Hayes and the Hayes logo are registered trademarks, and Smartmbdem 2400B is a trademark, of Hayes
Microcomputer Products, Inc.

IBM is a registered trademark of International Business Machines Corporation.

Document 44-00005 AA A40

(P Hayes

©1986, 1990 Hayes Microcomputer Products, Inc. All rights reserved.

&)

-

—3 ~ 3 ~— 3 —a —3a T3 13

T3

3

TECHNICAL REFERENCE--HAYES SYNCHRONOUS INTERFACE
FOR APPLICATION SOFTWARE

Introduction

Overview

TABLE OF CONTENTS

What is the Hayes Synchronousinterface? 1
What is the Hayes SynchronousDriver? 2
Review of Synchronous Conceptsand Terminology 2
Role of the SynchronousDriver 5
Recap: WhatareHSlandHSD? 6
Advantagesof UsingHSlandHSD 7
ThelnterfaceRec @ittt ittt 9
InsidetheinterfaceRec 10
TheDriverRoutines 00ttt inannnnnnnn. 10
TheServiceRoutinest .. 1
BufferUsagettt iienninnnnn. 1
What the SynchronousDriverDoes 12
What the ApplicationDoes 12
Starting SynchronousOperation 14

CallingPreprocessttt 14

CallingStartSync e 16
How the Driver Gets ControloftheCPU 16
The SignalingMechanism 17
Stopping SYnchronous Operation 19
ErrorHandling 19
BISYNCvs. SDLC/HDLC ittt e et ettt eee e 20
Modem Signal Support e 20
TraceFacility e e e 21

Chapter 1--Starting Synchronous Operation

CreatingthelInterfaceRec, 22
DeviceQualifiers e e 23
/O Portand InterruptVector i, 24
Calling Preprocess ittt ittt e 24
RECALLFacilityttt 25
PreprocessResultCodest inennnen. 26
CallingStartSync e e 26

Chapter 2--Receiving and Transmitting: SDLC/HDLC -
SDLCand HDLC i it e e e e 27
Frame Format P 27
What the Synchronous DriverProvides 28
Synchronous Protocol Options forSDLC/HDLC 28
Start-up Considerations forReceiver 29
Receiver Operation: Driver 30
Receiver Operation: Application 31
PILEUP Errors i it ittt e e e e e e 31
Active/ldle StatusReporting e e e 32
Start-up Considerationsfor Transmitter 32
Transmitter Operation: Application 33
Transmitter Operation: Driver 0uuu... 34
Aborting Transmissions00 iuuuuuu... 35
ErrorHandling e 36
ErrorCodes e . 37
Internal Errors L. e e 37
ModemSignalUsage00 iuiuuuunun.. 37

Chapter 3--Receiving and Transmitting: BISYNC
BISYNCvs. SDLC/HDLC i it e e e et e 39
BlockFormat, 39
What the SynchronousDriverProvides 40
Per-characterProcessing'iuiumnuuein. 40
Synchronous Protocol OptionsforBISYNC. 41
ReceiverOperationt iutennnnun. 42
Transmitter Operation e e e e e e e 44
BufferSwitching 45
ModemsSignalUsage 0ttt eunnnnnnn. 45
ErrorHandling 45
Aborting Transmissionand Reception 46
Active/ldle StatusReporting 46
Finite State MachineInitialization 46

Chapter 4--Terminating Synchronous Operation

Effect on OperationsinProgress 47
UseofDelayProc @i iiiinnnnn.. 47
Restarting SynchronousOperation 50
Protection AgainstRaceConditions 51

Chapter 5--Signaling Mechanism

Application and Synchronous DriverProcesses. oo v 52
Need for SignalingMechanism 53
How the Synchronous DriverSendsSignals 53
How the ApplicationResponds 54
Nested SignalProcCallsccoo.... 54
TheSignalWord 55
TheSignalWord 55

Special Considerations 56

—3 13

—

D"‘“"% '_‘Q'g ~ g r ~ g

Chapter 6--Modem Signals

Modem SignalMapping e e e e e e 57
Components of Modem SignalSupport 58
Rea inﬁ theModemsSignals 58
Controlling OutputModemSignals 59
Supported vs. Unsupported Modem Signals 59
Inputvs. Output Modem Signals 60
Updating the Modem Signals 60
Start-up and Shutdown Considerations 61
Programming with Modem Signals 62

Chapter 7--Trace Facility

Whatis the Trace Facility? 63
How the Trace FacilityisUsed? 63
Appendix A--Interface Record Layout
GeneralInformation e, A-1
ExplanationofColumns A-1
Section 1 -- Device Ildentification A-2
Section 2 -- Synchronous Parameter Selection. A-2
Section 3--DataExchangelinterface A-3
Section 4 -- Service Routine Addresses A-5
Section5--Reserved Areasttty A-5

Appendix B--Procedure Calling Conventions for the IBM PC Environment

OtherEnvironmentsttt ennnenn B-1
General Information i i .. B-1
Enabling and Disablinginterrupts B-1
Linkage Considerationsc.iiia... B-2
ExplanationofHeadings B-2
DriverRoutines e e e B-2
Service ROULINGS i e e e e B-3
Appendix C--Reserved Device Qualifiers C-1

__ Wv "

INTRODUCTION

What is the Hayes Synchronous Interface?

The Hayes Synchronous Interface (HSI) is a specification describing the interface
between two layers of software in a synchronous communications package. One
layer of software, the “synchronous driver,” consists of the routines necessary to
operate the synchronous communications hardware. The synchronous driver
services device interrupts and transfers data to and from the hardware using the
computer’s /O instructions.

The other layer of software, the "application,” transmits and receives messages. HSI
describes how these messages, and control information, are exchanged between
the application and the synchronous driver.

User

Application

Sync Driver

mMXOP»pE—-ATO0OW

Hardware

Sync data

What is the Hayes Synchronous Driver? |

i i Haves Synchronous Driver (HSD). HSD is software that
g:p o?rrrtllsnt 'e.' |Sr!nt|::rue t szrvici!:\g and other detailed I/O operations necessary to
operate specific hardware, such as the Hayes Smartmodem 24008, in its synchronous
mode. Its interactions with the main body of the synchronous application software
conform to the HS! design specification described in this document. The Hayes
Synchronous Driver therefore bridges the gap between the synchronous application
software and the Smartmodem 2400B hardware. The Hayes Synchronous Driver can
be licensed from Hayes Microcomputer Products, Inc., on an annual fee basis by
software developers.

Review of Synchronous Concepts and Terminology

Synchronous communications differ from asynchronous communications in that
data is organized into messages. In asynchronous communications, data is
exchanged character-by-character. There is no strict timing relationship between

the transmission of one character and the next. Start and stop bits must be
transmitted to announce when each character is transmitted.

.Data character

-0 -O0-—0——0-

1 2

e o

Asynchronous data

*

1

1

(3 3

In synchronous communications, however, data is exchanged in messages. The
characters which comprise each message are transmitted back-to-back, with no start
or stop bits. Removing this start bit/stop bit overhead makes synchronous
communication more efficient than asynchronous communication. Furthermore,
the message-oriented nature of synchronous communication can be used to greater
advantage by sophisticated applications (such as office automation) than the more
primitive character-by-character asynchronous communication.

Message
1 g
— 1111 }>-<{TTTT >

[T TTT}—¢

Synchronous data

In both synchronous and asynchronous communication, the stream of ones and
zeros coming in from the communications line must be converted into a stream of
characters. Various techniques are used to establish the boundaries between the
characters in the stream of bits. This conversion is almost always carried out b
specialized hardware in the synchronous or asynchronous communications adapter.
In addition, synchronous communications convert the stream of characters into
messages, and various techniques are used to indicate the beginning and end of

~ each message.

HARDWARE SOFTWARE
IIIOIOIlOIII'IE;:i;;:;rs"’DD mlm ;he:r:;;:; —y[1 1T OI11
Async
Y >
Sync

In general, the beginning and end of each synchronous message is indicated by

~ protocols which place a special bit pattern or control character at the beginning and
at the end of the message. Synchronous protocols using control characters are byte-
oriented; those using bit patterns (not necessarily corresponding to characters) are

bit-oriented. Byte-oriented protocols, such as IBM's Binary Synchronous

Communications (BISYNC), are generally older and being replaced by the more

modern bit-oriented protocols, such as IBM's Synchronous Data Link Control (SDLC)

or X.25's High-Level Data Link Control (HDLC).

Block check characters

BISYNC STX ETX —

message: L L e L
= Control
SDLC characters
message: o1111110(|[|| | 01111110

H_/

Frame check sequence

“Flag™ pattern

—31 3

-3

—3 —3 T3 T3 T3

Role of the Synchronous Driver

The characters-to-messages conversion is carried out jointly between the
communications interface adapter hardware and the synchronous driver software.
The responsibility of the synchronous driver software is to:

1. Respond to interrupts generated by the adapter using I/O instructions.

2. Assist the communications interface adapter hardware in characters-to-
messages conversion.

3. Acceﬁt messages to be transmitted from the application and send it messages
that have been received.

Application
Message Message that
e
tobe — has been
transmitted received
Sync Driver
o G\
N
/ ‘0‘\ \

& g 8
Transmitter Receiver
Hardware

5

Recap: Whatare HSl and HSD?

This document describes the Ha‘)l'es Synchronous Interface (HS!), a standard way of
fitting the application and synchronous driver together. HSI is the interface used by
the Hayes Synchronous Driver (HSD), a complete driver module that supports Hayes
synchronous devices. The source code for HSD is available for license from Hayes
Microcomputer Products, Inc., Customer Service group. By following the
specifications in this document, software developers can write synchronous drivers
fo; Dm:m-Hayes synchronous devices that support the same application interface as
HSD. .

—3 __ 3

—3 13

Advantages of Using HS! and HSD

By using HSI in a synchronous communication software package, compatibility with
current and future synchronous products from Hayes can be achieved. Hayes has
made available an HSI-compatible synchronous driver supporting current products
and will update this driver to support future synchronous products.

General compatibility with other synchronous hardware devices can be achieved by
writing or obtaining HSI-compatible synchronous drivers. Since these synchronous
drivers would share the same application interface, support is added to the
synchronous communication package without changing the application side of the
standard interface.

User

Application

Driver Drivei'
HSD X »

/I~ 1T 5
Hayes Hardware Hardware
Sync X y

Hardwaeare
Sync data Sync data Sync data
7

I A S A T A e T A R A A A A A T A A A i

3

—2 ~—3 —3 T3 —3 —3 T3 T3 713

—3 3 T3 T3§ 1

OVERVIEW

HSI consists of three main components:

1. Interface Record, or InterfaceRec, a control block shared between the driver

and the application

2. Driver Routines, five routines inside the driver that the application calls

3. Service Routines, five routines inside the application that the driver calls

Physically, a synchronous driver (such as HSD) consists of a code segment containing
the five driver routines, plus a device service routine for each device supported by

the driver.

Application

[InterfaceRec |

Sync Driver

Device
service routines

I

Device

/

AN

S Service Routines
® SignalProc
® TxCharProc
e RxCharProc
e DelayProc
® TraceProc

S Driver Routines
® Preprocess
e StartSync
® EndSync
® StartTx
e UpdateSigs

The InterfaceRec

The InterfaceRec is a control block containing information used to control the
operation of one synchronous device. If more than one device is being operated
simultaneously, there would be an InterfaceRec for each one, but each InterfaceRec
would have the same format. The address of the InterfaceRec is passed as a
parameter every time a driver routine or service routine is called. It is the
application's responsibility to allocate memory for the InterfaceRec.

Interface
Record

Device ldentification

Sync Parameter Selection

Data Exchange interface

Modem
Transmit Receive Signals

Service Routine Addresses
1 2 3 4 S

Reserved Areas
Application Driver

—3 3 __3

—3

|

—3 3 3 _13

31 1 1 _3

—13

Inside the InterfaceRec

A detailed breakdown of the InterfaceRec is Fresented in Appendix A. Some fields
i

in the InterfaceRec are controlled by the app

cation, the synchronous driver, or

both. The fields in the InterfaceRec can be divided into five sections:

1.

Device Identification

These fields are set by the application, read by the synchronous driver, and
used during set-up to help the driver identify the device it will operate.

Synchronous Parameter Selection

These fields are also set by the applicatiori and read by the sgnchronous driver.
C

They are also used during the set-up phase to establish synchronous protocol
options.

Data Exchange Interface

This section contains fields that are controlled by the synchronous driver, the
application, or both. These fields are used during active,”on-line” operation
to coordinate the flow of data messages sent back and forth between the
driver and the application; to controi and report the status of the modem
signal lines; and to report and record error conditions. The data exchange
interface can be divided into three subsections: receive side, transmit side,
and modem signals.

Service Routine Addresses

Five fields are defined in this section, in which the application stores the
addresses of the five service routines. This is the linkage mechanism by which
the synchronous driver learns the addresses of the service routines, which are
essentially subroutines inside the application that the driver may call.

Reserved Areas

Two 48-byte reserved areas are included in the InterfaceRec: one for the

sypﬁhronous driver's internal use and one for the application to use however it
wishes.

The Driver Routines

The five driver routines, called by the application, are as follows:

1.

Preprocess Called before starting stnchronous operation, Preprocess
identifies the device to be operated and completes driver
initialization.

StartSync Starts synchronous operation.

EndSync Terminates synchronous operation.

10

4. StartTx The application calls StartTx to inform the synchronous driver
that it has a message to transmit.

5. UpdateSigs Calling UpdateSigs causes the synchronous driver to update
the status of the modem signals.

The Service Routines

The five service routines, called by the driver, are:

1. SignalProc Part of the signaling mechanism the synchronous driver uses
to inform the application when certain events occur.

2. TxCharProc Used to customize transmitter operation in BISYNC mode.

3. RxCharProc Used to customize receiver operation in BISYNC mode.

4. DelayProc Used when a delay is required during termination.

5. TraceProc Part of a simple trace facility useful for debugging driver code.
Buffer Usage

In essence, the synchronous driver transmits and receives messages via specific
hardware and passes these messages to and from the application using a standard
interface, HSI. Buffers are used to store these messages; a buffer is a reusable block
of memory large enough to contain an entire message. Usually, one standard
buffer size is used in a given application. HSI is compatible with any buffer size, up
to 64K bytes. Each message must be stored in a separate buffer and must fitinto a
single buffer. :

Message

Unused /

buffe(,,/
space

Buffer 1 Buffer 2 Buffer 3

1

3

3

HSI supports two basic synchronous protocols: SDLC/HDLC and BISYNC. In the case
of SDLU/HDLC, messages are called frames, so each buffer corresponds to one
SDLC/HDLC frame. In the case of BISYNC, messages are called blocks, so each buffer
corresponds to one BISYNC block.

What the Synchronous Driver Does

The synchronous driver performs all interrupt handling and device I/O necessary to
transmit and receive messages: on the transmit side, it takes data characters from

" the buffers and feeds them to the hardware transmitter; on the receive side, it

accepts data characters from the hardware receiver and stores them in empty

" buffers.

What the Application Does

The application is responsible for buffer allocation and management. in general,
the application does everything that might involve interacting with the host
operating system, such as memory allocation and deallocation, and process

synchronization. When it has a message to transmit, the application stores the

message in a buffer and passes the buffer to the synchronous driver. The
aﬁplication also maintains a queue of messages to be transmitted, if this is desired.
The synchronous driver signals the application when it has completed message
transmission; the application may then remove the spent buffer and replace’it with
a buffer containing the next message to transmit.

=
Application

=

Driver

Transmit
buffer
queue

Hardware ooogoo—e

Transmit
dota

[[B

- ,../
Signal: Transmit Done

12

Similarly for the receive side, the application supplies the synchronous driver with
an empty buffer to receive the next incoming message. When message reception is

completed, the driver signals the application, which queues the message for
processing and replaces the full bufter with an empty one.

o
o
D
0
0
0
Application 0
0
Empty -
buffer

Signal: Receive Done

13

Driver

Hardware 1

oooQoo

Receive
data

.

=)

3 3

-3

Starting Synchronous Operation
Calling Preprocess

An application using HSI first initializes itself, allocating memory for buffers and
the InterfaceRec. The application fills in a number of InterfaceRec fields,
including those for device identification and synchronous parameter selection,
then calls Preprocess. Preprocess identifies the hardware configuration and
examines the selected synchronous protocol options. It returns a result code to
the application indicating whether it completed its operations normally or
whether an error occurred (perhaps a protocol option was selected that the
hardware being used didn't support).

+
Allocate buffers
and InterfaceRec

Device id fields «— values
Sync parm fields «— values

Coall Preprocess

I

identify device
Examine parameters

v
Check resuit code

Y

14

Sometimes synchronous devices have an alternate communications channel or
method used to exchange control and status information. Preprocess may need
to interact with the device over that alternate channel to carry out its functions,
(e.g., the asynchronous command state of the Hayes Smartmodem 24008B).

In such cases it may be desirable to use a separate driver to operate the alternate
channel or communication method (e.g., an asynchronous driver for the
Smartmodem 2400B). HSI allows for this by detining a mechanism by which
Preprocess can interact with the separate driver. For example, when Preprocess
asses an AT command to the asynchronous driver, the asynchronous driver
issues the command, collects the modem's response string, and passes it back to

Preprocess.

Async Driver Ann.u.r.\.!.on Sync Driver
Call Preprocess
000 lden.tif!l;deulce
J © il AT command

issue command
Collect response

ok =

v
Process response
]

v
SM24008 Check result
code NOTE: A coil (QQQ) indicates
+ that the Application partici-
pates in the processing.

15

31 _3 3

—3 _13

3

Calling StartSync

When Preprocess returns with an "OK" result code, both the driver and the
application are completely initialized and ready to go. To actually start
synchronous operation, the application calls StartSync. The driver takes control
of the device, installs its interrupt service routine, initializes the device registers
according to the selected synchronous protocol options, and begins transferring

data.
AmTunn Sync Driver

Call StartSync l

install interrupt routine
Set up device registers

]

How the Driver Gets Control of the CPU

After control returns from the StartSync call, the driver gets control of the processor
again to perform its functions in one of two ways:

- in response to device interrupts, or

- whenever the application calls StartTx to start a transmission or calls
UpdateSigs to update the modem signals.

16

The driver keeps control as long as it takes to carry out the necessary operations to
service the interrupt, start the transmission, or update the modem signals. Control
is then returned to the interrupted process or the caller of the driver procedure.

T

TN

N

~ The Signaling Mechanism

Sync
Driver
Application Interrupt _
/i or call
Application
processing |
suspended... Return \
Processing - Driver
resumes ey
or call

3

3

)

On a number of occasions the driver must interact with the application. For
example, message reception may have just been completed or a modem signal
might have changed state. To manage such events, the application must execute
spehcialized code. Thesignaling mechanism enables that code to be executed at the
right time.

17

When the driver detects one or more events, it constructs a special signal word
indicating which events have occurred. Before it returns control to the interrupted
process or the caller of the driver procedure, it calls SignalProc, and passes the signal
word as a parameter. Inside SignalProc, the application handles each event by
executing the appropriate code or causing the multitasking system (if one is being
used) to schedule a high-priority task to handle the event.

Driver

interrupt
Tm’i—j
Event

del—Signal | e

Application

L

| —feturn

Decision
based on
event

W

18

Stopping Synchronous Operation

When the application is ready to terminate synchronous operation, it calls EndSync,
causing the driver to turn off the device, remove the interrupt service routine, and
terminate synchronous operation. The synchronous communication session may be
restarted by calling StartSync again. Preprocess should not be called again unless a
new synchronous session (with different parameters) is desired.

- e

Call EndSync

h 4

Remove interrupt
routine
Turn off device

nn....o.f!l.'né '-: .« .

L

Call StartSync

¥

e
. 88
G

~.-+- Online - -

o s e .
ol . .
. o . .

Stopping and restarting synchronous operation is necessary if the application needs
to use the device (e.g., a Hayes modem) to perform a short, transient operation,
such as issuing a status-inquiry AT command.

Error Handling

The synchronous driver is responsible for handling all error situations that might
arise during device operation. An error code field is defined in the InterfaceRec for
both transmit and receive. When a transmit or receive operation is completed
(either normally or with an error), an appropriate code is stored in this field to
indicate the outcome of the operation. In addition, an array of error counters, one
for each error code for both transmit and receive, is defined in the InterfaceRec.
The driver automatically maintains these counters, which indicate how many
transmit and receive errors have occurred.

19

=

3

BISYNC vs. SDLC/HDLC

HSI supports both BISYNC and SDLC/HDLC protocols. Support of SDLC/HDLC is
straightforward, as these protocols (essentially identical for our purposes) enjoy
well-established standards for frame formats, transmission and reception rules, etc.
Many BISYNC applications, however, use slightly different variations of the basic
protocol. Thus, the application must customize the operation of the synchronous
driver in BISYNC mode according to the BISYNC protocol variant being used. .

This is accomplished through two ﬁer-character routines, RxCharProc and
TxCharProc. On the receive side, the driver calls RxCharProc after each character is
received. Inside RxCharProc, the application examines the characters as they are
received, and decides to accept them, delete them, or initiate end-of-message
processing. On the transmit side, the driver calls TxCharProc just before
transmitting each character. Inside TxCharProc, the application decides to issue the
character for transmission, substitute a different character, or insert a new character
into the message. In general, the application must do more work when BISYNC
mode is selected instead of SDLC/HDLC.

Modem Signal Support

Modem signals are binary, electronic signals carried between the synchronous
hardware and the device it is connected to, usually a modem. The use of these
signals is standardized by the RS-232 specification, but the standard is not adhered
to precisely by every device. To accommodate nonstandard use of these signals
(such as occurs in IBM's modems to support Link Problem Determination Aid, LPDA),
HSI makes few assumptions about the modem signals.

20

Sixteen of the 25 possible modem signals are provided for in a modem signal word
found in the InterfaceRec, which shows the current status of these signal lines (data,
clock, and ground signals are omitted). The application can set and test these
signals individually. The InterfaceRec also contains a word set by the synchronous
drivder, indicating which of the 16 signals are actually functional in the device being
used.

InterfaceRec
Goooooooooooo
000000000000
Driver 25
possible
signaels
ModemSigs 'Gs?;:::':;'ed Hardware

HSI specifies the operation of three modem signals: RTS, CTS, and DCD. The
synchronous driver's transmit routines automatically raise RTS (Request To Send)
before each transmission, if the application has not programmed this signal high. in
addition, these routines wait for CTS (Clear To Send) before beginning the
transmission. An error is generated if CTS is lost during transmission. Similarly, an
error is generated by the receive routines if DCD (Data Carrier Detect) is not present
during a receive operation.

Trace Facility
HS| provides a simple trace facility, useful for debugging driver code. The TraceProc
service routine can be used to pass trace information from the synchronous driver to

the application. The application makes sure that the trace information is displayed
or printed for the programmer to study.

21

—3

3

CHAPTER 1--STARTING SYNCHRONOUS OPERATION

This chapter describes the process of starting-synchronous operation using HS!. In

chronological order, it describes the operations the application and the synchronous
driver must perform.

Creating the InterfaceRec

The application is responsible for allocating memory for the InterfaceRec. Using the
memory management services available through the host operating system and/or
programming language, a block of memory of the correct size is allocated. The size
of the InterfaceRec is indicated in Appendix A. After allocating the InterfaceRec,
the application clears the entire block of memory to zeros.

Next, the application fills in the device qualifier field, DEVQUAL, and the
synchronous parameter selection fields. The synchronous parameter selection fields
are discussed in Chapters 2 and 3 on SDLC/HDLC and BISYNC operation, respectively.
The device qualifier field is discussed below. The application also stores the
addresses of the five service routines in the InterfaceRec fields defined for this

purpose.
InterfaceRec

Device ldentification
Initialize— | @ DEVICEQUAL

Sync Parameter Selection

® BSC ® BSCSYNC
Initialize—> | ¢ ADDRDET e NRZ|
e SDLCADDR ® FLAGIDLE
® WRAP

Data Exchange Interface

Serv
Initialize I : i;e Routige Addre:ses .

Reserved Areas

22

Device Qualifiers

The synchronous driver determines the hardware configuration present, but may
require assistance to do so. To assist the synchronous driver establish device
identity, the DEVQUAL field is provided in the InterfaceRec. This 16-bit field is not
defined in detail by HS|, since the information needed by a synchronous driver to
establish device identity cannot be anticipated.

To clarify the DEVQUAL concept, consider a synchronous driver for a device such as
the Hayes Smartmodem 2400B. This device can be set to one of two possible
configurations: COM1 or COM2. it is impossible for the driver to know which COM
port it must use to access the Smartmodem 24008B; therefore the device qualifier
field is used to provide this information. DEVQUAL = 1 could be used to indicate
COM1, and DEVQUAL =2 to indicate COM2.

InterfaceRec

Hages
sM2400B

SM24008

InterfaceRec Driver

DEVICEQUAL=

§M24008

When.the drivers for several different synchronous devices are packaged in one
large synchronous driver module (such as HSD), it is not possible through hardware
alone to determine which synchronous device is present at any given time.
Therefore, the device qualifier field may be used to indicate which device-specific
driver will be activated within the large synchronous driver module.

Driver
interfaceRec Package Device X
~N | Driver X
DEVICEQUAL= L
Y Device ¥
v g S
“T *.| Driver Z
Device Z
g JUUUUOIVITK: S

23

Appendix C lists a number of reserved device qualifier values, including those used
with HSD. As a service to HSD licensees, Hayes is coordinating the assignment of
additional DEVQUAL values for use with synchronous drivers other than HSD. These
values will be openly published with the values currently listed in Appendix C.

/O Port and Interrupt Vector

For some choices of DEVQUAL, the InterfaceRec fields IOPORT and INTVEC must be
filled in with the I/0 port address and interrupt vector number of the hardware in
use. This step is necessary when these quantities can vary over a relatively wide
range, according to the position of DIP switches or jumpers on the hardware device.

The synchronous driver determines whether or not IOPORT and INTVEC is set. If
IOPORT and INTVEC are not set by the application, the synchronous driver may use
them to store the I/O port and interrupt vector it chooses. Appendix C details the
use of IOPORT and INTVEC with current DEVQUAL values.

Calling Preprocess

Having allocated and partially initialized the InterfaceRec, the achIication next calls
Preprocess. As with all driver routines and service routines, the address of the
InterfaceRec is passed as a parameter to Preprocess. Inside Preprocess, the driver

-examines the device qualifier and completely establishes device identity. It also

looks at the synchronous parameter selections and makes sure that the hardware in
use supports all of the selected options. Preprocess returns a result code to indicate
whether or not it detects an error in the selected options, or to invoke the RECALL

facility.
Ann.UIn.!m Driver

Call Preprocess l

identify device
Check protocol options

1

Check result code

0K < ERROR
RECALL

24

RECALL Facility

In general, Preprocess does not interact with the synchronous device to perform its
functions, since the device may be operating in an alternate mode or capability
which must not be disturbed. However, Preprocess may need to interact with the
device in order to identify it or preset some of the synchronous protocol options. At
such times, it is best to use an alternate driver (such as an asynchronous driver) to
opergt’te dthe device. To support this type of interaction, the RECALL facility is
provided.

The RECALL facility lets Pregrocess send a message to the device and receive a reply.
To use the RECALL facility, Preprocess stores its message (a character string) in the

. InterfaceRec field STRING, then returns to the calling application with the result
code RECALL. When it receives this RECALL result code, the application interacts
with the alternate driver to communicate the message to the device and collect the
response. The response, also a character string, is stored back into the STRING field,
and Preprocess is called again.

With the Hayes Smartmodem 24008, asynchronous AT commands must be issued to
preset some of the synchronous protocol options. Preprocess stores the necessary
command string in the STRING field and returns RECALL. The application then uses
an asynchronous driver to issue the command string to the Smartmodem 24008,
collects the modem's response characters, and stores them back into the STRING. It
then recalls Preprocess. This RECALL mechanism may be repeated before Preprocess
returns a result code indicating that the process is completed, with or without error.

s e

Call Preprocess

+

Check Result code

D':/RECIALL \
+

Call Async Driver

:

Transmitter<—STRING
STRING ¢« Receiver

25

3 3 3

—3 73 —3 T3 T3 T3 i 13 3 3 i ~ 3 —3 —3a 3 T3 T3 i "3

Preprocess Result Codes

Appendix B describes how Preprocess is called and how the result code is returned.
The following result codes may be returned by Preprocess:

- OK Preprocess operations complete, no error.

RECALL Application should transmit message in STRING to device,
store reply back into STRING, and call Preprocess again.

-. BADQUAL Driver does not understand the supplied device qualifier.

- BADCALL Preprocess called again;RECALL not activated.
- MODENS Selected SDLC/HDLC or BISYNC mode not supported by device.
- WRAPNS Wrap option (explained in Chapter 2) not supported by device.

- METHDNS Device doesn’t support synchronous method implemented by
the selected driver.

Calling StartSync

To actually start synchronous operation, the application calls StartSync. Before
calling StartSync, the application prepares its side of the data exchange interface
(see Chapter 2) since data transfer could commence immediately. Inside StartSync,
the driver takes control of the device, programs its registers for the selected
synchronous protocol options, installs an interrupt service routine, and begins
operation. When control returns from StartSync, synchronous communication is
fully operational.

26

£

€

E

F
Wll—
W.J
Wlll..

iy

3

—3 73

CHAPTER 2--RECEIVING AND TRANSMITTING: SDLC/HDLC

SDLC and HDLC

For our purposes, SDLC and HDLC are essentially the same. They share the same
frame format, flag pattern, and frame check sequence. They both make use of
techniques such as zero bit insertion and deletion. The differences between SDLC
and HDLC lie at the level of data link control procedures. They differin how
messages relate to each other, not how individual messages are transmitted. Since
the synchronous driver is concerned only with transmitting and receiving individual
messages, and not with determining the correct response to a received message, it is

“not aware of the differences between SDLC and HDLC. :

Frame Format

SDLC/HDLC messages are called frames. Each frame is stored in a separate buffer
provided by the application. Frames cannot span buffer boundaries, and the
maximum buffer size is 64K bytes. HSI assumes that 8-bit characters are being used,
and provides no support for alternate character sizes.

The address and control fields of each frame are stored in the buffer as if they were
data. In general, the synchronous driver does not distinguish between the address,
control, and information fields of a frame. (An exception is the address detect
option described later in this chapter.) Flags are not stored in the buffer, nor is the
Frame Check Sequence (FCS).

Buffer

Address | Control I I I I I ' I

field field information field

| I I I

Fror T Frlm

01111110 |Address| |Centrol Information field check | 01111110
Opening | field field Closin
sequence 9
flag | | I | | | l | flag

SDLC Frame Format

27

What the Synchronous Driver Provides

The synchronous driver (with the hardware device) automatically appends the
opening and closing flags to transmitted messages, and computes and appends the
FCS. On the receive side, the opening and closing flags are detected, and the FCS is
computed and checked. An error is reported if the received FCS is incorrect. Abort
sequences are properly detected on receive data and properly generated on
transmit data. Zero-bit insertion on transmit data and deletion on receive data is
performed in a manner transparent to the application.

Synchrdnous Protocol Options for SDLC/HDLC

The application must select certain protocol options during set-up (before calling
Preprocess). To makes its choices, the application sets the InterfaceRec fields (in the
Synchronous Parameter Selection section) to the appropriate values. The choices
relevant to SDLC/HDLC mode are as follows:

- BSC To select SDLC/HDLC mode, this field is set to 0. Some
‘ synchronous devices might not support SDLC/HDLC operation;
in such a case Preprocess would return the result code
MODENS (Mode Not Supported).

- ADDRDET To enable the address detect option, this field is set to 1;
otherwise, itissetto 0.

If the address detect option is enabled, only frames whose
address field matches the programmed station address will be
received and passed on to the application. Frames with the
broadcast address FF will also be received. Frames that match
neither address will be ignored and no error code will be
generated. Extended address fields are not supported; only
the first byte of the address field is checked.

- SDLCADDR If the address detect option is enabled, the desired station
address is stored in this field. If the option is not enabled, the
driverignores this field.

- BSCSYNC The driver ignores this field for SOLC/HDLC mode.

- NRZI if Non-Return To Zero Inverted (NRZI) encoding and decoding
is desired, this field should be set to 1; otherwise, it is set to 0.

- FLAGIDLE If this field is set to 1, the transmitter will send continuous flag
patterns (01111110) when it has no data to transmit. If this
field is set to 0, the transmitter will send a continuous mark
level (all ones).

- WRAP Some hardware devices have a wrap mode in which transmit

data isimmediately fed back into the receiver for test
purposes.

28

; B

To select wrap mode, this field is set to 1; otherwise, it is set to
0. If the hardware device in use does not support wrap mode,
Preprocess will return the result code WRAPNS (Wrap Not
Supported). If wrap mode is selected, it remains in effect for
the duration of the synchronous session. To turn wrap mode
off, a new synchronous session must be started by clearing the
WRAP field, changing necessary synchronous parameters, and
calling Preprocess and StartSync again.

Start-up Considerations for Receiver

The application and the synchronous driver go through the following sequence to
receive incomin? data. Before starting synchronous operation, the application
stores the size of the buffers being used in the field RXBUFSIZ found in the data
exchange section of the InterfaceRec. The buffer size selection is fixed at this point;
it may be changed only after terminating synchronous operation. Notice, however,
that RXBUFSIZ only pertains to the receive side.

- Before starting synchronous operation, the application gets two empty buffers and

places their addresses in RXBUF and RXNXTBUF. RXBUF points to the buffer which
will store the next incoming message; RXNXTBUF points to the buffer which wiill

store the next message.
Applii _’c_ati on

RXBUFS1Z ¢<— Buffer size -
RXBUF «— Address of empty buffer
RXNXTBUF «<—Address of empty buffer

I

Call StartSync

+

29

Receiver Operation: Driver

When the next message arrives, its characters are stored in sequential positions in
the buffer pointed to by RXBUF. The driver uses the RXINDEX field to point to the
next place to store a character in the buffer.

At the end of the message, the driver stores the number of characters received (the
final value of RXINDEX) in the field RXCOUNT (the PILEUP error is explained later).
If an error occurred, it stores an error code in RXERROR and increments the
corresponding error counter. If no error occurred, the driver stores a zero in
RXERROR. In preparation for receiving the next message, it then clears RXINDEX
and transfers the buffer address in RXNXTBUF to RXBUF. Finally, the driver sets
RXREADY to 1 and sends a signal, RXDONE, to the application.

The driver sets the flag RXINPROG to 1 when it receives the first character of a
message, and clears it to 0 when the end of the message is reached. RXINPROG
indicates that a receive operation is in progress.

T

Wait for next incoming messege
RXINPROG 1

= i

Receive character
RXBUF [RXINDEX] «— character
RXINDEX ¢— RXINDEX + 1

v

End of messege?
yes

h 4
———— PO "RXREADY = 07 |

Increment PILEUP
error counter mcuuvm— RXINDEﬂ
RXINDEX < O
RXINPROG <0

RXERROR «—code
Increment counter
for that code

RXERROR ¢ O

RXINDEX <0
RXBUF «— RXNXTBUF|
RXREADY 1
RXINPROG <0

Send RXDONE signal

30

'_—\g % % g é] r % % %‘ % \ %‘ § — % -'"% ""? - % % f % r ?

Receiver Operation: Application

In response to the RXDONE signal, the application checks RXERROR and reads the
number of characters received from RXCOUNT. Then it stores the address of a new,
empty buffer in RXNXTBUF and clears RXREADY.

B

Wait for RXDONE signal

Outcome of
receive operation<RXERROR

Number of
characters received «— RXCOUNT

18

RXNXTBUF «—Address of empty buffer
RXREADY < 0

<

Process message just received

PILEUP Errors

Notice that the receiver sets itself up to receive the next message immediately after
the preceding message is received. Thus, the application has one entire message
time to respond to the RXDONE signal. If for some reason the application fails to
absorb the preceding message when the next message is received, the driver will
find that the RXREADY flag is still set to 1. This situation is called a message PILEUP
error.

To handle a PILEUP error, the driver increments the PILEUP error counter, clears
RXINDEX to zero, and begins receiving the next message. The error is not reported
in RXERROR because this field (and RXCOUNT) must not be changed once the
RXDONE signal has been sent. The application will learn about the PILEUP error
when it receives an out-of-sequence message (due to dropping one or more
messages) or when it scans the error counters directly.

31

Active/ldle Status Reporting

Some apﬁlications require a response to a "line idle” condition. An idle condition
occurs when eight or more consecutive 1 bits are detected on the line. Usually, the
flag idle option is selected, in which the transmitter sends continuous flag patterns
(01111110) between frames, ﬁreventing an idle condition. Detecting an |Jl’e
condition may indicate that the transmitting station is out of order.

The driver (with the hardware in use) automatically maintains a flag in the
InterfaceRec called RXACTIVE. This flag is set to 1 whenever the line is active and 0
wheniitisidle. Each time the RXACTIVE flag changes value, the driver sends the
ACTCHG signal to the apﬁlication. Using this mechanism, the application can
maintain a time-out on the length of time the line is idle. If the idle condition is
irrelevant to a given application, that application may ignore the RXACTIVE flag
and the ACTCHG signals.

Start-up Considerations for Transmitter
On the transmit side, the application does nothing special before starting

synchronous operation. Zeroing the InterfaceRec clears the transmitter's control
fields, causing it to wait until the application has a message to transmit.

32

—3 ~ 3 T3

Transmitter Operation: Application

When the application has a message to transmit, it stores the address of the buffer
containing the message in the field TXBUF. It stores the number of characters in the
message (not the total size of the buffer) in TXCOUNT and sets TXREADY to 1. To
make sure the driver notices that the application has given it a message to transmit,

the application calls StartTx.

TXBUF «— Address of buffer containing message
TXCOUNT « Message size

TXREADY 1

I

Call StartTx

33

Transmitter Operation: Driver

When the hardware transmitter is ready to begin transmitting another message,
the driver clears TXREADY, sets TXINPROG, and begins transmitting the message. It
uses TXINDEX to keep its place in the buffer. When message transmission is
completed, the driver stores zero (or an error code) in TXERROR, clears TXINPROG,
and sends the signal TXDONE to the application. (The use of the TXINPROG flag is
explained later.?

Driyer

+

Wait til transmitter is ready to start
and TXREADY=1

TXREADY «— O
TXINPROG 1
TXINDEX «— O

> v

TXINPROG = 1

es
Jg

Character «—TXBUF [TXINDEX] T
Transmit character T °|r i
TXINDEX < TXINDEX + 1 ransmission

NO_| TXINDEX = TXCOUNT?

—_L_L

Error? yes

-

no TXERROR « code
increment counter

TXERROR ¢ O for that code

v -

TXINPROG « 0O
Send TXDONE
signal

|

34

7

—3

Upon receiving the TXDONE signal, the application checks TXERROR, then sets up
the next message for transmission if there is one. The application should try to
respond to the TXDONE signal as quickly as possible. This keeps the transmitter
busy during periods of heavy data traffic.

-

Wait for TXDONE signal

>

Outcome of « TXERROR
transmit operation

TXBUF « Address of next buffer to send
TXCOUNT « Message size
TXREADY « 1

|

Call StartTx
L

Aborting Transmissions

To prematurely abort a transmit operation (e.g., for a priority message), the
application uses TXINPROG "transmission in progress” flag.

The driver sets TXINPROG at the beginning of each transmission and clears it at the
end of each transmission. During the transmission, the driver checks TXINPROG
before transmitting each character. If TXINPROG is still 1, transmission continues; if
the application has cleared TXINPROG to 0, the driver aborts the transmission.

35

For example, suppose the application has a higher-priority message to transmit,
requiring the current transmission to be aborted. The application would clear
TXINPROG, set up the new message for transmission, then set TXREADY and call
StartTx. _

-

TXINPROG <0

-
TXBUF « Address of buffer containing
priority message

TXCOUNT ¢« Size of priority message

TXREADY ¢ 1

<

Call StartTx

Y

The following situation is possible: the application decides to abort the current

. transmission, but before it clears TXINPROG the current transmission is completed
normally. In this case, the driver would have already cleared TXINPROG at the end
of message transmission and no abort would occur.

Error Handling

The error code fields, RXERROR and TXERROR, report the outcome of each receive
and transmit operation, respectively. When a transmit or receive operation is
completed, the synchronous driver sets the error field to zero if no error occurred,
or to a non-zero error code if an error did occur. The driver also increments the
error counter of the corresponding error code every time an error occurs, to provide
a more permanent record of errors. There are separate error counters for the
transmit side and the receive side.

The RXERROR and TXERROR fields can only be used when an error occurs during a

specific transmit or receive operation. The error counters record errors which occur
both during and outside of transmit and receive operation.

36

N

l .3 13

—3 T3

3

~—3 —3 ~—3 —3 ~—3 —31 T3 3

— 3

Error Codes

HSI provides for 20 error codes, numbered 1 through 20. (Code 0 is used to indicate
that no error occurred.) Six error codes, numbered 1 throu%h 6, are defined by HS|.
The remaining 14 are reserved for future or specialized use by each application.
Chapter 3, on BISYNC operation, describes how the undefined error codes may be
used. There is an error counter in the InterfaceRec for the 20 error codes for both
transmit and receive, (40 altogether).

The error conditions and their code numbers are:

1. OVUNDR Hardware overrun/underrun.

2. ABORT Abort sequence transmitted or received.

3. NOSIG Modem signal lost (DCD for receive side, CTS for transmit).
4. PILEUP Reception of next message completed before application

processed previous message.

5. OVFLOW Incoming message overflowed buffer (RXLIMIT was less than
message length). '

6. BADCK Incoming message has bad check sequence.

Internal Errors

Two fields, RXINTERR and TXINTERR, may be used by the synchronous driver to
reportinternal errors. An internal error usually occurs when the driver is in the

wrong operating mode (e.g.,the driver may be in the end-of-message mode before
the first character of a message has been received). -

HSI does not specify the format of the error codes stored in RXINTERR and
TXINTERR, beyond stipulating that they be nonzero. A zero code indicates no error.

Internal error should not occur; it indicates a programming error in the synchronous
driver or a problem in the hardware.

Modem Signal Usage

HSI does not define specific modem signal usage, except for the signals RTS (Request
To Send), CTS (Clear To Send), and DCD (Data Carrier Detect). Assuming the
hardware being used Staoports them, these three signals are controlled or tested by
the synchronous driver during the course of transmit and receive operations. The
driver requires the presence of an active DCD signal before it validates received

data. If DCD is not present or is lost during message reception, an error code is
generated.

37

On the transmit side, the synchronous driver raises RTS each time it is ready to
transmit a message, then it waits for CTS to go high before beginning message
transmission. At the end of the message, it drops RTS. If CTS is lost during message
transmission, an error code is generated.

The application can program RTS high or low, just like any other modem signal that
functions as an output. The state of RTS as outputted is the logical OR of the
application's setting and the driver's control. If the application programs RTS low,
the signal will be under the control of the driver, and will go high and low as
messages are transmitted. If the application programs RTS high, it will be fixed
high. In every case, however, the driver requires an active CTS signal for proper
message transmission.

In certain types of hardware, other modem signals (such as Data Set Ready, DSR)
might be required in order for transmit and receive operations to occur. HSI does
not address these signals.

Driver
DCD o
8 * pco (83
s | crs / i
e ¢ cTs |26
§ (-1
= | RTS 99
AN Lo) &
DCD

T o/

RTS | Transmitter

~— Togic

3

Receiver
logic

g

38

(R

S

—1

CHAPTER 3--RECEIVING AND TRANSMITTING: BISYNC

BISYNC vs. SDLC/HDLC

BISYNC operation is identical to SDLC/HDLC operation in many ways. The same
mechanism is used to exchange buffers containing messages back and forth
between the synchronous driver and the application. All of the fields in the data
exchange interface section of the InterfaceRec work the same way for BISYNC mode
as they do for SDLC/HDLC mode. Refer to Chapter 2, covering SDLC/HDLC operation,
for a complete discussion of the topics that are common to both BISYNC and
SDLC/HDLC operation. This chapter points out the differences between the two
modes of operation and covers topics that pertain only to BISYNC operation.

Block Format

BISYNC messages are called blocks. Unlike SDLC/HDLC frames, which have a very
well-defined and universally accepted format, BISYNC blocks come in many

-different forms. There is no universally accepted format for BISYNC blocks. For
.example, it is not possible to define a method for establishing the end of a BISYNC

block that will work for every variation of the BISYNC protocol in use today. Thus,
BISYNC operation is characterized by a Fg..rea‘lzer reliance on the application to
participate in the operation of the synchronous data link.

A BISYNC block consists of a series of characters. Blocks always include one or more
control characters and may also include data characters. Each block is preceded by a
series of two or more synchronization (SYN) characters. The purpose of these
characters is to lock the receiver into character synchronization. Blocks containing
data characters usually also contain a Block Check Character (BCC) sequence,
analogous to the SDLC/HDLC's Frame Check Sequence. Each block is stored in a
separate buffer and cannot span buffer boundaries. The maximum buffer size is
64K bytes. Eight bit characters are assumed, but any character set can be used.

39

All characters comprising the block, except for the opening SYN characters, are
stored in the buffer. Any SYN characters appearing later in the block, as well as all
other control, data, and block check characters, are stored in the buffer.

Buffer .
e 1T 1T T 1 3 J
erxy| Data i Unused
nass®y characters v buffer space
e I I I ; rc
”@ o
'..5:::.‘:-:.'{_{::'{ I Dlat.I I]
YA LAY
‘”‘:sfv,&" : characters Bcc
R L 1 1 1 |
i V¥ = Control
Typical BSC Block Format e rs

What the Synchronous Driver Provides

The synchronous driver (with the hardware being used) automatically appends two
opening SYN characters to transmitted blocks. The application may specify the
particular 8-bit character which will serve as the SYN character. On the receive side,
the opening SYN characters are detected but not stored in the buffer. The
application processes block check characters, control characters, and idle SYN
characters. The application also determines the end of the message being received.

Per-character Processing

In order to perform its functions, the application must get involved in the character-
by-character processing of data. The two per-character service routines, TxCharProc
and RxCharProc, are defined to enable this. The presence of per-character
processing does not eliminate the data-buffering function of the driver.

40

3 __1

_3

-3

-3

—3

~—3 — 31 T3 —T1

The synchronous driver continues to transfer data between the buffers and the
hardware, but in BISYNC modes, the driver lets the aEpllcatlon peek” at the data as
y

it is transferred and

instructions.

Application

m

give the driver special character-by-character processing

Driver

Hardware oagoQoa

Sync
data

Synchronous Protocol Options for BISYNC

The following are the synchronous protocol choices relevant to BISYNC mode:

BSC

ADDRDET
SDLCADDR
BSCSYNC

To select BISYNC mode, this field is set to 1. Some synchronous
devices might not support BISYNC operation; in such cases,
Preprocess would return the result code MODENS (Mode Not
Supported).

The driver ignores this field for BISYNC mode.
The driver ignores this field for BISYNC mode.

The application stores the desired SYN character in this field.

(uss.ul?)ly 32 hex for the EBCDIC character set or 16 hex for
ASCIl).

41

- NRZI If Non-Return To Zero Inverted (NRZI) encoding and decoding
is desired, this field should be set to 1; otherwise, this field is
setto 0.

- FLAGIDLE If this field is set to 1, the transmitter sends continuous SYN

characters when it has no data to transmit. If this field is set to
0, the transmitter sends a continuous mark level (all ones).
Notice that this choice is made only once during set-up for the
synchronous session (before calling Preprocess). Itis not
possible to switch back and forth between mark idie and SYN
idle in the middie of one session.

- WRAP Setting this field to 1 selects the hardware wrap option, if
available. See Chapter 2 for a more complete discussion of the
wrap option.

Receiver Operation

The application and the synchronous driver go through the same sequence of
events for BISYNC operation as described in Chapter 2 for SDLC/ HDLC operation. At
the same time, however, per-character processing occurs. The driver calls
RxCharProc just after it receives each character. Inside RxCharProc, the application
has the opportunity to examine the stream of incoming characters and influence
the driver's processing by selecting certain processing options.

Unless instructed otherwise, the synchronous driver simply stores the character in
the buffer and waits for the next character after control returns from RxCharProc.
As an alternative, the application can select two select processing options on each
received character:

- IGNORE Ignores the character just received.
R ENDMSG Treats character as the last character of the message and
performs end-of-message processing. With this option,

RxCharProc may return an error code to be associated with the
message, otherwise the driver indicates no error.

42

_ 3 _31 __3

.

73 — 3 T3 71

—3 T3 —3 T3 "3

—3 3 1

Either or both processing options may be selected independently for each character.

Annlication Receive
next character
¥ Call RxCharProc
Examine character
Select processing
option o
l L
tcuoa:/]\:uonss
/ Defeult \
+
'gnore Sloro Perform
character character end-of-
in buffer message
processing

The use of per-character processing to implement BISYNC communications is the

‘application programmer’s decision. HSI requires only that the ENDMSG option be

selected at the proper time to terminate each received message. To do this, the
application implements some sort of finite-state machine to follow the BISYNC
protocol for each message that it receives. Each time RxCharProc is called, the
application uses the character just received to advance the machine to a new state.
When a terminal state is reached, the ENDMSG option is selected.

With per-character processing, the application can also compute and check the
block check character sequence at the end of each message, and return an error
code with the ENDMSG option if the check sequence is bad. Other error conditions,
such as BISYNC protocol violations, can be detected and reported making use of the
undefined error codes. With the IGNORE option, the application can strip idle SYN
characters and DLE (Data Link Escape) characters from transparent text. By
stripping these characters from the data before it is stored in the buffer, the data
need not be recopied to remove the characters later.

Refer to Appendix B for a detailed description of how RxCharProc and TxCharProc
are called, what parameters are passed to them, and what results they return.

43

Transmitter Operation

Transmitter operation in BISYNC mode is similar to SDLC/HDLC mode, with the
addition of per-character processing. After the synchronous driver reads each
character from the buffer, and before it transmits the character, the driver calls
TxCharProc. Inside TxCharProc, the application can examine the stream of transmit
data and select processing options. If no processing option is selected, the driver
transmits the character normally. One of the two alternatives to this default
processing may be selected:

1. INSERT By selecting this option, the application can cause a specified
character to be inserted in the message just before the
character about to be transmitted. After transmitting the
character, the driver calls TxCharProc again for the character

that was to be transmitted previously.

2. SUBST By selecting this option, the synchronous driver transmits a
substitute character to replace the character about to be
transmitted. After transmitting the substitute character, the

driver proceeds to the next character in the buffer.

D.%ll:

Fetch character
from buffer

+

- 2

Examine character
Select processing
option

Call TxCharProcJ‘—_

Bt

Default
Send Send Send
specified originel specified
character chearacter character

3

2 3

—3

]

g

1

1

Per-character processing on the transmit side is not as critical to BISYNClink
operation as it is on the receive side. HSI does not specify what or when processing
options must be selected. A BISYNC link maz be run without using per-character
processing on the transmit side, by storing the message in the buffer exactly asiit is
to be transmitted.

Some applications may choose to use per-character processing on the transmit side
to process data as it goes cut to the transmitter, rather than processing data in
advance in the buffer. For example, the trailing block check character sequence can
be computed inside TxCharProc and placed in the message on top of dummy, place-
holder characters using the SUBST option. Also, idle SYN characters can be inserted
at regular intervals into the message by tying TxCharProc into some kind of real-
time clock service provided by the application. DLE characters can be inserted into
transparent text where necessary via the INSERT option. Again, a finite-state
machine is usually used to control TxCharProc, so that it chooses each processing
option at the right time.

Buffer Switching

The open-ended nature of HSI, with regard to BISYNC operation, allows for creative
application designs. For example, it may be advantageous in some applications to
store control characters separately from data characters, the latter being stored in
data buffers. TxCharProc or RxCharProc could be programmed to switch the BUF,
COUNT, and INDEX fields to point to different data sources as message transmission
(or reception) progresses.

For examrle, TXBUF can be set to point to a data area containing a fixed sequence
of control characters. TXCOUNT can be set to the length of this sequence, or to
some arbitrary high value. Under the control of a finite-state machine inside
TxCharProc, the synchronous driver is allowed to transmit the control characters.
TXBUF, TXCOUNT, and TXINDEX then can be reset to point to a buffer containing
the data portion of the message. To support this type of creative programming, the
driver does not hold the value of variables such as TXBUF, TXCOUNT, or TXINDEX in
registers across calls to TxCharProc or RxCharProc.

Modem Signal Usage
Modem signals are used exactly as described in Chapter 2 for SDLC/HDLC mode.

Error Handling

BISYNC error handling is the same as that described for SDLC/HDLC, except that
user-defined error codes may be returned from RxCharProc via the ENDMSG option.
If RxCharProc fails to return the ENDMSG option for a given incoming message, a
buffer overflow error (OVFLOW) will eventually be generated.

45

Aborting Transmission and Reception

HSI does not support an abort sequence for BISYNC mode. If an abort sequence is
defined for the BISYNC protocol variant being used in a given application, it is
detected by RxCharProc. The ENDMSG option is taken, and the ABORT error code is
returned. On the transmit side, the synchronous driver responds to the application's
clearing the TXINPROG flag the same as it does in SDLC/HDLC mode, except that no
abort sequence is sent. The transmitter simply reverts to its idle state (SYN idle or
mark idle). Transmission of the next message may begin immediately thereafter.

Active/ldle Status Reporting
This facility is not relevant to BISYNC mode.

Finite State Machine Initialization

It may be simpler in some applications for the finite state machines within
RxCharProc and TxCharProc to automatically reset themselves to their initial states
at the beginniniof each message rather than having this action performed at
another time (when the state machines detect end-of-message, for example). Todo
this, RxCharProc and TxCharProc should test the InterfaceRec fields RXINDEX and
TXINDEX, respectivey, each time they are called. If the field has the value 1, the
state machine should reset itself then process the first character of the message.
Otherwise, the character should be processed normally.

46

3

.3 3 _2

—3 13

a

.3

3 3

3

CHAPTER 4--TERMINATING SYNCHRONOUS OPERATION

To terminate synchronous operation, the application calls EndSync. Inside EndSync,
the synchronous driver shuts the device off, removes the interrupt service routine,
and performs whatever other operations are necessary to terminate synchronous
operation.

Effect on Operations in Progress

If transmit or receive operations are occurring when EndSync is called, the driver will
abort them automatically. For transmit operations, an abort sequence is sent; for
receive operations, the driver pretends to receive one. The appropriate signal,
TXDONE or RXDONE, is sent with an ABORT error code. The signaling mechanism
may be invoked during EndSync processing; it should be left intact on the
application side until control returns from EndSync.

Use of DelayProc

Some synchronous devices require a time delay during their deactivation sequence.
This time delay is obtained by the driver calling the DelayProc service routine. The
application may do whatever it wishes with the CPU during the delay interval, as
long as it returns control when the interval expires. The use of DelayProc avoids the
use of an idle loop inside the driver. DelayProc is called only during termination
processing, as the result of a call to EndSync. It may be used by some device drivers
and not others.

47

Since the delay required by synchronous devices may differ, the synchronous driver
passes the desired time delay as a parameter to DelayProc. The delay may vary from
0 to 65535 milliseconds and should be timed as accurately as possible by the
application using the timer services provided by the host operating systemor
programming language. However, the driver must not depend on this mechanism
for extremely accurate delays.

o -

Call EndSync : l

—3

Begin termination

:

Ceall DelayProc
Unrelated g
processing Return from

DelayProc

—3

4 3 sec.p
3

Complete termination
|

", ‘.'. § v LG
~~Sync operation .
" .terminated ---

.

Usually, DelayProc is used to time-out an event which occurs during termination. If
DelayProc returns before the event occurs, the synchronous driver assumes that
something is wrong and stops waiting for the event. If the event occurs before the
time-out expires, the delay is no longer needed and DelayProc may return. A signal,
DLYEND, is defined for use in this situation.

_ 3

3

48 ”]

If DelayProc has been called to time-out an event within 3 seconds, and the event
occurs after 1 second, the device hardware generates an interrupt which the
synchronous driver services. The driver recognizes the event and sends a DLYEND
signal to the application. At this point, interrupt servicing is completed and the
application again has control of the CPU. In response to the DLYEND signal, the
application causes DelayProc to return control immediately to the driver.

""”“’“‘“ T

i Call Delay Proc

Unrelated Herd
processing ardware
¢ event
" ; interrupt |

3¢ ¢ Signal: DLYEND

1 sec.

Service Interrupt

_.|

OT Return from DelayProc

>

Complete termination

+

If a delay is not in progress when the DLYEND signal is received, the application may
apply the signal to the next call of DelayProc, returning the call immediately. In
fact, the DLYEND signal may set a flag which returns ail subsequent calls to
DelayProcimmediately. This flag should be reset before StartSync is called again.

49

Restarting Synchronous Operation

By calling StartSync again, synchronous operation may be restarted after it has

been terminated. The application should not call Preprocess again unless a new
synchronous session (with a new set of parameters) is desired. Synchronous
communications picks up where it left off when EndSync was caﬁed. Since most
synchronous protocols have error detection and automatic request (ARQ) for re-
transmission facilities, the service interrupt is not visible to the user except fora
momentary pause in communications. An extended service interrupt, however, may
result in a time-out by the other party and a termination of the call on that side.

Application

Call EndSync

Y.
- 0ffline- 1
OR Zero InterfaceRec
Select new parameters
Call StartSync Call Preprocess
J' Call StartSync

Ry

“Same session... o TR e
T ~ New session..

50

i

—J

—3 3

3

Protection Against Race Conditions

The synchronous driver routines EndSync, StartTx, and UpdateSigs have built-in
protection against race conditions which might occur during termination. Since
calls to these routines mar be made from several different tasks running inside the
application, improper calling sequences may occur during termination.

For example, one task might call StartTx after another task called EndSync. Two
separate tasks might decide to terminate synchronous operation, resulting in two
consecutive calls to EndSync. Even though these situations are programming errors,
they may be difficult to avoid in complex applications.

A simple mechanism built into EndSync, StartTx, and UpdateSigs prevents these
errors from occurring. The first call to EndSync sets an internal flag indicating that
thedriverisdown. When this flag is set, a subsequent call to any of these three
ro“tiges will result in no operation. The flag is reset the next time StartSyncis
called.

Sync Driver
ync StartTX gs nc
Down = 17 F1° Down = 17 %% [Down = 17 Fuis [Down o0 |
A 4 Return Return Return
b 4
I—DL_W—M—' Start Update modem StartSync
<+ transmission signals operation
Terminate sync)
operation
Return Return Return Return
51

CHAPTER 5--SIGNALING MECHANISM

Application and Synchronous Driver Processes

The operation of the application and the synchronous driver may be considered two
independent processes. Once synchronous operation begins, the synchronous
driver runs independently from the application, getting control of the CPU in
response to device interrupts. Exceptions occur when the application explicitly calls

.adriver routine, (either StartTx or UpdateSigs). The driver can be thought of as

always taking control from the application at unpredictable times, leaving the
application in a suspended state while the driver executes.

When the driver completes all processing, it returns the CPU to the interrupted flow
of control in the application. In adriver routine call, control is returned to the

«caller, but the application usually is unaware that anything happened.

Application

riv

=4 Interrupt,
®» StartTx or
§ : UpdateSigs \
e
e
-4) < k %
E E Return
-
[
S

52

Need for Signaling Mechanism

Some occasions during the execution of the synchronous driver require a reaction
from the application. For example, if an incoming message has just been received,
the application must attempt to process that message. If the driver simply returns
control to the intemﬂ:ted process, the application will continue as though no
message was received.

Clearly, a mechanism must be defined to permit the driver to occasionally
communicate with the application. This mechanism would be invoked when events
occur within the driver, calling for the application to alter its flow of control. Thisis
the role played by the signaling mechanism.

How the Synchronous Driver Sends Signals

The signaling operation occurs just before the synchronous driver returns control to
the interrupted process (or caller of StartTx or UpdateSLgs). At this point, the
driver's immediate processing needs have been satisfied, all interrupt conditions
have been cleared, and the interrupt system has been re-enabled.

Before returning control to the interrupted process, an extra step is inserted: the
driver constructs a special signal word, indicating the signals it wants to issue, and
calls SignalProc, one of the five service routines provided by the application. The

signal word is passed as a parameter to SignalProc. '

T

Service interrupt

Il

Reenable interrupt system

I

Any events |0
occur?

4903

Construct signal word

:

Call SignalProc

Return ¢

53

How the Application Responds

Inside SignalProc, the application examines the signal word and reacts, based on the
indicated signals. Sometimes all of the appropriate processing can be performed
inside SignalProc. If a multitasking system is in use, SignalProc may activate one or
more high-priority tasks to perform the processing. Eventually control returns to
the synchronous driver from SignalProc and is then transferred back to the
interrupted process.

Driver
Interrupt
; ——
. Signal
: Proc Call SignalProc g % Event
’ ¢
Task . . *;8 ,
...... : Ret?rn +
‘__
Decision Return from
based on interrupt
event

Nested SignalProc Calls

If a task activated by SignalProc has a higher priority than the one that was
originally interrupted (which the multitasking system assumes is still in control), it
may preempt the execution of SignalProc itself. In this situation the execution of
SignalProc is suspended as long as it takes to execute the high-priority task. This
task may in turn be preempted by even higher-priority tasks. A relatively long

period of time may, therefore, elapse between a call to SignalProc and the
corresponding return.

While SignalProc, or the tasks it activates, is executing, interrupts may occur
resulting in new calls to SignalProc, even before control returns from the original
call. These nested SignalProc calls may result in signals being processed out of

orger. This should cause no problem, since the signals do not interact with each
other.

54

Because nested calls may occur, SignalProc must be reentrant, and process more
important tasks (such as RXDONE and TXDONE) before less important ones.

ARRplication Driver

Interrupt 1, Event 1

SignalPrec \ Jrap— (' g x 7
g interrapt 2: _
- N
% 'g' ¢ Col1 SignalPree 2 %’* Event 2 m]
izg Return 2 , -
; 5 ‘l!cturn from interrupt 2 } m'{
g Return 1 \
/_¢Rotora from iaterrupt AN ¥

L3

The Signal Word

Five possible signals are mapped to individual bits in the 16-bit signal word. For
each signal the synchronous driver wishes to send, the corresponding bitissetto 1;
all other bits are set to 0. After constructing the signal word, the driver passes it as a
parameter to SignalProc. Thus, any combination of the five signals can be sentin
one operation. Appendix B describes in detail how SignalProc is called, including
the format of the signal word.

I

The five possible signals are as follows: y
1. RXDONE Indicates that a receive operation is complete. |
2. TXDONE Indicates that a transmit operation is complete. WI
3. ACTCHG Indicates that the RXACTIVE flag has changed state.
4. SIGCHG Indicates that one of the modem signals in MODSIGS has]
changed state.
5. DLYEND Indicates that DelayProc may now return, even if the delay ™
period has not expired.
55 ™y

. SignalProc calls are made faster than they can be processed

Start-up and Shutdown Considerations

The application must be ready to receive signals when it calls StartSync. Signals may
come at any point until control returns from EndSync. Therefore, the application
leaves its signal handling mechanism intact until control returns from EndSync.

‘Special Considerations .

Some multi-tasking systems require that all interrupt service routines be installed
using a special system call. This gives the multi-tasking system a chance to surround
the user’s interrupt service routine with its own entry and exit code needed to
support multi-tasking operation. Since HSI specifies that the synchronous driver
install its own interrupt service routine directly, the special entry/exit code is not

executed for interrupts from the synchronous device.

Most interrupts simply transfer one byte of data and return, but problems may arise
when interrupts result in a call to SignalProc. If SignalProc makes a system call to
“wake up” a task, post an event, etc., the system will believe that this call was made
bK the interrupted process since the special interrupt entry code was not executed.
This is not necessarily a problem; however, it can lead to deep stack nesting if

A solution to this problem is to install a second, dummy interrupt service routine
with the aid of the system call, and invoke it from SignalProc by means of a software
interrupt mechanism. Br making the multi-tasking calls inside this second interrupt

service routine, they will be properly preceded and followed by the system’s
interrupt entry/exit code.

56

CHAPTER 6--MODEM SIGNALS

Modem Signal Mapping

The InterfaceRec field, MODSIGS, contains the current state of the modem signals,
both inputs and outputs. MODSIGS is a 16-bit word, providing for 16 of the 25
possible RS-232 signals.

1
OOO...O...J

1 2 3 4 35 6 7T 8 9 10 1 12
141516818192021&232425

13

F

%}mzs pin23 phZﬂ pin2t pinzol pinl#ptni&lphl!‘ phl#phl ||phwlpb9 pin8 | pin6 | pinS | pine

Bit1S 14 13 12 11 10 9 8 7 6 S 4 3 2 1 o0

The nine signals which aren't provided for are the data, clock, and ground signals;
any signal that the application might want should be there, as long as the signal is
actually supported by the hardware.

All of the commonly used modem signals are provided for: RTS (pin 4), CTS (pin 5),
DCD (pin 8), DSR (pin 6), DTR (pin 20), Ring Indicate (pin 22),and Rate Select (pin 23).
In addition, signals that have been redefined for special purposes by particular

vendors are present, such as IBM's Test (pin 18), Test Indicate (pin 25), and Select
Standby (pin 11).

57

Components of Modem Signal Support

The complete modem signal support package consists of three bit-mapped fields in
the InterfaceRec: MODSIGS, MODSET, and MODSUP, (plus the driver procedure
UpdateSigs). MODSIGS and MODSUP are set by the s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>