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PREFACE 

InJanuary 1947 the Bureau of Ordnance of the United States Navy and Harvard Univer­
sity together sponsored a Symposium on Large-Scale Digital Calculating Machinery as a 
means of furthering interest in the design, construction, application, and operation of computing 
machinery. This meeting was attended by over three hundred people, nearly four times the 
originally expected attendance, and by popular aemand the proceedings were published as 
Volume XVI of the Annals of the Computation Laboratory. 

At the Oak Ridge meeting on computing machinery in April 1949, Mina Rees and John 
Mauchly, representing the Association for Computing Machinery, suggested that another 
symposium should be held at Harvard summa~izing. recent and current developments. The 
staff of the Computation Laboratory had already considered this possibility in connection 
with the announcement of the completion of Mark III Calculator, and were delighted with 
the suggestions of Dr. Rees and Dr. Mauchly. Accordingly, the Bureau of Ordnance was 
again invited to join Harvard University in sponsoring a second symposium with emphasis 
on the application of digital calculating machinery. 

From experience with the first symposium, it was expected that. perhaps three hundred 
people might attend. The response of more than seven hundred participants clearly indicated 
the rapidity with which the field of automatic computation is growing. 

T~is volume, the twenty-sixth of the Annals of the Computation Laboratory, contains all 
the papers presented at the second symposium except one. Two of the speakers, Manuel S. 
Vallarta and Frederick V. Waugh, found at the last minute that they were unable to attend. 
However, their papers were received and were read by J. Curry Street and Leon Moses, 
respectively, both of Harvard University. Because of the tremendous editorial difficulties 
experienced with the proceedings of the first symposium, each speaker at the second was 
requested to supply his manuscript in advance, in order to avoid dependence upon transcription 
from sound recording. Thirty-nine papers are herein published essentially as submitted. 
Thus the work required to prepare this volume for publication was greatly reduced. However, 
it was necessary to redraw many of the illustrations for offset reproduction; this was done by 
Carmela M. Ciampa, assisted by Paul Donaldson, photographer of Cruft Laboratory, Harvard 
University. 

Since the symposium was held iIi September, prior to the opening of the fall term, it was 
possible to make use of the dormitories in the Harvard Yard and the dining facilities of the 
Harvard Union. Arthur Trottenberg of Harvard University supervised arrangements for 
the use of these facilities and other accommodations. Preparation of the program and regis­
tration lists and the registration of the members of the symposium after their arrival were 
carried out by Betty Jennings, Jacquelin Sanborn, Jean Crawford, and Holly Wilkins. It is 
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PREFACE 

a pleasure to acknowledge the cooperation of Edmund C. Berkeley, secretary of the Association 
for Computing Machinery, in this connection. 

The staff of the Computation Laboratory wishes to express its appreciation to the members 
of the symposium for their attendance and for their participation in the discussions, to the 
chairmen of the several sessions for their assistance, and to the speakers not only for their 
addresses during the symposium but also for their cooperation in preparing the manuscripts 
of their papers. 

The staff also wishes to express its gratitude to the Bureau of Ordnance and to its repre­
sentatives, Captain G. T~ Atkins and Mr. Albert Wertheimer, for many years of pleasant 
association throughout the building of Mark II and Mark III Calculators, for their continued 
i~terest and help, and for making possible both the Second Symposium on Large-Scale Digital 
Calculating Machinery arid the publication of its proceedings. 

Cambridge, Massachusetts 
May 1950 
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PROGRAIvI 

FIRST SESSION 

Tuesday, September 13, 1949 
10: 30 A.M. to 12: 00 P.M. 

OPENING ADDRESSES 

Presiding 

Howard H. Aiken 
Director of the Computation Laboratory 

7 

Edward Reynolds .3 
Administrative Vice President of Harvard University 

Rear Admiral.F. I. Entwistle, USN S-
Director of Research, Bureau of Ordnance 

SECOND SESSION 

Tuesday, September 13, 1949 
2:00 P.M. to 5:00 P.M. 

RECENT DEVELOPMENTS IN COMPUTING MACHINERY 

Presiding 

Mina Rees, Office of Naval Research 

1. The Mark III Calculator II 
Benjamin L. Moore 

Harvard University 

2. The Bell Computer, Model VI '),0 

Ernest G. Andrews 
Bell Telephone Laboratories 

3. An Electrostatic Memory System .3'1>-
J. Presper Eckert, Jr. 

Eckert-Mauchly Computer Corporation 

4. The Digital Computation Program at Massachusetts Institute of Technology Lfl­
vv wI: Jay W. Forrester .-

Massachusetts Institute of Technology 
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SECOND SESSION--CONTINUED 

5. The Raytheon Electronic Digital Computer _b (J 

. Richard M. Bloch 
Raytheon Manufacturing Company 

6. A General Electric Engineering Digital Computer t 5"" 
Burton R. Lester 

.General Electric Company 

BANQUET 

Tuesday, September 13, 1949 
7:00 P.M. 

Toastmaster 

Edward·A. Weeks, Jr. 
Editor of The Atlantic Monthly 

Speaker 

William S. Elliott 
Research Laboratories of Elliott Brothers (London) Limited 

"The Present Position of Computing-Machine Development in England'· 7 If 

THIRD SESSION 

Wednesday, September 14, 1949 
9:00 A.M. to 12:00 P.M. 

RECENT DEVELOPMENTS IN COMPUTING MACHINERY 

Presiding 

E. Leon Chaffee, Harvard University 

1. Semiautomatic Instruction on the Zephyr 4' ~ 

H. D. Huskey 
National Bureau of Standards, Institute for Numerical Analysis 

2. Static Magnetic Delay Lines q 1 

. Way Dong Woo 
Harvard University 
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THIRD SESSION-cONTINUED 

3. Coordinate Tubes for Use with Electrostatic Storage Tubes '1 b 

R. S. Julian and A. L. Samuel 
University of Illinois 

4. Basic Aspects of Special Computational Problems I JE)' 

Howard T. Engstrom 
Engineering Research Associates, Inc. 

5. Electrochemical Computing Elements 111 
John R. Bowman 

Mellon Institute 

'-ot)~~(tf .s~~,rl(rx ,111111 
6. EDVAC Transformation Rules I ~, 

GeoJ;ge W. Patterson 
University of Pennsylvania 

FOURTH SESSION 

Wednesday, September 14, 1949 
2:00 P.M. to 5:00 P.M. 

NUMERICAL METHODS 

Presiding 

Raymond C. Archibald, Brown University 

1. Notes on the Solution of Linear Systems Involving Inequalities I -S 7 

George W. Brown 
Rand Corporation 

2. Mathematical Methods in Large-scale Computing Units 1£.1-) 

D. H. Lehmer 
University of California 

3. Empirical Study of Effects of Rounding Errors I if 7 
C. Clinton Bramble 

U.S. Naval Proving Ground, Dahlgren, Virginia 

". Numerical Methods Associated with Laplace's Equation IS" 1-

. W. E. Milne 
Institutefor Numerical Anafysis, UCLA and Oregon State College 
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FOURTH SESSION-cONTINUED 

5. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differentia 
and Integral Operators I h 4 

Cornelius Lanczos 

Institute for Numerical Anarysis, UCLA 

6. The Monte Carlo Method 1--v7 
S. M. Ulani 

Los Alamos Scientific Laboratory 

FIFTH SESSION 

Thursday, September 15, 1949 
9: 00 A.M. to 12: 00 P.M. 

COMPUTATIONAL PROBLEMS IN PHYSICS 

Presiding 

Karl K. Darrow, Bell Telephone Laboratories 

1. The Place of Automatic Computing Machinery in Theoretical Physics vIS­
Wendell H. Furry . 

Harvard University 

2. Double Refraction of Flow and the Dimensions of Large Asymmetric Molecules 7--1 q 

Harold A. Scheraga, John T. Edsall, and J. Orten Gadd, Jr. 

Cornell University, Harvard Medical School, and Computation Laboratory of Harvard University 

3. L-Shell Internal Conversion ').. Lf'O 

Morris E. Ro~e 

Oak Ridge National Laboratory 

4. The Use of Calculating Machines in the Theory of Primary Cosmic Radiation 7 ... t.!',{­

Manuel S. Vallarta 

University of Mexico 

(read by J. C. Street, Harvard University) 

.-. 5. Computational Problems "in Nuclear Physics ,,50 

Herman Feshbach 

Massachusetts Institute qf Technology 
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SIXTH SESSION 

Thursday, September 15, 1949 
2: 00 P.M. to 5: 00 P.M. 

AERONAUTICS AND ApPLIED MECHANICS 

Presiding 

Harald M. Westergaard, Harvard Universi~v 

1. Computing Machines in Aeronautical R;esearch 1--l3 

R. D. O'Neal 
University of Michigan 

2. Problem of Aircraft Dynamics "1. 71 

Everett T. Welmers 
Bell Aircraft Corporation 

3. A Statistical Method for Certain Nonlinear Dynamical Systems J... ~ I 
George R. Stibitz 

Consultant in Applied Mathematics, Burlington, Vermont 

4. Combustion Aerodynamics "') ..... , ~~ 

Howard W. Emmons 
Harvard University 

5. Application of Computing Machinery to Research of the Oil Industry '2 D_r' 

Morris Muskat 
Gulf Research & Development Company 

6. The 603-405 Computer "3 ) ~ 
William W. Woodbury 

Northrop Aircraft, Inc. 

SEVENTH SESSION 

Friday, September 16, 1949 . 
9:00 A.M. to 12 :00 P.M. 

THE ECONOMIC AND SOCIAL SCIENCES 

Presiding 

Edwin B. Wilson, Office of Naval Research 

1. Application of Computing Machinery to the Solution of Problems of the Social Sciences J J.. 3 
Frederick Mosteller 

Harvard University 
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SEVENTH SESSION-cONTINUED 

2. Dynamic Analysis of Economic Eq~ilibrium ']. "3 '3 
Wassily W. Leontief 

Harvard Univer-fity 

3. Some Computational Problems in Psychology '33 r:r 
Ledyard R. Tucker 

Educational Testing Service, Princeton, New Jersey 

4. Computational Aspects of Certain Econometric Problems ~~/-r 

Herman Ohernoff 
University of Chicago 

5. PhysIology and Computing Devices ~ 51 

William J. Crozier 
Harvard University 

6. The Science of Prosperity -~ fj 7 
Frederick V. Waugh 

Council of Economic Advisers 

. (read by Leon Moses, Harvard University) 

EIGHTH SESSION 

Friday, September 16, 1949 
2:00 P.M. to 4:00 P.M. 

DISCUSSION AND CONCLUSIONS 

Presiding 

Willard E. Bleick, U.S. Naval Academy Post Graduate School 

1. The Selectron "] b b 
Jan Rajchman 

Radio Corporation of America 

2. Traits Caracteristiques de la Calculatrice de la Machine a Calculer Universelle. de 
l'Institut Blaise Pascal -; 7 tf 

Louis Couffignal 
lnstitut Blaise Pascal 

(read by Leon Brillouin, Harvard University) 

3. The Future of Computing Machinery J cr 7 
Louis N. Ridenour 
University qf Illinois 

* * * 
OPEN DISCUSSION 
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EDWARD REYNOLDS 

HARVARD UNIVERSITY 

It is a great privilege and gives me great personal pleasure to have the honor of bringing 
the greetings and warm welcome of the President and Fellows of Harvard College to this large 
group of distinguished guests visiting the University on· the occasion of this symposium on 
large-scale digital calculating machinery at the Harvard Computation Laboratory. We are 
all sorry that President Conant could not personally welcome you here and present these 
greetings, but he is on the ''''est Coast keeping engagements made more than a year ago. 
I regret this necessity for his absence, but express his hope that you will find your visit her~ 
interesting and productive, and our hospitality cordial. 

This is the third such ceremony in connection with Harvard's Computation Laboratory. 
The first, about five years ago during wartime, dedicated Mark I, a highly significant develop­
ment in this new field, which was then generously presented to Harvard by the International 
Business Machines Corporation and temporarily located in our Cruft Laboratory, representing 
the fruit of several years of collaboration by Professor Aiken of Harvard with the leading 
research men in the IBM organization. Mark I, although in some respects overshadowed by 
subsequent developments here and elsewhere, is still the reliable old workhorse of the Labora­
tory which has rendered extremely valuable service to the armed forces. From its initial 
operation until the end of last year, it has had the generous support of the United States 
Navy, which we gratefully acknowledge. More recently, the United States Air Force and the 
Atomic Energy Commission have shared this support. All three of these agencies of the 
Government have been most generous and understanding in helping us to broaden the scope 
of the problems to which it has been applied and thus to broaden the field of interest" and 
usefulness of this type of,machinery. 

The second such ceremony, early in 1947, dedicated this new laboratory building and 
,offered for inspection the Mark II, then be~ng completed and tested for the Navy. Shortly 
thereafter, Mark II was delivered to the Navy and installed at Dahlgren Proving Ground 
in Virginia. 

Even though we understand that, with its significant advances in speed and capacity over 
Mark I, Mark II has proved its usefulness, it has not satisfied our good friends in the Bureau 
of Ordnance of the United States Navy, who have continued their generous support of the 
research of this Laboratory and are now jointly with the Harvard Computation Laboratory 
sponsoring this third symposium at which we have the pleasure of unveiling Mark III, also 
destined for delivery in the near future to the Dahlgren Proving Grounds. 

We feel that we may properly take some pride in the quality of research being carried 
on in this Laboratory. The distinguished character of the talent attending this symposium 
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supports us in this feeling. We feel that rather too much time has been devoted to the develop­
ment of actual machinery growing out of this research, and have some hope that one of the 
by-products of this and other meetings may be to stimulate the interest of others in this phase 
of the application of our research and thus to eliminate the need for this activity on the part 
of our staff. Certainly the manufacture of parts and even the assembly thereof are not activities 
for which we are fitted or which we wish to pursue, except possibly in the production of a 
machine for our own use within the University. 

As a layman participating actively in the administrative problems which arise out of the 
organized group research that has become such an active part of resear~h at universities in 
recent years, I am tremendously pleased at the evidences of awakening interest in the usefulness 
of these newest appliances in widely scattered fields of research. The inescapable application 
of mathematics in practically every field of human endeavor makes it se~m important to us 
that the understanding of the availability and usefulness of the developments being made 
here and in other mathematical research laboratories, as aids in all other fields of research, 
be spread as widely as possible; and we are therefore particularly pleased that the latter 
part of the program for this symposium is devoted to discussions of the relation of the work of 
this Laboratory to research in a broad range of subjects. 

Increased awareness of the usefulness of these new tools in the field to activities in other 
branches of science inevitably increases the demand for the already inadequate number of 
men and women who are educated not only in the theories of design and operation of such 
machinery. but in the understanding of their applicability. This emphasizes the. other great 
responsibility of the staff of this Laboratory-meeting t~eir obligations as teachers' to provide 
the instruction required for the training and development of personnel interested in these 
lines. Here again we gratefully acknowledge the understanding support of our friends in 
the Bureau of Ordnance and in the Air Force. While we are endeavoring to develop support 
for this program from other sources and to obtain permanent endowment for the Laboratory, 
the understanding contractual support from these Government sources has been and continues 
to be invaluable. 
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REAR ADMIRAL F. 1. ENTWISTLE, USN 

NAVY DEPARTMENT, BUREAU OF ORDNANCE 

It is with distinct pleasure that the Bureau of Ordnance joins hands with Harvard Univer­
sity in sponsoring this Symposium on Large-Scale Digital Calculating Machinery. On behalf 
of the Bureau of Ordnance I take great pleasure in welcoming you to these meetings. Your 
presence-the presence of so many distinguished scientists-assures us that much value will 
be gained by us all from the deliberations and discussions which will take place during these 
next few days. 

During the past few years the relation between the Bureau of Ordnance and Harvard 
University has been unusually close and cordial. This happy relation has given the Navy 
the benefit of Harvard's talents and facilities and has led to the development of greatly 
improved computing machinery and methods. Harvard University is most fortunate in 
having on its staff Professor Howard Aiken, under whose unusual leadership, energy, and 
ability the Computation Laboratory has grown. 

As we in the Bureau of Ordnance look back on the computing problems with which we· 
were faced prior to the First World War, we find that large-scale computations arose chiefly 
in connection with the problems of ballistics-problems in which we were principally con-

. cerned with construction of range tables for seagoing gun systems with limited angles of 
elevation. In those days, one computer (and by computer I mean a man with a slide rule, 
log book, and a set of Engel's Ballistic Tables) handled all such computations. It probably 
took the impetus, the acceleration, and the foreboding of World War II to permit conception 
of the machine that was originated here and is kno~n as the Mark 1. 

In the olden days when we were youngsters, and possibly a bit more impatient, that one 
man (that computer) with his slide rule and his tables gave us a series of curves or figures 
in a book, and we were to go out to put them to use. Frequently we discovered that we did 
not know how to do this or we found that the tables were incorrect. 

The availability of accurate tables in time of war is very important indeed. When the 
recent war came along with its bombings, rocket firing, and use of heavier guns for antiaircraft 
and bombardment, we found our range tables insufficient. In fact, we were about 500 range 
tables behind. In the course of some years, that figure was decreased to 350; but still it was 
a problem of one man, one slide rule,. and tables. Naturally, 500 tables would equal 500 men 
or 500 years; even with 500 men we would still be at least a year behind. 

\-\Torld War II indicated by great numbers-in tonnages, people, dollars-the magnitude 
of effort required to fight a modern war. I believe it showed us that we can no longer afford 
to fight wars of that magnitude. Many of us in the armed services have come to realize that 
our job is not to fight wars but to prevent them. If we had realizea. this in the period from 
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1925 to 1930, we might have dissuaded the Japanese in 1939 from exerting the effort that was 
subsequently shown. By keeping us prepared to carry through a war, these machines may 
help us to prevent wars. 

This science of computation, which we have come here to discuss, has grown up from the 
association of people requiring such machines and their results with other people willing to 
incorporate themselves into the effort to design and to build such machines. The fact that 
we can collaborate and coordinate our efforts with a university such as Harvard, and can 
arrange for the services of the laboratory here for our mutual benefit, should assure us of the 
continuation of our so-called democracy.· In the installation of computers, the time factor 
and accuracy of the machine are certainly important. But more important to my mind is 
the coordination of the university and the military. This is, in itself, a step forward in the 
university's aim of first teaching the individual and then going further to educate the country. 

May I again express the continuing deep interest of the Bureau of Ordnance in this im­
portant subject of large-scale calculating machinery, and its applications, which may better 
equip the Bureau of Ordnance of the Navy Department to carryon its work in national 
defense. Both for myself and for the Chi~f of the Bureau of Ordnance, I wish to express our 
appreciation of the close and wholehearted cooperation on the part of Harvard University 
and the Computation Laboratory, and to acknowledge great and significant contributions 
in the development of computi~g machines and methods that they have made through their 
skills, their talents, and their facilities. May I add further that the Chief of the Bureau of 
Ordnance and I will carryon all we can undertake ,and accomplish to continue this type of 
collaboration resulting in this broader effort to prevent wars. 

6 



HOWARD H. AIKEN 

HARVARD UNIVERSITY 

As Admiral Entwistle has remarked, for five years the staff of the Comp~tation Laboratory 
has been engaged in the construction of automatic computing machinery for the Bureau of 
Ordnance. Without the Bureau's constant support, our share of this research could never 
have been undertaken. We look upon the completion of Mark III as representing the end 
of a phase in the development of this subject. 

I have often remarked that if all the computing machines under construction were to 
be completed, there would not be staff enough to operate them. Instruction in computing 
machinery represents one of the more aggravated aspects of a generally recognized problem 
in technical education. We feel that the further development of mathematical methods and 
the extended use of computing machines in the various fields represented by speakers here 
are those points at which levers should be placed to make the greatest possible advance in 
computer research. Only by completing computing machines and then operating them can 
the operating experience and experimental results be obtained that are so essential as a point 
of departure in passing from one design to another. Therefore, at our laboratory we have 
decided not to undertake the construction of any more large-scale computing machines with 
the exception of one, which we hope to build for our own use and keep at Harvard. 

There is an ever-increasing number of industries interested in constructing computing 
machines outside the universities. In applying computing machinery to new and different 
fields, many proposals have been made, ranging all the way from devices for an automatic 
continuous audit, an automatic continuous inventory, down through an automatically operated 
insurance office, public-utility billing department, department-store accounting system, to 
more.specific and less general accounting-machine components. Other proposals have included 
airline ticket-inventory systems, similar devices for railroad reservations, and automatic 
railroad ticket-vending machines. On the technical side, machines have been proposed 
involving automatic computers in connection with air-traffic control, airport control and 
almost every other manufacturing operation up to and including the automatic factory. But 
until our universities are able to offer well-rounded programs in numerical methods and the 
application of computing machinery to prepare men to 9perate these machines, the success 
of many of the proposed industrial programs will not be realized. 

I should like to take this opportunity to express the appreciation of our staff to the Bureau 
of Ordnance for its support throughout these years and, more than that, for the privilege of 
pleasant associations which we have had with the representatives of that Bureau. It has been a 
great pleasure to work with them throughout the construction of both Mark II and Mark III Cal­
culators, and we have built up an association which I have every reason to believe will continue. 
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THE MARK III CALCULATOR 

BENJAMIN L. MOORE 

Harvard University 

The large-scale digital computing machine known as Mark III has been built by the 
Computation Laboratory of Harvard for the Bureau of Ordnance of the Navy Department. 
It is to be installed at the Naval Proving Ground, Dahlgren, Virginia. The construction 
work has been completed and the machine is now under test. 

The decimal number system is used throughout the entire machine. Normal operations 
are carried out with 16 digits. Provision is made, however, to use 32, 48, or more digits whe.n 
needed. The operating decimal point is manually set by 
the operator in one of six positions. In addition, under 
control of the sequencing unit, the operator may choose 
at any time one of three locations of the decimal point. 
In order. to reduce the size of the memory, digits are 
stored in the coded form where four binary digits are used 
to represent a decimal digit. Figure 1 shows the system 
that has been adopted, where the weights of the four 
binary digits are 1, 2, 4, and 2, respectively. It should be 
noted that the sum of these weights is 9 and therefore the 
nine's complement of any digit may be obtained by chang­
ing zeros to ones and vice versa. This is quite a con­
venience electronically. where a positive voltage may be 
used for a one and a negative voltage' for a zero. The 

Decimal 
Digit 

'0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Coded Decimal 
Notation 

2* 4 2 1 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

nine's complement can then be obtained merely by in- FIG. 1. Coded decimal number 
system used in Mark III. 

verting the signal. These complements are used for 
subtraction in this machine. 

The number-storage system consists of eight rotating drums whose surfaces are' coated 
with a thin layer of magnetic material. Information recorded in the form of a small magnetic 
dipole during one' revolution may be played back on any succeeding revolution. A zero is 
represented by a magnetic dipole oriented in one direction and a one by the opposite orienta­
tion. New information is recorded directly over the old making erasure of the surface un­
necessary. The played-back voltage signal is double ended, with the positive voltage first 
for one orientation and the negative first for the opposite orientation of the dipole. Figure 2 
is a photograph of a typical cathode-ray oscillograph pattern having two negative-first pulses 
in a group of positive-first pulses. Figure 3 is similar except that the pulses have been reversed 
4 X 108 times. ~his photograph was taken upon completion of a test to determine whether 
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the noise background increased or the pulses changed shape after many reversals. It is easy 

to see that the two pictures are almost identical. 
\ 

Using a single magnetic head on a channel or track, the access time to anyone number is 
the time for one revolution of the drum. At the expense of more heads the access time can 

FIG. 2. Oscillograph trace of a typical 
playback-pulse pattern. 

FIG. 3. Oscillograph trace of a typical 
playback-pulse pattern after 4 X 108 

reversals. 

be decreased. This machine uses two playback heads per track, so that the access time is 
reduced to the time of one half revolution. Since it is electrically more convenient, separate 
heads are used for recording and playback. Thus each binary track contains two record 

A 

A-A 
A 

fIG. 4. Cross section of a binary magnetic storage channel. 

heads as well as two playback heads. Figure 4 shows a typical cross section of a binary channel. 

Figure 5 shows the drum storage unit. 
As it is convenient to have all components of a decimal digit available simultaneously, 

four parallel binary channels are used to represent one decimal channel where the binary 
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FIG. 5. View of the assembled magnetic-drum storage unit. 
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channels will have the weights 1, 2, 4, 2, respectively. The digits of a given number and the 
numbers themselves are stored serially around the periphery of the drum. The main. storage 
system uses a pulse density of ten pulses per inch and stores ten 16-digit numbers in a decimal 
channel. To extend the storage":system capacity beyond ten numbers, parallel channels are 
used so that the selection of a given number involves the selection of a channel as well as a 
time selection, as the drum moves past the playback head. 

The arithmetic unit of this machine is electronic and contains an adder, a multiplier, and 
certain sensing units. It contains no divider, since this operation is aCGomplished by an 
iteration process. The unit is serial in operation so that it is necessary to have the corresponding 

SELECTION 
GATE 

STORA~E 

CHANNEL 

t------....--~ TO 

REGENERATION 

CHANNEL 

ARITHMETIC 
UNIT 

FIG. 6. Block diagram of a regeneration channel. 

digits of two numbers to be added available simultaneously. Since, in general, two numbers 
will not necessarily be played back from the drum in the same time phase, some provision 
must be made to put them in phase. Figure 6 illustrates how this is done. On the left is 
the storage channel where a selection is made of the head to be used, depending on where the 
number is located and the phase of the drum. At the appropriate number time the gate 
opens and records the desired number on the regeneration channel. By the time the last 
digit is recorded the first digit is being played back by the regeneration playback so that the 
gate lets this number through to be recorded again. Thus the number is recorded 12 times 
around the channel and is available at any time thereafter. The two blank spaces on the 
storage channel provide time for switching operations and no numbers are stored in this 
interval. 
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With this brief picture of the magnetic storage system, let us examine the organization 
of the whole machine, a block diagram of which is shown in Fig. 7. 

The storage system is divided into two parts. One, called slow storage, has a capacity 
of 4000 16-digit numbers and selection of channels is made by relays that are relatively slow. 
However, provision is made for transferring 20 numbers at a time from slow storage to the 
other section, which is called fast, where selection of numbers can be done at electronic 

R 
TAPE INPUT 

SLOW STORAGE 
4000 NUMBERS 

FAST STORAG E 
150 CONSTANTS 
200 NUMBERS 

TRANSFER 8 
CHANNELS 

ARITHMETIC 

UNIT 

TRANSFER 
CHANNEL 

~ TAPE ./TYPEWRITER/ 
READER 

PRI NTER 

FIG. 7. Block diagram showing organization of the calculator. 

speeds. Ten numbers at a time are transferred from the fast storage to slow. The slow section 
is mainly used for storage of functions. 

The fast storage has a capacity of 200 numbers in addition to 150 permanent constants. 
The constants are used for computing functions such as Ijx, IjVx, cos x, log x, antilog x, 
tan- 1 x. 

The basic cycle of the machine is the access time to the storage, namely, one half revolution 
of the drum. Each cycle the machine delivers two numbers to the arithmetic unit over the 
two parallel busses A and B and returns the previous result to the storage. One addition can 
be performed each cycle, while multiplication requires 3 cycles. As the speed of the drums 

15 



FIG. 8. View of the Mark III Calculator. 
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is slightly less than 7200 rev/min the cycle is about 4.2 msec, that is, addition requires 4.2 msec 
and multiplication 12.6 msec. 

Numbers are fed into and recorded out of the machine by means of magnetic paper tape. 
There are eight mechanisms, anyone or any combination of which can be set to read into 
or out of the machine. Recorded tapes are run through a tape reader which in turn operates 
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FIG. 9. Main cO!ltrol panel. 

an electric typewriter to put the final results on the printed page. To handle the output the 

machine is equipped with five independent tape readers and typewriters. 
There are essentially no checks built into the machine, dependence being put on mathe­

matical checks. However, in transferring numbers from the machine to the printed page 
via the 'magnetic tape no mathematical checks are readily available. Therefore, to insure 

accuracy of this transfer, the output numbers from the machine are recorded into two separate 
channels on the tape by different sets of equipment. Before printing, the numbers from each 

. channel of the tape are compared and if they are not identical the typewriter rings an alarm 
and stops. 

Sequencing commands are stored on a separate drum turning at a much lower speed, 
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approximately 1800 rev Imin. Provision is made on this drum for storing 4000 lines of coding 
or sequencing commands. A line of coding will in general consist of the commands necessary 
to select two numbers from the storage, perform an operation, and return the resultant to 
storage. ,It is possible to jump from any line of coding to any other line with a maximum loss 
of a little more than 8 cycles and an average loss of about 4 cycles. 

Figure 8 is a picture of the front of ~he machine. On the right facing the machine the 
five typewriters can be seen. The first five panels on the left are the tape readers that control 
the typewriters. In the center of the machine can be seen the main control pap.el. At the 
far end are the eight magnetic-tape input and output mechanisms. In the background can' 
be seen the coding machine and the number-tape preparation unit. 

Figure 9 is a view of the main control panel. On the left is a group of switches that enable 
the operator to feed numbers into tpe machine manually. Above these switches are a set 
of lights into which numbers, located anywhere in the machine, can be read. The center 
section contains controls for starting aI?-d stopping the machine. Controls are provided on 
the right to enable the operator to perform all operations manually in troubleshooting. 

As is only too well known, the task of preparing a problem for machine solution is in many 
cases quite laborious. Even after the numerical analysis is completed, there still remains the 
work of translating the mathematical symbols and operations into a language the machine 
can understand. To reduce the work required in this part of the problem preparation, a 
special coding machine, whose keyboard is shown in Fig. la, has been constructed. The 
storage registers in the f~st storage are assigned letters and subscripts. If one uses these letters' 
and subscripts in the numerical analysis, then it is a simple matter to operate the keyboard, 
thereby, recording into a length of magnetic tape the necessary commands for carrying out 
the required operations. This tape may then be stored until the machine is available for 
solution of this problem, at which time the information on the tape is transferred to the 
sequencing drum. Provision is made for printing a copy of the coding commands for use of 
the operator in monitoring the problem. 

Space does not permit a more detailed description of this coding machine. However, it 
should be pointed out that to operate the machine it is only necessary to know a few simple 
rules. In fact, many 'of the operations are obvious from the labels on the keyboard. It is 
the upinion of the staff of this Laboratory that this coding machine, which eliminates much 
of the labor in preparing a problem, represents a significant advance in the field of machine 
computation. 

In conclusion, we would like to express our appreciation to the Bureau of Ordnance of 
the Navy Department whose interest and support have made this machine possible. It should 
also be pointed out that this machine is not the work of only a few individuals, but is the 
result of the combined effort of the entire staff of the Computation Laboratory. 
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THE BELL COMPUTER, MODEL VI 

ERNEST G. ANDREWS 

Bell Telephone Laboratories 

It is customary in meetings on digital calculating machinery to listen to engineers extolling 
their latest creation with terms such as "a new giant brain" or "a machine that thinks." 

I do not wish to criticize my colleagues in this fascinating field of engineering for using 
these metaphors. because I have frequently indulged in the practice myself. However, a 
discordant note has been s~unded in these meetings on occasion. This note, when translated 
into smooth, inoffensive English says, "Such claims by the engineers are not altogether in 
accordance with the facts." The thought behind these accusations has been aptly expressed 
by our own Dr. W. Bode, who, when spea~ing of our own Bell Laboratories Computers, said, 
"They are like very accurate but very dumb <;omputresses." He was referring to the need for 
spelling out every elementary detail when programming a new problem. This criticism was 
also e~pressed by others, including Dr. George R. Stibitz when he addressed the first of these 
symposia. Partly as a consequence of all of these comments and partly because of the nature 
of the problems to be solved, the Bell Laboratories Model VP r~lay computer has been 
endowed with' more intelligence than its predecessors. But before delving into the details of 
this particular phase of the design let us take a broad look at the Model VI. 

This computer has been plac.edin operation at the Bell Laboratories Murray Hill building. 
In many respects it resembles the Model V relay computers at the Ballistic Research Labora­
tory at Aberdeen, Maryland, and at the Laboratory of the National Advisory Committee 
on Aeronautics at Langley Field, Virginia. Complete descriptions of these computers have 
been presented by Dr. F. L .. Alt and Mr. S. B. Williams. 

The Model VI cor~puter consists of two principal parts-the remote-controlst~tions and 
the computing equipment. Figure I shows one of the remote-control stations. The three pieces of 
apparatus shown are types that are used extensively in Teletype printer telegraph systems, with 
minor changes to adapt them to computer operation. The printer on the movable table records 
the answers to the problems; the hand perforator is used for punching the data on the problem 
tapes and the tape reader transmits the data for the problems to the computing equipment. 

Figure 2 shows part of the computing-room equipment. This part of. the computer is 
made up of twelve bays of equipment consisting almost entirely of the heavy-duty-type relays 
used extensively in earlier computers and in telephone dial systems central-office equipment. 
The frames have ~ight-gray enamel finish and other characteristics which make them resemble 
equipment that is found in the modern telephone office. There are about. 4300 relays used, 
86 cold-cathode tubes, and relatively small amounts of other miscellaneous apparatus. 

An indicator and test panel with approximately ?OO small lamps is provided for showing 
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the progress of various computing operations and for showing the numbers in various parts 
of the computer. It is illustrated in Fig. 3. This panel also has provisions for manually 

FIG. 1. Remote-control station equipment. 

inserting instructions into the computing program where necessary to make corrections in pro­
grammmg. These faciliti es are also used for making tests under closely controlled conditions. 

Table 1. Comparison of number representa tions in Model VI and Model V computers. 

Item of Comparison Model VI Model V 
.. 

Number of digits for a number 3, 6, or 10 1,2,3,4,5,6, or 7 

Form of number: notation for 7T 

as an example + 3.141592654 X 10 + 00 + 0.3141 593 X 10 + 01 

Maximum number* ± 9.999999998 X 10 + 19 ± 0.9999 998 X 10+19 

Minimum numbert ± 1.00 X 10 -19 ± 0.1 X 10-19 

* The next higher number is the calculator's concept of infinity. 
t The next lower nu mber is the calculator's concept of zero. However, smaller numbers with the - 19 

exponent are possible with special problem coding. 
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FIG. 2. Computing-room equipment. 
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FIG. 3. Indicator and test panel. 
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As is shown in Table 1, there are some -changes in the range of numbers compared with 
those in the earlier Model V. The new form of notation with the decimal point between the 
first and second digits has been introduced for two reasons: (i) to simplify the isolation of 
the characteristic of logarithms and (ii) to bring the notation into agreement with that now 
commonly used in expressing values in scientific literature. It will be noted that the floating 
decimal point has been retained along with the range of the e~ponent of ten from + 19 to 

86 WIRE BUSES FOR 
TRANSFERRING NUMBERS 

I 
I 
I L ____________________ _ 

PAPER TAPEl 

TAPE I J 
PERF. 

TABLE TAPE CONTROL (ASS) 

FIG. 4. Block diagram of computer components. 

- 19. The calculator. performs all arithmetic operations, namely, addition, subtraction, 
multiplication, division, and extraction of the square root. 

Before returning to the new control-circuit features which provide for the higher intelligence, 
we wish to emphasize that the Model VI is as error-proof as its immediate predecessors. Our 
engineers with justifiable pride can still say, "Starting with the Model III deliver~d to the 
Armed Forces in 1944, not one of our customers has reported their computers giving out a 
wrong answer as a result of a machine error." To help understand the basic control system, 
reference is made to Fig. 4, which shows a block diagram of the relation between the routine­
control circuit and the other computer components. To solve a problem, operators punch 
the problem data and computing instructions on a Teletype tape. This is loaded into the 
tape reader at a remote-control station and computing starts when the operator depresses a 
start key at this station. 
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Initially, the problem-control circuit carries out certain conditioning operations as in­
structed by the tape and then delegates control of computing operations to the central organ 
labelled "Routine Control." This component proceeds to control operations for computing 
or printing of answers, etc., as directed by instructions from the tape. 

The instructions on the tape may be in either of two forms: (i) the specification of all of 
the detailed computing instructions, and (ii) the mere indication of which of the several sets of 
internal routines is to be used. The first form is usually used for types of problem that are 
encolIntered infrequently and the second for types of problem~that are expected to occur often. 

The routine-control circuit, in accordance with the instructions it receives, causes numbers 
to be passed from one register to another over the two 86-wire multiples or busses shown around 
the edge of Fig. 4. When an arithmetic operation is required the routine control designates 
the registers that hold the two numbers involved and directs. the calculator to accept these 
numbers and perform the desired arithmetic operati'on on them. The control circuit then 
indicates what disposition is to be made of the result in the calculator by designating the place 
to which it is to be transferred; that is, to some particular register, the printer, or the perforator. 

One of the new features is a "second trial" feature which is automatically brought into 
operation in almost all cases when the routine-control circuit fails to receive the usual OK 
signal indicating satisfactory execution of the instruction, or operation, called for. 

The Model VI has an elaborate system of interrelated internal routines. It is this system 
with its own automatic seizure of various subroutines that gives this computer its higher 

in telligence. 
The device used for this purpose is a combination relay and electronic device which is 

used in the Automatic Message Accounting System in a modern telephone office. As used in 
telephone switching it consists of a large group of code points, each corresponding to the 
location of the call-originating equipment oLa subscriber. A signal on one of these code 
points denoting the origination of a call causes the circuit to ascertain and to record the 
subscriber's four:-digit directory number. 

As used in the computer, the code points correspond to the computing operations in a 
subroutine. A signal on one of these code points causes the computer routine-control circuit 
to set into operation the desired computer operation .. A subroutine will use a train of from 
6 to 20 of these code points in succession. Facilities are provided for 200 _such subroutines, . 
each being identified by the letter A, B, C, or D followed by a two-digit number. 

The operation of a subroutine will be explained by an example which assumes that com­
putations have reached the stage where the product of two complex numbers is required. 
Table 2 shows the formula used and the coding of the individual computer operations. 
Figure 5 shows how the operations are made a part of the computer and shows that there is 
an extremely close resemblance between the coding as it is written on paper in Table 2 and 
as it is memorized by the computer. The operation numbers 1 to 6 correspond exactly with 
code points 1 to 6. The letter designations correspond exactly with coil designations. The 
letters that form a particular computing operation are associated on the left of Fig. 5 by writing 
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Table 2. Coding of subroutine for complex-number multiplication. 

Instruction 

No. Operation Code 

1 BxDE 

2 AxCS 

3 S-EP 
4 AxDE 

5 BxCS 

6 S + EP 

CODING AS 
WRITTEN 

(A + jB) (C + jD) = (AC - BD) + j(AD + BC) 

. Explanation of Code 

Multiply B by D and store result in E storage register 

Multiply A by C and hold result in calculator 

Subtract BD from AC to obtain real part of product and print result 

Multiply A by D and sto.re result in E storage register 

Multiply B by C and hold result in calculator 

Add AD and BC to obtain imaginary part of product and print 
result 

CODING AS MEMORIZED BY COMPUTER 
~ 

r-------__________________ ~A~ ________________________ ~, 
r 

I. aXD E 

2. AXC S 

3. S-E P 

4. 

5. 

6. 

FIG. 5. Wiring of subroutine for complex-number multiplications. 
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them together on one line and on the right by 
running a single insulated cross-connection wire 
through coils having the same letter designations. 
This train of six operations would be identified by 
a subroutine number, such as D36 (not shown in 

Fig. 5). In practice these subroutine numbers are 

being called formula numbers. 
When the 200 subroutines are fully employed 

there will be over 2000 insulated wires crisscrossed 

through the coils. These wires are not, however, 
part of the design of the computer but are placed 
in position by those responsible for operating the 
machine in accordance with the type of computing 

work they are engaged in. The actual physical 
operations of placing a wire can readily be per­

formed in one or two minutes by the same per­
sonnel that operates the machine. No soldering 
of the wires is required. When a particular sub­

routine is no longer needed, the associated wires 
can be readily removed. The time required to 
set up a new subroutine, therefore, compares 

favourably with the time of setting up the same 

instruction on tapes. 
Figure 6 shows a close-up of the coils with 

their associated cold-cathode tubes. Figure 7 shows 
the principles of the coil circuit. 

A computer operation is initiated by causing a 

transient discharge from the resistance-capacitance­
inductance network to be sent through the cross­

connection wire. The part of the system consisting 
of the wire and the coil behaves like a transformer 

with the wire acting as a loosely coupled one-turn 
primary winding and the coil acting as the 
secondary. The transient through the primary 
induces enough voltage in the secondary to cause 
ionization between the control anode and the 

cathode of the type 313 cold-cathode tube. As 

FIG. 6. Mounting of coils with their 
. associated tubes. 
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soon as complete ionization takes place, the relay in the main anode circuit operates and dis­
connects itself from the tube. In this operation the tube is conducting for less than 0.01 sec 
and is operating at conservative ~oltage values. Very long tube life is, therefore, expected. 

In the earlier computers the building blocks used for building up the complete prograrn 
for solving a problem were single computing instructions. In the Model VI, the building 
blocks may be made much larger by making use of these subroutines. But these larger building 
blocks presented a challenge to ~ake the most efficient use of them. Indiscriminate use would 
make for chaos. An efficiency expert would systematize the situation by grouping together 

---
'-CROSS CONNECTION 

WIRE THRU 3 OTHER 
COILS 

.... 
I 130V 

.....l-' 

l 
FIG. 7. Schematic diagram of coil circuits. 

I 

the simplest types of subroutines, which could be made complete in themselves, and by arrang­
ing other subroutines so that they would have various degrees of supervision over the first 
group. The degree of authority assigned has been designated for each subroutine with one of 
the letters A, B, C, or D. This is regimentation, but in a machine it is both acceptable and 
desirable. In fact" this regimentation is closely analogous to that which might exist in the 
strictest military school where an upperclassman would look with disdain upon any task (or 
computing operation) that a lowerclassman could perform. Consequently, the upperClassmen 
would be assigned to perform the more complicated tasks according to their own skill and 
they would be given authority to delegate lowerclassmen to do their more menial chores. 
These lowerclassmen can in turn delegate those parts of these chores beneath their skills to 

still lower classmen. 
To continue the analogy, the Model VI computer has four levels of computing skill for 
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making use of the 'above-mentioned internal subroutines. They can be programmed to call 
in subroutines of a lower level and to regain control when the subordinate routine completes 
its task. The term "intelligence level,"2 accurately describes the nature of these levels. 

Figure 8 shows how this system operates in 'solving a rather complicated problem, 
called a ladder-network problem. One of the objectives of this problem is to determine the 
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FIG. 8. Time-flow chart showing use of four intelligence levels to solve a 
ladder-network problem. 

frequency response of the network. Mathematical analysis, therefore, is used in lieu of 

laboratory tests. 
The top level in Fig. 8 is designated PT, denoting "Problem Tape." \Vhile this tape is 

primarily used for the introduction of the parameters· of the problem, it may contain as much 
detail in computing instructions as required. In the case of the problem being described 'less 
than I in. of tape is required for the computing instructions because the Model VI is assumed 
to have already been taught how to solve the ladder-network problem. The problem tape 
then simply specifies that subroutine Al2 be used and the tape thereby constitutes another 
intelligence level, higher than the four previously discussed. 

In the interest of eliminating unnecessary detail, not all of the changes in level are shown 
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in Fig. 8, but there is still sufficient detail to show the principle of operation. By this systematic 
arrangement of internal routines, the labor involved in preparing the necessary problem data 
is near the irreducible minimum. 

The solution of the network problem is carried out in the following principal steps: 
The A12 routine assumes control at the start of the problem. It provides for organizing 

and setting up the initial conditions for computing the impedances for the various values of 
f (frequency). It then delegates control to subroutine B24. 

Subroutine B24 controls the computation of the impedance of the various branches of 
the network. It also arranges to have the impedances recorded in block 400 on the storage 
tape for subsequent use by subroutine B35. After these preparations, B24 will instruct the 
computer to use the first number on the tape as the subroutine number to use in computing 
the impedance of the first branch. 

Such a number might be C29. It would provide for reading off the parameters that follow 
and for combining the impedances for the individual elements, making use of D level sub­
routine for the complex-number arithmetic when required. The last instruction in C29 
instructs the computer to use the next number on the tape as the subroutine to use. Additional 
subroutines are employed as required. After the last impedance has been computed, control 
is restored to subroutine B24. 

On regaining control, B24 will instruct the computer to obtain the next value offrequency; 
it then arranges to have the impedances for the next value of frequency recorded in block 401 

and then, using this new frequency value, repeats all of the operations just described. After 
completing the computing with the last value of frequency, control is restored to A 12. 

On regaining control, A12 will organize the computing of the complex values of voltage 
and current that the generator must supply. It then calls in B35 to control these calculations. 
Then A12, on regaining control, will provide for obtaining any additional information that 
may be required. 

Table 3. List of intelligence levels. 

Name 

1. Problem tape instructions 

2. A Subroutines 

3. B Subroutines 

4. C Subroutines 

5. D Subroutines 

'6. Calculator instructions 

Designation or Symbol 

SWR (Switch to Routine) 

. AI2, etc. 

B24, etc. 

C29, etc. 

D59, etc. 

+,-, x,--;-,v-

From the above description it will be noted that the individual computing operations 
specified by a subroutine consist mostly of a collection of calculator and recording instructions. 
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It then follows that the calculator operations themselves comprise ap intelligence level below 
all of the others. Instead of being identified and called for by a subroutine number, the usual 
arithmetic symbols +, -, X, 7, and v'- are employed. As in the other intelligence levels, the 
calculator returns control to the higher level that called it in as soon as the prescribed arithmetic 
operation is completed. 

The Model VI then has at least six intelligence levels, as shown in Table 3, in descending 
order of authority or control. 

A study of Table 3 shows that the Model VI will perform a series of computer operations 
in accordance with any of the last five levels by merely designating the three-element code 
or the symbol shown in the last column. In fact, the three-element code is so closely analogous 
to a symbol in this computer that it is proper to say that the Model VI responds to its own 
idea of a symbol for determining the logarithm of a number or of a symbol for determining 
the tangent of an angle, and so forth. 

The Bell Computer, Model VI, has become an upperclassman. It can be taught how to 
solve a problem. It can retain this -know-how for use whenever called upon in the future. 
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AN ELECTROSTATIC MEMORY SYSTEM 

J.o PRESPER ECKERT, JR. 

Eckert-Mauchly Computer Corporation 

This paper is a progress report of the work done on a very high-speed memory constructed 
of ordinary cathode-ray tubes. The research has been performed in the laboratories of the 
Eckert-:rvIauchly Computer Corporation. Many persons have been engaged in this research, 
but particular credit should be given to Herman Lukoff, C. Bradford Sheppard, Gerald 
Smoliar,and Charles Michaels, all members of the Engineering Department. 

BLANKING 
CIRCUIT 

DEFLECTION 
CIRCU IT 

CI RCLE 
GENERATOR 

GATING OR 
SWITCHING 

CIRCUIT 

SHAPING 
CIRCUIT 

FIG. l. Circuits used to operate a cathode-ray tube as an electrostatic memory. 

A more complete report was subIl}itted as a paper to the Institute of Radio Engineers 
in April 1949. ·It contains much more detailed information. In particular, it gives additional 
quantitative material. 

The first part of this paper describes a memory system that is now under test. It is the 
second model of an electrostatic memory system to be constructed at the Eckert-Mauchly 
Computer Corporation. The second part of the paper describes a limited number of the tests 
performed on this system and gives some of the results. The final part of the paper gives a 
short glimpse into the research still to be performed on this memory system. 

Work on a high-speed dectrostatic memory system was originally begun by the author 
at the University of Pennsylvania. The tests at that time were preliminary, serving to indicate 
the large amount of research necessary to the developments described in this paper. 

Figure 1 is a block diagram of the circuits used in operating an ordin~ry cathode-ray tube 
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as an electrostatic memory. A metallic electrode, actually a wire mesh, is attached to the 
base of the tube and is coupled to an amplifier having a gain of about 2000. Each time the 
beam strikes a charged area on the tube, a signal is developed on the electrode. This signal 

DOT CIRCLE 

d 

SUPERPOSITION 
OF DOT AND CIRCLE 

FIG. 2. Relative sizes of dot and circle; 
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FIG. 3. Output signals. 
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is passed through a shaping circuit to the gating or switching circuits. These circuits turn the 
information in·or out of the regenerating path, operating in a manner analogous to a mercury­
delay memory. The .blanking circuit turns the beam on or off for the writing or reading 
interval. The deflection circuit controls the position of the beam. The purpose of the circle 
generator is described later in the paper. 

In operation, the screen of the tube is considered to be divided into many small elementary 
areas. These areas are approximately O.I-in. squares. The patterns placed in these areas 
that gave the most satisfactory results consisted of dots and circles. The dots are formed by 
focusing the beam, as sharply as possible, in the center of the elementary area. The circle is 

i 

o 
o VOLTAGE 

FIG. 4. Ratio of number of secondary to number of primary electrons 
as a function of voltage. 

formed by superimposing two high-frequency sinusoidal emf's 90° out of phase with each 
other on the two deflection systems. As Fig. 2 shows, the diameter of the dot is about one-third 
to one-half the diameter of the circle. The two patterns can be considered as two different 
states, the dot representing a I and the circle representing a 0 in. the binary system. 

Reading the information stored on the screen of the tube is done by adjusting the potentials 
on the deflection plates so that the beam will fall directly on the desired elementary area. 
When the beam is turned on by the intensity grid, a potential is developed between the electrode 
and the collector which puts a signal into the amplifier. 

Lines (A) and (B) of Fig. 3 show the output signals received by the amplifier during the 
reading operation. These signals are a result of both the previously stored pattern and the 
new reading pattern. While there are four types of signal, one of which has an initial positive 
rise, arid the other three of which have a negative rise, only two of these signals are ordinarily 
used in the electrostatic memory system. 
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The high value of load resistance used with the pickup electrode tends to obscure certain 
factors important to an understanding of the problem. After a review of some of the pertinent 
properties of electrons striking insulated barriers, the output signals will be analyzed further. 

N!!·OF 
ELECTRONS 
EMITTED 

6-15 
VOlTS 

t 
A FEW EMITTED 
AT THE BEAM 
VELOCITY 

FIG. 5. Secondary-electron emission as a function of velocity of emission. 

The phenomenon encountered in the electrostatic memory system involves both the 
primary electrons of the beam and the secondary electrons which are cast away from the 
surface of the phosphor by the beam. Figure 4 shows one of the well-known fundamental 
properties of secondary electrons. This curve shows the ratio of the number of secondary 
electrons to the number of primary electrons (which cause the primaries to be emitted) plotted 
against voltage. The curve is mainly of interest to this paper in the section where it is sub-

~OLLECTOR DISTANCE NOT TO SCALE I 
COLLECTOR BEAM ~ COLLECTOR 

~ 

PHOSPHOR 

FIG. 6. Cross sections of electron beams. 

stantially above 1. Most of the tests were made in this region with voltages between 1,500 
and 4,000 v. 

Figure 5 shows a second fundamental property of insulating surfaces and their effect upon 
the behaviour of secondary electrons. This curve shows the distribution of secondary electrons 
as a function of the velocity at which they are emitted from the surface. Except for a few 
electrons emitted at the beam velocity most of the electrons are emitted at velocities corre­
sponding to between 3 and 15 v. These velocities are quite low compared to the velocity of 
the striking beam that causes the emission. Finally, few secondary electrons leave the surface 
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at right angles to the direction of the incident beam, the majority leaving at smaller. angles . 
to the incident beam. 

Figure 6 shows the cross section of a beam of electrons striking the phosphor on the inner 
surface of the screen. Potential distributions are set up in each of the elementary areas. 

POTENTIAL DISTRIBUTION 

ALTERNATE POTENTIAL DISTRIBUTION 
DOT CIRCLE 

FIGS. 7 (upper) and 8 (lower). Possible potential distributions around 
dot and circle. 

Secondary electrons are released in actordance with the principles just discussed. The 
secondary electrons travel to and are . collected by the collector plate. This collector plate is 
usually the Aquadag coating on the inner walls of the tube~ Other secondary electrons may 
fall back onto the surface of the screen. Since the beam arrives at the phosphor with a velocity 

(A) L', . 

(0 ) (F) 

(B) c:::;::: V 
L"-, .0. 

V 
(G) 

( E) 

L\ 
(C) ~ ~ 0, 

y 
FIG. 9. Sha pes of ou tpu t signals. 

corresponding to several thousand volts, the number of secondary electrons is greater than 
the number of primary electrons. Thus, the surface will not reach equilibrium at this point 
until the number of electrons that leave the surface and the number that arrive become equal. 

The potential distribution around the dot may be as shown either in the left-hand section 
of Fig. 7 or in that of Fig. 8. Although much of the literature discusses the distribution showrJ. 
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in Fig. 8, to the author's knowledge, no critical experiments have ever been made that would 
positively prove which curve describes the exact potential distribution. 

A truer picture of the electrostatic memory phenomenon was obtained by lowering the 
load resistance connected across the input circuit consisting of the electrode and the grid of 
the first amplifier tube. By so doing, it was found that the signal obtained when similar 
patterns are placed on top of each other has the shape shown in curve A of Fig. 9. The initial 
negative kick is caused by the arrival of the beam from the gun after the intensity grid is 
turned on. The transit time for the beam is about 0.01 Ilsec. This negative kick then subsides 
toward zero since the electrons piled up on the end of the tube are drawn off through the 
emission of secondary electrons until equilibrium is reached. This equilibrium results in a 
potential plateau under the bombarding beam where there are as many electrons arriving 
as leaving. This is possible when the potential plateau becomes, sufficiently positive that 
only some of the secondaries are knocked off the surface with sufficient velocity to reach 
the collector plate, allowing the remainder to fall back on the neighboring areas of the 
surface. 

From the time equilibrium is reached until the beam is turned off, there is a steady inward 
and outward flow of electrons to the screen maintaining a space-charge cloud between the 
spot and the collector. When the beam is turned off, the space charge is rapidly taken 
up by the collector. Since this negative space charge leaves the screen, a positive kick is 
induced in the electrode. All other signals obtained contain curve A as a component. The 
components added to curve A to produce the other signals are sudden rises with simple 
exponential declines. 

Curve C is obtained when a larger pattern is placed on a smaller one. The large positive 
kick occurs because most of the secondaries are drawn to the collector plate. Since the pote~tial 
plateau of the dot is at a lower potential than the collector and small in area, only a few 
electrons are robbed from the secondary flow to the collector. 

Curve B represents the exponential component obtained when a smaller pattern is placed 
on a larger pattern. Again, most of the secondaries go to the collector plate. But the desirable 
action would he for the secondaries to obliterate or cancel the circle as quickly as possible. 
Instead, the circle, in spite of its large area, collects electrons slowly since its potential plateau 
is lower than the potential of the collector. The secondaries that do fall on the circle do so 
mainly by virtue of the direction- of their emission. 

Thus, when a circle is put on a dot, there is a rapid net outward flow of electrons; while 
when a dot is put on a circle, there is a net inward but slower flow of electrons. The net 

-inward flow occurs in spite of the influence of the higher potential on the collector owing 
to the large area <?f the plateau of the circle, which attracts the properly directioned electrons 
away from the collector. In either case the change in plateau area and, therefo-re, the number 
of electrons to be exchanged to reach equilibrium is the same. Therefore, the positive signal 
will be large since the output-voltage signal depends on the time rate of change of charge. 
The negative signal will be small since the time rate of change of charge-is small. 
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Curve D is the sum of cur.ves A and B, while curve E is the sum of curves A and C. Curves 
F and G are obtained by using a high load resistance on the amplifier input. 

Two of the most interesting factors that cause destruction of the charge patterns are leakage 
and redistribution. Tests for leakage were conducted, and it was learned that the effective 
leakage may be considered negligible if the· period between readings is less than 0.1 sec. Even 
after several seconds the signal has diminished by only a few percent. Redistribution is the 
spraying of secondary electrons from adjacent areas during the writing or reading process· 
onto areas that have been previously charged. We have defined a· "redistribution ratio" as· 
the number of times the reading beam, with a certain duration, may operate adjacent to a 
particular spot at a certain distance before the signal that can be derived from the adjacent 
spot will have been degraded by more than by a certain percentage, say 10 percent. Experi­
mentation has shown that the degradation is not proportional to the number of times of 
reading but is proportional to the total integrated reading time. For efficient operation, a 
minimum time sufficient to establish equilibrium in reading and regeneration can be chosen. 
The total allowable reading time on one spot can be divided by this minimum time to give 
the number of times an area may be read without appreciably affecting the adjacent areas. 
This is the redistribution ratio. 

Since the process for reading the charged areas is a destructive one, immediate regeneration 
of the charges is necessary if it is desired to retain this information. As each spot is read out. 
from the memory tube, it is temporarily held in a flip-flop or other simple form of memory 
for one binary digit. and then if desired immediately read back into a cathode-ray tube. In 
this way, only one elementary memory or flip-flop need be used for each cathode-ray tube 
or group of tubes. In addition to this immediate regeneration, a systematic regeneration 
must be used. 

Such a systematic regeneration pattern might divide each regeneration cycle into two 
intervals. During the first interval any ·arbitrary spot is read and regenerated; during the 
second interval, one of the other spots on the tube will be regenerated as part of a regular 
systematic regeneration procedure. In such a system, the condition of most interest would be 
that in which the same spot is read 'during all the arbitrary reading periods .without losing 
the spot next to the arbitrary spot through redistribution. If there are 1000 spots on a tube, 
this requires a redistribution ratio of 1000 or better. Such a regeneration pattern utilizes 
50 percent of the operating time for the purpose of regeneration. 

If it is desirable to have less time in the memory for regeneration, a system of timing could 
be devised where two arbitrary spots are read in succession and then the systematic regeneration 
of a spot takes place. Such a system would cut down the time required for the systematic 
regeneration but would increase the intervals between regeneration of a particular spot and 
would require an improved redistribution ratio. 

Figure lOis a photograph of the second test model used for many of the tests conducted 
in the laboratories of the Eckert-Mauchly Computer Corporation. 

In the experiments carried out in England, small imperfections in the phosphor of the 
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cathode-ray tubes, due either to a hole in the phosphor or to the inclusion of particles of 
carbon, would occasionally make it impossible to remember on certain parts of the tube. 
Difficulties of this type have not appeared so far in the work here described, although experi­
ments on an extensive number of tubes have not yet been made. 

FIG. lO. Second test model of computer. 

It is believed that the dot-circle system is the most insensitive to screen imperfections 
because, first, it gives the largest signal, and second, there is no sweeping action in which 
the edge of the beam may encounter a small discontinuity produced by phosphor imperfection. 
While a sweeping action is used to generate the circle, the frequency of sweeping around this 
circle is so great (approximately 20 million times a second) that the lag introduced by the 
finite charging time of the elementary area, combined with the finite transit time of the elec­

trons, prevents the imperfections from having any effect on the shape of the output signal 
but simply changes its amplitude. Therefore, a system that has good output-signal amplitude 
used in connection with a cathode-ray tube in which the size of the imperfections is small 
compared to the size of an elemental area should be free of difficulty. According to Williams, 
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and others in this country, the size of an imperfection required to produce difficulty in those' 
systems in which slow sweeping is used might be smaller than an elemental area. It would 
seem that as long as the imperfection were not smaller than the edge sharpness of the moving 
spot, this difficulty might be encountered in a slow- or fast-sweeping system. By the same 
reasoning, other nonsweeping or fast-sweeping systems should be fairly free of difficulties due 
to screen imperfection, although they would· not be as good as the dot-circle system owing 
to the smaller output signal and various defects in its shape. 

A careful study has been made of the reading and writing time: that can be obtained from 
a dot-circle memory system using standard tubes. While special tube designs are being studied 
that would prop ably increase this speed, the present speeds of operation seem quite adequate 
for many uses and agree fairly well with expectations. These speed tests were made by putting 
down two circles in succession and then putting down two dots in succession in every elementary 
area and observing the effect on the shapes of the output signals that resulted from changes 
in the unblanking time. If this unblanking time were made too short, a loss in signal would 
be noticed, indicating that equilibrium had not been established. It was determined that 
a reading time of about 0.6 p,sec was desirable in order to avoid loss of signal, and that a 
writing time of about 0.8 p,sec was about the mini~um allowable for adequate erasure of the 
old charge. Since each reference to the memory would require a reading and a writing time, 
a time to position the beam and time for the various switching operations, a total·cycle of 
operation of about 2.5 to 3 p,sec is indicated. Although not mandatory, a regeneration cycle 
of another 3 p,secwould usually accompany the first cycle. Thus, a total time of about 6 p,sec 
for an operation of reading or writing or both is indicated. A read signal might be 'sampled 
and made available to an arithmetic element about 1.5 psec after the beginning of the cycle. 
Thus, 4.5 p,sec of this time might be used for computing. This memory might, therefore, be 
considered to have a latency time of 1 ~5 p,sec. In any case, the speeds involved are comparable 
with the fastest envisioned arithmetic elements. If this memory is used in a serial computing. 
system, a pulse period of perhaps 2.5 p,sec would be reasona.ble. About twice the speed could 
be obtained if the immediate regeneration were not interspersed but were separated into an' 
individual readi.ng and writing cycle. 

A study of the effect of tube diameter, acceleration voltage, and the best focusing procedures 
was made. In addition, as many as half a dozen different types of phosphor were studied. 
A summary of some of the results obtained follows. 

1. The acceleration voltage had a major effect upon the amount of storage in a single 
tube. The tests were made with a roster of 256 spots. The spacing between spots could be 
varied in such a way as to contract the entire pattern either vertically or horizontally on the 

. face of the cathode-ray tube. This spacing was acUusted while observing ·a particular spot. 
and coming back to the adjacent neighboring spot every other reading time a number of 
times equal to the redistribution time for which the test was made. Improvements greater 

. than two in the number of spots stored on a particular tube were obtained for a 75-percent 
increase in accelerating voltage when a redistribution ratio. of just two or three was required. 
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When a redistribution ratio of 1000 or more was required, as is common in practical application 
of the memory, an improvement of three or more was obtained. 

2. Since increases in voltage produce such a large improvement in the amount of storage 
that can be obtained, a study of the phosphors was made to determine which phosphor would 
allow the highest operating voltage. Two things were considered important. The phosphor 

FIG. 11. Assembly of plug-in cathode-ray tube units. 

should have a good secondary-emission ratio of the order of two or so at voltages safely in 
excess of the operating voltage in order that rapid functioning of the secondary cloud could 
be obtained. Secondly, the phosphor should be one that is easily made free of holes and that 
will not burn at high voltages. Tests of signal-reading and erasing ability showed that the 
P-I phosphor, operating at 3000 to 4000 volts, nicely met all of the requirements. 

3. Tubes containing almost similar guns of sizes 3, 5, and 7 in. using a P-I phosphor and 
somewhat over 3000 volts for acceleration were tested to find their total storage capacity. 
The 3-in. tube would store over 2500 spots, on the assumption that a 5- to lO-percent decrease 
in output signal due to redistribution is tolerated, and that the area for 256 spots can be used 
as the basis for extrapolations to the number contained in the total roster area. On the same 
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assumption, the 5-in. tube would store over 3500 spots and the 7-in. tube would store about 
5000 spots. Thus, while the larger tubes will store more information per tube, it is interesting 
to note that where space is a factor the smaller tube would be indicated. For example, the 
7-in. tube stores only about one-third as many spots per unit volume as will the 3-in. tube, 
even though it will hold about twice as many spots. 

FIG. 12. Auxiliary equipment. 

At the present time the Eckert-Mauchly Computer Corporation is engaged in setting up 
a complete memory involving more than 100 cathode-ray tubes suitable for use with a high­
speed computer. This equipment includes several counters and other devices that allow for 
tests simulating the operation of what is essentially a complete memory system. The cathode­
ray tubes are mounted in individual plug-in units. Each unit contains all the adjustments 
necessary for focusing and positioning the spots, and so forth. This plug-in assembly is rather 
important since one of the objectionable features of this type of memory is the multitude of 
adjustments required with each cathode-ray tube in order to allow for their rather wide 
manufacturing tolerances. However, since all of these adjustments are confined to the plug-in 

unit, a number of pretuned units can be held in reserve. These can be readily substituted for 
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an inoperative unit in about 1 minute, allowing any necessary readjustments of the defective 
unit to be made without serious interference to operation. 

Figure 11 shows an assembly of six such units mounted in a framework with the necessary 
switching and deflection equipment. These frameworks can be stacked to relay-rack height, 
which allows for cabinets containing about 48 tubes to be assembled from these basic frames. 
A computer might use one or more such complete cabinets, depending upon the memory 
size required. 

Figure 12 shows the complete auxiliary equipment, including power supply. The actual 
equipment for the meIilOry requires less than haJf of the cabinet space shown. The additional 
space was left to allow this test equipment to be expanded into a laboratory model of a com­
puter if desired. As it presently stands, this equipment will permit the study of tube life, 
maximum practical spot contents, maximum practical time between regenerations, and the 
degree to which readjustments, may be required because of tube aging. Also, the effect of 
any imperfections in the phosphors may be studied on' a really practical scale. Further, since 
regulators are included for all voltages affecting the cathode-ray tube operation, it will be 
possible to determine just which voltages must be regulated under practical operating condi­
tions. In the present arrangement,· regulated voltages appear in cases where 'calculations 
indicated a marginal requirement. Since the equipment is adjustable in pulse rate, experi­
mental determinations of a reliable speed of operation can be made. Future reports will 
cover the findings of these further tests and also will describe several computing systems for 
which this memory is well adapted. 
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THE DIGITAL COMPUTATION PROGRAM AT MASSACHUSETTS 

INSTITUTE OF TECHNOLOGY 

JAY W.' FORRESTER 

Massachusetts Institute of Technology 

In this paper I wish to summarize the digital-computation actIvltles at Massachusetts 
Institute of Technology. These will include, the machine-development work on the Whirlwi,nd 
I computer, the digital-computer educational program at M. I. T., and a few thoughts on 
future d~rection of work in digital computers. , \ 

The Whirlwind I computer is a prototype electronic computer which, following the 
precedent established by radio-frequen~y engineers, would probably be described as ultra 
high speed. We are aiming at the speed range of 10,000 to 20,000 complete arithmetic 
operations per second. Such speeds seem to be imperativ~ for the application of digital com­
puters to many of the more interesting control problems. Sp~ed requirements dictate a 
parallel-type computer, and a sufficiently short storage-access time is provided thus far only 
by' electrostatic tu~es. 

The computer is working in a new speed range and must be looked upon as a prototype 
design. As such, a short register length has been used to keep the first model as small as possible. 
The type of single-address instruction order used requires 16 binary digits of register length, 
and this was selected for the machine. Such a length is adequate for exploratory studies in 
control applications. In most mathematical work this short length would be a nuisance and 

'double-length operations will often be employed until such time as the register length is 
expanded. Experience indicates that the choice of a short register was wise. Much has been 
learned sihce the design was frozen, and simplifications and improvements should be made 
b,efore more equipment is built. 

There has b«en no attempt to make a compact, small machine this first time. Flat panels 
on vertical- racks permit complete access to both sides of electronic panels and is probably 
cutting to a third the time that would otherwise be required for installation and prelinlinary 

testing. 
The design of Whirlwind I was begun two and one-half years ago at about the time of 

the first Harvard Symposium on computers. Prior to that time there had been a year of 
study of serial-type computers. A high-speed 5-digit parallel arithmetic element has been 
operating two years and giving valuable information on circuit perforinance and reliability. 

The Whirlwind I computer might be divided into four parts: the arithmetic element, 
central control, storage, and terminal equipment for input-output. We have followed the 
design in that order. Most people in high-speed electronic computers have chosen to begin 
with the terminal equipment and work from there toward the central control of the machine. 
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We have followed the reverse order, designing the central control and arithmetic element first 
and leaving terminal equipment until the last. The input-output, it seems to us, is much mor~ 
a function of the ultimate application of a computer like Whirlwind I than is any other part 
of the device. For some types of scientific work, page printing of results is sufficient. For many 
engineering jobs the easy, automatic plotting of curves is a necessity. In control applications 
the computer must have direct access to devices for converting to the analog quantities of the 
associated physical world. In many jobs an erasable external medium such as magnetic 
tape is required, and in others not. Therefore, it seems that terminal facilities may require 
continual adding of new equipment to the basic heart of the system which is the computer 
itself. Plans are not definitely formulated fot the uses of Whirlwind I, and most of the terminal 
equipment will be fitted into those future plans. Initially we expect to have available the 
Eastman Kodak photographic-film units that were described at the first Harvard Symposium. 
These are being designed to read or write a thousand lines of information per second and, in 
addition, a duplicate checking channel. Each line contains one word l~ngth. 

Turning now to the computer itself, which has received the principal attention of the 
laboratory, the arithmetic element and central control are both operating. The arithmetic 
element was installed in January 1949. and has been running since. At present it is being 
use.d as a tool for the preliminary te'sting of the central control. The central control for the 
execution of all the 32 machine orders was installed in June, 1949 and is now being tested. 
No unusual difficulties have been encountered in obtaining desired performance. Storage 
will be'the last part of the machine installed. Storage control circuits are now being connected 
and laboratory pilot quantities of tubes for 16-by-16 density are being built. These tubes still 
operate somewhat more slowly than desired. 

A year ago last summer at the University of California Symposium, I estimated that 
Whirlwind I would be assembled by December 1949. It looks now as if this should be extended 
about 10 percent to February 1950. After assembly there will be a period of learning to use 
the equipment before one can really claim that it is in productive operation. 

Figure I shows 'the switch and matrix section of Whirlwind I central control. Figure 2 
is the test-equipment center used during installation. 

The educational program in digital computers at M.LT. is centered in four laboratories 
of the electrical engineering department. The differential analyzer is in the Center of Analysis 
directed by Professor S. H. Caldwell, who teaches a course in machine aids to computation. 
Professor Z. Kopal is in charge of the computation laboratory for the study of numerical 
processes and the operation of a hand computing center. A punched-card installation is 
operated by the Division of Industrial Cooperation under Mr. Frank Verzuh. The Whirlwind 
I digital computer is being constructed in the Servomechanisms Laboratory. 

M.LT. does not yet offer a packaged advanced study program in digital computation as 
does Harvard. However? available from the courses in the graduate school is a fairly complete 
master's degree level study selection. It is perhaps best to study numerical analysis and digital 
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FIG. 1. Crystal switch and control-matrix section of \Vhirlwind I central control. 
The row of racks on the extreme right contains part of the arithmetic element. 
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computation with some preferred field of application in mind . The student of mathematics, 
physics, fluid flow, or statistics and operations analysis can add a study of digital computation 
techniques to his curriculum. The student in servomechanisms, meteorology, gas turbines, 
or aeronautics can add to his work the necessary mathematical analysis and machine-compu­

tation courses to allow the use of these tools in his special field. 

FIG. 2. Test center used during Whirlwind I installation. Power, marginal check­
ing, and air-conditioning controls are on the right. Indicator lights in the center section 
connect to flip-flops in the computer. Both oscilloscopes have double-beam tubes con­
nected to amplifiers, and remote probes for examining wave forms anywhere in the 
computer room. The remaining panels are computer test equipment used to generate 
any desired sequence of video testing pulses. 

During part of the spring term, Mr. W . Gordon Welchman taught logic and coding for 
a digital computer and how to set up problems for automatic solution. This work will be 
expanded when Whirlwind I is operating and when arrangements are made to use it for 

student laboratory. 
A major part of the M .LT. training in digital-computer techniques is now made through 

the academic staff program. About a third of the Project Whirlwind · staff is working toward 
advanced degrees. The men are on nominal full-time appointment which permits their 

taking two graduate courses. Fifteen to twenty research theses per year are related to the 
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digital-computer program. Last year these included electronics, such as studies of flip-flop 
circuits and secondary emission in vacuum; several were on trouble-location inethods in digital 
computers; and others were in problem coding. One of the latter on the naval architecture 
procedure of Intact Stability Study of surface ships developed the digital-computer coding to 
go automatically from hull cross section to righting moments' at various water lines and ship 
displacements .. Another thesis student studied· the use of an automatic digital computer in 
solving the alternating-current power-system problem for which the a-c network· analyzer is 
commonly used. Now that machine construction is nearing completion and computer appli­
cations begin to occupy more of the staff time, thesis studies are less often on circuits and more 
otten on computer coding and applications. Last year a doctorate thesis dealt with the theory 
of sampling servomechanisms where data from a digital computer are transmitted inter­
mittently to control an external physical system. 

Crystal balls are a little cloudy these days,' but we might discuss the future digital-computer 
program at M.LT. This is as diversified as the number of interested departments and labora­
tories. In the Servomechanisms Laboratqry a· principal interest is in using digital computers 
in automatic control. This includes simulation work for which Project Whirlwind was initially 
started by the Navy. Another long-range potential application of digital computers is in the 
control of air traffic, which M.LT. is now studying for the Air Force. Digital computers in 
control will require extensive paper studies of methods and utility; and in the laboratory 
must be developed new types of terminal equipment and simple, practical conversion devices 

, between digital and analog information. 
A little closer at hand, I hope we can work on ways to make digital computers accessible 

to a wider group of users. There is an amazing number of technical people, from routine 
engineering offices to research scientists, who should be able to save time and money by using 
automatic ·computation. The idea of a centralized digital computer for the common use of 
many clients brings cries of anguish from those who hope to own machines for their private 
use. However, most potential users can have no hope of privately owning such facilities, or 
~stablishing training, and machine administrative procedures, which will make the' c~ntral 
machine a success. We expect to approach this cautiously by beginning to work with other 
groups at M.LT., first the other laboratories in the M.LT. electrical engineering departme!1t, . 
and to expand as conditions warrant. . 

Another untouched field is in the industrial applications of digital control. Thus far, 
most computer work has been sponsored by military research. The military uses are more 
obvious and urgent and, to date, few; but government groups have been able to invest in 
this long-range research. Already commercial concerns are actively working on the accounting 
and bookkeeping possibilities of automatic computers. Other areas are untouched, and I hope 
M.I.T. can extend its work of developing the theory of linear servomechanisms into nonlinear 
control using digital computers. Such things as the operation of chemical plants and calculating 
the plant balance of oil refineries are attractive possibilities. The Servomechanisms Laboratory 
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is now working with one company on ,digital control in a manufacturing process, although this 
does not involve a complete digital computer .. Another indirectly related project is being 
sponsored by the Carnegie Foundation on the logic and coding of bibliographic information. 
Here methods of doing indexing by the association of ideas rather than in the elementary 
manner of card catalogs will at least require flexible computing facilities for the research, if 
not for the ultimate location of information. Thus far not all the time of Whirlwind I is 
scheduled for use, and I believe arrangements for any legitimate u~e can be made with the 
Navy. I say legitimate to exclude certain obvious statistical studies in connection with horse 
racing and the stock market. Whirlwind I should help to assess the value of digital computers 
in many proposed but as yet untried applications. 

I expect that Whirlwind I will be available for exploring new ways of using digital com­
puters .. It will be most useful if it carries new applications to the point where success is 
demonstrated. Other computers designed and located elsewhere should then take over routine 
work as the need develops, in order that the M.LT. laboratories may be free to continue 
explorations in new fields. 
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THE RAYTHEON ELECTRONIC ·DIGITAL COMPUTER 

RICHARD M. BLOCH 

Raytheon Manufacturing Company 

This paper describes the essential characteristics of the electronic digital computers now 
being designed and constructed by the Raytheon Manufacturing Company for the Special 
Devices Center of the Office of Naval Research; a machine having similar features is also 
being developed by Raytheon for the National Bureau of Standards. 

I should first like to stress certain considerations that governed the design of these machines. 
It is clear that whenever the specifications for an electronic digital computer are set forth, 
certain minimal speed requirements are given, depending upon the appliCation for which 
the computer is primarily intended. However, it behooves the machine designer to meet 
these requirements in such a way that the computer possesses a desirable speed balance among 
its several major components. Thus, there would appear to be little sense in designing an 
arithmetic unit capable of operating at very high speeds if the information required by the 
arithmetic unit cannot be obtained from the internal or external memory at a correspondingly 
high speed. As a matter offact, the purchaser ofa digital computer is not particularly interested 
in the speed of any single component of the machine. His interest obviously rests in the time 
required by the computer to complete successfully the solution of those problems that will 
most frequently be placed upon the machine. 

A· second consideration is that of reliability of operation. If any considerable time must 
be spent in repair and maintenance of a digital computer, the effective speed of the machine 
may easily be reduced by a factor of two or three, and. the patience of the operating crew 
reduced by an even greater amount. Time spent by the designer in improving the reliability 
of the machine's components will be returned many fold when the computer is placed in 
operation. However, even though the error rate can be substantially reduced by stressing the 
reliability aspect in the design stage, errors will nevertheless occur. It is at this point that 
the diagnostic capabilities of the computer assume an important role. The locating of a 
machine fault may be a very serious and discouraging matter. There seems to be a popular 
misconception that when an error occurs, the failure can be traced to the arithmetic unit. 
This, unfortunately, iS,far too cooperative a spirit to expect from such a complex device. 
Whereas it is true that the primary task of the machine is that of performing the fundamental 
arithmetic operations, there are multitudes of operations of a nonarithmetic nature that are 
taking place within the computer~ As an illustration, consider the case wherein an incorrect 
product is obtained by the machine, and suppose this fact is detected by some programmed 
or automatic checking device. l'fow, let us inspect a few of the possibilities. (1) The multi­
plication may have been performed incorrectly. (2) Although the multiplication was executed 
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properly, the product read-out circuit may have failed. (3) The transmission of either the· 
multiplier or the multiplicand to the arithmetic unit may have been in error. (4) Either of 
the factors may have undergone a change while stored in the memory unit. (5) Indeed, a 
multiplication may never have been performed, but rather an addition or a division~ It is of 
interest to note that only the first-mentioned failure involves an error in the process of arith­
metic combination. The others are attributable to failures in the control and transmission 
networks. Clearly then, from the diagnostic point of view, if checking means are to be employed 
at all, it is important that the entIre machine-not one particular unit-be under the sur­
veillance of a comprehensive checking system. hi the computer to be described shortly, an 
automatic self-checking system is employed throughout the machine to monitor all input, 
output, inter-unit, control, and arithmetic networks. 

It should also be stated that from the mathematical viewpoint this same checking system 
which serves so vital a function for diagnostic purposes performs an invaluable service in 
halting the solution of a problem at the instant an error is detected. As problems of greater 
complexity are introduced to electronic digital computers, it becomes essential to stop the 
machine immediately lest several hours of erroneous computation ensue. Programming 
checks, such as performing a multiplication to check a division, or indeed solving the problem 
a second time utilizing an entirely new set of program orders, have distinct disadvantages 
which precluded the possibility of their use in the Raytheon computer. If such checks are 
to be applied conscientiously, then the time for solution is more than doubled and as many 
machine errors are to be anticipated in the execution of the checking operations as are to be 
expected from the original programming. Furthermore, from the diagnostic viewpoint 
programmed checks appear to be exceedingly weak. 

A third design consideration that should be mentioned concerns programming and problem 
preparation. The computer to be described has been designed with a view toward reducing 
the time and labor involved in programming a problem for· machine computation. Whereas 
theoretically it is possible logically to reduce all machine operations to a few basic processes, 
under such a scheme the program coder must resign himself to a task requiring an undue 
waste of time and mental effort-such gymnastics should be relegated to the sphere of the 
machine's operation. In general, the programming' should closely correspond to the original 
mathematical formulation of the problem. As far as possible, the identity of what we under­
stand as a single mathematical operation should be preserved in the programming to the 
extent that that operation is represented as a single order in the 'programming routine. It 
has been our thought that programming should be a straightforward and natural process­
not one involving elaborate planning, numerous restrictions, and the continua~ use of mathe­
matical ingenuity. It is in the formulation, in terms of machine processes, of the complex and 
as yet unsolved problems of mathematics and its kindred sciences that the mathematical talent 
of today might better spend its energy. 

With the foregoing considerations forming the background for the machine's design, we 
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shall proceed with a description of the computer. The Raytheon machine operates in the 
true binary scale of notation, having a basic precision of 30 binary columns; all 30 columns 
are located to the right of the binary point. Information can, however, be accepted by 'or 
transmitted from the machine in decimal as well as binary notation. In the case of decimal 
numbers, each digit is represented by its four-column binary-coded-decimal equivalent. 
Conversion of decimal numbers to binary, as well as the inverse conversion from binary to 
decimal scale, is accomplished within the arithmetic unit of the computer. In standard 
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operation, a number is stored as a positive absolute value with proper algebraic sign and to 
a precision of 30 binary columns. Numbers of 60 binary digits are stored as a pair of standard 
numbers, and are processed in the arithmetic unit through the use of double-precision 
operations. 

Floating-point operation is possible in this computer, and when this mode of operation 
is utilized numbers are stored with the first significant digit resting in the second bina-ry place; 
the appropriate exponent on base 2 is stored in a separate memory position. 

Each memory position of the computer has a capacity of36 binary digits, and this sequence 
of digits is termed a word, which is the basic unit of information storage. Figure 1 shows the 
allocation of information in a number word. Pulse positions 7 through 36 hold the absolute 
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value of the number; the first binary column is located at position 36 and the thirtieth binary 
column lies at position 7'. Pulse position 6 contains the algebraic sign--a 1 if the number is 
negative, a 0 if it is positive. Positions 2 through 5 contain the transfer weighted count of· 
the number, which will be defined shortly; position 1 is blank. 

Programming orders are stored in the internal or external memory of the computer in . 
two parts, termed the first apd second order words. The two half-orders are always stored in 
adjacent memory positions, and when the first half-order is called forth for control purposes, 
the second half-order automatically follows in sequence. Positions in the memory are numbered 
successively in binary notation, and these numbers will henceforth be n~ferred to as addresses. 
A four-address programming system is employed in the computer. The first two addresses 
specify the positions in the memory where the operands for a given arithmetic operation are 
to be found. The third address indicates the position in the memory to which the result of 
the arithmetic operation is to be transmitted. Finally, the fourth address specifies the memory 
position wherein is located the next order to govern the machine's operation. The operation 
code, which indicates which of the 30 arithmetic operations is to be performed, also forms 
part of the information residing in each order. The details of the allocation of information 
in the first and second order words are also shown in Fig. 1. The line and word indications 
in each address in the diagram will be explained when the memory arrangement is discussed 
in more detail. All information in the order words is of course represented in binary notation. 
Other worq.s may be combined in the arithmetic unit in the same fashion as number words. 
This feature, together with the fact that order wo;ds are stored in the regular memory units, 
permits 'a high degree of flexibility in programming which would not otherwise be possible; 
frequently, the number of orders required to program a problem may be reduced substantially. 
Furthermore, certain routines such as interpolation may be performed very rapidly, and 
without recourse to hunting techniques. 

All storage of words in both the internal and external memory and all inter-unit transfers 
of words are checked by meo.ns of a weighted count, i.e., a weighted sum of the digits of the 
informational portion of the word (including the algebraic-sign digit if the word is a number 
word). As the diagram shows, this weighted count is stored with the number or half-order 
and is called the transfer weighted count. The weights chosen for the sum are the numbers 
1, 2, 4, 1, 2, 4, 1, 2, 4, etc., which are assigned to the successive digital positions from right to 
left. This weighted binary sum is computed modulo 16 and is then modified by the addition 
of unity; thus a number and its weighted count cannot both be zero simultaneously.. With 
this modification, a null word is not a valid word, and the complete failure of a gate or other 
device controlling the entire· transmission channel will be detected.' Since the sum is computed 
modulo 16, obviously only four digital positions are required to represent the transfer weighted 
count. The transfer weighted count is automatically constructed and checked when the 
numbers and orders are being prepared for m.achine entry by the problem preparation unit. 
Thenceforth, whenever the number word or order word is transferred from one machine 
unit to another, a new weighted count is constructed; failure of this new count to check with 
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the original count stops the machine, and an indication of this particular error is given to 
the operator. The transfer weighted count is not completely foolproof- no check is, for that 
matter. However, the extraordinary power of the count as a checking means rests in the very 
peculiar array of compensating and simultaneous errors that must occur in order to invalidate 

the check. 

FIG. 2. Magnetic-tape unit. 

The external memory consists of four magnetic-tape units, each having a storage capacity 
of approximately 100,000 words. A diagram of one of these units is shown in Fig. 2. These 

devices may be used as input units to supply numbers and orders to the machine, or as output 
units for the recording of intermediate and final results. Six-channel plastic tape coated with 
iron oxide is used as the magnetic medium, and tape having a width of approximately 0.5 in. 
and a thickness of 0.003 in. In each of the six channels, pulses are recorded with a density 
of 100 pulses to the inch, and the over-all reading and recording rate of each magnetic-tape 
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unit is roughly 400 words per second, corresponding to a tape speed 0[30 in.jsec. Recording 
upon or reading from the tape is performed in blocks of 32 words, each block occupying 
somewhat more than 2 linear inches on the tape. To each block of words on the tape is 
associated a l2-column binary number which is termed a "block number." The 12 binary 
indications are permanently placed on the back of the tape using a system of horizontal 
markings which are sensed photoelectrically during the hunting process; two sets of such 
markings are used-one when hunting for a block number in a forward direCtion, the other 
when hunting in a backward direction; in this way the number of reversals of tape motion 
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is held to a minimum. Separate markings are also used to indicate the beginning and end 
of each block of words. These permanent markings are not affected in the process of magnetic 
erasure, and they provide a means for visual inspection of the block numbers whenever this 
seems desirable. 

As shown schematically in Fig. 3, there are two 32-word mercury delay lines or reservoirs 
associated with each tape unit; these reservoirs are used as buffers between the tape mechanism 
and the mai~ electronic part of the machine. The external memory units respond to four 
distinct commands: (1) Tape Read, (2) Tape Record, (3) Hunt-Prepare to Read, (4) Hunt­
Prepare to Record. In the Tape Read operation, the 32 words in the lower reservoir are 
transferred at high speed to the upper reservoir from which point the words are subject to 
call at any future time and in any sequence whatsoever by the central control. The addresses 
assigned to the upper reservoir are very similar to those that iden~ify the internal memory 
positions; and, in fact, th·ese upper reservoirs may be utilized as additional internal mem'ory 
capacity. When the lower reservoir has been emptied in the course of the Tape Read operation, 
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the tape unit proceeds to fill this reservoir with the next block of 32 words. The computing 
routine of the machine, however, does not cease during this tape-to-reservoir transfer. If 
now a second Tape Read order occurs before the lower reservoir has been filled, then the 

machine stops and awaits the conclusion of this process. It can be seen, however, that if the 
mean rate of call for new words from a single external memory unit does not exceed 400 words 
per second, then no time is lost as a result of the tape-reading process; and the machine 

effectively possesses a high-speed internal memory capacity of several hundred thousand words. 
In the case of recording, the words to be recorded are transmitted to the upper reservoir 

FIG. 4. Four-line mercury tank. 

by the arithmetic unit in the course of the 

computation; here again, this reservoir re­
ceives words in the same fashion as any of 
the regular internal memory positions. 

Upon receipt of a Tape Record order, the 
contents of the upper reservoir are shifted 

at high speed to the lower reservoir, where­
upon the computer is free to proceed with 
its computa tional routine. Meanwhile, the 

contents of the lower reservoir are recorded 
upon the tape at a rate of 400 words per 
second. If a second Tape Record order is 

called before the lower reservoir has been 
emptied, the machine is stopped awaiting 

the completion of this process, but, once 
again, this will occur only if the mean rate of 
words to be recorded on this one unit exceeds 
400 words per second, and this situation 
should occur very infrequently. 

The Hunt-Prepare to Record order causes the particular external memory unit called 
to hunt for the block number resting in a special one-word external memory storage position 

known as the Hunt Register. When this block is found on the magnetic tape and verified 
through the use of the weighted count check, the tape unit stops and is now prepared to 
record at the proper block position . 

The fourth external memory order, namely Hunt-Prepare to Read, is executed in sub­
stantially the same manner as the hunt operation just described. Here, however, when the 

proper block is located and verified, two successive blocks of 32 words are then read into 
the upper and lower reservoirs respectively, and the machine is prepared to use this information 
directly without further delay. Figure 4 shows a four-line temperature-controlled mercury 
tank having dimensions of approximately 6 in. on a side; this tank contains the upper and 
lower reservoirs associated with each of the four external memory units. 

The internal memory of this computer consists of a set of 32 circulating mercury delay 
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lines operating at a pulse repetition rate of approximately 3.78 megacycles per second. Each 
line is capable of storing 32 words of 36 binary digits each. Thus, the internal memory has 
a total capacity .of 1024 words. Words are stored serially and are transmitted in a pulse-by­
pulse fashion to the other units of the machine. The time during which one word is made 
available for transmission is'termed a minor cycle, having a time duration of about 9.S flsec. 
One circulation of the delay line requires 32 minor cycles, and in this time interval each. 
word stored in the line is available for transmission precise~y once. The minor cycles are 
numbered in binary notation successively from 0 to 31, and each number identifies a word 
position in the line. Furthermore, the 32 delay lines, which are all in synchronism, are also 
numbered from 0 to 31 in binary notation. Thus, the number of a delay line and the number 
of a minor cycle together completely identify a word position and constitute what we have 
previously defined as an address. Although 10 binary digits suffice for the representation of 
each internal memory position, an eleventh digit is also used; this permits addresses to be 
assigned to the 128 additional positions located in the upper reservoirs of the external memory, 
as well as certain special one-word storage positions such as the Hunt Register. 

Information is ~ever erased from a memory position unless a new word is specifically 
transmitted to that position, at which time the erasure of the former contents occurs auto­
matically~ 

The mercury lines have undergone extensive testing for the reliability of recirculation, 
read-in, and read-out; the results have shown that these lines will meet successfully the high 
reliability requirements that have been placed upon the computer. 

The central-control unit may be described as the nerve center of the computer. It is the 
duty of this unit to extract programming orders from the memory at the proper time, interpret 
them accurately, perform the appropriate selections, and verify the fact that the order has 
been correctly executed. 

Central control must select information from the memory in accordance with the line 
and the word numbers that form each address. The proper line is chosen under the control 
of a line-selection matrix. A check is performed to ensure that this selection was not in error. 
Whenever one of the memory lines is selected by the matrix, the binary identification number I 

assigned to that line is generated automatically. This identification number or tag is compared 
. with the portion of the address that governed the original selecting process, and any discrepancy 
will indicate a false selection; the machine stops at this point and the operator is given an 
indication of the cause of the failure. 

For each address, another selection must be made under the jurisdiction of the central 
control-namely, the word selection deter.mined by the word-number section of the· governing 
address. At the beginning of the appropriate minor cycle, a pulse is transmitted to the memory 
gates permitting a word to be read from or into the appropriate word position of the line that 
has already been selected. To check that this temporal selection was performed correctly, an 
additional mercury line is employed which is in synchronism with the other lines of the memory 
unit. In each of the 32 word positions of this word-check line, as it is termed, is contained 
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the binary code which is associated with that particular word position. At the instant when 
a word selection is made from any of the information lines, the read-out gate of the word-check 
line is also activated, and the appropriate binary number is sent forth to the central control. 
If this number agrees with the word-number portion of the governing address, a powerful 
check is obtained which ensures that the desired word-time selection was properly performed. 
Although the line and word selections are known to be correct, it is still possible that the 
information within the word has undergone a change while stored in the memory. This 
possibility is guarded against. by the application of a transfer-weighted:-count check. In the 
case of order words, this check is performed by central control, while mutations in number 
words are detected by the arithmetic unit before any arithmetic process occurs. 

The selection of the proper arithmetic operation in accordance with the operation code 
of the order is also, logically, a function of the central-control unit. This selection is performed 
by means of an operation code matrix; however, t6 preclude the possibility that the arithmetic 
unit will misinterpret the operation to be carried out, a check-back with central control is 
initiated. 

In accordance with the tentative operation signal received by the arithmetic unit, the 
code corresponding to this operation is transmitted to central control for verification. Only 
if this new code corresponds to the operation code called for in the governing order, does the 
central control notify the arithmetic unit to proceed; otherwise, the appropriate error signal 
is flashed to the operator, and the computer's operation ceases. Generally speaking, any 
deviation from proper performance on the part of any of the machine's units comes under the. 
cognizance of the central control. 

This computer operates in a variable-cycle mode of operation whereby each "new function 
to be performed by the machine is initiated by the successful completion of the previous 
function. As a result, the total time for a machine operation is not fixed, but will vary with 
the exigencies of the particular order being performed. Thus, in determining the speed of 
the machine, the mean time consumed in the performance of a complete order must form the 
basis of such calculations. 

Since there is only one line-selection matrix in the computer, one might expect that the 
average time required for a memory selection would be approximately 16 or 17 minor cycles; 
there being 32 words in· each line. However, by means of a system of anticipatory selection, 
the central-control unit is capable of reducing this average time substantially. Essentially, 
the four addresses are treated in pairs for selection purposes, and the address that is· capable 
of being selected with the least time delay is chosen; thus address 2 may be selected before 
address 1, or address 4 before address 3, depending upon the time relation existing between 
the word-number parts of the addresses. Such possible inversions of the sequence of selections 
have no effect upon the proper execution of the programming order. 

In some operations one or more of the addresses may be void; also, certain special addresses 
may occur that correspond to one-word storage positions. In the first case, the central control 
by-passes the selection completely; in the second case, advantage is taken of the fact that the 
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word is available for transmission during every minor cycle. In both ca,ses, further substantial 
reductions in memory reference time are accomplished. 

The arithmetic unit of the Raytheon computer consists of the necessary equipment for 
the execution and checking of the various arithmetic operations. The unit is designed for 
parallel operation, thus maintaining the desired speed balance among the various units of 
the machine. A small checking unit operates simultaneously with the main unit; this checking 
unit combines quantities known as arithmetic weighted counts, and the fulfilment of certain 
relations involving these counts provides a check upon the operation of the main arithmetic 
unit. The method by which the arithmetic weighted count of a binary number is derived 
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is shown in Fig. 5. This count is defined as the weighted binary sum of the digits of a number, 
where the successive weights are 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, etc., applied from the right to 
the left, beginning with the lowest-order column of the number. In Fig. 5, the count has 
been applied to the 30-column binary number x, and Xc indicates the resultant 7-column 
binary number which is the arithmetic weighted count of x. It should be noted that, unlike 
the transfer weighted count, no reduction modulo 16 is performed. 

Figure 6 shows the checking identities that are applied to the four basic arithmetic opera­
tions. The subscript c denotes the arithmetic weighted count of the quantity to which it is 
appended. It is seen that in each case an invariant result is obtained which is independent 
of the values of X, Y, and Z; as indicated, the checking identity will produce the value 31; 
or in the binary system a sequence of five 1 's, provided the result Z obtained in the main 
arithmetic unit is correct. 

In Fig. 7 is given a list of the 30 operation codes that will be employed in this computer. 
The column headed "Binar/' shows the actual sequence of digits as they occur within 
the machine in the operatio,n-code section of an order. However; "in, order to simplify the 
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programming procedure, all orders are coded in the octal notation; and, as a matter of fact, 
the programmer need not concern himself with the equivalent binary notation, since all 
addresses and operation codes are prescribed beforehand in the octal system. In this system 
the binary columns are grouped three at a time, and t~ the eight possible configurations of 
the three binary digits there corresponds one of the eight possible octal digits-O through 7. 
It should be noted that in terms of total digits required for number representation, the octal 
system closely approaches the decimal system in efficiency. ,As a further aid to the programmer, 
the operation codes are arranged so that the first octal digit denotes a certain family of related 
operations. Thus, where the first octal digit is 0, addition or subtraction is indicated; 1 denotes 

I. ADDITION x + Y = Z 

2. SUBTRACTION X - Y = Z 

(I ZC - (Xc - Yc ) 1+ 31)c _ 31 

3. MULTIPLICATION X· Y = Z 

'( I ( Xc· y c ) c - Z c I + 3 1 ) c _ 3 1 

4. DIVISION X/V = Z + R/Y 

(I(Yc • ZC>c +Rc-xcl+31)c= 31 

FIG. 6. Checking identities. 

multiplication or division; 2" a transfer operation; 3, a shifting or extraction process; 4, the 
two substitution operations; 5, the branch' operations; 6, the floating-point processes; and 
7, the codes that pertain to the external memory units. 

Space does not permit a complete description of each operation; however, Fig. 8 shows 
the manner in which each of six representative operations is programmed. In addition, the 
address of the addend is placed in the Address 1 position, that of the augend in the Address 2 
position; the addition code 01 is inserted in the Operation Code position. The address to 
which the sum is to be transmitted is located at the Address 3 position. If the result is to be 

'used immediately in the next operation, and if there is no need to transmit this result to the 
memory, then the third address position may be left void, and the result maybe called forth 
in the next operation through the use of a special address. However, whether the third address 
is void or not, the result of the present operation remains available in a special one-word 
register of the arithmetic unit, and is subject to call by employing the above-mentioned special 
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OPERATION 

ADDITION 

ADDITION (DOUBLE - PRECISION - PART I) 

ADDITION (DOUBLE - PRECISION - PART 2) 

SUBTRACTION 

SUBTRACTION (DOUBLE-PRECISION - PARTI) 

SUBTRACTION (DOUBLE -PRECISION - PART2) 

MULTIPLICATION (TRANSMIT HIGH ORDER WITH ROUNDOFF) 
MULTIPLICATION (TRANSMIT HIGH ORDER NO ROUNDOFF) 
MULTIPLICATION (TRANSMIT LOW ORDER) 
DIVISION (QUOTIENT NOT ROUNDED - OFF; REMAINDER AVAILABLE) 
DIVISION (QUOTIENT ROUNDED - OFF) 

TRANSFER (NORMAL) 
TRANSFER (POSITIVE ABSOLUTE VALUE) 
TRANSFER (NEGATIVE ABSOLUTE VALUE) 
TRANSFER (SELECTIVE) 

SHIFT (CONTROLLED) 
SHIFT FACTOR (NORMAL) 
SHIFT FACTOR (SQUARE ROOT) 
EXTRACTION 

SUBSTITUTION (ADDITIVE) 
SUBSTITUTION (SUBTRACTIVE) 

BRANCH (NORMAL) 

BRANCH (EQUALITY SENSING) 

ADDITION (FLOATING) 
SUBTRACTION (FLOATING) 
MULTIPLICATION (FLOATING) 

TAPE RECORD 

TAPE READ 
HUNT - PREPARE TO RECORD 

HUNT - PREPARE TO READ 

FIG. 7. Operation codes. 
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BINARY 

000001 

000010 

0000 I I 

o 0 0·1 00 

000101 

000110 

001000 

001001 

0010 10 
001 I 10 

001 I I I 

o I 0000 

010001 
01'0010 
o I 001 I 

o I 1000 

o I 10 0 I 

o I 10 10 

o I I I 10 

100001 
I 001 00 

I 0 I 000 

I 0 I 001 

I 100{)0 
110001 

110010 

I I I 000 

I I I 001 

I I I 0 I 0 

I I I 0 I I 

OCTAL 

01 

02 

03 

04 

05 

06 

10 

I I 

12 
16 

I 7 

20 

21 
22 
23 

30 
31 
32 
36 

41 

44 

50 

51 

60 
61 

62 

70 
71 
72 
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address in the succeeding order. It is clear that by this means useless transmissions to or from 
the memory are completely avoided. It should be 'understood, of course, -,that the device just 
discuss~d may be applied to any desired operation and is not restricted to the addition process. 
To continue, Address 4 will contain the" memory address from which the new order is to be 
obtained-or, more exactly, from which the first half of the new order is to be selected. The 
programming arrangements for subtraction, multiplication, and division, shown in Fig. 8, 
I belieye, are self-explanatory in the light of the above discussion. 

The selective transfer order directs the machine to multiply the number in memory position 

OPERATION ADDRESS ADDRESS OPERATION ADDRESS ADDRESS 
#, #=2 CODE #3 #4 

ADDITION ADDEND AUGEND 01 SUM NEXT 
ORDER 

SLJBTRAC- MINUEND SUBTRA- 04 DIFFER - NEXT 
TION HEND ENCE ORDER 

MULTIPLI- MULTIPLI- MULTI- 10 PRODUCT NEXT 
CATION CAND PLiER ORDER 

DIVISION DIVISOR DIVIDEND 17 QUOTIENT NEXT 
ORDER 

TRANSFER A C 23 B NEXT 
(SELECTIVE) ORDER 

BRANCH A B 50 C D (NORMAL) 

FIG. 8. Construction of computer orders. 

A by + 1 or - 1, according to whethe:f the number in memory position C "is positive or 
negative; the result of this process is then to be transmitted to memory position B. 

The Branch-Normal operation is somewhat unusual both in its effect on the subsequent 
computation and in the treatment of the third address. If the number.in memory position 
A is greater than or equal to the number located at memory position B, the machine is directed 
to obtain its next order from storage position C as indicated by Address 3; otherwise, the 
central control is to obtain the next order from memory position D as specified by the fourth 
address. . 

The problem-preparation unit is a manually operated device, independent of the main 
computer, that places the programming orders and numerical input information on the 
magnetic tape in preparation for entry into the machine. A first Teletype keyboard unit 'is 
used to prepare a standard five-hole Teletype paper tape. This tape is used in conjunction 
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with another keyboard unit to prepare a second paper tape. The operator of the second unit, 
reading from the same manuscript that was used in the preparation of the first tape, causes 
a second paper tape to be perforated. However, each key that is depressed must establish 
an identity with the Teletype code appearing on the preliminary tape; otherwise, the keyboard 
is automaticalIy locked and the intended perforation of an erroneous code on the second tape 
is intercepted. A printer is also associated with the keyboard so that a printed copy of the 
programming is available to the operator in the course of the tape-preparation process. 
Programming orders are entered in the keyboard in octal notation, whereas numerical infor­
mation will generally be entered in decimal notation; this conforms to the notation that is 
prescribed for the original manuscript. However, where desired, numbers may also be entered 
in the octal system if the information should happen to be available in this form; provision 
is made on the keyboard to indicate the particular notation being used. 

After the second paper tape is prepared, it is transferred to a magnetic· recording unit 
where the Teletype codes ,appearing on the tape are converted to binary or binary-coded 
decimal notation in accordance with a coded indication that accompanies each word on the 
paper tape; a transfer weighted count of each number and half-order is also automatically 
constructed. All of this information is then recorded on the magnetic tape in the required 
word-and-block form previously described; this magnetic tape is now transferred to one of 
the exterrial memory units from which point the information is automatically available to 
the computer. Tliese conversion and weight-counting processes, as well as the magnetic 
recording process itself, are all automatically checked. 

The printing of the final results of a problem is performed by Teletype printers operating 
independently of the main machine. In the course of a computation, numbers to be printed 
are shuttled in binary-coded decimal form to one or more of the magnetic tapes associated 
with the external memory units. At a later time, these reels are transferred manually to the 
output printers where the numerical quantities are typed in final form. Directions to ·the 
printer involving considerations such as page format, location of the decimal point, etc., are 
supplied by auxiliary control devices. 

Certain external memory tapes contain words in binary notation only, these quantities 
being intermediate values obtained in the computation and intended for direct feedback to 
the machine at a subsequent point in the solution of a problem; therefore, the computer 
obviously will not have been instructed to convert these numbers into binary-coded decimal 
notation. However, it may be desired on certain occasions to print the binary quantities con­
tained in these intermediate tapes; for this reason, provisions have been made for the output 
printers to type numerical quantities in octal notation as well as decimal. Transfer weighted­
count checks based upon the actuation of the printer code bars are employed to intercept 
printing errors; 

A printer directly connected with the computer is provided so that the operator may 
monitor intermediate results of the computation while the machine is in operation. The trans­
mittal of information to this printer is prearranged in the original programming of the problem. 
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Provisions for reading from, as well as into, the various high-speed memory positions of 
'the machine under manual control have been made. Furthermore,. the computer is designed 
in such a way that when an error occurs, causing the machine to stop, all numerical and 
control quantities involved in the execution of the order then governing the machine are 
available for immediate read-out by the operator; this feature should be an invaluable aid 
in the diagnosis of failures. 

The Raytheon computer operates at a mean speed of 1600 complete operations per second. 
The machine has a complement of roughly 3500 vacuum tubes and 6500 crystal diodes. It 
is expected that construction of the computer will be completed at the end of September 1950 



A GENERAL ELECTRIC ENGINEERING DIGITAL COMPUTER 

BURTON R. LESTER 

General Electric Company 

The General Electric Company feels very grateful for the opportunity to discuss our com­
puter at this symposium. Our present effort is the design and construction of a computer 
suitable for the engineering problems that arise within the General Electtic Company-a 
computer simple in design, accurate and reliable, easy to. operate, and economical to 
maintain. 

The General Electric Company has been interested in the computer field for many years. 
Our first computers were network analyzers. These were soon followed by the more complex 
differential analyzers. ''''e built up small computation groups in our engineering divisions. 
In some instances, as the requirements for speed and accuracy increased, we rented IBM 
machinery. 

Approximately six years ago, the first investigation of the possibility of constructing an 
automatic digital computer was made. In 1946 work was started on a small binary machine 
for control problems. Our Engineering Council also directed that we investigate the possibility 
of constructing another machine for internal use. A careful revie"Y was made of the various 
computer projects and a small group of engineers visited these projects to weigh their progress. 

These efforts culminated in the decision to construct a computer. Our design and con­
structiori were based on the experience and ability of our Research Laboratory and our 
electronic accomplishments during the past war. 

Our purpose in constructing this computer was threefold. The computer would enable 
more accurate and rapid computation of our engineering designs. It would provide our 
Research Laboratory with a long-needed facility. Last, we would gain extensive knowledge 

, and position in this field by constructing and operating this machine. 
The purpose of our computer set the major design considerations. Accurate and reliable 

operation was foremost. Consequently, only proven principles were utilized. A reasonable 
operating speed was set with the idea of increasing it gradually as we become more familiar 
with the capabilities of the computer. Operation and maintenance procedures were simplified. 
Unitized construction was 'employed to aid design, speed maintenance, and provide means 
for adding future improvements. 

In discussing the features of any computer, it is well· to break the design down into the 
following items for easy assimilation: number base, mode of operation, memory, arithmetic 
unit, control unit, input-Olitput mechanism, tape-preparation unit, and printer. 

Our .computer operates in the decimal system. All numbers and instructions are expressed 
in decimal digits. The 2* coded decimal system is used within the computer. The basic 
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length of a number is 8 decimal digits using a fixed decimal point and 6 decimal digits with 
a floating point. The range of the latter system is from 10-9 to 109

• The simplicity of the 
decimal operation outweighed the loss of capacity as compared with the equivalent binary 
machine. Actually, the construction of the machine is binary with the exception of three 
vacuum tubes per decimal digit in the accumulator. These tubes and associated circuits sense 
and correct forbidden combinations. 

Serial and parallel operation are used to advantage." Serial operation occurs between 
all major units. Parallel operation is used within the arithmetic and control units. Numbers 
and instructions are stored serially in the memory in single binary channels. Serial read-in 
and read-out of the memory occurs at a 48-kc/sec repetition rate. Numbers and instructions 
are transferred between the arithmetic and control registers at a 200-kc/sec rate. Parallel 
operation is utilized for basic operations within the arithmetic and control registers at a 
200-kc/sec rate. 

Operation of the computer is as follows. An order stored in the memory is read serially 
to the control unit. This unit reads each part of the order in parallel by means of sensing 
circuits. First it directs the lnemory to transfer the two operands serially to the arithmetic 
unit. Then the control unit senses the order to determ~ne the operation code and directs 
the arithmetic unit to perfornl this operation in parallel. The answer is transferred serially 
to the memory again under the direction of the control unit and to the address specified in 
the order. Finally, the control unit senses the present order to determine the address of the 
next order and transfers it to the control unit. Thus the basic cycle is repeated until the 

" problem is solved. 
The computer has a magnetic-drum memory that stores 4000 numbers and instructions 

in 100 tracks, 40 numbers per track. Pulses are spaced 20 to the inch in the tracks and the 
tracks are spaced 8 to the inch. Forty pulse spaces are required for each number-36 for 
the number and four guard spaces. The drum rotates at 1800 rev/min; consequently, the 
pulse repetition rate is approximately 48 kc/sec. The drum is constructed" of aluminium with 
a magnetic coating and is 24 in. in diameter and 30 in. long. 

Separate magnetic heads are provided for playback and recording. They are spaced 3 mils 
from the drum surface. Two playback amplifiers are used, one for information and one for 
clock pulses. A low-level crystal gating system connects the proper head to the information 
playback amplifier. The amplifiers have an automatic gain control to eliminate signal variation 
caused by eccentricity of the drum. A high-level gating system delivers recording pulses to 
the proper head. Recording and playback heads are spaced 180°. Consequently, a number 
recorded may be read back one half revolution later to verify memory operations. This check 
is performed after each recording. 

Initially the design called for a serial arithmetic unit. However, it soon became apparent 
that the shifting registers, utilized to synchronize the numbers received from the memory, 
could easily be modified for parallel operation with a small increase in equipment. The 
arithmetic unit contains three basic registers: A, B, and C. Register A is an accumulator 
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and contains additional equipment to sense and correct forbidden binary numbers occurring 
as a result of addition. Register B is a shifting register. Register C, in addition to being a 
shifting register, can also be connected as a counter for use in multiplication and division. 

The arithmetic unit performs the following basic operations: addition, subtraction, 
multiplication, division, and choice. Actually, the basic bperation is the addition obtained 
in· the accumulator. In subtraction, the nine's complement is used with end-around carry. 

Multiplication is performed as a series of additions. 
Division utilizes the oscillating overdraft method. Both the multiplication and division 

processes ·have been simplified to the extent that they are nominally equivalent to their binary 
counterparts. 

Table 1. Operation times (ftsec) for basic operations. 

Operation Fixed-Point Operation Floating-Point Operation 

Addition 15 350 

Subtraction 15 350 

Multiplication 450 490 

Division 450 530 

The times required for basic operations are listed in Table 1. These times do not include 
memory-access time. These times represent a small fraction of the time of one revolution of 
the drum. Under average conditions the time for completion of one operation including 
access time is equal to the time of one revolution of the memory. 

The control unit is the telephone central of the computer. It controls the operations of 
the various units of the computer. The control signals are either a 40-v positive 2.5-,usec pulse 
or a d-c switching voltage of zero or + 40 v. The cyclic control rate is determined by the 
unit under control. Control signals to the memory are based oOn the 48-kcjsec clock pulse 
generated on the drum. Control signals to the tape input-output unit are based on synchron­
izing pulses on the tape. Control signals to the arithmetic unit are based on a 200-kc/sec 

. oscillator in the control unit. 
This type of control permits a great deal offreedom in introducing modification. Increasing 

memory operation only requires that the memory supply the correct clock pulse frequency 
to the control unit. No other modifications are needed. This flexibility is highly desirable 
to permit future improvements. 

The four-address system is used in this computer. The first two addresses of the order 
are the locations of the operands. The third address is the location of where the answer is 
to be stored and the fourth address is that of the next order. A number consists of nine decimal 
digits, numbered from 0 to 8. The zero digit is the sign digit and the remaining digits comprise 
the actual number. Since there are 4000 memory positions, four decimal digits are required 
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to describe an address and sixteen decimal digits are required to describe four addresses. 
Consequently, each order consists of two numbers and is stored in two consecutive addresses 
in the memory. The remaining two digits of the order are used to denote the type of operation. 
The zero digits of the two numbers comprising an order contain this operation code. These 
digits are also used as the means of distinguishing between orders and numbers. Zero and 
nine are reserved for positive and negative number sign indication. The remaining values 
involving 64 possible combinations are operation codes. Thus a number must have a zero 
or a nine in the sign digit and an order may have any value but zero or nine in the sign digit. 

Table 2. Operations and corresponding codes. 

Operation Code 

33 

34 

35 

36 

43 

44 

45 

46 

53 

54 

63 

65 

66 

'Read in 

Read out 

Transfer 

Operation 

Add using fixed decimal points 

Add 

Subtract 

Multiply 

Divide 

Choice + or-

Choice zero or not zero 

Move exponent to No.2 address 

Change address A 

Change address B 

, In Table 2 are listed some of the more important operations and their corresponding codes. 
It will be noted that provision has been made to enable the machine to change its orders. 
In addition, it is possible to set up a problem in such a way that a single order can modify all 
the orders in the problem so as to call in new values of the variables. 

Additional operations, such as raising to a power, extracting the root, finding the logarithm, 
etc., can be prepared as sub-sequences and stored in the: memory for future use. With the' 
addition of extra shifting registers, these operations may be performed entirely within the 
arithmetic unit. 

The memory storage may be described as a huge matrix, the address being the key to 
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any elemcnt. The first two digits of the address control the row selcction or the equivalent 
number time on the drum. The last two digits control column selection or the track 
designation. 

The tape input-output component takes the tapes prepared by the tape-preparation unit 
and under direction of the control unit reads information into the computer memory. It 
also prepares magnetic tapes containing the answers to the problem (the output from the 
computer). Input and output tape data are the same; that is, data read out of the 'machine 
may be run back into the machine. A unit piece of information on the tape consists of a 
number plus its memory location. The tapes are operated at a speed such that approximately 
25 pieces of information per second are read into or out of the machine. These tapes are 
utilized by the printer to type' out the information. The reels of magnetic tape belonging to 
this unit are located in the center of the main console. 

Tape preparation and printing are performed by units similar to those of the Harvard 
Mark III computer. The tape-preparation unit has a standard keyboard and can be used 
to prepare both number and sequence-control tapes. , 

The printer uses an electric typewriter, operating at 10 strokes per second. Provision has 
been ~ade to vary the typography of the printed page at the discretion of the operator. 

The main components of the computer are housed in five racks 24 in. wide and 8 ft tall. 
The Tape-Preparation Unit, Printer, Memory, and Power Supply are housed in separate 
units. The Magnetic Memory is contained in a cabinet 3 ft wide, 5 ft long and 6 ft high. It 
appears that the power supply will be' contained in a similar cabinet. The Tape-Preparation 
and Printer Units will be housed in racks 24 in. wide and 6 ft tall. 

Unitized construction is used throughout the computer. At present, there are 15 basic 
circuits. These circuits are constructed as plug-in assemblies such that the components are 
mounted on turrets between the tube socket and plug. These assemblies ~re approximately 
1.5 in. in diameter and 2.5 in. long. The circuits plug into standard panels which contain 
the signal and power wiring. The panels are mounted vertically in the cabinets. A vertical 
sheet of Plexiglas mounts 2.5 in. in front of these panels. The circuits are plugged into the 
panels through the Plexiglas. Air, circulated in the channel formed by these two panels, is 
used to cool the circuits. The vacuum tubes mount directly in the sockets and project out 
of the Plexiglas panel. , 

One' of the major achievements in the design of this computer has been the reduction of 
the tube complement to less than 1000 vacuum tubes. This reduction has been made possible 
through the use of germanium Qiodes and careful circuit design. Approximately 4000 diodes 
are used in the computer. 

In summarizing, I would like to highlight the following points. 
First: This computer has been designed to solve problems requiring engineering accuracy. 

For problems of this type, it must be reliable and accurate first; speed comes next. 
Second: Design, operation, and maintenance have been simplified by the reduction of 

tube complement and unitized construction. 
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Third: The computer design is flexible; that is, individual units such as the Arith­
metic Unit, Control Unit, Memory Unit, etc., standby themselves. They can be readily 
modified with minor effect on the rest of the ·computer. The resulting building biocks 
which comprise this computer can be used to construct a computing machine for almost 
any purpose. 
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TOAST BY D. H. LEHMER 

There is a man among us here tonight who deserves our special vote of thanks and appre­
ciation. He recognized the necessity for a medium of communication-"a 'standard source 
to which one might naturally turn for guidance in connection with all mathematical tables 
of importance in contemporary research." Through the National Research Council in 1943 
he established the quarterly journal Mathematical Tables and Other Aids to Computation. Now 
after seven years of unflagging effort, Raymond C. Archibald is retiring as Editor of MTAC. 

I propose that we show him our appreciation for his excellent work. 

TOAST BY SAMUEL H. CALDWELL 

It is with deep regret that we note the absence from this banquet and from the Sy~posium 
of one of the world's great figures in the field of scientific computation. Some of you have 
known him as a teacher. Many of you met him and heard him at the Machine Computation 
Conference held at the Massachusetts Institute of Technology four years ago. All of us who 
have known Doctor L.J. Comrie have been stimulated by his appreciative response, impressed 
by his intellectual grasp, and conquered by his wit and charm. 

As the founder of the Scientific Computing Service of London, and in his former connection 
with His Majesty's Naval Almanac Office, ·Doctor Comrie has been a prolific contributor 
to the literature of scientific computation. But history will name him also as one of the pioneers 
in the development and application of machine methods to computation problems. 

Doctor Comrie is unable to be with us because of serious illness, and this I know is a matter 
of profound disappointment to him. It is proposed that we members of this Symposium stand 
at the side of Doctor Comrie in his fight for heaith and that we let him kno~ it. I therefore 
ask that we request our Toastmaster to send to Doctor Comrie our prayers for quick and full 
recovery of his health and vigor, and our earnest hope that he can be with us at our next 
Symposium. 
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THE PRESENT POSITION OF AUTOMATIC COMPUTING MACHINE 

DEVELOPMENT IN ENGLAND 

w. s. ELLIOTT 

Research Laboratories of Elliott Broihers (London) Limited 

I have come from a place in England named Borehamwood. Borehamwoodcontributes 
both to the arts and to the sciences. A small part of its contribution to the sciences is work 
on what our popular press, unfortunately, in my view, calls "Electronic Brains." On the 
side of the arts a large part of the British Motion Picture Industry is at Borehamwood. Some 
of you may have heard that a certain William Shakespeare has been trying to earn dollars 
for his country by writing the screen plays "Henry V" and "Hamlet." 

On my desk at Borehamwood, I have a volume which I prize very highly. It is a report 
of the proceedings of the first Symposium on large-scale digital calculating machines held 
here at Harvard in 1947. This is a book which, I think, contains much weighty and interesting 
material-material made no less significant by the advances of the last two and a half years. 
To me not the least interesting paper in this volume is that by Richard Babbage dealing with 
the work of his English grandfather, Charles Babbage, that first designer of computing machines. 
And when I read this paper, my attention focuses on one passage. 

"Propose to any Englishman any principle or any instrument, however admirable, and 
you will observe that the whole effort of the English mind is directed to find a difficulty, a 
defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will 
pronounce it impossible; if you peel a potato with it before his eyes, he will declare it useless 
because it will not slice a pineapple. Impart the same principle or show the same machine 
to an American ... and you will observe that the whole effort of his mind is to find some 
new application of the principle, some new use for the instrument." 

When Professor Aiken, just ten days ago, asked me to speak at this Symposium, my first 
thought was that I might take as a text the differences between English and American COln­

puting machines in the light of that passage. But when 1. came to think about it, I decided 
I could find no significant difference except perhaps that the groups developing our machines 
are a little smaller. Certainly the projects that we have are as diverse as those in this country, 
and the ways that the different groups go to work are similarly varied. For instance, the logical 
design of one machine was compl~ted well before the team was set up to build it. Another 
machine grew as the ideas came. The first machine is more engineered, and the second machine 
is breadboard. 

I shall mention seven groups in England working on computing-machine projects: three 
at Universities-the Universities of Cambridge, Manchester and London; three at Govern­
ment establishments---the National Physical Laboratory (NPL), which I think corresponds 
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to your National Bureau of Standards, the Telecommunications Research Establishment 
(TRE) of the Ministry of Supply, and the Royal Aircraft Establishment; and I shall mention 

one industrial firm, Elliott Brothers (London) Limited, the Research Laboratories of which 
I represent. Of these groups, that at Cambridge has one machine fully operating. . The 
Manchester group has a machine fully operating though with restricted input and outpu t 

units. Other machines are in various stages of development. I shall describe the Cambridge 

FIG. 1. The Electronic Storage Delay Automatic Calculator (EDSAC). 

machine more fully and I shall compare other machines with it. I shall not give here precise 
figures for the memory capacity, speed, and so on. 

The first electronic computer to run in England, the Electronic Delay Storage Automatic 
Calculator, or EDSAQ, was designed and built by Mr. M. V. Wilkes, the Director of the 
Cambridge University Mathematical Laboratory, assisted by Mr. Renwick. Besides being 
a theoretical physicist Mr. Wilkes is a practical electronic engineer. 

EDSAC (Fig. I) was projected by Mr. Wilkes during a visit he made to the United States 

in 1946 when he attended part of a course on computing machines at the Moore School. 
The logical design of EDSAC was influenced by the ideas of Mauchly, Eckert, Goldstine, 
and Sharpless of the Moore School. At the outset 'Vilkes stated that he was not interested 
in building the best possible machine. He wanted to make a reliable machine and to make it 
quickly. He chose mercury delay-line storage as being the only principle which at that time 
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promised reliable storage. He chose a 500-kc/sec digit rate as being the fastest that, with the 
techniques then known, would give a reliable computer. The store capacity is 512 words 
(numbers or orders) of 32 binary digits. Input to the machine is by punched paper tapes 
prepared on a teleprinter keyboard, and output is directly printed on a typewriter. EDSAC 
uses a one-address code for instructions. The storage, control, and arithmetic units were 
designed in 1947, and they and the input and output units were built in 1948. Toward the 
and of that year parts of the machine were being tested, and the machine was fully operating 
and was demonstra ted a t a conference on computing machines held at Cambridge in J une 
1949. Today the team there is gaining experience in running problems on the machine, and 
I have with me two samples of the work of the machine. 

FIG. 2. The Manchester machine. Control and input circuits are at the left, 
the memory in the right center, and the arithmetic units at the right. 

The first sample is a list of the prime numbers up to 1021. The list starts with the number 
5- Mr. Wilkes assured me that they know the prime numbers below that. The second sample 
is a tabulated solution of a second-order differential equation. 

Before I leave the Cambridge group I should like to say that Wilkes is very active in holding 
fortnightly colloquia during University term time, and the different teams in England attend 
these colloquia .very well and keep closely in touch. 

In June of this year the colloquia culminated in a four-day conference. Descriptions were 
given a t the conference of the various computing-machine projects, not only in England, but 
also in France, Holland and Sweden. A contribution from Doctor Huskey was read, giving 
an account of the present state in America. Discussion subjects included CRT storage, 
programming and coding, checking facilities, and permanent and semipermanent storage. 

The second University group is a t M anchester. The machine (Fig. 2) is being built by 
the Electrical Engineering Department under Professor F. C. Williams for the use of Doctor 
Newman and Doctor Turing of the M athematical Department. There is close contact between 
the engineers and the mathematicians, but the machine is definitely being designed by the 
engineers. The machine uses the well-known CRT store of F. C. Williams and T. Kilburn. 
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This store features a standard cathode-ray tube and a physically simple mechanism. Experi­
mental work on the store was completed about March 1948. Having built the store, Williams 
and Kilburn wanted to test'it, so they added a second storage tube as an accumulator, and 
a third tube as control. They thus had ababy computing machine. The baby machine was 
of breadboard construction and today the machine at Manchester consists of these same bread­
boards and others that have been added. In fact; the machine has grown gradually as ideas 
came-unlike some machines, which have been built according to a master plan conceived 
at the outset. For this reason any description of the machine is liable to be outdated very 
quickly. At the time of the Cambridge conference, there were a fast multiplier CRT and a 
special tube for modifying instructions. The machine uses magnetic-drum auxiliary storage 
running at the rate of the working store. A feature of this is that the drum is synchronized 
from the machine's clock-the drum does not generate the clock. The drum stores true binary 
numbers and has access only to and from the main store. 

Input to the Manchester machine is on a binary button board, and the output is a CRT 
display of the binary content of one of the CRT stores. The digit rate is limited by the CRT 
store to a quarte~ of that in EDSAC, but si?ce the store is noncyclic the average access time 
in the two machines is similar. One CRT store has the capacity offour long tanks in EDSAC, 
that is to say, 32 words. 

Because of the restricted input and output units, on the Manchester machine the type of 
problem that can be run on it is rather limited but some interesting work has been done on 
the' Mersenne numbers. 

A second machine for the Manchester group is being built by Ferranti Limited. This is 
to be a more engineered version, and it will have 16 main CRT ~tores. The engineers consider 
four to eight to be the optimum number of main storage tubes in a computer of this type, 
having regard to transfer time from the auxiliary store to the main stores. The mat,hematicians 
would be content with eight tubes but in some cases would like 16, so to be on the safe side 
16 main storage tubes have been decided on, in addition to an accumulating store, a store for 
control numbers and a "B" tube where instructions are modified. There is no proper name 
for the Manchester machine, though I understand from Professor Williams that it has a variety 
of improper names. The Manchester machine recently gave rise to some correspondence in 
the London Times on whether a machine could rival the brain of man. In an interview with 
the paper Doctor Turing said he did not exclude the possibility that the machine could write 
a sonnet. He added, however, that only another machine could appreciate the sonnet fully. 

The third university group, at London, directed by pro A. D. Booth, is working on three 
machines. The first is called "Automatic Relay Calculator" or ARC. This is a binary relay 
machine which, in logical design, is somewhat similar to EDSAC and follows some of the 
ideas of the Moore School, in that, for example, numbers and orders are lumped together in 
the store, and orders can be modified. It is a parallel computer with a small magnetic-drum 
store. Input and output and semipermanent storage are all on puriched paper tape. The 
machine was made by Doctor Booth for experiments in logical design. It has 800 relays and 
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cost about £2,500. The machine was being tested in June 1949~ The magnetic drum is now 
being changed to another storage system, an electromechanical store, which Doctor Booth 
is developing and which is of some interest. In essence this is a very concentrated collection 
of small relays. It packs 256 numbers, each of 21 binary digits, into about 12 by 8 by 16 in. 

Doctor Booth is also designing an electronic machine and is to make two models of it in 
parallel, for different uses. It is to have magnetic-drum storage, magnetic-tape input and 
output, and magnetic-tape auxiliary storage. It is to have multiplier and divider units, and 
Doctor Booth thinks it will have fewer than 1000 tubes. He gives no date for its completion. 
I t may be one or two years. 

Doctor Booth's third machine is a "Simple Electronic Computer" or SEC. This he pro­
poses as the smallest electronic computer that will have all· the main facilities of a general­
purpose machine but will be as small-as 181 tubes, and he hopes that University departments 
will be able to build it for themselves. 

Turning now to the Government establishments, a considerable amount of work was done 
at the National Physical Laboratory in 1946 on the Automatic Computing Engine or ACE. 
This work was done under Doctor Turing and by the end of that year the quite complicated 
and sophisticated logical design was completed and several problems had been coded. In 
September 1947 an Electronics section was set up at the National Physical Laboratory to 
work on electronic computing machines, ~ut before this team had started on the actual con­
struction of the ACE Doctor Turing left. About the middle of 1948, it was decided that the 
theoretical team of the Mathematics Division, which was now under Mr. J. H. Wilkinson, 
should join the electronics group under Mr. Colebrook, and the two teams should work 
togethe~ on the construction, not of the full-scale machine, but of a Test Assembly. This Test 
Assembly represents an attempt to construct the smallest machine that will serve as an adequate 
testing ground for the concepts involved in the full-scale machine, but that will nevertheless 
be large enough to be a useful computer. 

The TA is somewhat similar to EDSAC. It has, for example, delay-line storage. It works 
at twice the digit rate of the EDSAC. It has some logical orders other than those needed for 
arithmetic operations and uses the two-address code for instructions. Input and output are 
on Hollerith cards. 

In EDSAC, instructions are stored serially in a long tank. This means that after obeying 
one instruction the machine has to wait for the remainder of a major cycle before the next 
instruction is available. In theTA this is overcome by facilities for putting instructions in 
nonserially and in such a way that when one is obeyed the next instruction is immediately 
available. The T A is being carefully engineered. About one-half or two-thirds of the chassis 
for it is completed, and Doctor Wilkinson hopes it will all-be completed by the end of 1949 
so that testing will start in 1950. It is not likely that the full machine of the 1946 design will 
be built now. Any further machine will probably have a much smaller number of mercury 
delay-line stores and auxiliary magnetic-drum storage. 

At the Telecommunications Research Establishment of the Ministry of Supply, Dr. A. M. 

78 



COMPUTING MACHINES IN ENGLAND 

V ttley is working on a parallel electronic machine for the use of mathematical physiCists in 
the Ministry of Supply. His decision to make a parallel machine was taken after a visit to 
the V nited States in 1948 and was influenced by the fact that no one else in England at that 
time was building a parallel electronic machine. He uses storage tubes similar to those of 
F. C. Williams, working in the same way, and uses as many storage tubes as there are digits 
in his words. The tubes are scanned in parallel, and a word is represented by taking one digit 
from the corresponding position in each of the tubes. Like the Manchester machine, it uses 
magnetic-drum auxiliary storage, but unlike the Manchester machine the numbers on the drum 
are in binary-coded decimals, and there is direct access between the drum and the outside 
world. Doctor Vttley's idea is that the drum will be prepared at leisure by mathematicians; 
it will then be taken to the machine, and its contents transferred as a whole into the working 
store of the machine. In an at,tempt to make the machine completely self-checking, Doctor 
Vttley has developed a complete series of three-state circuits for the arithmetic and control 
units of the machine. The whole machine works in three states apart from the store, the states 
being nought, one, and fault. There is now a one-digit working model of the store and of 
all the three-state circuits, and the magnetic drum is completed, together with the tape 
puncher, and transfer from tape to drum and from drum to electromatic typewriter. Doctor 
V ttley thinks the whole machine will be working in one or two years. 

Another small relay machine is being made at the Royal Aircraft Establishment by Doctor 
Hollingdale for the use of people in that establishment. 

I come now to Elliott Brothers Research Laboratories. Our jnterest is in the development 
of reliable components such as storage, arithmetic, input and output units for high-speed 
machines~ We are working on a CRT storage method similar to but not the same as that 
used by F. C. Williams at Manchester. In his paper F. C. Williams called the method of his 
that we use, "anticipation pulse storage." We find that we can use a higher writing speed 
than in the dot-dash method that is actually used in the Manchester machine though we 
have not decided the maximum number of digits that can be stored reliably on one tube. 
We are working on small logical units for serial operation at up to I-Me/sec digit rate and 
we have working a series-parallel multiplying unit, using these logical elements, that forms 
the rounded-off product of two numbers entering the unit simultaneously, the rounded-off 
product appearing in the following number time. In its final form this multiplier will feed 
the output straight back to one of the inputs so that n numbers can be multiplied together in 

n number times. 
We are working on photographic methods of feeding input data and function tables into 

a high-speed computer and of recording the output from a computer. The input data and 
function tables are prepared by photographing a lamp display controlled from the register 
of a desk calculating machine working in binary scale, which we have made especially for 
this purpose. The film can be read at /1 megadigit per second into a computer. 

No description of the English automatic computing machine projects is complete without 
mentioning the name of Professor Hartree, Plummer Professor of Mathematical Physics in 
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the University of Cambridge. The early work of Hartree and Porter on the differential 
analyzer at Manchester is well known, and today Professor Hartree plays a leading part in 
encouraging work in England on digital machines. He is a regular attendant at the Cambridge 
colloquia and is regarded as our chief contact with work in the United States. 

In conclusion, I would say that the greatest diversity of opinion in England at the moment 
is on the best method of storage to use. In the Cambridge machine the component that gives 
the least trouble in the whole equipment is the mercury delay line. The F. C. Williams' store 
is welcomed enthusiastically by some groups in England, though others are unhappy about the 
noise level. Doctor Booth's electromechanical store is interesting in its simplicity and digit 
density, though it is limited in speed. There is general agreement in England on the use of 
magnetic-drum auxiliary storage. I think, however, that the greatest possibility of tec~nical 
improvement or simplification is in storage systems~ 

The tendency in England at the moment. is to gain experience with the small machines· 
that have been built or are being built, and I think that after one or two years of gaining this 
experience, some furthermachines may be built. It is likely that when this happens the move 
will be in the direction of logically simpler rather than of larger machines. 

Finally, I should like to return to the subject of human and mechanical brains. Professor 
Sir Geoffrey Jefferson of the department of neurosurgery of the University of Manchester 
gave the annual Lister Oration to the Royal College of Surgeons of London on this subject. 
He referred to the fact that some workers believe that by embodying in a machine the electrical 
principles underlying neural activity, light can be thrown on the way we think and. remember. 
He did not think, however, that the day would dawn when the gracious rooms of the Royal 
Society of London would have to be converted into garages to house the new fellows. 
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SEMIAUTOMATIC INSTRUCTION ON THE ZEPHYR 

HARRY D. HUSKEY· 

National Bureau oj Standards, Institute for Numerical Anabsis, UCLA 

Presently designed calculators cannot be entirely automatic with respect to coding;· they 
may do problem after problem automatically without human attention, hut somebody must 
initially tell the machine what it is to do. We will develop in this paper a method of operation 
of such a computer in which the user need not tell in explicit detail everything that the calcu­
lator must do in the course of carrying out the computation. This concept of semiautomatic 
instruction has been called abbreviated-code instruction. l 

, To illustrate by example, assuming we wish to invert a matrix having m rows and n columns, 
the only essential information is (1) where the coefficients of the matrix are, (2) how many 
rows and columns there are, (3) what process is to be carried out, and (4) where the answers 
are to be placed. We expect to be able to obtain sheets of paper upon which appear in the 
appropriate order the coefficients of the inverted matrix without doing more than sending 
the initial coefficients into the calculator and·a single coded instruction specifying the three 
items mentioned above. 

The Zephyr, the electronic digital calculator under construction at the· Institute for 
Numerical Analysis, will he used as the model in this paper to illustrate how these coded 
instructions will operate. Thus, before explaining the abbreviated code in detail a brief 
description of the Zephyr will be given. 

The Zephyr consists of: (1) an arithmetic unit where the information is processed or 
modified; (2) a high-speed memory which remembers both the numerical and the instructional 
words needed during the computation; (3) a low-speed memory, which we shall referto as 
the store, 2 inasmuch as it serves as a warehouse wherein numerical information, main routines 
of code words, and subroutines of commands or code words are stored; (4) a control unit 
which scans the memory for its commands, and executes them by sending out the appropriate 
signals to the other units; (5) input-output equipment which we will not discuss in this paper. 

Information is stored arid' processed in the Zephyr in units that are 41 binary digits long. 
Such a unit is called a word. Words may be interpreted as numerical information or as 
instructions. 

Numbers can be subclassified as follows. A word may represent a signed binary number 
lying somewhere between - 2 40 and + 240. Or, it may represent a signed ten-decimal-digit 
number where each decimal digit is represented as a four-digit binary number. A floating 
binary representation may be used where one is dealing with numhers of the form ± a X 2b. 
For example, the first digit represents the sign, the next ten binary digits may represent the 
exponent b, and the remaining 30 digits may represent the significant figures of the number 
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in binary form. In this manner, with some loss of relative accuracy, a word can represent 
numbers in the range between ± 230 X 2± 29. 

In a similar manner instructions are subclassified into three classes. First, there are 
command words of which there are 13 in the Zephyr. A command word isa 41-binary-digit 
word, a portion of which determines one of the 13 operations, and the remainder of which, 
in general, specifies four addresses in the memory. A second class of instructions are the 
control words. Control words may serve as parameters that determine the number of repetitions 
of certain routines;. they may be the bounds used to stop certain computational processes; 
or they may serve as factors in logical products or extraction operations. The third class of 
i?structions are called code words. A code word is a compact representation in one word of 
several parameters that are needed to specify the operation of subroutines. Each subroutine 
extracts its various parameters from this one code word. Thus, one may specify a scalar 
multiplication with only one code word. The appropriate subroutine in the calculator extracts 
and properly places the various parameters from the code word. These parameters must 
specify the common factor (that is, specify its address in the high-speed memory), the location 
of the elements of the vector (say by specifying the address of the first element and the number 
of terms in the vector), and where the result is to be placed . 

. We can summarize· the various types of instruction as follows. A command word is a 41-
binary-digit word which the calculator explicitly understands and obeys. A control word is 
not directly obeyed by the calculator nor is it a direct part of the calculation; it in some way 
co~trols the course of the computation or enters into the, arithmetic-like operations that are 
performed upon command words. A code word is an abbreviated instruction that specifies in 
one word a whole sequence of events for the calculator. 

The high-speed memory will consist of a bank of cathode-ray tubes used in a manner 
devised by F. C. Williams, of Manchester University, England. 

This memory will have a capacity of 512 41-binary-digit words and will be able to deliver 
anyone of its words to the other units of the machine in about 20 flsec. 

The high-speed memory will be divided i~to three parts: first, a part that stores the numeri­
cal information temporarily; . second, a part that stores the subroutines which are to be used 
in the problem; third, a part that stores that portion of the main routine which must be 
stored in the high-speed memory. As the main routine is carried out new segments must be 
read in, and in the course of doing the problem numerical information must be transferred 
to and frOlTI the magnetic drum. If all the necessary subroutines cannot be stored in the 
high-speed memory at once these, too, must be read in and out during the course of the 
computation. 

The store, or low-speed memory, will consist of a magnetic drum with a capacity of 10,000 
words of standard 41-binary-digit length. It will have a multiplicity of reading and recording 
heads so arranged that all the 41 digits of a particular word will appear simultaneously at 
41 different magnetic heads. Thus, the access time for a word on the drum depends upon 
the orientation of the drum when the number is called for, and will vary from a few 

84 



INSTRUCTION ON THE ZEPHYR 

micro-seconds to a maximum of 16,000 p.sec (the time it will take for the drum. to make a 
complete revolution). 

In similar fashion to the high-speed memory the magnetic-drum storage will be divided 
into three parts. One part will store the numerical information needed to do the respective 
problems. A secon~ part will store all the standard routines, such as division, floating opera­
tions, etc. A third part will store the commands or coded instructions of the main routine. 
In our present experience the number of commands per routine seems to average around 30. 
Thus, we could store 100 different standard routines on the drum and only take up 3000 
words of storage. Most problems should involve only a few hundred instructions, say not 
more than 1000. This leaves approximately 6000 words, which, for example, is ample room 
for storing all the numerical information involved in solving 70 simultaneous linear equations. 

A command word may be represented in the form cx., {J~ y, c5, F; cx., (J, y, and c5, generally, 
represent addresses or the position of words in the memory, while F determines which one 
of the 13 commands is involved. 

In normal situations the next command is specified by a fifth address, called 8, which is 
remembered by a binary counter in the control unit. Each time a command is obeyed the 
number in 8 is increased by unity; thus, the machine normally obeys a sequence of commands 
coming from successive addresses in the memory. 

There are three special commands wherein the next command is determined by the fourth 
address, c5, of the present command. By the use of these special commands the machine may 
transfer source of control with each command. When operating in this manner the machine 
may obey.any arbitrary pattern of commands in the memory. Naturally, the special commands 
may be interspersed in any desired manner among the other commands. 

In addition and subtraction operations the capacity of the calculator may be exceeded. 
In case this happens the normal commands behave exactly like the special commands; that 
is, the next command is determined by the fourth address c5. 

In order to explain efficiently the 13 commands, let us introduce the following notation. 
Let w(cx.) denote the word stored in address cx.. Let the symbol ~ be read as "replaces." Let 
NC = w(c5) me~n that the next command the calculator is to obey is the word in address c5 
of the memory. The 13 commands, their symbols and effects, and the' next command are 
given in Table 1. 

Two principles have been followed in deciding upon the system of commands. The first 
. is that there should be as few commands as possible so as to simplify the electronic circuitry. 

(Actually, the electronic function table which interprets these commands has only eight 
positions.) The second principle is that the commands should be as general as possible. For 
example, the Extract Command (logical product) allows the use of any factor whatsoever, 
and the elections in case of overflow are completely general. 

One should notice that there is no Transfer of Control Command; the special commands 
do this automatically. Also, there is no Halt Command; the Input Command with c5 specifying 
a nonexistent input device causes the machine to stop. Division is accomplished by a routine. 
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Table 1. Commands, symbols, effects, and next commands. 

Command 

Addition 

Special Addition 

Subtraction 

Special Subtradion 

Multiplication with 
Round-Off 

Special Multiplication 
with Round-off 

Exact Multiplication 

Compare 

Special Compare 

Extract 

Input 

Special Input* 

Output 

Symbol Effect 

ex, (3, y, <5, A . w( ex) + w({3) --+ w(y) 

ex, (3, y, <5, Al w(ex) + w({3) --+ w(y) 

ex, (3, y, <5, S w(ex) - w({3) .--+"w(y) 

ex, {3, y, <5, SI 

ex, {3, y, <5, M 

ex, {3, y, <5, Ml 

ex, {3, y, <5, P 

ex, {3, y, <5, C 

ex, (3, y, <5, C1 

ex,{3,y, <5,E 

w(ex) - w({3) --+ w(y) 

W( ex) . w({J) rounded off to 40 digits 
and sign --+ w(y) 

w( ex) . w({3) rounded off to 40 digits 
and sign --+ w(y) 

w(ex)· w({3) --+w(y) and w(<5) 

Causes change in source of com­
mand 

. Causes change in source of com.;. 
mand 

w({3) is blanked (made into zeros) 
wherever there are ones in w( ex), 
the result is shifted right or left 
a certain amount as determined 
by <5, the final result --+ w(y) 

Next Command 

w(s) ; 
w( <5) if overflow 

w( <5) 

w(s) ; 
w( <5) if overflow 

w( <5) 

w(s) 

w(<5) 

w(s) if w(ex) < w(fJ); 
w( <5) if w( ex) > w(P) 

w(s) if Iw(ex)1 < Iw({3) I ; 
w(<5) if Iw(ex)1 > Iw({3) I 
w(s) 

ex, (3, y, <5, I Information is transferred from an w(s) 
input device determined by <5 to 
the address ex in the memory 

ex, (3, y, <5, II Incoming information goes to w(s) w(s) 
instead of w(ex) 

ex, (3, y, <5, 0 Information is transferred from w(s) 
address (Yo of the memory to the 
appropriate piece of output 
equipment as determined by <5 

In the case of the input and output commands <5 may specify that the 
transfer is between the memory and the magnetic drum. In this event 

y and part of {3 determine the address on the drum. 

* This command is particularly useful in the process of initial input (that is, the process of reading-in infor-
mation when there are no commands in the high-speed memory). . 

It takes nine digits to specify an address in the .memory. Thus, in the standard 4l-binary­
digit words there are five digits left after one accounts for the four addresses. One of the five 
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digits is used for checking purposes to hasten "the detection of any error caused by the calculator 

trying to obey ordinary numbers as commands. Three of the digits define the eight distinct 

commands described earlier. The remaining digit defines modifications of five of the eight 

commands, referred to in the table as the special commands. 

Operations more complicated or more elaborate than those described in the discussion 

of the 13 commands must be done by a sequence of commands called a routine or subroutine. 

For example, division can be done by repeated subtraction if the appropriate routine is used. 

The whole process of division, which may amount to 100 operations, can be completely 

determined by approximately 15 commands. Furthermore, various commands used in the 

routine are repeated over and over again, operating each time on different numbers. 

We cannot go into details of routines at this time. Suffice it to say that the subject is a 

very interesting one and that t~ere are many pitfalls for the unwary; for example, has "division 

by zero" been taken into account? 

In a general-purpose computer there are many relatively simple operations that we want 

the calculator to carry out. For example, we want the calculator to perform division, floating 

addition3 and subtraction, floating multiplication and division, store-to-memory sequence 

transfers; and many other routines. Each such routine can be represented by a single word. 

Address 

1 

2 

3 

4 

5 

6 

200 

201 

to 

205 

Table 2. Storage of control words and interpretation routine. 

Number 

ex {J .. 'Y <5 F 

0 

1 's, .1 's, 1 's, O's, 1 's 

1 's, 1 's, 1 's, 1 's, O's 

O's, 1, O's, O's, O's 

O's, O's, O's, 1 's, 1 's 

1, O's, 1, O's,O's 

Remarks 

(= 000 ... 00) 

Used to extract the £5 portion of a word 

Used to extract F portion 

Used to increase /3 addresses by unity 

Used to extract cx., /3, and 'Y portions 

Used to simultaneously increase cx. and 'Y addresses by unity 

Address 200 shall be used to store the present coded instruction 
upon which the calculator is operating. This address plays a 
role analogous to the control register which registers a command 
word while the machine is obeying it. 

The five addresses following 200 contain an interpretation routine 
that keeps track of the coded instruction we are presently 
obeying, and provides a method of entering the proper sub-

. routine. In this system there are no general "links" (transfer 
of control instructions) to tell the machine what to do when it 
finishes the present subroutine; when each subroutine is finished 
the control always returns to this interpretation routine 
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If one were to try to build in circuitry to enable the calculator to perform all these tasks 
it is clear that the machine would become so cumbersome from the circuitry point of view that 
it would be almost impossible to construct, and, very likely, impossible to maintain in operation. 
Howev:er, we have seen that a routine of standard instructions can be set up in the memory 
whose effect will be to carry out such operations as those described above. 

Before considering in more detail an example of an abbreviated code instruction we ' 
will look 'into the storage of control words and examine the interpretation routine. ' We 
shall assume that control words and the interpretation routine are stored as indicated In 
Table'2. 

Each abbreviated command will be stored in address 200 while it is being obeyed. A 
portion of it (analogous to the function in the command word) is extracted and added'to 
a dummy command to arrange for an entry to the subroutine. The first step, in the inter­
pretation routine is to read the code word from a general place in the memory into a fixed 
place, address 200. Next the, extraction and addition with the dummy command takes place. 
This dummy cmnmand must be carried along to allow the command to be used over and over 
(the old command which provided the last entry remains in the subroutine until such time 
as it is replaced). 

The new entry shifts the source of commands into the subroutine. Each subroutine begins 
with certain extraction arid addition commands that split the parameters off the code word 
in address 200 and add them into the appropriate blanks in the routine. The last command 
to be obeyed in the subroutine refers the control to address 201 for its next instruction. This 
address in turn specifies what coded instruction is to be transferred to address 200. 

Ifwe assume that fifty such abbreviated commands can be stored in the high-speed memory 
and still leave sufficient room for the arithmetic data and the appropriate subroutines, then 
either we must arrange that the interpretation routine counts and causes segments of the main 
routine to be read in, or every fiftieth cOlnmand must read in fifty new coded commands from 
the main routine of the problem. 

Consider the coded instruction 
20, 18, 60, VC, 19. 

This means that a constant in address 18 is to be multiplied by a vector of order 19 stored' 
in addresses 20, 21, .. :', 38 and the resultant vector is to be stored in addresses 60, 61, ... , 
78. Let us also assume that the above vector-constant multiplication coded instruction is 
stored in address 225. The sequence of commands is given in Table 3. 

The vector-constant multiplication routine is chosen as an example since it clearly can 
be consid~red as a unit in a higher-level program (for example, solution of simultaneous linear 
equations) and it may itself control subroutines. For instance, the numbers may be stored in 
floating-binary form and the command in address 306 would have to be replaced by a coded 
instruction calling for a floating-multiplication routine. 

We can imagine much more elaborate situations in which the main routine is given as a 
sequence of coded instructions. Each of these coded instructions calls for a routine that is in 
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w(201) 

w(202) 

w(203) 

w(204) 

w(300) 

w(301) 

w(303) 

w(304) 

w(305) 

w(306) 

w(307) 
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Table 3. Sequence of commands for multiplication of a vector by a constant. 

Next Command is The Command Is Determined By 

Last command of 1,225,200" O,A , 
preceding routine 

8 2,200,204, O,E 

205,204,204, O,A 

8 201,4,201, 300,A1 

Remarks 

Takes (20,18,60,VC,19) to address 200 

The "VC" [= 300] is extracted into address 
204 to use as an entry to the vector-constant 
routine 

A "dummy" command 
extracted VC added 
= 201,4,201,0,Al] 

in 205 has the 
to it [w(205) 

Adds'" 1" to the "225" in address b of w(20 1) 
to provide for obtaining the next coded 
instruction 

(The interpretation routine is now finished and we are about to 
enter the vector-constant routine at address 300) 

0(204) 
[the 0 address 

of w(204)] 

8 

~(301) 

8 

8 

5,200,204, O,E Extract the "20,18,60" of the VC instruction 
into address 204. Note that using 204 does 
not harm the interpretation routine 

204,302,306, 303,Al Extractee is added to dummy in 302 to 
produce the first multiplication command 
'[ w(302) = O,O,O,O,M] 

3,200,204,1-3,2,E "19" extracted from w(200) and shifted left 
into the (x; position in address 204 

204,306,204, O,A A bound is produced in address 204· to tell 

306,,204, 0, 201,C 

20, 18, 60, O,M 

306,6,306, 305,AI 

when to stop this multiplication process 
[w(204) = 39, 18,60,0,M] 

The process will be complete when w(306) 
= 39,18,79,0,M and the source of com­
mand will shift to' address 20 I 

First product is done 

Certain addresses of w(306) are increased by 
unity and the calculator turns to the 
command in address 305 

turn. made up of coded instructions, and so forth, until finally one reaches subroutines whose 
elements are commands that the calculator explicitly obeys. 

One approach to the problem of keeping track of position as one drops' from one hierarchy 
of routine to an~ther is by a process called reversion storage. 4 In this method a so-called queue 
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is established which stores in reverse order the addresses one must return to after 'completion 
of the respective subroutines in order to proceed with the problem. 

Our approach to this problem has been to classify all routines into various orders. First­
order routines are made of units which are explicit commands that. the calculator obeys. 
There is no need for an interpretation routine for these routines since the e counter keeps 
track of position here. Second-order routines are those whose elements are first-order routines. 
Third and higher orders are similarly defined. For each level a different interpretation routine 
must be used. Not only this, but one may need to use a certain coded instruction representing 
a particular first-order routine as part of, say, a second-order routine and a third-order routine. 
Therefore, a record must be kept of the level from which the entry was made to each sub­
routine. When that routine is finished the source of command will revert to the appropriate 
place in the correct level. Thus, we see that the interpretation routine divides into several 
parts (one for each order of routines used after the first) with a record section that stores the level 
from which the entry to subroutines is made. 

In a sense we have made the situation two-dimensional. There are discrete levels on which 
we may operate with the record portion of the general interpretation routine controlling the 
choice of levels. 

Success of a system like this simplifies coding by putting more of the responsibility for 
routine operations upon the calculator~ 

NOTES 

1. The term "abbreviated-code instruction" was developed aCthe National Physical Laboratory, 
. England, in a group headed by Dr. A. M. Turing of which the author was a member. 

2. The term "sto~e" was used by Charles Babbage of England, who is credited with being the 
first to design an automatic calculator. In England the term "store" is commonly used when referring 
to the "memory." Note that in this paper its use is restricted to the low-speed memory. 

3. When two numbers of the form a X 2b are to be added, one must be shifted until they have 
the same exponent. 

4. This approach was developed at NPL. See note 1. 
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STATIC MAGNETIC DELAY LINES 

WAY DONG WOO 

Harvard University 

The magnetic delay line is a storage device which is built of rectifiers and transformers with 
cores made of ferromagnetic material that has nearly rectangular hysteresis curves. As shown 
in Fig. 1, a binary "1" is stored in a magnetic core as a residual magnetism in one dir~ct~on, 
while a binary "0" is stored as a residual magnetism in the opposite direction. The difference 

B 

--~----~-----+--------------------~-----H 

I' 

I 

FIG. 1.. Paths of operating point. 

between this storage device and the conventional rotating magnetic drum or tape is that the 
storage medium is not moving. The information is recorded in discrete cores instead of on 
small spots in a continuous medium. 

To recorda binary "1" a positive magnetizing current is applied and to record a binary 
"0" a negative magnetizing current is applied. After the magnetizing-current pulse is over, 
the information will be preserved until another magnetizing force passes through the arc. 

In order to read out the information without mechanical motion, it is necessary to apply 
a probing magnetizing force H', which is obtained when I' is applied. If the digit is a binary 
"1," then a large flux change occurs and a large induced voltage eo is obtained at the output 
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winding. If the digit is a binary "0," little voltage is induced. Thus the digit stored is indicated 
by the magnitude of the induced voltage when a probing current is applied. 

The residual magnetism remains essentially the same before and after a sufficiently small 
probing current. However, application of another probing current of the same magnitude 

INPUT 

(0) 

--I--I---+-H I 

a a 

(b) PATHS OF OPERATION WHEN DIGIT STORED IS O. 

b 

--f--t---+- HI 

a a 

(c) PATHS OF OPERATION WHEN DIGIT STORED IS I. 

FIG. 2. Diagrams to show basic operation. 

will produce a very small change of flux no matter whether the original state of the core is 
"1" or "0." After a small H', repeated application of H' will only describe the minor hysteresis 
loop shown at 1'; Thus, after the information is read out once, it can be considered destroyed 
unless one resorts to increasingly large probing currents. 

If a probing current large enough t6 reverse the saturation is applied, a very large induced 
voltage results. It is so large as to be able to reverse saturation of another core of identical 
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construction. Referring to Fig. 2(a), if both cores were saturated in the negative direction 
originally, repeated application of II and 12 will not change the saturation of either core, as 
shown in Fig . . 2(b), and little voltage is induced at the output winding. One can consider 
this as a "0" stored in this pair of cores. If, however, core number 1 is positively saturated 
originally, application of II will cause flux <l>1 to change from positive saturation to negative 
saturation. The voltage induced in the link winding will produce a current that opposes 
the effect of II. This current causes the flux in the second core to go to positive saturation 
even if it was originally at negative saturation. Now, if 12 is applied to the second core, the 
flux in this core will go back to the state of "0" while that of the first core will go to the state 
of "I." Alternate application of II and 12 will result in an exchange of "1" from one core 

ADVANCING 

FIG. 3. Circuit diagram of magnetic delay line. 

to the other, and there is an induced voltage at the output winding on every II and 12 pulse. 
Thus a digit" 1" is stored in this pair of cores. 

From the pasic mode of operation, a number of cores are connected as shown in Fig. 3. 
The. coils are wound so that the advancing current pulses produce a negative saturation 
corresponding to "0." The series rectifiers in the link winding ate such as to stop any current 
in the link windings that would produce a negative flux. Consider now the case of the cores 
C1 and C2 having negative saturation. Then application of advancing current pulse II will 
have no effect at all, and both cores retain their "0." One can also consider this as a "0" 
having been passed on from C1 to C2• On the other hand, if C1 is positively saturated but C2 

is negatively saturated, when advancing current pulse II is applied, C1 will be saturated nega­
tively, and the current in the. circuit linking C1 and C2 will saturate the latter positively. Core 
C1 returns to "0," while C2 takes on the "1" that was originally in C1• 

The rectifiers in the circuit prevent the effect of changes of flux in other cores on the two 
cores considered. The shunt rectifiers will prevent positive linking current in core Co when C1 
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reverses saturation from "1" to "0" and produces the driving voltage so that the" 1" does not, 
go in the backward direction. However, it will have no effect when the driving voltage is 
from the Co, because in this case the point a is at higher potential than b, while in the former 
case, a is at a lower potential than b. 

The series rectifiers prevent the effect on C3 when a "1" is advanced from C1 into C2• As 

(a) 

( b) 

FIG. 4. Flux in a given core as a function of time: 
(a) information rate, 3 kc/sec; information = 0111; 
(b) information rate, 30 kc/sec; information = 1000. 

the flux in C2 goes positive, the voltage induced in the link winding to C3 is such as to produce 
current causing negative flux in both C2 and C3• This current is prevented by the series rectifier. 
Aside from isolating C3 from C1 this rectifier also makes change of flux in C2 from negative 
to positive easier. 

Since each core when pulsed advances its stored digit only t() the next core and has no 
effect on any other core, it is possible to advance a digit f~om every other core at the same 
time. Thus the advancing current windings of every other core are connected in series. The 
advancing current pulse 11 will step the digits in all odd cores to the even cores, and the 
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advancing current pulse 12 will step all the digits in the even cores to the odd cores. A pair 
of the alternate pulses will cause the digit to step two cores, which are considered as one unit 
of storage. 

It is obvious that material having a nearly rectangular hysteresis loop, high retentivity, 
and low coercive force is required. The cores are made of wound strips of Deltamax (manu-

FIG. 5. High-speed magnetic delay line using 
selenium rectifiers. 

factured by the Allegheny-Ludlum Steel Corporation) of about fQur convolutions. The 
diameter is t in. and the strip is t in. wide and 0.001 in. thick. 

At present the maximum speed is 30,000 digits (i.e., 30,000 digits can be stepped through 
each unit of storage) per second. There is no lower limit of speed. The system acts like a 
system of trigger pairs, where digits are stepped from one trigger pair to the next. The fact 
that the speed is entirely controlled by the rate of advancing current pulses makes it a very 
useful intermediate storage system between two systems of widely different information rates. 

~' 

FIG. 6. Five-digit magnetic delay line. 

Figure 4 shows the flux in a given core as a function of time when the information rate 
IS (a) 3000 and (b) 30,000 digits per second. Figure 5 shows a ten-digit magnetic delay line 
on a breadboard. Figure 6 shows a five-digit line mounted on an octal plug. 

Professor Howard H. Aiken, the director of the Harvard Computation Laboratory, proposed 
this form of storage device, and Dr. An Wang has done most of the work to make it successful. 
Special acknowledgment is due the Allegheny-Ludlum Steel Corporation, which has cooperated 
actively with the Computation Laboratory and has supplied all the core material. 
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COORDINATE TUBES FOR USE WITH ELECTROSTATIC 

STORAGE TUBES 

R. S. JULIAN and A. L. SAMUEL 

University of Illinois 

One of the basic problems in connection with high-speed digital computers is that of 
storing the necessary amount of information which must be available at high speed as needed 
in the course of computation. As the speed of computing systems increases and as the amount 
of storage is aiso increased, the problem of locating any desired information becomes more 
acute. With this in mind, a research program was instituted,at the University of Illinois to 
develop precise and rapid methods of locating stored information. Recent developments in 
storage systems in which continual memory refreshing is employed have somewhat reduced 
the long-term stability requirements, at least for these case's, so that the system to be described, 
may not be needed. However, the system does possess a number of unique features which 
were thought to be of general interest and to warrant description. When and if storage systems 
progress to the point that a very much larger number of digits-say 106-can be stored in 
one electrostatic storage tube, then the need for precise locating equipment will again be 
urgent regardless of the type of refreshing used and the present scherne may warrant investi­

gation. 
We will assume that the information is stored in a binary code on the surface of target 

plates in tubes of the cathode-ray type and that the system envisions the requirement that 
anyone bit of information should be obtainable on demand without regard to its particular 
location on the screen. To make the matter still more definite, we will assume that a bank of 
40 such tubes are to be operated in parallel and that individual digits of a 40-digit code are 
stored in corresponding locations in the forty different tubes; we would then like to be able 
to locate these 40 digits simultaneously. 

To make this possible we propose to combine these 40 cathode-ray tubes together with 
two special coordinate tubes into a master-slave relationship in which all of the tubes are 
connected to the same power supply with their corresponding deflection plates all tied together. 
There will then be a one-to-one co~respondence between spot positions in the different tubes, 
although distortions may occur in the mapping from one tube to another as the result of 
minor differences and imperfections in the tube structures. If now some independent means 
is provided for precisely, identifying specific spots on the screen of one tube, which then acts 
as the master, such that the beam of this tube can be returned to these spots with certainty 
when desired, the beams of all the other tubes will be returned to the corresponding spots 
in these tubes quite independently of any distortions that may occur in the different tubes. 
This will be true for a group of tubes that are structurally quite different as long as the other 
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voltages on the tubes are maintained constant. If the tubes are reasonably similar in their 
geometrical construction, it will still he true to a high degree of accuracy when these other 
voltages are allowed to vary within the usual engineering limits. It is only necessary, therefore, 
to introduce auxiliary beam-locating equipment into the master tube in order to control the 
motion of the spots in all the slave tubes to the desired accuracy. Furthermore, it is quite 
feasible, to control the horizontal motions of the beams in the slave tubes with one master tube 
while at the same time controlling the vertical ,motion of the beams with a second master tube. 
The master tubes need, not contain provisions for storage and they can 'be specialized to the 
necessary extent to perform their control functions, all the while preserving their essential 
similarity to the slave tubes in regard to one of their deflecting systems so as to retain the 
desired mapping characteristics. 

Models of two quite different types of master tube have been constructed. Tests made 
on these tubes will be described later. Both types of tube are similar to the extent that they 
provide a definite number of stable beam positions (in this case 32) by means of mechanical 
positions on target plates contained within the master tubes. The beam position is maintained 
by means of servo amplifiers which obtain their input signals from the beam currents associated 
with the target plates. 

, The basic principle underlying the control system can be illustrated by reference to Fig. 1, 
which shows a syst~m in which there is but one stable position. A single-stage amplifier is 
used in the illustration to simplify the discussion. Assume that the beam of the tube has been 
deflected so as to strike the top portion of the second p~ate. All the current of the beam will 
then be to this electrode. The voltage produced by this current in the grid resistor of the 
amplifier tube (augmented by a d.c. grid bias) will cause the control tube to be biased nearly 
to cutoff. As the result the plate current will be small, and the tap on the plate power supply 
will be set at a value that will cause the beam to be deflected downward. Alternatively, if the 
spot had been deflected downward so, as to strike the interceptor plate only, there would be 
no current in the grid resistor, with the result that there would exist an appreciable plate 
current. Wit\1 proper adjustments the resulting negative voltage across the plate resistor will 
exceed the positive bias on the vertical deflecting vane and the beam will be deflected upward. 
Obviously there exists but one stable equilibrium position in which the division of beam 
current between the target and the interceptor is such as to produce no net deflecting effect. 
If the amplifier circuit is properly designed to prevent hunting, any deviation of the beam 
from this equilibrium position will bring into play the necessary restoring forces to return 
the beam to the desired location. On the basis of this scheme, it is a relatively simple matter 
to visualize the interceptor electrode, in anyone of several forms such that there may exist a 
multiplicity of stable positions separated by regions of instability. Given a scheme for stepping 

. the beam from one stable location to another, the necessary elements for the master tubes 
are evident. 

W}1ile it would be possible to step the spot from a starting position to any desired ultimate 
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position by a series of equal steps, economy-of-time considerations suggest the desirability of 
utilizing steps of different sizes corresponding to the particular number system used in specifying 
the address (which in this case is binary). If information defining a desired memory location 
is supp1ied to the tubes in positional-notation form, then two possibilities exist: either this 

FIG. 1. Principle of stabilization. 

information can be supplied in timed sequence or it can be supplied simultaneously. These 
two alternatives have resulted in the development of two quite different types of coordinate· 
tube. 

A simplified form of the serial coordinate tube is shown diagrammatically in Fig. 2 (in 
this case for only 8 stable positions). A comb-shaped interceptor is used in which the slots 
between the teeth are cut to different depths. The vertical position of the beam in this tube 
(which will be assumed to be acting as the master governing the vertical motion of the beams 
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FIG. 2. The serial coordinate tube. 
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in the storage tubes) is controlled by the servo amplifier, the polarity being such that the beam 
is stable when partially intercepted by the top of anyone tooth. The horizontal position of 
the beam in the master tube (i.e. the one controlling the vertical motion of the beam in the 
storage tubes) is, however, subject to independent control, there being three column positions 
corresponding to different columns in the binary-notational number system. The beam will 
be assumed to be initially deflected to the position labeled 1 in the figure. This corresponds 

to the starting position before an address has been located. We will assume that the desired 
address is the fifth slot, which in binary notation is 101, and that digits corresponding to this 
binary number are transmitted to the tube in timed sequence with provision for stepping 
the beam from column to column between these periods. With the beam in position 1, the 
first digit of the address is supplied through the circuit designated at the twitcher. This supplies 

FIG. 4. Photograph of the serial tube. 

to the deflecting plates a step voltage which transports the spot upward beyond the first slot 
so suddenly that the servo amplifier is practically not effective. The amplifier then continues 
to deflect the beam upward until it comes to rest at the next stable position, labeled 2 in the 
diagram. The column-control circuit then deflects the beam to position 3, where it is ready 

to receive the second digit of the address; in the present case this digit is zero, so that no signal 
is supplied from the twitcher circuit and the beam remains in position 3. The horizontal 
position of the beam is then moved to the next column and the final digit of the address is 

supplied, causing the beam to step to position 5. This then is the desired location. 
If we assume that the tube just described was controlling the vertical position of the spots 

in the slave tubes, a similar master tube could be at the same time controlling the horizontal 
positions of the beams in these same slave tubes, with the result that the desired address would 
be located in a time required to transmit the three-digit address code for either the horizontal 
or vertical positions. This is shown in Fig. 3, where, for simplicity, only one slave tube is drawn. 

A simple method of returning the beam to the starting position is also illustrated in Fig. 2. 
It is only necessary to move the beam to a restoring column on the right to cause it to be 
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returned to the desired horizontal position; it can then be deflected to the left at position 1 

as shown. A number of quite different stepping arrangements have been proposed and 
investigated, but since the one shown in Fig. 2 proved to be the simplest and most reliable, 

FIG. 5. Actual 
sequence of steps to 
locate the position 
11101 on the serial 

tube. 

these other schemes will not be discussed in detail. 

Several characteristics of this scheme warrant special attenti0n. It 
will be observed that the address must be supplied in time sequence 
and in the normal forward binary notation rather than in the reverse 
binary notation which is frequently employed in serial machines for 

the numbers on which arithmetic operations involving carry are per­
formed. This must be carefully noted but should cause no trouble 
except in those cases where arithmetic operations are performed on 
addresses. The use of a timed-sequence address allows a simple master­
tube construction having only a single output lead. W hile the tube 

is essentially a digital device, the beam is stepped across the slots in 
the target plate by means of an applied voltage. It is important to 
observe that the tolerances on this stepping voltage are so great as not 
to nullify the digital principle of operation. The most severe require-

ments on this stepping voltage occur when the spot is in the last 
column, in which position the amplitude of step must vary by about ± 50 percent to cause 
failure. This can be seen by studying the form of the coordinate tube output current as a 

function of beam position in Fig. 12. A photograph of an experimental coordinate tube of the 
serial-address system is shown in Fig. 4. Figure 5 is a photograph of the screen of this tube 
showing the sequence of positions occupied by the beam in going through a complete cycle to 

locate the address specified by the binary number 111Ol. 

FIG. 6. Photograph of the parallel coordinate tube. 

A distinction between the use of a serial or parallel address code and the operation of the 
complete computer on a parallel basis should be noted. In the system just described the 
address is supplied to the coordinate tubes in time sequence, but since the master tubes control 
40 slave tubes each containing one digit, the stored information is available for use in a parallel 

adder if this is desired. 

If a parallel system is envisioned, it would be more logical to supply the address to the 
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coordinate tubes in parallel rather than in tiined sequence. For this reason a second type of 
beam-position tube, shown in Fig. 6, has been constructed. Structurally this tube is similar 
to the one just described in that it consists of a cathode-ray tube with a special target replacing 
the fluorescent screen. However, this target now consists of a metal plate containing vertical 
columns of windows, the vertical position of the beam being stabilized at one of eight locations 
determined by each of these windows. 

The principle of operation is as follows. The electron beam is swept horizontally by a 
sine-wave generator at a speed that is high compared to the vertical operating speed. We 
have found it convenient to use a 30-Mc/sec oscillator for this purpose. The trace of the 
sweep spans all of the vertical columns of windows, as shown in Fig. 7. Wherever the beam 
encounters a window it enters and impinges upon o~e of the curved metal surfaces which 
may be seen behind each column. The secondary electrons ejected from a given one of these 

. surfaces will either arrive or not arrive at a collector C, according as the bias upon the corre­
sponding grid G is positive or negative. The current to the collectors produces a voltage drop 
which is then amplified by a high-frequency amplifier, and rectified, and the output voltage 
is supplied to the vertical deflecting plates of the tube in such a way that the vertical position 
of the beam rises as long as the secondaries in one or more columns reach a collector. 

With this mechanism in mind we can now see how the beam finds the proper vertical 
position. The binary digits of the vertical address are applied as biases to the grids G, positive 

. bias if a digit is one and negative if it is zero. The most significant digit is applied to Gl, 
the next to G2, and so forth. As may be seen now by studying the positions of the windows in 
Fig. 7, the beam will rise to a unique position for each three-digit number applied to the grids 
if the initial position is near the bottom where the beam encounters windows in each column. 
For example, in the figure the beam is shown in the 010 position; only column 2 is open so 
the beam rises to the upper end of the lower window in this column and stops. Had the address 
been 110, the long window in column 1 would have bridged the gap between windows in 
column 2 and the trace would have risen to the top of the upper window in column 2. The 
zero position of the beam is established by cutting away the lower portions of the secondary 
emitting surfaces so that the primary beam can strike the collectors. This can be seen in 
columns 2 and 3 of the figure. 

The over-all speed of this type of coordinate tube is somewhat better than that of a serially 
operated tube because the beam need stop only once in its search for an address. The tube 
also avoids the need of a direct-coupled external amplifier and column-stepping equipment. 
On the other hand, the high-frequency amplifier req uired by the parallel tube needs more 
gain than does the direct-coupled amplifier of the serial tube. The parallel tube itself is fairly 
complicated, and the over-all complexity of the two· systems seems to be about the same. 

In any application of coordinate tubes, the speed of operation is likely to be a matter of 
primary interest. \Vhile the over-all speed may depend upon the computer as a whole, certain 
limitations inherent in the coordinate tube itself may appropriately be discussed here. These 
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limitations are essentially those that are encountered in any feedback amplifier because of 
parasitic capacitance and finite tube transconductance, and are associated with feedback 
stability. 
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In either of the two typesof tube, the beam is expected to rise during switching until some 
edge of the locating comb is encountered and there to remain. For example, referring to Fig. 
2, suppose that the beam is given a vertical twitch so that the feedback system causes it to 
rise from position 1 toward position 2. When the spot reaches the open slot it must not cross 
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the slot because the feedback system would then cause it to rise still farther to some undesired 
position. This places a restriction upon the speed with which the spot may be allowed to 
move relative to the speed of response of the stabilizing amplifier. Moreover, when the spot 
is resting i~ some position the feedback system should cause it to remain quiescent; that is, 
the feedback loop should be stable. These two requirements are somewhat similar, the second 
being ordinarily the more stringent. 

The basic factors upon which these two types of stability depend may be understood by 
analyzing in detail a specific typical system, first for overshoot and second for static stability. 
The system considered is that shown in Fig. 8. 

The following nomenclature will be used: 

Co, total amplifier output capacitance including the collector electrode of the coordinate 
tube; 

d, equivalent spot diameter; 

D, deflection sensitivity of coordinate tube; 

gm, mutual conductance of each amplifier tube; 

G, zero-frequency gain per stage [= gmR]; 
io, net beam current to collector; 

L(w), total gain ratio of feedback loop; 

N, number of amplifier stages; 

R, interstage shunt resistance; 

S, vertical position of spot; 

. t, time; 

Vn) output voltage of nth amplifier stage; 

W, slot width; 

w, angular frequency. 

With the electron beam in the position shown in Fig. 8, the beam current £0 charges Co 
at a certain rate. The rising voltage across Co, when amplified, causes the beam 'position to 
change at a rate given by 

4!. _ io GnD 
dt - Co . (1) 

When the spot position reaches the lower edge of the slot, the current in Co abruptly stops (in 
this part of the analysis the beam focus is ass~med to be infinitely sharp). The requirement 
we wish to impo~e, then, is that the spot cease rising before it has travelled one additional 
slot width. 

To calculate this we must know the response of the amplifier to an abruptly starting or 
stopping linearly rising voltage. For the amplifier shown in Fig. 5 we find that 

(2) 



R. S. JULIAN AND A. L. SAMUEL 

irall vn's are zero for x < O. In this expression x = tiRe. If we take 

Vo = 0 for t < 0 
and 

Vo = at for t > 0, . 

where a is constant, then Eq. (2) gives 

[ 
~n-k ] vn=ARCGn x-n+e-X~-k-x7c. 

o 

(3) 

(4) 

If the deflecting voltage of the coordinate tube is the output Vn of the last amplifier stage, 
Eq. (4) says that the ultimate (t~ RC) motion of the spot is given by 

S = atGND-aNRCGND. (5) 

The second term of this expression is the ultimate lag of the spot behind where it would have 
been with a perfect amplifier and the input given by Eq~ (3). Since this is a linear analysis, 
this lag is the same as the overshoot when the beam reaches an edge after long travel. Com­
paring the two terms in the right-hand member of Eq. (5), we see that the overshoot is 

ds 
NRC dt' 

where dsfdt is the speed with which the spot enters the slot. The condition that the overshoot 
be less than one slot width, therefore, is 

which may also be written 

(6) 

The condition that the spot in a coordinate tube shall not overshoot its mark too far must 
certainly be met if the tube is to operate at all. Beyond this one might demand that the spot 
ultimately come to complete equilibrium and not dance about' on the edge of the slit. Whether 
or not the spot- will do this evidently depends upon the behavior of the complete feedback 
path, including the effect of finite spot focus. The feedback loop may be characterized by' 
means of the complex loop gain, which for Fig. 8 is 

WDioRoGN 
L( w) = d( 1 + jwRoCo) (I + jwRC)N (7) 

when expressed as a ratio. In this expression d is an equivalent spot diameter defined as the 
diameter the spot would have if the rate of variation of collector current with the elevation 
of the spot on the slot edge were constant over the sl'0t diameter and equal to the actual rate 
at the equilibrium position. This gives a dimension that is proportional to diameter for similar 
spots and is of the same order as the visual spot diameter on a fluorescent screen. 

The condition that the spot come to equilibrium can now be obtained from Nyquist's 
criterion for the stability of a feedback loop. This criterion is that the complex variable L 
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not encircle the point - 1 as co traverses the rea,l axis from - 00 to + 00. Examination of 
Eq. (7) shows that this requires that 

• 'IT 
Sln-

io GND < 2N dgm 

Co 2 'IT GC' 
cos 2N 

since L(O) ~ 1. Making use ofEq. (1) this inequality becomes 

ds K dgm . 

dt < NGC' (8) 

where K is a number of the order of unity . 
. Comparing (8) with (6) we see that the allowable spot speed for absolute stability is less 

than that' for which the spot simply. will not overshoot a slot in about the ratio of the spot 
diameter to the slot width. It is interesting to note that all factors describing properties of 
the amplifier enter both (6) and (8) in the same way. 

The facts that must be considered in choosing the parameters of the amplifier system to 
operate a coordinate tube are relations (1) and (8), and a statement (9) of the maximum 
deflection which the amplifier must produce. Collected, these are 

ds= io GND 
dt Co ' 

(1) 

ds dgm 
dt<K NGC ' (8) 

and 
Sma~'= ioRoGND. (9) 

When a specific coordinate tube is in mind the quantities D, W, io,' d,. and Co may be 
considered known. For fast operation, one would first of all choose an amplifier tube with 
as high a ratio gm/C as possible so as to make the allowable speed high as given by (8) . Further­
more, for a given total amplifier gain GN the right~hand member of (8) is greatest when the 
stage gain G is 2.718. A logical design would be to choose this value of stage gain and then 
increase the number of stages so long as the spot speed given by (1) remains consistent with (8). 
Since this may require N to be as small as two or three for present tubes, some readjustment 
in the value of stage gain may be desirable. The resistor Ro is then chosen so that the maximum 
deflection as given by (9) is 50 percent or so greater than the actual excursion over which the 
spot must stabilize. There are, of course, the usual matters of drift, dynamic range, allowable 
grid resistance, etc., to be considered in fixing the design. 

The general considerations just given apply to the high-frequency amplifier of the parallel­
type tube as well as to the low;..pass amplifier. In the high-frequency case, however, the speed 
obtainable with a given type of amplifier tube is less than for the low-pass amplifier for two 
reasons: first, the speed is reduced by a factor of two because of the double-sideband operation; 
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COORDINATE TUBES 

and second, the value of high-frequency resistance Ro required by the design procedure 
outlined above cannot be realized, and more than the optimum number of stages must therefore 
be used. 

A number of experimental tubes have been built in the tube-construction laboratory of 
the University of Illinois. Two of these tubes are shown in Figs. 4 and 6. Except for the 
special target structures these tubes were made from standard cathode-ray tube parts. They 
have 32 possible spot positions determined by a fiv.e-binary-digit address. The operation of 
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FIG. 12. The output current from the serial tube as 
a function of beam position when the beam is swept 
across the smallest steps. 

these experimental tubes has been studied by means of special control-signal generators. A 
block diagram of the equipment for the serial tube is given in Fig. 9 and detailed schematic, 
in Figs. 10 and 11. This test equipment supplies the necessary signals for any address, either 
singly or repetitively, at a' pulse rate up to about 200,000 pulses per second. A type 5UPI 
oscilloscope tube, all of whose electrodes are in parallel with those of the coordinate tubes 
allows one to observe the path of the electron beam under various conditions. 

By means of this equipment the effect of the various parameters of the tube and stabilizing 
amplifier upon the speed and stability of the system have been observed. The principle 
characteristics of a typical experimental tube are as follows: bulb diameter, 3 in.; number 
of teeth, 32; slot width, 0.032 in.; electron gun, 5U type; beam current, 10 fla; spot diameter, 
0.010 in.; deflection sensitivity, O.OiOin./v; capac;:itance Co, 50 Pflf. This tube,when used 
with a two-stage stabilizing amplifier for which grri = 4000 flmhos, C = 20 Pflf, and G = 10, 
should be, limited by oversho'ot stability (6) to a spot speed of about 5 teeth per microsecond. 
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This speed at which the spot will no longer lock in has been verified experimentally. It has 
also been observed that when the feedback-loop parameters are such that the speed is more 
than about one-third this great, the spot does not sit still but oscillates up and down· on the 
edge of a slot. This observation checks (8) for the focus condition ordinarily used. The 
compromise between beam intensity and focus found most satisfactory is a spot diameter of 
about one-third of a slot width. Figure 12 shows the variation in collector current as the spot 
is moved over the smallest teeth with this focus condition . 

. Serial tubes also have been constructed in which the form of the comb was merely painted 
onto a piece of aluminum with India ink, rather than being a cutaway structure. This arrange­
ment makes use of the difference in secondary emitting properties of aluminum and carbon. 
This method of constructing targets has the advantage that the target may have any outline 
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FIG. 13. The output from the parallel tube. 

without regard for mechanical continuity of its parts. The two-piece cutaway target of Fig. 2 
is, of course, more uniform in output than is the secondary-emission target. 

Two types of parallel tube have been built: that shown in Fig. 6 and an earlier design 
without grids. In this simpler design a column is shut off by biasing the collector in the column 
negative so that the secondary electrons cannot reach it. However, the signal induced in the 
collector circuit by the secondary-electron space-charge cloud requires fairly large collector 
biases for its suppression. Figure 13 shows that an "open-closed" signal variation of 35 db 
is obtainable by the use of 200 v negative bias. The grids were placed in the later design so 
that smaller bias voltages would be effective. It was also expected that these grids would 
increase the "open-closed" discrimination by shielding the collectors . from space charge since 
these grids were held at ground-high-frequency potential by built-in by-pass condensers. 
Unfortunately, owing to the difficulty of effectively grounding the entire target structure to 
the outside equipment, this improvement was not realized. Poor triode geometry also contri­
buted to making this design less effective than the simpler arrangement. 

The support given to this study by the Navy Department, Office ?f.Naval Research, IS 
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gratefully acknowledged. Most of the experimental work, including the cc;>nstruction of the 
experimental tubes, was done by Messrs. Robertson, Peiffer, and Haynes, graduate students 
in Electrical Engineering at the University of Illinois. 

APPENDIX 

HARMONIC OUTPUT OF PARALLEL-TYPE TUBE 

As the electron beam scans .sinusoidally across the windows in the parallel-type coordinate 
tube of Fig. 6, it produces current pulses to the collectors C of any columns that are not shut 

SINUSOIDAL 
TRACE 

x = Xo cos "'ot 

i(t) 

~ 

FIG. 14. Analysis of the output from' 
the parallel tube. 

off by the grids G. In order that the tube may function properly, these various pulses must 
all add in phase, and each pulse should contribute about equally to the output signal. The 
followipg analysis discloses the conditions under which this will occur. 

The complex output current may be taken as the Fourier series in wot, that is" 
00 

i(t) = 2: aneinwot, 
-00 

where the complex constants an are given by 

an ---: -21 
f1T i(t)e-jnwotd(wot). 

7T J-1T 
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Putting into Eq. (2A) the output ~urrent i(t) due to a single open column located as shown 
in Fig; 14, we get . 

an = ~ [sin (n cos- l ;~) - sin (n cos- l 
::)]. 

Hence, the rmscollector current in the nth harmonic may be written 

. V2Io [. ( I X)] tn = -n- 6. SIn n cos- Xo ' 

where 6. [] means the value of the function in brackets at Xl minus its value at X2• 
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Since an comes out real regardless of the values of Xl and X2, we see that the currents fi'om 
any number of open slots will be either in phase or 1800 out of phase. The total current in 
a given harmonic may readily be obtain~d for any placement of open windows from a graph 
of the function in brackets in Eq. (3A). This is illustrated in Fig. 15, where the function is 
plotted for n :!::: 2. From Fig. 15 it is apparent that: if the peak-to-peak sine-wave sweep is 
about twice the total width occupied by the windows then all pulses will add in phase and 
will contribute about equally. 

The curve corresponding to Fig. 15 for the fundamental (n = 1) is a semicircle centered 
at zero. From this or direct physical reasoning, one sees that a window at the center of the 
sweep produces no fundamental output, and windows on opposite sides ·of the center tend to 
cancel. For this reason and because of shielding problems, the second harmonic rather than 

the fundamental output is used. 
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BASIC ASPECTS OF SPECIAL COMPUTATIONAL PROBLEMS 

HOWARD T. ENGSTROM 

Engineering Research Associates, Inc. 

This Symposium is impressive, both because of the large number of members and guests 
present and also because of the fearful and wonderful developments which have been and 
will be revealed in the papers presented here. The preceding papers on this program have 
been concerned largely with specific engineering developments; I should like to digress briefly 
and discuss some important factors of the general probl~m of procuring effective computing 
machinery. 

I should like to emphasize, first, that the objective of all work on calculating machinery 
is to produce computational results. In spite of the large amount of activity in connection 
with the development of digital calculating machinery, I think it is a fact that nearly all of 
the computational results so important to our national defense and industrial economy are 
still produced by traditional methods. Most of the computational results are still, obtained 
by machines of the desk calculator type, supplemented by the excellent machinery of the 
International Business Machines Corporation, Remington Rand, Burroughs, and others, 
including, particularly, such notable individual contributors as Professor Aiken, who has 
been responsible for the development of both numerical techniques and machinery for carrying 

. them out. 

Not very long ago, a war for which this country was unprepared found us equally unpre­
pared to carry out many necessary computational problems. The procurement of adequate 
equipment to carry out these problems was a matter of great difficulty. In the light of the 
critical international situation in these postwar days, deep consideration should be given to 
the basic problem of procurement of this computing equipment. 

In any discussion of a computational problem an immediate question is "Shall we use 
general purpose equipment, or design special equipment for this particular need?" It is 
axiomatic that any given computational process can be carried out more efficiently (i.e., 
either more rapidly or with less extensive machinery, or both) by equipment d~signed especially 
for the purpose. However, the decision between special-purpose and general-purpose equip­
ment is difficult to make. It depends upon a number of factors related to each other in a 
complicated way. It depends not only upon the technical character of the problem but also 
on economic factors, the work load, and S::l on., 

If solution time is not the most important factor, it is quite possible that general-purpose 
equipment may be preferable because of its versatility. If general-purpose equipment is 
obtained it can be applied later to .other problems, as they arise. One activity equipped with 
general-purpose machinery which comes to mind immediately is, of course, the Computation 
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Laboratory at Harvard. Although this laboratory is devoted primarily to research into 
methods of computation, rather than to the actual performance of computing services,it 
has done much of the latter. Other gener':ll computation facilities are centered at the National 
Bureau of Standards. Some such services, notably in England, have been set up under private 
enterprise. The International Business Machines Corporation provides services of this char­
acter, particularly in connection with their large-scale computer in New York, although this 
service is again primarily scientific in objective. Some bureaus and divisions of the government 
have found the volume of individual computational problems sufficiently great to warrant 
setting up laboratories of general-purpose computing equipment to carry out services of this 
character which arise within their particular divisions. 

At the other extreme are the computational problems requiring a large volume of specialized 
. workof a repetitious nature where the load is kept constant. In these situations special-purpose 
equipment is the obvious choice. I shall sketch briefly some exam~les of specialized problems 
requiring extensive repetitive computation at nearly constant work load. 

The airport facilities and the airways of this country are being subjected to increasing 
congestion, particularly under adverse weather conditions. The problems of air-traffic control 
and airport time utilization are essentially computational in character. They are problems . 
of automatic continuous inventory. 'Vith respect to the airport time-utilization problem, the 
basic preliminary design plans for equipment that will solve it have already been prepared. 
This equipment will store information on airport runway assignments by hour and minute, 
classified as to class of aircraft and arrival and departure times. The proposed equipment will 
supply this information upon inquiry and will change the stored information to conform to 
changing situations occasioned by weather conditions. Supplementary information, such as 
the identity of the plane and its route, likewise will be made part of the record .. 

Present control equipment in general use performs no computations, and even the most 
routine decisions are presently made by human controllers. Eventually it is planned that the 
input and output to airport time-utilization equipment will come from communication 
channels, and that the proposed equipment, which I have described very briefly, will be used 
at all large airports. 

This is a typical problem in which the use of special computational equipment is necessary. 
The development of such equipment must be pursued strenuously, and its installation en­
couraged. Operational control of large numbers of aircraft is of vital importance; the nation 
may be faced with a 'need for a practical solution of this problem on short notice. 

Although of limited sophistication, the problem of reservation control also is one of impOr­
t:I.nce. Those of you who spent valuable time during the war sitting in airports in far-off 
places waiting for air transportation, or in railroad stations attempting to get railroad trans­
portation, realize this only too well. Technical methods of a computational nature for the 
solution of these reservation problems have been proposed. The basic reasons why this type 
of service is not yet available are nontechnical in character. They depend upon operational 
and financial conditions. For example, these are the questions which arise: Is it better for 
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each airline to maintain a single reservation control, centrally tied in by communication lines 
to its outlying offices, or to maintain separate centers in the major cities from which it operates? 
Is it preferable for the airlines to combine their reservation control on an intercompany basis 
in each major center? To what types of transaction must computational equipment provide 
the reply? Answers to these questions are being sought by the Air Transport Association and 
committees consisting of representatives of commercial airlines. 

Another field in which large-scale computing is required and in which the arithmetic is 
straightforward can be designated under the heading of inventory control. Many important 
problems in this field are being handled adequately now, but the earlier years of the last war 
may be characterized by the statement "too little and too late," largely because of inadequate 
inventory control. The later years of the war were marked by the rise of priority systems and 
the resulting controversies. One basic assumption which may be made is that any future 
wars of these United States will be fought in the economy of limited scarcity. This means that· 
improvement in the methods of the control of inventories must continually be carried out 
and that plans should be made. to speed up even those methods that are satisfactory now. 
Applications to these problems of techniques such as those discussed at this Symposium are 
seriously lagging. 

There are numerous other fields in which the application of special-purpose computing 
equipment is obvious. These are situations in which specific data-reduction problems exist; 
problems of control in which the req~ired degree of precision is so high that digital rather than 
analogue techniques must be used. In all these fields the question remains: Why have not 
the successful results of researches been brought to bear on these problems? I believe the 
basic answer to this question lies essentially in nontechnical fields. The following reasons I 
believe. are basic: 

(1) Lack qfreliability. The reliability of electronic equipment involving l~rge numbers of 
vacuum tubes is still questionable. Reliability is of paramount importance in connection 
with any problems involving automatic control or inventory. In putting together a digital 
computer, whether special or gener~l purpose, a great deal of time is spent in removing the 
bugs. Although components operate well individually, the int~rconnecting and matching 
problems assume large proportions. The maintenance. of special computing installations, 
however soundly engineered, is a problem of the first magnitude. 

(2) Economic factors. The economy of this nation is such that sources for procurement of 
computational equipment must be found in private industry. The researches on digital' com­
puting equip~ent have been carried out to a large extent at universities under government 
sponsorship. Large-scale computing devices are expensive. Private enterprise, which must 
make a profit, is naturally reluctant t6 invest the large sums necessary to establish procurement 
sources on an industrial basis. Rapid advances in the art are, paradoxically enough, a 
hindrance to industrial development because no one wants to spend money on equipment 
that may shortly become obsolete. Also, the industrialist requires some competitive protection 
in the form of patents or exclusive rights to equipment and techniques. The patent structure 
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with respect to the large-scale computing devices is complicated by the fact that so much of 
the work has been carried out either within the government itself or in nonprofit institutions. 
Moreover, there arc no accurate data on the cost of producing such equipment because the 
methods of accounting employed in universities, government laboratories, and industry are 
so different. Hence, the question "What is a reasonable price for a computer?" is difficult 
to answe:r;. 

I have devoted much of this paper to generalities. In order. to come within the compass 
of the title of this session, "Recent Developments in Computing Machinery," I must mention 
the contribution of the company which I represent .. I believe our basic contribution to the 
practical solution of many special computational problems is our work with magnetic-drum 
storage and the ancillary electronic techniques. We have placed considerable emphasis on 
the perfection of the magnetic drum, both as a scientific instrument and as a c~mpetitiv~ 
commercial component. I am happy to report that we have had magnetic-drum equipment 
operating satisfactorily for a period of two years. Our efforts to develop a~d'design components 
and to evolve manufacturing techniques and processes have attained a degree of success such 
that magnetic-drum storage can be considered an industrial component. We have developed 
reliable magnetic heads, drum-surface materials and techniques, and. mechanical-design 
principles. These will be the subject of papers presented elsewhere. I wish to point out, 
simply, that the magnetic drum, as a component of special digital computing machinery, 
is now available. 

In closing, I should like to state again that the needs for special computing equipment in 
many aspects of our. national defense have not been met. Large gaps exist in the fields of 
operational control and in highly speciali~ed computing. Components to solve many of these 
problems have been developed, but ~re not industrially available. Increased attention must 
be given to these problems or the program on large-scale digital calculating machinery may 
be given the label "too many words, too few numbers." 
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ELECTROCHEMICAL COMPUTING ELEMENTS 

JOHN R. BOWMAN 

Mellon Institute 

Several fundamental and general electrochemical effects are potentially useful in the design 
of digital computing-machinery components. These include chemical deposition, electrolyte 
polarization, hydrogen-electrode polarization, anodic-film polarization, and alteration of 
surface tension. These can be combined in various types of cell to provide the functions of 
storage and selection. Such components have the advantages, over most of their equivalents, 
of small size and low cost. In speed, they fall in the millisecond, or more rarely in the micro­
second, range. Their main disadvantage is that they are essentially low-voltage direct-current 
units, and hence are not particularly well suited to electronic coupling. 

Electrochemical devices have found little application in communication engineering. 
This is largely because the effects are essentially qualitative and not reproducible to better 
than several percent. In digital networks, however, such reproducibility is not required, and 
electrochemical devices can be designed that will give good dependability in discriminating 
between two discrete states. This applies to all of the cells to be described. All of the effects 
discussed are reversible, not, in the thermodynamic sense, but in the sense that input of a 
suitable sig~al will bring the device back to an original state after having received an inter­
mediate signal. 

From the qualitative character of these effects, detailed development of any unit must be 
closely associated with the development of the entire network. Forthis reason, the information 
presente~ here is essentially a theoretical discussion of principles supported by a minimum 
amount of experimental results. Further experimentation would be useless without a definite 
object of computer design as a whole. 

As is well known in the electroplating arts, the passage of charge through a cell containing 
metal ions may cause deposition of metal on an electrode. This effect is a reversible one, and 
the presence of the metal film on the electrode gives .the cell an output voltage. When the 
circuit is closed, a current is established in it and the metal returns .to the electrolyte as ions. 

This effect can, potentially at least, be utilized to make a storage device. Consider, for 
example, a cell composed of similar electrodes and an electrolyte containing ions of a metal 
that plates out well. An electric impuise to su~h a cell will cause it to have an emf of sign 
opposing the input pulse. Application of a second input pulse of opposite polarity to this 
charged cell will cause anodic removal of the metal originally plated out and simultaneous 
deposition of metal on the other electrode, the emf of the cell thereby being reversed in polarity. 
Such a cell has properties similar to those of a capacitor. 
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Selection of the electrode and electrolyte materials for a memory device depending on 
this principle requires certain obvious considerations. Perhaps the most important is that 
the metal to be deposited be not subject to corrosion by the electrolyte. Further, it is desirable 
that the cell potential be as high as practical. These requirements are essentially contradictory 
because the most active metals present the largest electrode potentials.. The best compromise 
appears to be silver. This metal is unique in that it is the most active material that is unaffected 
by aqueous solutions of its own salts. It plates out well and develops usefully high potentials. 

The electrodes to be used should be inert chemically and should polarize readily with 
respect to hydrogen. These requirelnents lead almost uniquely to gold as the electrode 
material. 

The electrolyte should be stabilized to constant concentration of metal ions, a condition 
most readily met by providing for use of a saturated solution and supplying an excess of the 
solid-phase salt. For the silver-gold system, silver sulfate fulfills these conditions conveniently, 
being stable and soluble to a useful extent in water. 

Numerous experiments have been conducted on the cell 

Au/Ag2S04, sat. aq./Au. 

It is readily reversible, stable on standing for several months, and gives a steady output emf 
when charged to O~l to 0.2 v. 

The actual value of' the emf in the charged state is not reproducible, and appears to 
depend greatly on the nature of the gold surface on which the silver was plated out during 
the charging cycle, the rate at which the silver was deposited, and the amount of silver de-, 
posited. In general, high voltages are obtained for rough electrodes where small amounts of 
silver are deposited rapidly. In no case, however, was there ambiguity as to the sign of the 
polarity. 

As will be discussed under hydrogen polarization, the emf of this type of cell may be high, 
i.e., I v or more immediately after charging, but this value decreases to that of a normal 
silver electrode in a few minutes. 

This simple cell has the disadvantage that successive charging pulses or a long-continued 
one will deposit additional silver linearly with it, and reversal may require a large charge. 
This may be overcome by introduction of acid in the electrolyte to cause concentration 
polariza tion. 

Since the mobilities of the ions in ail electrolyte, are in general different, a· current in it 
gives rise to concentration gradients'; In particular, the hydrogen ion is highly mobile p,nd 
will carry a large part of the current relative to its concentration. If the electrolyte bearing 
silver ions is initially acidified and uniform, a substantial part of ~he current will initially 
be carried by the silver ion, but as the action proceeds the ratio of hydrogen- to silver-ion 
concentration near the cathode will decrease sharply. Continued current will then deposit 
relatively small amounts of metallic silver, and a saturation effect exists. The charge-retention 
characteristic of a typical cell is illustrated in Fig. l. Charging curves have been obtained 
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on numerous cells of this type. The initial portion of the curve is nearly linear in deposition 
of silver. As the charging proceeds, the electrolyte becomes exhausted of silver ion in the 
vicinity of the cathode, and the principal reaction at that electrode is release of hydrogen, 
which is quickly lost and does not contribute to the charge retained by the cell. 

On applying a charging pulse of reversed polarity 
to an already charged cell, the limited amount of 
silver originally deposited is promptly removed 
because there is an abundance of sulfate ion in the 
neighborhood of the electrode originally serving 
as cathode. As a consequence, a cell subject to 
electrolyte polarization can be reversed with a single 
pulse of sufficient size, even though it had previously 
received several successive charging pulses of ·equal 
size and opposite polarity. In a computer storage 
device this effect eliminates the need for erasure 
before reading in new signals. 
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CHARGE APPLIED Mathematically, a quantitative statement of this 
effect can be formulated as follows, neglecting 
acceleration and diffusion, which are negligible 

FIG. I. Charge-retention characteristic 
of a typical silver sulfate cell. 

I ' 

under all normal condjtions. 
The absence of space charge can be analytically stated· in the form 2Pi = 0, where the 

p/s are charge densities corresponding to the different ionic speci'es. 
Letting the quantities ik designate the components of current carried by the different 

ionic species we have 
2ik = i, 

where i is the total current carried by the electrolyte. 
The partial currents associated with the ionic species are proportional to the respective 

ionic specific velocities and to the concentrations; hence 

iL=~=~_= ... 
U1Pl U2P2 U3P3 

The partial currents and densities are related by the equation of continuity, which in one 
dimension reduces to 

dik dPk 
dX = Jt' 

The differential equation goverriing the over-all effect can be set up from these relations. 
in terms of the ionic charges Gk where 

dGk • dGk at = Zk and -dX = Pk' 

The result is that 

~~~ = i ~dGk = ° 
~dt '~dX ' 
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No analytical solution has yet been obtained for this nonlinear system, but it would be' 
amenable to numerical treatment with a digital computer. 

For high speed and sensitivity the cells should be constructed with minute dimensions. 
A 'useful ,form employs gold-wire electrodes of diameter 0.001 in. imbedded in a bead of 
acidified silver sulfate paste or gel- about 0.5 mm in diameter. From experiment there is 
indication that the minimum stable silver film must be about 100 atom diameters thick. 
The basic constants for such a cell are given in Table 1. The constants associated with the 

Table 1. Basic constants of silver. 

Atomic weight 

Density 

Molal volume. 

Avogadro number 

Volume of atom 

Diameter of atom 

lOB 

10.5 g/ml 

10.3 ml 

6.0 X 1023 atoms/mol 

1.71 X 10- 22 ml 

5.55 X 10- 8 em 

Table 2. Characteristics of a silver film, of dimensions 
(5 X 10- 2) X (7.5 X 10-a) X (5.5 X 10-6) cm. 

Volume 

Molal equivalent 

Faraday constant 

Electrochemical equivalent 

2.1 X lQ-9 ml 

2.0 X 10- 10 mol 

9.6 X. 104 coulombs/mo.l 

1.9 X 10- 5 coulomb 

Table 3. Characteristics of the electrolyte: a sphere of 
saturated Ag2S04,Ag, 5 X 10- 2 cm in diameter. 

Volume 

Solubility, Ag2S04 in water 

Mass of Ag2S04 in solution 

Molecular weight, Ag2SO 4 

Silver in solution 

Equivalent number of films 

I22 

6.4 X 10- 5 ml 

6.0 X 10- 3 g/ml 

3.Bx 10- 7 g 

312 

2.4 X 10- 9 mol 
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capacity of the cell are listed in Table 2, and the constants concerning its electrical character­
istics i~ Table 3.. Its resistance is of the order of 0.1 ohm. A suitable charging pulse is 200 rna 

for 1 msec; about one tenth of this is retained. 

A basically different type of accumulative device is provided by similar inert electrodes 
in an electrolyte consisting of a dilute acid alone. Application of a charging pulse will, to a 
certain point, produce adsorbed hydrogen on the cathode. This hydrogen gives a relatively 
high emf, but one of relatively short duration; its half-life with O.OOI-in. gold-wire electrodes 
is of the order of a few minutes, but its value may be between 2 and 3 v. Physically, it can be 
constructed much like the silver cell described. 

The more detailed characteristics of such a cell 
are of practical as well as theoretical interest. At 
low voltage, i.e., below about 0.6 v,. the cell behaves 
as a linear capacitor with a capacitance of about 
10 pJ per square centimeter of cathode area. As 
the voltage increases above this region, the cell 
accepts and retains a considerably larger charge, 
and finally at a still higher voltage hydrogen gas is 
released as bubbles, and current for the first time 
becomes steady. In the conducting range the back 
voltage of the cell increases logarithmically with 
the current. These phenomena are illustrated 
schematically iri Fig. 2. 
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Cells of this type are to be compared with the FIG. 2. Charge-voltage characteristic 
of an electrode-polarization cell. 

metal-disposition type in several ways. They supply 
potentials an, order of magnitude higher, have far greater speed and sensitivity, but have 
half-lives several orders of magnitude less. They ,may, however, find application in operat­
ing organs of computers, such as adders, where short-time storage only is required. They 
could, of course, be used for long-time storage if periodically read and regenerated. 

An extreme, type of electrode-polarization cell can be constructed using tantalum-wire 
electrodes in an acidic electrolyte. The anion should preferably be of high valence, such as 
borate and phosphate. The anode of such a cell develops a high-resistance film which does 
not permit conduction until about 50 v' and will retain available charge at voltages of this 
order of magnitude. The life of the charge, however, is short. The read-out operation can 
be measurement of either emf or re~istivity. 

The formation of high-resistivity films on anodes can be used for rectification as storage. 
By provision of one tantalum electrode and one inert one, preferably gold, a rectification unit 
having much the characteristics of a germanium-crystal rectifier is produced. Its main dis­
advantage is high capacitance, which precludes its use for extremely high-spe~d operation, 
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but this can be largely overcome by making the unit physically very small, aS'recommended 
for the other cells discussed here. 

I 

As is well known, the inte~facial tension between mercury and an electrolyte is strongly 
dependent upon the potential difference between them. Extensive use has been made of the 
phenomenon in capillary electrometers. An extension of this device provides the function of 
a relay. The general arrangement is shown in Fig. 3. When the mercury droplet is negative 
with respect to the electrolyte by about 0.25 v, its surface tension is low and it flattens out 

B c D 

A 
FIG. 3. Surface-tension cell. 

to make contact with electrode B. When the applied control potential is removed, the surface 
tension very quickly resumes ,its normal value and the droplet returns to nearly spherical form, 
breaking connection with contact B and making connection with contact C. Contact A 
provides a common input and return for the control voltage, which is supplied to contact D, 
which at no time makes contact with the mercury droplet. 

The device serves as a single-pole, double-throw, voltage-actuated relay. Its time of 
response is less than I !llsec. 

Care must be used in applying voltages to open circuits of this relay which would take 
over the controlling function. ,Such errors can be wholly eliminated by establishing gating, 
paths for signals before passing the signals through them, and keeping the signal pulses suffi­
ciently short that they cannot assume control. Similar circuitry is good practice with mechanical 
relays, where the contacts are never required to make or ,break a current. Devices of this kind 
are potentially useful for large pyramid selectors. 
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This paper is a progress report on attempts to develop a unified theory of calculating 
machines. First of all it should be made clear what devices are under discussion. In the present 
state of the development it ~oes not seem likely that analogue computers will be included; 
on the other hand, many devices not ordinarily considered to be calculators could fit into the 
analysis. As examples of such apparatus, the following are mentioned: teleprinter equipment, 
voting machines, cryptographic mechanisms, "tote" boards, type-casting machines, and at 
least certain portions of systems for railway signaling, centralized train control, automatic 
telephone switching, and pulse code modulation. It will be noted that all these devices are 
concerned with the handling of data or intelligence, generally in' a coded form. 

These mechanisms are obviously not of central interest to us, and are mentioned merely 
to indi~ate the possible broad scope of a unified theory. The principal motivation for a theory 
comes from the problems associated with the design and use of desk calculators, punch-card 
equipment, automatic message-accounting equipment, a~d, most important of all, large-scale 
digital calculators. The totality of, devices already mentioned will be called syntactical 
machines, for reasons that will appear presently. Calculating machines constitute an important 

,subclass of syntactical machines. Some of the problems whose solution could be aided by a 
unified approach are: 

(1) To, determine and describe the exact relation between operations built into the machine 
and the operations of mathematics. 

(2) Given the constructional details of a machine, to determine its exact operational 
characteristics; this is the problem of machine analysis, which is important to the design 

engineer. 
(3) Given the exact operational characteristics, and, a family of components, to determine 

how they must be interconnected to produce the desired results; thisis the problem of machine 
synthesis, even more important and difficult than the previous one. 

(4) Given a set of basic machine operations, to construct by iteration and combination 
new and more complex operations; this is the problem faced by the coder. 

(5) To determine a set of basi<:: machine operations that are capable of the extension just 
referred to, with a reasonable amount of coding effort, and that can be physically realized 
with a reasonable amount of equipment; this is the main problem of logical design. 

It would be rashly optimistic to predict that the solution of these problems will ever be 
reduced to a routine process; on the other hand, the development of theoretical tools that 
will assist in any way in their solution is a worthwhile project. 
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The building blocks of the development under discussion are logical syntax, symbolic logic, 
and conventional mathematical anaylsis. All that needs to be said here about symbolic logic 
is that it provides a useful symbolic apparatus for manipulating such words as "not," "or," 
"and," "implies," "is equivalent to," "there exists," "for every," in any arbitrary context .. 

ConventiOnal rriathematical analysis as the only tool for analyzing the operation of a 
calculating machine has several shortcomings: 

(1) The machine operations are frequently not equivalent to ordinary mathematical 
operations but only approximations thereto. 

(2) :rvlathematical analysis is ill-adapted to consideration of such operations as sorting" 
collating, selecting, extraction of fragments of words, and the like. 

(3) Description of machine operations in purely mathematical terms obscures the possi­
bility of non mathematical interpretations of the data, such as would be involved in program­
ming a machine to play chess, for example. 

Where does logical syntax fit in? This question brings us to the, basic characteristics of 
synta<::tical machines. They all accept input data or information, and produce output data. 
They are, ina sense, linguistic transducers, although the languages involved are usually 
extremely artificial and symbolic. aut' languages may be said to have three aspects: the 
structural, the meaningful, and· the motivative, otherwise known as syntax, semantics, and 
pragmatics.1 

It should be emphasized that this division of the theory of language into three parts has 
been made by logicians and philosophers, principally Professor Rudolf Carnap of the U niver­
sity of Chicago, rather than by students of natural spoken languages, and it has been principally 
applied to artificial symbolic languages that have been designed by mathematics, logicians, 
and engineers to be as accurate and unambiguous as possible. In the present state of the art, 
these are the only languages manipulated by machines. 

Pragmatics, the motivative aspect of language, deals with the relation between the expres­
sions of a language and· the actions they produce in the hearer or the consumer. In the theory 
of natural languages we could ascribe the principles of rhetoric, propaganda and advertising 
copy writing to this subject. In mechanisms it would consider .such things as the behavior 
of digital equipment as a link in a servomechanism; there is a close relation here to cybernetics. 
In calculators designed for scientific and accounting purposes the feedback link lies in the 
human consumer of the computational results. This aspect of language lies outside the scope 

of the present discussion. 
Semantics, the meaningful aspect of language, deals with the relations between the ex­

pressions of a language and the objects 'or events that they designate. The designer of a 
scientific calculator selects and builds into it those operations that make the ascription of 
numerical meanil1gs to the machine language as simple as possible, but it should always be 
borne in mind that the user is free to assign any meaning he wishes, and in machines for 
commercial purposes a nonnumerical meaning or interpretation may well be of equal impor­
tance. Felix Klein was one of the first to clearly recognize this fact; as he said, "the rules of 
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operation alone, and not the meaning oj the numbers themselves, are of importance in calculating, tor it is 
only these that the machine can follow; it is constructed to do just that; it could not possibly 
have an intuitive appreciation of the meaning of the numbers."2 

The expression "the rules of operation alone'" characterizes syntax. The following is 
quoted from Rudolf Carnap. "By the logical syntax of a language, we mean the formal theory 
of the linguistic forms of that language-the systematic statement of the formal rules which 
govern it together with the development of the consequences which follow from these rules. 
A theory, a rule, a definition or the like is to be called formal when no reference is made in 
it either to the ,meaning of the symbols (for example, the words) or to the sense of the expressions 
(e.g., the sentences), but simply and solely to the kinds and order of the symbols from which 
the expressions are constructed."3 

vVhat strings of characters are numerical expressions? This is a syntactical question, 
and its answer is a syntactical formation rule, since it explains how to form a numerical 
expression. 

Given two numerical expressions, how do we form a third, which we may call their sum? 
This is a syntactical question, and its answer' is a syntactical tran~formation rule, since it explains 
how to transform given expressions into new expressions. These rules are established with the 
meanings of the expressions as a basis, but this is in the background in syntactical investigations. 
The fact that symbols can be manipulated by formal rules, without any reference to their 
meanings, is what makes digital calculating machines possible. 

In any investigation of a language, we require a language to state the results of our study. 
The language under investigation is the object language, the medium for expressing the results 
is the metalanguage. The metalanguage used is a matter of choice, but a judicious combination 
of symbolic logic, ordi~ary matherp.atics, and English is recommended. 

So much for the abstract principles of logical syntax. Its development has been largely 
carried out by logicians in investigating the structure of mathematical proofs. These aspects 
of the subject do not bear directly on the theory of computing machines, .and consequently 
the information available in the literature serves only as a starting point, and much further 
research is needed. ' 

The application of syntax to computing machinery will be illustrated by a few specific 
examples. First of all we will consider the ,description of algorithI?ic number systems from' 
a syntactical point of view. These number systems are those designed to provide names for 
all nonnegative integers. The ordinary denary, or decimal, system and the binary system are 
the most common examples. This description will be general and not restricted to a particular 
base or radix. 

We assume the existence of (3 distinct kinds of symbols or characters, where (3 > 2 and is 
an integer. The exact nature of these characters is immaterial; they. may be holes' in paper 
tape, marks on paper, el~ctrical pulses, distinct identifiable positions of rotating elements, 
light signals. All we require is that we can recognize any character, and unambiguously 
determine to which of the (3 classes it belongs. 
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It is further assumed that these characters can be arranged in strings with a definite 
beginning and end, and that each character except those at the ends has a unique immediate 
predecessor and a unique immediate successor. This constitutes a linear syntactical system 
or language. Each string is an expression of the language. Multidimensional exp~essions are 
also used, for example, in matrices and punch cards, but they will not be considered here. 

An expression, a string of characters, can be symbolized by 6. Xi' The variables of the meta­

language are restrieted to range over fJ > 2 possible values, i.e., to the characters. The 
integer fJ is a parameter that constitutes the, radix or base of the system. If fJ = 10, and we 

are dealing with the ordinary written numerals, 6 Xi = '365' would signify that Xo = '5', 

Xl = '6', X2 = '3'. Note the numbering of characters from "right to left." The single quotation 
marks are used to denote the fact· that we are considering the marks themselves and not the 
numbers they denote. 

Certain other properties are assigned to the fJ distinct kinds of characters. First of all we 
require that a discrete cyclic order be established among the fJ characters. The red characters 
on ,the telephone dial exemplify this for the' ordinary written system, fJ = 10. The cyclic ' 
order progresses counterclockwise aro~nd the dial. The cyclic successor of X will be denoted 
by O'(x) • . Thus, on the dial, 0'('0') = '1', 0'('9') = '0', etc.' Iterations of the cyclic successor 
operator will be denoted by exponents; for example, in the ordinary system, 0'5('0') = '5', 
O'IO(X) = O'O(x) = x. In general, O'T(X) = O's(x) if and only if r == s (mod fJ). In addition to 
the cyclic order, we single out a particular character and call it 'Nu'. On Ithe telephone dial, 
Nu appears immediately below the hook, i.e., in the ordinary system Nu = '0'. In modern 
written Arabic, Nu = ' . '; as transmitted by the telephone dial, Nu is a closely spaced time 
sequence of ten pulses. The telephone dial is a siIl?-ple, inexpensive, syntactical machine; 
when properly manipulated, it transforms the '0' appearing in the directory into the requisite 

pulses. 
The idea of the.fJ > 2 characters, the cyclic order imposed on them, and the fiducial Nu, 

are the elements of the development. A numerical expression is defined as any expression 

with at least one character having the property that the first character is not Nu, i.e., Ax. 
'/, = m t 

is a numerical expression provided m < n, and Xn =1= Nu. It will be useful to have a symbol 
for the expression with no characters at all, and 'A' is selected for this purpose. The arch 
'~' means 'is followeq by,' and capital letters will be used for expression variables, since 
small letters are reserved for character variables. Note that a single character is always an 
expression, but not conversely. To illustrate this notation: 

A ..-. X = X = X"-' A. 

We have defined the numerical expressions as the totality of expressions that begin with 
a character distinct from Nu. This is a formation rule. In order to proceed further we define 
a transformation rule, which enables the determination of the successor of a numerical ex­
pression. in the sense of Peano's axioms, that is to say, the operation of counting. We do this 
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with the aid of the auxiliary notion of quasi successor which is defined for any arbitrary 
expression. 

Definition l. Quasi successor (quasinachfolger), qnf (X). 

(1) qnf (A) = a(Nu). 

(2a) If a(z) =j::. Nu, then qnf (Y --- z) = Y --- a(z) ; 

(2b) If a(z) = Nu, then qnf (Y --- z) = qnf (Y) --- a(z). 

This is the syntactical formulation of the operation performed by a counter. The last digit 
continually progresses through the cyclic order-note that (2a) and (2b) both terminate in 
'a(z)-but if the last digit becomes Nu, it is necessary to perform the counting operation on 
the expression formed by discarding the last digit; this is the carry. If when the last digit 
is discarded nothing ,remains, a new a(Nu) (corresponding to '1') is prefixed. This assumes, 
of course, that the counter has unlimited capacity. This transformation rule is a recursive 
operation across the digits, from right to left. 

On the basis of the above definition, we can prove 

Theorem 1. 

IfAxi =j::. A a- 1(Nu), 
t=m t=m 

then AYi = qnfAxi if and only if 
. t=m t=m 

(1) [Yi = a(xi )] <=> (k) rem < k < i) => (Xk = a-1(Nu))], 

(2) [Yi = Xi] <=> (3k) [em < k < i) . (Xk =j::. a- 1(Nu))]. 

IffJ = 2, then Xi =j::. a- 1(Nu) ifand only ifxk = Nu, and Xk = a- 1(Nu) ifand only ifxk = a(Nu) 
and hence lines (1) and (2) of Theorem (1) specialize to: 

(I a) [Yi = a(xi)] <=> (k) [em < k < i) => (Xk = a(Nu))], 

(2a) [Yi = Xi] <=> (3k) [em < k < i) . (Xk = Nu)]. 

The successor of a numerical expression. X is simply qnf (X), and it can be shown that the 
qnf operation, thus restricted, satisfies all of Peano's axioms. The theory of operations on 
natural numbers can be constructed from this transformation rule. 

So far we have not considered the physical nature of the characters, nor how they are 
physically strung together to form expressions; we have been considering questions of axiomatic 
syntax. Suppose we have ,a language in which fJ = 2, and the chara~ters are represented by 
two conditions of potential at a point ~ in an electric circuit. Suppose, ~(t) is the proposition: 
the point ~ is at the higher of the two possible potentials at time t. We define Xt = Nu and 
X t = a(Nu) (there are only two char~cters) as follows: 

Definition 2. 
EXt = Nu] <=> rv ~(t), 

EXt = a(Nu)] <=> ~(t). 
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vVe are now dealing with physical syntax, since the physical nature of the characters comes 
into the picture. Since the characters must have unique immediate predecessors and suc­
cessors, it will be necessary to quantize our time scale. In a synchronous machine, we assume 
that t increases by constant increments. Suppose we have a black box with two inputs and 
two outputs (Fig. I). The box has the property that 1] assumes the high potential if and only 
if ~ and (J. are at different potentials, and A assumes the high potential ifand only if ~ and (J. 
are both at the high potential. Such a device can be synthesized by methods developed by 
Burkhart and Kalin, to be described in a forthcoming Harvard Computation Laboratory 
publication. 4 As soon as we identify the states of the calculating mechanism with the characters 
of the object language, analysis and synthesis of its behavior merges with the discipline of 
physical syntax. 

FIG. 1. A half adder. FIG. 2. Half adder adapted to 
perform the qnf transformation. 

To return to the "black box," which is known as a half adder, its physical behavior is 
described by: 

We define the character Y t by 

Definition 3. 

fJ(t) <=> (\j [~(t) <=> (J.(t)], 

A(t) <=> [~(t) . (J.(t)]. 

[Yt = Nu] <=> ("\.J 1](t), 

[Yt = a(Nu)] <=> 'YJ(t). 

Definitions 2 and 3 and statements (A) and (B) give: 

(J.(t) <=> [Yt = d(x t )], 

(\) (J.(t) <=> [Yt = x t], 

A(t) <=> [(x t = a(Nu)) . (J.(t)]. 

(A) 

(B) 

(C) 

(D) 
(E) 

In other words, if (J. is at the high potential (usually a positive pulse), then the box carries 
out the cyclic-successor transformation on each character, but if (J. is at the low potential, 
then the box performs the identity transformation. 

A delay is now inserted in the circuit (Fig. 2) and the inputs to (J. are so connected that 

(J.(t) <=> [y(t) V K(t) 1 . y(t) <=> t = (0), and K(t) <=> A(t - 1). Now, 

if 

then 

26 Xi =1= 26 a(Nu), 

AYi = qnf0xi. 
~ = 0 1= 0 
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First, we note that for t > 0, A(t) <=> (tk) [(0 < tk :::; t) => ~(tk)]· 

This is demonstrable by an inductive argument. Hence: 

IX(t) <=> (tk) [(0 < tk < t) => (Xt" = a(Nu))] 
and 

rv IX(t) <=> (3tk) [(0 < tk < t) • (Xt" = Nu)]. 

Replacing IX(t) and (\) IX(t) in (C) and (D) by their equivalents given above, we see by Theorem 

1 (for f3 = 2) that this circuit performs the qnf transformation. 
Another transformation rule will be described. All systems for expressing integers, even 

Roman num~rals, must have a qnf transformation rule, but complementation is characteristic 
of algorithmic systems, and has more syntactical than mathematical significance. 

Definition 4. 
f3 comp (aT(Nu)) = 0-<11- 1)- T(Nu). 

This defines the complement for a single digit. This is analogous (for fJ = 10) to the "nine's 
complement"; e.g., 10, comp ('0') = '9', 10 comp ('7') = '2'. 

( 
n ') n f3 comp ~ Xi = ~ fJ comp (Xi)· 

This definition extends f3 comp to expressions; fJ comp is a "linear operator". with respect to 
"~" and is thus more simply mechanized than the so-called ten's complement; there is no 
in teraction between characters. 

The black box just described can also perform the complement transformation. The 
peculiar property of binary systems that makes this possible is given. by 

Theorem 2. 
If f3 = 2, a-1(x) = a(x) = 2 comp (x). 

From Theorem 2 and statements (C) and (D) we obtain: 

IX(t) <=> [Yt = 2 comp (x t)], 

("\) IX(t) <=> [Yt = Xt]. 

(F) 

(G) 

If we supply clock pulses to' IX, the circuit complements; if not, then it gives the identity 
transformation. 

Now consider the problem of forming the "ten's" complement. No special notation is 
needed, since it is simply qnf (fJ comp (x)). The qnf indicates the necessity of carry mechanisms 
when a ten's complement is formed; qnfis not a "linear operator." From the previous analysis 
a complementer can be constructed by connecting two half adders in tandem (Fig. 3). All 
that is required is to supply clock pulses at c5 and a starting pulse at y(t) simultaneous with the 
appearance of the least significant digit at~. There is a superi~r method, and the basis for 
it will now be derived. 

The following theorem is easily proved from the preceding definitions and properties of 
cyclic order: 
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Theorem 3. 
Ifn > m, then 

(1) Ifxm =1= Nu, qnf (fJ comp C:~~Xi)) = fJ comp C61 Xi) ~ a(fJ comp (xm)), 

(2) If Xm = Nu, qnf (fJ comp (6 Xi)) = qnf (fJ comp C61 Xi)) ~ Xm• 

From Theorem 1 follows 

Theorem 4. 

If 6 Xi =1= 6 Nu, n > m, then6Yi = qnf (fJ comp (6 Xi)) if and only if: 

(1) [Yi = a(fJ comp Xi)] <=> (k) [(m < k < i) => (Xk = Nu)], 

(2) [Yi = fJ comp Xi] <=> (3k) [(m < k < i) => (Xk =1= Nu)]. 

If fJ = 2 these two lines specialize to: 

(la) [Yi = Xi] <::=> (k) [(m < k < i) => (Xk = Nu)], 

(2a) [Yi = 2 comp Xi] <=> (3k) [(m <~ < i) . (Xk = a(Nu))]. 

This theorem justifies the following ingenious circuit, invented by T. C. Chen. 

.~~ 

y~ 
FIG. 3. A complementer. 

£~~----------------~~-r-+ 

FIG. 4. Circuit for transformation corre­
sponding to the two's complement. 

The half adder is connected to a flip-flop as in Fig. 4. The gate-inverter combination 
serves to transform the static output of the flip-flop to a string of positiv.e pulses, in order to' 
permit a.c. coupling in the half adder. It will be noted that the positive pulses appear at 
oc if and only if the flip-flop is set. The flip-flop is assumed to require one unit of time to change 
its state, and the condition of the circuit immediately preceding the arrival of the character 

. Xo is I\) ~(- 1) and y(- 1) and we require that y(t) < . > t = -l. The circuit condition at 
oc is then, for t > 0: 

oc(t) <=> (3tk) [(0 < tk < t) . ~(tk)]' 

r0 oc(t) <=> (tk) [(0 ~ tk < t) => I\)~(tk)] .. 

Replacing ~(t) by its syntactical equivalent from Definition 2: 

oc(t) <=> (3tk) [(0 < tk < t) . Xtk = a(Nu)], 

I\) oc(t) <=> (tk) [(0 < tk < t) => (Xtk = Nu)]. 

Combining this with statements (F) and (G) we obtain 

[Yt = 2 comp (x t )] <=> (3tk) [(0 < tk < t) . (Xtk = a(Nu))], 

[Yt = Xt] <=> (tk) [(0 < tk < t) => (Xtk = Nu)]. 
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Thus Theorem 4 applies and we have proved that the circuit carries out. the transformation 

rule (for {J = 2) corresponding to the two's complement, provided that 6 Xi =1= 6 Nu. 

The circuits analyzed are rather elementary, but these methods provide a link between 
the physical properties of the equipment components and the object language, as well as a 
method of describing and analyzing the interrelations between the transformation rules of the 
object language. This method is capable of being extended to cover more complex situations 
which are at present difficult to investigate except by our sometimes fallible intuition. 

Special Notation 

X"-"Y, the expression formed by adjoining the expression Y to the expression X. 
n 
~ Xi' the expression formed by adjoining the characters Xn) Xn - 1, ••• ,Xm +1, Xm together (in 

that order). 

a(x), the cyclic successor of the character x. 

ar(x), the rth iteration of the cyclic successor operator. 

<=>, if and only i£ 

(k), for every (integer) kl 

=>, if, then. 

(3k), for some (integer) kl 

rv not· ..•. 

. and· 

v . or . (or both). 

Lower-case letters are character variables; upper-case letters are expression variables; 
lower-case Greek letters are statement variables referring to voltage levels. 
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NOTES ON THE SOLUTION OF LINEAR SYSTEMS 

INVOLVING INEQUALITIES 

GEORGE W. BROWN 
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Consider the problem of minimizing a linear function ~biXi subject to the conditions l 

~AiiX, > C1, 
j 

i = 1, 2, .. " ml 

j = 1, 2, .. " m2 

Notice at the outset that equalities may be admitted in this form by writing each equality as 
two inequalities with reversal of signs. Furthermore, the problem may be reformulated so 
that only inequalities of the form Xi > 0 are present, by defining appropriate new variables. 
Thus it is evident that the above form is simply one standard version of a general problem 
involving both inequalities and equalities. 

In principle the solution of the problem stated is trivial. Observe that the set of inequalities 
defines in m2-space a convex polyhedron (possibly empty) with at most m1 + m2 faces of 
dimension m2 - 1, and that the minimum problem is that of finding an extreme point of the 
polyhedron in some direction. In general, the extremum will be taken on at a vertex, so the 
problem is that of evaluating ~biXi at the vertices and choosing that vertex which yields the 
smallest value. A vertex is of course a point at which a subsystem (of rank m2) of the inequalities 
is satisfied exactly as equalities, with the remaining inequalities satisfied. In principle, then, 
one could invert all subsystems of rank m2, throwing out those whose solutions fail to satisfy 
the remaining inequalities, and then evaluate ~biX;, It is clear that this is not a practical· 
method beyond the smallest values of m1 and m2• The. practical difficulties stem from the 
fact that the convex polyhedron is specified ~y its faces, whereas the vertices are at the root 
of the problem. . 

In passing, it should be noted that the problem stated above has a very simple dual prob­
lem, obtained by transposing the matrix A, and making a few other obvious changes. The 
dual is the problem of maximizing ~CiYi subject to the conditions 

i = 1, 2, .. " m1 

j = 1,2, .. " m2 

The two dual problems have the property that if either problem has a solution so has the 
other, and the minimum valuein one is the maximum value in the other. In certain economic 
applications the solutions of both problems are required. 

Consider now the problem of maximizing min ~~iAii subject to ~i > 0, ~~i = 1, i = 1, 
j 

2, . . " ml ; and the dual problem of minimizing max ~Aii1]; subject to 1]1 > 0, ~1]; = 1, 
i 
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i = 1, ... , m2 • This problem provides optimum mixed strategies for the zero-sum game 
with matrix A, where Aii represents the payment from player I to player 2, if player 1 plays 
his ith strategy and player 2 plays his ith strategy. The celebrated minimax theorem of von 
Neumann says that under the conditions stated 

Max Min ~~iAii = Min Max ~Aii1'Ji. 
; j ~ i 

The common value is referred to as the value of the game and the {~i} and {1'Ji} of the solutions 
are the optimum mixtures for players I and 2, respectively. As in the first problem stated in 
this paper, geometrical considerations of convex bodies contribute to an understanding of 
the problem, and it turns out that in general the problem is practically solved if it is known 
which submatrix of A to invert. 

There is of course an intimate relation between the theory-of-games problem and the 
problem first stated, although they are not quite identical problems, since the game problem 
always has a solution, while the first problem does not necessarily. To summarize briefly, 
the game problem is directly a special case of the first problem, while the first problem can 
always be embedded in a game problem, whose solutions yield solutions to the original problem 
if it has a solution. Thus, if problems of one type can be solved, so can problems of the other 
type. 

Various iterative methods for solution of one or the other of these problems have been 
given by von Neumann, Dantzig, and others. While some of these methods may be practical 
over a certain range of problems, all of them have an apparent dependence, in required number 
of steps, of higher order than the first power of the linear dimensions of the problem. For very 
huge matrices not possessing simplifying special properties, such a dependence can be a very 
serious obstacle in the way of getting numerical solutions. We will describe briefly, for the 
game solution, an iterative scheme which is quite different from those previously suggested, 
in that the amount of calculation required at each iterative step is directly proportional to 
the linear dimensions of the problem, so that the method has, a priori, some chance of beating 
the high-order dependence. 

The procedure to be described can most easily be comprehended by considering the 
psychology of, let us say, a statistician unfamiliar with the theory of games. Such a person, 
faced with repeated choices of play of a certain game, might reasonably be expected to play, 
at each opportunity, that one of his strategies 'which is best against past history, that is, against 
the mixture constituted by his opponent's plays to date. Such a decision utilizes informati0n 
of the past in the most obvious manner. The iterative scheme referred to here is based on a 
picture of two such statisticians playing repeatedly together. For purposes of calculation a 
slight modification is introduced which has the effect that the two players choose alternately, 
rather than simultaneously. 

Restating the method algebraically, let A be the game matrix, let in and in be the nth 
choices of strategy for the two sides, ~nd let ~i(n) and 1'J/n) be the relative frequencies of strategies 
i and j in (iI' i2, ... , in) and (j1' i2' ., .. , in), respectively; then in minimizes ~~/n)Aii and 
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~ I 2 3 

I 3 1.1 1.2 

2 1.3 2 0 

3 0 I 3.1 . 

4 2 1.5' t.1 

FIG. 1. A 4 X 3 matrix. 

0 10 j=l j=2 j=3 Yo Vo jo 1=1 1=2 1=3 1=4 

1 2 1.3 2 0 0 3.1 3 1.2 0 3.1 1.1 

2 3 1.3 3 3.1 .65 2.1 1 4.2 1.3 3.1 3.1 

3 1 4.3 4.1 4.3 1.37 1. '1'1 2 5.3 3.3 4.1 4.6 

4 1 7.3 ~ 5.5 1.30 1.60 2 ~ 5.3 5.1 6.1 

5 1 10.3 6.3 6~7 1.26 1.52 2 '1.5 '1.3 6.1 7.6 

6 4 12.3 1& 7.8 1.30 1.55 2 8.6 9.3 '1.1 9.1 

7 2 13.6 9.8 !& 1.11 1.46 3 9.8 9.3 ~ 10.2 

8 3 13.6 10.8 10.9 1.35 1.46 2 10.9 11.3 11.2 11.'1 

9 4 15.6 12.3 12.0 1.33 1.59 3 12.1 11.3 14.3 12.8 

10 3 15.6 13.3 15.1 1.33 1.53 2 13.2 13.3 15.3 14.3 

11 3 15.6 !!J 18.2 1.30 1.48 2 14.3 15.3 16.3 15.8 

12 3 15.6 15.3 21.3 1.28 1.44 2 15.4 1'1.3 17.3 17.3 

13 2 16.9 17.3 21.3 1.30 1.48 1 18.4 18.6 1'1.3 19.3, 

14 4 18.9 !Y 22.4 1.34 1.49 2 19.5 20.6 18.3 20.8 

15 4 20.9 gQJ 23.5 1.35 1.51 2 20.6 22.6 19.3 22.3 

18 2 22.2 22.3 23.5 1.39 1.52 1 23.6 23.9 19.3 24.3 

1'1 4 24.2 ~ 24.6 1.40 1.52 2 24.7 ~ 20.3 25.8 

18 2 25.5 25.8 ~ 1.37 1.49 3 25.9 25.9 23.4 26.9 

19 4 2'1.5 2'1.3 25.'1 1.35 1.47 3 27.1 25.9 26.5 28.0 

20 4 29.5 28.8 ~ 1.34 1.48 3 28.3 25.9 29.6 29.1 

21 3 29.5 29.8 29.9 1.40 1.49 1 ~ 2'1.2 .29.6 31.1 

22 1 32.5 30.9 31.1 1.40 1.48 2 32.4 29.2 30.6 32.6 

23 4 34.5 32.4 32.2 1.40 1.47 3 33.6 29.2 33.7 33.7 

24 3 34.5 33.4 35.3 1.39 1.47 2 34.'1 31.2 34.7 35.2 

25 4 36.5 34.9 36.4 1.40 1.47 2 35.8 33.2 35.7 36.7 

FIG. 2. Cumulative payoffs. 
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in+I maximizes ~Aii1]/n>. This process defines a sequence iI' J~, i2, j2' ... , once il is chosen 
3 

(perhaps arbitrarily), except for possible ambiguities of the extrema. A~y convenient rule 
will do for handling ambiguities. If En = min ~;i<n>Aii and Vn = max ~Aii1]/n>, it is easily 

. . j i 

seen that En < V < Vm where V is the value of the game. The mixtures {;i<n>} and {1]/n>} 
are mixed strategies, and the corresponding f~ and Vn are the most favorable outcomes ensured 
to each player if he uses the corresponding mixture. , 

At this moment not much is rigorously established about the properties of this iteration, 
except that ifit converges at all it converges to a solution of the game for each side. Of course 
it would be sufficient if lim· sup En = lim inf Vn. There is considerable support, however, 
based on experience with the method, and also on the study of a related system of differential 
equations, for the conjecture that convergence is of the order of lin and does not depend 
essentially on the size of the matrix. If this is so, it is extremely important for the solution of 
large matrices, by virtue of the fact that each iterative steps requires only a number of opera­
tions proportional to the linear size of the matrix. Convergence of order 1 In is of course painful 
if high accuracy is needed. In such cases it may be possible, however, to uSe a method like 
this to get close to the sblution, . finishing 'with one step of another iteration. 

Figure 2 is a worksheet showing 25 steps carried out for the 4 X 3 matrix given in Fig. 1. 
Note that each line is obtained by adding to the previous line, compone~t by component, the 
corresponding row or 'column of the matrix, without troubling todivide by n. The En and 
Vn were calculated at each step, by division of the extrema by n, to· show the progress of the 
calculation. In case of ties the lowest index was taken. Note particularly that Vn - fn is 
decreasing just about like lin, in spite of the excursions which Vn and En make. The initial 
choice of il = 2 was made deliberately as an unfavorable choice, with respect to minimum 
guaranteed payoff. 

It is appropriate to report to this Symposium that preliminary discussions with' Messrs. 
Harr and Singer, of the staff of the Harvard Computation Laboratory, indicate that Mark III 
could carry out 1000 of these iterative lines for a 40 X 40 matrix in comfortably under an 
hour. Of course the problem has not beel?- completely programmed, but the estimate is believed 
to be conservative. 
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MATHEMATICAL METHODS IN LARGE-SCALE COMPUTING UNITS 

D. H. LEHMER 

University of California 

The title of this paper covers such a vast subject that it will be impossible to do it justice. 
In fact, this title might well have been chosen as that of the whole session. My aim is merely 
to discuss in a general way certain features of the mathematics that is characteristic of the 

. large-scale computing unit. In pointing up these general remarks I shall discuss in considerable 
detail only one problem. Further illustrations will be contained, no doubt, in the other papers 
of this session. 

The mathematical methods available to a computing unit depend of course on the versa­
tility of the unit. Nearly all units can perform addition, subtraction, ·multiplication, and divi­
sion. The advent of large-scale digital cOrhputers has added a fifth operation of considerable 
importance, namely, discrimination. This, in general terms, is the operation of making a 
choice of one of several branches of a program (or course of procedure), depending on the 
outcome of a previous calculation. This operation is peculiar to discrete-variable machines, 
since its outcome is not continuous. The purely analogue machine cannot distinguish the 
larger of two sufficiently small numbers, or determine the sign of either. This fact was recog­
nized early in ,the construction of roulette wheels. By converting the wheel into a discrete­
variable device countless arguments were avoided. 

The ability of a discrete-variable machine to discriminate and thus to. decide for itself 
what course of action to take has led to the popular misconception that such machines think 
or even have the ability to learn from experience. 

Various criteria are employed in discrimination. Decisions are made according to whether: 

(1) A given number is > 0 or < 0 (Harvard Mark I) ; 

(2) A given number is 0 or not (ENIAC); 

(3) A given number is odd or even (ENIAC); 

(4) A given sequence of numbers has one sign pattern or another (Bell Telephone); 

(5) The sum of two numbers exceeds the capacity of the machine or not (Zephyr); 

(6) A given number belongs to one ofa set of residue classes with respect to a given modulus 
(Electronic sieve). 

These criteria are not independent and others can be constructed from them. All digital 
machines are capable of some form of discrimination and those named above are given only 
as examples. 

The mathematical methods that call for much discrimination are very frequently iterative 
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ones. .Here discrimination is used to decide whether or not to continue to iterate. Another 
simple use of discrimination is in forming the nonanalytic function I xl. More elaborate uses 
arise in the step-by-step solution of differential equations and of course still more in problems 
of combinatorial analysis and number theory. Incidentally, the electronic sieve is designed 
to make 10 million discriminations per second. 

Another feature of mathematical methods that are being used in large-scale· computing 
is that they tend to eliminate the elaborate formulas and to introduce instead what might· 
be called combinatorial complexities. This is due for the most part to the high speed of opera­
tion. For instance, in using a quadrature formula for numerical integration it does not pay 
to use the accurate Weddle's rule; it is often simpler and even faster to employ the crude 

. trapezoidal rule. As far as I know the· superb method of Gauss for mechanical quadrature 
has never been used in large-scale work. The method of Heun is used much more frequently 
than the more accurate and complex Runge-Kutta method for the step-by-step solution of 
ordinary differential equations. Minima of functions are found by extensive numerical trial­
and-error methods, rather than by the somewhat more sophisticated and traditional method 
of setting derivatives equal to zero and solving. Systems of many first-order differential 
equations are solved in lieu of single differential equations of high order. A large number of 
trial solutions of differential equations with one-point boundary conditions may be made in 
order to obtain a single solution of a two-point boundary problem. Solving problems in terms 
of special functions is passe; finite-difference methods are used instead. The power-series 
expansions of analytic functions are being ·used to a large number of terms and to a great 
accuracy in order to avoid the use of alternative asymptotic expansions. 

All these examples show how mathematical subtleties are being replaced by stepped-up 
numerical activiti'es. To make this replacement possible the operator naturally must surrender 
.much of his control to the machine itself. He simply cannot follow the course of the numerical 
work with sufficient rapidity to make on-the-spot decisions as to what to do next. This means 
that the programmer may have to incorporate a large number of discriminations or branches 
in the program of the problem. Much has been said, but little written, about the logic or 
even the topology of programming. Logicians and topologists are not coming to the rescue 
of the desperate programmer. General rules for programming have been discovered. Most 
of them have been used in the Kansas City freight yards fora long time. This is the combina­
torial complexity to which I have referred. Flow diagrams showing the routines, subroutines, 
and other wheels within wheels are hardly distinguishable from the block diagrams of the 
machine itself; the latter, however, are made once and for all. This then is the white man's 
burden of large-scale computing. 

The third characteristic feature of discrete-variable methods is the possibility of introducing 
number theory into what at the outset appears to be a· problem in continuous functions. By 
way of illustration, let me call attention to a method which is the subject of the last paper 
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of this session-the Monte Carlo method. In this method it is necessary to produce random 
variables. The problem here is not one of producing a table of random digits to be published 
and used by others. On the contrary, one can think ideally of a perfect stream of these random 
numbers produced at high speed by the machine and passing by a "gate." Whenever the 
computer needs a number it opens the gate and takes one. More explicitly, we might list 
the following desiderata: 

(1) An unlimited sequence of randomly arranged eight-digit numbers; 

(2) A simple process by which the machine may produce the sequence: 

(3) Immediate access by the machine to the current number of the sequence whenever 
necessary; of course, the whole sequence need not be retained in the machine. 

Ifwe examine these desiderata we see at once that they are inconsistent. In the first place, 
the number of eight-digit numbers is not unlimited. There are in fact only 100 -million of 
them. Secondly, condition (2) forces the sequence to be ultimately periodic and therefore. 
not random. We therefore scale down our demands and modify (1) and (2) to read: 

(1) Millions of pseudo-random numbers Un; 

(2) Un = !(Un-l),! a simple function. 

A pseudo-random sequence is a vague notion embodying the idea of a -sequence in which 
each term is unpredictable to the uninitiated and whose digits pass a certain number of tests 
traditional with statisticians and depending somewhat on the uses to which the sequence is 
to be put. The worst possible departure from randomness is to have the period of the sequence 
small or equal to one. In constructing the functionj, therefore, it is of the utmost importance 
to obtain one that produces a guaranteed proper period of immense length. 

A method already in use on the ENIAC, due to von Neumann and Metropolis, is the 
following. Let Uo be an arbitrary initial eight-digit number. Then U1 is defined as the central 
-block of eight digits in the square of uo, and U2 is defined as the same function of U1 that U1 is 
ofuo, etc. -At first sight this would appear to give an ideal source of random numbers. Certainly _ -
is produces an unpredictable sequence of numbers. However, as has been pointed out already 
by several writers, this process cannot be expected to give random numbers. In fact, one must 
expect. to obtain numbers Un of the form xyzwOOOO before many more than 10,000 numbers 
Un are generated. When this happens, either w = 0 and Un+1 = 00000000 and all succeeding 
u's vanish, or w =1= 0 and all succeeding u's are of the form xy'z'w'OOOO, where w' = 1, 5, or 6. 
Hence periodicity will set in in fewer than 3000 more steps. Also, one must expect to obtain 
numbers of the form Un = OOOOxyzw, in which case Un+17' Un +18, ••• , all vanish. _ Thus it is 
seen that this process cannot be recommended as a source of random digits. It has an addi­
tional drawback in that it ties up the multiplier, which is a fairly busy component of any 
machine. 

If we look at the problem from the standpoint of the theory of numbers, it is not difficult 
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to find a more satisfactory solution. We may proceed as follows. We begin as before with an . 
arbitrary nonzero initial eight-digit number Uo. Next we compute 23uo• In general this will 
be a ten-digit number. The ninth and tenth digits (counting from the right) are now removed 
and subtracted from the remaining eight-digit number. This produces U1• The next number 
U2 is produced from U1 in the same way. To illustrate in detail,suppose that the initial Uo is 
47594118 (chosen at random from a wastepaper basket of punched cards). Then 

20uo = 9 51882360 
42782354 

23uo = 10 94664714 
subtract 10 - 10 

U1 = 94664704 

As in the first method, this process is necessarily ultimately periodic. In fact, it is actually 
periodic of period 5882352. This fact makes all the difference; the reason for it is simple. 
In computing Un from Un -1 we are computing the remainder of 23un _Ion division by 108 + 1. 
Hence, in congruence notation 

Un == Uo 23n (mod 108 + 1). 

By the theory of the binomial congruence, Un is periodic of period 5882352 since 108 + 1 
= 17·5882353. The number 23 is the best possible choice in the sense that no other number 
produces a longer period, and no smaller number produces a period more than half as long. 

As set .up for the ENIAC, for example, the ·process would tie up only two accumulators 
and would produce 5000 pseudo-random digits per second. The process would have a period 

of 2 hr 36 min 52 sec. 
Whether such a set of digits or a reasonable subset satisfies the statisticians' tests for ran­

domness is of course another question. To investigate this matter I have secured the kind 
cooperation of Professor L. E. Cunningham of the Astronomy Department of the 'University 
of California, who set up the calculation on the IBM calculating punch 602A. This produced 
the first 5000 u's (that is, 40,000 digits in all) in about 4 hr (the ENIAC would be faster by 
a factor of 1800). One of the secondary . reasons for making the calculation was to test the 
accuracy of the 602A. It may distress some and surprise others to know that any isolated 
Un can be computed on a desk calculator in 3 min~ Thus Usooo was known in advance. The 
fact that this value agreed with the result obtained in 5000 steps is a rigorous check of the 

arithmetic unit of the 602A. 
Once produced, the results were subjected to four standard tests with the assistance of 

Dr. Evelyn Fix and other members of the Statistical Laboratory of the Univers~ty of California. 
All four tests were passed successfully. In case anyone is convinced that the numbers Un are 
really random, I should like to call his attention to the fact that each . number Un is a multiple 

of 17. 
For a binary machine a similar process can be set up with respect to a modulus of the form· 
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2n ± 1. For example, with the Mersenne prime 231 - 1 as modulus,' more than 66 billion 
pseudo-random binary digits can be generated. 

The method is based on the function f(x) = ax. A very little extra complication would 
be produced by using the general linear functionf(x) . ax + b. However, nothing is gained 
by this generalization, since the period is independent of b, as one can see from the theory of 
difference equations. With machines capable of parallel operation like the ENIAC and SSEC, 
the above process is especially advantageous for two reasons: (a) it can be incorporated into 
the program with very little expense, and (b) the "gating" of this routine at irregular time 
intervals serves further to randomize the sequence Un. The serial-type machine would simply 
use the numbers Um one after another. 

I have gone into such great detail on this problem just to indicate how a problem in, let 
us say, nuclear physics, when attacked by a large-scale computing unit, can involve a mathe­
matical method taken from the impractical theory of numbers. 

It is only fair to point out that, conversely, large-scale digital equipment can be used to 
study certain problems in the theory of numbers. In fact, it is sometimes a little exasperating 
for the number theorist to assist the applied mathematician in juggling round-off errors, 
truncating errors and a flitting decimal point in order to adapt a problem in fluid mechanics 
to a discrete-variable machine when all the time the machine, being digital, is· all ready to 
work onclean .. cut problems involving whole numbers. However, I realize that this exaspera­
tion is shared by very few present. Most of you will be relieved to know that, to the best of 
my knowledge, very little valuable time on large-scale computing units has been spent on 
such unprofitable problems. 

In fact, to date, only one small problem of this sort has been solved and published, and 
another is making slow progress. However, I hear that the University of Manchester's new 
computing machine is being used on such problems and doubtless there will be some interesting 
results published before long. 

It maynot be out of place to mention certain kinds of problems for which no mathematical 
method would seem to be available in order to apply large-scale computing units in a practical 
way. By an impractical application we mean one thatproduces results no more rapidly than 
a few hand computers using desk calculators. Since the large-scale machines are based on the 
four rational operations they have good control over functions that are defined by algebraic 
expressions. However, mathematics abounds with functions that are defined verbally, often 
in some negative way. Such functions are apt· to give trouble if they cannot be expressed 
directly in terms of operations with which the machine is familiar. Simple examples of such 
functions occur in the theory of numbers, algebra; topology, statistics, organi~ chemistry, 
genetics, and elsewhere. Often these functions are of the enumerative sort. For .example, 
one can ask for the number of none qui valent maps of 135 countries, or the number of different 
ways that each map can. be colored in five colors. If ten permutations of the digits 0, 1, ... , 9 
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are selected at random, what is the probability that they form a Latin square? If a(n) denotes 
N 

the number of prime factors of n, is the sum L; (- l)a(n) negative for 1000 <N < IDS? It 
n=l 

is. perhaps best not to think of such questions, but to return with our all-purpose computing 
unit to our differential equations. 

In conclusion a few words should be said about the possible future influence of large-scale 
computing units on mathematics and mathematicians. To quote an eminent physicist: "With 
the developments of greater capacity and speed it is almost certain that new methods will 
have to be developed in order to make the fullest use of the capabilities of 'this new equipment. 
It is necessary not only to design machines for the mathematics, bU,t also to develop a new 
mathematics for the machines." 

In one sense a new mathematics is arising from the development of these ·machines. I 
refer. to the theory of programming and' coding in all its aspects. Here we have developed 
a nomenclature and a mass of symbolism which belong properly to a small corner of symbolic 
logic. This is not the new mathematiCs of the quotation, however. Personally, I do not look 
for much really new mathematics as a result of the machine development. Of course there 
will be new interest in and new emphasis on old and recent mathematics. Processes which 
the mathematicians have been writing about but· not carrying out wili become re.alities. 
However, few mathematicians have ever been stopped by the fact that they could not carry 
out the operations that they contemplate. Long ago the mathematician broke through the 
restricting boundary of things that were practical. In this respect the mathematician is far 
ahead of the existing machines and will doubtless continue to be so. 

There is no doubt that these new machines are creating new service jobs for mathematicians, 
young and old. However, it seems to me, the most important influence of the machines on 
mathematics and mathematicians should lie on the opportunities that exist for applying the 
experimental method to mathematics. Much of modern mathematics is being developed in 
terms of what can be proved by general methods rather than in terms of what really exists 
in the universe of discourse. Many a young Ph.D. in mathematics has written his dissertation 
about a class of objects without ever having seen one of the objects at close range. There 
exists a distinct possibility that the new machjnes will be used in some cases to explore the 
terrain that has been staked out so freely and that something worth proving will be discovered 
in the rapidly expanding universe of mathematics. 



EMPIRICAL STUDY OF EFFECTS OF ROUNDING ERRORS 

C. CLINTON BRAMBLE 

u.s. Naval Proving Ground, Dahlgren, Virginia 

I Among the tacit assumptions usually made in computation are, first, that the arithmetical 
processes involved are considerably diversified, and second, that the arithmetical processes 
produce results in such a way that the occurrence of the different digits is equally likely. In 
this paper I wish to present evidence that these conditions are not, in general, realized and to 
exhibit some results of actual computation which indicate that, after all, the situation is not 
too bad. 

If it is assumed that the digits 0 to 9 occur with the same frequency when they appear 
as units digits of numbers that enter into computation-that is, that their distribution function 
is rectangular-then it follows that the distribution function of the units digits of the sum of 
two numbers is also rectangular and the digits 0 to 9 are again equally likely. As a consequence 
of this, we can say that the units digit of an extended 'sum is as likely to be one digit as another. 
This premises also the idea that the numbers that enter into the sum are un~orrelated. It is 
clear that we can violate this premise if we add numbers identical or correlated, such as 
x + x or x + X2, or if we subtract the same number from a given number repetitively. For 
instance, if we add numbers ending in 5 to a number x we will also get as successive sums 
numbers ending in x and x + 5; or if we subtract in succession a series of even numbers from 
an odd number, we will always get odd differences and it is clear that the different digits are 
under these circums,tances not equally likely. 

If we form a 0 to 9 multiplication table, we will find the distribution of the units digits of 
the 100 possible products of integers as follows: 

o 2 3 

27 4 12 4 

4 5 

12 9 

6 7 

12 4 

8 9 

124 

This frequency table indicates a high frequency of O's and a low frequency of odd integers as 
the units digits of products of integers. It is also noted that 75 percent of the units digit~ 
produced by multiplication are even and 25 percent are odd; also, that 32 percent of the 
digits are greater than 5 and 32 percent are less than 5 exclusive of 0, so that if we round 
numbers on 5 as a base, we expect the average of the positive errors to be the same as that of 
the negative ones. 

If, however, a combination of integers of the form ab + c is made from integers selected 
at random, an inspection of the results shows that the distribution function of units digits is 
again rectangular and all the digits from 0 to 9 have the same frequency. Addition is therefore 
a leveling process, while multiplication disturbs the uniformity of digit-distribution functions. 
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Suppose next we consider the product of two numbers, say 10aI + bl and 10a2 +b2, 

namely, 100aI a2 + 10(aI b2 + a2bl ) + bI b2 • We note that, exclusive of the "carry" from bI b2, 

the tens digit is made up ofa sum of two products, aI b2 + a2bl • An examination of this product 
shows that we will obtain an even number in those cases in which both products are even or 
in which both products are odd. As stated above, the first product will be even 3/4 of the 
time and the second product will be even 3/4 of the time; therefore the sum will be even under 
this contingency 9/16 of the time. In the same way we see that the two products will be odd 
1/4 X 1/4 or 1/16 of the time. Hence the expression aI b2 + a2bI in which a's and b's are the 
integers 0 to 9 with equal probability will be even 5/8 of the time. If we add another term to 
'the product, as occurs in the hundreds digit ora product of two numbers of three or more 
digits, we have an expression of the form aIc2 + a2cI + bI b2 and we find that this sum will be 
an even number in 9/16 of the possible cases. Extending this process, we find that the sum of 

n • 
n products, I L aib i, i = I, . . " n; in which the numbers are not correlated, will be an even 

i = 1 ' 

number in 1/2 + (l/2)n+1 0'[ the cases. Thus it appears that there 'are components of the 
various digits, as we pass farther to: the left in the formation of products, that tend toward 
the equality of the numbers of odd and even digits. 

Next, let us look for the number of even digits in the tens place of all possible products of 
'integers. Only the tens and units digits of the factors will affect this number and it will consist 
of the units digit of (aI b2 + a2bl ) plus the tens digit of bI b2 • This will be referred to as the 
"tens digit without carry." To pursue this, let us form a table of the tens digits of all possible 
products of integers so that we will have available the numbers that are carried in forming 
prod:ucts, together with their frequencies. 

o 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

2 3 4 

0 0 0 

0 0 0 

0 0 0 

0 0 

0 

2 

1 2 

1 2 2 

1 2 3 

2 3 

148 

5 6 7 8 9 

0 0 0 b 0 

0 0 0 0 0 

1 '1 1 

2 2 2 

2 2 2 3 3 

2 3 3 4 4, 

3 3 4 4 5 

3 4 4 5 6 

4 4 5 6 7 

4 5 6 7 8 
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The frequencies of the integers are as follows: 

o 
42 

1 

17 

2 3 4 5 6 

13 9 9 4 3 

789 

2 0 

\Ve see, therefore, that an even number is carried 68 percent of the time and an odd number 
32 percent of the time. An examination of individual cases shows that, considerin~ the r.ases 
in which an even number is produced, there is no correlation between the oddness or evenness 
of the units digit of a1b2 + a2b1 and that of the carry fronl the product b1b2• Therefore, we can. 
say that even tens digits will be produced in those cases in which the units digits of a1b2 + a2b1 

is even and the carry is even and in those cases in which both of these are odd. Thus we have 
5/8 X 68 percent plus 3/8 X 32 percent, or 0.545, as the fraction of cases in which the tens 
digit is expected to be an even number, and correspondingly in 0.455 of the cases an odd 
number. This shows again that even numbers tend to dominate in multiplication but that 
as we pass from right to left in products there appears to be a mixing process that tends toward 
a reduction in the excess of even numbers. 

Consider an array of all possible products of the integers from 0 to 99. The distribution 
of the tens digits is given by the table: 

o 
1210 900 

2 3 

1060 900 

4 5 

1060 950 

6 7 8 9 even odd 

1060 900 1060 900 5450 4550 

We will find in this array 5450 numbers in which the tens digit is even. By means of an in· 
spection based on enumerating all possible cases, it is seen that the number of even digits 
followed by 6, 7, 8, 9 as units digits is precisely the same as the number of odd digits so followed. 
Further, the number of even tens digits preceding a final 5 is the same as the number of odd 
ones. Thus it is clear that a rounding process based on 5 will create as many even numbers 
as odd numbers, since the even numbers followed by numbers greater than 5 will become 
odd and the odd numbers will become even. In this array there are 900 cases in which the 
tens digit is followed by a 5. A process of enumeration shows that 450 of these tens digits are 
even and 450 are odd. Thus we find that after rounding, if we round the numbers ending in 
5 to an even digit we create 450 more even numbers and the resulting numbers will consist 
of 5900 even and 4100 odd. On the other hand, if we should agree that in the dubious case 
ending in 5 we should round to an odd number we will have 5000 even and 5000 odd. It 
may be of interest to point out that the complete frequency distribution for the tens digit of 
all possible products "without carry" is the following: 

o 1 

1450 720 

2 3 

1200 720 

4 5 

1200 870 

6 7 

1200 720 

8 

1200 

9 even odd 

720 6250 3750 

The distribution with carry in which the numbers ending in 5 are rounded to even numbers is: 

o 1 2 3 4 5 6 7 8 9. even odd 

1320 800 1170 800 1120 900 1120 800 1170 800 5900 4100 
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It may be noted in particular in this distribution that the deviations from 1000 have become 
smaller, that is, each digit now has a frequency that is more nearly 10 percent than in the 
previous case. While in rounding in either case mentioned above it is expected that as large 

an amount will be dropped as is carried, rounding numbers ending in 5 to the even number 

tends toward a domination of even digits while the rounding to the odd number tends to 
'restoring a balance between odds and evens. From this point of view it would appear to be 

preferable to round 'numbers ending in 5 to the odd digit. Furthermore, rounding to the 
odd digit never affects more than the next digit. The individual frequencies when we round 

the 5's to the odd tens digit are as follows: 

o 1 23 4 5 6 7 89 

1160 960 960 1010 960 1060 960 1010 960 960 

The greater uniformity of occurrences of the different digits as a consequence of this rounding 

procedure is apparent. 

EXAMPLES OF ERRORS IN ACTUAL COMPUTATION 

(1) Suppose we wish to compute the successive values of 7T/2 - n7T/144 for n = 0, ... , 26, 

using ten significant figures. These values may be found by subtracting 7T/144 = 0.02181661565 
(ten significant figures) successively from 7T/2 = 1.570796326. After 26 steps of this calculation 
the result is 1.003564311, whose approximate error is 8 X 10-9• Or we may find 

(; - 26 r:4) = 46 1:4 = 46 X 0.02181661565 

and get 1.003564319, whose approximate error is 1 X 10-10• 

The source of this discrepancy is seen to lie in the fact that.in using the value of 7T/144 in 
subtraction only nine places of decimals were carried. 

(2) A step-by-step computation of sine and cosine from the equations 

sin k (x + 2) - sin kx = 2 s~n k cos k (x + 1), 

cos k (x + 2) - cos kx = 2 sin k sin k (x + 1) 

exhibited certain periodic errors. That of the sine, after increasing, returned to zero at 90° 
in a computation in which k was taken as 7T/360. 

Let ~ be the disturbance in the value of sin kx and 17 that of cos kx if a discrepancy of ~1 
occurs in the value qf sin k as used in the computation. Then ~ and 'YJ satisfy the following 
linear difference equations: 

(E2 - 1)~ - 2aE'YJ = 2~1 cos k(x + 1), 

2aE~ + (E2 - 1)'YJ = - 2~1 sin k(x + 1). 

In solving these equations it is advantageous to note that 

Z=~+i'YJ 
satisfies 

(E2- I)Z + 2aiEZ = 2~le-k(x+I). 
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The starting values of these quantities' ~ and 1'] are 

~o = 1']0 = 0, ~1 = ~1' and 1']1 = O. 

Subject to these conditions the solutions may be written 

( ~1 sin k 1']1}' • x cos kx 
~ = -2 ~k + 2---k [sIn (k + 7T)X + sIn kx] + ~1 k' cos cos cos 

( ~1 sin k 1']1} x sin kx 
1'] = -2 --"2k + 2-k [- cos (k + 7T)X + cos kx] - ~1 k' cos cos·· cos 

These equations show that an error in the value of sin k in our first equations will lead 
to the propagation of errors in the calculated sines and cosines which vanish ,periodically but 
which have, in general, an amplitude that increases with x. 

(3) The errors occurring in the inversion of matrices when digital calculators are used 
may be inspected by inverting matrices whose inverses are known. A method of constructing 
a matrix whose elements are, to within an integral factor, integers, whose inverse is known 
and the elements of whose inverse likewise are, to within an integral factor, integers has been 
devised. 

A few of these matrices have been inverted by the Aiken Relay Calculator. The number 
of significant figures carried was ten. . In these calculations certain tenth-order matrices lost 
two significant figures, while in one sixth-order case as many as four were lost. This investiga­
tion will be continued as opportunity permits. 

(4) Numerical solutions were made by the Aiken Relay Calculatorofdifferentialequations 
which were of the form 

xn = - H(y)G(v)i, 

yn = - H(y)G(v)y - g, 

in which v2 = i 2 . + j2 and G and H are given as tabular functions. 

The basic solution was made with initial conditions with 

vo = 866.6666667. 

Other solutions were made from the following values of vo 

Do = 866.6566667, 
and 

DO = 866.6766667. 

At t = 40 the values of x and y agreed to five significant figures. 
Again, trajectories were calculated with a disturbance in an initial element of 1 x 10-8 in 

the initial values of the velocity components .\-0 and Yo' The resultant disturbances, which 
were due largely to different sequences of rounding 'errors, were of the same or.der of magnitude, 
with the largest disturbance noted as 2 X 10-6• 



NUMERICAL METHODS ASSOCIATED WITH LAPLACE'S EQUATION 

w. E. MILNE 

Institute for Numerical Anabsis, UCLA, and Oregon State College 

For simplicity, the following discussion is limited to Laplace's equation. Actually, the 
ideas and methods presented are applicable, with suitable modifications, to more general 
linear partial differential equations of elliptic type. 

The paper is further limited to methods based on replacing the partial differential equation 
with an appropriate partial difference equation, and takes no account of the vast amount of 
research that has been devoted to obtaining approximate solutions by analytical means, such 
as Bergman's method of orthogonal polynomials, to mention only one. 

A third limitation is the restriction of the problem to two dimensions. The theory lor 
three dimensions is not essentially different but the numerical labor is so great that little has 
so far been done with three-dimensional problems. 

We consider Laplace's equation in a plane. The first step is to cover the plane with a 
net and to set ~p difference equations involving the values of the unknown function U(x, Y~ 
at the nodes of the net. Theoretically, the meshes of the net need not be uniform in size, but 
may vary continuously over the plane, as in the problem of conformal mapping. Some work 
has in fact been done with such nets. But this leads to variable coefficients in our difference 
equation and seriously complicates the programming .of the problem for automatic computing 
machinery. Restricting ourselves to nets with uniform mesh we find three possible cases,1 

where the meshes are (i) regular hexagons, (ii) squares, (iii) equilateral triangles. 
The next problem is to select the nodes for which the difference equation is to be set up. 

The greater the number of nodes chosen; the more closely in general will the difference equation 
represent the differential equation. But in order that the resultant formula be both symmetrical 
and at the same time applicable to points adjacent to the boundary, it is evident that we can 
use only a central point together with the immediately adjacent points of the net. There are, 
with all these limitations, only four practical possibilities: 

(i) Hexagonal mesh (Fig. 1), four-point formula,1 

Uo = i(u1 + U2 + ua) + O(h3); 

(2) Square mesh (Fig. 2), five-point formula,1, 2, 3 

Uo = ±(u1 + U2 + U3 + u4) + o (h4) ; 

(3) Triangular mesh (Fig. 3), seven-point formula,1 

Uo = -!(u1 + U2 + U3 + U4 + Us + u6) + O(h6); 
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(4) Square mesh (Fig. 4), nine.,point formula,2 

Uo = :yl1)[4(u1 + u2 + U3 + u4) + u5 + U6 + u7 + us] + O(h8
). (4) 

The term O(hn) means that I O(hn) I < khn as h ~ 0, where k'is some constant. Each formula 
is exact if U is a harmonic polynomial of degree n - 1. When h is made sufficiently small the 
formulas obviously increase in accuracy from the first to the last. 

FIG. 1. Hexagonal mesh, 
four-point formula. 

FIG. 3. Triangular mesh, 
seven-point formula. 

FIG. 2. Square mesh, 
five-point formula. 

FIG. 4. Square mesh) 
nine-point formula. 

Formula (I) is the least accurate and seems to have little to recommend it. 
Formula (2) is the best known and has been much used, perhaps more than any of the 

others., 
Formula (3) has been extensively used by Southwell and his followers. However, I gathered 

from conversation with Professor Southwell that he is now inclined to favor the square mesh 
rather than the triangular. , 

It is my own opinion that formula (4) is, all factors considered, the most useful finite­
difference equation with which to replace Laplace's equation. In tests on a variety of harmonic 
functions formula (4) gave notably better accuracy than any of the other formulas, the gain 
in accuracy more than offsetting the slight increase in numerical computation. For the 
remainder of this paper we shall assume a square mesh and shall replace Laplace's differential 
equation by the difference equation (4) which we commonly write in the symbolic form2 

# u = : - 420 : I u O. 
( 4') 
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This diagram is a convenient way of exhibiting. the coefficients of the formula in their proper 
positions relative to the corresponding nodal values. 

Dirichlet's problem is that of finding U(x, y) harmonic in the interior of a plane region R 
and taking on a~signed values on the boundary B of R. Let us lay a net with square mesh of 
side h over the region R, and for simplicity let us initially suppose that the net intersects the 
boundary only at nodal points. For each interior point of R we set up Eq. (4). Since the 
values at the interior nodes are unknown while those at the boundary nodes are known, we 
have a set of N linear equations in N unknowns, N being the number of interior nodes. It 
is readily shown that these equations always possess a unique solution. This solution then 
provides the nodal values of a function W(x, y) which satisfies Eq. (4) at all interior nodal 
points and takes on the prescribed values at the boundary nodes. 

The next question is, how closely does the numerical function W(x, y) approximate the 
desired harmonic function U(x, .y)? In spite of the 'importance of this question we shall not 
take the space here to investigate it, since it belongs more in the domain of pure analysis than 
in that of numerical methods. Suffice it to say that reasonably satisfactory bounds for the error· 
can be obtained and that in most practical problems a net can be taken so that the solution 
of the difference equation is a satisfactory approximation to the desired harmonic function. 

Attention will be centered on the problem of solving theN simultaneous linear equations. 
These equations are individually simple in form, but in problems of practical importance 
their number is so great that direct solution is at present a task too formidable to undertake. 
Perhaps in the future machines will be developed which can handle this large number of 
equations, but it seems unlikely that any of the machines contemplated at present will be able 
to tackle it. 

We are driven, therefore, to consider methods of successive approximation. Let V be 
an approximation to the desired harmonic function U; let V = U on the boundary B, and 
V = U + E at interior points of R, so that E represents the error of the approximation. In 
order to see how the process of successive approximations works we shall consider a pair of 
physical problems, one in which the error E is interpreted as the displacement of a vibrating 
membrane, the other in which E is interpreted as temperature in a cooling conducting slab. 

Consider the region R as a membrane clamped on the boundary B, and let E denote the 
normal displacement of the membrane at an interior point. Then E satisfies the differential 
system 

'd2E 
~ =a2\/2E; 

E = 0 on B, 

E = Eo when t = 0, 

'dE 
-;ft = 0 when t = o. 
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If Ai are the characteristic numbers. for the region R, we· may assume a solution in the form 
00 

E = 2: CfJiCOS aAit, 
i = 1 

where the CfJi are characteristic functions satisfying the set of equations 

\j2CfJi + Ai2CfJi = 0 in R, 

Pi = 0 on. B. 

(6) 

(7) 

Again, consider a conducting sheet shaped like the region R, with temperature E at interior 
points and zero on B. Then E satisfies the set of equations 

dE E· R "af = a 2\j2 In ; 

E = 0 on B, (8) 

E = Eo when t = o. 
Here we may assume a solution of the form 

00 

E = :2 CfJie- al)./t, (9) 
i=l 

where the CfJi and Ai are exactly the same as in the case of the vibrating membrane. 
Assume now that the function V is given in R + B. Let U satisfy the equation \j2U = 0 

in R. We have V = U on B, and E = V - U in R. 
Evidently E so defined satisfies the system (8), and since U is independent of t and \j2U = 0 

it follows that V satisfies the set of equations 

From Eq. (9) it is evident that 

~~ = a2\7 2VinR; 

V = U onB, 

V = Vo when t = o. 
00 

V = U + L: Pie-a2).tlt. 
i=l 

(10) 

(11) 

Equation (11) shows that a~ t increases to infinity the terms of the series on the right approach 
zero and hence V approaches U, no matter what value Vo the function V assumed initially. 
It is also of interest to observe that the larger the Ai the more rapidly does the corresponding 
term in Eq. (11) die out. Referring to Eq. (6) we see that in the case of the vibrating 
membrane the terms with large Ai correspond to terms having a high freguencyof vibra­
tion, for which the corresponding characteristic functions have many nodal lines and many 
changes of sign. 

Hence as t increases the error term E rapidly loses its highly variable components and 
tends toward a smooth function with few, if any, nodal lines in R. 

In order to carr.y out numerically the limiting process indicated in the preceding section 

155 



w. E. MILNE 

we replace Eqs. (10) by the correspond.ing set of differerice equations, as follows. In place of 
\l2Vwe have 

1 4 1 
- ---

4 -20 4 v, 
- --- -

1 4 1 

and in place of dV/dt we set (Vn+1,- Vn)/6t, where Vn is the value of Vat the time t = .n6t. 

Then 

1 4 1 
- -- -

4 -20 4 (12) 
- ---

1 4 1 

Of, with the notation defined in Eq. (4'), 
I 1 

, Vn +1 = Vn + (j # Vm 

in which 

(13) 

Equation (12) furnishes the desired recurrence relation for computing the successive approxi­
mations V1, V2, ... , Vn. 

In order to investigate the effect of successive applications of Eq. (12), and in particular 
to determine whether or not the process converges, we need to know something about the 
characteristic numbers associated with the homogeneous partial difference equation 

# cP + ).2cp = 0 in R, (14) 

cP ~ 0 on B. 

Without taking time to consider details of proof arid limitations on the region R we shall 
merely state loosely the results that we want. 

1. If R contains N interior points, there are N real characteristic values of ).2 for which 
Eq. (14) possesses nonzero solutions. 

2. These values of ).2 are not necessarily all distinct. 
3. All characteristic values of ).2 lie in the interval 

o < ).2 < 32. 

With this information we can proceed to the investigation of Eq. (12). 

We assume a solution of Eq. (12) in the form 
N 

Vn = U+ 2: CPiPin 
i=l 

(15) 
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in which the C{Ji are point functions defined at each interior point of R and zero on B, while 
the Pi are constants. Substitution in Eq. (12) gives 

. 2[p,- l]'PiPt = 2~ # 'PiP,", 

and fromEq. (14) we see that this can be satisfied if 

0[1 - Pi] = Ai2 

Table 1. Values of Ai2, and corresponding values of Pi for various choices of o. 

).~ 8 = 16 8 =20 8 = 24 8 = 36 
I PI Pi Pi Pi 

3.80 .76 .81 .84 .89 

7.34 .54 .63 .69 .80 

9.53 .40 .52 .60 .74 

12.91 .19 .35 .46 .64 

13.07 .18 .35 .46 .64 

16.61 -.04 .17 .31 .54 

17.53 -.10 .12 .27 .51 

18.80 -.17 .06 .22 .48 

19.09 -.19 .05 .20 .47 

22.15 -.38 -.11 .08 .38 

22.35 -.40 -.12 .07 •• 38 

22.47 -.40 -.12 .06 .38 

23.00 -.44 -.15 .04 .36 

24.09 -.51 -.20 -.00 .33 

25.53 -.60 . -.28 -.06 .29 

25.85 -.62 -.29 -.08 .28 

26.47 -.65 -.32 -.10 .26 

28.33 -.77 -.42 -.18 .21 

28.85 -.80 -.44 -.20 .20 

30.60 -.91 -.53 -.28 .15 

where Ai2 is one of the characteristic numbers belonging to Eq. (14). We have then 

.1.2 

Pi = 1-7i. 
In order to secure convergence4 we obviously required that I Pi I < 1 for all i. Since Ai2 is 
greater than zero and less than 32, this requires that we take 0 ~ 16. It follows that 6.t in 
Eq. (13) must be taken less than 6h2J16a2• 

For simplicity in computation it is desirable to choose 0 as an integer. The effect of several 
choices of 0 will be illustrated by a numerical example for which the characteristic numbers 
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can be readily computed. We choose the case where R is it rectangle with N = 4 X 5 = 20 
interior points. The values ofthe:A}, and the corresponding values of Pi for 0 = 16, 20, 24, 36 
are given in Table 1. The relation of P and A for these different choices of 0 may be readily 
seen from Fig. 5. 

We now examine ap.d compare the specific formulas obtained from Eq. (12) by setting 
o = 16, 20, 24, 36 in turn. These choices are sufficient to make clear the behavior in general, 
and these specific values were selected because in each case the corresponding formula has 
some special distinction . 

. p ," ",/ "" ,,/ ,/ ", " /' ,/ ,/ ~/' //" // // // / 
/' /' " ", ,,' // // // ,/ // / / // / // /' ,. , " , " " / / , , / / / / / , 
,/ ,/ ,/,' DIVERGENCE // // ,// // /' // // // 

", " ,/ // / / " / // // ,. // // / / / / , / / /,. / ' / / / / /,. /./ / / / , / / p=1 , / / ~ / / / / / / 
~_J_J_J __________ ~_~_~_J_J,J_~_L_~_ 

I 
1 

CONVERGENCE I 
~. 8 •• a.~6-!! 
~9~ 

Or-------+8------~~~~~~------~~~2 

CONVERGENCE 

FIG. 5. Relation of P and A for various choices of O. 

For 0 = 16, formula (12) becomes 

I 4 1 

#u = 4 -20 4 u=O 

1 4 1 

(16) 

Referring to Fig. 5, we see from Eq. (15) that the effect of repeated applications of Eq. (16) 
is to damp out rather slowly those components of the error term belonging to large Ai2 and 
to small Ai2, while those belonging to intermediate values are much more rapidly damped out. 
For brevity we say that Eq. (16) secures rapid liquidation of error components of intermediate 
frequencies, and slow liquidation of error components with low or high frequencies. This is 
the best formula of all for the lowest frequency. 
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For () = 20, formula (12) becomes 

1 4 1 
- - -
4 ° 4 ( 17) 

- - -
1 4 1 

Formula (17) is less effective than (16) for low-frequency components but is much more 
effective for high-frequency components. Because of the zero term and the simple divisor, 
Eq. (17) is probably the simplest formula to compute. 

For () = 24, formula (12) becomes 

1 4 1 
- - -
4 4 4 (18) 

- - -
1 4 1 

This is still less effective for low frequencies but is even better for high frequencies. Formula 
(18) is worth noting for one interesting characteristic. The largest coefficient by which any 
value of Vn is multiplied in the calculation of Vn+1 is seen to be 1/6, and this is smaller than 
the largest coefficient in any other formula obtained from Eq. (12). This means that numerical 
errors, round-off errors, etc.: are more rapidly damped out by Eq. (18) than by any of the 
other formulas for successive approximation. 

For () = 36, formula (12) becomes 

1 4 1 
- - -
4 16 4 (19) 

- - -
1 4 1 

From the graph of Pi we see that for almost all frequencies this formula is not as rapidly con­
vergent as Eq. (18). But Eq. (19) possesses the unique distinction of being factorable into 
the product of two operators, as may be indicated symbolically in the form 

For programming the computation on certain types of machine this fact outweighs all other 
considerations. As an example, Dr. Yowell of the Institute for Numerical Analysis readily 
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set up a computation on the IBM 604 in which the Vn cards were run through the machine 
by columns and the values of 

1 

1 

were computed. Then these were run through by rows .and the required values of 

were obtained by the same program. Because of the serial nature of any machine using stacks 
of cards, this factoring of the operator into two operations of serial type makes possible the 
use of such machines in situations where they ordinarily could not be employed. 

We now have a choice of formulas by which successive approximations ~an be carried 
out, together with some indication, through the size of the P'i, of the character of the convergence 
to be expected. There is also great latitude in the way in which such formulas can be used. 
For example,.instead of calculating each value of Vn+1 from the old values Vn one may at 
each step utilize such new values as are available. It has been shown4 that this process tends 
to improve convergence. If this is done it may make considerable difference in what order 
one proceeds over the points of the region R. Conceivably it might be best to take first all 
points adjacent to the boundary, then all those adjacent to these, etc. So far as I am aware, 
this has not been investigated. 

It is possible to obtain more rapid convergence by using the formula 

1 
Vn+1 - Vn = -0 # Vn + rx.(Vn - Vn- 1) 

with appropriate. choices of the two parameters () and rx.. Space does not permit a detailed 
explanation. 4 

"Vhen the number of interior points of R is large, the lowest characteristic number is small 
and the corresponding p is but slightly less than unity. For example, for a square with 101 
units on a side, containing 10,000 interior points, the smallest characteristic number is about 
0.01152 and for () = 24 the largest pis 0.99952. To reduce the error to 1 percent of its original 
value would take about 10,000 repetitions of the formula. For 10,000 points this means that 
we must apply the formula 100,000,000 times to reduce the error to 1 percent of its original 
value. For the computer with a desk calculator this is a dismaying prospect,and even the 
best electronic computers would require considerable time, since none now contemplated 
could store 10,000 numbers in the high-speed memory. 
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Hence some device is needed for chopping off errors in big chunks instead of gently polishing 
them down one at a'time. Itis here that the relaxation methods of Southwell becomes impor­
tant. I ,5 Unfortunately, from the standpoint of automatic computing machinery, applying 
these methods is something of an art. Considerable study will probably be required to formulate 
this art in such a way that it can be programmed for automatic computing machinery. I 
can only indicate roughly how this conceivably may be done. 

Suppose that we are using formula (18). After a suitable number of repetitions the high­
frequency terms will be pretty well eliminated, and the remaining errors, instead of being 
helter-skelter, will be collected in rather large heaps over the region R. Consider one of these 
heaps, the error being approximately zero on the boundary of the heap. By summing the 
residuals around the boundary of the heap we can calculate the average thickness of what we 
may call the bottom layer of the heap. Repeating the process for the next set of points inside 
the set adjacent to the boundary we get the thickness of the next layer, and so on. Having 
computed the whole pile in this fashion we remove the whole block of errors. 

The process is not at all bad for a desk computer, but I do not know how it would be 
programmed for an automatic machine. In the examples so far tested it proved very effective. 
This device used two or three times and formula (18) about eight times gave better results 
than formula (19) applied 65 times. 

This whole problem ofliquidating large blocks of errors deserves additional study, especially 
with a view to devising processe~ adapted to automatic computing machines. 

So far in this discussion we have assumed that the boundary B of the region R coincides 
with lines of the net. In most practical problems this simple situation is not realized. To 
meet the difficulties arising when the boundary points are not nodes of the net we may adopt 
anyone of several expedients. 

(a) In the vicinity of a curved boundary we may, as the computation proceeds, employ 
successively finer and finer nets until the actual curved boundary is closely enough represented 
by nearby nodal points. As far as the writer is aware, this is the method so far most commonly 
used. Yet it has the obvious objection of greatly increasing the number of points, often far 
beyond the number required io secure an adequate solution for Laplace's equation. Moreover, 
it is apparent that this procedure greatly complicates the programming of the problem for 

automatic machinery. 
(b) Another line of attack is to devise special formulas with which to replace our standard, 

nine-point formula for the case where the boundary cuts through the standard nine-point 
pattern. I have in fact derived a set of formulas for this purpose, but must admit that they 
also fall somewhat short of what we desire. They require a set of auxiliary interpolation tables, 
and also require calculation of the coordinates of each intersection of the boundary with the 

lines of the net. 
(c) In certain simple cases, at least, it Inay be possible to handle curved boundaries by 

introducing curvilinear coordinates. This, however, is usually a very difficult job in itself, 
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and has the further objection of introducing a lot of analysis into what should be a strictly 
numerical procedure. 

All in all, the treatment of curved boundaries stands out as one of the least satisfactory 
features of our whole procedure. 

In the vicinity of a boundary point where the assigned boundary values 'Suffer a discon­
tinuity, the process of successive approximations not only converges with painful sluggishness 
but the limiting result is likely to be a poor approximation to the desired harmonic function. 
The accuracy can of course be improved by using a finer net, at the expense of additional labor. 

Here, however, it appears possible to remove the· difficulty before the computation is 
begun. Consider, for example, the case of a straight-line boundary (taken as the x-axis) with 
a finite jump in the boundary values at 0 (taken as the origin) of magnitude M, going from 
left to right (Fig. 6). Then the function (Mj1T) arctan (yjx) is harmonic in R, and has the 
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FIG. 6. Straight-line boundary with a finite 
jump in boundary values at O. 

X 

FIG. 7 .. Boundary with a corner at O. 

value M to the left of the origin and the value zero to the right. If U is the required harmonic 
function, then 

M y 
W = U + - arctan -. 1T X 

is harmonic in R and has no discontinuity at O. VVe may therefore add the boundary values 
of (Alj1T) arctan (yjx) to the given boundary values, solve the new problem for W, and at 
the end obtain U from the equation 

U = W - M arctan l. . 
1T X 

If the boundary has a corner at 0, making an interior angle cp, the foregoing procedure is 
modified by using (M/cp) arctan (yjx). This device (Fig. 7) has been used with gratifying 
results in trial examples. 

The process of successive approximations starts from some assumed value Vo. Theoretically, 
the process converges to the desired value V no matter what Vo is selected, but in practice 
we want the original choice Vo to be as good as possible in order to hasten the convergence. 
An experienced computer, familiar with the behavior of harmonic functions, can make a 
surprisingly good guess to start with. What we really need, however, is some definite procedure, 
adaptable to automatic computing machines which will provide a satisfactory initial function 
. Vo. Some formulas have been proposed,6 but the best of them leaves a good deal to be desired. 
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So far we have restricted ourselves to the simple Dirichlet problem with known values 
on the boundary. Actually we must also handle cases where the normal derivative is assigned 
on part or all of the. boundary,7 as well as cases where some combination of boundary values 
and normal derivatives is assigned. For straight-line boundaries coinciding with lines of the 
net, formulas to handle such cases are readily obtained. To judge by a few trial examples, 
the convergence ,of successive approximations will prove even slower than for the Dirichlet 
problem. And when curved boundaries are involved additional complexities occur. Con­
siderably more research is needed in connection with such problems. 

This incomplete and somewhat rambling paper may be brought to a close with the hope 
that it has served to emphasize two points: 

(1) Numerical methods have been brought to the point where, with the aid of high-speed 
automatic computing machines, linear partial differential equations of second order can be 
successfully tamed and domesticated for the usc of mankind; and 

(2) Intensive research is still required to improve and polish the actual technique. 
I am happy to acknowledge my obligation to the National Bureau of Standards and the 

Office of Naval Research, which have provided much of the material for my remarks and 
have made it possible for me to attend these meetings. 
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AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE 

PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL QPERATORS* 

CORNELIUS LANCZOS 

National Bureau of Standards, Institute for Numerical Anarysis, UCLA 

The eigenvalue problem of linear operators is of central importance for all vibration 
problems of physics and engineering. The" vibrations of elastic structures, the flutter problems 
of aerodynamics, the stability problem of electric networks, the atomic and molecular vibrations 
of particle physics, are all diverse aspects of the same fundamental problem, viz. the principal­
axis pro~lem of quadratic forms. 

In view of the central importance of the eigenvalue problem for so many fields of pure 
and applied mathematics, much thought has been devoted to the designing of efficient methods 
by which the eigenvalues of a given lineal' operator may be found. That linear operator may 
be of the algebraic or of the continuous type; that is, a" matrix, a differential operator, or a 
Fredholm kernel function. Iteration: methods play a prominent part in these designs, and 
the literature on the iteratiop. of matrices is very extensive.1 In the English literature of recent 
years the work of A. Hotelling2 and A. C. Aitken3 deserve attention. H. Wayland4 s~rveys 

the field in its historical development, up to recent years. W. U. Kincaid5 obtained additional 
results by improving the convergence of some of the classical procedures. 

The present investigation, while sta!ting out along classical lines, proceeds nevertheless 
in a different direction. The advantages of the method here developed6 can be summarized 
as follows. 

1. The iterations are used in the most economical fashion, obtaining an arbitrary number 
of eigenvalues and eigensolutions by one single set of iterations, without reducing the order 
of the matrix. 

2. The rapid accumulation" of fatal rounding errors, common to all iteration processes if 
applied to matrices of high dispersion (large "spread" of the eigenvalues), is effectively 
counteracted by the method of "minimized iterations." 

3. The method is directly translatable into analytic terms, by replacing summation 
by integration. We then get a rapidly convergent' analytic iteration pro,cess by which 
the eigenvalues and eigensolutions of linear differential and integral equations may be 
obtained. 

The two classical solutions of Fredholm's problem. Since Fredholm's fundamental essay on 
integral equations7 we can replace the solution of linear differential and integral equations 
by the solution ofa set of simultaneous ordinary linear equations of infinite' order. The problem 

* The preparation of this paper was sponsored (in part) by the Office of Naval Research. 
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of Fredholm, if formulated In the language of matrices, can be stated as follows: Find a 
solution of the equation 

y- AAy = b, (1) 

where b is a given vector, A a given scalar parameter, and A a given matrix (whose order 
eventually increases to infinity), while y is the unkno~n vector. This problem includes the 
inversion of a matrix (A = (0) and the problem of the characteristic solutions, also called 
"eigensolutions" (b = 0), as special cases. 

Two fundamentally different classical solutions of this problem are known. The first 
solution is known as the "Liouville-Neumann expansion."8 We consider A as an algebraic 
operator and obtain formally the infinite geometric series 

1 . . 
y.= 1- AA b = (1 + AA + A2A2 -1- •. ·)b. (2) 

This series converges for sufficiently small values of I AI but diverges beyond a certain 1.11 = 1.11 \, 

The solution is obtained by a series of successive "iterations";9 we construct'in succession the 
set of vectors 

and then form the sum 

bo = b, 

bl = Abo, 

b2 = Abl , (3) 

(4) 

The merit of this solution is that it requires nothing but a sequence of iterations. The 
drawback of the solution is that its convergence is limited to sufficiently small values of A. 

The second classical solution is known as the Schmidt series. lo vVe assume that the matrix 
A is "nondefective," i.e., that all its elementary divisors are linear. We furthermore assume 
that we possess all the eigenvaluesll !-li and eigenvectors Ui of the matrix A, defined by the 
equations 

AUi = !-liUi' i = 1, 2, ... , n (5) 
If A is nonsymmetric, we need also the "adjoint" eigenvectors ui*, defined with the help of 
the transposed matrix A*by the equations 

A*u/ = !-liU/, i = 1,2, ... , n 

We now form the scalars 
b'u/ 

Yi=U.·U,* 
t t 

and obtain y in the form of the expansion 

Y = YlUl + Y2U2+. 
1 - I.!-ll 1 - A!-lz 
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This series offers no convergence difficulties since it is a finite expansion· in the case of 
matrices of finite order and yields a convergent expansion in the case of the infinite matrices 
associated with the kernels of linear differential and integral operators. 

The drawback of this solution is-apart from the exclusion of defective matrices1z-

that it presupposes the complete solution of the eigenvalue problem associated with the 
matrix A. 

Solution of the Fredholm problem by t~e S-expansion. We now develop a new expansion which 
solves the Fr~dholm problem much as the Liouville-Neumann series does but avoids the 
convergence difficulty of that solution. 

We first notice that the iterated vectors bo, bl) b2 , ••• cannot be linearly independent of 
each other beyond a certain definite bk • All these vectors find their place within the n-dimen­
sional space of the matrix A; hence not more than n of them can be linearly independent. 
We thus know in advance that there must exist between the successive iterations a linear 
identity of the form 

bm + glbm-1 + gzbm - 2 + ... + gmbo = O. (9) 

We cannot tell in advance what m will be, except for the lower and upper bounds: 

I s: m :s;: n. (10) 

How to establish the relation (10) by a systematic algorithm will be shown presently; for 
the time being we assume that the relation is already established. We now define the 
polynomial 

(11) 

together with the "inverted polynomiaJ" (the coefficients of which follow the opposite sequence) 

Sm(A) = 1 + glA + g2A2 + ... + gmAm. (12) 

Furthermore, we introduce the partial sums of the latter polynomial: 

So = 1, 

Sl (A) = 1 + ·glA, 

S2(A) = I + glA + gzA2, (13) 

Sm_1(A) = 1 + glA + ... + gm_1Am-1. 

We now refer to a formula which can be proved by straightforward algebra :13 

Sm(A) - AmG(X) = S (A) + S (A) . AX + S . (A) . A2X2 + ... + S . Am- 1Xm- 1 (14) 1 - AX m-1 m-2 m-3 o· 

Let us apply this formula operationally, replacing X by the matrix A, and operating on the 
vector boo In view of the definition of the vectors bi' the relation (10) gives 

G(A) . bo = 0, (15) 
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and thus we obtain 

(16) 

and hence· 

( 17) 

If we compare this solution with the earlier solution (4) we notice that the expansion (17) 
may be conceived as a modified form of the Liouville-Neumann series because it is composed 
of the same kind of terms, the difference being only that we weight the terms J,.kbk by the weight 
factors 

(18) 

instead of taking them all with the uniform weight ~actor 1. This weighting has the beneficial 
effect that the series terminates after m terms, instead of going on endlessly. The weight factors 
Wi are very near to 1 for small J,. but become more and more important as J,. increases. The 
weighting makes the series convergent for all values of J,.. 

The remarkable feature of the expansion (17) is its complete generality. No matter how 
defective the matrix A nlay be, and no matter how the vector bo was chosen, the expansion (17) 
is always valid, provided only that we interpret it properly. In particular we have to bear 
in mind that there will always be m polynomials Sk(J,.), even though every Sk(J,.) may not be 
of degree k, owing to the vanishing of the higher coefficients. For example, it could happen 
that 

G(x) = xm, 

so that 
Sm(J,.) = 1 +. OJ,. + 0J,.2 + ... + OJ,.m, 

Sk(J,.) .:.- 1 + OJ,. + 0J,.2 + ... + 0J,.k, 

and formula (17) gives: 

(19) 

(20) 

(21 ) 

(~2) 

Solution of the eigenvalue problem. The Liouville-Neumann series cannot give the solution 
of the eigenvalue problem since the expansion becomes divergent as soon as the parameter J,., 
reaches the lowest characteristic number J,.l. The Schmidt series cannot give the solution of 
the eigenvalue problem since it presupposes the knowledge of all the eigenvalues and eigen­
vectors of the matrix A. On the other hand, the expansion (17), which is based purely on 
iterations and yet remains valid for all J,., must contain implicitly the solution of the principal­
axis problem. Indeed, let us write the right-hand member of Eq. (1) in the form 

(23) 

Then the expansion (17) loses its denominator and becomes 

y = S,n-I(J,.)bo + Sm_2(J,.)J,.bl + ... SoJ,.m-Ibm_l• (24) 
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We can now answer the question whether a solution of the homogeneous equation 

y- AAy = 0 (25) 

is possible without the identical vanishing of y. The expression (23) shows that b can vanish 
only under two circumstances; either the vector b or the scalar Sm(A) must vanish. Since 
the former possibility leads to an identically vanishingy, only the latter possibility is of interest. 
This gives for the parameter ). the condition 

Sm(A) = o. (26) 

The roots of this equation give us the characteristic values A. Ai' while the solution (24) 
yields the characteristic solutions, or eigenvalues, or principal axes of the matrix A: 

U i = Sm_I(Ai)bo + Srn_2(A i )AibI + ... + SoAr-Ibm_I. (27) 

It is a remarkable fact that although the vector bo was chosen entirely freely, the particular 
linear combination (27) of the iterated vectors has invariant significance, except for an undeter­
mined factor of proportionality which remains free, in view of the linearity of the defining 
equation (25). That undetermined factor may even corne out to be zero, i.e., a certain axis 
may not be represented in the trial vector bo at all. This explains why the order of the poly~ 
nomial Sm(A) need not be necessarily equ'al to n. The trial vector bo may not give us all the 
principal axes of A . . What we can say with assurance, however, is that all the roots of Sm(A) 
are true characteristic values of A, and all the U i obtained by the formula (24-) are true charac­
teristic vectors, even if we did not obtain the complete solution of the eigenvalue problem. 
The discrepancy between the order m of the polynomial G(fl) and the order n of the character­
istic equation 

(28) 

will be the subJect of the discussions of the next section. 
Instead of substituting in formula (27) we can also 

numerically simpler process, applying synthetic division. 
obtain the principal axes Ui by a 
By synthetic division we generate 

the polynomials 

We then replace Xi by bi and obtain 

U i = bm- I + gIibm_ 2 + ... + gm_IibO· 

The proof follows immediately from the equation 

(A - fli)U i = G(A) . bo = O. 

(29) 

(30) 

(31 ) 

The problem of missing axes. Let us assume that we start with an arbitrary "trial vector" bo 
and obtain by successive iterations the sequence 

bo, bI, b2 , ••• , bn· 
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Similarly we start with the trial vector bo* and obtain by iterating with the transposed matrix 
A* the adjoint sequence 

ho*, b1*, h2*' ••• , bn*· 

Let us now form the following set of "basic scalars" 

(33) 

Ci + k = hi' bk* = bk • h/. (34) 

It is a remarkable fact that these scalars depend only on the sum of the two subscripts i and k; 
for example, 

(35) 

This gives a powerful numerical check of the iteration scheme, since a discrepancy between 
the two members of Eq. (35) (beyond the limits of the rounding errors) would indicate an 
error in the calculation of bk +1 or h k +1*, if the sequence up to hk and bk * had been ,checked 
before. 

Let us assume for the sake of the present argument that A is a nondefective matrix, and 
let us analyze the'vector bo in terms of the eigenvectors Ui , ~hile bo* will be analyzed in terms 
of the adjoint vectors u/; thus, 

bo = P1U1 + P2U2 + . " . + Pnum (36) 

bo* = Pl*U1* + P2*U2* + ... + Pn *un *. (37) 

Then the scalars' Ci become 

(38) 
with 

(39) 

The problem of obtaining the l1i from the Ci is the problem of "weighted moments," which 
can be solved as follows. Assuming that n~:me of the Pk vanish and that all the Ai are distinct, 
we establish a linear relation between n + 1 consecutive C( of the following form: 

co'YJo + C1'YJl + ... + Cn-1'YJn-l + Cn = 0, 

+ cn +1 = 0, 

C,l7o + Cn+1'YJ1 + ... + C2n - 1'YJn-1 + C2n = O. 

Then the definition of the Ci shows directly that the set (40) demands that 

F(l1i) = 0, 
where 

F(x) = 'YJo + 'YJ1X + ... + 'YJn_lXn-1 + xn. 

(40) 

(41) 

(42) 

Hence, by solving the recurrent set (40) with the help of a "progressive algorithm," displayed 
in'the next section, we can obtain the coefficients' of the characteristic polynomial (42), whose 
roots give the eigenvalues 111' 
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Under the given restricting conditions none of the Pi roots have been lost and we could 
actually establish the full characteristic equation (41). It can happen, however, that bo is 
orthogonal to some axis u/ and it is equally possible that bo* is orthogonal to some axis Uk. 

In that case Pi and Pk* drop out of the expansions (36) and (37) and consequently the expan­
sion (38) lacks both Pi and Pk. This means that the scalars Cj are unable to provide all the 
/-lj, since Pi and' Pk are missing. The characteristic equation (41) cannot be fully established 
under these circumstances. 

The deficiency was here. caused by an unsuitable choice of the vectors bo and bo*; it. is 
removable by a better choice of the trial vectors. However, we can have another situation 
where the deficiency goes deeper and is not removable by any choice of the trial vectors. This 
happens if the' Pi roots of the characteristic equation are not all distinct. The expansion (38) 
shows that two equal roots Ai and Ak cannot be separated since they behave exactly like one 
single root with a double amplitude. Generally, the weighted moments Ci can never show 
whether or not there are multiple roots, because the multiple roots behave like single roots. 
Consequently, in the case of multiple eigenvalues the linear relation between the Ci will be 
not of the nth but of a lower order. If the number of distinct roots is m, then the relations (40) 
will appear in the forn:I 

Co'YJo + &1'YJ1 + ... + Cm- 1'YJm-1 + Cm = 0, 

c1'YJo + C2'YJ1 + ... + Cm'YJm-l + cm+1 = 0, 

. Cm'YJo + Cm+1'YJ1 + ... + C2m - 1'YJm-1 + C2m = o. 
Once more we can establish the polynomial 

G(x) = 'YJo + 'YJ1X + ... + 'YJm_1Xm-1 + xm, 

but this polynomial is now of only mth order and factors into the m root factors 

(x - P1)(X - P2) ••• (x - Pm), 

(43) 

(44) 

(45) 

where all the Pi' are· distinct. After obtaining all the roots of the polynomial (44) we can 
now construct by synthetic division the polynomials 

G(x) = xm-1 + g kxm-2 + ... + g _ k (46) 
x - Pk 1 m 1, 

and replacing x j by bj we obtain the principal axes of both A and A*: 

Uk = bm- 1 + g1kbm_2 + ... + gm-lbo, 

Uk* = bm_1* + g1
kbm_2* + .. '. '+ gm_1kbo*. (47) 

This gives a partial solution of the principal-axis problem, inasmuch as each multiple root 
contributed only one axis. Moreover, we cannot tell from our solution which one of the roots 
is single and which one multiple, nor can the degree of multiplicity be established. In order 
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to get further information, we have to change our trial vectors and go through the iteration 
scheme once more. We now substitute in the formulas (47) again and can immediately 
localize all the single roots by the fact that the vectors Uj associated with these roots do not 
change (apart from a proportionality factor), while the Uk belonging to d01:lble roots will 
generally change their direction. A proper linear combination of the new Uk' and the previous 
Uk establishes the second axis associated with the double eigenvalue Ilk; we put 

Uk
1 = Uk, Uk

2 = Uk' + yuk, 

Uk
1* = uk*, Uk

2* = uk'* + y*uk*· 

'The factors y and y* are determined by the condition that the vectors Uk 1 and Uk 2 have to be 
biorthogonal to the vectors Uk 1* and Uk

2*. 
In the case of triple roots a third trial is demandea, and so on.' 
An interesting contrast to this behavior of multiple roots associated with nondefective 

matrices is provided by the behavior of multiple roots associated with defective matrices. 
A defective eigenvalue is always 'a multiple eigenvalue, but here the multiplicity is caused not' 
by the collapse of two very near eigenvalues, but by the multiplicity of the elementary divisor .. 
This comes into evidence in the polynomial G(x) by giving a root factor of order' higher than 
the first. Whenever the polynomial G(x) reveals a multiple root, we can tell in advance that 
the matrix A is defective in these roots, and the multiplicity of the root establishes the degree 
of deficiency. 

It will be r~vealing to demonstrate these conditions with the help of a matrix which 
combines all the different types of irregularities that may be encountered in working with 
arbitrary matrices. Let us analyze the following matrix of sixth order: 

123 000 
o 1 400 0 
o 0 000 
000 200 
000 000 
00000 0 

The eigenvalue 2 is the only regular eigenvalue of this matrix. The matrix is "singular" 
because the determinant of the coefficients is zero. This, however, is irrelevant from the 
viewpoint of the eigenvalue problem since the eigenvalue "zero" is just as good as any other 
eigenvalue. More important is the fact that the eigenvalue zero is a double root of the charac­
teristic equation. The remaining three roots of the characteristic equation are all 1. This 1 
is thus a triple ,root of the characteristic equation; at the same time the matrix has a double 
deficiency in this root because the elementary divisor associated with this root is cubic. The 
matrix possesses only 4 independent principal axes. 

'Vhat will the polynomial G(x), become in the case of this matrix? The regular eigenvalue 
2 must give the root factor x - 2. The regular eigenvalue 0 has the, multiplicity 2 but is 
reduced to the single eigenvalue 0 and thus contributes the factor x. The deficient eigenvalue 
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. 1 has the multiplicity 3 but also double defectiveness; Hence, it must contribute the root 
factor ,(x '-- 1)3. We can thus predict that the polynomial G(x) will come out as follows: 

; i G(x) = x(x - '2)(x - 1)3= x5 -5x4 + 9x3 - 7x2 + 2x. 

" .Let us ve~ify this numerically. As a trial vector we choose 

ho = ho* = 1, 1, 1, 1, 1, l. 

The successive iterations yield the following table: 

ho = 1 1 1 1 1 1, 

hl . 6 5 1 2 ° 0, 
h2 = 19 9 1 4 ° 0, 

h3= 40 13 1 8 ° 0, 

h4 = 69 17 1 16 ° 0, 
hs -:- 106 21 1 ;32 ° 0, 
hs'= 151 25 1 64 ° 0· , . 

h *-o - 1 1 1 1 1, 
h* -' I - 3 8 2 0' 0, 
h *-. 2 - 1 5 23 4 ° 0, ,; 

h *-3 - 1 7 46 8 ° 0, 
h *-4 - 1 9 .77: 16 ° 0, 
hs* = 1 11 116 . 32 ·0 0, i 

h *-s -:- 1 . 13 " 163 64 ° 0. 

We now constr.uct the Ci by dotting ho with the hi* (or ho* with the hi); we continue by 
dotting hs with hl*' ... , hs* (or hs* with hI' ... , hs). This gives the following string of 
2n + 1 = 13 basic. scalars: 

Ci = 6, 14, 33, 62, 1 03, 160~: 241, 362, 555, 884, 1477, 2590, 4735. 

The application of the progressive algorithm of the next section to these hi yields G(x) in 
the predicted fbrm. We now obtain by synthetic divisions 

G(x) = X4 _ 4x3 + 5x2 - 2x 
x--l ' 

G(x) = X4- 3x3 + 3x2 - X 
x-2' , 

G(x) = x4.- 5x4 + 9x2- 7x + 2. 
x' . 

Inverting these polynomials we obtain the matrix 

(~ !: ~ ~ D· 
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The product of this .matrix with the iteration matrix B (omitting the last row b6) yields three 
principal axes U i ; similarly, the product of the same matrix with the iteration matrix B* 
yields the three adjoint axes ui* : 

u(l) = - 8 0 0 0 0 0, 
u(2) = 0 0 0 2 0 0, 
u(O)= 0 0, 0 0 2 2; 

u*(l) = 0 

u*(2) = 0 
u*(O) = 0 

o -8 0 0 
o 0 2 0 
o 002 

0, 
0, 
2. 

Since G(x) is of only fifth order, while the order of the characteristic equation is 6, we 
know that one of the axes is still missing. We cannot decide a priori whether the missing 
axis is caused by the duplicity of the eigenvalue 0, 1, or 2,14 However, a repetition of the 
iteration with the trial vectors 

bo = bo* = 1, 1, 1, 1, 1, 0 

causes a change in the rows u(O) and u*GO) only. This designates the eigenvalue u = 0 as 
the double root. The process of biorthogonalization finally yields15 

ul(O) == 0 0 0 0 1 1, 
u2 (0) = 0 0 0 0 1 - 1; 

ul * (0) = 0 0 0 0 
u2*(0) = 0 0 0 0 

1 1, 
1-1. 

The progressive algorithm for the construction of the characteristic polynomial G (x) . The crucial 
point in our discussiol1-s was the establishment of a linear relation between a certain bm and 
the previous iterated vectors. This relation leads to the characteristic polynomial G(x), whose 
roots G(lli) = 0 yield the eigenvalues Ill' Then by synthetic division we can immediately 
obtain that particular linear combination of the iterated vectors bi which give us the eigen­
vectors (principal axes) of the matrix A. 

We do not know in advance in what relation the order m of the polynomial G(x) will be 
to the order n of the matrix A. Accidental deficiencies of the trial vectors bo, bo*, and the 
presence of multiple eigenvalues in A can diminish m to any value between 1 and n. For this 
reason we will follow a systematic procedure that generates G(x) gradually, going through 
all degrees from 1 to m. The procedure comes automatically to a halt when the proper m 
has been reached. 

Our final goal is to solve the recurrent set of equations 

Co'YJo + C1'YJl + . . . + Cm = 0, 

(48) 
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This is possible only if the determinant of this homogeneous set vanishes: 

=0. (49) . 

Before reaching this goal, however, we can certainly solve for any k < m the following in­
homogeneous set (the upper k is. meant as a superscript): 

COrJo
k + C1rJl

k + ... + Ck = 0, 

C1rJO
k + C2rJl

k + ... + Ck + 1 = 0, 

. (50) 

CkrJO
k + Ck+1rJl

k + ... + C2k = hk • 

The freedom of hk in the last equation removes the overdetermination of the set (48).' The 
proper mwill be reached as soon as hm turns out to be zero. 

Now a recurrent set of equations has certain algebraic properties that are not shared by 
other linear systems. In particular, there exists a recursion relation between the solutions of 
three consecutive sets of the type (50). This greatly facilitates the method of solution, through 
the application of a systematic recursion scheme that will now be developed. 

We consider th~ system (50) and assume that we possess the solution up to a definite k. 
Then we will show how this solution may be utilized for the construction of the next solution 
which belongs to the order k + 1. 

Our scheme becomes greatly simplified if we pay attention to an additional set of equations 
which omits the first of Eqs. (50) but adds one more equation at the end: 

c1iilk + c2iil + ... + Ck +1 = 0, 

Let us now multiply the set (50) by the factor 

hk +1 qk=-h; 
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and add the set (51). VVe get a new set of equations which can be written down in the form: 

CO'YJOk +1 + C1'YJl
k +1 + ... + Ck+1 = 0, 

(53) 

provided we put 
'YJOk +1 = qk'YJOk, 

'YJlk+1 = qk'YJl'c + ihk, 
(54) 

We now evaluate the scalar 

Ck+1'YJl+ 1 + ... + C2k+l'YJkk+l + C2k +2 = hk+1, (55) 
which is added to the set (53) as the last equation. 

What we have accomplished is that a proper linear combination of the solutions 'YJl and 
iil provided us with the next solution 'YJl+ 1• But now exactly the same procedure can be 
utilized to obtain iil+ 1 on the basis of iiik and 'YJl+ 1 • 

. For this purpose we multiply the set (51) by 

- hk +1 ( 6) qk = - =-- 5 
hk +1 

and add the set (53), completed by (55) but Olnittingthe first equation. This gives 

c1iil
k +1 + c2iil+

1 + ... + Ck +2 = 0, 

provided we put 

Once more we evaluate the scalar 

- k+l 
'YJl 

Ck+2iilk+1 + ... + C2k +3 = hk+2, 

which is added to (57) as the last equation. 
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This' analytic procedure can be translated into an elegant geometric arrangement which 
generates the successive solutions 'YJl and 'fJl in successive columns. The resulting algorithm 
is best explained with the help of a numerical example. 

t 

For this purpose we choose the eigenvalue problem of an intentionally oversimplified 
matrix since our aim is to show not the power of the method but ine nature of the algorithm 
that leads to the establishment of the characteristic equation. The limitation of the method 
due to the accumulation of rounding errors will be discussed in the next section .. 

Let the given matrix be 

( 

13 5 - 23) 
4 0 - 4 
7 3 - 13 

We iterate with the trial vector bo = 1, 0, 0, and obtain 

1 0 0 
13 4 7 
2.8 24 12 

208 64 112 

We· transpose the matrix and iterate with the trial vector bo* = 1, 0, 0, obtaining 

o 0 
13 5 23 
28 -4 20 

208 80 - 368, 

VVe dot the first row and the last row with the opposing matrixaild obtain the basic scalars 
Ci as follows :16 

1, 13, 28, 208, 448, 3328, 7168. 

Table 1. 

0 0.5 1 1.5 2 2.5 3 

hi = 1 13 -141 147.6923075 -163.4042569 0 

qi = -13 10.84615384 1.047463173 1.106382990 0 0 

1 1 

13 1 -13 

28 1 -2.15384616 -13.617021249 

208 1 -1.106382987 -16.000000004 0 

448 1 0.000000003 -16 

3328 1 0 

7168 1 

.These numbers are . written down in a column and the scheme shown in Table 1 comes 

into operation; 
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Instead of distinguishing between the 'YJi and'17i solutions we use a uniform procedure but· 
mark the successive columns alternately ,as "full" and "half columns"; thus we number, the. 
successive columns as zero, one-half, one, . . . . The scheme has to end at a full column, and .. . 

the end is marked by. the vanishing of the corresponding "head number" hi. In our scheme 
the head number is zero already at the half-column 2.5, but here the scheme cannot end, 
and thus we continue to the column 3, whose hea~ number becomes once more 0, and then 
the scheme is finished. The last column gives the polynomial G(x), starting with the diagonal 
term and proceeding upward: I 

G(x) = 1 . x3 + 0 . x2 - 16x + 0 

= x3 - 16x. 

The head numbers hi are always obtained by dotting the column below with the basic 
column Ci ; for example, at the head of column 2 we find the number - 163.4042569. This 
number was obtained by the following cumulative multiplication: 

448 . 1 + 208 . (- 1.106382987) + 28 . (- 13.61702124-9). 

The numbers qi represent the negative ratio of two consecutive hi numbers: 

hi +! 
qi = --r; , 

for example, ql.5 ~ 1.106382990 was obtained by the division 

- (- 163.4042569) 
147~6923075 

The scheme grows as follows. As soon as a certain columri Ci is completed, we evaluate 
the associated head number hi; this provides us with the previous q-number qi-!. To construct 
the next column CHi, we multiply the column C i _! by the constant qi-! and add the column 
Ci ; thus 

Ci +! = qi-! . Ci _! + Ci· 

However, the result of this operation is shifted down by one element; for example, in con­
structing column 2.5 the result of the operation 

1.10638299 . (~ 2.15384616) + (- 13.617021249) = - 16 

IS not put In the row where the operation oc~urred, but . shifted down to the next row 
below. 

The unfilled spaces of the scherr:te mean automatically "zero." 
The outstanding feature of this algorithm is that it can never. come to premature grief, provided 

only that the first two c-numbers Co and C1 are different from zero. DIvision by zero cannot 
occur since the scheme comes to an end anyway as soon as the head number zero appears 
in one of the full columns. 

Of interest is also the fact that the products of the head-numbers associated with the 
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full columns give us the successive recurrent determinants of the Ci ; for example, the 
determinants 

and 

1, 1 

13 

1 

13 

28 

208 

are given by the successive products 

13 

28 

13 

28 

208 

448 

1 13 28 

13 28 ·208 , 

28 208 448 

28 208 

208 448 

448 3328 

3328 7168 

1, 1 . (- 141) = - 141, (- 141) . (- 163.4042569) = 23040, and 23040 . 0 = o. 
Similarly, the products of the head numbers of the half-columns give us similar deter­

minants, but omi~ting Co from the sequence of c-numbers. In the example above the deter-
minants 

13, 113 
28 

are given by the products 

28
1 208 ' 

I 13 

I 
28 

208 

13, 13 . 147.6923075 = 1920, 

28 
208 
448 

208 
448 

3328 

1920·0 = O. 

The purpose of the algorithm of Table 1 was to generate the coefficients of the basic 
identity that exists between the iterated vectors bi. This identity finds expression in the vanish­
ing of the polynomial G(x): 

G(x) = o. (60) 

The roots of this algebraic equation give us the eigenvalues of the matrix A. In our example 
we get the cubic equation 

x3 - 16x = 0, 

which has three roots 
PI = 0, P2 = 4, !,(.3 :- - 4. (61 ) 

These are the eigenvalues pf our matrix. In order to obtain the associated eigenvectors, we 
divide G(x) by the root factors 

G(x) = x2 _ 16 
x ' 

,This gives, replacing Xk by bk : 

G(x) = x2 + 4x 
x-4 ' 

u(O) = -:- 16bo + b2, 

u(4) = 4bI + b2, 

u(- 4)= - 4bI + b2 • 
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Consequently, if the matrix 

is multiplied by the matrix of the bi (omitting b3 ), we obtain the three eigenvectors Ui: 

(

-16 0 
o 4 
o -4 

~) . (1~ 
1 28 

o 
4 

24 

0) 7 = 80 
12 -24 

12 24 12 = u(O), 
40 40 = u(4), 

8 -16 = u(-4). 

If the same matrix is multiplied by the matrix of the transposed iterations bi * (omitting b3*), 
we obtain the three adjoint eigenvectors u/: 

1) (1 0 0) 12 - 4 - 20 = u*(O), 
1 . 13 5 - 23 = 80 16' - 112 = u* (4), 
1 28 - 4 - 20 - 24 ~ 24 72 = u* (- 4). 

The solution of the entire eigenvalue problem is thus accomplished. 
The method of minimized iterations. In principle, the previous discussions give' a complete 

solution of the eigenvalue problem. We have found a systematic algorithm for the generation 
of the characteristic polynomial G(ft). The roots of this polynomial gave the eigenvalues of 
the matrix A. Then the process of synthetic division established the associated eigenvectors. 
Accidental deficiencies were possible but could be elimimited by' additional trials. 

As a matter of fact, however, the "progressive algorithm" of the last section has its serious 
limitations if large matrices are involved. Let us assume that there is considerable "dispersion" 
among the eigenvalues, which means that the ratio of the largest to the smallest eigenvalue is 
fairly large. Then the successive iterations will grossly increase the gap and after a few itera­
tions the small eigenvalues will be practically drowned out. Let us assume, for example, 
that we have a 12-by-12 matrix which requires 12 iterations for the generation of the charac­
teristic equation. The relatively mild ratio of 10: 1 as the "spread" of the 'eigenvalues is after 
12 iterations increased to the ratio 1012 :1, which means that we can never get through with 
the iteration scheme because the roundipg errors make all iterations beyond the eighth 
entirely valueless. 

As an actual example, taken from a physical situation, let us consider four eigenvalues 
which are distributed as follows: 

1, 5, 50, 2000. 

Let us assume, furthermore, that we -start with a trial vector which contains the four eigen­
vectors in the ratio of the eigenvalues, that is, the eigenvalue 2000 dominates with the amplitude 
2000, compared with the amplitude of the eigenvalue 1. After one iteration the amplitude 
ratio is increased to' 4 . 106, after two iterations to 8 . 109. The later iterations can give us 
no new information since' they practically repeat the second iteration, multiplied every time 
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by the factor 2000. The small eigenvalues 1 and 5 are practically obliterated and cannot 
be rescued, except by an excessive accuracy which: is far beyond the limitations of the customary 
digital machines. 

We will now develop a modification of the customary iteration, technique which obviat~s 
this difficulty. The modified scheme eliminates the rapid accumulation of rounding errors 
which under ordinary circumstances destroys the value of high order iterations. The 'new 
technique prevents the large eigenvalues from monopolizing the scene. It protects the small 
eigenvalues by constantly balancing the 'distribution of amplitudes in the most equitable 
fashion. 

As an illustrative example, let us apply this method of· "minimized iterations" to the 
above .. mentioned dispersion problem. If the largest amplitude is normalized to 1, then the 
initial distribution of amplitudes is characterized as follows: 

0.0005, 0.0025, 0.025, 1. 

Now, while an ordinary iteration would make this distribution still more extreme, the 
'method of minimized iterations changes t}1e distribution of amplitudes as follows: 

0.0205, 0.1023, 1, -'0.0253. 

We see that it is now the third eigenvector which gets a large weight factor, while the fourth 
eigenvector is almost completely in the, background. 

A repetition of the scheme brings about the following new distribution: 
, \ 

0.2184, 1, - 0.1068,' 0.0000. 

I t is now the second eigenvector which gets the strongest emphasis.' 
The next repetition yields: ' 

1, - 0.2181, ,0.0018, 0.0000. 

and we see that the weight is shifted over to the sm~llest eigenvalue. 
~fter giving a chance to each eigenvalue, the scheme is' exhausted, since we have all ,the 

, information we need. Consequently the next minimized iteration yields an identical ~anishing 
of the next vector, thus bringing the scheme to its natural conclusion. 

In order to expose the principle of minimized iterations, let us first consider the case of 
symmetric matrices: 

A* -A. (62) 

Jvloreover, let us agr,ee that the multiplication of a vector b by the matrix A shall be denoted 
by a prime: . 

Ab = b'. (63) 

Now our aim is to establish a linear ,identity between the iterated vectors. We cannot 
expect that this identity shall come into being right from the beginning. Yet, we can approach 
this'identity right from the beginning by choosing such a linear combination of the iterated 
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vector bo' and bo as makes the amplitude of the new vector as small as possible. Hence, we 
want to choose as our new vector bi the combination 

bi = bo' - aobo, 

where (to is determined by the condition that 

(bo' - aobo) 2 = minimum. 

This gives 

Notice that 

that is, the new vector bi is orthogonal to the original vector boo 

(64) 

(65) 

(66) 

(67) 

We now continue our process. From bi we proceed to b2 by choosing the linear combination 

. (68) 

and once more a l and {Jo are determined by the condition that b2
2 shall become as small as 

possible. This gives 

A good check of the iteration bl ' is provided by the condition 

b1'bo = bIbo' = b12
• 

Hence, the numerator of {Jo has to agree with the denominator of a l • 

. The new vector b2 is orthogonal to both bo and b1• 

(69) 

(70) 

This scheme can obviously be contin~ed. The most remarkable feature of this successive 
minimization process is, however, that the best linear combination never includes more than 
three terms. If we form b3 , we would think that we should put 

b3 = b2' - a2b2 - (Jibi - yobo. (71) 

But actually, in view of the orthogonality of b2 to the previous vectors, we get 

b2' bo b2bo' 
Yo = bo2 = b

0
2 = o. (72) 

Hence, every new step of the minimization process requires only two correction' terms. 
By this process a succession of orthogonal vectors is generated :17 

bo, b1, b2, ••• , bm - 1, (73) 

until the identity relation becomes exact, which means that 

bm = O. (74) 

If the matrix A is not symmetric, then we modify our procedure as follows. 'rVe operate 
simultaneously with A and A*. Th~ operations are the same as before, with the only difference 
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that the dot products are always formed between two opposing vectors. The scheme is indicated 
as follows: 

bo* 
b1* = bo*' - (/.obo* 

bo'bo* bo*'bo 
CXo = -b b * = b *b o 0 0 0 

b2* = b1*' - cx1b1* - flobo* 

b1'b1* b1*'b1 
cx1 = b b * = b *b 1 1 1 1 

(75) 

, b1'bo* bI *'bo 
flo = -';-b * = b *b o 0 0 0 

ba* = b2*' ~ (/.2b2* - fl1b1* 
etc. 

Operationally, the prime indicates multiplication by the matrix A. Hence, the succession 
of bi vectors represents in fact a successive set oj polynomials. Replacing A by the more familiar 
letter x, we have: 

bo = 1 . bo~ 

b1 = (x"':"" cxo)bo, 

b2 = (x - cxI)b1 - flobo, 

ba = (x - cx2)b2 - fl1b1, 

bm = (x - cxm-1)bm- 1 - flm-2bm-2 = o. 

(76) 

This gradual generation of the characteristic polynomial G(x) IS In complete harmony 
with the procedure of the "progressive algorithm," discussed in the preceding section. In 
fact, the successive polynomials oj the set (76) are identical with the polynomials found in the full columns 
oj the progressive algorithm in Table 1. This explains the existence of the recursion relation 

(77) 

without additional 'Y, c5, ••• terms. The existence of such a relation is a characteristic feature 
of the recurrent set of equations that are at the basis of the entire development. 

While the new scheme goes basically through the same steps as the previously discussed 
"progressive algorithm," it is in an incomparably stronger position concerning rounding errors. 
Apart from the fact that the rounding errors do not accumulate, we can effectively counteract 
their influence by constantly checking the mutual orthogonality of the gradually evolving 
vectors bi and b/. Any lack of orthogonality, caused by rounding errors, can immediately 
be corrected by the addition of a small correction term [Eq. (98)]. By this procedure the 
orthogonality of the generated vector system does not come gradually out of gear. 

However, quite apart from the numerical advantages~ the biorthogonality of the vectors 
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bi and b/ has further appeal because it imitates the behavior l!f the principal axes. This is an 
analytical eminently valuable fact which makes the transition from the iterated vectors to 
the principal axes a simple and strongly convergent process. 

In order to see the method in actual operation, let us apply it to the simple example of 
the preceding section. Here the matrix A is of third order, and thus we have to construct the 
vectors bo, bl , b2, b3, and the corresponding adjoint vectors. We obtain the following results: 

bo = 1 

bo' = 13 ° ° 4 7 
° ° 
5 -23 

1·13 
CY.o = -1- = 13 

bl = ° 4 7 
bI ' = - 141 - 28 - 79 

1677 
CY.I = _ 141 

= - 11.89361702 

b2 = 0, 19.57446808, 4.25531914 

b2' = 0, ~17.02127656, 3.40425542 

180.78768715 
CY.2 = _ 163.4042553 

= - 1.106382981 

b3 = 0, 0, ° 
The associated polynomials become: 

Po = 1, 

PI (x) -:- x - 13, 

P2(X) = (x + 11.89361702)(x - 13)' + 141 

= x2 - 1.10638298x - 13.61702126, 

bl * = ° 5 -23 

bl *' = -141 - 69 279 

-141 Po = -1- = -141 

b2* = 0, - 9.53191490, 5.44680854 

b2*' = 0, 16.34042562, - 32.68085142 

P 
_ - 163.40425746 

I - . _ 141 

= 1.158895443 

b3* = 0, 0, ° 

P3(X) = (x + 1.106382981)(x2 - 1.10638298x - 13.61702126) - 1.158895443 (x -13) 

= x3 - 16x. 

Comparison with Table 1 shows that the coefficients of these very same polynomials appear, 
in the full columns 0, 1, 2, 3 of the progressive algorithm. 

Solution q( the eigenvalue problem by the method of minimized iterations. The biorthogonal property 
of the vector system bi' b/ leads to an explicit solution of the eigenvalue problem, in terms 
of the vectors bi. Let us first assume that the matrix A is of the nondefective type and let us 
analyze the vectors b i in terms of the eigenvectors u i • The method by which the vectors b i. 
were generated yields directly the relation 

bi = Pi(PI)UI + Pi(P2)U2 + ... + Pi(P'm)Um• 
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If this relation is dotted with Uk *, we obtain, in view of the mutual orthogonality of the two 
sets of axes, 

bi . Uk * = Pi(flk)Uk . Uk *. (79) 

Let us now reverse the process and expand the Ui in terms of the b i : 

U1 = ('J.iObO + ('J.ilbl + ... + ('J.im-lbm-l· (80) 

The dotting by bk * yields 

(81) 

Let us denote the "norm" bf bk by ak : 

ak = bk . bk * (82) 

while the norm of Uk will be left arbitrary: Then the expansi~n (80) 'becomes: 

bo () bl () b2 ( ) bm - l 
Ui = a + PI fli a + P2 fli a + ... + Pm-l fli a' 

o I 2, m-l 
(83) 

This expansion contains the solution of the principal-axis problem. The eigenvectors Ui ar~ gener­
ate,d in terms of the vectors bi' which are the successive vectors of the process of minimized 
iterations. The expansion (83) takes the place of the previous "S-expansion" (27) which 
solved the eigenvector problem in terms of the customary process of iteration.' 

The adjoint axes are obtained in identical fashion: 

bo* bl* b2*bm- l* 
ui* = -a- + PI(fli) ~- + P2(fll) a + ... + Pm-l(fli) -a-' 

, 0 I, 2 m-l 
(84) 

The expansion (83) remains valid even in the case of defective matrices. The only differ­
ence is that the number of principal axes becomes less than n since a multiple, root fli' if 
substituted into (83) and (84) cannot contribute more than on~ principal axis.ls However, a 
defective matrix actually possesses less than npairs of principal axes, and the above expansions 
give the general solution of the problem. . 

An interesting alternative of the expansion (83) arises if we. go back to the original Fredholm 
problem and request a solution in terms of the minimized vectors bi' rather than the simply 
iterated vectors of the expansion (17). One method would be, to ,make use of the Schmidt 
series (8), expressing the Ui of that series in' tenns of the bi' according to 'the expansion (83). 
However, the Schmidt series, holds for nondefective matrices only, while we know' that a 
solution must exist for any kind of matrix. 

Hence, we prefer to proceed in a somewhat different fashion. We expand y directly in 
terms of the vectors b i : 

(85) 

We substitute this expansion into Eq. (1), replacing bk ' by 

bk' = bk+l + ('J.kbk + {3k-Ibk-I' (86) 

Then we compare coefficients on both sides of the equation. The 'result can be described' as 
follows. 
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Let us .reverse the sequence of the cxccoefRcients and let us do the same with the fJccoeffi­
cients. Hence, we define 

-
CX o = CXm-l, 

(il = CXm-2, Po = fJm-2, 

We now construct the following "reversed" set of polynomials: 

Po = 1, 

PI (x) = x - CXO, 

P2(X) = (x - al)Pl(x) - Po, 

Pm(X) = (x - (im-l)Pm-l(X) - Pm-2Pm-2(X) 

= G(x). 

Then the solution of the Fredholm problem (1) is given by the expansion 

where we have put 

(87) 

. (88) 

(89) 

(90) 

The expansion (89) is completely general and remains valid, no matter how the vector bo of 
t~e right-hand member was given, and how regular or irregular the. matrix A may be. The 
only condition to be satisfied is that the vector bo*-while otherwise chosen arbitrarily-sh~ll 
be free of accidental deficiencies, that is, bo * shall pot be orthogonal to some Uk if bo is riot 
simultaneously orthogonal to Uk * . 

The expansion (89) leads once more to a solution of the eigenvector problem, this time 
obtained with the help of the "reversed" polynomials Pi(X) : 

(~l ) 

The expansions (91) and (83) actually coincide-except for a factor of proportionality~for 
algebraic reasons. 

In order to see a numerical example for this solution of the eigenvalue problem let us 
return once more to the simple problem previously discussed. The minimized bi and b/ 
vectors associated with this matrix were given at the end of the preceding section, together 
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with the associated polynomials Pi(X). ''''e now construct the reversed polynomials Pi(X). For 
this purpose we tabulate the rJ.i and Pi: ' 

13 
- 11.89361702 
- 1.106382981 

We reverse the sequence of this tabulation: 

- 1.106382981 
- 11.89361702 

13 

and construct in succession 

Po . 1, 

PI(X) = x + 1.106382981, 

"'-- 141 
1.158895443 

1.58895443 
- 141 

P2(X) = (x + 11.8361702)PI(x) - 1.58895443. 

= X2 + 13x + 12" 

Pa(x) = (x - 13) P2(X) + 141 

= xa -'- 16x. 

The last polynomial is identical with Pa(x) = G(x). The zeros of this polynomial ar~ 

PI = 0, P2 = 4, Pa = - 4; 

. substituting these values irito P2(P,), PI(P), Po we obtain the matrix 

( 

12 1.06382981 
80 5.106382981 

- 24 - 2.89361702 

The product of this matrix with the matrix of the bi vectors gives the three principal axes ui : 

( 

12 1.06382981 
80 . 5.106382981 

.' - 24 - 2.89361702 

o 0)' 12 24 12 = u(O), 
4 7 = 80 40 40 = u (4), 

19.57446808 4.25531914 - 24 8 - 16 = u(- 4), 

in complete agreement with the previous result, but now obtained by an entirely different 
method. If the b-matrix is replaced by the b*-matrix, the adjoint axes u*(O), u*(4), u*(- 4) 

are obtained. ' 

~ The lateral vibrations cif a bar. In order to 
~ study the power of the method in connection 

F 1 V ·b . b with a vibration problem of large dispersion, 
IG. • 1 ratIng are 

the elastic vibrations of a bar were investigated. 
The bar was clamped at one end and free at the other .. Moreover, the bar changed its cross 
section suddenly in the middle (Fig. 1). The change of the cross section was such that the 
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moment of inertia jumped from the value 1 to 2. The differential equation that describes the 
vibrations of such a bar is the f~urth order equation 

with the boundary conditions 

and 

d2 [ dy2] 
dx2 k(x) dx2 = AY, 

Y(O) = 0, 

.y'(O) = 0, 

y"(l) = 0, 

y"'(l) = 0, 

(92) 

(93) 

(94) 

The differential operator dJdx was replaced by the difference operator ~J ~x, with~x = 1. 
The length of the bar was chosen as l = 13, thus leading to a l2-by-12 matrix, since y(O) 
=y(l) = 0. 

The first step was the inversion of the matrix. This was easily accomplished since a matrix 
that is composed of a narrow band around the diagonal can be inverted with little labor. 
The eigenvalues fli of the inverted matrix are the reciprocals of the original Ai: 

1 
Ili = T .. 

t 

(95) 

)The general theory has shown that the iteration scheme applied to an arbitrary matrix 
automatically yields a biorthogonal set of vectors bi and bi*; they can be conceived as the 
building blocks from which the entire set of principal axes may be generated. In the present 
problem, dissipative forces are absent, which makes the matrix A symmetric and the problem 
self-adjoint. Hence, 

(96) 

and we get through with a single set of iterations. 
Now the gen:eral procedure would demand that we go through 12 minimized iterations 

before the stage b12 = ° is attained. However, the study of a system with high dispersion has 
shpwn that in such a system the method of minimized iterations practically separates the 
various vibrational moves, starting with the highest eigenvalue and descending systematically 
to the lower eigenvalues, provided that we employ a tria~ vector bo which weights the eigen­
vectors according to the associated eigenvalues, or even more strongly. In the present problem 
the trial vector 1, 0, 0, ... was not used directly but iterated with the matrix A, and then 
iterated again. The vectorbo" thus obtained was employed as the bo of the minimized iteration 
scheme. 

The strong grading of the successive eigenvectors has the consequence that in k minimized 
iterations essentially only the highest k vibrational modes will come into evidence. This is of 
eminent practical value since it allows us to dispense with the calculation of the very low 
eigenvalues (that is, very high frequencies, since we speak of the eigenvalues of the inverted 
matrix), which are often of little physical interest, and also of little mathematical interest in 
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view of the fact that the replacing of the d operator by the Ll operator becomes in the realm 
of high frequencies more and more damaging. 

Whether the isolation actually takes place or not can be tested with the help of the Pi(X) 
polynomials that accompany the iteration scheme. The order of these polynomials constantly 
increases by 1. The correct eigenvalues of the matrix A are obtained by evaluating the zeros 
of the last polynomial Pm(x) = O. What actually happens, however, is that the. zeros of the 
polynomials Pi(X) do not change much from the beginning. If the dispersion is strong, then 
each new polynomial basically adds one more root but corrects the higher roots by only small 
amounts. It is thus quite possible that the series of largest roots in which we are primarily 
interested is practically established with sufficient accuracy after a few iterations. Then we 
can stop, since the later iterations will change the values obtained by negligible amounts. 
The same can be said about the vibrational modes associated with these roots. 

This consideration suggests the following successive procedure for the approximate deter­
mination of the eigenvalues and eigenvectors (vibrational modes) of a matrix. As the mini­
mization scheme proceeds and we constantly obtain newer and newer polynomials Pi(X), we 
handle the last polynomial obtained as if it were the final polynomial Pm(x). 'Ve evaluate the . . 

roots of this polynomial and compare them with the previous roots. Those roots which change 
by negligible amounts are already in their final form. 

A similar procedure holds for the evaluation of the eigenvectors Ui • Here the biorthogonality 
of the vectors hi and h/-whichis reduced to simple orthogonality in the case ofa symmetric 
matrix-is of very great help. Let us assume that the lengths of the vectors hi are normalized 
to 1, by replacing hi by bdv~. Then the expansions (83) and (84) ~how that the following 
matrix must be an orthogonal-although in the diagonal terms not normalized-matrix: 

vao 

1 

va~ 

1 

Vao 

P1(fl1) 
Val 

P1(fl2) 
val' 

P2(fl1) Pm-1(fl1) 
va2 va~_~ 

P2(fl2) Pm-1(fl2) 
va; vam_1 

(97) 

The dot-product of any two rows of this matrix must come out as zero-thus providing us 
with a powerful check on the. construction of the Pi polynomials and the correctness. of the 
roots P1' which are the roots of the equation Pm(fl) = 0.19 In the case of strong dispersion, 
the transformation matrix (97) is essentially reduced to the diagonal terms and one term to 
the right and to the left of the diagonal; that is, the eigenveGtor Uk is essentially a linear 
combination of three h':'vectors only, namely, hk - 2 , hk - 1, and hk • 
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These general conditions are well demonstrated by the tabulation of the final results of 
the above-mentioned bar problem. The minimized iterations were carried through up to 
m = 6. On the basis of these iterations,' the first six eigenvalues and the first five vibrational 
modes of the clamped-free bar were evaluated. The iterations' were constantly watched for 
orthogonality. After obtaining a certain hi' this hi was immediately dotted with all the previous 
h;. If a certain dot product hi . hi came out as noticeably different from zero, the correction 
term 

(98) 

was added to hi' thus compensating for the influence of rounding errors. By this procedure 
the ten-significant-figure accuracy of the calculations was constantly maintained. 20 

The roots of the successive polynomials Pi(X) are tabulated in Table 2. 

Table 2. 

1'-1 1'-2 1'-3 1'-4 1'-5 1'-6 

2256.926071 

.943939 48.1610705 

~943939 .2037755 5.272311428 

.943939 .2037825 .355958260 1.513923859 

.• 943~39 .2037825 .356269794 .582259337 0.546327303 

.943939 .2037825 .356269980 .5829955952 .591117817 0.2498132719 

The successive orthogonal transformation matrices (97) likewise show strong convergence. 
We tabulate here only the last computed transformation matrix (rounded off to. four decimal 
places), which expresses the first six eigenvectors U1, ••• ,. U6 in terms of the first six normalized 
hi / ~ vectors, making use of the roots of P6(U) = o. The diagonal elements are normalized 
to 1: 

1 0.0028 0 0 0 0 
- 0.0028 0.0316 0.0004 0 0 

0 - 0.0316 1 0.1497 0.0081 0 
0 0.0044 - 0.1520 1 0.2693 0.0249 
0 -,0.0010 0.0335 - 0.2793 1 0.4033 
0 0.0002 ~ 0.0087 0.0779 - 0.3816 1 

We notice how quickly the elements fall off to zero as soon as we are beyond one element to 
. the right and one to the left of the main diagonal. The orthogonal. reference system of the 

hi and the orthogonal reference system of the Ui are thus in close proximity to each other. 
The five vibrational modes UH ••• , Us thus obtained (u6 being omitted since the lack of 

the neighbor on the right side of the diagonal makes the approximation unreliable) are plotted 
,in Fig. 2. 
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The eigenvalue problem oj linear integral operators. The methods and results of the past sections 
can now be applied to the realm of continuous operators. The kernel of an integral equation 
can be conceived as a matrix of infinite order that may be approximated to any degree of 
accuracy by a matrix of high but finite order. One method of treating an integral equation 
is to replace it by an ordinary matrix equation of sufficiently high order. This procedure is 
from the numerical standpoint frequently the most satisfactory one. However, we can design 
methods for the solution of integral equations that obtain the solution by purely analytical 
tools, on the basis of an infinite convergent expansion, such as the Schmidt series, for example. 
The method we are going to discuss belongs to -the latter type. We wilI find an expansion 
that is based on the same kind of iterative integrations as the Liouville-Neumann series, but 
avoiding the convergence difficulties of that expansion. The expansion we are going to 

u, (p, = 2256.94) develop co,nverges under all circumstances 
uz(JLz= 48.20) and gives the solution of any Fredholm 
U3(JL3 = 5.36) type of integral equation, no matter 
U4(jL4= 1.58) 

U5(JL5 = 0.59) how defective the kernel of that integral 
equation may be.21 

Let us first go back to our earlier 
method of solving the Fredholm prob­
lem. The solution was obtained as 
the S-expansion (1 7). The difficulty 
with this solution is that it is based on 
the linear identity that. can be estab­
lished between the iterated vectors bi' 
That identity is generally of the order 

FIG. 2. Five vibrational modes of the bar of 
Fig. 1. 

n; if n grows to infinity, we have to 

obtain an identity of infinite order before our solution can be constructed. That, however, 
cannot be done without the proper adjustments. 

The later attempt, based on the method of minimized iterations, employs more adequate 
principles. We have seen that for any matrix A a biorthogonal set of vectors bi and bi* can 
be constructed by successive minimizations. The set is uniquely determined as soon as the 
first trial vectors bo and bo* are given. In the case of the inhomogeneous equation (1) the 
right-hand member b may be chosen as the trial vector bo while bo* is still arbitrary. 

The construction of these two sets of vectors is quite independent of the order n of the 
matrix. If the matrix becomes an integral operator, the bi and b/ vectors are transformed into 

a biorthogonal set of functions 

CFlo(X) , 

CFlo* (x), 

CFl2(X), • •• 

CFl2 * (x), . . . 
(99) 

which are generally present in infinite number. The process of minimized iterations assigns 

to any integral operator such a set,after CFlo(X) and CFlo*(x) have been chosen. 
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Another important feature of the process of minimized iterations was the appearance of 
a successive set of polynomials Pi(P), tied together by the recursion relation 

(100) 

This is again entirely independent of the order n of the matrix A and remains true even if the 
matrix A is replaced by a Fredholm kernel K(x, ;). 

We can now proceed as follows. We stop at an arbitrary Pm(x) and form the reversed set 
of polynomials Pi(P), defined by the process (87). Then we construct the expansion 

This gives a successive-approximation process that converges well to the solution of the 
Fredholm integral equation 

In other words, 

m~oo 

(102) 

(103) 

By the same token we can obtain all the eigenvalues and eigensolutions of the kernel 
K(x, ;), if such solutions exist. For this purpose we obtain the roots Pi of the polynomial 
m(fL)p by solving the algebraic equation 

(104) 

The exact eigenvalues Pi of the integral operator K(x, ;) are obtained by the limit process: 

lim Pm(Pl) = 0, (105) 
m~oo 

where the largest root is called PI and the subsequent roots are arranged according to their 
absolute values. The corresponding eigenfunctions are given by the infinite expansion 

u.(x) = lim [<po(X) + P.(II .. ) <Pl(X) + . ~ . + P _ ( -.) <Pm-l(X)] 
t (j t rt (J m 1, Pt (J' 

m~oo 0 1 m-l 
(106) 

where fLi is the ith root of the polynomial Pm (fL). 22 

As a trial function <Po(x) we may choose, for example, 

<Po = const. = 1. (107) 

However, the c'onvergence is greatly speeded up if we first apply the operator Kto this function, 
~ndpossibly iterate even once more. In other words, we should choose <Po = K· 1, or even 
<Po = K2 . 1 as the basic trial function of the expansion (106). 

We consider two particularly interesting examples which are well able to illustrate the 
nature of the successive-approximation process here discussed. 

The vibrating plate. In the problem of the vibrating plate we encounter the self-adjoint 
differential operator 

- ~ (xy'). (108) 
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This leads to the eigenvalue problem 

- fx (XY') = ~, (0 :s;: x ~ 1) (109) 

with the boundary condition 
y(l) = O. (110) 

The solution of the differential equation .(109) is 

y =' J o(2V;'x), (111) 

where Jo(x) is the Bessel function of order zero. The boundary condition (110) requires that 
;. shall be chosen as follows: 

(112) 

where ~i are the zeros of Jo(x) = o. 
Now the Green's function of the differential equation (109) changes the differential operator 

(108) to the inverse operator which is an integral operator of the nature of a symmetric Fred­
holm kernel function K(x, ~). Our problem ~ill be to obtain the eigenvalues and eigenfunctions 
of this kernel. 

Ifwe start out with the function lPo(x) = 1, the operation KlPogives 

1- x, 

and repeating the operation we obtain 

and so on. The successive iterations will be polynomials in x. Now the minimized iterations 
are merely some linear combinations of the ordinary iterations. Hence the orthogonal sequence 
lPi(X) will become a sequenc~ of polynomials of constantly increasing order, starting with the 
constant lPo = l. This singles out the CfJk(X) as the Legendre polynomials Pk(x), but normalized 
to the range 0 to. I, instead of the customary range - 1 to + 1. The renormalization of the 
range transforms the polynomials Pk(x) into Jacobi polynomials Gk(p, q; x), with p = q = 1,23 
which again are special cases of the Gaussian hypergeometric series F( rI., (J, y; x), in the sense 
of F(k + 1, - k, 1; x); hence, we get: 

,lPo = 1, 

lPl(X) = 1 - 2x, 

lP2(X) = 1 - 6x + 6X2, 

lP3(X) = 1 - 12x + 30x2 - 20x3, 

The associated polynomials Pi(X) can be obtained on the basis of the relation 

KCfJm = lPn+l + rl.nlPn + {In-llPn-l· 

(113) 

(114) 
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This gives 
Po = 1, 

Pl (x) = 2x --,. 1, 

P2(X) = 24x2 - 18x + 1, 
(115) 

P3(X) = 720x3 - 600x2 + 72x - 1. 

In order to obtain the general recursion relation for these polynomials it is preferable to 
follow the example of the algorithm of Table 1 and introduce the "half-columns" i~ addition 
to the full columns. Hence, we define a second set of polynomials qk(X) and set up the recursion 
relations 

Pn(X) = nxqn_l(X) - Pn-l(X), 

qn(x) = 2(2n + I)Pn(x) - qn-l'(X). 
(116) 

We thus obtain, starting with Po = 1 and qo = 2, and using successive recursions: 

Po = 1, qo = 2 

Pl (x) = 2x - 1, 

P2(X) = 24x2 - 18x +'1, 

ql(X) = 12x - 8, 

q2(X) = 240x2 - 192x + 18, 
( 117) 

P3(X) = 720x3 - 600x2 + 72x - 1, q3(X) = 10080x3 - 8640x2 + 1200x - 32, 

The zeros of the Pm(x) polynomials converge to the eigenvalues of our problem, but the con­
vergence is somewhat slow since the origipal function CPo = 1 does not satisfy the boundary 
conditions and thus does not suppress sufficiently the eigenfunctions of high order. The zeros 
of the qi polynomials give quicker convergence. They are given in Table 3, going up to qs(x). 

Table 3. 

0.6677 

.69155 0.1084 

.69166016 .130242 .035241 

.6916602716 .1312564 .051130 .014842 

.6916602760 .13127115 .0532914 .025582 .00729 

.6916602761 .13127123 .0534138 .028769 .01794 

The last row contains the correct values of the eigenvalues, computed on the basis ofEq. (112), 

(118) 

We notice' the eminent convergence' of the scheme. 
The question of the eigenfunctions of our problem will not be discussed here. 
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The vibrating string : even modes. Another interesting example is provided by the vibrating 
'string. The differential operator here is 

with the boundary conditions 
Y(± 1) = O. 

The solution of the differential equation 
d2 

- di2Y = AY 

under the given boundary conditions is 

This gives the eigenvalues 

and 

Yi = cos (2i + 1) ~ x, 

Y; = sinj7Tx. 

(
2i + 1 )2 

Ai = --2- 7T 

(even modes) 

(odd modes) 

(even modes) 

(odd modes) 

(119) 

(120) 

(121 ) 

(122) 

(123) 

(124) 

(125) 

If we start with the trial function fPo = 1, we will get all the even vibrational modes of 
the string, while CPo = x will give all the odd vibrational modes. We start with the first 
alternative. 

·Successive iterations give 

(126) 

and we notice that the minimized iterations will now become a sequence of even polynomials. 
The transformation X2 = ; shows that these polynomials are again Jacobi polynomials 
Gk(P, q; X2), but now P= q = l,and we obtain the hypergeometric functions F(k + '~" 

k 1. x2). - ,2", . 
CPo = 1, 

fPI (x) = 1 - 3X2, 

fP2(X) = 3 - 30x2 + 35x4, 
(127) 

fP3(X) = 5 - 105x2 + 315x4 - 231x6, 

Once more we can establish the associated polynomials Pi(X), and the recursion relation 
by which they can be generated. In the present case the recursion relations come out to be 

Pn(x) = (4n - l)xqn_l(x) - Pn-I(X), 

qn(x) = (4n + 1 )Pn(x) - qn-I(X), 
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starting with Po = I, qo = I. This yields 

Po = 1, qo = I, 

Pt(x) = 3x - I, qt(x) = 15x - 6, 

P2(X) = 105x2 - 45x + I,. q2(X) = 945x2 - 420x + 15, 
(129) 

P3(X) = 10395x3 - 4725x2 +210x - I, q3(X) = 135135x3 - 62370x2 + 3150x - 28, 

Table 4. 

fLl fL2 fL3 fL4 fL5 

0.40000 

.405059 0.02351 

.405284733 .044856 0.011397 

.4052847346 .04503010 .015722 0.00455 

.4052847346 .0450316322 .016192 .00752 0.00216 

.4052847346 .0450316371 .016211 .00827 .00500 

The successive zeros of the qi(X) polynomials, up to qs(x), are given in Table 4. The last 
row contains the correct eigenvalues, calculated from the formula 

#i=(2i~I~)2. (130) 

The convergence is again very conspicuous. 
The vibrating string: odd modes. In the case of the odd modes of the vibrating string the 

orthogonal functions of the mini'mized iterations are again related to the Jacobi polynomials 
Gk(p, q; x), but now with P = q = -(t. Expressed in terms of the hypergeometric series we 
now get the polynomials of odd orders xF(k + -~,,- k, -it; x): 

CPo = x, 

CPt (x) = 3x - 5x3, 

CP2(X) = 15x - 70x3 + 63x5
, 

CP3(X) = 35x - 315x3 + 693x5 - 429x7
, 

The associated Pi(X) polynomials are generated by the recursion relations 

Pn(x) = (4n + I)xqn_t(x) - Pn-l(X), 

qn(x) = (4n + 3)p~(x) - qn-l(X), 

starting with Po = 1, qo = 3. vVe thus get 

Po = I, 

Pl(X) = 15x - 1, 

P2(X) = 945x2 - 105x + I, 

qo. = 3, 

qt(x) = 105x - 10, 

q2(X) = 10~95x2 - 1260x + 21, 

(131) 

(132) 

(133) 

P3(X) = 135135x3- 17325x2 + 378x- I, q3(X) = 2027025x3- 270270x2 + 6930x- 36. 

195 



CORNELIUS LANCZOS 

The zeros of qi(X), up to q5(X), are given in Table 5. The last row contains the correct eigen­
values calculated on the basis of the formula 

1 
fli = i 21T2• 

(134) 

Table 5. 

1', 1'2 1'3 1'4 I'~ 

0.0952 

.10126 0.01995 

.10132106 .02500 0.00701 

.1013211836 .025323 .01068 0~00307 

.10132111)36 . .02533024 .011215 .00550 0.00156 

.1013211836 .025330296 .011258 .00633 .00405 

The eigenvalue problem of linear differential operatOrs. Let Dy(x) be a given linear differential 
operator, with given homogeneous boundflry conditions of sufficient number to establish an 
eigenvalue problem. The problem of finding the eigenvalues and eigenfunctions of this operator 
is equivalent to the problem of the previous section in which the eigenvalue problem of linear 
integral operators was investigated. Let us assume that we know the Green's function K(x, ~) 

of the differential equation 
Dy= p. (135) 

ThenK is the reciprocal operator of D which possesses the same eigenfunctions (principal 
axes) as the operator D, while the eigenvalues of K are the reciprocals· of the eigenvalues 
ofD; 

Hence, in· principle, the eigenvalue problem of differential operators needs no special 
investigation. Actually, however, the situation in most cases is far less simple. The a·ssumption 
that we are in possession of the Green's function associated with the differential equation (135) 
is often of only purely theoretical significance. Even very simple differential operators have 
Green's functions that are outside the limits of our analytical possibilities. Moreover, even 
if we do posses~ the integral operator K in closed form, it is still possible that the successive 
integrations needed for the construction of the successive orthogonal functions qJl(X) , qJ2(X) , 
qJ3(X), ••• go beyond our analytical facilities. 

In view of this situation we ask the question whether we could not relax some of the prac­
tically too stringent demands of the general theory. ''''e may lose somewhat in accuracy, but 
we. may gain tremendously in analytic operations if we can replace some of the demands of 
the general theory by more simplified demands. The present section will show how that may 
actually be accomplished. 

Leaving aside the method of minimized iterations, which was merely an additional tool 
in our general program, the basic principle of our entire investigation, if shaped to the realm 
of integral. operators, may be formulated as follows. 
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We start out with a functionfo(x) which may be chosen asfo(x) = 1. We then form by 
iterated integrations a set of new functions 

!t(X) = Kfo(x),f2(X) = K!t(x) , .. ·,fm(x) = Kfm-1(X). (136) 

Then we try to establish an approximate linear relation between these functions, as accurately 
as possible. For, this purpose we make' use of the method of least squares. 

We notice that the general principle involves two processes: (a) the construction of the 
iterated set (136); (b) the establishment of a close linear relation between them. It is in the 
first process that the knowledge of the integral operator K = D -1 is demanded. But let us 
observe that the relation between the successive J:-functions can be stated in reverse order. 
We then get 

fm(x),fm-1(X) = Dfm(x), .. . ,fo(x) = Df.t(x). (137) 

Ifwe start with the functionfm(x), then the successive functions of lower order can be formed 
with the help of the given D operator and we can completely dispense with the use of the 
Green's functions. 

Now the freedom of choosing fo(x) makes also fm(x) to some extent a free function. Yet 
the successive functionsJ:(x) do not have the same degree of freedom. Whilefo(x) need not 
satisfy the given boundary conditions, f.t(x) of necessity satisfies these conditions, while f2(X) 
satisfies them even more strongly, since not only f2(X) but even Df2(X) satisfies the given boun­
dary conditions. Generally, we can say that an arbitrary fn(x) need not satisfy any definite 
differential or integral equation but it is very restricted in the matter of boundary conditions; 
it has to satisfy the boundary conditions "in nth order." This means that not only fn(x) itself, 
but the whole sequence of functions 

(138) 

must satisfy the given boundary conditions. 
To construct a function fn(x) of this property is not too difficult. We expand fn(x) into 

a linear set of powers, or periodic functions, or any other "kind of function we may find adequate 
to the given problem. The coefficients of this expansi<?n will be determined by the boundary 
conditions that will be satisfied by fn(x) and the iterated functions (138). This leads to the 
solution of linear equations. In fact, this process can be systematized to a regular recursion 
scheme that avoids the accumulation of simultan~ous linear equations, replacing them by a 
set of separated equations, each one involving but one unknown. 

We have thus constructed our set (136), although in reverse order. We did not use any 
integrations, only the repeated application of the given differential operator D. The first 
phase of our problem is accomplished. 

We now turn to the second phase of our program, namely, the esta blishmen t of an a pproxi­
mate linear relation between the iterated functionsJ:(x). The method of least squares is once 
more at our disposal. However, here again we might encounter the difficulty that the definite 
integrals demanded for the evaluation of the (Xi and Pi are practically beyond our means. 
Once more we can simplify our task. The situation is similar to that of evaluating the 
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coefficients of a Fourier series. The "best" coefficients, obtained by the method of least squares, 
demand the evaluation of a set of definite integrals. Yet we can get a practically equally close 
approximation of a functionf(x) by a finite trigonometric series f(x) , if we use the method of 
"trigonometric interpolation." Instead of minimizing the mean square of the errorf(x) - j(x), 
we make f(x) equal to f(x) in· a sufficient number of equidistant points. This leads to no 
integrations but to simple summations. 

The present situation is quite analogous. To establish a linear relation between the h(X) 
means that the last functionfm(x) shall be approximated by a linear combination of the previous 
functions. Instead of using the method of least squares for this approximation we can use 
the much simpler method of interpolation, by establishing a linear relation between the successive 

h(X) in as many equidistant points as we have coefficients at our disposal. For the sake of 
better convergence, it is preferable to omit.fo(x)-which does not satisfy the boundary condi­
tions and thus contains the high vibrational modes too pronouncedly-and establish the linear 
relation only from h(x) on. For example, if we constructed a. trial function fa(x) which, 
together with the iteratedf2(x) = Dfa(x) and doubly iteratedh (x) = D2f(x) satisfies the given 
boundary conditions, then we can choose two points of the region, say the two endpoints, 
where a linear relation of the form 

fa(x) + rl.J.Ax) + Ph(x) = 0 

shall hold. This gives the characteristic polynomial G(x) in the form 

G(x) = x2 -+ rJ.X + fl. 

(139) 

(140) 

The two roots of this polynomial give us an approximate evaluation of the two highest f.li 

(or the two lowest Ai), that is, /11 = IjA1 and /12 = IjA2' while the corresponding eigensolutions 
are obtained by synthetic division: 

which gives 

G (x) = g 'x +.g , 
x -'- /11 1 2 , 

G(x) =g"x+g" 
x - /12 1 2 , 

U1 (x) = gl'h(X) +g/h(x) , 

u2(x) = gl"f2(X) + g2''h(X). 

(141) 

(142) 

(The last root and its eigenfunction are always considerably. in error, and give only rough 
indications. ) 

The remarkable feature of this method is that it completely avoids any integrations, requiring 
only the solution of a relatively small number of linear equations. 

The following application of the method demon.strates its practical usefulness. The method 
was applied to obtain the first three eigenvalues of the lateral vibrations of a uniform bar, 
clamped at both ends. The given differential operator is here 

d4y 
Dy = dX4' 
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with the boundary conditions 

y(± 1) = 0, y'(± 1) = 0. 

Only the even modes were considered, expandingy(x) into even powers of x. The approxima­
tions were carried out in the first, second, and third orders. The eigenvalues obtained are 
given in Table 6, the last row containing the correct eigenvalues given by Rayleigh.24 

Table 6. 

,.,.. ""2 ""3 
0.0323413 

.0319686 0.0007932 

.• 031963958 .0010875 0.0000788 

0.031963996 0.0010946 0.0001795 

We notice that the general convergenc.e behavior of this method is exactly the same as 
that of the analytically more advanced·, but practically mu·ch more cumbersome,method of 
minimized iterations. 

Differential equations of second order: Milne's method. If a linear differential equation of 
second order with two-end boundary conditions is changed into a difference equation and 
then handled as a matrix problem, singularly favorable conditions exist for the solution of 
the eigenvalue problem. The matrix of the corresponding difference equation contains only 
diagonal terms plus one term to the right and one to the left. If we now start to iterate with 
the trial vector 

bo = 1, 0, 0, ... , 0, . (143) 

we observe that the successive iterations grow by one element only, as indicated in the following 
scheme, where the dots stand for the nonvanishing components: 

bo =., 
bI - , 
b2 - , 

. , 

.. 
Under these conditions the establishment of the linear identity between the iterated vectors 

is greatly simplified since it is available by a successive recursion scheme. The coefficients of 
the equation 

(145) 

are directly at our disposal, since the last column of the last two vectors gives gl' then the 
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previous column' gives g2' ... , until finally the first column gives gn. The construction of 
the basic polynomial G(x) is thus accomplished and the eigenvalues25 Ai are directly available 
by finding the rapts of the equation G(A) = 0. . 

Professor 'v. E. Milne, of the Oregon State College and the Institute for NumericalAnalysis, 
applied the general theory to this problem, but with the following modification. Instead of 
iterating with the given matrix A, Milne considers the regular vibration problem 

./ 

d2U . 

dt2 + Du = 0, (146) , 

where the operator D has the following significance :26 

[
d2 'd ] . 

Du = - dx2 + p(x) dX + g(x) u(x, t). (147) 

The differential equation (146) is now converted into a difference equation, with dx = dt 
,= h. Then the values of u(ih, jh) are determined by successive recursions, starting from the 
initial conditions 

u(ih, 0) - 1, 0, 0, 0, ... , ° (148) 
and 

u(ih, h) = u(ih, ~ h). (149) 

The linear identity between the n + 1 vectors 

u(ih, 0), u(ih, h), ... , u(ih, nh) (150) 

leads to a trigonometric equation for the characteristic frequencies Vi' of the form 

cos nvih + An - 1 cos (n - l)vih + ... + Ao ' 0. (151) 
We then put 

(152) 

On the other hand, the regular iteration method gives the eigenvalues li of the operator 
du, defined in harmony with the operator Du but with the modification that the operation 
dJdx is replaced by tqe ope·ration dJ dx. The li are in the following relation to the Vi of Egs. 
(151) and (152): 

.., _ :- 2 _ (~in ih V i) 2 ( 153) 
Ai - Vi - ih . 

It is of interest to see that the values (152) of Milne are much closer to the true eigenvalues 
than are the values obtained by iterations. The values of Milne remain good even for high 
frequencies while the iteration method gives gradually worse results; this is to be expected 
since the error committed by changing the differential equation to a difference equation must 
come into evidence with 'ever-increasing force, as we proceed to the vibrational modes of 
higher order.' 

Table 7' illustrates the situation. It contains the results of one' of Milne's examples 

("Example 1"). Here 

(154) 
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with the boundary conditions 
u(O) == u(l) == O. (155) 

Moreover, h was chosen as ~- and n == 7. The column '\/Ik gives the correct frequencies, the 

column v' Ak * giv~s the frequencies obtained by Milne's method, while the column v'Ik gives 
the frequencies obtained by the iteration method. 

Table 7. 

k ~ ~ -v4. 
1 3.2969 3.2898 3.2667 

2 6.3623 6.3457 6.1806 

3 9.4777 9.4507 8.910'l 

4 12.6061 12.5664 11.3138 

5 15.7398 15.6820 13.2891 

6 18.8761 18.7870 14.7581 

7 22.0139 21.8430 15.6629 

Actually, it is purely a matter of computational preference whether we follow the one or 
the other scheme since there is a rigid relation between them. The frequencies Pi obtained 
by Milne's method are in the following relation to the frequencies Vi obtained by the matrix­
iteration method: 

(156) 

Hence, the results obtained by the one scheme can be translated into the results of the other 
scheme, and vice versa. 

This raises the question why it is so beneficial to transform the frequencies iii of the D.u 
operator to the frequencies Pi by the condition 

sin !h Pi == !h Pi. 

The answer is contained in the fact that the correction factor 

sin !h Pi 

!h Vi 

(157) 

(158) 

is exactly the factor that compensates for the transition from dujdx to D.uj D.x, if u(x) is of the· 
form 

(159) 

where the constants Ci and ()i are arbitrary. 
Now it so happens that for high frequencies Vi the first term of the operator (156) strongly 

overshadows the other terms. The differential equation of the eigenvalue problem for large 
V i thus becomes asymptotically 

(160) 
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the solution of which is given by (159). This asymptotic behavior of the solution for high 
frequencies makes it possible to counteract the damaging influence of the error caused by the 
initial transition to the difference equation. The correction is implicitly included in Milne's 
solution, while the results of the matrix-iteration scheme can be corrected by solving equations 
(157) for the V i •27 

Multidimensional problems. The present investigation was devoted to differential and integral 
operators that belonged to a definite finite range of the variable x. This variable covered a 
one-dimensional manifold of points. However, in many problems of physics and engineering 
the domain of the independent variable is more than one-dimensional. A few general remarks 
may be in order as to the possibility of extending the principles and methods of the present 
investigation to manifolds of higher dimensions. 

While the general theory of integral equations reveals that the fundalnental properties of 
an integral equation are essentially independent of the dimensionality of the variable x, yet 
from the practical viewpoint the eigenvalue problem of multidimensional manifolds does lead 
to difficulties that are not encountered in manifolds of one single dimension. The basic differ­
ence is that an essentially multidimensional manifold of eigenvalues is projected on a one­
dimensional manifold, thus causing a strong overlapping of basically different vibrational 
modes. A good example is provided by the vibrational modes of a rectangular membrane. 
The eigenvalues are here given by the equation 

A = (X12m12 + (X22m22, 

where ml and m2 are two independent integers, while (Xl and (X2 are two constants determined 
by the length and width of the membrane. 

As another illustration, consider the bewildering variety of spectral terms that can be 
found within a very narrow band ~f frequencies, if the vibrational modes of an atom' or' 'a 
molecule are studied. To separate all these vibrational modes from one another poses a 
difficult problem which has no analogue in systems of one degree offreedom where the different 
vibrational states usually belong to well-separated frequencies. 

It is practically impossible that one single trial function will be sufficient for the separation 
of all these vibrational states. Nor does such an expectation correspond to the actual physical 
situation. The tremendous variety of atomic states is not excited by one single exciting function 
but by a rapid· succession of an infinite variety of exciting functions, distributed according to 
some statistical probability laws. To imitate this situation mathematically means that we 
have to operate with a great variety of trial functions before we can hope to untangle the very 
dense family of vibrational states associated with a more than one-dimensional manifold. 

In this connection it seems appropriate to say a word about the physical significance of 
the "trial function" <Po(x) that we have employed for the generation of an entire system of 
eigenfunctions. At first sight this trial function may appear as a purely mathematical quantity 
that has no analogue in the physical world. The homogeneous integral equation that defines 
the eigenvalues, and the eigenfunctions, of a given integral operator, does' not come physically 
into evidence since in the domain of physical reality there is always a "driving force" that 
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provides the right-hand member of the integral equation; it is thus the inhomogeneous and 
not the homogeneous equation that has direct physical significance. 

If we carefully analyze the method of successive approximations by which the eigenvalues 
and the eigenfunctions of a given integral operator were obtained, we cannot fail to observe 
that we have basically operated with the inhomogeneous equation (102) and our trial function 
tpo(x) serves merely as the "exciting function" or "driving force." Indeed, the solution (106) 
for the eigenfunctiops is nothing but a special case of the general solution (101), but applied 
to such values of the parameter A as make the denominator zero. This means that we artificially 
generate the state of "resonance" which singles out one definite eigenvalue Ai and its associated 
eig~nfunction tp i (x) . 

From this point of view we can say that, while the separation of all the eigenfunctions of a 
multidimensional operator might be a practically insuperable task-except if the technique of 
"separation" is applicable, which reduces the multidimensional problem to a succession of 
one-dimensional problems-yet it might not be too difficult to obtain the solution of a given 
multidimensional integral equation if the right-hand member (that is, physically, the "driving 
force") is given as a sufficiently smooth function that does not contain a too large variety of 
eigenfunctions. Then the convergence of the method may still suffice for a solution that gives 
the output function with a practically satisfactory accuracy. This is the situation in many 
antenna and wave-guide problems which are actually input-output problems, rather than 
strict resonance problems. In other words, what we want to get is i:l certain mixture of weighted 
eigenfunctions, which appear physically together, on account of the exciting mechanism, 
while the isolation of each eigenfunction for itself is not demanded. Problems of this type are 
much more amenable to a solution than problems that demand a strict separation of the infinite 
variety of eigenfunctions associated with a multidimensional differential or integral operator. 
To show the applicability of the method to problems of this nature will be the task of a future 

investigation. . 
Summary. The present investigation establishes a systematic procedure for .the evaluation 

of the latent roots and principal axes of a matrix, without constant reductions of the order of 
the matrix. A systematic algorithm (called the "progressive algorithm") is developed which 
obtains the linear identity between the iterated vectors in successive steps by means of recur­
sions. The accuracy of the relation obtained increases constantly, until in the end full accuracy 
is obtained. 

This procedure.is then modified to the method of "minimized iterations," in order to 
avoid the accumulation of rounding errors. Great accuracy is thus obtainable even in the 
case of matrices that exhibit a large dispersion of the eigenvalues. Moreover, the good con­
vergence of the method in the case of large dispersion makes it possible to operate with a small 
number of iterations, obtaining m successive eigenvalues and principal axes by only m + 1 
iterations. 

These results are independent of the order of the matrix and can thus he immediately 
applied to the realm of differential and integral operators. This results in a well-convergent 



CORNELIUS LANCZOS 

approximation method by which the solution of an integral equation of the Fredholm type 
is obtained by successive iterations. The same procedure obtains the eigenvalues and eigen­
solutions of the given integral operator, if these eigensolutions exist. 

In the case of differential operato~s the too-stringent demands of the least-squares method 
may b~ relaxed. The approximate linear identity between the iterated functions· may be 
established by interpolation, thus dispensing with the evaluation of definite. integrals. More­
over, the iterations may be carried out with the given differential operator itself, instead of 
reverting to the Green's function, which is frequently not available in closed form. The entire 
procedure is then free of integrations and requires only the solution of linear equations. 
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Press, ed. 4, 1935), p. 221. 

9. Throughout this paper the term "iteration" refers to the application of the given matrix A to 
a given vector b, by forming the product Ab. . 

10. Whittaker and Watson, reference 8, p. 228; Courant and Hilbert, Methoden der mathematische 
Physik (J. Springer, Berlin, 1931), vol. 1, p. 116. 
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11. We shall use the term "eigenvalue" for the numbers Pi defined by Eq. (5) while the reciprocals 
of the eigenvalues A. i [= 1/ Pi] will be called "characteristic numbers." 

12. The characteristic solutions of defective matrices-i.e., matrices whose elementary divisors 
are not throughout linear-do not include the entire n-dimensional space since such matrices possess 
fewer than n independent principal axes. 

13. In order to prevent this paper from becoming too lengthy, the analytic details of the present 
investigation are kept to a minimum and in a few places the reader is requested to interpolate the 
missing steps. 

14. We have in mind the general case and overlook the fact that the oversimplified nature of 
the example makes the decision trivial. 

15. The reader is urged to carry through a similar analysis with the same matrix, but changing' 
the 0, ° diagonal elements of rows 5 and 6 to I, ° and I, I. I 

16. Instead of iterating with A and A* n times, we can also iterate with A alone 2n times. Any 
of the columns of the iteration matrix can now be chosen as Ci numbers, since these columns correspond 
to a dotting of the iteration matrix with bo * = 1, 0, 0, . . .; bo * = 0, 1, 0, 0, . . .; bo * = 0, 0, 1, 
0, 0, ... ; and so on. The transposed matrix is here not used at all. Dr. E. C. Bower of the Douglas 
Aircraft Company pointed out to the author that from the machine viewpoint a uniform iteration 
scheme of 2n iterations is preferable to a divided scheme of n + n iterations. The divided scheme 
has the aqvantage of less accumulation of rounding errors and more powerful checks on the successive 
iterations. The uniform scheme has the advantage that more than one column is at our disposal. . 
Accidental deficiencies of the bo * vector can thus be eliminated, by repeating the algorithm with a 
different column. (For this purpose it is of advantage to start with the trial vector bo = 1,1, 1, ... 1.) 
In the case of a symmetric matrix it is evident that after n iterations the basic scalars should be forme'd, 
instead of continuing with 1l more iterations. 

17. The idea of the successive orthogonalizatiot;J. of a set of vectors was probably first employed 
by O. Szasz, in connection with a determinant theorem of Hadamard; see Math. es phys. lapok 19, 
221-227 (1910) (in Hungarian). The method found later numerous important applica~ions . 

. 18. The reader is urged to carr-y through the process of minimized iterations and evaluation of 
the principal axes for the defective matrix 

I 

° 
° 

which has only one pair of principal axes. (Choose the trial vector in the form bo = bo* = 1, 1, 1.) 

19. For algebraic reasons, the orthogonality of the matrix (97) holds not only for the final m but 
for a'!y value of m. 

20. In a control experiment that imitated the conditions of the vibrating bar, but with a more 
regular matrix, the results were analytically predictable and the computational results open to an 

. exact check. This example vividly demonstrated the astonishing degree of noninterference of ortho­
gonal vectors. The spread of the eigenvalues was 1 : 3200. The trial vector bo strongly overemphasized 
the largest eigenvalue, containing the lowest and the highest eigenvectors with an amplitude ratio 
of 1 : 108 (this means that if the vector of the smallest eigenvalue were drawn with the length of 1 in., 
the 'vector of the largest eigenvalue, perpendicular to the previous one, would span the distance from 
Los Angeles to Chicago). The slightest inclination between the two vectors would fatally injure the 
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chances of the smallest eigenvalue. When the entire computation scheme was finished, the analytically 
required eigenvalues were computed and the comparison made. The entire string of eigenvalues, including 
the last, agreed with a maximum error of two units in the ninth significant figure, thus demonstrating that the 
method is completely free of the cumulation of rounding errors. The author is: indebted to Miss 
Fannie M. Gordon, former computing-st~ff member of the Mathematical Tables Project, New York, 
now of the Institute for Numerical Analysis of the National Bureau of Standards, for the eminently 
careful and skilled performance of the computing operations .. 

21. The Volterra type of integral equations which have no eigenvalues and eigensolutions are 
thus included in our general considerations. 

22. This expansion is not of the nature of the Neumann series because the coefficients of the 
expansion are not rigid but constantly changing with the number m of approximating terms. 

23. See Courant and Hilbert, reference 10, p. 76. 

24. Lord Rayleigh, The Theory of Sound (Dover Publications, New York, 1945), vol. I, pp. 272--278 
(reprint edition). 

25. We call the eigenvalues here Ai since the operator D is not inverted into an integral operator K. 

26. See the forthcoming publication in the J O1irnal of Research of the . National Bureau of Standards; 
the variable s of Milne is changed to x and his ),2 ·to A, to avoid conflicts with the notations of the 
present paper. 

27. This experience is valuable since in many eigenvalue problems similar conditions hold; the 
eigenfunctions of large order can often be asymptotically estimated, in which case the error of the 
A-process may be effectively corrected. For example, the values fli found in a previous section for 
the lateral vibrations of an inhomogeneous bar may be correcteJ as follows: 

fli uncorrected: 2256.944, 48.2038; 5.3563, 1.5830, 0.59, 

fti corrected: 2258.924, 48.4977, 5.4577, 1.6407, 0.62, 
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ON THE MONTE CARLO· METHOD 

s. ULAM 

Los Alamos Scientific Laboratory 

The advent of fast computing machines is greeted as a way to "settle" a great many ques­
tions existing in applied mathematics and physics. It is hoped that the formulation of many 
problems in physical sciences is now correct, but the obtaining of solutions through methods 
that are perfectly well understood in principle is much too laborious and tedious to be attempted 
by paper and pencil. The mere number of arithmetical steps necessary to perform the proce­
dures for numerical solution is such as to require, in some cases, years, even hundreds of years, 
of computer's time. The machines, especially the electronic calculators, can shorten this tirrie 
very greatly, since the elementary steps; e.g., the multiplications, may take less than 1/1000 
of the time required by a person, even if provided with a desk multiplier. 

It seems that in addition to this program of testing and verification of existing mathematical 
formulations of physical problems, some other possibilities will be open. One-a rather 
general program-will be to use the calculations of electronic calculators for heuristic purposes. 
This may be equally possible in exploring new physical models and in pure mathematics 
itself. The latter possibility, perhaps less evident a priori, should be clear if one remembers 
the role of examples in abstract mathematics~ It is sufficient to point out their importance in 
such parts of mathematics as geometry, topology, theory of functions, and abstract algebra. 
The field· of combinatorial analysis, which is so hard to define just because it consists of a 
variety of special problems or examples not yet embraced by a simple general theory, seems 
the clearest case. The combinatorial problems studied (many of them problems of enumeration), 
drawn, as it were, from outside of mathematics, often have their origin in problems about 
configurations of physically existing objects and relations. In a field like this it is clear that 
the ability of machines to survey all the possibilities of specified arrangements will provide 
the material suggesting future theories. 

The theory of probabilities, which from one point of view is a branch of combinatorial 
analysis, is a case in point. The so-called Monte Carlo method may be said to consist of a 
"physical" production of models of combinatorial situations. 

A simple example would be this: The problem consists of estimating the proportion of the 
52! permutations of objects (cards) possessing a given-in practice always a complicated­
property. One should then consider all these permutations, counting the number of those 
among them that possess this property. This would of course be impossible, even granting 
a continuous development of the speed in computing for the next hundred years. A way to 
get the proportion with good probability is to produce a "large" number of permutations, 
say 10,000, at random and count the proportion of the permutations possessing the given property. 
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It is perhaps surprising how many mathematical problems have in practice a structure 
logically similar to the one of this example. The evaluation of a definite integral may be 
thought of as a task somewhat analogous to the one of the previous example. The problem 
consists in finding the value, on a region S of the unit cube defined by inequalities, of the 
number 

. SS ... Sf(x1 ••• Xn)dXl ... dx", 
(S) I 

f being a given function. This will be reduced to finding, say, 

fS ' .. fdx ... dx . • 1 n+l 
(R) 

where the region'R is defined by a class of inequalities 

Cfl(Xl ' •• xn +1) < 0, Cf2(' •• ) < 0, Cfk(' •• ) < O. 

The procedure of elementary calculus will consist in counting the lattice points of a sub­
division in a space of n + 1 dimensions, and ascertaining the proportion of these· points that 
satisfy the given inequalities. The Monte Carlo procedure would be to take a large number 
of lattice points at random and examine these only. This number need not be 'of the order of 
,:he total of all lattice points. 

The proble~ of estimating very "small" volumes' requires special tricks. To· illustrate 
the nature of possible devices; let us again take a more purely combinatorial problem. In a 
solitaire (game of cards for one), one desires to estimate the probability of a successful outcome. 
(We assume that skill plays no role, so that it is purely a game of chance.) In cases where 
the game has a very small probability of success "most actual plays will end in failure and only 
an upper limit will be obtainable for this probability. How can one get some idea of a lower 
limit> O? Suppose that o~e obtains, still obeying the rules of the game, ina noticeable 
proportion ex. of tries, a situation A where only, say, ten cards are left uncovered; after that, 
however, we meet with "failure." It might be justifiable to restore the ten cards to their 
positions in a different permutation and try from the situation A again. By examining a large 
number of the 10! permutations we might obtain the number {J expressing the chance that. 
starting with A we "win" B.A reasonable g~ess for the chance of success from the beginning 
without "cheating" would then be greater than ex.{J. Of course A should be really a class of 
positions, not a possible or a very special one. It seems, however, that if the playing of the 

. whole game is decomposed into two brmore stages, there will be a saving in the number of 
experiments compared with the number necessary to play to the end each time and beginning 
anew after each failure from the start, that is, a new permutation of the 52 cards. 

The validity of such a procedure can be established in some cases. One has to prove 
independence, or estimate from above the correlation between the classes of events A and 

success B. 
It is of .course obvious that one can study. "experimentally" the behavior of solutions of 

equations which themselves describe a random process, by using the digital computer as an 
analogy machine,. as it were. l This experimental-that is, statistical-approach by Monte 
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Carlo techniques has been applied .by various authors to linear partial differential equations. 2 

In the case of equations that are quadratic or of higher order in the unknown functions and 
their derivatives, the obvious Monte Carlo procedure would be much more cumbersome, but 
may still have heuristic value. As an example, let us take a bilinear system of two partial 
differential equations 

where UI and U2 are unknown functions of coordinates x,y, z, and t; OCI and OC2 are given con­
stants; f31 and f32 are given functions, for simplicity linear in UI and 112 and also involving the 
independent variables x, y, z. One would like to know the asymptotic form of UI and U2 (for 
large values of t). This problem may be looked upon as a straightforward generalization of 
the diffusion model (Fermi) of the Schrodinger equation.! It would correspond to a model 
of a system of two particles with the potential function for Ui replaced by the corresponding U 

function of the other particle~ This linked &ystem, treated then. somewhat in the spirit of a 
field theory, is nonlinear. There will not be in general eigenfunctions-the separation Into 
a time-independent equation will not be possible; yet for large values of the parameter t the 
space part of U may have an almost periodic or summable (by the first mean) behavior. A 
numerical approach to the study of such systems could again be a Monte Carlo procedure. 
One would diffuse and multiply the (fictitious) particles corresponding to UI ane. U2 according 
to their numbers, instead of a given function V of coordinates. Since these numbers change 
in t, it will be necessary to make frequent censuses-as it were, to interrupt the calculation 
periodically-in order to ascertain the values to be used for "potentials." 

The problem of transforming first purely formally, an equation not of a diffusion or Boltz­
mann type into one of the above type thus becomes of practical importance. Let us indicate 
some possibilities in this direction. The equation of Hamilton-Jacobi in one dimension has 
the form 

(dS)2 1 
dX = v2 (x) . (1) 

On the other hand, consider the equation 

dW _ ~ [. d(VW)] 
dt. - dX v dX . (2) 

This latter equation will describe the probability behavior of a particle starting, say, from the 
origin, and performing a random walk on the line, steps being equally probable to the right 
or to the left. However, the length of the steps in the position x is proportional to the value 
of v(x). If we perform the passage to the limit with the length of the step tending to zero the 
resulting continuous process gives a distribution of position in time t obeying Eq. (2). It can 
be proved3 that the crest of the distribution,. that is, the place x where d Wldt = 0, will satisfy 
a relation S(x) = ti, where S is the solution of Eq. (1). 
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It is of course quite unnecessary to take recourse to such methods for a one-dimensional 
equation that is easily solved explicitly bY' quadratures. The example here given is meant 
merely to indicate the possibility of relations between two seemingly very different processes. 
One is a strictly deterministic one, described by the equation of geometric optics (or the 
equations of mechanics), the characteristic equation of Hamilton. The other is a continuous 
random-walk process with the length of the elementary step a given function of position. It 
turns out that at least in one dimension the locus of the points where the first derivative with 
respect to time of the probability distribution is equal to zero coincides with the locus of the 
points where the value of the Hamilton function S = vi. In two or more dimensions, the 
two loci are probably at least asymptotically equal, that is, for large values of t. 

In the first examples of application of the Monte C?arlo method to empirical evaluation 
of properties of solutions of differential equations, one studied the density of the diffusing and 
branching, that is, multiplying and transmuting, particles. This density as a function of the 
independent variables obeyed a linear partial differential equation of a parabolic or elliptic 
type. It is clear thatJor nonlinear equations one will have to examine, not this density directly, 

" but appropriately chosenfunctionals of this function. 

The diffusion process can be described, of course, as a Markoff chain, and this in turn by 
a study of the interaction of matrices with nonnegative coefficients. Let us indicate a way to 
study "experimentally" the behavior of powers of matrices with arbitrary real terms. This 
possibility rests on the fact that real numbers cap. be considered as matrices, with positive 

terms; for example, - 2 corresponds to (~~) .. This correspondence obviously preserves both 

addition and multiplication. Anysystem described by any n-byo:-n matrix giving the transition 
moments as real numbers can be interpreted probabilistically by using 2n-by-2n matrices with 
nonnegative terms. The diffusion a"nd branching or multiplication are performed by two 
kinds of particles-black and red-with the transformation rates given by the matrices 
above~ 

. In having four kinds of particles one can then realize stochastic models for matrices with 
complex terms; more generally, with an appropriate number of kinds of particles, one can 
realize 'stochastic models for more general algebras over real numbers.4 

The possibility of a statistical or probabilistic evaluation of definite integrals in n-dimen­
sional space affords merely one example of an attempt to gain insight into a situation involving 
a system of n particles. Let us think here of n as having a va]ue of the order of 10 or 20. The 
"appearance" of a set of points in a euclidean space of this dimension, if the set is defined as 
above by many inequalities, cannot of course be studied on graphs directly, or very well by 
projections of the set into three-dimensional component spaces. Now, in physical chemistry, 
for instance, the occurrence of this situation and its importance are well known. The properties 
of a molecule with a large number of atoms depends on characteristics of configurations of 
certain n-dimensional sets. The evaluation of various functionals of these configurations can, 
probably, be done best by a Monte Carlo procedure, that is, by testing a large number of 
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n-tuples, chosen at random with appropriate distribution, for the values of these given 
functionals. 

It is rather curious that one meets with an analogous situation in pure mathematics itself. 
Let us describe it very briefly: a formal system in mathematics involves in addition to the 
Boolean operations of elementary logic or set theory (the addition and intersection of sets of 
points), the so-called quantifiers, the two symbols ~<p(x), meaning that there exists an x for 

. x 

which <p(x), a propositional function, is true, and II1p(x), meaning that "P(x) holds for all x. 
x 

A large part of the study of mathematics as a formal system involves the study of classes 
of sets on which one performs these operations. One knows that a "geometric" interpretation 
of these operators is particularly simple.5 The existence quantifier corresponds to taking an 
orthogonal projection parallel to one or more axes of a given set of points in n dimensions on 
a space of fewer dimensio~s. The other quantifiers can be expressed by means of the first 
and the Boolean operations. 

Even the simplest mathematical definitions lead to sets defined in a higher number of 
dimensions. The problem presents this appearance: there are given in a space of n dimensions 
several "primitive" sets of points. Starting with these sets, one obtains new ones by adding 
them, intersecting them with one another; these are the Boolean operations. One also takes 
projections of the sets obtained and conversely, having sets in spaces offewer dimensions, erects 
cylinder sets in the full n-dimensional space. 

One can in this fashion, starting from two given sets, obtain an infinity of new 
sets. 

The mutual relations of these sets form the object of the logical or meta mathematical 
study of the system. 

It is possible that, for heuristic purposes alone, it would be useful to study these constructions 
on a large number of examples. 

A mathematical theorem can be formulated in this language as stating that a certain set 
of the class obtained is vacuous. In cases where a proof would appear very difficult it might 
be of value to, so to say, try to construct points of it by random choices of the starting sets 
or values of "free variables" in the n-dimensional space. The failure to obtain any after a 
great number of choices would then lead to the belief that if the set is not vacuous it is small. 
It is clear that a proof will never be obtained in this fashion. However, the heuristic value 
of such a procedure might not be negligible. 
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We could scarcely expect to discuss the place of automatic computation in theoretical 
physics without taking some account of one extreme attitude, which, we may hope, is of 
decreasing prevalence, and whiCh, at any rate, is surely not held by most of the members of 
this symposium. This is th~ opinion that, bluntly, it has no place at all. 

A strong human tendency to resist and attack the introduction of new methods has shown 
itself repeatedly in mathematics and natural philosophy. As two examples, we might consider 
the cases of infinite series and of complex numbers. Hogben has pointed out that the keen 
sense of paradox that the Greeks got from Zeno's fable of Achilles and the tortoise was due 
simply to their lack of the concept of an infinite series with a finite sum. It was many centuries 
before this concept was finally cleared up to the point that absurd results were no longer 
derived occasionally by even the ablest mathematicians. ' The related idea of a limit, as used 
in the calculus, was the object of decades of bittt;r controversy. 

The use of complex numbers aroused if anything even more violent opposition. At the 
beginning of the nineteenth century a Cambridge mathematician'devoted thirty pages of the 
Philosophical Transactions of the Royal Society to a carefully reasoned plea for the acceptance 
of the use of complex arithmetic in a' few simple arguments. He encountered the searing' 
condemnation of a'learned but anonymous writer in the Edinburgh Review, who launched upon 
his concluding page as follows: 

We shall be spared the task of examining further i~to a mode of explanation which, 
at the outset, is liable to so great objections. Operations deduced from such principles 
are undeserving the name of reasoning; and they cannot afford one particle of evid~nce 
either of truth or of falsehood. 

We know how this case turned out, also, with the rigorous justification of complex analysis 
and its magnificently powerful development during the next few decades. 

Actually, of course, it :would be beside the point to argue the case on this basis. Surely 
it must be generally accepted that automatic computation can provide rigorously certain 
results, of a required degree of approximation. The whole program of digital computing 
machines, indeed, falls directly in the tradition of the arithmetization of mathematics, which 
played a great part in the development of modern standards of rigor. Many problems of the 
uniqueness of solutions and the ,limits of error in automatic computation call for further 
mathematical study, but it is certain that suitable standards can be established and met, in 
all but very exceptional cases. 
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A physicist denying automatic computation a place in theoretical physics would soon, if 
not immediately, come to the assertion, "Even ifit is correct, it isn't physics." This is certainly 
not a logical statement, but a judgment of values. We cannot expect to deal conclusively~ 
or perhaps the word should be exhaustively-with this sort of question, but a few remarks 
can be made. 

I 

To begin with, it is easy to think of extreme cases of both kinds-cases in which no one 
would expect automatic computation to playa part, and other cases in which only a definitely 
quaint degree of prejudice could refuse to welcome its help. An example of the first kind of 
case is the problem of divergences in quantum electrodynamics. The difficulty here is that 
the existing formulation of the theory is inadequate, and indeed mathematically meaningless. 
The solution must come from the discovery ofsuitahle new physical ideas, and their proper 
incorporation into the theory. This has fundamentally nothing to do with computation, and 
only after the theoretical advance has been made can it become possible to see the part 
automatic computation might play in: further developments. 

The other extreme case is that in which a physicist succeeds in obtaining a formula, or 
perhaps an equation, containing,or contributing to, the solution of a problem. The natural 
next step is to use values of tabulated functions to evaluate the formula or solve the equation. 
If they are very simple functions, say trigonometric functions, comparatively ancient tables 
are available. If, on the other hand, something like the confluent hypergeometric function 
is involved, the physicist is not likely to be able to take the next step unless a computing project, 
nowadays probably a project using an automatic machine, has provided the necessary tables. 
Simple and obvious as this part of the place of automatic computation in physics is, it is. of 
great importance. There has hardly been a real beginning on the production of the great 
variety .of new tables that can be of inestimable value in scientific work.' 

Coming back again to the problem of our Tory who feels that automatic computation 
just isn't physics, we may note that one main ingredient of this feeling is the idea that physical 
expl~nations should be fundamentally simple. The demand for simple explanations is a basic 
part of a physicist's attitude. The final achieving of a simple synthesis out of previous conl­
plications is a source of the greatest satisfaction to the workers who experience it. It establishes 
one of the landmarks that adorn the history of the' subject, and itprovides an addition to the 
solid framework supporting the structure of the subject itself. Without a reliable frame­
work of simple basic principles, the complicated structure could not grow far without 
collapsing. 

Although his reputation among laymen may not be exactly that of a man preferring simple 
ideas, the physicist does succeed in satisfying his desire for simple explanatioris in many cases. 
Someti~es considerable time elapses beforesuch an explanation is forthcoming. For a quarter 
century after the discovery of thermal diffusion in gases, any student who asked a professor 
for a simple explanation of this phenomenon was told that such an explanation is impossible, 
and that only the detailed mathematical theory could account for the efiert. That was that, 
and the student had to subside. But about ten years ago a professor asked a student to include 
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in a coming colloquium talk an explanation of thermal diffusion. The demand was an insistent 
one, and the student, whose name was Sidney Frankel, was on the spot. Accordingly, for a 
bit less than ten years we have had a good simple explanation of thermal diffusion in gases. 

It is clear that a simple explanation, or a simple test of a new theory, cannot be based 
on the inost general sort of case. A happy choice of a special case can be of the greatest 
importance; a famous example is the spectrum of the hydrogen atom. The choice of suitable 
cases for theoretical explanation is a matter requiring the highest type of judgment, and 
perhaps inspiration. Often it may be the skill and insight of the experimental physicist that 
show the right way. 

But one simple test, or a few simple tests, are often not enough for a new theory. A theory 
as radical1y new as quantum mechanics could not be accepted on the evidence of the Balmer 
spectrum alone, even if it had no rivals in explaining that case. Corroboration was found 
from many sources. Some of these arguments were very impress~ve although almost purely 
qualitative, but lengthy computations made by Hylleraas and by Coolidge and James, among 
others, were very important. I can testify that the fact that the prolonged labor required 
could not then be saved by automatic computation is a source of sincere regret to at -least 
one veteran of that p<>riod. 

Extensive computations are often needed, not only in finding theoretical results to check 
with experiment, but also in finding out what interpretation to give to the experimental 
results themselves. Elaborate calculations on the functioning of an instrument may be required 
to 'obtain data that throw light on important questions of fundamental theorY. Professor 
Vallarta'spaper discusses the interpretation of observations from a huge ,instrument, the earth 
itself acting as a magnetic spectrometer. 

The subject of nuclear physics, on which Prqfessor Feshbach reports, is one in which the 
wish of the physicist for simple explanation has suffered repeated rebuffs. Nuclear str~cture 
differs from atomic structure in such ways that much less can be expected from semiqualitative 
arguments. Some of the high-energy scattering data indicate that the basic phenomenon of 
the so-called saturation of nuclear forces will have to be explained in a rather complicated 
way. In this snqjec( the number of different hypotheses that may need to be tested, as well 
as the number of separate problems, is so great that only automatic computation seems capable 
of progressing fast enough. 

Besides the problems of testing theories, interpreting observations, and deciding between 
various hypotheses, there are questions how far existing theories are capable of accounting 
for certain kinds of phenomena. For example, it seems to be generally agreed that nonrela­
tivistic quantum mechanics accounts for atomic and molecular structure and for many facts 
in the structure of solids, but the question may be raised how far it suffices to cover all of this 
last field. Are the striking phenomena of superconductivity to be accounted for as statistical 
effects of the ordinary electri(:al and quantum laws, or do they require the introduction of 
some perhaps radically new though pleasingly simple assumption? Probably authorities in 
this field have definite opinions on such questions, but they can scarcely be really certain 
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about them. The difficulty of such statistical calculations is so great that automatic calculation, 
for finite but rather extensive lattice structures, may eventually be called into use. 

In summary it can be said that there are questions ~n theoretical physics with which auto­
matic computation has nothing to do, and on the other hand there is ,a potentially very great 
service in the provision of function tables, which would be universally welcomed. There are 
also many questions in the testing of. theories, in the interpretation 0[' observations, in the 
choice between hypotheses, and in establishing the range of adequacy of theories, for which 
automatic computation could be extremely useful. The settling of such questions would 
generally be helpful, and in some cases probably indispensable, in the advancement of 
theoretical physics. 

218 



DOUBLE REFRACTION OF FLOW AND THE. DIMENSIONS OF 

LARGE ASYMMETRIC MOLECULES 

HAROLD A. SCHERAGA 

Cornell University 

JOHN T. EDSALL 

Harvard Medical School 

and 

J. ORTEN GADD, JR. 

Computation Laboratory of Harvard University 

Optical measurements of the double refraction produced when a solution oflarge asymmetric 
molecules is subject to a shearing force can be used to determine the dimensions of the dissolved 
molecules.I - 4 The method has already been extensively applied,5-10 but· many of t~e data. 
obtained or obtainable could not heretofore be interpreted because the theory had been 
developed to give numerical values only under certain limiting conditions. The present work 
was undertaken in order to extend the applicability of the theory to a much wider range of· 
experimental conditions, thus greatly increasing the usefulness of flow-birefringence measure­
ments as a tool in the determination of particle sizes and the characterization of polydisperse 
systems of macromolecules .. 

Double refraction is produced, in a liquid contammg large asymmetric molecules or 
colloidal particles, when a velocity gradient is set up in the liquid. This is most readily achieved 
by forcing the liquid through a capillary tube, or by subjecting it to shear between two con­
centric cylinders, one of which rotates while the other is held fixed. The latter procedure is 
best for quantitative measurements, and was employed in 1870 by J. Clerk Maxwell, who 
was apparently the first to describe the phenomenon, using Canada balsam ~s the liquid for 
study. This is also the method that has been adopted in most studies on double refraction 
of flow. 1-16 

In the concentric-cylinder type of system, the liquid is placed in the annular space between 
the cylinders, the suspended particles assuming random orientation when both cylinders are 
at rest, as shown in Fig. 1 (a). When one of the cylinders, say the outer one, is set in rotation, 
laminar flow is produced in the liquid and a velocity gradient is set up across the gap.17 The 
resulting shearing forces produce an orientation of the. suspended particles, which are here 
assumed to be rigid ellipsoids of revolution.1s This orientation is represented schematically 
in Fig. 1 (b). If the cylinders are mounted between crossed Nicol prisms, where AA and PP 

represent the planes of transmission of the analyzing and polarizing Nicol, respectively, then 
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the field appears dark when the cylinders are at rest and, when one cylinder is rotating, 
becomes light in all regions except for a dark cross [Fig. 1 (b)], the "cross of isocline." 

To characterize the observed phenomena, ~here are two quantities that must be measured: 
(1) the extinction angle X, the smaller of the two angles between the cross of isocline and the 
planes of transmission of the Nicols (this is also the angle between the optic axis in the flowing 
liquid and the direction of the streamlines); (2) the magnitude of the double refraction f).n, 

that is, the difference in refractive index between light transmitted with its electric vector. 
parallel, and light with its electric yector perpendicular, to the optic axis. The problem is 

p 
to measure' X and f).n ~s functions of the velocity 
gradient and relate them to the dimensions of the 
suspended particles. 

Empirically it is found, for solutions containing 

A- iu\-r'i~-A a single type of large molecule, that X approaches 

p 

FIG. 1 .. Orientation of particles, each 
schematically represented by a line 
indieating its optic axis, in a doubly 
refracting liquid between concentric 
cylinders, when the outer cylinder is 
(a) at rest, (b) in motion., The lines AA 
and PP are the axes of crossed Nicol 
prisms. [Adapted from von Muralt and 
Edsall, J. Biol. Chem.89, 315 (1930).] 

45° as the velocity gradient G approaches zero, and 
approaches 0° asymptotically as G increases to very 
large values, provided the flow is laminar; f).n is 
zero when G = 0, is a linear function of G at low 
values of G, and gradually approaches a constant 
limiting saturation value at very high values of G. 

Very elongated particles, like those of myosin (the 
structural protein of muscle) or tobacco-mosaic virus, 
which are seve~al thousand Angstrom units in length, 
give low. values of X and high values of f).n even at 
low velocity.gradients (G = 10 to 300 sec- I in water 
which has a viscosity of 0.0 1 poise at 20° C). Mole­

cules, like those of human serum albumin and gamma globulin, which are near 200 A in 
length, require much higher velocity gradients and solvent media of high visc.o<)ity as well 
to . attain a significant degree of orientation (G = 1000 to 10,000 sec-I, or more; viscosity 
50 to 100 times that of water). 

Colloidal particles or large asymmetric molecules in the flowing solution are subject to 
shearing forces due to the velocity gradient G, which tends to orient their major axes. I9 In 
addition to the hydrodynamic forces, the particles are suqject to rotary Brownian move~ent 
which causes a random fluctuation of the orientation. The Brownian movement is character­
ized by a rotary diffusion constant 0 .. The relation of X and f).n to the molecular dimensions 
has been developed chiefly by Boeder,20 Peterlin and Stuart,3, 21, 22 and Snell man and Bjorn­

stahl. 4 This is expressed as a function of the parameter rt. (or (J in the notation of Peterlin and 
Stuart), which is equal to G/0. If 0 is known, the .length of the semimajor axis a of the 
molecule can be evaluated.1-4, 23, 24 The crux of the problem, therefore, is the determination 

of 0 from the experimental measurements of X and G. 
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The double refraction !::..n is the product of an optical factor which is evaluated inde­
pendcntly22 and an orientation factor J. Like' the extinction angle X,! is a function of (f.. and ' 
the axial ratio p [= ajb]. 

We shall further define the quantity25 R, 

p2 - 1 
R = p2 + 1; (1) 

R is thus equal to unity for an infinitely thin rod (ajb = 00); to zero for a sphere (ajb = 1); 
and to - 1 for a flat disk without thickness (ajb = 0). 

Peterlin and Stuart obtained expressions for X and! in terms of slowly converging infinite 
series in (f.. and p. At very low values of, (X « 1.5), corresponding to X values between 45° 
and 38°, these series converge sufficiently rapidly to enable one to evaluate the rotary diffusion 
constant from a simple limiting equation. However, the errors in the experimental data are 
generally greatest at low velocity gradients, that is, at low values of (X. The data are more 
accurate at somewhat higher gradients, but it has not been possible hitherto to evaluate from 
theory the numerical relation between X and (X under these conditions. Moreover, it is very 
important experimentally to determine whether a given solution under study contains only 
one or more than one constituent capable of orientation by the velocity gradients employed. 
The only way to be sure of this is to make measurements over a wide range of velocity gradients 
and compare the measured X values with values calculated from the appropriate theoretical 
curve. 26 However, since only a small portion of the theoretical curve is given by the limiting 
formulas of Peterlin and Stuart, this method of analysis could not be satisfactorily carried out. 
A semiempirical method has been tried9 but it was considered essential to have the complete 
theoretical curves using a rigid ellipsoid of revolution as a molecular model. 18 If-these were 
available it would be possible not only to infer whether only a single type of elongated molecule 
is present but also, ifseveral such components are present, to draw some important inferences 
concerning their relative sizes and concentrations in the solution. An observed X value, in 
such a multicomponent system, is a function of all the values of both X andf that would be 
found for each of the components, if it were present in the solution alone, at the same velocity 
gradient. The ability to analyze such complex systems would greatly increase the range and 
power of the method of double refraction of flow. 

We shall, therefore, present the Peterlin and Stuart theory3, 21, 22 wherein ~e have evaluated 
the quantities required to obtain X and f values over a wide range of (X values by the use of 
the Mark I computer of the Harvard Computation Laboratory. 

If rigid ellipsoidal particles are suspended in a continuous medium under conditions of 
laminar flow, a steady-state distribution will be established very rapidly. This distribution 
will dep~nd on (X and R and is characterized by a distribution function F which, in the steady 
state, is given by the differential equationja7 . 

!::..F 1 + R cos 2cp (JF R sin 0 cos 0 sin2cp (JF _ 3R sin2 0 sin 2cp F 
2 (Jcp + 2 (JO 2 . (2) 
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The meaning of 0 and cp may be understood by reference to Fig. 2, which is a section of 
the gap between the concentric cylinders, the inner one rotating. Here X is the direction of 
the streamlines at 0; Z is the direction of the velocity gradient between the concentric' 
cylinders; Y is parallel to the cylinder axis and is normal to the streaming plane; x, y, z 
are the directions of the principal axes of the index-of-refraction ellipsoid of the birefringent 
system; and X is the angle between the z- and X-axes, x and z being coplanar with X and Z. 
An individual particle at 0 has its major axis in the ~ direction, where ~, 'YJ, ~ are a set of axes 
fixed in the particle. Then 0 is the angle between Y and ~,. while cp is the angle between the 
YZ- and Y~-planes. This is the usual notation of spherical coordinates with volume element 
dO. = sin OdOdcp. 

z 
Fig. 2. Part of the coordinate system in the Couette 

cylinder apparatus. The X, Y, Z axes are fixed in the 
fluid and the x, y, z axes are the principal axes of the 
index-of-refraction ellipsoid in the birefringent system. 
[From Peterlin and Stuart, Z. ,Physik 112, 1 (1939).] 

As will be· shown later, the determination of X and f involves the evaluation of certain 
mean values. The distribution function F is required for this purpose and is evaluated as 
follows. 

Express F as a power series in R, 
00 

F= 2: RiFj • 

j=O 

Each Fj then satisfies an inhomogeneous equation of the type 

! J1Fi _ 1. dFj 

ex J 2 dq; 

= ! [cos 2cp d~~_l+ sin 0 cos 0 sin 2cp d~il - 3 sin2 0 sin 29.' . F j _ 1]. 

Now Fj rJay be expressed in terms of series of spherical harmonics as 
00 00 n 

Fj = ! 2:anO,jP2n + 2: 2:(anm,j cos 2mcp + hnm,j sin 2mcp)P2n2m, 
n=O n=l m=l 
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where P2n is a Legendre polynomial of the first kind, and 

P 
2 ' • 2 '0 d2mP2n 

2n m = sm m • (d cos 0) 2m 

Since FJ is a function of (X. and is independent of R, the annl,j and bnm,j coefficients will also 
,have this dependency. 

Substituting from Eq. (5) in Eq. (4) and making use of the orthogonality and recurrence 
relations for 'these polynomials,28 one obtains the following recurrence formulas for anm,j and 

bnm,j: 

n(2n + 1) a ,= _ 1 [_ (2n - 3)(2n - 2)(2n - 1)2n(2n + 1) b ' 
(X. nO,) '4 (4n - 3)(4n _ 1), 11-1,1;)-1 

3(2n - 1)2n(2n + 1)(2n + 2) b ' 
+ (4n - 1)(4n + 3) n,I;)-I 

2n(2n + I) (2n + 2) (2n + 3) (2n + 4) b ,], 
+ (4n + 3)(4n + 5) n + 1,1;)-1 , 

2n(2n + 1) '_ 1 [ 2n + 1 
(X. anm,j, + mbnm,j - - 4 (4n- 3)(4n- 1) bn- 1,m-1;j-1 

3 ~ 
(4n - -I)(4n + 3) bn,m-l;j-1 -(4n + 3)(4n +5) bn+l,m-1;j-1 

_ (2n- 2m- 3)(2n- 2m- 2)(2n- 2m- 1)(2n- 2m)(2n + 1)b " 
(4n - 3)(4n - 1) n-l,m+1,)-1 

3(2n - 2m - 1)(2n - 2m)(2n + 2m + 1)(2n + 2m + 2) b 
+ (4n - 1)(4n:+ 3) • n,m+l;j-l 

2n(2n + 2m + 1)(2n +- 2m + 2)(2n + 2m + 3)(2n +,2m + 4) b ] 
+, '(4n + 3)(4n + 5) . n+ 1,m+ 1;j-1 

(6) 

(7) 

(m * 0), (8) 
2n(2n + 1) _ 1 [ 2n + 1 

- manm,j + (X. bnm,j - '4 (4n _ 3)(4n _ 1) an-1,m-1;j-1 

, 3 2n 
- (4n- 1)(4n + 3) an,m-l;j-l ~ (4n + 3)(4n + 5) an +1,m-1;j-1 

(2n - 2m - 3)(2n - 2m - 2)(2n - 2m - 1)(2n - 2m)(2n + 1) 
- (4n - 3)(4n - 1) - an -1,m+1;j-1 

3(2n - 2m - 1)(2n - 2m)(2n + 2m + 1)(2n + 2m + 2) 
+ , (4n - 1)(4n + 3) ,an,m+1;j-1 

2n(2n + 2m + 1)(2n + 2m + 2)(2n +2m +- 3)(2n + 2m + 4) a ,'_ ] 
+, (4n + 3)(4n + 5) , n+1,m+1,) 1 

(m * 0). (9) 
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Normalization, that is, putting SFdQ ~ l,gives aoo,o = Ij27T and all other aOO,j = O. The 
complete distribution function is given by Eq. (3) after the F/s are thus evaluated .. 

The evaluation of the coefficients anm,j and bnm,j as solutions of the simultaneous Eqs. (6-9) 
is a formidable task and would have been hopeless without the aid of the Mark I computer. 
It should be pointed out that not all the coefficients are required for the problem of double 
refraction of flow, but, as has been shown by Peterlin and Stuart, only the all,j and bll,j terms. 
However, many other terms are required in order to evaluate these particular ones.Th~ task 
is. somewhat eased by the vanishing of many of these terms for certain values of the indices. 

Making use of the distribution function F of the particles it is possible to calculate the 
effect of the interaction of this oriented system with a beam of polarized light, that is, the 
double refraction. Results of such 'a computation are 

2 
2 cos (~X) cos (~Z) 

tan X = =====--'---======== 
cos2 (~X) - cos2 (~Z) 

(10) 

and 

/).n = 27TC (gl - g2)'V[COS2 (~Z) - cos2 (~X)J2 + [4 cos (~Z) cos.(~X)J2 
n 

(11 ) 

where C is the concentration of the particles, n is theindex of refraction of the' isotropic solution 
at rest, and (gl - g2) is an optical factor depending on the axial ratio and indices of refraction 
of the particles.22 Since cos (~X) = sin () sin cp, and cos (~Z) = sin () cos cp, it follows that 

2 cos (~X) cos (~Z) = -l sin 2cp . P22 

and 
cos2 (~Z)- cos2 (~X) = 1 cos 2cp . P22. 

, (12) 

The mean values of these functions are evaluated by multiplying by F and, integrating, giving29 

- tan 2X 

and 

00 

"" Ri- 1b ' L. 11,J 
;=1 (13) 

(14) 

Heretofore, these equations have been useful for valid computation only in the following 
limiting forms, which hold for rJ. < 1.5, 

7T rJ. [ rJ.2 ( 24R2) . ] 
X = "4 - 12 1 - 108 1 + -35 +. . . ,. ( 15) 

rJ.R [ rJ.2 (6R2) ] f(rJ.,R) = 15 1 - 72 1 + 35 + .... ( 16) 

By machine computation of the all,j and bll,; terms, the sums that appear in Eqs. (13) 
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and (14) have been evaluated for values of ex up to ex = 200. At these high ex values X has 
fallen practically to zero from the initial value of 45° at ex = O. However,Jis still significantly 
far from its saturation value Joo which it would have at ex = 00. The convergence of these 
series is much more dependent upon the rate of decrease of the values of the all,; and bu ,} 
terms, as j increases, than upon the decreasi!lg values of RJ-l, especially since R approaches 
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FIG. 3. Extinction angle X as a function 
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depe~~nce on the axial ratio p. 
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FIG. 6. Dependence of orientation 
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unity very rapidly as p increases. The details of the computation problem are discussed in 
the next section .. These series were evaluated for various values of the axial ratio p, and the 
data are summarized in Tables 1 and 2. The greater dependence on p at lowp values is 
immediately apparent and is, of course, a consequence of the rapidity with which R approaches 
unity as p increases. The functions X and f become insensitive to p at about p = 16, where 
they 'differ by very little from their values for p = 00. By far. the greatest dependence on p 
occurs below p = 10. These results are illustrated graphically in Figs. 3 to 6. 

The values in Tables 1 and 2 are given for prolate ellipsoids (p > 1). However, the curves 
for an oblate ellipsoid of axial ratio lip are identical with those of a prolate ellipsoid of axial 
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Table 1. Extinction angle X as a function of Cl for various axial ratios p. 

~ 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 3.50 4.00 4.50 . 

0.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 
0.25 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43.81 
0.50 42.62 42.62 42.62 42.62 42.62 42.62 42.62 42.62 42.62 42.62 42.62 
0.75 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.44 41.45 

1.00 40.27 40.27 40.27 40.28 40.28 40.28 40.28 40.29 40.29 40.29 40.29 
1.25 39.12 39.12 39.12 39.13 39.14 39.14 39.14 39.15 39.16 39.16 39.16 
1.50 37.98 37.99 38.00 38.01 38.02 38.02 38.03 38.04 38.05 38.05 38.06 
1.75 36.87 36.as 36.S9 36.91 36.92 36.93 36.94 36.96 36.97 36.98 36.99 

2.00 35.78 35.79 35.81 35.84 35.86 35.88 35.89 35.91 35.93 35.94 35.95 
2.25 34.72 34.74 34.76 34.80 34.82 34.85 34.87 34.CX) 34.92 34.94 34.95 
2.SO 33.69 33.71 33.74 33.79 33.82 33.86 33.88 33.93 33.96 33.98 33.99 
3.00 31.72 31.74 31.00 31.87 31.93 31.98 32.03 32.09 32.14 32.17 32.19 

3.50 29.87 29.91 30.00 30.09 30.18 30.25 30.31 30.41 30.47 .30.52 30.55 
to 4.00 28.16 28.21 28.32 28.45 28.56 28.66 28.75 28.87 28.95 29.02 29.06 
to 4.SO 26.57 26.64 26.78 26.94 27.08 27~21 27.31 27.47 27.58 27.66 27.71 0'> 5.00 25.10 25.18 25.36 25·55 25.73 25.88 26.01 26.20 26.33 26.42 26.49 

6.00 22.50 22.61 22.85 23.ll 23.35 23.55 23.72 23.98 24.16 24.29 24.38 
7.00 20.30 20.44 20.74 21.05 21.35 21.60 21.81 22.13 22.36 22.51 22.63 
8.00 18.43 18.60 18.94 19.31 19.65 19.94 20.20 20.57 20.84 21.02 21.16 
9.00 16.84 17.03 17.40 17.81 18.20 18.53 18.81 19.25 19.54 19.75 19.90 

10.00 15.48 15.67 16.08 16.53 16.95 17.31 17.62 18.09 18.42 18.66 18.83 
12.50 12.82 13.03 13.47 13.97 14.45 14.87 15.23 15.80 16.19 16.48 16.68 
15.00 10.CX) 11.11 11.57 12.09 12.60 13.05 13.45 14.07 14.52 14.84 15.07 
17.50 9.46 9~67 10.12 10.64 11.16 ll.63 12.05 12.72 13.20 13.55 13.81 

20.00 8.35 8.55 8.98 9.49 10.02 10.50 10.93 11.62 12.13 12.51 12.79 
22.50 7.46 7.65 8.06 8.57 9.08 9.56 10.00 10.71 11.25 ll.64 11.94 
25.00 6.75 6.92 7.32 7.00 8.30 8.78 9.22 9~95 10.50 10.91 11.22 
30.00 . 5.66 5.81 6.17 6.61 7.08 7.54 7.98 8.71 9.28 9.72 10.06 

35.00 4.86 5.00 5.32 5.73 6.17 6.61 7.03 7.76 8.34 8.80 9.15 
40.00 4.27 4.39 4.68 5.05 5.46 5.as 6.28 7.00 7.58 8.04 8.41 
45.00 3.00 3.91 4.17 4.51 4.90 5.29 5.67 6.37 6.95 7.41 7.78 
SO.oo 3".42 3.53 3.76 4.08 4.43 4.80 5.17 5.84 6.41 6.87 7.25 

60.00 2.86 2.94 3.15 3.42 3.73 4.06 4.39 5.00 5.54 5.99 6.36 
80.00 2.14 2.21 2.37 2.58 2.82 3.09 3.36 3.88 4.34 4.75 5.08 

100.00 1.72 1.77 1.90 2.07 2.27 2.49 2.71 3.15 3.56 3.90 4.20 
200.00 0.86 0.89 0.95 1.04 1.14 1.26 1.38 1.62 1.84 2.04 2.21 



~ 5.00 6.00 7.00 8.00 9.00 10.00 12.00 16.00 25.00 50.00 CD 

0.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 
0.25 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43.81 43~81 43.81 43.81 
0.50 42.62 42.62 42.62 42.62 42.62 42.62 42.62 42.62 • 42.62 42.62 42.62 
0.75 41.45 41.45 41.45 41.45 41.45 41.45 41.45 41.45 41.45 41.45 41.45 

1.00 40.29 40.29 40.30 40.30 40.30 40.30 40.30 40.30 40.30 40.30 40.30 
1.25 39.16 39.16 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 
1.50 38.06 38.06 38.07 38.07 38.07 38.07 38.07 38.07 38.07 38.07 38.08 
1.75 36.99 37.00 37.00 37.00 37.00 37.01 37.01 37.01 37.01 37.01 37.01 

2.00 35.96 35.97 35.97 35.98 35.98 35.98 35.98 35.98 35.99 35.99 35.99 
2.25 34.96 34.97 34.98 34.98 34.98 34.99 34.99 35.00 35.00 35.00 35.00 
2.50 34.01 34.02 34.03 34.04 34.04 34.04 34.05 34.05 34.05 34.06 34.06 
3.00 32.21 32.23 32.25 32.26 32.ZT 32.ZT 32.28 32.28 32.29 32.29 32.29 

3.~ 30.58 30.61 30.63 30.64 30.66 30.66 30.67 30.68 30.69 30.69 30.69 
4.00 29.09 29.14 29.17 29.19 29.20 29.21 29.22 29.23 29.24 29.25 29.25 
4.50 ZT.75 ZT.81 27.85 27.f!l 27.88 ZT.89 27.91 27.93 27.94 27.95 27.95 
5.00 26.54 26.61 26.65 26.68 26.70 26.71 26.73 26.75 26.71 26.71 26.78 

~ 
~ 6.00 24.45 24.54 24. ill 24.63 24.66 24.68 24.70 24.73 24.75 24.76 24.76 
~ 7.00 22.71 22.8) 22.90 22.94 22.98 23.00 23.03 23.06 23.09 23.10 23.11 

8.00 21.26 21.39 21.48 21.53 21.57 21. ill 21.64 21.68 21.70 21.72 21.73 
9.00 20.02 20.18 20.27 20.34 20.38 20.41 20.46 20.50 20.53 20.55 20.55 

10.00 18.96 19.13 19.24 19.31 19.36 19.39 19.44 19.49 19.53 19.54 19.55 
12.50 16.84 -17.05 17.18 17.ZT 17.33 17.37 17043 17.49 17.54 17.56 17.56 
15.00 15.25 15.49 15.64 15.74 15.81 15.86 15.93 16.00 16.05 16.08 16.09 
17.50 14.00 14.27 14.J¥. 14.55 14.63 14.68 14.76 14.84 14.89 14.92 14.93 

2O.OQ ]J.OO 13.29 13.47 13.59 13.68 13.74 13.82 13.90 13.97 14.00 14.01 
22.50 12.16 12.48 12.67 12.00 12.90 12.97 13.05 13.14 ]J.21 13.24 13.26 
25.00 1l.46 11.79 12.00 12.14 12.24 12.31 12.41 12.50 12.58 12.62 12.63 
30.00 10.32 10.68 10.91 11.07 1l.18 1l.26 11.37 11.48 11.57 11.61 11.62 

35.00 9.43 9.81 10.07 10.24 10.36 10.45 10.57 10.69 10.78 10.83 10.85 
40.00 8.70 9.11 9.38 9.57 9.70 9.79 9.92 10.06 10.16 10.21 10.23 
45.00 8.08 8.50 8.79 8.98 9.12 9.Z3 9.36 9.51 9.62 9.68 9.69 
50.00 7.54 7.98 8.28 8.48 8.63 8.74 8.88 9.03 9.15 9.22 9.23 

60.00 6.66 7.10 7.41 7.62 7.78 7.89 8.05 8.20 8.33 8.40 8.42 
80.00 5.36 5.78 6.08 6.28 6.43 6.55 6.70 6.86 - 6.98 7.05 7.08 

100.00 4.45 4.8) 5.09 5.28 5.41 5.52 5.66 5.80 5.92 5.98 6.00 
200.00 2.35 2.58 2.74 2.85 2.93 2.99 3.08 3.16 3.Z3 3.27 3.28 



Table 2. Orientation factor f as a function of IX for various axial ratios p. 

~ 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 3.50 4.00 4.50 

0.00 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.25 0.00000 0.00366 0.0064 0.0085 0.0100 0.0112 0.0121 0.0133 0.0141 0.0147 0.0151 
0.50 0.00000 0.0C!729 0.0128 0.0169 0.0199 0.0223 0.024l 0.0266 0.0282 0.0293 0.0301 
0.75 0.00000 0.01089 0.0191 0.0252 0.0298 0.0332 0.0359 0.0397 0.0421 0.0437 0.0449 

1.00 0.00000 0.01-443 0.0253 0.0334 0.0394 0.0440 0.0476 0.0525 0.0557 0.0!)19 0.0595 
1.25 0.00000 0.01791 0.0314 0.0414 0.0489 0.0546 0.0590 - 0.0651 0.0691 0.0718 0.0737 
1.50 0.00000 0.02129 0.0373 0.0492 0.0581 0.0649 0.0701 0.0774 0.0821 0.0853 0.0876 
1.75 0.00000 0.02458 0.0430 0.0568 0.0671 0.0749 0.0809 0.0893 0.0947 0.0984 0.10lD 

2.00 0.00000 0.02776 0.0486 0.0641 0.07!)1 0.0845 0.0913 0.1007 0.1069 0.1110 0.1139 
2.25 0.00000 0.03082 0.0540 0.0712 0.0840 0.0938 0.lD13 0.ill8· 0.1185 0.1231 0.1264 
2.50 0.00000 0.03376 0.0591 0.0779 0.0920 0.1027 O.llO9 0.1223 0.1297 0.1348 0.1383 
3.00 0.00000 0.03925 0.0687 0.0906 0.1069 O.ll93 0.1288 0.1421 0.1507 0.1565 0.1(l)6 

3.50 0.00000 0.04422 0.0774 0.1020 0.1204 0.1344- 0.1451 0.1(l)1 0.1697 0.1762 0.1809 
K) 

4.00 0.00000 0.04868 0.0852 0.1123 0.1326 0.1480 0.1598 0.1763 0.1869 0.1941 0.1992 
IV 4.50 0.00000 0.05266 0.0922 0.1216 0.1436 0.1(l)2 0.1730 0.1909 0.2024 0.2103 0.2158 
co 5.00 0.00000 0.05620 0.0984 0.1299 0.1534 0.1712 0.1849 0.2041 0.2165 0.2249 0.2308 

6.00 0.00000 0.06211 0.1089 0.1438 0.1700 0.1900 0.2053 0.2268 0.2407 0.2502 0.2568 
7.00 0.00000 0.06674 0.ll72 C.1550 0.1835 0.2052 0.2220 0.2456 0.2609 0.2712 0.2786 
8.00 0.00000 0.07038 0.1238 . 0.1640 0.1945 0.2178 0.2358 0.2613 0.m8 0.2891 0.2970 
9.00 0.00000 0.07326 0.1291 0.1714 0.2035 0.2282 '0.2474 0.2746 0.2923 0.3044 0.3129 

10.00 0.00000 0.07557 0.1334 0.1774 0.2111 0.2370 0.2573 0.28(l) 0.3048 0.3176 0.3267 
12.50 0.00000 . 0.07961 0.1411 0.1886 0.2253 0.2539 0.2764 0.3086 0.3299 0.3444 0.3548 
15.00 0.00000 0.08213 0.1461 0.19(l) 0.2351 0.2658 0.2902 0.3254 0.3487 0.3649 0.3764 
17.50 0.00000 0.08378 0.1495 0.2012 0.242l 0.2746 0.3005 0.3383 0.3635 0.3810 0.3936 

20.00 0.00000 0.08492 0.1518 0.2050 0.2473 0.2812 0.3085 0.3485 0.3755 0.3942 0.4077 
22.50 0.00000 0.08573 0.1536 0.2078 0~2513 0.2864 0.3148 0.3568 0.3853 0.4052 0.4196 
25.00 0.00000 0.08634 0.1549 0.2099 0.2544 0.2905 0.3199 0.3637 0.3936 0.4147 0.4299 
30.00 0.00000 0.08714 0.1567 0.2130 0.2589 0.2966 0.3276 0.3744 0.4069 0.4299 0.4467 

35.00 0.00000 0.08764 0.1!)18 0.2149 0.2619 0.3~ 0.3331 0.3823 0.4169 0.4418 0.4599 
40.00 0.00000 0.08797 0.1585 0.2163 0.2640 0.3038 0.3371 0.3883 0.4248 0.4513 0.4707 
45.00 0.00000 0.08820 0.1591 0.2172 0.2656 0.3Dro 0.3400 0.3930 0.4311 0.4589 0.4796 
50.00 0.00000 0.08836 0.1595 0.2179 0.2667 O.~ .0.3424 0.3967 0.4362 0.4653 0.4871 

60 •. 00 0.00000 0.08858 0.1600 0.2189 0.2683 0.3100 0.3456 0.4021 0.4438 . 0.4750 0.4987 
80.00 0.00000 0.08880 0.1(l)5 0.2199 0.2699 0.3125 0.3492 0.4082 0.4528 0.4868 0.5132 

100.00 0.00000 0.08891 0.1(l)7 0.2203 0.2707 0.3138 0.3509 0.4l14 0.4576 0.4933 0.5213 
200.00 0.00000 0.08904 0.1611 0.2209 0.2718 0.3155 0.3535 0.4l61 0.4649 0.5034 0.5342 



X 5.00 6.00 . 7.c:x,> 8.00 9.00 10.00 12.00 16.00 25.00 SO.OO CX) 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.25 0.0154 0.0158 0.01.60 0.0161 0.0162 0.0l63 0.0164 0.0165 0.0166 0.0166 0.0167 
0.50 0.0)C17 0.0314 0.0319 0.0322 0.0324 0.0325 0.0327 0.0)29 0.0331 0.0332 0.0332 
0.75 0.0458 0.0469 0.0476 0.0480 0.0483 0.0486 0.0489 0.0492 0.0494 0.0495 0.0496 

·1.00 0.Dro6 . 0.0621 0.0630 0.0636 0.0640 0.0643 0.0647 0.0651 0.0654 0.0656 0.0656 
1.25 0.C1751 O.C1769 0.C1781. 0.0788 0.0793 0.C1797 0.0802 0.0807 0.0811 0.0813 0.0813 
1.50 0.0892 0.0914 0.0927 0.0936 0.0942 0.0947 0.0953 0.0958 0.0963 0.0965 0.0966 
1.75 0.1029 0.1053 0.1069 0.1000 0.1087 0.1092 0.1098 0.ll05 O.lllO 0.lll3 0.1114 

2.00 0.ll61 O.ll~ 0.1206 0.1218 0.1226 0.1231 0.1239 0.1246 0.1252 0.1255 0.1256 
2.25 0.1287 0.1319 0.1338 0.1351 0.1359 0.1366 0.1374 0.1382 0.1388 0.1392 0.1393 
2.SO 0.~9 0.1443 0.1464 0.1478 0.1488 0.1494 0.1503 0.1512 0.1519 0.1523 0.1524 
3.00 0.1636 0.1676. 0.1700 0.1716 0.1727 0.1735 0.1745 0.1756 0.1764 0.1768 0.1769 

3.SO 0.1842 0.1887 0.1914 0.1932 0.1945 0.1954 0.1965 0.1977 0.1986 0.1991 0.1992 
4.00 0.2029 0.2078 0.2108 0.2128 0.2l42 0.2152 0.2165 0.2177 0.2l87 0.2192 0.2194 
4.50 0.2198 0.2251 0.2284 0.2,306 0.2321 0.2331 0.2.345 0.2359 0.2370 0.2376 0.2377 
5.00 0.2:351 0.2408 0.2444 0.2467 0.2483 0.2494 0.2509 0.2524 0.2536 0.2542 0.2544 

t~ 
6.00 0.2617 0.2681 0.2721 0.2747 0.2765 0.2778 0.2795 0.2812 0.2825 0.2832 0.2834 

~ 7.00 0.2839 0.2910 0.2954 0.2983 0.3003 0.3017 0.3036 0.3054 0.3069 0.3076 0.3079 
c.o 8.00 0.3028 0.3106 0.3153 0.3185 0.3206 0.3222 0.3242 0.3262 0.3278 0.3286 0.3289 

9.00 0.3191 0.3275 0-3:326 0.3360 0.3383 0.3399 0.3421 0.3443 0.3460 0.3469 0.3472 

10.00 0.3334 0.3423 0.3477 0.3513 0.3538 0.3556 0.3579 0.3603 0.3621 0.3630 0.3633 
12.50 0.3624 0.3726 0.3788 0.3830 0.3858 0.3879 0.3906 0.3933 0.3953 0.3964 0.3968 
15.00 0.3848 0.3962 0.4032 0.4C178 0.4110 0.IJ.33 0.4163 0.4193 0.4216 0.4228 0.4232 
17.50 0.4028 0.4152 0.4229 0.4279 0.4314 0.4340 0.4373 0.4406 0.4431 0.4444 0.4449 

20.00 0.4177 0.4311 0.4393 0.4448 0.4486 0.4513 0.4549 0.4585 0.4612 0.4626 0.4631 
22.50 0.4302 0.4445 0.4533 0.4591 0.4632 0.4661 0.4699 0.4737 0.4766 0.4782 0.4787 
25.00 0.4412 0.4564 0.4659 0.4721 0.4765 0.4796 0.4837 0.4878 0.4910 0.4926 0.4932 
30.00 0.4592 0.4761 0.4867 0.4937 0.4985 0.5020 0.5066 0.5113 0.5148 0.5166 0.5173 

35.00 0.4736 0.4921 O.9J37 0.5114 0.5167 0.5206 0.5257 0.5308 0.5347 0.5367 0.5374 
40.00 0.4854 0.5055 0.5181 0.5265 0.5324. 0.5366 0.5422 0.5478 0.5521 0.5543 0.5551 
45.00 0.4952 0.5168 0.5304 0.5395 0.5459 0.5505 0.5565 0.5626 0.5673 0.5698 0.5706 
50.00 0.5037 0.5267 0.5413 0.5511 0.5580 0.5630 0.5696 0.5763 0.5814 0.5841 . 0.5850 

60.00 0.5169 0.5425 0.5590 0.5701 0.5780 0.5838 0.5914 005.991 0.6051 0.6083 0.6094 
80.00 0.5338 0.5632 0.5826 0.59(D 0.6055 0.6125 0.6218 0.6314 0.6389 0.6429 0.6442 

100.00 0.5434 0.5753 0.5966 0.6ll3 0.6219 0.6298 0.6403 0.6511 0.6596 0.6642 0.6657 
200.00 0.5588 0.5952 0.6199 0.6372 0.6498 0.6592 0.6718 0.6850 0.6954 0.7010 0.7029 
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ratio p. This ratio enters into Eqs. (13) and (14) only through the function R. From Eq. (I) 
it is clear that when p changes to lip, R changes sign: R(p) -:- - R(llp). However, in the 
summations I;Ri-1an,j and I;Ri-1bu ,j, only the a and b coefficients for whichj is odd have values 
different from zero. Hence, only even powers of R enter into the summations, from which 
it follows that X(rx,p) = x(rx,l/p) and f(rx,p) = - f(rx,l/p).30 These relations were clearly 
recognized by Peterlin· and Stuart22 (see their figures for X andf as functions of rx), but were 
not explicitly stated by them. From Eq. (13),31 

. - bUl 6 
hm tan 2X = --' =-. 
R~O all,! rx 

The equation lim tan 2X = 61rx, which had already been derived by Boeder20 for the case of 
a~O . 

thin rods (R = 1), is the same as Eq. (15) as rx approaches zero. 

45 

40 

CD 35 
'0 .a 30 

.~ 25 

U 20 
.~ 
;B 15 

10 

5 

0.1 0.2 0.3 0.4 0.5 

Orientation Factor 

0.6 

Thus in all cases, when rx approaches zero and 

the degree of o!ientation beco~es very small, f 
approaches zero and tan 2X = 61rx~ This holds for 
all p values and, in the limiting case where p' 
approaches I-that is, the ellipsoid approaches a 
sphere-these relations hold also for all values of rx. 

If experimental values of X are plotted as a 
function of ~n, the data may be fitted by a theoretical 
curve of X as a function of ~f, where k is an adjust­
able constant used to fit the data to the curve. 
When determined, it gives the optical factor 

FIG. 7. Extinction angle as a function (gl - g2)' since 
of orientation factor, together with its 

. dependence on the axial ratio p. 

If this procedure is adopted, it is unnecessary to extrapolate to low values of rx where the 
experimental errors are large.9, 10 The nature of the curve for X as a function of f and its 
dependence on p are shown in Fig. 7. 

Some question may arise as to the validity of the Peterlin and Stuart solution, especially 
since the viscosity problem, treated by Peterlin with the same distribution function, is at 
variance with the results of Simha,32, 33 whose treatment is considered to be the valid one.34 

The Simha treatment of viscosity is also identical with that of Kuhn and Kuhn35 for low 
gradient. However, the disagreement in the viscosity theories does not arise from the use of 
an incorrect distripution function,36 but rather from Peterlin's omission .of certain terms in 
the hydrodynamic equations, which were taken into account by Simha. Thus, the inadequacy 
of the viscosity theory in no way affects the valid use of this distribution function for the 
treatment of double refraction of flow. 

If the omitted terms were taken into account, Peterlin's viscosity treatment would presum­
ably be valid. During the course of the computation in connection with the present problem 
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numerous other coefficients besides the aU,j and bU,j terms were evaluated. The availability 
of these additional terms may be of use for a viscosity theory formulated on a similar basis. 

The first and crucial step in the organization of this problem for machine computation 
was an analysis of the recurrence formulas (6-9) and the following generalizations applying 

to them: 
1. All terms with negative indices are zero; 

2. anm,O = 0, and aOO,j = 0, except aoo,o = Ij2r.; 

3,. bnm,o = bnO,j = bOm,j = 0. 
A rigorous analytical study seemed to be out of the question. Therefore several decisions 
were made arbitrarily. Since the limited internal storage capacity of the Mark I computer 

was one of the chief obstacles to be over- m 

come, it was decided to consider each 
24-column storage counter as two counters 8 

of 12 columns each so that the a and b 
7 

terms for any nm,j coul,d be contained iq 
one counter, all terms being carried to'ten 6 

places of decimals. 
It may be observed that the values of 5 

all terms with an index ofji depend entirely 
4 

upon terms with the index ji-I. Thus the 
decision was made to assign a storage 3 

counter to each nm combination, to put in 
these counters the anm,O and bnm,o terms, to 
compute fronl these the anm,l and bnm,l terms 
and transfer these results into the same set 

2 
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of counters, then to compute the anm ,2 and 0 ~--o---o----o----o-_~-o----o---o---
o 234 5 6 7 8 

bnm~2 terms, and so on. This led to the 
adoption of the viewpoint that values of FIG. 8. Array of points in nm-plane. 

points in the nm-plane (Fig. 8) were being computed at time "zero," "one," ... , that is, 
j = 0, 1, . . . There is, of course, a pair of values at each point, one value for the a term 
and one for the b term. 

It was hoped that a newly computed pair of values anm,j and bnm,j might immediately 
replace the pair anm,j-l and bnm,j-l in the storage counter assigned to that particular nm com­
bination. Unfortunately, this seemed impossible because the previous values are needed to 
compute values at neighboring points, and it appeared that a second set of storage counters 
would be required. However, further study of the recurrence formulas shows that the values 
of all terms with the index mi depend only upon terms with mi - I or mi +1 indices. Since it is 
known that, for j = 0, the orily point at which either the a or the b term has a value is the 
point 0,0 in the nm-plane, it is obvious that at time "one" (j = 1) values occur only in the 
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rowm = 1 and at time "two" only in the rows m = ° and m = 2. Thus it is seen that for 
evenj only the rows of even m, which depend only upon the rows of odd m, need be calculated, 
and that for oddj it is necessary to compute only the odd rows in the m direction. This meant 
that only one set of storage counters was needed, since a newly computed pair of values for 
a point nm,j could immediately replace the values in storage for that point in the nm-plane, 
which were values for nm,j - 2. 

An inspection of the n indices shows that values can extend only one place farther in the 
n direction with each increase of 1 in j. Since 0,0 is the only point with a value for j = 0, 

n -I 
om+1 

j -I' 

o 

n 
om+1 

j-I' 

o 

/ 
n +1 
m+I, 
j-I 

it is clear that all anm,j and bnm,j are zero for n > j. 
A parallel assertion holds for m > j, but this 

becomes inconsequential in view of the fact that, 
in the present problem, it has been found un­
necessary to compute the value of any point where 
m > n. This is the same as saying that the points 
to the left of the diagonal (Fig. 8) have no effect 
upon the values at the point 1,1 in the nm-plane, 

which is the only point at which results are required. 
By the recurrence relations, the a and b terms at 
any point in the nm-plane depend upon the previous 
dme's terms at the three points centered directly 

o~!1 above it and the three centered directly below it 
j -I' (Fig. 9). But, for any point on the diagonal (n = m), 

FIG. 9. Illustration of recurrence the coefficients applied to the first two points in 
relations for a given term represented 
in the nm-plane. the upper row vanish. Likewise, for any point 

n-I 

/
m-I 
j -I' 

n 
orn-I 

j-I' 

just off the diagonal to the right (n = m + 1), the 
coefficient of the first term in the upper row becomes zero. Therefore, values to· the left of 
the diagonal have no effect at any time upon any point on, or to the right of, the diagonal. 

As a summary· of the results of this analysis, the following may be added to the initial 

generalizations: 
4. If m is even and j is odd, anm,j = 0, and bnm,j = 0; 
5. If m is odd andj is even, anm,j= 0, and bnm,j = 0; 
6. If n > j, or if m > j, anm,j = 0, and bnm,j· 0; 

7. In this problem, terms where m > n need not be computed as they do not affect the 

values of alI,jOr bn,j. 
Considering these findings as well as the storage capacity of Mark 1, it was decided to 

conlpute the a and bterms at all the points within the block n -< 8, nz -< 8, j -< 15 that con­
tributed anything to the final results. This meant that 40 points in the nm-plane were to be 
computed and that 40 storage counters would be required. Since terms with n or m indices 
of 9 werc nbt being computed when j =.9, terms with n or m indices of 8 would be in error 
when j = 10, so these terms were not computed. Likewise, terms having n or m indices of 7 
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woul~l be incorrect when j == 11 and so were not computed. Thus, when j = 15, the terms 

al,I;15 and b1,1;15 were the only terms calculated. It remained' then for the computer to deter­
mine whether 15 terms, or 8 nonzero terms, would suffice for the convergence of the series, 
or whether some change in organization would have to be made. All in all, there were now 

the following 136 n,m;j points to be computed: 

],1;1 2,1;5 5,2;6 7,3;7 6,2;8 6,1;9 2,2; 10 
1,0;2 3,1;5 6,2;6 5,5;7 7,2;8 7,1;9 3,2; 10 
2,0;2 4,1;5 4,4;6 6,5;7 8,2;8 3,3;9 4,2;10 
2,2;2 5,1;5 5,4;6 7,5;7 4,4;8 4,3;9 5,2; 10 
1,1;3 3,3;5 6,4;6 7,7;7 , 5,4;8 5,3;9 6,2; 10 
2,1;3 4,3;5 6,6;,6 1,0;8 6,4;8 6,3;9 4,4;10 
3,1;3 5,3;5 1,1;7 2,0;8 7,4;8 7,3;9 5,4;10 
3,3;3 5,5;5 2,1;7 3,0;8 8,4;8 5,5;9 6,4;10 
1,0;4 1,0;6 3,1;7 4,0;8 6,6;8 6,5;9 6,6; 1 0 
2,0;4 2,0;6 4,1;7 5,0;8 7,6;8 7,5;9 ,1,1;11 
3,0;4 3,0;6 5,1;7 6,0;8 8,6;8 7,7;9 2,1; 11 
4,0;4 4,0;6 6,1;7 7,0;8 8,8;8 1,0;10 3,1; 11 
2,2;4 5,0;6 7,1;7 8,0;8 1,1;9 2,0;10 4,1;11 
3,2;4 6,0;6 3,3;7 2,2;8 2,1;9 3,0;10 5,1;11 

'4,2;4 2,2;6 4,3;7 3,2;8 3,1;9 4,0;10 3,3; 11 
4,4;4 3,2;6 5,3;7 4,2;8, 4,1;9 5,0;10 '4,3;11 
],.1 ;5 4,2;6 6,3;7 5,2;8 5,1;9 6,0;10 5,3;11 

Next, Eqs. (8) and (9) were solved and written in the form 

a . = _ exmA + kB b . = kA - 'XmB 
nm,] exm2 + k2/ex' nm,] exm2 + k2/ex ' 

where k '= 2n(2n + 1), 

A = alcl + a2c2 + a3c3 + a4c4 + ar,cs + ascs, 
B = blcl + b2c2 + b3c3 + b4c4 + bscs -to bscs, 

2n + 1 
c1 = 4 (4n - 3) (4n - 1) , 

3 
c 2 = - 4 (4n - 1) (4n + 3) , 

n 
c3 = - 2 (4n + 3)( 4n + 5) , 

C4 == - (2n -,2m - 3)(2n - 2m - 2)(2n - 2m - 1)(2n - 2m)cl, 
Cs = - (2n - 2m - 1)(2n - 2m)(2n + 2m + 1)(2n + 2m + 2)c2, 

5,5; 11 
1,0; 12 
2,0;12 
3;0;12 
4,0;12 
2,2; 12 
3,2; 12 
4,2;12 
4,4;12 
1,1; 13 
2,1;13 
3,1; 13 
3,3;13 
1,0;14 
2,0; 14 
2,2;14 
1,1;15 

c6 = - (2n + 2m + 1)(2n + 2ni +2)(2n +2m + 3)(2n + 2m + 4)c3 , 

and 
a1 = an -1,m-1;j- b 

a4 = an-I,m + l;j- h 

bl = bn - 1,m-l;j-l, 

b4 = bn - 1,m + l;j- b 

a2 = an,m-1;j- b 

as = an,m + l;j- b 

b2 = bn,m-1;j-., 

bs = bn,m + 1;j- b 

a3 = an + l.m-l;j- b 

a6 = an +1,m+1;j-b 

b3 = bn + 1,m-l;j- b 

b6 = bn + 1,m+l;j-l' 

233 
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In order that one computation routine might be used throughout, it was decided to com­
pute the terms for m -.:.. 0 exactly like the others and then to wipe out the bno,j term and double· 
the anO,j term, in accordance with Eqs. (6) and (7). 

The first control tape placed upon the calculator simply computed Cl~ C2, Ca, C4, Cs, cs, k, k2
, m2

, 

and the sum of these nine quantities for each of the 136 points, and punched the results on 
cards. These calculations were not checked internally. Next was run another s~mple tape 
which fed these punched cards into the machine and printed all quantities. These printed 
sheets were checked for accuracy. Since all these quantities are functions of nand m only, 
most of them were comput~d more than once. In fact, the case of n = m = 1 occurs eight 
times. A check that the results in these duplicate cases agreed was a part of the visual check. 
However, the real check at this point was in the fact that all these quantities had been hastily 
hand computed in advance, and the tape was run on Mark I simply· to verify these results 
and to produce them on punched cards. This portion of the job consumed 6 hours of machine 
time. 

The next step was the calculation of the terms anm,j and bnm,j. This was by far the major 
part of the problem and consumed some two weeks of machine time. A separate run was 
made for each value of~, the quantities ~ and l/~ being placed in constant switches. The main 
control tape read into six working counte~s the values in the six counters containing the 
particular al andbl , a2 and b2, ••• , as and bs applying to the point being computed. A sub­
sequence routine then computed anm,j and bnm,j, whereupon the main control tape dire~ted. 
these results into the counter assigned to that nm combination and. set up the six 'working 
counters for the next point. The main tape thus comprised 136 of these small sections. When 
it had finished its ·run, which required about 6t hours, it was started over again with new 
values of ~ and 1 /~. 

The subsequence routine, which consumed about 3 minutes of running time for the com­
putation of the a and b terms at each point, comprised the following operations. First, the 
cards containing the nine constants for that point were fed into the calculator, and the sum 
of these constants was checked against the punched card containing their sum. Then the 
A and B of Eqs. (17) were computed by 12 multiplications and checked by six additional 
nlultiplications, using the relation 

A + B = (a l + bt)cl + ... + (as + bs)cs• 
Then anm,j and bnm,j were computed directly by means of Eqs. (17). Since these equations 

involve both m and m2, both k and k2, and both ~ and 1/~, no intermediate checks were neces­
sary. The only check at this point was the substitution of the computed. anm,j and bnm,j into 
Eqs. (8) and (9). Next was applied the .test whether m was zero, in which case the a term 
was doubled and the b term erased, in accordance with Eqs. (6) and (7). Then anm,j and 
bnm,j were printed and, if they were for the point 1,I;j, they were punched on cards. 

For very small values of ~ the convergence was extremely rapid, the terms al j l;5 and bl ,I;5 

being zero to ten decimal places. Not until ~ reached 6 did the terms al,1;15 and bl ,I;15 exceed 
10-1°, and for all ~ under 25 it was felt that the error being committed in the dropping of the 
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al,lj17 and b1,lj17 terms was insignificant. However, it could be seen that more terms would 
be needed for accuracy when rt. was large. So the case rt. = 100 was then run in order that 
the results might indicate that many unnecessary terms were being computed. It was found 
that, even in this case oflarge rt., the values of terms with an m index of5 or more never exceeded 
10-10, and that there were several other points where this was the casco Thus it was possible 
to code a new control tape which would compute the terms through al,1;23 and b1,1;23 with the 
use of only 36 counters for the storage of 36 points in the nm-plane. This required the com-
putation of the following 244 n,m;j points: 

1,1;1 2,2;6 6,2;8 5,2; 10 . 11,0;12 6,0;14 5,0;16 2,2;18 
1,0;2 3,2;6 7,2;8 6,2;10 12,0;12 7,0;14 6,0;16 3,2;18 
2,0;2 4,2;6 8,2;8 7,2;10 2,2;12 8,0;14· 7,0;16 4,2;18 

2,2;2 5,2;6 4,4;8 8,2;10 3,2;12 9,0;14 8,0;16 5,2;18 
1,1;3 6,2;6 1,1;9 4,4;10 4,2;12 10,0;14 2,2;16 6,2;18 
2,1;3 4,4;6 2,1;9 1,1;11 5,2;12 2,2;14 3,2;16 4,4;18 
3,1;3 1,1;7 3,1;9 2,1;11 6,2;12 3,2;14 4,2;16 1,1;19 
3,3;3 2,1;7 4,1;9 3,1; 11 7,2;12 4,2;14 5,2;16 2,1;19 
1,0;4 3,1;7 5,1;9 4,1;11 8,2;12 5,2;14 6,2; 16 3,1;19 
2,0;4 4,1;7 6,1;9 5,1; 11 4,4;12 6,2;14 7,2; 16 . 4,1;19 

3,0;4 5,1;7 7,1;9 6,1;11 1,1;13 7,2;14 8,2;16 5,1;19 
4,0;4 6,1;7 8,1;9 7,1;11 2,1;13 8,2; 14 4,4;16 3,3;19 
2,2;4 7,1;7 9,1;9 8,1;11 3,1;13 4,4;14 1,1;17 4,3;19 
3,2;4 3,3;7 3,3;9 9,1; 11 4,1;] 3 1,1; 15 2,1; 17 5,3;19 
4,2;4 4,3;7 4,3;9 10,1;11 5,1; 13 2,1; 15 3,1; 17 1,0;20 
4,4;4 5,3;7 5,3;9 11,1;11 6,1; 13 3,1; 15 4,1;17 2,0;20 
1,1;5 6,3;7 6,3;9 3,3; 11 7,1;13 4,1;15 5,1;17. 3,0;20 
2,1;5 7,3;7 7,3;9 4,3; 11 8,1; 13 5,1; 15 6,1; 17 4,0;20 
3,1;5 1,0;8 1,0; 10 5,3; 11 9,1; 13 6,1; 15 7,1;17 2,2;20 
4,1;5 2,0;8 2,0;10 6,3; 11 10,1;13 7,1;15 3,3;17 3,2;20 
5,1;5 3,0;8 3,0;10 7,3;11 11,1;13 8,1;15 4,3;17 4,2;20 
3,3;5 4,0;8 4,0;10 1,0;12 3,3;13 9,1; 15 5,3;17 4,4;20 
4,3;5 5,0;8 5,0;10 2,0;12 4,3;13 3,3;15 6,3; 17 1,1;21 
5,3;5 6,0;8 6,0;10 3,0; 12 5,3;13 4,3;15 7,3; 17 2,1;21 
1,0;6 7,0;8 . 7,0;10 4,0; 12 6,3;13 5,3;15 1,0; 18 3,1;21 
2,0;6 8,0;8 . 8,0;10 5,0;12 7,3;13 6,3;15 2,0;18 3,3;21 
3,0;6 2,2;8 9,0;10 6,0;12 1,0;14 7,3;15 3,0; 18 1,0;22 
4,0;6 3,2;8 10,0;10 7,0;12 2,0;14 1,0; 16 4,0;18 2,0;22 
5,0;6 4,2;8 2,2;10 8,0;12 3,0; 14 2,0;16 5,0;18 2,2;22 
6,0;6 5,2;8 3,2;10 9,0;12 4,0;14 3,0;16 6,0; 18 1,1;23 

4,2;10 10,0;12 5,0;14 4,0;16 
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This tape was run for all values of (X from 25 up, each run consuming 12 hours of machine 
time. The four extra terms in the series improved the convergence considerably. Although 
no accurate estimate of the size of the remainder term could be made, some idea of the rate 
of convergence of these series at high (X values may be obtained from the data of Tables 3 

Table 3. Values of - ~all,j as a function of) for various values of (x. 

1'Z 25 40 &J 100 200 

1 0.037622 0.038913 0.039395 0.039646 0.039753 
3 0.045133 0.048785 0.050268 0.051071 0.051419 
5 0.046291 0.052465 0.055325 0.056967 0.057700 
7 0.045537 0.053452 0.057790 0.060498 0.061765 
9 0.044715 0.053261 0.058821 0.062630 0.064509 

11. 0.044315 0.052705 0.059032 0.063820 0.066313 
13 0.044244 0.052205 ·0.058871 0.064424 0.067487 
15 0.044290 0.051896 0.058608 0.064699 0.068260 
17 0.044338 0.051754 0.058368 0.064~ 0.068783 
19 . 0.044361 0.051713 0.058191 0.064821 0.069127 
21 0.044367 0.051715 0.058079 0.064804 0.069338 
23 0.044366 0.051729 0.058013 . 0.064711 0.069460 

Table 4. Values of ~bll,j as a function of) for various values of (x. 

r-z 25 40 60 100 200 

1 0.009029 0.005837 0.003939 0.002379 0.001193 
3 0.015774 0.010806 0.007460 0.004560 0.002298 
5 0.019813 0.014767 0.010583 0.006605 0.003359 
7 0.021399 0.017518 0.013207 0.008500 0.004385 
9 0.021545 0.019029 0.015137 0.010092 0.005295 

11 0.021256 0.019628 0.016389 0.011325 0.006051 
13 0.020927 0.019723 0.017107 0.012225 0.006651 
15 0.020828 0.019616 0.017461 0.012848 0.007110 
17 0.020818 0.019482 0.017577 0.013258 0.007451 
19 0.020833 0.019383 0~017620 0.013519 0.007699 
21 0.020844 0.019328 0.017595 0.013677 0.007874 
23 0.020849 0.019303 0.017563 0.013768 0.007997 

and 4, where the values of the - ~all,j and ~bll.j series are given for several values of (x. These 
data are also plotted in Figs. 10 and 11. It will be noted that the b terms converge much more 

a = 200 

a = 100 

a=60 

a=40 

a= 25 

361~~3~~5~~7--~9--~1I--~13--~15--~17--~19--~21~23 

FIG. 10. Values of - ~all,j as a function 
of) for various values of (x. 

a = 25 r-------______ ~ __ 

0 1 3 5 7 9 II 13 15 17 19 21 23 

FIG. 11.. Values of ~bll,j as a function 
of I for various values of (x. 
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slowly than do the a terms. It will also be noted that the series for (X = 200 and (X = 100 
clearly have not converged. It is felt that, for (X <; 60, the error that has been committed is 
well under 1 percent, but that, for (X = 80, 100, or 200, the results listed in Tables 1 and 2 
are significantly in error for all but the very small values of p. These "bad" results have been 
included in the tables in the hope that they may shed some light on the question of convergence. 
If they had been included in Fig. 7, for the case p = 00, they would lie significantly lower 
than the curve shown, so that the extrapolated value offat X = 0 would be about 0.75 instead 
of the value 1 as it should be and as,in fact, it appears to be when the vaIues at (X = 80, 100, 
and 200 are omitted .. 

It is unfortunate that the series of b terms converges slowly when the sum of the series is 
. small, thus making the proportional error committed in the truncation of the series that much 
greater. It should be noted that, as (X approaches 00, all terms in the series ~bl1,j approach 
zero and thus approach each other. If the sum of this series is desired to within a certain 
"percentage error," the number of terms required becomes infinite as (X approaches 00. 

In order to study the propagation of error~, the case (X = 100 was run with an intentional 
error introduced in the' value of aoo,o. As the successive terms were computed, the effects of 
this error became less and less. Therefore it is believed that roundoff errors do not accumulate 
and need not be considered. 

The final control tape in the problem governed the computation of tan 2X andf2. Since 
, only three or four decimal places of accuracy were required in the results, in the interests of 
economy it was decided to obtain X andffrom tables by hand methods. Thus it was possible 
to complete this stage of the job in 1 day of machine use. 

The deck of cards containing the terms aU,j and bll,j for all the values of (X was fed into the 
calculator along with another deck of cards containing R and ~2 [Eq. (1)] for each of several 
values of p. Then, by means of Eqs. (13) and (14), tan 2X andf2 were obtained directly by 
multiplications and a division. The multiplications in the computation of tan 2X were checked 
by the distributive law, those in the computation of12 by the associative law, and the division 
by multiplying the quotient by the divisor. All results were printed in duplicate and were 
also punched on cards in order that they might be available for future usc if desired. 

Using the two sets of printed results, the values of X andfwere computed by two people 
working independently and later comparing the two sets of computations.37 

It is believed that no error has been made at any stage of the computation except in the 
truncation' of the, series of aU,j and b11,j terms. Th~s it is felt that the results contained in 
Tables 1 and 2 are entirely accurate when either (X or p is very small, are significantly in error' 
when (X is very large (unless p is very small), and are probably accurate to well within 1 percent 
in all cases except when (X = 80, 100, or 200. 

The total machine time consumed by this problem was slightly over two weeks. It is felt 
that here is a perfect example of the situation where a large-scale automatic calculator has a 
tremendous advantage over hand or desk computers, perhaps not so much in the matter of 
speed as in the problem of organization. 
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The method of double refraction of flow in systems containing large asymmetric molecules 
gives experimental data which,. when interpreted in light of the theory of Peterlin and Stuart, 
enable one to calculate nlOlecular lengths; information about the polydispersity of the system 
and about the optical properties of the solute particles may also be obtained from such data . 

. Heretofore, this theory had been developed so that. the data could be interpreted only 
under the limiting condition of low velocity gradient where the degree of orientation of the 
solute particles is very small. With the aid of the Mark I computer;· the necessary equations 
have been solved to give numerical values over a much wider range of velocity gradients, . 
thus greatly increasing the usefulness of flow-birefringence measurements for the study of 
macromolecular systems. 
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24. For example, for prolate ellipsoids (a > b), rotary Brownian movement of the a-axis about 
the b-axis is characterized23 by the rotary diffusion constant 0 b and a relaxation time T a, where 

3q2(2 - q2) 1 + vI _ q2 
---===- In - 3q2 v1- q2 q 

2(1 - q4) 

. where q = liP = bfa, and the zero subscript refers to quantities for a sphere of the same volume. 
If a > Sb, the following approximation is valid within 1 percent: 

1 3kT 
0 b =- = -- (2 In 2p-l), 

27" a 161T1]a3 

where 1] is the viscosity of the solvent. 
It is thus easily seen that 0 b is not a very sensitive function of the axial ratio p as compared to 

the length of the semimajor axis a. Therefore p can be determined with sufficient accuracy for present 
purposes from viscosity measurements, and may be taken as a known quantity. A determination of 
0 b from flow-birefringence data thus gives the molecular length 2a. 

2S. This quantity is denoted by b by Peterlin and Stuart. 

26. The problem of calculations based on double refraction of flow measurements in polydisperse 
systems will be considered in a later publication'. 

27. The expression for the distribution fl,lnction for the steady state may also be given in the 
equivalent form4 

011F = div Fw, 

where w is the angular velocity of the particle and is a function of G and R; 0 is the rotary diffusion 
constant showing the analogy between the rotational problem and the similarly expressed problem 
of translativnal diffusion embodied in Fick's laws. The substitution of Jeffery's expressions19 for 
wand performance of the indicated vector operations leads to Eq. (2). 

28. Jahnke and Emde, Tables of fil~ctions (Dover, New York, 1945),p: 107. 

29. The series appearing in Eqs. (13) and (14) can be shown to be equal to 

~ . 1 - Sf ~ . 1 Sf. 
L.. RJ- all j = --'- cos 2X, and L.. RJ- b11 j = -- sm 2X. 

j=1 ' 161TR j=I' 161TR 

These terms appear explicitly in the treatment offlow birefringence in polydisperse systems.26 Tables 
of these functions would be of significant help for such computations. 

30. The change of sign in the equation for J, when p changes to l/P, is due to the factor R before 
the parentheses in' Eq. (14). 

a =_~, 1 .. b =_3_ 1 . 
31. 11,1 87T 1 + 36/a2 ' 11,1 47ra 1 + 36/a2 

32. Simha, J. Phys. Chern. 44, 2S (1940). 

33. Eirich, Reports on progress in physics, vol. 7 (1940), p.329. 

34. Personal communications with Drs. Onsager, Peterlin, and Simha. 

3S. Kuhn and Kuhn, Helv. Chim. Acta 28, 97 (194S); see especially Eqs. (73) and (74). 

36. This distribution function appears to be correct although its convergence has not' been estab'­
lished. An indication' of the possibility of the convergence was obtained during the computation 
procedure described in the next section. 

37. We should like to express our thanks to Dr. Eric Ellenbogen for aid in computing one of 
these sets. 

239 



L-SHELL INTERNAL CONVERSION 

MORRIS E. ROSE 

Oak Ridge National Laboratory 

While the problem of internal conversion is of considerable interest to nuclear physicists, 
and may be of some interest in connection with the proceedings of this Symposium as an 
example of an intricate and imposing calculation, part of which has already been carried out 
on the Automatic Sequence Relay Calculator (Mark I), I wish to use it merely as a jumping-off 
point to discuss a more general problem. This more general problem, to which I may give 
the title "Interaction of electrons and electromagnetic radiation," is one that is ripe, so to 
speak, for the utilization of modern computing machinery. My principal thesis is that as a 
by-product of the internal-conversion work we obtain a very important contribution to the 
problem of numerical solution for the description of other processes which are of prime interest 
to' the physicist .. These processes are: 

(a) Bremstrahlung, or the emission of light by an electron in the neighborhood of an atom .. 
(b) Pair formatiori, or the transition of an electron: from a negative energy state to a 

positive energy state under the influence of an external electromagnetic field. Again, this 
process takes, place when there is an atom nearby. The'result qf the transition is to create an 
electron-positron pair. 

(c) One-quantum pair annihilation, the reverse of process (b). 
(d) Photoelectric effect, the absorption of light by a bound electron. 
(e) . Compton scattering, the scattering of light by bound electrons. 
To this list we may add the internal-conversion process that is to be described. One 

considers a system of nucleus plus atomic electrons. As a result of a nuclear transmutation 
the nu'cleus is often left in an excited state. It can get rid of its excitation energy by one of 
several mechanisms, of which the most important are: (I) emission of high-frequency Ilght 
(y-ray) or (2) transfer of the energy to one of the atomic electrons, say one of those in the 
K-shell, which is usually the most probable event of this type. This electron is ejected from 
the atom and appears as a sharp line in an energy spectrum measured with an electron spectro-

, meter. Processes (1) and (2) are alternative modes of decay and from a measurement of the 
ratio of the rate of process (2) to that of process (I )--that is, the internal-conversion coefficient 
-one obtains the following vital statistics concerning nuclear structures. ''''hile there is a 
great deal we do not know about a nucleus we do know that in each state, in addition to the 
energy, the angular momentum of the nucleus is a constant of the motion. We also know that 
the parity is a constant of the motion ; this is a two-valued (even,-odd) quantity describing 
the behavior of nuclear wave functions under space inversion. Now the fact that these two 
quantities and the energy are constants of the motion is the only nuclear information inserted 
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into the problem .. \Vhat comes out of an experimental and theoretical study of the internal­
conversion coefficient, together with other data of nuclear spectroscopy, is a quantitative 
knowledge of all the constants of the motion, energy, angular momentum, and parity for the 
pertinen~ nuclear states. There is no doubt in the minds of many physicists that at the moment 
the most promising approach to an understanding of nuclear structure is through the accumu­
lation ot information on the quantum numbers of nuclear states. It is also a well-known fact 
that completely detailed information about the structure of quantum systems is not always 
necessary in order. to make some useful applications. An example is the role of the quantum 
mechanics of molecular structure in elucidating the empirical rules of chemical valence. It 
is to be expected that the study of nuclear spectroscopy will be equally useful. 

In order to make clear the thesis as originally stated, it is necessary to say a few words 
about the details of the internal-conve"rsion calculations. The rate of electron ejection appears 
as a sum over all possible final states of the electron, selected according to conservation laws 
of energy, angular momentum, and parity, of squares of matrix elements referring to each 
final state. These matrix elements, as always, involve certain averages over the configuration 
space of the electron of an equivalent electromagnetic field corresponding to the nuclear 
transition. Thus one deals with integrals of the form 

r F( r;Z,p,J) X I (kr )J(r;Z,j)dr (1) 

in which there appear certain physical parameters Z, p, k, J, I, j. Of these one is interested 
in a particular j,. and the conservations laws are such that once j is chosen there are only 
three free parameters-Z, p, I, for example. The Xl is a spherical Hankel function of the 
first kind of half-integral order. The functions F and f will be referred to as wave functions, 
and, in a relativistic treatment of the problem, they appear as solutions of coupled linear 
homogeneous differential equations to which certain boundary conditions are applied.1 These 
boundary conditions constitute an eigenvalue problem which has a discrete part and a con­
tinuous part; F belongs to the continuous part, f to the discrete part . 

. \!\Then the electron is in the K-shell, which is closer to the nucleus than any other shell, 
it is permissible to neglect the effect of all the other electrons in the atom, and then analytic 
representations of the wave functions are available. The integrals (I), of which there are seven 

. for each Z, p, I, can be represented in terms of functions that have known properties but are 
un tabulated, namely, hypergeometric functions with complex parameters. The complications 
involved in the computations for the number of points in Z, p, I space which was required 
was sufficiently imposing to bring up the question of an alternative procedure, namely, 
numerical integration of the differential equations for at least the F function, which brings 
in most of the complication, and then evaluation of matrix elements, typified by (1), by 
numerical quadrature. For the purpose in hand this procedure turned out to involve a con­
siderably greater number of operations and the first-mentioned. procedure, computation of 
hypergeometric series, was adopted. As mentioned, this work was done at the Computation 
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Laboratory under Professor H. H. Aiken. In the light of later developments and a broadening 
of our point of view, it can be said in afterthought that the second procedure of computing 
wave functions would have been more desirable. 

For the L-shell internal conversion it is not at all legitimate to forget the presence of other 
electrons. They will produce a net field which must be added to the nuclear field and this 
will modify the motion of the ejected electron in an important way. The modification of the 
potential field in which the electron moves can be determined and this itself is a problem of 
no mean proportions. Fortunately, this problenl has been solved by J~ Reitz, assisted con­
siderably by the ENIAC. The potential field, which we call a screened field, must be inserted 
in the differential equations, which then determine the wave functions, and, since the field 
is known only numerically, it is necessary to integrate the wave equation numerically. Other 
possibilities, such as analytic representation of the potential function, or perturbation OI 

variational techniques, for finding the wave functions turn out to be highly impractical. 
I will omit any discussion of the many interesting problems that arise in connection with 

the numerical solution of the wave equation, except to remark that one of the most difficult 
parts of this problem is to obtain well-behaved solutions in the discrete spectrum. For 
this purpose it is well to remember that a highly accurate eigenvalue may give a poor 
wave function and that some interpolation procedure for applying the boundary conditions 
is required. This and a number of other problems of methodology have been solved and it is 
hoped to put the L-shell internal-conversion computations on the Mark III shortly. 

In the process of calculating the internal conversion it will be necessary to tabulate 3N 
discrete-spectrum wave-function pairs where N is the number of atoms for which the calcu­
lations will be made; N will be about 10. In addition, for radiation fields of angular momenta 
l = 1 through l = 5 and for six values of the energy (parameter p or k) and N = 10 it will 
be necessary to tabulate 840 wave-function pairs in the continuum. These will·comprise 
final-state electron waves of all angular momenta J up to 13/2.2 With these wave functions 
about 104 matrix elements (quadratures) will have to be computed. This in briefis the program 
for the L-shell internal' conversion. 

The 840 continuous-spectrum wave functions thus obtained, which are solutions' for the 
relativistic Dirac electron in a screened field, would represent a compendium of the most 
accurate set of wave functions available. In fact, no wave functions, even without screening, 
have been available in tabulated form. These same wave functions are involved in the quanti~ 
tative description of all the processes involving interaction of electrons and light which were 
mentioned in the preceding. Hitherto all these processes have been calculated by approximate 
methods involving wave functions describing electrons subject to no atomic or nuclear fields 
at all. These approximate calculations suffice where high energies of the electrons are involved 
(say 10 Mev or more) although even here 10- to 15-percent discrepancies between theory and 
experiment have been observed. At low energies very large errors may be incurred by the 
use of these approximate wave functions. Thus for pair production at 1.5 Mev in lead the 
error in the calculated cross section is 100 percent. 
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The wave functions used in the internal conversion work correspond to a representation 
in which the angular momentum and one of its components are constants of the motion. 
For the more general class of interaction problems one needs a representation which corresponds 
to an outgoing current in a definite direction and this implies a linear combination of angular­

momentum wave equations. In order that component functions with J > 13/2 shall con­

tribute inappreciably we are restricted to'low electron energies (up to about 2 Mev). This 
restriction could be removed, of course, by a more extended program of computation of wave 

functions, although even with the restricted number of angular-momentum values some 
interesting work could be done in connection with all the processes that do not involve pairs. 

In the case of the pair phenomena there is another difficulty. The description of these processes 
requires wave functions belonging to the negative-energy continuum. Essentially, these are 
obtained from the positive-energy continuum by changing the sign of the parameter Z. While 
this is a more or less trivial change in an analytic representation of the wave functions, it is 
far from trivial when the wave functions must be obtaine.d by computational methods and 
are to be given in numerical form. The negative-energy wave functions can be obtained in 
exactly the same manner as were the positive-energy functions. This again calls for an even 
more extended program for computing these wave functions. 

It seems to me that such a program would be very much worth while and would constitute 
an invaluable contribution to physics. 

NOTES 

1., The function F is coupled to another function G, f to a function g. Both G and g appear in 
other matrix elements of the form (1). 

2. The unit of angular momentum is 1i (Planck's constant divided by 27T); 1i = 1.05 X 10- 27 

erg sec. 



THE USE OF FAST COMPUTING MACHINES IN THE THEORY 

OF PRIMARY COSMIC 'RADIATION 

MANUEL S •. VALLARTA 

University of Mexico* 

Computing machines ,have been used in the theory of primary cosmic radiation in two 
cases: (a) in the theory of the geomagnetic effects, that is, to solve the 'equations of motion 
of a, charged particle in the field of a magnetic dipole; (b) in connection with problems involved 
in the ,theory of the emission of cosmic rays from the sun, that is, to solye the equations of 
motion of a charged particle in the variable magnetic- field of a sunspot, and the equations of 
motion of a charged particle in the field of two crossed magnetic dipoles. 

It is well ~nown from Gauss's analysis of the magnetic field of the earth as observed at the 
earth's surface that the potential component of this field is the sup~rposition of a dipole and 
a quadripole field, of which the former is by far the more important. Further, the former 
varies as the inverse cube of the distaI?-ce from the dipole, while the latter varies as the inverse 
fourth power of the distance from the quadripole. It follows that at distances from the earth 
of the order of magnitude ofa few earth's radii the dipole field controls the motion ofa charged 
particle, while the quadripole field plays the role of a small perturbation. Since primary 
cosmic rays are charged particles coming to the earth from distances large compared with the 
earth's radius, only the dipole component of the geomagnetic field has to be taken into account. 

The equations of motion are readily set up from the classical laws of motion. The force 
acting on the particle is simply the Lorentz force which, since it always acts perpendicular 
to the path, does no work and 'hence the kinetic energy of the particle is a constant of the 
motion. As a consequence the particle's mass is not its rest mass but its relativistic mass which 
remains constant throughout the motion. 

The equations of motion ofa charged particle in the field ofa magnetic dipole are integrable 
in terms of known (elliptic) functions only in the case of motion in the plane perpendicular 
to the dipole, that is, the plane of the geomagnetic equator. Elsewhere they must be integrated 
by making use of methods of numerical or mechanical integration. Methods of numerical 
point-by-point integration have been extensively used by StOrmer and his assistants at the 
University of Oslo, Norway. As the geomagnetic field varies rapidly, particularly in the region 
,close tothe earth, the interval of integration must be chosen correspondingly short to reach 
adequate precision, and this means that a very large amount of labor is required. Depending 
on the kind of trajectory, a numerical integration by standard methods requires from a day 
to more than a week, and this circumstance rules out the possibility of solving problems where 

* Read at the Symposium by J. C. Street, Harvard University., 
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a large number of complicated trajectories are needed. Hence the necessity of using fast 
modern computing machines. 

When the field has axial symmetry, as in the case of a dipole, a second integral of the 
motion exists in addition to the kinetic-energy integral already mentioned. This second 

integral is the projection of the 'moment of momentum of the particle at infinity, relative to 

the dipole axis, on this axis. As a consequence the motion can be split up into two motions: 
(a) a mot jon in the meridian plane, that is, in a plane containing the dipole axis; (b) a rotation 

of the meridian plane. Most of the important problems related to the theory of primary 

cosmic radiation, in particular the geomagnetic effects,' do not require the knowledge of 
the motion of the meridian plane. 

A particle of given energy and angular momentum can move only within certain regions 
of space known as the Stormer regions. Outside of these regions the kinetic energy would 

become negative, or, what amounts to the same thing, the time would become imaginary. 
The shape of these regions is determined from the value of the energy and the angular 
momentum. 

The main result of the analysis of the motion ofa charged particle in the field ofa magnetic 
dipole is that all particles of a ,given energy and sign must arrive at any point on the earth 
from directions within a certain cone, known as the allowed cone. This cone has its vertex 
at the observer on the earth and its generators are further described below. The allowed 

cone is a cone of many sheets: the first sheet determines the so-called main cone, which has 

the property that any direction within is an allowed direction; the last sheet determines the 
shadow cone, which has the property that any direction outside is a forbidden direction. 
Between the main cone and the shadow cone the sheets of the allowed cone determine alter-

'nately bands of allowed and bonds of forbidden directions of very complex structure. This 

has been called the region of penumbra. 

The generators of the main cone are trajectories, which are asymptotic to members of. 
the family of unstable periodic orbits that are farthest removed from the earth, and which 
do not form loops, known as trajectories of the first kind; the generators of the shadow cone 

are trajectories which do not form loops and are tangent to the earth before reaching the 

observer. These trajectories are known as trajectories of the, second kind. The generators 
of the penumbr~ bands are trajectories of either the first or second kinds which form one or 

more loops before reaching the observer. An asymptotic trajectory may at the same time 
be tangent to the ea~th and thus mark a direction along which two sheets of the allowed 
cone, for instance the main cone and the shadow cone, touch each other. Such trajectories 
are known as trajectories of the third kind. 

The equations of motion of the particle in the meridian plane, in appropriate coordinates, 
are 

~:~ = (~~) 4 e2
,1: _ e~X + e-2x cos2 }~, 

d2 }. • sin ). 
- = e - 2,1: sm }. cos }.-
da? cos3 }.' 
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and the equation of motion of the' meridian plane is 

dcp __ 1 __ e- X 

da - cos2 A • 
. ' 

No use of this last equation will be made in what follows. 
The determination of the main cone requires (a) the knowledge of the members of the 

family of periodic orbits that lie farthest from the dipole; (b) the knowledge of the asymptotic 
orbits to each member of the family of periodic orbits. To find the shadow cone, all trajectories 
that do not form loops and are tangent to the earth at some point apart from the point of 
observation must be known. To determine the penumbra bands all trajectories, either 
asympt~tic or tangent, making one or more loops must be available. All these problems 
depend for their solution on the integration of the equations of motion. 

The integration of the equations of motion was carried out by means of the first differential 
analyzer at the Massachusetts Institute of Technology during the years from 1933 to 1939. 
The first integrals may be written 

dA _ J ( -2x 1). 1 1d da - e - cos4 A SIn II. cos II. .a. 

In this form the system of differential equations may be immediately set up and solved in the 
differential analyzer. Five, input tables are needed to introduce the functions '(eXj2Yl)4 - eX, . 
e- 2x, cos2 A, cos- 4 A, and sin A cos A. Four integrators are required.to integrate ,the product 
of the two functions u~der the integral signs and two more to integrate dxjda and dAjda. The 
output is plotted with x as abscissa and A as ordinate. 

The initial conditions are introduced in the machine from a knowledge of x and the initial. 
slope. The knowledge of x and A is sufficient to set the starting points on the input tables. 
To s~t the starting points on the six integrators the values of the functions e- 2x

, (eXj2Yl) 4 
- eX, 

cos2 A, -cos -4 A, sin A cos A, dx/da, and dAjdcr must be calculated. The first four are computed 
from the known values of x and A, the last two from x, A, and the initial slope. 

One way to find the family of periodic orbits is to start the trajectory at right angles to 
the boundary of the StOrmer forbidden region and continue the integration until the point 
where the trajectory has a tangent parallel to the }.-axis is reached. If the point of "vertical" 
tangent is on the equator, the required periodic orbit has been found; if it is not, then the 
starting point is moved along the boundary of the forbidden region until the required trajectory 
has been discovered. In this way it was found that periodic orbits exist only for a limited range 
of values of the 'angular momentum, and . for any value of angular momentum within this 
interval they exist in pairs, of which one is stable and the other unstable. 

To find the asymptotic trajectories a point is chosen on the equator between the earth 
and the outer (unstable) periodic orbit and a trajectory is started in the direction toward 
this orbit; the initial slope is then adjusted by trial until the trajectory neither falls short of 
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nor intersects the periodic orbit. Five to ten trials are necessary, and the critical initial slope 
is determined by this method with a precision of a few thousandths of a radian, as shown by 
independent calculation.I , 2 

To determine shadow orbits one may choose a given value of the energy and angular 
momentum and start trajectories at fixed intervals of a few degrees of latitude, tangent to the· 
earth. These trajectories are then continued until they st;ike the earth at some other point. 
Two limits of latitude are determined in this way. The lower limit is characterized by the 
fact that the orbit through this point is a self-reversing orbit, that is, an orbit that reaches the 
boundary of the forbidden region of StOrmer and reverses along itself. The upper limit 
corresponds to an orbit that has an inflection at the point of tangency and is therefore a 
transition orbit between simple orbits of the second kind and orbits having maxima at the 
point of tangency and minima at points within the earth .. All orbits of the latter class are. 
clearly in "shadow" and are not generators of the shadow cone. 

The determination of penumbra orbits is very much more complicated but follows in 
general along the same lines. 4, 5, 6 

The precision of the trajectories determined with the help of the differential analyzer is 
far from constant and depends on two factors-the number and sharpness of turns and the 
length of a trajectory. For short runs without sharp turns the precision reached may be of 
the order of a few thousandths of a radian; for long runs with many sharp turns the error 
may be as high as half a radian. 

Another problem requiring the use of high-speed modern computing machines is the 
emission of cosmic rays fi'om the sun. A few years ago it was found that the appearance of 
certain solar flares was followed by a sudden large increase in the intensity of the cosmic 
radiation as observed everywhere on the earth except at equatorial latitudes. It seems certain 
that charged particles present in the neighborhood of sunspots can be accelerated up to 
cosmic-ray energies by the action of the variable magnetic fields of sunspots and that they 
can escape only when the proper conditions are satisfied between the permanent dipole 
magnetic moment of the sun and the transient dipole moment of the pair of sunspots associated 
with the flare. To find out the actual trajectory followed by such charged particles from the 
sun to the earth requires the integration of the equations of motion in the combined field 
of the permanent and transient dipoles; This problem has no axial symmetry; consequently 
the angular-momentum integral is lost and only the kinetic-energy integral remains. In 
phase space the trajectories are therefore subject to the condition that they must remain on 
the surface vx

2 + v1/ + vz
2 = 1 (in appropriate units). This condition, translated into con­

figuration space, yields the result that, provided the ratio between the permanent and the 
transient dipoles and their relative orientation is within cet;tain limits, and provided also the 
ratio between the field ~alues is above a certain constant, a tunnel is drilled through the 
Stormer forbidden region of the permanent dipole, and through this tunnel the particles 
acceleI,'ated by the variable sunspot field can then escape. This condition is necessary but not 
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sufficient; in other words, it is not known in advance whether trajectories exist that start 
from the sun and come out of the tunnel. 

The equations of motion in the field of the two dipoles are 

~ d2x = dy (k[3(Z - zo)p· p _ cos y] + [3(Z - zo)Q· p _ CROS
3

C]) 
K2 ds2 . ds r 5 r3 R5 

_ dz (k[3(Y - Yo)p· p _ cos fJ] + [3(Y - Yo)Q . p' ~ cos b]) 
ds r5 r3 . R5 R3' 

and two other equations obtained by cyclic interchange, where K2 = 9Ms/mv, k = Mss/Ms, 
Ms is the magnetic moment of the permanent dipole, Mss is that of the transient dipole; 
p, P, p', Q arethe vectors whose components are, respectively, 

(cos cx., cos (J, cos y), the direction cosines of Mss; 

(x - Xo,Y - Yo, z - zo), Xo,Yo, Zo being the position coordinates of Mss; 

(cos a, cos b, cos c), the direction cosines of Ms; 

(x - Xo,Y - Yo, z - Zo), Xo, Yo, Zo being the position coordinates of Ms; 

r2 = (x - XO)2 + (y - YO)2+ (z - ZO)2, R2 = (x - XO)2 + (y - YO)2 + (z - ZO)2; 

and the origin of coordinates is at the mouth of th~ tunnel nearest the sun. 
In the region close to the sun the field is large and changes rapidly. A preliminary integra­

tion has shown that in this region the trajectory starts out as a tight spiral of a few hundred 
kilometers radius and a few thousand kilometers pitch. As a consequence the velocity vector 
changes rapidly but the displacement is smalL Further, the interval of integration must be 
taken very small to keep within the required precision. 

The U.S. Army has very kindly made available the ENIAC machine at Aberdeen, Mary­
lan~ for the purpose of carrying out the integration of the equations of motion. For the reason 
mentioned above, even this fast rriachine is unable to carry through the integration in cartesian 
coorqinates without prohibitive labor. In order to circumvent this difficulty we have made 
use of the fact that both the radius and the pitch of the spiral' trajectory are slowly varying 
functions of the distance along the trajectory, and only the angle turned through is a rapidly 
varying function. We have therefore introduced helical· coordinates' defined by the trans­
formation x =M cos (), Y = M sin (), z = N(), where M, N, and () are functions of the arc 
length s measured along the trajectory. The transformed 'equations are 

d2M . dM d() (d()) 2 d2
() '-- cos .() - 2 - - sin () - M cos () - - M sin () --

ds2 ds ds ds ds2 

= (d:! sin () + }vI cos () ~:) (- . .) _ (d: () + N ~:) (- . .), 
and two more equations obtained from these as in the previous case. It is hoped to start the. 

integrations with the help of the EN lAC this coming fall. The interval of integration will 
be a few thousand kilometers at the start, and. will be doubled every other step.. From fifty 
to a hundred trajectories will be required, and in all some ten million operations will be needed. 
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Without taking account of the time required for necessary machine repairs, the time required 
for the actual integration on the machine will be about a month. 

vVe are indebted to Professor John von Neumann of the Institute for Advanced Study, 
Princeton, New Jersey for his interest and help with' the problem of the emission of cosmic 
rays from the sun. 
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At present the computing machine is employed by theoretical nuclear physicists as a tool 
of research. This is perhaps a more exciting role than such an instrument commonly plays; 
on the other hand, there is the concomitant danger that many of the results record an experi­
ment, an attempt to explain the properties of the atomic nucleus and its constituents as following 
from some initially chosen hypothesis. This is particularly true now when our knowledge of 
the forces that hold nuclear particles together is vague and fragmentary. It is usual that such 
an attempt will be a failure and the numerical results obtained will be ·replaced in the future 
by ones of greater validity. It is thus of the greatest importance to choose problems that are 
presumed to be most fruitful in exposing the inner workings of the nucleus. 

As a consequence of this view of the type of calculations likely to occur, it is highly desirable 
that the computing machine be flexible. Thus, it should be possible to make rapid changes 
in the input of the computer-for example, to change the numerical values of some of the 
parameters; or one might need to change some of the computational details, for in many 
problems where the final results cannot· be envisaged easily a priori it is' difficult to have all 
such details in order for every choice of parameters. Note also the human element here for 
someone must judge how the parameters are t6 be changed. Thus, for some of the very fast 
computing machines under construction, it seems likely that the nuclear problem cannot be 
run continuously. Rather it must be possible, particularly for economic reasons, to switch 
to some other problem while the decision is being made. . 

Before discussing some of the computational problems that occur in nuclear physics, it is 
useful to tabulate the types of data which nuclear theory must be expected to correlate and 
explain. Some notation is necessary: A is the total number of particles in the nucleus, Z is 
the nuclear charge and therefore the number of protons, A-Z is the number of neutrons. 
(I) The mass of the nucleus may be measured. Its deviation from the sum of the masses of 
the individual neutrons and protons that make up the nucleus is called the binding energy, 
constituting the first body of nuclear data to be explained. (2) Under the influence of external 
forces such as those produced by y-rays, electrons, or nuclear projectiles, the nucleus can gain 
energy and exist for a short while in an excited state .. The energies required to excite each of 

.these various excited states form a second set of data. (3) In comparing two nuclei with the 
same number of nuclear particles, that is, the same value of A, it is found that one of them is 
more stable. The optimum value ofZ for each A, and the differences in binding energy 
between the stable nucleus and the unstable nuclei, must be explained. (4) Another set of 
important data is found by applying electric or magnetic fields to the nucleus. From these 
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measurements we may obtain the magnetic moment and the electriC quadripole moment of 
the nucleus. A related datum is the total angular momentum of the nucleus about its center 

of mass. 
As an example, consider the case A = 2. The most stable system with this value of A is 

the deuteron, consisting of a neutron and proton. The other systems with this value of A, 
two neutrons or two protons, are less stable; actually, they are unstable. The deuteron has 
a binding energy of 2.23 Mev. It has an electric quadripole moment of 2.73 X 10- 27 cm. 2

, 

and a magnetic moment of 0.8565 nuclear magnetons. "The angular momentum is 'Ii (Planck's 
constant divided by 27T). There are no excited states for the deuteron in which the neutro~ " 

and proton remain bound to each other. 
The scattering and absorption of particles by" nuclei, together with the resultant trans­

mutations of the target nuclei, provide another important source of data. In this type of 
experiment, the incident particle-neutron, proton or alpha particle-upon striking the nuclea"r 
surface may be reflected, giving rise to scatterh~g, or it may be absorbed. Upon absorption, 
the resultant nucleus will be unstable emitting the~ a particle (it can be the same type as the 
~ncident particle). The residual nucleus is generally not the same as the target nucleus. A 
simple example is 

BIO + n -7 Li7 + oc. 

Deuterons, and late1y tritium (H3), are also employed as projectiles. Deuteron reactions 
are of a rather different nature inasmuch as the deuteron is a rather loosely bound combination 
of neutron and proton. When the deuteron approaches the nucleus, the electrostatic field 
of the nucleus repels the proton and thus polarizes the deuteron, so that whenever the neutron 
lies between the nuclear surface and the proton, the deuteron is stretched. If the neutron 
should strike the nucleus with the proton outside, the neutron is absorbed or reflected by the 
nucleus. In either event, the bond that held neutron and proton together in the deuteron 
combin~tion is not strong enough to keep them together under this impact, the proton going 
off independently of the neutron. Upon some occasions, of course, the complete deuteron 
may strike the.nucleus and be absorbed but, at least for small energies, the electrostatic field 
of the nucleus tends to prevent the proton from reaching the nucleus, making thi~ process 
relatively improbable. 

Considerably more fundamental experiments occur when the elementary nuclear par­
ticles-neutrons and protons-scatter from each other as in neutron-proton and proton­
proton scattering, for then we are dealing directly with the nuclear forces between 
particles. 

In this field" of nuclear reactions and scattering a number of functions occur which should 
be and indeed are in part tabulated. This circumstance arises from the fact that one factor 
in describing the probability of an event, for example, absorption by a nucleus, is the probability 
that the particle will strike the nucleus. Since this depends on the motion of the incident 
particle while it is outside the nucleus where the forces acting are known, it becomes possible 
to tabulate this probability for various energies and charges of the incident particle. If the 
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incident particle is a neutron,then the probability may be 3tated in terms of the solutions of 
the equation 

d
2
uZ [k2_1(l + 1)] u = 0 

dr2 + r2 Z , 
(I an integer) , (1) 

subject to the boundary condition Ut -7 eiler. Here k = V2MEjli2, where E is the energy of 
r~OCJ 

the incident particle and M is its mas,s. The required solutions are well known to be kr times 
the spherical Hankel function krhl(kr) , where hl(kr) = VTr/2kr Hz+ l(l)(kr). The important 
physical quantities are' the phase and amplitude of this function. These have been tabulated. 

If the incident particle is charged (for example, a proton, a triton, or an (X-particle), then 
the solutions of the following differential equation are required: 

q~~ + [k2 _ 2'Tj _ 1(1 + 1 )] u = 0 (I an integer) (2) 
dr2 r r2 l, ' 

where 'Tj = MZZ' e2jli2, Z is the charge on the target nucleus, and Z' IS the charge on the 
incident particle. 

It is more convenient to use a dimensionless independent variable 

p = kr. (3) 
Then Eq. (2) becomes 

d2
u Z [1 _ 2ZZ'e2 ~ _ 1(1 + 1)] u' = 0 

dp2 + liv P p2 ,z , (4) " 

where v is the velocity of the incident particle. The solutions ofEq. (4) are known as Coulomb 
wave functions. The solutions of interest must satisfy boundary conditions similar to those 
given in Eq. (2): • 

p~OCJ 

ZZ'e2 
(X = 1iV (5) 

Eq. (4) may be reduced to the equation for the .confluent hypergeometric function. Thus, 
power-series expansions of this function with an infinite radius of convergence exist as well 
as expansions in terms of the spherical and cylindrical Bessel functions. Extensive tabulations 
have been made. of the imaginary part of the solution lto by the Computation Laboratory 
in New 'York City. The higher I values may be obtained by recUrrence formulas, although 
successive application of some will result in loss of accuracy. Note that by making appropriate 
changes in the parameters (X and k the solutions may' be utilized in the discussion of proton­
proton scattering. 

The problem of the nlotion of a deuteron in the electrostatic field of a nucleus has not yet 
been solved. In this case one does not expect to obtain exact analytic solutions; rather the 
attempt is made to reduce the partial differential equation to a form that would be suitable 
for machine calculation. The equation is 

(6) 

Here \l n 2 and \l p2 are the Laplacians in the coordinates rn and rp respectively. The function 
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V is the neutron-proton potential. It is appreciable only when the neutron and proton are 
separated by less than about 2 X 10-13 cm. The function 1p(rn' rv) should b~have as given 
by Eq. (5) as the center of mass of the deuteron goes to infinity. At the surface of the nucleus, 
according to recent models of nuclear reactions, the logarithmic radial derivative with respect 
to r n and also to r v must satisfy specified boundary conditions. Actually this statement of, 
the boundary conditions already contains considerable simplifications. It would, however, 
take us too far afield to discuss these here. 

Coulomb wave functions for electrons also are needed in many strategic places. Here we 
are again dealing with known forces and consequently known equations of motion. For low 
electron velocities and "bare" nuclei (that is, disregarding the extranuclear electrons) the 
electronic Coulomh wave functions satisfy Eq. (4) with Z' = - 1. The effect of the extra-

. nuclear electrons, particularly for low velocities, complicates the calculation considerably, as 
is clear from the earlier discussion by M. E. Rose. However, when the electrons are moving 
rapidly, it is necessary to employ the Dirac equation which satisfies the requirements of rela­
tivity. Again the wave functions satisfy Eq. (4), except that d is no longer an integer. There 
is the additional complication that in the Dirac case there are two such solutions which must 
be properly combined to give the final solution. Wave functions of this type would be useful 
in a large number of problems, all of which are more or less concerned with nuclear structure. 
Besides the problems of internal conversion (see the paper by M. E. Rose) and internal pair 
production, there are the problems of electron excitation and disintegration of nuclei, electron 
production of mesons, and, of great importance in electrodynamics, the production of x-rays, 
the production of electron-positron pairs, and the scattering of electrons by nuclei, where it 
is necessary to take into account the distrihution of charge within the nucleus itself. 

vVe have now exhausted the catalogue offunctions whose tabulation would be of permanent 
value, particularly in nuclear physics. It should be emphasized, however, that these functions 
are not descriptions in any way of the nuclei but rather are tools by means of which the analyst 
may extract the salient features of such a description from the experimental data. For example, 
in the scattering and absorption of particles by nuclei the energy at which resonance occurs 
and the width of the resonance may, by means of the functions discussed above, be translated 
into the value of the logarithmic derivative at the surface of the nucleus at or near the resonance. 
This is a property of the interior of the nucleus. The problem of understanding these facts 
in terms of a theory of nuclear. structure remains. 

Let us now turn to the problem. of determining nuclear structure itself. . Here we attempt 
the calculation of such properties as binding energy, the energies of the excited· states and the 
associated widths, stability questions, electromagnetic properties of nuclei, relative yields in 
nuclear reactions, and so on. The general plan of action consists in utilizing the properties 
of the simpler nuclear systems to test and finally choose the law of force between nucleons. 
Then this law of force is to be employed to predict the properties of more complicated systems. 
Is it possible for such a progranl to succeed? It is not altogether clear that it is; for example, 
the recent discovery of "shell structure" in nuclei indicates at least the possibility that the 
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heavier nuclei are in some ways less complex than the very light nuclei. Or it may be that 
the notion fundamental to this program, that there are laws of force which depend only upon 
the coordinates of the nucleons, may be incorrect. We begin to see that some calculations 
may prove to possess only an ephemeral value. 

Of course we cannot discuss this entire program in detail here. It will suffice to point out 
the mathematical questions involved and some suggested methods of solution. It will be seen 
that much machine ,computation is involved, barring some revolutionary d.iscovery that would 
succeed in reducing the present complication to simplicity much as the Copernican theory 
of the motion of the planets reduced the older Ptolemaic theory. 

The mathematical problem to be solved is that of the Schroeding~r equation: 

[
- 1i2 ] 
2M ~Vl + ?Vii 1p = E1p, 

~ t,J 
i>j 

(7) 

where 1p is a function of all the coordinates of each particle; the subscript i denotes the partiGle 
involved, so that Vii is the potential energy between the ith and jth particles. The word 
coordinate as employed here includes not only the space coordinates but the charge (lor 0) 
and spin (intrinsic angular momentum of each nucleon) coordinates as well. The energy of 
the system is denoted by E; it has its lowest value for the ground state of the system where 
its value is the negative of the binding energy. The excited states of the system all have larger 
energies. The outstanding characteristic of these forces is their short range and their consequent 
rapid variation as the distance between the particles changes. These features of the nuclear 
forces make calculations difficult to perform. 

Equation (7) can be reduced to, a system oflinear second-order ordinary differential equations 
only for the two-particle nuclear systems, for which A =2. These equations may be integrated 
by either numerical or analytic methods if possible. However, even, for the two-body case it 
is often more economical to adopt approximate procedures which lead to the desired results 
more rapidly and easily. For all other 'nuclear systems, three-body and more, approximate 
methods must be employed. 

There are three such nlethods which have been employed in the past and upon which 
we may expect to rely in the future. These are (1) the perturbation method, (2) the Rayleigh­
Ritz method, and (3) the variational-iterational method." 

In the first' of these, the solution 1p is expanded in terms of the eigenfunctions of some 
approximate problem. We rewrite Eq. (7) symbolically in the form 

H1p = E1p, 
where H is an operator. Suppose that 

H= HO + H', 

and that the approximate problem with eigenfunctions Xn. and energies En is 

HOXn = EnXn. 

The energy E is then the solution of a secular determinant 

IH'nm - (E - En)Nnml = 0, 
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where 
N nm = (Xm Xn)~lIm' Hnm' = (Xm H'Xm)· 

We are employing Hilbert space notation; ~nm is the Kronecker~. Approximate formulas 
which assume that the difference between Hand HO is small have been developed2 and are 
customarily employed rather than the full secular determinant. Calculations of this type 
have been made for the lighter nuclei, employing as the unperturbed wave functions the 
harmonic-oscillator wave functions3 (Hermite functions) for each particle, assuming particle 
independence. For the heavy nuclei, plane-wave approximations for each particle have been 
assumed.4 Perturbation methods have also been employed in the resonating-group method 
where the nucleus is presumed to exist for· a time in certain subgroups; it is decided a priori 
which groups are most likely .. This essentially provides a scheme wherein it becomes possible 
to base the properties of a nucleus A on those of A-I. Because of the length of the calcula­
tions, the perturbation method has never been pushed far enough to obtain convergence; 
usually it has stopped early with but a few terms permitting a qualitative understanding of 
some nuclear properties, and on the other hand leading to some very grave misconceptions. 
It may not be the ,most appropriate method but certainly it is one that is readily adapted to 
machine calculation. 

The Rayleigh-Ritz method enjoyed a very great success in the theory of the atom and 
consequently has been employed in nuclear problems. The method as it is customarily 
employed consists of two parts. First (note that one may use either the independent particle 
picture or the resonating-group method) one assumes a form for the function "p involving 
nonlinear parameters. These nonlinear parameters are then determined by the variational 
principle .. However, as is well known, this procedure yields only an upper bound to the eigen­
value. The second step is an attempt to determine the eigenvalue itself. The initial c40ice 
for "I) is made the first term in an infinite series offunctions with linear undetermined coefficients, 
the functions involved forming a complete set for the problem under discussion. Introducing 
this series into the variational principle yields a secular determinant similar to Eq. (8). By 
considering the successive values of E as the number of terms i~ the series is increased, one 
may estimate the convergence and thus the final value of the eigenvalue E. Unfortunately, 
this procedure is not foolproof, 5 for sometimes the convergence obtained may be false. This 
is caused in part by the faulty choice of the type of unperturbed problem. However, a con­
siderable fraction of the difficulty lies in the rapid variation of nuclear potentials with 
interparticle distance, implying the need to employ a considerable number of eigenfunctions 
with fairly large quantum number. Hence the lack of convergence. 

In the discussion of both the perturbation and the variational methods we have concentrated 
on the calculation of binding energies and the energy levels of nuclei. However, it should be 
noted that both of these methods apply as well to scattering and nuclear-reaction problems. 
Their application to these problems has been made for only the very light nuclei. 

The variation-iteration method adds to the variation method (a) a systematic method of 
improving the initiaJ trial function and (b) a method of obtaining a lower bound which, 
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combined with the upper bound given by the Rayleigh principle, deter~ines the required 
eigenvalue to a certain accuracy. The method has been applied successfully by several authors. 
Convergence is rapid and security in the results is available because of the, existence of a 

. lower bound. 
The problems under discussion may all be written in the form 

A1p = AB1p, 

where A and B are Hermitian operators and A is an eigenvalue. 
A = - (1i2 j2M) '2\1 i 2 + '2 Vij) B = 1, A = E. There is another 

ii,j 
i>j 

(9) 

For example, in Eq. (7), 
possibility, however. Let 

Vii = qfij, where fii is just the form of the dependence of the internucleon potential energy, 
and q is the measure of the strength of that potential. The number q may also be considered 
as the eigenvalue A, A = E + (1i2j2M) '2\1 i2, B = '2hi. In this formulation E is assumed to 

i i,j 
i>j 

be known, and the necessary strength of potential needed to obtain this value of E is computed. 
At the present stage in the history of nuclear physics, this is actually a inore convenient order, 
for we are now interested in determining what Vii will yield the known experimental binding 
energies. It is this formulation which has been employed in the calculations that so far have 
been made with this method. 

The technique goes as follows. By some means or other, either by the Rayleigh principle 
or by knowing a reasonably good approximation to the correct eigenfunction, an initial wave 
function CPo is chosen. The iteration method is employed to improve the initial trial function. 
It is important to employ in the iteration an operator that essentially involves an integration 
rather than a differentiation. In the problem under consideration, therefore, the successive 
iterates CfJn are generated as follows: 

CfJl = A -IBCfJo, 

Cf2 = A -IBepl, 

epn+l = A -IBepn· 

(10) 

It is easy to see how the successive applications of A -IB improve epo. Since the solutions of 
Eq. (9) form a complete ortho~ormal set {1pn} we may expand epo in terms of the set: 

Then 

co 

epo = '2ap1pp. 
o 

co 

~ap 
Pn = 6 Ap n 1pp, 

p=o 

where Ap is the eigenvalue associated with 1pp. Inasmuch as there is an eigenvalue in the set 
Ap , say Ao, which has the lowest absolute value, ep", -+ (constant) 1po. 

",~co 
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From these successive iterates it is possible to form successive approximations ,to the eigen­
value by employing the iterates as trial functions in the two variational principles: 

(1p, A1p) 
Ao = stat. value of (1p, B1p) (11) 

and 
. (1p, B1p) 

Ao = stat. value of (1p, BA -1B1p)' (12) 

Introduce into these expressions CfJ1, CfJ2, ',' • for 1p. The resultant values of the ratio ,are 

A (1) _ (1,0) 
o - (1:1)' 

A 3/2 ,_ (1, 1 ) 
o -' (1,2)' 

'A (n-l/2) _ (n- 1, n- 1) 
o - (n,n - 1) , (13) 

A (n) ~ (n,n - 1) 
o - (n,n) , 

A (n +"1/2) _ (n,n) 
o - (n,n ~ 1)' 

where (n, m) = (CfJm BCfJm) = (CfJm ACfJm+l)' We now tabulate some theorems with regard to 
the quantities )'o(n) and i Ao(n+l/2). Two cases are to be distinguished. The inequalities are 

special cases of a more general inequality which may be readily found. 
Case 1: A, and B are positive definite operators. 

(b) Ao(n-l/2) > Ao(n) > Ao(n+l/2) > Ao; 

(
A (n+l/2) _ A (n+l») 

() '] ~ A (n+l) 1 0 0 
C ILo:P" 0 - )'1 _ Ao(n+l) , 

(n+l/2) ( Aon - AOn+l/2) . 
Ao > Ao· 1 - A1 _ At+l/2 , 

. A1p . A1p 
(d) mIn B1p < Ao < max B1j); 

(e) the error decreases in the ratio Ao/Al'in going from Ao(n to Ao(n+l/2). 

Case 2: B is positive definite; A is not positive definite. 

(a) Ao(n-l/2) > Ao, 

Ao(n- q-l/2) > Ao(n+p ); P > 0, q > ° 
(b) Ao(n+l/2) > Ao(n+3/2) • •• > Ao if A12 > Ao(n+l)Ao(n,+3/2); 

257 



HERMAN FESHBACH 

(
A (n+l/2) - A (n+l)) 

Ao > Ao(n+l) 1 - 0
1 
A21- Ao(no+l) if Al < 0, 

where the problem has been adjusted so that Ao is > 0. There is one substantial difference 
between the two cases that should be mentioned here. When A and B are positive definite, 
the successive approximations to Ao approach Ao monotonically. This is not true in the other 
case discussed. 

Here Al is the next eigenvalue above Ao in absolute value, A2 the one above that. It is 
generally necessary to have a lower-bound estimate of AI. This may be obtained in several 
ways. In one we employ the relation 

Spur (A-IB)2 = 2:(I/Ap2). (14) 
P 

Hence 
(15) 

The variation-iteration method may be improved by several simple methods, of which 
we shall give two here. One involves using the functions CfJn generated by the iteration as 
base functions for. the Ritz method discussed earlier. This leads to a secular determinant· 
whose elements may be expressed in terms of Ao(n) and Ao(n+l/2) and have therefore been already 

computed. The secular determinant is 

AO 1 ( AO) 1 ( Ao ) I-A (n-l) Ao(n-O 1 - Ao(n-l/2) Ao(n-l)Ao(n-l/2) 1 - Ao(n) • 
0 

Ao 1 ( Ao ) 1 ( Ao) . (16) 1 - A
o
(n-l/2) Ao(n-l/2) 1 - Ao(n) Ao(n-l/2)A

o
(n) 1 - A

o
(n+l/2) . .. 

Ao 1 ( Ao) 1 ( Ao) 1- A (n) Ao(n) 1 -Ao(n+l/2) Ao(n) Ao(n+l/2) 1 - Ao(n+l) 
0 

From the solution of this equation one obtains an upper bound not only to Ao but also to Al 
andA2, etc., depending upon the size of the determinant. Employing an upper bound for 
AI' it is possible from the spur in Eq. (14) to obtain a lower bound for A2 required in one of 
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the inequalities above. Finally, it also becomes_ possible to give another set of lower bounds 
based on the new approximations to "Po obtained by solving the secular determinant. 

The variation-iteration method may also be combined with the relaxation method to 
yield another procedure for automatically improving the initial trial function. These results 
are equivalent to those incorporated in Eq. (16), except that the quantities involved occur 
in a somewhat different order. 

Applications of this method to problems in nuclear physics have been made by Thomas6 

and Svartholm.7 In recent months a series of extensive calculations on the properties of the 
deuteron have been made in which the method was utilized with great success in a rather 
difficult problem. This case was, as a matter of fact, rather interesting, for it involved a non­
positive definite operator, with the consequence that the eigenvalues extend from - 00 to 
. -1- 00. The convergence of the method in this case depends upon the ratio I Ao/ All and in 
some cases ~1 was very close to - Ao, corresponding to a degeneracy in the iterated eigenvalue, 
so that convergence would be slow if the method was applied without modification. One 
may improve the convergence by employing the secular determinant (16) after the first two 
iterations, or as it turned out it was easy to derive an expression which extrapolates to the 
final answer and which is particularly applicable to the nearly degenerate case. 

The variation-iteration method has only been employed for the lightest nuclei, A < 4. 
The problem of extending this type of calculation, or indeed any of the others, to heavier 
nuclei lies in the large number of coordinates involved and the consequent large number of 
multiple integrals of many dimensions that would be required. Probably some approximate 
technique such as that given by the Monte Carlo method would be necessary. In any event, 
it would seem foolhardy to extend the calculations much above A = 4, in vi~w of the present 
uncertainty in nuclear forces and the imminent possibility that some simplifying notions in 
the physics may turn up in the near future. 

In conclusion, we would like to compare the ease with which computing machines could 
be utilized in each of the three methods mentioned. It is rather clear from the outset that the 
variation-iteration" scheme is much more easily adapted to machine computation than either 
the perturbation or the variation method. This is primarily because of the repetitive nature 
of the operations involved, which simplifies considerably the number of directions-the number 
of stored functions-that need to be fed into the input side of the device. When we combine 
this considerable advantage with those already mentioned, it seems to be not too risky to 
predict the increasing use of the variation-iteration method in nuclear problems. 
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I shall attempt to outline the possible application of computing machines, both digital 
and analog, to some of the principal fields of aeronautical research. Although this symposium 
is mainly concerned with high-speed digital machines, a discussion of the application of com­
puting machines to aeronaQtical research could not be complete without considering analog 
machines, because they have already proved themselves extremely useful. The fields of research 
that I shall consider and the order in which I shall consider them are as follows: 

1. Over-all flight-path problems for aircraft, 
2. Stability of aircraft in flight, 
3. Airflow studies to determine aerodynamic coefficients, 
4. Structural analysis of aircraft, 
5. Dynamic simulation of aircraft, 
6. Traffic handling. 

Although the use of computers in the last field will likely be more as a part of a system rather 
than for aeronautical research, I shall want to discuss it briefly because I believe it is one of 
the problems which most requires high-speed digital computing machines. 

Let us first consider the general flight-path problem for an aircraft. I shall use the term 
aircraft to mean both airplanes and guided missiles. The equations of motion can easily be 
derived from consideri~g the forces acting on the craft. If we neglect external forces such. as 
that of ,~ind, which mayor may not be small depending upon the ratio of the velocity of the 
aircraft to that of the wind, the Coriolis force, which is a small effect even for very fast super~ 
sonic aircraft, and variations in the acceleration due to gravity, which is also definitely a small 
effect, then the equations of motion for flight in a plane are (see Fig. 1): 

Mx = Tsin cp - CnSp(x2 + j2) sin f) - CLSp(X2 + j2) cos f), (1) 

My = T cos cp - CnSp(X2 + j2) cos f) + CLSp(X2 + j2) sin f) - Mg, (2) 

where T is the thrust exerted on the aircraft by whatever propulsive system is used to drive 
it, which will, in general, vary with altitude y; C n is the drag coefficient, which is a function 
of the Mach number and angle of attack, becoming quite high in the transonic range; C L is 
the lift coefficient, which is also a function of the Mach number and angle of attack;. S is a 
~haracteristiccross section of the aircraft; p is the air density; 0 is the angle that the velocity 
vector makes with the vertical; cp is the angle that the thrust vector makes with the vertical; 
M is the mass of the aircraft; !{ is the acceleration due to gravity. 
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Since no a~alytic solution has been found for' the above set of non1inear differential equa­
tions, it is necessary to use numerical or analog methods to obtain the flight path. Obviously, 
hand methods of numerical' solution can be very long and laborious for some flight paths. 
The automatic digital machine can be extremely useful in solving these problems. The l\1ark I, 
or a similar ,machine, caI?- handle the problem quite well. The use of computing machines 
should make parametric studies of a 'preliminary aircraft design much easier and more eco­
nomical. For instance, the effects of various climb programs" of various thrusts, and of other 
parameters can be studied by varying each parameter within reasonable limits and studying 
the effects of these variations on the over-all flight path. These parametric studies can be 
carried out with analog equipment, providing a high degree of accuracy is not required and 

L 

1 
Mg 

y 

x .. 

FIG. 1. Forces on airplane during flight in a plane. 

providing--ruitable equipment is used. Special function equipment is required for representing 
variation of CD and C L with Mach number, variation of air density with altitude, and possibly 
variation of thrust with altitude. However, if high accuracy is required, digital machines 
must be used. 

In the foregoing discussion of flight-path problems, a stable aircraft was assumed. Some 
of the major problems in aeronautical research are those involving stability. The problems 
of stability and control are closely related. For instance, in order to keep the control forces 
small, the static stability should be low. In fact, highly maneuverable planes such as fighters 
may actually be statically unstable. The problems of stability and control may initially be 
studied separately, particularly in case the aircraft is statically stable, and later tied together 
when the over-all aircraft system, including pilot (either a human pilot or an autopilot) is ' 
studied. I shall not discuss the stability problem in detail because it is discussed f~lly by E. T. 
Welmers in the next paper. However, I would like to say that for ·some stability problems, 
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such as the linearized pitch-plane stability problem, electronic analog computing equipment 
can be used. If one makes the assumptions that deviations from given flight conditions are 
small, that acceleration has negligible effect upon the aerodynamic parameters, and that the 
coefficients are constant for the duration of the analysis, then the stability equations are 
ordinary linear differential equations that can be solved easily by electronic analog computing 
equipment. Parametric studies to indicate the effects of variations over wide limits of each 
of the parameters can be made fairly easily, and these are very useful in design. The accuracies 
achieved with analog equipment are usually sufficient. It may be that even problems such 
as these, which can be adequately handled by analog equipment, will be handled by digital 
computing centers when such centers are more plentiful and when the programming time 
can be ~educed. 'Vhether the problems will continue to be solved by analog equipment or 
whether most of them will besolved by the digital centers will probably be determined mainly 
by economic factors. 

In order to make studies· of the performance and flight characteristics of an aircraft, we 
have already seen that it is necessary to know certain aerodynamic coefficients, such as the 
drag and lift coefficients. The solutions of the airflow problems are aimed at furnishing these 
coefficients. In the past the computations for airflow problems have been largely performed 
with the aid of standard desk machines and at a considerable expenditure of time and effort. 
Digital computers can and will be very useful in solving airflow problems. 

Let us consider, as an example .of an airflow problem, the p~rtial differential equations 
describing in cartesian coordinates the flow about a body for an axially symmetric case: 

(3) 

(4) 

In these equations, x andy are the rectangular coordinates ofa point in a fixed meridian plane 
of the body, the direction of the x-axis being along the·axis of symmetry; u and v are x- and 

y-components of the velocity of the air relative to the body; and a denotes the local speed of 
sound. Of course, the appropriate boundary conditions· must be satisfied for any particular 
configuration being considered .. These boundary conditions are (a) that the component of 
air velocity normal to the aerodynamic body be zero and (b) that there shall be conservation 
of mass, conservation of energy) and conservation of momentum across the shock. 

Eq. (3) is hyperbolic for supersonic flow and elliptic for subsonic flow. Eq. (4) is the con­
dition for -irrotational flow. Aerodynamicists have usually used one of two methods for solving 
these equations for the condition of supersonic flow: (a) the method of linearization; or 
(b) the method of characteristics, by which the foregoing system of partial differential equations 
is reduced to an equivalent but simpler system of ordinary differential equations. The method 
of linearization is not exact enough for many cases but often the results obtained with the 
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method of characteristics have been no more accurate, because the labor of getting many 
points in the step-by-step numerical solution, required when the method of characteristics 
is used, has been too great, and so insufficient points wt:re obtained to assure good accuracy. 
However, if high-speed digital computing machines are used, this difficulty will be overcome 
and· the greater exactness of the method of characteristics can be realized. Indeed, at the 
meeting of the Associationfor Computing Machinery, held at the Ballistic Research Laboratory 
at Aberdeen in December 1947, the computation of the airflow about a cone-cylinder for the 
axially symmetric case and for irrotational flow, that is, the flow governed by the equations 
above, was discussed. At that time it was planned that a solution to this problem would be 
carried out on the ENIAC, and I believe that this has been done. The general three-dimen­
sional problem for supersonic flow has not yet been worked out, although Ferri has recently 

. published a technical note on "The method of characteristics for the determination of super­
sonic flow over bodies of revolution at small angles of attack."! 

For, airflow studies, large-scale digital computing machines will probably be most useful 
in two general types of problems: (a) those involving a large set of similar problems such as 
the work done at the M.LT. Center of Analysis on tables of supersonic flow about cones,2,3 
and (b) as a research tool in helping to obtain a better understanding of the nature of supersonic 
flow, particularly in studying the effects of viscosity and interference effects in aircraft. It 
must be emphasized that the previous discussions of airflow have been for the nonviscous case. 
Actually, the effects of viscosity may be rather large in some cases. For this reason exact 
solutions of the above exp~essions would certainly not replace the wind tunnel for obtaining 
aerodynamic coefficients of lift and drag. Rather, the high-speed digital computer can be a 
valuable tool in conjunction with the wind tunnel for basic research. The effects of various 
parameters can be more easily isolated by a method of numerical experimentation with a 
digital machine than by physical experimentation with the wind tunnel. The aerodynamicists 
with whom I have discussed these problems believe that the digital computing machine will 
be a vahiable tool not only in working out the theory of visco-compressible flow, but also in 
studying the interference effects in supersonic flow. 

It is axiomatic that aircraft must be built structurally shung, but still as light as possible. 
For this reason a large amount of effort has gone into structural analysis and the stress-analysis 
problem on a modern aircraft is an extremely long and time-consuming task. The method 
which is principally 1:lsed is the "unit method" described first by F. R. Shanley and F. P. 
Cozzone.4 Their paper presented not only improvements in the methods of analysis for 
determining axial and shear stresses in box beams, but also a tabular method whicli permitted 
a considerable saving of time and which can be adapted to machine methods. This method 
consists essentially of dividing the beam structure, fot instance, an aircraft wing, into a number 
of parts, taking cross sections normal to the length or longitudinal axis of the plane and further 
subdividing the structure by longitudinal planes. To facilitate computations, flange material 
is assumed to be concentrated into effective units that coincide with these spanwise divisions. 
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The analysis begins at the outer or free end of the structure and works stepwise in to the fixed 
end, each step using the results of the previous step. Only simple algebraic expressions have 
to be solved for each step but the total amount of computation is large. IBM equipment is 
being used to very good advantage by aircraft companies in this analysis. In fact, before the 
IBM equipment was used, I understand that it was often difficult to do a complete structural 
analysis for an airplane, especially taking into account all of the various loadings that might 
occur for different flight conditions. It is quite an advantage to be able to do so, because 
weak spots can then be found before planes are built and so a considerable saving in cost 
can be effected. 

Let us consider briefly the problem of simulating an aircraft system-that is, the aircraft, 
and the pilot or autopilot that exerts the control on the aircraft. Such a system is a closed 
servo-loop and may be treated as such. We may consider as an example the control of an 
airplane in elevation or pitch by means of an autopilot. This case is considered in a reportS 
by Hagelbarger, Howe, and Howe. First the equations of motion of (1) the airplane, (2) the 
autopilot, and (3) the elevator are determined. Then each of these equations of motion is 

8 
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FIG. 2. Block diagram of aircraft system. 

simulated by means of analog computers. Finally, the three components are tied together 
so as to represent the complete system. This system is shown in block-diagram form in Fig. 2. 
. The equ~tion of motion about the center of gravity for the airplane is 

I·· C1 C2 J 
MtJ () + MtJ () - M;; () = 0 - Zoo odt, (5) 

where () is the angle of pitch, or the angle that the airplane makes with the horizontal; 0 is 
the angle of the elevator with respect to the stabilizer, M tJ, C1, C2, and Zoo are constants, W 

being the forcing frequency applied to the elevator. This single equation does not, of course, 
completely represent the motion of the airplane, but is illustrative of the type of equation 
that is used. 

The constants used in the work mentioned above were taken from a report covering the 
steady-state response of a B-25] airplane to sinusoidal oscillation. Eq. (5) is derived on the 
assumption that the angles 0 and () are small so that the forward' velocity of the airplane 
remains constant. 

When the calculated steady-state response of the airplane was compared with points 
obtained from the computer, there was '.lgreement to within the limits of error of the recorder 
used in conjunction with the computer. 

A circuit was designed that would give about the same gain and phase characteristics 
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as for a B-24 autopilot amplifier, whose response curves were known, except for a frequency 
ratio of approximately two, since it was assumed that the frequencies for a B-25 would be, 
for the same response, about twice those for a B-24.' 

It was assumed that the equation of motion of the elevator is of the form 

(6) 

where To(t) is the net torque applied to the elevator, I is the moment of inertia of the elevator, 
C is the aerodynamic damping coefficient, and K is the aerodynamic restoring torque for a 
unit deflection of <5. 
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FIG. 3. Effect of change in gain on stability; 

I ~ was further assumed tha t 
To = KIHm + K2(J, 

in which Hm is the hinge moment applied to the elevator and is equal to Bco, where eo is the 
output of the autopilot circuit and B is the autopilot gain factor. 

Now these three elements were tied together to form the complete,aircraft system. Again 
checks were made of the steady-state frequency response to compare the calculated curves 
with the curves determined by the computer. Again the agreement was good, as would be 
expected. The resonant frequency of the system was measured, and the degree of stability 
was studied as a function of the autopilot gain factor by using a step input signal. The effect 
of this change in gain can 1;>e seen in Fig. 3. It is to be noted that for the higher gain, (J follows 
(Jo much more closely and the static erroris almost zero. 

With such a simulator it is quite easy to make parametric studies to find how changes in 
various parameters affect the over-all stability. Various arbitr~ry disturbances can be put 
into the system and the response of the system to these disturbances studied. A human pilot 
might be substituted for the autopilot provided the forces that he would undergo in flight 
could be put upon him, and so his reactions to various design changes could be studied. 
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Although the analog computing equipment is limited in accuracy, there seem to be many 
simulation problems that can be handled adequately by it. Again, as in my comments on 
stability, 1 should like to say that digital computing machines may be used for these simulation 
problems as high-speed digital computing centers,become plentiful and provided it is economic­
ally advantageous. 

I believe that one of the most important uses of high-speed digital computing machines in 
aeronautics' of the future may well be in the handling of air traffic. As the speed of airplanes 
increases, as the number of flights operating into and out of each major airport increases by 
a large factor, and as all-weather flying becQmes a reality, the present handling systems, 
which depend upon human reaction times, will be inadequate. It is reasonable to believe 
that the vastly shorter reaction time of a high-speed digital computer will be required to take 
the positional information on each plane in the neighborhood of an airport and per~orm the 
necessary computations to determine where it should fit into a complicated and rapidly moving 
landing pattern. Airplanes with very different flying and holding speeds '(holding speeds of 
the airplanes already vary by about a factor of two) and landing characteristics will have to 
be handled and so a fairly large number of rules and airplane-performance data will have to 
be in the machine in order that decisions can be made automatically by the machine, such as 
the altitude at which the airplane will enter the landing pattern, the speed at which it shall 
fly and rate of descent, how close it will be allowed to ~ome to other planes, and the turning 
program to be followed. I do not mean to imply that the system of landing aircraft would 
necessarily be entirely automatic. Actually, there would still be, a pilot in the airplane, but 
he would be receiving his instructions from a high speed digital computer instead of from a 
human controller. A standby human controller would have to be available for emergencies. 

Such an automatic system for handling aircraft probably cannot be realized for several 
years to come, not only because of lack of high-speed computi~g machinery, but also because 
terminal equipment is not available. By terminal equipment I mean the devices for converting 
the positional information, obtained from radars or other devices, into digital data that can 
be handled by a computer, and for performing the reverse function of converting the digital 
commands into intelligence that can be used by a pilot. 

I have not discussed the use of computers for such problems as the reduction of flight dat~, 
or for the preparation of design tables such as Professor Aiken's work done at the Harvard 
Computation Laboratory entitled "Tables for the design of missiles,"6 but I believe that I 
have discussed eno.ugh examples of the use of computing machines in aeronautical research 
to indicate clearly that the aeronautical industries and the aeronautical research centers have 
been using available computing equipment as it is developed. I believe that nearly every 
aeronautical research center and industry now has analog computing· equipluent which has 
either been purchased or built. Many of them have IBM installations, and I believe that 
nearly all the large digital computing machines that are now working have already solved 
problems in aeronautical research. I am very certain that the field of aeronautics will continue 
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to use new computing aids as q~ickly ·as they are available. Problems such as the traffic­
handling problem may well tax the handling capacity of even the fastest and biggest machines 
now contemplated. 
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The upsurge of interest in computational devices and techniques, so well exemplified in 
the Harvard Computation Laboratory, has been welcomed in all fields of aeronautics, but 
perhaps nowhere so warmly as in the field of dynamics. The analysis of the flutter or stability 
characteristics of a modern airplane involves so much computational work that in many aircraft 
companies an equality sign is understood to exist between the words "flutter calculations." 

A detailed discussion here of the derivation of the equations for the problems of dynamics 
would be too lengthy, and actually unnecessary. However, the relation of these problems to 
modern computing methods may be made more clear if some indications are given of their 
sources. Three major problems will be considered, namt;ly, flutter, aerodynamic stability, 
and servomechanisms. The order in which they are discussed is chosen only to permit certain 
comments about their interdependence. Although generalizations concerning standard 
methods of solving these problems cannot be made, the flutter problem has usually been solved 
by digital computation, while the problems of servomechanisms have frequently been studied, 

by analog methods. 
The experience obtained from continued analysis and flight testing has established certain 

broad policies for the guaranteeing of stability. To avoid excessive weight or configuration 
penalties, to allow for unconventional designs or speeds, and to permit consideration of the 
aircraft as a whole, all these require a careful analysis. The dangers involved in testing an 
airplane, especially for flutter, are such that the time spent on analytical work can usually be 
justified. The result has been that a rather complete theory exists for idealized problems and, 
in many instances, experimental verification has been sought for a developed theory, rather 
than theories devised for the explanation' of the physical phenomenon. 

It must be emphasized that the problem statements and met,hods of solution discussed 
here are not unique. In particular, adaptation to modern, digital .techniques may suggest 
more convenient methods of attack. 

Flutter can be described as a self-induced oscillation involving aerodynamic, inertial, and 
elastic forces; at least two degrees of freedom are usually required, for example, wing bending 
and torsion, or wing bending-torsion-aileron rotation. Above a critical velocity (or in a 
certain velocity range) any slight disturbance of the airfoil results in an oscillation of increasing 
amplitude, frequently sufficient to cause structural failure; below this critical velocity (or 
outside the range) such a disturbance causes a damped oscillation. Symmetric and un­
symmetric motions are usually considered separately. 
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The determination of the inertial and elastic forces involved in the problem is relatively 
straightforward. First attempts at determining the aerodynamic forces, in which they 'were 
taken to be proportional to the instantaneous position of the airfoil, were not satisfactory. 
The gradual development of a theory that included the oscillation frequency and the phase 
relations culminated in a complete solution for the forces on an oscillating airfoi~ in incom- , 
pressible flow by Theodorsen, l Kussner, 2 Cicala,3 and Kassner and Fingad04 about 1935. 
The parameter on which these forces depend is bw/v, usually called the reduced frequency, 
where v is the forward velocity of the' airfoil, b the semichord, and w the frequency of oscillation. 
In extending oscillating-airfoil theory to compressible fluids, at each Mach number aero"; 
dynamic forces must be determined for various values of the reduced frequency. 

The mathematical structure of the problem can be illustrated by the simple example of 
wing bending-torsion flutter, and more involved cases can be discussed in terms of the notation 
used there. Applying the differential equations for vibrating beams to the weight, inertia, 
and stiffness distributions of the actual airfoil, or using an influence coefficient' method or a 
Rayleigh-Ritz variational method, the fundamental bending and torsion frequencies Wh and 
(i)cx, and normalized mode shapes h(x) an~ lX,(x), can be determined. The mode shapes h(x) 
and lX,(x) are used as generalized coordinates qi' Because the airfoil properties are not simple 
mathematical functions, the solution for qi is usually a step-by-step digital or a matrix process; 
however, it is not an obvious problem for very large-scale digital computers, since no family 
of solutions is required for a given structure nor is the same coding likely to be convenient 
for different structures. 

In matrix form, the differential equations of motion for a strip of unit width can be written 

(Aq + Iq)q + Aq q + (Aq+ E~)q = 0, (1) 

where the matrices have the following interpretations: q is the column matrix of generalized 
coordinates; dots denote differentiation with respect to time; the A's are square ma~rices 
of aerodynamic terms whose subscripts indicate association with acceleration, velocity, or 
displacement in the generalized coordinates; the elements depend on the reduced frequency 
and the geometry of the airfoil, and will usually be complex to include phase differences; 
lij is a square matrix of inertia terms; the main diagonal involves weight o~ moment-of-inertia 
terms; the nondiagonal (or coupling) elements involve unbalances or products of inertia; 
E is a diagonal matrix of elastic terms, usually expressed as frequehcies in the funda!llental, 
modes. If a three-dimensional theory is considered, integrations over the span of the airfoil 
are necessary. Eq. (1) is not changed in form, but the matrices A and Iij then involve the 
assumed deflection mode shapes. 

Using a method standardized by the Air Forces,5 consider the amount of structural damping 
required to maintain simple harmonic motion. To do this, let q = qoeiwt and add another 
term to the coefficient of q, namely iGq • For convenience, damping coefficients in all modes 
are assumed equal, and thus ' 

q = qoeiwt, iGq = igI; last term of Eq. (1) becomes (Aq + Eq + igI)q. (2) 
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If g > 0, damping must be added to give a 'steady oscillation, implying instability under 
actual circumstances. Substituting Eqs. (2) into Eq. (1) and combining the aerodynamic 
matrices gives 

(A + Iq + Eo.)q~ = 0, (3) 

. where 0. is a complex eigenvalue, 

(4) 

involving a known reference frequency wa , and the required unknowns, frequency wand 
damping g. Vanishing of the determinant of the matrix (A + Iq + EO.) is required for a 
solution and determines values of o.. Substitution of an o. i allows solution for n - 1 of the 
qo elements in terms of the other. 

Change in the reduced frequency bw/v will be reflected only in the matrix A. For an 
assumed value of reduced frequency, the eigenvalues 0i and the associated eigenvectors qOi 

FIG. l. Damping g and velocity v for various values of bw/o. 

can be determined. The status of stability is indicated by the sign of the imaginary part of 
Oi' a positive sign denoting instability. Substituting the known Wa into the computed complex 
eigenvalue, the frequency wand the damping g can both be determined. For the reduced 
frequency chosen, substitution of the computed frequencywand the semichord b, gives 

bw (1) -; = k, v = k bw. (5) 

A graph (Fig. 1) of the damping g and associated velocity v 'for a range of values of bw/v is 
sufficient to determine the critical flutter velocity. 

The determination of complex eigenvalues and eigenvectors in a problem of this type is 
an excellent example of digital calculation; the expansion of the 2 X 2 determinant, the 
solution of the resulting quadratic, and the determination of relative amplitudes (or the eigen­
vector) in this illustration is only a $mall problem for a desk calculator. I would like to indicate 
directions in which the problem expands sufficiently to make its consideration at this symposium 
justified. Complications of three types are obvious-enlargement of the matrices by introduc­
tion of more degrees of freedom, modifications of the aerodynamic matrix A, and modification 
of the structural matrices I and E. These will be considered in inverse order. 

Two possible reasons for modification of the matrices I andE can be proposed. First, it 
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is not always possible to estimate with the desired accuracy the elements of the matrices. 
Uncertainties as to root fixities, or even manufacturing tolerances in a wing attachment, will 
cause a frequency variation; it is almost impossible to calculate the frequency of control-surface 
rotation considering the linkages and supports involved; elastic axes of structures are difficult 
to determine and, for structures with discontinuities, somewhat meaningless; effective weights 
and inertias for concentrated masses are frequently difficult to evaluate .. As a result, it is 
often desirable to solve the flutter problem not only for the best estimate of values for elements 
of E and I, but also for variations of these which may lead to more critical conditions. If 
such conditions appear, changes can be made in the final design or in fabrication that will 
reduce the probability of their occurrence. 

Rather than stemming from ignorance like the first, the other reason arises from the variety 
of configurations under which the aircraft may fly, some of which will change its flutter 
characteristics. Wing-tip external fuel tanks may be full, empty, or may have been jettisoned; 
rockets or bombs may be loaded under the wings; different control-surface actuation methods 
may be used. 'These modifications may also change the aerodynamic matrix, as in the case 
of external wing-tip tanks extending far ahead of the wing. Thus a family of solutions may be 
required for a single airplane. 

Modification of the aerodynamic matrix A can be likewise justified on the basis of ignorance; 
this has frequently been done in studying the flutter of tabs attached to movable control 
surfaces. However, the chief cause for modification is to introduce compressibility or Mach­
number effects. The aerodynamic forces determined by Theodorsenl were for an incom­
pressible fluid, or M = 0; corrections to the M = 0 flutter speed based on the Glauert factor 
(1 - M2) -1 were used for high subsonic speeds.5,6 More exactly, the actual aerodynamic 
forces in compressible flow have been determined by Dietze7 and others, for values of M below 
the critical value at which shock waves form. Above a Mach number of about 0.8, no theory 
exists until definitely supersonic speeds are reached. The papers of Garrick and Rubinow,8 

Temple and Jahn,9 and others, based on the fundamental work of Possio,lo permit a con­
sideration of the aerodynamic forces from M > 1 to hypersonic speeds. 

One method of analyzing flutter in a compressible fluid is to construct a stability graph 
similar to Fig. 1 for each value of M. Only one velocity on each graph will correspond 
to the Mach number for which the graph was drawn. The ~ocus of these points gives 
the complete stability graph. (Fig. 2). A gap wil( exist in the locus f~om approximately 

0.8 < AI < l.2. 
The extension to more degrees of freedom perhaps is most quickly suggested by the existence 

of high-speed digital calculators. Hand calculation passes rapidly from the difficult to the 
inefficient to the impossible beyond four degrees of freedom. 

Recent analytic and experimental work has demonstrated the importance of including the 
rigid-body degrees of freedom, vertical translation and pitch in symmetric motion, and roll 
for unsymmetric motion. Since there are no elastic restraints in these modes, the square 
matrix E is of higher order than rank; thus, for symmetric motion the number of eigenvalues 
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Q; will be two less than the number of degrees of freedom, and one less for unsymmetric 
motions. 

The inclusion of additional portions of the airplane in the analysis is a second source of 
additional degrees of freedom. To the simple wing' bending-torsion problem can be added 
ai1eron rotation and tab rotation. Or the bending-torsion of a st~bilizer becomes a minor 
in the problem of fuselage vertical bending, stabilizer bending, stabilizer torsion, elevator 
rotation, tab rotation, and the rigid-body motions. After noting how a vibrator on the wing 
cart excite the most remote parts of the airplane when at the correct 'frequency, it becomes 
rather questionable to consider a wing-flutter analysis as separate from a tail-flutter analysis. 
A unified analysis of a complete airplane may be unnecessarily involved, even for our best 
computers, particularly if it is possible to reorder the degrees of freedom in such a way that 

M=O M= 1.2 

M=O 

FIG. 2. Stability graph for a compressible fluid. 

elements of the matrices far off the main diagonal tend to vanish. There may be some advan­
tage in coding a problem for perhaps ten degrees of freedom and forcing all flutter calculations 
into that pattern. 

In connection with an analysis of flutter in swept wings, Spielberg, Fettis, and T oneyl1. 

have adopted the following method of introducing the boundary conditions at the wing roots. 
The various bending and torsion modes and frequencies are computed for the actual wing of 
the airplane cantilevered without sweep at its root. Several of the lower bending and torsion 
modes are used as generalized coordinates; the boundary conditions inherent in sweep are 
introduced into the equations, and the eigenvalue problem is solved as before. Unless the 
wing is complicated by concentrated masses, two or three bending and one or two torsion 
modes are usually sufficient, making five to seven degrees of freedom for a simple bending­
torsion symmetric flutter including rigid-body motions. The same method can be used in the 
solution of the flutter problem for unswept wings. 

Another desirable increase in the number of degrees offreedom is suggested by the preceding. 
A possible way of determining the vibration modes of a nonuniform beam or wing is to assume 
modes fora uniform beam that satisfy the boundary conditions and combine them, by varia­
tional principles, into the modes of the actual wing. Similarly, modes for a uniform beam 
can be considered as generalized coordinates in the flutter equation. Accuracy of the same 
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order as that obtained in the previous method will likely require two to four more degrees of 
freedom, a very costly penalty to pay without high-speed digital computers. Today, however, 
it is not unlikely that uniform deflection modes for all problems will sufficiently simplify the 
preparation of the problem for a computer to justify the added computation. 

The problem of stability of an· aircraft differs somewhat from that of flutter in several 
respects. Whereas we have been interested in determining a critical speed for flutter instability, 
we are here primarily interested in the frequency and damping of oscillations at specific 
velocities. The aircraft is considered to be a rigid body and only rigid-body motions are 
studied. Finally; the air forces involved are those of steady-state aerodY!lamics, as contrasted 
with forces for oscillating airfoils studied in flutter. These differences,' however, are more 
traditional than essential. In fact, they are rapidly breaking down: , 

The basic problem may be described as the determination of the dynamic response of an 
aircraft due to the introduction of forces or moments, either externally or by control-surface 
deflections. The forces to be considered are inertial and aerodynaplic. Since quasi-steady 
aerodynamics is assumed, there will be no phafie lags and the aerodynamic terms will.be real. 
The complete system of equations of motion consists of six simultaneous differential equations 
if control surfaces are assumed fixed, and nine such equations if the three control surfaces are 
assumed free, that is, themselves movable under the action of aerodynamic and inertial forces. 

In many instances subsections of the whole problem are of interest; for illustration, the 
equations for motions of an aircraft in its plane of symmetry with free controls will be written. l2 

The dependent variables are D..VjVo, the velocity change divided by original velocity; D..y, the 
change in flight path angle; D..(), the· change in angle of pitch. Unprimed terms of the form 
ai; involve aerodynamic· coefficients and perhaps certain initial conditions; primed terms 
involve both aerodynamic and inertial forces. The differential operator djdt is represented 
by D; the fi(t), frequently step functions, serve to introduce the disturbance instigating the 
dynamic response. We have 

(6), 

Terms ail which multiply the velocity variable are dependent on the Mach number M, and 
thus, solutions must be found for variou3 values of M. As in the case of oscillating air forces, 
the transonic region, 0.8 < M < 1.2, remains questionable. 

'Since only real elements in the matrices are involved, classical criteria such as Routh's 
discriminant can be used for the indication of stable or unstable solutions. Laplace-transform 
methods are ideally suited for determining the actual analytic solution. Analog computers 
can usually be applied directly, and are especially useful for surveys involving numerous 
parameter changes. Solution by a digital computer requires establishment of a sufficient 
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number of cycles to permit determination of the frequency and damping. The degree to 
which digital computers can furnish a solution to the more involved problems of this nature, 
for example, those requiring nonlinear aerodynamic terms, is primarily a function of coding 
difficulties. Standardization to a few basi.c and inclusive types may be the best method of 
attack. Any efforts being made to narrow the gap between digital and analog machin~s will 
be particularly' useful here. ' 

The tr:aditional assumptions on the stability equations are no longer always valid. Aero­
elastic effects introduced by the relatively flexible airplanes of today frequently dominate the 
stability problem. In the case of a missile, this may only require introducing one additional 
degree of freedom-fuselage bending ; the consideration of aeroelastic stability may require 
doubling a fuselage skin thickness that was satisfactory. in all other respects. For an entire 
airplane, such as a swept-wing bomber, the complete problem has probably never been stated 
mathematically. The availability of large calculators bears directly on the interest shown and 
effort expended on such a problem. . 

I t should not be assumed that the only difficulties in the problem are calculational. The 
aeronautical engineer has considerable info·rmation concerning aerodynamics "in the large," 
total lifts and moments for rigid members. The effects of local deflections, or aerodynamics 
"in the small," are on a much less satisfactory basis. Even though the equation coefficients 
are not sufficiently well determined to permit a reliable solution, variations of the coefficients 
ma~ lead to certain relatively invariant properties which may be of interest. The attempt to 
obtain results with inaccurate data frequently points out the important errors, or comparison 
of the unreliable calculated results with experiment may lead to better estimates of the 
coefficients. 

Another of the assumptions associated with stability-that aerodynamic forc~s depended 
only on the instantaneous position of the airfoil-is now being questioned. German research 
during the war indicated that, under certain circumstances, the use of the oscillating air forces 
from flutter theory gave different results, even for the long-period phugoid oscillations. 
Although the oscillations in the Theodorsen theoryl are assumed to be harmonic, other un­
steady air-force theories' can be used for highly damped motions. l3 A proper evaluation of 
the conditions under which unsteady theories are· of importance in stability must await 
additional research activity. 

Various electrical and mechanical' analogs to inertia, damping, and elastic forces are well 
known. The basic components of servosystems lend themselves to the same analogs. As a 
result, the appearance of systems of equations similar to Eqs. (3) and (6) in studying the 
internal dynamics of servos is to be expected. The use of digital computers in solving problems 
relating .to a servosystem itself is not immediately likely. The similiuity between the com­
ponents of analog computers and servomechanisms is ,so pro~ounced that analog methods seem 
to be simpler. Also, it is possible to combine servo units with analog computers to test systems 
without knowing all the analytic details of the servo components. 
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Rather· than illustrate the servomechanism a'spect by considering its internal stability, it 
may be more informative to mention the stability or dynamic equations for a servo-controlled 
airframe. Again the system lends itself to analog solution in many cases; availability, coding 
simplicity, and unification are factors that will influence the use of digital machines. Mention 
was made that stick-free stability involved additional equations, one for each control surface, 
which described the inertia and aerodynamic forces on it. The control surface angle is here 
determined by autopilot intelligence and is applied by a servomotor, rather than by inertial 
and aerodynamic forces. Two additional equations are required for each control surface .. 

Let E indicate the autopilot ~utput voltage and ~b the change in elevator angle. Only 
motionS'in the plane of symmetry of the aircraft are considered. In one instance, Eq. (6) was 
augmented in the following way: 

D+all 0 
~V-

au +.!t(t) al2 ala a15 Vo . 
a21 D+a22 a 2a ·0 a25 ~y a24 + f2(t) 

aat' 
, 

D2 + aaa'D + aaa" 0 
, 

~O aa4 +fa(t) 
, (7) 

aa2 aa5 

0 0 D2+KI D+K2 D2+KaD + K4 0 E a44 + f4(t) 
0 0 0 . Ks D+Ks- ~b_ _aM + f5(t)-

where the Ki are autopilot and servo constants. In many instances rapid'changes of altitude or 
of l\1ach number will require variation of the coefficients au' 

The general comments of the preceding section can be repeated for this case. In. one 
respect the problem here is more serious; the desirable high natural frequencies of a servo­
system are closer to the frequencies associated with flutter than to stability oscillation fre­
quencies~ The flutter matrix will be augmented in much the same way as Eq. (7). ~he 

effect of a high-frequency control-surface oscillation on, the autopilot intelligence is difficult 
to evaluate. The addition of only one degree of freedom involving servo natural frequency 
may present a sufficiently accurate picture. Servo flutter has attracted some analytic attention 
recently,14 but the importance of the problem cannot now be properly evaluated. 

If the "general analysis" philosophy of E. H. Moore is applied to the dynamic problems 
being discussed, the mere association of the word "stability" with these three cases implies 
the existence of a unified theory. This is being realized in practice, partly because efficiency 
requires that methods of attack on similar problems not be contradictory, and partly because 
a satisfactory airplane design depends on their interrelation. Realizing that sheer bulk of the 
problem prevented any logical unified attack, the dynamicist has been unable to influence 
design to the proper. extent. The jumps in the order of magnitude of possible problems that 
have 'been brought about in the last few years now will permit him to attempt the unification 
and contribute more directly to the design. 

Perhaps one way of describing this unified dynamic problem is to consider frequency 
responses. If the response of the complete airplane is known at . all frequencies from zero to 
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beyond the highest structural natural frequency present, all the problems individually discussed 
will be solved. The response of the airplane to slow control-surface deflections will be found 
near zero frequency; abrupt deflections can be analyzed by considering various frequency 

. components. Aerodynamic stability oscillations, with periods from a minute down to a second, 
,vill supply the next peaks in the frequency spectrum. Flutter will contribute resonances with 
frequencies as high as 40 to 60 c/sec. 

Although the flutter problem discussed here is shown as a system of simultaneous algebraic 
equations [Eq. (3)], and the stability and servo aspects as simultaneous differential equations 
[Eqs. (6) and (7)], the unity still exists. The differences in statements reflect traditional ways 
of handling. problems previously considered independent. In comparing calculation with 
flight test, it is desirable to know solutions of the basic flutter equation [Eq. (1)] rather than 
to introduce harmonic motions. The particular trends in solution methods for the unified 
dynamic problem will depend on the computing machines used; thus the problem and its 
method of solution are related. 

As has been indicated, the problems of flutter have been solved digitally from the beginning, 
while problems involving servos have been frequently treated by analog devices. Hand calcu­
lators have been replaced by punch-card methods as the number of degrees of flutter freedom 
has increased. In several instances as many as eight degrees of freedom are consistently studied 
with IBM equipment. In some cases, direct' expansion is carried out; in others, iterative 
methods are used. Within the last few months a flutter problem involving five degrees of 
freedom and four eigenvalues has been solved on the :rvIark I; in the solution, the 5 X 5 
determinant with complex elements was expanded directly and the resulting quartic in Q 

solved by approximation methods. The equations listed for stability have been used on various 
digital machines in the calculation of flight paths for missiles and general dynamic-response 
pro blems of aircraft. 

Two factors influence the use of digital computers in aircraft dynamics. The first is 
primarily educational. Tl:J.e type of problem considered, the degree of complication, and the 
interpretation of results should all be influenced by the tremendously increased calculational 
capacity. "Shotgun" methods are possible, that is, a variety of problems can be solved which 
surround the somewhat uncertain location of the actual. Research activity should tend to fill 
in the gaps of a unified theory. Only by a proper realization of the power of methods of 
solution now ayailable can worthwhile problems be proposed. 

The second factor relates to coding difficulties. Many problems which! could be done 
quickly on large-scale digital machines require a large amount of coding and analysis· time 
for trivial machine time. This immediately tends to discourage attempts at. machine solution 
and allows tedious and inaccurate hand calculation to compete in efficiency. I have attempted 
to indicate in this paper that numerous parameter changes require repeated solutions of similar 
problems; also that it is possible to consider a large, inclusive problem as the basis, and extract 
from it pertinent sections. Thus, if a flutter problem involving ten degrees of freedom and 
eight eigenvalues were already coded, it would be possible to force a large variety of flutter 
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problems into this form; in some cases many of the matrix elements would be zero, but use 
of the same code would still be justified by the resulting standardization. Similar standardiza­
tion of the other. dynamic problems is possible. And as e.£ficient high-~peed computers ~ecome 
more available, a single coding tape for the c.omplete dynamic problem may be possible. 

In conclusion, the problems of aircraft dynamics do have much in common. The increasing 
complexity of aircraft and missiles has required extension of various aspects of dynamic 
prob~ems beyond the possibilities of hand calculators. Utilization of large-scale computing 
machines permits this necessary extension and also allows, for the first time, a study of the 

, coupling between these problems, which have previously' been separated for simplicity in 
analysis. 
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. DYNAMICAL SYSTEMS 
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Consultant in Applied Mathematics, Burlington, Vermont 

I would like to describe a way of treating certain nonlinear dynamical systems that 
reverses the usual trend of expertness in scientific study. Everybody knows that the trend of 
expertness is in the direction of learning more and more about less and less until one knows 
everything about nothing. I do not want to suggest carrying the reverse process to a limit, 
but I do want to propose, quite seriously, a method that gives us no information at all about 
the behavior ora dynamical system in any particular cases, but tells us quite a bit about its 
behavior in a lot of cases. In other words, the results are statistical. 

This paper is divided into three parts; it discusses first ·Why statistical·results may be useful; 
second, the theory of a statistical method that has been found useful in some problems; and 
third, the application of the method, particularly showing how automatic computers will be 
needed in this. application. 

The parameters of the physical systems that we treat in applied mathematics are never 
known exactly. Sometimes this ignorance is the kind we are born with and sometimes it is 
acquired. In other words, 'there are problems in which parameters are not known exactly 
because it is impossible to make perfect measurements, and there are problems in which we 
do not want to bother about fixing their values. For instance, when we set manufacturing 
tolerances, we are in effect saying that we could measure certain dimensions quite accurately, 
but for- convenience we prefer to give them some latitude. 

Sometimes small errors or variations are unimportant, and sometimes they are very 
important. For instance, if I calculate my ~ime of departure for the railroad statio~ and adjust 
my speed of travel aiming to get to the station just as the train is about to leave, a small 
variation one way or the other determines whether I catch the train or miss it. I find, of 
course, that the time of my arrival at my final destination depends very critically on minute 
variations in the values of the parameters I choose. In this dynamical system there is a dis­
continuity in my response to the initial values, and in the thermal energy dissipated at the 
station. 

On the other hand, if I were to drive all the way to my final destination, then small varia­
tions in the speed and time of starting would not be so important. 

Now, suppose I were commuting daily. Then the data that are most important to me are 
not what will happen on any particular trip, but the number of times- per year that I miss the 
train. I could make a statistical study of this factor as a function of my probable error in 
estimating speed, of the time I use in eating another piece of toast, and sn on. 
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The subject of commuting has been treated rather fully by Streeter and Williams, so I 
will leave that subject to them', and turn to a somewhat more dignified problem. The problem 
that started the present study of a statistical method actually has many features in common 
with that of commuting, but arose during the war when we tried to make a device called the 
dynamic tester. The dynamic tester included a servo that made 60 attempts every second to 
catch one of two trains in opposite directions. We did not care whether it caught the right 
train on any particular trip, provided it did not get too far off schedule on the average. 

Figure 1 is a rough schematic diagram of the servo. The tester is intended to put some 
,equipment through its paces at normal speeds, following a precalculated course. A motor M 
drives the equipment being tested; every sixtieth of a second a control device C reads from a 
punched tape what the motor position ought to be, and compares this position with the actual 
position of the motor at that instant. If the motor is lagging, the control device fires a thyratron 

FIG. 1. Schematic diagram 
of a control servo. 

tube and kicks the motor forward, while if it is leading the 
required position, the control kicks it backward. Between 
kicks, the motor coasts at practically constant speed. 

Theoretically, the kicks are all of the same size, and the 
motor catches one or the other every time. In practice, 
the system was stabilized by supplying extra kicks whenever 
the sign of the error changed, but we will ignore this detail 
for the moment. 

Several things are quite clear about this system. By no stretch of the imagination could 
it be solved as a linear system. The impulses to the motor are not at all proportional to the 
error. They are either full-sized positive or full-sized negative kicks. They cannot be linearized 
by averaging over long periods of time, because the sampling interval is not short enough to 
be negligible. On the other hand, we do not care about the exact history of the servo motor's 
position, provided its probable error in following the course is small enougJ:!, and provided 
the error never (or hardly ever) gets so large that the motor gets out of step. 

Dynamically, this servo is very simple, if all the parameters, such as the initial position 
and velocity of the motor, the course, and the size of the kicks are known exactly. Knowing' 
the position at any sampling instant, we can compare it with the position required by the 
course data, and determine whether the motor will be accelerated or decelerated. Adding or 
subtracting the resulting increment of velocity, we can easily calculate the motor position 
and velocity at the ll(~xt sampling instant, 1/60 sec later. This completes one cycle of the 
operation, and we can repeat it as often as we like. 

However, like the time of arrival at the end of a railroad trip, the motor position and 
velocity are discontinuous functions of the initial conditions, and these are never known exactly. 
Tiny variations in the initial position or speed would make the servo lead or lag at the next 
sampling instant, and hence cha~ge the sign of the kick; and the entire future path would be 
thereby altered, not infinitesimally, but by a finite amount. Luckily, this is one of the cases 
where we are not interested in the details of individual runs, but in the statistics of many runs., 
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One of the vital bits of statistical information we need is the probability that the error will 
exceed one half of a revolution, for when this happens, the motor' gets out of step and is lost. 
With the servo taking 60 chances every second, this probability must be very small indeed, 
if the number of failures is to be admissible. The probability of failure should not exceed 
10-5 at most. If we want to estimate such a probability by the usual method, we would need 
to calculate something of the order of a million steps, for each' proposed design. Such a 
program is staggeringly inefficient. 

Evidently a new approach was needed. The servo I have been talking about is one of the 
simplest cases of this kind of problem, but it is not the only one. In general, a dynamical 
system that is subject to random influences of some kind, and that has severe nonlinearity or 
actual discontinuity so that simple linear theory cannot be applied, may be suitable subject 
matter for the statistical method. 

With this brief statement of the reasons for wanting a method of treating the effects of 
random influences in highly nonlinear dynamical systems, I shall outline the scheme that 
finally solved the dynamic-tester servo problem, and suggest its extension to similar but more 
complicated problems. It is the extension to larger problems that calls for automatic com­
puters. 

As background for this outline, let us recall some ideas that are probably quite familiar, 
but that we shall use in a rather different way. The notion of a '''phase space" for a dynamical 
system is very old, as such things go. The phase space for the dynamic-tester servo is very 
simple. It can be represented on paper by making a graph with the position and velocity 
(or momentum) of the motor as coordinates. 

This is true because the state of the servo at any instant is completely determined when we 
know its position and its velocity, and we can represent th~se quantities by a single point on 
the graph. So we can calculate the future behavi·or. of the servo under any set of forces when 
the location of its representative point in phase space is given. 

As timt; goes on, the servo motor is kicked back and forth, and its position and velocity 
change. Its representative point therefore moves about in phase space, and we could trace 
its trajectory if we like; or, if we prefer, we can imagine that we take a series of motion-picture 
frames of the phase space, each frame showing 'therepresentative point in a slight1y different 
position. 

The usual metho~ of dynamics traces the path of the representative point through phase 
space, starting at an arbitrarily chosen initial position. The tra~ing may be done by an 
analytic solution in some few cases, or it may be done step by step, as we said the dynamic­
tester servo could be solved. The essential thing is that a rep!,esentativepoint is tagged, so 
to speak, and, followed as long as its history is of interest . 

. We have noted that the values of the variables and parameters (including the initial values) 
cannot be measured or established with absolute exactness. Even if we tried to start the 
system from a given point in phase space, we could not do so. All we can do is to start it so 
that its representative point is somewhere near a given spot in phase space. If we made a 
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great many tries and plotted the representative point in each case, a microscopic examination 
of the phase space near this spot would . look as if a shotgun had sprayed it, or as if a swarm 
of bees had settled there. As time goes on, 'each representative point moves through phase 
space, so the swarm of bees drifts along. 

This swarm (to use the bee analogy) may stay in a compact mass, actually condensing 
more and more, or it may disperse. In a stable dynamic system, the swarm keeps together 
more or less, but in an unstable system the swarm expands without limit, either actually or 
practically.· If the system is linear or mildly nonlinear, the members of the swarm are well­
behaved bees, s~ldom crossing each other's paths, and in general going along nicely side by , 
side. If the system is discontinuous, however; every bee makes sudden decisions, changing· 
its mind, and darting through tJ:1e swarm. Despite this erratic behavior, the swar-m may keep 
wi thin fairly definite limits. 

In terms of this picture of a swarm moving through phase space, it is easy to point out the 
distinction between the usual dynamic methods and the statistical approach. The usual 
methods follow the flight of one particular bee, whereas in the statistical method we shall 
study the motion of the swarm as a whole, observing its density and its tendency to disperse, 
and noting what proportion of the swarm gets lost. 

Now that we have decided upon a point of view we can see whether it shows us a means 
for the practical solution of problems that arise. 

Suppose that at any instant of time we have a picture of the phase space of a dynamical 
system, showing a swarm of representative points. For brevity, I shall call them simply dots. 
We can arbitrarily partition off the phase space into small cells, and we can count the·number 
of dots in each cell. Then we can record these counts in the cells· of our graph. 

As time passes, the dots move about from cell to cell, according to the dynamical laws of 
the system, For the moment we can concentrate on two cells, A and B, that lie not too far 
apart in phase space. ·Suppose that at time t = 0 there are DA dots in cell A and none else­
where. The first frame of our imaginary movie then shows a density D.A in cell A, and zero 
density everywhere else. The next frame, which we shall ~ay is 1/60 sec later, shows these dots 
somewhat scatter;ed. A certain fraction of them, say N(A,B), has moved from cell A into 
cell B, so that at this time there are N(A,B)D A dots in cell B. 

Using the dynamical relations of the system, we can calculate the "transfer ratio" N(A,B) 
for every pair of cells in phase space. When we have found the function N(A,B), we can put 
our imaginary camera out of focus, so it no longer shows individual dots, but merely records 
the densities of dots in each cell. 

That is, we are no longer interested in individual runs of the system, but only in the density 
of dots in a given cell at a given time. Obviously, we interpret this density as a probability. 
The density in a given cell at a given time is proportional to the probability that the system 
will be found at that instant to have the velocity and position corresponding to that ·cell. 

I. have passed· very lightly over the construction of the transfer ratio N(A,B). Evaluating 
this ratio is analogous to setting up the computing routine for the numerical solution of the 
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dynamical system, in the usual treatment. It varies from problem to problem, and I will 
explain later how it is set up for the particular example of the dynamic-tester servo. 

I wish first, however, to review the general features of the statistical method. It will be 
recalled that the whole scheme depends upon plotting the state of a dynamical system in a 
phase space, so that when a representative point or dot is given, the future behavior of the 
system can be calculated fronl a knowledge of the forces acting on it. In the case of the simple 
dynamic-tester servo, the phase space is two-dimensional, with position and velocity of the 
motor as coordinates. 

The dynamic specifications for the system tell where any dot moves to in an interval of 
time, but instead of following one dot throughout its path, we propose to deal with the density 
of these dots. Using the same dynamic specificatio'ns as in the usual method, we construct a 
transfer ratio that tells us how the density in each cell at the end of a short time interval is 
related to the density distribution throughout the phase space at the start of that interval. 

Instead of starting with an assumed initial point in phase space and following its path, 
then, we start with an assumed initial density of dots representing the initial probability 
distribution for the system, and apply the transfer operation to see how this distribution changes 
with time. Vve frequently find that we can choose the coordinates so that the distribution 
quickly settles down into a static pattern, unless the system itself is unstable. In the latter 
case, of course, the density distribution spreads out more and more, approaching zero every­
~here in any finite region. 

We have seen that the simple servo has a phase space of two dimensions, but ifit had more 
degrees of mechanical freedom, the phase space would have more dimensions~ I think it is 
clear why such a problem would require an automatic computer. 

Having mentioned some problems in which a statistical method seems desirable, and having 
outlined the scheme that was found useful in solving one of those problems, I want to give 
a summary of the numerical methods and results of one simple example. 

We shall reduce the dynamic-tester servo to its simplest form, and shall suppose that the 
"course" called for by the control mechanism is identically zero. Let p be the angular position 
of a brush carried on the motor shaft, measured in arbitrary units clockwise from the zero 
position. For convenience in computation, these units may coincide with the size of the cell; 
they might, for instance, be 10° of actual motor rotation. In the same way, the velocity q may 
be measured in units of one position unit per unit of time. It is convenient to use the interval 
between samplings as the unit of time. Then 1 sec,is 60 units of time. 

We draw a picture (Fig. 2) of the phase space for this system, with coordinates p and q. 
A dot at Po represents the servo at an instant when the motor passes through a position 3 units 
clockwise from its zero position, with a velocity of 2 units. Ideally, th€ control would deliver 

, a negative impulse to the motor whenever the dot is to the right of p = a in the graph. We 
make the simple assumption that the kick is of unit magnitude, so that it instantaneously 
changes the velocity by 1 unit, and we assume that the motor moves with constant speed 
between kicks. 
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In the picture, we see two possible paths for the dot. If the motor were not kicked, its 
dot would move to the right 2 units of position; because its velocity is 2 units. Since the motor 
does get a kick, the dot moves down one space, because its velocity is reduced from 2 units to 
1 unit. The dot therefore moves to the right one space, since the motor travels for 1 unit of 
time with 1 unit of velocity. Similar paths can be found for dots in each cell. 
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FIG. 2. Phase space for the simplest 
form of dynamic-tester servo. 

FIG. 3. Motions of contents of some of 
the cells of the phase space. 

It will be convenient to express the change in position of the dot during one unit of time 
by writing equations for the changes /)..p and /)..q in the coordinate values p and q. Then the 
simple assumptions we have made are equivalent to saying that 

/)..q = - sgn p, 
/)..p = q + /)..q, 

where p and q are the coordinates at the start of the interval. 

p = 0 

50 50 50 50 

50 50 50 50 

50 50 50 50 q = 0 

50 50 50 50 

50 50 50 50 

t = 0 

FIG. 4. Uniform distribution of 
1000 dots in 20 cells. 
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50 50 50 50 

50 50 50 50 q = 0 
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50 50 
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t = 1 

FIG. 5. The distribution of Fig. 4 after 
one application of the transfer scheme. 

In this trivial case, it is easy to see that the entire contents of each cell moves into another 
cell whose position is defined by the conditions on 6..q and /)..p just stated. Figure 3 shows how 
the contents of some of the cells will move. We will carry the trivial case one step further by 
distributing a thousand dots uniformly over the 20 cells shown in Fig. 4. Each cell· has 50 
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dots, but since we are not interested in their individualities, we simply mark each cell with 
the number of dots it contains. We apply the transfer scheme already discussed to this distri­
bution, and find that the densities have shifted t6 the pattern of Fig. 5. One more application 
of the transfer (Fig. 6) will be enough of this rather uninteresting example. We have already 

p = 0 

50 50 50 

50 50 50 50 

50 50 50 50 50 50 q = 0 

50 50 50 50 

50 50 50 

FIG. 6. The distribution of Fig. 4 after two applications 
of the transfer scheme. 

gone far· enough to see that the distribution shows signs of dissipating and, as a matter of fact, 
the system will be found to be unstable. 

To make an interesting and useful example, we need, first, to take account of the imper­
fections of the system, and second, to introduce a stabilizing mechanism. 

It is clear that in practice the control cannot decide without error whether p is positive 
or negative. Because of the finite width of the control brush, as well as backlash, vibration, 
errors in timing the sample, and so on, there will be occasions when the motor gets a kick of 

Table 1. Distribution of probability X 1000 at t = O. 
q 

0 0 0 0 0 0 0 50 50 50 50 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 50 50 50 50 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 50 50 50 50 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 50 50 50 50 0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 50 50 50 50 0 0 0 0 0 0 0 -2 

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 P 

the wrong sign. Of course; the farther the motor is from zero position. the less chance there 
is for a mistake of this kind. In an actual application of the method, an estimate of the proba­
bility of such mistakes would be made by examining the mechanism. For our example, we 
shall simply say that 30 percent of the dots in the blocks between + 1 and - 1 are subject 
to error. Then 30 percent of the contents of the first column of cells to the right of p = 0 
will move as if they received positive kicks, and 70 percent as if they received negative kicks, 
with corresponding conditions in the left-hand side. All cells further removed will receive 
proper kicks. 
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There are many factors that affect the size of the impulses~ as well as their time of applica­
tion. Again, if ·this were an actual problem, we would need to examine the mechanism to 
estimate the probabilities involved, but as this is merely an example, we arbitradly choose a 

Table 2. Distribution of probability X 1000 at t ;:=:: 1. 

q 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 3 2 5 

0 0 0 0 0 0 0 0 0 0 0 0 0 ~O 35 15 2 0 4 

0 0 0 0 0 0 0 0 0 0 0 5 43 35 15 2 0 0 3 

0 0 0 0 0 0 0 0 0 0 5 43 35 15 2 0 0 0 2 

0 0 0 0 0 0 0 0 2 8 48 35 15 2 0 0 0 0 1 

0 0 0 0 0 0 12 30 48 48 30 12 0 0 0 0 0 0 0 

0 0 0 0 2 15 35 48 8 2 0 0 0 0 0 0 Q 0 -1 

0 0 0 2 15 35 43 5 0 0 0 0 0 0 0 0 0 0 -2 

0 0 2 15 35 43 5 0 0 0 0 0 0 0 0 0 0 0 -3 

0 2 15 33 40 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 

2 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 

2 5 22 52 92 93 95 83 58 58 83 95 93 .92 52 22 5 2 Tota.l 

-9 -8 -7 -6 -,5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 p 

Table 3. Distribution of probability X 1000 at t = 2. 
q 

0 0 0 0 0 0 0 0 0 0 o .. 0 0 1 4 5 5 7 4 2 3 

0 0 0 0 0 0 0 0 0 0 0 11 28 32 48 31 14 2 0 0 2 

o. 0 0 0 0 0 0 0 2 15 35 51 49 40 15 2 0 0 0 0 1 

0 0 o' 0 0 0 2 15 35 49 49 35 15 2 0 0 0 0 0 0 0 

0 0 0 0 2 15 40 49 51 35 15 2 0 0 0 0 0 0 0 0 -1 

0 0 2 14 31 48 32 28 11 0 0 0 0 0 0 0 0 0 0 0 -2 

2 4 7 5 5 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 

2 4 9 19 38 67 75 92 99 99 99 99 92 75 67 38 19 9 4 2 Total 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -10 1 2 3 4 5 6 7 8 9 10 P 

·simple law, and say that 10 percent of the contents of any cell will get kicks that are smaller 
than normal by 1 unit, and 10 percent kicks that are larger. We shall select as . the normal 
impulse, for this example, one that makes t1q equal to 2 units of velpcity. 
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Next, we consider the question of stability. Actually, the dynamic-tester servo was stabilized 
by making the impulses much greater whenever the error changed sign, but the analysis will 
be a little simpler if we calculate the distribution when a friction flywheel is used. This flywheel 

Table 4. Distribution of probability X 1000 at t = 3. 
q 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 4 

.0 0 0 0 0 0 0 0 0 0 0 0 0 3 12 12 2 0 0 0 3 

0 0 0 0 0 0 0 0 0 0 3 16 34 34 14 1 1 0 1 1 2 

0 0 0 0 0 0 0 3 15 38 46 49 28 11 9 9 5 2 0 0 1 

0 0 0 0 2 12 29 43 31 39 39 31 43 27 12 2 0 0 0 0 0 

0 0 2 5 9 9 11 28 49 46 38 15 3 0 0 0 0 0 0 0 -1 

1 1 0 1 1 14 34 34 16 3 0 0 0 0 0 0 0 0 0 0 -2 

0 0 0 2 12 12 3 0 0 0 0 0 0 0 0 0 0 0 o· 0 -3 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 

1 1 3 9 25 47 75 108 111 126 126 111 108 75 47 25 9 3 1 1 Total 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 P 

Table 5. Distribution of probability. X 1000 at t= 7. 
q 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1 0 4 

0 0 o . 0 0 0 0 0 0 0 0 1 11 19 13 2 0 0 3 

0 0 0 0 0 0 0 1 3 5 16 3.3 34 16 4 3 1 0 2 

0 0 0 0 0 0 2 9 19 36 56 37 23 13 2 1 1 1 1 

0 0 0 1 6 7 23 43 54 54 43 23 7 6 1 0 0 0 0 

1 1 1 2 13 23 37 56 36 19 9 2 0 0 0 0 0 0 .. 1 

0 1 3 4 16 34 33 16 5 3 1 0 0 0 0 0 0 0 -2 

0 0 2 13 19 11 1 0 0 0 0 0 0 0 0 0 0 0 -3 

0 1 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 

1 3 9 22 55 75 96 125 117 117 125 96 75 55 22 9 3 1 Total 

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 p 

is loosely coupled to the motor, and slips for a short period after the application of each impulse. 
Therefore the change in position is greater than it would be if no such slippage occurred.· 
It can be shown that this is a stabilizing influence. Let ~y be equal to p + 2~q, the figure 2 
representing a stabilizing factor. Again, we ignore effects that would be taken into account 
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in an actual problem. The friction is not constant, the timing is not exact, the velocity of the 
motor is not strictly constant, and so on. These things are easily taken into account, but we 
omit them for simplicity. 

Table 6. Distribution of probability X 1000 at t = 11. 
q 

0 0 0 0 0 0 0 0 o " 0 0 0 1 3 3 1 4 

0 0 0 0 0 0 0 0 0 0 Z 11 16 13 1 0 3 

0 0 0 0 0 0 1 3 5 17 33 34 16 5 4 1 2 

0 0 0 0 0 2 11 22 38 54 37 23 12 2 0 0 1 

Q 0 1 3 6 19 40 53 53 40 19 6 3 1 0 0 0 

0 0 2 12 23 37 54 38 22 11 2- 0 0 0 0 0 -1 " 

1 4 3 16 34 33 17 5 3 1 0 0 0 0 0 0 -2 

0 1 13 16 11 2 0 0 0 0 0 0 0 0 0 0 -3 

1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 -4 

2 8 24 48 74 93 123 121 121 123 93 74 48 24 8 2 Total 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 p 

Table 7. Distribution of probability X 1000 at t = 12. 

q 

0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1 4 

0 0 0 0 0 0 0 0 0 0 2 11 16 13 2 0 3 

0 0 0 0 0 0 1 3 6 19 37 36 17 5 4 1 2 

0 0 0 0 0 2 11 . 22 38 54 37 20 13 1 0 0 1 

0 0 1 3 5 17 36 50 50 36 17 5 3 1 0 0 0 

0 0 1 13 20 37 54 38 22 11 2 0 0 0 0 0 -1 

1 4 5 17 36 37 19 6 3 1 0 0 0 0 0 0 -2 

0 2 13 16 11 2 0 0 0 0 0 0 0 0 0 0 -3 

1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 -4 

2 9 22 50 72 95 121 119 119 121 95 72 50 22 9 2 Total 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 p 

Often it is simpler to tell where the contents of a cell go than to tell where the cell gets its 
contribution from. In other" words, it is easier to express the distribution of density at the 
end of an interval as the sum of a number of partial densities,each consisting" of the flow of 
probability due to one of the contributory causes. This formulation seems to make for easier 
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application of machine computation, also, since it reduces the amount of sorting required. 
In the present example, for instance, we see that, except for the first column of cells, 10 percent 
of the contents of each cell on the right move down one cell. If qo is the value of q from which 
it moves, then this density moves to the right q - 2 cells. Only 70 percent of the first column 
to, the right of zero is affected by ,this move, and only 30 percent of the first column on the left 
is affected. This is a simple transfer, which is easily mechanized. It gives us a partial distri­
bution. Similar partial distributions can be formed of the 80 percent that moves down two 
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FIG. 7. Results of applying the transfer scheme to an initial 
rectangular distribution of density (see Tables 1 to 7). 

rows and right q - 4 columns, and so on. Summing all such partial transfers, we have the 
total transfer of probability or density. 

Tables I to 7 give the results of applying the transfer for the simplified dynamic-tester 
serv~' to the same rectangular distribution of density that we used as the initial distribution 
for the trivial example. The same results are shown graphically in Fig. 7. 

In this paper we have di,scussed dynamical problems, notably those about systems having 
severe nonlinearities or actual discontinuities, for which we want statistical information. One 
of these is the dynamic-tester servo. 

Next, a statistical method has been worked out for following a distribution of runs of 
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such a system instead of dealing- with individual runs. The method consists of plotting' densities 
or probabilities in a phase space, and of calculating transformations for such densities. In 
practice the transformation can be carried out by automatic computers, and if the number 
of degrees of freedom for the dynamical system is large, there will be a great many cells, and 
automatic computers will really be needed. 

Finally, we have glanced at a simple example, and have seen how the probability flows 
around in phase space and gradually 'settles down to a steady flow pattern. 



COMBUSTION AERODYNAMICS 

HOWARD W. EMMONS 

Harvard University 

Fluid-mechanics problems have been developed to date with restrictive assumptions based 
in part upon the problems whose solutions were sought and in part on mathematical conveni~ 
ence. By far the largest amount of work has been done on questions involving the flow of 
incompressible ideal fluids, that is,· fluids of constant density and zero viscosity". Since the 
beginning of this century considerable progress has been made in the extension of our know­
ledge of fluid mec~anics through the addition of studies of the effects of viscosity-thus 
abandoning the ideal fluid-and, mo·re recently, of problems in the flow of compressible fluids 
--thus abandoning the assumption of constant density. Most work on compressible fluids 
has involved a specific type of compressibility, namely, that of the ideal gas. 

In the study of compressible fluids the interesting phenomenon of shock waves appears. 
These dis·turbances are studied directly in order to determine their fundamental nature, that 
is, the variation of temperature, pressure, velocity, etc., through the shock wave itself. They 
are studied indirectly by considering ideal nonsteady flow to determine when and how shock 
waves first develop, and by studying the flow in regions between shock waves, the shock waves 
themselves being treated as discontinuities. 

In a few cases authors have treated problems that involve, besides the various phenomena 
already mentioned, heat transfer between various parts of the fluid and between the fluid 
and the walls. There is one very important phenomenon, however, that is excluded from 
most of these treatments, namely, combustion.. Fluid me~hanics has progressed to the point 
where this phenomenon, or at least the simpler aspects of it, can be added. Take, for example, 
a phenomenon with which everyone is familiar, the flame· on a Bunsen burner. When this 
flame is small, there is a very steady, sharp, central cone surrounded by a stream of hot, 
somewhat luminous gas which fans out above it upon the top of the burner. When the flame 
is large, everyone is familiar with its rather random oscillations. This phenomenon, which 
involves the stability of a jet and the stability of the combustion process simultaneously, would 
undoubtedly .be difficult to analyze. However, a small quiescent flame appears innocent 
enough and suggests itself as an object for study. Curiously enough, this apparently simple 
phenomenon has not to my knowledge been computed. 

I need not spend any appreciable time enumerating practical problems in which a know­
ledge of combustion aerodynamics is important. Besides the simple gas flames such as that 
already mentioned, which are used not only for laboratory work but also for cutting torche'.l, 
welding torches, and other devices, there are all the various furnaces and combustion chambers 
used throughout industry. In every case the aerodynami.c phenomena are responsible for 
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accomplishing the distribution of heat in the desired way. At prescnt our knowledge of this 
field is almost entirely empirical. Certain general principles are yet unknown. This is brought.· 
out most clearly when one observes the difficulty encountered in attempting to change the 
scale of a piece of equipment involving a flame. 

Perhaps the most important approach available to tIle engineer on problems that are 
inherently too complex for present-day computation is the possibility of testing on a model 
scale and then using the resulting information for the design of the prototype. With combus­
tion this is impossible, since the development of a small furnace gives few clues to the perform­
ance of another, say twice as large. In the present paper, the relatively simple problem of 
the Bunsen burner will be considered. 

It is .clear that the most important addition to present-day aerodynamics reqUIrIng 
consideration in order' to include combustion is the interaction of chemical reactions with the 
motion of the fluids. Consideration here will be limited to the combustion of premixed gases. 
'Ve might note that this does not include all of the phenomena of importance, since very 
frequently the fuel and air are not premixed., but, for example, a liquid fuel is sprayed in fine 
droplets from a nozzle. These droplets must evaporate and the resulting vapor must mix 
with air before it can burn. 

Since we are here interested only in the aerodynamics of combustion, we need consider 
only the chemistry of the problem to the extent to which this influences the fluid motions. 
At this point we encounter a setback since, while the aerodynamics of combustion has an 
almost nonexistent literature, the chemistry of combustion has a most extensive literature. 
In spite of this, however, the setback is serious' since an examination of this literature shows 
that in spite of valiant attempts the chemistry of combustion, which in large part is the chemistry 
of reaction rates, is by no means well understood. In f<).ct, for even the' simplest of reactions 
the lack of understanding is still tremendous. From our point of view a review of what is 
known brings out the' following as important phenomena. The reaction which obviously 
propagates into the unburned material from the burned gase~, thus continuing the reaction 
in the neighborhood of the relatively stationary flame front, is propagated through a combina­
tion of effects. The. diffusion of chemical species from the burned into the unburned material 
may act as chain carriers and thus initiate further reaction. Heat from the hot, burned gases 
may propagate forward by thermal conduction (and perhaps in some· cases by radiation) 
into the unburned gases and thus bring about, through the dependence of reaction rate on 
temperature, the reaction in the unburned gas. The reactions themselves depend of course 
upon the precise chemical nature of the combustible mixture. Ions and free radicals and 
various molecular species are present in concentrations that vary from place to place through 
the region of combustion. In fact, probably the best definition of the region of combustion 
~ould be that region in which the composition of the gases differs significantly from the 
reactants and combustion products. The chemistry of the reaction region is not only exceed­
ingly complex but is ~till covered by an· extremely dense veil of ignorance. 
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Thus there appear open to us in the study of the aerodynamics of combustion the same 
two possible approaches as are available and are used in connection with shock-wave pheno­
mena. On the one hand, we might focus our attention upon the aerodynamics of the flame 
itself and ask for the variation of temperature, pressure, velocity, and, what is more important, 
composition, and so forth, through the reaction region. Numerous such studies have been 
attempted with more or less success in'the past in order to clarify the chemistry of the problem. 
A great deal remains to be done in this direction and it is to be hoped that the study of com­
bustion aerodynamics may indeed lead ultimately to the understanding of flame propagation. 

On the other hand, we can focus our attention not on the reaction region but on the flow 
before and after that region. Our success in this approach, like our success in the corresponding 
approach to flow with shock waves, depends very largely upon the physical dimensions of the 
com~ustion region. "If, like shock waves, the combustion region is indeed a small fraction of 
an inch in thickness, then the assumption that it can be replaced by a mathematical dis­
continuity, will not invalidate our results. However, if the reaction region is wide compared 
with other pertinent dimensions of the apparatus, our results would be without significance. 
We will here make the assumption that the reaction region is thin and can be replaced by a 
discontinuity. Thus we are considering those cases of combustion in' which the reaction is 
essentially completed over a very short distance. At present it appears that for most premixed 
gases this assumption is correct. Even in the case of luminous flames in which carbon particles 
are obviously burning over a large region, the primary combustion which liberates these 
excess 'carbon particles takes place very rapidly, the luminous region being present only 
because of the mixing of the "burned" gases with additional air, thus permitting secondary 
combustion of the carbon in a diffusion flame. 

vVe will thus assume that a mixture of combustible gases in an equilibrium mixture arrives 
at the flame front. These gases then- instantaneously react to an equilibrium mixture of 
combustion products. Flame-front relations can be derived by the application of the continuity, 
momentum, and energy laws to an element of the flame front. Such analyses have been made 
many times under fairly general circumstances. 

Since we are here intending to set up for solution the entire flow field, it is desirable to 
simplify the problem as completely as possible. Thus it is to be observed that for a Bunsen 
burner and other low-velocity (laminar) combustion processes, the pressure variations through­
out the flowing gases are relatively small, as are also the temperature variations except across 
the flame front itself. We may assume, therefore, that the unburned gases flow as. an incom­
pressible fluid, and in addition that the burned gases also flow as an incompressible fluid. 
We must, however, take into account the discontinuous change of density across the flame 
front. We will denote the density ratio by n. Then 

PI qllt n = -= '-, (1) 
P2 qn. 

where P is the density of the gas, qn is the component" of velocity of the fluid normal to the 
flame front, the subscript 1 refers to the unburned mixture and the subscript 2 to the products 
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of combustion. For incompressib1e fluids, the value of n completely determines all of the 
flame pr;operties except the flame-propag~tion rate St. The flame-propagation rate, which is 
the velocity of propagation of the flame front normal to itself into the unburned gases, will 
be assumed· to be cons tan t. Then 

qri
l

= qi sin (Jw
I 
= St, 

qn2 = q2 sin: (Jw. = nSt, 
(2) 

where q is the velocity at the flame front and (Jw is the angle between the velocity vector and 
the flame front. 

It is clear that both nand St must be determined for the particular combustible being used. 
For a given combustible, n can be computed with considerable precision from the equilibrium 
properties of the burned and unburned fluids. The transformation rate St, however, cannot 

. yet be computed; moreover, ~urrent experimental data, as interpreted, do not show St to 
be an absolute constant. In fact, one of the principal' uses to which the present theory would 
be put is to take accurately into account those aerodynamic aspects of flames which must be 
understood in order to determine accurately whether or not St is constant for a given flame. 
, 'Viih these two constants the flame-front relations can be completely determined. We 
note from Eqs. (2) that the velocity normal to the flame front changes discontinuously from 
St to n times this value'. The momentum equation written for an axis along the flame front 
shows that the tangential velocity componentqt does not change; 

(3) 

Thus the resultant velocity changes discontinuously from ql to a larger value q2 which deviates 
in direction from qi by an angle o. All these relations are shown in Fig. 1. The difference in 
velocity components in a given direction making an, angle l' with the flame front is shown by 
the geometry of Fig. l. Thus 

(4) 

At this point we shall restrict further consideration to two-dimensional flow. Thus, in 
Fig. 1 we show x- andy-axes with a flame front making an angle (f. with the x-axis. For this 
case, with v = (f., we get . (5) 

,and with v = (f.- 90°, 
(6) 

where u and v are the components of q along the coordinate axes. 
- As will' be seen in the following, the only other flame-front relation we need is the dis­

continuous change in total pressure Po. To derive this relation we start with the momentum 
equation written for an axis normal to the flame front. This gives 

P2 - PI = PI St2(1 - n), (7) 

where P is the static pressure. The' total pressure Po, which is constant on streamlines between 
discontinuities, -is now found from the 'Bernoulli equation, 

P + }pq2 = Po. (8) 
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Thus we get, for the difference in total pressure, 

_ _ P1St
2 ( _ 1) (1 cot

2 OWl) POI POI -. 2 n + n . (9) 

The flow of an incompressible fluid in two dimensions is described by the continuity and 
irrotationality relations (using the usual hydrodynamic notation), 

au av _ 0 
ax + ay - , 
av _ au __ 2w 
ax ay - . 

We introduce the volume-flow stream function 'IjJ by 

PRODUCTS OF 
COMBUSTION 

- d'IjJ a'IjJ 
U = - ay' v = dX' 

2w = aq +.s.. 
ar r 

FIG. 1. Aerodynamic flame-front relations. 
FIG. 2. Relation between rotation and 

velocity variation. 

Thus by Eq. (11) 'IjJ is given by 

(10) 

(11 ) 

(12) 

( 13) 

For an incompressible fluid the rate of rotation is related to the total pressure of the fluid; 
the relation is most easily derived frorn Fig. 2. We have 

aq q 
2w = ar -to ;; (14) 

-but, by Eq. (8), 
ap aq apo 
dr+ pq ar = Jr' ( 15) 

and by the radial-momentum equation, 

Thus 

2w = J. apo. 
pq ar 
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dtp 
q = dr 

Thus finaIJy the desired relation is obtained: 
l,dpo 

2w = p d--;P. 

(18) 

( 19) 

Since Po, the Bernoulli constant, is a function of tp, the rate of rotation is fixed on streamlines, 
w(tp) . . We are now in a position to write the equations that have to be solved in order to 
understand the aerodynamics of a ,simple two-dimensional combustion problem. 

For the unburned mixture (subscript 1), 

d2'1PI d2tpl 
dX2 + dy2 = 2w1 ; (20) 

for the products of combustion (subscript 2) 

d2tp2 d2tp2 
dX2 + ~y2 = 2W2· (21 ) 

For boundary conditions we must rely upon our: physical knowledge td assure ourselves that 
we have a sufficient set to obtain a solution. For the unburned mixture we specify the flow 
passage, by specifying, for example, the channel walls. In addition' the velocity distribution 
must be given at some upstream point (perhaps x = - (0). 

Thus· setting tpl = 0 on one wall, we compute the value of tpl on the upstream section 
from the given velocity distribution. The value of tp on the other channel \\-all.is then found 
and is equal to the total volume flow of combustible gas. These boundary conditions are not 
sufficient to determine tpl, since as yet no conditions closing the domain on the flame side 
have been given. We note that the vorticity distribution in the inlet stream is given by the 
given velocity distribution by use of Eqs. (8) and (19). Since the rate of rotation w is constant 
on streamlines, the vorticity distribution WI is determined simultaneously with tpl. 

For the products of combustion, we again can specify a priori boundary conditions on; 
three sides. Channel walls may be given if the combustion takes place within a passage, or 
free streamlines may be specified as for a Bunsen flame. In either case, the stream function 
is known by continuity: 

(22) 

For free streamlines the additional fact of constant pressure, hence constant velocity, is needed. 
The free-streamline location will be given by the solution. At some downstream section 
(perhaps x = (0), the pressure is taken as constant. This is a sufficient condition, since Eq. (8) 
is a relation bet:ween P02 and q2 and hence between a function of tp, P02( tp) and its first derivative 
q2 = dtp/dn, where n is normal to the as yet undetermined streamlines. 

To complete the specification of the problem we must add sufficient conditions connecting 
tpl and tp2 along the flame front so that tpl' tp2 an~ the flame-front location can be found. A 
sufficient set of conditions is provided by Eqs. (5), (6), and (22) in the form 

(22} 
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(23) 

(24) 

To make the problem soluble, we yet require a method of finding CO 2' This is supplied 
by Eqs. (9) and (19). From these we find at the flame front the relation 

(25) 

The only analytical solutIOn so far found to the above system of equations is the plane 
oblique flame separating two uniform parallel streams. 

If the combustible IS flowing along the x-axis with constant velocity U, the unburned 
stream function is 

"PI = - Uy. 

If a plane flame at angle (X = Ow passes through the z-axis its equation is 

y' = x tan (X = mx, 

and the resulting stream function of the products of combustion is 

(n - 1 )mU 1 + nm2 

"P2 = - 1 + m2 x - 1 + m2 Uy. 

(26) 

(27) 

(28) 

Equations (26), (27), and (28) are the analytic expressions for the flame of Fig. 1 (with ql = U, 
parallel to the x-axis). 

The channel problem shown in Fig. 3 has not yet been solved but will be set up for ·solution 
by two different methods. 

The first is an integral-equation method in which the equations can be solved numerically 
by an iteration procedure. It is based upon the observation that the flame front can be 
considered a line source of strength density 

(d"P') --_. - (n - l)S 
'dl If - t, 

(29) 

where I is distance along the flame front measured to the right when crossing with the fluid, 
and the subscript indicates differentiation along the flame front. In addition to the constant 
source strength, the flame front position is determined by the condition that it propagates at 
the constant rate St; 

(30) 

We now have the entire flow specified by Eqs. (12) and (13). The boundary conditions 
on four sides~inlet, outlet, and channel-are the same as before, no distinction being made 
between' burned and unburned fluid. The separation of burned and unburned fluid is accom­
plished by setting a line source of strength given by Eq. (29) in such a location as to satisfy 
Eq. (30). 

299 



HOWARD W. EMMONS 

The channel of Fig. 3 imposes the specific boundary conditions 

1Jl = ° at x =0, 

1jJ = 1 at x = 1, 

1jJ = x aty -->-- - 00, (uniform parallel stream of combustible at inlet with 

(31 ) 

(32) 

velocity v = 1) (33) 

d1jJ (asymptotically constant velocity on each streamline-this 
dY = ° aty -->--00. is equivalent to the constant-pressure condition) (34) 

y 

STREAMLINE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

--L.REFLECTED 
I PASSAGE 
I 
I 
I 
I 
I I 
I I 

\ I I 
" I I \ 1/ 
~ 2 

INLET 
VELOCITY 
DISTRIBUTION 

FIG. 3. Combustion in a channel. 

x 

The foregoing variables may be considered dimensionless if we use as the unit dimensions 
the width of the channel, the fluid velocity at the inlet, and the total inlet volume flow. 

The velocities induced at any point (x, y) by a source, of strength Q at the point (xo, Yo) 
(including (- xo,Yo) and aU image points) to satisfy the boundary conditions are 

Q [ . sin 7T(X - xo) , sin 7T(X + xo) ] 
uQ ="4 cosh 7T(Y-Yo) - cos 7T(X ~ xo) + cosh 7T(y - Yo) - cos 7T(X + xo) 

= Qqu (x,y, xo,Yo) , (35) 
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Q [ sinh 7T(Y - Yo)· sinh 7T(y + Yo) ] v = - + _-::----;-__ -:-=_---=--..c~-_ 
Q 4 cosh ir(y - Yo) - cos 7T(X - xo) cosh 7T(Y - Yo) - cos 7T(X + xo) 

= Qqv(x,y"xo,yo), (36) 

The corresponding velocities induced by a vortex of strength r at the point (xo,Yo) meeting 
the same boundary conditions are . 

Ur = - rqv(x,y, xo,Yo), 

Vr = rqu (x,y, xo,Yo)' 

(37) 

(38) 

Let the flame be situated along the liney, = y,(x,). Ifwe suppose this line known we can 
write down the velocity components at any point (x, y) for the solution to Eq. (13) using as 
the source strength 

. [ (dy )211 Q = d1J/ = (n - I)Stdl = (n - I)St 1 + d~ 'dx, (39) 

and as the vortex strength 
(40) 

The velocity components are 

u(x,y) = (n - I)S, r [I + (:;rr qu[x,y, x/,y/(x/)]dx/ 

- J.I dxof_CX)CX)w(xo,yo) qv(x,y, xo,yo)dyo, (41) 

v(x,y) = (n- 1)S.J: {I + (tJf 1J.(x,y,x/,y/(x/))dx/ 

+ fol dxof_CX)CX)w(xOyo)qu(x,y, xo,yo)dyo + Vo, (42) 

where Vo is a constant to be selected to provide the given inlet velocity. We now use the. 
condition that the flame propagates at a fixed rate St-Eq. (30)-in the form 

dx, dy, ( dy ') [ ( dy ,) 2] - 1 
St = v (f[ - U (f[. v - U dx, I + dx, (43) 

Thus the integral equation to be solved for y,(x,) becomes 

U + (tJr = (n- I) r[, + (tJf[qv(xt,y"x/,y/) - t; qu(xt,Yt,x/,y/)]dX/ 

(44) 

The functions qw qv have poles at (x/,y/) = (x"y,). The first integral on the right is to 
be taken around the pole on the side of the burned fluid, that is J'/ > y, at x/ = x,. If the 
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principal value of the first right-hand integral is' taken, the value obtained in passing around 
the pole must be added. This value is 

- (n-; 1) [1 + (XJf. (45) 

To determine the constant Vo it is simplest to integrate Eq. (29) to get the total source 
strength as 

"P' = (n - 1). (46) 

Since aty = - 00 (the inlet) this fluid is uniformly confined between x "',0 and x = 1, the 
velocity induced at the inlet by the flame source is 

- "P' - (n - 1) 
Vi = 2~x = 2 (47) 

The vorticity which is confined to the burned gases in the present channel problem induces 
no velocity at x = - 00. Hence, since the resultant velocity was given as unity, 

1 = Vo + Vi. (48) 

Thus finally the integral equation becomes 

n t 1 [1 + (x:rf = (n - 1) f [1 + (1:,:r1' [q.(Xt>YP/,Y/) - X~ qu(x"y" x/,y,:)] dx/ 

(n + 1) .f.l w(xo,yo) [ qy, ] + 2St + ° dxo St qu(x"y" xo,Yo) + dx, qv(x"y" xo,Yo) dyo, (49) 

where principal values are to be taken of all integrals. 
The solution proceeds by first assuming a straight flame front, 

(50) 

where the slope is obtained by supposing the inlet velocity to be unaltered up to the flame. 
Note that (50) satisfies Eq. (49) if the integrals are ignored. 

Now substitute (50) in the first integral on the right ofEq. (49), ignore the second integral, 
and solve for dy//dx/. By integration computey,/(x/). 

In the next approximation it is necessary· (in a channel) to include the second integral in w. 

To do this we note that WI = 0 while W2("P) is not zero but is given by Eq. (25). To find tp 

we start with the complex potential for a source and integrate over the flame front and fora 
vortex and integrate over the products of combustion. 

n - .. • 7T Z - Zo • 7T Z - Zo ( 1) 

f.
l+iY/(l) ( ) ( - ) 

"P = "Po + "PIX - 27T S tZp 0 In SIn 2 SIn 2 . dzo 

1 J . 7T(Z - zo) • 7T(Z + z~) + 27T V • P w(x,y) In SIn 2 SIn 2 dxodyo· 
rCJ!ion bchind 

flame front 

(51 ) 

The constants ."Po and "Pl. are found from the conditions at the inlet, while w(x,y) = w2(x,y) 
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is found from the previous approximation. Taking the real and imaginary parts of Eq. (51), 
as indica ted, 

(n- I)Stfl(' -1 tanh; (y-Yo) -1 tanh~ (y-YO)) ( dYo)! 
'f/l = 'f/lo + 'f/lIX - - 2 tan + tan 1 + -d dxo . nnw ~ 

tan 2 (x - xo) tan '2 (x + xo) 
along 

flame front 

1 J I cosh n(y - Yo) - cos n(x.- xo) d d 
+ 2n w(xo, Yo) n cosh n(y -,)'0) - cos n(x + xo) Xo 910· 

region behind 
flame front 

Aty = -00, 'f/l.= x, but by Eq. (52) 
(n - 1) 

'f/l = 'f/lo + 'f/lIX + -2-" (1 - x). 

Thus 
n-l n+l 

'f/lo ~ - -2- , 'f/ll = -2- , 

(52) 

(53) 

(54) 

in agreement with Eqs. (47) and (48). For the first approximation we find "P2' from Eq. (52) 
by inserting the value ofy,' just found and w 2

0 = o. Now W 2 can be computed fromy,', 'f/l2' 

and Eq. (25). An iterative solution now proceeds by replacing Eq. (50) by y!'(x') and repeating 
the previous steps. This time, however, wl is used in the integrals. 

In view of the involved nature of the integral-equation attack just outlined it seems desirable 
to consider also another method based upon difference equations .. 

For this purpose it is most convenient to introduce the stream function 'Y based upon 
mass flow, This can be conveniently done in terms of the previous stream function 

The basic Eqs. (20) and (21) applied to the flame in a channel yield 

'1"11 + '1"1
2 + '1"1

3 + '1"1
4 

- 4'1"1
0 = 0, 

'1"21 + '1"22 + 'Y2
3 + 'P'24 - 4'1"2

0 = 2€52W 2
0, 

(55) 

(56) 

where the superscripts refer to values at a point 0 and its surrounding points 1, 2, 3, 4 on a 
square net of points of spacing €5. 

The boundary conditionsofEq. (31), (32), and (33) are now used directly. The boundary 
condition of Eq. (34) is applied by assuming that '1"2 = x at first, and then progressively 
correcting this by the equation 

(57) 

which can be used as soon as an approximation to (02(X,y) is available, that is, as soon as a 
first approximate solution to 'I" and the flame front has been obtained. 
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In deriving Eq. (57) use was made of the flame internal boundary condition 

'1"2 = '1"1' 
which follows from Eq. (22). 

(58) 

Equations (23) and (24) expressed in finite-difference form in terms of'F1 and '1"2 complete 
the boundary conditions required to find the location of the flame front and the stream-function 
solution. 

Any technique for the solution of the finite-difference system is suitable. The following 
appears to be a good method of handling the flame-front conditions, for either· a relaxation 
calculation or a computing machine. A square net of points is placed to cover the entire 
channel. A flame front is placed in the channel by guess. This flame of course falls between 
net points almost everywhere. Values of '1"1 and '1"2 are placed at the net points in their 
respective regions by guess in the usual way. At every net point adjacent to the flame front 
a value of'F1 and '1"2 is placed. Thus in a band of points along the flame front there are values 
of the stream function 'I" appropriate to both burned and unburned material. 

Equations (23) and (24) expressed for pairs of points between which the flame passes 
provide a relation between the boundary values of '1", that is, the value of '1"1 on the (2) side 
and vice versa. During the course of solution of the (1) and (2) regi'ons the flame-front boundary 
equations become increasingly in error. Periodically, therefore, these equations are used to 
readjust the boundary values by starting at the center line of the channel where the flame is 
assumed held and recomputing the 'I" boundary values in steps along the flame front. This is 
the finite-difference manner of flame-front characteristic propagation. 

Finally, the flame front itself is located between net points by use of the equaiity of 'Fl and 
'I" 2 at the front, using linear interpolation between nearest points Qn either side. 

The theory of flanles herein described is a first attempt to solve the whole aerodynamic 
problem of combustion in a form that will permit a careful check of the streamlines and flame­
front position with those obtained experimentally. 

Although the theory is stripped to its barest essentials, it is still of such complexity as to 
be solvable by the relaxation ~ethod only with considerable labor. It is to the computing 
machine that those wishing to solve nonlinear boundary-value problems must increasingly 
turn if our growing empirical knowledge is to be supported and guided by a real understandi~g 
of the phenomena involved. 



ApPLICATION OF. COMPUTING MACHINERY TO RESEARCH 

OF THE OIL INDUSTRY 

MORRIS MUSKAT 

Gulf Research & Dellelopment Company 

The writer is neither an analyst nor an electronics expert .. Nor is he qualified to speak at 
all about computational problems as such. At the most, he can claim to be playing the role 
of an interested spectator of the rapidly developing science of computation. 

This paper will be unique in this Symposium. In contrast to the others on the program 
it will contribute nothing to the problem of computing-machinery development. It will not 
discuss the analytic aspects of specific computing problems, nor exhibit any completed solutions 
of mathematical equations treated numerically 'or by large-scale computers. If it will serve 
any purpos~ at all beyond fulfilling a promise made to Doctor Aiken, it may be that of stimu­
lating the development of computing services from the point of view of the industrial user as 
well as that of the computing organization itself. 

Having been in the oil industry for 20 years, I might well be expected to be able to discuss 
authoritatively the subject of computational problems in all phases of the oil industry, as the 
title of this paper suggests. Unfortunately, however, specialization in the oil industry is as 
severe as in many other engineering fields, and anyone individual must content himself with 
developing complete knowledge in at most very restricted aspects of the whole industry. In 
the case of the author, his personal technical activities have been largely confined to the 
physics· of oil production. Nevertheless, for completeness, brief reference will be made to the 
basic types of mathematical problems arising in other pha.ses of the oil industry,' although no 
attempt will be made to do more than' exhibit some of the fundamental equations involved. 
It is only with respect to the equations arising in the physics of oil production that the author 
has had direct experience involving the 'use of large-scale computing machinery. 

To the author's knowledge no serious attempt has yet been made to apply large-scale 
computing machinery to solve the basic problems of geophysical prospecting, oil refining, 
or lubrication. The reason, of course, is that the fundamental equations underlying these 
subjects were formulated long before the development of large-scale computing equipment 
(this term is used throughout the paper to mean digital rather than analog computing 
machinery) and in those cases where solutions were urgently required dir:ect numerical methods 
were applied or such approximations were introduced as to make the equations analytically 
tractable. While undoubtedly the availability of the powerful computing facilities currently 
being developed will stimulate their application to problems arising in future research, no 
active interest in immediate applications in the fields of geophysical prospecting, refining, 



MORRIS MUSKAT 

or lubrication seems to have yet materialized.' Accordingly, we shall merely list some of the 
governing equations pertaining to these fields as indicative of the types of problems that may 
be proposed for computational analysis in the future. , 

~he three major types of geophysical prospecting having widespread application in the oil 
industry are known as the gravity, magnetic, and seismic methods. In effect, they are all 
composed of procedures of making measurements at the surface and inferring from these 
the nature and ,geometry of the subsurface rocks which presumably give rise to the surface 
data. Gravity and magnetic prospecting are both based on potential-theory principles, and 
their aL llytic aspects are quite similar in many respects. It will suffice for our present purposes 

l 

to not( h.erely that the problem of "gravity interpretation'~ is essentially equivalent to that of 
solving' ,the integral equation: 

, ( ) , k Iza ( T ) dT ( I ) 
gz X,Y r3' 

where g z(x,y) is the vertical component of the acceleration due to gravity measured at the 
surface-the x,y-plane; a(T) is the density "anomaly" at the volume element dT lying at the 
depth z below the surface and at the distan~e r from the origin; and k. is a constant. The 
quantity g z is to be cons~dered as the "reduced" value of the acceleration due to gravity after 
correction for surface terrain and the uniform contribution due to an ideal subsurface of 
constant density. 

There'is a voluminous literature on the practical solution of Eq. (1) and its analogs for 
magnetic prospecting by indirect and approximate procedures,l and the direct solutions of 
the integral equations corresponding to simplified forms of Eq. (1), including questions of 
their uniqueness, have been investigated' quite thoroughly.2 From a practical standpoint, 
therefore, there seems to be but little urgent need for undertaking additional analysis by 
large-scale computing equipment. 

In seismic prospecting the situation is essentially the same, although there have been very 
few fundamental investigations of the mathematical aspects of the seismic method. Virtually 
all procedures for interpreting seismic data~re limited to evaluations of the times of travel of 
the various reflected or refracted waves in t'erms of depths and velocities of assumed surfaces . , 

of discontinuity in the underground strata. The wave equation, as such, plays no direct role 
in the application of seismic data. It seems unlikely that machine computation will be called 
on in the study of seismic prospecting, except possibly for long term investigations of phenomena 
which may arise in media of continuously variable elastic properties. 

The term "refining" encompasses such a vast scope of technical activities that no single 
problem can be properly considered as typical. The theories of catalysis, fractionation, solvent 
extraction, distillation, and chemical kinetics all provide potential subjects for detailed investi­
gation by machine computational methods. Of these only the last will be exhibited as an 
illustration. This may be expressed by the set of equations 

dN i '", N' '" 'b N 
dt = ~ aii i + ~ iikN i k + . 

J Jk 
(2) 
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describing the homogeneous-phase kinetics of the interactions and transformations between 
m molecular species of instantaneous concentrations N l , • •• , N m with reaction-rate coefficients 
aij) biik , ••• which are to be considered as empirically determinable constants. The Ni(O) 
are also to be assumed as known. 

The nonlinearity of these equations evidently makes the development of general analytic 
solutions impractical except for extremely. specialized simplified cases. While it is doubtful 
whether the oil industry would support large-scale computing programs for solving these 
equations as a matter of general interest, it is not inconceivable that special circumstances 
may arise where the immediate potential applicability of the solutions would warrant the 
computational treatment of specific sets of these equations. The problem of determining the 
equilibrium distributions-where dNddt = O-among the Ni for heterogeneous reactions has 
been given special analytic study in such a form as to facilitate computational treatment,3 but 
no similar analysis of the transient problems even for gas reactions has yet been reported. 

From an analytic standpoint the only phase of lubrication which has been sufficiently well 
crystallized to lead to strict mathematical formulation is that known as "thick-film" or 
"hydrodynamic" lubrication, in contrast to "boundary" lubrication where surface phenomena 
and interactions are superposed to an important if not predominating degree on the strictly 
hydrodynamic effects. The basic equation was developed as long ago as 1886 by O. Reynolds. 
When generalized to include thermal effects on the density and viscosity of the lubricant, 
though neglecting centrifugal forces and heat transfer by thermal conductivity within the film, 
two interdependent equations are required, namely,4 

a [( h
2 

ap)] a (yh
3 

ap) ax yh 1 - 61l U dX - ay -gilD ay = 0, (3a) 

( h2 ap) aT h2 ap aT 2p,U{ h4 [fap)2 (ap)2]} 
1 - 61lU ax dX - 61lU ~y ay = yCh2 1 + 12p,2U2 \ax + dy , (3b) 

where p, T are the lubricant-film pressure and temperature at (x,y); y, fl are the density 
and viscosity; C is the specific heat; U is the velocity, in the x-direction, of the moving surface; 
and h is the lub~icant-film thickness. When the thermal effects are completely neglected and 
y, It are taken as constant or functions only of the pressure, Eq. (3a) becomes independent of 
Eq. (3b), which can then be solved, in principle, in sequence. However, even then Eq. (3a) 
still remains virtually intractable analytically except when the film thickness h is of extremely 
simple form, such as the thrust-bearing wedge, or when the bearing is assumed to have infinite 

width (a/ay= 0). 
The complexity of Eqs. (3) would suggest that only large-scale machine computation could 

cope with their solution in a practical manner. However, it has been founds that a numerical 
treatment by relaxation methods is quite feasible even when the thermal effects are taken. 
into account. There are many special lubrication systems for which the specific solutions of 
Eqs. (3) would be of considerable interest. But in view of the power of the relaxation method 
it is doubtful whether these will call for the application of large-scale digital computing equip­
ment. The only immediate possibility would appear to lie in the investigation of dynamically 
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1oadedjournal bearings when the finite bearing width,film discontinuity, and thermal reactions 
are taken into account, although when these latter effects are neglected the equations describing 
the gross dynamical features of the journal-bearing motion can be solved6 by- mechanical 
integration. 

These brief remarks about geophysical prospecting, refining and lubrication should not 
be interpreted as implying that each is in the status of a closed book. Research in these fields 
is being vigorously prosecuted. While at the moment computational problems do not con­
stitute major bottlenecks to progress, it may well be that, once computational facilities and 
services become generally available on a practical basis, many old problems which were 
previously dropped because they did not warrant the laborious and time-consuming hand 
calculation and new problems arising in current research will be sllbmitted for machine 
computation. These phases of the oil industry therefore should not be written off as having 
no interest in large-scale machine computation from a long-term standpoint. 

In the field ,of oil production the history of the mathematical developments has been 
marked by a sequence of evolutionary steps. The first serious attempt to treat analytically 
problems of fluid flow in porous media appears to have been that pertaining to a study of 
flow of artesian water into well bores, reported7 in 1863. While this was based on Darcy's 
law expressing the linearity of the relation between the fluid velocity and the hydraulic 
gradient, which is the fundamental basis of all viscous-flow phenomena in porous materials, 
no general formulation was developed. The latter first appeared8 in 1897 in the form of 
Laplace's equation for the pressure distribution, namely, 

\l2p = O. (4) 
In addition to illustrative solutions exhibited in this original work, many others have since 
been reported9 for systems simulating in some degree those of interest in oil production. These, 
involved little more than the application of conventional potential-theory techniques. 

The scope of problems in fluid flow through porous media governed by Laplace's equation 
is limited to iricompressible liquids fully saturating the porous media. An extension of Darcy's 
law10 to gas flow· in 1931 led to a nonlinear differential equation, which can be expressed in 
the form 

\72y(1+m)/m = (1 +- m)fflYol/m dy 
v . . k dt' (5) 

where y is the gas density, t the time, f the porosity of the medium, k its permeability, fl the 
gas viscosity, 1'0 the atmospheric' density, and m ,a quantity that defines the thermodynamic 
character of the gas expansion. 

A further extensionll of the single-phase fluid theory to the flow of compressible liquids, 
with constant compressibility, showed that such flow systems could be described by the heat­
conduction equation with the liquid density y as the. dependent variable, that is, 

\7 2y _fflK dy 
v - k dt' (6) 
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K being the compressibility of the liquid and 1, /1, k having the same meaning as In 
Eq. (5). 

Both Eqs. (5) and (6) have been applied to practical problems.12 The former, being 
nonlinear for the transient case, has been treated by approximation methods. And the well­
known procedures for solving the Fourier equation, supplemented by direct electrical-circuit 
analogs,13 have sufficed for solving a great variety of problems in flow of compressible liquids. 

Mathematical problems of a much higher order of complexity arise when the physical 
situation is generalized to the actual practical conditions obtaining in most oil-producing 
reservoirs, namely, the simultaneous flow of two or more fluid phases-gas, oil, and water-­
through the same porous medium. For the case of simultaneous flow of oil and gas in a 
producing well bore, representing the operation of a "solution gas drive" reservoir, the 
corresponding equations may be written 

d [ dP] d [ I dP] (dP) 2 a(p) dU F1(p)b(p) dU + VU F2(p)e~p) dU + F1(p)c(p) VU 

= e2u [f(p) - g(p)p] ~~" (7) 

~ [F ( )b(' ) dP] _ 2u [O( ) dP O() dP] ()U 1 p P dU - e z p dt -.J P P dt ' 

where p is the fluid pressure, p the oil saturation, t the time, and U the logarithm of the radial 
coordinate. The functions a(p), b(p), ... , J(p) are to be considered as knowri-'functions of p, 
determined by the thermodynamic properties of the gas and oil, and Fl (p), F2 (pJ as known 

, functions of p, reflecting the dynamical characteristics of the porous medium. The quantity p 

itself, which expresses the fraction of the pore space of the rock occupied by oil, may be assumed 
to have initially a uniform value, less than I,. and must always remain positive and never 
exceed its initial uniform value. The pressure p likewise may be taken to be uniform initially, 
and must subsequently always be lower than this value, though positive. At a closed sand 
body, dP/dU and dp/dU will vanish. And at the producing well one may impose the history of 
either P or of the flux: Fl(P)b(p) dP/dU. 

It is this last set of equations that has been the basis of the writer's personal interest in 
the subject of computing machinery. The equations, in their essential aspects, had been 
formulated14 in 1936 on the basis of experimental work done15 at the Gulf Research & Develop­
ment Company on the fundamental laws of multiphase fluid flow through porous media. 
In principle, these hydrodynamic equati~::ms, when suitably generalized:, govern the whole 
complex of physical processes underlying the recovery of oil from underground reservoirs. 
They are evidently too complicated to permit analytic solution. So in order to show that the 
equations were somewhat more than academic curiosities, a numeri~al solution for an equiva­
lent simplified linear system was carried through. ''''hile the results seemed physically 
reasonable, they were in no sense precise and had been subjected to considerable smoothing, 
guided only by physical intuition. However, while this situation was by no means satisfactory, 

30 9 



MORRIS MUSKAT 

the six months computing labor required even for the simple ideal system completely dis­
couraged undertaking the analysis of more complex and practical systems. 

In lieu of practical methods of solving Eqs. (7) directly, approximation~ have been intro­
duced. By neglecting the pressure gradients in Eqs. (7) or by an equivalent derivation from 
first principles, one can obtain16 an ordinary nonlinear equation of the first order relating 
p and p which suffices to give the gross production history of the reservoir. This has been 
applied extensively by numerical integration in predicting oil recoveries, the pressure versus 
oil-recovery history, and the effect of returning the produced gas to the oil-bearing formation. 17 

Unfortunately, however, there are a number of important questions relating to oil production 
which cannot be answered by such simplified treatments, since they pertain to effects of the 
neglected· pressure gradients. Perha ps the two major problems of this type are (1) the effect 
of the spacing between the producing wells on the ultimate recovery, and (2) the effect of 
the rate of production on the recovery. Attempts to evaluate these effects have all been 
beclouded by the uncertainty whether the approximations that have been made have not 
au.tomatically predetermined the quantitative aspects of the conclusions. Yet well spacing 
and production rates are among the most important parameters that are subject to the choice 
of the operator in controlling the ultimate oil recoveries. 

Except for the original attempt at hand calculation already referred to, the problem of 
solving Eqs. (7) directly remained dormant until July 1946, when an announcement appeared 
of the war development of the ENIAC. Negotiations with the government were then entered 
into for applying the ENIAC to the solution of these equations. Although several plans were 
developcd over a period of mc;>re than a year for carrying out this project, it was not found 
feasible, because of legal difficulties, to arrange for the required coqperative effort betwecn 
the government and an industrial concern. ''''hi Ie this situation was· subsequently resolved 
by one of the governmental agencies becoming interested in the problem and assuming 
sponsorship for the work, it was ultimately found, much to the embarrassment of the author, 
that the project had to be abandoned anyway because the memory capacity of the ENIAC 
would not suffice for handling the large number of operational or,ders required. 

This unhappy history is referred to here to serve as an illustration of what can happen 
when one unfamiliar with the science of computation and its ramifications is left to the mercy 
of his own naIve optimism. The writer has learned the "hard way" that there is more to the 
computational solution of, complex equations than the desire to have them solved. ''''e shall 
discuss this matter further below. 

To complete the record, following the realization that the ENIAC was not sufficiently 
powerful to solve Eqs. (7), the equations were submitted to the International Business Machines 
Corporation for their consideration. After a number of preliminary discussions, the IBM 
Corporation undertook to place the problem on the Selective Sequence .Electronic Calculator. 
This work is still in progress. Needless to note, this project is being given a thorough preliminary 
analytic formulation by the IBM staff prior to final machine computation. 

''''ith respect to the general field of the physics of oil production, it should be noted that 
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Eqs. (7) themselves represent highly simplified systems in which it is assumed that the oil­
producing rocks are everywhere uniform. Such reservoirs actually never occur in practice. 
'Vhile the development of the implications of Eqs. (7) would in itself he a constructive accom­
plishment, it will ultimately be of considerable interest to investigate their generalization to 
nonuniform systems. Moreover, effects of gravity have been ignored in constructing Eqs. (7). , 
Their inclusion would make the physical problem three-dimensional, which would lead to 
an additional order of complexity. And even aside from studies of the gravity effects, the 
investigation of the three-dimensional analogs of Eqs. (7) will be of importance in treating 
stratified producing systems with mutual cross flow. ~inally, Eqs. (7) take no account of 
interfacial capillary phenomena, which may be of importance under special conditions, and 
especially when gravity is an important factor in the producing operations. 

In fact, the detailed study of Eqs. (7) constitutes only a beginning in the establishment of 
the quantitative aspects 'of what is now generally known as "reservoir engineering." Even 
without anticipating new developments in this field as research continues, it is clear that 
large-scale computing machinery will find wide and important applications in oil production 
for many years to come. And it is not inconceivable that while only a passive interest in 
extensive digital computation has thus far developed in other branches of the oil industry, 
comparable applications in refining and geophysical prospecting may ultimately be found 
once the practical availability of these powerful tools becomes disseminated throughout these 
other fields of activity. 

A single and obviously unique experience is a dangerous basis for generalization. The 
following remarks are not to be construed as direct implications of the above outlined personal 
contact of the author with problems of computation. On the other hand, the program of 
this Symposium itself is evidence that outside of government organizations and academic 
institutions the application of computing equipment to the solution of specific problems 
apparently has thus far been rather fragmentary. It therefore seems appropriate to explore 
the general subject of computing-machinery service for industrial applications, even though 
much of the discussion must be of a speculative character. 

The computing-machinery service to be considered here is that which woul~ require the 
use of large-scale equipment localized at computing ~enters such as the Computation Labora­
tory at Harvard, the IBM Corporation, the Bureau of Standards, ,and similar organizations 
which may provide their facilities, at ,least in part, for the investigation of industrial problems. 
The specific question involved is essentially that of defining the term "service." 

There are two aspects of the composite problem of application of computing equipm~nt 
about which there will be little question. The first is that the one who is primarily interested 
in the solution must provide both the analytic and the physical statements of the problem. 
Second, the computing-service organization must carry out both the actual machine operation 
and the coding of the problem. It is in the intermediate coupling of these two contributions 
that the situation remains uncertain. And it is in this link that the efficiency and value of the 
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computing project may be ultimately determined. It is here that control may be. applied 
on the accuracy of the solution, and often on its physical reality and convergence. It ·is the 
writer's belief that this bridge of analytic programming should be made available, when 
necessary, by the computational organization. 

It may wen appear that the very program' of this Symposium belies the suggestion that 
analytic preparation and programming should be a part of computational services. For many 
of the papers presented here report on investigations in which those with whom the problems 
originated carried through all aspects of the problem short only of the machine operations 
themselves. You will note, however, that in almost an cases the authors represent academic 
or similar research institutions. The same may be expected with respect to many problen:ts 
arising in the aircraft, automobile, shipbuilding, explosives, telephone, and railroad industries, 
or in the larger companies in the electrical, steel, radio, and glass industries. By their very 
nature the major industrial concerns in these fields require virtually self-contained large 
tcchnical staffs capable of handling all phases of their engineering activities. However, in 
spite of the great contribution to our total industrial effort made by such organizations, by 
far the largcr part of industry as a whole is cqmprised of the composite resultant of the hundreds 
of intermediate- and small-sized concerns engaged in some form of technical activity. 

In their own specialized fields the engineering problems of these companies are essentially 
the same as those encountered by the large corporations. Yet in contrast to 'the latter they 
cannot afford to maintain the permanent, c?mplete, and well-rounded research organizations. 
which can attack effectively virtually any problem that may arise. In particular, with respect 
to mathematical problems, or such where analytic treatment may be required at least to guide 
experimental research or design, these smaller firms may be fortunate if their engineers have 
enough mathematical background merely to construct the equations to be solved. Of the 
members of the American Mathematical Society who ga~e their employment affiliation on 
the membership list, fewer than 325, or 9.0 percent, indicated connections with indu~trial 
concerns, including those who have a direct interest in the development of computing 
machinery. 

As the writer. himself has learned by'painful experience, and as any "outsider" attending 
this Symposium or meetings of the Association for Computing Machinery would quickly 
observe, the science of computation is a highly specialized technical field. In many respects it 
is still in its infancy-a war baby~but it is growing with accelerating speed. The practicing­
engineer or physicist of today literally heard nothing- of it during his academic training. The 
terms coding, programming, the binary system, and many others that are commonplace in 
the language of the modern computation science are quite foreign to those in the engineering 
professions. 

Among those on the membership list of the Association for Computing Machinery who 
have given their, employment affiliation more than 82 percent are in government agencies, 
on academic or research institute staffs, in computing organizations, or are employed by 
industrial concerns that are obviously engaged in some phase of computing-machinery 
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development. Ivlore than half of the remainder are employed by aircraft and insurance 
concerns, and very probably a number of the 38 "residuals',' also are primarily interested in 
the equipment development itself. It is thus clear that to thG extent that membership in the 
Association is' an index of interest and contact with the computing profession, such interest 
has yet been disseminated but slightly into industry as a whole. 

If the engineer or industrial physicist or chemist in the average commerCial firm' must stop 
to take a training course in the theory of computational machinery, even if he should be 
temperamentally suited to absorb such specialized disciplines, before having his problem 
accepted by the computing organization, the probability is great that he will drop or circum­
vent the problem. And even if he were willing and could make arrangements to "study up" 
on the basic elements involved; it is still very unlikely that he would thus develop the required 
analytic skill to guide the choice of the mesh to be used, decide on the differencing procedures 
that may be required for convergence, carry through the preliminary numerical solutions, 
or even prepare functional representations for the empirically variable functions in hisequa­
tions, if this should be necessary. 

At present most of the applications of computing equipment are being made by members 
of governmental agencies or academic institutions. Many of these are well staffed for analytic 
wO,rk. Moreover, in spite of the importance of these problems, it is doubtful whether the, 
pressure for their speedy solution is comparable to that in industry, where diversions into the 
purely computational aspects of the problem may not be accepted without prejudice. Un­
doubtedly, there is a large backlog of demands by such organizations for the use of presently 
operating computing machinery. So there may appear to be no need to cater to and accept, 
computation proposals from those who are unprepared or unable to submit a completely 
programmed problem. Such, however, it is believed, would be a shortsighted policy and would 
lessen the long-term possibilities of growth of the science of computation. 

It is not suggested that the argument is one-sided. No doubt the provision of this type of 
service by computing organizations will involve difficult personnel problems, though these 
same difficulties would be even more serious in most industrial firms. It is also true that such 

, service would increase the total charges, which might discourage the interest in them by small 
concerns with very limited engineering development budgets. But at the same time it would 
make it possible to extend the applications of large-:-scale computing equipment to many 
organizations that would otherwise simply have to give up because of lack of qualifications. 

Perhaps the strongest reason for centering the intermediate analytic facilities within the 
computing organizations lies in the importance of experience in this phase of numerical 
computation. In a science as young as this, virtually each problem gives rise to new questions. 
of detailed treatment. It is not yet ready for standardization and the p~eparation of tabulated 
instructions. The analyst who is continually engaged in programming will no doubt accumu­
late a wealth of experience which will be of inestimable value~both to the computing organiza­
tion and to its clients. To have each problem prepared and analyzed for computation by a 
beginner will be pitifully inefficient as compared to their handling by personnel for whom 
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such work is their daily professional business~ In fact, the writer ventures to predict that if 
and when the "buyer's market" overtakes the computing industry the burden of selling 
computing services will. fall on competitive claims of the experience of the organization and t.he 
·completeness of the service rather than on the number of milliseconds the machines take for a 
multiplication or whether the price is xor x - /).X dollars per hour. 

I t is to be understood, of co'urse, that even if the computing organization provides the 
analytic preparation of the problem the sponsor must still' accept the ~esponsibility of inter­
pretation and evaluation of the solutions. Except possibly when solving purely arithmetic 
problems, as systems of algebraic equations or function-table p~eparation, it is the sponsor 
who must supply the guidance in dropping terms if such should be necessary to make the 
problem tractable, in fixing the order of accuracy required,and in evaluating the physical 

. significance of the solution. This may well call for visits by the sponsor to the computing 
organization during the planning, programming, and coding, and in most cases his continuous 
presence there during the time the problem is actually on the machine. Indeed, the experience 
and background of the sponsor in the technical field giving rise to the problem may be just 
as indispensable in achieving a satisfactory solution as the experience of the computing staff 
with respect to its analytic aspects. 

There is no easy way to accomplish difficult tasks. Cooperative effort by all parties con­
cerned is required. The ultimate impact of the science of computation on our technology 
and industrial life will most certainly be tremendous compared to what"has already materialized 
and what can now be envisioned. It has already evoked an absorbing interest from and recruited 
into its ranks soine of the outstanding leaders in the fields of engineering and electronic design 
and mathematical analysis. Let us therefore plan to guide this important growing effort so 
that its fruits may be enjoyed by the maximum number for the greatest benefit of our nation 
as a whole. 
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Northrop Aircraft, Inc. 

For the past year and a naIf Northrop Aircraft, Inc. has operated a computing machine 
.built by the International Business Machines Corporation, which differs radically in its 
treatment of problems from the usual computing installation of IBM accounting machines. 
This machine consists of three standard machines-a Model 405 printer, a Model 603 electronic 
multiplier, and a ]Model 517 summary punch. They are interconnected to function as a 
single unit. 

The printer, commonly known as a tabulator, is a machine of parts. Two sets of brushes 
which read punched cards are the machine's point of entry. Each card is read consecutively, 
first by the "upper" brushes, then by the "lower" brushes. A card has room for 80 decimal 
digits,· indicated by punching. A number" is represented on a card by the vertical position 
of punches in the 80 columns. It is represented in the machine by the relative time at which 
the brushes make contact through these punched holes. All machine elements are synchronized 
to the movement of a card past both sets of brushes. The card actually has not ten, but 12 
vertical positions. Ten are used for digits, while the remaining two are used principally for 
algebraic signs, or for control of switches (selectors) which will be described below. 

The machine has a counter capacity of 80 decimal ~igits. These are arranged in groups 
-four each of 2, 4, 6, and 8 digits-but the groups may be combined to produce individual 
accumulators up to 80 decimal digits. Eighty-seven type bars, through which any information 
in the machine may be printed in a single cycle of the machine's operation, are also important. 
A detachable plug board may be wired according to the arrangement of counters and type 

. bars desired for a particular problem. This is a convenient feature of the machine, since 
several of these may be wired for various problems in advance, thus permitting immediate 
change-over as $oon as a problem is finished. Auxiliary equipment includes six 10-pole and 
16 single-pole double-throw switches or selectors; 20 positions for numerical comparison 
which yield impulses if the numbers entered are unequ"al; and two distributors for separating 
impulses in a circuit with respect to time. 

The items mentioned above represent regularly available accessories to the machine. 
Special additions have also been made, such as the multiplier entry, exit, and control connec­
tions which will be described in connection with the multiplier. There are 16 8-pole, four 
4-pole, and 40 s.ingle-pole double-throw switches, plus five 8-pole quadruple-throw switches 
called chain selectors. A second plug board is provided for wiring these additional elements. 

The multiplier, an electronic device, develops a l2-digit product from two 6-digit factors. 
These factors are entered at the same time that the product from the previous entry is read 
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out. The multiplication is executed during the time between cards. Since the tabulator 
does its adding and subtracting in the "nines complement" system, provision has been made 
for reversing the factor entries in time when a counter is standing in complement. For example, 
take the number 999998. Counting forward in time to the number yields 999998.. Counting 
from the number to 999999, which is equivalent to zero for this machine, gives - I. If 2 is 
added and the leftmost position carry entered in the units position, the correct answer, + I, 
is obtained.· Since the absolute value of the product is developed, provision is made for a 
negative-sign impulse when a negative product is read out. This impulse reverses the add or 
subtract instruction given to the receiving counter. Provision is also made for round-off, by 
addition of five in. the leftmost position dropped. The multiplier control is logically complete; 
numbers may be entered from any source, either as complements or as absolute values with 
signs; and t4e product with its sign may be taken to any place, including reentry as a factor of 
a succeeding product. 

The remaining machine-the summary punch-provides a means of punching the infor­
mation from the counters on cards. 

It is now possible to compare this machine to the present conception of an adequate 
all-purpose computer. It has an arithmetic organ-the tabulator counters plus the multiplier. 
It has an input and two outputs, one of which is the input medium; An internal memory 
is achieved by apportioning a part of the 80 counters to ~emory. The external memory, in 
the form of punched cards, is indefinitely large. Control could'be established from the counters. 
This, however, is not expedient. The control instructions must be punched into cards for 
entry into the machine, and are just as well left there. Besides, the limited internal memory 
capacity will hold only a tfivial program. Programs are sometimes wired implicitly, however, 
so that only blank cards need be fed after the initial data have been entered. 

The general-purpose computer is presently conceived of as being organized around one 
or two channels. These may be either serial, in which case words are moved about digit by 
digit, or parallel, where the entire word is moved at once. This machine has no channel as 
·sucb-, but its array of switches is used to construct the channels best suited to the problem at 
hand. This frequently permits a kind of multiple-parallel operation, in which several com­
putations are made simultaneously. A table look-up operation from the control cards may 
be channeled into one counter,while higher derivatives are being integrated (Ilt = a power 
of ten), and while the multiplier and a counter or two are iterating for a square root. This 
kind of operation is commonly performed in actual problems. The machine's speed is deter­
mined by the card-feeding rate. When no output is required, it accomplishes 150 cycles/min, 
performing one multiplication and one or more additions or transfers in 400 msec. When 
transactions must be printed, the speed drops to 75 cycles/min. In this kind of printing cycle, 
called a list cycle, the operations mentioned above can be performed in 800 msec. Another 
kind of cycle prints the contents of the counters, and mayor may not clear the counters. The 
duration of this cycle is equal to that of the list cycle, but no computation can be performed 
while it is in progress. This cycle is called a total cycle. 
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In order to punch cards, the machine must be stopped for approximately I sec. The design 
of the machine makes it necessary to take. a totai cycle ,at this time. 

One limitation on the speed of the machine is that it can perform only one multiplication 
in a cycle. Thus, problems involving many multiplications but few other operations take more 
time than problems containing relatively few multiplications. 

The direct-printing feature is worthy of emphasis. It involves no subsidiary machines. 
It does not await manual operations. It simply prints whatever is in or passing through the 
machine when the machine is so instructed. In trouble-shooting and in checking, the results 
of previous cycles are there for comparison with the result of the present cycle. When a 
problem is complicated, intermediate results may be printed at will, to provide a picture of 
the relative magnitude of various factors. When final answers only are required, printing 
can be restricted to these answers. In the inching process-that is, printing every cycle-the 

. exact nature of errors, not only in the program but frequently in the mathematical formulation; 
are immediately apparent., Indeed, we dispense almost completely with checking at the 
transcription level, since errors are discovered so easily in this manner. 

This brings up an -interesting point. On many problems this machine produces results 
about as fast as they can be apprehended. ,That is, fora problem of an investigative nature 
wherein various configurations are to be tried, additional speed is not so desirable as another 
machine when someone else wishes to work with another problem. It is true that much work 
is done on this machine that is of the nature of tabulation of functions. For the moment, no 
one is much concerned with the development of the answers. In this work great speed would 
be an advantage. 

A resume of the kind and. scope of problems with which the writer has had experience 
follows, for those concerned with the industrial application of this equipment. The computer 
was built to integrate a system of six nonlinear differential equations in a single independent 
variable. These equations were of the first order in four of the dependent variables, and of 
the second order in the other two dependent variables. In addition, the sine and the cosine 
of one of the dependent variables entered four of the equations as coefficients. Since, the 
continuity of the solution was good, the sine and cosine were integrated stepwise along with the 
equations themselves. A second system offour nonlinear second-order equations was integrated, 
with the interesting program variation generated through a relation between two of the 
dependent variables: xj(x2 + y2)1. This ,expression was evaluated through a table look-up 
operation and, because of the wide variations in x and y, was done with a floating decimal 
point. The above equations all represent work in connection with servomechanisms having 
several degrees of freedom, and with cross-product terms of considerable magnitude. Stochastic 
processes have been part of the bread-and-butter work for the machine and are especially 
adapted to it because of the multiple-channel operation and the further possibility of making 
several simultaneous discriminations for future choices, even 'as the consequences of the last 
choice are being computed. Run-of-the-mill work has involved the reduction of test data 
and structural analysis. In an aircraft company, test data mean wind-tunnel and strain-gage 
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information, which may be programmed to completion in one machine passage. Structural 
analysis has been limited by the need of the machine for other more pressing problems, but 
the machine is quite capable of handling problems in this field. 

An investigation of the behavior of the biharmonic difference equation for cantilever plates 
has been going on, as time has been available. I would lik:e to be able to give some definitive 
results from this investigation, but· possibilities remain to be explored. It seems probable,. 
however, that the number of computations required for a reasonable· convergence of an 
iterative process is of considerably higher order than the number of computations required 
to invert the matrix of the points, the ratio being possibly somewhere in the neighborhood of 
n2, where n is the number of points in the lattice. This is for an unsophisticated pattern which 
simply substitutes the new value for a point when it is obtained. Convergence could probably 
be improved by second-order corrections, but I doubt whether it could be improved enough 
to equal matrix-inversion speed. The inversion of high-order matrices using an elimination 
algorithm requires about (nJ20)3 working days. This time is slow and this operation one of 
the weakest for the machine be~ause of the preponderance of multiplication. Each multi­
plication, incidentally, involves 3 cycles to retain sufficient accuracy. 

The work with the biharmonic equation indicates a limit of application. Unless results 
are of sufficient value to justify the expenditure of several months' time, \J4cp = - q with 
three free boundaries is beyond the machine's power. With respect to the simpler harmonic 
equation, we hardly feel ready to compete with the relaxation technique described by Southwell. 

Checking is accomplished in various ways, according to the problem. In integrating 
differential equations, continuity of the solution is often a sufficient check. For final structures 
reports, when balances are not available as a check, duplicate runs are made and compared 
mechanically. Sample calculations are made on a desk calculator in order to avoid systematic 
errors. The machine is operated 24 hours a day, 5 days a week, and has averaged about 
10 percent down time.· 

In conclusion, I wish to say that this card-controlled computer was thrown together in 
about four weeks to meet a need for a powerful computer to do a complicated integration. 
It seems to fill a useful place in its ability to integrate differential equations in a single inde­
pendent variable and to do routine calculations involved in engineering design work with an 
over-all efficiency of better than ten times that. of any other generally available equipment. 
We have here a machine different in nature from most computers. It can perform a multi­
plication per cycle and several additions and transfers simultaneously. Thus, it is more'efficient 
in use of its rate than other computers for which each operation is exclusive. This machine 
never has to wait to find out what to do next. Even if what it is to do next is dependent on the 
solution so far, this is readily incorporated in the W'iring through the use of a selector, so that 
no time is lost. Olle is led to feel that as the clock rate of an internally programmed machine 
is increased it should be easy to increase the input rate of the externally programmed machine, 
so that the time loss inherent in program operations is still large. This is to emphasize the 
time cost of internal operations upon program instructions. The work with the biharmonic 
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equation suggests that partial differential equations will require far too much time for the 
iterative solution which can be accomplished with a relatively small high-speed memory. 
This indicates that the memory capacity should be based on the storage requirement for 
inverting large matrices, which is of the order of n2 words where the matrix is n X n. Less 
storage than this will require continuing use of the input and output, with the consequent loss 
of time. From these considerations we at Northrop who are close to this work feel that· the 
internally programmed machine will require perhaps ten times as much high-speed memory 
as has been considered to date to our knowledge, the possibility of executing program revisions 
simultaneously with explicit computation, . and the elimination of access time through the 
use of multiple registers. 
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ApPLICATION OF COMPUTING MACHINERY TO THE SOLUTION OF 

PROBLEMS OF THE SOCIAL SCIENCES 

FREDERICK MOSTELLER 

Harvard University 

This paper discusses some of the applications and limitations of the use of modern com­
puting machinery in the social sciences. Such a discussion could scarcely be expected to be 
exhaustive, but merely indicative of the kinds of applications occurring now and in the near 
future. Of course, some remarks must be included about the use of computing machines in 
social science's principal quantitative tool, statistics. We have not included economics in the 
social sciences because the title of the program-the Economic and Social Sciences-indicates" 
that these fields are to be considered separately. For our purposes the social sciences might be 
regarded as including education, social psychology, and sociology. It would be a tour de 
force at this time to include cultural anthropology, history, political science, and similar 
largely nonquantitative subjects, in a discussion of modern computing machinery. 

Thus far, most direct applications of computing machinery to social-science problems are 
associated with routine problems of solving simultaneous linear equations, either homogeneous 
or nonhomogeneous. The commonest and most widely applied technique" is multiple regres­
sion. Here we have one dependent or criterion variable Y which we desire to predict from 
a flock of independent variables Xl' X2, • • ., Xk • The standard approach is by means of least 
squares, where we are required to find weights a i to minimize the function 

(1) 

In the relation (I) the subscript j refers to the observations. This well-known minimization 
produces a set of k simultaneous linear nonhomogeneous equations which we solve for the 
weights ai • From this solution we get a linear prediction equation 

k 

Y = 2: aiXi , Xo = I. 
i=O 

(2) 

vVe are often asked if it would not he better to try to fit some function of the X's to Y. It 
certainly would, but we do not ordinarily know the function. The reasonable thing, therefore, 
is to take the plane given in Eq. (2) as a first approximation to this function and to hope that 
the range of the variables is sufficiently small that this method will be adeq~ate for predictive 
purposes. If we go to th~ quadratic approximation, we will have k(k + I) /2 additional terms 
to fit. Even if k is as small as 6~ we will have 7 + 21 = 28 simultaneous equations to solve 
for the second approximation. The resulting reduction of the residual sum of squares is seldom 
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worth the work. A more common device is to adjust the scale on which variables are measured 
to make the linearity assumption of Eq. (2) more realistic. 

The applications of computing machines in the above examples are rather obvious. First, 
of course, we want the equations solved. But second, and perhaps more hnportant, we want 
to know how much faith we can put in such an equation. We must remember that the observa­

, tions ordinarily are good to only one or two significant figures. 
A problem closely related to multiple regression is the discriminant function. In its simplest 

form we are asked to divide a population into two groups. Whereas inmultiple regression 
we might be asked to predict degree of marital success, or degree of adjustment of a paroled 
man to the outside world, or degree .of success as a pilot, in the case of the discriminant function 
we are asked to produce a function that will separate sheep from goats. Will the postulated 
marriage end in divorce; if we parole this man will' he return to jail; will the candidate get 
his wings or not? A little further afield, we may even ask whether Alexander Hamilton wrote 
this particular essay from the Federalist Papers-or was it James Madison? 

The distinction between multiple regression and the discriminant function, then, lies in 
the nature of the dependent variable. In the case of the discriminant function it is dichotomous. 
\Ve want to construct an index number 

(3) 

and establish a criterion number C, so that according as Z ~ C we can predict, successful 
marriage or divorce, good citizenship or recidivism, Hamilton or Madison, with' a .reasonable 

percentage of success. 
Another way oflooking at this problem is that we want to find A'S such that we can maximize 

-
(Zl - Z2) 2 (4)' G = 2 n.-, ---"-'---

:2 :2 (Zij - Zi)2 
i=1 j=1 

where Zl and Z2 are the Z means of the success and failure groups, and zu, j = 1, ... , ni , 

i = 1,2 are the Z values for particular individuals. In other words, we want to maximize the 
ratio of the between-groups square to the within-groups sum of squares. The numerator of 

, G measures the separation of the groups; the denominator measures the variabilities of the 
groups within themselves. This method of looking at the problem is chosen because of a 
connection with a later problem. It turns out, after some manipulation due to R. A. Fisher, 

. that the A's will be obtained by solving the equation 

:2AqSpq = cdp, P = 1, ... , k (5) 
q 

where 

(6) 

and, c i~ an arbitrary nonzero constant. Here the d's are the distances between the means 
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of the two groups on the independent variables and the S's are weighted covariances between 
pairs of independent variables summed for the two groups. As in multiple regression, we 
are left with simultaneous linear nonhomogeneous equations to solve (c is arbitrary). Once 
this is done we can compute the Z values for each group and discuss the effects of choosing 
various values of the cutoff point C. How we choose this point will depend on the costs 
of making wrong decisions of either kind. If plenty of pilot candidates are available, and 
training costs are high, we will make the cutoff on the index quite high to reduce the washout 
percentage, realizing that we are discarding numero.us candidates who would have made 
good pilots. 

Up to now, little has been done about discriminant functions when it is desired to split the 
population into three or more groups. This lack of progress may be due partly to the very 
heavy computational work that would, undoubtedly be associated with a decent formulation 
of the problem.· As modern computing machinery becomes available to scientists, it is likely 
that they will no longer be so reluctant to formulate problems that require heavy computation. 

An example of the application of homogeneous equations is supplied by Guttman's scaling 
theory. One such problem is that of scaling attitudes. More detailed expositions of this 

. problem are given in Paul Horst, The Prediction of Personal Adjustment (Bulletin 48, Social 
Science Research Council, 230 Park Avenue, New York, 1941), and The American Soldier, 
vol. IV (Princeton University Press,Princeton, N.J., to be published shortly). We will restrict 
ourselves to dichotomous questions (answer yes or no) for the explanation. If we have six 
such questions, they would form a perfect Guttman scale if the responses to all the questions 
by all respondents could be arranged into one of the six forms shown in Table 1. In this table, 

Table 1. Guttman scale for the responses to six questions. 

Question 

1 2 3 4 5 6 

Favorable X X X X X X 

0 X X X X X 

0 0 X X X X 

0 0 0 X X X 

0 0 0 0 X X 

0 0 0 0 0 X 

Unfavorable 0 0 0 0 
I 

0 0 

X corresponds to Yes and 0 to No. The numbers attached to the questions are dummies. 
If we could achieve such a perfect state of affairs we would clearly have formed a scale on the 
favorable-unfavorable axis which could be thought of in Steven's classification as ordinaL 
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The direction of the 'scale is determined by the content of the questions. The perfection dis­
played in Table 1 can scarcely be expected in practice. Therefore we request that scores be 
assigned to individual patterns of responses to accomplish this ordering of patterns of responses 
as nearly as possible. The criterion used is that we should maximize a certain correlation ratio. 
This maximization leads to a set of simultaneous homogeneous equations~ ActuaIIy there is 
a perfectly decent and workable approximation scheme (caIIed the scalogram method) that 
can be used to get the initial rankings of the people and the questions, and we could usuaIIy 
avoid computation in practical applications were it not for some further developments. The 
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FIG. 1. Diagram showing schematlcaIIy a curve of intensity as 
measured by the strength with which opinions expressed are held, 
plotted against the score as obtained from a Guttman scale. It is 
conjectured that the lowest point on the intensity curve corresponds 
to neutrality 'and should be regarded as the psychological zero point. 
If the first component is regarded as the score on the attitude scale, 

,and the score on the second component is plotted against the first, 
similar U-shaped curves appear, with minima quite close to those 
of the intensity curve. 

scoring that is achieved represents mathematically the principal component of the system. 
Since there are more components 'available, and since these have been found to have meanings 
in other fields of endeavor, it is not unreasonable for the psychologist to wonder whether these 
further components might not have further meaning for him. 'In particular, the second com­
ponent, has been found in some attitude studies to correlate extremely well with the concept 
of intensity, where intensity has a separate definition. More recently, Guttman has worked 
on a possible interpretation of the third component. I must admit that I take a rather different 
view of these components and that I feel it is rather a fortuitous accident that intensity is closely 
related to the second component. Intensity with which an opinion is held" as it is ordinarily 
defined, leads to U-shaped functions when graphed against the favorable-unfavorable scale 
(see Fig. 1). In so far as the first component is arranged in a roughly linear fashion against 
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this scale, the second component, which is orthogonal to the first, must be rather U-shaped. 
Considering the reliability of the observations, all U-shaped functions look pretty much alike. 
'Ve need not try to decide this matter here. The main point is that social scientists are interested 
in these further components, but we have no very good practical way to get them except by 
direct computation. When the questions are numerous, as they often are, the work requires 
heavy computation. 

If we agree to identify the second component with intensity, it is possible to get at 
a zero point on an attitude scale by agr~eing to take the lowest point on the intensity 
scale as determining the score on the first component, which will be regarded as neutral 
(see Fig. 1). 

It might be useful to indicate a type of scale, not unlike Guttman's, in which it is easier 
to explain the criterion for obtaining the scores. We might take k attitude items on a special 
topic and ask the subject to endorse the r that come closest to his opinions. Out of such an 
experiment we would ideally obtain a set of responses like those in Table 2. In this example 

Table 2. A second type of attitude scale. 
_ .. -~-

Item 

1 2 

I 
3 4. 5 6 7 8 

Favorable X X X 0 0 0 0 0 

0 X X X 0 0 0 0 

0 0 X X X 0 0 0 

0 0 0 X X X 0 0 

0 0 0 0 X X X 0 

Unfavorable 0 0 0 0 
I 

0 X X X 
I ----

k = 8, r = 3. If individuals chose only the response patterns indicated above, we would have 
a perfect scale. Actually, there will be response patterns with gaps between the checked 
items. We formulate the problem this way. We want to assign weights to the items so that 
when an individual t chooses items i, j, k, we can give him the score St = Wi + Wi + Wk. 
As our criterion we take the ratio of the variability 'of the scores Sl to the variability of the 
weights making up a score, the latter summed over the individuals. This view of the situation 
is entirely analogous to the criterion given earlier for Fisher's discriminant function. From the 
point of view of analysis of variance, we #ant to maximize the ratio Qf the sum of squares 

. between individuals to the total sum of squares (because there is an additive relation between 
"between individuals," "within individuals," and "total sum of squares"). This ratio of 
"between" to "total" is proportional to the correlation ratio. If we try to maximize this ratio 
we are led again to solutions of homogeneous linear equations. If the number of items is 
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large, we have a long computational problem. The method just suggested is in some ways a 
variation of Thurstone's method of equal-appearing intervals. 

Similar problems arise in education. For example, we may have letter grades in four 
courses for a number of individuals. We would like to pool these letter grades to form a scale 
of scholastic achievement. However, the distributions of the grades in the several courses are· 
quite different. We want to assign numerical values to the grades in the different courses, 
and then add these to get a score for the individual. The problem is not unlike the one just 

treated, except that for each course (item) we need several weights. 
The problems discussed above are common to m~ny of the fields of social science: sociology, 

education, social psychology, and perhaps even economics. We could continue to multiply 
these examples from scaling theory without difficulty. We have not touched on the problem 
of factor analysis-the attempt to find the meaningful psychological or sociological dimensions 
of a space of test scores, while reducing the dimensionality of the space-although these 
problems are again concerned largely with matrix manipulation. Nor have we discussed the 
analysis of time series. However, time-series problems are so general irr all sciences these days 
that social scientists can expect generous contributions on this problem from their more 

mathematically minded friends in the natural sciences. 
To dream a little, I think that certain social problems may be capable of being formulated 

in terms of game theory. Then certainly computing machines will be useful, but this applica­
tion waits on two developments-first, the ability to describe a social problem in terms of a 
game, and second, the development of good methods of finding solutions to games. I have no 
doubt that progress on the second problem will be more rapid than on the first. Similarly, 
the applica'tion of the computing machine as a model for certain problems in clinical psychology 
seems to me extremely speculative at this time. 

We move from direct to indirect applications of computing machinery in the social sciences 
when we discuss problems in theoretical statistics. I would like to call a few of these to the 
attention of computing experts. Both theoretical and practical reasons make the normal 
distribution one of the most important of all distributions. Therefore, estimates of its paramet,ers 
from samples is a constant problem. For a long time the view was held that efficient statistics 
(in a technical sense) for estimating parameters were the best ones to use.' Efficiency (or 
relative precision) of two unbiased estimates of the same parameter is measured by the ratio 
of the variances of the two computing estimates; it is the ratio of the smaller variance to the 
larger variance. However, it has turned out that effi~ient statistics are not always the easiest 
ones to .compute. 

It has been found th.at a few carefully selected observations from a large sample can produce 
extremely good estimates of the mean and the standard deviation with little calculation. 
Similarly, in very small samples it turns out that little efficiency is lost by estimating the mean 
from the average of the largest and smallest values, and that the standard deviation can be 
very adequately estimated from the range instead of from the cumbersome root-mean-square. 
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The result of these practical findings has been an interest in order statistics. If we draw a 
sample from a distribution and order the n observations from least, to greatest, 

x < x < ... < x' < ... < X 1 - 2 - - t - -- m (7) 

then Xi is called the ith order statistic. Statistics constructed from these order statistics-for 
example, range, median-are called systematic statistics when they take cognizance of the 
order (the mean does not). In studying the worth of these systematic statistics, it is of the 
greatest i~terest to know certain properties of the order statistics. In particular, we wish to 
know for the normal distribution the mean, the variance of any .order statistic, and the co-
variances between pairs. . 

For microstatistics (n < 10) we have good tables of these quantities. The first attempt to 
get covariances by numerical integration resulted in two-decimal accuracy in. spite of eight­
decimal initial values. The latest attempt ismuch improved (five-decimal accuracy) because 
of the discovery of a method of exact integration which works up to n = 10, but does not seem 
to want to -go further. For macrostatistics' (say n > IqO) we are in fairly decent shape with 
asymptotic theory helping us. However in the middle range (100 > n > 10) we are in trouble. 
This is a fairly standard situation in statisti~s, the middle-sized samples causing us considerable 
worry because it is not clear when the asymptotic theory will be accurate enough to take over 
from the computer. 

The probability element of the ith order statistic from a sample of n drawn from a con­
tinuous probability-density functionf(x) with cumulative distribution F(x) is 

g(xi)dxi = (i _ I) ~ ~n _ i) ! [F(Xi)]i-l[1 - F(Xi)]n-ij(Xi)dxi' (8) 

while the probability element of the joint distribution of Xi and Xi; i < j, is given by 

n! 
h(Xi' X;)dXidxi = (i - I) ! (j - i-I) ! (n - j) ! 

[F(Xi)]i-l[F(x j ) - F(Xi)y-i-l[1 - F(x;)]n-jf(xi)f(xj)dxidx j • (9) 

The quantities we are particularly interested in are 

E(xi) = .[tJooXig(Xi) dxi, 

,E(Xi2) = LOOooXi2g(Xi) dxi , (10) 

E(Xi' x;) = f_oooo f:~XiXih(Xi' Xj) dXi dx j, 

for n in the middle range. This would make it possible to construct and discuss the efficiency 
of any linear systematic statistic. It would also open the door to improving approximations 
,vhich would be useful in noncomputational theoretical investigations. 

A statistic used in social sciences, where data are frequently ordinal rather than metric, 
is· the rank correlation coefficient (I choose this example rather. than soine others for ease of 
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exposition). We have objects ranked from greatest to least o~ two characteristics. The rank 
correlation depends entirely on the sum of the -squares of the differences of the pairs of ranks 
given to the objects. There are n! arrangements of the second ranking when we hold the first 
one fixed. These n ! rankings produce a distribution of the sum of squares. We refer an obtained 
sum of squares to this distribution to decide whether there is reason to believe that there is 
really correlation between the rankings or whether such a sum of squares might have arisen 
by chance. For example, with n = 4 the distribution is given by 

d2 f('2:d2) 

0 

2 3 
4 

6 4 

8 2 
10 2 
12 2 
14 4 

16 1 
18 3 
20' 

Total 24 = 4! 

For such a small n we probably would not feel much confidence in any correlation unless the 
rankiqgs agreed perfectly. Such distributions have been tabulated by Olds, and independently 
by Kendall, by hand up to n = 8. vVe know from work of Hotelling and Pabst that for large n 
the' distribution tends to normality. However, even for n = 8, the normality is not close 
enough for us to get very good approximations to the percentage points of the distribution 
function. Without the help of high-speed computing machinery, we cannot push this simple 
calculation much further. The real bother is that n! goes up so rapidly that after n is pushed 
a few steps further even modern computing machines are bound to be defeated. 

We have numerous problems like this in statistics. l\1any of the attempts to create useful 
nonparametric statistics bog down at exactly this computational point. Some of these diffi­
culties can be solved in time by sufficiently clever combinatorial devices. But those of us 
who want methods for practical use, rather than the sheer joy of mathematical investigation, 
are beginning to wonder whether we might not get more work done in the long run by having 
tables made by computing machine. It is often easier to solve combinatorial problems when 
the answer is essentially known. And certainly the table is what we often want for practical 
work. In other words, why hold up the practical problem for the theoretical investigation 
when machines can solve the problem, often more accurately, directly? The result of such a 
trend would be to leave more time for thinking about problems and their solutions and reduce 
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the time required for arithmetic manipulation. At the same time we relieve the statistician 
ofa side condition. He ordinarily thinks in terms of solutions that he can compute. Computing 
machines should extend his horizon. For example, very extensive work has been done in 
multivariate analysis of interest to educators and economists among others, but although the, 
theory is in good shape nothing much has been tabled. Computing machinery can get us 
these tables and put some of these methods to work. 

As a final application I might mention the use of sampling experiments. In some statistical 
work we cannot get a very workable formulation of the problem mathematically, or, even if 
we do, the computation becomes too nasty for even modern computing machines. In such 
cases we are leaning more and more to the sampling experiment. A simple example is supplied 
by the problem of the truncated normal distribution. We sample from a normal distribution, 
but part of one or both of its tails has been removed., We would like to compare several 
methods of estimating the original parameters of the untruncated normal from such truncated 
samples. With a sample of 15 or 20 the integrations required seem quite unreasonable. 
Instead, we try the various methods a number of times and use the empirical results in place 
of the theory. It seems to me that such experiments are admirably suited to computing 
machines because they involve many repetitions of the same procedure. 

By giving these examples of applications of computing machines to social-science problems, 
and to statistical problems and theory which in turn can be applied to social-science problems, 
I do not care to give the impression that the uses are really very general, or that modern 
computing machines will make very fundamental contributions to social science in the near 
future. 1fost studies are not very large and the calculations can be handled with a desk 
computer. Some exceptions are psychological investigations as carried out by Thurstone at 
the University of Chicago, those done by the Educational Testing Service at Princeton, and 
censuses and sample censuses as carried out by the Bureau of the Census .. Social scientists 
generally think in nonquantitative terms and, except for economics, there is no large body of 
mathematical theory available to make quantitative studies on a grand scale sensible. Only' 
in the last ten years has any progress been made in applying mathematics to the social sciences, 
and the authors of these attempts are quite agreed that little has been done. There has been 

. vague mention of the use of computing machines as logic choppers,the notion being that this 
is what the social scientist need~ because he thinks qualitatively. Until some definite use in 
the social sciences for a logic machine is suggested, I cannot see how it would apply, however 
interested I might be in the development of such a device. Some of the burden of limitation 
falls, of course, on the computing-machinery people. The social scientist interested in popula­
tion and sociology problems would like to be able to play around with the census data. He 
would like to make tabulations himself, or to his own order (the Bureau of the Census will 
make sample studies for him). One might think this would be a job for high-speed computers, 
and no doubt it will be, but just now I do not think we are very good at high-speed scanning 
and tabulation of large masses of original data. 
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At present, most of the direct applications of computing machines in the social sciences 
outside economics' fall into the realm of simultaneous linear equations----:-homogeneous or. 
nonhomogeneous. Examples are multiple regression, discriminant function, scaling theory, 
factor analysis. Computing machines can help statistics, the tool subject of quantitative 
social science, in numerous ways. Some of these are by tabulating functions, by computing 
properties of statistics, both directly and by' means of sampling experiments. This process 
will help in the development of statistical theory, and make possible the practical use of a 
large body of theory which is little used because of computational difficulties .. Outside econ­
omics there is not yet a large body of mathematical theory in the social sciences. This fact 
sets severe limits on the direct applications of, high-speed computing machines except in some 
special cases mentioned earlier. 
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WASSIL Y W.LEONTIEF 
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At a similar occasion three years ago 1 had the opportunity to discuss a computational 
problem arising in connection with quantitative analysis of mutual interrelations of the 
different sectors of a national economy. Since the subject of this paper represents the next 
step along the same path of inquiry, it can best be introduced through a short recapitulation 
of the original problem. l 

The mutual interdependence of the many different branches of production, transportation, 
distribution, etc. (1 will refer to all of them from now -on as the different "industries") is 
basically due to the fact that they exist by "taking in each other's wash." The inputs of any 
one industry are the outputs of the others! Let Xi represent the annual rate of total output 
(measured in appropriate physical units) of industry i, X ik the amount of the product of industry 
k absorbed annually by industry i, and Xnk the amount of the same product k made available 
for "outside use," that is, for'consumption not by anyone of the m industries explicitly included 
in the economic system under consideration. The over-all input-output balance of a whole 
national economy comprising m separate industries can be described in terms of m linear 

, equations 
k=m 

Xi - 2: Xki =Xni• 
k=1 

i = 1, 2, .. . ,.m. (1) 

Turning to the internal input-output structure of any particular industry, we find that 
there exists a definite relation, rather narrowly determined by te~hnological-in the widest 
sense of the word-considerations, between the rate of its output and the, quantities of all the 
various materials and services required to aC,hieve it. As a first empirically justified approxi­
mation, the assumption can be made that the quantity of each kind of input absorbed by an 
industry per unit of its output is fixed. Thus the magnitudes included in the balance equations 
are subject to the set of structural relations 

i = 1, 2, . . ., m; k = 1, 2, . . ., m. (2) 

Substituting Eq. (2) in Eq. (1) we have 
k=m 

Xi - 2: akiXk = xni, i = 1, 2, . . ., m 
k=1 

which, solved for the X/s, gives 

i = 1, 2, ... , m 

where the Aik'S are elements of the inverse of the structural matrix I akil. 

(3) 

(4) 

Given an "outside bill of goods" Xnl, Xn2, • • ., Xnm' be it the final' domestic consumers' 
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demand, allocations to the foreign countries under the Marshall Plan aid, or itemized material 
requirements of a military mobilization program, the last system enables us to determine the 
corresponding level of output in all the individual sectors of the economy . 

. Only a few years ago the computational difficulties involved in the inversion of a square 
matrix of order 40, 100, or 150 would have been considered practically insurmountable. 
Now our main concern is that of collecting sufficiently accurate primary quantitative infor­
mation on the basis of which such matrices are heing set up. 

But new computational problems arise as the thinking on the subject advances. 

The theoretical scheme of interindustrial relations as presented above is entirely static. 
All variables occurring in it are time rates of input and output flows. The actual economic 
process involves, however, not only flows but also stocks of commodities: stocks of machinery, 
stocks of buildings, inventories of raw materials or goods-in-process and of finished commodities. 

Explicit incorporation of stocks as well as of flows' in the model of the national economy 
. leads to formulation of adynamic theory. The change in the magnitude of any particular 

kind of stock-if it is at all possible-is achieved through accumulation or decumulation of a 
flow over time. Let Sik represent the stock of commodity k used in industry i at the time t; 
Sik describes, then, the flow pf additions to (or subtractions from) that particular stock. The 
balance equations (1) can now be rewritten 

k=rn k=m 
Xi - 2: Xki - 2: Ski = Xni• i = 1,.2, . . ., m. 

k=l k=l 
(5) 

The flow of commodities from industry i to industry k is being split here explicitly into two 
components, Xki representing that part of it which is being used "on current account" and 
Ski the other part added (if Ski> 0) or subtracted (if Ski < 0) from the stock Ski. 

A corresponding ~odification must be introduced also into the description of the internal 
structure of the separate industries. The equations of set '(2) as formulated above refer only 
to technical input requirements on current account. All additions to stock have, in the original 
static f~rmulation, been treated as parts of the independent "outside demand," that is, the 
vector Xn1, Xn2, • • ., Xnm; they were not explained but rather treated as known parameters. 
The more comprehensive dynamic formulation contains an additional, second set of structural 
equations in which each stock or capital requirement ora particular industry is related to its 
rate of output, 

(6) 

or differentiating, 
(6a) 

The constants bki can be referred to as the capital coefficients .. 
Substitution of Eqs. (2) and (6a) in Eq; (5) gives a set of m linea·r differential equations 

with constant coefficients, 

(7) 
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A general solution ,of this dynamic system can be written 
k=m 

Xi(t) = 2: Ck(X10, x20, ••• , XmO)KkieAJ!, + L i (xn1, xn2, ••. , Xnm); 
k=l 

i = 1, 2, ... , m 

(8) 

where the A'S are the characteristic roots of system (7); the Ck's, linear functions of the initial 
conditions (expressed in terms of the rates of output of all industries at some point of time to) ; 
the K/s, appropriate functions of the constants, the a's, b's, and A'S; while L i (xn1, Xn2,. • ., xnm) 
are linear functions of the outside demand Xn1, Xn2, • • ., Xnm~ 

Once obtained in numerical form, this solution makes it possible to answer various types 
of questions arising in conne~tion with the explanation of the behavior of the economic system 
over ,time. 

Western Europe, for example, is striving to accomplish an investment program which in 
a certain number of years would make it independent of the negative "outside demand," 
that is, outside supplies currently being made available to it under the Marshall Plan. Had 
the necessary primary i~formation been available one could have determined the m rates of 
surplus imports of various commodities (the xn/s) that would be required to raise the domestic 
output from a given original level X1(tO), X2(tO), •.• , to some prescribed higher level X1(t1), 
X2(t1), ... over a stated period of time tl - to' 

To obtain the desired answer it would be only necessary to insert in Eq. (8) the original 
levds of output as the initial condition, set t in the exponentials equal to the prescribed recovery 
period tl - to, and equate the right-hand terms of the equations to the desired final levels of 
output XI (t1) , X 2(t1), • • • The resulting m linear equations can then be solved for the m , 

unknown quantities Xn1, Xn2, •.. , Xnm of surplus imports. 
If som'e of the characteristic rqots of the differential equations (7) turn out to be complex, 

the outputs of the individual industries will display a typical periodic pattern of motion with 
increasing constants of diminishing amplitudes depending upon the magnitude of the real 
parts of the roots. The consideration of such periodic solutions constitutes the theoretical 
basis of many a contemporary business-cycle theory. 

Although very attractive because of its obvious simplicity, this explanation of alternative 
booms and depressions has a serious weakness which, ifit is overcome by appropriate theoretical 
reformulation, leads to a new and interesting computational problem. 

The original static system has been transformed into a dynamic one by the introduction 
of stock-flow relations as described by a set of appropriate capital coefficients. Not all capital 
stocks can, however, be decumulated, that is, reduced in the same way in which they are 
being accumulated. Investments in raw materials, goods-in-process, and finished commodities, 
in short, stocks which are associated with the concept of working capital, can indeed move 
downward as easily as they can go up; not so with fixed capital, that is, machinery, buildings, 
permanent investment in roadbeds, soil conservation, etc. Provided sufIicient sources of 
supply exist, these stocks can change in the upward direction ~s readily as working capital. 
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In the case of contracting demand, however, fixed capital cannot be as readily reduced as, 
say, inventories of raw materials. For obvious technological reasons, the rate at which 
machinery and buildings, not to speak of so-called permanent land improvements, can be 
used up is strictly limited and at best is very low. The appearance of unused capaCity of idle 
fixed capital (in times of downward production trends and during the initial 'phases of recovery 
when output has not yet reached the previous high) constitutes one of the most characteristic 
aspects of modern business fluctuations. 

In the light of these observations, the use of unchanging stock-flow ratios well suited-at 
. least in the first approximation-to the analysis of the dynamics of working capital is in­
appropriate in application to fixed capital. As soon as the rate of <?utput of an industry begins 
to diminish, or reaches a certain critical rate of decrease at which idle investment makes its 
appearance, the technologically necessary stock-flow relations lose their economic significance 
so far as the stocks of fixed investment used in this industry are concerned. Since and to the 
extent that the previously accumulated stocks of durables cannot be reduced through' con­
sumption on current account these become quasi-free goods. . The economic connection 
between such stocks and the current rate of output ceases to exist and it is reestablished only 
when and if, in the course of a subsequent increase in the rate of production, all existing idle 
capacity has again been reabsorbed, and thus additional investment becomes necessary for 
further expansion. 

In terms of a previously described theoretical model,it means that, in the course of the 
time intervals during which the fixed capital stock of a particular industry exceeds the techno­
logically required magnitude, the corresponding capital coefficients in the system of differential 
equations (8) become zero. They acquire, however, the original values if and as soon as the 
output of -the industry again increases to the level at which the surplus stocks become 
reabsorbed. 

The movement of the whole economic system can thus be described as a succession of 
alternative phases. Within each phase its path is defined by an appropriate system of linear 
differential equations with constant coefficients. Each of these alternative systems is obtained 
by suppressing a certain subset of capital coefficients of the original, complete system. The 
initial conditions of every phase are determined by the ·state in which the system found itself 
at the end of the previous phase. (Specifically, they are described in terms of the corresponding 
rates of output of the m individual industries); thus, throughout the process as a whole all 
variables are continuous functions of time but their derivatives are, in general, discontinuous 
at the point of junction of the successive phases. 

The rules governing the transition from one phase to another are as follows: 
1. The current phase terminates 

. (a) whenever the downward change in the rate, of output 'of any industry that uses any 
particular kind of durable capital goods reaches a certain fixed critical magnitude below 
which the rate of effective capitaldecumulation (that is, the rate of reduction in the magnitude 
of the particular kind of capital stock) cannot fall, and 
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(b) whenever the rate of output of any capital-using industry reaches, in the course of its 
upward movement, a level at which the stock of anyone kind of fixed capital becomes again 
fully utilized, that is, becomes equal to the stock that existed at the beginning of the latest 
previous phase during which it started to· be idle, minus the maximum effective rate of 
attrition, multiplied by the length of time elapsed since then. 

2. The set of differential equations of a succeeding phase is obtained from that of a previous 
phase 

in case (a) by suppressing the capital coefficients bki of industry k that refe~ to stocks of 
durable commodities, and 

in case (b) by reintroduction of capital coefficients that were suppressed at the· beginning 
of the terminating phase. 

From an economist's point of view, it is particularly interesting to note that the process 
described might display alternating upward and downward move~ents in the rate of output 
of the various industries, even if none of the characteristic roots of the· sets of differential 
equations governing anyone of its separate phases are complex, that is, even if neither one of 
them contains ·periodic components. The unrealistically smooth symmetry and exact period­
icity implied by conventional business-cycle models is thus entirely eliminated. 

Given a set of empirically observed technical flow and capital coefficients and the initial 
state of the system, the course of the ensuing-phase periodic process is uniquely determined. 
The nature of the underlying dynamic relation is such, however, that the description of the 
resulting movement cannot be reduced to a simple general formula. The movement of the 
system has to be found stepwise from one phase to another. Modern high-speed machines 
are, for obvious reasons, peculiarly suited to efficient solution of the resuiting computational 
problem. 
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During the major portion of this paper we ~hall consider in detail two problems of special 
interest to the speaker. One of these problems is concerned with a point in general methodology 
and can be applied to a number of psychological studies. The other problem is of a more 
theoretic nature involving quantitative assumptions of particular psychological relations. 
The first problem concerns the question of how to perform the. requisite computations; the 
second problem is more a question of what are the results of a set of theoretic constructs. 
Practicable means of obtaining solutions in either case, making use of normally avail­
able methods, have not been found.· It is. the hope of the author that large-scale 
digital computing machines will be of assistance in solving these and similar problems in 
psychology. 

Before going into the details of these problems, I wish to emphasize the point that they 
are not typical of the majority of computations in psychology. In general, workers in the 
quantified aspects of psychology are plagued with the necessity of working with masses of 
what might be termed low-graQe data. Here weare using the term "low-grade data" to 
indicate that each datum has limited pertinence owing to the influence of uncontrollable 
factors in experimental or observational situations. As a result of inconsistencies in the 
observations and of the many attributes that must be considered simultaneously in a number 
of studies, it has often been necessary to use linear types of equations in quantitative psycho­
logical theories. Even these simpler mathematical formulations have yielded gratifying results. 
The point for consideration here is that, typically, computing problems in psychology involve 
simple calculations on many observations. At present, psychologists place general emphasis 

. on computing aids in matrix manipulations such as multiplications and inversions. The first 
problem we will describe in detail is atypical only in the fact that the matrices are interrelated· 
in ·a more complex manner. There are some ,areas in psychology where complex functions 
are employed, but computational-type solutions are seldom indicated as necessary. In many 
cases, adequate mathematical constructs have not been developed and reliance is placed on 
graphical aids and the judgment of the experimenter. 

In addition to the mathematical type of psychological theories, considerable dependence 
is placed on statistical methods, from which methods a number of quantity-type computational 
problems arise. ' ' 

During the foregoing discussion, the characteristics of simple calculations on a large quan­
tity of data have been emphasized as more typical of the more critical computational problems 
in psychology. For th,ese problems use of the large-scale digital computing machines is not 
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appropriate, from what I understand about these machines. In consequence, I have selected 
for discussion two more complex computational problems. 

Problem 1. Determination of maximum-likelihood estimates of a factorial analysis structure. 

As previously indicated, this problem deals with procedural implimentation of a theoretic 
method. The theoretic work was performed by D. N. Lawley at the University of Edinburgh, 
who first published a paper on the subject in 1940. 

Table l. An illustrative covariance matrix C (basedonobservations df 50 cases). 

2 3 4 5 6 7 8 

1 0.35 - 0.60 0.88 - 3.92 - 1.29 - 1.15 - 1.00 - 0.30 

2 - 0.60 6.80. . - 5.84 31.36 5.52 11.20 1.60 4.80 

3 0.88 - 5.84 11.20 - 22.40 - 10.80 - 6.00 - 9.92 - 0.48 

4 - 3.92 31.36 -- 22.40 225.40 18.90 73.50 - 9.52 36.12 

5 - 1.29 5.52 - 10.80 18.90 29.25 0.75 26.76 - 6.66 

6 - 1.15 11.20 - 6.00 73.50 " 0.75 61.25 - 23.40 18.90 

7 - 1.00 1.60 -- 9.92 - 9.52 26.76 - 23.40 58.40 - 8.40 

8 - 0.30 4.80 - 0.48 36.12 - 6.66 18.90 --8.40 45.00 

Consider the matrix C in Table 1. It is square and symmetric. The off-diagonal cell 
entries are known as covariances; the diagon"al entries are known as variances. In this case 
this is a fictitious setup, but the values recorded could have been obtained from observation 
of the performance of 50 people on eight different tests. Each variance, or diagonal cell 
entry, is a measure of the variability of scores of the 50 subjects on one of the tests. Each 
covariance, or off-diagonal cell entry, is a measure of similarity of the rank-order position of 
the 50 subjects on a pair of the tests. There is one row and one column for each test included 
in the study. Although eight variable tables of covariances are rather common, factorial­
analysis methods should not usually be applied to so small a set of tests. The size of the study 
that would involve factor analysis has, more typically, 20 to ioo variables. The number of 
cases may be over .1 ,OOQ. The covariance matrix C is our starting point for the present 

computing problem. 
Let n represent the number of tests and N the number of people tested. It is desired to 

obtain a matrix A with n rows and r columns to satisfy Eqs. (1) to (7) and Conditions I and II. 
The numerical work for Eqs. (I) and (2) is given in Table 2 for the case where there are two 
columns in matrix A, that is, where r is 2. The simplicity in the setup of the illustrative example 
is apparent in the use of simpie values for entries in matrix B and for the u/s. Our procedure 
for the illustrative example was the reverse of the computational problem because we set 
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Table 2. Numerical example for Eqs. (1) and (2). 

Variable Matrix A Matrix B 

number ejj I II u·2 
, , Uj I II 

0.35 0.3 - 0.1 0.25 0.5 0.6 - 0.2 

2 6.80 -2A - 0.2 1.00 1.0 -2.4 -0.2 

3 11.20 2.4 - 1.2 4.00 2.0 1.2 -- 0.6 

4 225.40 -- 12.6 - 4.2 49.00 7.0 - 1.8 -0.6 

5 29.25 - 2.7' 3.6 9.00 3.0 -0.9 1.2 

6 61.25 -- 4.5 -4.0 25.00 5.0 -0.9 -0.8 

7 58.40 - 1.2 6.4 16.00 4.0 -0.3 1.6 

8 45.00 - 1.8 -2.4 36.00 6.0 -0.3 -0.4 

up the solution first and then worked backward to matrix C. Unfortunately, it is much more 
difficult to obtain the solution working in the normal direction from matrix C. In Table 2, 
the column for Cjj contains the diagonal entries of matrix C. Matrix A is the desired solution. 
Each entry in the column headed ul is obtained by subtracting the sum of squares of the 
entries in matrix A for the row from the Cjj in the row. Equation (1) sumlnarizes the relation 
of the u/s to the cj/s and ,entries in row j of matrix A 

Uj = (ci i - L:a,m2)!. (1 ) 
m 

Each entry in matrix B is obtained by dividing the corresponding entry in A by the uj for 
the row. This step can be summarized in matrix notation by Eq. (2), where the matrix V 
is a diagonal matrix with diagonal entries uj ; 

B = V-lAo (2) 

Table 3. The matrix E. 

_I 2 3 4 5 6 7 8 

1 
I 

0.40 - 1.20 0.88 - 1.12 - 0.86 -- 0.46 - 0.50 - 0.10 

2 - 1.20 5.80 - 2.92 4.48 1.84 2;24 0.40 0.80 

3 \ 0.88 - 2.92 1.80 - 1.60 -- 1.80 - 0.60 - 1.24 - 0.04 

4 
I 

- 1.12 I 4.48 - 1.60 3.60 0.90 2.10 - 0.34 0.86 

5 - 0.86 1.84 - 1.80 0.90 2.25 0.05 2.23 - 0.37 

6 - 0.46 2.24 - 0.60 2.10 0.05 1.45 -- 1.17 0.63 

7 - 0.50 0040 " - 1.24 - 0.34 2.23 - 1.17 2.65 - 0.35 

8 - 0.10 0.80 - 0.04 0.86 - 0.37 0.63 - 0.35 0.25 
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With Eqs. (3) we return to matrix C and define a new matrix E with the same num~er of 
rows and columns as C: 

E = U..J.ICU-l_ 1. (3) 

Entries in each row and column of C are divided by the corresponding u/s; and, in addition, 
unity is subtracted from the diagonal values. Table 3' is the result for our example. 

Equations (4) and (5) and Condition I are the definitive ,relations of matrix B to matrix E: 

B , EBK, (4) 

K-2 = B'EB. (5) 

Condition I. Matrix B has the r latent vectors of E corresponding to the largest latent roots of E. 

Table 4 gives the numerical example for these equations. Matrix B is repeated from Table 
2. The matrix product EB has been computed. Matrix K,-2 is a diagonal matrix with diagonal 

Table 4. Numerical example for 'Eqs. (4) and (5). 

Variable Matrix B Product EB 

number I 
, 

II I II 

1 0.6 -0.2 7.56 - l.12 

2 -2.4 -0.2 - 30.24 -- l.12 

3 l.2 -0.6 15.12 - 3.36 

4 - 1.8 ' - 0.6 - 22.68 - 3.36 

5 -- 0.9 1.2 - 1l.34 6.72 

6 -0.9 -0.8 -11.34 - 4.48 

7 -0.3 1.6 - 3.78 8.96 

8 -0,0.3 -- 0.4 - 3.78 - 2.24 

Matrix K-2 Matrix K 

I II I II 

I 158.76 0 I 
12.6 

0 

II 0 31.36 II 0 
5.6 

entries equal to the sum of products between corresponding entries in identical columns of 
B and.EB. The off-diagonal entries in K-2 are sums of products between entries in different 
columns of Band EB and must' come out zero. Matrix K is also a diagonal matrix with 
diagonal cell entries equal to the reciprocal of the square roots of the corresponding entries 
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in K-2. When the entries in each column of EB a're multiplied by the corresponding diagonal 
entry in K, matrixB is reproduced . 

. It is to be noted that Eqs. (1) to (5) and Condition I apply for any given number, r, of 
columns of A. The matrices are so interdependent in these five equations that direct solutions 
starting only. with· matrix C are quite impracticable and it is necessary to resort to successive 
trial solutions. Discussion of the trial procedures is postponed until the theory of the method 
for determining the number of columns of A has been considered. 

Table 5. The matrix G. (Forj> k: 2.2.g;k 2 = 0.3200, W2 = 16.00.) 
j k 

2 3 4 5 6 7 8 

1 1.00 0.20 0.04 - 0.16 -0.08 ~·0.08 0.00 0.00 

2 0.20 1.00 - 0.l6 0.04 . - 0.08 -0.08 ·0.00 0.00 

3 0.04 '- 0.l6 1.00 0.20 0.00 0.00 0.08 0.08 

4 - 0.l6 0.04 0.20 1.00 0.00 0.00 0.08 0.08 

5 - 0.08 -0.08 0.00 0.00 1.00 0.20 0.04 - 0.16 

6 - 0.08 -0.08 0.00 0.00 0.20 1.00 -·0.16 0.04 

7 0.00 0.00 0.08 0.08 0.04 - 0.16 1.00 0.20 

8 0.00 0.00 0.08 0.08 - 0.16 0.04 0.20 1.00 

The matrix G of Table 5 is defined by Eq. (6): 

G = E-BB' + 1. (6) 

Off-diagonal entries in G are interpreted as the residual portion of E not accounted for by 
the matrix B. The diagonal entries must be unity as a consequence of Eqs. (1) to (5). The 
general size of the off-diagonal entries is of special interest. First, as the number of factors 
-that is, columns of matrix A-is increased, the general size of these off-diagonal entries 
decreases. A second important relation is with the number of cases on which observations 
were made. When observations are made on an extremely large group of cases, the off-diagonal 
entries in G are vanishingly small for a given set of variables and a given number of columns 
in matrix A. As smaller groups of cases are considered, these off-diagonal entries will usually 
increase in size. Consider the index Wr defined in Eq. (7): 

Wr = N'L'Lgik2, j> k (7) 
j k 

where N is the number of cases in the sample. The double summation is of squares of the 
off-diagonal entries of G below the diagonal. When the off-diago~a'l entries differ from zero 
only because of chance sampling effects, Wr for a nu·mber of samples of size N will have a 
frequency distribution in accordance with the chi-square distribution with appropriate degrees 
of freedom. Values of chi-square have been tabulated. It is possible, therefore, to set up a 
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value above which we would believe the possibilities of observing Wr owing solely to chance 
sampling effects to be negligible. Thus, whenever a w,. is observed above this critical value, 
it will be concluded that more columns of A are required. This reasoning leads to 

Condition II. The number of columns r of matrix A is the smallest number where Wr is less than 
chi-square, with i[ (n - r) 2 - n - r] degrees of freedom, for a given level of significance. 

When a IO-percent level of confidence is used,a chi-square can be computed that will be 
exceeded 10 percent of the time by chance sampling effects. This IO-percent level of confidence 
seems, to the author, to be appropriate for the present problem. 

By making us~ of an excellent approximation devised by Edwin B. Wilson and Margaret 
M. Hilferty, a direct computational procedure can be designated. Here r is to be the smallest 
integer for which ' 

Wr < t[(n - r)2 - n - r]{ 1 - 9[(); ] + 1.2816 J9( ); }3. (8) n-r -n-r . n-r -n-r 

Solutions have been obtained for the illustrative problem for 0, 1, and 2 columns of matrix A. 
Values of Wr , degrees of freedom, and actual chi-squares and approximate chi-squares for 
a IO-percent level of confidence are listed in Table 6. ~or no factors and for one factor, that 

Table 6. Values of Wr , number of degrees of freedom, and actual and approximate 
chi-square for IO-percent level of confidence for illustrative example. 

Wr 
Degrees of Chi-square 

r 
Approximate freedom Actual 

0 228 28 37.92 37.91 

1 106 20 28.41 28.40 

2 16 13 19.81 19.80 

is, r equal to 0 or 1, Wr is greater than the corresponding chi-square. For two factors, Wr 
is less than the chi-square. We'therefore conclude that two factors are appropriate for the 
illustrative example. The last two columns of the table indicate the excellence of the 
approximation. 

In review, the computational problem is to begin with a matrix C and to obtain matrices 
A and values of Wr for successively increasing numbers of factors until the inequality (8) is 
satisfied. The matrix A with the 'smallest number of columns for which the inequality is 
satisfied is the solution. 

The major difficulty lies in obtaining a matrix A, with any specified number of columns, 
from matrix C in order to satisfy Eqs. (1) to (5) and Condition I. Direct solutions seem 
impracticable. One possible successive-approximation method is based on a procedure 
developed by Harold Hotelling for obtaining principal components. An initial trial matrix 
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. Al is obtained by any of several methods. Random numbers may be used, provided the. Ui1
2 

of Eq·.(9) is greater than zero: 
Ujl2 = Cu - Laim12. 

m 
(9) 

It is possible to have zero-entries for all but two cells in anyone· column of AI' Computations 
for one trial for the illustrative example are presented in Table 7. The case illustrated is that 

Table 7. One trial of a: successive-approximation method. 

Variable Al LI MI A2 
number I II u2

iZ 
I II I II I II 

1 -0.28 0 0.27 - 1.04 0 - 3.4 - 0.1 - 0.28 0.10 

2 2.44 0 0.85 2.87 0 30.1 2.6 2.44 - 0.19 

3 - 2.22 0 6.27 - 0.35 0 - 26.9 0.6 - 2.18 1.41 

4 12.81 0 61.30 0.21 0 159.6 21.2 12.93 2.13 

5 2.18 '0 24.50 0.09 0 25.8 - 5.7 2.09 - 3.53 

6 4.68 4.66 17.63 0.27 .0.26 . 63.3 16.4 5.13 4.23 

i 0.53 - 5.66 26.08 0.02 - 0.22 3.4 .~ 13.3 0.28 - 5.79 

8 2.04 '0 40.84 . 0.05 0 26.4 6.8 . 2.14 ' 1.75 

K-2 
. I 

K-I I KI' 
I II I' , II' I' II' 

I 153.66 15.71 I 12.40 0 I 0.081 - 0.043 

II 15.80 7.19 II 1.27 2.36 II 0 0.424 

in which two factors are under consideration. A similar series of trials was performed for the 
case of one factor, and the first column of Al in Table 7 isthe approximate solution obtained. 
The values in cells for rows 6 and 7 wer~ obtained by solving Eqs. (10),; (1 i), and (12) ,: 

1ik == Cik - ajlakl, 

. a62a72 = 167' 

a62
2 

, !s6 
-2=r' 
a72 . J 77 

(10) 

(11) 

( 12) 

The entire matrix F with cell entries 1ik was computed and the largest off-diagonal entry 
selected. This was for tests 6 and 7 ~ Equations (11), and (12) yield reasonable values for 
a62 and a72• Obtaining atrial matrix AI, the Uil 2'S are computed by Eq.9. 

Equations (13), (14), and (15) indicate the computations for subsequent steps: 

(13) 
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(14) 

K I -2 = Ll' A,11• (15) 

The matrix Ll is obtained by dividing each entry in a row of Al by the Uil
2 for that row. 

Matrices MI and KI-2 are obtained as matrix products. Matrix KI-2 should be symmetric 
except as a result of rounding-off errors in MI' Usually minor errors in symmetry wiil not 
materially affect succeeding steps. The matrix KI~I is computed to satisfy Eq. (16) and to 
have zero entries above the diagonal: 

(KI-l)(KI-l), = KI-2. (16) 

The inverse ofK1-1 and the matrix product of Eq. (17) are obtained: 

MIKI' = A 2• ( 17) 

The matrix A2 is the second approximation. 
Usually this system should converge on the desired solution. The rate of convergence is 

likely to be low, and many trials may be required for each number of factors. As a result, 
the kind of computational assistance offered by large-scale digital computing machines is 
essential. Other simpler factorial methods are in use by psychologists mainly to avoid the 
computational labor involved in the procedure we have outlined. These other procedures 
have not answered the question of the number of factors to be considered, and they suffer 

,from the usual effects of approximations. It would be quite desirable to be able to apply 
. Lawley's method. 

Another computational problem with which many psychologists are concerned can be 
mentioned here, but we will not spend much time on it. The matrix A can be considered 
to give the coordinates of n vectors, one for each test, in r-dimensional space, one dimension 
for each factor. It is possible to restate Eqs. (4) and (5) and Condition I to allow the rotation 
of axes vyithin the space defined by matrix A. L. L. Thurstone has stated his principle of 
simple structure to solve the problem of where to rotate the axes. It is sufficient to state here 
that much computational labor is involved and assistance will be welcomed by psychologists. 
Unfortunately, Thurstone's principle is qualitative in nature. Until his principle has been 
successfully restflted in precise mathematical relations, the solution will depend on the judgment 
of the analyst, and the applicability of large-scale calculating machines will be doubtful. 

We shall now turn to our second problem. 

Problem 2. Determination of Distribution of Items in Difficulty to Yield Maximllm Test-Ability 
Correlation. 

The computational problem can be stated quite simply. Consider Eq. (18): 

V = 2:rs 1 e- ithl {2: f';() 1 e-ixh2dxh _ (2: fa) 1 e-ixh2dXh)2 
It V27T It lth V27T It Jth V27T 

+ 2: 2: f.a)f.a) V 1 exp [- 2(1 1 .4) (Xh2 + Xi
2 - 2xhXir,s2)] ¢XidXh}-l. (18) 

h ii=ll th ti 27T 1 - rs4 . - 1 s 
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This equation arises in a mathematical development related to the assembly of standardized 
aptitude examinations. Let us take as an example a test in addition, where it is desired to 

differentiate, among people most validly with respect to rapidity and accuracy of adding 
columns of numbers. When, however, a large number of problems are tried out on a group 
of people, it is found that some problems are easy and others are more difficult in terms of the 
percentage of the group that gives the correct answers in the time allowed. These differences 

in difficulty could arise from differing lengths of the columns to be added, or from differind 
numbers of digits in each number, or from use of numbers differing in ease of addition. It 

is easier to add l's and 2's than 6's, 7's, or 8's. Thus the test technician has at hh disposal 
a large number of problems of different difficulty. How should the problems be selected as 
to . difficulty? If only those problems are used to which half of the group gives the correct 

answer in the time allotted, then the people who are very poor in addition will be grouped at 

low sco~es and the people who are very good in addition will be grouped at high scores, there 
being, therefore, little differentiation among members in either of the extreme groups. It 

thus seems that the problems should be spread out in difficulty. Exactly what is the best 
distribution of problems in difficulty is not known. Our Eq. (18) is an attempt to obtain the 
answer. 

We have assumed a scale of ability. The coefficient. Vis the correlation between the test 
scores and scores on this ability. The quantity rs is a measure of the relation of each test 

problem and the underlying ability. The th's are indices of the problems' difficulties .. The 
subscript i is used alternatively with h to designate the problems. We would like, for any 
given number of problems and value ofrs, to seiect that ~et ofth's' which 'would yield a maximum 

value for V. It will be noted that the independent variables~the th's--.:.appear as exponents 
and as limits of definite integrals for which 'only numeric solutioI?-s exist. Tabulated sets of 
values of the th's that maximize V for several conditions of numbers of problems between 

10 and 500.and of values of rs between zero and unity would be of considerable assistance as 
guides in the construction of tests. I have not tried a computational type of solution, but the 
reports of capabilities of the large-s~ale digital computers indicate that they should yield the 
desired result~. 

In this paper r' have outlined two problems on which the large~scale computing machines 
should be of assistance to psychologists. These problems were chosen because (a) they were 
so stated that computational-type solutions were feasible, (b) the volume and complexity of 

the calculations indicated a ne~d for assis~ance from a larg;e-scale machine, and (c) the problems 
were of special interest to the author. 
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Economists are frequently interested in constructing models of economic behavior and 
estimating the parameters involved. In many cases the traditional least-squares treatment 
fails and it becomes necessary to maximize a likelihood function of many variables. Such 
problems frequently involve many matrix operations where it is of great importance for 
computers to have high computing speeds, either large· internal memory or rapid transfer 
from internal to external memories, or both, and the ability to take advantage of matrices 
which are very simple in that most' elements are zero. 

As an illustrative· example, suppose that Ytl represents the quantity sold of a certain good 
in ye~r t; Yt2' the price of the good inyear t; Ztl, the national income in year t~ and Zt2, the 
wage rate in the producing industry in year t. Then the economist hypothesizes the following 
model, consisting of the demand and supply equations 

Ytl =' IXLYt2 + IX2Ztl + IXa + UtI, 

Ytl = f3LYt2 + f32Zt2 + f3a + Ut2, 

where Utl and Ut2 are random unobserved disturbances. It is desired to estimate the parameters 

eXI, IX2' IXa, f31'. f32' f3a because they can be used to forecast the effect of an excise tax, say, on the 
price and quantity of a good (once the national income and the wage rate in the producing 
industry are known). Furtherm~reJ these parameters in themselves have important theoretical 
significance. 

One s~ould refrain from using the traditional least-squares regression method to estimate 
the parameters, for the conditions justifying the use of least squares are not s·atisfied and that 
method may give meaningless results even in large samples. (To justify least squares one must 
assume that Utl, Ut2 are distributed independently ofYt2' Ztl, Zt2; this is not the case sinceYtl 

andYt2 are determined by Ztl, Zt2, Utl, u t2 .) In this case the maximum-likelihood· method should 
be applied. 

In general, our system of equations may be written 

f3nYtl + f312.J't2 + .... + YnZtl + Y2l Zt2 + ... = Utl, 

f321Ytl + f322Yt2 + ... + Y2lZtl + Y22Zt2+ ••• = Ut2, 

{3gIYtl + f3g2Yt2 + ... + YgIZtl + Yg2Z t2 + ... = lltg, 

348 



COMPUTATION IN ECONOMETRIC PROBLEMS 

where they's and z's are obse:r;ved variables apd the parameters f3ii' Yik are subject to certain 
restrictions derived from economic theory. A case which occurs frequently is that where 
linear functions of these parameters are known to vanish. In this case a considerable number 
of simplifications may enter. The Uti are unobserved random disturbances which are assumed 

to be jointly normally distributed, independently of the Zti'l 

The above equations may be written 

By/ + rz/, = u/, 
or 

Ax/ = u/, 
where 

A =. (B r), 'x/ =e::). 
Then it can be shown' that the maximum-likelihood method involves maximizing 

log L(A) = -llog det (A W A') - t lo.g det (A MA') 

as a function of A, where A is subject to the a priori restrictions due to economic theory. 

Here 
1 T I (Mn .M12 ) 

]vI = T L X t X t = M' L{ , 
t=1 21 .Lv, 22 

1 T . 1 T 

Mn = T LY/Yt, M12 = T L Y/Zt, etc., 
t=1 t=l 

W = (;:'n ~), 
Wn = Mn - M12M22-1M21' 

Iterative methods have been applied to maximize L. These are gradient methods where 
one starts with a certain approximation P and takes a step in the direction of steepest ascent. 2 

In particular, the Newton method is a special case of a gradient method where convergence 
per iteration is very rapid but the amount of calculation per iteration is quite large. This 
method converges faster as the approximation gets closer to the maximizing value. To apply 
gradient methods one must consider first derivatives of L. For the Newton method, second 
derivatives are also required. It is found convenient to work with the Taylor expansion 

log L(P + hD) = log L(P) h tr{[(PWP/)-l PW - (PMP/)-l PM]D/} + O(h2), 

where tr represents the trace or the sum of the elements along the main diagonal. From 
this expansion it is seen that to compute the first-order derivatives one must essentially compute 
(PWP')-l PW - (PMP/)-l PM. In a typical case of an eleven-equation system, the number 
of rows and columns corresponding to P, M, Wn , respectively, are (11 X 40), (40 X 40), 
(11 X 11). 

In the case where each of the restrictions is linear in the coefficients of one equation, one 
can reduce the number of computations per iteration considerably at the cost of introducing 
a few initial operations. For example, consider the following formula for the direction of 
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steepest ascent with respect to the linearly· independent parameters a in terms of which P 
may be computed: 

d = a<I>[(PWP')-l @ W - (PMP')-l @M]cI>'B-l, 

where B = cI>[(PMP')"':'l @ (M - W)]cI>', cI> is a constant matrix determined by the restrictions,. 
a is in a special sense the vector of the independent or unrestricted variables involv~d in P, 
and @ indicates the Kronecker product of two matrices. 

Among the circumstances that can be used to. reduce the number of comp~tations per 
iteration is the fact that cI> is usually an extremely siInple matrix most of whose elements are 
zero or one. In the above-mentioned eleven-equation system, the sizes of the matrices d, 

a, cI>, B, respectively, are(I X 60), (1 X 60), [60 X (40 xII)], (60 X 60). 
Thus to treat the above system or larger ones it is necessary to have a machine which can 

rapidly refer to large matrices which are kept constant throughout the iterations to perform. 
over a dozen matrix operations per iteration and preferably to make good use of the simplicity 
of certain. rna trices (cI». 
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WILLIAM J. CROZIER 
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In discussing briefly the significance of high-speed calculation instruments for inquiry in 
the realm of physiology I am putting to Ol1e side, for present purposes, th?se aspects of organic 
activity which involve interactions between and among individuals and between groups of 
individuals and environmental' forces or conditions. Undoubtedly, as data accumulate and 
analytical insight grows (although the two may not march in close company), the service of 
such devices can be great in reducing the labor of calculations required for the testing of 
hypotheses and the making of predictions. Even here, however, one can doubt whether it 
will be possible or even desirable to resort to the push-button selection of hypotheses concerning 
ethology, ecology, population genetics, and the like, let alone for the setting up of differential 
equations basic to the erection of quantitative conceptions. The problem must be stated 
before a solution can, be tested. 

It is rather in connection with questions of the nature of the individual organism and its 
constituent processes that some less obvious considerations are required. Two foci of interest 
are clear. The sheer complexity of these processes requires that as understanding of them 
improves it will be more and more necessary to recognize, for theory building, that the organic 
property under scrutiny is essentially a multivariate one, in which many parameters are 
significant. In the end, now only dimly approached, it is likely that all available mathematical 
devices and aids to calculation will be called upon for real progress toward formulation and 

pe~hapscomprehension. 

This first point of interest finds parallels in, for instance, weather prediction or even in 
cosmology, where the basic~ifficulty is rather a mechanical one, arising from the degree of 
appropriateness of the mathematical system applied and the onerousness of using it, granted 
data that are sufficient. Beyond this is the second focus of interest, essentially more attractive 
and more stimulating. It centers upon the possibility ofcreat,ing models of individual biological 
processes. Such models, both mathematical and material, have of course played a considerable 
role in general physiology-as aids to the clarification and the cqncreteness of thinking, and 
as springboards for new experiments. Somewhat crudely put, but not unfairly, the question 
has arisen: Do complex, fast, computation devices provide an effective model of mental 
processes, or even of one general class of human cerebral operations-even to the extent that 

,such machines, with developments of kinds now foreseeable, may be used to serve as surrogates 
for human decisions or actions? 

Note that there are here two distinct questions. The adequate imitation of a given kind 
of end result as achieved by an organism does not at all imply that the mechanism whereby 
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the organism acts or deCides has been duplicated. 'For engineering purposes, as in the "no 
hands" operation of a production line, this may be quite immaterial (so long as men keep the 
surrogate in good worki~g order). But the physiologist's job is different. What he seeks is 
not merely an over-all.model. He really looks for an understanding of the actual mechanisms 
whereby the organic, biological machine operates. An even partially successful model may 
he enormously helpful in furthering this quest, in a particular case; but its character as an 
analogical crutch must not be lost sight of. 

The biologist is not necessarily too grumbly about this-or at least I should not like to 
have it thought tha.t ,he is. He is perfectly able to accept, for the time being, a system of kinetic 
equa,tions embracing the data of photosynthesis as picturing the known essence of the mech­
anism of this process. He also wants to learn the molecular inwardness of the matter, the 
kinetic mechanism with all its defects serving as a ladder toward specific experimental inquiry. 
He is not so crude as to look for a nexus of springs pulling dashpots throughb,aths of hydraulic 
oil when he peers at muscle fibers in electron-microscope pictures, though this kind of model 
has had brilliant uses for some purposes. On the other hand, he knows in a practical way, 
as the logician knows, that reasoning by analogy from dynamical properties of the model is 
liable to stumble over imperfections in the analogy. Gross instances are available in which 
properties of the mechanical model alone, not recognized at the time as such, have misled 
inquiry into blind alleys . 

. An illustrative case is in point. It is drawn from the field of visual excitation, which has 
many advantages for my present purpose. It is significant as illustrating several principles 
important for the method of evaluating analogs for organic events and processes. It happens 
that a variety of visual ~ata have been submitted to description in terms of the notion that 
a visual (seen) threshold effect is brought about when the incidence of light produces a fixed 
amount of freshly formed decomposition product of aphotos.ensitive material in the retina 
(investigations by S. Hecht). One type of such data was that presented by the contour of 
critical flicker frequency as a function of flash intensity. The equation, derived from an 
experimental foundation, used for description (by visual, aesthetic test of fitness) implied 
certain consequences as necessary if the temperature of the organism were to be altered or 
if the light-dark sequence in the flash cycle were to be changed from that commonly charac­
teristic iIi such experiments, nam~ly, 1: 1. The test of the cogency of this formulation cannot 
be made by any proc,ess of curve fitting. It has to be made by the use of what I may be allowed 
to call parametric ana[ysis-the deliberate modification of experimental conditions in such ways 
as to reveal the number and the (or some) quantitative properties of the . parameters of the 
necessary formulation. In this specific case, it was easily shown (Crozier) that the photo­
stationary-state equations were incompetent because they completely failed to predict even 
the direction of the modifications of the flicker contours when tests such as those already 

referred to were made. 
It is interesting to note in outline just what had happened here. It provides a useful 

commentary on the dangers of analogy. The visual systems of animals exhibit reversible 
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changes of excitability according to the prevailing illumination to which they are exposed. 
As a first approximation, it was inevitable that help should be sought from the roughly parallel 
kinetic properties of known reversible-reaction systems in physical chemistry. This involved, 
however, the crass assumption that seeing, as a decisive behavioral act, occurs in direct 
proportion to retinal.events. It also involved the delusion consequent upon the implicit 
assumption that the retina is, in the sense of chemical kinetics, a homogeneous medium. It 
likewise avoided recognition of the patent fact that the equations to which the initial assumption 
led were not in fact unique, even accepting their apparent descriptive adequacy for the data. 
In form the equation is identically a logistic in which the light intensity enters as the logarithm. 
This of course cannot be distinguished from a Gaussian integral except by very precise measure­
ments extending close to the asymptotes. Data of this kind, as well as the quantitative properties 
of the parameters, help to decide in favor of the logarithmic-Gaussian equation. 

The important, central fact is of course that the visual system-even at the retina, and 
even in a single receptor unit-is obviously a microheterogeneous system. It comprises 
assemblages of semi-isolated reaction chambers. Thereby is generated an 'essentially statistical 
situation. Without. enlarging here upon details, it can pretty certainly be shown that here 
one really has a situation in which the assumptions used by Gauss are implicit; hence sensory 
effect is expressed as a Gaussian integral, which is logarithmic in the abscissa in common 
cases because the basic parameter fluctuates spontaneously. . 

There is involved here the conception, for which there is direct observational support, 
that at sundry levels in the hierarchy of assemblages of neural units and subunits implicated 
in a behavioral decision or act one has to do with populations of units which individually 
fluctuate in their contributions to the end result. In the light of this we may examine briefly 
several concrete cases. From a study of them there emerge two c'o~siderations, forming the 
core of what is here suggested. The first is that any model of a mental process, which to be 
analytically significant must include in its dynamical structure the essential nature of the 
process, must in this context operate in such a way that decisions are automatically achieved 
by thorough statistical comparisons. The second is that it is precisely in this way that elemen­
tary "nlental" decisions are arrived at. 

One is thinking here of elementary decisions neurally mediated. If one is to have a model 
of mental processes rather than merely a mimicking of their results, it is necessary t<? know 
sufficiently th~ quantitative properties of that which it is desired to imitate. It is only with 
respect to such elementary decisions as those, for example, involved in the conscious discrimina­
tion between the neural effects due t6 two intensities of illumination, that one has anything 
like data adequate for the beginnings of q~antitative treatment. The concrete cases exhibited 
are therefore chosen from this category. They are given as illustrative only, and no real 
description of their analysis is attempted here. 

Take first a case having intimate relation to the problem of willful indeterminacy. ' How 
many quanta of radiation in the visible range are require'd to evoke the elementary visual 
act (threshold effect)? It has been asserted that on ordinary probability considerations 
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involving the particulate aspect of the structure of light, and because the number of available 
quanta may be quite small, the frequency of seeing of intensities differing near the median 
threshold by small steps forms a Poisson integral, reflecting randomization of the quantal 
content of repeated flashes intended to be identical. Two curious assumptions are involved 
here. One is that only the stimulus is variable, and that the organism is constant (during the 
experiment) in its capacity for exCitation. The other is that one sees with the retina. Prejudice 
aside, each of these assumptions has to be definitively rejected. For formal purposes it is 
sufficient to show that the seeing-frequency function is not a Poisson integral. It is a simple 
matter to demonstrate that this function is symmetrical in log t:..lo· (or in log texp.), and that 
its mean and its variance are totally independent quantities. This latter is proved by elemen­
tary application of parametric analysis: mean and standard deviation are shown to be inde­
pendently variable, by the empirical findings when such relevant conditions as wavelength 
of light, image area, retinal location, oxygen partial·pressure in the air respired, and the like, 
are systematically changed. 

To the question, therefore, how many quanta are required for minimal visual excitation, 
there is required a complex answer. It includes the limitation of "how often." It is further 
complicated by the fact of photosensitization, which has been shown to lower visual thresholds 
by a very considerable amount. For such reasons, as well as others, I purposely do not deal 
here with the asserted correspondence, in fact illusory, between the results of seeing-frequency 
tests and the outcome of calculations based upon absorptive losses of light between the cornea 
and the receptors. 

The notion that a small number of quanta may suffice for a neural decision as to the 
conscious presence of light introduces the possibility of disordered capriciousness-indeter­
minacy-inthis mode of conduct. In no respect of real analytical interest can this be supported. 
In fact, in every instance for which we have data it is found that the standard deviation of the 
critical intensity is rationally related to the mean value of this intensity. The measurements 
have been given in a number of publications. Where, as in the observations based upon 
marginal' recognition of visual flicker, it is possible to consider also the converse experiment, 
in which at fixed flash intensitie~ the variation in critical flash frequency can be determined, 
it is found that the properties of this variation can be forecast from the tests made in the other 
way. Comparable results have been obtained in measurements of the discrimination of 
intensities. The fact that the index of internal correlation computed from the scatter of (JAI is 
systematically related to the magnitudes of experimental conditions inescapably reinforces 
the conviction that although quantitative fluctuation in the basis of simple organic decisions 
is real, it is not lawless. Rules can be written for it, and successful predictions can be made 
as to its properties under novel circumstances. Therefore it is not capricious. The root basis 
of such elementary neural acts is not one in which indeterminacy rules: 

The reason of course is that, even if a single photon should on occasion elicit a valid visual 
discriminatory response, this must be by way of a multiplicative amplifier central to the retina. 
The evidence shows that discriminatory responses are in effect the result of competitive action 
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between groups or populations of neural effects. The internal rules of this competition seem 
to be at least closely akin to those dictated by really elementary statistical considerations. 
For example, the standard deviation of the seeing-frequency function, as dependent on wave­
number, is readily understood on the basis, substantiated by collateral evidence, that the 
standard deviation is larger the greater the number of potentially excitable elements of neural 

effects. 
Measurements of intensity discrimination have played a huge part in psychophysics. 

Their treatment has been curiously raddled by the view that there is a value of /)"/, or of 
/)"//1, which if the universe were only kind one could get accurately. Actually, it fluctuates, 
under given conditions. This fluctuation, instead of being due to a cloud of irrelevant "errors," 
is actually the key to the matter. Illustrations are at hand showing how, from a knowledge 
of the scatter of critical intensities in certain kinds of experiments (flicker, visual acuity) it 
is possible to compute precisely the form of the curve relating /),,1 to II' Instances of this sort 
decidedly encourage the conviction, which can be supported through other lines of evidence, 
that the measured fluctuation in organic performance is really more important analytically 
than the usually considered average value, and that in a valid sense these average values are 
determined by the capacity for variation, rather than the reverse. 

These calculations of /),,1 are made by "asking" the organism to discriminate between 
two intensities on the basis of the probability band formed by flash-frequency F versus log 
(1 ± k(J!) , where I is the mean critical intensity for response. With II fixed, there is an associated 
range of effects (F). A mean intensity 12 to be just distinguished from II must give a range of 
effects for which the mean differs from that associated with II by the factor k' (JDiff' On this 
basis the directly determined /),,1/11 curve can be exactly duplicated. Various other properties 
of /),,1 as measured can also be computed-for example, those based on the fact that + /),,1 

is greater than - /),,1. 
Quite detailed examination of the simple statistical properties of other aspects of visual 

excitation have given additional evidence in support. Much less complete evidence, consistent 
with this, is available for 'Other sensory phenomena. If it is correct, as it seems to be, that 
elementary neural decisions appear to be carried out on an orthodox statistical basis, then 
an effective surrogate in the form of a swift computer device would have to involve a very 
large number of elements with the capacity for fluctuation in performance. Despite the 
implication of a wide extrapolation, it is probably unsafe to assume that more complex neural 
(mental) operations cari depend on other than an elaboration of the kind of complexity 
glimpsed in the case of simple neurosensory discriminations. A nonliving dynamical model 
would at least occupy a very large space, and doubtless would require considerable maintenance 

attention. 
Until the nature of mental activities is better understood it cannot be said that the con-

struction of a "thinking" machine is impossible. The question can be put, however, whether 
it would be desirable to construct such devices. We already have such mechanisms in some 
abundance. The task is to have it seen to that through biological engineering good brains 
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are produced, recognized, fostered, and assisted. Even Swift's monkeys at their type machines 
would require someone to tell them (directly, or by a device he had built) when they had 

, really achieved the accepted text of Shakespeare. It will still be n'ecessary to know the problem 
for which an answer is sought before "push-button" help can be invoked for the calculations. 
The invention of fruitful problems by nonliving nleans is probably quite remote. The possi­
bility of it is, of course, rather revolting, to even a mechanist; on selfish aesthetic grounds the 
revulsion is akin to that aroused by the horridly inaccurate statement of Bertrand Russell's 
concerning artificial parthenogenesis, that "Loeb had shown that a sea urchin could have a 
pin for a father." 

In any case the physiologist will welcome .the'mechanical aid and the stimulus provided 
by fast computers, and certainly the adviee of those who have gained wisdom in dealing with 
them. He will be .on his guard, however, about using them as giving models of neural pro­
cesses, even when some end results are mimicked. He will have the conviction that, however 
complex their form, these models will not serve for automatic inyention, but will function 
solely in terms of effects actually (even jf sometimes unwittingly) built into them at the start. 



THE SCIENCE OF PROSPERITY 

FREDERICK V. WAUGH 

Council of Economic Advisers* 

The science of economics attempts to determine the "best" use of our economic resources; 
to tell us what adjustments are needed in the use of our land, labor, and capital in order to 

increase our wealth and prosperity. 
This is obviously an important task, and a difficult one. We must be concerned with the 

economic decisions made by millions of primary producers, investors, distributors, and con­
sumers.We must gather and analyze great masses of statistics.' The large-scale computer 
may prove to be of great value in such research. 

But before all economists and statisticians jump on the electronic bandwagon, it might 
be well to note, that there is still room for economic research of kinds that can be done with 
the simplest of statistical techniques-often 'without even an ordinary calculating machine, 
or even a slide rule. 

This is true of two important groups of studies: first, those dealing with small, isolated 
segments of the economy; and, second, those dealing with a fewaggregates for the economy 
as a whole. 

As examples of research dealing with small segments of the economy, take such questions 
as: 

1. How much grain should be fed to -a dairy cow? 
2. Will it pay a particular manufacturer to buy a new machine? 
3. What kinds and amounts of advertising will be most profitable in a given situation? 
4. v\That changes are needed in the Boston fruit and vegetable market to make it more 

efficient? 
These questions-and thous~nds of similar questions--can be studied by gathering very 

simple kinds of statistics and by using elementary methods of analysis. The first three questions 
deal with problems confronting individuals, or single firms. In such cases it can often be 
assumed that the decision made by the individual or firm will not affect the rest of the economy 
significantly. For example, if the dairy farmer feeds his cow a little more grain we. can neglect 
the effect of this action on the prices of grain and milk. The fourth question, concerning t4e 
Boston fruit and vegetable market, is somewhat more complicated. To answer it we do need 
some detailed statistics on the costs, demands, and habits of several hundred buyers and sellers. 
But, basically, the analysis is simple, requiring little more than the addition of figures to 
determine peak volume, degree of overlapping in transportation, possible savings by changing 
location, and so on. 

* Read at the Symposium by Leon Moses, Harvard University, 
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As examples of research dealing with a few aggregates for the whole economy, take such 
problems as: 

1. The relation of potato consumption in the United States to the average retail price of 
potatoes, and to the disposable income of consumers. 

2. The relation of consumer expenditure (and saving) to the level of income . 
. 3. Cycles in production, employment, and prices. 
In these cases-and many others like them-we deal with only a few variables. We should, 

of course, remember that the "system is not complete" because we neglect many minor vari­
ables, and because we lump together in one aggregate some things that may not be strictly 
the same for our purpose. Such studies require only the simplest kind of analysis by multiple, 
or joint, correlation. Often graphic methods are preferable to mathematical computations. 

Now these types of problems probably are uninteresting to most mathematicians and 
computers, but they are extremely important, nonetheless. The vast majority of economic 
studies probably always will be, and should be, devoted to work of this kind. I think it is 
worth while to recognize this at the start. We have fashio.ns in economic research, ~s elsewhere. 
Twenty-five years ago, when I was beginning to do research in agricultural economics, the 
current fad was multiple correlation. No self-respecting graduate student would write a thesis 
that did not include at least one multiple regression equation, even if neither he nor his 
professors knew what the results meant. Let us avoid a similar fad of large-scale computation, 
applied indiscriminately to all economic problems .. The economist should apply economy to 
the number of variables, and to the complexity of the analysis. 

After these words of caution, it is necessary to go on, and to say that there is a crying need 
for a few basic -studies dealing in some detail with the whole economy. 

This need was first recognized during the industrial mobilization for war production. 
A thorough analysis. of our economic potentials by large-scale input-output techniques would 
have been extremely valuable. It is likely to become a vital part of industrial and military 
planning in the future. 

\Ve need these comprehensive studies in times of peace, as well as in times of war. This 
need was brought into focus by the Employment Act of 1946. That Act declared that the 
policy of the Federal Government is to utilize all its resources "to promote maximum employ­
ment, production, and purchasing power." It requires the President, with the assistance of 
the Council of Economic Advisers, to determine existing, and needed, levels of employme~t, 
production, and purchasing power. Also, it requires him to transmit to the Congress a program 
to bring about the needed levels. 

This responsibility cannot be fully met by studies of aggregates alone. True, we have 
made real progress in developing a Nation's Economic Budget which provides estimates of 
total incomes and expenditures of four main economic groups: consumers, business, govern­
ment, and international. Doctor Colm, of our staff, is working with economists in the govern­
ment service and in the universities to develop the Nation's Economic Budget into a powerful 
analytical tool that will tell us the main adjustments that are needed. But I know that Doctor 
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Colm, and the other experts in the analysis of national budgets, clearly see the need for going 
beyond these major aggregates, for making rather elaborate breakdowns of many items, and 
for detailed study of the interrelations among the thousands of variables that make up the 
totals. The national budget analysis supplements this more detailed work, coordinates it, 
makes it more useful-but is not at all a substitute for it. 

What do we mean by "maximum employment, production, and purchasing power?" 
Do we mean simply that x million persons should be employed, producing y billion dollars' 
worth of goods and services, and spending z billion dollars? 

The answer obviously is no. We need to know how much of each kind of employment 
and production is needed, and how expenditures need to be allocated among various groups 
of consumer-goods and investment categories. We can have overemployment in agriculture 
and underemployment in manufacturing. We can have overproduction of nondurable goods 
and scarcity of durables. We can have too much spending by some groups and too'little 
by others. 

The "needed levels" must be broken down in considerable detail as rapidly as we can. 
Since the beginning of the war, the Department of Agriculture has determined production 
goals for the major crops and livestock products. These goals indicate state by state how 
much corn, cotton, or milk is needed. We need similar specific goals for clothing, housing, 
coal, steel, automobiles, roads, schools, health facilities, and so on. 

Here, as I see it, is where the large-scale computer comes in. Our goals are worthless 
unless it is feasible to reach them. ,We must find out what combinations of goods and services 
it is feasible to produce. The structural equations of Leontief presumably can provide a basis 
for making usable estimates of the combinations that are technically possible with a given 
labor force, plant and equipment, and land. . 

This will, of course, involve the inversion of very large, matrices-perhaps matrices with 
over 100 rows and columns. But, as I understand it, this computational job can be completely 
licked by the large-scale computer. True, some methods of inversion may give us large errors 
due to the compounding of rounding errors. But in the Leontief matrix 

S= [I~A], 

the norm of A (or the sum of the absolute values of the elements in any column) is necessarily 
less than 1; and therefore S-1 can be computed to any desired degree of accuracy by iteration 
based upon the equations 

S-1 = I + A + A2 + A3 + ... , 
or 

S-1 = [I + A][I + A2][I + A4] . 

This is essentially the method used by the Bureau of Labor Statistics. 
Of course, the results are no more accurate than the original data. Doctor Morgenstern1 

has performed a service by emphasizing the need for more reliable economic data. But I 
am not sure that this problem of faulty data is any worse in connection with large Leontief 
matrices than with analyses involving a few variables. 
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For example, let 
S = [1 ± D][A], 

where S is the true (unknown) structural matrix, A is the estimated matrix, and DA is the 
error matrix. Then 

S-l = [A-l][1 ± D]-l. 

In many practical cases I believe we might assume [1 ± D] to be a diagonal matrix, in 
which the element dkk is our estimate of the highest likely proportional error in the coefficients 
representing purchases by the kth industry. Then [1 ± D] -1 is a diagonal matrix, the kth 
element being 1/(1 ± dkk). So multiplying the ktli row of A -1 by 1/(1 ± dkk), we have simple 
limits for the elements of the true inverse. These limits do not appear to be affected by the 
size of the matrix. The problem appears to be no worse for a problem of 100 variables than 
for one of two variables. Of course, it may be bad in both cases. 

We need better data, and we need more detailed breakdowns. But I anI optimistic enough 
to think that we can in the near future make usable approximations of the combinations of 
goods and services that could be produced. If you can help the economist do this you will 
have made great progress .. 

This,in itself, of course is not enough to determine a good set of goals for the economy. 
It is an essential first step. Bpt in a democracy of free people the goals are finally determined 
by the citizens. They take into account many special factors, such as the amount and kinds 
of work they want to do, and the minimum standards of health and diet that are guaranteed 
to low-income families. But to· make intelligent choices, we citizens have to know what the 
alternatives are, and presumably the large-scale computer can give us useful information 
about these alternatives. 

Our goals cannot be static. The choices we make this year affect our economic output 
next year. We may choose high savings and investment now in order to build up our produc­
tive capacity for the future. We may choose a temporary deficit in the government budget 
in order to forestall a depression. We may store.up surplus foods to avoid excessive fluctuations 
in market supplies and prices. 

One of the main objectives of the Employment Act is to find practicable ways of avoiding 
alternate periods of boom and depression, and to encourage a steadily rising level of Fving 
for all groups. Timing is an essential feature of economic policy in this fie1d. Policies that 
would be excellent in an inflationary boom would be bad in a depression. 

Can the mathematician, with the help of large-scale computers, give us the information 
we need to make intelligent choices about timing ?This is an intriguing subject in mathematics 
and in economic theory. For the economist, at least, it is a very difficult subject. Dynamic 
economic theory is in an elementary stage. I doubt whether many of us economists know 
what questions· to ask the computer. 

Fortunately, the need for a dynamic economic theory is widely recognized, and some 
. progress is being made· in this field, especially by the mathematical economists and the 
econometricians. They will doubtless have work for the large-scale computer to do. If this 
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work is to be fruitful, it must avoid formalistic mechanical computations. It must be designed 
to help us understand real economic problems, and to show the probable results of various 

economic policies that are being considered. 
The dynamics of the whole economy is necessarily complicated, and we need many studies 

of particular segments of the economy. For example, one of the really effective stabilization 
devices we have developed in the United States has been the price-support program for farm 
products. But this program can be greatly improved-not only as a means of supporting 
farm income, but as a part of a general economic program to maintain high employment, 
production, and purchasing power throughout the economy. What price should be supported 
for wheat or cotton? If the supports are set too low they will not prevent a serious drop in 
farm income. If they are set too high they may reduce domestic consumption, lose foreign 
markets, result in excessive storage, and perpetuate either overproduction or strict controls 

over acreage and marketings. 
What levels of agricultural price support are feasible, and would be of lasting benefit .to 

. farmers and to non-farmers? The question can be answered only in dynamic terms, because 
we are. concerned with the effects oftoday's support levels upon future production, marketings, 
and stocks. Research on this .more limited subject would be considerably less ambitious than 
an attempt to analyze the dynamics of the whole economic system. But even this limited 
research would involve a large number of variables, and a fairly complicated analysis. 

Farm-price supports represent, of course, only one example of the many dynamic studies 
that are needed to provide a good basis for sound economic policies. We need to know about 
the dyn·amics of taxes, of credit and monetary policies, of public-works programs, and of 
social security. The e all involve rather elaborate and difficult problems of economic theory. 
The economist must get· his theory stated in terms that can be tested and quantified by 
statistical analysis~ 

Doub~less the large-scale computers will have plenty of work to do in this general field. 
Can the scientific economist, mathema.tician, or statistician really determine maximum 

employment, production, and purchasing power? The word "maximum" is a mathematical 
word. I have great respect for the mathematician, and I assume that if we could define what 
'it is we want to maximize he could tell us how to do it. 

The trouble is, I think, that we really want an optimum allocation of resources in some broa~ 
sense that is difficult to pin down in precise mathematical terms. Certainly it is conceivable 
that we could determine the allocation that would maximize the Gross National Product, or 
that would minimize the hours of work necessary to reach a given level of living. With large­
scale computers, we should be bright enough to work out such maximum solutions, or minimum 
solutions. 

Some work along these lines will doubtless be useful. I will confess, however, to some 
personal skepticism as to the finality of such studies. With the help of methods developed by 
Dantzig,2 I recently worked through the interesting problem proposed by Stigler: 3 to choose 
from the list of foods quoted by the B~S a diet that provides at the lowest possible cost at least 
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the minimum needed amounts of nine nutrients. With only nine variables it can be handled 
with an ordinary computing machine. My answer is that in 1939 the minimum-cost adequate 
diet could have been purchased for $39.66 a year, or 10.87 cents a day, for each person. Over 
one-half the expenditure would have been for dried navy beans. The only other foods on the 
list would have been wheat flour, beef liver, spinach, and cabbage. 

I don't want the minimum-cost adequate diet. I am not sure that we want to maximize 
the GNP, por to minimize the labor in producing a given bill of goods. 
, The problem of goals is necessarily complicated. The results o(mathema~ical maximization 

probably should be taken cum grano salis. Still they doubtless can, at least, tell us so~e of the 
main adjustments that would be needed to raise national income, or to· increase the total 
value of goods and services available to the consumer. 

These studies, in themselves, do not provide goals to be imposed upon the public, and to 
be enforced by government policies and programs. Their value is simply in showing the public 
what is possible, and feasible, with the resources we have at our disposal. 

With large-scale computers we should not limit our work to the search for the maximum 
maximorurn. We should analyze all of the main alternatives.· This is true not only of war­
mobilization studies, or the analysis of foreign-aid programs; it is even more true of research 
on our peacetime economic potentials. We need to know what the alternatives are. We need 
then to know what policies or programs would be required to reach any goals we might set­
for example, tax and fiscal policies, farm price supports, wage policies, and so on. 

If our research can do this, it will give the Congress and the general public a SCIentific 
basis for deciding what is really an optimum solution. In a democracy·· the majority of the 
citizens determine our economic goals, and the policies and programs to be used to reach the 
goals. If their decisions are based upon full and correct information, the goals they set are 
really optimum solutions in a more basic sense than any solution that could be computed by 
a mathematician or economist. So I will close with this . awful thought: that the elaborate 
economic studies made possible by the large-scale computer will be worth very little unless, 
or until, the results are explained in simple terms to the general public. 
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THE SELECTRON 

JAN RAJCHMAN 
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The initial work on a special type of electrostatic memory tube, called the Selectron, was 
reported on January 8, 1947, at the first Symposium on Large-Scale Computing Machinery.! 
The present paper is a report of the tube developed as a result of work in progress since that 
date. Important changes in the initial tube were found necessary to obtain a practical and 
reliable device for use in electronic computers. 

The memory of an: electronic computer can be idealized as a large set of cells, each iden­
tified by a coded address and each capable of retaining a single on-off signal. A combination 
of such signals occurring simultaneously on several channels or sequentially on a single channel 
constitutes a number. The memory will be particularly useful if the occurrence of the set 
of pulses specifying the address will give access to the signal stored, or to 1;>e stored, in the 
shortest possible time without consideration of any previous selection. A device with such a 
digitalized address system and such direct access to any stored signa~ can be used singly or in 
groups in a most flexible manner, since no amplitude-sensitive qualities have to be dealt with 
and no specific sequences are intrinsic to the memory. 

The Selectron (Fig. 1) is a vacuum tube designed in an attempt to realize such an ideal 
memory device. The principle of the tube depends on quantizing both the address of the 
stored information and the information itself. The selection of the address is obtained by 
means of two orthogonal sets of parallel spaced metallic bars forming a checkerboard of win­
dows. A shower of electrons impinges on this checkerboard. Electrons are stopped in all 
windows except in a selected one by applying address-selecting voltages to certain groups of 
bars connected into appropriate combinations. The storage is in terms of the two stable 
potentials that tiny floating metallic elements, located in register with the windows, assume 
under continuous electron bombardment. The reading signals .are sizable electron currents 
passing through a hole in the storing elements. The signals produce also a visual monitoring 
display. 

The basic principle of the Selectron has not been changed. The main improvement is 
the use of discrete metallic eyelets as the storing elements. In addition to very reliable storage, 

. these eyelets have a "grid-action" effect yielding strong electronic reading signals. , 
The Selectron tube, called SE256, has 256 storing elements, is 3 in. in dIameter arid 7 in. 

long, and utilizes a 40-lead stem. The diametral and axial cross sections of the tube are shown 
in Figs. 2 and 3. Eight elongated cathodes of rectangular cross section are located in a diametral 
plane of the tube. Between and parallel to the cathodes are a set of nine selecting bars of 
square cross section. These vertical selecting bars are connected into six groups: VI' V2, V3, V4, 
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and Vl', V2', as shown in Fig. 4. On either side of the plane of the cathodes and V bars there 
is a set of 18 parallel bars of square cross section at right angles to the V set. These two sets 
of horizontal selecting bars sandwich the cathodes and V bars as do all subsequent electrodes 

FIG. 1. The Selectron. 

of the tube, the tube being symmetrical with respect to the cathode plane. The 36 horizontal 

selecting bars are connected in 12 groups: Hl to H4 and Hl' to Hs', as shown in Fig. 4. There 
are nine vertical bars for eight gates and 36 horizontal bars for 32 gates, the excess bars taking 
care of the end effects. 

On either side beyond the horizontal bars there is a collector made of two flat plates 
perforated with round holes whose centers match the centers of the windows formed by the 
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V and H-bars. Adjacent to the collector plates there are two perforated mica sheets holding 
between them 128 metallic eyelets. These eyelets, made on automatic screw machines, have 
a conical head, a center hole, a holding collar and a shielding tail. They are nickel-plated 

. FIG. 2. Diametral view of Selectron. 

steel. On the other side of the two mica plates is another perforated metal plate-the writing 
plate. The two collector plates, the two eyele~ mica plates, and the writing plate form a tight 
assembly riveted together at the ends and in the center. 

Beyond the writing plate is another metal plate-the reading plate-perforated. with holes 
in register with the holes of the other plates. Beyond it is a Faraday cage fonned by two 
perforated plates spaced some distance apart and closed on all four sides by a metallic wall. 
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FIG. 3. Axial cross section of Selectron. 
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A glass plate coated with a fluorescent material is placed against the outer plate of the cage. 
In the central plane of the cage there are nine wires which are spaced so as to be between 
the holes of the perforated plates. These reading wires are connected together and the 

corresponding lead to the stem is shielded. 

In the quiescent state of the tube storing informa- ~,: .. ---++----,.----t-----r---

lion previously written-in, all the selecting bars are m [6 1Tl, [E i3, ~ i4 ' ,0, ~ 
at the potential of the cathodes (0 v) and all other 4

23

'; I ± = = I 
electrodes at potentials indicated in Fig. 5. In this : 
condition electrons emitted from the cathodes are 
focused into 256 beams by the combined action of 
the Vand H bars at zero potential and the collector 

,plate at some positive potential, such as 180 v. 
These beams are focused through the centers of the 
collector holes and are directed on the eyelets. 
Since the eyelets are not connected anywhere-are 
electrically floating-their potentials ,will adjust 
themselves so that the net electron currerit to them 
is exactly zero. It turns out that there are two 
naturally stable potentials for which this is the case. 
This can be understood, by examining the current 
to the eyelet as a function of its potential as shown' 
in Fig. 6; When the eyelet is more negative than 
the cathode, no current reaches it because it repels 
any incurring electrons. As the eyelet is made more 
positive, some electrons strike it, producing a nega­
tive current. At a still more positive, potential, 
secondary emission from the surface of the eyelet 
starts as a result of the primary bombardment and 
tends to cancel the negative current, being. a loss of 

VERTICAL CONNECTIONS 
2 + 4· 6 LEADS 2 X 4 = 8 BARS 

(\J 
~ 

x 
CD 

(/) 
I­
Z 
w 

';:E 
w 
..J 
W 

~ . 
~ 
+ 
CD 

(/) 
o 

~-H-+-~ <t 

~~tr31 24~~T~ 
HORIZONTAL CONNECTIONS 

w 
..J 

negative charge. Eventually, the two are equal at 4+ 8 = 12 LEADS 4 X 8 .. 32 BARS 

the so-called first crossover. For still more positive FIG. 4. Connections of selecting 
potentials, the secondary emission is greater than bars. 

the primary emission and a positive current is obtained. Finally, when the eyelet reaches 
the collector potential and becomes more positive, the secondary electrons are suppressed 
owing to a retarding field at the surface of the eyelet. The current therefore passes 
through zero again to become negative. It will be recognized that the cathode and 
the collector potentials are stable,' because a d'eviation' from ~he zero-current potentials 
tends to produce a current in a direction tending to restore the equilibrium potential. The 
first crossover point, on the other hand, is unstable. The restoring current at the two stable 
potentials makes up for any possible detrimental ohmic or ionic currents. Therefore, any 
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eyelet left in one or the other of the two potentials will keep it indefinitely (as long as power is 
on the ·tube) without any deterioration of information whatsoever. 

To:writeor read into or from the memory, the quiescent state ?f the selecting V and H 
bars is momentarily disturbed so that the current reaches only the one selected eyelet into 
which writing' or from which reading is, desired. This is accomplished, by applying a negative 
pulse to all'the selecting V and' H bars except one in 'each of the four groups V, V', H, and H'. 
The bars are connected in such a way that one and only one gate in each of the V and H 
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FIG. 5. Operating potentials of Selectron elements. 

directions will have its ~wo limiting bars at cathode potential, while all others will have one 
or both limiting bars at the pulsed negative potential, as can be seen by examining Fig. 4. 
When a V or H bar is sufficiently negative it cuts off almost entirely the current from the 
adjacent cathode or cathode location and the small remaining part is deflected and does not 
reach the hole of the collector. When both sides of agate are negative, a potential barrier 
is formed through which no electrons can pass. It follows, therefore, that only the particular 
selected window with its four bars at zero potential will still have its original current, ",hile 
all others will be completely cut off. 

This principle of select'ion operates on the basic idea that both sides of a gate have control 
of the passage of electrons through it and that therefore combinatorial systems of connections 
are possible by connecting each side of the gate to appropriate sides of other gates. In fact, 
since this is done in both directions, a fourth-power relation exists, in general, between the 
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number of necessary connection groups and the number of controlled windows. Since each 
connection group is connected through the vacuum envelope of the tube and is controlled 
by an external circuit, the economy in the number of connections is of particular interest when 
tubes with larger capacity are contemplated. The fourth-power relation has of course a 
spectacular effect in this case; for example, 128 leads can be made to control 1 ,049~5 76 
windows. 
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Writing and reading are done one element at a time (or two if the tube is used as a two­
channel device) and require selection. 

To write into a particular element, current is interrupted everywhere except to that 
element. Then a voltage pulse of the shape shown in Fig. 6 is applied to the writing plate. 
Because of the capacitive coupling between the eyelet and the writing plate, the rapid rise 
of this pulse will cause the eyelet to jump up in potential by an amount adjusted to be a 
substantial proportion of the collector potential or more. If the eyelet was. initially at cathode 
potential, it will now have been brought near collector potential and will settle at that potential 
during the plateau· of the pulse. If it had initially the col,lector potential, it will acquire 
momentarily twice the collector potential and will receive substan·tial negative current (see 
Fig. 6) which will also bring it. to the collector potential during the plateau time. Whatever 
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the'initial condition, at the end of the plateau time the eyelet will be at collector potential. 
At this instant the choice is made between positive and negative writing. For positive writing, 
no additional pulses are applied to the selecting bars, and the current remainson the eyelet 
during the relatively slow decay of the writing pulse. The decay is slow enough to allow the 
electronic locking current to keep the eyelet at the collector potential in spite of the displace­
ment capacitive current tending to drag it to cathode potential. This "slow" decay is in fact 
only one to several microseconds. For negative writing, 'an additional pulse is applied to one 
or more of the four selecting bars in the groups V, V', H, and H', which cuts off the current 
to the selected eyelet during the decay, time of the writing pulse. The capacitive down drag 
is therefore not counteracted and the eyelet is brought to cathode potential. 

Immediately .after the end of the writing pulse the selection pulses end, and current is 
reestablished to all eyelets. Only residual ohmic (on other second-order electron or ionic 
currents) affect the unseleded eyelets, during the short selection time, and therefore at the 
end of the writing pulse they have almost their original potential. This potential is reached 
almost immediately thereafter by virtue of the stabilizing currents. 

The reading signal is derived from the current passing through the central hole in the 
eyelets. Part of the current directed at the eyelet is directed at that tiny hole. When the eyelet 
is positive, at collector potential, the electrons directed at the hole go through it by virtue of 
their inertia. When the eyelet is negative, at cathode potential, it exercises "grid action" and 
electrons are repelled and do not go through the hole. The electrons' paths are shown in 
Fig. 5 for the three cases, while the current characteristics are shown in Fig. 6. The presence 
or absence of the current through the eyelet is therefore an indication of the state of the eyelet. 

In the quiescent state of the tube the reading plate is biased off nega!ively and the reading 
current going through all the positive eyelets (any number from 0 to 256) does not reach the 
reading circuits. To read, an element is selected by applying negative pulses, to all but four 

, bars, as explained above. Immediately thereafter a positive pulse is applied to the reading 
plate which allows the current through the selected element, if current there is, to proceed 
to the output electrodes. The electrons penetrate into the Faraday cage, strike the fluorescent 
screen, producing a ,light signal, and also cause the emission of secondary electrons. These 
secondary electrons are collected by the ,reading' wires which are connected in parallel and 
constitute the reading output signal. The reading wires have a .low electrostatic capacity 
and are well shielded from capacity pick-up by the Faraday cage. 

For monitoring purposes it is convenient to bias positively the reading plate. A display, 
of the stored pattern appears then on the fluorescent screen. 

The main characteristics of the Selectron SE256 may be summarized as follows. The tube 
has a, capacity of 256 on-off signals. The storage time is indefinite. 'J'he access time to any 
element is approximately 10 psec and is independent of all previous accesses to other elements. 
The address selection is by means of combinations of non-amplitude-critical pulses of about 
200 v applied to circuits with pure capacitive loading of 10 to 20 ppf. The writing and reading 
require also pulses whose amplitude and duration have considerable tolerances and are applied 
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to pure capacitive loading, 200 !tflf for writing and 50 flflf for reading. The output isa direct 
electronic current of 20 to 40 flamp per element. The tube is its own monitor. The supply 
voltages have wide tolerances. The total power dissipation is 40 w. 

About a score of tubes have been made to date. These tubes were tested first by d.c. or 
simple pulse tests. Uniform characteristics of selection and control have been observed in all 
tubes, as these depend on geometric factors. that are easily reproducible. The cathode emissions 
and secondary emissions of the eyelets were also found essentially uniform. The period of 
quiescent-state storage has, of course, been found to be as long as desired or as there was 
pa tience to observe it. 

A program has been initiated to test the tubes in conditions as similar as possible to those 
of an actual computer straining its memory severely. The system consists of taking two 
Selectrons, setting an arbitrary pattern of stored information in one of them, interrogating 
the elements of that tube one by one in succession, and registering the answers in the corre­
sponding windows of the other tube. The stored pattern will thus be transferred from tube 
No.1 to tube No. 2. The pattern is then transferred in a similar manner from tube No.2 
back into tube No.1, but this time the polarity is reversed so that positive elements in one 
tube correspond to negative ones in the other. The life test consists of letting this back-and­
forth transfer proceed automatically at a reasonably high repetition rate and observing whether 
the initially set pattern remains unspoiled in the system. 

To date, runs 0(20 hr without any failures have been observed. The over-all characteristics 
of the pair of tubes in the life-test circuit did not change measurably in 700 hr. We are engaged 
at present in improving the testing circuits to be certaih that they are not the cause of the 
occasional failures that still occur in long runs. We are also attempting to gain greater safety 
factors in the tubes themselves. 

The research has reached the stage at which a Selectron of a capacity of 256 elements has 
been designed. It is practical and reliable in its operation and reasonably easy to build. While 
the life tests are still in progress and· data from them are incomplete, there is every reason to 
believe that tubes with fairly long life can be made. The fast access time, the digitalized 
operation for address reading and information registering, the relatively intense output signals 
and self-monitoring by luminous display make the tube particularly useful for electronic 
computing machines and other information-handling machines. 
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TRAITS CARACTERISTIQUES DE LA CALCULATRICE DE LA MACHINE 

A CALCULER UNIVERSELLE DE L'INSTITUT BLAISE PASCAL 

L. COUFFIGNAL 

Institut Blaise Pascal* 

I. CONSIDERATIONS GENERALES 

La destination meme du laboratoire de calcul mecanique de l'Institut Blaise Pascal est de 
poursuivre des recherches relatives a. des materiels de calcul numerique, et specialement a. 
des machinesarithmetiques, et aussi des recherches relatives au mode d'utilisation de ces 
materiels, c' est-a.-dire aux· methodes de calcuL 

C'est l'une des raisons pour lesquelles les caracteres constructifs· de la machine a. calculer 
universelle de l'Institut Blaise Pascal n'ont pas ete arretes a priori et de fac;bn definitive. 
Meme, apres sa mise en service, cette machine pourra subir des modi~cations, soit par rem­
placement de certains organes par des organes nouveaux, soitpar adjonction d'autres organes; 
elle sera, par elle-meme, une sorte de laboratoire. 

'Cette souplesse, cette aisance de transform'ation, est peut-etre Ie plus caracteristique de ses' 
traits; c'en est du moins un trait fondamental. 

Son role d'instrument de recherche lui impose d'etre veritablement universelle, c'est-a.-dire 
de pouvoir etre equipcc de manierea. executer toute sorte de calculs. Vne telle exigence serait 
excessive pour la machine a. calculer d'un laboratoire de recherche consacre a. des travaux 
deter~ines, et dont les calculs sont d'un nombre limite de types bien definis; il suffit dans 
ce cas d'une machine permettant d'effectncr cescalculs dans les meilleures conditions de 
rapidite, d'economie, et aussi dans les meilleures conditions de simplicite de manipulations; 
puisque les operateurs d'une telle machine ne sont pas en general des specialistes du calcul 
mecanique, et qu'une machine a. calculer est pour eux l'un des nombreux appareils de leur 
laboratoire dont ils ont a. apprendre la manipulation. II y a aussi grand avantage a. ce qu'une 
tclle machine ne soit que d'un faible enc,ombrement. Nous pensonsque la machine-Iaboratoire 
de l'IBP servira a. determiner les caracteristiques de machines plus reduites, destinees a. des 
laboratoires particuliers, adaptees Ie mieux possible aux besoins de ces laboratoires, et de 
manipulation simple. Cette consideration no us a conduit a. etudier avec un soin particulier 
la realisation materielle des elements de la machine, en vue d'une fabrication de type industriel 
et de l'echange standard des unites sujettes a. usure ou accident, notamment celles qui com­
portent des tubes a. vide; c'est la, pensons-nous, un second trait caracteristique de nos re­
cherches et des parties de la machine deja construites; on verra dans quelques instants les 
resultats obtenus dans cette voie. 

* Read at the Symposium by Leon Brillouin, Harvard University 

374 



LA CALCULATRICE I.B.P. 

Considerant que l'element essentiel d'une machine a calculer universelle est Ie mecani~me 
calculateur, nous avons d'abord fait porter nos efforts sur ceUe partie de la machine. 

L'experience acquise dans l'utilisation de machines mecaniques nous y incitait deja, et 
nous a guide utilement. Nos recherches en ce domaine en sont au point OU nous pensons 
avoir obtenu des resultats a peu pres definitifs, du moins si'l'on se borne a utiliser comme 
materiel elementaire celui que peuvent actuellement fournir les fabricants de materiel de radio. 
C'est donc ceUe partie de la machine sur laquelle je me propose de donner quelques details. 

Nous l'appelons la calculatrice. J'espere que les renseignements relatifs a notre calculatrice 
donneront une idee neUe de l'orientation de nos recherches. 

II est clair, enfin, que la' plupart des travaux mathematiques qu'une machine a calculer 
peut etre appelee a faire ont pour origine des recherches concernant la technique ou les sciences 
de la nature. Les travaux de mathematiques pures necessitent rarement des calculs numeriques 
importants; l'utilite de ces calculs nesemble pas aussi imperieuse. Cette remarque nous a 
conduit a etudier de fa<;on approfondie Ie calcul mecanique de la racine carree, operation qui 
intervient frequemment dans les calculs techniques. 

L'etude, poursuivie sur ces bases, nous' a confirme dans la preference d'une calculatrice 
parallele a l'exclusion d'une calculatrice a sequence; une analyse rap ide de l'execution des 
operations fondamentales, chiffrage, addition, soustraction, multiplication, racine carree, dans 

, une calculatrice parallele, donnera, avec l'explication logique de la structure de la calculatrice 
de la machine de l'IBP, la justification de notre choix. 

II. LES OPERATIONS FONDAMENTALES 

ChijJrage. Le chijJrage, operation consistant a representer materiellement un nombre, exige, 
dans Ie systeme de numeration binaire, un organe par ordre binaire capable de prendre deux 
etats distincts, et un'second organe capable de maintenir Ie premier dans l'etat qu'on lui a 
fait prendre; nous appelons Ie premier organe un inscripteur elimentaire, Ie second un verrou 
et l' ensemble des deux, un chiiJreur elimentaire. Les chiffreurs elementaires des divers ordres 

. binaires constituent un chiffreur binaire; leur nombre est la capacite du chiffreur, un chiffreur 
de capacite k peut represellter tous les entiers de 0 a 2k - 1. 

Addition. L'addition necessite, pour etre. automatique, un reporteur, dispositif effectuant 
Ie report des retenues de telle sorte qu'apres inscription successive de deux nombres sur Ie 
chiffreur, ce dernier represente la somme des deux nombres. Nous appelons totalisateur 
l'ensemble d'un chiffreur et d'un reporteur. 

Exemple (Fig. 1): x = a + b, a = 11011, b = 1001, k ~ 6. 
Dans cet exemple, on suppose conformement a la plupart des realisations mecaniques, 

electromccaniques, ou electroniques, que Ie reporteur est constitue par un chiffreur auxiliaire 
qui enregistre les reports a faire pendant l'inscription du secon,d terme de la somme et Ie 
transmet ensuite au chiffreur. Le reporteur de la machine IBP qui va etre decrit n'est pas 
de ce type. 

Soustraction. La soustraction peut se ramener. a l'addition par la methode bien connue des 
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complements. Le complement de h pour la capacite k est 2k - h, et l'on sait que, si l'on inscrit 
sur un totalisateur de capacite k les nombres a et 2k - h, Ie totalisateur marque a - h, Ie 
chiffre I dans l'ordre k ne pouvant pas etre ·represente par la machine. 

La methode que nous utilisons derive de la methode des complements (Fig. 2). Le com­
plement du retrait est remplace .par Ie permute, qui s'obtient en permutant les chiffres Oet I 

0= 

Chiffreur 
Report 

0=11011 

!5 4 3 2 I 0 

I I I I II I 
I I I I I I 

1011111011111 
1010101010.1 

b = 1001 .' k = 6 

a+b = Avant '101 I 10 101 I 101 
Ie report 10111010111 

{ 

1010101010101 
11101011101 

Report 
1110101110101 
10101010101 

FIG. 1. Exemple d'addition. 
dans la figuration de ce nombre, et Ie reporteur est complete par un element enregistrant les 
reports provenant du chiffreur elementaire de l'ordre Ie plus eleve pour les transmettre au 
chiffreur elementaire de l'ordre Ie plus faible; ce report, appele report sans fin est l'application 
au systeme binaire d'un procede deja en usage dans certaines machines decimales mecaniques. 

L'avantage de cette methode est que Ie calcul mecanique du permute est beaucoup plus 
aise que celui du complement; ce dernier s'obtient en permutant les chiffres 0 et I, sauf Ie 

dernier I a droite et les 0 qui Ie suivent; il exige donc 
une commande conditionnelle que n'exige pas Ie calcul du 
permute. 

Nous ne donnerons pas la demonstration de l'equivalence 
FIG. 2. Schema d'une des deux methodes, qui est tres facile, mais il est utile de noter 

soustraction. deux particularites. 

D'abord, l'operation a - h, OU a et h sont positifs, n'est exacte que si a > h, car rien ne 
distingue, sur Ie totalisateur, la difference 0 - h, et la somme 0 +- h', en design ant par h' Ie 
permute de h qui se presente comme nombre arithmetique; il faut donc que Ie permute du 
retrait, qui joue Ie role d'un ajoutenegatij, soit accompagne du signe -; on voit aisement qu'il 
suffit pour cela d'ajouter un chiffreur elementaire a la gauche duchiffreur et de lui attribuer 
un reporteur, en convenantque, dans ce chifJreur de signe Ie signe + soit represente comme Ie 
chiffre 0 et Ie signe - comme Ie chiffre I. Un tel totalisateur peut etre appele totalisateur 
algebrique. 
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Exemple (Fig. 3): x = a - b, a = 100100, b = 1001, k = 6. 
Notons au passage que Ie systeme binaire est Ie seul OU soit possible l'assimilation des signes 

distinctifs des nombres positifs et des nombres negatifs a des chiffres de la numeration; c'est 
la un· avantage du systeme binaire qui a deja ete utilise, mais ne parait pas avoir ete souligne 
de fa<;on nette. 

La seconde particularite de cette methode tient a la nature de la realisation mecanique 
de la soustraction. Si l'on applique Ia methode prece.dente au calcul de a - a, on trouve une 
figuration formee de I dans tous les chiffreurs elementaires, y compris Ie chiffreur de signe. 

a-b a =100100 b = 1001 k =6 

Chiffreur . ~ Report 
de signe ~~ I I I , ,./Sans fin 

I=IIIII=-

Nombre a [2]11 0 10 111 0 10 1 
b: ~ r;"I Permute de u L!JIIIloIIIIlol 

Totalisant a et 0 

FIG. 3 .. Exemple de soustraction. 
Exemple: a = 1001, k = 6. 

inscription de a 01001001 

figuration de - a = ! 110110 

somme = 1111111 

II faut considerer cette figuration comme r~presentant O. Comme Ie chiffreur de signe 
porte Ie signe -, nous l'appellerons Ie zero negatif, et par opposition, no us appellerons zero 

positij, la figuration 101000000 (k = 6). 

Multiplication. Pour Ia multiplication, dans notre premier modele de calculatrice, nous nous 
sommes arretes a la methode classique d'additions repetees. Le muitiplicande m est inscrit dans 
un chiffreur M, Ie multiplicateur x dans un chiffreur X. Le multiplicande est transfere a un 
totalisateur P ou non seIon que Ie premier chiffre de x est I ou 0; puis Ie multiplicande m 

subit un deplacement d'un pas vers la droite dans Ie chiffreur M, tandis que Ie multiplicateur 
x subit un deplacement d'un pas vers Ia gauche dans Ie chiffreurX; Ia meme suite d'operations 
se reproduit jusqu'a epuisement des chiffres de x. 
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Notons en particulier, d'une part que, si la capacite de M est k et celIe de X, k', la capacite 
de P doit etre k + k'; et d'autre part que la multiplication comporte une commande condi­
tionnelle, dependant de la natur,e 0 ou I du chiffre figure dans un certain chiffreur elementaire 
(Ie premier chiffreur elementaire de X). 

Divisionet r{lcine carree. Les methodes operatoires precedentes sont deja connues dans leur 
ensemble. Au contraire, la methode de ladivision et celIe de l'extraction d'une racine carree, 
que nous allons exposer, nous paraissent nouvelles. L'expose precedent eclaire dans une 
certaine mesure la theorie de la division et de l'extraction d'une racine carree; en outre, il 
contribuera a mettre en relief la condensation des mecanismes que permettent les methodes 
que nous decrivons. 

On peut developper pour la division et l'extraction, d'une racine carree des theories 
analogues, qui me me s'etendraient aisement a des racines d'ordre superieur a 2. 

Sbit a diviser a par b; Designons par qn Ie nombre forme par les premiers chiffres du 
quotient jusqu'au chiffre d'ordre n et par qn-l Ie chiffre suivant. 

Par definition: 
bqn2n < a < b(qn + 1)2n, 

b(2qn + qn_l)2n- 1 < a < b(2qn + qn-l + 1)2n
-

1
• 

Posons: 

Des relations (1) et (2) on tire: 

(qn-l - l)b2n-l < rn, + - b2n- 1 < qn_lb2n-1, 

(qn-l - l)b2n-l <rn, _ + b2n- 1 < qn_lb2n-1. 

(1) 

(2) 

(3) 

Pour chacune des inegalites doubles (3), si Ie terme median est positif, qn-'l est egal a 1 
d'apres la seconde inegalite, et si Ie terme median est negatif, qn-l est egal a 0 d'apres la 
premiere inegalite. Les reciproques se demontrent de meme. En outre, Ie terme median est 
egal a rn- 1, + ou a r.n-l, _ selon qu'il est positif ou negatif. D'ou: 

Regie de division: Selon qu'un reste partiel est positif ou negatij, on inscrit Ie chiffre I ou Ie chiffre 0 
au quotient ala droite. des chiffres precedents, et on retranche de ce reste, ou on lui ajoute, Ie diviseur deplace 
d'un rang vers la droite pour obtenir Ie reste partiel suivant. 

Soit maintenant a extraire la racine carree de a. Designons encore par qn Ie nombre forme 
par les chiffres de la racine jusqu'a l'ordre n et par qn-l Ie chiffre suivant. Par definition: 

Posons: 

qn222n < a < (qn + 1)222n, 

rn, _ = a - (qn + 1)222n. 
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Des relations (4) et (5) on tire: 

(qn -1 - 1) [qn22n + (qn~I + 1 )2 2(n-l'] < r71 .+ 

- (qn22n + 22In- I») < qn_l[qn22n + (qn-I + 2)22(n-I,], 

(qn-I - l)[qn22n + (qn'-I + 1)2(2n-l)] < rn._ 

+ (qn22n + 3 . 22(n-I») < qn_l[t/n22n + (qn-I + 2)~2(n-I)]. (6) 

Pour chacune des inegalites doubles (6), si Ie terme rp.edian est positif, qn-I est egal a 1, 
d'apres la seconde inegalite; si Ie terme median est negatif, qn-I est egal a 0, d'apres la.premiere 
inegalite. 

Les reciproques se demontrent de meme. En outre, Ie terme median est egal a r(n-I), + 
s'il est positif et a r(n-I). _ s'il est negatif. D'ou: 

Regle d'extraction de racine carree: Selon qu'un reste partiel est positif ou nlgatij, on inscrit le chijJre I 
ou le chijJre 0 a la droite des chijJres de la racine deja obtenus, et on retranche de ce reste, ou on lui ajoute, 
la racine ainsi obtenue dtplacee d'un rang vers la droite et suivie des chijJres 01 ou II, pour obtenir le reste 
partiel suivant. 

Les regles d'operations qui viennent ~:l'etre formulees ramenent la division et l'extraction 
d'une racine carree a des suites de transferts et d'additions ou de soustractions, dont Ie nombre 
est sensiblement Ie meme que pour une multiplication; cette remarque met en evidence 
l'enorme gain de temps (90 % au moins) qu'elles procurent par rapport aux methodes d'itera­
tion en usage jusqu'a present, par exemple la formule X i +1 = t[xi + (a/xi)] pour l'extraction 
de la racine carree du nombre a. 

Ces operations de transfert, addition et soustraction, peuvent etre effectuees au moyen 
des chiffreurs M et X et du totalisateur P qui ant servi a la multiplication pourvu qu'on leur 
adjoigne des moyens de realisation de la permutation et du deplacement. Nous allons voir 
avec quelle simplicite de moyens materiels ces fonctions peuventetre realisees. 

III. L'ETAGE BINAIRE ET LA .CALCULATRICE IBP 

Le schema, (Fig. 4) represente un element de totalisateur binaire, realisant ces fonctions, 
que nous appelons couramment un ttage binaire. II se prete egalement a l' e.fJafage, operation 
evidemment necessaire a tout dispositif de calcul. 

ChijJrage. La triode Fe de la paire F marque I quand elle debite et 0 quand elle ne debite 
pas; la triode Fv montee en flip-flop avec elle en consthue Ie verrou. 

Inscription. Elle s'effectue en attaquant simultanement les deux cathodes du flip-flop F 
en \15; cette attaque s'effectue a travers une triode de regularisation Le; il faut comprendre . 
que la borne d.e sortie 6 est relieea la borne d'entree 15 de l'eIement suivant. 

L'attaque est donc commandee de l'exterieur par laborne 7 d'entreede Ia triode Le. 
Le totalisateur etant paralleIe, tous les chiffres sont inscrits a la fois. 
Un tube a neon branche sur la triode Fv est eclaire lorsque Ie chiffre marque p~r 

Fe est I. 
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Report. Lorsque la triode de chiffrage Fe passe de I a 0, par l'inscription successive de 
deux chiffres I, elle est parcourue par une impulsion positive que l'on transmet a la borne 
d'entree 15 de la triode de chiffrage de l'Mage suivant a travers la triode de regularisation 
Le, apres l'avoir retardee, dans la ligne de retard ES, Ie temps necessaire pour l'achevement 
de l'inscripti9n directe dans cet' etage. Ce dispositif supprime l'inscription du report sur un 
chiffreur aux'liaire. ' 

La duree d'une addition dans un totalisateur de capacite k est ainsi de (k + 1) (), () designant 
l~ duree de basculement d'un flip-flop. ' 

c: 

11 
j !l .. 

i! 
0> 

P 1 
,~ ~<t 
0 :::E w';i 

10 II 15 2 3 

Y Y y 

FIG. 4. 

.. 
CIt 
g 
0 

CD 

8 

LI 

Element de totalisateur binaire. 

t-=-...:..:....;;.;=~{J9' V 
t--~ I---t--':..:.:.=:.c:.::.:..:...-e-u 6 V 

c: .. 
~ 0 

'C 
0- g c: 
.2 E ';: < 0 e 

'0 0 
W Q. (.) 

7 13 14 

'V A 

Permutation. La permutation est obtenue' par l'attaque de' tous les etages du totalisateur 
par la borne 11, qui est reliee a un generateur d'impulsion unique, et par Ie blocage simultane 
des -reporteurs par la borne 8, qui est reliee a un autre generateur d'impulsions. 

Transfert. Le transfert s'effectue d'un etage a tous les etages du me me ordre hinaire des 
, totalisateurs auxquels peut etre transfere Ie nombre marque par Ie totalisateur auquel appartient 
l'~tage considere; la borne de sortie 9 est reliee a cet effet a toutes les bornes d'entree 7 des 
etages du meme ordre binaire de ces totalisateurs, mais ceux qui ne doivent pas recevoir de 
nombre sont bloques en 8, comme pour la permutation. Le transfert est realise par une 
impulsion positive envoyee en 14, sur tous les etages simultanement; cette impulsion n'est 
pas suffisante pour que la triode Lv atteigne Ie cut-off, mais la grille de cette triode peut recevoir 
une polarisation positive statique de la plaque de la triode Fv , qui est en tension haute lorsque 
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la triode de chiffrage Fe debite, et ainsi marque Ie chiffre I; l'impulsion 14 peut alors mettre 
en debit la triode Lv, qui envoie une impulsion negative d'inscription dans Ie circuit 9. 

Deplacement. Vne impulsion negative, envoyee en 10 dans tous les etages simultanement, 
ramene a 0 les triodes Fe qui marquent I et n'agit pas sur celles qui marquent 0; cette com­
mande produit done Ie meme effet que la commande de l'addition du nombre a lui-meme. 
Par l'action du reporteur, l'addition devient effective, or, l'addition du nombre a lui-me me 
est identique a la multiplication de ce nombre par 2, c'est-a-dire a son deplacement d'un 
pas vers les positions hautes. Pour Ie deplacer vers les positions basses il suffit de monter Ie 
reporteur en sens contraire. 

FIG. 5. Ligne de retard (organes interieurs). 

Effafage. L'impulsion de deplacement en 10 ramenant tous les chiffreurs a 0, il suffit de 
bloquer en meme temps les reporteurs par une impulsion en 8 pour obtenir l' effa~age. 

On voit que toutes les operations elementaires ont une duree de moins de 2(), sauf Ie report 
dont la duree peut atteindre k(). 

Realisation matirielle d'un etage binaire IBP. Le schema montre qu'il nous suffit pour con­
stituer un etage binaire de deux doubles triodes et d'une ligne de retard. Materiellement la 
ligne de retard est constituee par quelques bobines plates enroulees sur un tube de carton 
fort, et les autres pieces- sont montees en un ensemble compact porte par un socle a 14 broches 
(Fig. 5). Cet ensemble est coiffe par Ie tube support de la ligne de retard qui lui sert de carter 
(Fig. 6). L'etage binaire ainsi constitue a 5 pouces de haut et Ii pouces de diametre. Dans 
un souci de standardisation, on a pris pour Le et Lv les triodes d'une double triode identique 
a celle qui sert au chiffrage, bien que Le et Lv aient des fonctions independantes et ne soient 
pas montees en flip-flop. En outre, pour faciliter Ie remplacement des tubes uses, Ie montage 
s'ouvre transversalement vers Ie milieu de sa hauteur. 

Realisation materielle d'uf!,e calculatrice. Puisqu'un totalisateur porte en lui-meme des moyens 
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de permutation et de deplacement il suffit de remplacer par des totalisateurs les chiffreurs 
M et X consideres dans la theorie des operations algebriques, pour constituer les organes cal­

. culateurs d'une calculatrice paralleIe. 
Les etages bin aires qui constituent ces totalisateurs sont engages dans des douilles placees 

cote a cote sur une plaque de fondation commune. Les 'connexions entre etages sont realisees 
de fac;on fixe sous cette plaque, qui constitue elle-meme Ie couver-de d'une boite dans lag.uelle 
souffle un vent suffisant pour refroidir les tubes a vide, en circulant a l'interieur de chacun 
des tubes carter de chacun des etages binaires. 

FIG. 6. Ligne de retard (vue d'ensemble). 

La hauteur totale de cet ensemble est de 8 pouces environ; sa surface, celle de 6k carres 
de 1 t pouce de cote, k design ant la capacite du multiplicande et du multiplicateur; par 
exemple, pour la machine IBP, qui travaille sur 15 chiffres decimaux, k = 50 et Ia surface 
des totalisateurs de Ia calculatrice est de moins de 700 pouces carres. 

Les dispositifs de commande et Ies generateurs d'impulsions demandent une cinquantaine 
de tubes, quelle que soit Ia ca?acite des totalisateurs. Ces tubes sont du meme type que ceux 
des totalisateurs a l'exception de quelques pentodes et thyratrons. 

Nous croyons pouv<?ir insister sur Ia reduction d'encombrement, Ie caractere industriel 
et Ie haut degre de standardisation atteint dans Ia realisation de cette partie denotre machine. 

La suite des operations elementaires est indiquee par Ies schemas suivants pour Ia division, 
elle est analogue pour l' extraction de racine carree. 

Exemple (Fig. 7): a: b, a = 1000001, b = 101, k = 6, k' = 5. 

Nous noterons, d'une part, que Ie zero negatif doit commander Ie transfert de I I la X tout 

382 



LA CALCULATRICE I.B.~. 

o:b 0=100000I b=I01 k=6 k' = 5 

M W X I p 

-- -- ---
01111111111 I I I I I I 01111111111 

I. 01010000000 o 0 000 I .... 0 I 0 0 0 0 0 I .0 0 0 

2. I 0 I 0 I I I I I I I ..... r-

3. I ~ I I I I 0 0 0 0 I I I 

4. I I 0 I 0 I I I I I I __ ~~ .. O 0 0 Q 0 

5. 0 0 I 0 I 0 0 0 0 0 0 r-

I • 
6. o 0 0 I I 000 I I I } 

_) ;:YOOIIOOIOOO 
o 0 0 0 I < __ :=a~-+-+--J 1. 

8. 0 0 0 I 0 I 0 0 0 0 0 __ ~-+ .. O 0 Q I 0 

. ~ I I I 0 I 0 I I I I I 
I • 

10. o 0 000 I 001 I I } 

}- ~90000IOIOOO 
o 0 Q I I c_:=a//~_~I II. 

12. I I I I 0 I 0 I I I I __ ~--*-_ 0 0 I I 0 

~==+=F=======i-> I L... I I I I I 0 I 0 I I I 

13. I I I I I 0 I 0 I I I __ ~~ .. O I 100 

14. 0 0 0 0 0 I 0 I 00 0 

15. '-===*=========> I ,I I I I I I I I I I I J 

16. 0 I I 0 0 ~::~l _____ ----JI Y

I __ ----------------~T 
11. Stop {_:..-------------------------l 

M: Multiplicande x: Multiplicateur P:Produit W : Contrale 

I : Chiffreur du Nombre I -- - Report et deplacement 

" : Transfert l 
L... --___ Contrale 

FIG. 7. Exemple de division. 
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comme Ie zero du chiffreur de signe de P; et d'autre part, que Ia permutation de M depend 
de Ia comparaison des signes successifs de P; on voit apparaitre deux nouvelles commandes 
conditionnelles speciaIes, tenant a Ia fois a la structure de la calculatrice et a la methode de 
calcul utilisee. 

IV. UN PRINCIPE DE RECHERCHE. LA QUESTION DE LA MEMO IRE 

Nous voudrions, a cette occasion, rappeler un principe que nous formulions des 1933, et 
dont les confirmations se sont multipliees. L'observation de l'evolution des machines existant 
a cette date nous conduisait a avancer que Ie progres, en calcul mecanique, resultait d'une 
adaptation mutuelle des machines a calculer et des methodes de calcul. Un exemple particu­
lierement typique d'adaptation des methodes aux machines est, dans Ies analyseurs differen­
tiels, Ia determination des fonctions elementaires, sin x, L x, etc., par des analyseurs differentiels 
auxiliaires, c'est-a-dire, mathematiquement, Ia substitution a une fonction d'une equation 
differentielle dont elle est solution. L'expose qui precede offre de nombreux exemples de 
detail, de reaction mutuelle des recherches mathematiques et des recherches techniques; en 
particulier, la simplicite des methodes de division et d'extraction de ra'cine carree est fort 
accrue par la simplicite de la technique du deplacement et de la permutation. 

Les confirmations renouvelees de ce principe nous conduisent a considerer comme in­
efficace, dans l'etat actuel de la technique, une discussion logique a priori de la realisation 
materielle d'une machine a calculer universelle. 

Par exemple, Ie debit tres eleve d'une calculatrice telle que celIe dont no us venons de 
donner une description schematique, met en question la methode de calcul des fonctions 
elemen~aires, et nous conduira vraisemblablement a abandonner les tables mecaniques, que 
nous conseillions, en 1938, pour une machine ~lectromecanique, sous une forme voisine de 
celle que l'on peut admirer dans la machine Mark I du professeur Aiken. 

On comprendra aussi, pensons-nous, pourquoi nous avons declare, en plusieurs circon­
stances, .que nous ne savons pas encore queUe sera Ia nature de la memoire de notre machine. 

FonctioneUement, nous considerons comme necessaires une memoire interne et une 
memoire externe, etcomme avantageuse la separation de Ja memoire des nombres et de la 
memoire des commandes. 

La structure de ces diverse~ memoires doit dependre, a notre avis, des calculs a faire et de 
Ia methode adoptee. Par exemple, la memoire n'intervient pas dans les memes conditions si 

.l'on calcule des trajectoires ou si l'on resout un systeme de 50 equations Iineaires a 50 in­
connues; dans Ie second cas, les phases sont de une ou deux operations, dans Ie premier cas, 
elles peuvent atteindre la centaine d'operations. 

C'est-a-dire que notre machine-Iaboratoire comportera plusieurs types de memoire dont 
Ie mode d'emploi aura a etre etudie systematiquement, en liaison avec les problemes traites. 

Nous donnerons pour terminer Ie schema d'urie memoire que les essais poursuivis jusqu'a 
present nous conduisenta considerer comme avantageuse dans la fonction de memoire interne 
d'une calculatrice parallele (Fig. 8). 
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Chaque chiffre est enregistre au moyen d'une diode a gaz NC. Les diodes constituant les 
chiffreurs eIementaires d'une me me chiffreur binaire sont figures sur une meme ligne hori­
zontale; les diodesdu meme ordre binaire dans les divers chiffreurs sont figures sur une meme 
ligne verticale; Ie schema montre donc une memoire de 4 nombres de 4 chiffres; il faut 
comprendre en outre que les plots representes par la meme lettre sont reunis entre eux. 

Le fonctionnement du dispositif se fonde sur la remarque que Ie seuil de tension d'allumage 
d'une diode est nettement pl~s eleve que son seuil de tension d'extinction. 

L'inscription s'effectue en envoyant une impulsion positive par les bornes A, B, C, ... 
dans tousles ordres bin aires OU doit etre representc lechiffre I, et en bloquant les tubes des 
chiffreurs OU l'ins~ription ne doit pas etre faite par une impulsion opposee. 

La lecture s'effectue en envoyant, par les bornes E, F, G .... une impulsion negative 
trop faible et trop 'breve pour provoquer l'extinction des diodes. L'effac;age s'obtient en 
prolongeant l'impulsion de lecture. 

L'impulsion de lecture peut avoir pour duree 0, duree de basculement d'un flip-flop des 
totalisateurs; c;est, croyons~nous,la plus faible duree atteinte pour l'extraction d'un nombre 
d'une memoire et son transfert a un chiffreur. C'est cetie caracteristique de fonctionnement 
de la memoire a diodes qui en fait l'interet; cette memoire ne retarde en rien la calculatrice, 
car l'inscription dans la memoire et l'effac;age peuvent se poursuivre pendant que la calcula­
trice travaille isolement. 

Malgr.-e Ie nO,fibre des diodes, qui peut paraitre eleve, ce dispositif reste simple et sur, 
parce qu~ les diodes' a gaz sont des tubes robustes, et que l'on peut les utiliser dans des condi­
tions OU leur fon~tionnemenLne produitguere d'usure. En outre, ces tubes sont peu couteux. 



THE FUTURE OF COMPUTING MACHINERY 

LOUIS N. RIDENOUR 

. University of Illinois 

The title of these remarks is somewhat misleading, in that one of the things Professor Aiken 
has requested of me is to give a very brief critical summary of the proceedings of the present 
Symposium; following this, I venture a few speculations regarding the principal directions 
in which the research and development on computing machinery seem to be tending. 

The central interests and concerns of the more than 700 people in attendance at the present 
symposium are extremely diverse; the fields.in which papers have been presented are various 
and wide. There have been papers on computing machinery,. on methods of numerical 
analysis, on the solution of problems involving numerical analysis in the fields of physics, 
engineering, economics, and social science. No doubt, the fact that interest in this ~ymposium 

. has been so splendidly sustained in spite of this diversity of subject matter can be explained by 
observing that, once a problem has been reduced to a mathematical form, then what proceeds 
from that point onward is of common interest "to those concerned with numerical analysis, 
almost without regard to the way in which the original equations to be solved arose. 

Thus a prominent effect of the development of computing machines is likely to be that 
of producing important unifications and sharings of viewpoint among various scientific dis­
ciplines which present problems amenable to attack by numerical analysis. The reports 
presented at this Symposium encourage the belief that the art of computing machines may be 
entering a new phase-a phase of increased maturity. We are assembled here to celebrate 
the completion of the Harvard Mark III machine, and ,many of the papers presented here in 
the sessions on computing machines have described completed and operating machines, rather 
than the plans for constructing machines not yet built. It is clear that powerful methods of 
numerical analysis are being developed, and that the new numerical problems posed by the 
extreme speeds of modern machines are becoming evident and are beginning to be attacked. 
Many of the numerical problems that have been described here-in physics, engineering, and 
social science-are not merely proposed for solution, but actually have been attacked and 
solved in whole or in part. The keynote of the present meeting thus seems to be achievement, 
even if limited achievement, rather than promise. 

Let us now consider some of the papers presented here, in the order in which they appear 
in the program. It wi1l not be possible to mention each of the some forty papers presented, 
but an effort will be made to deal with typical ones in each category. 

No comment on the Harvard Mark III machine is offered beyond saying that we have all 
had an opportunity to inspect this machine and to learn something of its design and its 
properties. I should like to remark upon the very consider~ble debt that the entire high-speed 
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computer art owes to the early, continued, and effective work of Professor Aiken and 
his group. 

The Bell Telephone Laboratories computer that was described seemed remarkable prin­
cipally for its complete avoidance of the use of conventional vacuum tubes. There were used 
as computing elements mainly electromechanical relays, together with fewer than one hundred 
vacuum tubes. Possibly because of this unconventional design, this machine and its relatives 
in 'the series of Bell machines have achieved a very remarkable record of continued reliability. 

Very interesting progress reports on machines under construction were offered by the 
Massachusetts Institute of Technology, the Raytheon- Manufacturing Company, the General 
Electric Company, the National Bureau of Standards, Mr. Elliott for the British, and the 
Institut Blaise Pascal. Many of the machines described are scheduled for completion in the 
year 1950; that year should be a very interesting one for those concerned with computing 

machines. 
One aspect of the British developments seems worthy of special remark. This is the quite 

evident difference in the approach to the problem of constructing a large computing machine 
adopted respectively by British workers a~d by American workers. Before launching upon 
the construction of large machines, the British prefer to make preliminary experiments, and 
to gain experience, with small machines of admittedly limited scope which, however, posses~ 
sufficient g~nerality to be educational. American practice has been, on the other hand, to 
embark from the beginning on the construction of quite ambitious machines, usually without 
preliminary experience on small-scale models. To some degree, this may express the greater 
availability of research funds from the American' government, but I think that it goes deeper 
than that; I think that it expresses a difference in the national character. 

During the recent war, I was frequently distressed by what seemed evidences of stupidity 
and ineptitude in our Air Force operations as they concerned my area of interest-airborne 
radar. On one occasion I was complaining to a general officer about this, and pointing out 
to him how much better the Royal Air Force managed its affairs. He said: "Well, you have 
to expect that. There arc two ways to fight a war: _you can fight a smart war, or you can 
fight an overwhelming war, but you can't do both .. The British are fighting a smart war, but 
we aren't. We made our choice a long time ago; we decided to fightan overwhelming war, 
and that's what we're doing. Don't expect us to be smart." It seems that this approach has 
been carried over to the computer field; we Americans have a tendency to overwhelm our 

difficul ties. 
Several papers were presented on the subject of components for computing machines. 

I t was clear from these that the outstanding component problem still is-as it has been for 
some time-that of an adequate high-speed storage device, or inner memory, for a computing 
machine. While special methods for reducing demands on an inner memory can usually be 
devised for any particular problem, nevertheless the scope of a machine increases and its 
operation becomes simpler as the capacity of the inner memory rises. Quite a lot of wo~k is 
being done on this problem. The work of F. C. Williams, and that of the Eckert-Mauchly 
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group, which appears to be derived from it, seems to be very promising; so is the success that 
has recently been obtained in the use of mercury delay lines as high-speed storage elements. 

Further, two papers given here reported on novel and interesting devices whose further 
development seems very promising. These are the magnetic delay lines and memory elements, 
on the one hand, and the highly ~uggestive work on electrochemical storage elements and 

relays, on the other. 
Mr. Engstrom called to our attention the importance of special-purpose machines. Natur­

ally enough, attention has mainly been focused on what are called, "general-purpose" machines; 
but it is desirable to remember that for many purposes, notably those of industry and govern­
ment, special-purpose machines are quite adequate and can often be realized for fewer dollars 
per function performed than could a general-purpose machine. An interesting example of 
a special-purpose machine is the Northrop assemblage of IBM equipment to make a simple, 
rapidly assembled, useful, and quite reliable machine. 

In the session on numerical methods, Mr. Brown proposed a scheme for solving certain 
types of problems by playing a game. He has consulted with workers here at the Computation 
Laboratory of Harvard, and finds that their conservative judgment is that a 40 X 40 matrix 
can be dealt with completely in a thousand steps, and with an error of one part in a thousand, 
in a total time somewhat less than one hour. The complete program has not been prepared, 
and this is only an estimate, but it seems a promising one. 

All those concerned with machine design should be grateful for Mr. Lehmer's elegant 
scheme for the generation of pseudorandom numbers by machines. Such numbers, and their 
production by a simple scheme, will take on increasing importance as lengthy analysis is 
replaced by statistical experiments conducted on machines, in the fashion of the Monte Carlo 
method described to us by Mr. Ulam. 

Other papers in the session on numerical methods dealt with important problems in 
numerical analysis. Mr. Milne catalogued the outstanding needs in iterative schemes for the 
solution of the Laplace equation and other elliptical partial differential equations. Further 
work is needed, first, on the development of ways of programming for machine use such rapid 
systems of error removal in iterative solutions as the relaxation methods of Southwell; second, 
on ways for dealing with curved boundaries; third, on schemes for selecting good initial 
values of the functions being dealt with; and fourth, on better methods for handling mixed 
boundary conditions. , 

In the session on applications to physics, Mr. Furry made the general observation that' 
the high-speed computing machine permits experimentation in theoretical physics with less 
labor and better results than have ever been/accessible before. Such "theoretical experimenta­
tion" (if this is a good term) includes the testing of theories, the decision among competing 
hypotheses, the determination of ranges of validity of various approximations, and so on. 

Examples of the actual use of machines in the solution of problems were offered. Problems 
presented included the birefringence produced by viscous flow, the trajectories of cosmic-ray 
particles, and the interaction of atomic electrons with electromagnetic radiation. In connection 
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with the last, Mr. Rose remarked that he has assembled the first compendium of wave functions 
for Dirac electrons in the screened nuclear field. It is indubitable that this catalogue of wave 
functions will be important and useful in many other investigations. It is to be hoped that 

Mr. Rose or others will carryon in the direction he has marked out, computing such wave 
functions for higher values of angular momentum, and for electron states in the negative-energy 
continuum. 

In the sessions on aeronautics and applied mechanics, the papers presented made it clear 

that the use of computers in these fields will be very extensive. I mention particularly Mr., 
Welmer's prediction that the complete solution of the now separate problems of flutter, aero­

dynamic· stability, and ser~omechanism performance of an airframe may soon be found in 
terms of the complete frequency-response spectrum for a particular airplane. Mr. Emmons 
and Mr. Muskat outlined two other practical applications in which computers will be extremely 

useful. 
Mr. Mosteller set forth, in the session on economics and social science, the types of problems 

likely to be dealt with. He asserted that these are mainly solutions of simultaneous linear 

equations, both homogeneous and inhomogeneous, giving as specific examples problems in 
multiple regression, the finding of discriminant functions, scaling theory, and factor analysis. 

He further remarked that' the present lack of adequate mathematical theory outside the field 
of economics now gives machines little to do in social science, while at the same time it points 

up very clearly the major present job of those interested in a quantitative social science. 
Examples of specific problems suitable for attack by machines were given by Mr. Tucker and 
Mr. Chernoff, and Mr. Waugh pointed out that many important economic problems do not 
require the use of machines. He urged that those present at the Symposium would assist the 

economist in preventing the establishment of a fad for using high-speed computing machines 

for all purposes, whether justified or not. This having been said, Mr. 'rVaugh remarked that 
machines have a very important place in the solution of veryimpoitant problems, notably 
those of Government jn these days of increased central control. 'He reminded us that formu­

lation of such problems is difficult and that economists often do not kno:w what questions to 

ask, what answers to seek, or how to secure the public acceptance of policies necessary to 
implement the answers found. 

On the ground, no doubt, that physiology can be regarded as an elementary sort of social 

science, Mr. Crozier found himself on the social-science program. He pointed out first of all 
that the multivariant character of organic processes almost certainly means that, when a 

proper mathematical description of such processes is formulated, it will be so complicated 
that machine computation will be demanded. He then addressed himself to the question of 
the validity of using the physiology of high-speed computing machines as an analogy for the 

physiology of the nervous systems of living organisms. He reminded us of the dangers of 
misleading analogies and concluded, from the example concerning vision which he quoted 
and from other evidence, that elementary neural decisions in a living organism are reached 

statistically. Thus, according to Crozier, a true thinking machine would have to have a very 
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large redundancy in individual elements whose individual performances fluctuate, in order 
to imitate in any meaningful way the performance of the neural system of a living organism. 

Let us turn now to the questions more directly suggested by the title: The Future of 
Computing Machinery. The first such question, in this time of vigorous development, design, 
and construction, is perhaps: "Who is likely to possess large high-speed computing machines 
in the future?" Some workers in the computing-machine field, and some people interested 
in the field, are quite pessimistic about the ultimate wide availability of large high-speed 
computing machines, on the grounds that such machines are complic~ted and expensive to 
build, expensive to maintain and operate, and therefore cannot ever be afford~d by institutions 
such as the normal middle-sized university. This is a point of view with which I disagree 
completely. I strongly believe that a competent high-speed computing machine will very 
soon be recognized as an important and inevitable part of the research equipment of any 
university having even modest research pretentions. 

Thus I regard the computing machine as being not in the category of the large astronomical 
telescope, which is a pleasant but optional luxury for a university, but rather in the category 
of the electronuclear particle accelerator, which is a necessity for any university that desires 
to cultivate modern nuclear physics. In the early and middle nineteen-thirties, when Lawrence 

. was having his first successes with the cyclotron, I remember many discussions bf whether 
this or that institution should build a cyclotron. There were always those who argued that 
the cyclotron was expensive to build and run, that it had a limited ficid of usefulness, that 
there were already plans to build all of them that the country needed or could support, and 
therefore that the institution concerned in the discussion need not and should not build a 
cyclotron. Now it is not quite true that the only universities that have made substantial 
contributions to nuclear physics are the ones who ignored such skeptical notions and built 
cyclotrons, but it is nearly enough true to be significant. And the successful institutions that 
do not have cyclotrons do have, in all cases, some competing form of particle accelerator. 

By analogy, I suggest that high-speed computing machines will be part of the routine 
and necessary research equipment of univers'ities, industrial laboratories, government research 
establishments, and indeed any institution where any substantial volume of scientific research, 
in any field, is carried on. Possibly this trend will be readily discernible in a year or two, and' 
surely its full implementation is less than a decade off. 

Of course, the wide availability of high-speed computing machines will be greatly forwarded 
by improvements in reliability and reductions in cost, in consequence of continued develop­
ments of improved components and better'logical design. 

Let us now ask: "How large, how fast, and how' complicated should a large, high-speed, 
general-purpose computing machine be?" The ENIAC still holds the record for the total 
number of vacuum tubes. More recent designs are considerably more ambitious in terms of 
the speed of individual operations, the size of the inner memory, and the general competence 
of the device; yet in spite of this they have fewer tubes, which they use harder, so to speak. 
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1 should like to propose that the answer to the question of where to draw the line in designing 
a general-purpose machine is set entirely by considerations of reliability. That is, a large 

. general-purpose machine ought to be as big and fancy and competent as it can be made, 
subject to the limitation that it must not commit errors oftener than once in, say, four hours. 
There is no other significant limitation on the total complexity of the device; for the machines 
that we have now, even those that have not yet been realized, but are in design, are still 
inadequate to deal with many problems we should like to put to them. 

Professor Aiken has quoted to me a remark of Hartree's. Hartree said that the fastest 
computing machine that has yet been designed is still some 1010 times too slow to solve com­
pletely the problem of the wave equation for the copper atom. Mr. O'Neal, in his remarks 
before this Symposium, said that the solution of the traffic-handling problem for aircraft on 
the airlines of this country would tax the capacity of the biggest and fastest computing machines 
now in existence. 

Warren McCulloch, a professor 0f psychiatry at my university, has interested himself in 
the sort of analogy between computing machines and neurophysiology that Mr.· Crozier 
regards as being so dangerous. He has remarked that the over-all complexity of the largest 
and most complicated computing machine now in existence or proposed is just about equivalent 
to the complexity of the nervous system of the flatworm. You mayor may not regard this 
as being a fair comparison. It is based upon drawing a parallel between a single flip-flop in 
the machine and a single neuron in the nervous system of the flatworm, and I think that it is 
safe and suitable for our present purpose. 

There is little question that, so far as the carrying out of n~merical computations is con­
cerned, the computing machine is more useful than the flatworm. There are two obvious 
major reasons for this. First, the machine is specialized in its function, while the nervous 
system of the worm is not. The machine can deal only with special classes of situations, while 
the delimitation of the flatworm's competence is far less narrow. Second, the machine works 
about a thousand times faster than any organic nervous system. 

Without claim~ng in any way that a computing, machine "thinks" in the sense of origination, 
we must admit that it relieves human computers of a tremendous burden of routine mental 
effort which is ordinarily classified as thinking. This thinking is special, in the sense that it 
is governed by formal logical rules of manipulation, but in the past it has had to be managed 
by human nervous systems. With the help of machines, it can be directed by human nervous 
systems, but carried out without human intervention or assistance. 

Thus, we are not talking about machines possessed of the ability to "think" in the sense 
to which Mr. Crozier was objecting, but rather machines which can perform logical processes 
in a rapid, uniform, and unerring way. The faster and more competent we can make such a 
machine, the bigger will be the burden of routine thought that it can take away from men. 
If we can make a machine large enough and competent enough, and if in the meanwhile 
.we have learned more than we know now about the logical organization of the nervous systems 
of living organisms, we may at last be able to make a machine capable of origination and 
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problem-solving behavior. But this lies in the rather distant future; our present problem is 
to make large 'and reliable the machines of unitary function which are designed simply for 
the straightforward application of the logical rules built into their design. 

We want, therefore, to make computing machines as large and as complicated as we can; 
for the fanciest machine that we can realize today is powerless in the face, of problems that 
we can readily pose, but not yet solve. The limitation on size and complexity is set by relia­
bility; for a machine will be useless to us if it is not sufficiently reliable to be depended upon 
for hours at a time. 

This leads us to my final question: "How can a computing machine be made more reliable, 
so that its complexity can be increased without increasing the chance of failure?" Of course, 
there is no simple or evident answer to this question, or such an answer already would have 
been exploited in machine design. There are some promising indications on the horizon. 
I suggest that the first thing that should be done is to look toward as complete as possible an 
elimination from computing machines of vacuum tubes and electromechanical relays. These 
two components are presently the major sources of failure in existing machines, partly because 
they are so numerous, and partly because they wear out with continu~d use. 'Vhat we need 
is computing elements that can perform the same nonlinear functions as those we now achieve 
with tubes or relays, but elements that are far less prone to depreciation in'use. 

Another drawback of the vacuum tube, of course, is the ridiculously large amount of energy 
that must be expended to boil offfree electrons from its cathode. At the time McCulloch made 
his remark about the flatworm, he also observed that if a computer built on present principles 
should be made to have the same number of individual elements-let us call them "neurons" 
-as there are in the human central nervous system, then all the power of Niagara Falls would 
be required to light the tubes, and the complete water flow over the Falls would be required 
to keep the device cool. The human nervous system, though slow in electronic terms, is 
incomparably efficient in terms of energy expenditure per individual computing element. 

What is needed is to replace the present basic nonlinear elements used for computers with 
another type of element that does not require enormous quantities 'Of stand-by power, and is 
not depreciated by continued operation-an element that, once installed, can be relied on 
indefinitely unless it is abused. There are some hints as to the possible nature of such a device; 
some of these have been reported upon at this Symposium. The most promising ones visible 
today are, first, semiconductor devices of the sort of the recently announced transistor; second, 
magnetic devices like those reported here; and third, the electrochemical devices that may 
be developed from the pioneer work of which Mr. Bowman has told us. A great deal of intensive 
work on promising unconventional dements for computer use will be repaid if the over-all 
reliability of computers can thereby be increased. Reliability, as we have seen, brings in its 
train larger, more complex, and more competent computing machines. Presumably it also 
brings in its train a greater availability and a lower cost for the computers of present size and 
scope; inevitably, it will bring wider general use and acceptance of computing machines of 
all sorts. 
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