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PREFACE

In January 1947 the Bureau of Ordnance of the United States Navy and Harvard Univer-
sity together sponsored a Symposium on Large-Scale Digital Calculating Machinery as a
means of furthering interest in the design, construction, application, and operation of computing
machinery. This meeting was attended by over three hundred people, nearly four times the
originally expected attendance, and by popular demand the proceedings were published as
Volume XVI of the Annals of the Computation Laboratory.

At the Oak Ridge meeting on computing machinery in April 1949, Mina Rees and John
Mauchly, representing the Association for Computing Machinery, suggested that another
symposium should be held at Harvard summarizing recent and current developments. The
staff of the Computation Laboratory had already considered this possibility in connection
with the announcement of the completion of Mark III Calculator, and were delighted with
the suggestions of Dr. Rees and Dr. Mauchly. Accordingly, the Bureau of Ordnance was
again invited to join Harvard University in sponsoring a second symposxum with emphasis
on the application of digital calculating machinery.

From experience with the first symposium, it was expected that perhaps three hundred
people might attend. The response of more than seven hundred participants clearly indicated
the rapidity with which the field of automatic computation is growing.

This volume, the twenty-sixth of the Annals of the Computation Laboratory, contains all
the papers presented at the second symposium except one. Two of the speakers, Manuel S.
Vallarta and Frederick V. Waugh, found at the last minute that they were unable to attend.
However, their papers were received and were read by J. Curry Street and Leon Moses,
respectively, both of Harvard University. Because of the tremendous editorial difficulties
experienced with the proceedings of the first symposium, each speaker at the second was
requested to supply his manuscript in advance, in order to avoid dependence upon transcription
from sound recording. Thirty-nine papers are herein published essentially as submitted.
Thus the work required to prepare this volume for publication was greatly reduced. However,
it was necessary to redraw many of the illustrations for offset reproduction; this was done by
Carmela M. Ciampa, assisted by Paul Donaldson, photographer of Cruft Laboratory, Harvard
- University.

Since the symposium was held in September, prior to the opening of the fall term, it was
possible to make use of the dormitories in the Harvard Yard and the dining facilities of the
Harvard Union. Arthur Trottenberg of Harvard University supervised arrangements for
the use of these facilities and other accommodations. Preparation of the program and regis-
tration lists and the registration of the members of the symposium after their arrival were
carried out by Betty Jennings, Jacquelin Sanborn, Jean Crawford, and Holly Wilkins. It is
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PREFACE

a pleasure to acknowledge the coéperation of Edmund C. Berkeley, secretary of the Association
for Computing Machinery, in this connection. o

‘The staff of the Computation Laboratory wishes to express its appreciation to the members
of the symposium for their attendance and for their participation in the discussions, to the
chairmen of the several sessions for their assistance, and to the speakers not only for their
addresses during the symposium but also for their coGperation in preparing the manuscripts
of their papers. | A _ '

The staff also wishes to express its gratitude to the Bureau of Ordnance and to its repre-
sentatives, Captain G. T. Atkins and Mr. Albert Wertheimer, for many years of pleasant
association throughout the building of Mark IT and Mark III Calculators, for their continued
interest and help, and for making possible both the Second Symposium on Large-Scale Digital
Calculating Machinery and the publication of its proceedings.

‘ Howarp H. AIKEN

Cambridge, Massachusetts
May 1950 :
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PROGRAM

FIRST SESSION

Tuesday, September 13, 1949
10:30 a.M. to 12:00 p.M.

OPENING ADDRESSES

Presiding

Howard H. Aiken
Director of the Computation Laboratory

Edward Reynoids 3
Administrative Vice President of Harvard University

Rear Admiral F. I. Entwistle, USN g
Director of Research, Bureau of Ordnance

SECOND SESSION

Tuesday, September 13, 1949
2:00 p.M. to 5:00 P.M.

REceENT DEVELOPMENTS IN COMPUTING MACHINERY
Presiding
Mina Rees, Office of Naval Research

1. The Mark III Calculator 1!
Benjamin L. Moore

Harvard University
2. The Bell Computer, Model VI 2.0
- Ernest G. Andrews
Bell Telephone Laboratories
3. An Electrostatic Memory System 27~
J. Presper Eckert, Jr.
Eckert- Mauchly Computer Corporation

4. The Digital Computation Program at Massachusetts Institute of Technology iy}

Jay W. Forrester wwl

Massachuseits Institute of Technology
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SECOND SESSION-—CONTINUED
5. The Raytheon Electronic Digital Computer £ ¢

- Richard M. Bloch
Raytheon Manufacturing Company

6. A General Electric Engineering Digital Computer L5

Burton R. Lester
General Electric Company

BANQUET

Tuesday, September 13, 1949
7:00 p.m. '

Toastmaster

Edward A. Weeks, Jr.
Editor of The Atlantic Monthly

Speéker
‘William S. Elliott
Research Laboratories of Elliott Brothers (London) Limited

“The Present Position of Computing-Machine De\;elopment in England” 7%

THIRD SESSION

Wednesday, September 14, 1949
9:00 A.Mm. to 12:00 p.Mm.

. REceENT DEVELOPMENTS IN COMPUTING MACHINERY
Presiding
E. Leon Chaffee, Harvard University
1.. Semiautomatic Instruction on the Zephyr 4 %

H. D. Huskey '
MNational Bureau of Standards, Institute for Numerical Analysis

2. Static Magnetic Delay Lines = ¢)

- Way Dong Woo
Harvard University
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THIRD SESSION-—CONTINUED

. Coordinate Tubes for Use with Electrostatic Storage Tubes 4 b

R. S. Julian and A. L. Samuel
University of lllinois

. Basic Aspects of Special Computational Problems | /5~

Howard T. Engstrom
Engineering Research Associates, Inc.

. Electrochemical Computing Elements }19

John R. Bowman
Mellon Institute

bogical Syndone angl ‘
. EDVAC Transformation Rules a5

George W. Patterson
University of Pennsylvania

FOURTH SESSION

Wednesday, September 14, 1949
2:00 p.M. to 5:00 p.Mm.

NuMmERICAL METHODS
Presiding
Raymond C. Archibald, Brown University
. Notes on the Solution of Linear Systems Involving Inequalities | 37

George W. Brown
Rand Corporation

. Mathematical Methods in Large-scale Computing Units |4-)

D. H. Lehmer
- University of California

. Empirical Study of Effects of Rounding Errors | ¥7
C. Clinton Bramble
U.S. Naval Proving Ground, Dahlgren, Virginia

- Numerical Methods Associated with Laplace’s Equation | §

- W. E. Milne
Institute for Numerical Analysis, UCLA and Oregon State College

x1



FOURTH SESSION-—CONTINUED

5. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differentia
and Integral Operators ) 64

Cornelius Lanczos
Institute for Numerical Analysis, UCLA

6. The Monte Carlo Method ’»v'z
S. M. Ulam

Los Alamos Scientific Laboratory

FIFTH SESSION

Thursday, September 15, 1949
9:00 A.M. to 12:00 p.m.

CoMPUTATIONAL PROBLEMs IN PHysics
Presiding
Karl K. Darrow, Bell Telephone Laboratories

1. The Place of Automatic Computing Machi'nery‘in Theoretical Physics 715

Wendell H. Furry -
Harvard University

2. Double Refraction of Flow and the Dimensions of Large Asymmetric Molecules 19

Harold A. Scheraga, John T. Edsall, and J. Orten Gadd, Jr.
Cornell University, Harvard Medical School, and Computation Laboratory of Harvard University

3. L-Shell Internal Conversion LW

Morris E. Ro:se
Oak Ridge National Laboratory

4. The Use of Calculating Machines in the Theory of Primary Cosmic Radiation 72 ‘¢
» Manuel S. Vallarta
University of Mexico
(read by J. C. Street, Harvard University)

--~-5. Computational Problems in Nuclear Physics 2 5¢

Herman Feshbach
Massachusetts Institute of Technology
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SIXTH SESSION

Thursday, September 15, 1949
2:00 p.M. to 5:00 p.M.

AERONAUTICS AND APPLIED MECHANICS

Presiding
Harald M. Westergaard, Harvard University

1. Computing Machines in Aeronautical Research .47
R. D. O’Neal

University of Michigan
2. Problem of Aircraft Dynamics  .°7)

Everett T. Welmers

Bell Aircraft Corporation
3. A Statistical Method for Certain Nonlinear Dynamical Systems 2%/
George R. Stibitz
Consultant in Applied Mathematics, Burlington, Vermont

4. Combustion Aerodynamics -+ 3
Howard W. Emmons
Harvard University
5. Application of Computing Machinery to Research of the Oil Industry 254"

Morris Muskat
Gulf Research & Development Company

6. The 603-405 Computer 3 )6

William W. Woodbury
Northrop Aircraft, Inc.

SEVENTH SESSION

Friday, September 16, 1949
9:00 A.M. to 12:00 p.M.

Tue EcoNoMmic AND SOCIAL SCIENCES
Presiding
Edwin B. Wilson, Office of Naval Research
1. Application of Computing Machinery to the Solution of Problems of the Social Sciences 3723

Frederick Mosteller
Harvard University
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SEVENTH SESSION—CONTINUED
2. Dynamic Analysis of Economic Equilibrium 2737

Wassily W. Leontief
Harvard University

3. Some Computational Problems in Psychology 373 g

Ledyard R. Tucker
Educational Testing Service, Princeton, New Fersey

4. Computational Aspects of Certain Econometric Problems 3.3~

Herman Chernoff
University of Chicago

5. Physiology and Computing Devices 35}
~ William J. Crozier
Harvard University

6. The Science of Prosperity = 2% 7
‘ Frederick V. Waugh
Council of Economic Advisers

(read by Leon Moses, Harvard University)

EIGHTH SESSION

Friday, September 16, 1949
2:00 p.M. to 4:00 p.M.

DiscussioN AND CONCLUSIONS

Presiding
Willard E. Bleick, I/.S. Naval Academy Post Graduate School

1. The Selectron 2 b5
Jan Rajchman
Radio Corporation of America

2. Traits Caractéristiques de la Calculatrice de la Machine 4 Calculer Universelle de
I'Institut Blaise Pascal 374 ‘
' Louis Couffignal
Institut Blaise Pascal

(read by Leon Brillouin, Harvard University)

3. The Future of Computing Machinery 3% 7

Louis N. Ridenour
University of Illinois

OPEN DISCUSSION
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EDWARD REYNOLDS

HARVARD UNIVERSITY

It is a great privilege and gives me great personal pleasure to have the honor of bringing
the greetings and warm welcome of the President and Fellows of Harvard College to this large
~group of distinguished guests visiting the University on. the occasion of this symposium on
large-scale digital calculating machinery at the Harvard Computation Laboratory. We are
all sorry that President Conant could not personally welcome you here and present these
greetings, but he is on the West Coast keeping engagements made more than a year ago.
I regret this necessity for his absence, but express his hope that you will find your visit here
interesting and productive, and our hospitality cordial.

This is the third such ceremony in connection with Harvard’s Computation Laboratory.
The first, about five years ago during wartime, dedicated Mark I, a highly significant develop-
ment in this new field, which was then generously presented to Harvard by the International
Business Machines Corporation and temporarily located in our Cruft Laboratory, representing
the fruit of several years of collaboration by Professor Aiken of Harvard with the leading
research men in the IBM organization. Mark I, although in some respects overshadowed by
subsequent developments here and elsewhere, is still the reliable old workhorse of the Labora-
tory which has rendered extremely valuable service to the armed forces. From its initial
- operation until the end of last year, it has had the generous support of the United States
Navy, which we gratefully acknowledge. More recently, the United States Air Force and the
Atomic Energy Commission have shared this support. All three of these agencies of the
Government have been most generous and understanding in helping us to broaden the scope
of the problems to which it has been applied and thus to broaden the field of interest and
usefulness of this type of machinery. '

The second such ceremony, early in 1947, dedicated this new laboratory building and
-offered for inspection the Mark II, then being completed and tested for the Navy. Shortly
thereafter, Mark Il was delivered to the Navy and installed at Dahlgren Proving Ground
in Virginia.

Even though we understand that, with its significant advances in speed and capacity over
Mark I, Mark II has proved its usefulness, it has not satisfied our good friends in the Bureau
of Ordnance of the United States Navy, who have continued their generous support of the
research of this Laboratory and are now jointly with the Harvard Computation Laboratory
sponsoring this third symposium at which we have the pleasure of unveiling Mark III, also
destined for delivery in the near future to the Dahlgren Proving Grounds.

We feel that we may properly take some pride in the quality of research being carried
on in this Laboratory. The distinguished character of the talent attending this symposium
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supports us in this feeling. We feel that rather too much time has been devoted to the develop-
ment of actual machinery growing out of this research, and have some hope that one of the
by-products of this and other meetings may be to stimulate the interest of others in this phase
of the application of our research and thus to eliminate the need for this activity on the part
of our staff. Certainly the manufacture of parts and even the assembly thereof are not activities
for which we are fitted or which we wish to pursue, except possibly in the production of a
machine for our own use within the University.

As a layman participating actively in the administrative problems which arise out of the
organized group research that has become such an active part of research at universities in
recent years, I am tremendously pleased at the evidences of awakening interest in the usefulness
of these newest appliances in widely scattered fields of research. The inescapable application
of mathematics in practically every field of human endeavor makes it seem important to us -
that the understanding of the availability and usefulness of the developments being made
here and in other mathematical research laboratories, as aids in all other fields of research,
be spread as widely as possible; and we are therefore particularly pleased that the latter
part of the program for this symposium is devoted to discussions of the relation of the work of
this Laboratory to research in a broad range of subjects. o

Increased awareness of the usefulness of these new tools in the field to activities in other
branches of science inevitably increases the demand for the already inadequate number of
men and women who are educated not only in the theories of ‘design and operation of such
machinery but in the understanding of their applicability. This emphasizes the other great
responsibility of the staff of this Laboratory—meeting their obligations as teachers to provide
the instruction required for the training and development of personnel interested in these
lines. Here again we gratefully acknowledge the understanding support of our friends in
the Bureau of Ordnance and in the Air Force. While we are endeavoring to develop support -
for this program from other sources and to obtain permanent endowment for the Laboratory,
the understanding contractual support from these Government sources has been and continues
to be invaluable. -



REAR ADMIRAL F. I. ENTWISTLE, USN

NAVY DEPARTMENT, BUREAU OF ORDNANCE

It is with distinct pleasure that the Bureau of Ordnance joins hands with Harvard Univer-
sity in sponsoring this Symposium on Large-Scale Digital Calculating Machinery. On behalf
of the Bureau of Ordnance I take great pleasure in welcoming you to these meetings. Your
presence—the presence of so many distinguished scientists—assures us that much value will
be gained by us all from the deliberations and discussions which will take place during these
next few days.

During the past few years the relation between the Bureau of Ordnance and Harvard
University has been unusually close and cordial. This happy relation has given the Navy
the benefit of Harvard’s talents and facilities and has led to the development of greatly
improved computing machinery and methods. Harvard University is most fortunate in
having on its staff Professor Howard Aiken, under whose unusual leadership, energy, and
ability the Computation Laboratory has grown.

As we in the Bureau of Ordnance look back on the computmg problems with which we
were faced prior to the First World War, we find that large-scale computations arose chiefly
in connection with the problems of ballistics—problems in which we were principally con-

" cerned with construction of range tables for seagoing gun systems with limited angles of
elevation. In those days, one computer (and by computer I mean a man with a slide rule,
log book, and a set of Engel’s Ballistic Tables) handled all such computations. It probably"
took the impetus, the acceleration, and the foreboding of World War II to permit conception
of the machine that was originated here and is known as the Mark 1.

In the olden days when we were youngsters, and possibly a bit more 1mpatlent that one
man (that computer) with his slide rule and his tables gave us a series of curves or figures
in a book, and we were to go out to put them to use. Frequently we discovered that we did
not know how to do this or we found that the tables were incorrect.

The availability of accurate tables in time of war is very important indeed. When the
recent war came alorig with its bombings, rocket firing, and use of heavier guns for antiaircraft
and bombardment, we found our range tables insufficient. In fact, we were about 500 range
tables behind. In the course of some years, that figure was decreased to 350; but still it was
a problem of one man, one slide rule, and tables. Naturally, 500 tables would equal 500 men
or 500 years; even with 500 men we would still be at least a year behind.

‘World War II indicated by great numbers—in tonnages, people, dollars—the magnitude
of effort required to fight a modern war. I believe it showed us that we can no longer afford
to fight wars of that magnitude. Many of us in the armed services have come to realize that
our job is not to fight wars but to prevent them. If we had realized this in the period from
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1925 to 1930, we might have dissuaded the Japanese in 1939 from exerting the effort that was
subsequently shown. By keeping us prepared to carry through a war, these machines may
help us to prevent wars. '

This science of computation, which we have come here to discuss, has grown up from the
association of people requiring such machines and their results with other people willing to
incorporate themselves into the effort to design and to build such machines. The fact that
we can collaborate and coérdinate our efforts with a university such as Harvard, and can
_ arrange for the services of the laboratory here for our mutual benefit, should assure us of the
continuation of our so-called democracy. In the installation of computers, the time factor
and accuracy of the machine are certainly important. But more important to my mind is
the codrdination of the university and the military. This is, in itself, a step forward in the
university’s aim of first teaching the individual and then going further to educate the country.

May I again express the continuing deep interest of the Bureau of Ordnance in this im-
portant subject of large-scale calculating machinery, and its applications, which may better
equip the Bureau of Ordnance of the Navy Department to carry on its work in national
defense. Both for myself and for the Chief of the Bureau of Ordnance, I wish to express our
appreciation of the close and wholehearted coGperation on the part of Harvard University
and the Computation Laboratory, and to acknowledge great and significant contributions
in the development of computiﬁg machines and methods that they have made through their
skills, their talents, and their facilities. May I add further that the Chief of the Bureau of
Ordnance and I will carry on all we can undertake and accomplish to continue this type of
collaboration resulting in this broader effort to prevent wars. -



HOWARD H. AIKEN

HARVARD UNIVERSITY

As Admiral Entwistle has remarked, for five years the staff of the Computation Laboratory
has been engaged in the construction of automatic computing machinery for the Bureau of
Ordnance. Without the Bureau’s constant support, our share -of this research could never
have been undertaken. We look upon the completion of Mark III as representing the end
of a phase in the development of this subject.

I have often remarked that if all the computing machines under construction were to
be completed, there would not be staff enough to operate them. Instruction in computing
machinery represents one of the more aggravated aspects of a generally recognized problem
in technical education. We feel that the further development of mathematical methods and
the extended use of computing machines in the various fields represented by speakers here
are those points at which levers should be placed to make the greatest possible advance in
computer research. Only by completing computing machines and then operating them can
the operating experience and experimental results be obtained that are so essential as a point
of departure in passing from one design to another. Therefore, at our laboratory we have
decided not to undertake the construction of any more large-scale computing machines with
the exception of one, which we hope to build for our own use and keep at Harvard.

There is an ever-increasing number of industries interested in constructing computing
machines outside the universities. In applying computing machinery to new and different
fields, many proposals have been made, ranging all the way from devices for an automatic
continuous audit, an automatic continuous inventory, down through an automatically operated
insurance office, public-utility billing department, department-store accounting system, to
more specific and less general accounting-machine components. Other proposals have included
airline ticket-inventory systems, similar devices for railroad reservations, and automatic
railroad ticket-vending machines. On the technical side, machines have been proposed
involving automatic computers in connection with air-traffic control, airport control and
almost every other manufacturing operation up to and including the automatic factory. But
until our universities are able to offer well-rounded programs in numerical methods and the
application of computing machinery to prepare ‘men to operate these machines, the success
of many of the proposed industrial programs will not be realized.

I should like to take this opportunity to express the appreciation of our staff to the Bureau
of Ordnance for its support throughout these years and, more than that, for the privilege of
pleasant associations which we have had with the representatives of that Bureau. It hasbeen a
great pleasure to work with them throughout the construction of both Mark II and Mark I1I Cal-
culators, and we have built up an association which I have every reason to believe will continue.
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TuE MARk III CALCULATOR

BENJAMIN L. MOORE

Harvard University

The large-scale digital computing machine known as Mark III has been built by the
Computation Laboratory of Harvard for the Bureau of Ordnance of the Navy Department.
It is to be installed at the Naval Proving Ground, Dahlgren, Virginia. The construction
work has been completed and the machine is now under test.

The decimal number system ‘is used throughout the entire machine. Normal operations

“are carried out with 16 digits. Provision is made, however, to use 32, 48, or more digits when
needed. The operating decimal point is manually set by
the operator in one of six positions. In addition, under

control of the sequencing unit, the operator may choose Coded Dectaal
at any time one of three locations of the decimal point. Dgcl‘g'{‘tal 2:‘Iztat120nl
In order to reduce the size of the memory, digits are = S 0 o
stored in the coded form where four binary digits are used . 00 0 1
to represent a decimal digit. Figure 1 shows the system 2 001 0
that has been adopted, where the weights of the four 3 0011
binary digits are 1, 2, 4, and 2, respectively. It should be 4 0100
noted that the sum of these weights is 9 and therefore the 5 1ot
nine’s complement of any digit may be obtained by chang- 8 r1oo
ing zeros to ones and vice versa. This is quite a con- Z i 1 (1) ;
venience electronically. where a positive voltage may be L L1ty

used for a one and a negative voltage for a zero. The
nine’s complement can then be obtained merely by in- Fic. 1. Coded decimal number
verting the signal. These complements are used for system used in Mark III.
subtraction in this machine.

The number-storage system consists of eight rotating drums whose surfaces are coated
with a thin layer of magnetic material. Information recorded in the form of a small magnetic
dipole during one revolution may be played back on any succeeding revolution. A zero is
represented by a magnetic dipole oriented in one direction and a one by the opposite orienta-
tion. New information is recorded directly over the old making erasure of the surface un-
necessary. The played-back voltage signal is double ended, with the positive voltage first
for one orientation and the negative first for the opposite orientation of the dipole. Figure 2
is a photograph of a typical cathode-ray oscillograph pattern having two negative-first pulses
in a group of positive-first pulses. Figure 3 is similar except that the pulses have been reversed
4 % 108 times. This photograph was taken upon completion of a test to determine whether
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the noise background increased or the pulses changed shape after many reversals. It is easy
to see that the two pictures are almost identical.

Using a single magnetic head on a channel or track, the access time to any one number is
the time for one revolution of the drum. At the expense of more heads the access time can

Fic. 2. Oscillograph trace of a typical Fic. 3. Oscillograph trace of a typical
playback-pulse pattern. playback-pulse pattern after 4 x 108
reversals.

be decreased. This machine uses two playback heads per track, so that the access time is
reduced to the time of one half revolution. Since it is electrically more convenient, separate
heads are used for recording and playback. Thus each binary track contains two record

F1c. 4. Cross section of a binary magnetic storage channel.

heads as well as two playback heads. Figure 4 shows a typical cross section of a binary channel.
Figure 5 shows the drum storage unit.

As it is convenient to have all components of a decimal digit available simultaneously,
four parallel binary channels are used to represent one decimal channel where the binary

12
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drum storage unit

Fic. 5. View of the assembled magnetic-
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channels will have the weights 1, 2, 4, 2, respectively. The digits of a given number and the
numbers themselves are stored serially around the periphery of the drum. The main storage
system uses a pulse density of ten pulses per inch and stores ten 16-digit numbers in a decimal
channel. To extend the storage-system capacity beyond ten numbers, parallel channels are
used so that the selection of a given number involves the selection of a channel as well as a
time selection, as the drum moves past the playback head. '
The arithmetic unit of this machine is electronic and contains an adder a multiplier, and
certain sensing units. It contains no divider, since this operation is accomplished by an
iteration process. The unit is serial in operation so that it is necessary to have the corresponding

PLAYBACK GATE : —» TO
ARITHMETIC
UNIT
SELECTION | PLAYBACK REGORD
GATE -

STORAGE REGENERATION
CHANNEL . CHANNEL

F1c. 6. Block diagram of a regeneration channel.

digits of two numbers to be added available simu{taneously. Since, in general, two numbers
will not necessarily be played back from the drum in the same time phase, some provision
must be made to put them in phase. Figure 6 illustrates how this is done. On the left is
the storage channel where a selection is made of the head to be used, depending on where the
number is located and the phase of the drum. At the appropriate number time the gate
opens and records the desired number on the regeneration channel. By the time the last
digit is recorded the first digit is being played back by the regeneration playback so that the
gate lets this number through to be recorded again. Thus the number is recorded 12 times
around the channel and is available at any time thereafter. The two blank spaces on the
storage channel prov1de time for switching operations and no numbers are stored in this
interval. -

14



MARK III CALCULATOR

With this brief picture of the magnetic storage system, let us examine the organization
of the whole machine, a block diagram of which is shown in Fig. 7.

The storage system is divided into two parts. One, called slow storage, has a capacity
of 4000 16-digit numbers and selection of channels is made by relays that are relatively slow.
However, provision is made for transferring 20 numbers at a time from slow storage to the
other section, which is called fast, where selection of numbers can be done at electronic

TAPE
READER
ig SEQUENGING
DRUM
4000 GODES
v
TAPE INPUT GONTROL
, PYRAMIDS
{TOMAGHNE
TRANSFER
CHANNELS
SLOW STORAGE FAST STORAGE ARITHMETIC
4000 NUMBERS 150 CONSTANTS UNIT
200 NUMBERS
PLAYBACK
REcoRd CHANNEL
TAPE READ-TAPE RECORD uun
MECHANISMS
é%+‘§é”§]* + | TAPE
g——— READER TYPEWRITER
PRINTER

F1c. 7. Block diagram showing organization of the calculator.

speeds. Ten numbers at a time are transferred from the fast storage to slow. The slow section
is mainly used for storage of functions.

The fast storage has a capacity of 200 numbers in addition to 150 permanent constants.
The constants are used for computing functions such as 1/x, 1/ V%, cos x, log x, antilog x,
tan=1!x. ‘

The basic cycle of the machine is the access time to the storage, namely, one half revolution
of the drum. Each cycle the machine delivers two numbers to the arithmetic unit over the
two parallel busses 4 and B and returns the previous result to the storage. One addition can
be performed each cycle, while multiplication requires 3 cycles. As the speed of the drums

15
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Fic. 8. View of the Mark III Calculator.



MARK III CALCULATOR

is slightly less than 7200 rev/min the cycle is about 4.2 msec, that is, addition requires 4.2 msec
and multiplication 12.6 msec.

Numbers are fed into and recorded out of the machine by means of magnetic paper tape.
There are eight mechanisms, any one or any combination of which can be set to read into
or out of the machine. Recorded tapes are run through a tape reader which in turn operates
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F1c. 9. Main control panel.

an electric typewriter to put the final results on the printed page. To handle the output the
machine is equipped with five independent tape readers and typewriters.

There are essentially no checks built into the machine, dependence being put on mathe-
matical checks. However, in transferring numbers from the machine to the printed page
via the magnetic tape no mathematical checks are readily available. Therefore, to insure
accuracy of this transfer, the output numbers from the machine are recorded into two separate
channels on the tape by different sets of equipment. Before printing, the numbers from each
channel of the tape are compared and if they are not identical the typewriter rings an alarm
and stops.

Sequencing commands are stored on a separate drum turning at a much lower speed,
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MARK III CALCULATOR

approximately 1800 rev/min. Provision is made on this drum for storing 4000 lines of coding
or sequencing commands. A line of coding will in general consist of the commands necessary
to select two numbers from the storage, perform an operation, and return the resultant to
storage. It is possible to jump from any line of coding to any other line with 2 maximum loss
of a little more than 8 cycles and an average loss of about 4 cycles.

Figure 8 is a picture of the front of the machine. On the right facing the machine the
five typewriters can be seen. The first five panels on the left are the tape readers that control
the typewriters. In the center of the machine can be seen the main control panel. At the
far end are the eight magnetic-tape input and output mechanisms. In the background can '
be seen the coding machine and the number-tape preparation unit.

Figure 9 is a view of the main control panel. On the left is a group of switches that enable
the operator to feed numbers into the machine manually. Above these switches are a set
of lights into which numbers, located anywhere in the machine, can be read. The center
section contains controls for starting and stopping the machine. Controls are provided on
the right to enable the operator to perform all operations manually in troubleshooting.

As is only too well known, the task of preparing a problem for machine solution is in many
cases quite laborious. Even after the numerical analysis is completed, there still remains the
work of translating the mathematical symbols and operations into a language the machine
can understand. To reduce the work required in this part of the problem preparation, a
special coding machine, whose keyboard is shown in Fig. 10, has been constructed. The
storage registers in the fast storage are assigned letters and subscripts. If one uses these letters
and subscripts in the numerical analysis, then it is a simple matter to operate the keyboard,
thereby recording into a length of magnetic tape the necessary commands for carrying out
the required operations. This tape may then be stored until the machine is available for
solution of this problem, at which time the information on the tape is transferred to the
sequencing drum. Provision is made for printing a copy of the coding commands for use of
the operator in monitoring the problem.

Space does not permit a more detailed description of this coding machine. However, it
should be pointed out that to operate the machine it is only necessary to know a few simple
rules. In fact, many of the operations are obvious from the labels on the keyboard. It is
the opinion of the staff of this Laboratory that this coding machine, which eliminates much
of the labor in preparing a problem, represents a significant advance in the field of machine
computation.

In conclusion, we would like to express our apprematlon to the Bureau of Ordnance of
the Navy Department whose interest and support have made this machine possible. It should
also be pointed out that this machine is not the work of only a few individuals, but is the
result of the combined effort of the entire staff of the Computation Laboratory.
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ERNEST G. ANDREWS
Bell Telephone Laboratories

It is customary in meetings on digital calculating machinery to listen to engineers extolling
their latest creation with terms such as “a new giant brain” or “a machine that thinks.”

I do not wish to criticize my colleagues in this fascinating field of engineering for using
these metaphors because I have frequently indulged in the practice myself. However, a
discordant note has been sounded in these meetings on occasion. This note, when translated
~ into smooth, inoffensive English says, “Such claims by the engineers are not altogether in
accordance with the facts.” The thought behind these accusations has been aptly expreséed’
by our own Dr. W. Bode, who, when speaking of our own Bell Laboratories Computers, said,
“They are like very accurate but very dumb computresses.” He was referring to the need for
spelling out every elementary detail when programming a new problem. This criticism was
also expressed by others, including Dr. George R. Stibitz when he addressed the first of these
symposia. Partly as a consequence of all of these comments and partly because of the nature
of the problems to be solved, the Bell Laboratories Model VI! relay computer has been
endowed with more intelligence than its predecessors. But before delving into the details of
this particular phase of the design let us take a broad look at the Model VI.

This computer has been placed in operation at the Bell Laboratories Murray Hill building.
In many respects it resembles the Model V relay computers at the Ballistic Research Labora-
tory at Aberdeen, Maryland, and at the Laboratory of the National Advisory Committee
on Aeronautics at Langley Field, Virginia. Complete descriptions of these computers have
been presented by Dr. F. L. Alt and Mr. S. B. Williams. ‘

The Model VI computer consists of two-principal parts—the remote-control stations and
the computing equipment. Figure 1 shows one of the remote-control stations. The three pieces of
apparatus shown are types that are used extensively in Teletype printer telegraph systems, with
minor changes to adapt them to computer operation. The printer on the movable table records
the answers to the problems; the hand perforator is used for punching the data on the problem
tapes and the tape reader transmits the data for the problems to the computing equipment.

Figure 2 shows part of the computing-room equipment. This part of the computer is
made up of twelve bays of equipment consisting almost entirely of the heavy-duty-type relays
used extensively in earlier computers and in telephone dial systems central-office equipment.
The frames have light-gray enamel finish and other characteristics which make them resemble
equipment that is found in the modern telephone office. There are about 4300 relays used,
86 cold-cathode tubes, and relatively small amounts of other miscellaneousépparatus.

An indicator and test panel with approximately 600 small lamps is provided for showing
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the progress of various computing operations and for showing the numbers in various parts
of the computer. It is illustrated in Fig. 3. This panel also has provisions for manually

Fic. 1. Remote-control station equipment.

inserting instructions into the computing program where necessary to make corrections in pro-
gramming. These facilities are also used for making tests under closely controlled conditions.

Table 1. Comparison of number representations in Model VI and Model V computers.

Item of Comparison Model VI Model V
Number of digits for a number 3, 6, or 10 1,2,3,4,5,6,o0r7
Form of number: notation for =

as an example + 3.14159 2654 x 10+00 + 0.3141 593 x 10+9
Maximum number* + 9.99999 9998 x 10+19 + 0.9999 998 x 10+19
Minimum numbert + 1.00 x 10—1° + 0.1 x 10—-19

* The next higher number is the calculator’s concept of infinity.
1 The next lower number is the calculator’s concept of zero. However, smaller numbers with the — 19
exponent are possible with special problem coding.
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Fic. 3. Indicator and test panel.
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As is shown in Table 1, there are some changes in the range of numbers compared with
those in the earlier Model V. The new form of notation with the decimal point between the
first and second digits has been introduced for two reasons: (i) to simplify the isolation of
the characteristic of logarithms and (ii) to bring the notation into agreement with that now
commonly used in expressing values in scientific literature. It will be noted that the floating
decimal point has been retained along with the range of the exponent of ten from + 19 to
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- Fic. 4. Block diagram of computer components.

— 19. The calculator pcrforms all arithmetic operations, namely, addition, subtractlon
multlpllcatlon, division, and extraction of the square root.

Before returning to the new control-circuit features which provide for the higher mtclllgence
we wish to emphasize that the Model VI is as error-proof as its immediate predecessors. Our -
engineers with justifiable pride can still say, “Starting with the Model III delivered to the
Armed Forces in 1944, not one of our customers has reported their computers giving out a
wrong answer as a result of a machine error.” To help understand the basic control system,
reference is made to Fig. 4, which shows a block diagram of the relation bétween the routine-

control circuit and the other computer components. To solve a problem, operators punch
~ the problem data and computing instructions on a Teletype tape. This is loaded into the
tape reader at a remote-control station and computing starts when the operator depresses a '
start key at this station. '
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Initially, the problem-control circuit carries out certain conditioning operations as in-
structed by the tape and then delegates control of computing operations to the central organ
labelled ‘“Routine Control.” This component proceeds to control operations for computing
or printing of answers, etc., as directed by instructions from the tape.

The instructions on the tape may be in either of two forms: (i) the specification of all of
the detailed computing instructions, and (ii) the mere indication of which of the several sets of
internal routines is to be used. The first form is usually used for types of problem that are
encolintered infrequently and the second for types of problem-that are expected to occur often.

The routine-control circuit, in accordance with the instructions it receives, causes numbers
to be passed from one register to another over the two 86-wire multiples or busses shown around
the edge of Fig. 4. When an arithmetic operation is required the routine control designates
the registers that hold the two numbers involved and directs, the calculator to accept these
numbers and perform the desired arithmetic operation on them. The control circuit then
indicates what disposition is to be made of the result in the calculator by designating the place
to which it is to be transferred; that is, to some particular register, the printer, or the perforator.

One of the new features is a ‘“second trial” feature which is automatically brought into
operation in almost all cases when the routine-control circuit fails to receive the usual OK
signal indicating satisfactory execution of the instruction, or operation, called for.

The Model VI has an elaborate system of interrelated internal routines. It is this system
with its own automatic seizure of various subroutines that gives this computer its higher
intelligence.

The device used for this purpose is a combination relay and electronic device which is
used in the Automatic Message Accounting System in a modern telephone office. As used in
telephone switching it consists of a large group of code points, each corresponding to the
location of the call-originating equipment of a subscriber. A signal on one of these code
points denoting the origination of a call causes the circuit to ascertain and to record the
subscriber’s four-digit directory number.

As used in the computer, the code points correspond to the computing operations in a
subroutine. A signal on one of these code points causes the computer routine-control circuit
to set into operation the desired computer operation. A subroutine will use a train of from
6 to 20 of these code points in succession. Facilities are provided for 200 such subroutines,
each being identified by the letter 4, B, C, or D followed by a two-digit number. '

The operation of a subroutine will be explained by an exarhple which assumes that com-
putations have reached the stage where the product of two complex numbers is required.
Table 2 shows the formula used and the coding of the individual computer operations.
Figure 5 shows how the operations are made a part of the computer and shows that there is
an extremely close resemblance between the coding as it is written on paper in Table 2 and
as it is memorized by the computer. The operation numbers 1 to 6 correspond exactly with
code points 1 to 6. The letter designations correspond exactly with coil designations. The
letters that form a particular computing operation are associated on the left of Fig. 5 by writirig
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- Table 2. Coding of subroutine for complex-humber multiplication.

(4 + jB)(C + jD) = (AC— BD) + j(AD + BC)

Instruction .
~ Explanation of Code
No. Operation Code
1 B x DE | Multiply B by D and store result in E storage register '
2 4xCS Multiply 4 by C and hold result in calculator
3 S—EP Subtract BD from AC to obtain real part of product and print result
4 AXDE Multiply 4 by D and store result in E storage register
5 BxCS Multiply B by C and hold result in calculator
6 S+ EP Add AD and BC to obtain imaginary part of product and print
: result ‘ ,
CODING AS ‘ '
WRITTEN CODING AS MEMORIZED BY COMPUTER
_A btk
r N r A - N
(COILS
. BXDE
2. AXCS
3
3.S—-EP O
q
a. o s
5
5. 3 3
6
. 8 8

Fic. 5. Wiring of subroutine for complex-number multiplications.
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them together on one line and on the right by
running a single insulated cross-connection wire
through coils having the same letter designations.
This train of six operations would be identified by
a subroutine number, such as D36 (not shown in
Fig. 5). In practice these subroutine numbers are
being called formula numbers.

When the 200 subroutines are fully employed
there will be over 2000 insulated wires crisscrossed
through the coils. These wires are not, however,
part of the design of the computer but are placed
in position by those responsible for operating the
machine in accordance with the type of computing
work they are engaged in. The actual physical
operations of placing a wire can readily be per-
formed in one or two minutes by the same per-
sonnel that operates the machine. No soldering
of the wires is required. When a particular sub-
routine is no longer needed, the associated wires
can be readily removed. The time required to
set up a new subroutine, therefore, compares
favourably with the time of setting up the same
instruction on tapes.

Figure 6 shows a close-up of the coils with
their associated cold-cathode tubes. Figure 7 shows
the principles of the coil circuit.

A computer operation is initiated by causing a
transient discharge from the resistance-capacitance-
inductance network to be sent through the cross-
connection wire. The part of the system consisting
of the wire and the coil behaves like a transformer
with the wire acting as a loosely coupled one-turn
primary winding and the coil acting as the

secondary. The transient through the primary
induces enough voltage in the secondary to cause
ionization between the control anode and the
cathode of the type 313 cold-cathode tube. As

Fic. 6. Mounting of coils with their
associated tubes.
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soon as complete ionization takes place, the relay in the main anode circuit operates and dis- -
connects itself from the tube. In this operation the tube is conducting for less than 0.01 sec
and is operating at conservative {loltage values. Very long tube life is, therefore, expected.

In the earlier computers the building blocks used for building up the complete program
for solving a problem were single computing instructions. In the Model VI, the building
blocks may be made much larger by making use of these subroutines. But these larger building
blocks presented a challenge to make the most efficient use of them. Indiscriminate use would
make for chaos. An efficiency expert would systematize the situation by grouping together

™\—cross_GONNECTION q
WIRE THRU 3 OTHER D
coILS —
=gl
—0° =
-
L 130V
—

F1c. 7. Schematic diagram of coil circuits.
/

the simplest types of subroutines, which could be made complete in themselves, and by arrang-
ing other subroutines so that they would have various degrees of supervision over the first
group. The degree of authority assigned has been designated for each subroutine with one of
the letters 4, B, C, or D. This is regimentation, but in a machine it is both acceptable and
desirable. In fact, this regimentation is closely analogous to that which might exist in the
strictest military school where an upperclassman would look with disdain upon any task (or
. computing operation) that a lowerclassman could perform. Consequently, the upperclassmen
would be assigned to perform the more complicated tasks according to their own skill and
they would be given authority to delegate lowerclassmen to do their more menial chores.
These lowerclassmen can in turn delegate those parts of these chores beneath their skills to

still lower classmen.
To continue the analogy, the Model VI computer has four levels of computing skill for
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making use of the above-mentioned internal subroutines. They can be programmed to call
in subroutines of a lower level and to regain control when the subordinate routine completes
its task. The term “‘intelligence level,”’? accurately describes the nature of these levels.
Figure 8 shows how this system operates in solvmg a rather complicated problem,
called a ladder-network problem. One of the objectives of this problem is to determine the
Z, (c37)

Z, (c36) —\AM
v

q
p
E

I
I\

el

Z, (c29) %

PT

Fic. 8. Time-flow chart showing use of four intelligence levels to solve a
ladder-network problem.

frequency response of the network. Mathematical analysis, therefore, is used in lieu of
laboratory tests. ‘

The top level in Fig. 8 is designated PT, denoting ‘“Problem Tape.” While this tape is
primarily used for the introduction of the parameters-of the problem, it may contain as much
detail in computing instructions as required. In the case of the problem being described less
than 1 in. of tape is required for the computing instructions because the Model VI is assumed
to have already been taught how to solve the ladder-network problem. The problem tape
then simply specifies that subroutine A12 be used and the tape thereby constitutes another
intelligence level, higher than the four previously discussed.

In the interest of eliminating unnecessary detail, not all of the changes in level are shown
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in Fig. 8, but there is still sufficient detail to show the principle of operation. By this systematic
arrangement of internal routines, the labor involved in preparing the necessary problem data
is near the irreducible minimum. ,

The solution of the network problem is carried out in the following principal steps:

The AI2 routine assumes control at the start of the problem. It provides for organizing
and setting up the initial conditions for computing the impedances for the various values of
S (frequency). It then delegates control to subroutine B24.

Subroutine B24 controls the computation of the impedance of the various branches of
the network. It also arranges to have the impedances recorded in block 400 on the storage
tape for subsequent use by subroutine B35. After these preparations, B24 will instruct the
computer to use the first number on the tape as the subroutine number to use in computing
the impedance of the first branch. ‘

Such a number might be C29. It would provide for reading off the parameters that follow
and for combining the impedances for the individual elements, making use of D level sub-
routine for the complex-number arithmetic when required. The last instruction in C29
instructs the computer to use the next number on the tape as the subroutine to use. Additional
subroutines are employed as required. After the last impedance has been computed, control
is restored to subroutine B524. '

On regaining control, B24 will instruct the computer to obtain the next value of frequency;
it then arranges to have the impedances for the next value of frequency recorded in block 401
and then, using this new frequency value, repeats all of the operations just described. After
completing the computing with the last value of frequency, control is restored to A12.

On regaining control, 412 will organize the computing of the complex values of voltage
and current that the generator must supply. It then calls in B35 to control these calculations.
Then A12, on regaining control, will provide for obtaining any additional information that
may be required.

Table 3. List of intelligence levels.

Name » Desigﬁation or Symbol
1. Problem tape instructions SWR (Switch to Routine)
2. A Subroutines . A12, etc.
3. B Subroutines B24, etc.
4. C Subroutines ' C29, etc.
5. D Subroutines D59, etc.
'6. Calculator instructions 45— X, =,/

From the above description it will be noted that the individual computing operations
specified by a subroutine consist mostly of a collection of calculator and recording instructions.
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It then follows that the calculator operations themselves comprise an intelligence level below
all of the others. Instead of being identified and called for by a subroutine number, the usual
arithmetic symbols 4, —, X, =, and 4/~ arc employed. As in the other intelligence levels, the
calculator returns control to the higher level that called it in as soon as the prescribed arithmetic
operation is completed.

The Model VI then has at least six intelligence levels, as shown in Table 3, in descending
order of authority or control. '

A study of Table 3 shows that the Model VI will perform a series of computer operations
in accordance with any of the last five levels by merely designating the three-element code
or the symbol shown in the last column. In fact, the three-element code is so closely analogous
to a symbol in this computer that it is proper to say that the Model VI responds to its own
idea of a symbol for determining the logarithm of a number or of a symbol for determining
the tangent of an angle, and so forth.

The Bell Computer, Model VI, has become an upperclassman. It can be taught how to
solve a problem. It can retain this know-how for use whenever called upon in the future.
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Texas, Bell Laboratories Record (May 1948), p. 208; Model IV, Ballistic Computer-at Naval Research
Laboratory; Model V, General-Purpose Computers at Langley Field and Aberdeen, Bell Laboratories
Record (Feb. 1947), p. 49; and Mathematical Tables and Other Aids.to Computations (Jan. 1948), p. 1,
(April 1948), p. 69.

1
2. This term was originated, it is believed, by G. R. Stibitz; see Annals of the Computation
Laboratory of Harvard University, vol. 16 (Harvard University Press, Cambridge, 1948), p. 91.
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AN ELECTROSTATIC MEMORY SYSTEM

J. PRESPER ECKERT, JR.

Eckert- Mauchly Computer Corporation

This paper is a progress report of the work done on a very high-speed memory constructed
of ordinary cathode-ray tubes. The research has been performed in the laboratories of the
Eckert-Mauchly Computer Corporation. Many persons have been engaged in this research,
but particular credit should be given to Herman Lukoff, C. Bradford Sheppard, Gerald
Smoliar, and Charles Michaels, all members of the Engineering Department.

BLANKING
GIRCUIT ] AMPLIFIER
DEFLECTION GIRGLE SHAPING
CIRCUIT GENERATOR CIRCUIT
GATING OR
SWITCHING
CIRCUIT

R

Fic. 1. Circuits used to operate a cathode-ray tube as an electrostatic memory.

A more complete report was submitted as a paper to the Institute of Radio Engineers
in April 1949. Tt contains much more detailed 1nformat10n In particular, it gives additional
quantitative material. :

The first part of this paper describes a memory system that is now under test. It is the
second model of an electrostatic memory system to be constructed at the Eckert-Mauchly
Computer Corporation. The second part of the paper describes a limited number of the tests

performed on this system and gives some of the results. The final part of the paper gives a
~ short glimpsé into the research still to be performed on this memory system. '

Work on a high-speed electrostatic memory system was originally begun by the author
at the University of Pennsylvania. The tests at that time were preliminary, serving to indicate
the large amount of research necessary to the developments described in this paper.

Figure 1 is a block diagram of the circuits used in operating an ordinary cathode-ray tube
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as an clectrostatic memory. A metallic electrode, actually a wire mesh, is attached to' the

base of the tube and is coupled to an amplifier having a gain of about 2000. Each time the

beam strikes a charged arca on the tube, a signal is developed on the electrode. This signal
d 3d
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Fic. 3. Output signals.
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is passed through a shaping circuit to the gating or switching circuits. These circuits turn the
information in-or out of the regenerating path, operating in a manner analogous to a mercury-
delay memory. The blanking circuit turns the beam on or off for the writing or reading
interval. The deflection circuit controls the position of the beam. The purpose of the c1rcle
generator is described later in the paper.

In operation, the screen of the tube is con51dered to be divided into many small elementary
areas. These areas are approximately 0.1-in. squares. The patterns placed in these areas
that gave the most satisfactory results consisted of dots.and circles. The dots are formed by
focusing the beam, as sharply as possible, in the center of the elementary area. The circle is

o VOLTAGE

Fic. 4. Ratio of number of secondary to number of primary electrons
as a function of voltage.

formed by superimposing two high-frequency sinusoidal emf’s 90° out of phase with each
other on the two deflection systems. As Fig. 2 shows, the diameter of the dot is about one-third
to one-half the diameter of the circle. The two patterns can be considered as two different
states, the dot representing a 1 and the circle representing a 0 in the binary system.

Reading the information stored on the screen of the tube is done by adjusting the potentials
on the deflection plates so that the beam will fall directly on the desired elementary area.
When the beam is turned on by the intensity grid, a potential is developed between the electrode
and the collector which puts a signal into the amplifier. ,

Lines (A) and (B) of Fig. 3 show the output signals received by the amplifier during the
reading operation. These signals are a result of both the previously stored pattern and the
new reading pattern. While there are four types of signal, one of which has an initial positive
rise, and the other three of which have a negative I‘lSC, only two of these signals are ordinarily
used in the electrostatic memory system.
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The high value of load resistance used with the pickup electrode tends to obscure certain
factors important to an understanding of the problem. After a review of some of the pertinent
properties of electrons striking insulated barriers, the output signals will be analyzed further.

N2. OF
ELECTRONS
EMITTED

A

f

6-15 ) ’ AFEW EMITTED
VOLTS AT THE BEAM

VELOCITY

F1c. 5. Secondary-electron emission as a function of velocity of emission.

The phenomenon encountered in the electrostatic memory system involves both the
primary electrons of the beam and the secondary electrons which are cast away from the -
surface of the phosphor by the beam. Figure 4 shows one of the well-known fundamental
properties of secondary electrons. This curve shows the ratio of the number of secondary
_ electrons to the number of primary electrons (which cause the primaries to be emitted) plotted
against voltage. The curve is mainly of interest to this paper in the section where it is sub-

COLLECTOR DISTANGE NOT TO scAl.E3
BEIQ‘ — ::‘ : COLLECTOR ‘B;q//

COLLECTOR

MANN

PHOSPHOR

Fic. 6. Cross sections of electron beams.

stantially above 1. Most of the tests were made in this region with voltages between 1,500
and 4,000 v.

Figure 5 shows a second fundamental property of insulating surfaces and their effect upon
the behaviour of secondary electrons. This curve shows the distribution of secondary electrons
as a function of the velocity at which they are emitted from the surface. Except for a few
electrons emitted at the beam velocity most of the electrons are emitted at velocities corre-
sponding to between 3 and 15 v. These velocities are quite low compared to the velocity of
the striking beam that causes the emission. Finally, few secondary electrons leave the surface
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at right angles to the direction of the incident beam the majorlty leaving at smaller angles .

to the incident beam.
Figure 6 shows the cross section of a beam of electrons striking the phosphor on the inner
surface of the screen. Potential distributions are set up in each of the elementary areas.

POTENTIAL DISTRIBUTION

——— ] = —_—— T
ALTERNATE POTENTIAL DISTRIBUTION
DOT CIRCLE

- F1es. 7 (upper) and 8 (lower). Possible potential distributions around
: dot.and circle. :

Secondary electrons are released in acéordance with the princif)les just discussed. The
secondary electrons travel to and are collected by the collector plate. This collector plate is
usually the Aquadag coating on the inner walls of the tube. Other secondary electrons may
fall back onto the surface of the screen. Since the beam arrives at the phosphor with a velocity

T

(D) (F)
(6)

(c)

| | (E) | |
Fic. 9. Shapes of output signals. ‘

corresponding to several thousand volts, the number of secondary electrons is greater than
the number of primary electrons. Thus, the surface will not reach equilibrium at this point.
until the number of electrons that leave the surface and the number that arrive become equal.

The potential distribution around the dot may be as shown either in the left-hand section
of Fig. 7 or in that of Fig. 8. Although much of the literature discusses the distribution shown
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in Fig. 8, to thc author’s knowledge, no critical experiments have ever been made that would
positively prove which curve describes the exact potential distribution.

A truer picture of the electrostatic memory phcnomenon was obtained by lowering the
load resistance connected across the input circuit consisting of the clectrode and the grid of
the first amplifier tube. By so doing, it was found that the signal obtained when similar
patterns are placed on top of each other has the shape shown in curve 4 of Fig. 9. The initial
negative kick is caused by the arrival of the beam from the gun after the intensity grid is
turned on. The transit time for the beam is about 0.01 usec. This negative kick then subsides
toward zero since the electrons piled up on the end of the tube are drawn off through the
emission of secondary electrons until equilibrium is reached. This equilibrium results in a
potential plateau under the bombarding beam where there are as many electrons arriving
as leaving. This is possible when the potential plateau becomes sufficiently positive that
only some of the secondaries are knocked off the surface with sufficient velocity to reach
the collector plate, allowing the remainder to fall back on the neighboring areas of the .
surface.

From the time equilibrium is reached until the beam is turned off, there is a steady inward
and outward flow of electrons to the screen maintaining a space-charge cloud between the
spot and the collector. When the beam is turned off, the space charge is rapidly taken
up by the collector. Since this negative space charge leaves the screen, a positive kick is
induced in the electrode. All other signals obtained contain curve 4 as a component. The
components added to curve 4 to produce the other signals are sudden rises with simple
exponential declines.

Curve C is obtained when a larger pattern is placed on a smaller one. The large positive
kick occurs because most of the secondaries are drawn to the collector plate. Since the potential
plateau of the dot is at a lower potential than the collector and small in area, only a few
electrons are robbed from the secondary flow to the collector.

Curve B represents the exponential component obtained when a smaller pattern is placed
on a larger pattern. Again, most of the secondaries go to the collector plate. But the desirable
action would be for the secondaries to obliterate or cancel the circle as quickly as possible.
Instead, the circle, in spite of its large area, collects electrons slowly since its potential plateau
is lower than the potential of the collector. The secondaries that do fall on the circle do so
mainly by virtue of the direction of their emission. \

Thus, when a circle is put on a dot, there is a rapid net outward flow of electrons; while
when a dot is put on a circle, there is a net inward but slower flow of electrons. The net
‘inward flow occurs in spite of the influence of the higher potential on the collector owing
to the large area of the plateau of the circle, which attracts the properly directioned electrons
away from the collector. In either case the change in plateau area and, therefore, the number
of electrons to be exchanged to reach equilibrium is the same. Therefore, the positive signal
will be large since the output-voltage signal depends on the time rate of change of charge.
The negative signal will be small since the time rate of change of charge-is small.
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Curve D is the sum of curves 4 and B, while curve E is the sum of curves 4 and C. Curves
F and G are obtained by using a high load resistance on the amplifier input.

Two of the most interesting factors that cause destruction of the charge patterns are leakage
and redistribution. Tests for leakage were conducted, and it was learned that the effective
leakage may be considered negligible if the period between readings is less than 0.1 sec. Even
after several seconds the signal has diminished by only a few percent. Redistribution is the
spraying of secbndary electrons from adjacent areas during the writing or reading process -
onto areas that have been previously charged. We have defined a “redistribution ratio” as:
the number of times the reading beam, with a certain duration, may operate adjacent to a
particular spot at a certain distance before the signal that can be derived from the adjacent
spot will have been degraded by more than by a certain percentage, say 10 percent. Experi-
mentation has shown that the degradation is not proportional to the number of times of
" reading but is proportional to the total integrated reading time. For efficient operation, a
minimum time sufficient to establish equilibrium in reading and regeneration can be chosen.
The total allowable reading time on one spot can be divided by this minimum time to give
the number of times an area may be read without appreciably affecting the adjacent areas.
This is the redistribution ratio.

Since the process for reading the charged areas is a destructive one, immediate regeneration
of the charges is necessary if it is desired to retain this information. As cach spot is read out
from the memory tube, it is temporarily held in a flip-flop or other simple form of memory
for one binary digit. and then if desired immediately read back into a cathode-ray tube. In
this way, only one elementary memory or flip-flop need be used for each cathode-ray tube
or group of tubes. In addition to this immediate regeneration, a systematic regeneration
must be used. :

Such a systematic regeneration pattern might divide each regeneration cycle into two
intervals. During the first interval any -arbitrary spot is read and regenerated; during the
second interval, one of the other spots on the tube will be regenerated as part of a regular
systematic regeneration procedure. In such a system, the condition of most interest would be
that in which the same spot is read during all the arbitrary reading periods without losing
the spot next to the arhitrary spot through redistribution. If there are 1000 spots on a tube,
this requires a redistribution ratio of 1000 or better. Such a regeneration pattern utilizes
50 percent of the operating time for the purpose of regeneration.

If it is desirable to have less time in the memory for regeneration, a system of timing could
be devised where two arbitrary spots are read in succession and then the systematic regeneration
of a spot takes place. Such a system would cut down the time required for the systematic
regeneration but would increase the intervals between regeneration of a particular spot and
would require an improved redistribution ratio.

Figure 10 is a photograph of the second test model used for many of the tests conducted
in the laboratories of the Eckert-Mauchly Computer Corporation.

In the experiments carried out in England, small imperfections in the phosphor of the
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cathode-ray tubes, due either to a hole in the phosphor or to the inclusion of particles of
carbon, would occasionally make it impossible to remember on certain parts of the tube.
Difficulties of this type have not appeared so far in the work here described, although experi-
ments on an extensive number of tubes have not yet been made.

Fic. 10. Second test model of computer.

It is believed that the dot-circle system is the most insensitive to screen imperfections
because, first, it gives the largest signal, and second, there is no sweeping action in which
the edge of the beam may encounter a small discontinuity produced by phosphor imperfection.
While a sweeping action is used to generate the circle, the frequency of sweeping around this
circle is so great (approximately 20 million times a second) that the lag introduced by the
finite charging time of the elementary area, combined with the finite transit time of the elec-
trons, prevents the imperfections from having any effect on the shape of the output signal
but simply changes its amplitude. Therefore, a system that has good output-signal amplitude
used in connection with a cathode-ray tube in which the size of the imperfections is small
compared to the size of an elemental area should be free of difficulty. According to Williams,
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and others in this country, the size of an imperfection required to produce difficulty in those
systems in which slow sweeping is used might be smaller than an elemental area. It would
seem that as long as the imperfection were not smaller than the edge sharpness of the moving
spot, this difficulty might be encountered in a slow- or fast-sweeping system. By the same.
reasoning, other nonsweeping or fast-sweeping systems should be fairly free of difficulties due
to screen imperfection, although they would not be as good as the dot-circle system owing
to the smaller output signal and various defects in its shape. ‘

A careful study has been made of the reading and writing time that can be obtained from
a dot-circle memory system using standard tubes. While special tube designs are being studied
that would probably increase this speed, the present speeds of operation seem quite adequate
for many uses and agree fairly well with expectations. These speed tests were made by putting
down two circles in succession and then putting down two dots in succession in every elementary
area and observing the effect on the shapes of the output signals that resulted from changes
in the unblanking time. If this unblanking time were made too short, a loss in signal would
be noticed, indicating that equilibrium had not been established. It was determined that
a reading time of about 0.6 usec was desirable in order to avoid loss of signal, and that a
writing time of about 0.8 usec was about the minimum allowable for adequate erasure of the
old charge. Since each reference to the memory would require a reading and a writing time,
a time to position the beam and time for the various switching operations, a total cycle of
operation of about 2.5 to 3 usec is indicated. Although not mandatory, a regeneration cycle
of another 3 usec would usually accompany the first cycle. Thus, a total time of about 6 usec
for an operation of reading or writing or both is indicated. A read signal might be sampled
and made available to an arithmetic element about 1.5 usec after the beginning of the cycle.
Thus, 4.5 psec of this time might be used for computing. . This memory might, therefore, be
considered to have a latency time of 1.5 usec. In any case, the speeds involved are comparable
with the fastest envisioned arithmetic elements. If this memory is used in a serial computing
system, a pulse period of perhaps 2.5 usec would be reasonable. About twice the speed could
be obtained if the immediate regeneration were not interspersed but were separated into an’
individual reading and writing cycle. :

A study of the effect of tube diameter, acceleration voltage, and the best focusing procedures
was made. In addition, as many as half a dozen different types of phosphor were studied.
A summary of some of the results obtained follows. '

1. The acceleration voltage had a major effect upon the amount of storage in a single
tube. The tests were made with a roster of 256 spots. The spacing between spots could be
varied in such a way as to contract the entire pattern either vertically or horizontally on the
face of the cathode-ray tube. This spacing was adjusted while observing-a particular spot
-and coming back to the adjacent neighboring spot every other reading time a number of
times equal to the redistribution time for which the test was made. Improvements greater

“than two in the number of spots stored on a particular tube were obtained for a 75-percent
increase in accelerating voltage when a redistribution ratio of just two or three was required.
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When a redistribution ratio of 1000 or more was required, as is common in practical application
of the memory, an improvement of three or more was obtained.

2. Since increases in voltage produce such a large improvement in the amount of storage
that can be obtained, a study of the phosphors was made to determine which phosphor would
allow the highest operating voltage. Two things were considered important. The phosphor

Fic. 11. Assembly of plug-in cathode-ray tube units.

should have a good secondary-emission ratio of the order of two or so at voltages safely in
excess of the operating voltage in order that rapid functioning of the secondary cloud could
be obtained. Secondly, the phosphor should be one that is easily made free of holes and that
will not burn at high voltages. Tests of signal-reading and erasing ability showed that the
P-1 phosphor, operating at 3000 to 4000 volts, nicely met all of the requirements.

3. Tubes containing almost similar guns of sizes 3, 5, and 7 in. using a P-1 phosphor and
somewhat over 3000 volts for acceleration were tested to find their total storage capacity.
The 3-in. tube would store over 2500 spots, on the assumption that a 5- to 10-percent decrease
in output signal due to redistribution is tolerated, and that the area for 256 spots can be used
as the basis for extrapolations to the number contained in the total roster area. On the same
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assumption, the 5-in. tube would store over 3500 spots and the 7-in. tube would store about
5000 spots. Thus, while the larger tubes will store more information per tube, it is interesting
to note that where space is a factor the smaller tube would be indicated. For example, the
7-in. tube stores only about one-third as many spots per unit volume as will the 3-in. tube,
even though it will hold about twice as many spots.

Fic. 12. Auxiliary equipment.

At the present time the Eckert-Mauchly Computer Corporation is engaged in setting up
a complete memory involving more than 100 cathode-ray tubes suitable for use with a high-
speed computer. This equipment includes several counters and other devices that allow for
tests simulating the operation of what is essentially a complete memory system. The cathode-
ray tubes are mounted in individual plug-in units. Each unit contains all the adjustments
necessary for focusing and positioning the spots, and so forth. This plug-in assembly is rather
important since one of the objectionable features of this type of memory is the multitude of
adjustments required with each cathode-ray tube in order to allow for their rather wide
manufacturing tolerances. However, since all of these adjustments are confined to the plug-in
unit, a number of pretuned units can be held in reserve. These can be readily substituted for
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an inoperative unit in about 1 minute, allowing any necessary readjustments of the defective
unit to be made without serious interference to operation.

Figure 11 shows an assembly of six such units mounted in a framework with the necessary
switching and deflection equipment. These frameworks can be stacked to relay-rack height,
which allows for cabinets containing about 48 tubes to be assembled from these basic frames.
A computer might use one or more such complete cabinets, depending upon the memory
size required. _

Figure 12 shows the complete auxiliary equipment, including power supply. The actual
equipment for the memory requires less than half of the cabinet space shown. The additional
space was left to allow this test equipment to be expanded into a laboratory model of a com-
puter if desired. As it presently stands, this equipment will permit the study of tube life,
maximum practical spot contents, maximum practical time between regenerations, and the
degree to which readjustments may be required because of tube aging. Also, the effect of
any imperfections in the phosphors may be studied on a really practical scale. Further, since
regulators are included for all voltages affecting the cathode-ray tube operation, it will be
possible to determine just which voltages must be regulated under practical operating condi-
tions. In the present arrangement, regulated voltages appear in cases where calculations
indicated a marginal requirement. Since the equipment is adjustable in pulse rate, experi-
mental determinations of a reliable speed of operation can be made. Future reports will
cover the findings of these further tests and also will describe several computing systems for
‘which this memory is well adapted.
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THE DicitaAL COMPUTATION PROGRAM AT MASSACHUSETTS
INsTITUTE OF TECHNOLOGY

JAY W. FORRESTER '

Massachusetts Institute of Technolog y.

In this paper I wish to summarize the digital-computation activities at Massachusetts
Institute of Technology. These will include the machine-development work on the Whirlwind
I computer, the digital-computer educational program at M. I. T., and a few thoughts on-
future direction of work in digital computers. ’

- The Whirlwind I computer is a prototype electronic computer Wthh following the
precedent established by radio-frequency engineers, would probably be described as ultra
high speed. We are aiming at the speed range of 10,000 to 20,000 compléte arithmetic
operations per second. Such speeds seem to be imperative for the application of digital com-
puters to many of the more interesting control problems. Speed requirements dictate a
parallel-type computer, and a sufficiently short storage-access time is provided thus far only
by electrostatic tubes. .

The computer is working in a new speed range and must be looked upon as a prototype

design. As such, a short register length has been used to keep the first model as small as possible.
The type of single-address instruction order used requires 16 binary digits of register length,
and this was selected for the machine. Such a length is adequate for exploratory studies in
control applications. In most mathematical work this short length would be a nuisance and
"double-length operations will often be employed until such time as the register length is
expanded. Experience indicates that the choice of a short register was wise. Much has been
learned since the design was frozen, and simplifications and improvements should be made
before more equipment is built.

~ There has bgen no attempt to make a compact small machine this ﬁrst time. Flat panels

on vertical racks permit complete access to both sides of electronic panels and is probably
cutting to a third the time that would otherwise be required for installation and preliminary
vtestmg o
The design of Whirlwind I was begun two and one-half years ago at about the time of
the first Harvard Symposium on computers. - Prior to that time there had been a year of
study of serial-type computers. A high-speed 5-digit parallel arithmetic element has been
operating two years and giving valuable information on circuit performance and reliability.

The Whirlwind I computer might be divided into four parts: the arithmetic element,

“central control, storage, and terminal equipment for input-output. We have followed the
design in that order. Most people in high-speed electronic computers have chosen to begin
with the terminal equipment and work from there toward the central control of the machine.
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We have followed the reverse order, designing the central control and arithmetic element first
and leaving terminal equipment until the last. The input-output, it seems to us, is much more
a function of the ultimate application of a computer like Whirlwind I than is any other part
of the device. For some types of scientific work, page printing of results is sufficient. For many
engineering jobs the easy, automatic plotting of curves is a necessity. In control applications
the computer must have direct access to devices for converting to the analog quantities of the
associated physical world. In many jobs an erasable external medium such as magnetic
tape is required, and in others not. Therefore, it seems that terminal facilities may require
continual adding of new equipment to the basic heart of the system which is the computer
itself. Plans are not definitely formulated for the uses of Whirlwind I, and most of the terminal
equipment will be fitted into those future plans. Initially we expect to have available the
Eastman Kodak photographic-film units that were described at the first Harvard Symposium.
These are being designed to read or write a thousand lines of information per second and, in
addition, a duplicate checking channel. Each line contains one word length.

Turning now to the computer itself, which has received the principal attention of the
laboratory, the arithmetic element and central control are both operating. The arithmetic
element was installed in January 1949 and has been running since. At present it is being
used as a tool for the preliminary testing of the central control. The central control for the
execution of all the 32 machine orders was installed in June. 1949 and is now being tested.
No unusual difficulties have been encountered in obtaining desired performance. Storage
will be the last part of the machine installed. Storage control circuits are now being connected
and laboratory pilot quantities of tubes for 16-by-16 density are being built. These tubes still
operate somewhat more slowly than desired.

A year ago last summer at the University of California Symposium, I estimated that
Whirlwind I would be assembled by December 1949. Itlooks now as if this should be extended
about 10 percent to February 1950. After assembly there will be a period of learning to use
the equipment before one can really claim that it is in productive operatidn

Figure 1 shows the switch and matrix section of Whirlwind I central control Figure 2
is the test-equipment center used during installation.

The educational program in digital computers at M.I.T. is centered in four laboratories
of the electrical engineering department. The differential analyzer is in the Center of Analysis
directed by Professor S. H. Caldwell, who teaches a course in machine aids to computation.
Professor Z. Kopal is in charge of the computation laboratory for the study of numerical
‘processes and the operation of a hand computing center. A punched-card installation is
operated by the Division of Industrial Codperation under Mr. Frank Verzuh. The Whirlwind
I digital computer is being constructed in the Servomechanisms Laboratory.

M.I.T. does not yet offer a packaged advanced study program in digital computatlon as
does Harvard. However, available from the courses in the graduate school is a fairly complete
master’s degree level study selection. It is perhaps best to study numerical analysis and digital
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COMPUTATION PROGRAM AT M.IL.T.

computation with some preferred field of application in mind. The student of mathematics,
physics, fluid flow, or statistics and operations analysis can add a study of digital computation
techniques to his curriculum. The student in servomechanisms, meteorology, gas turbines,
or aeronautics can add to his work the necessary mathematical analysis and machine-compu-
tation courses to allow the use of these tools in his special field.

Fic. 2. Test center used during Whirlwind I installation. Power, marginal check-
ing, and air-conditioning controls are on the right. Indicator lights in the center section
connect to flip-flops in the computer. Both oscilloscopes have double-beam tubes con-
nected to amplifiers, and remote probes for examining wave forms anywhere in the
computer room. The remaining panels are computer test equipment used to generate
any desired sequence of video testing pulses.

During part of the spring term, Mr. W. Gordon Welchman taught logic and coding for
a digital computer and how to set up problems for automatic solution. This work will be
expanded when Whirlwind I is operating and when arrangements are made to use it for
student laboratory.

A major part of the M.I.T. training in digital-computer techniques is now made through
the academic staff program. About a third of the Project Whirlwind-staff is working toward
advanced degrees. The men are on nominal full-time appointment which permits their
taking two graduate courses. Fifteen to twenty research theses per year are related to the
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digital-computer program. Last year these included electronics, such as studies of flip-flop
circuits and secondary emission in vacuum; several were on trouble-location methods in digital
computers; and others were in problem coding. One of the latter on the naval architecture
procedure of Intact Stability Study of surface ships developed the digital-computer coding to
go automatically from hull cross section to righting moments-at various water lines and ship
displacements. . Another thesis student studied the use of an automatic digital computer in
solving the alternating-current power-system problem for which the a-c network analyzer is
commonly used. Now that machine construction is nearing completion and computer appli-
cations begin to occupy more of the staff time, thesis studies are less often on circuits and more
often on computer coding and applications. Last year a doctorate thesis dealt with the theory
of sampling servomechanisms where data from a digital computer are transmitted inter-
mittently to control an external physical system.

Crystal balls are a little cloudy these days, but we might discuss the future digital-computer
program at M.I.T. This is as diversified as the number of interested departments and labora-
tories. In the Servomechanisms Laboratory a. principal interest is in using digital computers
in automatic control. This includes simiilation work for which Project Whirlwind was initially
started by the Navy. Another long-range potential application of digital computers is in the
control of air traffic, which M.L.T. is now studying for the Air Force. Digital computers in
control will require extensive paper studies of methods and utility; and in the laboratory
must be developed new types of terminal equipment and simple, practical conversion devices
'between digital and analog information. :

A little closer at hand, I hope we can work on ways to make digital computers accessible
to a wider group of users. There is an amazing number of technical people, from routine
engineering offices to research scientists, who should be able to save time and money by using
automatic ¢computation. The idea of a centralized digital computer for the common use of
many clients brings cries of anguish from those who hope to own machines for their private
use. However, most potential users can have no hope of privately owning such facilities, or
establishing training, and machine administrative procedures, which will make the- central
machine a sucéess. We expect to approach this cautiously by beginning to work with other
groups at M.I.T., first the other laboratories in the M.LT. electrical englneermg department,’
and to expand as conditions warrant. -

Another untouched field is in the industrial apphcatlons of dlgltal control. Thus far,
most computer work has been sponsored by military research. The military uses are more
obvious and urgent and, to date, few; but government groups have been able to invest in
this long-range research. Already commercial concerns are actively working on the accounting
and bookkeeping possibilities of automatic computers. Other areas are untouched, and I hope
M.LT. can extend its work of developing the theory of linear servomechanisms into nonlinear
control using digital computers. Such things as the operation of chemical plants and calculating
the plant balance of oil refineries are attractive possibilities. The Servomechanisms Laboratory
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is now working with one company on digital control in a‘manufacturing process, although this
does not involve a complete digital computer. Another indirectly related project is being
sponsored by the Carnegie Foundation on the logic and coding of bibliographic information.
Here methods of doing indexing by the association of idcas rather than in the elementary
manner of card catalogs will at least require flexible computing facilities for the research, if
not for the ultimate location of information. Thus far not all the time of Whirlwind I is
scheduled for use, and I believe arrangements for any legitimate use can be made with the
Navy. I say legitimate to exclude certain obvious statistical studies in connection with horse
racing and the stock market. Whirlwind I should help to assess the value of digital computers
in many proposed but as yet untried applications.

I expect that Whirlwind I will be available for exploring new ways of using digital com-
puters.. It will be most useful if it carries new applications to the point where success is
demonstrated. Other computers designed and located elsewhere should then take over routine '
work as the need develops, in order that the M.L.T. laboratories may be free to continue
explorations in new fields.
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THE RayvTtaEoN EvrectroNIC DicitaL COMPUTER

RICHARD M. BLOCH

Raytheon Manufacturing Company

This paper describes the essential characteristics of the electronic digital computers now
being designed and constructed by the Raythieon Manufacturing Company for the Special
Devices Center of the Office of Naval Research; a machine having similar features is also
being developed by Raytheon for the National Bureau of Standards. v

I should first like to stress certain considerations that governed the design of these machines.
It is clear that whenever the specifications for an electronic digital computer are set forth,
certain minimal speed requirements are given, depending upon the application for which
the computer is primarily intended. However, it behooves the machine designer to meet
these requirements in such a way that the computer possesses a desirable speed balance among -
its several major components.. Thus, there would appear to be little sense in designing an
arithmetic unit capable of operating at very high speeds if the information required by the
arithmetic unit cannot be obtained from the internal or external memory at a correspondingly
high speed. Asa matter of fact, the purchaser of a digital computer is not particularly interested
in the speed of any single component of the machine. His interest obviously rests in the time
required by the computer to complete successfully the solution of those problems that will
most frequently be placed upon the machine.

A second consideration is that of reliability of operation. If any considerable time must
be spent in repair and maintenance of a digital computer, the effective speed of the machine
may easily be reduced by a factor of two or three, and. the patience of the operating crew
reduced by an even greater amount. Time spent by the designer in improving the reliability
of the machine’s components will be returned many fold when the computer is placed in
operation. However, even though the error rate can be substantially reduced by stressing the
reliability aspect in the design stage, errors will nevertheless occur. It is at this point that
the diagnostic capabilities of the computer assume an important role. The locating of a
machine fault may be a very serious and discouraging matter. There seems to be a popular
misconception that when an error occurs, the failure can be traced to the arithmetic unit.
This, unfortunately, is, far too codperative a spirit to expect from such a complex device.
Whereas it is true that the primary task of the machine is that of performing the fundamental
arithmetic operations, there are multitudes of operations of a nonarithmetic nature that are
taking place within the computer. As an illustration, consider the case wherein an incorrect
‘product is obtained by the machine, and suppose this fact is detected by some programmed
or automatic checking device. Now, let us inspect a few of the possibilities. (1) The multi-
plication may have been performed incorrectly. (2) Although the multiplication was executed
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properly, the product read-out circuit may have failed. (3) The transmission of either the -
multiplier or the multiplicand to the arithmetic unit may have been in error. (4) Either of
the factors may have undergone a change while stored in the memory unit. (5) Indeed, a
multiplication may never have been performed, but rather an addition or a division: It is of
interest to note that only the first-mentioned failure involves an error in the process of arith--
metic combination. The others are attributable to failures in the control and transmission
networks. Clearly then, from the diagnostic point of view, if checking means are to be employed
at all, it is important that the entire machine—not one particular unit—be under the sur-
veillance of a comprehensive checking system. In the computer to be described shortly, an
automatic self-checking system is employed throughout the machine to monitor all input,
- output, inter-unit, control, and arithmetic networks. '

It should also be stated that from the mathematical viewpoint this same checking system
which serves so vital a function for diagnostic purposes performs an invaluable service in
halting the solution of a problem at the instant an error is detected. As problems of greater
complexity are introduced to electronic digital computers, it becomes essential to stop the
machine immediately lest several hours of erroneous computation ensue. Programming
checks, such as performing a multiplication to check a division, or indeed solving the problem

 a second time utilizing an entirely new set of program orders, have distinct disadvantages
which precluded the possibility of their use in the Raytheon computer. If such checks are
to be applied conscientiously, then the time for solution is more than doubled and as many
machine errors are to be anticipated in the execution of the checking operations as are to be
expected from the original programming. Furthermore, from the diagnostic viewpoint
programmed checks appear to be exceedingly weak.

A third design consideration that should be mentioned concerns programming and problem
preparation. The computer to be described has been designed with a view toward reducing
the time and labor involved in programming a problem for machine computation. Whereas
theoretically it is possible logically to reduce all machine operations to a few basic processes,
under such a scheme the program coder must resign himself to a task requiring an undue
~ waste of time and mental effort—such gymnastics should be relegated to the sphere of the
machine’s operation. In general, the programming should closely correspond to the original
mathematical formulation of the problem. As far as possible, the identity of what we under-
stand as a single mathematical operation should be preserved in the programming to the
extent that that operation is represented as a single order in the programming routine. It
has been our thought that programming should be a straightforward and natural process—
not one involving elaborate planning, numerous restrictions, and the continual use of mathe-
matical ingenuity. It is in the formulation, in terms of machine processes, of the complex and
as yet unsolved problems of mathematics and its kindred sciences that the mathematical talent
of today might better spend its energy.

With the foregoing considerations forming the background for the machine’s design, we
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* shall proceed with a-description of the computer. The Raytheon machine operates in the
true binary scale of notation, having a basic precision of 30 binary columns; all 30 columns
are located to the right of the binary point. Information can, however, be accepted by or
transmitted from the machine in decimal as well as binary notation. In the case of decimal
numbers, each digit is represented by its four-column binary-coded-decimal equivalent.
Conversion of decimal numbers to binary, as well as the inverse conversion from binary to
decimal scale, is accomplished within the arithmetic unit of the computer. In standard
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operation, a number is stored as a positive absolute value with proper algebraic sign and to
a precision of 30 binary columns. Numbers of 60 binary digits are stored as a pair of standard
‘numbers, and are processed in the arithmetic unit through the use of double-precision
operations. - ’ - ‘

Floating-point operation is possible in this computer, and when this mode of operation
is utilized numbers are stored with the first significant digit resting in the second binary place;
the appropriate exponent on base 2 is stored in a separate memory position.

Each memory position of the computer has a capacity of 36 binary digits, and this sequence
of digits is termed a word, which is the basic unit of information storage. Figure 1 shows the
allocation of information in a number word. Pulse positions 7 through 36 hold the absolute
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value of the number; the first binary column is located at position 36 and the thirtieth binary
column lies at position 7. Pulse position 6 contains the algebraic sign—a 1 if the number is
negative, a 0 if it is positive. Positions 2 through 5 contain the transfer weighted count of -
the number, which will be defined shortly; position 1 is blank.

Programming orders are stored in the internal or external memory of the computer in
" two parts, termed the first and second order words. The two half-orders are always stored in
adjacent memory positions, and when the first half-order is called forth for control purposes,
the second half-order automatically follows in sequence. Positions in the memory are numbered
successively in binary notation, and these numbers will henceforth be referred to as addresses.
A four-address programming system is employed in the computer. The first two addresses
specify the positions in the memory where the operands for a given arithmetic operation are
to be found. The third address indicates the position in the memory to which the result of
the arithmetic operation is to be transmitted. Finally, the fourth address specifies the memory
position wherein is located the next order to govern the machine’s operation. The operation
code, which indicates which of the 30 arithmetic operations is to be performed, also forms
part of the information residing in each order. The details of the allocation of information
in the first and second order words are also shown in Fig. 1. The line and word indications
in each address in the diagram will be explained when the memory arrangement is discussed
in more detail. All information in the order words is of course represented in binary notation. -
Other words may be combined in the arithmetic unit in the same fashion as number words.
This feature, together with the fact that order words are stored in the regular memory units,
permits a high degree of flexibility in programming which would not otherwise be possible;
frequently, the number of orders required to program a problem may be reduced substantially.
Furthermore, certain routines such as interpolation may be performed very rapidly, and
without recourse to hunting techniques.

All storage of words in both the internal and external memory and all inter-unit transfers
of words are checked by means of a weighted count, i.e., a weighted sum of the digits of the
informational portion of the word (including the algebraic-sign digit if the word is a number
word).  As the diagram shows, this weighted count is stored with the number or half-order
and is called the transfer weighted count. The weights chosen for the sum are the numbers
1,2,4,1,2, 4,1, 2, 4, etc., which are assigned to the successive digital positions from right to
left. This weighted binary sum is computed modulo 16 and is then modified by the addition
of unity; thus a number and its weighted count cannot both be zero simultaneously. With
this modification, a null word is not a valid word, and the complete failure of a gate or other
device controlling the entire transmission channel will be detected.- Since the sum is computed
modulo 16, obviously only four digital positions are required to represent the transfer weighted
count. The transfer weighted count is automatically constructed and checked when the
numbers and orders are being prepared for machine entry by the problem preparation unit.
Thenceforth, whenever the number word or order word is transferred from one machine
unit to another, a new weighted count is constructed; failure of this new count to check with
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the original count stops the machine, and an indication of this particular error is given to
the operator. The transfer weighted count is not completely foolproof—no check is, for that
matter. However, the extraordinary power of the count as a checking means rests in the very

peculiar array of compensating and simultaneous errors that must occur in order to invalidate
the check.

Fic. 2. Magnetic-tape unit.

The external memory consists of four magnetic-tape units, each having a storage capacity
of approximately 100,000 words. A diagram of one of these units is shown in Fig. 2. These
devices may be used as input units to supply numbers and orders to the machine, or as output
units for the recording of intermediate and final results. Six-channel plastic tape coated with
iron oxide is used as the magnetic medium, and tape having a width of approximately 0.5 in.
and a thickness of 0.003 in. In each of the six channels, pulses are recorded with a density
of 100 pulses to the inch, and the over-all reading and recording rate of each magnetic-tape

54



RAYTHEON ELECTRONIC COMPUTER

unit is roughly 400 words per second, corresponding to a tape speed of 30 in./sec. Recording .
upon or reading from the tape is performed in blocks of 32 words, each block occupying
somewhat more than 2 linear inches on the tape. To each block of words on the tape is
associated a 12-column binary number which is termed a “block number.” The 12 binary
indications are permanently placed on the back of the tape using a system of horizontal
markings which are sensed photoelectrically during the hunting process; two sets of such
markings are used—one when hunting for a block number in a forward direction, the other
when hunting in a backward direction; in this way the number of reversals of tape motion

TO CENTRAL CONTROL UPPER LOWER
OR ARITHMETIC UNIT | RESERVOIR | RESERVOIR
32 WORDS 32 WORDS

100,000 WORDS

TRANSMISSION FROM EXTERNAL MEMORY

FROM ARITHMETIC UPPER LOWER

R p

UNIT RESERVOIR : RESERVOIR

100,000 WORDS

TRANSMISSION TO EXTERNAL MEMORY

‘ F1c. 3. Organization of external memory.
is held to a minimum. Separate markings are also used to indicate the beginning and end
of each block of words. These permanent markings are not affected in the process of magnetic
erasure, and they provide 4 means for visual inspection of the block numbers whenever this
seems desirable. )

As shown schematically in Fig. 3, there are two 32-word mercury delay lines or reservoirs
associated with each tape unit; these reservoirs are used as buffers between the tape mechanism
and the main electronic part of the machine. The external memory units respond to four
distinct commands: (1) Tape Read, (2) Tape Record, (3) Hunt-Prepare to Read, (4) Hunt-
Prepare to Record. In the Tape Read operation, the 32 words in the lower reservoir are
transferred at high speed to the upper reservoir from which point the words are subject to
call at any future time and in any sequence whatsoever by the central control. The addresses
assigned to the upper reservoir are very similar to those that identify the internal memory
positions; and, in fact, these upper reservoirs may be utilized as additional internal rnem'()ry
capacity. When the lower reservoir has been emptied in the course of the Tape Read operation,
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the tape unit proceeds to fill this reservoir with the next block of 32 words. The computing
routine of the machine, however, does not cease during this tape-to-reservoir transfer. If
now a second Tape Read order occurs before the lower reservoir has been filled, then the
machine stops and awaits the conclusion of this process. It can be seen, however, that if the
mean rate of call for new words from a single external memory unit does not exceed 400 words
per second, then no time is lost as a result of the tape-reading process; and the machine
effectively possesses a high-speed internal memory capacity of several hundred thousand words.

In the case of recording, the words to be recorded are transmitted to the upper reservoir
by the arithmetic unit in the course of the
computation; here again, this reservoir re-
ceives words in the same fashion as any of
the regular internal memory positions.
Upon receipt of a Tape Record order, the
contents of the upper reservoir are shifted
at high speed to the lower reservoir, where-
upon the computer is free to proceed with
its computational routine. Meanwhile, the
contents of the lower reservoir are recorded
upon the tape at a rate of 400 words per
second. If a second Tape Record order is
called before the lower reservoir has been
emptied, the machine is stopped awaiting
the completion of this process, but, once
again, this will occur only if the mean rate of
words to be recorded on this one unit exceeds

400 words per second, and this situation

Fic. 4. Four-line mercury tank.

should occur very infrequently.

The Hunt-Prepare to Record order causes the particular external memory unit called
to hunt for the block number resting in a special one-word external memory storage position
known as the Hunt Register. When this block is found on the magnetic tape and verified
through the use of the weighted count check, the tape unit stops and is now prepared to
record at the proper block position.

The fourth external memory order, namely Hunt-Prepare to Read, is executed in sub-
stantially the same manner as the hunt operation just described. Here, however, when the
proper block is located and verified, two successive blocks of 32 words are then read into
the upper and lower reservoirs respectively, and the machine is prepared to use this information
directly without further delay. Figure 4 shows a four-line temperature-controlled mercury
tank having dimensions of approximately 6 in. on a side; this tank contains the upper and
lower reservoirs associated with each of the four external memory units.

The internal memory of this computer consists of a set of 32 circulating mercury delay
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lines operating at a pulse repetition rate of approximately 3.78 megacycles per seccond. Each
line is capable of storing 32 words of 36 binary digits each. Thus, the internal memory has
a total capacity of 1024 words. Words are stored serially and are transmitted in a pulse-by-
pulse fashion to the other units of the machine. The time during which onec word is made
available for transmission is"termed a minor cycle, having a time duration of about 9.5 usec.
One circulation of the delay line requires 32 minor cycles, and in this time interval each
word stored in the line is available for transmission precisely once. The minor cycles are
numbered in binary notation successively from 0 to 31, and each number identifies a word
position in the line. Furthermore, the 32 delay lines, which are all in synchronism, are also
numbered from 0 to 31 in binary notation. Thus, the number of a delay line and the number
of a minor cycle together completely identify a word position and constitute what we have
previously defined as an address. Although 10 binary digits suffice for the representation of
each internal memory position, an eleventh digit is also used; this permits addresses to be
assigned to the 128 additional positions located in the upper reservoirs of the external memory,
as well as certain special one-word storage positions such as the Hunt Register.

Information is never erased from a memory position unless a new word is specifically
transmitted to that position, at which time the erasure of the former contents occurs auto-
matically. ' :

The mercury lines have undergone extensive testing for the reliability of recirculation,
read-in, and read-out; the results have shown that these lines will meet successfully the high
reliability requirements that have been placed upon the computer.

The central-control unit may be described as the nerve center of the computer. It is the
duty of this unit to extract programming orders from the memory at the proper time, interpret
them accurately, perform the appropriate selections, and verify the fact that the order has
been correctly executed. ’ ' '

Central control must select information from the memory in accordance with the line
and the word numbers that form each address. The proper line is chosen under the control
of a line-selection matrix. A check is performed to ensure that this selection was not in error.
Whenever one of the memory lines is selected by the matrix, the binary identification number:
assigned to that line is generated automatically. This identification number or tag is compared
~with the portion of the address that governed the original selecting process, and any discrepancy
will indicate a false selection; the machine stops at this point and the operator is given an
indication of the cause of the failure. '

For each address, another selection must be made under the jurisdiction of the central
control—namely, the word selection determined by the word-number section of the governing
address. At the beginning of the appropriate minor cycle, a pulse is transmitted to the memory
gates permitting a word to be read from or into the appropriate word position of the line that
has already been selected. To check that this temporal selection was performed correctly, an’
additional mercury line is employed which is in synchronism with the other lines of the memory
unit, In each of the 32 word positions of this word-check line, as it is termed, is contained
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the binary code which is associated with that particular word position. At the instant when
a word selection is made from any of the information lines, the read-out gate of the word-check
line is also activated, and the appropriate binary number is sent forth to the central control.
If this number agrees with the word-number portion of the governing address, a powerful
check is obtained which ensures that the desired word-time selection was properly performed.
Although the line and word selections are known to be correct, it is still possible that the
information within the word has undergone a change while stored in the memory. This
possibility is guarded against by the application of a transfer-weighted-count check. In the
case of order words, this check is performed by central control, while mutations in number
words are detected by the arithmetic unit before any arithmetic process occurs.

The selection of the proper arithmetic operation in accordance with the operation code
of the order is also, logically, a function of the central-control unit. This selection is performed
by means of an operation code matrix; however, to preclude the possibility that the arithmetic
unit will misinterpret the operation to be carried out, a check-back with central control is
initiated.’ S

In accordance with the tentative operation signal received by the arithmetic unit, the
code corresponding to this operation is transmitted to central control for verification. Only
if this new code corresponds to the operation code called for in the governing order, does the
central control notify the arithmetic unit to proceed; otherwise, the appropriate error signal
is flashed to the operator, and the computer’s operation ceases. Generally. speaking, any
deviation from proper performance on the part of any of the machine’s units comes under the
cognizance of the central control. '

This computer operates in a variable-cycle mode of operation whereby each new function
to be performed by the machine is initiated by the successful completion of the previous
function. As a result, the total time for a ' machine operation is not fixed, but will vary with
the exigencies of the particular order being performed. Thus, in determining the speed of
the machine, the mean time consumed in the performance of a complete order must form the
basis of such calculations. '

‘Since there is only one line-selection matrix in the computer, one might expect that the
average time required for a memory selection would be approximately 16 or 17 minor cycles;
there being 32 words in.each line. However, by means of a system of anticipatory selection,
_the central-control unit is capable of reducing this average time substantially. Essentially,
the four addresses are treated in pairs for selection purposes, and the address that is capable
of being selected with the least time delay is chosen; thus address 2 may be selected before
address 1, or address 4 before address 3, depending upon the time relation existing between
the word-number parts of the addresses. Such possible inversions of the sequence of selections
have no effect upon the proper execution of the programming order.

In some operations one or more of the addresses may be void; also, certain special addresses
may occur that correspond to one-word storage positions. In the first case, the central control
by-passes the selection completely; in the second case, advantage is taken of the fact that the
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word is available for transmission during every minor cycle. In both cases, further substantial
reductions in memory reference time are accomplished.

The arithmetic unit of the Raytheon computer consists of the necessary equipment for
the execution and checking of the various arithmetic operations. The unit is designed for
parallel operation, thus maintaining the desired speed balance among the various units of
the machine. A small checking unit operates simultaneously with the main unit; this checking
unit combines quantities known as arithmetic weighted counts, and the fulfilment of certain
relations involving these counts provides a check upon the operation of the main arithmetic
unit. The method by which the arithmetic weighted count of a binary number is derived

ARITHMETIG WEIGHTS ——»
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Fic. 5. Arithmetic weights.

is shown in Fig. 5. This count is defined as the weighted binary sum of the digits of a number,
where the successive weights are 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, etc., applied from the right to
the left, beginning with the lowest-order column of the number. In Fig. 5, the count has
been applied to the 30-column binary number x, and x, indicates the resultant 7-column
binary number which is the arithmetic weighted count of x. It should be noted that, unlike
~ the transfer weighted count, no reduction modulo 16 is performed. »

Figure 6 shows the checking identities that are applied to the four basic arithmetic opera-
tions. The subscript ¢ denotes the arithmetic weighted count of the quantity to which it is
appended. It is seen that in each case an invariant result is obtained which is independent
of the values of X, Y, and Z; as indicated, the checking identity will produce the value 31,
or in the binary system a sequence of five 1’s, provided the result Z obtained in the main
arithmetic unit is correct. : o

In Fig. 7 is given a list of the 30 operation codes that will be employed in this computer.
The column headed “Binary” shows the actual sequence of digits as they occur within
the machine in the operatioh-code section of an order. However, in-order to simplify. the

59



RICHARD M. BLOCH

programming procedure, all orders are coded in the octal notation; and, as a matter of fact,
the programmer need not concern himself with the equivalent binary notation, since all
addresses and operation codes are prescribed beforehand in the octal system. In this system
the binary columns are grouped three at a time, and to the eight possible configurations of
the three binary digits there corresponds one of the eight possible octal digits—0 through 7.
It should be noted that in terms of total digits required for number representation, the octal
system closely approaches the decimal system in efficiency. - As a further aid to the programmer,
the operation codes are arranged so that the first octal digit denotes a certain family of related
operations. Thus, where the first octal digit is 0, addition or subtraction is indicated; 1 denotes

I.  ADDITION X+Y =2

(1Zg = (Xc+ Y) | +31), = 31

2. SUBTRAGCTION X-Y=7Z

(1Z¢ = (Xe= Yo) | +31)¢ = 31
3. MULTIPLICATION XY=z
(I(Xg* Yo)e —Zel + 31)¢ = 31

4. DIVISION X/Y =2Z + R/Y

(H(Ye* Zde +Re=Xcl +31)c = 31

Fic. 6. Checking identities.

multiplication or division; 2, a transfer operation; 3, a shifting or extraction process; 4, the
two substitution operations; 5, the branch operations; 6, the floating-point processes; and
7, the codes that pertain to the external memory units. :

Space does not permit a complete description of each operation; however, Fig. 8 shows
the manner in which each of six representative operations is programmed. In addition, the
address of the addend is placed in the Address 1 position, that of the augend in the Address 2
position; the addition code Ol is inserted in the Operation Code position. The address to
which the sum is to be transmitted is located at the Address 3 position. If the result is to be
‘used immediately in the next operation, and if there is no need to transmit this result to the
mémory, then the third address position may be left void, and the result may be called forth
in the next operation through the use of a special address. However, whether the third address
is void or not, the result of the present operation remains available in a special one-word
register of the arithmetic unit, and is subject to call by employing the above-mentioned special
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OPERATION BINARY OCTAL
ADDITION 000001 ol
ADDITION (DOUBLE - PRECISION - PART 1) 000010 02
ADDITION (DOUBLE - PRECISION - PART 2) 0000 I I 03
SUBTRACTION 000100 04
SUBTRACTION (DOUBLE -PRECISION - PART) 0001 01 05
SUBTRACTION (DOUBLE -PRECISION - PART2) 000110 06
MULTIPLICATION (TRANSMIT HIGH ORDER WITH ROUNDOFF) 001000 10
MULTIPLICATION (TRANSMIT HIGH ORDER NO ROUNDOFF ) 001001 I
MULTIPLICATION (TRANSMIT LOW ORDER) 001010 12
DIVISION (QUOTIENT NOT ‘ROUNDED - OFF ; REMAINDER AVAILABLE) 001110 16
DIVISION (QUOTIENT ROUNDED - OFF) 0011 11 17
TRANSFER (NORMAL) 010000 20
TRANSFER (POSITIVE ABSOLUTE VALUE) 010001 21
TRANSFER (NEGATIVE ABSOLUTE VALUE) 010010 22
TRANSFER (SELECTIVE) 010011 23
SHIFT ( CONTROLLED) 011000 30
SHIFT FAGTOR (NORMAL) 011001 3
SHIFT FACTOR (SQUARE ROOT) 011010 32
EXTRACTION oti1t 10 36
SUBSTITUTION {ADDITIVE) 1000OI 4y
SUBSTITUTION (SUBTRACTIVE) 1001 00 44
BRANCH (NORMAL) 101000 50
BRANGH (EQUALITY SENSING) 101 00| 51
ADDITION (FLOATING) 110000 60
SUBTRACTION (FLOATING) 11000 | 61
MULTIPLIGATION (FLOATING) 110010 62
TAPE RECORD 111000 70
TAPE READ 111001 71
HUNT — PREPARE TO RECORD 111010 72
HUNT — PREPARE TO READ 111011 73

iFI‘G. 7. Operation codes.
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address in the succeeding order. It is clear that by this means useless transmissions to or from
the memory are completely avoided. It should be understood, of course, that the device just
discusscd may be applied to any desired operation and is not restricted to the addition process.
To continue, Address 4 will contain the memory address from which the new order is to be
obtained—or, more exactly, from which the first half of the new order is to be selected. The
programming arrangements for subtraction, multiplication, and division, shown in Fig. 8,
I believe, are self-explanatory in the light of the above discussion. '
The selective transfer order directs the machine to multiply the number in memory position

 OPERATION ~ ADDRESS ~ADDRESS OPERATION ADDRESS ADDRESS

# #o CODE #3 #q
ADDITION || ADDEND | AUGEND o |sum OERLR
SUBTRAC- || minuenn | SUBTRA 04 E}GEER' SEbR
W | IBER | o |eroouer |88
DIVISION DIVISOR | DIVIDEND 17 |QuoTienT | NEXT.
gagn] o | o | m | e |

Fic. 8. Construction of computer orders.

\

4 by + 1 or — 1, according to whether the number in memory position C is positive or
negative; the result of this process is then to be transmitted to memory position B.

The Branch-Normal operation is somewhat unusual both in its effect on the subsequent
computation and in the treatment of the third address. If the number in memory position
4 is greater than or equal to the number located at memory position B, the machine is-directed
to obtain its next order from storage position C as indicated by Address 3; otherwise, the
central control is to obtain the next order from memory position D as specified by the fourth
address. ' ' ‘ ' o

The problem-preparation unit is.a manually operated device, independent of the main
computer, that places the programming orders and numerical input information on the
magnetic tape in preparation for entry into the machine. A first Teletype keyboard unit is
used to prepare a standard five-hole Teletype paper tape. This tape is used in conjunction
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with another keyboard unit to prepare a second paper tape. The operatof of the second unit,
reading from the same manuscript that was used in the preparation of the first tape, causes
a second paper tape to be perforated. However, each key that is depressed must establish
an identity with the Teletype code appearing on the preliminary tape; otherwise, the keyboard
is automatically locked and the intended perforation of an erroneous code on the second tape
is intercepted. A printer is also associated with the keyboard so that a printed copy of the
programming is available to the operator in the course of the tape-preparation process.
Programming orders are entered in the keyboard in octal notation, whereas numerical infor-
mation will generally be entered in decimal notation; this conforms to the notation that is
prescribed for the original manuscript. However, where desired, numbers may also be entered
in the octal system if the information should happen to be available in this form; provision
is made on the keyboard to indicate the particular notation being used. ,

After the second paper tape is prepared, it is transferred to a magnetic recording unit
where the Teletype codes appearing on the tape are converted to binary or binary-coded
decimal notation in accordance with a coded indication that accompanies each word on the
paper tape; a transfer weighted count of each number and half-order is also automatically
constructed. All of this information is then recorded on the magnetic tape in the required
word-and-block form previously described; this magnetic tape is now transferred to one of
the external memory units from which point the information is automatically available to
the computer. These conversion and weight-counting processes, as well as the magnetic
recording process itself, are all automatically checked.

The printing of the final results of a problem is performed by Teletype printers operating
independently of the main machine. In the course of a computation, numbers to be printed
are shuttled in binary-coded decimal form to one or more of the magnetic tapes associated
with the external memory units. At a later time, these reels are transferred manually to the
output printers where the numerical quantities are typed in final form. Directions to ‘the
printer involving considerations such as page format, location of the decimal point, etc., are
supplied by auxiliary control devices. ‘

Certain external memory tapes contain words in binary notation only, these quantities
* being intermediate values obtained in the computation and intended for direct feedback to
the machine at a subsequent point in the solution of a problem; therefore, the computer
obviously will not have been instructed to convert these numbers into binary-coded decimal
notation. However, it may be desired on certain occasions to print the binary quantities con-
tained in these intermediate tapes; for this reason, provisions have been made for the output
printers to type numerical quantities in octal notation as well as decimal. Transfer weighted-
count checks based upon the actuation of the printer code bars are employed to intercept
printing errors. : o

A printer directly connected with the computer is provided so that the operator may
monitor intermediate results of the computation while the machine is in operation. The trans-
mittal of information to this printer is prearranged in the original programming of the problem.
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Provisions for reading from, as well as into, the various high-speed memory positions of
the machine under manual control have been made. Furthermore, the computer is designed
in such a way that when an error occurs, causing the machine to stop, all numerical and
control quantities involved in the execution of the order then governing the machine are
available for immediate read-out by the operator; this feature should be an invaluable aid
in the diagnosis of failures. " : - .

The Raytheon computer operates at a mean speed of 1600 complete operations per second.
The machine has a complement of roughly 3500 vacuum tubes and 6500 crystal diodes. It
is expected that construction of the computer will be completed at the end of September 1950



A GENERAL ELEcTRIC ENGINEERING DicitarL COMPUTER

BURTON R. LESTER

General Electric Company

The General Electric Company feels very grateful for the opportunity to discuss our com-
puter at this symposium. Our present effort is the design and construction of a computer
suitable for the engineering problems that arise within the General Electric Company—a
computer simple in design, accurate and reliable, easy to operate, and cconomical to
maintain. -

The General Electric Company has been interested in the computer field for many years.
Our first computers were network analyzers. These were soon followed by the more complex
differential analyzers. We built up small computation groups in our engineering divisions.
In some instances, as the requirements for speed and accuracy increased, we rented IBM
machinery.

Approximately six years ago, the first investigation of the possibility of constructing an
automatic digital computer was made. In 1946 work was started on a small binary machine
for control problems. Our Engineering Council also directed that we investigate the possibility
of constructing another machine for internal use. A careful review was made of the various
computer projects and a small group of engineers visited these projects to weigh their progress.

These efforts culminated in the decision to construct a computer. Our design and con-
structionn were based on the experience and ability of our Research Laboratory and our
electronic accomplishments during the past war. .

Our purpose in constructing this computer was threefold. The computer would enable
more accurate and rapid computation of our engineering designs. It would provide our
Rescarch Laboratory with a long-needed facility. Last, we would gain extensive knowledge
“and position in this field by constructing and operating this machine.

The purpose of our computer set the major design considerations. Accurate and reliable
operation was foremost. Consequently, only proven principles werc utilized. A reasonable
operating speed was set with the idea of increasing it gradually as we become more familiar
with the capabilities of the computer. Operation and maintenance procedures were simplified.
Unitized construction was ‘employed to aid design, speed mamtcnance and provide means
for adding future improvements. ’

In discussing the features of any computer, it is well to break the design down into the
following items for easy assimilation: number base, mode of operation, memory, arithmetic
unit, control unit, input-output mechanism, tape-preparation unit, and printer.

Our computer operates in the decimal system. All numbers and instructions are expressed
in decimal digits. The 2* coded decimal system is used within the computer. The basic
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length of a number is 8 decimal digits using a fixed decimal point and 6 decimal digits with
a floating point. The range of the latter system is from 10—° to 10°%. The simplicity of the
decimal operation outweighed the loss of capacity as compared with the equivalent binary
machine. Actually, the construction of the machine is binary with the exception of three
vacuum tubes per decimal digit in the accumulator. These tubes and associated circuits sense
and correct forbidden combinations.

Serial and parallel operation are used to advantage. Serial operation occurs between
all major units. Parallel operation is used within the arithmetic and control units.” Numbers
and instructions are stored serially in the memory in single binary channels. Serial read-in
and read-out of the memory occurs at a 48-kc/sec repetition rate. Numbers and instructions
are transferred between the arithmetic and control registers at a' 200-kc/sec rate. Parallel
operation is utilized for basic operations within the arithmetic and control registers at a
200-kc/sec rate.

Operation of the computer is as follows. An order stored in the memory is read serially
to the control unit. This unit reads each part of the order in parallel by means of sensing
circuits. First it directs the memory to transfer the two operands serially to the arithmetic
unit. Then the contiol unit senses the order to determine the operation code and directs
the arithmetic unit to perform this operation in parallel. The answer is transferred serially
to the memory again under the direction of the control unit and to the address specified in
the order. Finally, the control unit senses the present order to determine the address of the
next order and transfers it to the control unit.. Thus the basic cycle is repeated until the
-problem is solved. -

The computer has a magnetic-drum memory that stores 4000 numbers and instructions
in 100 tracks, 40 numbers per track. Pulses are spaced 20 to the inch in the tracks and the
tracks are spaced 8 to the inch. ‘Forty pulse spaces are required for each number—36 for
the number and four guard spaces. The drum rotates at 1800 rev/min; consequently, the
pulse repetition rate is approximately 48 kc/sec. The drum is constructed of aluminium with
a magnetic coating and is 24 in. in diameter and 30 in. long.

Separate magnetic heads are provided for playback and recording. They are spaced 3 mils
from the drum surface. Two playback amplifiers are used, one for information and one for
clock pulses. A low-level crystal gating system connects the proper head to the information
playback amplifier. The amplifiers have an automatic gain control to eliminate signal variation
caused by eccentricity of the drum. A high-level gating system delivers recording pulses to
the proper head. Recording and playback heads are spaced 180°. Consequently, a number
recorded may be read back one half revolution later to verify memory operations. This check
is performed after each recording. '

Initially the design called for a serial arithmetic unit. However, it soon became apparent
that the shifting registers, utilized to synchronize the numbers received from the memory,
could easily be modified for parallel operation with a small increase in equipment. The
arithmetic unit contains three basic registers: A4, B, and C. Register 4 is an accumulator
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and contains additional equipment to sense and correct forbidden binary numbers occurring
as a result of addition. Register B is a shifting register. Register C, in addition to being a
shifting register, can also be connected as a counter for use in multiplication and division.

The arithmetic unit performs the following basic operations: addition, subtraction,
multiplication, division, and choice. Actually, the basic operation is the addition obtained
in the accumulator. In subtraction, the nine’s complement is used w1th end-around carry.

Multiplication is performed as a series of additions.

Division utilizes the oscillating overdraft method. Both the multiplication and division
processes have been simplified to the extent that they are nominally equivalent to their binary
counterparts.

Table 1. Operation times (usec) for basic operations.

Operation Fixed-Point Operation Floating-Point Operation
Addition ~ 15 350
Subtraction 15 350
Multiplication 450 490
Division 450 ' 530

The times required for basic operations are listed in Table 1. These times do not include
memory-access time. These times represent a small fraction of the time of one revolution of
the drum. Under average conditions the time for completion of one operation including
access time is equal to the time of one revolution of the memory. :

The control unit is the telephone central of the computer. It controls the operations of
the various units of the computer. The control signals are either a 40-v positive 2.5-usec pulse
~or a d-c switching voltage of zero or 4 40 v. The cyclic control rate is determined by the
unit under control. - Control signals to the memory are based on the 48-kc/sec clock pulse
generated on the drum. Control signals to the tape input-output unit are based on synchron-
izing pulses on the tape. Control signals to the arithmetic unit are based on a 200-kc/sec
~oscillator in the control unit.

This type of control permits a great deal of freedom in introducing modification. Increasing
memory operation only requires that the memory supply the correct clock pulse frequency
to the control unit. No other modifications are needed. This flexibility is highly desirable
to permit future improvements.

The four-address system is used in this computer The first two addresses of the order
are the locations of the operands. The third address is the location of where the answer is
to be stored and the fourth address is that of the next order. A number consists of nine decimal
digits, numbered from 0 to 8. The zero digit is the sign digit and the remaining digits comprise
- the actual number. Since there are 4000 memory positions, four decimal digits are required
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to describe an address and sixteen decimal digits are required to describe four addresses.
Consequently, each order consists of two numbers and is stored in two consecutive addresses
in the memory. The remaining two digits of the order are used to denote the type of operation.
The zero digits of the two numbers comprising an order contain this operation code. These
digits are also used as the means of distinguishing between orders and numbers. Zero and
nine are reserved for positive and negative number sign indication. The remaining values
involving 64 possible combinations are operation codes. Thus a number must have a zero
or a nine in the sign digit and an order may have any value but zero or nine in the sign digit.

Table 2. Operations and corresponding codes.

| Operation Code Operation
33 ‘Read in
34 » Read out
35 Transfer
36 Add using fixed decimal points .
43 - Add
44 Subtract
45 Multiply
46 Divide
53 Choice 4 or —
54 Choice zero or not zero
63 ' ‘Move cxponeﬁt-to No. 2 address
65 - Change address 4
66 . Change address B

' In Table 2 are listed some of the more important operations and their corresponding codes.
It will be noted that provision has been made to enable the machine to change its orders.
In addition, it is possible to set up a problem in such a way that a single order can modify all
the orders in the problem so as to call in new values of the variables. .

Additional operations, such as raising to a power, extracting the root, finding the logarithm,
etc., can be prepared as sub-sequences and stored in the memory for future use. With the’
addition of extra shifting registers, these operations may be performed entirely within the
arithmetic unit. R

The memory storage may be described as a huge matrix, the address being the key to
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any clement. The first two digits of the address control the row selection or the equivalent
number time on the drum. The last two digits control column selection or the track
designation.

The tape input-output component takes the tapes prepared by the tape-preparation unit
and under direction of the control unit reads information into the computer memory. It
also prepares magnetic tapes containing the answers to the problem (the output from the
computer). Input and output tape data are the same; that is, data read out of the machine
may be run back into the machine. A unit piece of information on the tape consists of a
number plus its memory location. The tapes are operated at a speed such that approximately
25 pieces of information per second are read into or out of the machine. These tapes are
utilized by the printer to type -out the information. The reels of magnetic tape belonging to
this unit are located in the center of the main console. ‘

Tape preparation and printing are performed by units similar to those of the Harvard
Mark III computer. The tape-preparation unit has a standard keyboard and can be used
to prepare both number and sequence-control tapes.

The printer uses an electric typewriter, operating at 10 strokes per second. Provision has
been made to vary the typography of the printed page at the discretion of the operator.

The main components of the computer are housed in five racks 24 in. wide and 8 ft tall.
The Tape-Preparation Unit, Printer, Memory, and Power Supply are housed in separate
units. The Magnetic Memory is contained in a cabinet 3 ft wide, 5 ft long and 6 ft high. It
appears that the power supply will be contained in a similar cabinet. The Tape-Preparation
and Printer Units will be housed in racks 24 in. wide and 6 ft tall.

Unitized construction is used throughout the computer. At present, there are 15 basic
circuits. These circuits are constructed as plug-in assemblies such that the components are

mounted on turrets between the tube socket and plug. These assemblies are approximately
 L5in. in diameter and 2.5 in. long. The circuits plug into standard panels which contain
the signal and power wiring. The panels are mounted vertically in the cabinets. A vertical
sheet of Plexiglas mounts 2.5 in. in front of these panels.v The circuits are plugged into the
panels through the Plexiglas. Air, circulated in the channel formed by these two panels, is
used to cool the circuits. The vacuum tubes mount directly in the sockets and project out

of the Plexiglas panel.
' One of the major achievements in the de51gn of this computer has been the reductlon of
the tube complement to less than 1000 vacuum tubes. This reduction has been made possible
through the use of germanium diodes and careful circuit design. Approximately 4000 diodes
are used in the computer.

In summarizing, I would like to highlight the following points.

First: This computer has been designed to solve problems requiring engineering accuracy.
For problems of this type, it must be reliable and accurate first; speed comes next.

Second: Design, operation, and maintenance have been simplified by the reduction of
tube complement and unitized construction.
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Third: The computer design is flexible; that is, individual units such as the Arith-
metic Unit, Control Unit, Memory Unit, etc., stand by themselves. They can be réadily
modified with minor effect on the rest of the computer. The resulting building biocks
which comprise this computer can be used to construct a computing machine for almost
any purpose. ' ‘
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TOAST BY D. H. LEHMER

There is a man among us here tonight who deserves our special vote of thanks and appre-
ciation. He recognized the necessity for a medium of communication—“a standard source
to which one might naturally turn for guidance in connection with all mathematical tables
of importance in contemporary research.” Through the National Research Council in 1943
he established the quarterly journal Mathematical Tables and Other Aids to Computation. Now
after seven years of unflagging effort, Raymond C. Archibald is retiring as Editor of M TAC.
I propose that we show him our appreciation for his excellent work.

VTOAST BY SAMUEL H. CALDWELL

It is with deep regret that we note the absence from this banquet and from the Symposium
of one of the world’s great figures in the field of scientific computation. Some of you have
known him as a teacher. Many of you met him and heard him at the Machine Computation
Conference held at the Massachusetts Institute of ‘Technology four years ago. All of us who
have known Doctor L. J. Comrie have been stimulated by his appreciative response, 1mpressed
by his intellectual grasp, and conquered by his wit and charm.
~ As the founder of the Scientific Computing Service of London, and in his former connection
with His Majesty’s Naval Almanac Office, Doctor Comrie has been a prolific contributor
to the literature of scientific computation. But history will name him also as one of the pioneers
in the development and application of machine methods to computation problems.

» Doctor Comrie is unable to be with us because of serious illness, and this I know is a matter

of profound disappointment to him. It is proposed that we members of this Symposium stand
at the side of Doctor Comrie in his fight for health and that we let him know it. I therefore
ask that we request our Toastmaster to send to Doctor Comrie our prayers for quick and full
recovery of his health and vigor, and our earnest hope that he can be with us at our next
Symposium. :
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THE PRESENT PositioN ofF AutoMAaTic COMPUTING MACHINE
DeveELoPMENT IN ENGLAND

W. S. ELLIOTT

Research Laboratories of Elliott Brothers (London) Limited

I have come from a place in England named Borehamwood. Borehamwood contributes
both to the arts and to the sciences. A small part of its contribution to the sciences is work
on what our popular press, unfortunately, in my view, calls “Electronic Brains.” On the
side of the arts a large part of the British Motion Picture Industry is at Borehamwood. Some
of you may have heard that a certain William Shakespeare has been trying to earn dollars
for his country by writing the screen plays “Henry V”’ and “Hamlet.”

On my desk at Borehamwood, I have a volume which I prize very highly. It is a report
of the proceedings of the first Symposium on large-scale digital calculating machines held
here at Harvard in 1947. This is a book which, I think, contains much weighty and interesting
material-—material made no less significant by the advances of the last two and a half years.
To me not the least interesting paper in this volume is that by Richard Babbage dealing with
the work of his English grandfather, Charles Babbage, that first designer of computing machines.
And when I read this paper, my attention focuses on one passage.

“Propose to any Englishman any principle or any instrument, however admirable, and
you will observe that the whole effort of the English mind is directed to find a difficulty, a
defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will
pronounce it impossible; if you peel a potato with it before his eyes, he will declare it useless
because it will not slice a pineapple. Impart the same principle or show the same machine
to an American . . . and you will observe that the whole effort of his mind is to find some
new application of the principle, some new use for the instrument.”

When Professor Aiken, just ten days ago, asked me to speak at this Symposium, my first
thought was that I might take as a text the differences between English and American com-
puting machines in the light of that passage. But when I came to think about it, I decided
I could find no significant difference except perhaps that the groups developing our machines
are a little smaller. Certainly the projects that we have are as diverse as those in this country,
and the ways that the different groups go to work are similarly varied. For instance, the logical
design of one machine was completed well before the team was set up to build it. Another
machine grew as the ideas came. The first machine is more engineered, and the second machine
is breadboard. :

I shall mention seven groups in England working on computing-machine projects: three

"at Universities—the Universities of Cambridge, Manchester and London; three at Govern-
ment establishments-~the National Physical Laboratory (NPL), which I think corresponds
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to your National Bureau of Standards, the Telecommunications Research Establishment
(TRE) of the Ministry of Supply, and the Royal Aircraft Establishment; and I shall mention
one industrial firm, Elliott Brothers (London) Limited, the Research Laboratories of which
I represent. Of these groups, that at Cambridge has one machine fully operating. -The
Manchester group has a machine fully operating though with restricted input and output
units. Other machines are in various stages of development. I shall describe the Cambridge
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F1c. 1. The Electronic Storage Delay Automatic Calculator (EDSAC).

machine more fully and I shall compare other machines with it. I shall not give here precise
figures for the memory capacity, speed, and so on.

The first electronic computer to run in England, the Electronic Delay Storage Automatic
Calculator, or EDSAC, was designed and built by Mr. M. V. Wilkes, the Director of the
Cambridge University Mathematical Laboratory, assisted by Mr. Renwick. Besides being
a theoretical physicist Mr. Wilkes is a practical electronic engineer.

EDSAC (Fig. 1) was projected by Mr. Wilkes during a visit he made to the United States
in 1946 when he attended part of a course on computing machines at the Moore School.
The logical design of EDSAC was influenced by the ideas of Mauchly, Eckert, Goldstine,
and Sharpless of the Moore School. At the outset Wilkes stated that he was not interested
in building the best possible machine. He wanted to make a reliable machine and to make it
quickly. He chose mercury delay-line storage as being the only principle which at that time
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promised reliable storage. He chose a 500-kc/sec digit rate as being the fastest that, with the
techniques then known, would give a reliable computer. The store capacity is 512 words
(numbers or orders) of 32 binary digits. Input to the machine is by punched paper tapes
prepared on a teleprinter keyboard, and output is directly printed on a typewriter. EDSAC
uses a one-address code for instructions. The storage, control, and arithmetic units were
designed in 1947, and they and the input and output units were built in 1948. Toward the
and of that year parts of the machine were being tested, and the machine was fully operating
and was demonstrated at a conference on computing machines held at Cambridge in June
1949. Today the team there is gaining experience in running problems on the machine, and
I have with me two samples of the work of the machine.

Fic. 2. The Manchester machine. Control and input circuits are at the left,
the memory in the right center, and the arithmetic units at the right.

The first sample is a list of the prime numbers up to 1021. The list starts with the number
5—Mr. Wilkes assured me that they know the prime numbers below that. The second sample
is a tabulated solution of a second-order differential equation.

Before I leave the Cambridge group I should like to say that Wilkes is very active in holding
fortnightly colloquia during University term time, and the different teams in England attend
these colloquia very well and keep closely in touch.

In June of this year the colloquia culminated in a four-day conference. Descriptions were
given at the conference of the various computing-machine projects, not only in England, but
also in France, Holland and Sweden. A contribution from Doctor Huskey was read, giving
an account of the present state in America. Discussion subjects included CRT storage,
programming and coding, checking facilities, and permanent and semipermanent storage.

The second University group is at Manchester. The machine (Fig. 2) is being built by
the Electrical Engineering Department under Professor F. C. Williams for the use of Doctor
Newman and Doctor Turing of the Mathematical Department. There is close contact between
the engineers and the mathematicians, but the machine is definitely being designed by the
engineers. The machine uses the well-known CRT store of F. C. Williams and T. Kilburn.
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This store features a standard cathode-ray tube and a physically simple mechanism. Experi-
mental work on the store was completed about March 1948. Having built the store, Williams
and Kilburn wanted to test it, so they added a second storage tube as an accumulator, and
a third tube as control. They thus had a baby computing machine. The baby machine was
of breadboard construction and today the machine at Manchester consists of these same bread-
boards and others that have been added. In fact; the machine has grown gradually as ideas
* came—unlike some machines, which have been built according to a master plan conceived
at the outset. For this reason any description of the machine is liable to be outdated very
quickly. At the time of the Cambridge conference, there were a fast multiplier CRT and a
special tube for modifying instructions. The machine uses magnetic-drum auxiliary storage
running at the rate of the working store. A feature of this is that the drum is synchronized
from the machine’s clock—the drum does not generate the clock. The drum stores true binary
numbers and has access only to and from the main store.
Input to the Manchester machine is on a binary button board, and the output is a CRT
r display of the binary content of one of the CRT stores. The digit rate is limited by the CRT
store to a quarter of that in EDSAC, but since the store is noncyclic the average access time
in the two machines is similar. One CRT store has the capacity of four long tanks in EDSAG,
that is to say, 32 words. :
Because of the restricted input and output units on the Manchester machine the type of
problem that can be run on it is rather hmlted but some interesting work has been done on
the Mersenne numbers.
A second machine for the Manchester group is being built by Ferranti Limited. This is
to be a more engineered version, and it will have 16 main CRT stores. The engineers consider
four to eight to be the optimum number of main storage tubes in a computer of this type,
having regard to transfer time from the auxiliary store to the main stores. The mathematicians
would be content with eight tubes but in some cases would like 16, so to be on the safe side
16 main storage tubes have been decided on, in addition to an accumulating store, a store for
control numbers and a “B” tube where instructions are modified. There is no proper name
for the Manchester machine, though I understand from Professor Williams that it has a variety
of improper names. The Manchester machine recently gave rise to some correspondence in
the London Times on whether a machine could rival the brain of man. In an interview with
the paper Doctor Turing said he did not exclude the possibility that the machine could write
‘a sonnet. He added, however, that only another machine could appreciate the sonnet fully.
The third university group, at London, directed by Dr. A. D. Booth, is working on three
machines. The first is called “Automatic Relay Calculator” or ARC. This is a binary relay
machine which, in logical design, is somewhat similar to EDSAC and follows some of the
ideas of the Moore School, in that, for example, numbers and orders are lumped together in
the store, and orders can be modified. It is a parallel computer with a small magnetic-drum
store. Input and output and semipermanent storage are all on purched paper tape. The
machine was made by Doctor Booth for experiments in logical design. It has 800 relays and
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cost about £2,500. The machine was being tested in June 1949. The magnetic drum is now
being changed to another storage system, an electromechanical store, which Doctor Booth
is developing and which is of some interest. In essence this is a very concentrated collection
of small relays. It packs 256 numbers, each of 21 binary digits, into about 12 by 8 by 16 in.

Doctor Booth is also designing an electronic machine and is to make two models of it in
parallel, for different uses. It is to have magnetic-drum storage, magnetic-tape input and
output, and magnetic-tape auxiliary storage. It is to have multiplier and divider units, and
Doctor Booth thinks it will have fewer than 1000 tubes. He gives no date for its completion.
It may be one or two years.

Doctor Booth’s third machine is a “Simple Electronic Computer” or SEC. This he pro-
poses as the smallest electronic computer that will have all the main facilities of a general-
purpose machine but will be as small-as 181 tubes, and he hopes that University departments
will be able to build it for themselves. _

Turning now to the Government establishments, a considerable amount of work was done
at the National Physical Laboratory in 1946 on the Automatic Computing Engine or ACE.
This work was done under Doctor Turing and by the end of that year the quite complicated
and sophisticated logical design was completed and several problems had been coded. In
September 1947 an Electronics section was set up at the National Physical Laboratory to
work on electronic computing machines, but before this team had started on the actual con-
struction of the ACE Doctor Turing left. About the middle of 1948, it was decided that the
theoretical team of the Mathematics Division, which was now under Mr. J. H. Wilkinson,
should join the electronics group under Mr. Colebrook, and the two teams should work
together on the construction, not of the full-scale machine, but of a Test Assembly. This Test
Assembly represents an attempt to construct the smallest machine that will serve as an adequate
testing ground for the concepts involved in the full-scale machine, but that will nevertheless
be large enough to be a useful computer. '

The TA is somewhat similar to EDSAC. It has, for example, delay-line storage. It works
at twice the digit rate of the EDSAC. It has some logical orders other than those needed for
- arithmetic operations and uses the two-address code for instructions. Input and output are -

on Hollerith cards. . ‘ _ ' .

In EDSAQG, instructions are stored serially in a long tank. This means that after obeying
one instruction the machine has to wait for the remainder of a major cycle before the next
instruction is available. In the TA this is overcome by facilities for putting instructions in
nonserially and in such a way that when one is obeyed the next instruction is immediately
available. The TA is being carefully engineered. About one-half or two-thirds of the chassis
for it is completed, and Doctor Wilkinson hopes it will all be completed by the end of 1949
so that testing will start in 1950. It is not likely that the full machine of the 1946 design will
be built now. Any further machine will probably have a much smaller number of mercury
delay-line stores and auxiliary magnetic-drum storage.

At the Telecommunications Research Establishment of the Ministry of Supply, Dr. A. M.
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Uttley is working on a parallel electronic machine for the use of mathematical physicists in
the Ministry of Supply. His decision to make a parallel machine was taken after a visit to
the United States in 1948 and was influenced by the fact that no one else in England at that
time was building a parallel electronic machine. He uses storage tubes similar to those of
F. C. Williams, working in the same way, and uses as many storage tubes as there are digits
in his words. The tubes are scanned in parallel, and a word is represented by taking one digit
from the corresponding position in each of the tubes. Like the Manchester machine, it uses
magnetic-drum auxiliary storage, but unlike the Manchester machine the numbers on the drum
are in binary-coded decimals, and there is direct access between the drum and the outside
world. Doctor Uttley’s idea is that the drum will be prepared at leisure by mathematicians;
it will then be taken to the machine, and its contents transferred as a whole into the working
store of the machine. In an attempt to make the machine completely self-checking, Doctor
Uttley has developed a complete series of three-state circuits for the arithmetic and control
units of the machine. The whole machine works in three states apart from the store, the states
being nought, one, and fault. There is now a one-digit working model of the store and of
all the three-state circuits, and the magnetic drum is completed, together with the tape
puncher, and transfer from tape to drum and from drum to electromatic typewriter. Doctor
Uttley thinks the whole machine will be working in one or two years.

Another small relay machine is being made at the Royal Aircraft Establishment by Doctor
Hollingdale for the use of people in that establishment.

I come now to Elliott Brothers Research Laboratories. Our interest is in the development
of reliable components such as storage, arithmetic, input and output units for high-speed
machines. We are working on a CRT storage method similar to but not the same as that
used by F. C. Williams at Manchester. In his paper F. C. Williams called the method of his
that we use, “anticipation pulse storage.”” We find that we can use a higher writing speed
than in the dot-dash method that is actually used in the Manchester machine though we
" have not decided the maximum number of digits that can be stored reliably on one tube.
We are working on small logical units for serial operation at up to 1-Mc/sec digit rate and
we have working a series-parallel multiplying unit, using these logical elements, that forms
the rounded-off product of two numbers entering the unit simultaneously, the rounded-off
product appearing in the following number time. In its final form this multiplier will feed
the output straight back to one of the inputs so that » numbers can be multiplied together in
n number times. '

We are working on photographic methods of feeding input data and function tables into
a high-speed computer and of recording the output from a computer. The input data and
function tables are prepared by photographing a lamp display controlled from the register
of a desk calculating machine working in binary scale, which we have made especially for
this purpose. The film can be read at 1 megadigit per second into a computer.

No description of the English automatic computing machine projects is complete without
mentioning the name of Professor Hartree, Plummer Professor of Mathematical Physics in
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the University of Cambridge. The early work of Hartree and Porter on the differential
analyzer at Manchester is well known, and today Professor Hartree plays a leading part in
encouraging work in England on digital machines. He is a regular attendant at the Cambridge
colloquia and is regarded as our chief contact with work in the United States.

In conclusion, I would say that the greatest diversity of opinion in England at the moment
is on the best method of storage to use. In the Cambridge machine the component that gives
the least trouble in the whole equipment is the mercury delay line. The F. C. Williams’ store
is welcomed enthusiastically by some groups in England, though others are unhappy about the
noise level. Doctor Booth’s electromechanical store is inferesting in its simplicity and digit
density, though it is limited in speed. There is general agreement in England on the use of
magnetic-drum auxiliary storage. I think, however, that the greatest p0551b111ty of technical
improvement or simplification is in storage systems.

The tendency in England at the moment is to gain experience with the small machines
that have been built or are being built, and I think that after one or two years of gaining this
experience, some further machines may be built. It is likely that when this happens the move
will be in the direction of logically simpler rather than of larger machines.

Finally, I should like to return to the subject of human and mechanical brains. Professor
Sir Geoffrey Jefferson of the department of neurosurgery of the University of Manchester
gave the annual Lister Oration to the Royal College of Surgeons of London on this subject.
He referred to the fact that some workers believe that by embodying in a machine the electrical
principles underlying neural activity, light can be thrown on the way we think and remember.
He did not think, however, that the day would dawn when the gracious rooms of the Royal
Society of London would have to be converted into garages to house the new fellows.
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SEMIAUTOMATIC INSTRUCTION ON THE ZEPHYR

HARRY D. HUSKEY
National Bureau of Standards, Institute for Numerical Analysis, UCLA

Presently designed calculators cannot be entirely automatic with respect to coding; they
may do problem after problem automatically without human attention, but somebody must
initially tell the machine what it is to do. We will develop in this paper a method of operation
of such a computer in which the user need not tell in explicit detail everything that the calcu-
lator must do in the course of carrying out the computation. This concept of semiautomatic
instruction has been called abbreviated-code instruction.t

To illustrate by example, assuming we wish to invert a matrix having m rows and n columns,
the only essential information is (1) where the coefficients of the matrix are, (2) how many
rows and columns there are, (3) what process is to be carried out, and (4) where the answers
are to be placed. We expect to be able to obtain sheets of paper upon which appear in the
" appropriate order the coefficients of the 1nverted matrix without doing more than sending. .
the initial coefficients into the calculator and a single coded instruction specifying the three
items mentioned above.

The Zephyr, the electronic digital calculator under construction at the Institute for
Numerical Analysis, will be used as the model in this paper to illustrate how these coded
instructions will operate. Thus, before explaining the abbreviated code in detail a brief
description of the Zephyr will be given. ' :

The Zephyr consists of: (1) an arithmetic unit where the information is processed or
modified; (2) a high-speed memory which remembers both the numerical and the instructional
words needed during the computation; (3) a low-speed memory, which we shall refer to as
the store,? inasmuch as it serves as a warehouse wherein numerical information, main routines
of code words, and subroutines of commands or code words are stored; (4) a control unit
which scans the memory for its commands, and executes them by sending out the appropriate
signals to the other units; (5) input-output equipment which we will not discuss in this paper.

Information is stored and processed in the Zephyr in units that are 41 binary digits long.
Such a unit is called a word. Words may be interpreted as numerical information or as
instructions.

Numbers can be subclassified as follows. A word may represent a signed binary number
lying somewhere between — 24 and + 2%. Or, it may represent a signed ten-decimal-digit
number where each decimal digit is represented as a four-digit binary number. A floating
- binary representation may be used where one is dealing with numbers of the form + a x 2°.
For example, the first digit represents the sign, the next ten binary digits may represent the
exponent b, and the remaining 30 digits may represent the significant figures of the number
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in binary form. In this manner, with some loss of relative accuracy, a word can represcnt
numbers in the range between 4 230 x 2% 2,

In a similar manner instructions are subclassified into three classes. First, there are
command words of which there are 13 in the Zephyr. A command word is a 41-binary-digit
word, a portion of which determines one of the 13 operations, and the remainder of which,
in general, specifies four addresses in the memory. A second class of instructions are the
control words. Control words may serve as parameters that determine the number of repetitions
of certain routines; they may be the bounds used to stop certain computational processes;
or they may serve as factors in logical products or extraction operations. The third class of
instructions are called code words. A code word is a compact representation in one word of
several parameters that are needed to specify the operation of subroutines. Each subroutine .
extracts its various parameters from this one code word. Thus, one may specify a scalar
multiplication with only one code word. The appropriate subroutine in the calculator extracts
‘and properly places the various parameters from the code word. These parameters must
specify the common factor (that is, specify its address in the high-speed memory), the location
of the elements of the vector (say by specifying the address of the first element and the number
of terms in the vector), and where the result is to be placed.

‘We can summarize the various types of instruction as follows. A command word is a 41-
binary-digit word which the calculator explicitly understands and obeys. A control word is
not directly obeyed by the calculator nor is it a direct part of the calculation; it in some way
controls the course of the computation or enters into the arithmetic-like operations that are
performed upon command words. A code word is an abbrev1ated instruction that specifies in
one word a whole sequence of events for the calculator.

The high-speed memory will consist of a bank of cathode-ray tubes used in a manner
devised by F. C. Williams, of Manchester University, England.

This memory will have a capacity of 512 41-binary-digit words and will be able to dehver
any one of its words to the other units of the machine in about 20 usec. '

The high-speed memory will be divided into three parts: first, a part that stores the numeri-
cal information temporarily; -second, a part that stores the subroutines which are to be used
in the problem; . third, a part that stores that portion of the main routine which must be
stored in the high-speed memory. As the main routine is carried out new segments must be
read in, and in the course of doing the problem numerical information must be transferred
to and from the magnetic drum. If all the necessary subroutines cannot be stored in the
high-speed memory at once these, too, must be read in and out during the course of the
computation. _

The store, or low-speed memory, will consist of a magnetic drum with a capacity of 10,000
- words of standard 41-binary-digit length. It will have a multiplicity of reading and recording
heads so arranged that all the 41 digits of a particular word will appear simultaneously at
41 different magnetic heads. Thus, the access time for a word on the drum depends upon
the orientation of the drum when the number is called for, and will vary from a few
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micro-seconds to a maximum of 16,000 usec (the time it will take for the drum to make a
complete revolution).

In similar fashion to the high-speed memory the magnetic-drum storage will be divided
into three parts. One part will store the numerical information needed to do the respective
problems. A second part will store all the standard routines, such as division, floating opera-
tions, etc. A third part will store the commands or coded instructions of the main routine.
In our present experience the number of commands per routine seems to average around 30.
Thus, we could store 100 different standard routines on the drum and only take up 3000
words of storage. Most problems should involve only a few hundred instructions, say not
more than 1000. This leaves approximately 6000 words, which, for example, is ample room
for storing all the numerical information involved in solving 70 simultaneous linear equations.

~ A command word may be represented in the form «, 8, y, 8, F; «, 8, y, and 9, generally,
represent addresses or the position of words in the memory, while F determines which one
of the 13 commands is involved.

In normal situations the next command is specified by a fifth address, called &, which is
remembered by a binary counter in the control unit. Each time a command is obeyed the
number in ¢ is increased by unity; thus, the machine normally obeys a sequence of commands
coming from successive addresses in the memory.

There are three special commands wherein the next command is determined by the fourth
address, 6, of the present command. By the use of these special commands the machine may
transfer source of control with each command. When operating in this manner the machine
may obey any arbitrary pattern of commands in the memory. Naturally, the special commands
may be interspersed in any desired manner among the other commands.

In addition and subtraction operations the capacity of the calculator may be exceeded.
In case this happens the normal commands behave exactly like the spec1al commands; that
is, the next command is determined by the fourth address 8.

In order to explain efficiently the 13 commands, let us introduce the following notation.
Let w(a) denote the word stored in address «. Let the symbol — be read as “replaces.” Let
NC = w(6) mean that the next command the calculator is to obey is the word in address 8
of the memory. The 13 commands, their symbols and effects, and the next command are
given in Table 1.

Two principles have been followed in deciding upon the system of commands. The first
_is that there should be as few commands as possible so as to simplify the electronic circuitry.
(Actually, the electronic function table which interprets these commands has only 'eight
positions.) The second principle is that the commands should be as general as possible. For
example, the Extract Command (logical product) allows the use of any factor whatsoever,
and the elections in case of overflow are completely general.

One should notice that there is no Transfer of Control Command; the special commands
do this automatically. Also, there is no Halt Command; the Input Command with ¢ specifying
a nonexistent input device causes the machine to stop. Division is accomplished by a routine.
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Table 1. Commands, symbols, effects, and next commands.

Command Symbol Effect Next Command
Addition % By, 6, 4 | w(a) + w(f) >w(y) w(e);
, w(d) if overflow

Special Addition o, B, ¥, 0, 4, | w(a) + w(f) — w(y) w(d)
Subtraction a By, 6,8 | w(a) —w(B).~w(y) w(e); '
' ' w(6) if overflow
Special Subtraction | «, 8, 3, 6, S, | w(a) — w(B) — w(y) w(6)
Multiplication with | e, 8, ¥, 6, M | w(a) - w(f) rounded off to 40 digits | w(e)

Round-Off , and sign — w(y)
Special Multiplication | «, f, ¥, 0, M, w(a) - w(f) rounded off to 40 digits | w(0)

with Round-off ‘ and sign — w(y)
Exact Multiplication oc;. By, 6, P | w(a)  w(f) - w(y) and w(d) w(e)
Compare o, f, ¥, 0, C | Causes change in source of com-| w(e) if w(a) < w(f);

Special Compare

Extract

Inplit

- Special Input*

Output

o, ﬁ: Vs d, C1

) ﬁ: Vs 6:E

) ﬁ, Vs 6;-’

o, ﬂ, Vs 6: 11

o B, v, 0,0

. mand

"Causes change in source of com-

mand

w(p) is blanked (made into zeros)
wherever there are ones in w(a),
the result is shifted right or left
a certain amount as determined
by 6, the final result — w(y)

Information is transferred from an
input device determined by ¢ to
the address o in the memory

Incoming information goes to w(e)
instead of w(a)

Information is transferred from
address ¢ of the memory to the
appropriate piece of output
equipment as determined by §

w(8) if w(a) > w(p)

w(e) if |w(w)| < |w(B)|;
w(8) if |w(a)| > |w(B)|

w(e)

w(e)

In the case of the input and output commands § may specify that the
transfer is between the memory and the magnetic drum. In this event
y and part of § determine the address on the drum.

* This command is particularly useful in the process of initial input (that is, the process of reading-in infor-
mation when there are no commands in the high-speed memory).

It takes nine digits to specify an address in the memory. Thus, in the standard 41-binary-
digit words there are five digits left after one accounts for the four addresses. One of the five
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digits is used for checking purposes to hasten the detection of any error caused by the calculator
trying to obey ordinary numbers as commands. Three of the digits define the eight distinct
commands described earlier. The remaining digit defines modifications of five of the eight
commands, referred to in the table as the special commands.

Operations more complicated or more elaborate than those described in the discussion
~ of the 13 commands must be done by a sequence of commands called a routine or subroutine.
For example, division can be done by repeated subtraction if the appropriate routine is used.
The whole process of division, which may amount to 100 operations, can be completely
- determined by approximately 15 commands. Furthermore, various commands used in the
routine are repeated over and over again, operating each time on different numbers.

We cannot go into details of routines at this time. Suffice it to say that the subject is a
very interesting one and that there are many pitfalls for the unwary; for example, has “division
by zero” been taken into account?

In a general-purpose computer there are many relatlvely simple operations that we want
the calculator to carry out. For example, we want the calculator to perform division, floating
addition® and subtraction, floating multiplication and division, store-to-memory sequence
transfers; and many other routines. Each such routine can be represented by a single word.

Table 2. Storage of control words and interpretation routine.

Address Number Remarks
« f 'y & F
1 0 (= 000..-.00)
2 I’s, I’s, I’s, 0’s, I’s | Used to extract the § portion of a word
3 I’s, I’s, I’s, I’s, 0’s | Used to extract F portion
4 0’s, 1, 0%, 0%, 0’s | Used to increase # addresses by unity
5 0’s, 0’s, 0’s, 1’s, I's | Used to extract «, f, and y portions
6 1, 0, 1, 0’5,0’s | Used to simultaneously increase « and y addresses by unity
200 e Address 200 shall be used to store the present coded instruction
upon which the calculator is operating. This address plays a
role analogous to the control register which registers a command
word while the machine is obeying it.
201 e The five addresses following 200 contain an interpretation routine
to that keeps track of the coded instruction we are presently
obeying, and provides a method of entering the proper sub-
205 ‘routine. In this system there are no general “links” (transfer
. of control instructions) to tell the machine what to do when it
_ finishes the present subroutine; when each subroutine is finished
the control always returns to this interpretation routine
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If one were to try to build in circuitry to enable the calculator to perform all these tasks
it is clear that the machine would become so cumbersome from the circuitry point of view that
it would be almost impossible to construct, and, very likely, impossible to maintain in operation.
However, we have seen that a routine of standard instructions can be set up in the memory
whose effect will be to carry out such operations as those described above.

Before considering in more detail an example of an abbreviated code instruction we
will look into the storage of control words and examine the interpretation routine.  We
shall assume that control words and the interpretation routine are stored as indicated in
Table 2. o
Each abbreviated command will be stored in address 200 while it is belng obeyed A
portion of it (analogous to the function in the command word) is extracted and added to
a dummy command to arrange for an entry to the subroutine. The first step in the inter-
pretation routine is to read the code word from a general place in the memory into a fixed
place, address 200. Next the extraction and addition with the dummy command takes place.
This dummy command must be carried along to allow the command to be used over and over
(the old command which provided the last entry remains in the subroutine until such time
as it is replaced). ’ : v

The new entry shifts the source of commands into the subroutine. Each subroutine begins
with certain extraction and addition commands that split the parameters off the code word
in address 200 and add them into the appropriate blanks in the routine. The last command
to be obeyed in the subroutine refers the control to address 201 for its next instruction. This
address in turn specifies what coded instruction is to be transferred to address 200.

If we assume that fifty such abbreviated commands can be stored in the high-speed memory
and still leave sufficient room for the arithmetic data and the appropriate subroutines, then
either we must arrange that the interpretation routine counts and causes segments of the main
routine to be read in, or every fiftieth command must read in fifty new coded commands from
the main routine of the problem.

Consider the coded instruction

20, 18, 60, VC, 19.
This means that a constant in address 18 is to be multlphed by a vector of order 19 stored
in addresses 20, 21, - - -, 38 and the resultant vector is to be stored in addresses 60, 61, - R
78. Let us also assume that the above vector-constant multiplication coded instruction is
. stored in address 225. The sequence of commands is given in Table 3.

The vector-constant multiplication routine is chosen as an example since it clearly can
be considered as a unit in a higher-level program (for example, solution of simultaneous linear
equations) and it may itself control subroutines. For instance, the numbers may be stored in
floating-binary form and the command in address 306 would have to be rcplaced by a coded
instruction calling for a floating-multiplication routine.

We can imagine much more elaborate situations in which the main routine is given as a
sequence of coded instructions. Each of these coded instructions calls for a routine that is in
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Table 3. Sequence of commands for multiplication of a vector by a constant.

Next Command is
Determined By

The Command Is

Rcmﬁrks

w(201)

w(202)
w(203)

w(204)

w(300)
w(301)

w(303)

w(304)
w(305)

w(306)
w(307)

Last command of
preceding routine

&

1,225,200, 0,4 .

2,200,204, 0,E

205,204,204, 0,4

201,4,201, 300,4,

Takes (20,18,60,VC,19) to address 200

The “VC” [= 300] is extracted into address
204 to use as an entry to the vector-constant
routine

in 205 has the
[w(205)

A “dummy” command
extracted VC added to it
= 201,4,201,0,4,] '

Adds “1” to the “225” in address 4 of w(201)
to provide for obtaining the next coded
instruction

(The interpretation routine is now finished and we are about to
enter the vector-constant routine at address 300)

0(204)
[the 6 address
of w(204)]

&€

5(301)

5,200,204, 0,E

204,302,306, 303,4,;

3,200,204,1-32,E

904,306,204, 0,4
306,204, 0, 201,C

20, 18, 60, 0,M
306,6,306, 305,4,

Extract the ¢“20,18,60” of the VC instruction
into address 204. Note that using 204 does
not harm the interpretation routine

Extractee is added to dummy in 302 to
produce the first multiplication command
[w(302) = 0,0,0,0,M]

“19” extracted from w(200) and shifted left
into the « position in address 204

" A bound is produced in address 204 to tell

when to stop this multiplication process
[«(204) = 39,18,60,0,M1]

The process will be complete when w(306)
= 39,18,79,0,M and the source of com-
mand will shift to address 201

First product is done

Certain addresses of w(306) are increased by
unity and the calculator turns to the
command in address 305

turn. made up of coded instructions, and so forth, until finally one reaches subroutines whose
elements are commands that the calculator explicitly obeys.

One approach to the problem of keeping track of position as one drops from one hierarchy
of routine to another is by a process called reversion storage.* In this method a so-called queue
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is established which stores in reverse order the addresses one must return to after completion
of the respective subroutines in order to proceed with the problem.

Our approach to this problem has been to classify all routines into various orders. First-
order routines are made of units which are explicit commands that the calculator obeys.
There is no need for an interpretation routine for these routines since the & counter keeps
track of position here. Second-order routines are those whose elements are first-order routines.
Third and higher orders are similarly defined. For each level a different interpretation routine
must be used. Not only this, but one may need to use a certain coded instruction representing
a particular first-order routine as part of, say, a second-order routine and a third-order routine.
Therefore, a record must be kept of the level from which the entry was made to each sub-
routine. When that routine is finished the source of command will revert to the appropriate
place in the correct level. Thus, we see that the interpretation routine divides into several
parts (one for each order of routines used after the first) with a record section that stores the level
from which the entry to subroutines is made.

In a sense we have made the situation two-dimensional. There are discrete levels on which
we may operate with the record portion of the general interpretation routine controlling the
choice of levels. '

Success of a system like this simplifies coding by putting more of the responsibility for
routine operations upon the calculator.

NOTES

1. The term ‘“‘abbreviated-code instruction’” was developed at the National Physical Laboratory,
-England, in a group headed by Dr. A. M. Turing of which the author was a member.

2. The term “store” was used by Charles Babbage of England, who is credited with being the
first to design an automatic calculator. In England the term “store” is commonly used when referring
to the “memory.” Note that in this paper its use is restricted to the low-speed memory. ’

3. When two numbers of the form a x 2% are to be added, one must be shifted until they have
the same exponent. ‘

4. This approach was developed at NPL. See note 1.



Static MAGNETIC DELAY LINES

WAY DONG WOO

Harvard University

The magnetic delay line is a storage device which is built of rectifiers and transformers with
cores made of ferromagnetic material that has nearly rectangular hysteresis curves. As shown
in Fig. 1, a binary “1” is stored in a magnetic core as a residual magnetism in one direction,
while a binary “0” is stored as a residual magnetism in the opposite direction. The difference
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" between this storage device and the conventional rotating magnetic drum or tape is that the
storage medium is not moving. The information is recorded in discrete cores instead of on
small spots in a continuous medium. »
To record a binary a positive magnetizing current is applied and to record a binary

“0” a negative magnetizing current is applied. After the magnetizing-current pulse is over,
the information will be preserved until another magnetizing force passes through the arc.

“l”

In order to read out the information without mechanical motion, it is necessary to apply
a probing magnetizing force H’, which is obtained when I’ is applied. If the digit is a binary

“1,” then a large flux change occurs and a large induced voltage ¢, is obtained at the output
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winding. If the digit is a binary 0,” little voltage is induced. Thus the digit stored is indicated
by the magnitude of the induced voltage when a probing current is applied.

The residual magnetism remains essentially the same before and after a sufficiently small
probing current. However, application of another probing current of the same magnitude
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F R o
ANV
(c )PATHS OF OPERATION WHEN DIGIT STORED IS |.

F1c. 2. Diagrams to show basic operation.

will produce a very small change of flux no matter whether the original state of the core is
“I”” or 0. After a small H’, repeated application of H’ will only describe the minor hysteresis
loop shown at 1’; Thus, after the information is read out once, it can be considered destroycd
unless one resorts to increasingly large probing currents.

If a probing current large enough to reverse the saturation is applied, a very large 1nduced
voltage results. It is so large as to be able to reverse saturation of another core of identical
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construction. Referring to Fig. 2(a), if both cores were saturated in the negative direction
originally, repeated application of I, and I, will not change the saturation of either core, as
shown in Fig. 2(b), and little voltage is induced at the output winding. One can consider
this as a “0” stored in this pair of cores. If, however, core number 1 is positively saturated
originally, application of Z; will cause flux @, to change from positive saturation to negative
saturation. The voltage induced in the link winding will produce a current that opposes
the effect of I,. This current causes the flux in the second core to go to positive saturation
even if it was originally at negative saturation. Now, if I, is applied to the second core, the
flux in this core will go back to the state of “0”” while that of the first core will go to the state

of “1.” Alternate application of I, and I, will result in an exchange of “1” from one core
Co C, Co Cs
a a (] ] '.
[ K 4 1ﬂ, !
1 S 1 . g /Jv
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Fic. 3. Circuit diagram of magnetic delay line.

to the other, and there is an induced voltage at the output wmdlng on every I, and I, pulse.
Thus a digit “1” is stored in this pair of cores.

From the basic mode of operation, a number of cores are connected as shown in Fig. 3.
The coils are wound so that the advancing current pulses produce a negative saturation
corresponding to “0.”” The series rectifiers in the link winding are such as to stop any current
in the link windings that would produce a negative flux. Consider now the case of the cores
C; and C, having negative saturation. Then application of advancing current pulse 7, will
have no effect at all, and both cores retain their “0.”” One can also consider this as a ““0”
having been passed on from C; to C,. On the other hand, if C, is positively saturated but C,
is negatively saturated, when advancing current pulse 7, is applied, C; will be saturated nega-
tively, and the current in the. circuit linking C; and G, will saturate the latter positively. Core
C, returns to “0,” while C, takes on the “1” that was originally in C,.

The rectifiers in the circuit prevent the effect of changes of flux in other cores on the two
cores considered. The shunt rectifiers will prevent positive linking current in core C, when C)
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reverses saturation from “1” to “0” and produces the driving voltage so that the ‘1> does not
go in the backward direction. However, it will have no effect when the driving voltage is
from the C, because in this case the point a is at higher potential than b, while in the former
case, a is at a lower potential than 5. .

The series rectifiers prevent the effect on C; when a “1” is advanced from C, into C,. As

(6)

Fic. 4. Flux in a given core as a function of time:
(a) information rate, 3 kc/sec; information = 0111;
(b) information rate, 30 kc/sec; information = 1000.

the flux in G, goes positive, the voltage induced in the link winding to Cj is such as to produce
current causing negative flux in both C, and C;. This current is prevented by the series rectifier.
Aside from isolating Cy from C, this rectifier also makes change of flux in C, from negative
to positive easier. v

* Since each core when pulsed advances its stored digit only to the next core and has no
effect on any other core, it is possible to advance a digit from every other core at the same
time. Thus the advancing current windings of every other core are connected in series. The
advancing current pulse J; will step the digits in all odd cores to the even cores, and the
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advancing current pulse , will step all the digits in the even cores to the odd cores. A pair
of the alternate pulses will cause the digit to step two cores, which are considered as one unit
of storage.

It is obvious that material having a nearly rectangular hysteresis loop, high retentivity,
and low coercive force is required. The cores are made of wound strips of Deltamax (manu-

Fic. 5. High-speed magnetic delay line using
selenium rectifiers.

factured by the Allegheny-Ludlum Steel Corporation) of about four convolutions. The
diameter is § in. and the strip is § in. wide and 0.001 in. thick.

At present the maximum speed is 30,000 digits (i.e., 30,000 digits can be stepped through
each unit of storage) per second. There is no lower limit of speed. The system acts like a
system of trigger pairs, where digits are stepped from one trigger pair to the next. The fact
that the speed is entirely controlled by the rate of advancing current pulses makes it a very
useful intermediate storage system between two systems of widely different information rates.

Fic. 6. Five-digit magnetic delay line.

Figure 4 shows the flux in a given core as a function of time when the information rate
is (a) 3000 and (4) 30,000 digits per second. Figure 5 shows a ten-digit magnetic delay line
on a breadboard. Figure 6 shows a five-digit line mounted on an octal plug.

Professor Howard H. Aiken, the director of the Harvard Computation Laboratory, proposed
this form of storage device, and Dr. An Wang has done most of the work to make it successful.
Special acknowledgment is due the Allegheny-Ludlum Steel Corporation, which has co6perated
actively with the Computation Laboratory and has supplied all the core material.
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COORDINATE TUBES FOR USE WITH ELECTROSTATIC
STORAGE TUBES

R. 5. JULIAN and A. L. SAMUEL

University of Illinois

One of the basic problems in connection with high-speed digital computers is that of
storing the necessary amount of information which must be available at high speed as needed
in the course of computation. As the speed of computing systems increases and as the amount
of storage is also increased, the problem of locating any desired information becomes more
acute. With this in mind, a research program was instituted at the University of Illinois to
develop precise and rapid methods of locating stored information. Recent developments in
. storage systems in which continual memory refreshing is employed have somewhat reduced
the long-term stability requirements, at least for these cases, so that the system to be described
may not be needed. However, the system does possess a number of unique features which
were thought to be of general interest and to warrant description. When and if storage systems
progress to the point that a very much larger number of digits—say 10%—can be stored in
one electrostatic storage tube, then the need for precise locating equipment will again be
urgent regardless of the type of refreshing used and the present scheme may warrant investi-
gation.

We will assume that the 1nformat10n is stored in a binary code on the surface of target
plates in tubes of the cathode-ray type and that the system envisions the requirement that
any one bit of information should be obtainable on demand without regard to its particular
location on the screen. To make the matter still more definite, we will assume that a bank of
40 such tubes are to be operated in parallel and that individual digits of a 40-digit code are
stored in corresponding locations in the forty different tubes; we would then like to be able
to locate these 40 digits simultaneously. :

To make this possible we propose to combine these 40 cathode-ray tubes. together with
two special codrdinate tubes into a master-slave relationship in which all of the tubes are
connected to the same power supply with their corresponding deflection plates all tied together.
There will then be a one-to-one correspondence between spot positions in the different tubes,
although distortions- may occur in the mapping from one tube to another as the result of
minor differences and imperfections in the tube structures. If now some independent means
~is provided for precisely identifying specific spots on the screen of one tube, which then acts
“as the master, such that the beam of this tube can be returned to these spots with certainty

when desired, the beams of all the other tubes will be returned to the corresponding spots
in these tubes quite independently of any distortions that may occur in the different tubes.
This will be true for a group of tubes that are structurally quite different as long as the other
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voltages on the tubes are maintained constant. If the tubes are reasonably similar in their
geometrical construction, it will still be true to a high degree of accuracy when these other
voltages are allowed to vary within the usual engineering limits. It is only necessary, therefore,
to introduce auxiliary beam-locating equipment into the master tube in order to control the
motion of the spots in all the slave tubes to the desired accuracy. Furthermore, it is quite
feasible to control the horizontal motions of the beams in the slave tubes with one master tube
while at the same time controlling the vertical motion of the beams with a second master tube.
The master tubes need not contain provisions for storage and they can be specialized to the
necessary extent to perform their control functions, all the while preserving their essential
similarity to the slave tubes in regard to one of their deflecting systems so as to retain the
desired mapping characteristics. -

Models of two quite different types of master tube have been constructed. Tests made
on these tubes will be described later. Both types of tube are similar to the extent that they
provide a definite number of stable beam positions (in this case 32) by means of mechanical
positions on target plates contained within the master tubes. The beam position is maintained
by means of servo amplifiers which obtain their input signals from the beam currents associated
with the target plates. .

" The basic principle underlying the control system can be illustrated by reference to Fig. 1,
which shows a system in which there is but one stable position. A single-stage amplifier is
“used in the illustration to simplify the discussion. Assume that the beam of the tube has been

deflected so as to strike the top portion of the second plate. All the current of the beam will
then be to this electrode.” The voltage produced by this current in the grid resistor of the
amplifier tube (augmented by a d.c. grid bias) will cause the control tube to be biased nearly
to cutoff. As the result the plate current will be small, and the tap on the plate power supply
will be set at a value that will cause the beam to be deflected downward. Alternatively, if the
spot had been deflected downward so as to strike the interceptor plate only, there would be
no current in the grid resistor, with the result that there would exist an appreciable plate
current. With proper adjustments the resulting negative voltage across the plate resistor will
exceed the positive bias on the vertical deflecting vane and the beam will be deflected upward.
Obviously there exists but one stable equilibrium position in which the division of beam
current between the target and the interceptor is such as to produce no net deflecting effect.
If the amplifier circuit is properly designed to prevent hunting, any deviation of the beam
from this equilibrium position will bring into play the necessary restoring forces to return
the beam to the desired location. On the basis of this scheme, it is a relatively simple matter
to visualize the interceptor electrode in any one of several forms such that there may exist a
multiplicity of stable positions separated by regions of instability. Given a scheme for stepping
“the beam from one stable location to another, the necessary elements for the master tubes
are evident.

While it would be possible to step the spot from a starting position to any desired ultimate
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position by a series of equal steps, economy-of-time considerations suggest the desirability of
utilizing steps of different sizes corresponding to the particular number system used in specifying
the address (which in this case is binary). If information defining a desired memory location
is supplied to the tubes in positional-notation form, then two possibilitiés exist: either this

Fic. 1. Principle of stabilization.

information can be supplied in timed sequence or it can be supplied simultaneously. These

two alternatives have resulted in the development of two quite different types of coérdinate
tube. '

A simplified form of the serial coérdinate tube is shown diagrammatically in Fig. 2 (in
this case for only 8 stable positions). A comb-shaped interceptor is used in which the slots
between the teeth are cut to different depths. The vertical position of the beam in this tube
(which will be assumed to bé acting as the master governing the vertical motion of the beams
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FIG 2. The serial coérdinate tube.
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Fic. 3. The storage locating system shown with a single slave tube.
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in the storage tubes) is controlled by the servo amplifier, the polarity being such that the beam
is stable when partially intercepted by the top of any one tooth. The horizontal position of
the beam in the master tube (i.e. the one controlling the vertical motion of the beam in the
storage tubes) is, however, subject to independent control, there being three column positions
corresponding to different columns in the binary-notational number system. The beam will
be assumed to be initially deflected to the position labeled 1 in the figure. This corresponds
to the starting position before an address has been located. We will assume that the desired
address is the fifth slot, which in binary notation is 101, and that digits corresponding to this
binary number are transmitted to the tube in timed sequence with provision for stepping
the beam from column to column between these periods. With the beam in position 1, the
first digit of the address is supplied through the circuit designated at the twitcher. This supplies

F1c. 4. Photograph of the serial tube.

to the deflecting plates a step voltage which transports the spot upward beyond the first slot
so suddenly that the servo amplifier is practically not effective. The amplifier then continues
to deflect the beam upward until it comes to rest at the next stable position, labeled 2 in the
diagram. The column-control circuit then deflects the beam to position 3, where it is ready
to receive the second digit of the address; in the present case this digit is zero, so that no signal
is supplied from the twitcher circuit and the beam remains in position 3. The horizontal
position of the beam is then moved to the next column and the final digit of the address is
supplied, causing the beam to step to position 5. This then is the desired location.

If we assume that the tube just described was controlling the vertical position of the spots
in the slave tubes, a similar master tube could be at the same time controlling the horizontal
positions of the beams in these same slave tubes, with the result that the desired address would
be located in a time required to transmit the three-digit address code for either the horizontal
or vertical positions. This is shown in Fig. 3, where, for simplicity, only one slave tube is drawn.

A simple method of returning the beam to the starting position is also illustrated in Fig. 2.
It is only necessary to move the beam to a restoring column on the right to cause it to be

101



R. S. JULIAN AND A. L. SAMUEL

returned to the desired horizontal position; it can then be deflected to the left at position 1
as shown. A number of quite different stepping arrangements have been proposed and
investigated, but since the one shown in Fig. 2 proved to be the simplest and most reliable,
these other schemes will not be discussed in detail.

Several characteristics of this scheme warrant special attention. It
will be observed that the address must be supplied in time sequence
and in the normal forward binary notation rather than in the reverse
binary notation which is frequently employed in serial machines for
the numbers on which arithmetic operations involving carry are per-
formed. This must be carefully noted but should cause no trouble
except in those cases where arithmetic operations are performed on

addresses. The use of a timed-sequence address allows a simple master-
; tube construction having only a single output lead. While the tube
¥, 5. Actusl is essentially a digital device, the beam is stepped across the slots in

sequence of steps to  the target plate by means of an applied voltage. It is important to

locate the position

11101 on the serial
tube.

2

observe that the tolerances on this stepping voltage are so great as not
to nullify the digital principle of operation. The most severe require-
ments on this stepping voltage occur when the spot is in the last
column, in which position the amplitude of step must vary by about 4 50 percent to cause
failure. This can be seen by studying the form of the coérdinate tube output current as a
function of beam position in Fig. 12. A photograph of an experimental codrdinate tube of the
serial-address system is shown in Fig. 4. Figure 5 is a photograph of the screen of this tube
showing the sequence of positions occupied by the beam in going through a complete cycle to
locate the address specified by the binary number 11101.

Fic. 6. Photograph of the parallel coérdinate tube.

A distinction between the use of a serial or parallel address code and the operation of the
complete computer on a parallel basis should be noted. In the system just described the
address is supplied to the coordinate tubes in time sequence, but since the master tubes control

40 slave tubes each containing one digit, the stored information is available for use in a parallel
adder if this is desired.

If a parallel system is envisioned, it would be more logical to supply the address to the
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codrdinate tubes in parallel rather than in timed sequence. For this reason a second type of
beam-position tube, shown in Fig. 6, has been constructed. Structurally this tube is similar
to the one just described in that it consists of a cathode-ray tube with a special target replacing
the fluorescent screen. However, this target now consists of a metal plate containing vertical
columns of windows, the vertical position of the beam being stabilized at one of eight locations
determined by each of these windows.

The principle of operation is as follows. The electron beam is swept horizontally by a
sine-wave generator at a speed that is high compared to the vertical operating speed. We
have found it convenient to use a 30-Mc/sec oscillator for this purpose. The trace of the
sweep spans all of the vertical columns of windows, as shown in Fig. 7. Wherever the beam
encounters a window it enters and impinges upon one of the curved metal surfaces which
may be seen behind each column. The secondary electrons ejected from a given one of these

“surfaces will either arrive or not arrive at a collector C, according as the bias upon the corre-
sponding grid G is positive or negative. The current to the collectors produces a voltage drop
which is then amplified by a high-frequency amplifier, and rectified, and the output voltage
is supplied to the vertical deflecting plates of the tube in such a way that the vertical position
of the beam rises as long as the secondaries in one or more columns reach a collector.

With this mechanism in mind we can now see how the beam finds the proper vertical
position. The binary digits of the vertical address are applied as biases to the grids G, positive

“bias if a digit is one and negative if it is zero. The most significant digit is applied to G1,
the next to G2, and so forth. As may be seen now by studying the positions of the windows in
Fig. 7, the beam will rise to a unique position for each three-digit number applied to the grids
if the initial position is near the bottom where the beam encounters windows in each column.
For example, in the figure the beam is shown in the 010 position; only column 2 is open so
the beam rises to the upper end of the lower window in this column and stops. Had the address

~ been 110, the long window in column 1 would have bridged the gap between windows in
column 2 and the trace would have risen to the top of the upper window in column 2. The
zero position of the beam is established by cutting away the lower portions of the secondary
emitting surfaces so that the primary beam can strike the collectors. This can be seen in
columns 2 and 3 of the figure.

The over-all speed of this type of codrdinate tube is somewhat better than that of a serially
operated tube because the beam need stop only once in its search for an address. The tube
also avoids the need of a direct-coupled external amplifier and column-stepping equipment.
On the other hand, the high-frequency amplifier required by the parallel tube needs more
gain than does the direct-coupled amplifier of the serial tube. The parallel tube itself is fairly
complicated, and the over-all complexity of the two systems seems to be about the same.

In any application of coérdinate tubes, the speed of ‘operation is likely to be a matter of
primary interest. While the over-all speed may depend upon the computer as a whole, certain
limitations inherent in the coérdinate tube itself may appropriately be discussed here. These
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limitations are essentially those that are encountered in any feedback amplifier because of
parasitic capacitance and finite tube transconductance, and are associated with feedback
stability. ' '
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Fic. 7. Principle of the parallel tube.

In either of the two types of tube, the beam is expected to rise during switching until some
edge of the locating comb is encountered and there to remain. For example, referring to Fig.
2, suppose that the beam is given a vertical twitch so that the feedback system causes it to
rise from position 1 toward position 2. When the spot reaches the open slot it must not cross
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the slot because the feedback system would then cause it to rise still farther to some undesired
position. This places a restriction upon the speed with which the spot may be allowed to
move relative to the speed of response of the stabilizing amplifier. Moreover, when the spot
is resting in some position the feedback system should cause it to remain quiescent; that is,
the feedback loop should be stable. These two requirements are somewhat similar, the second
being ordinarily the more stringent.

The basic factors upon which these two types of stability depend may be understood by
analyzing in detail a specific typical system, first for overshoot and second for static stability.
The system considered is that shown in Fig. 8.

The following nomenclature will be used:

Cy, total amplifier output capacitance including the collector electrode of the coérdinate
tube;

d, equivalent spot diameter;

D, deflection sensitivity of codrdinate tube;

&m» Mmutual conductance of each amplifier tube;

G, zero-frequency gain per stage [= g,R];

i, net beam current to collector;

L(w), total gain ratio of feedback loop;

N, number of amplifier stages;

R, interstage shunt resistance;

S, vertical position of spot;

t, time;

v,, output voltage of nth amplifier stage;

W, slot width;

w, angular frequency.

With the electron beam in the position shown in Fig. 8, the beam current 7, charges G,
at a certain rate. The rising voltage across C,, when amplified, causes the beam position to
change at a rate given by . _ _ .

o s T
&=C, G"D. (1)
When the spot position reaches the lower edge of the slot, the current in C, abruptly stops (in
~ this part of the analysis the beam focus is assumed to be infinitely sharp). The requirement
we wish to impose, then, is that the spot cease rising before it has travelled one additional
slot width.

To calculate this we must know the response of the amplifier to an abruptly starting or
stopping linearly rising voltage. For the amplifier shown in Fig. 5 we find that

Vigr = CGe-mfone”dx, x>0 (2)
0 . .
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ifall o,’s are zero for x < 0. In this expression x = ¢/RC. If we take
» vp=0fort <0

and
vo=uatfort >0, (3)
where a is constant, then Eq. (2) gives ' '
n—1
v, = ARCG™ [x —n+ e""z z ; k x’“]. (4)
0

If the deflecting voltage of the codrdinate tube is the output v, of the last amplifier stage,
Eq. (4) says that the ultimate (¢ > RC) motion of the spot is given by

S = atG¥D—aNRCG?D. : (5)
The second term of this expression is the ultimate lag of the spot behind where it would have
been with a perfect amplifier and the input given by Eq: (3). Since this is a linear analysis,
this lag is the same as the overshoot when the beam reaches an edge after long travel. Com-
paring the two terms in the right-hand member of Eq. (5), we see that the overshoot is

ds :

| | dt’ ‘
where ds/dt is the speed with which the spot enters the slot. The condition that the overshoot

be less than one slot width, therefore, is
L
dt <~ NRC’

NRC

which may also be written
‘ ds Wg, '
The condition that the spot in a coérdinate tube shall not overshoot its mark too far must
certainly be met if the tube is to operate at all. Beyond this one might demand that the spot
ultimately come to complete equilibrium and not dance about on the edge of the slit. Whether
or not the spot will do this evidently depends upon the behavior of the complete feedback
path, including the effect of finite spot focus. The feedback loop may be characterized by

means of the complex loop gain, which for Fig. 8 is
, WDiRGY - o
L) = 77 mR G T 7)
d(1 + joRyCy) (1 + jwRC)
when expressed as a ratio. In this expression d is an equivalent spot diameter defined as the
diameter the spot would have if the rate of variation of collector current with the elevation -
of the spot on the slot edge were constant over the sgot diameter and equal to the actual rate
at the equilibrium position. This gives a dimension that is proportional to diameter for similar
spots and is of the same order as the visual spot diameter on a fluorescent screen.
The condition that the spot come to equilibrium can now be obtained from Nyquist’s

criterion for the stability of a feedback loop. This criterion is that the complex variable L
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Fic. 8. System used to analyze stability.
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not encircle the point — 1 as o traverses the real axis from — o to + c0. Examination of
Eq. (7) shows that this requires that ' . ’ '

. ku
. sin 57
7o 2N dg,,
-~ G"D < AA s
Co cos? o GC
2N

since L(0) > 1. Makiﬁg use of Eq. (1) this inequality becomes

ds dg,, .
7 < Ex5ce NGC® (8)

where K is a number of the order of unity.

Comparing (8) with (6) we see that the allowable spot speed for absolute stablhty is less
than that for which the spot simply will not overshoot a slot in about the ratio of the spot
diameter to the slot width. It is interesting to note that all factors descrlbmg properties of
the amplifier enter both (6) and (8) in the same way.

The facts that must be considered in choosing the parameters of the amplifier system to
operate a cobrdinate tube are relations (1) and (8), and a statement (9) of the maximum-
deflection which the amplifier must produce. Collected, these are -

ds 1y . :
ds . dg,, ;
@ <Exce | (8)
and : ' »
Smax = toRyGVD. ) (9).

When a specific coérdinate tube is in mind the quantities D, W, i, d, and G, may be
considered known. For fast operation, one would first of all choose an amplifier tube with
as high a ratio g,,/C as possible so as to make the allowable speed high as given by (8). Further-
more, for a given total amplifier gain G¥ the right-hand member of (8) is greatest when the
stage gain G is 2.718. A logical design would be to choose this value of stage gain and then
increase the number of stages so long as the spot speed given by (1) remains consistent with (8).
Since this may require N to be as small as two or three for present tubes, some readjustment
in the value of stage gain may be desirable. The resistor R, is then chosen so that the maximum
deflection as given by (9) is 50 percent or so greater than the actual excursion over which the
spot must stabilize. There are, of course, the usual matters of drift, dynamic range, allowable
grid resistance, etc., to be considered in fixing the design. ‘

The general considerations Jjust ‘giVen apply to the high-frequency amplifier of the parallel-
type tube as well as to the low-pass amplifier. In the high-frequency case, however, the speed
obtainable with a given type of amplifier tube is less than for the low-pass amplifier for two
reasons: first, the speed is reduced by a factor of two because of the double-sideband operation;
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and second, the value of high-frequency resistance R, required by the design procedure
outlined above cannot be realized, and more than the optimum number of stages must therefore
be used. ‘

A number of experimental tubes have been built in the tube-construction laboratory of
the University of Illinois. Two of these tubes are shown in Figs. 4 and 6. Except for the
special target structures these tubes were made from standard cathode-ray tube parts. They
have 32 possible spot positions determined by a five-binary-digit address. The operation of
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Fic. 12. The output current from the serial tube as
a function of beam position when the beam is swept
across the smallest steps. ‘

these experimental tubes has been studied by means of special control-signal generators. A
block diagram of the equipment for the serial tube is given in Fig. 9 and detailed schematic,
in Figs. 10 and 11. This test equipment supplies the necessary signals for any address, either
singly or repetitively, at a pulse rate up to about 200,000 pulses per second. A type S5UPI
oscilloscope tube, all of whose electrodes are in parallel with those of the coérdinate tubes
allows one to observe the path of the electron beam under various conditions.

By means of this equipment the effect of the various parameters of the tube and stabilizing
amplifier upon the speed and stability of the system have been observed. The principle
characteristics of a typical experimental tube are as follows: bulb diameter, 3 in.; number
of teeth, 32; slot width, 0.032 in.; electron gun, 5U type; beam current, 10 xa; spot diameter,
0.010 in.; deflection sensitivity, 0.010 in./v; capacitance Gy, 50 yuf. This tube, when used
‘with a two-stage stabilizing amplifier for which g,, = 4000 gmhos, € = 20 uuf, and G = 10,
should be limited by overshoot stability (6) to a spot speed of about 5 teeth per microsecond.
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This speed at which the spot will no longer lock in has been verified experimentally. It has
also been observed that when the feedback-loop parameters are such that the speed is more
than about one-third this great, the spot does not sit still but oscillates up and down on the
edge of a slot. This observation checks (8) for the focus condition ordinarily used. The
compromise between beam intensity and focus found most satisfactory is a spot diameter of
about one-third of a slot width. Figure 12 shows the variation in collector current as thc spot
is moved over the smallest teeth with this focus condition.

~Serial tubes also have been constructed in which the form of the comb was merely painted
onto a piece of aluminum with India ink, rather than being a cutaway structure. This arrange-
ment makes use of the difference in secondary emitting properties of aluminum and carbon.
This method of constructing targets has the advantage that the target may have any outline
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FIG. 13. The output from the parallel tube.

without regard for mechanical continuity of its parts. The two-piece cutaway target of Fig. 2
-1s, of course, more uniform in output than is the secondary-emission target.
Two types of parallel tube have been built: that shown in Fig. 6 and an earlier design

" without grids. In this simpler design a column is shut off by biasing the collector in the column

negative so that the secondary electrons cannot reach it. However, the signal induced in the
collector circuit by the secondary-electron space-ch'arge cloud requires fairly large collector
biases for its suppression. Figure 13 shows that an “open-closed” signal variation of 35 db
is obtainable by the use of 200 v negative bias. The grids were placed in the later design so
that smaller bias voltages would be effective. It was also expected that these grids would
increase the “open-closed” discrimination by shielding the collectors from space charge since
these grids were held at ground-high-frequency potential by built-in by-pass condensers.
Unfortunately, owing to the difficulty of effectively grounding the entire target structure to
the outside equipment, this improvement was not realized. Poor triode geometry also contri-
buted to making this design less effective than the simpler arrangement.

The support givcn to this study by the Navy Department, Oﬂice of Naval Research, is
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gratefully acknowledged. Most of the experimental work, including the construction of the
" experimental tubes, was done by Messrs. Robertson, Peiffer, and Haynes, graduate students
in Electrical Engineering at the University of Illinois.

APPENDIX

HARMONIC OUTPUT OF PARALLEL-TYPE TUBE

As the electron beam scans sinusoidally across the windows in the parallel-type coérdinate
. tube of Fig. 6, it produces current pulses to the collectors C of any columns that are not shut
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Fic. 14. Analysis of the output from
the parallel tube. :

“off by the grids G. In order that the tube may function properly, these various pulses must
all add in phase, and each pulse should contribute about equally to the output signal. The
following analysis discloses the conditions under which this will occur.

The complex output current may be taken as the Fourier series in wy, that is,

4 i) = 3 ajeinor, (1A)
where the complex constants a, are given by _
1 (=, .
@ =75 f_ ”z(t)e—ﬂ"“’ﬂ‘ d(wgt)- ‘ (2B)
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Putting into Eq. (2A) the output current i(t) due to a smgle open column located as shown
in Fig. 14, we get ’
1, AP X,
a, = — [sm (n cos™1 —1) — sin (n cos—?! ——2)]
n Xo %o

Hence, the rms collector current in the ath harmonic may be written

i, = V2l [sin (n cos™1 i)] R (3A)}
n Xo/ 1.

0
where A [ ] means the value of the function in brackets at », minus its value at x,.
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Fic. 15. Second-harmonic output curve;
/A = (second-harmonic current)/0.2251;.
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Since a, comes out real regardless of the values of x, and x,, we see that the currents from
any number of open slots will be either in phase or 180° out of phase. The total current in
a given harmonic may readily be obtained for any placement of open windows from a graph
of the function in brackets in Eq. (3A). This is illustrated in Fig. 15, where the function is
plotted for n == 2. From Fig. 15 it is apparent that if the peak-to-peak sine-wave sweep is
about twice the total width occupied by the windows then all pulses will add in phase and
will contribute about equally.

The curve corresponding to Fig. 15 for the fundamental (n = 1) is a semicircle centered
at zero. From this or direct physical reasoning, one sees that a window at the center of the
sweep produces no fundamental output, and windows on opposite sides of the center tend to

cancel. For this reason and because of shielding problems, the second harmonic rather than
the fundamental output is used.
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Basic Aspects oF SPEcIAL COMPUTATIONAL PROBLEMS

HOWARD T. ENGSTROM

Engineering Research Associates, Inc.

This Symposium is impressive, both because of the large number of members and guests
present and also because of the fearful and wonderful developments which have been and
will be revealed in the papers presented here. The preceding papers on this program have
been concerned largely with specific engineering developments; - I should like to digress briefly
and discuss some important factors of the general problem of procuring effective computing
machinery. _ .

I should like to emphasize, first, that the objective of all work on calculating machinery
is to produce computational results. In spite of the large amount of activity in connection
with the development of digital calculating machinery, I think it is a fact that nearly all of
the computational results so important to our national defense and industrial economy are
still produced by traditional methods. Most of the computational results are still. obtained
by machines of the desk calculator type, supplemented by the excellent machinery of the
International Business Machines Corporation, Remington Rand, Burroughs, and others,
including, particularly, such notable individual contributors as Professor Aiken, who has
been responsible for the development of both numerical techniques and machinery for carrying

"them out. S

Not very long ago, a war for which this country was unprepared found us equally unpre-
pared to carry out many necessary computational problems. The procurement of adequate
cquipment to carry out these problems was a matter of great difficulty. In the light of the
critical international situation in these postwar days, deep consideration should be given to
the basic problem of procurement of this computing equipment. .

In any discussion of a computational problem an immediate question is “Shall we use
general purpose equipment, or design special equipment for this particular need?” It is
axiomatic that any given computational process can be carried out more efficiently (i.e.,
cither more rapidly or with less extensive machinery, or both) by equipment désigned especially
for the purpose. However, the decision between special-purpose and general-purpose equip-
ment is difficult to make. It depends upon a number of factors related to each other in a
complicated way. It depends not only upon the technical character of the problem but also
on economic factors, the work load, and so on.,

If solution time is not the most important factor, it is quite possible that general-purpose
equipment may be preferable because of its versatility. If general-purpose equipment is
obtained it can be applied later to other problems, as they arise. One activity equipped with
general-purpose machinery which comes to mind immediately is, of course, the Computation
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Laboratory at Harvard. Although this laboratory is devoted primarily to research into
methods of computation, rather than to the actual performance of computing services, it
has done much of the latter. Other general computation facilities are centered at the National
Bureau of Standards. Some such services, notably in England, have been set up under private
enterprise. The International Business Machines Corporation provides services of this char-
acter, particularly in connection with their large-scale computer in New York, although this
service is again primarily scientific in objective. Some bureaus and divisions of the government
have found the volume of individual computational problems sufficiently great to warrant
'setting up laboratories of general-purpose computing equipment to carry out services of this
character which arise within their particular divisions. , :

At the other extreme are the computational problems requiring a large volume of specialized
.work of a repetitious nature where the load is kept constant. In these situations special-purpose
equipment is the obvious choice. I shall sketch briefly some examples of specialized problems
requiring extensive repetitive computation at nearly constant work load.

The airport facilities and the airways of this country are being subjected to increasing
congestion, particularly under adverse weather conditions. The problems of air-traffic control
and airport time utilization are essentially computational in ‘character. They are problems
of automatic continuous inventory. With respect to the airport time-utilization problem, the
basic preliminary design plans for equipment that will solve it have already been prepared.
This equipment will store information on airport runway assignments by hour and minute,
classified as to class of aircraft and arrival and departure times. The proposed equipment will
supply this information upon inquiry and will change the stored information to conform to
changing situations occasioned by weather conditions. Supplementary information, such as
the identity of the plane and its route, likewise will be made part of the record. . '

Present control equipment in general use performs no computations, and even the most
routine decisions are presently made by human controllers. Eventually it is planned that the
input and output to airport time-utilization equipment will come from communication
channels, and that the proposed equlpment ‘which I have descrlbed very brleﬂy, will be used
at all large airports. :

This is a typical problem in which the use of special computational equipment is necessary.
The development of such equipment must be pursued strenuously, and its installation en-
couraged. Operational control of large numbers of aircraft is of vital importance; the nation
may be faced with a need for a practical solution of this problem on short notice.

Although of limited sophistication, the problem of reservation control also is one of impor-
tance. Those of you who spent valuable time during the war sitting in airports in far-off
places waiting for air transportation, or in railroad stations attempting to get railroad trans-
portation, realize this only too well.  Technical methods of a computational nature for the
solution of these reservation problems have been proposed. The basic reasons why this type
of service is not yet available are nontechnical in character. They depend upon operational
and financial conditions. For example, these are the questions which arise: Is it better for
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cach airline to maintain a single reservation control, centrally tied in by communication lines
to its outlying offices, or to maintain separate centers in the major cities from which it operates?
Is it preferable for the airlines to combine their reservation control on an intercompany basis
in each major center? To what types of transaction must computational equipment provide
the reply? Answers to these questions are being sought by the Air Transport Association and
committees consisting of representatives of commercial airlines.

Another field in which large-scale computing is required and in which the arlthmetlc is
straightforward can be designated under the heading of inventory control. Many important
problems in this field are being handled adequately now, but the earlier years of the last war
may be characterized by the statement “‘too little and too late,” largely because of inadequate
inventory control. The later years of the war were marked by the rise of priority systems and
the resulting controversies. One basic assumption which may be made is that any future
wars of these United States will be fought in the economy of limited scarcity. - This means that
improvement in the methods of the control of inventories must continually be carried out
and that plans should be made to speed up even those methods that are satisfactory now.
Applications to these problems of techniques such as those discussed at thls Symposmm are
seriously lagging.-

There are numerous other fields in which the apphcatlon of speCIal -purpose computmg
equipment is obv1ous. These are situations in which specific data-reduction problems exist;
problems of control in which the required degree of precision is so high that digital rather than
analogue techniques must be used. In all these fields the question remains: Why have not
the successful results of researches been brought to bear on these problems? I believe the
basic answer to this question lies essentially in nontechnical fields. The following reasons I
believe are basic:

(1) Lack of reliability. The reliability of electronic equipment 1nvolv1ng large numbers of
vacuum tubes is still questionable. Reliability is of paramount importance in connection
with any problems involving automatic control or inventory. In putting together a digital
computer, whether special or general purpose, a great deal of time is spent in removing the
bugs. Although components operate well individually, the intérconnecting and matching
problems assume large proportions. The maintenance of special computing installations,
however soundly engineered, is a problem of the first magnitude. _

(2) Economic factors. The economy of this nation is such that sources for procurement of
computational equipment must be found in private industry. The researches on digital com-
puting equipment have been carried out to a large extent at universities under government
sponsorship. Large-scale computing devices are expensive. Private enterprise, which must
make a profit, is naturally reluctant to invest the large sums necessary to establish procurement
sources on an industrial basis. Rapid advances in the art are, paradoxically enough, a
hindrance to industrial development because no one wants to spend money on equipment
that may shortly become obsolete. Also, the industrialist requires some competitive protection
in the form of patents or exclusive rights to equipment and techniques. The patent structure
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with respect to the large-scale computing devices is complicated by the fact that so much of
the work has been carried out either within the government itself or in nonprofit institutions.

Moreover, there arc no accurate data on the cost of producing such equipment because the
- methods of accounting employed in universities, government-laboratories, and industry are
so different. Hence, the question “What is a reasonable price for a computer?” is difficult
to answer.

I have devoted much of this paper to generalities. In order.to come within the compass
of the title of this session, “Recent Developments in Computing Machinery,” I must mention
the contribution of the company which I represent. I believe our basic contribution to the
practical solution of many special computational problems is our work with magnetic-drum
storage and the ancillary electronic techniques. We have placed considerable emphasis on
the perfection of the magnetic drum, both as a scientific instrument and as a competitive
commercial component. I am happy to report that we have had magnetic-drum equipment
operating satisfactorily for a period of two years. Our efforts to develop and design components
and to evolve manufacturing techniques and processes have attained a degree of success such
that magnetic-drum storage can be considered an industrial component. We have developed
reliable magnetic heads, drum-surface materials and techniques, and mechanical-design
principles. These will be the subject of papers presented elsewhere. I wish to point out,
simply, that the magnetic drum, as a component of special digital computing ‘machinery,
is now available. v ‘

In closing, I should like to state again that the needs for special computing equipment in
many aspects of our national defense have not been met. Large gaps exist in the fields of
operational control and in highly specialized computing. Components to solve many of these
problems have been developed, but are not industrially available. Increased attention must
be given to these problems or the program on large-scale digital calculating machinery may
be given the label “too many words, too few numbers.” '
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JOHN R. BOWMAN
Mellon Institute

Several fundamental and general electrochemical effects are potentially useful in the design
of digital computing-machinery components. These include chemical deposition, electrolyte
polarization, hydrogen-electrode polarization, anodic-film polarization, and alteration of
surface tension. These can be combined in various types of cell to provide the functions of
storage and selection. Such components have the advantages, over most of their equivalents,
of small size and low cost. In speed, they fall in the millisecond, or more rarely in the micro-
second, range. Their main disadvantage is that they are essentially low-voltage direct-current
units, and hence are not particularly well suited to electronic coupling.

Electrochemical devices have found little application in communication engineering.
This is largely because the effects are essentially qualitative and not reproducible to better
than several percent. In d>i‘gita1 networks, however, such reproducibility is not required, and
electrochemical devices can be designed that will give good dependability in discriminating
between two discrete states. This applies to all of the cells to be described. All of the effects
discussed are reversible, not in the thermodynamic sense, but in the sense that input of a
suitable signal will bring the device back to an original state after having received an inter-
mediate signal. : o o

From the qualitative character of these effects, detailed development of any unit must be
closely associated with the development of the entire network. For this reason, the information
presented here is essentially a theoretical discussion of principles supported by a minimum
amount of experimental results. Further experimentation would be useless without a definite
object of computer design as a whole. '

As is well known in the electroplating arts, the passage of charge through a cell containing
metal ions may cause deposition of metal on an electrode. This effect is a reversible one, and
the presence of the metal film on the electrode gives the cell an output voltage. When the

" circuit is closed, a current is established in it and the metal returns to the electrolyte as ions.

This effect can, potentially at least, be utilized to make a storage device. Consider, for
example, a cell composed of similar electrodes and an electrolyte containing ions of a metal
that plates out well. An electric impulse to such a cell will cause it to have an emf of sign
opposing the input pulse. Application of a second input pulse of opposite polarity to this
charged cell will cause anodic removal of the metal originally platéd out and simultaneous
deposition of metal on the other electrode, the emf of the cell thereby being reversed in polarity.

“Such a cell has properties similar to those of a capacitor. ‘
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* Selection of the electrode and electrolyte materials for a memory device depending on
this principle requires certain obvious considerations. Perhaps the most important is that
the metal to be deposited be not subject to corrosion by the electrolyte. Further, it is desirable
that the cell potential be as high as practical. These requirements are essentially contradictory
because the most active metals present the largest electrode potentials. The best compromise
appears to be silver. This metal is unique in that it is the most active material that is unaffected
by aqueous solutions of its own salts. It plates out well and develops usefully high potentlals

The electrodes to be used should be inert chemically and should polarize readily with
respect to hydrogen. These requirements lead almost uniquely to gold as the electrode
material. ’ .

The electrolyte should be stabilized to constant concentration of metal ions, a condition
most readily ‘met by providing for use of a saturated solution and supplying an excess of the
solid-phase salt. For the silver-gold system, silver sulfate fulfills these conditions convenlently,
being stable and soluble to a useful extent in water. ‘

Numerous experiments have been conducted on the cell

Au/Ag,SO,, sat. aq./Au.
It is readily reversible, stable on standing for several months, and gives a steady output emf "
when charged to 0.1 to 0.2 v. |

The actual value of the emf in the charged state is not reproducible, and appears to
depend greatly on the nature of the gold surface on which the silver was plated out during
the charging cycle, the rate at which the silver was deposited, and the amount of silver de--
posited. In general, high voltages are obtained for rough electrodes where small amounts of
silver are deposm:d rapidly. In no case, however, was there ambiguity as to the sign of the
polarity.

As will be dlscussed under hydrogen polarlzatlon the emf of this type of cell may be hlgh

, 1 v or more immediately after chargmg, but this value decreases to that of a normal
sﬂver electrode in a few minutes.

This simple cell has the disadvantage that successive charging pulses or a long-continued
one will deposit additional silver linearly with it, and reversal may require a large charge.
This may be overcome by introduction of acid in the electrolyte to cause concentration
polarization. ‘ ' ‘ ‘

Since the mobilities of the ions in an electrolyte. are in general different, a-current in it
gives rise to concentration gradients. In particular, the hydrogen ion is highly mobile and
will carry a large part of the current relative to its concentration. If the electrolyte bearing
silver ions is initially acidified and uniform, a substantial part of the current will initially
be carried by the silver ion, but as the action proceeds the ratio of hydrogen- to silver-ion
concentration near the cathode will decrease sharply. Continued current will then deposit
relatively small amounts of metallic silver, and a saturation effect exists. The charge-retention
characteristic of a typical cell is illustrated in Fig. 1. Charging curves have been obtained
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on numerous cells of this type. The initial portion of the curve is nearly linear in deposition
of silver. As the charging proceeds, the electrolyte becomes exhausted of silver ion in the
vicinity of the cathode, and the principal reaction at that electrode is release of hydrogen,
which is quickly lost and does not contribute to the charge retained by the cell.

On applying a charging pulse of reversed polarity
to an already charged cell, the limited amount of
silver originally deposited is promptly removed
because there is an abundance of sulfate ion in the
neighborhood of the electrode otiginally serving
as cathode. As a consequence, a cell subject to
electrolyte polarization can be reversed with a single
pulse of sufficient size, even though it had previously
received several successive charging pulses of equal
size and opposite polarity. In a computer storage
device this effect eliminates the need for erasure

CHARGE RETAINED

before reading in new signals. -
Mathematically, a quantitative statement of this ‘ CHARGE APPLIED

effect can be formulated as follows, neglecting g . | Charge-retention characteristic

acceleration and diffusion, which are negligible ofa typical silver sulfate cell.

under all normal conditions.
The absence of space charge can be analytically stated in the form 3p; = 0, where the
p;’s are charge densities corresponding to the different ionic species.
Letting the quantities 7, designate the components of current carried by the different
ionic species we have ’ :
2 =1,

where i is the total current carried by the electrolyte.
The partial currents associated with the ionic species are proportional to the respective
ionic specific velocities and to the concentrations; hence .

wpy  Uspy  Ugpy
The partial currents and densities are related by the equation of continuity, which in one
dimension reduces to
o Opy
5t =
The differential equation governing the over-all effect can be set up from these rélations .
in terms of the ionic charges ¢, where
Jo;, Jdo

—k _ 2 k
. 3 = b and x Pr
The result is that :
dop, . J0;,
St a0
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and %n 20 0
T

doy,  do, . . o

Y gy Yy

No analytical solution has yet been obtained for this nonlinear system, but it would be
amenable to numerical treatment with a digital computer. ‘

For high speed and sensitivity the cells should be constructed with minute dimensions.
- A useful form employs gold-wire electrodes of diameter 0.001 in. imbedded in a bead of -
acidified silver sulfate paste or gel about 0.5 mm in diameter. From experiment there is
indication that the minimum stable silver film must be about 100 atom diameters thick.
The basic constants for such a cell are given in Table 1. The constants associated with the

Table 1. Basic constants of silver.

Atomic weight A | 108

Density 10.5 g/ml
Molal volume - _ 10.3 ml
Avogadro number 6.0 X 10% atoms/mol

Volume of atom

Diameter of atom

171 x 10-%2ml

5.55 x 10-8 cm,

Table 2. Characteristics of a silver film, of dimensions
(5 x 10—2%) x (7.5 x 10-3) x (5.5 x 10-%) cm.

Volume 2.1 X 10-9% ml
Molal equivalent 2.0 x 10-10 mol
Faraday constant 9.6 x.10*  coulombs/mol

Electrochemical equivalent

1.9 ¥ 10-5 coulomb

Table 3. Characteristics of the electrolyte: a sphere of
saturated Ag,SO,;,Ag, 5 X 10—2cm in diameter.

6.4 x 10—5 ml

Volume

Solubility, Ag,S0, in water 6.0 X 10-3 g/ml

Mass of Ag,SO, in solution 3.8 x 10-7 g

Molecular weight, Ag,SO, - 312

Silver in solution 2.4 x 10-? mol
~ Equivalent number of films 12
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capacity of the cell are listed in Table 2, and the constants concerning its electrical character-
istics in Table 3. Its resistance is of the order of 0.1 ohm. A suitable charging pulse is 200 ma
for 1 msec; about one tenth of this is retained.

A basically different type of accumulative device is provided by similar inert electrodes
in an electrolyte consisting of a dilute acid alone. Application of a charging pulse will, to a
certain point, produce adsorbed hydrogen on the cathode. This hydrogen gives a relatively
high emf, but one of relatively short duration; its half-life with 0.001-in. gold-wire electrodes
is of the order of a few minutes, but its value may be between 2 and 3 v. Physically, it can be
constructed much like the silver cell described.

The more detailed characteristics of such a cell
are of practical as well as theoretical interest. At
low voltage, i.e., below about 0.6 v, the cell behaves
as a linear capacitor with a capacitance of about
10 uf per square centimeter of cathode area. As
the voltage increases above this region, the cell
accepts and retains a considerably larger charge,
and finally at a still higher voltage hydrogen gas is
released as bubbles, and current for the first time

CONDUGTING
REGION

C~iopf/cm?
CHARGING REGION

CHARGE

becomes steady. In the conducting range the back
voltage of the cell increases logarithmically with
the current. These phenomena are illustrated
schematically in Fig. 2. VOLTAGE

Cells of this type are to be compared with the FIG. 2. Charge-voltage characteristic
of an electrode-polarization cell.

CONSTANT CAPACITANCE REGION

metal-disposition type in several ways. They supply
potentials an. order of magnitude higher, have far greater speed and sensitivity, but have
half-lives several orders of magnitude less. They may, however, find application in operat-
ing organs of computers, such as adders, where short-time storage only is required. They
could, of course, be used for long-time storage if periodically read and regenerated.

An extreme type of electrode-polarization cell can be constructed using tantalum-wire
electrodes in an acidic electrolyte. The anion should preferably be of high valence, such as
borate and phosphate. The anode of such a cell develops a high-resistance film which does
not permit conduction until about 50 v-and will retain available charge at voltages of this
order of magnitude. The life of the charge, however, is short. The read-out operation can
be measurement of either emf or resistivity.

The formation of high-resistivity films on anodes can be used for rectification as storage.
By provision of one tantalum electrode and one inert one, preferably gold, a rectification unit
having much the characteristics of a germanium-crystal rectifier is produced. Its main dis-
advantage is high capacitance, which precludes its use for extremely high-speed operation,
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but this can be largély overcome by making the unit physically very small, as recommended
for the other cells discussed here.

As is well known, the interfacial tehsion between mercury and an electrolyte is strongly
dependent upon the potential difference between them. Extensive use has been made of the
phenomenon in capillary electrometers. An extension of this device provides the function of
a relay. The general arrangement is shown in Fig. 3. When the mercury droplet is negative
with respect to the electrolyte by about 0.25 v, its surface tension is low and it flattens out

\\

B C D

Fic. 3. Surface-tension cell.

to make contact with electrode B. When the applied control potential is removed, the surface
tension very quickly resumes its normal value and the droplet returns to nearly spherical form,
breaking connection with contact B and making connection with contact C. Contact 4
provides a common input and return for the control voltage, which is supplied to contact D,
which at no time makes contact with the mercury droplet.
The device serves as a. single-pole, double-throw, voltage-actuated relay. Its time of
response is less than 1 msec. :
Care must be used in applying voltages to open circuits of this relay which would take
over the controlling function. Such errors can be wholly eliminated by establishing gating
" paths for signals before passing the signals through them, and keeping the signal pulses suffi-
ciently short that they cannot assume control. Similar circuitry is good practice with mechanical
relays, where the contacts are never required to make or break a current. Devices of this kind
are potentially useful for large pyramid selectors.
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GEORGE W. PATTERSON

University of Pennsylvania

This paper is a progress report on attempts to develop a unified theory of calculating
machines. First of all it should be made clear what devices are under discussion. In the present
state of the development it does not seem likely that analogue computers will be included;
on the other hand, many devices not ordinarily considered to be calculators could fit into the
analysis. As examples of such apparatus, the following are mentioned: teleprinter equipment,
voting machines, cryptographic mechanisms, ‘“‘tote” boards, type-casting machines, and at
least certain portions of systems for railway signaling, centralized train control, automatic
telephone switching, and pulse code modulation. It will be noted that all these devices are
concerned with the handling of data or intelligence, generally in'a coded form.

These mechanisms are obviously not of central interest to us, and are mentioned merely
to indicate the possible broad scope of a unified theory. The principal motivation for a theory -
comes from the problems associated with the design and use of desk calculators, punch-card
equipment, automatic message-accounting equipment, and, most important of all, large-scale
digital calculators. The totality of devices already mentioned will be called syntactical
machines, for reasons that will appear presently. Calculating machines constitute an important
subclass of syntactical machines. Some of the problems whose solution could be aided by a
umﬁed approach are: ’ o

- (1) To.determine and describe the exact relation between operatlons built into the machine
and the operations of mathematics.

(2) Given the constructional details of a machine, to determine its exact operational
characterlstlcs, this is the problem of machine analysis, which is important to the design
'engmeer

(3) Given the exact operational characteristics, and a family of components, to determine
how they must be interconnected to produce the desired results; thisis the problem of machine
synthesis, even more important and difficult than the previous one.

(4) Given a set of basic machine operations, to construct by iteration and combination
new and more complex operations; this is the problem faced by the coder.

(5) To determine a set of basic machine operations that are capable of the extension just
referred to, with a reasonable amount of coding effort, and that can be physically realized
. with a reasonable amount of equipmeht; this is the main problem of logical design.

It would be rashly optimistic to predict that the solution of these problems will ever be
feduced to a routine process; on the other hand, the development of theoretical tools that
will assist in any way in their solution is a worthwhile pI‘Q]CCt
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The building blocks of the development under discussion are logical syntax, symbolic logic,
and conventional mathematical anaylsis. All that needs to be said here about symbolic‘lo gic
is that it provides a useful symbolic apparatus for manipulating such words as ‘“not,” “or,”
“and,” “implies,” ‘““is equivalent to,

Conventional mathematical analysis as the only tool for analyzing the operation of a

3y C¢

there exists,” “for every,” in any arbitrary context.

calculating machine has several shortcomings:

(1) The machine operations are frequently not equivalent to ordinary mathematical
operations but only approximations thereto.

(2) Mathematical analysis is ill-adapted to consideration of such operations as sorting,
collating, selecting, extraction of fragments of words, and the like.

(3) Description of machine operations in purely mathematical terms obscures the possi-
bility of nonmathematical interpretations of the data, such as would be involved in program-
ming a machine to play chess, for example.

Where does logical syntax fit in? This question brings us to the. basic characteristics of
syntactical machines. They all accept input data or information, and produce output data.
They are, in a sense, linguistic transducers, although the languages involved are usually
extremely artificial and symbolic. But languages may be said to have three aspects: the
structural, the meaningful, and the motivative, otherwise known as syntax, semantics, and
pragmatics.!

It should be emphasmed that this division of the theory of language into three parts has
been made by logicians and philosophers, principally Professor Rudolf Carnap of the Univer-
sity of Chicago, rather than by students of natural spoken languages, and it has been principally
applied to artificial symbolic languages that have been designed by mathematics, logicians,
and engineers to be as accurate and unambiguous as possible. In the prcsent state of the art,
these are the only languages manipulated by machines.

Pragmatics, the motivative aspect of language, deals with the relation between the expres-
sions of a language and-the actions they produce in the hearer or the consumer. In the theory
of natural languages we could ascribe the principles of rhetoric, propaganda and advertising
copy writing to this subject. In mechanisms it would consider such things as the behavior
of digital equipment as a link in a servomechanism; there is a close relation here to cybernetics.
In calculators designed for scientific and accounting purposes the feedback link lies in the
~ human consumer of the computational results. This aspect of language lies outside the scope
of the present discussion.

-Semantics, the meaningful aspect of language deals with the relations between the ex-
pressions of a language and the objects or events that they designate. The designer of a
scientific calculator selects and builds into it those operations that make the ascription of
numerical meanings to the machine language as simple as possible, but it should always be
borne in mind that the user is free to assign any meaning he wishes, and in machines for
commercial purposes a nonnumerical meaning or interpretation may well be of equal impor-
tance. Felix Klein was one of the first to clearly recognize this fact; as he said, “the rules of
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operation alone, and not the meaning of the numbers themselves, are of importance in calculating, tor it is
only these that the machine can follow; it is constructed to do just that; it could not possibly
have an intuitive appreciation of the meaning of the numbers.”’2

The expression “the rules of operation alone” characterizes syntax. The following is
quoted from Rudolf Carnap. “By the logical syntax of a language, we mean the formal theory
of the linguistic forms of that language—the systematic statement of the formal rules which
govern it together with the development of the consequences which follow from these rules.
A theory, a rule, a definition or the like is to be called formal when no reference is made in
it either to the meaning of the symbols (for example,‘ the words) or to the sense of the expressions
(e.g., the sentences), but simply and solely to the kinds and order of the symbols from which
the expressions are constructed.”? ’

What strings of characters are numerical expressions? This is a syntactical question,
and its answer is a syntactical formation rule, since it explains how to form a numerical
expression. :

Given two numerical expressions, how do we form a third, which we may call their sum?
This is a syntactical question, and its answer'is a syntactical transformation rule, since it explains
how to transform given expressions into new expressions. These rules are established with the
meanings of the expressions as a basis, but this is in the background in syntactical investigations.
The fact that symbols can be manipulated by formal rules, without any reference to their
meanings, is what makes digital calculating machines possible. -

In any investigation of a language, we require a language to state the results of our study.
The language under investigation is the object language, the medium for expressing the results
is the metalanguage. The metalanguage used is a matter of choice, but a judicious combination
of symbolic logic, ordinary mathematics, and English is recommended.

~ So much for the abstract principles of logical syntax. Its development has been largely
carried out by logicians in investigating the structure of mathematical proofs. These aspects
of the subject do not bear directly on the theory of computing machines, and consequently
the information available in the literature serves only as a starting point, and much further
research is needed. . :

The application of syntax to computing machinery will be illustrated by a few specific
examples. First of all we will consider the description of algorithmic number systems from -
a syntactical point of view. These number systems are those designed to provide names for
all nonnegative integers. The ordinary denary, or decimal, system and the binary system are
the most common examples. This description will be general and not restricted to a particular
base or radix. ' , "

We assume the existence of # distinct kinds of symbols or characters, where g > 2 and is
an integer. The exact nature of these characters is immaterial; they. may be holes in paper
tape, marks on paper, electrical pulses, distinct identifiable positions of rotating elements,
light signals. All we require is that we can recognize any character, and unambiguously
determine to which of the f classes it belongs.
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It is further assumed that these characters can be arranged in strings with a definite
beginning and end, and that each character except those at the ends has a unique immediate
predecessor and a unique immediate successor. This constitutes a linear syntactical system
or language. Each string is an expression of the language. Multidimensional expressions are
also used, for example, in matrices and punch cards, but they will not be considered here.

An expression, a string of characters, can be symbolized by /2\ x,. The variables of the meta-

language are restricted to range over f > 2 possible values i.e., to the characters. The
integer B is a parameter that constitutes the radix or base of the system. If § = 10, and we

are dealing with the ordinary written numerals, i/=\0x,- = ‘365" would signify that x, = ‘5, |

x, = ‘6’, x, = ‘3’. Note the numbering of characters from “right to left.” The single quotation
marks are used to denote the fact that we are considering the marks themselves and not the
numbers they denote. ,

Certain other properties are assigned to the g distinct kinds of characters. First of all we
‘require that a discrete cyclic order be established among the f characters. The red characters
on the telephone dial exemplify this for the'ordinary written system, g = 10. The cyclic -
order progresses counterclockwise around the dial. The cyclic successor of x will be denoted
by o(x). "Thus, on the dial, ¢(‘0’) = ‘I’, ¢(‘'9) = ‘0, etc. Iterations of the cyclic successor -
operator will be denoted by exponents; for example, in the ordinary system, ¢%(‘0’) = ‘5,
0'%(x) = ¢°(x) = x. In general, ¢"(x) = 0*(x) if and only if r = s (mod B). In addition to
the cyclic order, we single out a particular character and call it ‘Nu’. On ‘the telephone dial,
Nu appears immediately below the hook, i.e., in the ordinary system Nu = ‘0’. In modern
written Arabic, Nu = ¢.’; as transmitted by the telephone dial, Nu is a closely spaced time
sequence of ten pulses. The telephone dial is a simple, inexpensive, syntactical machine;
when properly manipulated, it transforms the ‘0’ appearing in the directory into the requisite
pulses. - .

The idea of the.f > 2 characters, the cyclic order imposed on them, and the fiducial Nu,
are the elements of the development. A numerical expression is defined as any expression

with at least one character having the property that the first character is not Nu, i.e., f—??n x;

is a numerical expression provided m < n, and x, # Nu. It will be useful to have a symbol
for the expression with no characters at all, and ‘A’ is selected for this purpose. ‘The arch
‘.~ means ‘is followed by,” and capital letters will be used for expression variables, since
small letters are reserved for character variables. Note that a smgle character is always an
expression, but not conversely. To illustrate this notation:

AT X=X=X"A

We have defined the numerical expressions as the totality of expressions that begin with
- a character distinct from Nu. This is a formation rule. In order to proceed further we define
a transformation rule, .which enables the determination of the successor of a numerical ex-
pressiori, in the sense of Peano’s axioms, that is to say, the operation of counting. We do this
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with the aid of the auxiliary notion of quasi successor which is defined for any arbitrary
expression.

Definition 1. Quasi successor (quasinachfolger), gnf (X).

‘ (1) gnf (A) = o(Nu).

(2a) If o(z) = Nu, then qnf (¥ ™ 2) = ¥ ™ 0(2);

(28) If o(z) = Nu, then qnf (¥ 7™ 2) = qnf (¥) ™ o(z). ‘
This is the syntactical formulation of the operation performed by a counter. The last digit
continually progresses through the cyclic order—note that (2a) and (2b) both terminate in
o(2)—but if the last digit becomes Nu, it is necessary to perform the counting operation on
the expression formed by discarding the last digit; this is the carry. If when the last digit
is discarded nothing remains, a new ¢(Nu) (corresponding to ‘1’) is prefixed. This assumes,
of course, that the counter has unlimited capacity. This transformation rule is a recursive
operation across the digits, from right to left.

On the basis of the above definition, we can prove

Theorem 1. _
n n .
If 7~ x; # (o~ '(Nu), n>m

then (:Nm ¥; = qnf l/f}n x; if and only if

(1) D= a(x)] <=> (k) [(m <k < i) => (%, = o~ }(Nu))],

(@) D= x] <=> @) [(m <k <) . (% # o~}(Nu))].

If g = 2, then x; 5 ¢~%(Nu) if and only if x, = Nu, and x; = ¢~!(Nu) ifand only if x, = o(Nu)
and hence lines (1) and (2) of Theorem (1) specialize to:

(1a) i = o(x)] <=> (k) [(m <k < i) => (% = o(Nu))],

(2a) [y;i=x] <=> (3k) [(m <k <iQ). (% = Nu)].

The successor of a numerical expression X is simply qnf (X), and it can be shown that the
qnf operation, thus restricted, satisfies all of Peano’s axioms. The theory of operations on
natural numbers can be constructed from this transformation rule.

So far we have not considered the physical nature of the characters, nor how they are
physically strung together to form expressions; we have been considering questions of axiomatic
syntax. Suppose we have a language in which f = 2, and the characters are represented by
two conditions of potential at a point & in an electric circuit. Suppose. £(¢) is the proposition:
the point £ is at-the higher of the two possible potentials at time . We define x, = Nu and
%, = o(Nu) (there are only two characters) as follows:

Definition 2.

: [x; = Nu] <=>ru &),

[, = o(Nu)] <=> £(s).
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We are now dealing with physical syntax, since the physical nature of the characters comes
into the picture. Since the characters must have unique immediate predecessors and suc-
cessors, it will be necessary to quantize our time scale. -In a synchronous machine, we assume
that ¢ increases by constant increments. Suppose we have a black box with two inputs and
two outputs (Fig. 1). The box has the property that # assumes the high potential if and only
if & and o are at different potentials, and 4 assumes the high potential if and only if £ and «
are both at the high potential. Such a device can be synthesized by methods developed by
- Burkhart and Kalin, to be described in a forthcoming Harvard Computation Laboratory
publication.* As soon as we identify the states of the calculating mechanism with the characters

of the object language, analysis and synthe51s of its behavior merges with the discipline of
physical syntax.

R o
3 —> \
. Y }. .a
a— F—> )\ X 3
Fic. 1. A half adder. Fic. 2. Half adder adapted to

perform the gnf transformation.

To return to the “black box,” which is known as a half adder, its physical behavior is
described by:
7(t) <=> v [&(t) <=> a(t)], , ’ (4)
At) <==> [£()) - «(9)]. ' , ‘ - (B)
We define the character y, by

Definition 3.
e = Nu] <=> v n(d),
[ = o(Nu)] <=—=> n(s).
Definitions 2 and 3 and statements (4) and (B) give:

a(t) <=> [y, = 6(x)], (€)
valf) <=>[p =5l (D)
M) <=> [(x; = o(Nu)) . «(#)]. (E) .

In other words, if « is at the high potential (usually a positive pulse), then the box carries
out the cyclic-successor transformation on each character, but if « is at the low potential,
then the box performs the identity transformation. '

A delay is now inserted in the circuit (Fig. 2) and the inputs to « are so connected that
a(t) <=> [y(t) V «(#)] . y(t) <=> ¢t = (0), and «(t) <=> A(t—1). Now,

- n . n

if Ty % F oy o(Nu),
. n n

then , = gnf ke

130



LOGICAL SYNTAX AND TRANSFORMATION RULES

First, we note that for ¢ > 0, A(f) <==> (&) [(0 < ¢, < §) => &(t)]-
This is demonstrable by an inductive argument. Hence:
at) <=> (&) [(0 < t, < t) => (%, = o(Nu))]
and
_ va(l) <=> (3,) [(0 < t, < 1) . (%, = Nu)]. -

Replacing «(#) and ru a(¢) in (C) and (D) by their equivalents given above, we see by Theorem
1 (for B = 2) that this circuit performs the gnf transformation.

Another transformation rule will be described. All systems for expressing integers, even
Roman numerals, must have a qnf transformation rule, but complementation is characteristic
of algorithmic systems, and has more syntactical than mathematical significance.

Definition 4.
B comp (6"(Nu)) = ¢¥~V=7(Nu).

This defines the complement for a single digit. This is analogous (for g = 10) to the “nine’s
complement”; e.g., 10.comp (‘0’) = ‘9’, 10 comp (‘7’) = ‘2’.

| B comp (%) = 7738 comp (x,).
This definition extends g comp to expressions; f comp is a “linear operator” with respect to
“~~" and is thus more simply mechanized than the so-called ten’s complement; there is no
interaction between characters. '

The black box just described can also perform the complement transformation. The
peculiar property of binary systems that makes this possible is given by

Theorem 2.

If =2, 0-Y(x) = o(x) = 2 comp ().

From Theorem 2 and statements (C) and (D) we obtain:

«(f) <=>[y; = 2 comp (x))], (F)

o a(t) <=> [y, = x,). (G)

If we supply clock pulses to «, the circuit complements; if not, then it gives the identity
transformation.

Now consider the problem of forming the “ten’s” complement. No special notation is
needed, since it is simply qnf (8 comp (x)). The gnfindicates the necessity of carry mechanisms
when a ten’s complement is formed; qnfis not a “linear operator.” From the previous analysis
a complementer can be constructed by connecting two half adders in tandem (Fig. 3). All
that is required is to supply clock pulses at 6 and a starting pulse at y(¢) simultaneous with the
appearance of the least significant digit at & There is a superibr method, and the basis for
it will now be derived. '

The following theorem is easily proved from the preceding definitions and properties of
cyclic order:
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If n > m, then '
(1) If‘xm # Nu, qnf([)’_ comp (éﬂx,)) = f comp (i=/:z\—1xi) ™ o(f comp (x,,)),

GEORGE W. PATTERSON

(2) Ifx,, = Nu, qnf'(ﬂ comp ((f}nx,)) = qnf(ﬂ comp (iilaé,-)) ™ X
From Theorem 1 follows

Theorem 4.

Ifé‘xi # i/:\mNu, n > m, then _irf\m_yi = qnf (ﬁ comp (é?nxz)) if and only if:
(1) [i = o(B comp x,)] <=> (k) [(m <k < i) => (% = Nu)],
(2) [p: = B comp x,] <=—> (@) [(m <k <i) => (x, # Nu)].

If = 2 these two lines specialize to:
(1a) [, = 2] <==> (k) [(m <k < i) => (, = Nu)],
(20) [y = 2 comp x]] <=> (3K) [(m <k < i) . (% = o(Nuw))].

This theorem justifies the following ingenious circuit, invented by T. C. Chen.

&—

7—*

>

Y

Do

N

S

Fie. 3. A complérﬁexiter.

3

S

R

oy

Clock Pulse

N
el

Fic. 4. Circuit for transformation corre-
sponding to the two’s complement.

The half adder is connected to a flip-flop as in Fig. 4. The gate-inverter combination

serves to transform the static output of the flip-flop to a string of positive pulses, in order to

permit a.c. coupling in the half adder. It will be noted that the positive pulses appear at
« if and only if the flip-flop is'set. The flip-flop is assumed to require one unit of time to change
its state, and the condition of the circuit immediately preceding the arrival of the character
%o is cv &£(— 1) and y(— 1) and we require that y(f) <==> ¢ = — 1. The circuit condition at

o is then, for ¢t > 0:

Replacing &(¢) by its syntactical equivalent from Definition 2:
' At) [(0 < 8, < ) . %, = o(Nu)],

) <==> (@) [(0 < b, < 9) . £(4)],

& alt) <=> (1) [(0 < b < &) => v ()]

v a(t) <==> () [(0 < t, < t) => (%, = Nu)].
Combining this with statements (F) and (G) we obtain ‘
| [ye =2 comp (x,)] <==> (38) [(0 < 4, < 1) . (%, = o(Nw))],
e = x] <=> (&) [(0 < & < §) ==> (%, = Nu)]. |
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Thus Theorem 4 applies and we have proved that the circuit carries out the transformation
rule (for § = 2) corresponding to the two’s complement, provided that i/:\mxi F i/f;Nu.

The circuits analyzed are rather elementary, but these methods provide a link between
the physical properties of the equipment components and the object language, as well as a
method of describing and analyzing the interrelations between the transformation rules of the
object language. This method is capable of being extended to cover more complex situations
which are at present difficult to investigate except by our sometimes fallible intuition.

Special Notation

XY, the expression formed by adjoining the expression Y to the expression X.
‘n . . e e :
x;, the expression formed by adjoining the characters x,, x,_;, * * * ;- X;,41, ¥, together (in

that order).

o
1=m

o(x),  the cyclic successor of the character .
o"(x), the rth iteration of the cyclic successor operator.
<==>, ifand only if.
5, for every (integer) kl R
. =>, if] then. |

(3k),  for some (integer) &, - + - .

o not - - - .-
' cand - - - .
\% «+ - or - - (or both).

Lower-case letters are character variables; upper-case letters are expression variables;
lower-case Greek letters are statement variables referring to voltage levels.
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Consider the problem of minimizing a linear function Zb,x; subject to the conditions?
EA"ij 2 Cl, i= 1, 2’ Y ml
j .
x; >0. 1=1,2,+° - m

Notice at the outset that equalities may be admitted in this form by writing each equality as
two inequalities with reversal of signs. Furthermore, the problem may be reformulated so
that only inequalities of the form x; > 0 are present, by defining appropriate new variables.

Thus it is evident that the above form is simply one standard version of a general problem
involving both inequalities and equalities.

In principle the solution of the problem stated is trivial. Observe that the set of inequalities
defines in m,-space a convex polyhedron (possibly empty) with at most m; 4 m, faces of
dimension m, — 1, and that the minimum problem is that of finding an extreme point of the
- polyhedron in some direction. In general, the extremum will be taken on at a vertex, so the
problem is that of evaluating Zé,x; at the vertices and choosing that vertex which yields the
smallest value. A vertex is of course a point at which a subsystem (of rank m,) of the inequalities
is satisfied exactly as equalities, with the remaining inequalities satisfied. In principle, then,
one could invert all subsystems of rank m,, throwing out those whose solutions fail to satisfy
the remaining inequalities, and then evaluate Xb;x;. It is clear that this is not a practical
method beyond the smallest values of m; and m,. The pi‘actical difficulties stem from the
fact that the convex polyhedron is specified by its faces, whereas the vertices are at the root
of the problem.
In passing, it should be noted that the problem stated above has a very simple dual prob-

lem, obtained by transposing the matrix 4, and making a few other obvious changes. The
dual is the problem of maximizing Z¢,y, subject to the conditions

?_y,.A,,- < by, i=1,2,+--m

‘ y; > 0. J=12,"m

The two dual problems have the property that if either problem has a solution so has the
other, and the minimum value in one is the maximum value in the other.. In certain economic

applications the solutions of both problems are required.
Consider now the problem of maximizing mm T4, subject to £, >0, Z§;, =1,:= 1

2, + c sy my; and the dual problem of mlmmlzmg max 2A;m; subject to n, >0, Zn; = 1,
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Jj=1, -+ my This problem provides optimum mixed strategies for the zero-sum game
with matrix 4, where 4;; represents the payment from player 1 to player 2, if player 1 plays
his ith strategy and player 2 plays his jth strategy. The celebrated minimax theorem of von
Neumann says that under the conditions stated

Max Min 25;[1,-,- = Min Max Z4,7;.
3 i ] i

The common value is referred to as the value of the game and the {£;} and {#,} of the solutions
are the optimum mixtures for players 1 and 2, respectively. As in the first problem stated in
this paper, geometrical considerations of convex bodies contribute to an understanding of
the problem, and it turns out that in general the problem is practically solved if it is known
which submatrix of 4 to invert. -

There is of course an intimate relation between the theory-of-games problem and the
problem first stated, although they are not quite identical problems, since the game problem
always has a solution, while the first problem does not necessarily. To summarize briefly,
the game problem is directly a special case of the first problem, while the first problem can
always be embedded in a game problem, whose solutions yield solutions to the original problem
if it has a solution. Thus, if problems of one type can be solved, so can problems of the other
type. o ’ |

Various iterative methods for solution of one or the other of these problems have been
given by von Neumann, Dantzig, and others. While some of these methods may be practical
over a certain range of problems, all of them have an apparent dependence, in required number
of steps, of higher order than the first power of the linear dimensions of the problem. For very
large matrices not possessing simplifying special properties, such a dependence can be a very
serious obstacle in the way of getting numerical solutions. We will describe briefly, for the

" game solution, an iterative scheme which is quite different from those previously suggested,
in that the amount of calculation required at each iterative step is directly proportional to
the linear dimensions of the problem, so that the method has, a priori, some chance of beating
the high-order dependence.

The procedure to be described can most easily be comprehended by considering the
psychology of, let us say, a statistician unfamiliar with the theory of games. Such a person,
faced with repeated choices of play of a certain game, might reasonably be expected to play,
at each opportunity, that one of his strategies which is best against past history, that is, against
the mixture constituted by his opponent’s plays to date. Such a decision utilizes information

- of the past in the most obvious manner. The iterative scheme referred to here is based on a
picture of two such statisticians playing repeatedly together. For purposes of calculation a
slight modification is introduced which has the effect that the two players choose alternately,
rather than simultaneously. '

Restating the method algebraically, let 4 be the game matrix, let i, and j, be the nth
choices of strategy for the two sides, and let &, and 7, be the relative frequencies of strategies
i and Jin (i, iy, + + -, i,) and (fy, Jo, .+ -, Ju), respectively; then j, minimizes £&;™4,; and

1
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2 |13 ] 20

3 o] 1 |30
4 [ 2 |15 ] 1l

Fic. 1. A 4 X 3 matrix.

n in =1 | j=2 | j=3 ] Vn Vn In =1 | =2 | =3 | i=4
1 2 3] 2 0 0 3.1 3 2] 0 31| 11
2 3| w3| 3| 31 .65 | 2.1 1| 42| 13| 31| 31
3 1| 43| 41| 43 1.37 | 111 2| 53| 33| 41| 4.6
4 1| 73| 82| 55 1.30 | 1.60 2| e4] 53| 51| 61
5 1| 103 63| 67 1.26 | 1.52 2| 75| 73| 61| 16
6 4 | 123 78| 7.8 1.30 | 1,55 2| 86| 93| 71| 91
7 2 | 136]| 9.8| 7.8 L1 | 1,46 3| 98| 9.3 |102 | 102
8 3| 13.6| 10.8 | 10.9 135 | 1.48 2 | 1009 | 11,3 [ 11,2 | 117
9 4 | 156 12,3 | 12,0 1.33 | 1.59 3 ( 121 | 11,3 | 143 ] 12,8
10 3 | 15,6 13,3 | 15.1 1.33 | 1.53 2 | 13,2 (133 [ 153 | 14.3
11 3| 15.6 | 14,3 | 182 1.30 | 1.48 2 | 14,3 | 153 | 16.3 [ 15,8
12 3 | 156 15.3 | 21,3 | 128 | 1,44 2 | 154 | 1738 | 17.3 | 17.3
13 2 | 169 | 17.3 | 218 1.30 | 1.48 1 | 184 | 186 [ 17.3 | 19,3
14 4 | 189 188 | 224 1.34 | 1.49 2 | 195 | 206 | 18,3 | 20,8
15 4 | 209 | 203 | 235 1.35 | 1,51 2 | 20.6 | 22,6 | 19,3 | 22,3
16 2 | 22,2 223/ 235 139 | 1.52 1| 23.6 | 239 | 19,3 | 24,3
17 4 | 24.2| 238 | 24.6 " | 140 | 1.52 2 | 247|259 |203| 258
18 2 | 255 25.8 | 24,6 137 | 1.49 3 | 259 [ 259 | 234 | 26.9
19 4 | 27,5 27.3 | 25.7 1.35 | 1.47 3 | 27.1 | 25.9 | 285 | 28,0
20 4 | 205 | 28.8 | 26,8 1.34 | 1.48 3 | 28,3 [ 25,9 | 20.6 | 20.1
21 3 | 20.5| 20.8 | 29.9 1.40 | 1.49 1 | 313 |27.2 | 20.6| 811
22 1 | 825 30.9 | 31.1 1.40 | 1.48 2 | 32,4 | 20.2 | 30.6 | 32,8
23 4 | 345 | 32.4 | 32.2 1.40 | 1.47 3 | 33.6 | 292|337/ 337
24 3 | 345 33.4 | 353 | 139 | 147 2 | 347 | 312 | 347 | 352
25 4 | 365 34.9 | 364 | 140 | 1.47 2 | 358 | 332|357 | 367

Fic. 2. Cumulative
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i,+1 maximizes Z4,;m,™. This process defines a sequence i, jy, 75, f, * * *, once 4 is chosen

(perhaps arbitra’rily), except for possible ambiguities of the extrema. Any convenient rule
w1ll do for handling ambiguities. If ¥, = mm 2¢m™A; and V, = max ZA;m;™, it is easily

seen that V <V < V,, where V is the value of the game. The mlxtures {&;™} and {n,"™}
are mixed strategies, and the corresponding ¥V, and V, are the most favorable outcomes ensured
to each player if he uses the corresponding mixture.

At this moment not much is rigorously established about the properties of this iteration,
except that if it converges at all it converges to a solution of the game for each side. Of course
it would be sufficient if lim sup ¥, = lim inf V,. There is considerable support, however,

“based on experience with the method, and also on the study of a related system of differential
equations, for the conjecture that convergence is of the order of 1/z and does not depend
essentially on the size of the matrix. If this is so, it is extremely important for the solution of
large matrices, by virtue of the fact that each iterative steps requires only a number of opera-
tions proportional to the linear size of the matrix. ' Convergence of order 1/z is of course painful
if high accuracy is needed. In such cases it may be possible, however, to use a method like
this to get close to the solution, finishing’with one step of another iteration.

Figure 2 is a worksheet showing 25 steps carried out for the 4 X 3 matrix given in Fig. I.
Note that each line is obtained by adding to the previous line, componeht by component, the
corresponding row or column of the matrix, without troubling to divide by n. The ¥, and
V,, were calculated at each step, by division of the extrema by n, to show the progress of the
calculation. In case of ties the lowest index was taken. Note particularly that V, — V,, is
decreasing just about like 1/n, in spite of the excursions which ¥, and. ¥, make. The initial
choice of 7, = 2 was made deliberately as an unfavorable choice, with respect to minimum
guaranteed payoff. ‘

It is appropriate to report to this Symposium that preliminary discussions with Messrs.
‘Harr and Singer, of the staff of the Harvard Computation Laboratory, indicate that Mark III
could carry out 1000 of these iterative lines for a 40 X 40 matrix in comfortably under an
hour. Of course the problem has not been completely programmed, but the estimate is believed

_to be conservative.

REFERENCE

1. The theoretical background of this paper is based on work of H. Weyl, von Neumann,
Ville, Tucker, G. Dantzig, and others, on convex polyhedra and on the theory of games.
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The title of this paper covers such a vast subject that it will be impossible to do it justice.
In fact, this title might well have been chosen as that of the whole session. My aim is merely
‘to discuss in a general way certain features of the mathematics that is characteristic of the
large-scale computing unit. In pointing up these general remarks I shall discuss in considerable
detail only one problem. Further illustrations will be contained, no doubt, in the other papers
of this session.

The mathematical methods available to a computing unit depend of course on the versa-
tility of the unit. Nearly all units can perform addition, subtraction, multiplication, and divi-
sion. The advent of large-scale digital computers has added a fifth operation of considerable
importance, namely, discrimination. This, in general terms, is the operation of making a
choice of one of several branches of a program (or course of procedure), depending on the
outcome of a previous calculation. This operation is peculiar to discrete-variable machines,
since its outcome is not continuous. The purely analogue machine cannot distinguish the
larger of two sufficiently small numbers, or determine the sign of either. This fact was recog-
nized early in the construction of roulette wheels. By converting the wheel into a discrete-
variable device countless arguments were avoided.

The ability of a discrete-variable machine to discriminate and thus to decide for itself
what course of action to take has led to the popular misconception that such machines think
or even have the ability to learn from experience.

Various criteria are employed in discrimination. Decisions are made according to whether:

(1) A given number is > 0 or < 0 (Harvard Mark I);

(2) A given number is 0 or not (ENIAC);

(3) A given number is odd or even (ENIAC);

(4) A given sequence of numbers has one sign pattern or another (Bell Telephone);
(5) The sum of two numbers exceeds the capacity of the machine or not (Zephyr);

(6) A given number belongs to one of a set of residue classes with respect to a given modulus
(Electronic sieve).

These criteria are not independent and others can be constructed from them. All digital
machines are capable of some form of discrimination and those named above are given only
as examples.

The mathematical methods that call for much discrimination are very frequently iterative
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ones. .Here discrimination is used to decide whether or not to continue to iterate. Another
simple use of discrimination is in forming the nonanalytic function |x|. More elaborate uses
arise in the step-by-step solution of differential equations and of course still more in problems

of combinatorial analysis and number theory. Incidentally, the electronic sieve is designed
" to make 10 million discriminations per second.

Another feature of mathematical methods that are being used in large-scale computing
is that they tend to eliminate the elaborate formulas and to introduce instead what might
be called combinatorial complexities. This is due for the most part to the high speed of opera-
tion. For instance, in using a quadrature formula for numerical integration it does not pay
to use the accurate Weddle’s rule; it is often simpler and even faster to employ the crude

“ trapezoidal rule. As far as I know the superb method of Gauss for mechanical quadrature
has never been used in large-scale work. The method of Heun is used much more frequently
than the more accurate and complex Runge-Kutta method for the step-by-step solution of
ordinary differential equations. Minima of functions are found by extensive numerical trial-
and-error methods, rather than by the somewhat more sophisticated and traditional method
of setting derivatives equal to zero and solving. Systems of many first-order differential
equations are solved in lieu of single differential equations of high order. A large number of
trial solutions of differential equations with one-point boundary conditions méyy be made in
order to obtain a single solution of a two-point boundary problem. Solving problems in terms
of special functions is passé; finite-difference methods are used instead. The power-series
expansions of analytic functions are being used to a large number of terms and to a great

“accuracy in order to avoid the use of alternative asymptotic expansions.

All these examples show how mathematical subtleties are being replaced by stepped-up
numerical activities. To make this replacement possible the operator naturally must surrender
much of his control to the machine itself. He simply cannot follow the course of the numerical
work with sufficient rapidity to make on-the-spot decisions as to what to do next. This means
that the programmer may have to incorporate a large number of discriminations or branches
in the program of the problem. Much has been said, but little written, about the logic or
even the topology of programming. Logicians and topologists are not coming to the rescue
of the desperate programmer. General rules for programming have been discovered. Most
of them have been used in the Kansas City freight yards for a long time. This is the combina-
torial complexity to which I have referred. Flow diagrams showing the routines, subroutines,
and other wheels within wheels are hardly distinguishable from the block diagrams of the
machine itself; the latter, however, are made once and for all. This then is the white man’s .
burden of large-scale computing. :

The third characteristic feature of discrete-variable methods is the possibility of introducing
number theory into what at the outset appears to be a problem in continuous functions. By
way of illustration, let me call attention to a method which is the subject of the last paper
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of this session—the Monte Carlo method. In this method it is necessary to produce random
variables. The problem here is not one of producing a table of random digits to be published
and used by others. On the contrary, one can think ideally of a perfect stream of these random
numbers produced at high speed by the machine and passing by a “gate.”” Whenever the
computer needs a number it opens the gate and takes one. More explicitly, we might list
the following desiderata: ‘ '

- (1) An unlimited sequence of randomly arranged eight-digit numbers;
(2) A simple process by which the machine ‘may produce the sequence:
ty = flUy_15 Up_gy * * * Up_1)}

(3) Immediate access by the machine to the current number of the sequence whenever
necessary; of course, the whole sequence need not be retained in the machine.

If we examine these desiderata we see at once that they are inconsistent. In the first place,
the number of eight-digit numbers is not unlimited. There are in fact only 100.million of
them. Secondly, condition (2) forces the sequence to be ultimately periodic and therefore
not random. We therefore scale down our demands and modify (1) and (2) to read:

(1) Millions of pseudo-random numbers u,;
(2) u, = f(u,_4), f a simple function.

A pseudo-random sequence is a vague notion embodying the idea of a sequence in which
each term is unpredictable to the uninitiated and whose digits pass a certain number of tests
traditional with statisticians and depending somewhat on the uses to which the sequence is
to be put. The worst possible departure from randomness is to have the period of the sequence
small or equal to one. In constructing the function f, therefore, it is of the utmost importance
to obtain one that produces a guaranteed proper period of immense length.

A method already in use on the ENIAC, due to von Neumann and Metropolis, is the
following. Let uy be an arbitrary initial eight-digit number. Then #, is defined as the central
block of eight digits in the square of uy, and u, is defined as the same function of #, that u, is
of uy, etc. At first sight this would appear to give an ideal source of random numbers. Certainly -
is produces an unpredictable sequence of numbers. However, as has been pointed out already
by several writers, this process cannot be expected to give random numbers. In fact, one must
expect. to obtain numbers u, of the form xy2w0000 before many more than 10,000 numbers
vu,, are generated. When this happens, either w = 0 and #,,, = 00000000 and all succeeding
«’s vanish, or w % 0 and all succeeding «’s are of the form x'yz'w'0000, where w’ = 1, 5, or 6.
Hence periodicity will set in in fewer than 3000 more steps. Also, one must expect to obtain
numbers of the form u, = 0000xyzw, in which case u,4 7, #,+15, = * °, all vanish. Thus it is.
seen that this process cannot be recommended as a source of random digits. It has an addi-
tional drawback in that it ties up the multiplier, which is a fairly busy component of any
machine. ‘ »

If we look at the problem from the standpoint of the theory of numbers, it is not difficult
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to find a more satisfactory solution. We may proceed as follows. We begin as before with an
arbitrary nonzero initial eight-digit number #,. Next we compute 234, In general this will
be a ten-digit number. The ninth and tenth digits (counting from the right) are now removed
and subtracted from the remaining eight-digit number. This produces ;. The next number
u, is produced from u, in the same way. To illustrate in detail, suppose that the initial u, is
47594118 (chosen at random from a wastepaper basket of punched cards). Then

20u, = 9 51882360
Su, = 1 42782354

23u, = 10 94664714

subtract 10 : — 10
U = 94664704

As in the first method, this process is necessarily ultimately periodic. In fact, it is actually
periodic of period 5882352. This fact makes all the difference; the reason for it is simple.
In computing u, from u, _, we are computlng the remamder of 23u, _; on division by 108 + 1.
Hence, in congruence notation

: =1 23" (mod 10% + 1). .

By the theory of the binomial congruence, u, is periodic of period 5882352 since 108 4 1
= 17-5882353. The number 23 is the best possible choice in the sense that no other number
produces a longer period, and no smaller number produces a period more than half as long.

As set up for the ENIAG, for example, the process would tie up only two accumulators
and would produce 5000 pseudo-random digits per second. The process would have a period
of 2 hr 36 min 52 sec. : :

 Whether such a set of digits or a reasonable subset satisfies the statisticians’ tests for ran-
domness is of course another question. To investigate this matter I have secured the kind
cooperation of Professor L. E. Cunningham of the Astronomy Department of the University
of California, who set up the calculation on the IBM calculating punch 602A. This produced
the first 5000 »’s (that is, 40,000 digits in all) in about 4 hr (the ENIAC would be faster by
a factor of 1800). One of the secondary reasons for making the calculation was to test the
accuracy of the 602A. It may distress some and surprise others to know that any isolated
u, can be computed on a desk calculator in 3 min. Thus u55, was known in advance. The
fact that this value agreed with the result obtained in 5000 steps is a rigorous check of the
arithmetic unit of the 602A.

Once produced, the results were subjected to four standard tests with the assistance of -
Dr. Evelyn Fix and other members of the Statistical Laboratory of the University of California.
All four tests were passed successfully. In case anyone is convinced that the numbers u, are
really random, I should like to call his attention to the fact that each number #, is a multiple

of 17.
For a binary machine a similar process can be set up with respect to a modulus of the form -
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2» 4 1. For example, with the Mersenne prime 23! — 1 as modulus, more than 66 billion
pseudo-random binary digits can be generated.

The method is based on the function f(x) = ax. A very little extra complication would
be produced by using the general linear function f(x) = ax 4 . However, nothing is gained
by this generalization, since the period is independent of 4, as one can see from the theory of
difference equations. With machines capable of parallel operation like the ENIAC and SSEC,
the above process is especially advantageous for two reasons: (a) it can be incorporated into
the program with very little expense, and (b) the “gating” of this routine at irregular time
intervals serves further to randomize the sequence u,. The serial-type machine would simply
use the numbers «,, one after another.

I have gone into such great detail on this problem just to indicate how a problem in, let
us say, nuclear physics, when attacked by a large-scale computing unit, can involve a mathe-
matical method taken from the impractical theory of numbers.

It is only fair to point out that, conversely, large-scale digital equipment can be used to
study certain problems in the theory of numbers. In fact, it is sometimes a little exasperating
for the number theorist to assist the applied mathematician in juggling round-off errors,
truncating errors and a flitting decimal point in order to adapt a problem in fluid mechanics
to a discrete-variable machine when all the time the machine, being digital, is all ready to
work on clean-cut problems involving whole numbers. However, I realize that this exaspera-
tion is shared by very few present.  Most of you will be relieved to know that, to the best of
my knowledge, very little valuable time on large-scale computing units has been spent on
such unprofitable problems. o ' »

In fact, to date, only one small problem of this sort has been solved and published, and
another is making slow progress. However, I hear that the University of Manchester’s new

computing machine is being used on such problems and doubtless there will be some interesting
results published before long.

It may not be out of place to mention certain kinds of problems for which no mathematical
method would seem to be available in order to apply large-scale computing units in a practical
way. By an impractical application we mean one that produces results no more rapidly than
a few hand computers using desk calculators. Since the large-scale machines are based on the
four rational operations they have good control over functions that are defined by algebraic
expressions. However, mathematics abounds with functions that are defined verbally, often
in some negative way. Such functions are apt-to give trouble if they cannot be expressed
directly in terms of operations with which the machine is familiar. Simple examples of such
functions occur in the theory of numbers, algebra; topology, statistics, organic chemistry,
genetics, and elsewhere. Often these functions are of the enumerative sort. For .example,
one can ask for the number of nonequivalent maps of 135 countries, or the number of different
ways that each map can be colored in five colors. If ten permutations of the digits 0, 1,+ - -, 9
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are selected at random, what is the probability that they form a Latin square? If a(n) denotes
N ;
the number of prime factors of n, is the sum 3 (— 1)® negative for 1000 < N < 108? It
1

n=

is perhaps best not to think of such questions, but to return with our all-purpose computing
unit to our differential equations.

In conclusion a few words should be said about the possible future influence of large-scale
computing units on mathematics and mathematicians. To quote an eminent physicist: “With
the developments of greater capacity and speed it is almost certain that new methods will
have to be developed in order to make the fullest use of the capabilities of this new equipment.
It is necessary not only>to design machines for the mathematics, but also to develop a new
mathematics for the machines.” ‘ » ‘

In one sense a new mathematics is arising from the development of these machines. I
refer to the theory of programming and coding in all its aspects. Here we have developed.
a nomenclature and a mass of symbolism which belong properly to a small corner of symbolic
logic. This is not the new mathematics of the quotation, however. Personally, I do not look
for much really new mathematics as a result of the machine development. Of course there
will be new interest in and new emphasis on old and recent mathematics. Processes which
the mathematicians have been writing about but not carrying out will become realities.
However, few mathematicians have ever been stopped by the fact that they could not carry
out the operations that they contemplate. Long ago the mathematician broke through the
restricting boundary of things that were practical. In this respect the mathematician is far
ahead of the existing machines and will doubtless continue _tb be so.

There is no doubt that these new machines are creating new service jobs for mathematicians,
young and old. However, it seems to me, the most important influence of the machines on
mathematics and mathematicians should lie on the opportunities that exist for applying the
experimental method to mathematics. Much of modern mathematics is being developed in
terms of what can be proved by general methods rather than in terms of what really exists
in the universe of discourse. Many a young Ph.D. in mathematics has written his dissertation
about a class of objects without ever having seen one of the objects at close range. There
exists a distinct possibility that the new machines will be used in some cases to explore the
terrain that has been staked out so freely and that something worth proving will be dlscovered
in the rapidly expanding universe of mathematics.
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C. CLINTON BkAMBLE
U.S. Naval Proving Ground, Dahlgren, Virginia

+ Among the tacit assumptions usually made in computation are, first, that the arithmetical
processes involved are considerably diversified, and second, that the arithmetical processes
produce results in such a way that the occurrence of the different digits is equally likely. In
this paper I wish to present evidence that these conditions are not, in general, realized and to
exhibit some results of actual computation which indicate that, after all, the situation is not
too bad. ‘

If it is assumed that the digits 0 to 9 occur with the same frequency when they appear
as units digits of numbers that enter into computation—that is, that their distribution function
is rectangular—then it follows that the distribution function of the units digits of the sum of
two numbers is also rectangular and the digits O to 9 are again equally likely. As a consequence
of this, we can say that the units digit of an extended sum is as likely to be one digit as another.
This premises also the idea that the numbers that enter into the sum are uncorrelated. It is
clear that we can violate this premise if we add numbers identical or correlated, such as
x 4 x or x + x%, or if we subtract the same number from a given number repetitively. For
instance, if we add numbers ending in 5 to a number x we will aiso get as successive sums
numbers ending in ¥ and ¥ + 5; or if we subtract in succession a series of even numbers from
an odd number, we will always get odd differences and it is clear that the different digits are
under these circumstances not equally likely.

If we form a 0 to 9 multiplication table, we will find the distribution of the units digits of
the 100 possible products of integers as follows: -

01 2 3 4 5 6 7 8 9
274124129124124

This frequency table indicates a high frequency of 0’s and a low frequency of odd integers as
the units digits of products of integers. It is also noted that 75 percent of the units digits
produced by multiplication are even and 25 percent are odd; also, that 32 percent of the
digits are greater than 5 and 32 percent are less than 5 exclusive of 0, so that if we round
numbers on 5 as a base, we expect the average of the positive errors to be the same as that of
the negative ones. ' '

If, however, a combination of integers of the form ab 4 ¢ is made from integers selected
at random, an inspection of the results shows that the distribution function of units digits is
again rectangular and all the digits from 0 to 9 have the same frequency. Addition is therefore
a leveling process, while multiplication disturbs the uniformity of digit-distribution functions.
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Suppose next we consider the product of two numbers, say 10a; + b, and 10a, + by,
namely, 100a,a, + 10(a,0, + asb,) + b10,. We note that, exclusive of the ‘““carry” from b,b,,
the tens digit is made up of a sum of two products, a,6, + a,6,. An examination of this product
- shows that we will obtain an even number in those cases in which both products are even or
in which both products are odd. As stated above, the first product will be even 3/4 of the
time and the second product will be even 3/4 of the time; therefore the sum will be even under
this contingency 9/16 of the time. In the same way we see that the two products will be odd
1/4 X 1/4 or 1/16 of the time. Hence the expression a;b, + a,b, in which a’s and ’s are the
integers 0 to 9 with equal probability will be even 5/8 of the time. If we add another term to
‘the product, as occurs in the hundreds digit of a product of two numbers of three or more
digits, we have an expression of the form a;c, - ay¢; + byb, and we find that this sum will be
an even number in 9/16 of the possible cases. Extending this process, we find that the sum of

n . .
n products, > a;b;, i =1, + - -, n; in which the numbers are not correlated, will be an even
i=1 T

number in 172 -+ (1/2)»+1 of the cases. Thus it appears that there are components of the
various digits, as we pass farther to the left in the formation of products, that tend toward
the equality of the numbers of odd and even digits.

Next, let us look for the number of even digits in the tens place of all possible products of
integers. Only the tens and units digits of the factors will affect this number and it will consist
of the units digit of (a0, + a,h,) plus the tens digit of bb,. This will be referred to as the
““tens digit without carry.” To pursue this, let us form a table of the tens digits of all possible
products of integers so that we will have available the numbers that are carried in forming
products, together with their frequencies. . '

0123456789

0/ 0000O0O0OGO0O0O0O
11 000000O0GO0O0O
210000011111
310000111222
40001122233
5100112 233 4 4
6 | 001 1 23 3 445
710012234456
8001 23 4456

9 1 00123 45¢6 7 8
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The frequencies of the integers are as follows:
0 1 2 3 45 6 7 829
42 17 13 9 9 4 3 2 1 0

We see, therefore, that an even number is carried 68 percent of the time and an odd number
32 percent of the time.. An examination of individual cases shows that, considering the rases
in which an even number is produced, there is no correlation between the oddness or evenness
of the units digit of a,b, + a,b, and that of the carry from the product b;6,. Therefore, we can
say that even tens digits will be produced in those cases in which the units digits of a,b, + a,b; ‘
is even and the carry is even and in those cases in which both of these are odd. Thus we have
5/8 X 68 percent plus 3/8 X 32 percent, or 0.545, as the fraction of cases in which the tens
digit is expected to be an even number, and correspondingly in 0.455 of the cases an odd
number. This shows again that even numbers tend to dominate in multiplication but that
as we pass from right to left in products there appears to be a mixing process that tends toward
a reduction in the excess of even numbers.

Consider an array of all possible products of the integers from 0 to 99. The distribution
of the tens digits is given by the table: '

0 1 2 3 4 5 6 7 8 9 even odd
1210 900 1060 900 1060 950 1060 900 1060 900 5450 4550

We will find in this array 5450 numbers in which the tens digit is even. By means of an in-
spection based on enumerating all possible cases, it is seen that the number of even digits
followed by 6, 7, 8, 9 as units digits is precisely the same as the number of odd digits so followed.
Further, the number of even tens digits preceding a final 5 is the same as the number of odd
ones. Thus it is clear that a rounding process based on 5 will create as many even numbers
as odd numbers, since the even numbers followed by numbers greater than 5 will become
odd and the odd numbers will become even. In this array there are 900 cases in which the
tens digit is followed by a 5. A process of enumeration shows that 450 of these tens digits are
even and 450 are odd. Thus we find that after rounding, if we round the numbers ending in
5 to an even digit we create 450 more even numbers and the resulting numbers will consist
of 5900 even and 4100 odd. On the other hand, if we should agree that in the dubious case
ending in 5 we should round to an odd number we will have 5000 even and 5000 odd. It
may be of interest to point out that the complete frequency distribution for the tens digit of
all possible products “without carry” is the following:

0 1 2 38 4 5 6 7 8 9 even odd
1450 720 1200 720 1200 870 1200 720 1200 720 6250 3750

The distribution with carry in which the numbers ending in 5 are rounded to even numbers is:
0 1 2 3 4 5 6 7 8 9. even odd .
1320 800 1170 800 1120 900 1120 800 1170 800 5900 4100
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It may be noted in particular in this distribution that the deviations from 1000 have become
smaller, that is, each digit now has a frequency that is more nearly 10 percent than in the
previous case. While in rounding in either case mentioned above it is expected that as large
an amount will be dropped as is carried, rounding numbers ending in 5 to the even number
tends toward a domination of even digits while the rounding to the odd number tends to
restoring a balance between odds and evens. From this point of view it would appear to be
preferable to round numbers ending in 5 to the odd digit. Furthermore, rounding to the
odd digit never affects more than the next digit. The individual frequencies when we round
the 5’s to the odd tens digit are as follows:

0 1 2 3 4 5 6 7 8 9
1160 960 960 1010 960 1060 960 1010 960 960

The greater uniformity of occurrences of the different digits as a consequence of this rounding
procedure is apparent. :

EXAMPLES OF ERRORS IN ACTUAL COMPUTATION _

(1) Suppose we wish to compute the successive values of #/2 — nw/144 forn = 0, - - -, 26,
using ten significant figures. These values may be found by subtracting =/144 = 0.02181661565
(ten significant figures) successively from 7/2 = 1.570796326. After 26 steps of this calculation
the result is 1.003564311, whose approximate error is 8 X 10~?. Or we may find

T r T '
(5 — 26 T4-_4-) = 46 143 = 46 X 0.02181661565

and get 1.003564319, whose approximate error is 1 X 10-10,

The source of this discrepancy is seen to lie in the fact that in using the value of 7/144 in
subtraction only nine places of decimals were carried. . '

(2) A step-by-step computation of sine and cosine from the equations

sin k(x + 2) — sin kx = 2 sin £ cos k(x + 1),

cosk(x + 2) — coskx = 2 sin £ sin k(x 4 1)
exhibited certain peribdic errors. That of the sine, after increasing, returned to zero at 90°
in a computation in which £ was taken as 7/360.

Let £ be the disturbance in the value of sin £x and 17 that of cos £x if a discrepancy of &
occurs in the value of sin £ as used in the computation. Then & and 7 satisfy the following

linear difference equations:
(E*— 1)& — 2aEq = 2 cos k(x + 1),
2aE¢ 4 (E*— 1)p = — 2& sin k(x + 1).
In solving these equations it is advantageous to note that
' Z=E&+m
satisfies

_ (E?— NZ + 2aiEZ = 2&e~ K=+ 1),
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The starting values of these quantities & and 7 are
§o=m=0, &§ =4, and 9, = 0.

Subject to these conditions the solutions may be written

& sin k x cos kx
&= {21 ok T e } [sin (k + =)x + sin kx] + & —p" sk’

£ sin k ‘ ’ x sin kx
n = [21 7 + T oos k} [— cos (k + 7)x + cos kx] —& ——coslp .

These equations show that an error in the value of sin £ in our first equations will lead
to the propagation of errors in the calculated sines and cosines which vanish periodically but
which have, in general, an amplitude that increases with x. , :

(3) The errors occurring in the inversion of matrices when digital calculators are used
may be inspected by inverting matrices whose inverses are known. A method of constructing
a matrix whose elements are, to within an integral factor, integers, whose inverse is known
and the elements of whose inverse likewise are, to within an integral factor, integers has been
devised. : , .

A few of these matrices have been inverted by the Aiken Relay Calculator. The number
of significant figures carried was ten. In these calculations certain tenth-order matrices lost
two significant figures, while in one sixth-order case as many as four were lost. This investiga-
tion will be continued as opportunity permits. .

(4) Numerical solutions were made by the Aiken Relay Calculator of differential equations
which were of the form

= —H()G)4
== HO)G0)) — &
in which ¢2 = #2 4 5% and G and H are given as tabular functions.
The basic solution was made with initial conditions with
_ vy = 866.6666667.
Other solutions were made from the following values of 7,

9 = 866.6566667,
and
zo = 866.6766667.

At ¢ = 40 the values of x and y agreed to five significant figures.

Again, trajectories were calculated with a disturbance in an initial element of 1 X 10~8 in
the initial values of the velocity components %, and $,. The resultant disturbances, which
were due largely to different sequences of rounding errors, were of the same order of magnitude,
with the largest disturbance noted as 2 X 10-6.
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) W. E. MILNE
Institute for Numerical Analysis, UCLA, and Oregon State College

For simplicity, the following discussion is limited to Laplace’s equation. Actually, the
ideas and methods presented are applicable, with suitable modifications, to more general
linear partial differential equations of elliptic type. _ :

The paper is further limited to methods based on replacing the partial differential equation
with an appropriate partial difference equation, and takes no account of the vast amount of
research that has been devoted to obtaining approximate solutions by analytical means, such
as Bergman’s method of orthogonal polynomials, to mention only one.

A third limitation is the restriction of the problem to two dimensions. The theory for
three dimensions is not essentially different but the numerical labor is so great that little has
so far been done with three-dimensional problems.

We consider Laplace’s equation in a plane. The first step is to cover the plane with a
net and to set up difference equations involving the values of the unknown function U(x, )
at the nodes of the net. Theoretically, the meshes of the net need not be uniform in size, but
may vary continuously over the plane, as in the problem of conformal mapping. Some work
has in fact been done with such nets. But this leads to variable coefficients in ourdifference
equation and seriously complicates the programming of the problem for automatic computing
'machinery. Restricting ourselves to nets with uniform mesh we find three possible cases,!
where the meshes are (i) regular hexagons, (ii) squares, (iii) equilateral triangles.

The next problem is to select the nodes for which the difference equation is to be set up.
The greater the number of nodes chosen, the more closely in general will the difference equation
represent the differential equation. Butin order that the resultant formula be both symmetrical
~ and at the same time applicable to points adjacent to the boundary, it is evident that we can
use only a central point together with the immediately adjacent points of the net. There are,
with all these limitations, only four practical possibilities:

(1) Hexagonal mesh (Fig. 1), fbur-poiht formula,!

up = §(uy + tp + u3) + O(F%); (1)
(2) Square mesh (Fig. 2), five-point formula, 23

g = $(uy + up + uz + uy) + O(RY); - (2)
(3) Triangular mesh (Fig. 3), seven-point formula,!
' Uy =%(u1+u2+u3+u4—|—u5+u6)—}-O(h“), (3)

152



LAPLACE’S EQUATION

(4) Square mesh (Fig. 4), nine-point formula,?
uy = 5[4y + ue + ug + uy) + u; + ug + u; + ug] + O(h9). (4)
The term O(Ah") means that | O(h")| < kh* as & — 0, where £ is some constant. Each formula

is exact if # is a harmonic polynomial of degree n — 1. When /4 is made sufficiently small the
formulas obviously increase in accuracy from the first to the last.

Y,

h
Us h o Y,
u,
Fic. 1. Hexagonal mesh, Fic. 2. Square mesh,
four-point formula. . ' five-point formula.
- us v - " U Y, Ug

VAVARS °

ug Ug 0 o U
Fic. 3. Triangular mesh, F1c. 4. Square mesh,
seven-point formula. nine-point formula.

Formula (1) is the least accurate and seems to have little to recommend it.
Formula (2) is the best known and has been much used, perhaps more than any of the
others.. ‘ . : '

Formula (3) has been extensively used by Southwell and his followers. However, I gathered
from conversatton with Professor Southwell that he is now inclined to favor the square mesh
rather than the triangular.

It is my own opinion that formula (4) is, all factors considered, the most useful finite-
difference equation with which to replace Laplace’s equation. In tests on a variety of harmonic
functions formula (4) gave notably better accuracy than any of the other formulas, the gain
in accuracy more than offsetting the slight increase in numerical computation. For the
remainder of this paper we shall assume a square mesh and shall replace Laplace’s differential
equation by the difference equation (4) which we commonly write in the symbolic form?

1] 4|1
Cdru=|4|-20 4 |u=0. | @)
1] 4|1
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This diagram is a convenient way of exhibiting-the coefficients of the formula in their proper
* positions relative to the corresponding nodal values.

Dirichlet’s problem is that of finding U(x, y) harmonic in the interior of a plane region R
and taking on assigned values on the boundary B of R. Let us lay a net with square mesh of
side % over the region R, and for simplicity let us initially suppose that the net intersects the
boundary only at nodal points. For each interior point of R we set up Eq. (4). Since the
values at the interior nodes are unknown while those at the bouridary nodes are known, we
have a set of N linear equations in N unknowns, N being the number of interior nodes. It
is readily shown that these equations always possess a unique solution. This solution then
provides the nodal values of a function W(x, ») which satisfies Eq. (4) at all interior nodal
points énd takes on the prescribed values at the boundary nodes.

The next question is, how closely does the numerical function W(x, y) approximate the
desired harmonic function U(x, »)? In spite of the importance of this question we shall not
take the space here to investigate it, since it belongs more in the domain of pure analysis than
in that of numerical methods. Suffice it to say that reasonably satisfactory bounds for the error
can be obtained and that in most practical problems a net can be taken so that the solution
of the difference equation is a satisfactory approximation to the desired harmonic function.

* Attention will be centered on the problem of solving the N simultaneous linear equations.
These equations are individually simple in form, but in problems of practical importance
their number is so great that direct solution is at present a task too formidable to undertake.
Perhaps in the future machines will be developed which can handle this large number of
equations, but it seems unlikely that any of the machines contemplated at present will be able
to tackle it. ‘ '

We are driven, therefore, to consider methods of successive approximation. Let V be
an approximation to the desired harmonic function U; let ¥ = U on the boundary B, and
V = U + E at interior points of R, so that E represents the error of the approximation. In
order to see how the process of successive approximations works we shall consider a bpair of
physical problems, one in which the error E is interpreted as the displacement of a vibrating
membrane, the other in which E is interpreted as temperature in a cooling conducting slab.

Consider the region R as a membrane clamped on the boundary B, and let £ denote the
- normal displacement of the membrane at an interior point. Then E satisfies the differential
- system

QE
= OViE
E=0on B, e (5)
E = Eywhen t =0,
OE
N = 0 when ¢ = 0.
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If A, are the characteristic numbers. for the region R, we may assume a solution in the form

E = 3 @.cos aly, - (6)
i=1 '
where the @, are characteristic functions satisfying the set of equations
Vip; + A%p; = 0in R, (7
@; = 0 on B.

Again, consider a conducting sheet shaped like the region R, with temperature E at interior
points and zero on B. Then E satisfies the set of equations

%if = a®V2E in R;
E=0on B, (8)

E = E; when t = 0.

Here we may assume a solution of the form
E=73 pemet ©)
i=1

where the ¢; and 2, are exactly the same as in the case of the vibrating membrane.

Assume now that the function V is given in R 4+ B. Let U satisfy the equation V2U = 0
inR. Wehave V= Uon B,and E=V— UinR. :

Evidently E so defined satisfies the system (8), and since U is independent of f and ¥V 2U = 0
it follows that V satisfies the set of equations :

%—I-;= a®\/ 2V in R;
V = Uon B, -~ (10)

V = V, when ¢t = 0.
From Eq. (9) it is evident that

V=U+ 3 geont, (11)

. i=1
Equation (11) shows that as ¢ increases to infinity the terms of the series on the right approach
zero and hence V approaches U, no matter what value ¥, the function ¥ assumed initially.
It is also of interest to observe that the larger the ; the more rapidly does the corresponding
term in Eq. (11) die out. Referring to Eq. (6) we see that in the case of the vibrating
membrane the terms with large 4, correspond to terms having a high frequency of vibra-
tion, for which the corresponding characteristic functions have many nodal lines and many
changes of sign. .

Hence as ¢ increases the error term E rapidly loses its highly variable components and
tends toward a smooth function with few, if any, nodal lines in R.

In order to carry out numerically the limiting process indicated in the preceding section
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we replace Egs. (10) by the corresponding set of difference equations, as follows. In place of
V 2V we have :

11411
L 4 |—200 4 |7V,
6h2 ?

1141

and in place of 3V/at we set (V, ., — V,)/ At, where V, is the value of V at the time ¢ = n At.
Then

1] 41
1 _— '
| 1] 4|1

or, with the nhotation defined in Eq. (), ,
1
' Vn+1= Vn+6:ﬁ:Vm
in which
1. a2At
6= 68 - o (13)
Equation (12) furnishes the desired recurrence relation for computing the successive approxi-

mations Vy, V,, - - -, V,.

In order to investigate the effect of successive applications of Eq. (12), and in particular
to determine whether or not the process converges, we need to know something about the
" characteristic numbers associated with the homogeneous partial difference equation

Ho+ A =0in R, . - (14)
@ =0 on B. '
Without taking time to consider details of proof and limitations on the region R we shall
merely state loosely the results that we want.

1. If R contains N interior points, there are N real characteristic values of 12 for whlch
Eq. (14) possesses nonzero solutions. ’

2. These values of A% are not necessarily all distinct.

3. All characteristic values of 22 lie in the interval

0 < A2 <32

With this information we can proceed to the investigation of Eq. (12).

* We assume a solution of Eq. (12) in the form
N : :
Vo= U+ 3 por - (15)
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in which the ¢; are point functions defined at each interior point of R and zero on B, while
the p, are constants. Substitution in Eq. (12) gives

1 .
. z[Pt — lgp* = Za # pip

and from Eq. (14) we see that this can be satisfied if
‘ 9[1 - P:'] = A

Table 1. Values of 4,2, and corresponding values of p; for various choices of 6.

\i 8=16 6=20 8:=24 8=36
A A pi ]
3.80 .18 .81 .84 -
.34 54 - .80
9.53 40 .52 .60 .74
12.91 19 35 46 64
13.07 .18 35 46 .64
16.61 -.04 a7 31 .54
1753 | -0 a2 21 51
18.80 -7 .08 .22 48
19,09 -.19 05 .20 47
22,15 -.38 -11 .08 .38
22,35 -40 -12 07 .38
22.47 -0 [ -a2 .06 .38
23,00 -.44 -15 04 .36
24,00 -.51 -.20 -.00 .33
25,53 -.60 - -.28 -.08 .29
25,85 | -.82 -.29 -.08 .28
26.47 -.65 -.32 -.10 26
28,33 -1 -.42 -.18 21
28,85 -.80 -44 -.20 .20
30,60 -1 -.53 -.28 15

where 4,2 is one of the characteristic numbers belonging to Eq. (14). We have then
Aiz
pi=1— 0

In order to secure convergence* we obviously required that |p;| < 1 for all . Since A2 is
greater than zero and less than 32, this requires that we take 6 = 16. It follows that At in
Eq. (13) must be taken less than 6421642 ‘

For simplicity in computation it is desirable to choose 0 as an integer. The effect of several
choices of 0 will be illustrated by a numerical example for which the characteristic numbers
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can be readily computed. We choose the case where R is a rectangle with N =4 X 5 = 20
interior points. The values of the 1,2 and the corresponding values of p, for § = 16, 20, 24, 36
are given in Table 1. The relation of p and 4 for these different choices of 6 may be readily
seen from Fig. 5. :

We now examine and compare the specific formulas obtained from Eq. (12) by setting
6 = 16, 20, 24, 36 in turn. These choices are sufficient to make clear the behavior in general,
and these specific values were selected because in each case the corresponding formula has
some special distinction. '

,P'/ ," / ,/ ,/ V4 // // . // 7/
Ay e A 4
S,
4 /, ,/ s /’ Vs o7 7 4 // // ,
~ / /  DIVERGENCE ./ ./ /" / +
’,////,///////////

xz

: =~ < SN

NC N \\\\\\P--|\\\ A N T N Y N N

N NN N NN
NN NOONL N N

SONOSOCNL DIVERGENGE N N N N W W 2\

NI TN Y N N U NN N \\ \\\ N

NANANE VAN N

'\\\\ N NN N '

F1c. 5. Relation of p and A for various choices of 0.

For 6 = 16, formula (12) becomes

| 4 I

#u=| 4 |-20| 4 | u=0 - (16)

I 4 l

Referring to Fig. 5, we see from Eq. (15) that the effect of repeated applications of Eq. (16)
is to damp out rather slowly those components of the error term belonging to large 1,2 and
to small 4,2 while those belonging to intermediate values are much more rapidly damped out.
For brevity we say that Eq. (16) secures rapid liquidation of error components of intermediate
frequencies, and slow liquidation of error components with low or high frequencies. This is
the best formula of all for the lowest frequency. '
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For 6 = 20, formula (12) becomes

1{4]1
Vn+1=?16 4104 Vn' } (17)
11411

. Formula (17) is less effective than (16) for low-frequency components but is much more
effective for high-frequency components. Because of the zero term and the simple divisor,
Eq. (17) is probably the simplest formula to compute.

For 6 = 24, formula (12) becomes

1{4]1
‘ Vn+1 =] 4|44 Vn' (18)
1141 ‘

This is still less effective for low frequencies but is even better for high frequencies. Formula
(18) is worth noting for one interesting characteristic. The largest coeflicient by which any
value of V¥, is multiplied in the calculation of ¥V, is seen to be 1/6, and this is smaller than
the largest coefficient in any other formula obtained from Eq. (12). This means that numerical
errors, round-off errors, etc., are more rapidly damped out by Eq. (18) than by any of the
other formulas for successive approximation.

For 6 = 36, formula (12) becomes

1]4]1
Vioen=d5| 4 |16] 4 |V, (19)
141

From the graph of p, we see that for almost all frequencies this formula is not as rapidly con-
vergent as Eq. (18). But Eq. (19) possesses the unique distinction of being factorable into
the product of two operators, as may be indicated symbolically in the form

141 o 1
ﬁ4164=[%1$41}%4
1|41 | 1

For programming the computation on certain types of machine this fact outweighs all other
considerations. As an example, Dr. Yowell of the Institute for Numerical Analysis readily
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set up a computation on the IBM 604 in which the ¥V, cards were run through the machine
by columns and the values of

were computed. Then these were run through by rows and the required values of

Vem=4[1 4| 1|W,

were obtained by the same program. Because of the serial nature of any machine using stacks
of cards, this factoring of the operator into two operations of serial type makes possible the
use of such machines in situations where they ordinarily could not be employed.

We now have a choice of formulas by which successive approximations can be carried
out, together with some indication, through the size of the p;, of the character of the convergence
to be expected. There is also great latitude in the way in which such formulas can be used.
For example, instead of calculating each value of V, from the old values V, one may at
cach step utilize such new values as are available. It has been shown? that this process tends
to improve convergence. If this is done it may make considerable differenice in what order
one proceeds over the points of the region R. Conceivably it might be best to take first all
points adjacent to the boundary, then all those adjacent to these, etc. So far as I am aware,
this has not been investigated.

It is possible to obtain more rapid convergence by using the formula

1
Vn+1_ Vn = 5 H# Vn + “(Vn— Vn—l)

with appropriate. choices of the two parameters 0 and o. Space does not permit a detailed
explanation.4 ' ‘ '

When the number of interior points of R is large, the lowest characteristic number is smalt
and the corresponding p is but slightly less than unity. For example, for a square with 101
"units on a side, containing 10,000 interior points, the smallest characteristic number is about
0.01152 and for 0 = 24 the largest p is 0.99952. To reduce the error to 1 percent of its original
value would take about 10,000 repetitions of the formula. For 10,000 points this means that
we must apply the formula 100,000,000 times to reduce the error to 1 percent of its original
value. For the computer with a desk calculator this is a dismaying prospect, and even the
best electronic computers would require considerable time, since none now contemplated
could store 10,000 numbers in the high-speed memory. '
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Hence some device is needed for chopping off errors in big chunks instead of gently polishing
them down one at a'time. It is here that the relaxation methods of Southwell becomes impor-
tant.»® Unfortunately, from the standpoint of automatic computing machinery, applying
these methods is something of an art. Considerable study will probably be required to formulate
this art in such a way that it can be programmed for automatic computing machinery. I
can only indicate roughly how this conceivably may be done. ‘

~ Suppose that we are using formula (18). After a suitable number of repetitions the high-
frequency terms will be pretty well eliminated, and the remaining errors, instead of being
helter-skelter, will be collected in rather large heaps over the region R. Consider one of these
heaps, the error being approximately zero on the boundary of the heap. By summing the
residuals around the boundary of the heap we can calculate the average thickness of what we
may call the bottom layer of the heap. Repeating the process for the next set of points inside
the set adjacent to the boundary we get the thickness of the next layer, and so on. Having
computed the whole pile in this fashion we remove the whole block of errors.

The process is not at all bad for a desk computer, but I do not know how it would be
programmed for an automatic machine. In the examples so far tested it proved very effective.
This device used two or three times and formula (18) about eight times gave better results
than formula (19) applied 65 times.

This whole problem of liquidating large blocks of errors deserves additional study, especially
with a view to devising processes adapted to autorhatic computing machines.

So far in this discussion we have assumed that the boundary B of the region R coincides
with lines of the net. In most practical problems this simple situation is not realized. To
meet the difficulties arising when the boundary points are not nodes of the net we may adopt
any one of several expedients.

(a) In the vicinity of a curved boundary we may, as the computatlon proceeds, employ
successively finer and finer nets until the actual curved boundary is closely enough represented
by nearby nodal points. As far as the writer is aware, this is the method so far most commoﬁly
used. Yet it has the obvious objection of greatly increasing the number of points, often far
beyond the number required to secure an adequate solution for Laplace’s equation. Moreover,
it is apparent that this procedure greatly complicates the programming of the problem for
automatic machinery.

() Another line of attack is to devise special formulas with which to replace our standard
nine-point formula for the case where the boundary cuts through the standard nine-point
pattern. I have in fact derived a set of formulas for this purpose, but must admit that they
also fall somewhat short of what we desire. They require a set of auxiliary interpolation tables,
and also require calculation of the codrdinates of each intersection of the boundary with the
lines of the net. ‘

(¢) In certain simple cases, at least, it may be possible to handle curved boundaries by
introducing curvilinear codrdinates. This, however, is usually a very difficult job in itself,
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and has the further objection of introducing a lot of analysis into what should be a strictly
numerical procedure. ‘

All in all, the treatment of curved boundaries stands out as one of the least satisfactory
features of our whole procedure.

In the vicinity of a boundary point where the assigned boundary values suffer a discon-
tinuity, the process of successive approximations not only converges with painful sluggishness
but the limiting result is likely to be a poor approximation to the desired harmonic function.
The accuracy can of course be improved by using a finer net, at the expense of additional labor.

Here, however, it appears possible to remove the difficulty before the computation is
begun. Consider, for example, the case of a straight-line boundary (taken as the x-axis) with
a finite jump in the boundary values at O (taken as the origin) of magnitude M, going from
left to right (Fig. 6). Then the function (M/x) arctan (y/x) is harmonic in R, and has the

’
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F1c. 6. Straight-line boundary with a finite F1c. 7. Boundary with a corner at O.

jump in boundary values at O.

value M to the left of the origin and the value zero to the right. If Uis the required harmonic
function, then ' ‘

M
W=U-+ ;arctan%

s

is harmonic in R and has no discontinuity at 0. We may therefore add the boundary values
of (M/rn) arctan (y/x) to the given boundary values, solve the new problem for W, and at
the end obtain U from the equation

: ‘ r

.
ae
a

U=W-— %—4 arctan

If the boundary has a corner at 0, making an interior angle ¢, the foregoing procedure is
modified by using (M/p) arctan (y/x). This device (Fig. 7) has been used with gratifying
‘results in trial examples.

The process of successive approximations starts from some assumed value V. Theoretically,
the process converges to the desired value ¥ no matter what V,, is selected, but in practice
we want the original choice ¥, to be as good as possible in order to hasten the convergence.
An experienced computer, familiar with the behavior of harmonic functions, can make a
surprisingly good guess to start with. What we really need, however, is some definite procedure,
adaptable to automatic computing machines which will provide a satisfactory initial function .
V. Some formulas have been proposed,® but the best of them leaves a good deal to be desired.
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So far we have restricted ourselves to the simple Dirichlet problem with known values
on the boundary. Actually we must also handle cases where the normal derivative is assigned
on part or all of the boundary,” as well as cases where some combination of boundary values
and normal derivatives is assigned. For straight-line boundaries coinciding with lines of the
net, formulas to handle such cases are readily obtained. To judge by a few trial examples,

“the convergence .of successive approximations will prove even slower than for the Dirichlet
problem. And when curved boundaries are involved additional complexities occur. Con-
siderably more research is needed in connection with such problems.

This incomplete and somewhat rambling paper may be brought to a close with the hope
that it has served to emphasize two points:

(1) Numerical methods have been brought to the point where, with the aid of high-speed
automatic computing machines, linear partial differential equations of second order can be
successfully tamed and domesticated for the use of mankind; and .

(2) Intensive research is still required to improve and polish the actual technique. ;

I am happy to acknowledge my obligation to the National Bureau of Standards and the
Office of Naval Research, which have provided much of the material for my remarks and
have made it possible for me to attend these meetings.
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AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE
ProBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS™

CORNELIUS LANCZOS

National Bureau of Standards, Institute for Numerical Analysis, UCLA

The eigenvalue problem of linear operators is of central importance for all vibration
problems of physics and engineering. The vibrations of elastic structures, the flutter probiems
of aerodynamics, the stability problem of electric networks, the atomic and molecular vibrations
of particle physics, are all diverse aspects of the same fundamental problem, viz. the principal-
axis problem of quadratic forms. :

In view of the central importance of the elgenvalue problem for so many fields of pure
and apphed, mathematics, much thought has been devoted to the designing of efficient methods
by which the eigenvalues of a given lineat operator may be found. That linear operator may
be of the algebraic or of the continuous type; that is, a matrix, a differential operator, or a
Fredholm kernel function. Iteration methods play a prominent part in these designs, and
the literature on the iteration of matrices is very extensive.! In the English literature of recent
years the work of A. Hotelling? and A. C. Aitken® deserve attention. H. Wayland* surveys
the field in its historical development, up to recent years. W. U. Kincaid® obtained additional
results by improving the convergence of some of the classical procedures.

The present investigation, while starting out along classical lines, proceeds nevertheless
in a different direction.” The advantages of the method here developed® can be summarlzed
as follows. :

1. The iterations are used in the most economical fashion, obtalmng an arbitrary number
of eigenvalues and elgensolutlons by one single set of iterations, w1thout reducing the order
of the matrix. ‘ :

2. The rapld accumulation of fatal rounding errors, common to all iteration processes if
applied to matrices of high dispersion (large ‘“‘spread” of the eigenvalues), is effectively
counteracted by the method of “minimized iterations.” -

3. The method is directly translatable into analytic terms, by replacing summation
by integration. We then get a rapldly convergent analytic iteration process by which
the eigenvalues and eigensolutions of linear dlfferentlal and integral equatlons may be '
obtained. :

The two classical solutions of Fredholm’s problem Since Fredholms fundamental essay on
integral equations? we can replace the solution of linear differential and integral equations
by the solution of a set of simultaneous ordinary linear equations of infinite-order. The problem

* The preparation of this paper was sponsored (in part) by the Office of Naval Research.
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of Fredholm, if formulated in the language of matrices, can be stated as follows: Find a
solution of the equation :

y— Ady = b, ~ (1)
where b is a given vector, 4 a given scalar parameter, and 4 a given matrix (whose order
eventually increases to infinity), while y is the unknown vector. This problem includes the
inversion of a matrix (1 = o) and the problem of the characteristic solutions, also called

“‘eigensolutions” (b = 0), as special cases. :
Two fundamentally different classical solutions of this problem are known. The first
solution is known as the “Liouville-Neumann expansion.”® We consider 4 as an algebraic
operator and obtain formally the infinite geometric series

1 S
y:l—'_—l‘/—l‘b=(l+lA+},2A2~*" ‘ ‘)b. (2)

This series converges for sufficiently small values of | 2] but diverges beyond a certain || = | 4y].
"The solution is obtained by a series of successive “‘iterations”;? we construct in succession the
set of vectors

by = b,
by = Ab,
b, = Ab,, , (3)
, bpyy = 4b,, .
and then form the sum o ’
p = by + Ab, + A2, + - - - (4)

The merit of this solution is that it requires nothing but a sequence of iterations. The
drawback of the solution is that its convergence is limited to sufficiently small values of 2.

The second classical solution is known as the Schmidt series.’® We assume that the matrix
4 is “nondefective,” i.e., that all its elementary divisors are linear. We furthermore assume
that we possess all the eigenvalues'! u; and eigenvectors u; of the matrix A, defined by the
equations

Au; = pu, i=1,2,...,n (5)

If 4 is nonsymmetric, we need also the “adjoint” eigenvectors u;*, defined with the help of
the transposed matrix A* by the equations ‘ '

A*u* = pu*. i=12,...,n (6)
We now form the scalars
ALy (7)
Vi— L ‘

and obtain y in the form of the expansion

_ Nt Vel Valln
Tl T T—a, T T (®)
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This series offers no convergence difficulties since it is a finite expansion in the case of
matrices of finite order and yields a convergent expansion in the case of the infinite matrices
associated with the kernels of linear differential and integral operators.

The drawback of this solution is—apart from the exclusion of defective matrices!>—
that it presupposes the complete solution of the eigenvalue problem associated with the
matrix 4.

Solution of the Fredholm problem by the S-expansion. We now develop a new expansion which
solves the Fredholm problem much as the Liouville-Neumann series does but avoids the
convergence difﬁculty of that solution.

We first notice that the iterated vectors &y, &;, b5, . . . cannot be linearly independent of
each other beyond a certain definite 4,. ‘All these vectors find their place within the n-dimen-
sional space of the matrix 4; hence not more than 7 of them can be linearly independent.
‘We thus know in advance that there must exist between the successive iterations a linear
identity of the form

bm + glbm—l + g2bn;—2 +- gmbo = 0. (9)
We cannot tell in advance what m will be, except for the lower and upper bounds:
l<m<Zn (10)

How to establish the relation (10) by a syst;amatic algorithm will be shown presently; for
the time being we assume that the relation is already established. We now define the
polynomial ' ’

C(x) = xm + gam = + -+~ + g (11)
together with the “inverted polynomial® (the coefficients of which follow the opposite sequence)
Su(d) =1+ g4 + g,22 + - + + 4 g, 4™ (12)
Furthermore, we introduce the partial sums of the latter polynomial:
Sy, =1, ‘ '
Si(d) =1+ glﬂby
S(8) =1+ g+ gk, R (13)

Smoa(d) =1+ @i+ -+ gp A" L
~ We now refer to a formula which can be proved by straightforward algebra:13

Sm(d) — A™G '

—(—i__wj—) = Sp_1(A) + Sm_o(d) - Ax + S, _5(A) + A2 4 - - - Sy Am— L™ -1, (14)
Let us apply this formula operationally, replacing x by the matrix 4, and operating on the
vector b,. In view of the definition of the vectors b, the relation (10) gives

G(4) - by =0, . (15)
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and thus we obtain

S, (2 :
1 —(A)A bo = Sp_1(Aby + Sp_o(D) Ay + - - - o SgA™ =10,y (16)
and hence .
_ b Suoa(Bbo F Swoa(H) Ay - - - SgA™ Y,y
y=i=zab= S,.(4) X (17)

If we compare this solution with the carlier solution (4) we notice that the expansion (17)
may be conceived as a modified form of the Liouville-Neumann series because it is composed
of the same kind of terms, the difference being only that we weight the terms A*b, by the weight
factors

Sm—dc——l(j')
5., | (18)

w, =

instead of taking them all with the uniform weight factor 1. This weighting has the beneficial
effect that the series terminates after m terms, instead of going on endlessly. The weight factors
w; are very near to 1 for small 2 but become more and more important as 4 increases. The
weighting makes the series convergent for all values of A.

The remarkable feature of the expansion (17) is its complete generality. No matter how
defective the matrix 4 may be, and no matter how the vector b, was chosen, the expansion (17)
is always valid, provided only that we interpret it properly. In particular we have to bear
in mind that there will always be m polynomials S,(4), even though every S;(1) may not be
of degree k, owing to the vanishing of the higher coefficients. For example, it could happen
that :

Gl = xm (19)
so that ’
Su(?) =1 4014022 4 - - - 4 04m, - (20
Sp(A) =14 0440224+ - - 4 02, . @1

and formula (17) gives: '
. )) = bO —*—'-‘ )'bl + A + Am-—-lbm:_l. (22)

Solution of the eigenvalue problem. The Liouville-Neumann series cannot give the solution
of the eigenvalue problem since the expansion becomes divergent as soon as the parameter 1
reaches the lowest characteristic number 1,. The Schmidt series cannot give the solution of
the eigenvalue problem since it presupposes the knowledge of all the eigenvalues and eigen-
vectors of the matrix 4. On the other hand, the expansion (17), which is based purely on
iterations and yet remains valid for all 4, must contain implicitly the solution of the principal-
axis problem. Indeed, let us write the right-hand member of Eq. (1) in the form
b =S, (2. : (23)
Then the expansion (17) loses its denominator and becomes | |
J= Sin-l()*)zo + Sm—2(2‘))‘—b-1 +e Solm_lzm—r (24)
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We can now answer the question whether a solution of the homogeneous equation
y— 4y =0 ' (25)
is possible without the identical vanishing of y. The expression (23) shows that b can vanish
only under two circumstances; either the vector b or the scalar §,,(4) must vanish. Since
the former possibility leads to an identically vanishing y, only the latter possibility is of interest.
This glvcs for the parameter 2 the condition A
. Sn(4) = 0. (26)
The roots of this equation give us the characteristic values A = 4,, while the solution (24)
yields the characteristic solutions, or eigenvalues, or principal axes of the matrix 4:
u; = Sp_1(4:)bo + Sp_o(A:) A0y + - - T SoA™ "0 _y- (27)
It is a remarkable fact that although the vector b, was chosen entirely freely, the particular
linear combination (27) of the iterated vectors has invariant significance, except for an undeter-
mined factor of proportionality which remains free, in view of the linearity of the defining
equation (25). That undetermined factor may even come out to be zero, i.e., a certain axis
may not be represented in the trial vector b, at all. This explains why the order of the poly-
nomial §,,(4) need not be necessarily equal to n. The trial vector b, may not give us all the
principal axes of 4. ‘What we can say with assurance, however, is that all the roots of S,,(2)
are true characteristic values of 4, and all the u; obtained by the formula (24) are true charac-
teristic vectors, even if we did not obtain the complete solution of the eigenvalue problem.
The discrepancy between the order m of the polynomial G(u) and the order 7 of the character-
istic equation
ay— M- " N Il
F(p) . : | =0 ' (28)

7% B
will be the subject of the discussions of the next section.
Instead of substituting in formula (27) we can also obtain the principal axes u; by a
numencally simpler process, applying synthetic division. By synthetlc division we generate
the polynomials

xG—ExL,. ==l ogfam=2 4. g R (29)
We then replace x’ by b, and obtain
' Uy =bp_y + G+ -+ gmoabo (30)
The proof follows immediately from the equation ‘ » _
(4 — w)u; = G(4) - by = O. (31)

The problem of missing axes. Let us assume that we start with an arbitrary “trial vector” b,
and obtaln by successive iterations the sequence

bO: bl’ b27 M} bn' (32)
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Similarly we start with the trial vector 4;* and obtain by iterating with the transposed matrix
A4* the adjoint sequence

bo*, b*, bo*, . . ., b*. (33)
Let us now form the following set of “basic scalars”
Copr = by b* = b+ b*. ' (34)

It is a remarkable fact that these scalars depend only on the sum of the two subscripts ¢ and &;
for example,
bk—lbk+1* = by _1*b 11 = biby*. (35)

This gives a powerful numerical check of the iteration scheme, since a discrepancy between
the two members of Eq. (35) (beyond the limits of the rounding errors) would indicate an
. error in the calculation of b, or b, ¥, 1f the sequence up to b and b,* had been checked
before.

Let us assume for the sake of the present argument that 4 is a nondefectivc matrix, and
let us analyze the vector b, in terms of the eigenvectors u;, while by* will be analyzed in terms
of the adjoint vectors u;*; thus,

by = 31“1 + Bzuz + Bnum - : (36)
bo* = 51*1‘1* + Bz*uz* +- Bn*un*' (37)
Then the scalars ¢; become _ ‘
¢; = py’ + pata® + ¢ pattas (38)
with : B
‘ Px = Ekﬂk* : . (39)

The problem of obtaining the u; from the ¢; is the problem of “weighted moments,” which
can be solved as follows. Assuming that none of the p, vanish and that all the 4, are distinct,
we establish a linear relation between n 4 1 consecutive ¢; of the following form:

Co + ¢+ttt Gty 6, =0,
G17o + Ch 0t + ¢py1=10,

(40)
Ello + Gyt + 0 0+ Conalny + Cn = 0.
"Then the definition of the ¢; shows directly that the set (40) demands that
Fu) =0, (4D
where
F(x) =m +mx ++ + + + np_ppm™ 4 am : (42)

Hence, by solving the recurrent set (40) with the hélp of a “progressive algorithm,” displayed
- in' the next section, we can obtain the coefficients of the characterlstlc polynomial (42) whose
roots give the eigenvalues u,.
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Under the given restricting conditions none of the g, roots have been lost and we could
actually establish the full characteristic equation (41). It can happen, however, that b, is
orthogonal to some axis #;* and it is equally possible that 5,* is orthogonal to some axis u,.
In that case §; and 8,* drop out of the expansions (36) and (37) and consequently the expan-
sion (38) lacks both p; and p,. This means that the scalars ¢; are unable to provide all the
Uy, since u; and u, are missing. The characteristic equation (41) cannot be fully established
under these circumstances. :

The deficiency was here caused by an unsuitable choice of the vectors b, and by*; it is
removable by a better choice of the trial vectors. However, we can have another situation
where the deficiency goes deeper and is not removable by any choice of the trial vectors. This
happens if the P roots of the characteristic equation are not all distinct. The expansion (38)
shows that two equal roots 4; and 4, cannot be separated since they behave exactly like one
single root with a double amplitude. Generally, the weighted moments ¢; can never show
whether or not there are multiple roots, because the multiple roots behave like single roots.
Consequently, in the case of multiple eigenvalues the linear relation between the ¢; will be
not of the nth but of a lower order. If the number of distinct roots is 7, then the relations (40)
will appear in the form S

Gotlo + €t R o 2 M o = 0,
Grle + Cafhr + ot lime1 = 0, :
oo - . . . (43)

o F Cmatth 0t 0t Com—ilm—1 + Cam = 0.
Once more we can establish vthe polynomial
Gx) =mp +mx 4+ + * A Ru_gx™ 1 4 2™, ' (44)
but this polynomial is now of only mth order and factors into the m root factors
(=) (¥ —pa) = - - (= )y (45)

where all the p; are- distinct. After obtaining all the roots of the polynomial (44) we can .
now construct by synthetic division the polynomials

G(x)
| X~
and replacing x’ by b; we obtain the principal axes of both 4 and 4*:
Uy =bp1 + & bm_z -+ Lnibo,
U = b y* + &g o Eniho*. (47)
This gives a partial solution of the principal-axis problem, inasmuch as each multiple root

contributed only one axis. Moreover, we cannot tell from our solution which one of the roots
is single and which one multiple, nor can the degree of multiplicity be established. In order

=" gF ™R A g (46)
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to get further information, we have to change our trial vectors and go through the iteration
scheme once more. We now substitute in the formulas (47) again and can immediately
~ localize all the single roots by the fact that the vectors u; associated with these roots do not
change (apart from a proportionality factor), while the u, belonging to double roots will
generally change their direction. A proper linear combination of the new #,” and the previous
u,, establishes the second axis associated with the double eigenvalue p,; we put

wt =,  wk=u+ pu,
wl* = u, w2* = /¥ 4 pruk,
‘The factors y and p* are determined by the condition that the vectors #,! and u,2 have to be
biorthogonal to the vectors u,1* and u,2*, ‘

In the case of triple roots a third trial is demanded, and so on.

An interesting contrast to this behavior of multiple roots associated with nondefective
matrices is provided by the behavior of multiple roots associated with defective matrices.
A defective eigenvalue is always a multiple eigenvalue, but here the multiplicity is caused not
by the collapse of two very near eigenvalues, but by the multiplicity of the elementary divisor.
This comes into evidence in the polynomial G(x) by giving a root factor of order higher than
the first. Whenever the polynomial G(x) reveals a multiple root, we can tell in advance that
the matrix 4 is defective in these roots, and the multiplicity of the root establishes the degrcc
of deficiency. ‘

It will be revealing to demonstrate these conditions with the help of a matrix which
combines all the different types of irregularities that may be encountered in working with
arbitrary matrices. Let us analyze the following matrix of sixth order:

1 23 000

014000
001000
000200
000000
0000000

The eigenvalue 2 is the only regular eigenvalue of this matrix. The matrix is “singular”
because the determinant of the coefficients is zero. This, however, is irrelevant from the
viewpoint of the eigenvalue problem since the eigenvalue ““zero” is just as good as any other
eigenvalue. More important is the fact that the eigenvalue zero is a double root of the charac-
teristic equation. The remaining three roots of the characteristic equation are all 1. This 1
is thus a triple root of the characteristic equation; at the same time the matrix has a double
deficiency in this root because the elementary divisor associated with this root is cubic. The
matrix possesses only 4 independent principal axes.

What will the polynomial G(x) become in the case of this matrix? The regular elgenvalue
2 must give the root factor x — 2. The regular eigenvalue 0 has the multiplicity 2 but is
reduced to the single eigenvalue 0 and thus contributes the factor x. The deficient eigenvalue
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-1 has the multiplicity 3 but also double defectiveness.
- factor (x— 1)3. Wc can thus predict that the polynomial G(x) will come out as follows:

(x) = x(x — 2)(x — 1)%.= 2% — 5a* + 943 — 7x® + 2u.
Let us vcrlfy thls numencally Asa trlal vector we choose
be=0b*=1,1,1,1,1, 1.

The successive iterations yield the following table:

b0=

S o O O
- @ 1) =
|

al
T
Il

by*
by
by*
bg*
by*

l

I

Il

I

bt =

be* =

11
6 5
19 9
40 13
= 69 17
- 106 21
=151 25
11
13
1 5
1.7
1 9
1 1
113"

1

Pt el bk ek pued et

|

8.
123

46

17 ‘
116

163

64

O O O O OO -

Hence, it must contribute the root

cCoOo 00O~

0

w -

-

K cooooo~

-

-

-

-

o ocoocoo &~

We now construct the ¢; by dotting b, with the b;* (or by* with the 4,); we continue by
dotting bg with b*; . . ., bg* (or bg* with by, . .

2n+1=13 basic scalars:

. bg).

This gives the following string of

¢; = 6, 14, 33 62, 103, 160, 241 362, 555, 884, 1477, 2590, 4735.

The application of the progressive algorlthm of the next section to these &; ylelds G(x) in
the predicted form. We now obtaln by synthetic divisions

G(x)

Cx—1
(x)
x..__

G(x)
Tx

4x3 + 5x2 — 2x

— 3% 4 3x%2 — x,

5x4+9x2—7x+ 2.

Inverting these polynomlals we obtain thc matrix

0
(0
2

—2 5
-1 3
—7°9
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The product of this.matrix with the iteration matrix B (omitting the last row bs) yields three
principal axes u;; similarly, the product of the same matrix with the iteration matrix B*
yields the three adjoint axes u.*: '

u(l)y=—8 0 0 0 0 0,
2= 0 0 0 2 0 0
2(0)= 0 0 .0 0 2 2
w(l)= 0 0—8 0 0 0
w(2)= 0 0 0 2 0 0,
w0 = 0 0 0 0 2 2

Since G(x) is of only fifth order, while the order of the characteristic equation is 6, we
. know that one of the axes is still missing. We cannot decide a priori whether the missing
axis is caused by the duplicity of the eigenvalue 0, 1, or 2. However, a repetition of the
iteration with the trial vectors
bg =b*=1,1,1,1,1,0

causes a change in the rows #(0) and »*(0) only. This designates the eigenvalue z = 0 as
the double root. The process of biorthogonalization finally yields!s

©m0) =0 0 0 0 1 1,

4(0) =0 0 0 0 1 —1;

o

u*(0) =0 0 0 11,
u*0)=0 0 0 0 1-—1

The progressive algorithm for the construction of the characteristic polynomial G(x). The crucial
point in our discussions was the establishment of a linear relation between a certain b,, and
the previous iterated vectors. This relation leads to the characteristic polynomial G(x), whose
roots G(u;) = 0 yield the eigenvalues x,. Then by synthetic division we can immediately
obtain that particular linear combination of the iterated vectors &; which give us the eigen-
vectors (principal axes) of the matrix 4. :

We do not know in advance in what relation the order m of the polynomlal G(x) will be
to the order n of the matrix 4. Accidental deficiencies of the trial vectors by, 5%, and the
presence of multiple eigenvalues in 4 can diminish m to any value between 1 and #. For this
reason we will follow a systematic procedure that generates G(x) gradually, going through
all degrees from 1 to m. The procedure comes automatically to a halt when the proper m
has been reached. .

Our final goal is to solve the recurrent set of equations

oo+ Gy - “tem =0,

(48)

Cmlo + Cms1h + cr o+ 6, =0
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This is possible only if the determinant of this homogeneous set vanishes:
» 6‘0 6‘1 .« . ‘- cm ‘
L R e

1 =o0. (49)

cmcm+1. *t Com

Before reaching this goal, however, we can certainly solve for any k£ < m the following in-
homogeneous set (the upper £ is. meant as a superscript) :

o’ +eam® A+t =0,

eme® +eam® 4+ 6 =0,
(50)

6o’ + o 0 o = My

The freedom of k. in the last equation removes the overdetermination of the set (48).  The
proper m will be reached as soon as £, turns out to be zero.

Now a recurrent set of equations has certain algebraic properties that are not shared by
other linear systems. In particular, there exists a recursion relation between the solutions of
three consecutive sets of the type (50). This greatly facilitates the method of solution, through
the application of a systematic recursion scheme that will now be developed.

We consider the system (50) and assume that we possess the solutlon up to a definite £.
Then we will show how this solution may be utilized for the construction of the next solution
which belongs to the order £ 4 1.

Our scheme becomes greatly simplified if we pay attention to an additional set of equations
which omits the first of Eqs. (50) but adds one more equation at the end:

o+t 44 =0,

(51)
, ; Ceatli® -+ CGorafle® 0 o = Mg
Let us now multiply the set (50) by the factor
A |
Qe =— ‘ (52)

hy
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and add the set (51). We get a new set of equations which can be written down in the form:
CMo“tt + ettt 4+ Gy =0,

(33)
CMe* G A 0 s g = 0,
provided we put '
N+ = g’
= g + 7,5
(54)

: nett =g o 1+ G
We now evaluate the scalar
CepaMo" T+ 0 G T F Cprr = Py (85)
which is added to the set (53) as the last equation.

What we have accomplished is that a proper linear combination of the solutions 7 and
7¥ provided us with the next solution #;*+!. But now exactly the same procedure can be
utilized to obtain 77;5+! on the basis of ;% and #*+2.

For this purpose we multiply the set (51) by

5= — 222t (56)
k+1

and add the set (53), completed by (55) but omitting the first equation. This gives
6t +_52ﬁ2k+1 + ot G =0,

(57)
G+ G A oy =0,
provided we put _
ATt =g + 9ot
it =@ + 771’&1, ‘
' (58)

ﬁk+lk+_1 =g, 1 +n*Fn
Once more we evaluate the scalar , ;
N I ZIc+2: (59)
~which is added to (57) as the last equation. '
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This analytic procedure can be translated into an elegant geometric arrangement which
_generates the successive solutions 7 and 7;* in successive columns. The resulting algorithm

is best explained with the help of a numerical example.

For this purpose we choose the cigenvalue problem of an mtentlonally over51mp11ﬁed
matrix since our aim is to show not the power of the method but the nature of the algorithm
that leads to the establishment of the characteristic equation. The limitation of the method

due to the accumulation of rounding errors will be discussed in the next section.

Let the given matrix be

13 5 —23
4 0 — 4
7 3 —13

We iterate with the trial vector 4, = 1, 0, 0, and obtain

1.0 0
13 4 7
28 24 12

208 64 112

We transpose the matrix and iterate with the trial vector by* =1, 0, 0, obtaining

1 0 0
13 5 — 23
28 —4 — 20

208 80 —368.

‘We dot the first row and the last row with the opposing matrix and obtain the basic scalars

¢; as follows:16 -
1, 13, 28, 208, 448, 3328, 7168.

Table 1.
0 0.5 1 1.5 2 2.5 3

h=| 1 {13 -141 147.6923075 -163.4042569 | 0
= | -13| 10,8461538¢ | 1,047463173 | 1.106382990 | 0 0

1| 1

13 1 -13

28 HEE -2,15384616 -13.617021249
" 208 1 -1,106382987 -16,000000004 | ©
448 1 0,000000003 | -16
3328 1 ' 0
7168 1

These numbers are writtén down in a column and the scheme shown in Table 1 comes

into operation.
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Instead of distinguishing between the 7, and 7, solutions we use a uniform procedure but-
mark the successive columns alternately as “full” and “half columns”; thus we number the.
- successive columns as zero, one-half, one, . . . . The scheme has to end at a full column, and
the end is marked by the vanishing of the corresponding “head number” k; In our scheme
* the head number is zero already at the half-column 2.5, but here the scheme cannot end,
and thus we continue to the column 3, whose head number becomes once more 0, and then
the scheme is finished. The last column gives the polynomial G(x), starting with the diagonal
term and proceeding upward: ‘ '

Gx) =1-x34+0-x2—16x+ 0
= x%— 16x.
The head numbers /; are always obtained by dotting the column below with the basic

column ¢;; for example, at the head of column 2 we find the number — 163.4042569. This
number was obtained by the following cumulative multiplication:

4481 4 208 - (— 1.106382987) 4 28 - (— 13.617021249).

The numbers ¢, represent the negative ratio of two consecutive &, numbers:

h
q‘i=_h_-:i;

for example, ¢,5 = 1.106382990 was obtained by the division

— (— 163.4042569)
147.6923075

The scheme grows as follows. As soon as a certain column C; is completed, we evaluate
the associated head number 4;; this provides us with the previous g-number ¢, _;. To construct
the next column C;. ;, we multiply the column C,_, by the constant ¢;_; and add the column
C;; thus .

- Gy =¢34 Ciy + G
However, the result of this operation is shifted down by one element; for example, in con-
~ structing column 2.5 the result of the operation

1.10638299 - (— 2.15384616) + (— 13.617021249) = — 16

is not put in the row where the operation occurred, but.shifted down to the next row
below. '

The unfilled spaces of the scheme mean automatically *“zero.”

"The outstanding feature of this algorithm is that it can never come to premature grief, provided
only that the first two ¢-numbers ¢, and ¢, are different from zero. Division by zero cannot
occur since the scheme comes to an end anyway as soon as the head number zero appears
in one of the full columns. o

Of interest is also the fact that the products of the head-numbers associated with the
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full columns give us the successive recurrent determinants- of the ¢;; for example, the

determinants : ‘
1 13

1 1 13 28
| 13 28 13 28 208 |,
28 208 448
and o ’
| 1 13 98 208

13 28 208 448
28 208 448 3328

208 448 3328 7168

are given by the successive products - ,

» I, 1 (—141) = — 141, (— 141) - (— 163.4042569) — 23040, and 23040 - 0 = 0.
Similarly, the products of the head numbers of the half-columns give us similar deter-

minants, but omitting ¢, from the sequence of ¢-numbers. In the example above the deter-
minants

13, |13 28

28 208

| 13 28 208
’ 28 . 208 448
1208 448 3328

are given by the products ;
13, 13 - 147.6923075 = 1920, 1920-0 = 0.

The purpose of the algorithm of Table 1 was to generate the coefficients of the basic
identity that exists between the iterated vectors 4,. This identity finds expression in the vanish-
ing of the polynomial G(x): : '

' ' G(x) = 0. (60)
The roots of this algebraic equation give us the eigenvalues of the matrix 4. In our example
we get the cubic equation L
, x3— 16x = 0,
which has three roots :
' m =0, pe = 4, U3 = — . (61)
These are the eigenvalues of our matrix. In order to obtain the associated eigenvectors, we
divide G(x) by the root factors

G(x) G(x) Glx)
‘ —;--fxz—l6, m—x2+4x, x+4-—x—4x.
.'This gives, replacing x* by &,: ' ‘
, u(0) = — 16by + b,,

w(d) = 4b, + by,
u(— 4) = — 4b, + b,.
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—16 0 1
( 0 4 1)
0 —4¢ 1

is multiplied by the matrix of the b, (omitting ;), we obtain the three eigenvectors u;:

/=16 0 1 1 0 0 12 24 12 = u(0),
( 0 4 1)-(13 4 7)= 80 40 40 = u(4),

0 —4 1/ \28 24 12/ —2¢ 8 —16=u(—4).

Consequently, if the matrix

If the same matrix is multiplied by the matrix of the transposed iterations 4;* (omitting b,*),
we obtain the three adjoint eigenvectors u,*:

—16 0 1 1 0 0 12 —4 —20 = u*(0),
( 0 4 1)-(13 5 —23)= 80 16 —112 = u*(4),
0 —4 1/ \28 —4 —20/ —2¢ 124 72 =u*(—4).

The solution of the entire eigenvalue problem is thus accomplished.

The method of minimized iterations. In principle, the previous discussions give a complete
solution of the eigenvalue problem. We have found a systematic algorithm for the generation
of the characteristic polynomial G(u). The roots of this polynomial gave the eigenvalues of
the matrix 4. Then the process of synthetic division established the associated eigenvectors.
Accidental deficiencies were possible but could be eliminated by additional trials.

As a matter of fact, however, the “progressive algorithm” of the last section has its serious
limitations if large matrices are involved. Let us assume that there is considerable ‘“‘dispersion”
among the eigenvalues, which means that the ratio of the largest to the smallest eigenvalue is
fairly large. Then the successive iterations will grossly increase the gap and after a few itera-
tions the small eigenvalues will be practically drowned out. Let us assume, for example,
that we have a 12-by-12 matrix which requires 12 iterations for the generation of the charac-
teristic equation. The relatively mild ratio of 10:1 as the “spread” of the eigenvalues is after
12 iterations increased to the ratio 10'2:1, which means that we can never get through with
the iteration scheme because the rounding errors make all iterations beyond the eighth
entirely valueless. _

As an actual example, taken from a physical situation, let us consider four eigenvalues
which are distributed as follows: ' '

1, 5, 50,  2000.

Let us assume, furthermore, that we -start with a trial vector which contains the four eigen-
vectors in the ratio of the eigenvalues, that is, the eigenvalue 2000 dominates with the amplitude
2000, compared with the amplitude of the eigenvalue 1. After one iteration the amplitude
ratio is increased to 4 - 108, after two iterations to 8 - 10%.- The later iterations can give us
no new information since they practically repeat the second iteration, multiplied every time
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by the factor 2000. The small eigenvalues 1 and 5 are practically obliterated and cannot
be rescued, except by an excessive accuracy which is far beyond the limitations of the customary
digital machines.

- We will now develop a modification of the customary iteration technique which obviates
this difficulty. The modified scheme eliminates the rapid accumulation of rounding errors
which under ordinary circumstances destroys the value of high order iterations. The new
technique prevents the large eigenvalues from monopolizing the scene. It protects the small
eigenvalues by constantly balancing the dlstrlbutlon of amplitudes in the most equitable
fashion. ’ o

As an illustrative example let us apply this method of - ‘minimized iterations” to the
above-mentioned dispersion problem. If the largest amplitude is normalized to 1, then the
initial distribution of amplitudes is characterized as follows: '

0.0005,  0.0025,  0.025, 1.

Now, while an ordinary iteration would make this distribution still more extreme, the
‘method of minimized iterations changes the distribution of amplitudes as follows:

0.0205, 0.1023, l, —'0.0253.

We see that it is now the third elgenvector which gets a large weight factor, while the fourth
-eigenvector is almost completely in the background. | ,
A repetition of the scheme brings about the followmg new dlstrlbutlon

0.2184, 1, ,__0 1068, -0.0000.

It is now the second’ eigenvector which gets the strongest emphasis.
The next repetition yields:

1, —0.2181, .0.0018,  0.0000.

and we see that the weight is shifted over to the smallest eigenvalue.
' After giving a chance to each elgenvalue the scheme is exhausted, since we have all the
, mformatlon we need. Consequently the next minimized iteration yields an 1dent1ca1 vanishing
of the next vector, thus bringing the scheme to its natural conclusion.
 In order to expose the prmc1ple of mlnlmlzed iterations, let us first consider the case of
{ymmetrw matrices: : ' .
4* = A. ‘ ' : (62)
Moreover, let us agree that the multiplication of a vector & by the matrlx 4 shall be denoted
by a prime: L . ,
Ab =, o (63)
Now our aim is to establish a linear identity between the iterated vectors. We cannot
expect that this identity shall come into being right from the beginning. Yet, we can approach
this identity right from the beginning by choosing such a linear combination of the iterated
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vector b," and b, as makes the amplitude of the new vector as small as possible. Hence, we

want to choose as our new vector b, the combination

by = by’ — ogby, : (64)
where o, is determined by the condition that
(by — ttgho)? = minimum. ' (65)
This gives
bo'b ‘
o =20, o (66)
: 0
Notice that ‘ :
by + by = 0; (67)

that is, the new vector b, is orthogonal to the original vector b,.
We now continue our process. From &, we proceed to b, by choosing the linear combination

by =b— °_‘1b1 — Bobos (68)
and once more «, and f, are determined by the condition that 5,2 shall become as small as
possible. This gives ‘ '

b,'by by'b :
% = _11)‘12_13 - po= _11;(_)?0. (69)
A good check of the iteration b," is provided by the condition
by'by = biby = b2 (70)
Hence, the numerator of f, has to agree with the denommator of «;.
The new vector by is orthogonal to both by and b,.
"This scheme can obviously be continued. The most remarkable feature of thls successive
minimization process is, however, that the best linear combination never includes more than
three terms. 1f we form by, we would think that we should put

by = by" — ayhy — Brby — Yob,. ; ‘ (71)
But actually, in view of the orthogonality of b, to the previous vectors, we get

b2,b0 — b2b0' . o ) ' . (72)

Hence, every new step of the minimization process requires only two correction terms.
By this process a succession of orthogonal vectors is generated:'?

bo by, bgy * vy by, (73)

until the identity relation becomes exacf, which means that _
| | b,=0. | | (74)
If the matrix 4 is not symmetric, then we modify our procedure as follows. We operate
simultaneously with 4 and 4*. The operations are the same as before, with the only difference
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that the dot products are always formed between two opposing vectors. The scheme is indicated
as follows: - :
b, : : by*

b1 == bo' —_ “obo bl* = bo*, - dobo*

by = by' — ayby — Bobo bz*‘ = b* — ab* — Bobo*
' (75)

by = by — ctgby — fyby . by* = bé*' — aphy* — Bibe*
etc.

Operationally, the prime indicates multiplication by the matrix 4. Hence, the succession
of b; vectors represents in fact a successive sef of polynomials. Replacing 4 by the more familiar
letter x, we have:

‘bo =1"b,,
bl = (x — aﬂ)b(b
b2 = (x'— <>Cl) ﬂo 0 - (76)

. ool
)

= (?‘ — ag)by — Brby,

by = (¥ — %p_1)bp—1— Br—2bm—2 = 0.

‘This gradual generation of the characteristic polynomial G(x) is in complete harmony
with the procedure of the “progressive algorithm,” discussed in the preceding section. In
fact, the successive polynomials of the set (76) are identical with the polynomials found in the full columns
of the progressive algorithm in Table 1. This explains the existence of the recursion relation

Pmia(¥) = (x—«a )pn(x) - ﬂn—lpn—-l(x) . (77)
without additional y, 6, . . . terms. The existence of such a relation is a characteristic feature
of the recurrent set of equations that are at the basis of the entire development

While the new scheme goes basically through the same steps as the previously discussed
“progressive algorithm,” it is in an mcomparably stronger position concerning rounding errors.
Apart from the fact that the rounding errors do not accumulate, we can effectively counteract
their mﬂuence by constantly checking the mutual orthogonality of the gradually evolving
vectors b; and b.*. Any lack of orthogonality, caused by rounding errors, can immediately
be corrected by the addition of a small correction term [Eq. (98)]. By this procedure the
orthogonality of the generated vector system does not come gradually out of gear.
However, quite apart from the numerical advantages, the biorthogonality of the vectors
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b; and b;* has further appeal because it imitates the behavior of the principal axes. This is an
analytical eminently valuable fact which makes the transition from the iterated vectors to
the principal axes a simple and strongly convergent process.

In order to see the method in actual operation, let us apply it to the simple example of
the preceding section. Here the matrix 4 is of third order, and thus we have to construct the
vectors by, by, by, b, and the corresponding adjoint vectors. We obtain the following results:

by =1 0 0 , b* =1 0 0
by =13 4 7 b =13 5 —23
| o = ¥ — 13
by = 0 4 7 b* = 0 5 —23
b’ =—141 —28 —79 b* =—141 —69 279
.°‘1=‘_161% ﬂo=_+41=—141

= — 11.89361702 -

b, =0, 19.57446808, 4.25531914
by’ = 0, —17.02127656, 3.40425542

b* = 0, — 9.53191490, 5.44680854
b,*" = 0, 16.34042562, — 32.68085142

_180.78768715 _ — 163.40425746
% = —163.4042553 hi=—""Ta
= — 1.106382981 = 1.158895443
by=0, 0, O b* =0, 0, 0
The associated polynomials become:
bo =1,
Pl(x) =X 13)

pa(x) = (x + 11.89361702)(x — 13) + 141

, = 22— 1.10638298x — 13.61702126,

pa(x) = (» + 1.106382981) (x> — 1.10638298x — 13.61702126) — 1.158895443(x — 13)

= x3 — 16x. :

Comparison with Table 1 shows that the coefficients of these very same polynomials appear
in the full columns 0, 1, 2, 3 of the progressive algorithm.

Solution of the eigenvalue problem by the method of minimized iterations. The biorthogonal property
of the vector system b;, b;* leads to an explicit solution of the eigenvalue problem, in terms
of the vectors 4,. Let us first assume that the matrix 4 is of the nondefective type and let us
analyze the vectors &; in terms of the eigenvectors #;,, The method by which the vectors b,
were generated yields directly the relation

b; = pi(m)uy + pi(ug)ug + - - + +1’i(l‘m>um- ' (78)
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If this relation is dotted with u*, we obtam in view of the mutual orthogonality of the two
sets of axes,

by w* = pi( ) - u®. ' : ‘ (79)
Let us now reverse the process and expand the u; in terms of the b;: '
Uy = oyoby + ?‘i1b1 +o gy _(80)
The dotting by b* yields |
_ A U+ by*
| | i = (81)
Let us denote the “norm” of &, by o,:
. ' o = by b* ‘ ' o (82)
while the norm of uk will be left arbitrary. Then the expansidn (80) becomes:
b b b e ’ :
u; = 6_2 + (1) G_i + pap) ;: + e + pm-1(ns) O'm—i. (83)

This éxpansz'on contains the solution of the principal-axis problem. The eigenvectors u; are gener-
ated in terms of the vectors b,, which ar¢ the successive vectors of the process of minimized
 iterations. The expansion (83) takes the place of the previous “S- cxpanswn” (27) which
solved the eigenvector problem in terms of the customary process of iteration.
The adjoint axes are obtained in identical fashion:

by 1*
u = +pl(u)—— + pal) i e Pl T (84)

The expanswn (83) remains valid even in the case of defective matrices. The onlybdiﬂ’cr-
ence is that the number of principal axes becomes less than n since a multiple root u;, if
substituted into (83) and (84) cannot contribute more than one principal axis.1® However, a
defective matrix actually possesses less than z pairs of principal axes, and the above expansions

“ give the general solution of the problem.

An interesting alternative of the expansion (83) arises if we go back to the original Fredholm
problem and request a solution in terms of the minimized vectors b,, rather than the simply
iterated vectors of the expansion (17). One method would be to make use of the Schmidt
series (8), expressing the u, of that series in terms of the &,, accordmg to the expansion (83).
However, the Schmidt series holds for nondefective matrlces only, while we know' that a
solution must exist for any kind of matrix.

Hence, we prefer to proceed in a somewhat different fashion. We expand y directly in
terms of the vectors b;:

‘ J =);obo +ouby A+ - +.ym—1bm-1" (85)
We substitute this expansion into Eq. (1), replacing b, by
b’ = biyy + ouby + Br_1bys. ' (86)

~ Then we compare coeﬂiments on both sides of the equation. "The result can be described as
follows.
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Let us reverse the sequence of the «;-coefficients and let us do the same with the f,-coeffi-

cients. Hence, we define

) = Uy—1y
0_(1 . T Kypgy ﬂ_o = ﬁm—z’
(87)
X —1 = %oy ﬁm 2—“50
We now construct the following “reversed” set of polynomials:
pO = I, .
h(x) =x—a,
pa(¥) = (¥ — o) p2(*) — Pos
' - (88)
Pn(®) = (¥ = Zn)B—1(%) — BB —2(%)
= G(x). ’
Then the solution of the Fredholm leroblem (1) is given by the expansion
= _(‘5[ m—1 -+ Pr()bpg +* + 0 F f&n-l(l{)bo]’ | : (89)
where we have put v » '
’ '1
= (90)

The expansion (89) is completely general and remains valid, no matter how the vector b, of
the right-hand member was given, and how regular or irregular the matrix 4 may be. The
only condition to be satisfied is that the vector b,*—while otherwise chosen arbitrarily—shall
be free of accidental deficiencies, that is, by* shall not be orthogonal to some u, if b, is not

simultaneously orthogonal to u,*.
The expansion (89) leads once more to a solution of the elgenvector problem this tlme

~ obtained with the help of the “reversed” polynomlals bi(x): .
= by, +/71(#) m—g T +Pm 1(:‘%)170 (91)

The expansions (91) and (83) actually coincide—except for a factor of proportlonahty-—for'
algebraic reasons.

In order to see a numerical example for this solution of the eigenvalue problem let us
return once more to the simple problem previously discussed. The minimized 4; and b*
vectors associated with this matrix were given at the end of the preceding section, together
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with the associated polynomials p,(x). We now construct the reversed polynomlals b:(x). For
this purpose we tabulate the «, and §;:

13 \ =14
— 11.89361702 1.158895443
— 1.106382981

We reverse the sequence of this tabulation:
— 1.106382981
— 11.89361702 1.58895443
13 L ' — 141
and construct in succession |
ﬁo = 1’
£,(%) = x + 1.106382981, :
Do(%) = (x + 11.8361702)p,(x) — 1.58895443.

= x%2 4+ 13x + 12,.
D3(x) = (x — 13) py(x) + 141
= x3— 16x.

The last polynomial is identical with p3(x) = G(x). The zeros of this polynomial are
wm =0, | ue =4, . | Uy =—4;
* substituting these values irito f,(1), f1(x), B, we obtain the matrix

12 1.06382981 1
( 80 5.106382981 1 )
—24 —2.89361702 1

The product of this matrix with the matrix of the b, vectors gives the three principal axes u;:

/ 12 106382981 1y /I 0 0 C12 2 12 =4(0),
( 80  5.106382981 1) (0 4 7 ) — 80 40 40 = u(4),
—24 —2.89361702 1/ \0 19.57446808 4.25531914/ —24¢ 8 —16 = u(—4),

in complete agreement with the previous result, but now obtained by an entirely different
method. If the b-matrix is replaced by the b*-matrix, the adjoint axes u*(0), u*(4), u*(— 4)

are obtained.
/ , ' The lateral vibrations of a bar. In order to
1 study the power of the method in connection

Fie. 1. Vibrating bar with a vibration problem of large dispersion,-
: the elastic vibrations of a bar were investigated.
- The bar was clamped at one end and free at the other. Moreover, the bar changed its cross

section suddenly in the middle (Fig. 1). The change of the cross section was such that the
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moment of inertia jumped from the value 1 to 2. The differential equation that describes the
vibrations of such a bar is the fourth order equation

d? dy? '
= [k(x> ;f;z] —», | (92)
with the boundary conditions ( |
0) =0, () =0, ’
e o (03
»'(0) =0, J (l)‘:O:
and
k(x)=l(0$x<é), lc(x)=2(l§<x$l). (94)

The differential operator d/dx was replaced by the difference operator A/Ax, with Ax = 1.
The length of the bar was chosen as [ = 13, thus leading to a 12-by-12 matrix, since y(0)
=y(1) =0

- The first step was the inversion of the matrix. This was easily accomplished since a matrix
that is composed of a narrow band around the diagonal can be inverted with little labor.
The eigenvalues u; of the inverted matrix are the reciprocals of the original 4,:

1
ey (95)

;The general theory has shown that the iteration scheme applied to an arbitrary matrix
automatically yields a biorthogonal set of vectors 4, and b;*; they can be conceived as the
building blocks from which the entire set of principal axes may be generated. In the present
problem, dissipative forces are absent, which makes the matrix A4 symmetric and the problem
self-adjoint. Hence, S
b, = b*, (96)
and we get through with a single set of iterations.

Now the general procedure would demand that we go through 12 minimized iterations
before the stage b,, = 0 is attained. However, the study of a system with high dispersion has
shown that in such a system the method of minimized iterations practically separates the
various vibrational moves, starting with the highest eigenvalue and descending systematically
to the lower eigenvalues, provided that we employ a trial vector b, which weights the eigen-
vectors according to the associated eigenvalues, or even more strongly. In the present problem
the trial vector 1, 0, 0, . . . was not used directly but iterated with the matrix 4, and then
iterated again. The vector 4, thus obtained was employed as the b, of the minimized iteration
scheme. ' :

The strong grading of the successive eigenvectors has the consequence that in & minimized
iterations essentially only the highest £ vibrational modes will come into evidence. This is of
eminent practical value since it allows us to dispense with the calculation of the very low
eigenvalues (that is, very high frequencies, since we speak of the eigenvalues of the inverted
matrix), which are often of little physical interest, and also of little mathematical interest in
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~ view of the fact that the replacing of the d operator by the A operator becomes in the realm
of high frequencies more and more damaging. '

Whether the isolation actually takes place or not can be tested with the help of the p,(x)
polynomials that accompany the iteration scheme. The order of these polynomials constantly
increases by 1. The correct eigenvalues of the matrix 4 are obtained by evaluating the zeros
of the last polynomial p,,(x) = 0. What actually happens, however, is that the zeros of the
polynomials p,(x) do not change much from the beginning. If the dispersion is strong, then
each new polynomial basically adds one more root but corrects the higher roots by only small
amounts. It is thus quite possible that'the series of largest roots in which we are primarily
interested is practically established with sufficient accuracy after a few iterations. Then we
can stop, since the later iterations will change the values obtained by negligible amounts.
The same can be said about the vibrational modes associated with these rcots.

This consideration suggests the following successive procedure for the approximate deter-
mination of the eigenvalues and eigenvectors (vibrational modes) of a matrix. As the mini-
mization scheme proceeds and we constantly obtain newer and newer polynomials p;(x), we
handle the last polynomial obtained as if it were the final polynomial p,,(x). We evaluate the -
roots of this polynomial and compare them with the previous roots. Those roots which change
by negligible amounts are already in their final form.

A similar procedure holds for the evaluation of the eigenvectors ;. Here the biorthogonality
of the vectors 4; and ,*—which is reduced to simple orthogonality in the case of a symmetric
matrix—is of very great help. Let us assume that the lengths of the vectors 4; are normalized
to 1, by replacing &; by b,/Vs,. Then the expansions (83) and (84) show that the following
matrix must be an orthogonal—although in the diagonal terms not normalized—matrix: k

(1 () () | bmoa(t)
Vo, \/;1. Vo, Ve, _,

1 Dalps)  po(pa) | .. Pm—1(pe)
\/0'0 \/G—Zl . \/;2- V0,1

1 plin) palttw)  Pmea(ti)
(Voo Ve Ve | Vo,

The dot-product of any two rows of this matrix must come out as zero—thus providing us
with a powerful check on the construction of the p, polynomials and the correctness of the
roots u,, which are the roots of the equation p,(x) = 0.1 In the case of strong dispersion,
the transformation matrix (97) is essentially reduced to the diagonal terms and one term to
the right and to the left of the diagonal; that is, the eigenvector u, is essentially a linear
combination of three d-vectors only, namely, b, _,, b, _,, and b;.
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These general conditions are well demonstrated by the tabulation of the final results of
the above-mentioned bar problem. The minimized iterations were carried through up to
m = 6. On the basis of these iterations, the first six eigenvalues and the first five vibrational
modes of the clamped-free bar were evaluated. The iterations were constantly watched for
orthogonality. After obtaining a certain b;, this b, was immediately dotted with all the previous
b;. If a certain dot product &, - b; came out as noticeably different from zero, the correction
term

b, b;

T J

&y = — T2 b;
2

(98)

was added to b,, thus compensating for the influence of rounding errors. By this procedure
. the ten-significant-figure accuracy of the calculations was constantly maintained.?®
The roots of the successive polynomials p,(x) are tabulated in Table 2.

Table 2.
i K2 H3 Ha Hs He
2256,926071
.943939 48,1610705
.943939 .2037755 5,272311428
.943939 .2037825 ) .355958260 1,513923859
- .943939 .2037825 .356269794 582259337 0,546327303
.943939 .2037825 .356269980 .5829955952 591117817 0.2498132719

* The successive orthogonal transformation matrices (97) likewise show strong convergence.
We tabulate here only the last computed transformation matrix (rounded off to four decimal
places), which expresses the first six eigenvectors uy, . . ., g in terms of the first six normalized
b,/ Vo, vectors, making use of the roots of p4(u) = 0. The diagonal elements are normalized
to 1:

1 - 0.0028 0 0 0 0
—0.0028 1 0.0316 0.0004 (I 0
0 — 0.0316 1 0.1497 0.0081 0o .
0 0.0044  —0.1520 1 0.2693 0.0249
0 — 0.0010 0.0335  — 0.2793 1 0.4033
0 0.0002  — 0.0087 10.0779  —0.3816 1

We notice how quickly the elements fall off to zero as soon as we are beyond one element to
_the right and one to the left of the main diagonal. The orthogonal reference system of the
b; and the orthogonal reference system of the u; are thus in close proximity to each other.

The five vibrational modes uy, . . ., u; thus obtained (ug being omitted since the lack of
the neighbor on the right side of the diagonal makes the approximation unreliable) are plotted
.in Fig. 2. ’
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The eigenvalue problem of linear integral operators. The methods and results of the past sections
can now be applied to the realm of continuous operators. The kernel of an integral equation
can be conceived as a matrix of infinite order that may be approximated to any degree of
accuracy by a matrix of high but finite order. One method of treating an integral equation
is to replace it by an ordinary matrix equation of sufficiently high order. This procedure is
from the numerical standpoint frequently the most satisfactory one. However, we can design
methods for the solution of integral equations that obtain the solution by purely analytical
tools, on the basis of an infinite convergent expansion, such as the Schmidt series, for example.
The method we are going to discuss belongs to the latter type. We will find an expansion
that is based on the same kind of iterative integrations as the Liouville-Neumann series, but
avoiding the convergence difficulties of that expansion. The expansion we are going to
u(u=225694) develop converges under all circumstances
ulug=48.20)  and gives the solution of any Fredholm
wieivi  type of integral equation, no matter
us{ps = 0.59) how defective the kernel of that integral
' equation may be.2!

Let us first go back to our earlier
method of solving the Fredholm prob-
lem. The solution was obtained as
the S-expansion (17). The difficulty
with this solution is that it is based on
the linear identity that can be estab-

. . . : lished between the iterated vectors &;.

Fic. 2. Five v1brat;§nall modes of the bar of That identity is generally of the order

: & ‘ n; if n grows to infinity, we have to
obtain an identity of infinite order before our solution can be constructed. That, however,
cannot be done without the proper adjustments. . ;

The later attempt, based on the method of minimized iterations, employs more adequate
principles. We have seen that for any matrix 4 a biorthogonal set of vectors b; and b;* can
be constructed by successive minimizations. The set is uniquely determined as soon as the
first trial vectors b, and by* are given. In the case of the inhomogeneous equation (1) the
right-hand member 4 may be chosen as the trial vector b, while by* is still arbitrary.

The construction of these two sets of vectors is quite independent of the order n of the
matrix. If the matrix becomes an integral operator, the b; and b* vectors are transformed into
a biorthogonal set of functions ’ k

‘Po(x): (pl(x)’ (Pz(x)s ¢ ‘.'

%*(x), (pl*.(x)) ' ‘Pz*(x), <t

which are generally present in infinite number. The process of minimized iterations assigns
to any integral operator such a set, after gy(x) and py*(x) have been chosen. ‘

(99)
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Another important feature of the process of minimized iterations was the appearance of
a successive set of polynomials p;(u), tied together by the recursion relation

biva(p) = (1 — 2)pi(p) = Bioabi—a(p)- (100)

This is again entirely independent of the order # of the matrix 4 and remains true even if the
matrix 4 is replaced by a Fredholm kernel K(x, &).

We can now proceed as follows. We stop at an arbitrary p,,(x) and form the reversed set
of polynomials $,(u), defined by the process (87). Then we construct the expansion

Iule) = 5 [omae) + Bi)pmoa() + - + Bucalidmu®]. (10D

This gives a successive-approximation process that converges well to the solution of the
Fredholm integral equation
2(x) — AEy(x) = go(x). ' (102)
In other words,
: (%) = lim y,,(x). . (103)
m—>

By the same token we can obtain all the eigenvalues and eigensolutions of the kernel
K(x, &), if such solutions exist. For this purpose we obtain the roots y; of the polynomial
=(@)p by solving the algebraic equation

puln) = 0. (104
The exact eigenvalues p; of the integral operator K(x, £) are obtained by the limit process:

where the 'largest root is called g, and the subsequent roots are arranged according to their
absolute values. The corresponding eigenfunctions are given by the infinite expansion

. m—1(%
i) = i [ ) P 4 paated P52 (106
where u; is the ith root of the polynomial p,,(x).2>
. As a trial function gy(x) we may choose, for example,
| @y = const. = 1. (107)

However, the c'onvergence is greatly speeded up if we first apply the operator K to this function,
and ‘possibly iterate even once more. In other words, we should choose g, = K - 1, or even
@, = K2+ 1 as the basic trial function of the expansion (106).

We consider two particularly interesting examples which are well able to illustrate the
nature of the successive-approximation process here discussed. :

The vibrating plate. In the problem of the vibrating plate we encounter the self-adjoint
differential operator '

— 2 ). | C (l08)
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This leads to the eigenvalue problem

L= O<x<1) (109)
with the boundary condition :
(1) =0. ' - (110)
" The solution of the differential equation (109) is ‘ _
o =evE), (111)

where Jy(x) is the Bessel function of order zero. The Boundary condition (110) requires that
2 shall be chosen as follows: ' :
’ ’ .2 .

| 1= (112)
where £; are the zeros of Jy(x) = 0. V '

Now the Green’s function of the differential equation (109) changes the differential operator
'(108) to the inverse operator which is an integral operator of the nature of a symmetric Fred-
holm kernel function K(x, £). Our problem will be to obtain the eigenvalues and eigenfunctions
of this kernel. ’ : ‘ |
' If we start out with the function g,(x) = 1, the operation Ky, gives

1 — x,

and repeating the operation we obtain

‘ x2 3
Tty
and so on. The successive iterations will be polynomials in x. Now the minimized iterations
are merely some linear combinations of the ordinary iterations. Hence the orthogonal sequence
@;(x) will become a sequence of polynomials of constantly increasing order, starting with the
constant g, = 1. This singles out the ¢,(x) as the Legendre polynomials Py(x), but normalized
to the range O to I, instead of the customary range — 1 to 4 1. The renormalization of the
range transforms the polynomials P,(x) into Jacobi polynomials G,(p, ¢; x), with p = ¢ = 1,28
which again are special cases of the Gaussian hypergeometric series F(«, f, v; x), in the sense
of F(k + 1, — k, 1; x); hence, we get:

P =1

pi(x) = 1— 2%,

@a(x) = 1 — 6x + 622,

pg(x) = 1 — 12x +4 30x% — 20x3,

(113)‘

The associated polynomials pi(x) can be obtained on the basis of the relation
K‘pm = Q41 T %Py + ﬁn~1q)n——l' (114)
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This gives
P =1
p(x) =2x—1,
po(x) = 24x%— 18x + 1,
ba(x) = 720x3 — 600x2 + 72x — 1.

(115)

In order to obtain the general recursion relation for these polynomials it is preferable to
follow the example of the algorithm of Table 1 and introduce the “half-columns™ in addition
to the full columns. Hence, we define a second set of polynomials ¢,(x) and set up the recursion

. relations

pn(x) = nan;l(x) _p;z—l(x))

: (116)
qn(x) = 2(2” + 1) n(x) - qn-—l(x)'
We thus obtain, starting with py = 1 and ¢, = 2, and using successive recursions:
b =1 . o =2
nx) =2x—1, .  Glx) =122 =8,
bo(x) = 24x% — 18x 41,

117
go(x) = 240x% — 192x + 18, (1 )

Ppa(x) = 720x% — 600x2 + 72x — 1, 5(*) = 10080x3 — 8640x2 + 1200x — 32,
9 _

The zeros of the p,,(x) polynomials converge to the eigenvalues of our problem, but the con-
vergence is somewhat slow since the original function ¢, = 1 does not satisfy the boundary
conditions and thus does not suppress sufficiently the eigenfunctions of high order. The zeros
of the ¢, polynomials give quicker convergence. They are given in Table 3, going up to g5(x).

Table 3.
0.6677
.69155 0,1084
.69166016 .130242 .035241
.6916602716 .1312564 .051130 014842
.6916602760 | ,13127115 ( ,0532914 .025582 .00729
.6916602761 | .13127123 | .0534138 .028769 01794

" The last row contains the correct values of the eigenvalues, computed on the basis of Eq. (112),

] 4
/‘i=z_'é-‘

We notice the eminent convergence of the scheme.

The question of the eigenfunctions of our problem will not be discussed here.
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The vibrating string: even modes. Another interesting example is provided by the vibrating
string. The differential operator here is :

d2
| - )
with the boundary conditions ' :
o ~ (£ 1) =0. . (120)
The solution of the differential equation . ;
: d? .
| —Z’-c—zy=29: | | (121)
under the given boundary conditions is |
y;=cos (2 + 1) 7—2r X, (even modes) (122)
. y; = sin jmx. (odd modes) (123)
This gives the eigenvalues ' . :
(20 + 1 \?
Ay = ( 5 . (gven modes) (124)
and : : » ’
A= (jm)& (odd modes) ' - (125)

If we start with the trial function ¢, = 1, we will get all the even vibrational modes of
the string, while @, = x will give all the odd vibrational modes. We start with the first
alternative. |

Successive iterations give

x% 1

E-l=35-—5, .
. e s (126)
X7

Bl=g—7 T

and we notice that the minimized iterations will now become a sequence of even polynomials.
The transformation x* = § shows that these polynomials are again Jacobi polynomials
Gy(p, ¢; x*), but now p = ¢ =}, and we obtain the hypergeometric functions F(k + 4,
—k ".12"’ x2) : )
' Po =1,

@ (%) = 1— 342

@o(x) = 3 — 30x% 4 35x4,

@g(x) = 5 — 105x% +- 315x* — 231x8,

(127)

‘Once more we can establish the associated polynomials p,(x), and the recursion relation
~ by which they can be generated. In the present case the recursion relations come out to be

pn(x) = (4'71— l)xQn-—l(x) —pn——l(x)’
gn(x) == (4'71 + l)pn(x) - qn-—l(x)3
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starting with gy = 1, ¢, = 1. This yields

bo = 1) ) 9o = 1:
p(x) =3x—1, : q(x) = 155 —6, . (12)
Do(x) = 105x% — 45x + 1,. go(x) = 945x% — 420x + 15,

pa(x) = 103953 — 472522 + 210x — 1, g,(x) = 13513543 — 62370x2 + 3150x — 28,

Table 4.
L] F2 B3 Fa Hs
0,40000
405059 0,02351
.405284733 .044856 0,011397
4052847346 .04503010 015722 0,00455
4052847346 .0450316322 | 016192 .00752 0,00216
4052847346 0450316371 | ,016211 .00827 ' ,00500

The successive zeros of the ¢,(x) polynomials, up to ¢;(x), are given in Table 4. The last
row contains the correct eigenvalues, calculated from the formula

2
= (i)’ o
The convergence is again very conspicuous. ‘ : :

The vibrating string: odd modes. In the case of the odd modes of the vibrating string the
orthogonal functions of the minimized iterations are again related to the Jacobi polynomials
Gi(p, g; x), but now with p = ¢ = . Expressed in terms of the hypergeometric series we
now get the polynomials of odd orders xF(k + &, — &, §; x):

Po =4

x) = 3x — 545, ‘
P (%) (131)

@o(x) = 15x — 70x3 4 6345,
@3(x) = 35x — 315x% 4 693x° — 429x7,
The associated p;(x) polynomials are generated by the recursion relations
pals) = (1 + D3, 1) — py 1o, (12)
ga(%) = (41 + 3)pu(x) — ¢u—a(%), ‘
starting with p, = 1, ¢, = 3. We thus get
P =1, , % =3,
- p(x) = 15x — 1, | ¢, (x) = 105x — 10, (133)
Da(x) = 945x% — 105x + 1, gs(x) = 10395x% — 1260x + 21,

pa(x) = 1351353 — 17325x% - 378x — 1, g,(x) = 2027025x3 — 2702702 -+ 6930x — 36.
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The zeros of ¢,(x), up to g5(x), are given in Table 5. The last row contains the correct eigen- ‘
values calculated -on the basis of the formula

. .
= =, 134
M= e (134)
Table 5.
" e B I Bs
0.0952
.10126 0.01995
.10132106 .02500 000701
.1013211836 .025323 01068 | 0.00307
.1013211836 - | ,02533024 - | .011215 .00550 0.00156
.1013211836 .025330296 | .011258 .00633 .00405

The eigenvalue problem of linear differential operators. Let Dy(x) be a given linear differential
operator, with given homogeneous boundary conditions of sufficient number to establish an
eigenvalue problem. The problem of finding the eigenvalues and eigenfunctions of this operator
is equivalent to the problem of the previous section in which the eigenvalue problem of linear

integral operators was investigated. Let us assume that we know the Green’s function K(x, &)
of the differential equation

Dy = p. : (135)
Then K is the reciprocal operator of D which possesses the same eigenfunctions (principal
axes) as the operator D, while the eigenvalues of K are the reciprocals of the eigenvalues
of D. ,

" Hence, in principle, the eigenvalue problem of differential operators needs no special
investigation. Actually, however, the situation in most cases is far less simple. The assumption
that we are in possession of the Green’s function associated with the differential equation (135)
is often of only purely theoretical significance. Even very simple differential operators have
Green’s functions that are outside the limits of our analytical possibilities. Moreover, even
if we do possesé the integral operator K in closed form, it is still possible that the successive
integrations needed for the construction of the successive orthogonal functions ¢(x), @,(x),
@3(x), . . . go beyond our analytical facilities. ' v

In view of this situation we ask the question whether we could not relax some of the prac-
tically too stringent demands of the general theory. We may lose somewhat in accuracy, but
we.may gain tremendously in analytic operations if we can replace some of the demands of
the general theory by more simplified demands. The present section will show how that may
actually be accomplished. '

Leaving aside the method of minimized iterations, which was merely an additional tool
in our general program, the basic principle of our entire investigation, if shaped to the realm
of integral operators, may be formulated as follows. »
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We start out with a function fy(x) which may be chosen as fy(x) = 1. We then form by
iterated integrations a set of new functions ' ‘

N(x) = Efo(x), folz) = Ef(2), -+ o Sul(%) = Efwa(). (136)
Then we try to establish an approximate linear relation between these functions, as accurately
as possible. For this purpose we make use of the method of least squares.

We notice that the general principle involves two processes: (a) the construction of the
iterated set (136); (b) the establishment of a close linear relation between them. It is in the
first process that the knowledge of the integral operator K = D! is demanded. But let us
observe that the relation between the successive fi-functions can be stated in reverse order

We then get ’

Jn(®)s fuo1(%) = Dfu(%), « + o fo(%) = DA(). (137)
If we start with the function f,,(x), then the successive functions of lower order can be formed
with the help of the given D operator and we can completely dispense w1th the use of the
Green’s functions. v

Now the freedom of choosing f,(x) makes also f,,(x) to some extent a free function. Yet
the successive functions f;(x) do not have the same degree of freedom. While fy(x) need not
satisfy the given boundary conditions, f,(x) of necessity satisfies these conditions, while f5(x)
satisfies them even more strongly, since not only f,(x) but even Dfy(x) satisfies the given boun-
dary conditions. Generally, we can say that an arbitrary £,(x) need not satisfy any definite
differential or integral equation but it is very restricted in the matter of boundary conditions;
it has to satisfy the boundary conditions “in nth order.” This means that not only Jul() itself,
but the whole sequence of functions

(%), Dfu(), szn(x),- oo D) | - (138)
must satisfy the given boundary conditions. ' ‘

To construct a function f,(x) of this property is not too difficult. We expand f,(x) into
a linear set of powers, or periodic functions, or any other kind of function we may find adequate
to the given problem. The coefficients of this expansion will be determined by the boundary
conditions that will be satisfied by f,(x) and the iterated functions (138). This leads to the
solution of linear equations. In fact, this process can be systematized to a regular recursion
scheme that avoids the accumulation of simultaneous linear equations, replacmg them by a
set of separated equations, each one involving but one unknown. '

We have thus constructed our set (136), although in reverse order. We did not use any
integrations, only the repeated application of the given differential operator D. The first
phase of our problem is accomplished.

We now turn to the second phase of our program, namely, the establishment of an approxi-
mate linear relation between the itcrated functions f;(x). The method of least squares is once
more at our disposal. However, here again we might encounter the difficulty that the definite
integrals demanded for the evaluation of the «, and B, are practically beyond our means.
Once more we can simplify our task. The situation is similar to that of evaluating the
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coefficients of a Fourier series. The “‘best” coefficients, obtained by the method of least squares,
demand the evaluation of a set of definite integrals. Yet we can get a practically equally close
approximation of a function f{x) by a finite trigonometric series f(x), if we use the method of
“trigonometric interpolation.” Instead of minimizing the mean square of the error f(x) — f(x),
we make f(x) equal to f(x) in a sufficient number of equidistant points. This leads to no
integrations but to simple summations. : .

The present situation is quite analogous. To establish a linear relation between the f;(x)
means that the last function f,,(x) shall be approximated by a linear combination of the previous
functions. Instead of using the method of least squares for this approximation we can use
the much simpler method of interpolation, by establishing a linear relation between the successive
fi(x) in as many equidistant points as we have coefficients at our disposal. For the sake of
better. cdnvcrgencc, it is preferable to omit f(x)—which does not satisfy the boundary condi-
tions and thus contains the high vibrational modes too pronouncedly—and establish the linear
relation only from fi(x) on. For example, if we constructed a trial function f;(x) which,
together with the iterated f;(x) = Dfy(x) and doubly iterated f;(x) = D?f(x) satisfies the given
boundary conditions, then we can choose two points of the region, say the two endpoints,

where a linear relation of the form

| , Ja(%) + afy(x) + Bfi(x) =0 (139)
shall hold. This gives the characteristic polynomial G(x) in the form ' » ,
G(x) = x%* 4+ ax + B. (140)

The two roots of this polynomial give us an approximate evaluation of the two highest u;
(or the two lowest A,), thatis, 4, = 1/4, and u, = 1/A,, while the corresponding eigensolutions
are obtained by synthetic division:

G(x)
X— =4%+.8,
(141)
G(x) . " " ’
Pl SR
which gives : ‘ » A
) uy (%) = glfa(*) + gfi(x), (142)

us(x) = g1"f2(x) + g2 fi(%)- )
(The last root and its eigenfunction are always considerably in error, and give only rough
indications.) ' ‘

The remarkable feature of this method is that it completely avoids any integrations, requiring
only the solution of a relatively small number of linear equations. :

The following application of the method demonstrates its practical usefulness. The method
was applied to obtain the first three eigenvalues of the lateral vibrations of a uniform bar, -
clamped at both ends. The given differential operator is here

4
Dy = (%C{’
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with the boundary conditions

o ED=0 y(ED=0
Only the even modes were considered, expanding y(x) into even powers of . The approxima-
tions were carried out in the first, second, and third orders. The eigenvalues obtained are
given in Table 6, the last row containing the correct eigenvalues given by Rayleigh.?

Table 6.
(o] B2 (ot
0,0323413
.0319686 0,0007932
- 031963958 .0010875 0,0000788
0,031963996 0.0010946 0,0001795

We notice that the general convergence behavior of this method is exactly the same as
that of the analytically more advanced, but practically much more cumbersome, method of
minimized iterations. ‘
Differential equations of second order: Milne’s method. If a linear differential equation of
second order with two-end boundary conditions is changed into a difference equation and
- then handled as a matrix problem, singularly favorable conditions exist for the solution of
the eigenvalue problem. The matrix of the corresponding differencc equation contains only
diagonal terms plus one term to the right and one to the left. If we now start to iterate with.

the trial vector _
b0=1)0;0a' ")03 ' . (143)

we observe that the successive iterations grow by one element only, as indicated in the following
scheme, where the dots stand for the nonvanishing components:

bO =%

bl = )

b2 — . . .

bn—l [ B . - . . o
b, = e e

Under these conditions the establishment of the linear identity between the iterated vectors
is greatly simplified since it is available by a successive recursion scheme. The coefficients of

the equation
by + &by + gobuo + - ¢ -+ g0y =0 ' (145)

are directly at our disposal, since the last column of the last two vectors gives g, then the
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previous column gives gy, . . ., until finally the first column gives g,. The construction of
the basic polynomial G(x) is thus accomplished and the eigenvalues?® l are directly available
by finding the roots of the equation G(4) = 0. _

~ Professor W. E. Milne, of the Oregon State College and the Institute for Numerical Analysis,
applied the general theory to this problem, but with the followmg modification. Instead of
iterating with the glvcn matrix A4, Mllne considers the regular vibration problem

2
gtg_{—Du—O | (146)

where the operator D has the following significance :26 ‘
| fer o d
Du=— 5+ #) g + o) s ). )

The differential equétion (146) is now converted into a difference equation, with Ax = At

= h. Then the values of u(i%, jh) are detcrmmcd by successive recursions, starting from the
initial condltlons

u(zh, 0)=1,0,0,0,...0 : » . (148)
and ' | .
v u(th, h) = u(th, — h). (149)
The linear identity between the n + 1 vectors ' ‘
u(ih, 0), u(ih, k), . . ., u(th, nk) , (150)
“leads to a trigonometric equation for the characteristic frequencies »,, of the form
cos mvh + A, _ycos (n— 1)vih + - - - + Ay = 0. ' (151)
- We then put ' '
}bi == 'Vi2. (152)

On the other hand, the regular iteration method gives the eigenvalues 1, of the operator
Au, defined in harmony with the operator Du but with the modification that the operation
d/dx is replaced by the operation A/Ax. The 1, are in the following relation to the »; of Egs.

(151) and (152): .
in1hv\2
‘ Zi —5e— (glnghh V.) . o (153)

" It is of interest to see that the values (152) of Milne are much closer to the true eigenvalues
than are the values obtained by iterations. The values of Milne remain good even for high
frequencies while the iteration method gives gradually worse results; this is to be expected
since the error committed by changing the differential equation to a difference equation must
come into evidence with ever-increasing force, as we proceed to the vibrational modes of
higher order. '

Table 7' illustrates the situation. It contains the results of one of Milne’s examples
(“Example 1”’). Here -

X

e d '
p——(m+2z) | (154)
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with the boundary conditions

u(0) = u(l) = 0. (155)
Moreover, k was chosen as § and # = 7. The column V4, gives the correct frequencies, the
column V4* gives the frequcnéies obtained by Milne’s method, while the column vV A, gives
the frequencies obtained by the iteration method.

Table 7.

] | w | W

1 3,2969 3.2898 3.2667
2 6.3623 6,3457 . 6.1806

3 9,4777 9,4507 8,9107

4 12,6061 12,5664 11,3138

5 15,7398 15.6820 13,2891

6 18.8761 18,7870 14,7581

7 22,0139 21,8430 15,6629

Actually, it is purely a matter of computational preference whether we follow the one or
the other scheme since there is a rigid relation between them. The frequencies »; obtained
by Milne’s method are in the following relation to the frequencies 7; obtained by the matrix-
iteration method:

' sin A v,
V; T ,l
2V
Hence, the results obtained by the one scheme can be translated into the results of the other
scheme, and vice versa.

=5 - (136)

This raises the question why it is so beneficial to transform the frequéncies v; of the Au
operator to the frequencies »; by the condition

sin v, = $hv, : (157)

The answer is contained in the fact that the correction factor

sin 4 v;
: thv;
is exactly the factor that compensates for the transition from du/dx to Au/Ax, if u(x) is of the
form '

(158)

u(x) = C; sin (v,x + 0,) (159)
where the constants C; and 0, are arbitrary. '

Now it so happens that for high frequencies »; the first term of the operator (156) strongly
overshadows the other terms. The differential equation of the eigenvalue problem for large
v; thus becomes asymptotically

2
% + viu, = 0, (160)
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the solution of which is given by (159). This asymptotic behavior of the solution for high
frequencies makes it possible to counteract the damaging influence of the error caused by the
initial transition to the difference equation. The correction is implicitly included in Milne’s
solution, while the results of the matrix-iteration scheme can be corrected by solvmg equations
(157) for the »,.27 :

Moultidimensional problems. The present investigation was devoted to differential and integral
operators that belonged to a definite finite range of the variable x. This variable covered a
one-dimensional manifold of points. However, in many problems of physics and engineering
the domain of the independent variable is more than one-dimensional. A few general remarks
may be in order as to the possibility of extending the principles and methods of the present
investigation to manifolds of higher dimensions.

While the gEneral theory of integral equations reveals that the fundamental properties of
an integral equation are essentially independent of the dimensionality of the variable x, yet
from the practical viewpoint the eigenvalue problem of multidimensional manifolds does lead
to difficulties that are not encountered in manifolds of one single dimension. The basic differ-
ence is that an essentially multidimensional manifold of eigenvalues is projected on a one-
dimensional manifold, thus causing a strong overlapping of basically different vibrational
modes. A good example is provided by the vibrational modcs of a rectangular membrane.
The eigenvalues are here given by the equation

A = o®my® 4 ay®my?,
where m; and m, are two independent integers, while «; and «, are two constants determined
by the length and width of the membrane.

As .another illustration, consider the bewildering variety of spectral terms that can be
found within a very narrow band of frequencies, if the vibrational modes of an atom’ or a
molecule are studied. To separate all these vibrational modes from one another poses a
difficult problem which has no analogue in systems of one degree of freedom where the different
vibrational states usually belong to well-separated frequencies.

It is practically impossible that one single trial function will be sufficient for the separation
of all these vibrational states. Nor does such an expectation correspond to the actual physical -
situation. The tremendous variety of atomic states is not excited by one single exciting function
but by a rapid succession of an infinite variety of exciting functions, distributed according to
some statistical probability laws. To imitate this situation mathematically means that we
have to operate with a great variety of trial functions before we can hope to untangle the very
dense family of vibrational states associated with a more than one-dimensional manifold.

In this connection it seems appropriate to say a word about the physical significance of
the “trial function” ¢y(x) that we have employed for the generation of an entire system of
eigenfunctions. At first sight this trial function may appear as a purely mathematical quantity
that has no analogue in the physical world. The homogenéous integral equation that defines
the eigenvalues, and the eigenfﬁnctions, of a given integral operator, does not come physically
into evidence since in the domain of physical reality there is always a “driving force” that
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provides the right-hand member of the integral equation; it is thus the inhomogeneous and
not the homogencous eqﬁation that has direct physical significance.

If we carefully analyze the method of successive approximations by which the eigenvalues
and the eigenfunctions of a given integral operator were obtained, we cannot fail to observe
that we have basically operated with the inhomogeneous equation (102) and our trial function
@o(x) serves merely as the “exciting function” or “‘driving force.” Indeed, the solution (106)

for the eigenfunctions is nothing but a special case of the general solution (101), but applied
to such values of the parameter 4 as make the denominator zero. This means that we artificially
generate the state of “resonance’ which singles out one definite eigenvalue 4; and its associated
eigenfunction g,(x).

From this point of view we can say that, while the separation of all the eigenfunctions of a
multidimensional operator might be a practically insuperable task—except if the technique of
“separation” is applicable, which reduces the multidimensional problem to a succession of
one-dimensional problems—yet it might not be too difficult to obtain the solution of a given
multidimensional integral equation if the right-hand member (that is, physically, the “driving
force”) is given as a sufficiently smooth function that does not contain a too large variety of
eigenfunctions. Then the convergence of the method may still suffice for a solution that gives
the output function with a practically satisfactory accuracy. This is the situation in many
antenna and wave-guide problems which are actually input-output problems, rather than
strict resonance problems. In other words, what we want to get is a certain mixture of weighted
eigenfunctions, which appear physically together, on account of the exciting mechanism,
while the isolation of each eigenfunction for itself is not demanded. Problems of this type are
much more amenable to a solution than problems that demand a strict separation of the infinite
variety of eigenfunctions associated with a multidimensional differential or integral operator.
To show the applicability of the method to problems of this nature will be the task of a future
investigation. ‘

Summary. The present investigation establishes a systematic procedure for the evaluation
of the latent roots and principal axes of a matrix, without constant reductions of the order of
the matrix. A systematic algorithm (called the “progressive algorithm”) is developed which
obtains the linear identity between the iterated vectors in successive steps by means of recur-
sions. The accuracy of the relation obtained increases constantly, until in the end full accuracy
is obtained. o

This procedure is then modified to the method of “minimized iterations,” in order to
avoid the accumulation of rounding errors. Great accuracy is thus obtainable even in the
case of matrices that exhibit a large dispersion of the eigenvalues. Moreover, the good con-
vergence of the method in the case of large dispersion makes it possible to operate with a small
number of iterations, obtaining m successive eigenvalues and principal axes by only m + 1
iterations. ' : ' :

These results are independent of the order of the matrix and can thus be immediately
applied to the realm of differential and integral operators. This results in a well-convergent
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approximation method by which the solution of an integral equation of the Fredholm type
is obtained by successive iterations. The same procedure obtains the eigenvalues and eigen-
solutions of the given integral operator, if these eigensolutions exist.

In the case of differential operators the too-stringent demands of the least-squares method
may be relaxed. The approximate linear identity between: the iterated functions may be
established by interpolation, thus dispensing with the evaluation of definite integrals. More-
over, the iterations may be carried out with the given differential operator itself, instead of
reverting to the Green’s function, which is frequently not available in closed form. The entire
procedure is then free of integrations and requires only the solution of linear equations.
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11. We shall use the term “eigenvalue’ for the numbers u,; defined by Eq. (5) while the reciprocals
of the eigenvalues 4, [= 1/u;] will be called “characteristic numbers.”

12. The characteristic solutions of defective matrices—i.e., matrices whose elementary divisors
are not throughout linear—do not include the entire n-dimensional space since such matrices possess
fewer than n independent principal axes. :

13. In order to prevent this paper from becoming too lengthy, the analytic details of the present
investigation are kept to a minimum and in a few places the reader is requested to interpolate the
missing steps. '

14. We have in mind the general case and overlook the fact that the oversimplified nature of
the example makes the deciston trivial.

15. The reader is urged to carry through a similar analysis with the same matrix, but changmg »
the 0, 0 diagonal elements of rows 5 and 6 to 1,0 and 1, 1.

16. Instead of iterating with 4 and A* n times, we can also iterate with 4 alone 2n times. Any
of the columns of the iteration matrix can now be chosen as ¢; numbers, since these columns correspond
to a dotting of the iteration matrix with 5* =1, 0,0, .. .; * =0,1,0,0,. . .; b* =0,0, 1,
0,0,. . .; and so on. The transposed matrix is here not used at all. Dr. E. C. Bower of the Douglas
Aircraft Company pointed out to the author that from the machine viewpoint a uniform iteration
scheme of 2n iterations is preferable to a divided scheme of n 4 n iterations. The divided scheme
has the advantage of less accumulation of rounding errors and more powerful checks on the successive
iterations. The uniform scheme has the advantage that more than one column is at our disposal.
Accidental deficiencies of the by* vector can thus be eliminated, by repeating the algorithm with a
different column. (For this purpose it is of advantage to start with the trial vector by = 1,1, 1,. . . 1.)
In the case of a symmetric matrix it is evident that after n iterations the basic scalars should be formed,
instead of continuing with n more iterations.

17. The idea of the successive orthogonalization of a set of vectors was probably first employed
by O. Szasz, in connection with a determinant theorem of Hadamard; see Math. és phys. lapok 19,
~ 221-227 (1910) (in Hungarian). The method found later numerous important applications.

"18. The reader is urged to carry through the process of minimized iterations and evaluation of
the principal axes for the defective matrix '

0 1 0
0 0 1
0 0 0

which has only one pair of principal axes. (Choose the trial vector in the form b, = bg* =1, 1, 1.)

19. For algebraic reasons, the orthogonality of the matrix (97) holds not only for the final m but
for any value of m.

20. In a control experiment that imitated the condmons of the vibrating bar, but with a more
regular matrix, the results were analytically predictable and the computational results open to an
_exact check. This example vividly demonstrated the astonishing degree of noninterference of ortho-
gonal vectors. The spread of the eigenvalues was 1 : 3200.- The trial vector b, strongly overemphasized
the largest eigenvalue, containing the lowest and the highest eigenvectors with an amplitude ratio
of 1 : 108 (this means that if the vector of the smallest eigenvalue were drawn with the length of 1 in.,
the 'vector of the largest eigenvalue, perpendicular to the previous one, would span the distance from-
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